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Chapter 1
A Commemorative Review of Harvey
Greenberg’s Career

Allen Holder

Harvey J. Greenberg’s career in Operations Research (OR) and Computer Science
(CS) spanned the half-century from his Ph.D. dissertation in 1968 to his death
in 2018. The magnitude of his accomplishments in those 50 years is profound,
enough so that it is difficult to communicate his legacy’s entire imprint. Harvey had
outstanding academic success, but he also played critical roles in guiding public
policy, in advancing OR’s industrial employ, and in building community. Most OR
professionals could pridefully review their careers with noteworthy success in just
one of these categories, but Harvey’s substantive influence in each has distinguished
him as one of his era’s definitive bellwethers. Harvey’s era was of particular note
because it witnessed OR blossom from its military and industrial origins to its
expansive embrace of modern algorithms and computing. These computational
advances now solve problems across a broad taxonomy of OR, a taxonomy that
is mathematically and computationally diverse and that is replete with application.
Harvey adored OR’s increase, and he never tired of learning new applications, new
methods, and new computing aspects. Harvey’s career began in a time when erudite
students could canvass OR, but it ended in a time when scholars had to be much
more selective. Harvey’s generation held the last of OR’s renaissance experts, a
group of which Harvey was an exemplary representative.

The contributed chapters of this volume intersect several facets of Harvey’s
career, and they pivot from collegial commentary and review, to concluding
research, and to inspired new projects. Topics range from the method of Generalized
Lagrange Multipliers, which was one of Harvey’s most cherished and sustained
research topics, to a new effort in Computational Biology, which was an emerging
area of research that Harvey championed toward the end of his career. Another
chapter reflects on Harvey’s important work at the Federal Energy Administration
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2 A. Holder

(FEA), and it thankfully archives one of OR’s most unsung success stories. Harvey’s
disposition regularly became impassioned as he discussed his time at the FEA, and
his work there was very clearly the perfect blend of research, application, social
charge, and camaraderie. I envied Harvey’s zeal as he narrated events at the FEA,
and I have had more than twinges of jealously as I have realized that my career will
surely lack such experiences.

This collected volume illustrates the mosaic of Harvey’s career as it skips across
time and topic, but we should also comment on the very many accomplishments not
discussed. The remaining goal of this introduction is to do just that. The majority of
what follows is factual and can be readily verified, but I also comment occasionally
on my memories. I do not intend to spin tall tales, but folklore has, nonetheless,
a way of amplifying itself into something grander than it really was. I ask for
indulgence as I remember my dear friend, someone who could mythically fathom
the infeasibilities of vexing problems as he rallied a posse of OR and CS experts
to efface the world of slipshod analysis. Harvey did not just study and advance OR
and CS because he enjoyed it, which he did immensely, but rather because he also
believed in the utility of OR and CS and how they could improve peoples’ lives. His
passion was infectious and motivating, and it will be missed.

1.1 Research Prowess

Harvey earned his Ph.D. from the Department of Operations Research and Industrial
Engineering at Johns Hopkins University in 1968. His dissertation title was Optimal
Attack of a Command and Control Communications Network, although this was not
his first Ph.D. dissertation. Harvey’s original thesis topic had instead stemmed from
his penchant for Lagrange multipliers, and in his first dissertation he independently
established the Fritz John optimality conditions. These conditions appeared in 1948
in Studies and Essays, Courant Anniversary Volume [3], but they were not widely
distributed or read in the emerging operations research community. However, sev-
eral researchers at the time were investigating constraint qualifications to advance
the theory of Lagrange multipliers, and the Fritz John conditions were natural and
important in this line of research. Indeed, Mangasarian and Fromovitz published
a new constraint qualification in their 1967 article titled The Fritz John Necessary
Optimality Conditions in the Presence of Equality and Inequality Constraints [6],
and they acknowledged in their introduction that the Kuhn–Tucker criteria were
“best-known” even though the Fritz John criteria were more general and previously
published. Harvey found himself in the awkward situation of having a significant
independent result, one that would have cemented him as a rising academic star, but
that was insufficient as original research. Harvey had already accepted a new job and
had released his graduate stipend when he learned the news, and he found it difficult
to return to student life and to write a second dissertation. Each Ph.D. student is
acquainted with the fear of finding her or his expectant thesis in the latest literature
or in an obscure or overlooked publication, but Harvey lived that fear. This difficult
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experience gave him a unique empathy with his students. Indeed, he advocated that
such occurrences proved that the research was substantial and of publishable quality,
and if truly independent, then it was also sufficiently novel.

Harvey’s academic credentials burgeoned after he earned his Ph.D., and his early
résumé was a young academic’s paragon. His first 23 publications included 10
articles in Operations Research (5 sole authored), 2 in Management Science, 2 in
Journal of Optimization Theory and Applications, 1 in Mathematical Programming,
and 1 (sole authored) in Technometrics. These early publications have over 1000
citations and an average of more than 45 citations per paper. Twelve of Harvey’s
articles have at least 100 citations, averaging 187 citations per article in this group,
and 27 papers have at least 50 citations, averaging 118 citations in this group.
These highly cited articles stretch from his earliest research, for example, Surrogate
Mathematical Programming with W. Pierskalla in 1970 has 275 citations [2], to the
end of his career, for which Reconstruction and Functional Characterization of the
Human Mitochondrial Metabolic Network Based on Proteomic and Biochemical
Data with T. Vo and B. Palsson in 2004 has 176 citations [8].

Harvey’s publication record was as diverse as it was significant, and his expertise
went deep into any taxonomy of OR and CS. His publications intersect both sides of
our standard divisions: continuous versus discrete, deterministic versus stochastic,
convex versus nonconvex, applied versus theoretical, etc. I sat with Harvey through
dozens of talks and seminars, and I was both amazed and intimidated by his
unremitting and penetrating questions, which came independent of topic. Speakers,
from nervous fledgling students making their initial research overtures all the way
to seasoned and steadfast professionals delivering well-tested presentations, often
found themselves learning more about their research than what they had been
offering during their talks. Harvey’s research latitude was motivated, at least in part,
by his ability to quickly perceive how an emerging idea could advance another
domain. For instance, he had longstanding interests in parametric programming
and sensitivity analysis, which until the 1990s had largely been reliant on simplex
algorithms. Harvey immediately altered his perspective once he saw that the
then emerging interior-point algorithms provided qualitatively different solutions.
Another example was his early awareness of how OR and CS could further problems
in the life sciences. Harvey had to learn significant amounts of new material to
leverage these connections toward new research, but he never tired of the effort—
indeed, I do not think he thought of it as an effort at all. He constantly had piles and
piles of papers nearby, and while his filing system was sketchy, his memory was
lucidly lexicographic.

Harvey’s research accomplishments earned him several accolades. He was
awarded the 1999 Harold Larnder Prize by the Canadian Operations Research
Society for having “achieved international distinction in Operations Research,” and
he won the Operations Research Society of America’s research prize presented
by the Computer Science Special Interest Group in 1986. He further received the
University of Colorado at Denver’s Chancellor’s Lectureship Award for Outstanding
Scholarship in 1993 and the College of Liberal Arts and Sciences Award for
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Outstanding Achievement in Research in 1988. He became an INFORMS Fellow
in 2011.

Harvey’s academic credentials are without doubt impressive, especially for his
era, but they are even more impressive against the reality that Harvey spent many of
his prime academic years in public service. Moreover, Harvey only had a handful of
Ph.D. students, four in mathematics and one in computer science. So his academic
output was not the natural, if not perfunctory, expectation of a modern academic’s
research program, but it was instead the derivative of a pursuant intellect that
relentlessly sought challenging problems. Those of us fortunate to have worked
with Harvey experienced his uncanny industry, adroitness, and alacrity, all of which
have become legendary and, at times, even humorous. He was a joy to work with,
but you had to be ready for a late night call if he discovered a new result, or an
impromptu polemic if an outcome was in question. Conversations could be heated,
but only because the truth would be better honed by the fire of debate. Harvey
loved banter, especially when it ended in the celebration of a mathematical novelty,
a fresh computational perspective, or an original analysis. Some might say that
Harvey enjoyed argument, but I do not think that that hits the nail on the head.
Harvey certainly relished the back and forth, which from the receiving end always
seemed more back than forth, but what he really fancied was the combined effort of
identifying what was being sought. It was as if each person’s parlances were their
individual pickaxes, and the argument was a way for everyone to swing at the rock
that held the gem. Harvey could swing harder than most, and his rapid and accurate
blows were something to behold.

1.2 Pedagogical Imprint

The educational standing of a research academic is regularly assessed within the
realm of graduate education and Ph.D. advising, but Harvey’s pedagogical imprint
differs from this standard and is, in the author’s opinion, more lasting and altruistic.
Harvey taught at three universities and made substantive programmatic changes at
each. He also worked tirelessly to initiate online and free educational materials that
have continued to aid students of OR and CS worldwide.

Harvey’s first academic position was in the Department of Computer Science and
Operations Research at Southern Methodist University, where he helped launch a
new Ph.D. degree in Computer Science and Operations Research, a newM.S. degree
in Engineering Administration, and a new program that introduced undergraduates
to research. The latter of these was way ahead of its time and came when the
term “undergraduate research” would have been an oxymoron to most academics.
His second academic position was at the Virginia Polytechnic Institute and State
University, where he directed the off-campus graduate program in Computer
Science.

Harvey left Virginia Tech. for the Federal Energy Administration in 1976, a
time upon which we reflect in the next section, and he then joined the mathematics
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department at the University of Colorado at Denver from 1983 to 2008. Part of the
draw to CU-Denver was its goal to initiate a doctoral degree in applied mathematics.
Harvey chaired the proposal committee, which successfully installed the new
degree. The field of mathematics was then at the height of its division between its
pure and applied factions, and the applied side was further dominated by the field of
partial differential equations (PDEs). Harvey’s OR and CS perspective on applied
mathematics was much broader than PDEs, and the new degree included discrete
mathematics, OR, Probability, Statistics, and PDEs. The research and educational
purview of the new Ph.D. also welcomed computational studies, which were largely
shunned by pure mathematicians of the day. The CU-Denver math department grew
around these broad guidelines, and its liberal scope of applied mathematics helped
distinguish it from other graduate programs. The first Ph.D. was awarded in 1988,
and the department surpassed its 100th doctoral degree in 2019.

Harvey also helped start the CU-Denver Math Clinic, the Center for Com-
putational Mathematics, and the Center for Computational Biology (CCB). The
Math Clinic provided practical and industrial research opportunities to graduate and
undergraduate students, and it was an uncommon educational experience within
mathematics—Harvey Mudd’s math clinic was the only other example known by
the author at that time. The CCB deserves special comment since it stemmed
from Harvey’s early awareness that the life sciences were becoming increasingly
dependent on mathematics and computing. He founded the CCB in 2001, a few
years before the National Academy of Sciences’ BIO2010 report definitively
recognized the importance of mathematics and computing within the biological
curricula. The CCB dissolved in 2009, but it anticipated the sweeping changes in
the life sciences that were then happening, and it promoted education and research
in the emerging disciplines of computational biology, bioinformatics, and systems
biology.

The educational programs Harvey helped initiate demonstrate his particular gift
to start something new. Initiating such projects requires an aspirational energy, an
energy that Harvey brought regularly to his other professional responsibilities like
classroom education. Being a student of Harvey’s was not for the faint of heart, and
he could overwhelm with content, expectation, and pace. The author’s first day as
a pupil in one of Harvey’s courses started with Harvey wheeling a cart around the
classroom to deposit foot high stacks of papers in front of his students. He pulled
a thick, originally authored manuscript from the top and announced that we would
complete it by the next class, and he then told each of us to go to the board and
state and prove a theorem of our choice from the prerequisite course. It was a long
weekend of studying motivated by our ineptness at the board. Harvey often used
dual projectors to cover all that he wanted within a class period—he just moved so
very quickly. A classmate found a flaw in the course materials mid-term, and in our
barbed exhaustion we so anticipated pointing this out when we reached it in class.
I can still hear the exchange as my classmate interjected, “Professor Greenberg, I
think there is an error.” There was a halting silence, and then Harvey started to attack
the concern, debating with himself for a few moments. He soon concluded that my
classmate was correct and that he had found a flaw in a long-standing published
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result. Harvey giggled and just kept going. That moment somehow gave us hope,
hope that we could survive and gain what he expected.

Harvey was quick to notice educational voids that lent themselves to his
expertise, and he persistently toiled to fill them so that others might benefit.
Three such projects deserve special comment, those being his LP Short Course,
The Mathematical Programming Glossary [7], and Myths and Counterexamples
in Mathematical Programming [1]. These were considerable efforts that required
protracted dedication, efforts that most academics would have avoided because
they would have lacked professional recognition. Harvey completed these projects
because they were laudable in and of themselves, and he completed them knowing
that his career might not benefit. That is not to say that he did not hope for, or
indeed maybe covet, recognition for his altruistic exertions, but conceit would never
forestall Harvey from doing what he knew to be right. He held, and lived by, deep-
seated convictions, and it was imperative for him to be conscientious. Indeed, these
educational enterprises only illustrate his general willingness and aptitude to work
where others would not and to work toward the betterment of the greater good.

Harvey authored a curriculum for linear programming that was designed as an
online educational resource. The course was called an LP Short Course, and he
sponsored it on his web page for anyone interested in learning linear programming.
This was decades before the massive open online course (MOOC) concept, the Khan
Academy, or any of the other free educational outlets available today. The course
had nine lessons titled: (1) What is LP? (2) What is a solution? (3) How do we
solve linear programs? (4) What do the solutions mean? (5) More formulation and
analysis, (6) Mathematics of LP, (7) Computer Science of LP, (8) Economics of LP,
and (9) Debugging. The lessons included definitions, examples, and exercises, all
of which worked interactively through a web browser. The course also incorporated
the use of software as it motivated several practical problems. The course was, in
hindsight, a foretelling archetype of what online education would become.

The Mathematical Programming Glossary (MPG) grew out of Harvey’s desire
to help students learn the language of mathematical programming. His first version
was a simple list of terms covering linear and nonlinear programming, a version
which the author used as a student in Harvey’s courses. The educational advantage
of hyperlinking terms sparked Harvey’s interest and motivated him to extend the
glossary well beyond its humble start. The MPG now contains over 800 terms and
covers all areas of mathematical programming and their connections to computer
science. The INFORMS Computing Society has sponsored the MPG since 2006,
and it has become a highly visited resource within the INFORMS online presence.
The MPG underwent a major overhaul in 2009–2010, and the glossary now permits
customized word lists and supports standard mathematical notation. The MPG is
currently on its third editor and is well positioned to maintain its original educational
intent for the OR and CS community.

Harvey began cataloging folkloric concepts and esoteric examples in mathe-
matical programming in 1996, and his collection grew over the next 14 years
into a substantial volume titled Myths and Counterexamples in Mathematical
Programming (Myths for short). Harvey had an apt propensity to discern what really
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was versus what was really close, a skill that galvanized his authoring of Myths. He
was also keenly aware that disciplines such as real analysis had profited from similar
collections, and he wanted OR and CS to benefit similarly. The educational merit of
a collection like Myths is that students best understand the theoretical and practical
confines of a theorem, a calculation technique, or any other similar entity by learning
how it loses its validity once it escapes its precise boundary. For example, is it
true that the simplex method terminates once it reaches an optimal vertex? The
author is confident that OR experts would overwhelmingly answer this question in
the affirmative even though it is false as demonstrated by the counterexample to
Myth 17. Myths is a remarkable and valuable compilation containing 47 myths in
linear programming, 45 in integer programming, 32 in dynamic programming, 49
in nonlinear programming, 21 in multiple objective programming, and 19 in other
problem classes.

I end this section with a noneducational tidbit that further explicates Harvey’s
gift to find what was amiss. It is difficult to exaggerate the acuteness of his talent
in this regard, and while it may have favorably prompted efforts like Myths, it
was also frustrating. For instance, Harvey regularly and immediately found flaws
in software. He could sit in front of a new system and try the one feature that
would fail from among the very many that would not. Indeed, his first attempt
would frequently pinpoint the odd example upon which that exact feature would fail.
Software regularly seemed mercurial, working on occasion but commonly lapsing—
although who could really tell when, or under what circumstances, outcomes could
be trusted. I was Harvey’s system administrator for several years, a job that kept
me busier than I would have ever guessed. I remember him asking why a certain
command did not work, and he showed me that it did not as I looked over his
shoulder. We swapped positions, and I typed the same command. Voilà, it worked!
It was as if the computer had learned to read his fingerprints so that it could play
tricks on him. I have never been able to reconcile the paradox of Harvey’s yin and
yang experiences with computing. He produced world class software, but he could
barely use a computer at times.

1.3 Governmental Success

Harvey joined the Federal Energy Administration (FEA) in 1976, a time when the
country was gripped by the aftermath of the OPEC oil embargo. The next chapter,
which is written by his longtime colleague and friend, Fred Murphy, whom he met
at the FEA, archives how Harvey and Fred, as well as many others, succeeded
in advising the White House to advance public policy. I strongly recommend this
chapter to readers interested in the historical importance of OR and CS. We should
all feel proud of OR’s well-chronicled triumphs, but the fact that OR helped guide
the United States out of an energy crises so perilous that it was called the “moral
equivalent of war” has been less documented, and subsequently, less heralded. Many
young and publicly spirited virtuosos were attracted to the government at that time in
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the hope that they could help society. Harvey and Fred brought particular expertise
in OR, and they used it to influence policies that have since helped steady our
economy.

My goal in this section is to add my perspective on Harvey’s time at the FEA.
Harvey was never far from his FEA experience in my relationship with him,
and conversations of any significant length always meandered through his FEA
memories. His years at the FEA were indeed special. It was a moment when Harvey
had a young family and when he was answering John F. Kennedy’s call to “ask
not what your country can do for you—ask what you can do for your country.”
Harvey so admired President Kennedy, and others like Abraham Lincoln and Albert
Einstein, and he felt responsible to help as he could. One of the ways he helped was
to support women in the workforce, with Susan Holte, one of his colleagues at the
FEA, stating soon after Harvey’s death, “this was an era when my salary did not
count when my husband and I were applying for a mortgage, and some men in the
workplace did not take the women, particularly younger women, seriously. I was
fortunate to work with several men who ignored those outmoded ideas and really
boosted me and my career. Harvey was definitely one of my main boosters.”

Harvey’s work at the FEA combined mathematics, computing, and analysis, and
there was a necessity for brisk advancement. Harvey relished the excitement of the
challenge, and he acknowledged the joy of having Potomac fever. He would smile
and reminisce about how he could apprise officials in the morning and then later
in the day hear about their decisions on the national news. The bustling clip of
work demanded solutions to what were then difficult to solve economic models,
but time on a computer was at a premium. I once sat with Harvey and Johannes
Bisschop, who was at the World Bank when Harvey was at the FEA, as they recalled
an earlier tussle between the FEA and the World Bank about who had precedence on
the big mainframes. Calculations were so important at that time that Mayor Daley
in Chicago had been asked to stop road work that would have otherwise caused a
machine to go down. The FEA thankfully had its own mainframe during Harvey’s
tenure.

Fulfilling the charge to solve and analyze substantial energy models with limited
computing resources gave Harvey a unique research acuity. One nugget he passed
to me was that the simplex algorithm could terminate with different solutions
depending on when it was started. The reason was that the number of reduced costs
computed at each iteration depended on the state of the computing system. So while
the algorithm was deterministic, its employ was stochastic, and solutions would
vary from run to run. Successful runs would typically follow after the completion of
40–100 learning runs, of which each could take several hours itself. The difficultly
to obtain success prompted the need to squeeze all possible information from the
various runs, and Harvey began to pursue software to aid such analysis, a pursuit
that ultimately led him to author the software packages ANALYZE, MODLER,
and RANDMOD. These packages foreshadowed many of our modern software
resources, although ANALYZE remains unique as a system designed to answer
a practitioner’s queries. The software ensemble is Harvey’s practical response to
the fact that “we can solve far larger problems than we can understand,” an oft
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repeated phrase that he wrote in 1988 in support of developing an intelligent
mathematical programming system. Harvey’s software packages are reviewed by
Matthew Saltzman in Chap. 3.

Harvey’s career largely splits into pre- and post-FEA, and the division highlights
the effect that his work at the FEA had on his career. His research pre-FEA was
mostly mathematical and algorithmic, focusing on Lagrange multipliers, dynamic
programming, and duality theory. His research at the FEA became more practical
and more computational, a trend that he maintained after the FEA. Harvey enjoyed
theory in my experience, but he always looked for it to translate back into practice.
One of his favorite adages was, “there is nothing more practical than a good
theorem.” He saw theory and abstraction as ways to address particular problems
but not generally as means in themselves. My relationship with Harvey was post-
FEA, and I believe his focus on solving real problems stemmed from his work at the
FEA. In any event, working at the FEA was to him a high point of his career, and
the work he accomplished there impressed itself upon the rest of his professional
activity.

1.4 Service

Harvey’s dedication to advancing OR and CS has had, and will continue to have,
profound effects. I have already commented on his willingness to undertake projects
like the MPG and Myths and on his enthusiasm for starting new educational
programs. Here I want to comment on his service to the OR and CS profession
beyond these educational elements, and in particular, I want to distinguish his
remarkable ability to create community and opportunity.

Harvey was one of the founders of the Computer Science Special Interest
Group within the Operations Research Society of America (ORSA), which later
became the INFORMS Computing Society (ICS). He was the group’s second
chairman, and he (co)chaired several conferences and symposia. He also provided a
welcoming atmosphere and befriended young talent, encouraging them to consider
the intriguing problems in OR and CS. The ICS is one of INFORMS’ original and
most successful societies, and it has served thousands of OR and CS professionals
through its biennial conferences, its journal, its awards, and its research voice, all of
which Harvey played foremost roles in launching, managing, and sustaining.

The opportunity to start a new society in OR and CS was born out of what was
then an entanglement of the two disciplines. OR was pioneered before the concept
of computing became widespread, but the emerging discipline of OR naturally
agreed with CS’s utility and theoretical study. Harvey was quick to remind us that
many of the original computers were debugged by solving optimization problems
and that numerous problems in CS were most naturally within our OR purview.
He did not really see OR and CS as distinct disciplines but instead as a sort of
Janus through which ever greater problems could be solved. Computing could be
theoretical, methodological, or operational, and OR could be algorithmic, numeric,
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or computational. Time has altered our broad community’s perspective on OR and
CS, and the interface between the two is often interpreted today as the computational
side of the more methodological/theoretical discipline of OR. Harvey held disdain
for this restricted ambit, and he was quick to espouse the ICS community as being
so much more and as having a potential that was both momentous and noble.

Harvey championed two publication outlets, creating both the ORSA Journal
on Computing, which later became the INFORMS Journal on Computing (IJOC),
and TutORials. Cole Smith reviews these series in Chap. 5. Many academics serve
journals, and Harvey certainly did his share of this type of service, but starting
new publication venues and nurturing them from their inaugurations to their mature
postures is assiduous. I was fortunate to have served under Harvey as an associate
editor of the IJOC, and he taught me much about the earnest responsibility of
being an editor. He was not the type of editor who would merely tally referees’
comments; no, he would instead actively counsel the review process to help ensure
the publication of meaningful novelty.

Harvey further created an industrial consortium in the 1980s in support of
developing an Intelligent Mathematical Programming System (IMPS). The goal was
to unify and to scientifically study the progression experienced by practitioners of
mathematical programming. The IMPS provided software, along with its theoretical
underpinnings, that encompassed modeling, solving, and analyzing mathematical
(linear) programs. The consortium sponsored regular symposia and supported many
academics. Those who participated in the consortium speak of the specialness of the
research environment and how it provided career-long research threads. Chapters 2,
3, and 4 review some of the impacts of the IMPS consortium.

Harvey won numerous service awards. He was recognized by the Association of
Computing Machinery in 1985 and by ORSA in 1993. He also won an Outstanding
Service Award from the College of Liberal Arts and Sciences at CU-Denver in 2001.
The ICS created the Harvey J. Greenberg Award for Service in 2007 in recognition
of his very many contributions to the society.

Harvey continued to serve the entities that he helped start, e.g., by serving on their
advisory boards, as one of their reviewers, or as an editor. He was quick to promote
new efforts, and he was willing to spearhead them if allowed. He could pester an
editor-in-chief or a society’s chair with new ideas, and he had the remarkable knack
of sending terse, one line emails that would require paragraphs in return. He was a
fountain of new ideas and new opportunities, enough so that it could exhaust those
around him. Harvey always seemed to have time to ballyhoo a new option, even if
everyone else was sated with those already in place.

1.5 A Constant Challenge to Norms

I hope the previous sections have provided an impression of who Harvey was and
how his accomplishments have remained valuable. Harvey was difficult to pin down,
and he was constantly thinking outside the box. He had superb vision and was able
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to advocate for his causes in ways that made others want to join. Many of his original
OR and CS interests were in artificial intelligence and machine learning, topics that
have reemerged today as important subjects within OR [4, 5]. These studies were
in their infancy when Harvey first espoused their value, and they have flourished
as computing has advanced. Harvey was also an original proponent of OR and
computational biology, and he dreamed of a time when OR and CS would provide
the backbone of personalized medicine, a time when medical treatments would be
optimized to an individual’s unique biology.

Harvey’s constant prodding toward the novel challenged the status quo, and
while we have already noted a couple of examples illustrating this fact, I want to
add another that he prompted even after his death in 2018. The ICS had already
created the Harvey J. Greenberg Award for Service in 2007, and his decisive
roles in the ICS’s formation and continuation were assuredly meritorious of his
name being associated with this service award. However, his research standing
and accomplishments were no less important, and several wanted to add a research
award in Harvey’s name following his death. Doing so would have led, for the first
time, to two INFORMS awards being in one person’s name, a potential precedent
that raised understandable concern. The fact that Harvey, and not one of OR’s great
early luminaries, was the one who provoked the concern is telling, and the situation
is emblematic of how Harvey regularly found himself pushing, or at times rubbing
up against, regulation. Indeed, Harvey could occasionally simply work through
bureaucracy in creative ways. For instance, he once caused a bodacious stir by
expropriating five nice chairs for his staff at the FEA from the room in which the
head of the FEA had scheduled a press conference. The chairs were quickly returned
to the conference room because Harvey had used his actual name to sign for the
dolly.

The concern of having two awards in Harvey’s name also reminds me of how
Harvey doubted his own legacy. He was confident in his own credit worthiness, but
he questioned how others might acknowledge his impact. He was not alone in this
regard, and as Richard O’Neill, one of Harvey’s colleagues and co-authors, wrote
in a commemorative email following Harvey’s death, “I do not think Harvey got
the recognition or appreciation he deserved.” The ICS has always felt to me like a
group of crack, cutting edge renegades who were off solving the grand avant-garde
problems of the day. This was the group who was designing new algorithms, new
mathematics, and new models to advance OR and CS toward the applied benefit
of humankind. This was Harvey’s renegade clan, and he would have found such
heartfelt solace in the knowledge that they wanted to honor him in multiple ways.
The brouhaha following the suggestion of a second award was amicably settled
with a policy that one person could have at most one award, what I refer to as the
Harvey rule. Harvey would have found this new policy to be silly, but I also think
he would have giggled knowing that his legacy had caused such a fuss. Harvey
would have also been practical and would have supported the ICS’s decision to
rename the service award so that it could gain the newly formed, and endowed,
ICS Harvey J. Greenberg Research Award. As John Chinneck stated just before the
vote to establish the new award, Harvey would have liked the research award better
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himself. The service award retains an inscription that clearly honors Harvey as the
motivating influence, so in some way, Harvey is the first to have two awards.

Harvey Greenberg had a wonderful career full of wide ranging accomplishments,
but his truly exemplary characteristic was his pursuit of a magnanimous vision
for the future, one that held promise and opportunity for everyone and that was
motivated by the spirit of good intention. He was a high-energy idealist at heart,
even though he could be pragmatic if needed. He was an outstanding academic, a
gifted educator, a motivating will, a fatherly adviser, and a tireless voice for OR and
CS.

Acknowledgments The author thanks John Chinneck, Leanne Holder, Fred Murphy, Matthew
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Chapter 2
How the Work That Harvey and I Did
at the Federal Energy Administration
(Later Department of Energy) Shaped
Our Research Careers and Led to Our
Decades Long Collaboration
and Friendship

Frederic H. Murphy

Abstract Harvey and I began working together at the Federal Energy Administra-
tion, the predecessor to the Energy Information Administration. Our most intense
period was when we were doing research on the fly to model the impacts of policies
that were under consideration when the White House Energy Policy Office was
developing Carter’s National Energy Plan. I describe here the equilibrium modeling
and analysis we did to estimate the impacts of the National Energy Plan and
other policy proposals. Because we were in untrodden territory, we wound up with
decades worth of research questions from that short, intense period. I cover some of
these areas and describe some of our work together after leaving Washington, and I
mention the current state of the art in these areas and the areas where our research
took different paths. I also point out some of the research questions that still need
answers.

2.1 Background

I joined the Federal Energy Administration, which became part of the Department
of Energy, in 1975, and Harvey came one year later. To put that period in context,
after World War II the country was proud of accomplishments that included winning
World War II, rebuilding Europe and Japan, and creating a domestic economy with
a large middle class. Yet, the country seemed to be descending into chaos. Cities had
been burning due to the race and antiwar riots. Lyndon Johnson betrayed our trust
in government leaders through his lies and bad decisions about the Vietnam War.
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Richard Nixon had ruined what remained of our trust through the Watergate break-
in, the escalation of the Vietnam War, and his other cynical actions. It seemed at the
time that the USA had lost control of its destiny. Then the 1973–1974 oil embargo
hit.

Harvey and I joined the federal government because in that era we, and
most people, still believed that government could solve problems. We wanted to
participate in the solution.

Commentators tend to use political events and social upheavals to demarcate
historical and cultural turning points. However, ongoing intellectual and techno-
logical progress have an equally important role in shaping eras. Developments in
three intellectual fields, along with the political and economic problems of the
era, shaped Harvey’s and my choices and actions: developments in operations
research, economics, and computing. He and I completed our Ph.D.’s just as
operations research was becoming an established subject in universities. The field
had played an important role inWWII, and soon after it started having major impacts
in business. Although the field of economics has been developing for centuries,
Samuelson and others set microeconomics into a new direction with his [50]
book, Foundations of Economic Analysis, by formalizing microeconomics using
mathematics. Samuelson’s work had an immediate impact on economics research
because a core of other economists, such as Kenneth Arrow, Robert Dorfman,
Wassily Leontief, Tjalling Koopmans, and Gerard Debreu, were infusing economics
with mathematics. Some of these economists were early contributors to operations
research. For an accessible summary of the economics literature on how markets do
or do not work, see Cassidy [5]. George Dantzig’s [10] work on linear programming
and the simplex algorithm led to successful applications in many industries [6].
Because of the value of linear programming in optimizing refineries, oil companies
underwrote the development of faster LP solvers. Rapid advances in hardware and
software meant the largest solvable linear program, Manne [35], went from 50 rows
in the early 1950s to thousands by the mid-1970s, turning the early promise of linear
programming into a reality.

These three research streams came together with a new reframing of old
problems: a systems perspective. Jay Forrester was the first to articulate the systems
viewpoint in an industrial setting with his book Industrial Dynamics [17], examining
how different portions of firms or supply chains of multiple firms can interact well or
badly. Systems thinking became a way of framing problems in science, economics,
and public policy, e.g. Churchman [8] and Ackoff [1]. The ability to combine
systems thinking, OR, and economics in the 1970s was a direct result of research
that linked the theory of economic equilibria and linear programming, showing that
the solution to a linear program is also an economic equilibrium, Samuelson [51]
and Enke [13].
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2.2 The Energy Crisis Years

In 1972 the Department of Interior published a study of energy that concluded there
would be a “gap” between the declining supply of crude oil in the USA and the
growing demand for oil products, and that gap would be filled with coal, see Dupree
and West [12]. Despite the gap, oil prices would remain stable. This was a then-
standard study that used “judgment” and accounting tables but failed to include the
new methodologies of equilibrium economics and computing. As a consequence,
the USA and the rest of the world were unprepared when Arab nations were able
to raise the oil price successfully through an oil embargo they imposed in response
to the 1973 Arab–Israeli war. The embargo demarcated an evolving shift in market
power from the oil companies and the Texas Railroad Commission, which controlled
oil production rates in Texas, to OPEC producers.

The worst crises a country faces usually are a confluence of multiple events
and badly conceived policies. The USA was already experiencing serious price
inflation, due to the unbalanced federal budget that resulted from overspending on
the Vietnam War without a corresponding tax increase. To lower the inflation rate,
Richard Nixon, who described himself as “running the country,” imposed a freeze
on wages and prices. This freeze meant that the economy had no flexibility to adjust
to the subsequent oil-price shock through normal market mechanisms. The other
contribution Nixon made to aggravating the energy problem was that he defined it as
an engineering problem when he said in his “Address to the Nation About Policies
To Deal With the Energy Shortages,” Nov. 7, 1973, (http://www.presidency.ucsb.
edu/ws/?pid=4034).

Let us unite in committing the resources of this Nation to a major new endeavor, an endeavor
that in this Bicentennial Era we can appropriately call “Project Independence.” Let us set as
our national goal, in the spirit of Apollo, with the determination of the Manhattan Project,
that by the end of this decade we will have developed the potential to meet our own energy
needs without depending on any foreign energy sources.

With that statement Nixon mischaracterized a fundamentally microeconomic
problem, due in good part to misguided energy policies then in place, as a technol-
ogy problem. The rhetoric, however, suited a Washington where the leadership in
the administration and Congress had lived through the Depression, a massive failure
of markets, and WWII, a huge success of the government in marshaling resources
to win the largest war the world had ever seen.

As is common when there are no existing institutions charged with solving a
problem and a new agency is formed, a more flexible younger generation of talent
takes on the challenge. The group at the Federal Energy Office, later the Federal
Energy Administration (FEA), followed that pattern.

Bill Hogan, then a young Air Force officer, became the force behind the
government’s energy modeling and policy analysis. He conceived of and led the first
two rounds of development of the Project Independence Evaluation System (PIES),
which was a large-for-the-times economic equilibrium model that incorporated all
key sectors of the energy system. He dealt with all of the issues of data creation, as

http://www.presidency.ucsb.edu/ws/?pid=4034
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the coherent data on energy was minimal; model development; and the production of
studies of energy policies under consideration. For partial equilibrium models that
could not be represented as linear programs, he developed an iterative algorithm that
involved solving sequences of linear programs for finding economic equilibria. That
algorithm remained the state of the art for many years. The Project Independence
Report was published in [15]. The next iteration of PIES was used for the 1976
National Energy Outlook [16]. PIES started to make the transition from a scoping
model that estimated future energy balances into one that evaluated government
policies, including the impacts of the myriad regulations that affected the energy
economy. This second version of the model could handle both the pricing rules
under electricity regulation, basically average-cost pricing, and the effects of the oil
price controls imposed by Nixon. It did not, however, capture the distortions due to
government regulations of natural gas markets.

I cannot overstate the impact of Bill on how policies are assessed today. PIES was
the first multi-sector microeconomic policy model used in major policy analyses
that helped shape legislative choices. Its impact was so powerful that Congress saw
that it lost power to the administration when it came to assessing policies. Congress
then passed a law requiring that PIES and its successors had to be audited. The law
required that Congress has access to the models and could request its own policy
analyses.

Under Jimmy Carter the Federal Energy Administration became the Energy
Information Administration (EIA) of the Department of Energy. Congress and EIA
worked out a process for EIA to do studies for Congress with Congress’s own
assumptions that continues to this day.

As with all new organizations, turnover was high. Hogan and most of the original
team either left FEA or moved to less demanding areas of the agency. I joined
in 1975 after the Project Independence Report and did my teething on the 1976
National Energy Outlook. Harvey joined as head of the core PIES equilibriummodel
after the National Energy Outlook, and I worked for Harvey.

In 1976 the country elected an outsider, Jimmy Carter, as president. Nixon was
the last New Deal president, where the president presumed to “run the country,”
including the economy, and Carter was the first post New Deal president who
saw that large segments of the economy were hindered by government regulation
and that the latest developments in microeconomics should inform the necessary
policymaking for revising detrimental regulations, something for which he is given
little credit.

Carter brought in Alfred Kahn, the most notable regulatory economist of
the time, to restructure the regulations governing many major industries. Carter
deregulated energy markets, trucking, airlines, and railroads. He was the dereg-
ulation president, not Ronald Reagan. A consequence of Carter’s elimination of
burdensome regulations was that railroads stopped going bankrupt and current
business-class airfares match, in real dollar terms, the economy fares of the 1970s.
Even more importantly, when oil and natural gas prices soared in the 2000s,
the economy did not experience the inflation of the 1970s. Prices in the general



2 How the Work That Harvey and I Did at the Federal Energy Administration. . . 17

economy remained stable because he gave the economy the necessary flexibility to
adjust.

Carter’s White House Energy Policy Office was staffed by EPA regulators who
preferred rulemaking to markets. Because this Office was part of a Democratic
administration, its staff did not trust FEA, an agency that was set up by Republicans
and was market focused. Consequently, they initially contracted with a firm called
ICF to analyze the impacts of their policies. The President of ICF at the time,
William Stitt, had a close and supportive working relationship with the PIES
modelers, starting with the work on Project Independence and insisted that the
White House Office uses the PIES model to ensure the numbers added up when
estimating the impacts of policies. The recently appointed head of data and analysis
at FEA did not want to participate because he saw working on the project as a
lose–lose proposition. David Nissen, the head of the analysis activities, fought to
participate, and the new head gave his permission for us to participate but distanced
himself to avoid the consequences of any fallout. A combination of Bill, the PIES
modelers, and Kahn’s activities moved the White House group from taking classic
regulatory stances to recognizing that markets matter. Carter’s National Energy Plan
was the result of the extended interactions among the PIES modelers, ICF, and the
White House Energy Policy Office.

After wrenching debates and extensive negotiations between the Administration
and Congress, several laws were passed that shifted the sectors away from regulatory
mandates to market-oriented policies.

A book is necessary to describe how Carter could change the structure of so
much of the economy while dealing with a Congress filled with people who came
of age in the Depression, the biggest market failure in history. The key reasons for
his administration’s legislative success in energy were as follows:

• The country was in pain, coping with shortages of natural gas, because the
Supreme Court forced an untenable regulatory structure on gas markets out of
ignorance,

• Citizens lived in long lines at gasoline stations due to the price controls on oil
and gas-station margins imposed by Nixon.

Outside of energy, Carter was able to deregulate railroads because they were
constantly going bankrupt and airlines because some of the carriers were despised
by their customers and airfares were quite high. There was an organization called
WHEALS, which stood for We Hate Eastern Airlines because of its monopoly
position and associated bad service in certain markets on the Eastern Seaboard. Few
people remember how abusive regulated monopolies could be. See Sanders [52] for
an insightful discussion of the politics of deregulating natural gas.

Energy and environmental issues are now tribal, and staying within a tribe is more
important than addressing the facts, which means that sensible strategies on global
warming will be difficult to achieve. Sadly, sometimes memories are short. President
Obama periodically talked about energy independence using the false rhetoric of
Nixon. It may seem odd for Obama to quote Nixon. However, Nixon was a New
Deal president, continuing in the tradition of Franklin Roosevelt. Carter was not a
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New Dealer and brought in the latest economic thinking, probably because he ran
a small business as a peanut farmer and had firsthand knowledge of how markets
worked. Obama was a product of the urban politics of Chicago, never worked in the
private sector, and brought from his urban experience a New Deal outlook.

