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1 Introduction—Comments on the Foundations of Quantum
Mechanics and Purpose of Paper

Let me start with a few general remarks: I consider it to be an intellectual
scandal that, nearly one hundred years after the discovery of matrix mechanics
by Heisenberg, Born, Jordan and Dirac, many or most professional physicists—
experimentalists and theorists alike— admit to being confused about the deeper
meaning of Quantum Mechanics (QM), or are trying to evade taking a clear
standpoint by resorting to agnosticism or to overly abstract formulations of QM

that often only add to the confusion. Attempts to replace QM by some alternative
deterministic theory, one that does not have a “measurement problem,” yet repro-
duces important predictions of QM , do not appear to have been very successful, so
far. Unfortunately, most physicists have prejudices preventing them from taking a
fresh, unbiased look at the subject, and discussions of the foundations of QM tend
to be surprisingly emotional. I feel it is time to change this situation!

My own interests in the foundations of Quantum Mechanics were aroused in
courses on QM taught by Klaus Hepp and Markus Fierz in the late sixties of the
past century, which I took as an undergraduate student. I suppose that most serious
students of Physics develop such interests during their first courses on QM . But I
felt that the subject had better remain a hobby until later in my career. Not least
because of the appearance of partly contradictory novel “interpretations of QM”,
all of which left me unsatisfied, (see, e.g., [1, 2], and [3] for a brief survey), my views
of the foundations of QM actually remained quite confused until a little more than
ten years ago (which did not prevent me from giving talks about the subject—some
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with modest impact—in numerous places). But when I was approaching mandatory
retirement I felt an urge to clarify my understanding of some of the subjects I
had to teach to my students for thirty years—thermodynamics, effective dynamics
(in particular Brownian motion), and, foremost, the foundations of QM; see [4–
7] and references given there, the last two papers having some relevance for the
foundations of QM .1 At the beginning of 2012, my interests in this subject became
more serious, and I pursued them in joint efforts with my last PhD student, Baptiste
Schubnel. Later, some further colleagues got interested in our efforts, including M.
Ballesteros, Ph. Blanchard, N. Crawford, J. Faupin, and M. Fraas, who collaborated
with us in changing configurations. At this point, I wish to thank my collaborators
for their support in this endeavor, as well as quite a few colleagues—too many to
mention all of them—who were willing to listen to me and discuss ideas on basic
questions concerning the foundations of QM with me. D. Dürr and S. Goldstein
deserve my thanks for the encouragement and understanding they have provided.

In this paper, I present a sketch of the “ET H -Approach to Quantum Mechanics”
[8–10]. The ET H -Approach is supposed to lay the foundations of a logically
coherent quantum theory of “events” [11] and of direct or projective measurements
of physical quantities (serving to record “events”) that does not require invoking
any “deos ex machina,” such as “observers”; (see also [2]). I have given quite a
few talks about this new approach. Technical details have been presented in a short
course taught at Les Diablerets, in January of 2017 [12], and in [13, 14]. Our work
has profited from ideas proposed by the late Rudolf Haag [11], from a paper of D.
Buchholz and the late J. E. Roberts [15], and from discussions with Buchholz. In
completing this paper I enjoyed receiving feedback from a very careful referee who
found many typos and pointed out various unclear statements. A form of the ET H -
Approach compatible with Einstein causality and Relativity Theory is sketched in
[16]. But a comprehensive review of our work has not been written, yet.

Wide-spread recent interest in foundational problems surrounding QM has been
triggered by problems in quantum information theory and by the 2012 Nobel Prize
in Physics awarded to S. Haroche [17] and D. Wineland. Their discoveries, as
well as results described in [18, 19], and references given there have influenced
some of our own work on the theory of indirect measurements in QM , which has
appeared in [20–22] and is briefly sketched at the end of this paper. The theory
of indirect (“non-demolition-” and “weak-”) measurements is quite well developed
and clear, assuming one understands what “events” and “direct measurements and
observations” are, specifically direct observations of “probes” used to indirectly
retrieve information on physical systems. The theory of “events” and of “direct
(projective) measurements” actually constitutes the deep and controversial part of
the foundations of QM , and it is a novel approach to this theory that I intend to
outline in this paper.

