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1 Introduction

In the setting of the classical Laplacian � on a Euclidean domain, or the Laplace-
Beltrami operator on a Riemannian manifold, a polyharmonic function f is one
for which �nf = 0. Their study goes back to work in the 19th century, see,
e.g., ALMANSI [1]. A basic reference is the monograph by ARONSZAJN, CREESE

AND LIPKIN [3]. A more recent one is the volume by GAZZOLA, GRUNAU AND

SWEERS [8], with a nice introduction to classical problems from elasticity where
polyharmonic (in fact biharmonic) functions and �2 come up.

While there is a huge body of literature in the smooth case, the literature in
the discrete setting is quite restricted: an early reference is VORONKOVA [14], who
analysed the discretised version of �2f = 0 in a half-strip [0 ,∞] × [0 , H ]. Other
quite early references are YAMASAKI [16] and KAYANO AND YAMASAKI [10]
who investigated the Green kernel for the bi-Laplacian on an infinite network,
and a follow-up of this is VENKATARAMAN [13]. Biharmonic Laplacians on trees
where also studied by COHEN, COLONNA AND SINGMAN [6, 7], seemingly without
link to [16] and [10]. Prior to that, COHEN, COLONNA, GOWRISANKARAN AND

SINGMAN [5] were the first to undertake a detailed study of polyharmonic functions
on infinite, locally finite trees. In particular, for the standard Laplacian arising
from simple random walk on a regular tree, they provided a boundary integral
representation which is an analogue of Almansi’s expansion of polyharmonic
functions on the unit disk. (To get a flavour of the many close analogies between
the potential theory of the unit disk and regular trees, the reader is invited to the
introductory sections of BOIKO AND WOESS [4].) Recently, PICARDELLO AND
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WOESS [12] extended the study of [5] and proved, among others, a boundary
integral representation of λ-polyharmonic functions (see below for more details) for
arbitrary nearest neighbour transition operators on countable trees, not necessarily
required to be locally finite.

In all this work, finite graphs, resp. Markov chains had only marginal appear-
ances: in [16] for the biharmonic Green function of finite subnetworks of an infinite
network, and in [5] for finite trees and an associated boundary value problem for
biharmonic functions. ANANDAM [2] also studies polyharmonic functions on finite
subtrees of infinite trees.

In the present note, we elaborate a detailed account of the general finite case, in
which the mentioned potential theoretic questions turn into issues of linear algebra
which can be solved rather easily.

The setting. We start with a finite set X, subdivided into the disjoint union of
two non-empty subsets Xo, the interior, and ∂X, the boundary. On X, we consider
a stochastic transition matrix P = (

p(x, y)
)
x,y∈X

with the following properties,

where p(n)(x, y) denotes the (x, y)-entry of the matrix power P n.

(i) For all x ∈ Xo, there is w ∈ ∂X such that p(n)(x,w) > 0 for some n.
(ii) For all w ∈ ∂X, we have p(w,w) = 1, and thus p(w, x) = 0 for all x ∈

X \ {w}.
(iii) For all w ∈ ∂X, there is x ∈ Xo such that p(n)(x,w) > 0 for some n.

Thus, X can be given the structure of a digraph, where we have an oriented
edge x → y when p(x, y) > 0. Then (i) means that the boundary can be reached
from any interior point by an oriented path, (ii) means that each boundary point is
absorbing, i.e., the only outgoing edge is a loop at that point and (iii) means that
every boundary point is active in the sense that it is reached by some oriented path
from an interior point. In probabilistic terms, we have a Markov chain (random
process) on X, whose evolution is governed by P : if the current position is x, then
the next step is from x to y with probability p(x, y).

Example 1.1 The most typical situation is the one where we start with a finite
resistive network, that is, a connected, non-oriented graph (X,E) where each edge
e = [x, y] = [y, x] carries a positive conductance a(e) = a(x, y). Then we
choose our partition X = Xo ∪ ∂X, and we set m(x) = ∑

y a(x, y). The transition
probabilities become p(x, y) = a(x, y)/m(x), if x ∈ Xo and y ∈ X, while
p(w,w) = 1 for w ∈ ∂X. This defines a reversible Markov chain which is absorbed
in ∂X, see, e.g., WOESS [15, Ch. 4]. In particular, setting all a(x, y) equal to 1, the
conductances correspond to the adjacency matrix.