2.3 The Work the PIES Team Was Doing

Harvey and his boss, David Nissen, spent a lot of time working with the White
House Energy Policy Office to make sure their policies made economic sense and
translating their policies into something that could be implemented in PIES. I used
to say, “If we can’t model it, the policy will not work in practice.” Dave and Harvey
latched onto this statement. It is actually a serious statement and not arrogance,
because if a policy cannot be modeled in the abstract, then the implementation rules
would be too complex for an effective implementation of the policy.

Harvey was making major contributions to the computational aspects of PIES and
policy representations in the electricity sector on top of his managerial activities. My
contribution to the analysis of Carter’s National Energy Plan included developing
the representations and algorithms to model regulated natural gas markets and
policies impacting this sector, see Murphy et al. [43]. Whenever the model did not
solve, I piled through row and column listings and the solution file to figure out why
the model was either infeasible or unbounded. When it did solve, I would figure out
the underlying economic rationale for why the results came out the way they did. I
also dealt with some of the people in the White House Energy Policy Office.

I would periodically construct what we called “walk backs.” These were
estimates of policy impacts using predetermined sequences of policies. These were
necessary because the impact of a policy depended entirely on the set of policies
to which it was added. For example, gasoline taxes lead to improved efficiencies
in automobiles and lessen the impacts of fuel efficiency standards. By the same
token, the improvement in miles per gallon (better measured as gallons per mile)
from adding a gasoline tax after fuel efficiency standards is far less than adding
the tax before standards. The ad hoc nature of the walk back always bothered me.
To illustrate how these experiences shape one’s research, it was not until 2005,
almost 30 years later, that I and Ed Rosenthal figured out a better approach using
the Shapley value, see Murphy and Rosenthal [43]. The other insight here is never
forget any real problem you faced, as eventually you will likely find a solution.

Our efforts may seem like such a short list. However, policy proposals were flying
all over the place. Model structures and solution algorithms had to be invented and
reinvented in the face of hard deadlines. Data needed to be developed in areas where
it was nonexistent. We had to figure out what the results meant and if they were
meaningful. Consequently, we worked 7-day weeks, 10–12 hours a day, for months.
Harvey coined the term “reference point,” which meant a day off so that we could
remember what the day of the week was.
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Many people worked exceptionally hard. I mention two. Susan Holte (Shaw in
the references) managed the computer runs, coordinating with the various groups
producing input files during the day and nursing the runs through the system
throughout the evening, all while caring for her infant daughter. She knew every
number and file used for every run and she could reconstruct an old run from
memory months after it was done without documentation. David Knapp developed
the demand models and spent hours with the White House staff going over the
numbers and doing walk backs.

Harvey and I described how we represented the National Energy Plan with PIES
in Greenberg and Murphy [26].

During intense periods of work, you develop deep friendships. Harvey and I
worked especially closely on the National Energy Plan and we became fast friends.
Harvey and I would fill blackboards with scribbles, trying to figure out what model
structures would work. One day he and I were working on a particularly difficult
problem and were really into it, raising our voices out of excitement. Dave Nissen’s
secretary came running in thinking she had to break up a fight between Harvey and
me and she was surprised to find we were having fun. The intensity and style of our
working relationship set a pattern for many years. We enjoyed raising our voices at
each other when working through ideas.

Those who knew Harvey knew that the workplace was never all work. Once the
weather turned warm and our results were delivered, the group would periodically
go to the Watergate complex, which had an excellent French pastry store. They
sold a 12′′ × 12′′ box of pasty “ends” for $2.50. We would buy two and a couple
of bottles of champagne. Sitting on the banks of the Potomac, we would gorge on
sugar, butterfat, and good drink, three of Harvey’s favorite food groups.

PIES was used for assessing the impacts of many different policies. For example,
after the work on the National Energy Plan, Harvey ran a study on a proposed multi-
billion-dollar plant to convert coal into methane. The thought was that natural gas
was scarce and that the world needed coal gasification technology to meet expected
shortfalls. Harvey showed that the multi-billion-dollar plant would be unprofitable.
He was right because that plant made money only on an operating basis and later in
its life only because the waste CO2 was piped to Canada to improve oil recovery in
their oil fields. It turned out that gas supply was low simply because no one explored
for gas due to historically low prices while oil was more profitable. The gas reserves
at the time were either associated with oil or the drillers found gas by mistake when
searching for oil.

This plant illustrates how, despite best analytical efforts, the policy process can
lead to poor choices. The meme in the White House was that natural gas was in
short supply and we could not dispel that belief no matter how much we tried. This
is a constant problem in Washington, as facts become less important than exercising
power and influence. Furthermore, no one thought about climate change back then
and this technology is a huge emitter of CO2. If this technology had been deployed
around the world, global warming would be even more severe than it currently is.

Those who think Washington was a nicer place then than now have it wrong:
Dave Nissen was fired with the formation of the Department of Energy (DoE)
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because those making the staffing decisions chose to remove everyone who did
not have Civil Service protection, as FEA was set up by the Republicans. For
naught the White House Energy Policy Office protested his firing because of his
enormous effort and contributions to the development of the National Energy Plan.
With Dave’s departure, Harvey had enough and stepped into a research role. He
could never accept injustice, starting with his participation in civil rights marches in
the 1960s.

None of us was pleased with how Dave and our efforts were treated. I took over
the PIES integrating model and did the analyses of the impacts of bills as they went
through Congress and were signed into law. I then moved into the research arm of
the Energy Information Administration, joining Harvey as a colleague.

A key takeaway from these events is that government employees are not always
the collection of deadwood that anti-government types like to describe. There is a
strong core of professionals who respond during crises. Harvey regularly said the
intense level of effort was “for the good of the country.” Carter described dealing
with energy problems as the moral equivalent of war.

We were veterans of that effort. Bill Stitt in a private communication recently
described this period as “a unique time, a uniquely talented group of people pushing
the state of the art, and a high degree of policy urgency and relevance.” All of us
feel privileged to have had this experience, just like combat veterans. Dave Nissen
recently expressed this view, despite his ultimate mistreatment by the people he
served.

2.4 Modeling Regulated Market Equilibria in PIES

One of the features of inventing new approaches to modeling when faced with
serious deadlines is that you do things because they work. You often do not know
why they work, but you do not have the time to address the why. The best example
with PIES was that during the original development, Bill Hogan invented an iterative
algorithm to find the equilibrium because the structure of the demand equations
meant that PIES was not an optimization model. Yet the supply structure was an
optimization problem, consistent with the work of Samuelson [52]. Bill’s idea was
to approximate the demand curve with a simple function that made the whole model
an optimization, solve a linear program, adjust the approximation based on the trial
solution, and re-solve until two successive trial equilibria were within tolerance. He
and Susan Holte tried this out with a small problem. It worked and he went ahead
with PIES. Only much later did he and a student figure out why the algorithm found
an equilibrium, see Ahn and Hogan [2].

After Harvey and I moved to the research side, we formalized the modeling and
algorithms for computing regulated market equilibria, see Greenberg and Murphy
[27]. I am covering this work in detail because it illustrates how you can use and
manipulate duals and because it is an example of how aspects of a field develop.
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The techniques remained the cutting edge for roughly 40 years but have now been
superseded, see Murphy et al. [42].

The three representations of regulations we cover here all use successive
over-relaxation algorithms, basically, Jacoby iterations. Whenever there was an
adjustment to the demand curves in the LP there were Jacoby iterations to convert
marginal costs (LP duals) to regulated prices.

2.4.1 Electricity Pricing

Electricity prices were always regulated until recently, and consumers were charged
the average cost of generating electricity. Some regions in the USA, as well as other
countries, have since restructured the electricity sector and now use daily auctions to
acquire kilowatt hours and periodic auctions to acquire capacity. Under regulation,
the price the demand model needed to see was the average cost, not the marginal
cost that comes from a linear program.

The electricity sector of PIES had a regional structure for production that
coincided with the demand regions. Thus, a single activity moved electricity from
each electricity region to the corresponding demand region.Without any adjustment,
the dual on the electricity balance in the demand region is the marginal cost. The
price had to be converted to an average cost through a series of calculations. To
tally the costs of electricity generation without massive calculations, a constraint for
each region was added, consisting of the cost terms from the objective function for
electricity plus another activity that had a−1 in the constraint and 0 for the objective
coefficient. The level of that activity equaled the total non-fuel costs, including the
return on capital. This constraint had a dual of 0 and did not impact the solution.

Adding the expenditures on fuels (the inflows of fuels times their duals) to the
internal costs gives the total cost of generation. The flow on the transportation
activity transmitting electricity from the utility region measures the total demand.
Dividing total demand into total costs gives the average cost per kWh of electricity.

When electricity demand is growing, the marginal cost generally exceeds the
average cost, which was our situation. Thus, we had to lower the marginal cost to
the average cost. The transportation activity had an objective coefficient consisting
of the transmission and distribution costs of electricity. In going from iteration t
to t + 1, while adjusting the demand approximations, we subtracted the difference
between the marginal and average costs from the transportation cost coefficient,
making the dual in the demand region the average cost. When this difference
oscillated, we smoothed the t − 1 and t values.

Because marginal cost is above average cost when demand is growing, the
average cost increases with increased demand and the model is convex in the region
that contains the equilibrium. This procedure converged only because demand was
growing: the costs of added capacity set the marginal costs, and the capacity costs
were stable. Otherwise, the adjustment would have induced an oscillation. We were
lucky but we did not fully understand why. Like the problem of placing a value on
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a policy in the context of other policies, this was a research question. In Mudrageda
and Murphy [38] we are able to explain the convergence issues caused by step-
function representations of supply and demand curves in linear programs.

There was a collection of regulations that affected what fuels could be burned in
power plants. Harvey worked out the details of how to implement them. The policies
included prohibiting the use of natural gas outside of meeting peak demand because
of the natural gas shortages. This involved a set of restrictions on the activities that
represented the operation of natural gas plants.

2.4.2 Pricing Crude Oil

The Nixon wage/price controls fixed the prices and wages of everything at their
August 15, 1971 values, the date the controls were imposed, which was prior to the
oil-price shock in 1973. The controls made him popular and were supposed to be in
place until just after the 1972 election, at which time he no longer faced re-election.
However, because of built-up price pressures, they lasted for most goods until April
1974, when they were deregulated. The price of crude oil was not deregulated
because it was politically difficult to allow producers to reap “windfall profits.” The
1972, pre-embargo OPEC price in nominal 1972 dollars was $1.82 per barrel and
in 1974 it averaged $11.00. The US price in 1972 was $3.60. Straight deregulation
would have tripled the US price to the world price, giving the oil companies quite a
profit bump at a time when they were very politically unpopular.

In unregulated markets, with domestic crude oil selling at $3.60 and world crude
oil selling at $11.00, anyone receiving domestic oil would buy it at $3.60 and sell
it at $11.00, and they would reap a profit of $7.40 a barrel. Consequently, the
consumer would get no benefit from the price controls on domestic crude oil without
further rules. To solve this problem, the Nixon Administration calculated a quantity-
weighted average of the domestic controlled price and the world price, and set that
average as the domestic price. They placed a tax on domestic oil that raised it to
this average and used the tax revenues to subsidize the per-barrel price of imports so
that the post-subsidy marginal cost of imports became the weighted average price.
The tax and subsidy revenues balanced and neither added nor decreased government
revenues. Essentially, the supply and demand curves had the shapes in Fig. 2.1.

From a modeling perspective, the crude oil supply was taken from the supply
curve at the controlled price and was a fixed quantity in the model. That is, all of the
supply curve below the price ceiling was domestic supply, as shown in Fig. 2.1. The
upper asymptote in the figure was the imported price. The monotonically increasing
supply function was priced at the weighted average for increasing levels of imports
and fixed domestic supply.

Given the number of LP activities, due to the multiplicity of crudes and regions,
extracting each quantity and price to calculate the average cost and then imposing
the tax and subsidy would have been time-consuming and difficult. Michael Wagner,
Harvey’s predecessor, came up with a simple way to do this using duality theory. He
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Fig. 2.1 The supply function with averaging of the domestic and world prices

added two equations, one for imports and one for domestically produced oil. Each
constraint had an extra activity. One activity totaled the amount of imports and the
other totaled the domestic production. The activity in the domestic constraint for
PIES iteration n + 1 had a cost, cD, equal to the tax on domestic crude that was
calculated using the flows from iteration n. At the same time, the activity on the
imports constraint had an objective coefficient for the subsidy of −sI , determined in
the same set of calculations:

Let

• xi be the level of imports of crude oil i,
• yj be the level of domestic production of crude oil j,
• v be the added activity that totals domestic crude production, and
• w be the added activity that totals imported crude production.

The submodel containing these constraints is

min · · · + cDv − sIw . . . .

subject to
. . . . . . . . . . . . . . .

∑
j
yj − v = 0

∑
i
xi − w = 0. (2.1)

Because domestic production and imports were both positive, v and w had to be
positive. Thus, the dual on the domestic constraint equaled cD and raised the cost of
domestic crude to the average, while −sI lowered the cost of imports to the average.
This duality trick meant that only two numbers needed to be changed in PIES rather
than all of the prices for the supplies and demands.
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When the Carter administration and Congress deregulated crude oil prices, they
imposed a tax on the oil fields that were producing at that time, termed “old oil,”
and deregulated oil from new fields, termed “new oil.” This meant the model could
represent oil markets as fully deregulated with a supply curve adjusted for the
different prices for different portions of the domestic oil.

The breakdown between “old” and “new” was politically necessary. The policy
change, however, had unanticipated consequences, which is quite common when
the new rules alter the incentives of participants in a market. The new policy
led to unnecessary drilling as companies moved oil to higher-priced categories
by producing from newly drilled wells. Lawsuits overpricing involving billions of
dollars were another outcome of the legislation. Nevertheless, the country got out
from under the last vestiges of the Nixon price controls.

2.4.3 Natural Gas Regulation

With both electricity and oil there was always enough supply to meet demand.
Utilities had guaranteed profits on capacity additions and any reductions in domestic
production of oil were met by imports. There were brownouts in the early 1970s
because demand grew faster than expected and some regions of the USA were short
of capacity. However, that was a temporary problem and not due to faulty regulation
as much as underestimates of demand growth. The long lines at gas stations were
due to the Nixon price controls capping the margins of gas station owners and the
owners deciding it was more profitable to close their stations earlier than usual. The
gasoline lines, in reality, were a queuing problem with not enough server capacity.
Oil inventories were actually higher at the end of the embargo than at the beginning.

Natural gas markets were different. The country was experiencing shortages that
caused factories and schools to close. The shortages were due to a 1954 legal case
where the Supreme Court ruled that the Federal Power Commission (FPC, now
the Federal Energy Regulatory Commission) was required to regulate the wellhead
price of natural gas sold across state borders. Natural gas sold and consumed within
a state could not be regulated by the federal government because the 1938 Natural
Gas Act, the basis for the decision, regulated only those pipelines that crossed state
boundaries.

Regulating natural gas prices is very different from regulating a pipeline or an
electric utility, something the Supreme Court failed to consider. Returns are allowed
only on used and useful capital investments. Capital expenditures on pipelines,
power plants, and transmission facilities rarely produce unusable capacity and the
investment is easily measured for determining allowable returns. Oil and gas drilling
is a risky business. In newly explored areas the odds of success can be as low as
5–10% and well below 100% for some wells in developed areas. If a regulator
sets the price to recover the cost of the well that is drilled successfully, the price
would provide too low a return on investment because only a fraction of wells are
successful. If the regulator allows a higher price to compensate for dry holes, then
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incompetent drillers could be rewarded and not put out of business. Plus, the geology
is heterogeneous, eliminating any chance of cost uniformity. A third confounding
factor is that a significant portion of natural gas reserves are in oil fields and there is
no meaningful way to allocate the capital costs of a well between the two products.
The FPC never figured out how to regulate the price based on cost because there was
no solution within a standard regulatory framework that used costs and a uniform
price. They essentially threw up their hands and set an arbitrary price ceiling for gas
sold across state lines.

The net result of the Supreme Court decision was that two markets formed, a
national interstate market and the intrastate market, where gas did not cross state
lines and was not subject to federal regulation. During the build-out of the pipeline
system, there were no shortages, as there were surpluses of gas associated with
existing oil reserves that were flared during oil production. Consequently, the price
of gas was so low that no one was searching for gas. However, as demand grew with
the expansion of the pipeline network, the reserves of gas associated with oil proved
insufficient to meet demand. Once the price of intrastate gas exceeded the price of
interstate gas, no one wrote new contracts to sell gas into the interstate market and
shortages cropped up in that market. The interstate price was too low for companies
to explore for gas fields. It was an unlucky outcome that this occurred around the
time of the jump in oil prices.

Given the structure of the market, shortages had to be modeled explicitly, making
the modeling an order of magnitude more difficult than with oil or electricity.
Furthermore, we had tight deadlines for delivering a base case for evaluating
Carter’s National Energy Plan.

First, note that in an economic equilibrium model, by definition, supply equals
demand. In a model where this is not possible, given the regulations, what you have
to do is measure the extent of the shortages and their ramifications for the economy,
while still using the equilibrium framework. I was tasked with figuring out how to
model this irrational policy.

I started by trying to model structures that mimicked the way duals were used to
adjust oil prices. These kept failing because I did not fully understand the impact of
adjusting duals through added constraints and variables. After a week of failures, I
had gone home in the middle of the evening on a Saturday after submitting a run
with one more try at a representation. The base case was due the following week.
Dave and Harvey stayed at the office to check on the results. The run failed.

I got a call around 1:00 AM on Sunday from Dave–Harvey thought I would
be too mad at him if he placed the call. Dave asked if I had any other ideas as I
was waking up. After we talked, he said they would try a set of runs where they
fixed the shortage at a range of levels to see what the solutions looked like. The
runs produced a rough solution. After understanding why this run came close, I
formalized the idea of inserting a shortage level at a proxy price for shortages. The
details of the approach are in Murphy et al. [44]. The basic idea was that trying to
find both a price and shortage level, as I was trying to do, was impossible because
there are an infinite number of solutions. However, if you fix the price at which a
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Fig. 2.2 The representation of natural gas shortages. (a) Original demand curve with capped price
pc. (b) Residual demand curve

shortage is measured, you then get a unique shortage level. This means we had to
have a pricing rule for the shortages.

We fixed the price we used to measure the shortage based on the costs of the
other fuels in the industrial sector. We also allocated gas to the interstate market
based on historical demands before the shortages developed. To determine the level
of a shortage in a region, we used the demand curve q(p) and the interstate price, pc

to measure the gas demand in each region served by interstate gas, q(pc) in Fig. 2.2a,
and subtracted the allocation. This gave us the share α < 1 of customers without gas
at the regulated price. We constructed a new demand curve, αq(p) from q(p) in Fig.
2.2b to measure the level of unmet demand at every possible price. We used the
gas allocation plus the demand curve for unmet demand as the gas demand curve
in PIES. In the LP we inserted an activity that fed supplies of other fuels to meet
the gas shortfalls in proportion to their consumption in the industrial sector. This
set the dual for meeting the unmet demand at the weighted average industrial price
for the substitute fuels at this price. Thus, the demand curves measured the shortfall
at the average price per million BTUs of the substitute fuels. The implementation
was more complex because the demand curves had n-dimensional domains and
modeling them for the shortfall was not simple. Note that the shortfall measured
by using the average price of the substitute fuels is less than the shortfall at the
lower controlled price.

Early the next week after the failed runs, Dave had to present the base case. As
Harvey, Susan, I, and others were going over the latest run on the morning of his
presentation, Dave walked in wearing a new suit. We asked him why the suit? He
said that since he was going to have to present the base case that day with no results,
he needed to look his best. He actually said something that today is politically
incorrect, comparing his lack of results to the lack of typing skills of Elizabeth Ray,
the secretary and mistress of a then-powerful congressman Wayne Hayes, the latest
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sex scandal of the day. Imagine his relief when we told him we finally had a good
solution.

After the base case was done, implementing the White House proposals on
natural gas was simpler because of their structure, and because we had a method
for dealing with shortages. The proposal applied a rising cap to the natural gas
price for all gas with deregulation in 1985. Furthermore, the legislation included
a price ceiling for 1985 that meant no shortages in the model. That is what actually
happened in the market, more by luck than wisdom.

This incident illustrates where Harvey’s and Dave’s leadership skills stood out.
Everything with them was teamwork and problem-solving. Rank did not matter
when it came to ideas and contributions. It also illustrated their trust in key staff
despite inexperience. I was a year and a half into my first job outside of academia.
Susan had a freshly minted master’s degree in mathematics and a master’s thesis
on topology with no work experience when she joined the government. Yet she was
responsible for the integrity of the model and its results 3 years after she started.

2.5 Replacing PIES with IFFS

The problem with PIES was that the difficulty of getting runs through even with
priority access to the mainframe led to too many late hours. Runs were set up during
the day, and after some time at a local bar, we would return to see if they worked.
During the development of the National Energy Plan, Susan nursed the runs from
home while tending to her infant daughter, and the rest of us were at the office. There
was too much hardship and burnout. The hardest working teammembers turned over
too quickly.

Harvey and I were doing different things during our research time at EIA. Harvey
focused on model analysis, while I focused on model structures and the trade-offs
between alternative model structures and solution times. Harvey started to develop
ANALYZE, his tool for probing linear programs. I devoted my time to building a
deeper understanding of the economics of different model structures to improve the
representations of the different energy sectors, rethinking how one should design
and organize a large-scale systems model so that it did not burn through people. Our
experiences with the real problems of building and analyzing large-scale energy
models defined the paths of our research.

One of the issues I was concerned about was making the tradeoff between
detail/size and the difficulty in running the model. PIES was a static equilibrium
model in that the market equilibrium was found for one year with the underlying
dynamics embedded within the models that generated the single-year supply and
demand curves. This meant the model had activities for building capacity that would
last for years and would add capacity based on single-year prices, not the net present
value of costs over the lives of the plants. Furthermore, demand is uncertain. Al
Soyster and I were able to explain when single-year prices in a static model would
find the optimal capacity mix of a multi-period model, see Murphy et al. [45]. We
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needed to do this because multi-period models were just too big unless we removed
detail in other parts of the model.

When one represents economic agents using optimization tools, one needs to
make sure that the model has the objective function that the players actually use.
Utilities were considered highly inefficient because Public Utility Commissions
set electricity prices to average costs and guaranteed the profits of the utilities.
This led to the Averch–Johnson [4] theory of utility behavior, where Averch and
Johnson modeled utilities as maximizing profits subject to a rate of return constraint.
Their conclusion was that because the allowed rate of return was higher than the
cost of capital, utilities would overbuild capacity and run themselves inefficiently.
Al and I took the PIES electric utilities sector and implemented the Averch–
Johnson objective function to see what would happen. We found that because any
reasonable demand elasticity was less than one, revenues would increase with higher
prices, and any decrease in capacity would lead to higher profits, resulting in an
unbounded solution. That is, utilities could not follow the Averch–Johnson theory,
and a standard cost-minimizing objective function was better, even if imperfect, see
Murphy and Soyster [47].

PIES burned through staff because of the huge amounts of time to produce a
run, not just computer time but also the problems of debugging sectors to produce a
usable run. There were two reasons why PIES was suitable only for crisis-mode
situations and not for the long haul. First, given the capabilities of mainframe
computers of the era, it took several hours from start to finish for a run. What
makes this untenable is that there are dozens of trial runs behind every final result.
Consequently, it was a slog to get through the debugging process. Second, teams
were developing the supply curves and representations of energy conversion sectors,
refining, and electric utilities. They had no way to test their sectors alone in a
quick run. Harvey would regularly call for priority time slices on the mainframe,
irritating other users and the managers of the computer systems. Given a ratio of
50 learning/bad runs to a good scenario, a lot of resources were wasted waiting for
results from debugging only one sector of the model.

To try to solve the problem, Harvey hired a consulting firm with modeling
expertise to see if there was a way to partition the model for debugging purposes
and then put the whole model together for final runs. They came to the conclusion
that this could not be done. Because of the failure of that project, I started looking
at alternative formulations where decomposition was more natural. I used my one
week of learning workflow diagrams in an undergraduate industrial engineering
course and added the symbol for an if statement to represent the workflow with
PIES and alternative designs for breaking apart the large linear program, see
Murphy [39]. This was well before business process reengineering became a fad
and illustrates how seemingly irrelevant, non-technical disciplines can contribute to
deeply technical problems.

The result was the next generation energy model, called the Intermediate Future
Forecasting System (IFFS), Murphy et al. [40], a collection of submodels linked
through Jacobi iterations. Murthy Mudrageda and I (1998) formalized the properties
of the underlying solution method much later. The decomposition approach I had
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Fig. 2.3 A systems diagram of energy markets

designed for IFFS remains in the current EIA model, the National Energy Modeling
System (NEMS), see Murphy and Shaw [46].

When I designed the model, all proposed energy policies were focused within
individual sectors, not across sectors, improving the convergence properties. How-
ever, with global warming and policies such as carbon constraints, this was no longer
true. As long as there was only one major crosscutting constraint, such as one on
CO2, one could use Everett’s work on generalized Lagrange multipliers [14]. This
was one of Harvey’s original research areas with Greenberg and Pierskalla [31]. I
was fully aware of the utility of Everett’s approach from discussions with Harvey
while waiting for PIES runs to process in the mainframe, and it became part of IFFS
and NEMS, illustrating that even when we were not publishing together, we were
helping each other and constantly talking about modeling and analysis questions.

I had the opportunity to revisit these issues on a couple of occasions. IFFS
was designed around the computing capabilities of the late 1970s, a period when
computers were far more expensive than people. With plummeting computing costs
and vastly improved algorithms, I recommended that NEMS be rebuilt around
a single linear program to deal with the convergence issues that resulted from
multiple crosscutting constraints and the convergence problems associated with step
functions in SOR algorithms. I at least got EIA to combine the coal and electricity
sectors. Outside of that, they did not take my advice.

More recently, because of revisiting many of the modeling issues through my
energy modeling work in Saudi Arabia, I realized that the consulting firm that could
not decompose PIES was not qualified to do the job, and one can decompose the
sector development of a linear program. To see how this can be done, begin with
Fig. 2.3, a schematic of a typical multi-sector energy model.
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The model consists of non-network structures within the individual sectors and
basically a network that can have losses connecting the sectors. I have drawn the
diagram as if the flows are acyclic, although there are small non-modeled backflows.
To decompose a model for debugging sector i, one need only modify the formulation
by fixing the outflows from i to sectors j �= i at the levels in some trial run and set
the prices of the inputs to i from j �= i at the duals from the same trial run. If the trial
run has a bounded feasible solution, then the isolated sector has a bounded feasible
solution and a modification within a sector can be solved extremely quickly on its
own. With individual sectors debugged on their own, the solution time for the entire
model is much less of a concern, since far fewer debugging runs of the whole model
are needed.

2.6 What We Learned About the Regulatory Polices

Through the modeling of the National Energy Plan, PIES became a full-fledged
policy model that could represent the essential aspects of energy regulations then
extant, along with all of the policy alternatives under consideration. At the same
time, the various pieces of energy legislation completely deregulated fuel prices
over time, which meant those representations of regulations were no longer needed,
except for average-cost pricing of electricity in some parts of the USA.

The success of the deregulation of natural gas and oil prices increased policy-
makers’ interests in using markets to achieve policy goals. For example, the Clean
Air Act Amendments of 1990 led to a market for sulfur oxides, the emissions
from electricity generation, especially from coal plants. This market has greatly
reduced the ecological damage from high-sulfur coal, especially in the forests in
the Northeast and the rest of the country. These amendments contain the core ideas
around establishing a carbon market to reduce the growth of greenhouse gases, the
most efficient way to address climate change.

One outcome of the restructuring of markets under Carter was the ability of
independent generators to sell their electricity into the grid at reasonable prices.
This seeded the ideas around current auction markets for electricity.

In electricity restructuring, no meaningful base cases were ever developed
that captured utility behavior under regulation. The only representation of utility
incentives was the Averch–Johnson theory that showed firms operating under rate-
of-return regulation gold plated capacity, which, as discussed above, could not apply
to electric utilities.

After Carter’s deregulation program and the restructuring of the electricity
sector, it was possible to see where the inefficiencies existed in many industries.
What the regulated firms were doing involved some Averch–Johnson gold plat-
ing because of over-engineering for increased reliability. Think of those ancient
Bakelite telephones from the original AT&T that still work, and the then lower
capacity utilization of airliners where passengers were not packed in like sardines.
Furthermore, old capacity was kept as long as it was not fully depreciated, even
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if it was obsolete, as with electromechanical telephone switches after electronic
switches were developed and some old power plants when the burning of certain
fuels was restricted. Note that the gold plating was not entirely wasted in that seating
areas were larger, airlines had the capacity to recover quickly from disruptions and
flying was much more pleasant than now. Furthermore, none of the land-line phone
companies outside the USA matched the original AT&T’s reliability and service,
especially the nationalized companies in Europe. (Ironically, the bad service and
high cost of landlines is why Europeans jumped ahead with cellular phones and
there are no major manufacturers of cellular equipment in the USA.)

With deregulation the biggest cuts were in union wage rates and substantially
decreased employment per unit of output. Because there was so little demand
for new graduates in power engineering due to staff reductions, major university
programs shut down. Under regulation labor actually benefited more than capital.

Essentially, with an eye on the regulators, the executives were buying labor
peace with good wages and working conditions so that there would be no strikes
that irritated regulators, giving customers better experiences than they have now. In
the airline industry the residual padding was eliminated as the legacy carriers went
bankrupt.

Note that I am not saying markets are always better than regulations, as unman-
aged markets can lead to terrible outcomes. I am saying that market mechanisms,
when they work, are lower in cost with better outcomes than rules that tend to
proliferate as weaknesses in existing rules show themselves, as with air quality
standards. Rules are necessary. However, they should constrain decisions, rather
than specify them, or set standards for outcomes. Examples of essential rules that
constrain decisions are safety rules for the air passenger industry, workplace safety
rules in general and regulations on lost baggage. Food safety should be regulated by
prohibiting unsafe methods and setting outcome standards for contamination (e.g.
salmonella).

An example of a regulatory policy failure through specifying utility decisions is
in the Clean Air Act Amendments of 1977. That law required that all new coal plants
include what is known as the “best available control technology” to remove sulfur
from coal, no matter how little sulfur was in the coal. Consequently, utilities chose
to burn the cheapest high-sulfur coal even though burning low-sulfur coal without
scrubbing the combustion gasses emits lower levels of sulfur oxides at a lower cost.
The 1990 Clean Air Act Amendments corrected this costly error.

What is almost universally true is that almost all monopolies, including govern-
ment agencies such as the Department of Motor Vehicles, give terrible service.
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2.7 Modeling Regulations Since the Representations in PIES,
IFFS, and NEMS

What we did in the 1970s and early 1980s remained the state of the art until recently,
mainly because no one in developed countries wanted to reregulate deregulated
sectors.

One of the big issues with restructured electricity markets is that as demand
reaches its daily peak, the number of firms with available capacity shrinks, and these
firms have the potential to exercise market power. Think of the debacle in California
when that state “deregulated” in 2000 and peak-period prices shot through the roof.
Consequently, the interesting modeling was in oligopolies, markets with a few large
players. Since oligopolies cannot be represented directly in optimization models,
these markets have to be modeled as mixed complementarity problems (MCPs).

Dirkse and Ferris developed a good solver for MCPs called PATH in [11]. This
meant that one no longer had to iterate LPs to find an equilibrium for not only
oligopoly models but also models like PIES, see Gabriel et al. [18]. Prior to PATH
one had to iterate over linear programs to find an oligopolistic equilibrium, see
Murphy et al. [48].

Although the OECD countries had restructured their economies to eliminate
the kinds of regulations that the USA had removed under Carter (think Margaret
Thatcher in the UK), nations in the developing world have retained cumbersome
and costly regulations on prices and quantities. The only organizations addressing
these issues have been the World Bank and International Monetary Fund. These
institutions have been dominated by economists and the economics profession has
not been willing to invest the effort in the large-scale models necessary to represent
those regulations. Consequently, with the regulatory issues mainly addressed in
OECD nations and other nations not having the capacity or willingness to examine
these issues, modeling regulations in large-scale equilibrium models was moribund.

Large-scale models have been built, e.g. Loulou [33] and Zhang et al. [54].
However, these models are linear programs that ignore the regulations that shape
the outcomes in industries and are not useful for analyzing policies. The state of the
art in modeling regulations had not changed since PIES and IFFS until recently.
With the cost of modeling tools dropping, countries that are modernizing their
economies, such as India and China, now have the capacity for more sophisticated
policy analysis.

I started visiting Saudi Arabia after my retirement from academia at the end of
2012. There I worked with Axel Pierru and a small group he headed in providing a
tool for analyzing Saudi Arabia’s energy policies. We invented new approaches for
evaluating regulations using MCPs. The MCP framework simplifies the process of
representing regulations greatly.

This work is described in Murphy et al. [41]. An analysis of the Saudi economy
with a representation of the regulations is in Matar et al. [36].

Because of the interest in energy beyond Saudi Arabia at the King Abdullah
Petroleum Studies and Research Center, we built an energy model of China with
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representations of regulations that are more convoluted than the old US regulations,
see Rioux et al. [49, 50].

The basic idea for modeling regulations is simple. The MCP that corresponds to
a linear program

max cT x

subject to

Ax ≤ b (u).

x, u ≥ 0

(2.2)

is

Ax + s = b

AT u − v = c

x, s, u, v ≥ 0

x ⊥ v, s ⊥ u.

(2.3)

So, the MCP consists of the primal and dual constraints and the complementary
slackness condition. To model price regulations that do not lead to shortages, one
just inserts the regulated price, u′

i , in place of ui. That is, for average-cost pricing,
you add an equation f (x, u) = u′

i to (2.3) that calculates the average cost, and
the new u′

i is used in (2.3) instead of ui. Note that since the added equation is an
equality, it does not have to be complemented.

Other regulations are more complicated. For example, China imposes ceilings
on what electricity generators can be paid. To find a feasible generation plan, I had
to figure out how generators and utilities could work together to beat the rules.
By offering bundles of different kinds of generation plants as a single package
with all units priced at the ceiling, the overpayments on some plants cover the
underpayments on others, and utilities can meet peak demand. The implementation
is described in Rioux et al. [50].

Despite the long hiatus in modeling regulations, this area should increase in
importance. The low cost of computing, the greater availability of data, and the
increasing incomes and education levels of many developing nations means they
have, or will have, the skill set and can afford to look at how their current regulations
distort major sectors of their economies.

Most importantly, climate change is the central energy/environment issue of our
time. Currently, many governments and large segments of the population see only
near-term costs for only long-term gains. One of the big policy issues with global
warming is designing transition policies that make decarbonization palatable to
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governments and the populace. This means transfer payments, subsidies, prohibi-
tions, and other forms of regulations and controls. Those who are involved should
want to know the costs and benefits of the different transition rules that could be
employed and the effect of price regulations on countries’ abilities to meet carbon
goals. However, the most notable model addressing this at the International Energy
Agency, Loulou [33] is a linear program without any representation of regulations.

2.8 Model Representation and Analysis

Although PIES would be considered small by today’s standards, it would still be
considered complex because its heterogeneous sectors have very different structural
features. Much of what is in this section reflects how we conceptualized the model
and figured out what was going on inside. The issues discussed here defined
Harvey’s and my research careers for decades.

There are two reasons for having a strong mental representation of a model. First,
it helps in understanding why a run failed. Second, you need it to explain why the
model produces the results it does or why the run failed to solve. An unacceptable
explanation is “that is what the model said . . . ,” which is heard too often. The
explanation has to translate the details of the analytical outcome into a description
of what the outcome means for the physical world.

Figure 2.3 is the standard diagram we used for the PIES model. It is basically
a systems diagram with non-network activities in boxes and arcs representing
transportation networks. It is a useful representation for providing an overview to
an outsider and it helps in develop some debugging heuristics when a model is
infeasible or unbounded.

The standard representation (2.1) is useful for proving theorems about the
properties of linear programs but useless for getting into the nitty-gritty of building
and understanding a model. The current standard representation for modeling is
computer readable algebra, the representation in AIMMS, AMPL, GAMS, MPL,
and Harvey’s language, MODLER [19]. I now present a simplification of PIES as
algebra that translates directly into one of these matrix generators. Although a more
compact representation would use an index to define the different energy sectors, I
define each sector as its own block of equations to emphasize the structural features
of the model. In practice they are distinct as shown here because the set of equations
that define the details of these sectors are different. Label the sectors as follows,
O for oil, G for natural gas, C for coal, P for oil products, E for electricity, R for
refineries, U for utilities, and D for demand. I use and misuse i to index activities in
a sector and r and r

′
to index regions. The equations are as follows.

Oil material balance with supply curve steps, xO
ir , for a step-function approxima-

tion to a supply curve and transportation tOR
rr ′ from oil regions to refineries:

∑
i
xO
ir −

∑
r′t

OR
rr ′ = 0 ∀r
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Gas material balance with supply curve steps and transportation from gas regions
to gas consuming sectors:

∑
i
xG
ir −

∑
r ′ t

GR
rr ′ −

∑
r ′ t

GU
rr ′ −

∑
r ′ t

GD
rr ′ = 0 ∀r

Coal material balance with supply curve steps and transportation from coal
regions to utilities:

∑
i
xC
ir −

∑
r′t

CU
rr ′ = 0 ∀r

Refineries take in transported crude oil that is used by production activities:

∑
r
tOR
rr ′ −

∑
i
xR
ir ′ = 0 ∀r ′

Refinery activities consume natural gas, transported in, accounting for volume
reductions, αrr′ ≤ 1, due to losses during transmission:

∑
r
αrr′tOR

rr ′ −
∑

i
xR
ir ′ = 0 ∀r ′

Refineries have internal processes, k, with capacity constraints:

∑
i
aR
kix

R
ir ≤ bR

kr ∀k, r

With dR
i being the product yield from process i, refineries ship products coming

from production activities to customers in utility and demand regions:

∑
i
dR
i xR

ir −
∑

r ′
tPU
rr ′ −

∑

r ′
tPD
rr ′ = 0 ∀r

Utilities receive oil products from transportation activities and use them to
generate electricity:

∑

r

tPU
rr′ −

∑
i
xU
ir ′ = 0 ∀r ′

Utilities receive natural gas and use it to generate electricity:

∑

r

tGU
rr′ −

∑

i

xU
ir ′ = 0 ∀r ′

Utilities receive coal and use it to generate electricity:
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∑

r

tCU
rr ′ −

∑

i

xU
ir ′ = 0 ∀r ′

Utilities have internal resources necessary for producing electricity, including
plant capacities:

∑
i
aU
kix

U
ir ≤ bU

kr ∀k, r

Utilities produce electricity and transmit it to customers. Note that the trans-
portation activity has only one index because a utility does not ship outside of its
associated demand region (which was mainly the case in the 1970s):

∑
i
bU
kix

U
ir − tED

r = 0 ∀r

Electricity is delivered to customers and demand is represented by a step-function
approximation of the underlying demand curve, yE

mr :

−tED
r +

∑
m
yE
mr = 0 ∀r

Oil products are delivered to end users with step function demand curves

∑

r

tPD
rr ′ −

∑
m
yP
mr ′ = 0 ∀r ′

Natural gas is delivered to end users

−tGD
rr ′ +

∑
m
yG
mr ′ = 0 ∀r ′.