1I think it is more appropriate to speak of the “foundations of QM ,” rather than “interpretations
of QM .” We have to understand what QM tells us about Nature, what it means - once this is
accomplished, the correct interpretation of the theory will come almost automatically.
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2 Standard Formulation of Quantum Mechanics and Its
Shortcomings

In our courses on Quantum Mechanics, physical systems, S, are often described as
pairs, (H , U), of a Hilbert space, H , of pure state vectors and a propagator, U ,
consisting of unitary operators

(
U(t, t ′)

)
t,t ′∈R, acting on H seemingly describing

the time evolution of state vectors in H from time t ′ to time t . The state space
H of physically realistic systems tends to be infinite-dimensional (but separable).
Alas, all infinite-dimensional separable Hilbert spaces are isomorphic, and the data
invariantly encoded in the pair (H , U) do not tell us anything interesting about
the physics of S, beyond spectral properties of the operators U(t, t ′), (i.e., “energy
levels”); and they lead one to the mistaken impression that QM might be a linear
and deterministic theory—alas, one that is entirely inadequate to describe events
and the outcome of observations and measurements.

We must therefore clarify what should be added to the formalism of QM in order
to capture its fundamentally probabilistic nature and to arrive at a mathematical
structure that enables one to describe physical phenomena (“events”) in isolated
open systems S, without a need to appeal to the intervention of “observers” with
“free will”—as is done in the conventional “Copenhagen Interpretation of QM”—
or to assume that other “ghosts” not intrinsic to the theory come to our rescue.

Isolated open systems: An isolated system S is one that, for all practical
purposes, does not have any interactions with its complement, i.e., with the rest
of the Universe; meaning that, for periods of time much longer than the time of
monitoring it, interactions between the degrees of freedom of S and those of its
complement can be neglected in the description of the Heisenberg-picture time
evolution of operators. This does, however, not exclude that the state of S may
be entangled with the state of its complement. The special role played by isolated
systems in discussions of the foundations of QM stems from the fact that, only
for an isolated system, S, the time evolution in the Heisenberg picture of arbitrary
operators acting on H is given by conjugation with the unitary propagator, U , of
S (determined by its Hamiltonian). An isolated system S is called open if it can
emit modes to the outside world (the complement of S) that eventually cannot be
recorded, anymore, by any devices belonging to S, yet can be in a state entangled
with the state of S after emission. The reader may think of photons or gravitons
emitted by an isolated system S that escape from detection by any devices in S.
(See also Definition 1, below.) �

Physical quantities characteristic of a system S are described by certain self-
adjoint linear operators, X = X∗, acting on H . This feature is common to all
physical theories used at present.2 The Copenhagen Interpretation of Quantum
Mechanics then stipulates that there are “observers” with “free will” who can

2In classical theories, these operators generate an abelian (C∗-) algebra, and time evolution is
given by a ∗-automorphism group of this algebra generated by a vector field on its spectrum;
while, in QM , the algebra generated by operators representing physical quantities (and events) is
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decide to measure such physical quantities arbitrarily quickly, at arbitrary times,
and at an arbitrary rate. It is argued that the time evolution of physical states of S is
determined by its unitary propagator U , which solves a (deterministic) Schrödinger
equation, except when a measurement of a physical quantity represented by an
operator X = X∗ is made: Immediately after the measurement of X the state of S,
according to the Copenhagen Interpretation, is in an eigenstate of X corresponding
to the measured value of X. If this value is not recorded, one is advised to use a
density matrix describing an incoherent superposition of eigenstates of X, chosen
in accordance with Born’s Rule, to describe the future evolution of S.