The transition matrix P acts on functions (column vectors) f : X → C by

Pf (x) =
∑

y

p(x, y)f (y) ,
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and the (normalised) graph Laplacian is I − P , where I = IX is the identity matrix
over X. It is typically defined on X without assigning a boundary ∂X, but the study
undertaken here makes sense only in presence of absorbing points. Note that the
more direct analogue of the (negative definite) smooth Laplacian would in reality be
P − I . More generally, we shall work with suitable variant of λ · I − P for λ ∈ C.

A λ-harmonic function h : X → C is one for which

Ph(x) = λ h(x) for every x ∈ Xo . (1.2)

When λ = 1, we speak of a harmonic function. When speaking of λ-polyharmonic
functions of order n, we have two possible approaches: one is to look for functions
f : X → C which satisfy

(λ · I − P)nf = 0 on X. (1.3)

These global λ-polyharmonic functions can be easily described.
The more interesting version is related with the pre-assignment of boundary

values. Let PXo and Q be the restrictions of P to Xo×Xo and Xo×∂X, respectively.
Then we define the λ-Laplacian as the matrix given in block-form by

�λ =
(

λ · IXo − PXo −Q

0 0

)

=
(

λ · IXo 0

0 I∂X

)

− P , (1.4)

where the 0s stand for the zero matrices in the respective dimensions. Here, the
identity matrix over ∂X is not multiplied by λ, so that functions annihilated by �λ

are λ-harmonic only in Xo.
Our main focus is on polyharmonic functions in the sense that they satisfy

�n
λf = 0 (1.5)

on X, or – more reasonably, as we shall see – on the “n-th interior” of X, i.e., all
points in Xo from which ∂X cannot be reached in less than n steps. When λ = 1,
the two notions (1.3) and (1.5) coincide.

This note is organised as follows. In Section 2, we first consider ordinary
harmonic and polyharmonic functions, that is, the case λ = 1. After recalling
the well-known solution of the Dirichlet problem for harmonic functions with
preassigned boundary values (Lemma 2.2), we explain why all global harmonic
functions in the sense of (1.3) (with λ = 1) are indeed harmonic (Proposition 2.6).
Then we look at all global λ-polyharmonic functions as in (1.3). In this case, λ must
belong to the spectrum of PXo , and the solutions can be described in terms of a
Jordan basis (Proposition 2.7).

In Section 3, we turn to studying �λ and its powers, for λ in the resolvent set
of PXo (the spectrum being settled in Section 2). There is a direct analogue to the
solution of the Dirichlet problem, and again, any function which satisfies �n

λf =
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0 on all of X must be λ-harmonic (Proposition 3.2). Finally, we give the precise
formulation of the Riquier problem, which consists in assigning boundary functions
g1 , . . . , gn and – loosely spoken – searching for a function f such that the boundary
values of �r−1

λ f coincide with gr for r = 1, . . . , n. That problem for the special
case of finite trees is briefly touched in [5]. Here, we provide the general solution
(Theorem 3.4).

Finally, in Section 4, we undertake a comparison of those results with the case
of infinite trees without leaves, which was studied recently in [12] by use of Martin
boundary theory.

All results of this note are achieved by applying basic tools from Linear Algebra
in the right way. We believe that this material provides a useful basis, firstly as a
link to the classical, smooth case (regarding the Laplacian on bounded domains),
and secondly, as a basis for handling and understanding polyharmonic functions not
only on infinite trees but also on more general infinite graphs and their boundaries
at infinity.

2 The Dirichlet Problem and Global λ-Polyharmonic
Functions

We start with some observations on the case λ = n = 1, that is, ordinary harmonic
functions. We start with a simple observation on spec(PXo), the set of eigenvalues
of PXo .

Lemma 2.1 The spectral radius ρ = ρ(PXo) = max{|λ| : λ ∈ spec(PXo)}
satisfies ρ < 1.

Proof (Outline) Condition (i) on P implies that for each x ∈ Xo, there is n such
that

∑
v∈Xo p(n)(x, v) < 1, that is, P n

Xo is strictly substochastic in the row of x. One
easily deduces that there is m such that P m

Xo is strictly substochastic in every row,
which yields the claim. �

The following solution of the Dirichlet problem is folklore in the Markov chain
community; see, e.g., [15, §6.A]. It keeps being “rediscovered” by analysts who
deviate into the discrete world, see, for example, KISELMAN [11].