We place bounds on all of the steps in the step-function approximations to supply
and demand curves. The objective function consists of maximizing what is known as
consumer surplus, the area under the demand curve, defined by steps with prices Pir

for each product, less all supply costs c. For supply curves the c’s are the production
costs on a step function.

max
∑

mr
P G

mry
G
mr +

∑
mr

P P
mry

P
mr +

∑
mr

P E
mry

E
mr −

∑
ir

cO
ir x

O
ir

−
∑

ir
cG
irx

G
ir −

∑
ir

cC
irx

C
ir −

∑
ir

cR
irx

R
ir −

∑
ir

cU
irx

U
ir

−
∑

rr ′c
OR
rr ′ tOR

rr ′
∑

rr ′c
GR
rr ′ tGR

rr ′ −
∑

rr ′c
GR
rr ′ tGU

rr ′ −
∑

rr ′c
GR
rr ′ tGD

rr ′ −
∑

rr ′
cPU
rr ′ tPU

rr ′

−
∑

rr ′
cPD
rr ′ tPD

rr ′ −
∑

r

cED
r tED

r .
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Fig. 2.4 A black box view of
an activity as described by
Dantzig [9]

Input 1

Input 2

Output
Activity:
Make

Although I cheated on the indexing and variable names, the above equations
translate directly into the model statement when using an algebraic modeling
language. Note also, any real model should not have variables named x, y, or z.
They should instead have names with physical meaning.

An algebraic statement is useful as an intermediate level of detail. However, you
have to read several equations to understand why an activity is in the solution at the
reported level or not in the solution at all.

Contrast this algebraic view with earlier matrix generators where you formulate
a model by defining the activities followed by the rows they intersect [32]. That is,
the generator loops through multiple groups of activities with each group having a
common structure and related data, associating coefficients with row names. The
matrix generator then combines the activities together into a matrix. I suspect the
original reasons for a focus on activities rather than constraints was that each column
has fewer coefficients than the typical row and facilitates solving the model when
matrices had to be stored on cards.

One of the important readings on model formulation is in Dantzig’s original
book, Dantzig [9]. I reread it recently, and one of the most remarkable features
is how few equations he used. He focused on activities as black boxes with inputs
and outputs that came together through linking equations into matrices. This was
partly a result of Leontief input–output models inspiring his original work. Here is
the kind of visual for the black box he used (Fig. 2.4).

To me, the activity view is the most important one for understanding the meaning
of a solution, which is why I focus on the sample activities that GAMS outputs
when debugging a model. An activity is an agent. It sees the prices for its inputs and
outputs and decides to engage in positive economic activity only if it is profitable.
The function of the duals is to extract the profit and leave no economic rents (zero
reduced costs) outside of the duals on the bounds of the activities. This is a property
of the competitive economy. I ask what are the chains of basic activities that feed
into the activity of interest? In a model with an acyclic structure, that is, the sign
patterns on the activities do not create cycles, a simple tree can be used to construct
the duals using the costs on the basic activities in the tree and the coefficients
in the constraint matrix. One or two of the branches in the tree typically explain
the interesting features of the results. When I discuss infeasibility analysis, I show
how one has to look at rows and columns together to trace out the source of an
infeasibility.
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The previous paragraph leads to the next visualization, an abstraction of the
entire matrix known as a block schematic. Only one modeling system uses this
visualization to generate a linear program, MathPro [37]. Figure 2.5 is one variant of
a block schematic representation. It was used for visualizing PIES. Essentially, it is
the systems diagram above rendered in matrix-like form. Like the systems diagram,
this visualization isolates complex production activities and clarifies the link among
sectors. This view is important for understanding the flow patterns in a solution and
is useful in diagnosing infeasibilities. I keep it as a mental model whenever I want
to understand complex interactions in model components.

Our thinking about how to visualize models for model analysis led Harvey and I
to write on representations of mathematical programs, Greenberg and Murphy [30],
and compare mathematical programming systems, Greenberg and Murphy [29]. I
also worked on this with other colleagues, Ma et al. [34] and Asthana et al. [3].
Harvey went well beyond what I was doing with the development of MODLER
[19].

2.9 Diagnosing Infeasible Linear Programs

Understanding the sources of infeasibilities and unbounded solutions in general
is a difficult problem in that no algorithm can find the specific coefficient or
model component that causes a model to go awry. Developing tools for diagnosing
these problems became one of Harvey’s passions because finding sources of the
infeasibilities or unboundedness is a constant challenge in large models. While there
are algorithms for isolating the region in the model that contains the infeasibility, no
algorithm can identify which coefficient is out of scale or missing, because the cause
is context dependent. Working without video monitors or software for searching
through a matrix or solution file, I had to have printouts that were several inches
thick of the row and column listings of the matrix and the solution file. I used
paper clips to mark rows and columns of interest when tracing the paths leading
to the sources of infeasibilities or unbounded solutions. Harvey saw how difficult
the searches were, leading him to develop ANALYZE.

The first fact that you learn when doing the search is that the output at an
infeasible termination of the Phase-1 solution lists only the variable chosen for
that pivot not the cause of the infeasibility. Nevertheless, the Phase-1 solution
bounds where you have to look. Any row or upper bound with a non-zero dual or
a reduced cost with the wrong sign is a potential location for the problem. Another
feature of the typical infeasibility is that once you isolate a relevant submatrix,
the problematical number or numbers are off by a large amount or a coefficient
is missing. I developed a set of heuristics to guide my search. Here are some of
them.

In economics inputs are categorized as substitutes or complements. For example,
for most people sugar and milk are added in fixed proportions to their coffee
and are complements. Artificial sweetener and sugar are substitutes. In linear
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programming, when there are multiple inputs to each activity, they are complements
within the activity, and other activities that provide some of the same outputs while
using different inputs or the same inputs in different proportions are substitutes.
Transportation activities in the standard transportation model are pure substitutes:
any supply region can serve any demand region to which it is connected in a
transportation network, substituting for any other supply region connected to that
demand region. Furthermore, there is only one input and output to a transportation
activity, making it a model of pure substitution.

The consequence of transportation activities being pure substitutes is that if
one activity intersects a constraint involved in an infeasibility, then all constraints
connected to the infeasible constraint through activities are infeasible in the same
transportation submodel. Consequently, aggregate supply is less than aggregate
demand. If some subset of regions is not involved, then transportation activities are
likely to be missing. If all supply and demand regions are involved, then the cause
is typically a scaling error in a set of supply or demand coefficients.

Inventories are perfect substitutes for future production. When multi-period
models are infeasible in some periods and not others, there is insufficient capacity
to build and/or store inventories starting in the first infeasible period.

Say an infeasibility involves only one set of production submodels such as the
utility sector with activities having a complement structure. I first check if all regions
are involved or just a few. If all are involved, I then look for structural features that
are missing or a data error for something that is present in all regions. If it is in one
region, I then look at the data unique to that region.

When examining unbounded solutions, I look for a “money pump.” This
typically involves a set of activities that form a cycle with + and − coefficients
in some row for each adjacent pair in the cycle, a pattern that appears in a different
row for each pair. You can think of this as a cycle where it is possible to pump
money, or something else, that is profitable around the cycle with gains.

Clearly, searching for the source of an infeasibility involves a lot of judgment.
Harvey was fascinated by these explorations. I mostly thought it was just part of the
job and did not recognize the extent to which it was possible to formalize the search.
We published one paper together on this topic, see Greenberg and Murphy [28]. He
then delved into the subject far more deeply than I had thought possible. I thought
what he achieved in this area was so useful that I asked him to write a set of tutorials
for Interfaces in infeasibility analysis, see Greenberg [20–23]. These tutorials are
extremely useful for developing the skills necessary to understand what is going on
in a model.

Critical to his success in this area was the development of ANALYZE, Greenberg
[23, 24, 25]. ANALYZE is a software tool for searching through the body of the
matrix and the rim of a linear program, tracing paths to the source of the infeasibility.
That software is now ancient and desperate for a new interface. Nevertheless, people
at EIA still use it when getting into the innards of the NEMS submodels. Updating
and enhancing this software would be a significant contribution to the practice of
mathematical programming.
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For a deeper understanding of this subject see John Chinneck [7]. John and
Harvey had collaborated over the years after Harvey had brought John to one of
his consortium meetings. Their collaboration was remarkably productive.

As a footnote, I want to point out that in mixed complementary models,
unboundedness is the same as infeasibility. This slight change means finding the
source of an infeasible solution is a monster and an untapped research area.

2.10 Reflections on Our Experiences in Government

Our time in government was a remarkable experience that we have always cher-
ished. We were participants in the redrawing of energy policy for the nation. The
country was at one of those transitions where economic theory, a systems view,
and the estimates of economic impacts mattered in making major changes to the
laws that affected large sectors of the economy. The concentration of talent and the
development of new ideas and methodologies created an excitement that was akin
to being at a startup during the early days of the Internet.

We could also observe firsthand what was good and what was not so good
about government. That so much talent dove in to work on energy issues shows
how government can bring the right resources to bear in crises. However, we were
essentially undoing policy mistakes from previous administrations that did not
understand the contribution of markets in providing opportunities for people.

Governments work best when the senior officials care about the facts. At
the same time, successful policy frameworks are like waves. They wash ashore
with momentum, taking them above the waterline, and then they retreat. This is
happening with deregulation. The deregulation of industries under Carter meant
that the economy could start growing again. These policies made the economy
more adaptable so that the high oil prices of the 2000s did not trigger massive
inflation, unlike the 1970s. As a result of the Clean Air Act Amendments of 1990
that were passed under G. H. W. Bush, using markets for sulfur oxides substantially
reduced acid rain to the point where it rarely enters the public discourse. The
furthest point of the wave running up the shore was the liberalization of the banking
laws under Clinton. If banking had not been partially deregulated, which shifted so
much risk from companies to the country, the financial crisis would not have been
so disastrous. Still, the government response in managing the banking crisis and
unemployment was exceptional.

Currently, the use of markets as a policy tool is a receding wave. The “Great
Recession” and the rise of the Internet giants have many looking nostalgically back
towards the “good old days” of socialism. Yet what the political economy needs is
balance: the government has to set the rules and control excessive market power but
should avoid counterproductive meddling. The only way to do this is to rely on the
facts and to do formal analyses that include examining the potential abuse of power
by firms, politicians, and bureaucrats.
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I left the government soon after Reagan appointed a dentist to run the Department
of Energy. It was clear the facts no longer mattered. A contributing factor in my
departure was that in the formation of the Department of Energy, the old Atomic
Energy Commission bureaucracy took over the internal business processes of the
organization. The incredibly slow business processes matched the main business of
DoE, which is building and maintaining nuclear warheads, cleaning up the environ-
mental messes from the nuclear programs, and building and managing expensive
equipment such as accelerators. Initiating anything interesting in modeling and
analysis felt like fording a river of molasses. A dynamic young agency had ossified
overnight.

The central problems of managing in government are regenerating talent and
building an adaptable organization that can fully use its talent, while having
sufficient structure to keep staff focused on the mission. Furthermore, the business
processes should not be the same across all agencies. They should match the
different kinds of work the different agencies performs.

2.11 Harvey’s Legacy and Contribution to My Career

Harvey had a very successful research career. Moreover, the fact that I have written
this tutorial as part of a collection of articles on Harvey and his work reflects one of
his other accomplishments: his ability to bring people together and create research
networks.

I am one example of Harvey’s networking talents. I went to FEA because I
had gone to graduate school immediately after my undergraduate degree with no
work experience. I went directly to teaching after spending 3 years getting my
Ph.D. I was developing some research momentum. However, I was not satisfied
because I felt I was doing n+1 research rather than something truly novel. I went
into OR because of the promise of using mathematics to address real-world issues
but was not able to do that in a university. As a junior faculty member you rarely
get the fresh and interesting research questions relating to real problems that can
be used immediately unless you have a working relationship with a senior faculty
member who is connected to the practice world or you have a relationship with
a part time student who has a problem at work. I also did not know anything
beyond mathematics and the mathematics of OR. I wanted to see what was real
about my chosen field. I left for Washington to do that and I succeeded beyond my
expectations.

The move to government led to a set of research questions that kept me busy
for my subsequent academic career. Without Harvey a critical piece of a successful
career would have been missing. Knowledge generation requires participating in
social networks of like-minded researchers. Ideas do not arise in a vacuum. They
come from meeting and learning about other people’s research. This means you
have to belong to a community where the members have similar research interests.
Harvey was the quintessential networker and community builder. What Harvey gave
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me and many others was his social network. His gregariousness meant that he was
always connecting people. For example, Steve Kimbrough at Wharton and I have
developed a research relationship and friendship because we both participated in
Harvey’s Intelligent Mathematical Programming System Consortium in Denver,
which also brought John Chinneck into a research relationship and friendship with
Harvey and me. Steve and I liked each other’s ideas and I live a little more than
a mile from where Steve works. Having a social network plus research questions
meant that I could enjoy one of the best aspects of academic life, the opportunity to
do research on meaningful topics with friends.

Harvey’s love of bringing people together around ideas through consortia
meetings, journals, and the INFORMS Computing Society (ICS) has created long-
lasting social networks before we knew the phrase. That is why so many people
wanted to celebrate Harvey at the Nashville ICS meeting, especially those of us who
have benefited directly from his energy, ebullience, and joy in ideas and people.
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Chapter 3
Software for an Intelligent Mathematical
Programming System

Matthew J. Saltzman

Abstract Creating and understanding optimization models, instances, and solu-
tions of any significant size present a serious challenge, even to experts in the
field. Greenberg pursued an initiative in the 1980s and 1990s to support research
and development of computer-assisted technologies to aid decision makers in
developing models and investigating model, instance, and solution structures and
implications, which he dubbed the Intelligent Mathematical Programming System
(IMPS). Among Greenberg’s contributions is a suite of software tools that demon-
strated the potential for the initiative, including MODLER (a structured model and
instance builder), RANDMOD (a structured randomization tool), and ANALYZE (a
system for analyzing the structure of model instances and solutions). This paper
surveys the capabilities of these tools and their underlying technologies.

3.1 Introduction

It is folk history that in the decades after its early accomplishments in military
applications in World War II, operations research (OR) met with mixed success as
we discovered both the breadth of applications amenable to OR approaches and the
computational hurdles that needed to be overcome. Greenberg wrote in the preface
to an unpublished monograph [5], “Due to the explosive growth of inexpensive
computer power and to the highly successful applications during the 1960s, we
can solve far larger problems than we can understand.1” However, our aspirations
outstripped even those developments. As we can see in retrospect, the “explosive
growth” of computer power and algorithm technology of the 1960s was merely the
prelude to the dramatic progress that has occurred since.

1Emphasis in the original.
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Even for optimization professionals, understanding the intimate relationships
between parts of models and the extended impact on solutions of model and instance
modifications is utterly impractical without technological assistance. For experts
in application areas who have less expertise in optimization, the challenge is even
greater. As solver engine power has advanced dramatically over the last few decades,
the challenge of understanding the structure of larger and larger models has grown
as well.

Computer-assisted analysis tools can be created for individual problems through
a collaboration between optimization specialists and problem domain experts, but
such tools are expensive: they require repeated, substantial investment of skilled
labor. In the late 1970s and early 1980s, Greenberg engaged in a research program
“to move some of the art of modeling and analysis to the realm of science [6].”

3.1.1 The Drive for an Intelligent Mathematical Programming
System

3.1.2 Technology Context

It is worth recalling the state of computing technology during the period when
Greenberg’s tools were being developed. IBM announced the introduction of the
personal computer (PC) in 1981. Previously, such small computers had been almost
exclusively the province of hobbyists, but the PC rapidly began to penetrate the
business and academic markets. Those machines offered 16-bit words (32-bit longs),
less than a megabyte of RAM, and, typically, 24 × 80-character monochrome
screens. Floating-point calculations were either emulated or performed by an
extra-cost auxiliary processor. Early hard disk drives offered 5–10 megabytes of
space. Color graphics were expensive, and for PCs, offered limited resolution and
color depth. The “3M” workstation that was a target of R&D efforts at Carnegie
Mellon when the author was in graduate school there included “a megaFLOPS,2 a
megaword,3 and a megapixel.4” Time-sharing mainframes and minicomputers were
the main interactive technologies available, but even these had on the order of a few
megabytes of memory and tens of megaFLOPS. FORTRAN, COBOL, and to some
extent, PL/I were mainframe languages, with FORTRAN 77 the choice for scientific
computing. Pascal was the most common structured language on PCs, but it was
not standardized, so different compilers supported different features and syntaxes.
Unix, C, and C++ were starting to penetrate the small time-sharing system market
but were not widely deployed on PCs.

2Floating-point operations per second.
3RAM.
4Monochrome display resolution.
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By the 1990s, 32-bit CPUs, a fraction of a gigabyte of RAM, and basic color
graphics were the norm for workstations. C and C++ were becoming common
languages on PCs and were penetrating the scientific space. Hard disk drives were
still tens of megabytes. Linux was just getting its start. Java was gaining a foothold.
The World Wide Web, with support for graphics and media, was rapidly becoming
the standard for disseminating information on the Internet, which was still mainly
the province of government and academia. Remote access to networks was provided
over voice lines with modems that could transmit and receive about 10 kb per
second.

With regard to mathematical programming, commercial algebraic modeling lan-
guages such as GAMS and AMPL existed, but mathematical programming instances
were still often created with custom matrix generators. The nearly universal
instance interchange format for instances of linear programs (LPs) was IBM’s MPS
format. MPS was never standardized, so even to this day, different solvers expect
slightly different variations. In addition, MPS format provides few mechanisms for
expressing special structures. While algebraic modeling packages often used their
own file formats for interacting with solvers, these were generally restricted to use
with the corresponding packages.

3.1.3 Industrial Sponsorship

Another bit of folk wisdom is that obtaining federal funding for development of
software tools to support research in multiple disciplines has historically been
more difficult than obtaining funding to carry out traditional “knowledge creation”
research. Greenberg also encountered that challenge in the 1980s. In response, he
created an industrial consortium to support his IMPS program [6].

Greenberg’s consortium proposal was developed in 1984–1985. The first com-
pany brought on board was Amoco Oil Co. Later additions included General
Research Corporation (apparently now defunct), Shell Research, Ketron Manage-
ment Science, US West (one of the Baby Bells), and MathPro, Inc. Phase 1 lasted
until about 1989. It included development of ANALYZE, MODLER, and RANDMOD

and produced over 35 documents, including software manuals and refereed journal
articles. Phase 2 was under way when Greenberg’s report appeared in 1990, with
Phase 3 planned. The author has not located documentation on later phases.

According to Greenberg’s self-assessment, there were several features of the
consortium model that contributed to its success. To attract consortium members,
Greenberg offered clear objectives with associated deliverables, early access to
results for consortium members, and inclusion of consortium members in the
priority setting process. Several workshops were held in support of the initiative,
with presentations of research results and opportunities for collaboration.
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3.2 Anatomy and Views of a Model

While mathematicians are comfortable with the algebraic or netform description of
an optimization model, subject matter experts may not be comfortable working with
those expressions.5 Greenberg and Murphy [13] provide a taxonomy of LP views,
several of which are intended to be more accessible to non-mathematical subject
matter experts.

Greenberg and Murphy [13] (and Greenberg in several other publications)
describe a mathematical programming model as having the partial structure depicted
in Fig. 3.1. They proceed to investigate several different views of a mathematical
programming model or instance and its solution, each of which may be appropriate
for different constituents or may provide a different form of insight into model
structure. MODLER and ANALYZE together provide a subset of the views presented
in [13]. Commercial algebraic modeling systems generally present only one or two
of these collected views.

We denote a (linear) model as an abstract representation of a class of instances.
The instance class is typically infinite and is parameterized by sets of index names
or values and numerical parameter and data values. The parameters defining a
particular instance class share a common structure, which may be specified with
more or less detail to define the structure of the abstract model.

Data objects map to the index sets and the coefficients of the objective, right-
hand side, constraint matrix, and bounds. These are the components of a model that
change from instance to instance. Sets are considered symbolic data, although they
can also be described by discrete numerical values. Sets must be discrete because
they provide values for indices of discrete objects of other types. For example, sets
can index the terms in a summation. (If a set consisted of an interval in R, the
summation would decay to an integral, which is outside the scope of these tools.)
Data objects can be explicit (expressed as a list or table) or implicit (expressed as
transformations of other sets or tables).

Relations among objects also determine how an instance is generated. Genera-
tion conditions determine whether decision or data objects appear in a particular
instance. Admissibility conditions express requirements on data objects such as a
numeric range for a table entry or a parameter.

Greenberg andMurphy note that there is some ambiguity regarding what features
are considered part of the model and what are part of an instance. In algebraic
modeling languages—including MODLER—all objects and relations that are not
explicit data must be declared as part of the model definition. Only the specification
of explicit set, table, and parameter values distinguish instances.

5The term mathematician is used somewhat loosely here to refer to someone familiar with the
mathematical aspects of optimization models, including their algebraic description, algorithmic
solution, and theoretical properties, such as duality relations. Subject matter experts are, by
contrast, familiar with the terminology related to the application area of a model, but not necessarily
with its mathematical properties.
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Fig. 3.1 Anatomy of a mathematical programming model

A view of a model is a representation of model components in a form that is
comprehensible by people involved in the modeling process. These people may have
different cognitive expectations for model presentation, and different views can be
designed to conform to the expectations of different constituents.

As an example, we map the objects and relations associated with the capacitated
transportation model to the entities displayed in Fig. 3.1. Model properties include
identifying supply and demand points, units of goods available at supply points and
required at demand points, and costs and capacities of routes connecting supply
and demand points. The explicit sets in an instance definition consist of lists of
identifiers for the supply and demand points. Explicit tables provide the number
of available units of a good at the supply points, the number of units required at
each demand point, and the shipping cost per unit and capacity in units for each
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connecting route. Note that the costs and capacities are indexed by an implicit
set, namely the Cartesian product of the supply and demand sets. The actual set
elements and table values are not specified as part of the abstract model; they must
be specified to construct an instance of the model. The decision objects here are
activity levels corresponding to the number of units of goods moved from each
supply point to each demand point.

The anatomy diagram does not specify an objective object, but we can define a
constraint that specifies the computation of the total shipping cost as the sum over
all routes of the unit cost to ship on a route times the amount shipped on that route;
then we can specify that quantity is to be minimized. The remaining constraints
specify that the amount shipped out of each supply point must not exceed the supply
available, that the demand at each demand point must be met, and that the amount
shipped on each route must be nonnegative and must not exceed the route capacity.

Greenberg and Murphy provide examples of different views of a capacitated
transportation model, and Greenberg [8, 9] provides a collection of models with
the MODLER and ANALYZE software with which a user can experiment. Greenberg
andMurphy illustrate several views that could be useful to various participants in the
modeling process. The views presented in Fig. 3.2 are based on the abstract model of
the capacitated transportation example, while those presented in Fig. 3.3 are based
on a completely specified instance.

Three of the views in Fig. 3.2 are generated by MODLER. Figure 3.2a presents
an algebraic view, Fig. 3.2b is a block schematic view, and Fig. 3.2d is an activity
input-output view. A transportation activity in Fig. 3.2d consists of one input (the
coefficient from the corresponding supply equation) and one output (the coefficient
from the corresponding demand equation). MODLER’s views are described in
detail in Sect. 3.3. The remaining views in Fig. 3.2 were generated by other tools.
Figure 3.2e shows a netform, or a network-based model view. The underlying model
here is a classical network flow model, so each activity is represented by an arc
connecting a supply node at the tail to a demand node at the head. Figure 3.2f shows
a condensed version of an activity-constraint digraph. Figure 3.2c shows a graphical
representation of activity input and output produced by the LPFORM tool [16] (more
detail would be available in subordinate screens).

Once a model instance is instantiated by assigning values to all data objects,
additional views are possible. Figure 3.3 shows some of these views, created by
ANALYZE. Figure 3.3a is an algebraic view with coefficients displayed. Figure 3.3b
is a block schematic view with coefficient values or ranges included. Figure 3.3d
shows a syntax view, where descriptions of objects are expressed in text form using
data provided by MODLER. Figure 3.3c displays the sign pattern of entries in the
coefficient matrix and rim vectors. Figure 3.3e is an instantiated version of the
activity-constraint input/output view in Fig. 3.2d. Figure 3.3f illustrates flows from
supply centers to demand centers. ANALYZE’s views are described in Sect. 3.5.

Commercial algebraic modeling systems are primarily designed to support an
algebraic view, which is familiar to mathematicians but possibly not to other
constituents.
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Model TRANSCAP
Capacitated Transportation Model

Minimize COST
Subject to:

COST = SUM[i IN SR, j IN DR | TRANSCOST(i, j) * T(i, j)];
S(SR) = SUM[j in DR | T(SR,j)] <= SUPPLY(SR)
D(DR) = SUM[i IN SR | T(i,DR)] >= DEMAND(DR)
Decision Variables:

0 <= T <= CAPACITY

(a)

T(SR,DR)
S(SR) 1 <= SUPPLY
D(DR) 1 >= DEMAND
COST TRANSCOST ...MIN
BOUNDS 0

CAPACITY

(b)

S D
T

* ------> *

(c)

Activity T(SR,DR) ...transports from (SR) to (DR)
When: always
Bounds: >=0 AND <= CAPACITY
Inputs: 1 in Equation S
Outputs: 1 in Equation D

(d)

_________
|TRANSCOST| T(SR,DR)

SUPPLY --> S(SR) ---------------------->D(DR) --> DEMAND
(0, CAPACITY)

(e)

CAPACITY
|

\|/
SUPLY --> S(SR) --> [T(SR,DR)] --> D(DR) --> DEMAND

|
\|/

$:TRANSCOST

(f)

Fig. 3.2 Somemodel views of the capacitated transportation problem [13]. (a) An algebraic model
view. (b) A block schematic view. (c) A block/link view. (d) An activity input/output view. (e) A
netform view. (f) An activity-constraint view (condensed)
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MIN COST = TNTNT + TSWSW + 10 TNESW + 10 TSWNE
50 <= DNE = TNENE + TSWNE

100 <= DSW = TNESE + TSWSW
100 >= SNE = TNENE + TNESE
50 >= SSW = TSWNE + TSWSW

COL LO_BOUND UP_BOUND
----------------------------
TNENE 0 *
TNESW 0 50.000
TSWNE 0 50.000
TSWSW 0 *

(a)

T(SR,DR) RHSMMODL
S(SR) 1 <= 50/100
D(DR) 1 >= 50/100
COST 1/10 ...MIN
:LO 0
:UP 50/*

(b)

T T T T
N N S S
E E W W
N S N S
E W E W

COST + + + + - MIN
DNE + + > +
DSW + + > +
SNE + + < +
SSW + + < +

(c)

Row syntax has 2 classes
A row that begins with S limits supply at some supply region.
A row that begins with D requires demand at some demand region.

Column syntax has 1 class
A column that begins with T transports from some supply region to

some demand region.

(d)

100 --> (SNE) ---> [TNENE] ---> (DNE) --> 50
$1

50 ---> [TNESW] ---> (DWS) --> 100
$10

50 --> (SSW) ---> [TSWNE] ---> * (DNE)
$10

50 ---> * [TSWNE]
[TSWSW] ---> * (DSW)

$1

(e)

ROW DIGRAPH

Northeast ----> Northwest
----> Southwest

Southwest ----> Northeast
----> Southwest

(f)

Fig. 3.3 Some instance views of the capacitated transportation problem [13]. (a) An algebraic
instance view. (b) A schematic view. (c) A sign-pattern view. (d) A syntax view. (e) An activity-
constraint I/O view. (f) A flow view (with English translation)
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3.3 MODLER: Modeling by Object-Driven Linear
Elemental Relations

Custom matrix generators were the primary method of constructing nontrivial
instances of linear programming models in the early days of computational opti-
mization. Matrix generators pulled data from whatever sources were necessary
and formatted them into MPS-format files for input to solvers. Separate custom
programs took solution files in whatever form the solver provided them and
produced reports formatted for the decision maker’s convenience. As the sizes of
instances solvable by computers increased and the reach of personal computers
expanded through the 1980s, it became clear that these tools were not adequate to
the needs of decision makers who were becoming interested in using optimization in
their work. Later in the 1980s, a number of commercial products brought to market
the idea of “algebraic modeling languages.” AMPL, GAMS, AIMMS, MPL, and LINGO

all date from that period.
Algebraic modeling languages share two key capabilities:6

• They support the abstract description of a model using an analog of the math-
ematical notation common in academic writing, with sigma notation for sums
and other arithmetic and logical operators. Capabilities include the construction
of flexible, abstract indexing sets and multi-subscript parameters, variables, and
constraints.

• They separate the specification of the abstract model from the provision of actual
values of the indexing set members and the coefficients. Thus, a single abstract
description can be reused to specify multiple instances of a problem, simply by
providing different data sets to accompany it.

Note that algebraic modeling languages mainly map to a mathematician’s view of a
problem. The level of abstraction is just what a mathematician thinks about: index
sets, coefficients, variables, objective functions, and constraints.

MODLER has a more ambitious agenda [10]. As an interactive system for creating
models and instances, MODLER implements an algebraic modeling language.
MODLER eschews some of the more esoteric features of commercial algebraic
modeling languages and is restricted to formulating linear models; however, it
attempts to provide a bridge between the entities and actions that a subject matter
expert might consider and the modeling objects (variables, coefficients, constraints,
blocks, objectives) that form the mathematician’s view. It also supports expression
of logical constraints with Boolean variables and automatically converts them to
linear inequalities. MODLER’s language supports implied indexing and implied
summations for expressions with unbound indexing variables.

6This definition excludes the simple, row-oriented, written-out expression languages such as
LINDO or CPLEX’s LP format as well as spreadsheets.
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MODLER implements a strict separation of an abstract model from the data
associated with an instance. It also supports randomization features that are closely
tied to model structure for rapid prototyping of models.

One of MODLER’s key features is the ability to generate syntactic data structures
for use with ANALYZE. This feature supports expressing results of analyses in
natural-language terms that would be familiar to the subject matter expert, as
opposed to the language of model formulations that would require a mathematician
to interpret. The instance views supported by ANALYZE are described in Sect. 3.5.

MODLER’s extensive library of views and queries provides perspective primarily
at the level of abstract models.

• The algebraic view will be largely familiar to the mathematician. It includes the
usual representation of indexed constraints and summations describing a linear
program.

• The block schematic view is an abstraction of the blocks of variables and
constraints that share common names and index sets. The result is a grid with
columns corresponding to variable blocks and rows corresponding to constraint
blocks. The cells in each row/column indicate where the coefficients are defined.
This could be a table, a range of explicit values, etc. Blocks can also appear for
logical constraints and bounds.

• The activity input/output view shows the model as a collection of transforma-
tions. As formalized by Ma et al. [16], transformations represent conversions
of form (transforming raw material into product), place (transporting from
origin to destination locations), or time (carrying inventory or investments). In
a canonical-form LP (minimizing subject to greater-or-equal constraints and
nonnegative or bounded variables), an input to an activity is represented by a
constraint with a negative coefficient and an output is represented by a constraint
with a positive coefficient. MODLER also supports assigning these and other user-
defined attributes to sets for display in MODLER and ANALYZE views. MODLER’s
activity I/O view displays for each activity class a list of constraints where the
activity takes an input and where it produces an output.

• Dependency relations can be displayed, showing which objects are defined in
terms of the sets, parameters, and tables that provide the data for instantiation of
an instance of the model. Implicit sets and tables are dependent on the explicit
objects that define them, and variables and constraints are dependent on the sets
that index them and the parameters and tables that provide their coefficients.

MODLER includes a randomization function that is designed to rapidly prototype
instances of a model for testing. Limited randomization can be accomplished
interactively from MODLER’s console or, more flexibly, from input files that provide
explicit set, parameter, and table values. The randomizer can set probabilities for
selection among a specified list of ranges or a default range; then random numbers
of specified precision are generated with a specified distributions.
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3.3.1 Capturing Structure in Instance Representations

MODLER’s output is intended to provide input to a solver engine and to the
companion tools, RANDMOD (a tool to construct random instances from a template
instance) and ANALYZE (MODLER’s companion tool for analyzing instances and
solutions). The matrix file is a standard MPS-format description of the instance,
which is input to the solver and to RANDMOD and ANALYZE. The syntax file
provides a collection of verbal descriptions of objects that can be used with
MODLER’s description of the model, the matrix file, and the solution report from
the solver to display properties of an instance and its solution in natural language.

For generating views and responding to queries regarding instances, Greenberg
describes a mapping from object identifiers (variable and constraint group names,
index set members, etc.) to instance row and column names in the matrix file. In
MPS format, row names, column names, and bound and right-hand side block names
are all simple strings of eight characters. (In someMPS extensions, longer names are
permitted, but the forms and restrictions are far from universal. These tools generally
kept to the most widely supported formats.) ANALYZE and RANDMOD identify
substructures and generate views and query responses by matching substrings
to patterns. For example, in Greenberg’s WOODNET sample model describing
production and distribution of lumber, the activity name TMOSFSE represents
transportation (T) of mahogany (MO) from a supply point in San Francisco (SF)
to a demand point in Seattle (SE). A syntax for masks supports substring matching
to select groups of objects.

3.4 RANDMOD: Controlled Randomization of Linear
Programs

RANDMOD [7] is a tool for constructing random instances of linear programs for
algorithm testing purposes. Given an input instance specified in an MPS-format
matrix file, RANDMOD can produce transformed instances using any of several
transformations and generate random values according to any of several distribution
classes. The transformations include:

• Augmentation—adding rows to a problem instance constructed from conic
combinations of existing inequality rows. The additional rows can be shifted to
be strictly redundant or to create degeneracies or infeasibilities.

• Perturbation and scaling—changing row or column bounds or coefficient values.
• Removing bounds.

Row augmentation and perturbation are mutually exclusive operations.
The weights used to construct combinations of rows or to modify coefficient

values are randomly generated. The user can specify a range and distribution for a
base value, scale factor, offset, and number of modifications for each operation. The
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supported distributions are uniform, triangular, normal, and exponential. Transfor-
mations can be restricted to submatrices based on name patterns. Each collection of
transformations produces a new instance that can be saved in a matrix file with the
same naming patterns as the template (except for added rows).

3.5 ANALYZE: A Computer-Assisted Analysis System for
Mathematical Programming Models and Solutions

Once an instance of a mathematical programming model is instantiated, a number of
views can be produced that present the detailed data provided in context. In addition,
if a solution is available, more insights can be provided into the relationships
between activities and constraints at that solution. Even if it is determined that
no feasible solution exists, it is possible to determine what parts of the model or
instance might be responsible for that outcome. ANALYZE can provide all these
perspectives and more, and can present them in natural-language form if provided
with an appropriate syntax file. In addition, ANALYZE provides a customizable,
rule-driven interface for adding new knowledge generation tools for problems with
special structure.

A summary of the inputs to ANALYZE and the general classes of outputs are
shown in Fig. 3.4. ANALYZE requires at least a matrix file describing an instantiated
instance, and with only that input, ANALYZE supports a limited set of queries
that do not rely on the model’s structure. Dictionaries and documents define
the interaction between program and user, mediated by the FLIP subsystem (the
FORTRAN Language Interactive Processor), the dialog engine for ANALYZE as well
as MODLER and RANDMOD. The solution file is the output of any of a handful of
solver engines that ANALYZE is able to parse, as there is no widely used format for
expressing solutions.

The key to ANALYZE’s power as an investigative tool is the syntax file provided
by MODLER. This file includes the maps from the row and column names in the
matrix file to the block structure object names and indices of the original model.
It also contains the natural-language descriptions of objects used in ANALYZE’s
natural-language interface. ANALYZE’s reasoning capabilities are driven by rule-
based logic. Standard and custom rules are provided via rule files. Finally, ANALYZE

is capable of interacting with external tools such as Chinneck’s IIS (irreducible
infeasible subsystem) analyzer [2].

Provided with appropriate inputs, ANALYZE supports sensitivity analysis, various
views and queries, model simplification, and interpretation of model and solution
structure as well as debugging inquiries such as identifying infeasibilities.
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Fig. 3.4 ANALYZE input/output

3.5.1 Views and Analyses

Some available views of an instantiated instance of an LP refine similar views of
an abstract model. An algebraic view of a model might involve summations over
named index sets of named coefficients, but the instance view can show the actual
index and coefficient values. The block schema for a model shows groupings of
rows and columns by name, but the instance view can show ranges of coefficients.
See related views in Figs. 3.2 and 3.3 for comparison. ANALYZE can also display
constraint matrix sign patterns. While the lack of graphics capabilities limited the
size of such displays, they were still useful for selected submatrices.

In addition to refinements of model views, there are many ways to explore
relationships among components of instances and solution values. By tracing
through submatrices associated with active resource constraints and basic activities,
ANALYZE can provide information about the makeup of shadow prices and reduced
costs, marginal substitution rates, sensitivity of the solution to changes in coefficient
values, and other properties of the instance and solution. Those insights can be
presented through displays of objects and their properties in diagrams or tables.
By using the natural-language descriptions of objects in the syntax file, ANALYZE

can also represent its findings in verbal summaries.
The fundamental digraph of an instance [4] is a directed bipartite graph with a

node for each row and column and an arc connecting row i to column j if matrix
coefficient aij is negative and an arc connecting column j to row i if aij is positive.
For an LP in the canonical form (minimize subject to greater-or-equal constraints
and nonnegative variables), one can interpret a negative coefficient as indicating that
the row resource is an input to the column activity. A positive coefficient indicates
that the row resource is an output of the column activity.
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The fundamental digraph can be projected onto the row or column node sets,
with an arc between rows in the former or columns in the latter corresponding to
directed paths of length 2 in the fundamental digraph. The row digraph captures
transformations between resources connected by an activity that takes one resource
(the tail) as input and produces another (the head) as output. The column digraph
captures precedence, in which one column (the tail) produces a resource that another
activity (the head) consumes. ANALYZE can display subgraphs of these graphs to
visualize these relations.

While the general question of whether a constraint is redundant has the same
complexity as solving the original LP, some redundancies can be verified through
the same sorts of analyses as those listed above. ANALYZE can also diagnose
infeasibilities using a successive bounding procedure or by hooking to an external
engine that implements Chinneck’s IIS detector.

3.5.2 Algorithmic Analysis

ANALYZE includes several algorithms and heuristics that support a deeper under-
standing of the interactions between model instances and solutions than is afforded
by simply looking at activity levels and dual prices. The key algorithms in
ANALYZE’s repertoire include:

• Path tracing builds a submatrix that includes rows corresponding to the resources
associated with an activity or subset of activities and all the activities that interact
with the activity of interest. From that submatrix, ANALYZE can determine the
impact of marginal changes in the activity of interest.

• Basis rearrangement permutes basis rows and columns to bring the basis matrix
to a triangular or near-triangular form.

• Rates of substitution can be computed by completing the product-form factoriza-
tion of the triangularized basis and invoking the FTRAN and BTRAN procedures
from the simplex method (to solve Bx = a and BT π = c, respectively, where a

is a column of the constraint matrix and c is a subvector of the objective).
• Some cases of redundancy can be detected by computing ranges on basic

variables that maintain feasibility as nonbasic variables are set to their most
permissive bounds. If the upper or lower bounds on the left-hand sides are
tighter than the upper or lower bounds on the right-hand side, the corresponding
constraint is redundant.