For a variety of reasons, this is not a satisfactory recipe for how to apply QM

to describe physical phenomena! One might want to view the evolution of states
in the presence of measurements, as described in the Copenhagen Interpretation of
QM , as some kind of stochastic process. But the problem is that one is dealing
with a stochastic process that does not have a classical state space, and that it is
transition amplitudes, rather than transition probabilities, that are given by matrix
elements of a family of operators (the propagator U ) satisfying a group composition
law, i.e., a kind of Chapman–Kolmogorov equation.3 According to the Copenhagen
Interpretation, predicting/determining the transition probabilities describing the
stochastic time evolution of states of S in the presence of repeated measurements
would apparently require knowing what kind of physical quantities are measured
by the intervention of “observers,” and at what times these measurements are
made. For, any intermediate intervention of an “observer” destroys “interference
effects”; and hence it seemingly affects the value of the transition probability
between an initial state of S in the past and a target state in the future, even
if a sum over all possible outcomes of the intermediate intervention is taken.4

Without complete information on all intermediate measurements performed on S,
which, in the Copenhagen Interpretation, is not provided by the theory, reliable
predictions of future states of the system and of future expectation values of physical
quantities become impossible. As a result, the Copenhagen Interpretation renders
QM nearly “unpredictive”—even though, by experience, it is a heuristic framework
supplementing QM that works well for many or most “practical purposes,” because,
much of the time (in particular when using a scattering matrix), one is interested
in predicting the outcome of only a single measurement. The situation is hardly
improved in a definitive way by resorting to concepts such as “decoherence” and
interpretations such as “consistent histories” [1], “many worlds,” etc.. (See [2, 23]
for further information.)

non-commutative, and time evolution is given by a ∗-automorphism group of such an algebra only
if the system is isolated.
3It is advocated by certain groups of people that the problem arising from this fact can be remedied
by invoking the phenomenon of “decoherence” and appealing to the “consistency” of histories of
events [1]. But I find the arguments supporting this point of view unconvincing.
4This is the case unless perfect “decoherence” holds.
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Fig. 1 ↑ ↑
Q = sub-system “confined” to Ω Particle P propagating into shaded cone

Before proceeding to describe the “ET H -Approach,” I recall an argument,
presented in detail in [13], that shows that the Schrödinger equation does not
describe the time evolution of states of systems in the presence of “events” or
“measurements,” assuming that the usual correlations between the outcomes of Bell-
type measurements, claimed to be confirmed in many experiments, hold.

We consider the following Gedanken-Experiment [13] (see Figures 1 and 2),
which, ultimately, will show that time evolution of states in QM is intrinsically
stochastic, in spite of the deterministic nature of the Schrödinger equation.

We prepare the system Q ∨ P in a state with the property that particle P

propagates into the shaded cone opening to the right, as indicated in Figure 1, except
for tiny tails leaking beyond this region, while the degrees of freedom of Q remain
confined to a vicinity of the region Ω in the complement of the shaded cone, except
for tiny tails. Thanks to cluster properties, expectation values of the Heisenberg-
picture time evolution of physical quantities, such as spin, momentum, etc. referring
to P in this state then turn out to be essentially independent of the time evolution of
the degrees of freedom of Q. In other words, interaction terms in the Hamiltonian
of the system coupling P to Q can be neglected. This is discussed in much detail in
[13].

More concretely, we study the following system sketched in Figure 2.
Temporary assumptions (leading to a contradiction):

• P and P ′: Two spin- 1
2 particles prepared in a spin-singlet initial state, ψL/R ,

localized, initially, in the central region shown in Figure 2; the orbital wave
function of P is chosen such that P propagates into the cone opening to the right
(except for very tiny tails) and that it will eventually undergo a Stern–Gerlach
spin measurement, while the orbital wave function of P ′, an electron, is chosen
such that this particle propagates into the cone opening to the left, with only very
tiny tails leaking beyond this cone into the half-space to the right of the spin filter.
(One may assume, for simplicity, that there are no terms in the total Hamiltonian
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Fig. 2 Q:={spin filter ∨ particle P’} cone opening to right:= ess. supp of orbital wave function
of P

of the system describing direct interactions between P and P ′.) The spin filter
(e.g., a spontaneously magnetized metallic film) is prepared in a poorly known
initial state.

• The dynamics of the state of the total system is assumed to be fully determined by
a Schrödinger equation given by a concrete self-adjoint Hamiltonian containing
only short-range interaction terms. In particular, the initial state of the total
system (consisting of the spin filter, the two particles and possibly some Stern–
Gerlach equipment serving to measure a component of the spin of particle P ) is
assumed to determine whether particle P ′ will pass through the spin filter, or not,
(given that the initial state of P ′ ∨P is a spin-singlet state, with P ′ and P moving
into opposite cones). Since it is assumed that a Schrödinger equation determines
the evolution of states of this system, the Schrödinger picture and the Heisenberg
picture are equivalent.

