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Introduction

These notes, echoing a conference given at the Strasbourg–Zurich seminar in
October 2017, are written to serve as an introduction to 2-dimensional quantum
Yang–Mills theory and to the results obtained in the last five to ten years about its
so-called large N limit.

Quantum Yang–Mills theory, at least in the flavour that we will describe,
combines differential geometric and probabilistic ideas. We would like to think,
and hope to convince the reader, that this is less a complication than a source of
beauty and enjoyment.

Some parts of our presentation will rely more distinctly on a probabilistic
or a differential geometric background. We will however always try to keep
technicalities aside and to favour explanation over demonstration. This is thus not,
in the purest sense, a mathematical text: there will be essentially no proof. On the
other hand, we will give fairly detailed examples of some computations that, we
hope, are typical of the theory and illustrate it.

Slightly different in aim and content, but also introductory, the notes [26] written
with four hands with Ambar Sengupta can serve as counterpoint, or complement, to
the present text.
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These notes are split in three parts. In the first, we explain the nature of the
Yang–Mills holonomy process, which is the main object of interest of the theory. We
do it from two perspectives, one differential geometric, and one probabilistic. This
leads us to the definition of Wilson loop expectations, which are the most important
numerical quantities of the theory.

In the second part, we discuss several approaches to the computation of Wilson
loop expectations, and illustrate them on several examples. The large N limit of the
theory makes a first appearance in this section, and we derive by hand some concrete
instances of the Makeenko–Migdal equations which are the subject of the third part.
We also included in the second part a discussion of the holonomy process on the
sphere, and of the Douglas–Kazakov phase transition.

In the third part, we describe the Makeenko–Migdal equations. In keeping with
the style of these notes, we do not offer a proof of these equations, but we describe
as carefully as we can Makeenko and Migdal’s original derivation of them. Then,
we discuss the amount of information carried by these equations and illustrate their
power in the computation of the so-called master field, that is the large N limit of
Wilson loop functionals.

1 Quantum Yang–Mills Theory on Compact Surfaces

1.1 The Holonomy Process and the Yang–Mills Action

The central object of study of quantum 2-dimensional Yang–Mills theory is a
collection of random unitary matrices indexed by the class Lm(M) of Lipschitz
continuous loops based at some point m on a compact surface M . This collection of
random variables is called the Yang–Mills holonomy process and it is denoted by

(H�)�∈Lm(M) (1)

The idea of this collection of random variables arose, along a fairly convoluted
path, from physical considerations relating to the description of certain kinds of
fundamental interactions.1 It is, fortunately, not necessary to be familiar with the
original motivation of Yang and Mills to understand what the Yang–Mills holonomy
process is.

In very broad terms, the basic data of the theory is a compact surface M (for
example a disk, a sphere, a cylinder, a torus) and a compact matrix group G (for

1We will not describe this path, but indicate that it is marked by contributions of Chen Ning Yang
and Robert Mills, the classical reference being [48], of Alexander Migdal, who in [32] provided
mathematicians with a usable description of a crucial part of Yang–Mills theory, of Leonard Gross
who initiated a school of mathematical study of the 2-dimensional Yang–Mills theory [13–15], of
Bruce Driver and Ambar Sengupta, who finally gave in [6, 40] the first mathematically rigorous
definitions of the Yang–Mills holonomy process. This enumeration is of course much too short
not to leave many important contributions aside: a more extensive bibliography can for instance be
found in [26].
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example U(1), SO(3), U(N)). From this data, an infinite dimensional space of
connections can be built2, on which an infinite dimensional symmetry group, the
gauge group acts3, with infinite dimensional quotient, and one of the fundamental
maps of the theory is the holonomy map

{connections}/{gauge group}
holonomy

�� Maps(Lm(M),G)
/
G

On the right-hand side, the action of G on the space of maps from Lm(M) to G is
by conjugation. Leaving this action aside, note that the distribution of the holonomy
process (1) is a probability measure on the space Maps(Lm(M),G). We will call
this space the space of holonomies.

One property that makes the holonomy map so important is that it is injective. It
is thus legitimate to say that a connection is well described by its holonomy.

Another fundamental map of the theory is the Yang–Mills action SYM which is
a non-negative functional traditionally defined on the space of connections, but that
can also be defined on the space of holonomies, so that the situation is

{connections}/{gauge group}
holonomy

��

SYM ����
���

���
���

���
Maps(Lm(M),G)

/
G

SYM�����
���

���
���

[0,∞]
(2)

The Yang–Mills measure is heuristically described as the Boltzmann probability
measure, on the space of connections or on the space of holonomies, associated
with the Yang–Mills action. The typical formula that one finds in the literature is

dμYM(ω) = 1

Z
e− 1

2T
SYM(ω) dω (3)

where T is a positive real parameter called the coupling constant. Here, ω is
meant to stand for a connection or for a holonomy, depending on one’s preferred
point of view. This expression is however plagued with difficulties: on the infinite
dimensional spaces where the Yang–Mills measure is supposed to live, there is no
Lebesgue-like reference measure that could reasonably play the role of dω, and
even if there were, one would not expect the Yang–Mills measure to be absolutely

2The exact nature of these connections can be ignored for the moment. If G = U(1), they can be
pictured as magnetic potentials on M .
3In physical terms, two connections related by a gauge transformation represent two magnetic
potentials corresponding to the same magnetic field.
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continuous with respect to it; moreover, because of the action of the gauge group,
the most sensible value for the normalisation constant would be Z = +∞; and one
does finally not expect a typical ω in the sense of the Yang–Mills measure to be
regular enough to have a finite Yang–Mills action.

One of the goals of the 2-dimensional quantum Yang–Mills theory is to find
a way of sorting out these difficulties and to construct rigorously a probability
measure that can honestly be called the Yang–Mills measure. The situation may
look rather desperate, but it is uplifting to realise that after replacing the space of
connections, or holonomies, by a space of real-valued functions on [0, 1] and the
Yang–Mills action by the square of the Sobolev H 1 norm, the analogous problem
is almost just as ill-posed but has a very well-known solution, namely the Wiener
measure. The main difference between the Wiener and the Yang–Mills cases is the
presence in the latter of the gauge symmetry. Symmetry can however be a nuisance
or a guide, and it turns out to be possible, in Yang–Mills theory, to make gauge
symmetry an ally rather than a foe.

We will now describe more precisely the three maps appearing in the diagram
(2). The holonomy map and the Yang–Mills action on the space of connections are
differential geometric in nature. We start by describing them, and then turn to the
Yang–Mills action on the space of holonomies. It would be unfair to say that the
content of Section 1.2 can safely be completely ignored: we will refer to it later, in
particular in Section 3.2. However, it is certainly possible to skip it at first reading
and to jump to Section 1.3.

1.2 The Yang–Mills Action: Connections

In this section, we assume from the reader some familiarity with the differential
geometry of principal bundles. We give brief reminders of the main definitions, but
this is of course not the place for a complete exposition. For details, and although
some might find it too Bourbakist in style, we recommend the second chapter of the
first volume of the classical opus by Kobayashi and Nomizu [21].

1.2.1 The Yang–Mills Action

Although we are concerned in this text with compact surfaces, we will describe the
Yang–Mills action in the more general context of compact Riemannian manifolds
of arbitrary dimension—this is not more difficult.

Let M be a compact connected Riemannian manifold. Let G be a compact Lie
group with Lie algebra g. Assume that g is endowed with a scalar product 〈·, ·〉 that
is invariant under the adjoint representation Ad : G → GL(g).4 Let π : P → M

4The typical example that we have in mind is G = U(N) and, for all X, Y ∈ u(N) skew-Hermitian
N × N matrices, 〈X, Y 〉 = NTr(X∗Y ).
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be a principal G-bundle over M .5 Let A denote the space of connections on P . It
is an affine subspace of the space of g-valued differential 1-forms on P . For every
connection ω ∈ A , the curvature of ω is the form � = dω + 1

2 [ω ∧ ω].6 This g-
valued 2-form on P vanishes on vertical vectors and is G-equivariant. It can thus be
seen as a 2-form on M with values in the adjoint bundle Ad(P ). Using the Hodge
operator of the Riemannian structure of M , one can form the (Ad(P ) ⊗ Ad(P ))-
valued form of top degree � ∧ �� on M . Contracting this form with the Euclidean
structure of Ad(P ) induced by the invariant scalar product on g yields the real-
valued differential form of top degree 〈� ∧ ��〉. This form can be integrated7 to

5The manifold P is thus acted on, on the right, by G. For small open subsets U of M , the part
π−1(U) of the manifold P that sits above U is equivariantly diffeomorphic to U × G, with π

being the first coordinate map and G acting by translations on the right on the second coordinate.
A principal bundle is trivial if it is globally isomorphic to M × G.
6This definition of the curvature is made slightly ambiguous by the coexistence, in the literature,
of two different conventions regarding the definition of the exterior product and the exterior
differential of differential forms. Since it took me some time to clarify this elementary point, I
want to record it here, to the price of a rather long footnote.

The two conventions could be called ‘simplicial’ and ‘cubical’ according to their respective
definitions of the exterior product of 1-forms:

(α1 ∧ . . . ∧ αk)(X1, . . . , Xk) =
{ 1

k! det
[
(αi(Xj ))i,j=1...k

]
(simplicial)

det
[
(αi(Xj ))i,j=1...k

]
(cubical)

Each convention is supported by illustrious authors, including, for the simplicial one, Kobayashi
and Nomizu [21, p. 35] and Morita [33, Eq. (2.14) p. 70], and for the cubical one, Spivak [43, p.
203]. Since everyone agrees on the formula d(α∧β) = dα∧β+(−1)deg(α)deg(β)α∧dβ, there must
also be two competing definitions of the exterior differential. Specifically, the two definitions are
related by the formula dsimplicialα = 1

deg(α)+1
dcubicalα (compare, for instance, [21, p. 36] or [33,

Thm. 2.9 p. 71] and [43, Thm 13 p. 213]). The formula dα(X, Y ) = Xα(Y )−Yα(X)−α([X, Y ]),
for instance, belongs to the cubical school.

Returning to the definition of the curvature, it has a different meaning with each convention,
but fortunately, the simple relation �simplicial = 1

2 �cubical holds. Let us be more explicit about
this definition: the expression ω ∧ ω is to be understood as a g ⊗ g-valued 2-form, which is then
composed by the Lie bracket to yield a g-valued 2-form. Explicitly, if X and Y are two vector fields
defined on an open subset of P , then the curvature of ω is defined on this open set by

�cubical(X, Y ) = 2�simplicial(X, Y ) = Xω(Y ) − Yω(X) − ω([X, Y ]) + [ω(X), ω(Y )]
Note that there is universal agreement on what it means for the curvature to vanish.

Finally, since everyone also agrees that Stokes’ formula is free of any coefficient, each
convention on the definition of the exterior differential entails its own definition of the integral.
This is slightly hidden by the fact that everyone agrees on the formula

∫
[0,1]n dx1 ∧ . . . ∧ dxn = 1

(see [33, Sec. 3.2 (a), p. 104] and [43, Prop. 1 p. 247]), but it must be realised that the differential
form that is denoted by dx1 ∧ . . . ∧ dxn is not the same for everyone. Specifically, the relation is∫ simplicial

α = deg(α)! ∫ cubical
α.

Finally, there is agreement on the meaning of the curvature as a linear map from the space of
smooth 2-chains in P to g.
7The definition of the Yang–Mills action seems to require an orientation of M . In fact, this
orientation is used twice, once to define the Hodge dual �� of � and once to integrate 〈�, ��〉
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yield the Yang–Mills action of ω:

SYM(ω) = 1

2

∫

M

〈� ∧ ��〉 (4)

In words, the Yang–Mills action of a connection is nothing more than one half of
the squared L2 norm of its curvature.8

Let us describe locally, in coordinates, the scalar function that is integrated over
M to compute SYM(ω). For this, let us consider an open subset U of M on which
there exist local coordinates x1, . . . , xn on M and over which P is trivial. Let us
choose a section9 σ : U → P of P over U . Let us define A = σ ∗ω. Then in
the local coordinates on U , the 1-form A writes A1 dx1 + . . . + An dxn, where
A1, . . . , An are maps from U to g. Then F = σ ∗� writes

F =
∑

1�i<j�n

(
∂iAj − ∂jAi + [Ai,Aj ]

)
dxi ∧ dxj

and the contribution of U to the Yang–Mills action of ω is

1

2

∫

U

〈� ∧ ��〉 = 1

2

∑

1�i<j�n

∫

U

∥∥∂iAj − ∂jAi + [Ai,Aj ]
∥∥2 dvol(x)

where dvol(x) is the Riemannian volume measure on M , and ‖ · ‖ is the Euclidean
norm on g associated with the invariant scalar product 〈·, ·〉. The analogy with the
squared Sobolev H 1 norm should be even more obvious on this expression.