• Primal and dual bounds can be reduced sequentially until infeasibility is detected
or the bound reduction process stabilizes.

• Logical implications for binary variables can be imputed based on constraint left-
hand side bounds.
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3.5.3 The Rule Base

Rule-based reasoning is one research thrust of artificial intelligence. The idea is to
capture the thought process of an expert analyst in the field of interest in a form that
can be carried out automatically by a computer. ANALYZE contains a rule-based
reasoning engine that includes a number of standard analytical procedures such as
interpreting a shadow price or identifying an embedded network. The rulebase is
extensible and customizable so that new analyses for special problem structures can
be implemented.

Rules can be invoked by the user and can in turn implement algorithms
automating the steps of an analysis, such as identifying the contributions of activities
to a shadow price or the contribution of resources to a reduced cost in a problem
instance. Rules can invoke the core algorithms described in Sect. 3.5.2, where the
components that contribute to an interpretation may depend on special structure of
the problem.

3.6 WRIP: A Workbench for Research in (Linear)
Programming

In 1991, Greenberg and Marsten released a package [12] containing the three
analysis tools described here together with an LP solver: Marsten et al.’s OB1 [1,
15, 17, 18]. OB1 is a FORTRAN code that includes Marsten’s XMP simplex solver
and several different interior-point solvers, plus a crossover code to recover a basic
optimal solution from an optimal interior-point solution. The package also includes
test instances from Netlib and elsewhere [3, 14] as well as tools for visualization.

Greenberg and Marsten’s view of a workflow for experimenting is pictured in
Fig. 3.5. A matrix file for a base LP instance could be selected from a library or
created using MODLER. The LP could be solved with OB1 or processed through
RANDMOD to create additional, similar instances. Solutions from OB1 could be
analyzed with ANALYZE, and the output of RANDMOD, OB1, and ANALYZE could
be fed to a statistical analysis of, for example, solver performance. The results of
the analysis could be reported and could be fed to RANDMOD to produce additional
instances for further testing.

3.7 Conclusion

The Intelligent Mathematical Programming System initiative spearheaded by
Greenberg in the 1980s and 1990s was an ambitious program to harness emerging
computing power to enhance the analyst’s ability to formulate, analyze, and reason
about optimization problems in the context of decision support systems. Greenberg’s
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1996 bibliography [11] lists over 500 references, which are classified as relevant
to background, analysis, discourse, formulation, model management, and software
engineering and implementations, plus relevant general knowledge. Greenberg
himself is listed as author or coauthor on nearly 50 of the publications. But among
his most influential contributions to the initiative is the fact that he put into practice
the principles that he developed and assembled by publishing the software packages
MODLER, RANDMOD, and ANALYZE.

While some of the knowledge developed through the initiative and related efforts
has been integrated into widely used tools, many of the capabilities of Greenberg’s
codes have not been so widely deployed. Compiled versions of MODLER and
ANALYZE for Microsoft Windows are distributed with user’s guides currently
available from Springer [8, 9]. Windows and Linux executables for MODLER and
ANALYZE and Windows executables for RANDMOD were available for download
from Greenberg’s University of Colorado at Denver Web pages. These can still
be run on systems available as of this writing. Source code for ANALYZE exists
and should eventually be available as open source, once proper permissions can be
secured. Sadly, source for MODLER and RANDMOD appears to be lost to history,
unless some kind reader has an archive that they can share with this author.
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Chapter 4
Harvey Greenberg: Analyzing Infeasible
Mathematical Programs

John W. Chinneck

Abstract As part of his Intelligent Mathematical Programming System project,
Harvey Greenberg investigated theory and developed methods for diagnosing
the cause of infeasibility. The emphasis was on developing useful and practical
tools for isolating the problem to a small part of a large model and arriving
at an understandable explanation, or diagnosis, of the infeasibility. He leveraged
known mathematical theorems—and developed new ones—to create the requisite
tools for incorporation into his ANALYZE software. This chapter summarizes his
contributions to practical methods for analyzing infeasible mathematical programs.

4.1 Introduction

As described elsewhere in this book, Harvey Greenberg initiated the Intelligent
Mathematical Programming System (IMPS) project [12]. A main goal of the IMPS
was to provide tools to deal with the complexities of large-scale mathematical
programming models and solutions, e.g. explaining their behavior, understanding
causal relationships, and providing useful insights. Post-solution analysis was a
major part of this effort, including providing explanations for pathological outcomes
such as infeasibility and unboundedness.

This chapter deals with Harvey Greenberg’s contributions to the analysis of
infeasible mathematical programs, mainly linear programs. Greenberg assembled
and extended the known theory on infeasibility with an eye to making it useful in
practice by incorporating it into his ANALYZE software [8, 15, 17, 18, 22] for the
analysis of linear programming (LP) models. The value of this difficult task should
not be underestimated: there are subtle pitfalls in converting theory to practice in
such a way that it is indeed useful.
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4.1.1 Defining Infeasibility

A fundamental point is the definition of infeasibility in a mathematical program.
Mathematically, this means that the solution point x violates one or more constraints.
In practice, however, solutions are calculated on machines having a limited number
of bits to represent real-valued numbers, and hence a certain tolerance on precision
must be allowed. The most common resolution of this difficulty is to consider a
constraint to be satisfied even if it is violated by up to a small absolute feasibility
tolerance τ a, often on the order of 1 × 10−6. This is called a function tolerance test.
For example, where the constraint takes the form g(x) ≤ b, the function tolerance
test allows all solutions that satisfy g(x) ≤ b + τ a.

But even this is not a complete resolution of the difficulty because models are
normally scaled prior to solution by applying multipliers to the constraints and
variables to help prevent calculation errors. Scaling can impact whether or not a
constraint is considered to be satisfied or violated using a function tolerance test. For
example, where τ a is 1 × 10−6 the point x = 1.000001 just satisfies the constraint
x ≤ 1, but violates the equivalent constraint 10x ≤ 10. For reasons such as this, it
is not uncommon to see one solver consider a solution point to be optimal while a
different solver considers the model itself to be infeasible.

However there are a number of other ways to deal with the imprecision of
finite-length digital representations of numbers and their impacts on feasibility
assessment. Greenberg [23] provides an in-depth analysis of this topic. He points
out that solvers may also use a relative feasibility tolerance τ r, which is applied to
a constraint of the form g(x) ≤ b as follows: g(x) − b ≤ τ r|b| + τ a. Solvers may
provide different tests for primal and dual feasibility as well as the duality gap. In
mixed-integer solvers a tolerance is used to determine whether an integer variable
value, treated as real-valued, is close enough to an integer value to be rounded to
that integer value. For integer rounding decisions, it is common to consider v close
enough to its integer rounding if |ν − �ν + 0.5	| ≤ τ r|ν|.

4.1.2 Isolating and Diagnosing Infeasibility

With infeasibility precisely defined as above, Greenberg addressed the issue of
explaining infeasibility with the goal of providing a useful diagnosis of the cause.
Such a diagnosis is vital when dealing with very large models, e.g. LPs having
millions of constraints and bounds. When the solver reports that the model is
infeasible, where does the analyst look to effect a repair? Greenberg’s approach
was to try to isolate the portion of the model that generates the infeasibility [13],
which eases the generation of the diagnosis in large models.

The main terms are defined by Greenberg and Murphy [24]: an isolation is a
small portion of the model that contains the infeasibility, preferably as small as
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possible. A diagnosis is a meaningful isolation that is interpretable by the human
modeler. A good diagnosis leads to the quick resolution of the modeling error.

Greenberg developed a number of practical approaches to narrowing the focus of
the search for the cause of infeasibilities:

• Analyzing the logic trail of bound tightening sequences that lead to infeasibility,
• Path and cycle tracing,
• Using the properties of interior point LP solutions,
• Specific techniques for infeasible network models based on flow balancing

theorems,
• Finding maximum cardinality feasible subsets of constraints in an infeasible LP.

Greenberg developed these methods before practical tools for isolating an
Irreducible Infeasible Subset of constraints (IIS) in an infeasible model became
available. An IIS is an infeasible set of constraints that is rendered feasible if any
single constraint is removed, thus all of the members contribute directly to the
infeasibility. Techniques for isolating IISs in a large set of constraints (see, e.g.,
[3]) eventually became the method of choice in commercial LP solvers, though the
methods listed above have their uses in particular situations. Greenberg [14, 16]
compared several methods for infeasibility analysis and concluded that isolating an
IIS is generally the best approach. Greenberg [18] then incorporated IIS isolation
software into his ANALYZE software.

Greenberg’s numerous contributions to infeasibility analysis in mathematical
programs are described below.

4.2 Reasoning About Bounds

Greenberg used reasoning about bounds to help isolate infeasibility in LPs in two
ways: (i) calculating aggregate constraint violations using variable bounds and dual
prices, and (ii) successive bound reduction, including extensions such as reasoning
about specific LP structures such as block-and-link constraint matrices. The goal in
all cases is to isolate the infeasibility to as small a portion of the model as possible.

4.2.1 Phase 1 Dual Prices and Aggregate Constraints

This approach makes use of the following theorem [13]: Let S = {x: l ≤ x ≤ u,
a ≤ Ax ≤ b} = ∅, and let π be a phase 1 dual solution price vector associated with
the range constraint on Ax. With notation π+

i = max (0, πi) and π−
i = min (0, πi),

it then follows that {x: l ≤ x ≤ u, α ≤ πAx ≤ β} = ∅, where ∝ = π+a + π−b,
and β = π+b + π−a. Defining λ = min(πAx: l ≤ x ≤ u) and μ = max(πAx:
l ≤ x ≤ u), it follows that either μ < α or λ > β in an infeasible system. If μ < α,
then the greatest value of πAx is not enough to satisfy its lower bound, that is
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activities having positive coefficients have upper bounds that are too low or activities
having negative coefficients have lower bounds that are too large. If λ > β, then the
smallest value of πAx is too large to satisfy its upper bound, and hence activities
having positive coefficients have lower bounds that are too large, or activities having
negative coefficients have upper bounds that are too small. In some cases, e.g. flow
models, this information provides sufficient clues to narrow the diagnostic effort to
a small part of the model.

This approach allows the partitioning of the constraints into two distinct sets:
those with π i �= 0 (associated with active constraints) and those with π i = 0
(associated with inactive constraints). The cause of the infeasibility must necessarily
include some or all of the constraints from the first set. This is helpful in isolating
the cause of the infeasibility, but it is not definitive.

4.2.2 Successive Bound Reduction

Successive bound reduction is commonly seen in the bound tightening that is carried
out in any standard LP presolver. Given a constraint and its bounds, tighter bounds
can often be deduced. For example, given the constraint 5x + 10y ≤ 12 with
0 ≤ x ≤ 5 and 0 ≤ y ≤ 8, we can tighten the upper bounds on both variables as
follows:

• x achieves its largest feasible value when 10y is as small as possible, which is at
y = 0. Thus 5x ≤ 12 → x ≤ 2.4.

• y achieves its largest feasible value when 5x is as small as possible, which is at
x = 0. Thus 10y ≤ 12 → y ≤ 1.2.

A standard presolver carries out a chain of such bound reductions, with each
tightened bound potentially initiating a cascade of other bound reductions on both
variable bounds and constraints.

To continue the example above, suppose we have another constraint x + y ≤ 10.
With the tightened bounds deduced above, we can now tighten this constraint
to x + y ≤ 3.6. Such bound tightening sequences can lead to the detection of
infeasibility. For example, if the model also contained the constraint x + 2y ≥ 5, the
tightened bounds on x and y would now reveal the infeasibility that the maximum
possible value of x + 2y is 4.8.

While a standard LP presolver can detect infeasibility when it finds a conflict
of this sort, Greenberg tried to use such an outcome to reach an isolation of the
infeasibility by analyzing the chain of reductions. In practice, analyzing infeasibility
via successive bound reduction is fraught. The chain of reductions can be very long
and include numerous reductions that are irrelevant to the infeasibility diagnosis.
Greenberg [13] provides a small example of an infeasibility diagnosis via successive
bound reduction in which the reduction chain has 10 irrelevant reductions, plus 5
relevant equations. Though it can be very helpful, Greenberg notes that “Successive
bounding can fail, and it is very unpredictable.”
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Successive bound reduction can also lead to the detection of a forced value for
a variable. This happens when the bounds and constraints act in a way that forces
a variable to a single value. If the forced value is zero, which is one of the more
common forced values, then the variable is said to be nonviable [2]. Greenberg
[19] explores techniques for finding forcing substructures of a model (bounds and
constraints) and shows that the techniques for doing this are the same as those used
for analyzing infeasibility.

4.2.3 Block-and-Link Structures

The idea of successive bounds reduction can be extended to collections of con-
straints if the LP has a block-and-link structure, which is not uncommon. In a
block-and-link LP, the constraint matrix can be decomposed into non-overlapping
blocks of coefficients, with a generally smaller set of variables that links all of
the blocks. Greenberg and Murphy [24] show how to leverage this structure to
isolate an infeasibility to a particular block. The blocks can be tested individually
by considering each block as an individual linear program, with the link variables
used as slack or surplus variables, and any one of the link variables used as the
objective function. If this LP is infeasible, then the infeasibility has been isolated to
the block. If this block LP is feasible, then tighten the bounds on the link variables
by using the block LP with each link variable solved for its maximum and minimum
values. These bounds can then propagate through the model, potentially leading to
the isolation of an infeasibility elsewhere.

4.3 Path and Cycle Tracing

A fundamental issue in analyzing infeasibility is understanding how the constraints
and variables in a model influence each other. For example, when the infeasible
solution point is shown to violate a particular constraint, a diagnosis can be sought
by tracing the set of other constraints and variables that influence the violated
constraint. This is the goal of path and cycle tracing.

Greenberg [8] represents constraint influences via a bipartite directed graph
based on the signs of the coefficients in a constraint. The two vertex sets are the
rows (R) and columns (C). The fundamental digraph is constructed as follows. For i
in R and j in C, there is one arc for each nonzero coefficient in the constraint matrix
A: (i,j) is an arc if Aij < 0 and (j,i) is an arc if Aij > 0. Tracing paths through the
fundamental digraph provides information on variable and constraint influences.
Cycles in the fundamental digraph are of particular importance because they can
help explain infeasibility, particularly dual infeasibility; the ANALYZE software
has a command to find such cycles. See the examples in Greenberg [8].
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4.4 Interior Point Solutions and Infeasibility

Greenberg [20, 21] noticed that an interior point method solution of an infeasible
LP separates inequality constraints into two sets: (i) those that might be part of some
IIS and (ii) those that cannot be part of any IIS. This is an improvement over other
methods for isolating IISs that cannot consistently identify all of the constraints that
are part of some IIS. It provides a way to immediately discard all of the constraints
that are irrelevant to the infeasibility.

Interior point solutions provide a strictly complementary partitioning of the
constraints. If S = {Ax ≥ b} is a finite collection of inequalities, X(S) = {x:
x is feasible in S}, and the dual system is Sd = {π ≥ 0, πA = 0, πb ≥ 0},
then the strictly complementary partitions theorem is stated by Greenberg [21]
as follows: If S is consistent, then there exists a strictly complementary solution,
(x, π ) ∈ X(S) × X(Sd). Further, the support partition is the same for all strictly
complementary solutions.

Greenberg goes on to apply this property to infeasible systems as follows. Define
the feasible LP: max πb subject to πA = 0, π ≥ 0, πb ≤ 1. Define the support
set σ (v) of a nonnegative vector v as the set of indices for which the coordinate is
positive. A solution in X(Sd) has the support set σ (π) = {i|π i > 0}. If x ∈ X(S)
and π ∈ Sd, then we have complementary slackness, i.e. Aix = bi for all i ∈ σ (π).
The solutions are strictly complementary if Aix > bi for all i �∈ σ (π). A strictly
complementary solution induces a support partition, σ (π) ∪ σ (Ax − b) on the
indices of the inequalities.

If the optimal solution to LP is obtained by an interior point method, then the
optimal partition, say π0, is strictly complementary. Now σ (π0) = {i|Aix ≥ bi

is in some IIS of S}. S is separated into two parts by the strictly complementary
solution: those that might be part of some IIS and those that are not part of any IIS.
This partition can be used to eliminate the inequalities that are not part of any IIS,
immediately improving the focus of the search.

4.5 Analysis of Infeasible Networks

Greenberg [10, 11] considered how to diagnose infeasible minimum cost network
flow programs in a pair of papers. His approaches mainly relied on the logical
application of existing supply and demand balancing theorems.

As an example, the main theorem by Gale [7] states that the total demand over
a network is feasible if and only if for every subset S of nodes, the total demand
over the complement of S is less than or equal to the total capacity of the arcs
that cross from S to its complement. The proof depends mostly on the minimum
cut theorem. This applies to individual nodes as well as any larger collection of
nodes. This means that there must always be enough supply to meet demand in
any partitioning of the arcs in the network. Greenberg used these balancing rules
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to construct more sophisticated analysis procedures in an effort to better isolate an
infeasibility.

Other relevant flow balancing algorithms are due to Fulkerson [6], Hoffman [26],
and Ford and Fulkerson [5]. Greenberg and Murphy [24] refer to the following
theorem as the Gale–Fulkerson–Hoffman theorem: given a network flow model
consisting of vertices V subdivided into the set S of supply nodes, the set D of
demand nodes, and the set T of transit (flow balancing) nodes, there exists a feasible
flow for [V,D,S,T] if, and only if, the value of the min cut from S to D is in the
interval of the lower bound on D to the upper bound on S.

The Gale–Fulkerson–Hoffman theorem can be used to help identify the bottle-
neck between supply and demand that is causing an infeasibility. But Greenberg and
Murphy [24] point out that its guidance is frequently insufficient to clearly identify
the cause of an infeasibility. More exact localization is needed. Greenberg [9, 11]
combines the flow balancing results with logic about network behavior to yield
heuristics that give better localization of an infeasibility. New specific tests such
as path and cycle generation are combined with methods akin to bound reduction.
These heuristics improve the usefulness of the base flow balancing techniques,
but there is no guarantee that an irreducible infeasibility will be isolated, or that
the resulting reductions will be helpful in understanding the infeasibility, as for
all logical reduction/presolving methods. These techniques are available in the
ANALYZE software [8, 15, 17, 18].

4.6 Comparison of Infeasibility Analysis Techniques

Greenberg compared the main methods for analyzing infeasible linear programs
described above in a pair of papers. Greenberg and Murphy [24] describe these
techniques:

• Phase 1 dual methods (see Sect. 4.2.1).
• Elastic programming, in which elastic variables are added to allow all constraints

to be satisfied. Elastic variables that have nonzero values must be part of the
infeasibility.

• Bound reduction (see Sect. 4.2.2) and propagation of tightened bounds.
• Gale–Fulkerson–Hoffman flow balancing theorems (see Sect. 4.5).
• Bound reduction in block-and-link LP structures (see Sect. 4.2.3).
• Parametric programming to find the closest possible feasible solution for an

infeasible LP (see Sect. 4.10).
• Partitioning, or finding maximal feasible subsets of constraints (see Sect. 4.8).
• Minimal dependency sets.

The overall conclusion is that there is no one method that best analyzes all types
of infeasibility, so Greenberg concentrates on assembling the available methods into
a toolkit that can be applied by people or artificially intelligent assistants.
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In the second comparison, Greenberg [14] considered three methods for the
analysis of infeasible blending models (common in the petrochemical industry):
(i) phase 1 price aggregation (Sect. 4.2.1), (ii) irreducible infeasible systems, and
(iii) bounds reduction (Sect. 4.2.2). The criteria for the comparison were how much
effort was needed to arrive at a diagnosis and the quality of the final diagnosis. The
ANALYZE software [18] is used to manage the diagnostic process in all three cases
(with IISs supplied by Chinneck’s MINOS(IIS) code [4]).

The paper concludes that the isolation of IISs “performed consistently above
midrange, and it never failed to provide useful information. It frequently gave an
immediate diagnostic.” See also Greenberg [16] for further study of the value of
isolating IISs during the diagnostic process. Phase 1 price aggregation proved useful
in simple blending models, while bound reduction failed completely in some cases
but gave insightful diagnostics in others.

Greenberg [9] had earlier addressed the idea of searching for IISs substructures
in infeasible LPs, but noted that how to find them was unclear. He considered Van
Loon’s [27] search for tableauxs that meet certain conditions to identify an IIS, but
noted that Van Loon’s search is undirected and will in general enumerate many bases
that do not provide any information about the cause of the infeasibility. Greenberg
and Murphy [24] point out that his method could be extended to find IISs more
efficiently by pivoting through alternative bases.

4.7 Infeasibility Analysis in ANALYZE

The ANALYZE software [8, 15, 16, 18, 22] is a general purpose tool for manipulating
and analyzing linear programs. It includes routines for the infeasibility analysis
methods described above, including bound tightening, path and cycle tracing for
infeasible networks, row aggregation, and tools for syntax-based explanation. While
it is not able to isolate IISs directly, it can read IIS output files produced by
MINOS(IIS) and apply the tools mentioned above to provide a deeper analysis of
the infeasibility.

4.8 Maximum Feasible Subsets of Constraints

Infeasible sets of constraints can also be analyzed by attempting to find a Maximum
Feasible Subset (maxFS) of constraints, i.e. a largest cardinality feasible subset.
It is NP-hard to find such a subset [1], so heuristics are generally used. The
complementary subset of constraints, called the IIS set cover among other names,
consists of constraints that are involved in one or more IISs, and hence this set is
more important to the infeasibility. Greenberg and Murphy [24] refer to this division
of the constraints as partitioning.



4 Harvey Greenberg: Analyzing Infeasible Mathematical Programs 73

An exact maxFS solution via mixed-integer linear programming has been
suggested several times. Greenberg and Murphy [24] formulate it as a mixed-
integer bilinear problem as follows. Define the binary variables ui = 1 if the
maximum feasible subset includes constraint i, and ui = 0 if it does not, and define
U = diag(ui). The LP Ax = b, x ≥ 0 is thus equivalently represented as UAx = Ub,
x ≥ 0. In a feasible system all ui = 1, but this is not possible in an infeasible LP,
hence we seek to maximize Σ iui s.t. UAx = Ub, x ≥ 0.

The MIP formulation is difficult to solve, especially for very large infeasible LPs,
so heuristic solutions have become dominant in practice (see [3], chapter 7). These
heuristics cannot guarantee to find a maximum feasible subset, but they will always
find a maximal feasible subset. In a maximal subset, moving any constraint from the
complement into the maximal set renders it infeasible, but the set is not of maximum
cardinality. For example, suppose we have two IISs {A,B,C} and {C,D,E}. The
maximum feasible subset is {A,B,D,E}, but there are various maximal subsets that
are not of maximum cardinality, such as {B,C,D}. However there is diagnostic value
in any of these sets, since it focuses attention on the constraints in the complement
of the maximum/maximal feasible subset. In the preceding example, finding the
maximum feasible subset focuses attention on constraint C, the only constraint that
appears on both IISs.

4.9 Minimum Feasible Partitions

Finding a maximum feasible subset of constraints as in Sect. 4.8 divides the
constraints into two sets: the feasible subset and its complement. There is no
guarantee that the complement is itself a feasible set. Thus arises the Minimum
Number of Feasible Partitions problem (min PFS): partition the original infeasible
set of constraints into the smallest number of partitions such that every partition is
feasible.

Any set of linear inequalities Ax ≥ b can be partitioned into two sets that are
both feasible. The proof is provided by Greenberg [21] in the following theorem:
Suppose a set S of linear inequalities is inconsistent. There exists a partition of S,
say S′ ∪ S′′ such that S′ and S′′ are each consistent and S′ is a maximal consistent
subsystem (in which case X(S′) ∩ X(S′′) = ∅).

Proof Construct a line that intersects each hyperplane, Hi = {x|aix = bi} where
ai �= 0 for each i. Totally order the points along the line; rename and reorder so that
xi is the point on Hi. Now initialize S′ = {a1x ≥ b1} and continue to add aix ≥ bi to
S′ as long as aixk ≥ bi for all k < i. The first time this fails, initialize S′′ = {aix ≥ bi}.
For each i > k, the half-space X({aix ≥ bi}) intersects either X(S′) or X(S′′), so the
inequality can be added to S′ or S′′, respectively. Test first if S′ ∪ {aix ≥ bi} is
consistent and if so add this inequality to S′. It then follows that all inequalities not
in S′ are precisely those whose augmentation renders inconsistency. This means that
S′ is a maximal consistent subsystem (and that X(S′) ∩ X(S′′) = ∅).
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This theorem does not apply when linear equalities are included in the set. For
example, a set of three or more parallel but separated linear equality hyperplanes
necessarily decomposes into the same number of feasible partitions, each including
a single hyperplane.

4.10 Finding the Closest Feasible Solution

If a model is infeasible, then some understanding of the cause can be obtained by
finding the closest feasible solution. Greenberg and Murphy [24] suggest that this
might be done via parametric programming. If Ax = b, x ≥ 0 is infeasible, then
solving the LP maximize θ s.t. Ax = θb, x ≥ 0 provides guidance concerning which
constraints are preventing a feasible solution (note that θ must be strictly less than
1 because there is no feasible solution when θ = 1).

The parametric programming multiplier can be applied to only the subset of
constraints that are under suspicion. For example, if the supply limits are thought to
be the cause of the infeasibility, then applying the parametric parameter to just those
constraints (while retaining the rest of the model) supplies an answer: if there is no
feasible solution, then the source of the infeasibility lies elsewhere in the model. On
the other hand, if there is a feasible solution, then there is an indication of how much
the supply must increase so that a feasible solution can be found.

4.11 Analyzing Infeasible Mixed-Integer Linear Programs

Analyzing infeasible mixed-integer linear programs is more difficult than analyzing
infeasible LPs. Guieu and Chinneck [25] apply IIS isolation techniques to MIP
problems, but this requires the solution of a large number of MIPs and is inherently
slow (and subject to other numerical issues). Greenberg applies bound reduction
methods for dealing with binary variables in the reduce command of his ANALYZE
software [17] (see Sect. 4.2.2), which can be helpful in some cases.

4.12 Conclusions

Harvey Greenberg published a series of influential papers on analyzing infeasible
mathematical programs during the years 1983 to 1996. This work was conducted as
part of his Intelligent Mathematical Programming System project, with the ultimate
goal of providing practical tools for diagnosing infeasibility in large and complex
mathematical programs, which may consist of millions of constraints and bounds.
Practical tools are needed, and developing these requires skills at the interface of
mathematics, operations research, and computer science. Greenberg incorporated
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many of these tools into his ANALYZE software, the first practical demonstration
of a mathematical modeling analysis tool, and a forerunner of an entire class of later
software.
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Chapter 5
Development of Publications and
Community at the Interface Between
Operations Research and Computing

J. Cole Smith

Abstract Harvey J. Greenberg’s energy and dedication to the field of operations
research yielded an impressive array of contributions in undergraduate and graduate
education, research, and professional service. This chapter focuses on his instru-
mental role in creating a journal, book series, and professional society, all of which
remain strong and influential today. The journal is now the INFORMS Journal on
Computing and is currently publishing its 31st volume. The TutORials in Operations
Research book series is currently publishing its 15th annual volume, and the ever-
growing INFORMS Computing Society traces its roots back over 40 years from the
time it was a special interest group within ORSA.

5.1 Introduction

This chapter explores part of the history of computing publications and its associated
community within the operations research and management science world, focusing
on the leadership of Dr. Harvey J. Greenberg. Especially throughout the 1970s
and 1980s, the call for infusing computing technology within operations research
became increasingly loud from top researchers in the field. There are a great many
people—several still very active today—who share responsibility and credit for
cultivating the links between these areas.

Notable for his leadership in this area was Greenberg, whose efforts led him to
take on three particular projects that have substantially influenced many careers, my
own included. Those projects include a journal, a book series, and a community, all
of which are more prominent currently than ever before.

– The journal began as the ORSA Journal on Computing. ORSA (Operations
Research Society of America) merged with TIMS (The Institute for Management
Sciences) and became INFORMS (Institute for Operations Research and the
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Management Sciences) effective at the beginning of 1995 [15]. The journal then
changed its name as of the first issue (vol. 8, issue 1) of 1996 to the INFORMS
Journal on Computing. Where needed to avoid confusion in this chapter, we refer
to the journal simply as the Journal on Computing, or just JOC.

– The book series is TutORials in Operations Research, published by INFORMS.
The concept was to collect book chapters based on the very successful tutorials
track offered annually at the INFORMS Annual Meeting. The idea for this series
was attempted, abandoned, and successfully relaunched in the mid-2000s.

– The society is the INFORMS Computing Society (ICS), whose current mem-
bership exceeds 1600 people and is affiliated with the INFORMS Journal on
Computing.

The goal of this chapter is not to tell a complete history of the aforementioned
journal, book series, or society but is to instead acknowledge that these three
“projects” have had lasting influence on the operations research community. This
chapter draws in part from my own experience, from published literature, and
perhaps most significantly from conversations with many of Greenberg’s contempo-
raries. Section 5.2 discusses the evolution and impact of the Journal on Computing.
Section 5.3 examines the influence of the ICS and the TutORials book series.
Section 5.4 concludes with some summary thoughts on Greenberg’s contributions.

5.2 The Journal on Computing

I believe it is, and always has been, the ICSmission to articulate and lead the development of
interfaces between operations research and computer science. It is not just a fact of history,
but a matter of necessity, that these communities interact.—Harvey Greenberg [12].

This section examines the development and evolution of the Journal on Computing,
starting from its origins in the 1980s and continuing through the time of this writing
(summer 2019). Section 5.2.1 examines the origins and leadership of this journal
from the time of its inception. Section 5.2.2 provides a timeline of the journal’s
areas and the editors for those areas.

5.2.1 Origins and Leadership

One of Greenberg’s original research areas was the infusion of the science of
computing with operations research. Today, the two seem inextricable, but at a
time when the term “computer science” was still relatively new, there were many
open questions. In fact, Greenberg himself reflects in [12] that one such open
question was the nature of the interface between operations research and artificial
intelligence—an interface that remains of great interest today. It was not until
1976 that a team consisting of Gordon Bradley, Gerald Brown, Milt Gutterman,
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Table 5.1 Editors-in-chief of
the Journal on Computing

Years Editor-in-chief

1987–1992 (issue 2) Harvey J. Greenberg

1992 (issue 3)–1999 Bruce Golden

2000–2006 W. David Kelton

2007 (issue 1) Prakash Mirchandani

2007 (issue 2) W. David Kelton (interim)

2007 (issue 3)–2012 John W. Chinneck

2013–2018 David L. Woodruff

2019–present Alice E. Smith

and Greenberg created an ORSA Computer Science Special Interest Group. The
leadership of that group extends well beyond these four, including also early leaders
like Karla Hoffman, Ric Jackson, Dick Nance, and Dick O’Neill, who collectively
transformed the Special Interest Group into the Computer Science Technical Section
around 1980.

With that foundation, and with the growing interest in the interface between
operations research and computing, Greenberg led a team with Karla Hoffman,
Bob Jeroslow, Don Kraft, and Bill Pierskalla to explore the creation of the JOC.
A truly significant decision was made in 1987 by the Computer Science Technical
Section membership to have ORSA publish the JOC, as opposed to using an outside
publisher. Greenberg served as the founding editor-in-chief as a result of his efforts,
serving in this role for three-and-a-half years of its publication, in addition to the
time he spent laying the groundwork to launch the journal between 1987 and 1989.
Table 5.1 displays the timeline of the journal’s editors-in-chief.

The JOC was established as a quarterly publication, and it has remained so
through 2019. The very first issue (published in winter 1989) had articles by (a)
Robert Jeroslow and Jinchang Wang on a topic intersecting integer programming
and computational logic, (b) Stavros Zenios on parallel optimization, (c) Jaya Sing-
hal, Roy Marsten, and Thomas Morin on a software system for binary optimization,
and (d) Daniel Heyman and Alyson Reeves on solving linear equations in Markov
chain analyses. In fact, Greenberg’s stewardship of this journal led to the JOC
quickly garnering a reputation as a high-quality journal with an exceptional editorial
board. In the third issue of volume 1, the journal published perhaps its most cited
and well-known paper to date: Part one of a two-part paper on tabu search by Fred
Glover [10]. It is still instructive to read some of the early issues and uncover
advice on several practical research challenges that exist today, e.g., how authors
can help expedite the review process, and how to set up meaningful computational
experiments.

Starting midway through the fourth volume, Bruce Golden took over as editor-
in-chief, and he immediately instituted a suite of new areas (see Sect. 5.2.2) along
with attractive art for the cover that changed with the season corresponding to the
issue. Golden’s leadership came at a formative time for the journal, during which
the journal was challenged to become more profitable, change from the ORSA
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Journal on Computing to the INFORMS Journal on Computing, and perhaps most
importantly, compete for inclusion in the list of journals having an International
Scientific Indexing (ISI) impact factor. The former mission was accomplished by a
multipronged approach, including obtaining sponsorship of the journal. As for the
latter, Golden was able to continue Greeenberg’s momentum in establishing the JOC
as a prestigious journal. His focus was not only on maintaining high standards but
also in seeking opportunities for themed issues and feature articles.

The feature article concept stemmed from Golden’s vision of an article that
would be, “informative, accessible, provocative, and exciting,” to use Golden’s
words. The concept was to invite a researcher to cover an important and emerging
topic and then solicit a few commentaries on that article from other experts in the
field. The authors of the feature article would then respond to the commentaries
in a rejoinder article. This ambitious but informative and engaging idea started in
the first issue of volume 5 with the work of Richard Barr and Betty Hickman on
parallel algorithms. Assembling the feature article–commentaries–rejoinder triads
was a challenge, but the output was generally well worth the effort. These feature
articles would remain a part of the JOC for over 21 years.

The next editor-in-chief, David Kelton, steered the journal through a number
of critical initiatives, especially regarding web presence and on-line supplements.
Although these are accepted facets of archiving research now, undergoing the paper-
to-electronic conversion was rarely an easy challenge for any journal at the time.
One also notices a few special issues appearing shortly after Kelton took over the
journal: These issues served not only to explore new avenues for computing research
but also to help build a pipeline of accepted articles for the journal. That backlog
was healthy enough to assure JOC’s long-term stability and help with the impact
factor ratings. And indeed, with the groundwork that Golden had supplied, impact
factors were established for JOC and quickly established the journal as one of the
best in the field. In 2001, JOC’s impact factor was 0.729, good for 8th out of 53
journals in the OR/MS category. By 2005, the impact factor grew to 1.762, ranking
1st among the 56 journals that were in this category.

Prakash Mirchandani was eminently well qualified to take leadership of JOC
but had to step down after a few months as editor-in-chief to tend to matters more
important than academics. After Kelton graciously served as an interim editor for
the next issue, John Chinneck took over for the next (almost) 6 years starting in
the summer of 2007. It was during this time that electronic submission was being
introduced, an initiative that was fully implemented during Chinneck’s term. Among
the many important developments during Chinneck’s term was the creation of the
area Computational Biology and Medical Applications, now named Applications in
Biology, Medicine, and Health Care. Establishing this area was a prescient move for
the journal, as it has now grown into a major research focus for the community.

After 14 years of service with the journal, David Woodruff took over as editor-
in-chief in 2013. During this time, JOC became entrenched in several lists of
“A journals” (prestigious publications that would earn academic authors extra
credibility for promotion and recognition), and both the volume of submissions and
the number of published papers climbed. Under his leadership, the journal began
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Fig. 5.1 Number of JOC pages published per year, 1989–2018

to publish data and code, occasionally requiring this material. This was perhaps a
nonstandard requirement at the time but was forward-thinking in terms of ensuring
reproducibility and validity of results. By the time his six full years as editor had
expired, Woodruff turned over a prestigious and exceptionally healthy journal to
Alice Smith, who started her term as editor-in-chief just months before the writing
of this chapter.

Figure 5.1 shows the total number of pages published annually for the JOC from
its inception in 1989 through 2018. JOC publishes roughly twice as many pages
now as it did over its first several years of existence, hitting a peak of 914 pages in
2014.

5.2.2 JOC Areas and Their Editors

One especially interesting way to see how the focus and scope of the JOC have
evolved is to study the evolution of the journal’s areas over time. From the outset,
the JOC has employed a three-tiered editorial structure consisting of the editor-in-
chief, area editors, and associate editors. The initial areas envisioned for the journal
consisted of:

– Cognitive Modeling and Analysis
– Computational Probability and Analysis
– Database Theory, Optimization and Integration
– Decision Support Systems
– Design and Analysis of Algorithms
– Fuzzy Systems
– Heuristic Search and Learning
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– Information Storage and Retrieval
– Parallel Computation
– Representability and Computational Logic
– Simulation
– Telecommunications

(In looking at volume 1, issue 1 of the JOC, one also notes the method of contacting
area editors: Only one, Jan Karel Lenstra, listed an email address, but five listed
BITNET addresses, two listed CSNET addresses, and one listed an ARPANET
address. Bearing in mind that this issue appeared in 1989, the area editors were
ahead of their time.)

Some areas, though, underwent a set of name revisions and still exist in their
new form today (through volume 31, issue 2). A few others ended at various points
throughout the journal’s history, either because of a shifting focus in the journal,
emerging research areas intersecting the JOC’s mission, or because contributions to
those areas were simply spread among other areas of the journal.

Figures 5.2, 5.3, 5.4, 5.5, and 5.6 depict timelines associated with the JOC areas,
including the times at which the areas began, changed names, or ended. The area
editors are displayed above and below each area bar corresponding to the time at
which these individuals served in their role. Figure 5.2 covers the four original
areas that still exist through the most recent issue at the time of this writing. In
particular, Computational Probability and Analysis kept its name for the entirety
of the journal’s history before being updated to Stochastic Models at the beginning
of 2019. Heuristic Search and Learning is another area with considerable stability,
dropping the “Learning” part of the title in mid-2013. Only Simulation exists with
the same title today as it had in the first issue of JOC. The Telecommunications
area added “Electronic Commerce” to its name in 2000, bringing along Ramayya
Krishnan (who become President of INFORMS in 2019) to help nurture this side of
the area.

Three other original areas persisted in the journal for several years before ter-
minating or splitting, as shown in Fig. 5.3. The Design and Analysis of Algorithms
area persisted in its original form for 30 years. The number of papers submitted
to this area was impressively large, and in 2019, the area split into two areas: One
each for continuous and discrete problems. Parallel Computation changed names
to High-Performance Computation in the middle of 1998 (volume 10, issue 3),
coinciding with an area editor change from Robert Meyer to Richard Barr. This area
ended in 2003, diverting papers that might be sent to that area into alternative areas.
Finally, Fig. 5.3 shows the path that Representability and Computational Logic took
through its first three decades, changing names four times to stay current with the
field (in sharp contrast to its stability with respect to area editors). The final iteration
of this area, Constraint Programming and Hybrid Optimization, terminated at the
beginning of 2019.

To maintain relevance in the areas covered by JOC, several new areas have
been launched over the past three decades. Figure 5.4 depicts some of the areas
that are still included in the journal now. Notably, two of these areas, Knowledge-
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Based Systems (which is now Knowledge Management and Machine Learning)
and Modeling Languages and Methods (now Modeling: Methods and Analysis)
were started by Bruce Golden upon his arrival as editor-in-chief in 1992. Harvey
Greenberg stayed very involved with JOC long after his departure as editor, and
based on his vast research expertise in the area, established the Computational
Biology and Medical Applications area in the last issue of 2007. He remained as
area editor for six issues before passing this responsibility to Allen Holder, who held
the position for a decade and renamed it as Applications in Biology, Medicine, and
Health Care (with J. Paul Brooks serving as the current area editor). Finally, David
Woodruff helped to realize his vision of the journal as editor-in-chief by originating
an area for Software Tools starting in 2017, for which he remains area editor now.