• Correlations between the outcomes of spin measurements of P ′ and of P are
assumed to be those predicted by standard quantum mechanics, (relying on the
“Copenhagen interpretation” and apparently confirmed in many experiments):
We first note that if P ′ passes through the spin filter, then its spin is “up,”
(i.e., aligned with the majority spin of electrons in the spin filter), if it does
not pass through the filter, (i.e., if it hops into a vacant state localized inside
the spin filter), its spin is “down.” The second assumption stated above then
says that, whether P ′ passes through the filter, or not, is determined by the
initial state of the total system and by solving a deterministic Schrödinger
equation. In addition to the two assumptions already stated, we also assume that
if the spin of P ′ is measured to be “up,” the spin of P is measured to be “down”
(for example, in a Stern–Gerlach experiment involving a magnetic field parallel
to the majority spin of the spin filter), and if the spin of P ′ is “down,” then the
spin of P is “up.”

Next, we recall the
Fact: Expectation values of observables (such as spin, momentum, etc.) referring to
particle P in the state of the system described above are independent of the degrees
of freedom of Q := {P ′ ∨ spin filter}, for arbitrarily long times, up to very tiny
corrections. Thus, to a very good approximation, their evolution can be assumed
to be given by free-particle dynamics. This is a consequence of our choice of an
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initial state (propagation properties of the orbital wave functions of P and P ′) and
of cluster properties of the time evolution—as shown in [13].

It follows that, to a very good approximation, the spin of P is conserved before
it is measured ⇒

Expectation value of spin of P ≈ 0,∀ times before measurement time,
independently of the evolution of Q = {P ′ ∨ spin filter}!

But this contradicts the third (last) assumption stated above: The first two
assumptions imply that the values of the z-component of the spin of P ′ measured
with the help of the spin filter do apparently not introduce any bias in the outcomes
of measurements of the z-component of the spin of P . In other words, the second
assumption stated above is incompatible with the Bell-type “non-locality” of
Quantum Mechanics, as expressed in the third assumption stated above.

This argument is robust, in the sense that it suffices to assume that correlations
between measurements of a component of the spin of P ′ and a component of the
spin of P are fairly close to those predicted by the Bell-type non-locality described
in the third assumption.

Conclusion: If the third assumption holds true, then the quantum-mechanical
time evolution of states of physical systems in the presence of measurements (or
“events”) is not given by a deterministic Schrödinger equation, and the equivalence
of the Heisenberg picture and the Schrödinger picture apparently fails. Quantum
Mechanics appears to be intrinsically probabilistic (and “non-local,” in the sense
of Bell-type correlations—which does, however, not invalidate locality in the sense
of “Einstein causality”)! These conclusions agree with ones reached by studying
Gedanken-experiments such as “Wigner’s friend” and other related ones, e.g., one
recently proposed in [24].

Our task is thus to find out what one has to add to a minimal formulation of
Quantum Mechanics in order to be able to describe the stochastic dynamics of
states of physical systems in the presence of “events” and their recordings (in
projective measurements), in such a way that correlations between the outcomes
of measurements agree with the Bell-type “non-locality” of Quantum Mechanics—
without the need to assume that “observers” intervene. The results reviewed in the
next section are intended to report on some progress in this direction.

3 Summary of the “ETH-Approach”

In this section I briefly describe the so-called ETH-Approach to Quantum Mechanics
[8–10, 12–14], which is designed to retain attractive features of the Copenhagen
Interpretation but eliminates its fatal weaknesses; and I note that “E” stands for
“Events,” “T ” for “Trees,” and “H” for “Histories.” In the following, I attempt
to explain what these terms mean, and why the concepts underlying the “ET H -
Approach” are important for an understanding of the foundations of Quantum
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Mechanics (QM). The basic premises and contentions of this approach are as
follows:

I. Potential Events. In the ET H -Approach to QM , Time, denoted by t , is taken
as an irreducible concept. It is described by the real line, R, with its usual
order relation.5 But in order to make the following discussion mathematically
watertight it is advisable to sometimes assume that time is discretized, t ∈ Z.
An important idea underlying the ET H -Approach is that time is not merely
a parameter, but that it can be monitored by recording “events” happening in
an isolated open system. (The precise meaning of this idea will become clearer
later on.)