Lemma 2.2 For every function g : ∂X → C there is a unique harmonic function h

on X such that h|∂X = g. It is given by

h(x) =
∑

w∈∂X

F (x,w)g(w) ,

where F(x,w) is the probability that the Markov chain starting at x hits ∂X in the
point v.
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We next want to describe the kernel F(x,w) in matrix terminology. Let
res(PXo) = C \ spec(PXo) be the resolvent set of PXo . For λ ∈ res(PXo), the
resolvent is the Xo × Xo-matrix

G(λ) = (
G(x, y|λ)

)
x,y∈Xo = (λ · IXo − PXo)−1. (2.3)

The kernels G(x, y|λ) are called Green functions. They are rational functions of λ.
Now we define the Xo × ∂X-matrix

F(λ) = (
F(x,w|λ)

)
x∈Xo,w∈∂X

= G(λ)Q. (2.4)

We can extend it to X × ∂X by setting F(v,w|λ) = δw(v) for v,w ∈ ∂X. When
λ = 1, we just write G(x, y) for G(x, y|1) and F(x,w) for F(x,w|1). For |λ| > ρ,
we can expand

G(x, y|λ) =
∞∑

n=0

p(n)(x, y)/λn+1 and F(x,w|λ) =
∞∑

n=0

f (n)(x,w)/λn ,

where the probabilistic meaning is that for the Markov chain starting at x, the
probability to be at y at time n is p(n)(x, y), while f (n)(x,w) is the probability
that the first visit in w ∈ ∂X occurs at time n.

Coming back to the Dirichlet problem, it is a straightforward matrix computation
to see that the function h, as defined in Lemma 2.2, is harmonic. Its uniqueness
follows from invertibility of (IXo − PXo). Instead, it may also be instructive to
deduce uniqueness from the potential theoretic maximum principle: every real-
valued harmonic function attains its maximum on ∂X, see [15, §6.A].

This also yields one way to see that the Markov chain must hit the boundary
almost surely, that is,

∑

w∈∂X

F (x,w) = 1 for every x ∈ Xo.

Namely, the unique harmonic extension of the constant boundary function g ≡ 1 is
the constant function h ≡ 1 on X. Also, the function x �→ F(x,w) provides the
unique harmonic extension of the boundary function g = 1v .

Corollary 2.5 The geometric and the algebraic multiplicity of the eigenvalue λ = 1
of P coincide and are equal to |∂X|.
Proof Lemma 2.2 yields that the geometric multiplicity is |∂X|. The characteristic
polynomial of the matrix P is

χP (λ) = det(λ · I − P) = (λ − 1)|∂X|χP o(λ).

By Lemma 2.1, χP o(1) �= 0. �
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Now we can easily describe all free polyharmonic functions of order n ≥ 1, that
is, those which satisfy (I − P)nf = 0 on X.

Proposition 2.6 A function f : X → C satisfies (I − P)nf = 0 if and only if f is
harmonic.

Proof Suppose n ≥ 2, and let h = (I − P)n−1f . Then h is harmonic, and (I −
P)f = h. Since (I − P)n−1f = 0 on ∂X, the function h solves the Dirichlet
problem with boundary values 0. Therefore h = 0, that is, (I − P)n−1f = 0.
Proceeding by induction, we obtain that f is harmonic. �

Similarly, we can handle the case (λ · I − P)nf = 0, when λ �= 1. First of all,
when n ≥ 2 then the function h = (λ · I − P)n−1f satisfies Ph = λ · h. Second,
we see that f = 0 in ∂X, so (by abuse of notation) we consider f as a function on
Xo. In other words, λ ∈ spec(PXo).

Let κ = κ(λ) and μ = μ(λ) be the algebraic and geometric eigenvalue
multiplicities of λ. Let h1 , . . . , hμ be a basis of ker(λ · IXo − PXo). For each j ∈
{1, . . . , μ}, let κj be the length of the associated Jordan chain (= dimension of the
associated Jordan block in the Jordan normal form). That is, κ1 + · · ·+ κμ = κ , and

we have functions f
(k)
j , k = 1, . . . , κj such that f

(1)
j = hj and (λ·IXo −PXo)f

(k)
j =

f
(k−1)
j for k ≥ 2. All those functions are extended to X by assigning value 0 on ∂X.