1.2.2 Gauge Transformations

The gauge group, that we denote by J , is the group of G-equivariant dif-
feomorphisms of P over the identity of M .10It acts by pull-back on A and a

over M . Reversing the orientation changes the Hodge dual and the integral by a sign, so that if M

is orientable, the definition of SYM is independent of the choice of orientation of M . Moreover, if
M is not orientable, SYM can still be defined using a partition of unity.
8Considering that the curvature is a kind of derivative of the connection, the Yang–Mills action
stands thus in close analogy with the squared H 1 norm of a real-valued function on [0, 1].
9To say that σ is a section of P over U means that π ◦ σ = idU . The existence of such a section
is equivalent to the triviality of the restriction of P over U . In particular, the existence of a global
section σ : M → P is equivalent to the triviality of the bundle π : P → M . The reader who
is more familiar with vector bundles than principal bundles might at first be surprised by this
statement, since a vector bundle can admit a global section, even a non-vanishing one, without
being trivial. However, the existence of a section for a principal bundle corresponds, for a vector
bundle, to the existence of a basis of sections.
10An element j of the gauge group is a diffeomorphism j : P → P that leaves each fibre of P

globally stable, and acts on it in a way that commutes with the action of G on the right on P . For
the bundle P = M × G → M , the gauge group can be identified withJ = C∞(M,G) acting
pointwise on P by multiplication on the left on the second coordinate.
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routine verification shows that it leaves SYM invariant. Thus, the Yang–Mills action
descends to a function

SYM : A /
J → [0,∞)

the study of which is the subject of classical Yang–Mills theory.
Let us display the formulas which give, through a local section of P , the action

of the gauge group on a connection and its curvature. These formulas are indeed
useful, and ubiquitous in the literature. Let j : P → P be a gauge transformation.
Let σ : U → P be a local section of P over an open subset U of M . Then there
exists a unique function g : U → G such that for every x ∈ U , one has j (σ (x)) =
σ(x)g(x). Then, letting j act on a connection ω yields the new connection j · ω =
j∗ω and transforms on one hand A into

Ag = σ ∗(j · ω) = g−1Ag + g−1 dg

and on the other hand F into

Fg = g−1Fg

This formula explains the invariance of the Yang–Mills action: without trying to be
perfectly precise, one can say that the action of a gauge transformation conjugates
the curvature at each point of M by some element of G, and thus leaves its Euclidean
norm unchanged.

1.2.3 Some Questions of Classical Yang–Mills Theory

Let us mention, without giving any details, a few examples of the questions that
arise in the study of the Yang–Mills action.

• The set S−1
YM(0) is the moduli space of flat connections, that is, the quotient of the

set of flat connections by the action of the gauge group. It is a finite-dimensional
orbifold with a rich geometric structure, the study of which is both an old and an
active subject of investigation [11, 12, 20, 28, 29, 45, 46].

• The Yang–Mills action can be understood as arising, through appropriate refor-
mulation and generalisation, from a Lagrangian formulation of Maxwell’s
equations of the electromagnetic field. The critical points of the Yang–Mills
action are thus of special interest: they are, in a sense, the classical physical fields
of Yang–Mills theory. They are called Yang–Mills connections and a milestone
in their study in the 2-dimensional case is [1].

• When M is 4-dimensional, the Yang–Mills action is conformally invariant, in the
sense that it depends on the Riemannian metric on M only through its conformal
class. There is an extensive literature devoted to Yang–Mills connections on 4-
dimensional manifolds [18]. Looking for self-dual Yang–Mills connections on
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R4 that are invariant by translation in two directions, for example, leads to the
study of Hitchin equations and Higgs bundles [19].

• From a physical point of view, the Yang–Mills action of a connection is an
appropriate measure of its non-triviality. From an analytical point of view,
however, it turns out that a natural way of measuring a connection is its Sobolev
H 1 norm.11 The Yang–Mills action is controlled by the H 1 norm, but not
conversely. A flat connection, that is, a connection with Yang–Mills action 0, can
be given an arbitrarily large H 1 norm by an appropriate gauge transformation.
A beautiful theorem of Karen Uhlenbeck states that level sets of the Yang–Mills
action, that is, the sets of the form {SYM � c}, c ∈ R+, are sequentially weakly
compact in H 1 up to gauge transformation: from any sequence of connections
with bounded Yang–Mills action, one can extract a subsequence which, after
suitable gauge transformation of each term, converges weakly in H 1 [44].

• The Yang–Mills action gives rise to a gradient flow, which formally is the solution
of the differential equation ∂tωt = −∇ωt SYM. This is the Yang–Mills flow [36].
There is currently an active investigation of stochastic perturbations of this flow
in cases where M is 2- or 3-dimensional [4, 41].

1.2.4 The Holonomy Map

A fundamental construction associated with a connection is that of the holonomy,
or parallel transport, that it induces. For every continuous and piecewise smooth
curve c : [0, 1] → M , the parallel transport along c determined by the connection
ω is the G-equivariant mapping hol(ω, c) : Pc0 → Pc1 which to every point p of
Pc0 associates the endpoint of the unique continuous curve c̃ : [0, 1] → P such that
c̃0 = p, π ◦ c̃ = c and for all t ∈ [0, 1] at which c is differentiable, ω( ˙̃ct ) = 0.

This parallel transport enjoys the following properties, which are of fundamental
importance.

• It is unaffected by a change of parametrisation of the curve.
• If c : [0, 1] → M is a curve and c−1 denotes the same curve traced backwards,

that is, c−1
t = c1−t , then hol(ω, c−1) = hol(ω, c)−1.

• If c and c′ are two curves such that c1 = c′
0, so that the concatenation cc′ is well

defined, then hol(ω, cc′) = hol(ω, c′) ◦ hol(ω, c).

It will be useful to understand a bit more concretely how this parallel transport
can be computed, and how it gives rise to a holonomy in the sense that we gave to
this word in Section 1.1.

Assume that the range of the curve c lies in an open subset U of M over which the
fibre bundle P is trivial.12 Let σ : U → P be a section of P over U . Set A = σ ∗ω.

11Here, we are talking about connections as elements of A , not of the quotient A /J .
12If c does not lie in such an open subset, it can be split into finitely many pieces which do and the
holonomy along c is simply the product of the holonomies along these shorter pieces.
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It is a 1-form on U with values in g. The solution of the differential equation

ḣt = −A(ċt )ht , h0 = 1G (5)

is a curve h : [0, 1] → G which starts from the unit element 1G. The endpoint of
this curve computes the parallel transport along c determined by ω in the sense that

hol(ω, c)(σ (c0)) = σ(c1)h1

This relation is illustrated in Figure 1.
Let us introduce the notation

holσ (ω, c) = h1

the holonomy of ω along c read in the section σ . This object has the drawback of
depending on the choice of a local section of the bundle, but the great advantage of
being fairly concrete, namely an element of G, that is, in many situations, a matrix.

If j ∈J is a gauge transformation of P , recall from Section 1.2.2 that j · ω =
j∗ω is the pull-back of ω by the diffeomorphism j of P . Then the holonomy of j ·ω
along c is related to that of ω by the relation

hol(j · ω, c) = j−1
|Pc1

◦ hol(ω, c) ◦ j|Pc0

Through the local section σ : U → M , and letting g : U → G be the function such
that j (σ (x)) = σ(x)g(x) for every x ∈ U , this relation takes the more explicit form

holσ (j · ω, c) = g−1
c1

holσ (ω, c)gc0 (6)

Fig. 1 The difference between the horizontal lift of c starting at σ(c0), denoted in this picture by
c̃, and σ(c), the image of c by the local section σ , is measured by the function h which solves (5)
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It follows from (6) that for all loop � on M , that is, all curve which ends at
its starting point, the conjugacy class of holσ (ω, �) is not affected13 by a gauge
transformation of ω.

More generally, given a base point m on M , and denoting by L ∞
m (M) the class

of piecewise smooth loops on M based at m, the orbit of

(holσ (ω, �) : � ∈ L ∞
m (M)) ∈ Maps(L ∞

m (M),G)

under the action of G by simultaneous conjugation is not affected by a gauge
transformation of ω. This explains how a connection modulo gauge transformation
defines a holonomy modulo conjugation.

The following result makes precise the statement that the horizontal arrow of (2)
is injective.

Theorem 1.1 Let m be a point of M . Let σ be a section of P in a neighbourhood
of m. For any two connections ω and ω′ on P , the following assertions are
equivalent.

1. There exists a gauge transformation j ∈J such that j · ω = ω′.
2. There exists g ∈ G such that for all loop � ∈ L ∞

m (M), the equality holσ (ω′, l) =
g−1holσ (ω, l)g holds.

1.3 The Yang–Mills Action: Holonomies

We will now give an alternative of the Yang–Mills action that is less classical and,
most importantly, specific to the 2-dimensional case. To give an idea of the nature
of this second description, let us pursue the analogy with the Wiener measure and
the Sobolev H 1 norm. Consider a smooth function b : [0, 1] → R with b(0) = 0.
The squared H 1 norm of b can be expressed at least in the following two ways:

‖b‖2
H 1 =

∫ 1

0
|ḃ(t)|2 dt = sup

0�t0<t1<...<tn�1

n∑

k=1

|b(tk) − b(tk−1)|2
tk − tk−1

(7)

The integral expression corresponds to the description of the Yang–Mills action that
we gave in the last section and is very similar to (4). We will now give another
description, similar to the second, more combinatorial one.

13Incidentally, this class does not depend on the local section σ either.
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1.3.1 Holonomies

The main algebraic property of the holonomy of a connection, already mentioned in
Section 1.2.4, is that it is a multiplicative map from L ∞

m (M) to G. Let us formulate
this in a slightly different way.

Recall that M is a compact Riemannian manifold and G a compact Lie group.
Let P(M) denote the set of all Lipschitz continuous14 paths on M , two paths being
identified if they differ only by an increasing change of parametrisation. Let us
call a function h : P(M) → G multiplicative if it satisfies the following two
properties.

• For all path c, letting c−1 denote the same path traced backwards, one has
h(c−1) = h(c)−1.

• For all paths c and c′ such that c finishes where c′ starts, so that the concatenated
path cc′ is defined, one has h(cc′) = h(c′)h(c).

More generally, given a subset P of P(M), we say that a function h : P → G

is multiplicative if it satisfies the above conditions whenever all the paths involved
belong to the subset P .

Let us denote by Mult(P(M),G) (resp. by Mult(P,G)) the subset of
Maps(P(M),G) (resp. of Maps(P,G)) formed by all multiplicative maps.

There is an action of the gauge group Maps(M,G) on Mult(P(M),G) defined
as follows. Consider g : M → G and a multiplicative map h : P(M) → G. For all
path c starting at c0 and finishing at c1, define

(g · h)(c) = g−1
c1

h(c)gc0 (8)

an equation that should be compared with (6). It is not difficult to check that the
map g · h is still multiplicative.

Let m be a point of M . A multiplicative function can be restricted to Lm(M)

and the action of Maps(M,G) on this restricted map reduces to the action of G

by conjugation. The following fact may seem surprising at first sight, but it is not
difficult to prove.

Proposition 1.2 For all m ∈ M , the restriction map

Mult(P(M),G)
/

Maps(M,G) −→ Mult(Lm(M),G)
/
G

is a bijection.

14In this text, we consider alternatively paths that are piecewise smooth and paths that are Lipschitz
continuous. We do so for reasons of technical convenience, and the reader should not be overly
worried by what can safely be regarded as a secondary issue.
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We call either side of this bijection the space of holonomies. Thanks to the
multiplicativity and the gauge symmetry, a holonomy can either be seen as a group-
valued function on the set of all paths, or on the set of all loops based at some
reference point m on M .

1.3.2 Graphs on Surfaces

We will now assume that M is a 2-dimensional manifold: it is thus a compact
surface. We announced an expression of the Yang–Mills action similar to the
rightmost term of (7): the role of subdivisions of the interval [0, 1] will be played
by graphs on M . This will be the occasion of a first encounter with this notion that
is central to the construction of the 2-dimensional Yang–Mills measure.

Let us call edge an element of P(M) that is injective — note that this does not
depend on the way in which the path is parameterised. A graph is a finite set of
edges, stable by the reversal map e �→ e−1, and in which any two edges either form
a pair {e, e−1}, or meet, if at all, at some of their endpoints.

The vertices of a graph are the endpoints of its edges. The faces of a graph are the
connected components of the complement in M of the union of its edges. A graph
is conveniently described as a triple G = (V,E,F) consisting of a set of vertices, a
set of edges and a set of faces, but it is in fact entirely determined by the set E of its
edges.