Let t0 ∈ R be the time of the present. We consider an isolated open physical
system S and we denote by H the Hilbert space of pure state vectors of S. Our
first task is to clarify what is meant by “potential events” in S that may happen
at some future time t > t0, or later: Potential events are described by families,
{πξ , ξ ∈ X } of orthogonal projections acting on H , with the properties that

πξ · πη = δξη πξ , ∀ξ, η in X , (disjointeness)
∑

ξ∈X
πξ = 1, (partition of unity). (1)

For simplicity we henceforth assume that the sets X labelling the projections
that represent potential events are countable, discrete sets. (This merely serves
to avoid technical complications in our exposition; of course, continuous
spectra occur, too.) In the Heisenberg picture, which we will use henceforth, the
concrete projection operators acting on the Hilbert space H of S representing
a specific potential event, e.g., the click of a detector belonging to S when it
is hit by a certain type of particle in S, depend on the time t > t0 in the
future when the event might happen. In an autonomous system, the concrete
projection operators representing a specific potential event that may happen
at a time t > t0 or at another time t ′ > t0 are unitarily conjugated to one
another by the propagator U(t, t ′) of the system; (Heisenberg-picture evolution
of operators). All projection operators representing potential events that may
happen at some time t > t0, or later, generate a ∗-algebra denoted by E≥t . It
immediately follows from this definition that

E≥t ′ ⊆ E≥t , if t ′ > t.

Remark The concrete projection operators representing some potential event
that may happen in system S (see Equations (1)) depend on the time t when
the potential event would start to happen and on the time-interval during which
it would happen. More concretely, if Âi , i = 1, 2, . . . , are abstract operators

5The role of space-time in a relativistic version of the “ET H -Approach” is discussed in [16].
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representing physical quantities of S, (e.g., a component of the spin of a certain
species of particles localized in a certain region of physical space and measured
in a Stern–Gerlach experiment), and if Ai(t) denotes the Heisenberg-picture
operator on H representing Âi at time t , then a potential event arising from
monitoring the quantities Âi , i = 1, 2, . . . , which starts to happen at time t ,
consists of a family of projections satisfying Equations (1) that are functionals
of the operators

{Ai(t
′)| i = 1, 2, . . . ; t ′ ∈ [ t, T ), for some T with t < T ≤ ∞} �.

This remark is inspired by general wisdom from local quantum field theory.

For simplicity we assume that all physically relevant states of S can be
described by density matrices acting on H , and that the algebras E≥t are closed
in the weak topology of the algebra, B(H ), of all bounded operators acting on
H . Typically, all the algebras E≥t are then isomorphic to one universal (von
Neumann) algebra6 N , i.e.,

E≥t � N , ∀t ∈ R. (2)

The algebra, E , of all potential events that may happen in the course of history
is defined by

B(H ) ⊇ E :=
∨

t∈R
E≥t , (3)

(where the closure is taken in the operator norm of B(H )).
II. The Principle of Diminishing Potentialities. In the quantum theory of

(autonomous) systems with finitely many degrees of freedom—as treated in
our introductory courses on QM—the algebras E≥t turn out to be independent
of time t ; and usually E≥t = B(H ). For such systems, one cannot develop
a sensible quantum theory of events, and it is impossible to come up with
a logically coherent, intrinsically quantum-mechanical description of the
retrieval of information on such systems, i.e., of measurements, without adding
further quantum systems with infinitely many degrees of freedom that serve
to “measure” the former systems (or without resorting to something like
“Copenhagen”). In this respect, quantum systems with finitely many degrees of
freedom are as “interesting” as the space-time region outside the event horizon
of a black hole: no information can be extracted! In order to encounter non-
trivial dependence of the algebras E≥t on time t , we must consider isolated
(open) systems with infinitely many degrees of freedom and with the property

6In local relativistic quantum theories with massless particles, the algebra N tends to be a von
Neumann algebra of type III ; see [15].
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that the propagator U of S is generated by a Hamiltonian whose spectrum does
not have any isolated eigenvalues, and (if time is continuous) the spectrum
is unbounded above and below, or, in relativistic quantum theory, it is semi-
bounded, but without any spectral gaps; i.e., we must assume that there exist
massless modes.