Then it is clear that {f (k)
j : k = 1, . . . , κj , j = 1, . . . , μ} is a basis of the linear

space of all global λ-polyharmonic functions (of arbitrary order). We subsume.

Proposition 2.7 With the above notation, for λ ∈ spec(PXo), the space of
functions f : X → C with (λ · I − P)nf = 0 is spanned by

{
f

(k)
j : k = 1, . . . , min{n, κj } , j = 1, . . . , μ

}
.

Corollary 2.8 For a finite network with boundary as in Example (1.1), every
global λ-polyharmonic h function satisfies Ph = λ · h, and λ ∈ spec(P ) ⊂ R.
Furthermore, h vanishes on ∂X when λ �= 1.

Proof If we define the diagonal matrix M = diag
(√

m(x)
)
x∈Xo , then M PXo M−1

is symmetric, so that the spectrum is real and the geometric and algebraic multiplic-
ities of the eigenvalues of PXo coincide. �

3 Boundary Value Problems for λ-Polyharmonic Functions

In this section, we assume that λ ∈ res(PXo) and study the operator (resp. matrix)
�λ of (1.4) and its powers.
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Notation: in accordance with the block form used above, for any function f :
X → C we write f =

(f o

f ∂

)
, where f o = f |Xo and f ∂ = f |∂X . Also, we write

�o
λ for the restriction of the matrix of (1.4) to X × Xo, that is, �o

λf = (�λf )o.
First of all, there is an obvious λ-variant of the solution of the Dirichlet problem.

Lemma 3.1 Let λ ∈ res(PXo). For every function g : ∂X → C there is a unique
λ-harmonic function h on X such that h|∂X = g. It is given by

h(x) =
∑

w∈∂X

F (x,w|λ)g(w) , x ∈ Xo ,

where F(x,w|λ) is defined by (2.4).

Proof We write h =
(
ho

g

)
, where ho = h|Xo and g is the given boundary function.

Then the equation �λ = 0 transforms into

(λ · IXo − PXo)ho = Qg ,

which has the unique solution ho = G(λ)Qg , as proposed. �
Next, we note that

�n
λ =

(
(λ · IXo − PXo)n −(λ · IXo − PXo)n−1Q

0 0

)

.

Thus, if we look for a solution of �n
λh = 0 then with h =

(
ho

g

)
as above, we get

the equation

(λ · IXo − PXo)nho = (λ · IXo − PXo)n−1Qg ,

which has the same solution as in Lemma 3.1. Thus, we have the following general
version of Proposition 2.6.

Proposition 3.2 A function f : X → C satisfies �n
λf = 0 on all of X if and only

if f is λ-harmonic.

For n ≥ 2, what is more interesting is to assign further boundary conditions.
Recall that �λf always vanishes on ∂X. The analogue of the Dirichlet problem is
the Riquier problem of order n. We assign n boundary functions g1 , . . . , gn : ∂X →
C and look for a function f : X → C such that we have a “tower” of boundary value
problems for functions fn , fn−1 , . . . , f1 = f : X → C as follows:

fr =
(f o

r

gr

)
, �o

λfn = 0 , and �o
λfr = f o

r+1 for r = n−1, n−2, . . . , 1 .

(3.3)
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Theorem 3.4 For λ ∈ res(PXo) , the unique solution f = f1 of (3.3) is given by

f (x) =
n∑

r=1

[
G(λ)r Qgr

]
(x) , x ∈ Xo ,

where G(λ)r is the r-th matrix power of G(λ).

Proof We use induction on n. For n = 1, this is Lemma 3.1. Suppose the statement
is true for n − 1. The function f2 is the solution of the Riquier problem of order
n − 1 for the boundary functions g2 , . . . , gn. By the induction hypothesis,

f2(x) =
n∑

r=2

[
G(λ)r−1 Qgr

]
(x) , x ∈ Xo ,

and this is the unique solution. The last one of the “tower” of Equations (3.3) is

�o
λf = f o

2 , where f =
(
f o

g1

)
.

This can be rewritten as

(λ · IXo − PXo)f o − Qg1 = f o
2 .