A crucial additional assumption is that every face of a graph must be homeomor-
phic to a disk. This guarantees that the 1-skeleton of the graph correctly represents
the topology of the surface, to the extent that a 1-dimensional object can represent a
2-dimensional one.

1.3.3 The Yang–Mills Action

Let G be a graph on our compact surface M . We will denote byP(G) the set of
paths that can be constructed as concatenations of edges of G. To each face F of
G, we can associate in an almost unequivocal way a loop ∂F that winds exactly
once around F . To give a perfectly rigourous definition of this loop is less simple
than one might expect, but there is nothing counterintuitive in it. It is only almost
well defined because there is no preferred starting point for this loop. However, if
f : P(G) → G is a multiplicative function, then the conjugacy class of the element
h(∂F ) of G is well defined. In particular, the Riemannian distance, in G, between
the element h(∂F ) and the unit element 1G, is well defined.15 This distance is,
moreover, not affected by the action of an element of the gauge group Maps(M,G)

on h.

15This distance is defined by the bi-invariant Riemannian metric on G associated with the invariant
scalar product chosen on its Lie algebra, see the first lines of Section 1.2.1.
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We can now define the Yang–Mills action on the space of holonomies by setting,
for all h ∈ Mult(P(M),G),

SYM(h) = sup

{ ∑

F∈F

dG(1G, h(∂F ))2

area(F )
: G graph on M

}
(9)

where the area of a face F is computed using the Riemannian structure on M .
It is manifest on this expression that, in the case where M is a surface, the only

part of the Riemannian structure on M that is used in the definition of the Yang–
Mills action is the Riemannian volume, in this case the Riemannian area. This is of
course also true, be it in a slightly less apparent way, of the definition (4).

Proposition 1.3 Assume that M is 2-dimensional. Then the definitions (4) and (9)
of the Yang–Mills action agree. More precisely, for every connection ω inducing a
holonomy h, the equality SYM(ω) = SYM(h) holds.

1.4 The Yang–Mills Holonomy Process

We will now explain how to construct the Yang–Mills holonomy process. Although
the definition of this process is derived, at a heuristic level, from the Yang–Mills
action, the process and the action are logically unrelated. We can thus start afresh,
from a compact surface M on which we have a Riemannian structure, or at least a
measure of area, and a compact Lie group G, on the Lie algebra of which we have
an invariant scalar product.

1.4.1 The Configuration Space of Lattice Yang–Mills Theory

One piece of information that we need to retain from the previous sections is the
notion of graph on our surface M (see Section 1.3.2). Let us choose a graph G =
(V,E,F) on M . The configuration space associated with a graph G on our surface
M is the manifold

CG = {g = (ge)e∈E ∈ GE : ∀g ∈ G, ge−1 = g−1
e } = Mult(E,G)

of all ways of assigning an element of G to each oriented edge, in a way that is
consistent with the orientation reversal.

Recall that we denote by P(G) the set of paths that can be constructed as
concatenations of edges of G. The configuration space CG is naturally in one-to-
one correspondence with the set Mult(P(G),G) of all multiplicative maps from
P(G) to G.
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Choosing an orientation of G, that is, a subset E+ ⊂ E containing exactly one
element in each pair {e, e−1} allows one to realise the configuration space in the
slightly less canonical, but easier to handle, way

CG = GE+

This makes it easy, for instance, to endow CG with a probability measure, namely
the Haar measure on GE+

. The invariance of the Haar measure on the compact
group G under the inverse map x �→ x−1 implies that this measure on CG does not
depend on the choice of orientation. We denote it by dg.

Every path c ∈ P(G) can be uniquely written as a concatenation of edges c =
e
ε1
1 . . . e

εn
n with e1, . . . , en ∈ E+ and ε1, . . . , εn ∈ {−1, 1}. To such a path c =

e
ε1
1 . . . e

εn
n we associate a holonomy map

hc : CG −→ G (10)

g �−→ gεn
en

. . . gε1
e1

Our goal is to endow the configuration space CG with an interesting probability
measure, so as to make the collection of maps (hc)c∈P(G) into a collection of G-
valued random variables.

1.4.2 The Driver–Sengupta Formula

In order to define this probability measure, we need to introduce the heat kernel on
G, or more accurately the fundamental solution of the heat equation. The invariant
scalar product on the Lie algebra g determines a bi-invariant Riemannian structure
on G, and a Laplace-Beltrami operator �. We consider the function p : R∗+ × G →
R∗+ that is the unique positive solution of the heat equation (∂t − 1

2�)p = 0 with
initial condition p(t, x) dx ⇒ δ1G

as t → 0. We use the notation pt (x) = p(t, x).
A crucial property of this function is that, for all t > 0 and all x, y ∈ G, we have
pt (yxy−1) = pt (x). We refer to this property as the invariance under conjugation
of the heat kernel.

We mentioned at the end of Section 1.3.3 that, in the 2-dimensional setting, the
Yang–Mills action depends on a Riemannian structure of the surface M only through
the Riemannian area that it induces. We will denote by |F | the area of a Borel subset
F of M .

Given a face F of our graph, recall that we denote by ∂F a path that goes once
around this face in the positive direction. Recall also that this path is ill-defined
because there is no preferred vertex on the boundary of F from which to start it.
However, this indeterminacy only results in an indeterminacy up to conjugation for
the holonomy map h∂F . Thanks to the invariance under conjugation of the heat
kernel, the function g �→ pt (h∂F (g)) is still well defined on CG for every t > 0.
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We can now write the formula which is the basis of the definition of the 2-
dimensional Yang–Mills measure. It is due to Bruce Driver in the case where M

is the plane, or a disk, and to Ambar Sengupta when M is an arbitrary compact
surface. Recall that T is a positive real parameter of the measure. We define, on CG,
the probability measure

dμ
G,T
YM (g) = 1

Z(G, T )

∏

F∈F
pT |F |(h∂F (g)) dg (DS)

Here, Z(G, T ) is the normalisation constant that makes μ
G,T
YM a probability measure

on CG.
The gauge group Maps(V,G) acts on the configuration space CG by a formula

analogous to (8), and the measure μ
G,T
YM is invariant under this action. Indeed, this

action preserves the reference measure dg and transforms the holonomy along
loops, in this case along boundaries of faces, by conjugation, which leaves the value
of the fundamental solution of the heat equation on these holonomies unchanged.16

16Let us say a word about the way in which the presence of a boundary to the surface M should
be taken into account in (DS), and how to treat the case where M is not orientable. The only place
where we used the orientability and orientation of M is when we defined the boundary of a face
as a loop winding positively around M . However, since the heat kernel also enjoys the invariance
property pt (x) = pt (x

−1), it does not matter which orientation we choose around each face of the
graph. Thus, (DS) is valid without any modification on a non-orientable surface.

In the case where M has a boundary, this boundary is a finite union of circles. Our assumption
that each face of a graph is homeomorphic to a disk implies that each of these circles is a path in
any graph on M . In this case, (DS) still makes sense and corresponds to free boundary conditions
along the boundary of M . Fixed boundary conditions can be imposed: it is possible to insist that the
holonomy along each boundary component belongs to a specific conjugacy class in G. If we wish
to set the boundary condition for which the holonomy along a boundary component c = e1 . . . en

belongs to a conjugacy class C of G, the basic ingredient is the unique probability measure νn,C

on On,C = {(x1, . . . , xn) ∈ Gn : xn . . . x1 ∈ C} invariant under the transitive action of Gn given
by

(y1, . . . , yn) · (x1, . . . , xn) = (y1x1y
−1
n , y2x2y

−1
1 , . . . , ynxny

−1
n−1)

This measure is easily described by the formula
∫

On,C

f dνn,C =
∫

Gn

f (x1, . . . , xn−1, xnzx
−1
n x−1

1 . . . x−1
n−1) dx1 . . . dxn

for an arbitrary z ∈ C. The way in which (DS) should be modified is that the uniform measure
on C should be replaced, for the edges lying on the boundary of M , by the appropriate copy of a
measure of the form νn,C .
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1.4.3 Invariance Under Subdivision

Starting from a graph G on our surface M , we built the configuration space CG
and endowed, thanks to the Driver–Sengupta formula, this space with a probability
measure, the lattice 2-dimensional Yang–Mills measure on G. In doing so, we
automatically produced a collection

(hc)c∈P(G) or (h�)�∈Lm(G)

of G-valued random variables.17

The property of this construction that makes it so extremely pleasant is the fact
that it is invariant under subdivision.

To articulate this fundamental property, let us say that a graph G2 is finer than
a graph G1 if G2 can be obtained from G1 by subdividing and adding edges. More
precisely, G2 is finer than G1 if E1 ⊂ P(G2): each edge of G1 is a path in G2. When
this happens, there is a natural map

CG2 −→ CG1

g(2) �−→ (
h(2)

e (g(2))
)
e∈E1

where each edge e of G1 is seen as a path in G2 and thus assigned a holonomy by
the configuration g(2).

The main result of 2-dimensional lattice Yang–Mills theory is the following.

Theorem 1.4 Let G1 and G2 be two graphs on M . Assume that G2 is finer than G1.
Then for all T > 0, the equality Z(G1, T ) = Z(G2, T ) holds and the push-forward
of the measure μ

G2,T

YM by the natural map CG2 → CG1 is the measure μ
G1,T

YM .

This theorem is so important that we are going to give an idea of the mechanism
of its proof.

Proof The first observation is that one can always go from a graph to a finer graph
by an appropriate succession of elementary operations consisting either in adding a
new vertex in the middle of an existing edge or in adding a new edge between two
existing vertices. We need to understand why neither of these elementary operations
affect the partition function, nor transform essentially the measure.

The subdivision of an edge e into two new edges e′ and e′′ amounts, in the integral
defining the partition function and in the expression defining the discrete Yang–
Mills measure, to the replacement of every occurrence of the integration variable ge

by the product of the two new variables ge′′ge′ . The invariance by translation of the
Haar measure ensures that this does not affect the result of any computation.

17Thanks to the multiplicativity of the holonomy and the gauge invariance of the construction of
the lattice Yang–Mills measure, the point of view of a collection of random variables indexed by all
paths in G or by the set of loops based at a specific reference point is equivalent, see Proposition 1.2.
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The case of the addition of a new edge is more interesting. This edge e splits a
face F into two faces F1 and F2, the boundaries of which are of the form ea and
be−1 for some paths a and b. Observe that ba is a loop going along the boundary
of F . In the computation of the partition function of the Yang–Mills measure on the
finer graph, or of the integral of any functional on the configuration space of the
coarser graph with respect to the image of the discrete Yang–Mills measure on the
finer graph, we find an integral of a product of many factors, among which the two
factors

pT |F1|
(
ha(g)ge

)
pT |F2|

(
g−1

e hb(g)
)

contain the only two occurrences of the integration variable ge. We can thus easily
integrate with respect to ge, using the convolution property of the heat kernel,
namely the equality pt ∗ ps = pt+s , to find these two factors replaced by

pT (|F1|+|F2|)
(
ha(g)hb(g)

) = pT |F |
(
hba(g)

) = pT |F |
(
h∂F (g)

)

We are thus left with the partition function, or the integral of our functional, relative
to the coarser graph. ��

The partition function Z(G, T ), which is now promoted to a function of T alone,
is a very interesting object. Let us give without proof an expression of this function.
We use the notation [a, b] = aba−1b−1 for the commutator of two elements a and
b of G.

Proposition 1.5 Assume that M is a surface of genus g without boundary. Then for
all T > 0, the partition function of the 2-dimensional Yang–Mills theory on M is
given by

ZM(T ) =
∫

G2g

pT |M|([a1, b1] . . . [ag, bg]) da1db1 . . . dagdbg

1.4.4 The Continuum Limit

Up to some conceptually inessential but technically annoying complications, the
invariance by subdivision of the discrete theory allows one to take the limit of the
discrete measures as the graphs on the surface become infinitely fine. The technical
complications have to do with the fact that, because two edges of two distinct
graphs can intersect in a rather pathological way, it is not always true that given two
graphs, there exists a third graph that is finer than these two graphs. The net effect
of this complication is the persistence, in the theorem asserting the existence and
uniqueness of the Yang–Mills holonomy process, of a continuity condition. We say
that a sequence of paths (cn)n�1 on M converges to a path c with fixed endpoints
if all paths c, c1, c2, . . . start at the same point and finish at the same (possibly
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different) point, and if the sequence of the paths (cn)n�1 parameterised at unit speed
converges uniformly to c.

Theorem 1.6 (The Yang–Mills holonomy process, [23, 40]) Let M be a compact
surface endowed with a smooth18 measure of area. Let G be a compact Lie group,
the Lie algebra of which is endowed with an invariant scalar product. There exists
a collection of G-valued random variables (Hc)c∈P(M) such that

• for every graph G = (V,E,F), the distribution of (He)e∈E is the measure μ
G,T
YM ,

• whenever a sequence (cn)n�1 of paths converges with fixed endpoints to a path
c, the sequence of random variables (Hcn)n�1 converges in probability to Hc.