A distinguishing feature of JOC is its capacity to explore and review topics in
depth. This goal has arisen in various forms throughout the history of the journal,
as shown in Fig. 5.5. Two special section areas, one on book reviews and the other
on software, were present for all but the first two of JOC issues with Greenberg as
editor-in-chief. The book reviews section was revived under Greenberg’s leadership
in 2012, with Matthew Saltzman serving three-and-a-half years as area editor
following Greenberg until the area was closed. Edward Wasil (jointly with Osman
Balci for six issues) served from 1992 to the end of 2013 as the Feature Article area
editor.

Finally, Fig. 5.6 shows the short-lived areas that began with the journal’s launch
and were quickly reoriented and adjusted as the JOC found its footing. Interestingly,

Fig. 5.6 Original journal areas terminated by 1992
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many of these areas, such as Information Storage and Retrieval (later Database and
Retrieval Systems), reflect the true computing origins of this journal.

5.3 Influence in Professional Societies

Two additional professional contributions due either partially or wholly from
Greenberg’s notable work in professional service are evident today. One is the
INFORMS Computing Society and its associated activities, and the other is the
TutORials in Operations Research book series. Sections 5.3.1 and 5.3.2 discuss
these below.

5.3.1 The INFORMS Computing Society

ORSA contained a society known as the Computer Science Special Interest Group,
which would grow into the Computer Science Technical Section, and then later
the INFORMS Computing Society (ICS). The mission of this community is to be
the INFORMS group responsible for research in the integration of computation
and technology with operations research, management science, and analytics. Its
mission statement includes taking a leading role in “computing and how it affects
OR (e.g. XML modeling standards, OR services offered over the web, open source
software, constraint programming, massively parallel computing, high performance
computing).” Today, the ICS numbers 1653 members, hailing from (at least) 33
countries, including five Canadian provinces and 44 US states, in addition to
Washington, DC.

But, it was a far smaller group several decades ago that launched not only the
Journal on Computing but also a biennial conference and a set of awards recognizing
research and service in the computing community.

The INFORMS Computing Society Conference With major annual conferences
continuing to grow to once unimaginable numbers of participants, the role of subdi-
vision and society conferences becomes ever greater. The INFORMS Computing
Society conference typically numbers around 100–200 speakers. Because of the
participants’ common background in computing and OR/MS, the ICS conference
enables presentations to be delivered in greater depth, while more effectively
facilitating collaboration and networking activities. In the last two decades, this
conference has been held in Knoxville, TN; Austin, TX; Richmond, VA; Santa Fe,
NM; Monterey, CA; Charleston, SC; Coral Gables, FL; Annapolis, MD; Phoenix,
AZ; and Cancún, MX. A proceedings is published that captures representative works
presented at the conference periodically. The most recent of these was published in
2015 from the Richmond conference [6], containing an impressive 19 chapters.
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Awards The ICS currently manages three awards for its membership. The first is
the ICS Student Paper Award. From the description, that award “is given annually to
the best paper at the interface of computing and operations research by a student
author, as judged by the award selection committee.” Because Greenberg loved
supporting younger people in our community, it is inspiring to see the number and
quality of papers submitted for this competition. The last six winners of this award
were:

– 2019: Ryan Cory-Wright and Jean Pauphilet of the Massachusetts Institute of
Technology for the paper, “A Unified Approach to Mixed-Integer Optimization:
Nonlinear Formulations and Scalable Algorithms,” advised by Dr. Dimitris
Bertsimas.

– 2018: Aleksandr M. Kazachkov of Carnegie Mellon University for the paper,
“V-Polyhedral Disjunctive Cuts,” advised by Dr. Egon Balas.

– 2017: Berk Ustun of the Massachusetts Institute of Technology for the paper,
“Learning Optimized Risk Scores from Large-Scale Datasets,” advised by
Dr. Cynthia Rudin.

– 2016: Georgina Hall of the Georgia Institute of Technology for the paper, “DC
Decomposition of Nonconvex Polynomials with Algebraic Techniques,” advised
by Dr. Amir Ali Ahmadi.

– 2015: Young Woong Park of Northwestern University for the paper, “An Aggre-
gate and Iterative Disaggregate Algorithm with Proven Optimality in Machine
Learning,” advised by Dr. Diego Klabjan.

– 2014: Kalyani Nagaraj of Virginia Tech for the paper, “Stochastically Con-
strained Simulation Optimization on Integer-Ordered Spaces: The cgR-SPLINE
Algorithm,” advised by Dr. Raghu Pasupathy.

The second of these awards is known simply as the ICS Prize, which is a
best paper (or best group of papers) award at the interface of operations research
and computer science. The most recent six winners of that prize are given below
as well. Note the clear overlap between programming languages, computing, and
optimization evident in these prizes: This perfectly reflects the original vision of the
Computing Society.

– 2019: William E. Hart, Carl D. Laird, Jean-Paul Watson, David L. Woodruff,
Gabriel A. Hackebeil, Bethany L. Nicholson, and John Siirola for spearheading
the creation and advancement of Pyomo, an open-source software package for
modeling and solving mathematical programs in Python.

– 2018: James V. Burke, Frank E. Curtis, Adrian S. Lewis, and Michael L.
Overton for their pioneering work on gradient sampling methods for nonsmooth
optimization.

– 2017: Shabbir Ahmed, George Nemhauser, and Juan Pablo Vielma for their
pioneering work on mixed integer linear programming formulations for piece-
wise linear functions.

– 2016: Iain Dunning, Joey Huchette, and Miles Lubin for their development of the
JuMP optimization package.
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– 2015: Suvrajeet Sen, Dinakar Gade, Julia Higle, Simge Küçükyavuz, Lewis
Ntaimo, and Hanif Sherali for their seminal work on stochastic mixed integer
programming.

– 2014: Jim Ostrowski, Jeff Linderoth, Fabrizio Rossi, and Stefano Smriglio for
their work on handling symmetry in combinatorial optimization problems.

The third of these awards is given out every other year, and it is a lifetime
achievement award for service to the Computing Society. Appropriately, it is named
the Harvey J. Greenberg Award for Service. The award began in 2009 and has
honored six people so far whose service and dedication have shaped the direction of
the ICS over their careers. These winners and a brief outline of their achievements
are given below:

– Dr. Karla Hoffman (the 2009 winner) was a key figure in transforming the
computing group at ORSA from a special interest group to a technical section
within ORSA in 1980. She also helped in the organization of the first “computing
society conference” in 1985 in Denver, CO, and served as a co-editor for
the proceedings from that conference. Hoffman was also one of the founding
influences in leading the launch of the ORSA Journal on Computing and a strong
proponent of the computing community through its formative phase.

– Dr. Bruce Golden won the 2011 award in recognition of his efforts as editor-
in-chief of the Journal on Computing, which he helped to grow during its
nascent (and still uncertain) phase. Golden’s efforts were vital in stabilizing the
financial footing of the journal, gaining visibility and earning an impact factor,
and creating a memorable redesign of the journal’s cover (an accomplishment
about which he remains proud). Golden also served as program co-chair for two
of the computing society conferences (1989 and 2005).

– Dr. Ramesh Sharda won the 2013 award, largely in honor of his success in
establishing the Computing Society conference. The first “official” Computer
Science Technical Section conference was held in 1988 with Sharda as General
Chair. His influence led to strong conference turnout, along with elite plenary
speakers given by the likes of George Dantzig. His leadership during the
initial meetings entrenched this conference as the regular high-profile meeting
it remains today.

– Richard S. Barr won the 2015 award in honor of his consistent service to the
Computing Society in virtually every phase of its operations. For the Journal on
Computing, Barr was the Area Editor for High-Performance Computation. Barr
served as Chair of the 1996 Computing Society conference in Dallas, the first
held under the INFORMS banner. In terms of leadership specifically for ICS,
Barr was elected as Chair for 1997 and 1998 and has since served as a member
of ICS Prize Committee and of the ICS Board of Directors.

– John W. Chinneck won the 2017 award after serving two full terms as editor-in-
chief of the Journal on Computing from 2007 to 2012, co-chairing the 2009 ICS
Conference in Charleston, SC, and serving as the ICS chair from 2006 to 2007. It
was under Chinneck’s leadership that the Greenberg Award and the Student Paper
Award were founded. Chinneck was also responsible for leading the journal into
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new areas relevant to computing while also guiding the journal’s transition to an
on-line manuscript review and publication system.

– Allen Holder won the 2019 award for epitomizing what the award was created
to recognize: the spirit of selfless volunteerism displayed in the taking on of
largely thankless jobs to the benefit of the entire ICS community. One such
contribution was in taking over the care of the Mathematical Programming
Glossary from Greenberg, bringing it under the auspices of the ICS. Holder was
also an important contributor to another years-long effort under the auspices of
ICS—the Education Committee.

5.3.2 TutORials

This subsection starts with some personal reflection. I was invited in 2004 to serve
as the Tutorials track chair for the 2005 INFORMS conference that was ultimately
held in San Francisco. Except for the unenviable task of choosing four out of the
16 speakers that year to present on Wednesday (the last day) of the conference,
it was an exciting role to play for a young professor. Tutorials at the INFORMS
meeting are 90-min talks by exceptional OR/MS researchers. Some are given by
accomplished senior personnel and others by mid-career researchers who have a
knack for explaining emerging fields in a clear and compelling manner. They are
designed to be accessible lectures. On more than one occasion, I attended a tutorial
at INFORMS on a topic about which I was (ostensibly) an expert, just to hear how
someone else would explain what I thought I knew so well. Getting an “orthogonal”
understanding of the material is always valuable, as is the chance to fill in some
additional gaps that would benefit my research career down the line.

Thus for the 2005 conference, I had a chance to shape the topics I wanted to learn
more about. To get me started, Greenberg and I sat down in a small room in Denver
at the 2004 INFORMS meeting. Greenberg introduced himself and congratulated
me warmly on becoming the Tutorials track chair. Then with a sly grin (and surely
knowing that the answer was negative), he asked me, “Did we tell you about the
book?”

“The book” was an idea of Greenberg’s dating back many years (and in fact
attempted in some form several years prior to 2004). The Tutorials track is very
popular at INFORMS, yet many people remark that they cannot find the time to
go to the tutorials they wanted to see. Anyone attending a professional meeting
understands the conflicting demands on time; thus, the proposal was made to
somehow document these tutorials. In 2004 Greenberg addressed exactly this
problem by assembling an edited book composed of chapters authored by a subset
of the tutorial speakers. In his own words [11], the vision for this tutorials book was
“to provide a reference for practitioners and academics who seek a clear, concise
presentation of developing methodologies, hence providing themselves with the
capability to apply these methods to new problems.”
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This edited volume [11] was a labor of love for him, as Greenberg did the
recruiting of the authors, the screening and refereeing, and LaTeX typesetting for
this volume. This collection consists of eight chapters:

– “Heuristic Search for Network Design,” by I. Gamvros, B. Golden, S. Raghavan,
and D. Stanojević

– “Polyhedral Combinatorics,” by R. D. Carr and G. Konjevod
– “Constraint Languages for Combinatorial Optimization,” by P. Van Hentenryck

and L. Michel
– “A Tutorial on Radiation Oncology and Optimization,” by A. Holder and B.

Salter
– “Parallel Algorithm Design for Branch and Bound,” by D. A. Bader, W. E. Hart,

and C. A. Phillips
– “Computer-Aided Design for Electrical and Computer Engineering,” by J. W.

Chinneck, M. S. Nakhla, and Q. J. Zhang
– “Nonlinear Programming and Engineering Applications,” by R. J. Vanderbei
– “Connecting MRP, MRP II and ERP—Supply Chain Production Planning Via

Optimization Models,” by S. Voss and D. L. Woodruff

From these chapters, it is easy to see three things. The first is Greenberg’s knack
for finding diverse and interesting topics that would excite the OR/MS community
as a whole. Indeed, several of these chapters are relevant today, and several more
were on the leading edge of research at the time. Two, there is a consistent focus
on computing within these chapters (in fact, three of these authors had served or
would serve as editor-in-chief of JOC as of 2019). Three, Greenberg’s vast network
of colleagues, students, and other friends he had made through the preceding three
decades is clearly on display through these eight chapters.

By the time I took on the Tutorials track chair responsibility, Greenberg was
excited to launch the first volume of the TutORials in Operations Research book
series, published by INFORMS, where he would serve as the founding series editor-
in-chief and I as the volume editor. Looking back on that volume, there were several
chapters that remain among my favorites in the series today. The process of reading
the chapters and, in some cases, converting them to LaTeX, gave me the perfect
excuse to read what my colleagues were working on. In terms of the book series,
that first chapter was essential in determining where the challenges would arise in
producing these volumes each year. The most pressing is the need to review the
chapters and get them to the publishers in time for the book to appear by the time
of the INFORMS Annual Meeting. It is common to see special issue deadlines for
journals to have three-month extensions or longer, and the idea of hard deadlines for
papers goes somewhat against the culture of our field.

Harvey steered this book series initially, before handing it off to Paul Gray as
series editor in 2006. Gray served two full terms, with his last term ending after
the 2011 volume. It was Gray who addressed many of the foundational challenges
associated with this volume and stabilized its presence and long-term viability at the
conference. During his tenure as series editor, Gray set expectations on procuring
more chapters per volume, seeing that these chapters were refereed, and analyzing
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Table 5.2 Summary of TutORials volumes

Year Theme Volume editor(s)

2005 Emerging theory, methods, and applica-
tions

J. Cole Smith

2006 Models, methods, and applications for
innovative decision making

Michael P. Johnson,
Bryan Norman, and
Nicola Secomandi

2007 OR tools and applications: glimpses of
future technologies

Ted Klastorin

2008 State-of-the-art decision-making tools in
the information-intensive age

Zhi-Long Chen and S.
Raghavan

2009 Decision technologies and applications Mohammad R.
Oskoorouchi

2010 Risk and optimization in an uncertain
world

John J. Hasenbein

2011 Transforming research into action Joseph Geunes

2012 New directions in informatics, optimiza-
tion, logistics, and production

Pitu B. Mirchandani

2013 Theory driven by influential applications Huseyin Topaloglu

2014 Bridging data and decisions Alexandra M. Newman
and Janny Leung

2015 The operations research revolution Dionne M. Aleman and
Aurélie C Thiele

2016 Optimization challenges in complex, net-
worked, and risky systems

Aparna Gupta and
Agostino Capponi

2017 Leading developments from INFORMS
communities

Rajan Batta and Jiming
Peng

2018 Recent advances in optimization and mod-
eling of contemporary problems

Esma Gel and Lewis
Ntaimo

2019 Operations research and management sci-
ence in the age of analytics

Serguei Netessine

how the volumes could be more broadly disseminated. A CD of the volumes was
produced for several years, before it became more practical to simply offer the
chapters electronically through the INFORMS website. I took two terms as series
editor from 2012 to 2017 and have been succeeded by Doug Shier starting in 2018.

Each volume has its own theme, either linked to the conference theme, based on
the volume editors’ creative direction or stated generically enough to encompass the
breadth of chapters that appear in the volume. Table 5.2 lists the volumes in print so
far, along with the corresponding volume editors.

Most volumes have about ten chapters, with two notable exceptions. In 2008 (for
the Washington, DC INFORMS conference), Zhi-Long Chen and Raghu Raghavan
managed to procure 15 chapters, a feat duplicated by Aparna Gupta and Agostino
Capponi in 2016. In the 14 volumes published by INFORMS between 2005 and
2014, plus the one published by Springer in 2004, there are a total of 156 tutorial
chapters appearing in the volumes. I could not do justice to a list of the most
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impactful or best written chapters in this series, but below are ten of the many that
appeal to me because of my own research and personal interests in the field.

– The very first chapter of volume 1 includes an article by Hicks et al. [13]
on branch and tree decomposition techniques. As volume editor, I was a little
apprehensive about having a more technical chapter appear, because of my worry
about the accessibility of this work to a large audience. After reading it, though,
I became so interested in it that I began a collaboration with two of the authors
of this chapter (and with a third one a decade later). This in fact is a clear work
that helps anyone with a background in graphs understand the area of branch and
tree decompositions. With the popularity of binary decision diagrams today, it is
useful background for researchers examining combinatorial structures that may
enable elegant algorithms for difficult problems.

– In 2009, Dr. Suvrajeet Sen asked me to present a 90-min presentation on robust
optimization to a group of researchers at a workshop in Banff. I agreed without
thinking further about it, although I later realized that the workshop crowd would
consist of extraordinarily accomplished researchers and that I did not really know
robust optimization very well. This is where Bertsimas and Thiele’s [5] tutorial
article helped orient my efforts. The first two chapters clearly lay out the concept
of (static) robust optimization, how a robust counterpart is formulated, and how
one might use this in applications like portfolio optimization. From there, much
of the rest of this literature becomes far more accessible. They cover dynamic
optimization in their paper as well, a topic that would be expanded in great depth
in Delage and Iancu’s [8] excellent tutorial on multistage robust optimization
almost a decade later.

– I was familiar with the basics of chance-constrained programming by the time
Ahmed and Shapiro’s 2008 work [2] was published, and how these problems
could be approximately modeled using stochastic programming. This chapter
explained to me some key convergence properties of Sample Average Approx-
imation in language that I was able to understand given my limited depth of
knowledge at the time. Their work helped me in a paper that I would write later
with Ahmed and with Dr. Siqian Shen, a PhD student at the time who became an
expert in this very field.

– Assessing the quality of a solution within stochastic programming was covered
by Bayraksan and Morton [4] in a tutorial the very next year. The concept is that
it is possible to determine point and interval estimates on the optimality gap with
respect to a feasible solution to a stochastic program and then leverage those
bounds within an exact optimization scheme. The topic is inherently complex,
but the authors deliver an exceptionally accessible treatment of the material with
direct relevance for optimizers.

– As someone with an inherent interest in history, I was very excited to read
Gass and Assad’s [9] brief chapter on the history of operations research. I
loved the stories my advisor, Dr. Hanif Sherali, would tell our class about OR
development, simply because the history was recent and the characters relatable.
Quoting the authors in [9], “Many of its developers are still alive and records
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of their accomplishments are available from them and/or from colleagues and
friends. Similarly, for those who have passed on, writings and reports of their OR
activities are still reasonably accessible, and can be amplified with the memories
of close collaborators or friends.” Few in our field are as well equipped to tell the
history of OR like Gass and Assad, and this chapter is a treasure in our field.

– Roughly a decade before Alessandro Agnetis’s chapter [1] was published for
the 2012 INFORMS Annual Conference, Dr. Pitu Mirchandani (also the volume
editor of the 2012 book and that year’s Tutorials chair) introduced me to Agnetis
and to his work on competitive scheduling. This chapter shows the applications
of multiagent scheduling along with several complexity results. The complexity
results presented in this chapter are truly comprehensive. For those wanting a
practical example of multiagent scheduling, though, the focused examination of
scheduling problems in a leading industrial district in Tuscany, Italy, is certainly
worth reading.

– The tutorial of Alderson et al. [3] is on risk, resilience, interdiction, fortification,
and applications of these concepts. This is not the first tutorial in this general
area, but the depth and completeness of the story told here is impressive. These
authors have a particular knack for translating a complex application into one
whose pieces can more easily be comprehended, which is perfect for a tutorial
chapter. This tutorial chapter appeals to practitioners and academicians alike,
an achievement that is possible because the authors have rich experience in
real-world development and implementation of optimization risk-assessment and
decision-making models pertaining to critical infrastructure systems.

– The theme of the chapter mentioned above was continued by Dr. Laura Albert
[16] in her work on disaster preparedness and recovery. Her work splits the field
into vulnerability analysis, mitigation, preparedness, emergency response, and
recovery in response to disasters. The chapter’s treatment of this material uses a
broad spectrum of approaches ranging from stochastic models to mathematical
optimization and draws from the author’s research in screening security (espe-
cially for air transportation and cargo application), ambulance pre-positioning,
and location-allocation models for disaster recovery.

– The operations research community’s intersection with other fields occasionally
results in overlapping discoveries written in slightly different languages. These
parallel developments represent a potential missed opportunity in integrating
discoveries that could afford deeper knowledge in interdisciplinary fields. I
attended a workshop at the Rutgers University in 2012 on “A Conversation
Between Computer Science and Operations Research on Stochastic Optimiza-
tion,” hosted by Santinder Singh and Warren Powell, intended to help each
field understand one discipline’s contributions in a common context. Powell’s
work in [17] is a continuation of this effort. This massive and ambitious chapter
is notable for its efforts in linking stochastic programming, optimal control,
dynamic programming, and other fields.

– Last and most recent is a chapter by Brooks and Holder [7] on OR challenges that
arise in metabolic networks, an area in the general field of computational biology
that Greenberg helped to develop and promote. This tutorial touts the importance
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of deep interdisciplinary collaborations, as opposed to one disciplinary expert
simply executing standard tools out of their own discipline to apply across
other fields. In this case, interdisciplinary collaboration is difficult because the
biological field itself is so complex. OR researchers trying to make contributions
in this field simply must do so in collaboration with others. As Brooks and
Holder attest regarding this difficulty, “those in OR should know that biology is a
rapidly changing science—so much so that biologists themselves are constantly
facing the same sense of overwhelming unfamiliarity.” Their chapter is a perfect
example of the computational and applied OR focus that Greenberg and his
colleagues sought to promote throughout their careers.

5.4 Summary and Acknowledgments

Having been born too late to recall many of the events in this chapter, I sincerely
appreciate the comments of many colleagues who helped point me to the literature,
gave extended reflections, or called me to recount some of these stories. I will
inevitably overlook some help that I received, but I particularly wish to thank Gerald
Brown, John Chinneck, Bruce Golden, Al Holder, David Kelton, Alice Smith, and
David Woodruff for their help.

Al Holder, in his moving tribute in [14], states that Greenberg “was an affable and
gracious friend to many, and while he targeted magnanimous pursuits in knowledge,
education, and service, he cherished the camaraderie of the quest. Working or
studying with Harvey could be exhilarating, tense, friendly, fun, tiring, and acute.”
This recollection dovetails perfectly with everyone who communicated with me for
the purposes of this chapter (and many who just very fondly remembered him). A
recurring trait mentioned by those who knew him best regards his sincerity and his
willingness to collaborate with, mentor, or assist anyone who needed it. This chapter
hopefully provides the reader a sense of what his leadership helped to bring to his
professional communities and his colleagues over his many decades of work in the
field. Perhaps it will also convince the reader of the very real possibility for making
impactful changes in complex organizations, given the right amount of patience,
stubbornness, and dedication to the profession.
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Chapter 6
Parametric Stochastic Programming with
One Chance Constraint: Gaining Insights
from Response Space Analysis

Harvey J. Greenberg, Jean-Paul Watson, and David L. Woodruff

Abstract We consider stochastic programs with discrete scenario probabilities
where scenario-specific constraints must hold with some probability, which we
vary parametrically. We thus obtain minimum cost as a function of constraint-
satisfaction probability. We characterize this trade-off using Everett’s response
space and introduce an efficient construction of the response space frontier based
on tangential approximation, a method introduced for one specified right-hand side.
Generated points in the response space are optimal for a finite set of probabilities,
with Lagrangian bounds equal to the piece-wise linear functional value. We apply
our procedures to a number of illustrative stochastic mixed-integer programming
models, emphasizing insights obtained and tactics for gaining more information
about the trade-off between solution cost and probability of scenario satisfaction.
Our code is an extension of the PySP stochastic programming library, included
with the Pyomo (Python Optimization Modeling Objects) open-source optimization
library.
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6.1 Introduction and Background

We consider stochastic programs with discrete probabilities where one or more
constraints must hold jointly with some probability, β, which we vary parametrically
between zero and one. We refer to the probability requirement as a chance con-
straint [20, 25]. Chance constraints make sense in many settings for various reasons,
among them: (1) when constraints represent adherence to policies rather than laws
of physics, it may be deemed too expensive to comply with all constraints under all
circumstances; (2) when the discrete probabilities are the result of sampling from
continuous distributions or from simulation realizations, it is simply a form of false
advertising to claim that constraints will hold with probability 1, so it may make
sense to relax away from 1 under the control of a parameter. The usefulness of
chance constraints has led to a large body of research directed at solving these sorts
of problems for a given value of β (see, e.g., [1, 20, 21, 24, 30, 31]).

Let S = {1, . . . , NS} represent the set of scenario indexes. Each of the NS

scenarios gives a full set of the data for a constrained minimization problem,
and we associate the symbol ps with the probability that scenario s ∈ S will
be realized, where

∑
s∈S ps = 1. Following [28], we assume that the problem

formulation includes NS binary variables, δ, that take the value one if there must
be compliance with scenario-s constraints. Although δs = 0 allows violation (i.e.,
non-compliance), we discuss a model extension to allow the converse: δs = 0 only
if some scenario-s constraint is violated (see Sect. 6.6.2).

There are different formulations that fit under this rubric. For example, consider a
two-stage, chance-constrained, stochastic program where the first-stage variables, x,
are constrained to be in a set X. The second-stage variables, {ys}s∈S , are constrained
by ys ∈ Ys(x, δ). In particular, suppose the function to be minimized is c(x) +∑

s∈S pshs(x, ys), where c and {hs}s∈S are functionals and

Ys(x, δ) = {ys ∈ Ys : Asx + Bsys ≥ δsds − (1 − δs)Ms}, for x ∈ X, (6.1)

where Ms is sufficiently large to render scenario-s constraints redundant for δs = 0;
Ys may be simply Rms or it may constrain some variables to be integer-valued.

Only a proper subset of the constraints form the joint chance constraint in some
applications. In order to capture a wide range of chance-constrained models, we
express the general idea by using z∗(δ) to represent the result of solving the extended
minimization problem with an indicator vector, δ. We thus define the chance-
constrained problem as:

CC : min z∗(δ) : pδ ≥ β, δ ∈ {0, 1}n, (6.2)

where pδ
def=∑s∈S psδs .

We think of CC computationally as a decomposition with an outer problem
to select scenarios by setting their corresponding δs = 1; the inner problem is
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what defines z∗. Specifically, the two-stage stochastic program with joint chance
constraints uses Ys as defined in (6.1) to obtain

z∗(δ) = min
{
c(x) +

∑

s∈S

pshs(x, ys): x ∈ X, ys ∈ Ys(x, δ), ∀s ∈ S
}
.

To compute solutions under parametric variation of β, we form the Lagrangian
of CC:

L∗(λ)
def= min

{
z∗(δ) − λpδ: δ ∈ {0, 1}n}. (6.3)

Each Lagrangian gives a lower bound on the minimum cost:

f ∗(β)
def= min{z∗(δ): pδ ≥ β, δ ∈ {0, 1}n} ≥ L∗(λ) + λβ. (6.4)

The optimal multiplier, λ∗, gives the tightest bound:

L∗(λ∗) + λ∗β = max
λ≥0

{L∗(λ) + λβ},

which is the weak Lagrangian dual. The Lagrangian gap is the difference in optimal
objective values:

G(β)
def=f ∗(β) − (L∗(λ∗) + λ∗β).

Let δ∗ ∈ argmin{z∗(δ) − pδ: δ ∈ {0, 1}n}. We have G(β) = 0 if, and only if,
complementary slackness holds: λ∗ > 0 ⇒ pδ∗ = β. This follows from f ∗(β) =
z∗(δ∗), and hence G(β) = λ∗(pδ∗ − β).

If β = 0, no scenarios need to be selected, so δ = 0 is optimal and λ = 0 is
an optimal multiplier. Otherwise, if the optimal solution satisfies pδ∗ = β, then it
solves the original problem (6.2). In the more typical cases, either the probabilities
are such that there is no vector δ ∈ {0, 1}n for which pδ = β, or such vectors are
suboptimal. There are two alternative Lagrangian optima in these cases, δL and δU ,
such that bL = pδL < β < pδU = bU . The interval (bL, bU ) is called the gap
region.

The best feasible solution corresponds to bU , with min-cost zU = z∗(δU ). The
Lagrangian duality gap is bounded by

G(β) = f ∗(β)− (L∗(λ∗)+λ∗β
)= f ∗(β)−

(
zU −λ∗bU +λ∗β

)
≤ λ∗ (bU − β

)
,

where the last inequality follows from the fact that β < bU ⇒ f ∗(β) ≤ f ∗(bU ) =
zU . If we think of λ∗ as a unit price, then the bound value is the total cost of the
discrepancy, bU −β. We use a dimensionless measure of solution quality, called the
relative Lagrangian gap:
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g(β) = λ∗ (bU − β
)

zU
. (6.5)

While our main goal is to use a chance-constraint stochastic programming model
in support of decision-making, we go beyond the model and algorithm descriptions
by emphasizing a maxim of good decision support: The purpose of mathematical
programming is insight, not numbers[6]. We envision an environment where the
mathematical program without the chance constraint is computationally difficult, so
a best algorithm is one that needs the fewest Lagrangian solutions. Furthermore, we
see the user as an analyst who wants to see a broad range of the efficient frontier, f ∗,
but not necessarily those points that add significant computational difficulty. Thus,
seeing the convex envelope, F ∗, presents a useful graph in its own right. Besides the
generated points, where f ∗ = F ∗, we provide a visual of how close the cost is for
some particular β. The user can then choose regions for which the gap, f ∗ − F ∗,
needs to be tightened. The restricted flipping heuristic offers a framework for doing
this, and the analyst could specify regions of search or use our automatic search
based on uncertainty measured by the length of the gap interval, bU − bL.

There are cases where a probability is (or appears to be) specified. For example,
consider the case of a government regulation on sulfur emissions. A company
may want parametric analysis to substantiate a challenge based on how much the
regulation costs, particularly if a small relaxation of the regulation costs much
less. The government may want to analyze consideration of a tax that incentivizes
compliance with the impact of keeping emissions and cost low. The Lagrange
multipliers provide bounds on a tax that associates cost with compliance probability.
(See LP Myth 23 in [12] to avoid seeing the tax as equivalent to the optimal
multiplier.)

The rest of this chapter is organized as follows. The response space in which
trade-offs are displayed is defined in Sect. 6.2. An algorithm that finds the optimal
Lagrange multiplier is described in Sect. 6.3. Some of our computational search
can be mitigated by the pre-processing methods in Sect. 6.4, and we emphasize
the insight that tells us when a scenario must be selected. Examples based on
instances of three models are given in the Supplementary Material for this chapter
(https://github.com/DLWoodruff/GWW). These are used to illustrate methods for
finding additional points in the response space in Sect. 6.5. Section 6.6 provides
information about details that arise when implementing algorithms that map the
trade-offs between probability and cost. The chapter closes with a summary and
conclusions. The methods described in this chapter have been implemented as an
extension to the PySP stochastic programming library [32], which is distributed as
part of the Pyomo [16, 17] algebraic modeling language.

https://github.com/DLWoodruff/GWW
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6.2 Response Space Analysis

Everett’s seminal paper [5] introduced the Payoff-Resource (PR) space, which is
the range of the objective and constraint functions. His mathematical program was
a maximization of a payoff subject to resource limits. Our model is a minimization
of cost subject to a probability of scenario satisfaction, so we call it more simply
the response space (RS). (See Mathematical Programming Glossary [18].) He also
introduced the term “gap,” which is now entrenched in our vocabulary, to mean
the difference between the primal and dual objective values. There was a stream
of foundational papers that deepened our knowledge of general (non-convex) duals
based on Everett’s Generalized Lagrange Multiplier method (GLM)—see [2, 4, 7–
9, 15, 29, 33]. We present the main concepts focused on one joint chance constraint
with uncertainties that can be involved in both the left-hand side matrix and the
right-hand side vector. Our purpose is to elucidate the results, particularly the search
for an optimal Lagrange multiplier and the source of a Lagrangian duality gap, to
gain insight.

The set of feasible right-hand sides for the chance-constraint problem is B =
[0, Pmax]. For now, assume Pmax = 1. Since scenarios may compete for common
resources it may not be possible to achieve Pmax = 1, so it is important to consider
Pmax < 1, and it may be the reason for a chance-constraint model. However, in the
interest of clarity, we defer this point until after we present the main results.

The response space compares the range of probability to cost over scenario-
selection values, δ:

RS = {(b, z): b = pδ, z = z∗(δ) for some δ ∈ {0, 1}n}. (6.6)

It is helpful to realize that each Lagrangian contour in response space is a line,
regardless of the structure of decision space and objective function. Furthermore, the
transition from decision space to response space makes evident that the maximum-
Lagrangian is the convex envelope function, F ∗ (also called the second convex
conjugate of f ∗) [14]:

F ∗(β) = max
λ≥0

min
b∈B

{f ∗(b) − λb + λβ}. (6.7)

The epigraph of [F ∗, B] is geometrically the closed convex hull of the epigraph of
(f ∗, B), denoted by

epi(F ∗, B) = convh(epi(f ∗, B)). (6.8)

Figure 6.1 illustrates this epigraph, where each point is the probability, b = pδ,
and cost, z = z∗(δ). Each line supports its epigraph:

epi(F ∗, B) = {(b, z): b ∈ B, z ≥ F ∗(b)}. (6.9)
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Fig. 6.1 Response Space as
the range of
δ → (

b = pδ, z = z∗(δ)
)

At each change in slope, the (b, z) point corresponds to an integer optimum that
defines endpoints of the line segment whose slope is the Lagrange multiplier
that produces the support for epi(f ∗, B). If β∗ ∈ (bL, bU ) (i.e., not one of the
endpoints), then it is theoretically possible to find it, but to do so requires an
enumeration of alternative optimal δ values. Only the endpoints are generated
because they have alternative optimal multipliers. (Note that it is possible that an
initial solution happens to obtain (β, f ∗(β)), but once the iterations begin, only the
endpoints are generated.) Thus, every β ∈ (bL, bU ) is essentially in a gap even
though the gap value may be zero.

Because the Lagrangian approach provides a decomposition of scenarios, we
can fit it into the PySP framework by simply adjusting the stage-two objective
function to include the Lagrangian penalty cost. Luedtke [22] takes an alternative
decomposition approach designed to obtain points on [f ∗, B], the efficient frontier
of cost versus probability. Our Lagrangian approach focuses on computational
efficiency by first obtaining points on [F ∗, B], followed by exploratory analysis
of RS that includes sub-optimal solutions.

Here is a summary of the main points about response space.

• Each point in decision space, δ ∈ {0, 1}NS , maps to a point in response space,
(b, z) ∈ RS.

• A Lagrangian contour in RS is a line with slope = λ.
• The bound, f ∗(β) ≥ L∗(λ) + λβ, is the support-line value at b = β.
• The Lagrangian dual gives the tightest Lagrangian bound,

λ∗ ∈ argmax{L∗(λ) + λβ}.
• The optimal multiplier, λ∗, is unique if, and only if, β is in a gap, in which case

β ∈ (bL, bU ) and λ∗ = zU − zL

bU − bL
.
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6.3 Multiplier Search

We now review the method of tangential approximation [10] to find an optimal
Lagrange multiplier and then extend it to find the entire envelope function.

6.3.1 Search for One Optimal Multiplier

There are several ways to search for one optimal Lagrange multiplier, but tangential
approximation was proposed as an efficient scheme [10]. For CC, it converges
finitely to λ∗ whether β is in a gap or not.

The general class of interval reduction algorithms includes bisection and linear
interpolation, analyzed in [10]. Unlike tangential approximation, they are not
guaranteed to converge finitely although it is possible to construct numerical
examples for which they converge immediately. For example, suppose the initial
interval of the multiplier search is λ ∈ (0, λmax) and λ∗ = λmax/2. If we assume β is
in a gap, which is likely in our binary model, then the optimal multiplier is unique—
only extreme values of (b, z) yield a range, λ∗ ∈ [λL, λU ] for β ∈ (bL, bU ). The
multipliers are the left and right derivatives of F ∗, respectively:

λL = ∂−F ∗(β)

∂β
≤ ∂+F ∗(β)

∂β
= λU . (6.10)

One optimal search for λ∗ is Fibonacci, which minimizes the maximum number
of functional evaluations (i.e., Lagrange solutions). One problem is with initializa-
tion: setting λU = ∞ (some big number). Another problem is getting close to λ∗
but not converging finitely, in which case the computed gap region could be much
wider than the actual value.

The tangential approximation search for one optimal multiplier, λ∗(β), begins

with the search intervals (0, z∗(�0)) and (1, z∗(�1)). These are obtained by δ
fix=�0 and

δ
fix=�1, respectively. (We address the case where δ

fix=�1 is infeasible in Sect. 6.6.3.) At
a general iteration we have (bL, zL), (bU , zU ) ∈ RS such that bL < β < bU ,
zL = f ∗(bL) < f ∗(bU ) = zU . We set λ equal to the slope of the line segment
joining these two points:

λ = zU − zL

bU − bL
. (6.11)

Computing L∗(λ) yields the point on the support: (b = pδ∗, z = z∗(δ∗)) ∈ RS so
that b ∈ [bL, bU ]. If b = β, then we are done and λ is an optimal multiplier, and
the chance-constraint instance is solved. If b = bL or b = bU , then we terminate
with the gap region, (bL, bU ), which contains β. We otherwise shrink the interval
of search by replacing (bL, zL) or (bU , zU ) according to whether b < β or b > β,
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Fig. 6.2 Complete Response Space for Example 6.1 (32 points)

respectively. Because RS is finite, this must converge in a finite number of iterations,
and our experiments indicate that it requires very few iterations.

Example 6.1 Suppose z∗(δ) = cδ and we have the following five scenarios:

Scenario

1 2 3 4 5

Probability (p) 0.05 0.05 0.07 0.08 0.75

Cost (c) 10 20 30 40 50

Figure 6.2 shows the complete response space, which has 32 points, corresponding
to the 25 subsets of selections.

The slope of the line segment joining (0, 0) and (1, 150) is the initial Lagrange
multiplier, λ = 150. Minimizing L(δ, λ) = z∗(δ) − λpδ moves the line down
(parallel) to become the support of epi(f ∗, B) and of epi(F ∗, B) at (b, z) =
(0.75, 50). We would terminate with the exact solution (no gap) if β = 0.75.
Otherwise, the left point is replaced and the interval becomes [0.75, 1] if β > 0.75;
the right point is replaced and the interval becomes [0, 0.75] if β < 0.75.
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6.3.2 Parametric Search Algorithm

We extend tangential approximation to parametric analysis of β ∈ [βmin, βmax]
⊆ [0, 1]. The trade-off between cost and probability is a decision support tool
that helps a policy analyst understand impacts, notably the proverbial: What if I
loosen/tighten the probability? How does it affect cost? The analyst may also want
to explore: Why was this scenario selected and that one not?

The Lagrangian approach uses multiplier values as a trade-off between cost
and compliance probability. Varying λ generates β1, . . . , βK , such that f ∗(βk) =
F ∗(βk) = L∗(λk) + λkβk , thus creating points on the efficient frontier of the bi-
objective problem, Pareto-min{−b, z} : (z, b) ∈ RS; see [26, 27] for alternative
approaches. MOP Myth 2 in [12] also shows how a Lagrangian duality gap relates
to Pareto-frontier generation. The difference with our Lagrangian approach is that
it can be done efficiently and can provide additional perspectives of the multiplier
values—viz., each break point on the piece-wise linear convex envelope has a range
of multiplier values. See, e.g., [3, 34] for early connections between parametric
linear programming and multiple objectives.