Inserting the solution for f o
2 and multiplying by G(λ), we get the solution for f ,

and it is unique. �
Note that the solution f does not satisfy (1.5) on all of Xo. This is due to the fact

that our discrete Laplacian is not infinitesimal. Let

∂nX = {x ∈ X : p(k)(x,w) > 0 for some w ∈ ∂X and k ≤ n − 1} , (3.5)

the set of all points in X from which ∂X can be reached in n − 1 or less steps. Then
�n

λf = 0 only on the n-th interior X \ ∂nX, while the values on ∂nX depend on the
boundary functions g1 , . . . , gn .

The functions λ �→ G(x, y|λ) are rational, and the union of the set of their
poles is spec(PXo). For λ ∈ res(PXo), we can differentiate the identity λ · G(λ) −
P G(λ) = IXo k times, and Leibniz’ rule yields

(λ · IXo − PXo)G(r)(λ) = −k · G(r−1)(λ) ,

where G(r)(λ) is the (elementwise) r-th derivative of G(λ) with respect to λ. From
this, we get recursively for the matrix powers of G(λ)

G(λ)r = (−1)r−1

(r − 1)! G
(r−1)(λ) . (3.6)
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We can insert this in the formula of Theorem 3.4 for an alternative form of the
solution of the Riquier problem.

4 Comparison with the Case of Infinite Trees; Examples

We now want to relate the preceding material, and in particular Theorem 3.4, with
the potential theory of countable Markov chains, and more specifically, with Martin
boundary theory and λ-polyharmonic functions on trees, as studied in [12]. We
choose and fix a reference point (origin) o ∈ Xo and consider the rational functions
λ �→ F(o,w|λ) of (2.4) for λ ∈ res(PXo) and w ∈ ∂X. They have (at most) finitely
many zeros. Let

res∗(PXo) = res(PXo) \ {λ : F(o,w|λ) = 0 for some w ∈ ∂X} .

Every positive real λ > ρ(P ) belongs to res∗(PXo), in particular, λ = 1. For
λ ∈ res∗(PXo), we define the λ-Martin kernel

K(X)(x,w|λ) = F(x,w|λ)

F (o,w|λ)
, x ∈ X , w ∈ ∂X . (4.1)

The function x �→ K(X)(x,w|λ) is the unique solution of the λ-Dirichlet problem
of Lemma 3.1 with value 1 at the root o and the boundary function gv proportional
to δw , that is, gw(v) = δw(v)/F (o,w|λ). Thus, for a generic boundary function
g : ∂X → C, we can write the solution of the λ-Dirichlet problem for x ∈ Xo as

h(x) =
∑

w∈∂X

K(X)(x,w|λ)ν(w) =:
∫

∂X

K(X)(x, · |λ) dν (x ∈ Xo), where

ν(w) = g(w)F (o,w|λ).

(4.2)
The integral notation indicates that we think of ν = νg as a complex distribution
on ∂X. In the same way, the solution of the Riquier problem in Theorem 3.4 can be
written as

f (x) =
n∑

r=1

∫

∂X

K(X)
r (x, · |λ) dνr , where for w ∈ ∂X

K(X)
r (·, w|λ) = G(λ)r−1K(·, w|λ) and νr(w) = gr(w) F (o,w|λ) .

(4.3)

Now let us look at the case of a nearest neighbour transition operator P = PT on
a countable tree T without leaves (i.e., vertices distinct from o have more than just
one neighbour): there, the geometric boundary is attached to the tree “at infinity”,
and there is no “interior” of T which appears as a subset of the vertex set: the interior
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is T itself. The Martin kernel K(T )(x, ξ |λ) is defined for x ∈ T and ξ ∈ ∂T , and it
satisfies (λ · I − P)K(T )(·, ξ |λ) = 0, without any restriction to a sub-matrix such
as PXo . In this setting, [12, Thm. 5.4] says that any λ-polyharmonic function f of
order n on T has a unique representation of the form

f (x) =
n∑

r=1

∫

∂T

K(T )
r (x, · |λ) dνr , where

K(T )
r (x, ξ |λ) = (−1)r−1

(r − 1)!
dr−1

dλr−1 K(x, ξ |λ) (x ∈ T , ξ ∈ ∂T ),

(4.4)

and ν1 , . . . , νn are distributions on ∂T . The normalisation is slightly different here
from the one chosen in [12], and in particular,

(λ · IT − PT )K(T )
r (·, ξ |λ) = K

(T )
r−1(·, ξ |λ) for r ≥ 2 . (4.5)

Let us compare the kernels K
(X)
r and K

(T )
r . We have

(λ · IXo − PXo)r−1K(X)
r (·, w|λ) = K(X)(·, w|λ) for w ∈ ∂X , and

(λ · IT − PT )r−1K(T )
r (·, ξ |λ) = K(T )(·, ξ |λ) for ξ ∈ ∂T .