Moreover, any two collections of G-valued random variables with these properties
have the same distribution.

The Yang–Mills holonomy process (Hc)c∈P(M) is invariant in distribution under
the action of the gauge group. This means that for every function g : M → G, the
following equality in distribution holds:

(
g(c)−1Hcg(c)

)

c∈P(M)

(d)= (Hc)c∈P(M) (11)

where c and c denote respectively the starting and finishing point of a path c. In
particular, the distribution of Hc is uniform on G for every path c that is not a
loop. Of course, this huge collection of uniform random variables is correlated in a
complicated way, in particular to allow the random variables associated with loops
to have non-uniform distributions.

The holonomy process also enjoys a property of invariance under area-preserving
maps of M: if φ : M → M is an area-preserving diffeomorphism, then φ preserves
the class P(M) and the family (Hφ(c))c∈P(M) has the same distribution as the
family (Hc)c∈P(M). This is because the Driver–Sengupta formula depends only
on the combinatorial structure of the graph under consideration, and on the areas
of its faces. This is consistent with the fact that the Yang–Mills action, which we
originally defined on a Riemannian manifold by (4), depends, if the manifold is 2-
dimensional, on the Riemannian structure only through the Riemannian area. We
already mentioned this important point in relation with the expression (9) of the
Yang–Mills action.

18By a smooth measure, we mean a measure that admits a smooth positive density with respect to
the Lebesgue measure in any coordinate chart.
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1.4.5 The Structure of the Holonomy Process

The structure of the Yang–Mills holonomy process can be described fairly con-
cretely provided one understands the structure of the set of loops on a graph.

Let us consider a graph G on M and a vertex m of this graph. We denote naturally
by Lm(G) the set of loops in G based at m. The operation of concatenation makes
Lm(G) a monoid, with unit element the constant loop at m. Each element � of this
monoid has an ‘inverse’ �−1, but it is not true, unless � is already the constant loop,
that ��−1 is the constant loop. In order to make Lm(G) a group, into which �−1 is
truly the inverse of �, it is natural to introduce on it the backtracking equivalence
relation, for which two loops are equivalent if one can go from one to the other by
successively erasing or inserting sub-loops of the form ee−1, where e is an edge of
the graph.

Each equivalence class of loops contains a unique loop of shortest length, which
is also the unique reduced loop in this class, where by a reduced loop we mean one
without any sub-loop of the form ee−1.

Moreover, concatenation is compatible with this equivalence relation and the
quotient monoid is a group. This quotient monoid can be more concretely described
as the set L red

m (G) of reduced loops endowed with the operation of concatenation-
followed-by-reduction.

With this group of reduced loops in hand, we can make several observations.

• Each element g of the configuration space CG induces, by the holonomy map,
a map L red

m (G) → G, which sends a loop � to h�(g). This map is a group
homomorphism, and the map

CG −→ Hom(L red
m (G),G)

is onto. Moreover, it descends to a bijection

CG/Maps(V,G)
∼−→ Hom(L red

m (G),G)/G

where the action on the left is that of the gauge group, and on the action on the
right is that of G by conjugation.

• Let � denote the 1-skeleton of the graph, that is, the union of the ranges of its
edges. The map L red

m (G) → π1(�,m) which simply sends a reduced loop to its
homotopy class is an isomorphism.

• The group L red
m (G), being isomorphic to the fundamental group of a graph, or

of a 1-dimensional complex, is a free group. The rank of this group is equal to
|E| − |V| + 1 = |F| − χ(M) + 1 = |F| + 2g − 1, where χ(M) is the Euler
characteristic of M and g its genus.
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It is useful to recognise that the free group L red
m (G) admits nice bases.19 Let us

call lasso around a face F of G any loop of the form c.∂F.c−1, where c is a path
from m to a vertex on the boundary of F , and ∂F is a loop going once around F .

It is now quite easy to describe the holonomy process. Let us begin with the case
of the plane, or the disk.

Proposition 1.7 Assume that M is a disk or the plane. Let G be a graph on M . The
free group L red

m (G) admits a basis {λF : F ∈ F} such that

• for each face F , the loop λF is a lasso around F ,
• under the lattice Yang–Mills measure μ

G,T
YM , the random variables (HλF

:
F ∈ F) are independent, each HλF

being distributed according to the measure
pT |F |(g) dg.

In a sense, the holonomy process has independent increments distributed accord-
ing to the fundamental solution of the heat equation: it can be described as a
‘Brownian motion on G indexed by loops’ on the disk, or on the plane. The role
of time is played by area, and increments occur along faces of the graph, or lassos,
instead of intervals of time.

In the case of a closed surface, the situation is slightly different. In this case, the
most natural presentation of the group L red

m (G) is not as a free group (which it is),
but with one generator too many, and one relation.

Proposition 1.8 Assume that M is a closed surface of genus g. Let G be a graph
on M . Set r = |F|. The free group L red

m (G) admits a presentation

L red
m (G) = 〈

λF1, . . . , λFr , a1, b1, . . . , ag, gb

∣∣ [a1, b1] . . . [ag, bg] = λF1 . . . λFr

〉

where

• the loops λF1, . . . , λFr are lassos around the r faces of G,
• the homotopy classes of the loops a1, b1, . . . , ag, bg generate π1(M,m),
• for every test function f : G2g+r → C, one has

∫

C
f (Hλ1 , . . . , Hλr ,Ha1 ,Hb1 , . . . , Hag ,Hbg ) dμ

G,T
YM (12)

= ZM(T )−1
∫

G2g+r−1
f (z1, . . . , zr−1, zr , x1, y1, . . . , xg, yg)pT |F1|(z1) . . .

pT |Fr |(zr ) dz1 . . . dzr−1 dx1 dy1 . . . dxg dyg

where in the last integral, zr stands for

19Recall that a free group admits bases, that is, subsets by which it is freely generated. Any two
bases have the same cardinality, called the rank of the group. Any subgroup of a free group is itself
a free group, but the rank of a subgroup can be larger than the rank of the group. In fact, the free
group of rank 2 contains subgroups of arbitrary finite or (countably) infinite rank.
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zr = (zr−1 . . . z1[ag, bg] . . . [a1, b1])−1

Let us try to spell out the probabilistic content of this result. The presenta-
tion of the group L red

m (G) that we chose splits it into a homotopically trivial
part, giving rise to the random variables Hλ1 , . . . , Hλr , and a system of gen-
erators of the fundamental group of M , associated with the random variables
Ha1 ,Hb1 , . . . , Hag ,Hbg . A particular role is played by the homotopically trivial
loop C = [a1, b1] . . . [ag, bg].
• The distribution of the random variable HC is such that for every continuous test

function f̃ : G → C,

∫

CG

f̃ (HC) dμ
G,T
YM = ZM(T )−1

∫

G2g

(f̃ pT |M|)([a1, b1] . . . [ag, bg]) da1 db1 . . . dag dbg

This does not seem to be a particularly well-known distribution. It needs not
have a density with respect to the Haar measure: for instance if G = U(N),
it is supported by the Haar-negligible subgroup SU(N). However, it is, by
definition, absolutely continuous with respect to the distribution of the product
of g independent commutators of independent uniformly distributed random
variables, and this distribution, for example if G = SU(N) and provided
g � 2, is absolutely continuous with respect to the Haar measure. It is also
possible to write a Fourier series for this distribution, but it involves Littlewood–
Richardson coefficients, or more generally an understanding of the tensor product
of irreducible representations of G.

• Conditional on HC , the families (Hλ1 , . . . , Hλr ) and (Ha1,Hb1 , . . . , Hag ,Hbg )

are independent. It is also true that the random variables

(Hλ1 , . . . , Hλr ) mod G and (Ha1,Hb1 , . . . , Hag ,Hbg ) mod G

with values in Gr/G and G2g/G, where G acts by conjugation, are independent
conditional on HC mod G, that is, conditional on the conjugacy class of HC .

On a surface of genus g, the probabilistic backbone of the holonomy process
can thus be described as consisting of a segment of a Brownian motion on G of
length T |M| and 2g independent Haar distributed random variables on G, jointly
conditioned on the final point of the Brownian motion being equal to the products
of the g commutators of the uniform random variables taken in pairs.

The case where M is a sphere is special, in the sense that it involves no uniform
random variables, but only a Brownian bridge on G going from 1G to 1G in a time
equal to T times the total area of the sphere.
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1.5 Wilson Loop Expectations

A different approach to the description of the distribution of the Yang–Mills
holonomy process consists in identifying a natural class of scalar, gauge-invariant,
functionals of this process, the distribution of which is hoped to contain as much
information as possible. The most natural class of such functionals is that of Wilson
loop functionals, which are indeed the most important scalar observables of the
theory. A Wilson loop functional is constructed by choosing a certain number of
loops �1, . . . , �n on M , then the same number of conjugation-invariant functions
χ1, . . . , χn : G → C and by forming the product

χ1(H�1) . . . χn(H�n) (13)

When G is a group of matrices, the simplest choice of conjugation-invariant function
is the trace. The Wilson loop expectations, which play in this theory the role of n-
point functions, are the numbers

E[Tr(H�1) . . . Tr(H�n)] (14)

the computation of which is a seemingly endless subject of reflection. We will
discuss in the next section a few concrete examples of computation of such numbers.
For the time being, let us say a word about the amount of information that they carry.

Suppose we know the collection of all the numbers (14), or more generally the
expectation of all functionals of the form (13). Then we know the joint distribution
of all random variables of the form χ(H�) where � is a loop and χ : G → C is
an invariant function. Since G is compact, invariant functions separate conjugacy
classes and we know, in fact, the joint distribution of the conjugacy classes of all
variables H�. This is certainly an important piece of information. However, the form
of the action of the group of gauge transformations on the collection of holonomies,
as given by (11), indicates that this action preserves more than just the individual
conjugacy classes of the holonomies. Indeed, if �1, . . . , �n are based at the same
point, then it is the orbit of (H�1 , . . . , H�n) under the operation of simultaneous
conjugation

(h1, . . . , hn) �→ (gh1g
−1, . . . , ghng

−1)

that is gauge-invariant. To grasp the geometric meaning of this invariance, it is
useful to take a concrete example for G, say G = SU(N) or even G = SO(3). In
these groups, knowing the individual conjugacy classes of a collection of elements
amounts to knowing their eigenvalues, that is, in the case of SO(3), the angles
of the rotations. On the other hand, to know the orbit of these elements under
simultaneous conjugation requires the additional knowledge of the relative positions
of their eigenspaces, or for rotations, the relative positions of their axes.
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The main question is then the following. Is it the case that the Wilson loop
expectations describe not only the individual conjugacy classes of the G-valued
random variables that constitute the Yang–Mills process, but also the simultaneous
conjugacy class of all variables associated with the loops based at some point m of
M? In more precise terms, is it true that the algebra of functions on A /J generated
by Wilson loop functionals separates points? If not, it cannot be said that the Wilson
loop functionals constitute a complete set of gauge-invariant scalar observables.

The answer turns out to depend entirely on the group G, and it does not seem
to be known in all cases, even for compact Lie groups.20 The property that G must
have for the answer to be positive is the following.21

Definition 1 (Property W) We say that a group G has the property W if for any
n � 2 and any two collections x1, . . . , xn and x′

1, . . . , x
′
n of elements of G, the

assumption that every word in x1, . . . , xn and their inverses is conjugated to the
same word in x′

1, . . . , x
′
n and their inverses implies the existence of an element y of

G such that x′
1 = yx1y

−1, . . . , x′
n = yxny

−1.

Since this long definition is maybe not very pleasant to read, let us word it
differently. We are comparing two relations between n-tuples (x1, . . . , xn) and
(x′

1, . . . , x
′
n) of elements of G. The first is the relation of simultaneous conjugation

∃y ∈ G, x′
1 = yx1y

−1, . . . , x′
n = yxny

−1 (SC)

The second could be called lexical conjugation and holds exactly when

every word in x1, . . . , xn is conjugated to the same word in x′
1, . . . , x

′
n (LC)

where a word in a certain set of letters can involve these letters and their inverses.
We also considered a third property of individual conjugation

∃y1, . . . , yn ∈ G, x′
1 = y1x1y

−1
1 , . . . , x′

n = ynxny
−1
n (IC)

In any group, one has the chain of implications

(SC) ⇒ (LC) ⇒ (IC)

Unless the group G has very special properties (for instance that of being abelian),
the second implication is not an equivalence, and the property (IC) is much weaker
than the property (LC). For the group G to have the property W means that the
properties (SC) and (LC) are equivalent. The proof of the following result can be
found in [22], see also [10, 39].