Our contention is that a basic property of a quantum theory of isolated open
systems, S, enabling one to describe events and their recording in projective
measurements of physical quantities is captured in the following “Principle of
Diminishing Potentialities” (PDP ):

E≥t ′ � E≥t � E , whenever t ′ > t. (4)

To be more precise, one expects that if time is continuous the relative
commutant

(
E≥t ′

)′ ∩ E≥t , with t ′ > t,

is an infinite-dimensional, non-commutative algebra. (If time is discrete this
relative commutant can, however, be a finite-dimensional algebra.) Examples of
non-relativistic and relativistic systems satisfying property (4) will be discussed
elsewhere, (see also [12]).7 Here I just mention that (PDP ), in the sense of a
relativistic variant of Equation (4), is a theorem in local relativistic quantum
field theories with massless particles in four space-time dimensions.8 This
follows from important results in [15] and is used in [16].

Definition 1 Isolated open systems S (featuring events) are henceforth defined
in terms of a filtration, {E≥t }t∈R (or, for the sake of simplicity and precision,
{E≥t }t∈Z), of (von Neumann) algebras satisfying the “Principle of Diminishing
Potentialities” (4), all represented on a common Hilbert space H , whose
projections describe potential events. �

If Ω denotes the density matrix on H representing the actual state of a
system S, we use the notation

ω(X) := tr(Ω X), ∀X ∈ B(H ),

to denote the expectation value of the operator X in the state ω determined by
Ω . We define

ωt(X) := ω(X), ∀X ∈ E≥t , (5)

7I sometimes fear that unrealistically simple examples advanced with the intention to clarify
aspects of the foundations of QM have had the opposite effect: They have contributed to clouding
our views.
8and the algebras E≥t , t ∈ R, are von Neumann algebras of type III .
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i.e., ωt is the restriction of the state ω to the algebra E≥t .
Note that, as a consequence of (PDP ) and of entanglement, the restriction,

ωt , of a state ω on the algebra E to a subalgebra E≥t ⊂ E will usually be mixed
even if ω is a pure state on E .

III. Actual Events. Henceforth we only study isolated open systems S for which
(PDP ), in the form of Equation (4), holds. Let {πξ , ξ ∈ X } ⊂ E≥t be a
potential event that might start to happen at some time t , with {πξ , ξ ∈ X }
not contained in E≥t ′, for t ′ > t . Tentatively, we say that this potential event
actually starts to happen at time t iff

ωt(X) =
∑

ξ∈X
ωt

(
πξ X πξ

)
, ∀X ∈ E≥t , (6)

meaning that ωt is an incoherent superposition of states labelled by the points
ξ ∈ X ; in other words, off-diagonal expectations, ωt

(
πξ X πη

)
, ξ �= η, do not

contribute to the right side of (6). Equation (6) is equivalent to saying that the
projections πξ , ξ ∈ X , belong to the centralizer of the state ωt .

Given a ∗-algebra M and a state ω on M , the centralizer, Cω(M ), of the
state ω is defined to be the subalgebra of M spanned by all operators, Y , in M
with the property that

ω([Y,X]) = 0, ∀X ∈ M .

The center of the centralizer, denoted by Zω(M ), is the abelian subalgebra of
the centralizer consisting of all operators in Cω(M ) commuting with all other
operators in Cω(M ).

We note that the center, Z (M ), of the algebra M is contained in Zω(M ),
for all states ω.