One approach is to specify a sample of target probabilities. This may be adequate
if the Lagrangian problem is solved within a few minutes. Our applications,
however, require many minutes (sometimes more than an hour) to solve one
Lagrangian problem, so our PySP extension is designed to obtain the convex
envelope of the response function for more computer-intensive reference models.

For a specified probability, tangential approximation is efficient among interval
reduction methods [10], but it is not dominant. Shen [30] uses bisection, which may
obtain an optimal multiplier in just one iteration, once there are two initial solutions
with bL < β < bU . It may be (due to the problem instance) that λ∗ = 1

2 (λ
L + λU).

In a worst case, however, bisection may not generate any new RS point, and it may
not confirm the region as the gap region for β. The reason is that if β ∈ (bL, bU )

is in a gap and |λi − λ∗| is sufficiently small, but λi �= λ∗ for any (finite) i, then
λi < λ∗ → bi = bL and λi > λ∗ → bi = bU . Only tangential approximation is
guaranteed to set λi = λ∗ = (zU − zL)/(bU − bL) once bL and bU are generated,
thus terminating with the confirmation that β is in the gap region, (bL, bU ).

Our method is an extension of tangential approximation that computes the
minimum number of Lagrangian solutions to obtain the breakpoints in the piece-
wise linear envelope. Other methods may compute solutions that provide no new
information, for example, by generating a point on the convex envelope already
generated by another Lagrange multiplier. This occurs if the probabilities are in the
same gap region. None of the target probabilities are known to be on the convex
envelope except for β = 0 and β = 1, so choosing a sparse set of targets could
provide little information to the analyst.

Initialization Set λ = 0, fix δs = 0 for all s ∈ S, and solve the Lagrangian
problem (6.3). If the Lagrangian is infeasible, so is CC problem (6.2) for all β.
Otherwise, the solution yields the point (0, z0) ∈ RS.
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Next, fix δs = 1 for all s ∈ S and solve the Lagrangian with λ = 0, makingL∗(λ)

to be the cost. If the Lagrangian is unbounded, then so is CC problem (6.2) for all
β. If it is infeasible, then set λ to some large value and solve to obtain the maximum
probability attainable (see Sect. 6.6.3). The solution otherwise yields (1, z1) ∈ RS.
Initialization ends with two points in RS : (0, z0) and (1, z1). Set I = {[0, 1]} and
L1 = 0.

Fathoming Gap Intervals At a general iteration we have a sequence of intervals,
I = {[b0, b1], [b1, b2], . . . , [bn−1, bn]}, with associated min-costs, {zi}n0, and truth
labels, {Li}n1 ∈ {0, 1}. Li = 1 indicates the ith interval is fathomed, meaning that it
is the gap region for β ∈ (bi−1, bi). Otherwise, the associated interval needs to be
searched if Li = 0.

Choose an interval that is not fathomed. There are tactical selections such as
choosing an interval with the greatest Lagrangian gap value. Such tactics are
important if each Lagrangian minimization takes so much time that termination may
need to occur before the parametric solution is complete. Set λ as one iteration of
tangential approximation:

λ = zi − zi−1

bi − bi−1
.

Solve the Lagrangian to obtain the response space point (b, z), where b ∈
[bi−1, bi]. If b = bi−1 or b = bi , set Li = 1 and λi = λ. Otherwise, do one of
the following:

Case 1: b < βmin (must have selected the interval [b0, b1]). Replace b0 = b.
Case 2: b > βmax (must have selected the interval [bn−1, bn]). Replace bn = b.
Case 3: βmin ≤ bi−1 < b < bi ≤ βmax. Split the interval into [bi−1, b] and

[b, bi]. Re-index to maintain b0 < b1 < · · · < bn.

This update maintains b0 ≤ βmin ≤ b1 < · · · < bn−1 ≤ βmax ≤ bn. We are
done when all intervals are fathomed. The scheme terminates in a finite number of
iterations since there is a finite number of gap regions, each detected by tangential
approximation of its endpoints.

The result is the sequence of successive points in the response space, {(bi, zi)}n0,
and their associated, optimal multipliers, {λi}n0:

λ0 = 0, λi = zi − zi−1

bi − bi−1
for i = 1, . . . , n.

We provide a function that computes the Lagrangian bound and best feasible
solution for each β ∈ [βmin, βmax] from the algorithm’s terminal information.
Specifically, find the interval that contains β: bi−1 ≤ β ≤ bi . Then, (bi, zi) is
the best feasible solution, and the Lagrangian bound is F ∗(β) = L∗(λi) + λiβ =
zi + λi(β − bi). The relative Lagrangian gap is thus g(β) = 1− F ∗(β)/zi ∈ (0, 1].
Note that g(β) > 0 because F ∗(β) < zi for β < bi . We now have the following
property.
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Fig. 6.3 Result of parametric multiplier search for Example 6.1 (c.f., Fig. 6.2)

Property 6.1 Parametric Tangential Approximation solves the complete paramet-
ric CC model with the minimum number of Lagrangian optimizations.

Our parametric algorithm reduces to the method of tangential approximation for
one β. This follows because βmin = βmax implies we always have either Case 1 or
Case 2, thus shrinking the one interval of search and never splitting the interval. At
the other extreme, if βmin = 0 and βmax = 1, Case 3 always applies and the interval
is split. Hence, the number of Lagrangian minimizations is equal to the number of
gap regions.

Figure 6.3 shows the result of parametric search for β ∈ [0, 1]. The only points
generated are the endpoints of each gap interval. The point on F ∗ at b = 0.85 is
an alternative optimum to the Lagrangian defined by the slope of the line segment,
and this point is not generated. In Sect. 6.5 we describe techniques for generating
additional points.

The computational time is dominated by the time it takes to minimize the
Lagrangian to obtain z∗. Initialization requires two computations, but all δ values
are fixed, so it is the time needed to solve the instance without the chance constraint
(δ = �0) plus the time needed to solve the complete extended form with all scenarios
being satisfied (δ = �1). Each subsequent iteration solves the original instance
with the NS additional binary variables, δ, plus all scenario constraints present
with associated δ to indicate whether to require their satisfaction. Each Lagrangian
solution yields a point on the envelope, so the total time is the initialization time
plus the average time to solve the model instance multiplied by the number of points
generated.
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We emphasize the novelty of parametric tangential approximation. First, there are
no superfluous computations like those of other methods. Each Lagrangian solution
either generates a new point on the envelope function or it fathoms a gap region. Our
parametric tangential approximation algorithm is optimal in the sense that it requires
the minimum number of Lagrangian optimizations to generate the complete convex
envelope. Second, there is no a priori specification of target probabilities except for
β = 0 and β = 1 and all envelope points are generated a posteriori.

6.4 Pre-processing

Connections between chance constraints and knapsack constraints have been
exploited by numerous authors (e.g., [19, 23, 28]) and there are knapsack properties
that can be used for our application. We found the following property useful in
reducing the number of indicator variables when solving the CC problem (6.2).

Property 6.2 If ps > 1 − β, then δs = 1 in every feasible solution.

A proof is straightforward. If δs = 0, then the probability is at most
∑

i �=s pi ,
which equals 1−ps . We thus require 1−ps ≥ β, which is equivalent to ps ≤ 1−β.

We let α
def=1 − β for notational convenience in the remainder of this section.

If the scenarios are equally likely, then Property 6.2 yields an all-or-nothing
situation. If α < 1

NS
, then all scenarios are forced to be selected; otherwise, no

scenario is forced. In practice, the distribution is generally not uniform and there
are scenarios that must be selected for sufficiently large β. For example, if there are
only 20 scenarios (maybe during model development), then some ps ≥ 0.05—in
which case the scenario must be selected for β > 0.95.

Pre-processing with a specified probability includes fixing δs = 1 for all forced
selections, i.e., for ps > α. Figure 6.4 shows the reduced response space for
Example 6.1 with β = 0.5. The response space has only 16 of the 32 points, and the
left endpoint is (0.75, 60), corresponding to setting δ5 = 1.

In some cases forced selections solve the problem using the following property.

Property 6.3 Let Ŝ be a set of scenarios for which δs = 1 for all s ∈ Ŝ. Suppose
P(Ŝ) = ∑

s∈Ŝ ps ≥ β. Then, we can fix δs = 0 for all s �∈ Ŝ without loss in
optimality.

We can use these two properties to limit the intervals over which we must search.
Let the scenarios be sorted by non-decreasing probability, and suppose Ŝ contains
all s for which ps > α. Further suppose that k is the smallest index in the set (so
pk−1 ≤ α). Combining Properties 6.2 and 6.3, we find that the chance-constraint

instance is solved for α ∈ [1 − P(Ŝ), pk). We use this solution to find probability
intervals that solve the chance-constraint instance with forced selections. Let Is =[∑s−1

i=1 pi, ps

)
. We have I1 = [0, p1) �= ∅ (assuming p > 0). Let A = ∪sIs ,
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Fig. 6.4 Reduced response space for Example 6.1, fixing the selection of scenario 5

so that the chance-constraint instance is solved by forced selections if, and only if,
α ∈ A.

Example 6.2 This is to demonstrate that solved intervals can be separated by empty
ones.

s
∑s−1

i=1 pi ps Is

1 0 0.05 �=∅
2 0.05 0.10 �=∅
3 0.15 0.10 =∅
4 0.25 0.20 =∅
5 0.45 0.55 �=∅

Thus, A = [0, 0.10) ∪ [0.45, 0.55).
In summary, we find A for parametric processing, which is a non-empty union

of intervals, and we intersect it with

[αmin = 1 − βmax, αmax = 1 − βmin].

This process is used in the parametric version of the Lagrange multiplier search by
fathoming intervals contained in the forced-selection interval. We can force at the
outset selections for scenarios such that ps > αmax. Although the conditions are
simple to establish, they can have a significant impact.
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We emphasize that our algorithmic goal is to provide an advanced understanding
of the chance-constraint model. An analyst needs to know why some scenarios are
selected while others are not—is it due to economic benefit or are they restricted by
other constraints? Can the analyst deduce some scenario dependence—e.g., δs =
1 → δt = 0. Such analysis could occur during a debugging stage or during data
development, but in a mature model our analysis could add clarity concerning what
the scenario constraints mean and how they relate to the rest of the model.

6.5 Gap Closing

The procedures of the previous section provide the lower convex envelope for RS,
denoted F ∗; however, analysts may benefit from seeing more points in the space
even if they are not on this frontier. We seek additional information about solutions
in gap regions by fixing δ, thus providing points above the envelope function. It is
natural for a good analyst to ask, “How close are suboptimal solutions?” (which
may have other favorable properties to present options for management).

Consider a gap region [bL, bU ]with β ∈ (bL, bU ) and g(β) > τ gap (a tolerance).
We present some heuristics to search for a feasible solution, (b, z), where b is in the
interior of the gap region—i.e., b ∈ [β, bU ). Let δL and δU be optimal selection
values associated with the endpoints, and define the partition of scenarios:

S00 = {s: δL
s = 0, δU

s = 0}
S01 = {s: δL

s = 0, δU
s = 1}

S10 = {s: δL
s = 1, δU

s = 0}
S11 = {s: δL

s = 1, δU
s = 1}.

We must have
∣∣S01 ∪S10

∣∣ > 0 because the two solutions differ. Our first heuristic is
called restricted flipping and it fixes values in S00 ∪S11 and flip values in S01 ∪S10,
moving from bL to β and/or moving from bU to β.

If
∣∣S01

∣∣ = 1, restricted flipping takes us from bL to bU , so suppose
∣∣S01

∣∣ >

1. We then select a sequence to flip until the total probability, b, is at least β. If
b = bU , then this flipping sequence fails, and we order the sequence by probability,
leaving the minimum value for last. If that last flip is necessary to reach β—i.e., if∑

s∈S ps < β for all S⊂
�=

S01, restricted flipping fails. We otherwise fix δs = 1 for

those flipped. Those not flipped are fixed at 0, their current value. This gives us a
new point in the response space, (b, z∗(δ)).

Initialize zBest = zU and bBest = bU . If z∗(δ) < zBest, then update zBest = z∗(δ)
and bBest = pδ. Test for termination using a gap tolerance, g(β) ≤ τ gap, and a
probability tolerance:

∣∣bBest − β
∣∣ ≤ τ prob. If we do not terminate, flip from bU ,

fixing δs = 0 for a sequence of s ∈ S01, ordered by probability, until pδ < β. Let
b be the probability just before reaching this condition. As above, we must have
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Table 6.1 Points in the
response space and their
associated scenario selections

Subset selected Probability Cost

S
∑

s∈S ps

∑
s∈S cs

1 {5} 0.750 50

2 {1, 5} 0.800 60

3 {2, 5} 0.800 70

4 {3, 5} 0.820 80

5 {4, 5} 0.830 90

6 {1, 2, 5} 0.850 80

7 {1, 3, 5} 0.870 90

8 {2, 3, 5} 0.870 100

9 {1, 4, 5} 0.880 100

10 {2, 4, 5} 0.880 110

11 {3, 4, 5} 0.900 120

12 {1, 2, 3, 5} 0.920 110

13 {1, 2, 4, 5} 0.930 120

14 {1, 3, 4, 5} 0.950 130

15 {2, 3, 4, 5} 0.950 140

16 {1, 2, 3, 4, 5} 1.000 150

Table 6.2 Illustration of
calculations for points in the
interval (0.85, 0.92)

b z∗ S

0.85 80 {1, 2, 5} S10 = ∅, S11 = {1, 2, 5}
0.87 90 {1, 3, 5} L∗(λ∗) + λ∗b = 90

0.88 100 {1, 4, 5} L∗(λ∗) + λ∗b = 95

0.90 120 N/Aa L∗(λ∗) + λ∗b = 105

0.92 110 {1, 2, 4, 5} S01 = {4}, S00 = {3}
af ∗(0.90) = f ∗(0.92)

b > bL to obtain a new point in the response space, and if that is the case, then
compute z∗(δ) and apply the same tests to update zBest and terminate.

Table 6.1 enumerates the 16 points of the reduced response space from Fig. 6.4,
plotted in Fig. 6.5 (spread out to see the points more distinctly). The envelope
function, F ∗, is the piece-wise linear function, with B = [0.75, 1]. We can restrict
β ∈ B because the parametric range is α ∈ [0.05, 0.25).

Suppose we want to close the gap in the interval (0.85, 0.92), with λ∗ =
(110− 80)/(0.92− 0.85) = 428.57. The two circled points are the only non-
dominated, feasible points with a better solution than zU = 110 as documented
in Table 6.2.

Restricted flipping fails because once we fix the common selections, δ1 = δ2 =
δ5 = 1, only δ4 = 1 flips from bL, which gets us to bU ; and, flipping δ4 = 0
from bU gets us to bL. However, if we relax fixing all common selections, we can
reach (0.88, 100) from bU by flipping δ2, resulting in δ = (1, 0, 0, 1, 1). This is
the optimal value, but all we can confirm is that the best feasible solution, with
z = 100, has relative gap value g(0.88) = 1 − 95/100 = 0.05. This is a significant
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Fig. 6.5 Reduced response space of Example 6.1 (c.f., Fig. 6.4) after our parametric search
algorithm finds F ∗(β) for β ≥ 0.75

improvement over the original value g(0.88) = 1 − 95/110 = 0.1364, and it is the
best we can do.

We also cannot reach (0.87, 90) by restricted flipping because S = {1, 3, 5}
�⊂ SU = S01 ∪ S11 implies that we cannot flip from (bU , zU ). Similarly, S �⊂
SL = S10 ∪ S11 means we cannot flip from (bL, zL). However, if we relax fixing
common exclusions, we can then flip δ3 = 1 and consider flipping others in SL.
Heuristics that relax fixing common exclusions remain as future research.

It is in general inexpensive and potentially valuable to consider flipping only
scenarios that are selected by one endpoint and not the other. Contrary to the
particular example, common selections may be a form of evidence, and there is little
computational cost to try it first. That is, we need not solve any new minimization
problem to discover if this flipping generates a new probability; we simply loop
through a sorted list of probabilities. If this fails, then relaxed flipping is tried, which
may generate a new feasible response space point, (b, z) with b ≥ β and z < zU . If
this is the case, then we decrease the gap by setting zBest = z.

Suppose restricted flipping fails to yield an acceptable solution—i.e., the best
solution is not within tolerances:

∣∣bBest − β
∣∣ > τ prob or g(β) > τ gap. We then

begin to enlarge the space of candidates to flip. For parametric chance constraint
we use gap-closing heuristics to generate additional points in RS. The purpose is to
learn about the cost-probability trade-offs.

We applied our methods to the three models as described in the Supplementary
Material attached to the electronic version of this chapter. Two of the models capture
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Fig. 6.6 Adding response space points to the 10-scenario Midwest GEP model

Fig. 6.7 Adding to the response space for the 70-scenario Korean GEP model

features of an electricity generation expansion planning (GEP) problem, and the
third model is a network flow, capacity-planning model. We refer to the models
as Midwest GEP, Korean GEP, and Network Flow, respectively. Figures 6.6, 6.7,
and 6.8 show response space points added to each of the instances by flipping
selections of each upper endpoint (δU

s = 1) not selected in the interval’s lower
endpoint (δL

s = 0).
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Fig. 6.8 Adding response space points to the 10-scenario network flow model

The one point added to RS in the Korean model (Fig. 6.7) tells us f ∗(0.512) ≤
124, 398, 824, 240, which is a slight improvement over the upper endpoint, zU =
124, 463, 772, 951. The relative gap is reduced by an order of magnitude to
0.000111 (from 0.006237).

Here is the algorithm to generate additional points after F ∗ is constructed. First,
form the list of gap intervals, {(i, wi,mi)}, where wi = bi − bi−1 is the width, and
mi = 1

2 (bi + bi−1) is the midpoint. Sort this list by width and drop intervals with
wi ≤ 2τ prob.

If the number of (sufficiently wide) intervals is greater than a specified maximum,
we simply drop the last few intervals. If we have fewer than the specified number of
intervals, then we use the sort-order to split the first (i.e., widest) interval:

(i, w,m)→
(

i,
1

2
w, m − 1

4
w

)
,

(
i,

1

2
w, m + 1

4
w

)
.

Note that the original index is retained when splitting. We then re-sort until we either
reach the maximum number of points specified or the split would make the width
too small—i.e., stop once w ≤ 4τ prob.

We have in the end abscissa points, {mk}, plus associated widths and gap-region
indexes, for k = 1, . . . , K , where K is within the specified maximum and wk >

2τ prob. For each k, initialize selections from zik , the upper endpoint of the ik-th gap
region, and flip s1, s2, . . . (in probability-order) until reaching b =∑ν

j=1 psj ≥ mk

and b − psν < mk . If this is reached before bL = bik−1, we then compute z∗(δ) to
obtain the new RS point, (b, z∗(δ)). Otherwise, we simply go to the next interval.
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We can combine the gap intervals with pre-processing intervals of the form

∪k(p̄sk , āk], where v̄
def=1 − v for any v ∈ [0, 1]. We know b = 1

2 (āk + p̄sk ) is
solved by a forced selection (that fixes δ). If the forced selection has b = āk and the
selection is already an endpoint of a gap interval, then the solver regenerates bi and
we do not obtain a new point. However, if mini |āk − bi | > τ prob, we then compute
(b = pδ, z∗(δ)) for δ corresponding to the forced selections by solving for z∗(δ).

A major advantage of doing this is that f ∗(b) = z∗(δ). This optimality cannot be
guaranteed with a gap-closing heuristic, like restricted flipping. On the other hand,
an advantage of using gap intervals to determine the abscissa values is that we have
a more distributed collection of response space points, which gives a sense of how
the chance constraint affects the solution. Further experimentation with this avenue
of solution insights from a response space is warranted.

6.6 Some Pitfalls to Consider

Our implementation has identified pitfalls that merit some attention. For conve-
nience, assume z > 0 for all (b, z) ∈ RS, so relative cost values can be used without
absolute values.

6.6.1 Tolerance Relations

We can increase the optimality tolerance, τ opt, to reduce the time to minimize the
Lagrangian. The effect of this change depends on the solver [11] and relates to two
tolerances that can be set as options in our Python program:

• τ prob: two probabilities, b and b′, are equal if
∣∣b − b′∣∣ ≤ τ prob.

• τ gap: (b, z) is acceptable (i.e., z is sufficiently close to f ∗(b)) if the gap between
z and the Lagrangian bound, F ∗(b) = L∗(λ)+λb, satisfies 1−F ∗(b)/z ≤ τ gap.
Recall we use this when exploring gap regions with z = zU .

We cannot be sure exactly what near-optimality means, but we can suppose L is
a lower bound on the (unknown) optimum because L(λ) ≤ L∗(λ) ≤ z − λb. The
solver terminates if

z − λb − L(λ)

L(λ)
≤ τ opt.

Equivalently (as implemented), z − λb ≤ L∗(λ)(1 + τ opt).
Figure 6.9a shows an alternative optimum for the Lagrangian with λ = z1 −

z0, which is the slope of line segment joining the two initial points, (0, z0) and
(1, z1). A solver should begin by checking the optimality of the endpoint that is still
resident, but some will begin anew. That is the only way the alternative solution
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Fig. 6.9 Inexact alternative Lagrange optimum in (bL + τ prob, bU − τ prob). (a) Alternative
optimum of L∗(λ). (b) Near-optimal solution of Lagrangian

Fig. 6.10 Accepting an inexact alternative Lagrange optimum as a new RS point. (a) z < zL +
λ(b − bL). (b) Update

would be reached. If this occurs, then we save the generated RS point because b is
not within tolerance of either endpoint—i.e., b ∈ (bL+τ prob, bU −τ prob). However,
the interval is fathomed because there are no points below the line.

Figure 6.9b shows a situation where a new point is generated by being within
(relative) tolerance of optimality: z − λb ≤ L∗(λ)(1 + τ opt). With cost above the
line (i.e., z > zL + λ(b − bL)), depicted as point A, we save (b, z), but we fathom
the interval, as in the case of the exact optimum.

Figure 6.10a shows the near-optimum of the Lagrangian below the line, labeled
point B. We consider B to be a new point if

∣∣b − bL
∣∣ > τ prob,

∣∣b − bU
∣∣ > τ prob,

and the Lagrangian gap exceeds tolerance: 1 − (zL + λ(b − bL))/2 > τ gap. We
otherwise treat B the same as if (b, z) is above the line.
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The value τ opt pertains to the Lagrangian optimum, whereas τ gap and τ prob

pertain to the cost and probability, respectively. The action to treat (b, z) as a
new point (splitting the interval, rather than fathoming it) depends on how these
tolerances relate. Their meanings are different and can cause anomalous behavior,
even if τ opt = τ gap. See [11] for elaboration and examples of how tolerances can
interact. A pitfall to avoid is setting τ opt in a way that is inconsistent with other
tolerances. More analysis of the interaction among tolerances, including some solver
tolerances, is an avenue for further research.

6.6.2 Measuring Probability

Using the indicator variable in (6.1), we find that it is possible to have δs = 0 but
still have scenario-s constraints satisfied. Therefore, pδ is not an exact measure of
the probability of being feasible. Letting Qs denote the feasible values of (x, ys),
the real chance constraint is

∑
s Pr

(
(x, ys) ∈ Qs | s)ps ≥ β. Our probability value

is thus an underestimate:

pδ =
NS∑

s=1

psδs ≤
NS∑

s=1

Pr
(
(x, ys) ∈ Qs | s))ps.

To see this, consider x restricted to satisfy scenario s. That is the case if δs = 1,
and we have in this case that Pr

(
(x, ys) ∈ Qs | s)) = 1. However, x can satisfy

the constraint when δs = 0, so in general δs ≤ Pr
(
(x, ys) ∈ Qs | s)). Being an

underestimate means that the chance-constraint model is conservative because pδ ≥
β implies that the true chance constraint is satisfied.

A modeler can add violation variables to measure actual violation and enforce
the converse: δs = 0 implies scenario s is violated. Let the auxiliary variable vs

i

measure violation of the ith constraint in scenario s:

∑
j as

ij x
s
j − bs

i ≥ −vs
i , 0 ≤ vs

i ≤ (1 − δs)M.

The scenario constraint is satisfied if vs = 0, which is forced by δs = 1 (as in first
model).

For δs = 0, the solver could produce a solution with vs �= 0 even if there is no
violation as long as the cost is not greater than the minimum. In fact, if an interior
solution is computed, then both the surplus variable and vs

i are positive if the ith
constraint is over satisfied in some optimal solution. To ensure v �= 0 except when
necessary, define a nuisance cost, ε > 0, and add ε

∑
i,s vs

i to the objective. If there
are alternative optima, then favor is given to v = 0. Notice that ε must be small
enough to preserve minimality of the original cost. Then, an optimal solution will
have vs

i = max
{
0, bs

i −∑j as
ij x

s
j

}
, which equals the amount of violation of the ith

constraint.
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For some models, like our Network Flow, setting δs = 0 has no effect on the
objective function, but in other models, this could mislead an analyst who uses
scenario violation to support one decision over another. Moreover, the exact form
is important to answer questions like, “What is the impact of having a chance
constraint?” The level of violation may be of interest, which is not obtained in the
first (underestimate) model. Further analysis of the level of constraint violation can
be supported by taking a large number of additional samples for the purpose of a
better estimate of the actual probability of violation (see, e.g., [24]).

6.6.3 When It Is Infeasible to Select All Scenarios

We have assumed for notational convenience that it is feasible to select all
scenarios—i.e., δs = 1 for all s ∈ S. This may not be the case, and we might
need to find

Pmax = max
δ∈{0, 1}NS

{pδ: ∃x ∈ X � Ys(x, δ) �= ∅}. (6.12)

If we seek a solution for β > Pmax, then the specified chance-constraint instance
is infeasible. We otherwise need to find λ such that L∗(λ) yields the RS point,
(Pmax, z∗(δ)) for some optimal δ (not necessarily the selections computed if we
only maximized pδ without regard for cost). Tangential approximation is initialized
with this point to bracket the search in this case.

Here is how we find such a λ. Let Z be the cost for the computed solution of
Pmax, and consider λ > Z/τ ≥ z∗(δ)/τ , where τ is sufficiently small to ensure that
L∗(λ) = z∗(δ)−λpδ ⇒ pδ ≥ Pmax−τ prob. To help intuition, consider z∗(δ) = cδ.
Then, cs − λps < 0 for all s for λ > maxs

{
cs/ps

}
. This means δs = 1 unless it is

not feasible to select scenario s. Minimization of the Lagrangian takes care of the
trade-off, making pδ a maximum over all feasible selections.

6.6.4 Low Probabilities

The general range for the parametric tangential approximation algorithm is
[βmin, βmax]. If βmin = 0 is infeasible, then our code terminates, as this means
the original model instance is infeasible without the scenario constraints. One
usually imagines low values of β as being of little interest, but we assert that this is
a pitfall because low values of β can also provide some information, starting with
β = 0:

• What is my minimum cost with no scenario compliance?
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• Howmuch computational time is due to adding the joint chance constraint? (That
is, what is a baseline for how much computational time to expect as we search
for optimal multiplier values, which adds NS binary variables to the model?)

The full range is useful for debugging a model and testing its validity even before
analysis support.

6.7 Summary and Conclusions

Each Lagrangian solution generates a point that is an exact optimum for the
Lagrangian problem (6.3) and its associated parametric program. The piece-wise
linear function connecting those points is the envelope function that yields the
Lagrangian bound. We have shown that the complete parametric tangential approx-
imation minimizes the number of Lagrangian solutions to generate the convex
envelope. Each iteration of parametric tangential approximation yields a new RS
point that either confirms a gap region (immediately, as the resident solution is
optimal) or causes it to shrink or split. The terminal succession of RS points,
{(bi, zi)}Ni=0, covers [0, Pmax] with b0 = 0 < b1 < · · · < bN = Pmax.

Tangential approximation for a single β was introduced decades ago, and it is
not necessarily an optimal algorithm. For example, bisection could reach the one
optimal multiplier faster. However, our extension to a complete parametric search is
optimal in that it minimizes the number of Lagrangian solutions needed for complete
parametrization.

Each interval (bi−1, bi) contains Lagrangian duality gaps, where there may be
a solution above (or on) the convex envelope function for which z < zU . Gap
intervals can be explored by a variety of heuristics. We presented one approach,
called restricted flipping, that seeks a better feasible solution for β ∈ (bi−1, bi)

than zi by flipping optimal values of δ that differ between the endpoint solutions.
Once δ is specified, we compute the RS point, (pδ, z∗(δ)). We presented a heuristic
for choosing probability values, based on the midpoints of intervals that have been
sorted by bi − bi−1.

Each Lagrangian solution to a general problem, L(x) = f (x) − λg(x), solves
two programs:

min f (x): g(x) ≥ b
def=g(x∗) and max g(x): f (x) ≤ c

def=f (x∗)

for any x∗ ∈ argminL(x). Varying λ ∈ [0,∞) yields parametric solutions
{b, f ∗(b)}b and {g∗(c), c}c. They are precisely the same set in RS. These are also
equivalent to using a weighted sum of the bi-criteria program:

min αf (x) + (1 − α)(−g(x)).
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Varying α ∈ (0, 1) generates Pareto-optimal points. Each α is equivalent to the
Lagrangian with λ = 1/(1 − α) (so min L = f − λg ↔ min αf + (1 − α)g).
This generates the same portion of the efficient frontier. The weighted sum fails
to generate some Pareto-optimal points—viz., non-convex segments of the frontier.
This is precisely the Lagrangian duality gap.

One reason to point this out is that there has been a vast literature on Lagrangian
duality and bi-criteria programming (separately and jointly) in the last several
decades. Most of it assumes a special structure, notably convexity or separability,
which we do not. Moreover, we go beyond the algorithmics, focusing on the use of
the convex envelope to support analysis. Our gap-resolution method demonstrates
an effective computational approach not only to reduce the gap, but also to provide
a better understanding of the cost-probability trade-off, including sub-optimal
solutions.

Most importantly, Everett’s Generalized Lagrange Multiplier Method advances
analysis with efficient computation implemented as an open-source extension of
PySP. Output includes tables of RS points, which can be used by software to provide
graphical support. The goal is insight into the trade-off between cost and scenario-
satisfaction probability. It is for that reason that we provide additional code to
explore RS, not only for near-optimal solutions, but also for gaining information
about alternative (sub-optimal) solutions. A motive for such exploration is to
consider alternative solutions that have properties not represented in the model—
e.g., ease of policy implementation.

Our current and future research extends our work to multiple chance constraints.
Our foundation is Everett’s paper and its derivatives, notably [2] and [13, 14].
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Chapter 7
An Analysis of Multiple Contaminant
Warning System Design Objectives for
Sensor Placement Optimization in Water
Distribution Networks

Jean-Paul Watson, William E. Hart, Harvey J. Greenberg,
and Cynthia A. Phillips

Abstract A key strategy for protecting municipal water supplies is the use of
sensors to detect the presence of contaminants in associated water distribution
systems. Deploying a contamination warning system involves the placement of a
limited number of sensors—placed in order to maximize the level of protection
afforded. Researchers have proposed several models and algorithms for generating
such placements, each optimizing with respect to a different design objective.
The use of disparate design objectives raises several questions: (1) What is the
relationship between optimal sensor placements for different design objectives? and
(2) Is there any risk in focusing on specific design objectives? We model the sensor
placement problem via a mixed-integer programming formulation of the well-
known p-median problem from facility location theory to answer these questions.
Our model can express a broad range of design objectives. Using three large test
networks, we show that optimal solutions with respect to one design objective
are often highly sub-optimal with respect to other design objectives. However, it
is sometimes possible to construct solutions that are simultaneously near-optimal
with respect to a range of design objectives. The design of contamination warning
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systems thus requires careful and simultaneous consideration of multiple, disparate
design objectives.

7.1 Introduction

A series of municipal water contamination incidents and increased awareness of
water supply vulnerabilities led the newly formed United States Department of
Homeland Security to invest in research to better protect municipal water systems
after the 9/11 terrorist attacks. See [22] for more information on some of the
history of such incidents and threats. There has been a contemporaneous increase in
water-security research around the world over the last two decades. See the recent
survey [14], which also describes two other contamination incidents outside the
USA.

There has been considerable research to mitigate this risk in the design and
deployment of contaminant warning systems (CWSs) for water distribution net-
works based on real-time sensors that provide continual water quality monitoring.
In the short-to-moderate term, complete protection of distribution networks is
unrealistic due to budgetary constraints. Optimization is consequently required to
maximize the level of protection afforded by a limited number of sensors.

The efficacy of sensor placement can be quantified using a variety of measures.
Researchers have developed algorithms for optimizing sensor placements with
respect to a number of design objectives, including the proportion of population
exposed prior to detection [2], the volume of contaminated water consumed prior to
detection [15], and the time to detection [17]. Researchers may choose an objective
because it sounds reasonable and they are most able to determine or estimate correct
parameters for that objective. Researchers might also implicitly assume that the
selected design objective is the “best” objective for sensor placement; in some
instances researchers have made this argument explicitly, e.g., see Kumar et al.
[17]. However, there may be no single best design objective in reality. The variety
of design objectives introduced by researchers supports this view, as there are valid
arguments for the importance of all such objectives. Furthermore, existing objectives
are not obviously redundant. For example, the number of failed detections (missed
incidents) and the proportion of population exposed seem to provide complementary
information.

Following the 9/11 terrorist attacks, Harvey Greenberg worked closely with
researchers at Sandia National Laboratories and the US Environmental Protection
Agency to develop effective optimization strategies for large-scale contamination
sensor placement. This collaboration led to the first publication discussing multi-
objective trade-offs in sensor placement for water security [31], which appeared in
the Proceedings of the ASCE/EWRI Congress. This chapter is an extension of that
prior research and the associated paper, which was co-authored with Harvey but
not published. Specifically, this research extension considers the analysis of multi-
objective trade-offs on larger distribution networks. Most researchers at the time had
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considered sensor placement only in the context of small test networks, e.g., on the
order of 100s of junctions. Concurrently, this research extension demonstrates the
application of sensor placement techniques on large-scale networks. We chose not to
rerun the original experiments, as the IP solver of the time obtained globally optimal
solutions. In Sect. 7.2, we describe how this work still provides a contribution with
respect to the current state of the art.

We explore in this chapter the trade-offs between different design objectives
for sensor placement optimization in water distribution networks. We specifically
pose and answer the following two research questions: (1) What is the relationship
between optimal sensor placements for different design objectives? and (2) Is there
any risk in focusing on specific design objectives? Our analysis considers the
following six design objectives: population exposed, time to detection, volume of
contaminated water consumed, mass of contaminant consumed, number of failed
detections, and extent of contamination. See Sect. 7.3 for detailed descriptions of the
objectives. The corresponding sensor placement optimization problem can be casted
as the well-known p-median problem from facility location theory in each case.
Using mixed-integer programming (MIP) models and commercial MIP solvers, we
identify optimal solutions for all design objectives across a range of sensor budgets
on each of three large test networks.

Our analysis of the resulting placements indicates that optimal solutions with
respect to one design objective are often highly sub-optimal with respect to
complementary design objectives. In other words, there may be significant risk
associated with focusing a priori on specific design objectives. Our results reinforce
the view that multiple objectives should be considered during the design of sensor
placements for CWSs, as there are significant trade-offs that should be exposed
to decision-makers. There is fortunately evidence that this risk can be mitigated
in some circumstances; by sacrificing optimality in some design objectives, we
demonstrate that it is possible to develop solutions that are more robust (i.e., higher-
quality) with respect to secondary design objectives.

We review recent literature on multi-objective sensor placement for water
security in Sect. 7.2 and discuss the continued relevance of the results presented
in this chapter. In Sect. 7.3, we document the p-median formulation of the sensor
placement problem and detail the computation of the various design objectives
in our analysis. Section 7.4 describes our test networks, contamination scenarios,
and aspects of our experimental methodology. We then analyze the behavior of
individual design objectives on our test networks. The remainder of the section
addresses multiple-objective analysis, focusing on the relationship between different
design objectives. Section 7.5 reviews the implications of our analysis, including
a discussion of the extent to which it may be possible to generate solutions
that simultaneously yield high-quality solutions with respect to a range of design
objectives.
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7.2 Background and Overview

As noted previously, Watson et al. [31] was the first publication to analyze multi-
objective trade-offs for sensor placement in water distribution systems [26]. At that
time there was a growing literature on sensor placement techniques for CWSs,
but papers typically reported results for individual design objectives. Propato [27]
presented a similar modeling approach, using MIP to model the sensor placement
optimization problem. His optimization formulations can represent different objec-
tives by changing the formulation of the linear objective function, much like the
models described here and in Watson et al. [31].

The Battle of the Water Sensor Networks (BWSN) was a comparison of sensor
placement techniques that catalyzed significant interest in multi-objective sensor
placement [25]. The BWSN focused on a comparison of sensor placement tech-
niques considering four independent design objectives. A variety of multi-objective
optimization techniques were consequently developed for this comparison. For
example, Ostfeld and Salomons [24] and Preis and Ostfeld [26] describe multi-
objective evolutionary algorithms, and Dorini et al. [8] developed a constrained
multi-objective optimization framework based on a cross-entropy methodology.
The final comparison considered in the BWSN involved an assessment of Pareto
optimal points, even for methods that did not explicitly optimize multiple objectives.
Researchers reporting on their methods used in BWSN subsequently emphasized
their ability to support multi-objective analysis. For example, Krause et al. [16]
describe fast sensor placement methods that optimize weighted multi-objective
optimization, and they exploit the submodular structure of this problem to ensure
near-optimality.

Several reviews of sensor placement research have been published since the
BWSN [1, 12, 14, 28, 29]. These reviews illustrate several trends. First, the number
of relevant design objectives has continued to increase, including design for water
quality management, contaminant source identification, and risk measures that
account for uncertainty. Second, researchers continue to explore the design of new
multi-objective algorithms although most research considers heuristic methods—
especially evolutionary algorithms. Finally, researchers have increasingly focused
on fast methods with modest computer memory requirements that are robust to
the limited information available to water utilities around the world. These last
considerations reflect practical realities for water engineers who need to design
contamination warning systems with limited resources and often with practical
limitations on their ability to model their systems.

Considering the volume and focus of these subsequent works, the research in this
chapter continues to be relevant. The methods we consider for sensor placement are
based onMIP models and solvers, so we can guarantee Pareto optimal solutions. For
example, these methods were used to generate solutions included in the BWSN [25],
and in all cases these solutions were not dominated by solutions from other
optimizers. It is noteworthy that few authors have considered MIP models and
solvers subsequent to the BWSN comparison.
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The focus of the research in this chapter is on multi-objective trade-offs. Thus,
the fact that MIP solvers guarantee optimality ensures that our conclusions reflect
the structure of the Pareto set. By comparison, multi-objective solutions generated
by heuristic algorithms like evolutionary algorithms are not guaranteed to reflect
Pareto optimality.

7.3 Problem, Objectives, and Mixed-Integer Formulation

The problem of placing contaminant sensors in a water distribution network to
maximize the degree of afforded protection can be expressed as any of a number of
standard problems in discrete location theory [20]. The specific selection depends on
modeling decisions, e.g., whether sensor installation costs should be considered, or
if the objective is to minimize expected or worst-case impact. We base our analysis
on the well-known p-median facility location problem [7], building on our prior
research efforts involving sensor placement optimization [3].