20It would be more prudent to say that it is not known to the author.
21The name of Property W is by no means standard.
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Theorem 1.9 Any Cartesian product of special orthogonal, orthogonal, special
unitary, unitary and symplectic groups has the property W.

It is known that some non-compact groups fail to have the property W. However,
it seems not be known whether this equivalence holds, for instance, for spin groups.

2 Computation of Wilson Loop Expectations

In this section, we will give a few concrete examples of computations with the
Yang–Mills holonomy process, with an eye to its so-called large N limit, that is,
its behaviour when the group G is taken to be U(N) with an appropriately scaled
invariant product on its Lie algebra, and N tends to infinity.22

The basis of virtually any computation in 2-dimensional Yang–Mills theory is the
Driver–Sengupta formula (DS). This formula can be combined with an expression
of the heat kernel on G, for example its Fourier expansion, and lead to very
concrete calculations. It is also possible to use a more dynamical, either analytic
or probabilistic approach to the heat kernel, by seeing it as the solution of the heat
equation or, almost equivalently, as the density of the distribution of the Brownian
motion on G. We will illustrate these possibilities on a few examples in the simplest
case where M is the plane, and then turn to the much more complicated case where
M is the 2-dimensional sphere. For the sake of simplicity, we will assume in this
section that the coupling constant T that appears in (DS) is equal to 1.

2.1 The Brownian Motion on the Unitary Group

In order to be as concrete as possible, and because we are interested in the large N

limit, we will in this section choose G = U(N), the unitary group of rank N . As
indicated earlier (see Footnote 4), we endow the Lie algebra of U(N), which is the
space u(N) of N × N skew-Hermitian matrices, with the scalar product 〈X, Y 〉 =
NTr(X∗Y ). In the Euclidian space (u(N), 〈·, ·〉), we consider a linear Brownian
motion (Kt )t�0, use it to form the stochastic differential equation

dUt = Ut dKt − 1

2
Ut dt , U0 = IN (15)

and call the unique solution to this equation the Brownian motion on U(N).

22The notion of large N limit also applies to the cases where G = SO(N) and G = Sp(N), the real
and quaternionic analogues of U(N) or SU(N). As far as we understand today, there is no essential
difference between the three cases. More precisely, the computations for finite N are similar in the
three cases, if generally a bit more complicated in the orthogonal case and even more so in the
symplectic case, and the large N limits are identical.
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Using the notation Tr for the usual trace of a N × N matrix and tr = 1
N

Tr for
its normalised trace, the usual rules of stochastic calculus take, in this matricial
context, the following nice form: for all N × N matrix A, measurable with respect
to σ(Ks : s � t), we have

dKtA dKt = −tr(A) dt and dKt tr(A dKt) = − 1

N2
A dt (16)

This relation can be used to check that d(UtU
∗
t ) = 0, so that the trajectories of the

process B stay almost surely, as expected, in U(N).
The density of the distribution of Ut with respect to the normalised Haar measure

on U(N) is the function pt appearing in the Driver–Sengupta formula, and that we
described in Section 1.4.2.

It will be useful to know the Fourier series of this function pt : U(N) → R.
To describe it, let us introduce the set Û(N) of equivalence classes of irreducible
representations (or irreps) of U(N). For every α ∈ Û(N), let us denote by dα the
degree of α, that is, the dimension of the space on which U(N) acts through α. Let
us also denote by χα : U(N) → C the character of α, and by c2(α) the quadratic
Casimir number of α, that is, the non-negative real number such that

�χα = −c2(α)χα

The Fourier series of the heat kernel is then

pt =
∑

α∈Û(N)

e− c2(α)t

2 dαχα (17)

and there is nothing specific to U(N) in this formula.
It is however possible, in the case of U(N), to write explicitly each of its

ingredients. Indeed, the set of irreps of U(N) is conveniently labelled by non-
increasing sequences of N relative integers λ = (λ1 � . . . � λN), called dominant
weights. The dimension and quadratic Casimir number of the irrep with highest
weight λ are given by the formulas

dλ =
∏

1�i<j�N

λi − λj + j − i

j − i
and Nc2(λ) =

∑

1�i�N

λ2
i +

∑

1�i<j�N

(λi − λj )

(18)
The character of this representation is given, up to a power of the determinant, by a
Schur function, but we will not need its explicit formula.

We are now equipped to make some computations with the Yang–Mills holon-
omy process.
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2.2 The Simple Loop on the Plane

2.2.1 Using Harmonic Analysis

Let us consider, on the plane, a loop � that is a simple loop going once around a
domain of area t (see, if needed, Figure 2). The partition function of the Yang–Mills
model on the plane is equal to 1 and the Driver–Sengupta formula (DS) tells us that
for every continuous test function f : U(N) → C, we have

E[f (H�)] =
∫

U(N)

f (x)pt (x) dx

In other words, H� has the same distribution as Ut , the value at time t of the
Brownian motion on U(N) defined in the previous section.

Using the Fourier expansion (17) and the classical orthogonality relations
between characters, we find, for every irrep α of U(N) acting on the vector space
Vα , the equality

E[α(H�)] = e− c2(α)t

2 idVα

which holds in End(Vα). In particular, since the usual trace is, on U(N), the
character of the natural representation, which has highest weight (1, 0, . . . , 0),
dimension N and quadratic Casimir 1, we find

E[H�] = e− t
2 IN and E[tr(H�)] = e− t

2 (19)

Fig. 2 A simple loop on the plane
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Suppose now that we want to compute the expectation of tr(H 2
� ), which is also

the expectation of tr(H�2), where �2 is the loop � gone along twice. From the
Driver–Sengupta formula and the Fourier expansion of the heat kernel, we get the
expression

E[tr(H 2
� )] =

∑

λ∈Û(N)

e− c2(λ)t

2 dλ

∫

U(N)

tr(x2)χλ(x) dx

In order to go further, we need to know that, at least when N � 2,

tr(x2) = χ(2,0,...,0)(x) − χ(1,1,0...,0)(x)

Using again the orthogonality of characters, we find, after some reordering of the
terms,

E[tr(H 2
� )] = e−t

(
cosh

t

N
− N sinh

t

N

)
(20)

It is possible to go further down this road, by systematically writing the function
x �→ tr(xn) as a linear combination of characters. This is what Philippe Biane did
to determine the large N limit of the non-commutative distribution of the Brownian
motion on the unitary group. The simplest non-trivial case is the large N limit of
(20):

lim
N→∞E[tr(H 2

� )] = e−t (1 − t) (21)

The general formula is nice enough, at least in the limit when N tends to infinity,
to be quoted explicitly. It was discovered independently by Philippe Biane and Eric
Rains, who formulated it in terms of the Brownian motion on U(N) rather than the
Yang–Mills holonomy process.

Theorem 2.1 (Biane [2], Rains [37]) With the current notation, and for every
integer n � 1,

lim
N→∞E[tr(Hn

� )] = e− nt
2

n−1∑

k=0

(−t)k

k! nk−1
(

n

k + 1

)
(22)

It must be said that this result already appeared, without proof, in Isadore Singer’s
seminal paper on the large N limit of the Yang–Mills holonomy field [42].23

23Singer and Rains recognise, in the right-hand side of (22), modified Laguerre polynomials of the
first kind. As far as I know, a structural explanation for the appearance of these polynomials in this
context has yet to be given.
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One of Biane’s aims in [2] was to prove the following theorem concerning
the limit as N tends to infinity of the Brownian motion on U(N) as a stochastic
process. This convergence result is stated in the language of free probability, a theory
presented in detail in the book of Alexandru Nica and Roland Speicher [34].

Theorem 2.2 (Biane [2]) As N tends to infinity, the Brownian motion on U(N)

converges in non-commutative distribution, as a process, towards a unitary non-
commutative process (ut )t�0 with free stationary multiplicative increments such
that for all integer n � 0 and all real t � 0, the expectation of un

t and that of (u∗
t )

n

are given by the right-hand side of (22).

2.2.2 Using Stochastic Calculus

Let us illustrate, on the same example of a simple loop on the plane, the dynamical
approach to the same computations, based on the use of Itō’s formula. The general
principle of these computations is to see the quantities such as the left-hand sides of
(19) and (20) as functions of t , and to write a differential equation that they satisfy.
Recall that t , in our current notation, is the area of the disk enclosed by the simple
loop �. A variation of t can thus be described, in geometrical terms, as a variation
of the area of the unique face enclosed by �.

As a first example, let us use (15) and Itō’s formula to find

d

dt
E[tr(H�)] = d

dt
E[tr(Ut )] = −1

2
E[tr(Ut )]

which, together with the information E[tr(U0)] = 1, yield immediately (19).
Let us apply the same strategy to the computation of E[tr(H 2

� )] = E[tr(U2
t )]. The

computation is more interesting and involves the first of the two rules (16). We find

d

dt
E[tr(U2

t )] = −E[tr(U2
t )] − E[tr(Ut )

2] (23)

and see a function of t pop up that we were initially not interested in, namely
E[tr(Ut )

2]. The only way out left to us is retreat forwards and we compute the
derivative with respect to t of this new function, using now the second rule of (16):

d

dt
E[tr(Ut )

2] = − 1

N2E[tr(U2
t )] − E[tr(Ut )

2] (24)

All’s well that ends well: (23) and (24) form a closed system of ordinary differential
equations that is easily solved and from which we recover, in particular, (20). As a
bonus, we get

E[tr(H�)
2] = e−t

(
cosh

t

N
− 1

N
sinh

t

N

)
(25)
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The only change with respect to (20) is the change from N to 1
N

in front of the
hyperbolic sine, with the effect that

lim
N→∞E[tr(H�)

2] = e−t = lim
N→∞E[tr(H�)]2 (26)

This is an instance of a general factorisation property which was observed, among
others, by Feng Xu [47], and which is a consequence of the concentration, in the
limit where N tends to infinity, of the spectra of the random matrices that we are
considering.

2.3 Yin . . .

Let us consider a slightly more complicated loop depicted on Figure 3. This loop
goes once around a domain of area s + t and then once around a smaller domain of
area t contained in the first one.

Let us apply the Driver–Sengupta formula in this case. We denote a generic
element of the configuration space U(N)2 by (xa, xb), in relation with our labelling
by a and b of the two edges of the graph formed by �. Thus, for every continuous
test function f : U(N) → C, we have

E[f (H�)] =
∫

U(N)2
f (xbxa)ps(x

−1
b xa)pt (xb) dxa dxb

Note that, according to (10), the discrete holonomy map is order-reversing, so that
the loop � = ab gives rise to the map h�(xa, xb) = xbxa .

The change of variables (y, z) = (x−1
b xa, xb) preserves the Haar measure on

U(N)2 and we have

E[f (H�)] =
∫

U(N)2
f (z2y)ps(y)pt (z) dy dz (27)

Fig. 3 The loop � goes first once along the larger circle (the edge a) and then once along the
smaller circle (the edge b). The loop ab is equivalent to the concatenation of ab−1, b and b. The
loops ab−1 and b are essentially simple loops surrounding disjoint domains
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This corresponds to the fact, explained in the caption of Figure 3, that the loop � can
be written as �1�2�2, where �1 goes around the moon-shaped domain sitting between
the two disks, and �2 goes around the small circle of area t . These loops enclose
disjoint domains, and although �1 is not strictly speaking self-intersection free, they
are essentially simple, in the sense that they can be approximated by simple loops.

From this graphical decomposition of �, or from (27), we infer that H� has
the distribution of V 2

t Us , where U and V are independent Brownian motions on
U(N).24 Using the independence, the fact that the expectation of Us is e− s

2 IN (see
(19)), and (20), we find

E[tr(H�)] = e− s
2 −t

(
cosh

t

N
− N sinh

t

N

)
(28)

and, letting N tend to infinity,

lim
N→∞E[tr(H�)] = e− s

2 −t (1 − t) (29)

We succeeded in computing the expectation of tr(H�), but we did so by taking
advantage of the favourable circumstances, namely the fact that the word V 2

t Us is
a very simple one, with two independent Brownian motions appearing one after the
other (and not, for example, as UsVtUsVt ), and the fact that the expectation of Us is
a very simple matrix.

A more systematic approach is possible, by looking at E[tr(V 2
t Us)] as a function

of s and t and by using Itō’s formula to compute its partial derivatives. One finds

∂sE[tr(V 2
t Us)] = −1

2
E[tr(V 2

t Us)]

∂tE[tr(V 2
t Us)] = −E[tr(V 2

t Us)] − E[tr(Vt )tr(VtUs)]

Once again, a function appears that we were not considering at first. Let us apply
the same treatment to this new function:

∂sE[tr(Vt )tr(VtUs)] = −1

2
E[tr(Vt )tr(VtUs)]

∂tE[tr(Vt )tr(VtUs)] = −E[tr(Vt )tr(VtUs)] − 1

N2
E[tr(V 2

t Us)]

It is possible to solve this system and to recover (28).