(4.6)
The only, but crucial difference is that in the first of the two identities, we may
multiply from the left by G(X)(λ)r−1 = (λ·IXo −PXo)−(r−1). In the second identity,
we may not multiply by G(T )(λ)r−1, where G(T )(λ) = (λ · IT − PT )−1 is the
resolvent of P as an operator on the Hilbert space �2(T ,m), with the weights m(x)

analogous to Example 1.1 above. Indeed, K(T )(·, ξ |λ) does in general not belong to
�2(T ,m).

“Forward only” Laplacians on finite and infinite trees
We now consider a class of examples which constitute the finite analogue of

[12, §6]. They were also studied, from the viewpoint of Information Theory, by
HIRSCHLER AND WOESS [9].

In order to carry the above comparison with the infinite case a bit further, we need
some more details on the geometry of an infinite tree T with root o. We assume that
T is locally finite and has no leaves. Each vertex x �= o has a unique predecessor
x−, its neighbour which is closer to o. For each x ∈ T there is the unique geodesic
path π(o, x) = [o = x0 , x1 , . . . , xn = x] from o to x, where x−

k = xk−1 for
k = 1, . . . , n. In this case, |x| = n is the length of x.

The boundary at infinity ∂T of T consists of all geodesic rays ξ = [o =
x0 , x1 , x2 , . . . ], where x−

k = xk−1 for k ≥ 1. For a vertex x ∈ T , we define
the boundary arc

∂xT = {ξ ∈ ∂T : x ∈ ξ} .
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The collection of all ∂xT , x ∈ T , is the basis of a topology on ∂T , which thus
becomes a compact, totally disconnected space, and each boundary arc is open and
compact. We now take a Borel probability measure P on ∂T which is supported by
the entire boundary, that is, P(∂xT ) > 0 for all x ∈ T . It induces a forward only
Markov operator on T , as follows:

p(x, y) =
{
P(∂yT )/P(∂xT ) , if y− = x ,

0 , otherwise.
(4.7)

Conversely, if we start with transition probabilities p(x, y) such that p(x, y) > 0
precisely when y− = x, then we can construct P on ∂xT by setting

P(∂xT ) = p(o, x1)p(x1, x2) · · · p(xn−1, x) , if

π(o, x) = [o = x0 , x1 , . . . , xn = x].

This determines P on the Borel σ -algebra of ∂T .
More generally, a distribution on ∂T is a set function

ν : {∂xT : x ∈ T } → C with ν(∂xT ) =
∑

y:y−=x

ν(∂yT ) for all x ∈ T .

(4.8)

If ν is non-negative real, then it extends uniquely to a Borel measure on ∂T .
A locally constant function ϕ on ∂T is one such that every ξ ∈ ∂T has a
neighbourhood on which ϕ is constant. Thus, one can write it as a finite linear
combination of boundary arcs

ϕ =
m∑

j=1

cj 1∂x(j)T ,

and we can define

∫

∂T

ϕ dν =
m∑

j=1

cj ν(∂x(j)T ) .

Indeed, in this way, the space of all distributions is the dual of the linear space of all
locally constant functions on ∂T .

Now take λ ∈ C \ {0}. Following [12, §6], the λ-Martin kernel on T is

K(T )(x, ξ |λ) =
{

λ|x|/P(∂xT ) , if ξ ∈ ∂xT ,

0 , otherwise.



88 T. Hirschler and W. Woess

For fixed x, the function ξ �→ K(T )(x, ξ |λ) and its derivatives with respect to λ

are locally constant, whence they can be integrated against distributions on ∂T .
According to (4.4), we get

K(T )
r (x, ξ |λ) =

⎧
⎨

⎩
(−1)r−1 λ|x|−(r−1)

( |x|
r − 1

)
1

P(∂xT )
, if ξ ∈ ∂xT ,

0 , otherwise,
(4.9)

and every λ-polyharmonic function of order n on T has a unique representation

f (x) =
n∑

r=1

(−1)r−1 λ|x|−(r−1)

( |x|
r − 1

)
νr(∂xT )

P(∂xT )
, (4.10)

where the νr = ν
(T )
r (r = 1, . . . , n) are distributions on ∂T .