There are n customers and m potential facility locations in the p-median
problem. Exactly p of the m potential facilities are actually “opened,” where
1 ≤ p ≤ m, and each customer is “served” by the nearest open facility. For any
fixed p, the objective is to determine the subset of p open facilities that minimizes
the sum of the distances between each customer and the nearest open facility. The p-
median problem is NP-hard for unbounded p ≤ m although the p-median problem
is not NP-hard for any fixed p [10] since there are O(mp) possible choices for p

sensors. However, it is computationally intensive to determine optimal solutions for
instances with even modest n and m [6] even for fixed p. The p-median problem
is closely related to the p-center problem, in which the objective is to minimize
the maximum distance between a customer and the nearest open facility; the latter,
however, is significantly more difficult to solve in practice.

In the context of contamination sensor placement for water distribution networks,
a “customer” corresponds to a particular contamination scenario, i.e., an injection of
contaminant into the network. We assume sensors are placed at network junctions,
including tanks and reservoirs, to mirror nearly all prior research on sensor
placement optimization (see Berry et al. [2] for a noteworthy exception). The set
of potential facility locations then corresponds to the set of network junctions. We
assume a fixed budget of p general contaminant sensors, each placed at a specific
junction. Let S denote the set of potential contamination scenarios, and let L denote
the set of network junctions. We additionally define a “dummy” network junction
q corresponding to an abstract location at which detection occurs via mechanisms
external to the sensor network, e.g., through observation of population behaviors.
The introduction of q reflects the fact that not all contamination scenarios are
detectable by a physical sensor.

Let P denote the subset of junctions with installed sensors, where |P | = p

and P ⊆ L. For each combination of s ∈ S and j ∈ L, we define dsj as the
aggregate, network-wide “damage” incurred if scenario s is first detected by a
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sensor at junction j , assuming a sensor is actually located at junction j . We further
define dsq for each s ∈ S as the network-wide damage incurred if scenario s is not
detectable by any sensor in P . As discussed below, precise quantification of damage
depends on the optimization objective; for illustrative purposes, the values dsj can
be interpreted as the number of people exposed to the injected contaminant. The
design objective is then to minimize

∑

s∈S
dsf (s,P∪{q}), (7.1)

where f (s, P ∪ {q}) denotes a j ∈ P ∪ {q} that minimizes dsj .
To determine an optimal sensor placement P and the corresponding minimum

impact quantity, we formulate the p-median problem as a mixed-integer (linear)
program (MIP), which we then solve using a commercially available MIP solver.
The MIP-related terms used throughout this paper are defined in the Mathematical
Programming Glossary [11]. A MIP formulation of the p-median problem is

Minimize
∑

s∈S

∑

j∈L∪{q}
dsj xsj (7.2)

Subject to
∑

j∈L∪{q}
xsj = 1 ∀s ∈ S (7.3)

xsj ≤ yj ∀j ∈ L,∀s ∈ S (7.4)
∑

j∈L
yj = p (7.5)

yj ∈ {0, 1} ∀j ∈ L (7.6)

0 ≤ xsj ≤ 1 ∀s ∈ S, j ∈ L ∪ {q}. (7.7)

The binary yj variables determine whether a sensor is placed at a junction j ∈ L.
Linearization of Eq. (7.1) is achieved through the introduction of auxiliary variables
xsj , which indicate whether a sensor placed at junction j is the first to detect
scenario s. Constraint (7.4) ensures that detection is possible only if a sensor exists
at junction j . The xsj variables are implicitly binary due to a combination of
binary yj , Constraint (7.4), and the objective-function pressure induced by Eq. (7.2).
Constraint (7.3) guarantees that each scenario s ∈ S is first detected by exactly one
sensor, either at q or in the set L; ties are broken arbitrarily. Finally, the objective
function (Eq. (7.2)) ensures that detection of a scenario s is assigned to the sensor-
bearing junction j ∈ L ∪ {q} that minimizes dsj or to the non-detected cost dsq if
no sensor can detect s. The objective therefore minimizes the average or cumulative
damage taken over all the scenarios.

We determine the impact of a potential contamination scenario via transport
simulation. Specifically, we use EPANET [30] to generate a time-series τsj of
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contaminant concentration at each junction j ∈ L for each scenario s ∈ S . We use
the resulting time-series to compute the network-wide impact dsj of the scenario
s assuming first detection via a sensor placed at junction j . More formally, let γsj

denote the earliest time t at which a sensor at junction j can detect the contaminant
associated with scenario s, e.g., when contaminant concentration reaches a specific
detection threshold. If the contaminant from scenario s fails to reach junction j ,
then γsj = t∗, where t∗ denotes either the end of the simulation or an appropriate
user-specified delay. We next define dsj = ds(γsj ), i.e., the aggregate, network-
wide damage incurred if scenario s is first detected at time γsj . In our analysis,
dsq = ds(t

∗). We assume without loss of generality that a sensor placed at a
junction j ∈ L is capable of immediately detecting any scenario s ∈ S at j

once non-zero concentration levels of a contaminant are present. We finally assume
that both consumption and propagation of contaminant are immediately terminated
once detection occurs. The model can handle a delay for termination of damage
accumulation, but we are not aware of realistic alarm procedures and mitigation
strategies to give a reasonable approximate delay value.

By isolating objective-specific information to the dsj coefficients, the p-median
MIP seamlessly allows for optimization of disparate design objectives. We consider
the following objectives in our analysis, variants of which have previously been
considered by at least one research group—we briefly consider any key factors in
the computation of these objectives from the set of τsj where necessary:

Population Exposed (pe) This objective quantifies the number of people sickened
by exposure to the injected contaminant, as defined by the demand-based model
described in Murray et al. [21]. The authors of this chapter can provide specific
values for the numerous parameters in the dosage-response computation upon
request. Alternative models of population exposure have assumed the availability of
population estimates on a per-junction basis [2, 31]. While correcting the obvious
deficiency of demand-based models, reliable estimates of population density over
time are generally unavailable.

Time to Detection (td) This objective quantifies the time, measured in minutes,
between the initiation of an injection and the earliest presence of non-zero con-
taminant concentration at a junction with a sensor. Watson et al. [31] previously
considered this objective in the context of a flow-averaged model of the sensor
placement problem.

Volume of Contaminated Water Consumed (vc) This objective quantifies the
total volume of water, measured in gallons, extracted from the system prior to
detection of non-zero contaminant concentration at a junction with a sensor.
Extraction occurs at any junction—excepting tanks and reservoirs—with a positive,
non-zero demand; the computation is independent of the magnitude of contaminant
concentration. This objective is among the most widely studied, having previously
been examined in [15, 23, 31].

Mass of Contaminant Consumed (mc) This objective quantifies the total “mass”
of injected contaminant, quantified in terms of the number of biological organisms,
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extracted from the system prior to the presence of non-zero contaminant concentra-
tion at a junction with a sensor. In contrast to vc, the mc objective is sensitive to
the concentration of the contaminant. This objective was previously considered in
[3, 31].

Number of Failed Detections (nfd) This objective quantifies the proportion of
contamination scenarios for which no sensor detects non-zero contaminant concen-
tration, i.e., the contamination scenario is “detected” by a sensor at the dummy q

junction. Watson et al. [31] previously examined this objective.

Extent of Contamination (ec) This objective quantifies the length of pipe in a dis-
tribution system, measured in linear feet that has been directly exposed to non-zero
contaminant concentration. The entire length of an individual pipe is considered to
be contaminated if (1) non-zero contaminant concentration is present at an end-point
junction j and (2) water flow (as determined via contaminant transport simulation)
enters the pipe from j ; consequently, the measure is conservative. Watson et al. [31]
introduced this objective.

The pe, vc, and mc objectives are arguably related, in that they attempt to
quantify—either implicitly or explicitly—the impact of a contamination scenario on
a population. However, the relationship between these and the remaining objectives
is less clear.

The straightforward formulation of the p-median MIP above is computationally
tractable for small water distribution networks, but it suffers from serious scalability
limitations when the number of network junctions exceeds several thousand. We
solve a more complex variant of the above formulation to facilitate analysis of large-
scale distribution networks, a tactic that yields identical solutions in significantly
shorter run-times.We use the improvedMIP formulation fromBerry et al. [3], which
is described here for completeness, to generate the results presented in Sect. 7.4.

The improved MIP formulation from Berry et al. [3] exploits a common property
of water quality simulations run with a coarse time step: for a given scenario s, there
are frequently many locations i and j such that dsj = dsi . Informally, this indicates
that contamination in scenario s reaches locations i and j within the same time
step. We call such locations i and j equivalent with respect to detecting scenario s.
In the previous MIP model we let L denote the set of all network locations. We now
let L̂s denote the set of locations impacted by contamination from scenario s such
that for all i, j ∈ L̂s , we have dsj �= dsi . That is, the set L̂s contains exactly one
representative location from any set of equivalent locations for scenario s. The new
MIP model is then

Minimize
∑

s∈S

∑

j∈L̂s∪{q}
dsj xsj (7.8)

Subject to
∑

j∈L̂s∪{q}
xsj = 1 ∀s ∈ S (7.9)
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xsj ≤ yj +
∑

i∈L\L̂s :dsj =dsi

yi ∀j ∈ L̂s ,∀s ∈ S (7.10)

∑

j∈L
yj = p (7.11)

yj ∈ {0, 1} ∀j ∈ L (7.12)

0 ≤ xsj ≤ 1 ∀s ∈ S, j ∈ L ∪ {q}. (7.13)

This formulation has fewer xsj variables for a given scenario s: one for each
unique value of dsj . The constraints operate similarly to those in the previous MIP
model except for Constraint (7.10). Suppose location j is the representative for all of
its equivalent locations with respect to scenario s. Variable xsj is allowed to take the
value of 1, signaling an observation of scenario s at time γsj , if there is a real sensor
at any location with the same timing value for scenario s. The placement variable
for every such equivalent location is on the right-hand side of Constraint (7.10) for
each scenario s.

We now discuss various assumptions underlying our p-median MIP formulation
of the sensor placement problem. The most critical and unrealistic assumption
is the availability of general-purpose, perfect contaminant sensors. We base our
decision to proceed under this assumption on two factors. First, sensor performance
characteristics are not currently well-understood (although there is ongoing research
in this area, e.g., see Liu et al. [18] and McKenna et al. [19]). Furthermore, data for
real-world distribution networks is limited. Second, the tractability of computational
techniques for imperfect-sensor variations of the p-median problem lags that of
the perfect-sensor formulation [4], making extensive studies of the form presented
in Sect. 7.4 infeasible. Although not considered here, one can easily extend the
p-median formulation to handle a number of real-world constraints and factors,
including fixed and/or invalid sensor locations, delays in raising a general alarm
after detection by a sensor, thresholds on contaminant concentration, a probability
distribution on the attack scenarios, and installation costs [3, 5]. Many of these
extensions involve straightforward modifications to the computation of the dsj

damage coefficients, which should not greatly affect the tractability of the MIP
models. These extensions require more data that utilities may not maintain or be
able to acquire. But in some cases, researchers are suggesting guesses. For example
He et al. [13] suggest attack probability distributions based on demands, flow rates,
or pipe length.

7.4 Experimental Results and Analysis

We now use the p-median model introduced in Sect. 7.3 to analyze the relationship
between different design objectives for three large, real-world water distribution
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networks. We coded the p-median MIP formulation of the sensor placement opti-
mization problem using the AMPL modeling language [9] and solved the resulting
MIPs to optimality using ILOG’s AMPL/CPLEX 9.1 commercial solver package.1

We defer to Berry et al. [3] for a discussion of the computational characteristics of
the p-median MIP model and alternative heuristic techniques for its solution. We
describe the test networks and contamination scenarios in Sect. 7.4.1. In Sect. 7.4.2
we discuss the nature of individual design objectives for the test networks given a
range of sensor budgets. In Sect. 7.4.3 we analyze the impact of optimization for a
single design objective on complementary design objectives.

7.4.1 The Test Networks and Contamination Scenarios

We report computational results for three real, large-scale municipal water distri-
bution networks. The networks are denoted simply as Network1, Network2, and
Network3; the identities of the corresponding municipalities are withheld due to
security concerns. Network1 consists of roughly 400 junctions, 500 pipes, and a
small number of tanks and reservoirs. Network2 consists of roughly 3000 junctions,
4000 pipes, and roughly 50 tanks and reservoirs. Network3 consists of roughly
12,000 junctions, 14,000 pipes, and a handful of reservoirs; there are no tanks
or well sources in this municipality. All of the models are skeletonized although
the degree of skeletonization in Network1 and Network2 is much greater than in
Network3.

Figures 7.1, 7.2, and 7.3 depict graphical representations of Network1, Net-
work2, and Network3, respectively. We manually “morphed” or altered (e.g.,
through pipe lengthening or coordinate translation/rotation) key topological features
of each original network structure to inhibit identification of the source municipality.
Local topologies were largely preserved in this process, such that the graphics
faithfully capture the overall characteristics of the underlying network structures.
Sanitized versions of all three networks, in the form of EPANET input files, are
available from the authors. While these files contain no coordinate information, all
data other than that relating to labels (which have been anonymized) are unaltered.
All computed hydraulic and water quality information thus accurately reflects
(within the fidelity limits of the data and the computational model) the dynamics
of the source municipality.

We simulated network hydraulics for 96 h, representing multiple iterations of a
typical daily demand cycle. We defined a single contamination scenario for each
junction with non-zero demand. Injection for each scenario starts at time t = 0 and
continues for 12 h. We model scenarios as biological mass injections with a constant
rate of 5.78e10 organisms per minute. Although not considered here, the p-median

1At the time of this writing, the latest version of CPLEX Optimization Studio is 12.9—now
available from IBM.
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Fig. 7.1 Graphical depiction of Network1 topology. See text for details

Fig. 7.2 Graphical depiction of Network2 topology. See text for details



136 J.-P. Watson et al.

Fig. 7.3 Graphical depiction of Network3 topology. See text for details

formulation—via the dsj—allows arbitrarily complex attack scenarios. For example,
one could model multiple simultaneous injection sites with different contaminants
at variable injection strengths and durations.

We assume uniform scenario probabilities, so that all results (defined by
Eq. (7.1)) are normalized by the number of non-zero demand junctions to obtain an
expectation. We ran water quality simulations for each scenario with a time-step
resolution of 5min. We used the resulting τsj to compute the impact parameters
dsj for the various design objectives, as previously described in Sect. 7.3. We used
EPANET [30] for all hydraulic and water quality simulations.

7.4.2 Characteristics of Individual Design Objectives

Most of the design objectives introduced in Sect. 7.3 have either been considered
only in the context of small test networks or on less accurate formulations of
the sensor placement problem. Furthermore, optimal-performance case studies
of sensor configurations for large-scale, real-world distribution networks are of
interest to practitioners and researchers but are absent in the broader literature.
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Table 7.1 Optimal values of
design objectives for a range
of p on Network1

p pe td vc mc nf d ec

0 2445 5760 1,288,000 3.95e+13 1.0 41,268

5 143 1600 8357 1.69e+13 0.13 4084

10 63 985 3010 1.10e+13 0.05 2444

25 20 219 660 3.43e+12 0.0 982

50 5 41 158 3.79e+11 0.0 375

100 0 0 2 4.36e+08 0.0 0

200 0 0 0 0 0.0 0

400 0 0 0 0 0.0 0

The units of measure for the various design objectives are,
respectively, number of individuals, minutes, gallons, organisms,
proportion of total contamination scenarios not detected, and
linear feet

Consequently, we first consider the nature of the individual design objectives on
our test networks.

Table 7.1 reports the performance of optimal sensor placements for each of our
design objectives on Network1, over a range of sensor budgets p. In the absence
of sensors, the mean impact of a contamination scenario is significant, especially
for the pe, vc, and ec objectives. Placing even p = 5 sensors yields an order-of-
magnitude or larger reduction in many of the objectives, including pe, vc, nf d, and
ec. Independent of objective, a budget of only p = 10 is sufficient to yield impacts
of at most 28% of the p = 0 solution; for many objectives, e.g., pe and nf d, the
impact is approximately 5% of the p = 0 solution. For all but the mc objective, p =
50 is sufficient to achieve near-perfect protection. In all cases, excellent performance
can be achieved with a budget p equal to a small fraction of the total number of
network junctions.

We report in Table 7.2 the performance of optimal sensor placements for each
of our design objectives on Network2; recall that Network2 is roughly an order-
of-magnitude larger in terms of the number of network elements than Network1.
Considering the p = 0 solution, there is a marked growth in impact relative
to Network1 for the objectives that do not have a fixed maximum (nf d with a
maximum of 100% and td with a maximum equal to the (consistent) length of
simulation). This growth in maximum average impact for Network2 relative to
Network 1 is consistent given the differences in network size and roughly equivalent
degrees of skeletonization. In terms of pe, over 14,000 individuals are sickened on
average across the range of possible contamination scenarios, while large numbers
of specific scenarios (not reported) impact far larger numbers of individuals.
Similarly, approximately 66 miles of pipe are exposed to the contaminant on
average, while 11.7 million gallons of contaminated water are extracted from the
distribution network prior to detection. Despite the network size, p = 5 is still
sufficient to yield an order-of-magnitude or greater reduction in damage relative to
the p = 0 solution for the pe, vc, and ec objectives. Relative to the results for
Network1, a large (p = 100) number of sensors are required to reduce impacts
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Table 7.2 Optimal values of design objectives for a range of p on Network2

p pe td vc mc nf d ec

0 14,217 5760 11,667,200 3.90e+13 1.0 344,376

5 1709 3218 162,640 2.71e+13 0.47 38,822

10 1061 2860 66,241 2.44e+13 0.41 22,062

50 347 2028 13,675 1.74e+13 0.29 6382

100 205 1632 7549 1.42e+13 0.23 3604

500 50 124 1527 2.51e+12 0.0 754

1000 14 11 272 7.18e+10 0.0 84

2000 0 0 0 0 0.0 0

Table 7.3 Optimal values of
design objectives for a range
of p on Network3

p pe td vc mc nf d ec

0 2249 5760 978,487 4.15e+13 1.0 138,543

5 764 4523 98,751 3.63e+13 0.69 41,623

10 498 4134 52,354 3.41e+13 0.62 26,973

50 169 3224 10,112 2.72e+13 0.46 8801

100 103 2832 5305 2.43e+13 0.39 5424

500 34 1642 1311 1.58e+13 0.20 1820

1000 20 987 672 1.08e+13 0.09 1153

2000 11 310 287 5.14e+12 0.0 684

to about 28% or less than that of the p = 0 solution for all objectives except mc,
while slightly over 1000 sensors are required to achieve near-perfect protection. We
observe that both results are consistent with the differences in network size.

Finally, we consider individual design objective results for Network3, reported
in Table 7.3. Despite the larger size relative to Network2, the mean impacts under
p = 0 for the network-dependent performance measures (pe, vc, mc, and ec) are
comparable to those reported for Network1. This is due to the lesser degree of
skeletonization used in the development of the Network3 model. Given the absolute
network size, a very small budget of 5 sensors yields significant protection relative
to the baseline p = 0 solution. However, very large numbers of sensors (p ≈ 1000)
are required to yield impacts of at most 28% of the p = 0 solution. While small
relative to the total number of network junctions, such large budgets would represent
a significant investment for a water utility.

Overall, the results in Tables 7.1 through 7.3 demonstrate that independent of
objective, a very small number of sensors can yield large—and often order-of-
magnitude—reductions in impacts relative to the p = 0 solution. In all of our test
networks, a sensor budget equal to at most 10% of the total number of network
junctions yields reductions in the mean impact of an contamination scenario,
quantified by any design objective, of 80% or more relative to the p = 0 solution.
In other words, a very small number of sensors, in both relative and absolute
terms, provides a significant degree of protection. As the number of sensors grows,
however, the per-sensor benefit diminishes greatly.
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7.4.3 The Impact of Optimization on Competing Objectives

Several researchers have argued for the use of specific design objectives to develop
sensor placements in water distribution networks [15, 17]. Populations would
undoubtedly prefer minimization of pe as the primary objective. In contrast,
potential economic impacts influence both adversaries and decision-makers, leading
to an argument for minimization, or at least consideration, of ec. Similarly, it is not
unreasonable to expect a CWS to detect a large proportion of possible contamination
scenarios within a reasonable time-frame (nf d). In any case, no single view is likely
to prevail, and planners will realistically have to understand the trade-offs between
the various design objectives. The objectives of interest are ideally highly correlated
so that optimal solutions with respect to one objective yield near-optimal solutions
with respect to others.2 Unfortunately, as we now discuss, we do not necessarily
observe this behavior on our test networks.

It is important to note before proceeding that solution quality with respect to
secondary objectives is entirely ignored if optimizing any individual objective. So
given a problem with multiple globally optimal solutions with respect to the primary
objective, we are not selecting among the “best” with respect to any particular
secondary objective. Rather, we are simply using the particular solution returned
by our MIP solver. However, there is no evidence that such consideration would
influence the results presented below.

We begin with an example in which we investigate how minimization of the
nf d objective on Network1 impacts solution quality with respect to the other
design objectives. Given p = 25, nf d = 0.0, i.e., all contamination scenarios
are detected within the 96-h simulation period. However, the solution that yields an
optimal value of nf d given p = 25 also results in pe = 234, which represents
a 1170% deviation from the optimal value of pe = 20 given p = 25 (as shown
in Table 7.1). Similarly large deviations are observed for ec and vc (677% and
1017%, respectively), while the values of td and mc represent “only” 180% and
223% deviations from optimality, respectively. Although such large deviations were
unexpected, we acquired a qualitative understanding of the underlying causes via
straightforward a posteriori analyses. For example, minimization of nf d subject to
a limited sensor budget tends to yield sensor placements near the leaves, or end-
points, of the distribution network. In doing so, many upstream nodes are exposed
to contaminant for longer durations, resulting in greater overall ingestion.

Characterizing and analyzing the interactions between all of the design objectives
introduced in Sect. 7.3 are beyond the scope of this paper. Rather, we examine
illustrative cases, one for each of our test networks. In the first case, we consider
how optimization of pe on Network1 impacts solution quality, in terms of deviation
from optimality, with respect to the complementary design objectives. The results
are shown in Table 7.4 for a range of sensor budgets; for each complementary

2We use this informal notion of correlation throughout, as opposed to the more familiar concept of
statistical correlation.
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Table 7.4 Percentage and absolute deviations from optimality for complementary design objec-
tives on Network1, given a pe-optimal solution

td vc mc nf d ec

p % Abs. % Abs. % Abs. % Abs. % Abs.

5 73 1160 206 17,212 30 5.10e+12 246 0.32 42 1707

10 96 944 42 1263 58 6.40e+12 440 0.22 46 1119

25 400 875 31 205 174 5.98e+12 ∞ 0.15 68 663

50 1685 513 58 91 1396 5.29e+12 ∞ 0.11 107 403

100 ∞ 74 700 14 87,385 3.81e+11 0 0.0 ∞ 106

200 0 0 0 0 ∞ 1.16e+8 0 0.0 ∞ 26

400 0 0 0 0 0 0 0 0.0 0 0

objective, we report both the absolute and percentage difference from optimality
(e.g., determined in part using the data recorded in Table 7.1). We observe that large
absolute deviations do not necessarily correspond to large percentage deviations,
and vice versa. Values of ∞ in a percentage-difference column indicate the optimal
value for the corresponding objective given p is 0. The results indicate two specific
trends. First, for small-to-moderate p (5 ≤ p ≤ 50), pe is not significantly
correlated with any of the other objectives; both percentage and absolute deviations
from the optimal values of the complementary objectives are unexpectedly and
uniformly large. Second, for large p (p ≥ 100), the correlation between pe and the
complementary objectives begins to improve, reaching near-perfect correlation once
p ≈ 200. The convergence as p → |L| is expected: as a larger number of network
junctions are covered by sensors, the similarity between the optimal placements for
different objectives necessarily increases. The differences are unfortunately greatest
in the most likely regime for CWS deployment—when the sensor budgets p are
small.

We next consider a similar analysis on the larger Network2 model, in which we
analyze how optimization of nf d impacts performance in terms of secondary design
objectives. Table 7.5 gives the results, presented in an analogous form to those
shown in Table 7.4. In contrast to the results for Network1, we observe fairly strong
correlation between some objectives. Specifically, optimal nf d solutions yield near-
optimal td performance, and only moderately worsemc performance for up to about
100 sensors. However, by 1000 sensors, the deviations are quite large. For small-to-
moderate sensor budgets (5 ≤ p ≤ 100), optimal nf d solutions yield significant
absolute and percentage deviations from optimality for the pe, ec, and vc. These
deviations further persist even for large sensor budgets of p = 1000 and greater.
Comparison of the Network1 and Network2 results further reinforces the general
observation that optimization with respect to a specific design objective can yield
highly sub-optimal performance with respect to secondary objectives. However, the
results also indicate that the degree of sub-optimality appears to be dependent upon
both the test network and the design objectives under consideration.

Finally, for Network3 we consider the impact of optimization of vc on secondary
design objectives; the results are shown in Table 7.6. Relative to the results shown in
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Table 7.5 Percentage and absolute deviations from optimality for complementary design objec-
tives on Network2, given a nf d-optimal solution

pe td vc mc ec

p % Abs. % Abs. % Abs. % Abs. % Abs.

5 472 8062 11 342 819 1,332,100 28 7.60e+12 567 220,233

10 773 8204 12 338 1651 1,093,519 37 9.10e+12 980 216,231

50 933 3237 10 203 1779 243,245 44 7.60e+12 1467 93,647

100 1030 2111 8 127 1473 111,161 37 5.30e+12 1742 62,793

500 844 422 72 89 824 12,578 91 2.20e+12 1490 11,234

1000 1586 222 1100 121 2526 6872 3897 2.80e+12 6636 5574

2000 ∞ 58 ∞ 53 ∞ 2385 ∞ 1.10e+12 ∞ 2077

Table 7.6 Percentage and absolute deviations from optimality for complementary design objec-
tives on Network3, given a vc-optimal solution

pe td mc nf d ec

p % Abs. % Abs. % Abs. % Abs. % Abs.

5 4 30 3 115 <1 3.00e+11 10 0.07 10 4324

10 7 33 5 190 <1 2.00e+11 15 0.09 17 4518

50 14 24 9 283 2 5.00e+11 24 0.11 35 3101

100 22 23 12 344 2 6.00e+11 33 0.13 46 2475

500 35 12 37 612 12 1.90e+12 80 0.16 75 1371

1000 50 10 73 723 25 2.70e+12 200 0.18 94 1089

2000 55 6 240 743 63 3.25e+12 ∞ 0.16 121 829

Tables 7.4 and 7.5, the deviations from optimality for the secondary objectives are
significantly lower in both percentage and absolute terms (e.g., most deviations are
less than 100%), and there is stronger correlation between many of the objectives
(e.g., pe, mc, and ec). Network3 is supplied strictly through reservoirs, in contrast
to Network1 and Network2. The lack of tanks strongly limits the flow dynamics,
which partially explains both the lower deviations from optimality and the stronger
correlations observed between many of the objectives.

Our results support three general conclusions. First, there are significant risks
associated with optimization of sensor placements with respect to any particular
design objective. The results in Tables 7.4, 7.5, and 7.6 demonstrate that optimal
solutions with respect to any specific design objective can be far from optimal with
respect to a range of complementary objectives. Second, and counter-intuitively, the
lack of significant correlation between objectives may not improve with small-to-
moderate increases in p. In other words, a large sensor budget does not necessarily
mitigate the risk associated with optimization with respect to a single design
objective. Third, the nature of the correlation between various objectives is highly
problem-dependent, suggesting that a comprehensive analysis is required on a per-
network basis.
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7.5 Compromise Solutions

While there is significant risk associated with focusing on any individual design
objective in sensor placement optimization, it is unclear whether it may be possible
to construct a solution that more carefully balances a range of design objectives,
or whether there exist objectives that are strictly conflicting. We again consider
minimization of pe on Network1 given p = 10 to explore this question, but we
impose additional constraints on the corresponding p-median MIP described in
Sect. 7.3 so that the values of td, mc, and vc are constrained to be no greater than
50, 20, and 30% of their optimal values, respectively (as recorded in Table 7.1).
While the optimal value of pe increases 60% relative to the baseline MIP without
the side constraints, the deviations from optimality for all but one of the other design
objectives are significantly reduced relative to the baseline MIP results, as reported
in Table 7.4. Specifically, the deviation from optimality given the additional side
constraints is 29% for td (down from 96%), 28% for vc (down from 42%), 20%
for mc (down from 58%), and 180% for nf d (down from 440%). However, the
deviation from optimality for ec grows from 46 to 78%, indicating that at least for
Network1, the pe and ec objectives are strongly complementary.

We omit a broader analysis of the trade-offs between the various design
objectives due to space limitations. We rather observe that by sacrificing solution
quality with respect to a primary design objective, it is possible to gain significant
improvements with respect to secondary objectives and avoid some of the brittleness
associated with solutions that are optimal with respect to individual design objec-
tives. However, due to the competing nature of some design objectives on some
networks, it is not always possible to improve the performance of all secondary
objectives simultaneously. Ultimately, a detailed understanding of the relationship
between various design objectives is required for decision-makers to develop robust
sensor placements for CWS deployment. Such understanding is even more crucial
in the early phases of CWS deployment, where sensor budgets are small and the
correlation between the optimality of different design objectives is usually weak.
As the sensor budgets grow to cover a significant fraction of the network, this
correlation tends to increase, and the need for multiple-objective analysis is less
crucial.

7.6 Conclusions

Most research on contaminant sensor placement optimization in water distribution
networks presupposes a given, fixed design objective. Several disparate design
objectives have been proposed, and there are associated arguments—both implicit
and explicit—for why one particular objective should be preferred over another. Yet,
preference for any fixed objective is potentially risky given the current lack of under-
standing of the relationships among the proposed objectives. We have characterized
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some of the inter-dependencies among a range of optimization objectives on three
large-scale test networks. The majority of these objectives are uncorrelated, in that
optimal solutions with respect to any one objective are often highly sub-optimal with
respect to complementary objectives. Furthermore, increasing the number of sensors
frequently fails to improve the correlation. However, these risks can be mitigated
in some circumstances by considering solutions that are sub-optimal with respect
to all performance objectives, which in turn requires a thorough understanding of
how different objectives are related. Overall, the implications of our results for both
researchers and planners are clear: algorithms for the sensor placement problem
must carefully and simultaneously consider multiple design objectives.
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Chapter 8
A Simplex Approach to Solving Robust
Metabolic Models with Low-Dimensional
Uncertainty

Allen Holder and Bochuan Lyu

Abstract We address the problem of solving difficult metabolic models that arise in
the study of flux balance analysis (FBA). FBA problems are regularly linear due to
simplifying assumptions although quadratic, combinatorial, and robust extensions
are pragmatic variations. All such extensions inherit an underlying computational
difficulty from the linear model, although in many instances this concern can
be avoided by selecting an appropriate solution algorithm. Robust extensions
unfortunately lack a trustworthy computational standard and are thus difficult to
solve and problematic to employ. We show that a robust model’s optimal value can
be calculated by coupling standard nonlinear schemes with a technique of successive
linear approximation, and we further indicate how the computational outcome might
differ from the intent of the original robust model. We test our algorithm on two
simple, motivating examples and on a standard FBA problem.

8.1 Introduction

Flux balance analysis (FBA) is the study of metabolic systems that have been
expressed as computational and mathematical models. Most FBA models are
optimization problems principled on the biological assumptions of maximal growth
rate and steady metabolic state. Such models were proposed as early as the
1980s [11, 25], and the field has flourished due to its wide-ranging efficacy to
mimic and predict biological outcomes [20, 22]. For instance, numerous models
accurately predict gene knockouts [20, 22], while others identify how chemical
pathways change to accommodate biochemical occlusion [8], advance synthetic
biological design [18, 23], vet new biochemical systems [24], or suggest how to
hinder cancer migration [27]. The applications are many and burgeoning.
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The success of FBA is due in large part to our ability to accurately and efficiently
solve optimization models that represent metabolic systems. The authors of [9]
challenged this success by claiming that much of FBA’s research stemmed from
computational tolerances that obscured a model’s lack of fidelity to represent an
intended metabolic network. The authors specifically argued that many metabolic
models were incapable of biomass production with exact arithmetic, and thus, these
models did not approximate a living organism’s metabolism. The work in [10]
refuted these claims and demonstrated agreement between exact and approximate
solvers for the majority of models in question. The primary issue seems to have been
unclear standards with regard to model generation.

Related to this computational discussion is the fact that FBAmodels are generally
understood to be difficult instances within their problem class, and computational
performance is regularly sensitive to the choice of algorithm and implementation.
A primary concern is the amount of degeneracy, a topic that has been studied algo-
rithmically with Monte Carlo sampling by Wiback et al. [26]. Algorithm choice is
particularly problematic for robust analysis of metabolic pathways (RAMP), which
is an FBA adaptation that relaxes the dubitable assumption of steady state [19].
RAMP models are difficult second-order cone problems (SOCPs) that do not lend
themselves to interior-point algorithms, and since SOCP solvers are interior-point
schemes, RAMP models are without a steadfast computational platform. This
computational hindrance is sidestepped in [19] by restricting uncertainty to the
biomass equation, and while this limitation provides computational efficacy with a
simplex algorithm after a model reformulation, it also reduces viability. We address
this limitation by combining nonlinear schemes with a simplex algorithm to solve
general RAMP models. The resulting algorithm is generally appropriate for robust
models with low-dimensional uncertainty for which the objective value, and not the
optimal solution, is paramount.

8.2 Motivation and Problem Statement

Consider the SOCP,

max
{
cT x : x ≥ 0, Aix + ‖Ri x‖ ≤ bi, for i = 1, 2, . . . , m

}
, (8.1)

where Ai is the i-th row of the m×n matrix A, and Ri is a pi ×n matrix. See [4–6]
as informative references on SOCPs. A common re-expression of (8.1) is based on
the fact that

‖Ri x‖ = max{uT
i Ri x : ‖ui‖ ≤ 1}, (8.2)

where ui is a pi-vector. The subsequent re-expression is
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max cT x

such that

Aix + uT
i Ri x ≤ bi, for all ui satisfying ‖ui‖ ≤ 1,

for i = 1, 2, . . . , m,

x ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(8.3)

Modeling uncertainty benefits from the inequality ‖ui‖ ≤ 1 in (8.2), as the SOCP is
interpreted as optimizing against all constraints of the form

(Ai + uT
i Ri) x ≤ bi, with ‖ui‖ ≤ 1,

where i indexes the constraint. This format includes the linear constraint Aix ≤ bi

with ui = 0, and hence, this formulation imparts that we are optimizing against a
collection of uncertainty surrounding the data of Ai .

The inequality in (8.2) can be tacitly replaced with the equality ‖ui‖ = 1 because
the maximum is always achieved on the boundary. This observation permits the
reformulation,

min{z(u1, u2, . . . , um) : ‖ui‖ = 1 for i = 1, 2, . . . , m}, (8.4)

where

z(u1, . . . , um) = max{cT x : x ≥ 0, Aix + uT
i Rix ≤ bi, for i = 1, 2, . . . , m}.

This second reformulation differs from the first with regard to its decision space.
Models (8.1) and (8.3) share x as their common decision vector, and their argument
maximums agree. Model (8.4) instead has (u1, . . . , um) as its decision vector,
and this model only agrees with models (8.1) and (8.3) in its optimal value.
Problems (8.1) and (8.3) are convex and are commonly solved by software packages
with an interior-point algorithm. Problem (8.4) is not convex, and it is thus in
a different, and typically more difficult, problem class. However, any value of
z(u1, . . . , um) can be calculated by solving a linear program (LP), a fact that we
promote as an advantage in some circumstances—especially those in which interior-
point methods are less than performant and those for which an optimal value is more
important than an optimal solution.

RAMPmodels motivate both circumstances. First, standard interior-point solvers
have not proven trustworthy [19], and second, the most common computational
task requires the calculation of the optimal value and not an optimal solution. In
particular, FBA models, as well as their extensions like RAMP, are benchmarked
on their ability to predict gene essentiality, which is determined by calculating
the maximum growth rate with a gene knockout. A gene is essential if the
maximum growth rate is sufficiently small. Most FBA models, including RAMP
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with limited uncertainty, predict gene essentiality with at least 90% accuracy, see
for example [21].

RAMP’s computational success to date follows from the restrictive assumption
that uncertainty be narrowed to the biomass equation, a source of uncertainty that
we discuss more thoroughly in Sect. 8.5. Restricting uncertainty to the biomass
equation means that each linear constraint of an FBA model has at most a single
uncertain parameter, and subsequently, the SOCP of RAMP reduces to an LP.
RAMP benefits computationally because the resulting LP solves reliably with a
simplex method, providing a stable computational model. We note that the LPs, just
like their corresponding SOCPs, do not lend themselves to interior-point algorithms,
and hence, there is a computational preference for simplex based approaches [19].
That said, interior-point solutions have interpretive advantages should an interior-
point algorithm solve the particular problem of interest [2, 3].

Restricting uncertainty to the biomass equation limits RAMP’s scope, but
fulfilling RAMP’s promise as an SOCP does not mandate a substantial increase
in uncertainty. Indeed, the vast majority of a metabolic model’s data is based on
standard stoichiometry and is thus perfectly determined. So little is truly uncertain,
and all metabolic models known by the authors would only need an extension to
two or less uncertain parameters per constraint. We address these extensions by
developing an algorithm to calculate the optimal value of (8.1) by solving (8.4)
under the restriction that each constraint has at most two uncertain parameters.
We say that such problems have low-dimensional uncertainty. The new algorithm
combines a nonlinear search to solve the nonconvex problem in (8.4) with a simplex
algorithm to evaluate z(u).

Restricting uncertainty to at most two parameters per constraint allows additional
modeling assumptions. We can first assume that each Ri has at most two columns
with nonzero elements, and we can secondly assume that each Ri has at most two
rows, i.e. pi ≤ 2 for each i. Suppose to the contrary that pi > 2. Then the maximum
rank of Ri being two guarantees that we can row reduce Ri to R′

i with all but the

top two rows being zero. Let R̂i be the submatrix of R′
i that contains the top two

rows of R′. Since the row spaces of Ri and R̂i are the same, we can replace uT
i Ri

with ûT
i R̂i , where ûi is a two element vector, and hence, we can assume pi ≤ 2.

If pi = 1, then u is a scalar with the value of either 1 or −1, and in this case we
can simply add both linear constraints and forego deciding ui . Lastly, ui is a two
element unit vector if and only if

ui = (cos(θi), sin(θi))
T

for a unique θi in [0, 2π).
The RAMP formulation with at most two uncertain parameters per constraint

prompts us to study the model,

min{z(θ) : θ ∈ [0, 2π)q}, (8.5)
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where

z(θ) = max cT x

such that

Aix + (cos(θi), sin(θi))Ri x ≤ ai, for i = 1, 2, . . . , q,

Bx ≤ b,

x ≥ 0.

The (m − q) × n system Bx ≤ b contains the constraints without uncertain
parameters and those that have a single uncertain parameter, the latter of which have
been re-expressed as two linear inequalities. Constraints with exactly two uncertain
parameters are modeled by the system

Aix + (cos(θi), sin(θi))Ri x ≤ ai, for i = 1, 2, . . . , q,

where each θi ranges over [0, 2π). Each Ri is a 2×n matrix of rank 2, with the only
nonzero columns aligning with the two uncertain parameters of Ai .