24Thanks to the independence of the multiplicative increments of the Brownian motion, this
distribution is of course also that of V 2

t (V −1
t Vt+s ) = VtVs+t . Reasoning in this way amounts

to undo the change of variables that we did to obtain (27).
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An interesting observation is the fact that the linear combination 2∂s − ∂t of
partial derivatives is particularly simple:

(2∂s − ∂t )E[tr(V 2
t Us)] = E[tr(Vt )tr(VtUs)] (30)

and (2∂s − ∂t )E[tr(Vt )tr(VtUs)] = 1

N2
E[tr(V 2

t Us)] (31)

These are instances of the Makeenko–Migdal equations that we will discuss in
greater detail in the next section. Before that, let us study another example.

2.4 . . . And Yang

Let us now consider the eight-shaped loop drawn on Figure 4. The Driver–Sengupta
formula yields, with the by now usual notation, and taking the inversion of the order
into account,

E[f (H�)] =
∫

U(N)6
f (xf xexdxcxbxa)ps(xaxcxe)pt (xf xbxd)pu(x

−1
c xf )pv(x

−1
a xd) dx

The appropriate change of variables is dictated by the geometry of the loop, more
precisely by a decomposition in product of lassos, one of which is given in the
caption of Figure 4. Accordingly, let us set

(y, z, g, h, e, f ) = (xcxexa, xf xbxd, xcx
−1
f , x−1

d xa, xe, xf )

Fig. 4 An eight-shaped loop on the plane. The letters s, t, u, v in the faces indicate the areas of
the faces. The other letters label the edges of the graph. The loop can be decomposed, as we did
for the heart-shaped loop, as a product of lassos enclosing pairwise disjoint domains: abcdef =
(ad−1)(dbf )(f −1c)(da−1)(aec)(c−1f ). Here, by a lasso, we mean a loop of the form clc−1,
where c is a path starting from the starting point of our loop and l is a simple loop. In this particular
case, the path c is always the constant path
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This change of variables preserves the Haar measure on U(N)6.25 Thus, we find

E[f (H�)] =
∫

U(N)4
f (g−1yh−1gzh)ps(y)pt (z)pu(g)pv(h) dg dh dy dz

after integrating with respect to e and f which do not appear in the integrand. Thus,
considering four independent Brownian motions G,H,Z, Y on U(N), we find the
equality in distribution

H�
dist.= G−1

u YsH
−1
v GuZtHv (32)

The quantity E[tr(H�)] appears now as a function of the four real parameters
s, t, u, v and we can use stochastic calculus to differentiate it with respect to each
of them. In fact, using the first assertion of (19), which in the language of Brownian
motion reads E[Ys] = e− s

2 IN and E[Zt ] = e− t
2 IN , we can simplify the problem to

E[tr(H�)] = e− s+t
2 E[tr(G−1

u H−1
v GuHv)]

The expectation in the right-hand side of this equality is a symmetric function of u

and v. Using stochastic calculus, we find

∂uE[tr(G−1
u H−1

v GuHv)] = −E[tr(G−1
u H−1

v GuHv)] + E[tr(H−1
v )tr(Hv)] (33)

The new function E[tr(H−1
v )tr(Hv)] of v can in turn be computed using Itō’s

formula, since it is equal to 1 when v = 0 and satisfies the differential equation

∂vE[tr(H−1
v )tr(Hv)] = −E[tr(H−1

v )tr(Hv)] + 1

N2

25This is because the normalised Haar measure on U(N)n, or on Gn for any compact topological
group G, is pushed forward onto itself by each of the elementary maps

• (x1, x2, . . . , xn) �→ (x−1
1 , x2, . . . , xn)

• (x1, x2, . . . , xn) �→ (x1x2, x2, . . . , xn)

• (x1, . . . , xn) �→ (xσ(1), . . . , xσ(n)), where σ is any permutation of {1, . . . , n}
and it is not difficult to check that our change of variables can be obtained as a composition of
these maps.

Interestingly, these elementary operations are exactly the Nielsen transformations, which
generate the group of automorphisms of the free group of rank n (see [30]). Thus, the random
homomorphism from the free group Fn to a compact topological group G constructed by picking
a basis of Fn and sending this basis to a uniformly chosen element of Gn does not depend, in
distribution, on the basis of Fn used to construct it. In particular, the distribution of the image
of every element of the free group is intrinsically defined, and one may for instance wonder, for
specific or for general G, which elements of Fn are sent to a uniformly distributed element of G. I
am grateful to the referee for pointing out to me that this problem was solved for finite groups in
[35].
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which is solved in

E[tr(H−1
v )tr(Hv)] = 1

N2 (1 − e−v) + e−v (34)

Replacing in (33) and solving, we find finally

E[tr(H�)] = e− s+t
2

(
e−u + e−v − e−(u+v) + 1

N2 (1 − e−u)(1 − e−v)
)

(35)

and, letting N tend to infinity,

lim
N→∞E[tr(H�)] = e− s+t

2
(
e−u + e−v − e−(u+v)

)
(36)

We did these computations without taking great care of a possible geometric
meaning of the successive steps. Anticipating our discussion of the Makeenko–
Migdal equations, it is interesting to check that

(∂u + ∂v − ∂s − ∂t )E[tr(H�)] = e− s+t
2

(
e−(u+v) + 1

N2
(1 − e−(u+v))

)
= E[tr(H�′)tr(H�′′)]

(37)
where �′ and �′′ are the loops drawn on Figure 5.

Perhaps even more interesting than the fact that (37) holds, which after all is a
consequence of Theorem 3.1, is the observation that (37) does not seem to be easily
guessed from (32) and Itō’s formula. More precisely, Itō’s formula allows us to give
an expression of the left-hand side of (37) and it is not obvious that this expression
coincides with the right-hand side of (37). We take this as a sign that the Makeenko–
Migdal equations give an information that is practically non-trivial.

Fig. 5 The loops �′ and �′′ are obtained from � by an operation that will feature prominently in
Section 3
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2.5 The Case of the Sphere: A Not So Simple Loop

Computations involving the Yang–Mills holonomy process on the sphere, although
in principle based on the same formulas as in the case of the plane, are in general
much more complicated. This can be explained by the fact that, as we indicated in
Section 1.4.5, the stochastic core of the Yang–Mills holonomy process on a sphere is
a Brownian bridge on U(N), or on the compact Lie group G, instead of a Brownian
motion.

In this section, we are going to illustrate some of the difficulties that one meets
when working on a sphere. The first is that the partition function is not equal to 1
anymore. Instead, according to (1.5), it is given, on a sphere of total area T , by

ZS2(T ) = pT (IN) = ‖pT
2
‖2
L2(U(N))

=
∑

α∈Û(N)

e− T
2 c2(α)d2

α

This is also an expression in which nothing is specific to U(N): it is valid for any
compact Lie group.26

The most basic question about the Yang–Mills holonomy process on the sphere
is the analogue to the question that we treated in Section 2.2, namely to compute the
expectation of the normalised trace of the holonomy along a simple loop � enclosing
a domain of area t . The Driver–Sengupta formula yields the following expression
for this expectation:

E[tr(H�)] = 1

ZS2(T )

∫

U(N)

tr(x)pt (x)pT −t (x
−1) dx (38)

Using the Fourier expansion of the heat kernel, one finds

E[tr(H�)] = 1

ZS2(T )

∑

λ,μ∈Û(N)

e−c2(λ) t
2 −c2(μ) T −t

2 dλdμ

∫

U(N)

tr(x)χλ(x)χμ(x−1) dx

The integral can be computed thanks to Pieri’s rule: it is equal to 0 unless μ is
obtained from λ by adding 1 to exactly one component, in which case it is equal to
1. We write λ ↗ μ when this happens. Thus,

E[tr(H�)] = 1

ZS2(T )

∑

λ∈Û(N)

e−c2(λ) T
2 d2

λ

[ ∑

μ∈Û(N)
λ↗μ

e−(c2(μ)−c2(λ)) T −t
2

dμ

dλ

]

︸ ︷︷ ︸
f1(λ)

(39)

26Note that T , which used to denote the coupling constant in (1.5), now denotes the total area
of our surface. This is not a problem because the only meaningful quantity is the product of the
coupling constant by the total area of the surface.
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It seems difficult to give an expression of E[tr(H�)] much simpler than (38) or (39)
which, as is hardly necessary to emphasise, is much more complicated than the one
that we obtained in the case of the plane.27

It is, however, possible to analyse the limit of this quantity as N tends to infinity.
A first step in this direction is based on the realisation that Pieri’s rule is simple, and
the quantity between square brackets, which we denote by f1(λ) is a finite sum and
can be written explicitly using (18):

f1(λ) = e− T −t
2

N∑

i=1

1{i=1 or λi−1>λi }e
−(T −t)

(
λi+ N−2i+1

2

) ∏

1�j�N
j �=i

(
1 + 1

λi − λj + j − i

)

This suggests to associate with the highest weight λ the decreasing sequence l =
(l1 > . . . > lN) of half-integers defined by

li = λi + N − 2i + 1

2

so that

f1(λ) = e− T −t
2

N∑

i=1

1{i=1 or λi−1>λi }e− T −t
N

li
∏

1�j�N
j �=i

(
1 + 1

li − lj

)

Let us now introduce the probability measure πN,T on Û(N) such that for every
highest weight λ, one has

πN,T ({λ}) ∝ e−c2(λ) T
2 d2

λ

Then (39) can be written more compactly as

E[tr(H�)] =
∫

Û(N)

f1(λ) dπN,T (λ) (40)

Moreover, there exists for each integer n � 2 a function fn on Û(N), not very
different from f1, and the integral of which against πN,T yields E[tr(Hn

� )].
We would like to express that, as N tends to infinity, the measure πN,T

concentrates on a few highest weights, characterised by a certain limiting shape.
One unpleasant feature of (40) in this respect is that the set on which the integral is
taken, namely Û(N), depends on N . It is thus uneasy to formulate a concentration

27Let us drive the point home: (39), once made fully explicit using (18), is the exact analogue of
the e− t

2 that we see in the second assertion of (19).
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Fig. 6 With N = 9, the highest weight λ = (5, 4, 4, 2, 2, 1, 0,−2,−4) drawn in the style of a
Young diagram, and its empirical measure. Each dot represents 1

9 of mass and any two dots are

distant by a multiple of 1
9

result. One classical and efficient way around this problem is to associate with each
highest weight λ its empirical measure (Figure 6)

μ̂λ = 1

N

N∑

i=1

δ li
N

= 1

N

N∑

i=1

δ 1
N

(λi+ N−2i+1
2 )

Pushing the probability measure πN,T forward by the map λ �→ μ̂λ yields a
probability measure, which we denote by �N,T , on the set of probability measures
on the real line. It is possible to predict the behaviour of this probability as N tends
to infinity by writing c2(λ) and dλ in terms of the empirical measure of λ. Up to
some inessential terms (see [25, Eq. (24)] for complete expressions), one finds

c2(λ) � N2
∫

R
x2 dμ̂λ(x) and

d2
λ � exp

[
− N2

∫

{(x,y)∈R2,x �=y}
− log |x − y| dμ̂λ(x) dμ̂λ(y)

]

Introducing, for every probability measure μ, the quantity

JT (μ) =
∫

{(x,y)∈R2,x �=y}
− log |x − y| dμ(x) dμ(y) + T

2

∫

R
x2 dμ(x)

we see that the probability measure �N,T assigns to any probability measure μ that
is the empirical measure of a highest weight a mass proportional to

�N,T ({μ}) ∝ exp(−N2JT (μ))

In the large N limit, it seems plausible that �N,T will concentrate on the minimisers,
or even better, on the unique minimiser of the functional JT . This turns out to be
true, with a little twist that we will explain and contributes to making the story much
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more interesting than it already is. Let us summarise the main results on which one
can ground a rigorous analysis of the situation.