We now consider the finite situation. The graph X under consideration is a finite
subtree of T with the same root o. The boundary consists of the leaves of the tree:

∂X = {w ∈ X : w �= o , deg(w) = 1} .

We suppose that ∂X is a section of T in the sense of [9]: For every ξ ∈ ∂T , the
geodesic ray starting from o that represents ξ intersects ∂X in a unique vertex. (A
typical special case is the one where ∂X = {x ∈ T : |x| = L} with L ∈ N.) For
each x ∈ X, we define the finite version of the boundary arc rooted at x as

∂xX = {w ∈ ∂X : x ∈ π(o,w)}.

In particular, ∂oX = ∂X, and ∂wX = {w} for w ∈ ∂X.
We consider the restriction to X of the given forward transition matrix PT on T .

That is,

pX(x, y) = P(∂yT )/P(∂xT ) , if y− = x ∈ Xo, and pX(w,w) = 1 if w ∈ ∂X,

while pX(x, y) = 0 in all other cases. Exactly as on the whole tree, we have for
x, y ∈ X

p(n)(x, y) > 0 ⇐⇒ x ∈ π(o, y) and n = |y| − |x| ,
and then p(n)(x, y) = P(∂yT )/P(∂xT ) .

The matrix PXo is nilpotent, so that spec(P ) = {0, 1}, and the algebraic
multiplicities of those two eigenvalues are |Xo| and |∂X|, respectively. For λ ∈
C \ {0} = res(PXo) and x, y ∈ Xo, we have
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G(x, y|λ) =
{

λ−d(x,y)−1
P(∂yT )/P(∂xT ) , if x ∈ π(o, y) ,

0 , otherwise.

Therefore in this example, the right-hand side of (3.6) is obtained by

(−1)r−1

(r − 1)! G(r−1)(x, y|λ) = λ−d(x,y)−r

(
d(x, y) + r − 1

r − 1

)
P(∂yT )/P(∂xT ) ,

if x ∈ π(o, y) . We note that res∗(PXo) = res(PXo) and that F(o,w|λ) =
λ−|w|

P(∂wT ) for w ∈ ∂X. We can now compute the kernels K
(X)
r of (4.3) as

follows:

K(X)
r (x,w|λ) =

⎧
⎨

⎩
λ|x|−r+1

(
d(x,w) + r − 2

r − 1

)
1

P(∂xT )
, if w ∈ ∂xT ,

0 , otherwise.
(4.11)

Then, given boundary functions g1 , . . . , gn , the associated solution of the Riquier
problem reads

f (x) =
n∑

r=1

∫

∂X

K(X)
r (x, · |λ) dν(X)

r , with ν(X)
r (w) = λ−|w| gr(w)P(∂wT ) .

Now consider (4.6) and the fact that PXo is the restriction of PT to Xo. In spite
of this, when n ≥ 2 we see that for w ∈ ∂X, the function x �→ K

(X)
n (x,w|λ)

is not the restriction to Xo of x �→ K
(T )
n (x, ξ |λ), where ξ ∈ ∂wX. (The value is

the same for every such ξ , when x ∈ Xo.) For a closer look, fix ξ ∈ ∂wT and let
f (x) = K

(T )
n (x, ξ |λ) for x ∈ X. This function solves the Riquier problem on X

with boundary functions

gr(v) = K
(T )
n+1−r (w, ξ |λ) δw(v) , v ∈ ∂X ,

or, equivalently, with boundary measures on ∂X

ν(X)
r = (−λ)n−r

( |w|
n − r

)
δw .

Indeed, verification of

K(T )
n (x, ξ |λ) =

n∑

r=1

∫

∂X

K(X)
r (x, · |λ) dν(X)

r

leads to known combinatorial identity



90 T. Hirschler and W. Woess

( |w|
n − 1

)
=

n∑

r=1

(−1)n−r

(|w| − |x| − r − 2

r − 1

)( |w|
n − r

)
,

in which |w| and |x| can be arbitrary integers with |w| > |x| ≥ 0.
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