The optimal value of (8.5) is the same as the optimal value of the SOCP,

max{cT x : x ≥ 0, Bx ≤ b, Aix + ‖Rix‖ ≤ ai, for i = 1, 2, . . . q},

but we again stress that the decision spaces are different. The SOCP seeks an optimal
x, whereas the minimization of z seeks an optimal θ . We comment that the SOCP
format naturally arises as a robust linear program, and any linear model may fit the
restricted form in (8.5) if the sources of uncertainty are limited to two per constraint.

8.3 Algorithmic Development

Approximate solutions to a general SOCP like (8.1) are possible by generating
a set of ui vectors per constraint satisfying ‖ui‖ = 1 and then formulating an
approximate LP from (8.3). This tactic linearly approximates the boundaries of the
ellipsoids

{Ai + uT
i Ri : ‖ui‖ ≤ 1}.

The number of constraints unfortunately grows exponentially in the dimension of
the associated Lorentz cone even for crude approximations [7]. This conundrum is
overcome in [7] by showing that a polyhedral approximation is possible with size,
i.e. the number of variables and constraints, no greater than a constant multiple
of the size of the SOCP multiplied by ln(1/ε), where ε is a tolerance parameter
defining the approximation. This reduction of an SOCP to an approximate LP has
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the advantage of approximately solving the SOCP with a linear solver, but it has two
potential downsides with regard to RAMP. First, FBA models are typically fraught
with redundancy, and the suggested approximating polyhedron adds additional
redundancy and exacerbates this concern. Second, deciding if a maximum growth
rate is zero is sensitive to a cutoff allowance that would need to account for
the approximating parameter ε, with computational confidence being gained as ε

decreases. However, the number of constraints increases as ε decreases, which again
complicates a robust extension of an FBA model.

We promote a different solution procedure that iteratively maintains the number
of constraints of an FBA model as it extends to its robust counterpart. Moreover,
our solution technique technically reduces the number of variables from n to q,
i.e. the number of variables lowers to the number of constraints with two uncertain
parameters, which is a substantial reduction in RAMP models. The downside is that
we solve a sequence of LPs whose optimal values tend to converge to the optimal
value of the SOCP. So instead of modeling an approximate SOCP as a single LP to
solve once with a guaranteed accuracy, we define a sequence of smaller LPs whose
solutions are intended to converge to the optimal value of the SOCP.

The necessary and sufficient conditions of optimality for the general SOCP
in (8.1) are:

Aix + ‖Rix‖ ≤ bi, for i = 1, 2, . . . m

cj −
m∑

i=1

λi eT
j

(
AT

i +
(

Rix

‖Rix‖
)

RT
i

)
= 0, for j = 1, 2, . . . n

m∑

i=1

λi (bi − ‖Rix‖ − Aix) = 0, and

x, λ ≥ 0,

where ej is a vector of zeros except for a one in position j . The second condition
is the requirement that the gradient of the Lagrangian be zero, and this equality
indicates the relationship between an optimal x to problems (8.1) and (8.3) and the
vector u in problem (8.4). In particular, these necessary and sufficient conditions
equate with those of the LP in (8.3) if we set

ui = Rix

‖Rix‖ , (8.6)

which subsequently implies that ‖Rix‖ = uT
i Ri x. This relationship provides an

optimality test for a feasible x, say x̂, of the SOCP. In particular, x̂ is optimal for the
SOCP if
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x̂ ∈ argmax

{
cT x :

(
Ai +

(
Rix̂

‖Rix̂‖
)T

Ri

)
x ≤ bi, x ≥ 0

}
. (8.7)

So feasible SOCP solutions can be verified as optimal solutions by solving an LP.
The optimality test in (8.7) suggests the possibility of solving LPs to generate

solutions to the SOCP, but this intuition is only partially fulfilled by problem (8.4),
which reduces to problem (8.5) in our restricted setting. The issue is that solving LPs
does not necessarily provide a feasible solution to the SOCP. Suppose û solves (8.4)
and x̂ solves the LP,

max
{
cT x : x ≥ 0, Aix + ûT

i Rix ≤ bi, for i = 1, 2, . . . , m
}

,

then we are not guaranteed that x̂ is feasible for the SOCP even though the argument
maximum of this LP contains an optimal solution to the SOCP. The resulting
consequence is that the optimal value of the LP defined by û agrees with the optimal
value of the SOCP, while an optimal solution x̂ to the LP might not be feasible
to the SOCP. We can thus calculate the optimal value of the SOCP by solving an
appropriate LP, but we cannot guarantee that an optimal solution to the LP is feasible
for the SOCP.

We use the relationship in (8.6) to initiate our algorithm, and the first calculations
are:

Initialization Process
1. Solve the certain LP with each ui = (0, 0)T . Let x0 be an optimal solution.
2. Calculate for each i the unique θ0i in [0, 2π) so that

(
cos
(
θ0i

)
, sin

(
θ0i

))T = Rix
0

‖Rix0‖ .

3. Calculate z(θ0) as an initial candidate to solve problem (8.5).

The goal being to minimize z(θ) suggests that we calculate ∇z(θ), which we
could then use in an algorithm like gradient descent or BFGS. Notice that

z(θ) = max{cT x : Ax ≤ a − δa, Bx ≤ b, x ≥ 0},

with

δa =

⎛

⎜⎜⎜⎜⎜⎝

(cos (θ1) , sin (θ1)) R1x
∗

(cos (θ2) , sin (θ2)) R2x
∗

...
(
cos
(
θq

)
, sin

(
θq

))
Rqx∗

⎞

⎟⎟⎟⎟⎟⎠
, (8.8)
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where x∗ is an optimal solution for θ , e.g. x∗ could be x0 for θ0. From the chain
rule we have that ∂z/∂θi is

∂

∂(a − δa)i

(
max{cT x : Ax ≤ a − δa, Bx ≤ b, x ≥ 0}

) ∂(a − δa)i

θi

, (8.9)

so long as both partials exist. Unfortunately, neither partial derivative is guaranteed
to exists in the presence of degeneracy, although we can ensure the existence of
directional derivatives even in this case.

Both partials have been studied in the area of sensitivity analysis, see for
example [1, 12–16], and both have directional counterparts expressed in terms
of optimization problems. The right-sided partial derivative of the second partial
in (8.9) is

(
∂(a − δa)i

θi

)

+
= max

x∗ (− sin (θi) , cos (θi)) Ri x∗,

where x∗ ranges over the optimal set of the LP defining z(θ). The existence of this
right-sided derivative can be ensured by establishing that the optimal set is bounded,
which can subsequently be guaranteed by satisfying Slater’s interiority condition.
The value of the derivative can be computed by solving the stated LP. The left-sided
partial is

(
∂(a − δa)i

θi

)

−
= min

x∗ (− sin (θi) , cos (θi)) Ri x∗,

where x∗ again ranges over the optimal set of the LP defining z(θ). Notice that the
partial derivative itself exists if the minimum and maximum values agree, which is
assured if x∗ is unique.

The left- and right-sided partial derivatives of the first partial in (8.9) are

(
∂

∂(a − δa)i

)

+

(
max{cT x : Ax ≤ a − δa, Bx ≤ b, x ≥ 0}

)
(8.10)

= min
{
μi : AT μ + BT σ ≥ c, (a − δa)T μ + bT σ = z(θ), μ ≥ 0, σ ≥ 0

}
.

and
(

∂

∂(a − δa)i

)

−

(
max{cT x : Ax ≤ a − δa, Bx ≤ b, x ≥ 0}

)
(8.11)

= max
{
μi : AT μ + BT σ ≥ c, (a − δa)T μ + bT σ = z(θ), μ ≥ 0, σ ≥ 0

}
.
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Solutions to these LPs are again guaranteed by satisfying an appropriate constraint
qualification such a Slater’s interiority condition. These directional derivatives are
the same if and only if the dual multiplier μi for the constraint Aix ≤ (a − δa)i has
a unique optimal value. We conclude that ∇z(θ) exists if the LP defining z(θ) has a
unique primal and dual solution. This result is stated in Theorem 8.1.

Theorem 8.1 Define δa as in (8.8), and assume the LP

z(θ) = max{cT x : Ax ≤ a − δa, Bx ≤ b, x ≥ 0}

has a unique primal and dual solution. Then,

∇z(θ) =

⎛

⎜⎜⎜⎜⎜⎝

μ∗
1(cos(θ1), sin(θ1)R1x

∗

μ∗
2(cos(θ2), sin(θ2)R2x

∗
...

μ∗
q(cos(θq), sin(θq)Rqx∗

⎞

⎟⎟⎟⎟⎟⎠
,

where x∗ is the unique solution to the LP defining z(θ) and μ∗ is the unique vector
of dual multipliers for the constraints Ax ≤ a − δa.

FBA problems are highly degenerate, and making an assumption of uniqueness
to ensure the existence of ∇z(θ) is suspect. This fact prompts alternatives to the
expression in Theorem 8.1. One apparent option is to solve the LPs defining the
directional derivatives, which can then be used to construct a search direction along
which z(θ) decreases. This scheme has a mathematical elegance that is difficult
to realize numerically since the LPs require the computational identification of
the optimal set defining z(θ). One common mathematical strategy is to add an
equality constraint that holds the objective to its optimal value, which is the tactic
used in (8.10) and (8.11). One problem with this tactic is that numerical round off
can lead to an infeasible system. Tolerable inequality replacements also necessitate
additional numerical considerations and can be difficult computationally. A second
mathematical alternative is to describe the optimal set of the LP defining z(θ) by
calculating the optimal partition, but this calculation can also be computationally
troublesome.

We originally attempted to solve the LPs defining the partial directional deriva-
tives of z(θ), but this mathematically elegant solution routinely proved problematic.
Moreover, this scheme required solving four LPs for each θi to decide a search
direction, adding further computational burden. A more stable and simplistic
approach is the finite difference approximation,

∂z

∂θi

(θ) ≈ z(θ + ε ei) − z(θ)

ε
,



156 A. Holder and B. Lyu

where ε is some suitably small, positive value. This finite difference exists as long
as both z(θ + ε ei) and z(θ) exist, and this calculation only requires the additional
solution of the single LP defining z(θ + ε ei). This is a 75% reduction in the
number of LPs being solved for the cases in which all the LPs associated with
the partial derivatives stem from degenerate problems. Possible inaccuracies are
from the approximation itself, from the potential loss of the existence of the partial
derivative, and from the numerical round off of the LP solver. Degeneracy occurs on
a set of measure zero, and hence, we are unlikely to realize the mathematical loss of
the derivative computationally, especially within an approximating computational
scheme. This suggests that the finite difference approximation will be accurate
within our algorithmic framework for sufficiently small ε. We have indeed found
this to be the case and have thus selected the finite difference approximation for our
forthcoming numerical work. We denote the approximate gradient as ∇≈ z(θ).

Our overriding algorithmic framework to minimize z(θ) follows a standard
nonlinear approach that seeks to move from iteration k to k + 1 so that

θk+1 ∈ argmin{z(θk + αdk) : α ≥ 0}.

We test two search directions, those being gradient descent and BFGS. Gradient
descent uses

dk = −∇≈ z(θk),

and BFGS solves

Hk+1d
k+1 = −∇≈ z(θk),

with

Hk+1 =
(

Hk + �Dzk(�Dzk)
T

(�Dzk)T �θk

− Hk�θk(�θk)
T Hk

(�θk)T Hk�θk

)
, (8.12)

�Dzk = ∇≈ z(θk) − ∇≈ z(θk−1), and

�θk = θk − θk−1.

We further test the common inverse version of BFGS to bypass the need to solve
Hk+1d

k+1 = −∇≈ z(θk) per iteration. In this case we set

H−1
k+1 = H−1

k +
(
1 + �DzT

k H−1
k �Dzk

�DzT
k �xk

)
�xk�xT

k

�xT
k �Dzk

−�xk�DzT
k H−1

k + H−1
k �Dzk�xT

k

�xT
k �Dzk

, (8.13)
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and the search direction is

dk+1 = −H−1
k+1 ∇≈ zk(θ

k).

All BFGS algorithms initiate with H 0 = I , making the first search directions of
gradient descent and BFGS agree.

The line search requires special consideration since the standard convergence
criteria of ‖∇≈ z(θ)‖ ≤ ε can be impossible to achieve at the optimal solution,
a situation illustrated by the first example of the next section. We promote a line
search that allows α to range over a predefined interval, say [0, α̂]. We use a line
search that accepts the step size of α̂ if

∇≈ z(θk + α̂dk)T dk < 0 and z(θk + α̂dk) < z(θk);

that is, we accept the maximum step if we predict continued improvement along
dk beyond α̂. There is no mathematical guarantee that z(θk + αdk) decreases over
the interval [0, α̂], although this is the case that motivates the rule. If ∇≈ z(θk +
α̂dk)T dk > 0, then we employ a binary search for an α in [0, α̂] at which ∇≈ z(θk +
αdk)T dk changes sign. There is no guarantee of continuity, and it is consequently
unrealistic to search for an α in [0, α̂] satisfying ∇≈ z(θk + αdk)T dk = 0. If z(θk +
α̂dk) ≥ z(θk), then we decrease α̂ and repeat the decision process. Pseudocode for
our calculation scheme is listed in Algorithm 1.

The lack of rigorous guarantees during the search is disquieting. Most of the
mathematical concerns are due to potential changes in the rank of A + δa as θ

adjusts, although the loss of convexity is also problematic. That said, nonlinear
schemes like those that we suggest are often motivated by reasonable, albeit not
verifiable, perspectives, and an algorithm’s merit lies in its efficacy and not its math-
ematical comfort. The computational advantage of our algorithmic development is
that both z(θ) and ∇≈ z(θ) can be computed by solving linear programs of the same
size as the certain LP fromwhich the SOCP is generated. In particular, any algorithm
may be used to solve the LPs, which means that we can leverage the capabilities of
the simplex method to solve FBA and RAMP problems.

8.4 Illustrative Examples

We investigate a couple of simple problems to motivate the practicality of our
computational scheme. These examples are purposefully small to support geometric
reassurance and algebraic certainty with regard to optimality.
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Algorithm 1 Pseudocode to solve an SOCP model with low-dimensional uncer-
tainty

0. Initialize: Calculate an optimal solution, x0, to the certain LP. Set

θ0i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

tan−1
([Rix

0]2/[Rix
0]1
)
, [Rix

0]1 > 0

tan−1
([Rix

0]2/[Rix
0]1
)+ π, [Rix

0]2 < 0

π/2, [Rix
0]1 = 0 and [Rix

0]2 > 0

3π/2, [Rix
0]1 = 1 and [Rix

0]2 < 0.

Calculate z(θ0), and set k = 0.
1. Calculate Search Direction: Calculate ∇≈ z(θk) and then calculate dk to satisfy Hkd

k =
−∇≈ z(θk). The matrix Hk is the identity in the method of steepest descent, and Hk is the
expression in (8.12) for the BFGS method. If the BFGS algorithm is instead calculating H−1

k ,

then set dk = −H−1
k ∇≈ z(θk) after updating the inverse according to (8.13).

2. Line Search: Search for αk in [0, α̂] so that

θk + αkdk ∈ argmin{z(θk + α dk) : 0 ≤ α ≤ α̂}.

Case 1: Set αk = α̂ if z(θk + α̂dk) < z(θk) and ∇≈ z(θk + α̂dk)T dk < 0.
Case 2: Reduce α̂ and repeat the line search if z(θk + α̂ dk) ≥ z(θk).
Case 3: Conduct a binary search to locate a sign change in

∇≈ z(θk + α dk)T dk

if ∇≈ z(θk + α̂dk)T dk ≥ 0. Set αk to the value at which the sign change occurs, including
the case that αk = α̂ if ∇≈ z(θk + α̂dk)T dk = 0.

3. Update: Set θk+1 = θk + αkdk and calculate z(θk+1) and ∇≈ z(θk+1).
4. Check for Termination: Terminate the algorithm if αk is decided by the binary search in the

third case of the line search or if ∇≈ z(θk+1) is sufficiently small. Otherwise return to step 1)
with k = k + 1.

8.4.1 Example 1

We solve the parameterized SOCP,

max{x1 + x2 : x1 + x2 + σ‖(x1, x2)‖ ≤ 1, x1 ≥ 0, x2 ≥ 0},

for which

A = [1, 1], a = 1, B = 0, b = 0, and R = σI.

The amount of the uncertainty is controlled by the nonnegative parameter σ , and the
problem is certain if σ = 0. The elements of the coefficient matrix are otherwise
uncertain and range within the ellipsoid,
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{[1, 1] + σ [u1, u2] : ‖(u1, u2)‖ ≤ 1}.

The geometry of the problem is depicted in Fig. 8.1. A straightforward calculation
shows that the unique optimal solution and the optimal value are, respectively,

x∗ = 1

2 + σ
√
2

(1, 1)T and z∗ = 2

2 + σ
√
2
.

Problem (8.5) re-expresses the SOCP relative to the single variable θ , with the
result being

min{z(θ) : 0 ≤ θ < 2π},

where

z(θ) = max {x1 + x2 :
(1 + σ cos(θ))x1 + (1 + σ sin(θ))x2 ≤ 1, x1 ≥ 0, x2 ≥ 0} .

Figure 8.2 illustrates a few of the LPs defining z(θ), and Figures 8.3, 8.4, and 8.5
depict z(θ) for two different values of σ . We plot the value of z(θ) over the unit
circle in Figs. 8.3 and 8.4 to highlight its periodic nature. The minimum value of
z(θ) is z(π/4) = 2/(2 + σ

√
2).

The geometry of z(θ) deserves inspection, especially near its minimum, see
Figs. 8.3 and 8.5. Notice that z(θ) is not differentiable at its minimum for either
value of σ although both its left- and right-derivatives exist. The function z(θ)

is neither convex nor continuous although it does have a unique minimum. The
discontinuities with σ = 1 occur because the LP is unbounded for θ = π and
θ = 3π/2. A couple of observations are:

1. small amounts of uncertainty might have computational advantages because
problem dynamics can be more varied as data is less certain, and

2. a reasonable starting solution could be paramount.

The first observation is mathematically justified by the fact that rank(M) ≤
rank(M + �M) so long as ‖�M‖ is sufficiently small, and moreover, rank(M +
β�M) is constant for small, positive β. We have for the example that

rank([1 + σ cos(θ̂), 1 + σ sin(θ̂)]) ≤ rank([1 + σ cos(θ), 1 + σ sin(θ)])

if θ is sufficiently close to θ̂ , and we further have that rank is constant if θ is in a
sufficiently small neighborhood of the form (θ̂ , θ̂ + δ) or (θ̂ − δ, θ̂ ), where δ > 0
is sufficiently small. This rank argument extends to show that the optimal partition,
and subsequently the dimension of the optimal set and its algebraic description, does
not change over these neighborhoods, see [15].
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Fig. 8.1 Smaller and larger
uncertainty sets with their
corresponding SOCP
constraints in cyan and green,
respectively

Fig. 8.2 LPs defining z(θ)

for three different values of θ ,
with basic optimal solutions
as blue dots

Fig. 8.3 z(θ) for
0 ≤ θ < 2π with σ = 1/2

The calculation of z(θ) can be accomplished with any LP algorithm, which can
be a computational advantage since different problems lend themselves to different
solvers. The argument maximum of the LP defining z(θ) with σ = 1 is
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Fig. 8.4 z(θ) for
0 ≤ θ < 2π with σ = 1

Fig. 8.5 z(θ) for
0 ≤ θ < π/2 with σ = 1

argmax{x1 + x2 : (1 + cos(θ))x1 + (1 + sin(θ))x2 ≤ 1, x1 ≥ 0, x2 ≥ 0}

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
(1/(1 + cos(θ)), 0)T

}
, cos(θ) < sin(θ)

{
(0, 1/(1 + sin(θ)))T

}
, cos(θ) > sin(θ)

{
(1 − β) (1/γ, 0)T + β(0, 1/γ )T : 0 ≤ β ≤ 1

}
, cos(θ) = sin(θ)

= γ − 1.

The argument maximum does not intersect the feasible region of the SOCP except
for the optimal value of θ∗ = π/4. So an optimal x for any z(θ) other than z(π/4)
is infeasible for the SOCP. Since our algorithmic goal is to construct a sequence θk

so that z(θk) → z(π/4), we see that our calculation scheme is, in some manner, an
infeasible algorithm from the perspective of the SOCP.

The argument maximumwith θ = π/4 intersects the feasible region of the SOCP
at the unique optimal solution x∗. However, x∗ is not a basic optimal solution, and
it is thus impossible to evaluate z(π/4) with a simplex method and be left with
a feasible solution to the SOCP. This observation sharpens the fact that we are
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calculating the optimal value of the SOCP by minimizing z as a function of θ and not
x. We comment that x∗ is the analytic center of the argument maximum for θ = π/4
in this specific example, and hence, a path-following interior-point algorithm for the
LP would (theoretically) converge to a feasible solution of the SOCP. The fact that
an interior-point algorithm would (theoretically) converge to an optimal solution of
the SOCP is due to this example’s simple symmetry and its lack of redundancy,
and interior-point algorithms are not generally guaranteed to provide feasible SOCP
solutions.

The infeasible nature of our algorithm can give x solutions, i.e. those that define
the minimum value of z(θ), that are arbitrarily distant from the SOCP’s argument
maximum. If we let the right-hand side of this example be a instead of the fixed
value 1, then the distance between an optimal basic solution of the LP defining
z(θ/4) and the unique SOCP solution is

a√
2 + σ

.

We conclude that a simplex based routine can give a solution of any distance
from the unique SOCP solution depending on a and σ . Notice that the distance in
this example diminishes as σ increases, which follows because the feasible region
collapses onto the origin as uncertainty grows.

Some emblematic numerical outcomes for various combinations of σ and θ0 are
listed in Table 8.1. All values of z(θ) are calculated with the dual-simplex algorithm
in MATLAB’s optimization toolbox, and the finite difference approximation uses
ε = 10−6. We set α̂ = 1 in all cases, and we forego the initialization scheme
because it terminates with the optimal value of θ∗ = π/4.

The geometry in Fig. 8.3 with σ = 1/2 would seem to better lend itself to
our computational framework than would the geometry in Fig. 8.4, but this is not
the case. One difference is that we fail to convergence to an optimal solution with
σ = 1/2 if we initiate any of the algorithms within the interval [π, 3π/2]. Indeed,
both versions of BFGS extend this interval to the left and have wider ranges of false
convergence. The geometry in Fig. 8.4 with σ = 1 exhibits no such computational
concern by comparison. In particular, all algorithms converge to an optimal solution
with σ = 1 so long as θ0 is not one of the discontinuities. We illustrate this
curiosity by setting σ = 1 and initializing the search with θ0 = 5π/4, which is
a local minimum trapped between the unbounded LPs with θ = π and θ = 3π/2.
The favorable outcome of all algorithms in this case follows because the forward
difference approximation results in ∇≈ z(5π/4) = −8.2427, and each algorithm
escapes what appears to be a local catchment region of the local minimum as it
accepts the full step. The innate periodicity of searching over the unit circle then
leads to optimal convergence, albeit with the terminating value of θ being outside
the standard reference of 0 ≤ θ < 2π . We remind that none of the basic optimal
solutions of the LPs are feasible for the SOCP, but nonetheless, the algorithm
converges to the correct optimal value over a wide range of settings.
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Table 8.1 Representative numerical outcomes for Example 1

σ Algorithm θ0 θ∗ Opt. Val. Iter. Time (s)

1 Grad. desc. 0 0.7854 0.5858 2 0.53

BFGS 0 0.7854 0.5858 2 0.55

BFGS inv. 0 0.7854 0.5858 2 0.53

1/2 Grad. desc. 0 0.7854 0.7388 3 0.55

BFGS 0 0.7854 0.7388 3 0.59

BFGS inv. 0 0.7854 0.7388 3 0.59

1 Grad. desc. 5π/4 −5.4978 0.5858 3 0.62

BFGS 5π/4 −5.4978 0.5858 3 0.61

BFGS inv. 5π/4 −5.4978 0.5858 3 0.61

8.4.2 Example 2

The second example is

max{x1 + x2 : 2x1 + x2 − ‖x‖ ≤ 2, x1 + 2x2 − ‖x‖ ≤ 2, x1 ≥ 0, x2 ≥ 0},

for which

A =
[
2 1
1 2

]
, a =

(
2
2

)
, B = 0, b = 0, and R1 = R2 = I.

This problem has two constraints with two uncertain parameters instead of the sole
constraint of the first example. In this case the function z(θ) is

z(θ) = max {x1 + x2 : (2 + cos(θ1))x1 + (1 + sin(θ1))x2 ≤ 2,

(1 + cos(θ2))x1 + (2 + sin(θ2))x2 ≤ 2, x1 ≥ 0, x2 ≥ 0} ,

and a straightforward calculation shows that the minimizer of z is

θ∗ = (π/4, π/4)T with z∗ = z(θ∗) = 4

3 + √
2

≈ 0.9062.

The (unique) optimal solution to the LP for θ∗ is

x∗ =
(

2

3 + √
2
,

2

3 + √
2

)T

,

and unlike the first example, this LP solution is feasible and (uniquely) optimal for
the SOCP. Figure 8.6 illustrates the geometry of the certain LP and its relationship
to the SOCP, and Figs. 8.7 and 8.8 depict the landscape of z.
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Fig. 8.6 The certain LP has
dashed constraints, the SOCP
has red, and the LP for the
optimal z(θ) has blue. The
dot is the unique optimal
solution to the SOCP

Fig. 8.7 The surface of z(θ)

for θ ∈ [0, 2π ]2. The red dot
is the minimum

Fig. 8.8 The surface of z(θ)

for θ ∈ [π/8, 3π/8]2. The red
dot is the minimum

The geometry of z(θ) shows that it is neither convex nor differentiable, although
it is continuous. The surface is convex near the optimal solution, and a technique
such as BFGS should have favorable convergence properties if initiated sufficiently
close to the optimal solution. The geometry also adumbrates wide applicability
of gradient descent with −∇≈ z(θ), as all such approximations would appear to
converge to the optimal solution. BFGS lacks this trust because it might converge
to the maximum of z as it seeks to satisfy a first order condition, or our adaption
thereof, if initiated near the maximum. The surface is periodic, and the depicted
geometry replicates itself along each axial direction. We note that the function is
not differentiable for θ1 = 0 due to primal degeneracy in Theorem 8.1.

The initialization process terminates with the optimal θ of (π/4, π/4)T similar
to the first example, and we again start with different θ0 values to illustrate
our algorithm’s efficacy. We compute z(θ) with the dual-simplex algorithm in
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MATLAB, and we use ε = 10−6 in the calculation of ∇≈ z(θ). We initiate
each algorithm over a uniform 400 point grid in [0, 2π)2 to experimentally assess
convergence properties. Statistics of this computational venture are in Table 8.2.
Gradient descent proves the most trustworthy although it requires about twice the
time as either BFGS or BFGS inverse. Gradient descent also requires a tenfold
increase in the number of iterations over either version of the BFGS, but each
iteration requires less computation. MATLAB warned on three occasions that the
system defining the search direction in BFGS was nearly singular.

Representative results from the computational test are in Table 8.3. The three
algorithms converge to the optimal solution and perform similar to their statistical
averages if initiated at (0, 0)T , a point at which z(θ) is not differentiable. The
benefit of both BFGS algorithms if the starting point is near the optimal solution
is highlighted with θ0 = (π/3, π/3)T . All algorithms converge in this case, but
the BFGS algorithms significantly outperform gradient descent. Initializing with
(3π/2, 3π/2)T epitomizes how the algorithms can fail. Both BFGS algorithms
converge to the maximum value in this case, whereas gradient descent terminates
with a near optimal solution. Gradient descent’s near convergence follows because
it migrates from near the top of z(θ) toward to the “valley” along θ = 2π , which
is sufficiently flat to cease further progress. Gradient descent converges to a value
of 1.0001 or less 159 of the 163 failures, meaning that it converges to a near
optimum of 1.0001 or less in 396 of the 400 trials. This small example promotes

Table 8.2 Gross statistical results for each algorithm tested over a uniform, 400 point grid over
[0, 2π)

Algorithm Number correct Min/max/mean time (s) Min/max/min itrs.

Grad. desc. 237/400 (59.25%) 0.05/4.51/2.11 0/125/59.31

BFGS 166/400 (41.50%) 0.01/3.87/1.06 0/13/5.93

BFGS inv. 164/400 (41.00%) 0.01/3.27/1.05 0/13/5.90

Table 8.3 Representative numerical outcomes for Example 2

θ0 Algorithm θ∗ Opt. val. Iter. Time (s)

(0, 0)T Grad. desc. (0.7854, 0.7854)T 0.9062 85 2.61

BFGS (0.7854, 0.7854)T 0.9062 11 1.60

BFGS inv. (0.7854, 0.7854)T 0.9062 11 1.59

(π/3, π/3) Grad. desc. (0.7854, 0.7854)T 0.9062 71 2.25

BFGS (0.7854, 0.7854)T 0.9062 10 0.38

BFGS inv. (0.7854, 0.7854)T 0.9062 10 0.36

(3π/2, 3π/2) Grad. desc. (6.2832, 4.7124)T 1.0000 14 0.73

BFGS (4.7124, 4.7124)T 2.0000 2 0.57

BFGS inv. (4.7124, 4.7124)T 2.0000 2 0.50

Results in blue are suboptimal
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a rule-of-thumb, which is to use BFGS if the starting solutions can be guaranteed
to be near the optimal solution, but otherwise, the extra time of gradient descent is
likely worthwhile.

8.5 RAMP Studies

We now turn to the biological problems motivating our algorithmic development.
A metabolic model is a list of biochemical reactions that describe an organism’s
cellular metabolism. These reactions are subsequently represented by a system of
ordinary differential equations through the principle of mass action, with steady
state solutions being algebraically defined by a corresponding linear system of equa-
tions. The rows of the system express the rates at which metabolic concentrations
change, and the columns contain chemical reactions.

We consider a simple example to illustrate the progression from a collection of
biochemical equations to a linear system. The following three equations describe
relationships among metabolites A, B, C, and D,

2A + B
k1+→ C + D, A + C + D

k2+→ 3B, and C + B
k3+→ 2A.

The principle of mass action asserts that the reaction rates k1+, k2+, and k3+ are defined
in terms of metabolic concentrations, which are denoted by brackets. So [A] is the
concentration of A, and [D] is the concentration of D. The resulting system of
differential equations is

d[A]
dt

= 2
(
k3+[C][B])− 2

(
k1+[A]2[B])− (k2+[A][C][D]) = 2v3 − 2v1 − v2

d[B]
dt

= 3
(
k2+[A][C][D])− (k1+[A]2[B])− (k3+[C][B]) = 3v2 − v1 − v3

d[C]
dt

= (
k1+[A]2[B])− (k2+[A][C][D])− (k3+[C][B]) = v1 − v2 − v3

d[D]
dt

= (
k1+[A]2[B])− (k2+[A][C][D]) = v1 − v2.

The colored parenthetical groupings, which are products of reaction rates and
concentrations, define fluxes represented by v1, v2, and v3. These equations
define a linear relationship between the fluxes and the rates at which metabolic
concentrations change, which for this example is

d

dt

⎛

⎜⎜⎝

[A]
[B]
[C]
[D]

⎞

⎟⎟⎠ =

⎡

⎢⎢⎣

−2 −1 2
−1 3 −1
1 −1 −1
1 −1 0

⎤

⎥⎥⎦

⎛

⎝
v1

v2

v3

⎞

⎠ = Sv.

The matrix S is called the stoichiometric matrix.
Reactions are not generally unidirectional, and it is common for reactions to

have different forward and backward rates. Full metabolic systems commonly have
thousands of reactions and hundreds of metabolites. For instance, we solve the
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iJO1366 model of E. coli with 2583 fluxes and 1805 metabolites [21], see also the
BiGG repository of FBA models [17]. We assume steady state by requiring Sv = 0,
an equation that does not uniquely define the flux state since the FBA system is
underdetermined in real models.

The most common FBA paradigm adds an empirical reaction that creates
biomass as one of its products, and hence, a faux biochemical process describes
the generation of biomass in terms of other metabolites. Let vg be the flux of this
growth reaction. We can then calculate the maximum growth rate over all possible
steady state solutions by solving

max{vg : Sv = 0, L ≤ v ≤ U},

where L and U bound the fluxes to ensure directionality, to limit nutritional
resources, and to account for non-metabolic processes like cellular repair.

Stoichiometric coefficients are innately integer, and the preponderance of data
comprising the matrix S is consequently unambiguous. However, the growth
equation is not standard stoichiometry, and its coefficients are uncertain. The
default growth equation of the iJO1366 model incorporates 72 metabolites and
has coefficients ranging in absolute value from 2 × 10−6 to 54.1248. This seven
orders of magnitude difference draws suspicion and raises an interest in studying
a model’s dependence on small adjustments. Two other sources of uncertainty are
the environmental bounds and the loss of adenosine triphosphate (ATP) to non-
metabolic processes. These sources of uncertainty correspond with variable bounds
that can be remodeled as uncertainty in matrix coefficients [4, 6]. We note that most
applications of FBA assume a limiting carbon source and an unlimited amount of
other nutritional elements.

RAMP is an FBA adaptation that permits uncertainty and provides a stochastic
interpretation of FBA [19]. The model is

max{vg : −Mi + ‖Riv‖ ≤ Siv ≤ Mi − ‖Riv‖, ∀ i, L ≤ v ≤ U},

where Si is the i-th row of S, Mi sets a maximum deviation from the steady
state assumption, and Ri determines the structure of uncertainty. Only one of
the 72 metabolites in the growth equation, that being kdo2lipid4, has a transport
reaction through the cellular membrane, and hence, this RAMP model has a single
row with two uncertain parameters—one in the growth column and one in the
transport column, the latter of which permits the metabolite to enter the cell from
the environment. These two uncertain parameters are in two inequalities, one for
the upper bound and one for the lower bound, making the RAMP model similar
to the second example of the previous section. A third reaction can produce the
kdo2lipid4 metabolite, but the coefficients of this reaction are certain. Solving the
default model draws no kdo2lipid4 from the environment and instead creates the
needed metabolite from this third reaction. The upper and lower bounds for the
kdo2lipid4 transport reaction are 0 and 1000, with the transport coefficient being 1.
Adjusting the coefficient equates to adjusting these bounds. The coefficient in the
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growth equation is −0.0195, which means that a unit of biomass requires 0.0195
units of kdo2lipid4.

We vet our algorithm against two models, both of which assume certain
parameters except for the two suspicious coefficients of the kdo2lipid4 metabolite,
i.e. those coefficients corresponding with the metabolite’s transport into the cell and
with its consumption during the formation of biomass. We assume in both cases that
Mi = 0.01, and hence,

−0.01 + ‖Riv‖ ≤ Siv ≤ 0.01 − ‖Riv‖,

which assures that
∣∣∣∣
d[kdo2lipid4]

dt

∣∣∣∣ ≤ 0.01.

The submatrix of Ri corresponding with the two uncertain parameters has the form

[
0.02 ±1
±1 0.02

]
.

A standard probabilistic interpretation of this information follows if we assume the
coefficients to be standard normal variables. In this case we are assuming:

• the rate of kdo2lipid4 transport into the cell is N (1, 0.02),
• the rate of kdo2lipid4 consumption by growth is N (−0.0195, 0.02), and
• the covariance of the random variables is ±1.

The two constraints have subsequent probabilistic interpretations if we accept the
aforementioned stochastic assumption.

We are not advocating these models as auspicious biological paragons but are
instead using them as reasonable computational prototypes that are commensurate
with the problem’s data. The only difference between the two models is that one
assumes positive off-diagonals and the other assumes negative off-diagonals. The
computational differences are significant as we discuss below.

The landscapes of z(θ), of which the minimum values are the maximum growth
rates of the SOCPs, are shown in Figs. 8.9 and 8.10 for the two models. The
maximum growth rate decreases from 0.9824 without uncertainty to 0.00999
with positive off-diagonals and 0.01001 with negative off-diagonals. The case
with negative off-diagonals is significantly more difficult to solve with regard to
computational time. The positive case solves to optimality in about 0.18 s with either
version of BFGS or with gradient descent, but the negative case requires about 26 s
with either BFGS algorithm or about 18 s with gradient descent. So the negative
diagonal case has at least a one-hundred-fold increase in computational time. All
algorithms only require four or less iterations after initiation with the process from
Sect. 8.3. The approximate gradient calculation uses ε = 10−6.
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Fig. 8.9 The landscape of
z(θ) over a [0, 2π)2 for the
positive off-diagonal case

Fig. 8.10 The landscape of
z(θ) over a [0, 2π)2 for the
negative off-diagonal case

All LPs solve with MATLAB’s dual-simplex algorithm, but as the first example
of Sect. 8.4 shows, the terminal flux state need not be feasible. However, all
algorithms terminate with numerically viable flux vectors for both models, with
the maximum deviation from feasibility for the SOCP being on the order of 10−17

for the model with positive off-diagonals and 10−5 for the model with negative
off-diagonals. MATLAB’s interior-point algorithm fails to solve the LPs required
to evaluate z(θ), including the original FBA model, a fact that substantiates the
earlier work in [19] even though MATALB’s optimization algorithms have since
been updated.

We conclude by predicting gene essentiality. Gene knockouts force resulting
collections of fluxes to be zero, and a gene is essential if its knockout results in
an optimal growth rate of zero. The model with negative off-diagonals requires over
3.5 h to complete the knockouts, whereas the model with positive off-diagonals only
requires a couple of minutes—again highlighting the numerical difficulty of the
model with negative off-diagonals. We use the gradient descent algorithm for all
knockouts, and all solutions converge to optimality. Results of the comparison are
in Table 8.4.

The gene knockout predictions are similar to those in [19], with RAMP tending to
improve prediction of non-essentiality and degrade prediction of essentiality. FBA’s
accuracy is 91.14%, which fell, respectively, to 90.2 and 90.27% for the models
with positive and negative off-diagonals.
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Table 8.4 Gene essentiality prediction for FBA and RAMP
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8.6 Conclusions

Our nonlinear algorithms are performant for solving the example SOCPs associated
with RAMP extensions of FBA. Such extensions have limited uncertainty and lend
themselves to low-dimensional investigations that rely on accurate solutions to LPs.
The advantage of the solution technique herein is that it uses a simplex algorithm
to iteratively calculate the optimal value of an SOCP, providing a stable calculation
scheme for cases such as RAMP in which native interior-point solvers regularly
fail. Our nonlinear algorithms only require a few iterations to identify the optimal
solution if initialized as in Sect. 8.3, making them reasonably efficient solution
schemes. Moreover, terminal flux states are computationally feasible to the robust
model even though feasibility is not mathematically ensured, and hence, the terminal
flux vector solves the RAMP model in our experiments.

Several avenues for continued numerical study and computational science exist.
We have not compared our nonlinear algorithms to the linear model in [7], but such
a comparison would be worthwhile since it would likely establish a computational
preference for RAMP models. The examples of this article only establish a proof of
concept and do not yet verify broad applicability with regard to RAMP applications.
Conducting a wide-scale numerical study seems prudent. Lastly, adapting our
nonlinear tactic to problems with general uncertainty could provide alternative
calculation schemes for challenging SOCPs.
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