• Minimising the functional JT on the space of all probability measures on R is
one of the simplest examples of a rich and well-developed theory which is, for
example, exposed in the book of Edward Saff and Vilmos Totik [38]. This is also
a very common problem in random matrix theory. Indeed, the unique minimiser
of JT is Wigner’s semi-circular distribution with variance 1

T
:

dσ1/T (x) = T

2π

√
4

T
− x2 1[

− 2√
T

, 2√
T

](t) dt (41)

• The fact that the measure �N,T concentrates, as N tends to infinity, to the
minimiser of JT is a special case of a principle of large deviations proved by
Alice Guionnet and Mylène Maïda in [16]. However, the minimiser of JT that
one must consider is not the absolute minimiser on the set of all probability
measures on R. Indeed, for all N � 1, the measure �N,T is supported by the set
of empirical measures of highest weights of U(N), which form a rather special
set of probability measures. A distinctive feature of these measures is that they
are atomic, with atoms of mass 1

N
spaced by integer multiples of 1

N
. Weak limits,

as N tends to infinity, of such measures can only be absolutely continuous with
respect to the Lebesgue measure on R, with a density not exceeding 1: a class
of probability measures that we will denote by L(R). The result of Guionnet and
Maïda asserts that the measure �N,T concentrates exponentially fast, as N tends
to infinity, around the unique minimiser μ∗

T of JT on the closed set L(R).
• The problem of minimising JT under the constraint of having a density not

exceeding 1 is a problem that is, in principle, just as well understood as the
unconstrained problem. The book [38] contains results ensuring the existence and
uniqueness of the minimiser, and others allowing one to determine its support. In
fact, the measure σ1/T given by (41), and which is the absolute minimiser of JT ,
is absolutely continuous with a maximal density of

√
T /π , so that it belongs to

L(R) provided T � π2. For T > π2, the constraint becomes truly restrictive,
and one must make do with a probability measure which is, in L(R), the best
available substitute for σ1/T . The actual determination of this minimiser μ∗

T is,
depending on one’s background, a more or less elementary exercise in Riemann–
Hilbert theory, and involves manipulating elliptic functions. The density of μ∗

T

for T > π2 is represented on Figure 7. An exact expression of this density can
be found in [25, Eq. (37)].

Having established the exponential concentration, as N tends to infinity, of the
measure �N,T around μ∗

T , it is possible to come back to our initial problem of
computing E[tr(H�)]. After noticing that f1(λ) can be expressed as a functional
F1(μ̂λ) of the empirical measure of λ, it can be guessed that E[tr(H�)] is related
to F1(μ

∗
T ). Antoine Dahlqvist and James Norris were the first to rigorously and
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Fig. 7 For T > π2, the absolute minimiser of the functional JT does not belong to the class of
probabilities on R with a density not exceeding 1. The minimiser within this class is represented on
the right. Its density is identically equal to 1 on an interval in the middle of its support, and given
by elliptic functions outside this interval

successfully pursue this line of reasoning, and to obtain the following remarkably
elegant result.

Theorem 2.3 (Dahlqvist–Norris [5]) Let ρT denote the density of the minimiser
μ∗

T . Then, for all integer n � 0, one has

lim
N→∞E[tr(Hn

� )] = lim
N→∞E[tr(H−n

� )] = 1

nπ

∫

R
cosh

(nx

2
(T −2t)

)
sin(nπρT (x)) dx

(42)

To conclude this long discussion of the simple loop on the sphere, let us
mention another result for the statement of which we have all the concepts at hand.
Our description of the behaviour of the measure �N,T suggests that the partition
function itself is dominated by the contribution of the highest weights that have an
empirical measure close to μ∗

T . This is indeed true, and the fact that the shape of
μ∗

T changes suddenly when T crosses the critical value π2 gives rise to a phase
transition, in this case of third order, first discovered by Douglas and Kazakov, and
named after them. It was first proved rigorously, in a slightly different but equivalent
language, by Karl Liechty and Dong Wang in [27], and by Mylène Maïda and the
author in [25].

Theorem 2.4 (Douglas–Kazakov phase transition) The free energy of the Yang–
Mills model on a sphere of total area T is given by

F(T ) = lim
N→∞

1

N2
log ZS2(T ) = T

24
+ 3

2
− JT (μ∗

T )

The function F is of class C2 on (0,∞) and smooth on (0,∞) \ {π2}. The third
derivative of F admits a jump discontinuity at π2.

This phase transition is not one that is easily detected numerically, as Figure 8
shows.
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Fig. 8 The graphs of T �→ F(T ) (on the left) and of T �→ F (3)(T ) near T = π2 (on the right)

3 The Makeenko–Migdal Equations

3.1 First Approach

It is now time that we discuss the equations discovered by Yuri Makeenko and
Alexander Migdal and which give their title to these notes. These equations are a
powerful tool for the study of the Wilson loop expectations of which we gave a few
examples in the previous section. They are related to the approach that we called
dynamical, in which an expectation of the form E[tr(H�)], where � is some nice
loop on a surface M , is seen as a function of the areas of the faces cut by � on the
surface M . The Makeenko–Migdal equations give a remarkably elegant expression
of the alternated sum of the derivatives of E[tr(H�)] with respect to the areas of the
four faces that surround a generic point of self-intersection of �. This expression is
of the form E[tr(H�′)tr(H�′′)], where �′ and �′′ are two loops obtained from � by a
very simple operation at this point of self-intersection �. This operation consists in
taking the two incoming strands of � at this point and connecting them with the two
outgoing strands in the ‘other’ way, the way that is not realised by �, see Figure 9.

On this figure, we see four faces around the self-intersection point, which need
not be pairwise distinct. We denote their areas by t1, t2, t3, t4 as indicated on
Figure 9. The Makeenko–Migdal equation in this case reads

(
∂

∂t1
− ∂

∂t2
+ ∂

∂t3
− ∂

∂t4

)
E[tr(H�)] = E[ tr(H�′)tr(H�′′)] (MM)

The relation (30), that we derived earlier in an elementary way, is an instance of this
equation.

The relation (MM) would become particularly useful if we could combine it with
a result saying that E[tr(H�′)tr(H�′′)] = E[tr(H�′)]E[tr(H�′′)]. A crucial fact is that
this equality, which is of course false in general, becomes true in the large N limit
in all cases where this limit has been studied, that is, on the plane and on the sphere.
It corresponds to a concentration phenomenon, namely to the fact that the complex-
valued random variable tr(H�) converges, in the large N limit, to a deterministic
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Fig. 9 On the left, we see a loop � around a generic self-intersection point. The dotted and dashed
part of � can be arbitrarily complicated, and can meet many times outside the small region of the
surface that we are focusing on. It is nevertheless true that after escaping this small region through
the North-East corner (resp. North-West corner), the first time � comes back is through the South-
East corner (resp. South-West corner). This is why the ‘desingularisation’ operation illustrated on
the right produces exactly two loops, that we call �′ and �′′

complex, indeed real number �(�). This behaviour is expected to occur on any
compact surface, and the function � : L (M) → R, whose existence has so far
been proved when M is the plane or the sphere, is called the master field.

In the large N limit, the Makeenko–Migdal equation (MM) becomes a kind of
differential equation satisfied by this master field �:

(
∂

∂t1
− ∂

∂t2
+ ∂

∂t3
− ∂

∂t4

)
�(�) = �(�′)�(�′′) (MM∞)

On the plane, we will see that this equation, together with the very simple
equation (19), essentially characterises the function �.

3.2 Makeenko and Migdal’s Proof

Makeenko and Migdal discovered the relation (MM), and the extensions that we
will describe later, by doing a very clever integration by parts in the functional
integral with respect to the Yang–Mills measure (see (3)) that defines a Wilson loop
expectation:

E[tr(H�)] = 1

Z

∫

A
tr(hol(ω, �))e− 1

2 SYM(ω) dω

or instead, as we will explain, in a closely related integral (see [31] and [9]). That
this integration by parts performed in an ill-defined integral yields as a final product
a perfectly meaningful formula, makes Makeenko and Migdal’s original derivation
the more intriguing. It is described in mathematical language in the introduction of
[24], but this derivation is so beautiful that we reproduce its description here.

The finite-dimensional prototype of the so-called Schwinger–Dyson equations,
obtained by integration by parts in functional integrals, is the fact that for all smooth
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function f : Rn → R with bounded differential, and for all h ∈ Rn, the equality

∫

Rn
dxf (h)e− 1

2 ‖x‖2
dx =

∫

Rn
〈x, h〉f (x)e− 1

2 ‖x‖2
dx

holds. This equality ultimately relies on the invariance by translation of the
Lebesgue measure on Rn and it can be proved by writing

0 = d

dt |t=0

∫

Rn
f (x + th)e− 1

2 ‖x+th‖2
dx

In our description of the Yang–Mills measure μYM (see (3)), we mentioned
that the measure dω on the space A of connections was meant to be a kind of
Lebesgue measure, invariant by translations. This is the key to the derivation of the
Schwinger–Dyson equations, as we will now explain. In what follows, we will use
the differential geometric language introduced in Section 1.2.

Let ψ : A → R be an observable, that is, a function. In general, we are interested
in the integral of ψ with respect to the measure μYM. The tangent space to the
affine space A is the linear space �1(M) ⊗ Ad(P ). To say that the measure dω is
translation invariant means that for every element η of this linear space,

0 = d

dt |t=0

∫

A
ψ(ω + tη)e− 1

2 SYM(ω+tη) dω

and the Schwinger–Dyson equations follow in their abstract form

∫

A
dωψ(η) dμYM(ω) = 1

2

∫

A
ψ(ω)dωSYM(η) dμYM(ω) (43)

The directional differential of the Yang–Mills action is well known (see for
example [3]) and most easily expressed using the covariant exterior differential
dω : �0(M) ⊗ Ad(P ) → �1(M) ⊗ Ad(P ) defined by dωα = dα + [ω ∧ α].
It is given by

dωSYM(η) = 2
∫

M

〈η ∧ dω ∗�〉

The problem is now to apply this formula to a well-chosen observable ψ and to
differentiate in the right direction.

Given a loop � on M , Makeenko and Migdal applied (43) to the observable
defined by choosing a skew-Hermitian matrix X ∈ u(N) and setting, for all ω ∈ A ,

ψX(ω) = Tr(X hol(ω, �)) (44)
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To make this definition perfectly meaningful, one needs to choose a reference point
in the fibre of P over the base point of �: we will assume that such a point has been
chosen and fixed, and compute holonomies with respect to this point.

Let us choose a parametrisation � : [0, 1] → M of �. The directional derivative
of the observable ψX in the direction of a 1-form η ∈ �1(M) ⊗ Ad(P ) is given by

dωψX(η) = −
∫ 1

0
Tr

(
X hol(ω, �[s,1])η(�̇(s))hol(ω, �[0,s])

)
ds (45)

where we denote by �[a,b] the restriction of � to the interval [a, b].28

One must now choose the direction of differentiation η. Let us assume that �

is a nice loop which around each point of self-intersection looks like the left half
of Figure 9. Let us assume that for some s0 ∈ (0, 1), we have �(s0) = �(0) and
det(�̇(0), �̇(s0)) = 1. Makeenko and Migdal choose for η a distributional 1-form
supported at the self-intersection point �(0), which one could write as29

∀m ∈ M,∀v ∈ TmM, ηm(v) = δm,�(0) det(�̇(0), v)X

with det(�̇(0), v) denoting the determinant of the two vectors �̇(0) and v. With this
choice of η, the directional derivative of ψX is given by

dωψX(η) = −Tr
(
X hol(ω, �[s0,1])X hol(ω, �[0,s0])

) = −Tr
(
X hol(ω, �′)X hol(ω, �′′)

)

(46)

where �′ and �′′ are the loops defined on the right of Figure 9. Recall that u(N) is
endowed with the invariant scalar product 〈X, Y 〉 = −NTr(XY ). The directional
derivative of the Yang–Mills action is thus given by

dωSYM(η) = −2〈X, (dω∗�)(�̇(0))〉 = −2NTr
(
Xdω∗�(�̇(0))

)

or so it seems from a naive computation. We shall soon see that this expression
needs to be reconsidered. For the time being, our Schwinger–Dyson equation reads

∫

A
Tr

(
X hol(ω, �′)X hol(ω, �′′)

)
dμYM(ω) = N

∫

A
Tr(X hol(ω, �))Tr(X dω∗�(�̇(0))) dμYM(ω)

(SDX)

28At first glance, (45) may seem to require the choice of a point in P�(s) for each s, but in fact
it does not, for the way in which the two holonomies and the term η(�̇(s)) would depend on the
choice of this point cancel exactly.
29It may seem that we are progressively letting go of the intrinsic character of our construction, but
the interested reader can check that everything is still geometrically meaningful at this point.
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Let us add the equalities (SDX) obtained by letting X take all the values
X1, . . . , XN2 of an orthonormal basis of u(N). With the scalar product which
we chose, the relations30

N2∑

k=1

Tr(XkAXkB) = − 1

N
Tr(A)Tr(B) and

N2∑

k=1

Tr(XkA)Tr(XkB) = − 1

N
Tr(AB)

(47)

hold for any two matrices A and B, so that we find

∫

A
tr

(
hol(ω, �′))tr(hol(ω, �′′)

)
dμYM(ω) =

∫

A
tr

(
hol(ω, �)dω∗�(�̇(0))

)
dμYM(ω).

The left-hand side of this equation is the right-hand side of (MM). The last and
most delicate heuristic step is to interpret the right-hand side of this equation. For
this, we must understand the term dω ∗�(�̇(0)) and we do this by combining two
facts: the fact that dω acts by differentiation in the horizontal direction and the
fact that ∗� computes the holonomy along infinitesimal rectangles. We must also
remember that this term comes from the computation of the exterior product of the
distributional form η with the form dω ∗�. It turns out that, instead of a derivative in
the horizontal direction with respect to s at s = 0, we should think of the difference
between the values at 0+ and at 0−, which we denote by �|s=0.

With all this preparation and, it must be said, a small leap of faith, the right-hand
side of the Schwinger–Dyson equation can finally be drawn as follows:

This is indeed the left-hand side of the Makeenko–Migdal equation (MM).

30These relations are strictly equivalent to (16). They are, in one form or the other, the fundamental
fact of all this story.
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3.3 The Equations, Their Merits and Demerits

The strategy of proof described in the previous section can be used, and was used by
Makeenko and Migdal, to derive equations slightly more general than (MM). Let us
indeed consider a collection �1, . . . , �n of loops on the surface M . We assume that
these loops are nice and in generic position, in the sense that every crossing between
two portions of these loops, be they two portions of the same loop or portions of two
different loops, is a simple transverse intersection. Around such a crossing, we see,
as before, four faces of the graph cut on M by �1, . . . , �n, and we label the areas
of these faces t1, t2, t3, t4 as indicated on Figures 9 and 10. The Makeenko–Migdal
equations express the alternated sum of the derivatives with respect to t1, t2, t3, t4 of
E[tr(H�1) . . . tr(H�n)]. The equations come in two variants, depending on whether
the crossing is between two strands of the same loop (let us call this the case I) or
between strands of two distinct loops (the case II). In the case II, where the crossing
is between strands of two distinct loops, say �1 and �2, the same desingularisation
operation explained at the beginning of Section 3.1 gives rise to one new loop �12,
as explained in Figure 10.

Calling, in all cases, �1 the loop containing the South-West – North-East strand,
one should replace the observable ψX defined in (44) by

ψX(ω) = Tr(Xhol(ω, �1))Tr(hol(ω, �2)) . . . Tr(hol(ω, �n))

Then the directional derivative of ψX is given by

dωψX(η) =
∣∣
∣
∣
∣
Tr

(
X hol(ω, �′)X hol(ω, �′′)

)
Tr(hol(ω, �2)) . . . Tr(hol(ω, �n)) (case I)

Tr(X hol(ω, �1))Tr(X hol(ω, �2))Tr(hol(ω, �3)) . . . Tr(hol(ω, �n)) (case II)

Then, the key to the computation is, as always, given by the equations (47). The
final result, with the current notation, is the following.

Theorem 3.1 (Makeenko–Migdal equations) Let �1, . . . , �n be nice loops on M in
generic position. Consider a crossing point of two strands of �1 (case I) or of one
strand of �1 and one strand of �2 (case II). Let t1, t2, t3, t4 denote the areas of the

Fig. 10 When performed at a crossing of two distinct loops �1 and �2, the operation of
reconnecting the incoming and outgoing strands in the other way that is consistent with orientation
produces, from �1 and �2, one bigger loop that we denote by �12
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four faces around this crossing point, as illustrated on Figures 9 and 10. Then, with
the notation of these figures,

(
∂

∂t1
− ∂

∂t2
+ ∂

∂t3
− ∂

∂t4

)
E[tr(H�1 ) . . . tr(H�n )] =

∣∣∣∣∣
∣

E[tr(H�′ )tr(H�′′ )tr(H�2 ) . . . tr(H�n)] (I)

1
N2 E[tr(H�12 )tr(H�3 ) . . . tr(H�n)] (II)

It is understood that if two of the four faces around the crossing under consideration
are identical, then the corresponding derivative should be taken twice. Moreover, in
the case where M = R2, any term corresponding to the derivative with respect to
the area of the unbounded face should be ignored.

Makeenko and Migdal’s original paper on this subject is [31]. The first mathe-
matical proof of the equations was given in [24]. It was rather long and convoluted,
and restricted to the case where the surface M is the plane R2. Three very short and
elegant proofs of the equations were then given, still for the case of the plane, by
Bruce Driver, Brian Hall and Todd Kemp in [8]. Immediately after, the same team
joined by Franck Gabriel proved in [7] that the equations hold on any compact
surface. There is little point in reproducing here the content of these beautiful
papers. Let us simply emphasise that the fundamental computations remain those
summarised in (47).

In addition to their simplicity, the Makeenko–Migdal equations have one major
quality which is the fact that the collection of loops appearing in the right-hand
side has one crossing less compared with the original collection of loops. Indeed,
the operation of desingularisation replaces the crossing where it takes place by a
tangential contact which, to the price of an arbitrarily small deformation of the
loops, can be suppressed. This suggests the possibility of a recursive computation
of Wilson loop expectations. We will explain in the next section that it is indeed
possible to use the Makeenko–Migdal equations to set up a recursive computation
of the large N limit of Wilson loop expectations.

What the Makeenko–Migdal do not do however, is to give a simple formula
for the derivative of a Wilson loop expectation with respect to the area of a single
face of the graph traced by a given configuration of loops. Only very special linear
combinations of these derivatives are accessible. Of course, unless one is working
on the plane, the total area of the surface is prescribed and the best one could hope
for is a formula describing the variation of the Wilson loop expectations under an
arbitrary variation of the areas of the faces that preserves the total area. However,
this is, in general, not given by the Makeenko–Migdal equations, see for example
Figure 11.

It is, in fact, not too difficult to understand what information is available in the
Makeenko–Migdal equations. Let us consider n loops �1, . . . , �n on our surface M .
Let F1, . . . , Fr denote the faces of the graph traced by these loops. Let us identify a
vector (c1, . . . , cr ) of the vector space Rr with the linear combination of derivatives

c1
∂

∂|F1| + . . . + cr

∂

∂|Fr |
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Fig. 11 Consider this configuration of two loops on a sphere. It has five faces and three vertices.
Moreover, of the three instances of the Makeenko–Migdal equations, two compute the same linear
combination of derivatives. There is no hope that the Makeenko–Migdal equations alone will allow
one to compute the corresponding Wilson loop expectation

acting on Wilson loop expectations. Let us define the linear subspace M ⊂ Rr

generated by the linear combinations given by the Makeenko–Migdal equations
applied at each crossing of the loops �1, . . . , �n. This subspace M is of course
contained in the hyperplane Rr

0 of equation c1 + . . . + cr = 0. Every element of
Rr can naturally be identified with a function on M that is constant on each face of
the graph. To each loop �i , we can associate the unique element n�i

of Rr
0 which,

as a function on M , varies by 1 across �i
31 and is constant across every other loop.

This function is a substitute for the winding number of the loop �i on the surface M .
It is not difficult to check that it is equivalent, for an element of Rr , to be

orthogonal, for the simplest scalar product, to the subspace M , or to have a constant
jump across every loop, the constant possibly depending on the loop. A more formal
statement is the following. We denote by 1 the vector (1, . . . , 1).

Proposition 3.2 In Rr , one has the equality of linear subspaces

M = Vect(1,n�1 , . . . ,n�n)
⊥

In particular, dim M = dimRr
0 − n.

The greater the number of loops, the worse the situation. Even with one single
loop, we see that all the information about the Wilson loop expectations is not
contained in the Makeenko–Migdal equations.

It is time to turn to a case where things improve drastically, namely the large N

limit of the Wilson loop expectations.

3.4 The Master Field on Compact Surfaces

We saw in Section 2 that when G = U(N), Wilson loop expectations tend to take
simpler forms in the limit where N tends to infinity (compare for example (20)
and (21)). We also observed some instances of a property of factorisation, see for

31A convention must be chosen regarding the definition of a positive crossing of �i .
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example (26). The factorisation is due to a phenomenon of concentration, with the
effect that, as N tends to infinity, and provided one scales the scalar product on
u(N) correctly (which we did), the Wilson loop functionals, that is, the normalised
traces of the random holonomies, become deterministic. The limit is thus a number
depending on a loop, and this function is relatively simple, at least when one is
working on the plane, because it satisfies, and is essentially determined, by the
Makeenko–Migdal equations.

The main theorem of convergence is the following.

Theorem 3.3 (Master field) Let M be either the plane R2 or the sphere S2. For each
N � 1, let (HN,�)�∈L (M) be the Yang–Mills holonomy process on M with structure
group G = U(N), and with scalar product 〈X, Y 〉 = NTr(X∗Y ) on u(N). Then for
every loop � ∈ L (M), the convergence of complex-valued random variables

tr(HN,�)
P−→

N→∞ �(�) (48)

holds in probability, towards a deterministic real limit.

This theorem was proved in [24] in the case of the plane, and in [5] in the case of
the sphere, see also [17]. In the case of the plane, which is simpler, it is also known
that the convergence occurs quickly, in the sense that the series

∑
N�1 Var(tr(HN,�))

converges. Thus, the convergence (48) holds almost surely. The conclusion is also
known to be true if one replaces the unitary group by the special unitary group, the
special orthogonal group, or the symplectic group.

It is expected that Theorem 3.3 is true on any compact surface, but a proof of this
fact still has to be given.

In any case, when this theorem holds, the aforementioned asymptotic factorisa-
tion takes place, in the sense that for all loops �1, . . . , �n,

lim
N→∞E[tr(H�1) . . . tr(H�n)]= lim

N→∞E[tr(H�1)] . . . lim
N→∞E[tr(H�n)]=�(�1) . . . �(�n)

The function � : L (M) → R which appears in (48) is called the master
field. This is a continuous function with respect to the convergence of loops with
fixed endpoints (see the beginning of Section 1.4.4) and it satisfies, crucially, the
Makeenko–Migdal equation (MM∞), which is all that there is left of the full set of
equations stated in Theorem 3.1 as N tends to infinity.

Theorem 3.4 Assume that M is either the plane R2 or the sphere S2. The function
� : L (M) → R is the unique function that is continuous, invariant under area-
preserving diffeomorphisms, satisfying the Makeenko–Migdal equation (MM∞) and
such that for every simple loop � enclosing a domain of area t , one has, depending
on whether M is the plane or a sphere of total area T ,

�(�) = e− t
2 (M = R2)
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or

�(�) = 1

π

∫

R
cosh

(x

2
(T − 2t)

)
sin(πρT (x)) dx (M = S2)

3.5 A Value of the Master Field on the Plane

As a conclusion to these notes, we give an example of computation of a value of the
master field � on the plane, and choose an example that is not listed at the end of
[24]. We choose the loop � represented on the left half of Figure 12.

Although we did not include this in our description of the function � on the plane
R2, it is not difficult to check that the derivative of � of any loop with respect to the
area of a face adjacent to the unbounded face is equal to − 1

2 times the value of � on
this loop. This factor − 1

2 comes of course from the stochastic differential equation
(15) satisfied by the Brownian motion on U(N).

Given the value of � on simple loops and (29), the Makeenko–Migdal equation
applied to the vertex of �0 that is marked in Figure 12 yields

(2∂s − ∂t2)�(�0) = (−1 − ∂t2)�(�0) = e− s
2 −t1−t2(1 − t1)

which is solved in

�(�0) = e− s
2 −t1−t2(1 − t1)(1 − t2)

If we can determine ∂u�(�) explicitly, we are done, since �(�0) is exactly the
value of �(�) at u = 0. Applying the Makeenko–Migdal equations at the three
marked vertices in Figure 12 yields the derivatives (∂s1 + ∂s2 − ∂t2)�(�), (∂s1 +
∂s2 − ∂t1)�(�), and (∂t1 + ∂t2 − ∂s2 − ∂u)�(�). Adding the three expressions and
using the fact that ∂s1�(�) = ∂s2�(�) = − 1

2�(�), we find

Fig. 12 We are interested in computing �(�). The strategy is to use the Makeenko–Migdal
equations to compute ∂u�(�). As u = 0, the two inner windings of � disentangle, and � becomes
identical to �0. This loop �0 is similar to the loop that we studied in Section 2.3, and becomes
exactly this loop when t2 = 0. Our first task is thus to compute ∂t2�(�0)
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(
− 3

2
− ∂u

)
�(�) = e− s1+s2

2 −t1−t2− 3u
2 (3 − t1 − t2 − u)

and finally

�(�) = e− s1+s2
2 −(t1+t2)− 3u

2

(u2

2
+ (t1 + t2 − 3)u + (1 − t1)(1 − t2)

)

(49)

Evaluating this expression with s1 = s2 = t1 = t2 = 0 yields the large N limit of
the third moment of the unitary Brownian motion at time u, as expressed by (22)
with n = 3. This is consistent with the fact that shrinking all faces but the face of
area u reduces � to a loop winding three times around a simple domain of area u.
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