Definition 2 A potential event {πξ , ξ ∈ X } ⊂ E≥t , with {πξ , ξ ∈ X } not
contained in E≥t ′, for t ′ > t , actually starts to happen at time t iff Zωt (E≥t )

is non-trivial,

{πξ , ξ ∈ X } generates Zω t

(
E≥t

)
, (7)

and

ωt(πξj
) is strictly positive, ξj ∈ X , j = 1, 2, . . . , n , (8)

for some n ≥ 2. �
IV. The fundamental Axiom. We are now in a position to describe the evolution of

states in the ET H -Approach to QM. Let ωt be the state of an isolated system
S right before time t . Let us suppose that an event {πξ , ξ ∈ X } generating
Zωt (E≥t ) starts to happen at time t , in the sense of Definition 2.
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Axiom The actual state of the system S right after time t when the event
{πξ , ξ ∈ X } has started to happen is given by one of the states

ωt,ξ∗(·) := [ωt(πξ∗)]−1 ωt

(
πξ∗(·)πξ∗

)
, (9)

for some ξ∗ ∈ X with ωt(πξ∗) > 0, (“state-collapse postulate”9). The
probability for the system S to be found in the state ωt,ξ∗ right after time t

when the event {πξ , ξ ∈ X } has started to happen is given by Born’s Rule,
i.e., by

prob{ξ∗, t} = ωt(πξ∗). (10)

�
Remarks

(1) The projection πξ∗ selecting the actual state ωt,ξ∗ of S (and sometimes also
the point ξ∗ ∈ X ) is called the “actual event” happening at time t .

(2) The contents and meaning of this Axiom are clear and mathematically
watertight as long as time is discrete. (If time is continuous further
precision ought to be provided.)

This Axiom, Equations (9) and (10), conveys the following picture of quantum
dynamics: In Quantum Mechanics, the evolution of states of an isolated open system
S featuring events, in the sense of Definitions 1 and 2 proposed above, is given by
a (rather unusual novel type of) stochastic branching process, whose state space is
what I call the “non-commutative spectrum”, ZS , of S. Assuming that Equation (2)
holds, the non-commutative spectrum of S is defined by

ZS :=
⋃

ω

Zω(N ) , with XS :=
⋃

ω

spec
(
Zω(N )

)
, (11)

where the union over ω is a disjoint union, and ω ranges over all physical states
of S.10 Equation (7) and Born’s Rule, Equation (10), specify the branching
probabilities of the process.

The above picture of the stochastic time evolution of states of an isolated open
system S is illustrated, metaphorically (for discrete time), in Figure 3. It differs
substantially from and supercedes the “decoherence mumbo-jumbo.”

Let us suppose, for the sake of simplicity and mathematical precision, that time
is discrete, (t ∈ Z). It is important to note that, in general, the events (described
by orthogonal projections in E≥t ′ ) predicted to happen at a later time t ′ > t on

9a rather unfortunate name!
10The set XS can also be defined in terms of a certain “flag manifold” associated with the Hilbert
space H .
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Fig. 3 Time evolution of a state of S with initial condition ω := ρ

E: “Events,” T : “Tree” of possible future states, H : “History” of actual events/states

the basis of the states ωt,ξ , ξ ∈ X , where {πξ , ξ ∈ X } generates Zωt (E≥t ), are
different from the events one would predict to happen at time t ′ on the basis of the
state ωt |E≥t ′ , used when the actual event happening at time t is not known (i.e., has
not been recorded); and the projections representing these different sets of events
usually do not commute with one another. Furthermore, for t ′ > t , the operators in
Zωt,ξ (E≥t ′) and in Zωt,η (E≥t ′), ξ, η ∈ X , (with ωt(πξ ), ωt (πη) strictly positive),
but ξ �= η, do not in general commute with each other. This is a fundamental
difference between the “non-commutative branching processes,” described here,
and classical stochastic branching processes.

The discussion above is mathematically sound if time is discrete, but requires
more precision if time is taken to be continuous.

To be on the safe side, we temporarily choose time to be discrete (t ∈ Z). Let H

be the Hamiltonian of an isolated open system, and suppose that

‖eiH − 1‖ � 1 . (12)
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Let us suppose that {πt,ξ , ξ ∈ Xt } is an event that starts to happen at time t , provided
the state of S at time t is given by ωt ; (i.e., {πt,ξ , ξ ∈ Xt } generates Zω t (E≥t )). Let
ξ∗ be the element of Xt with the property that, in accordance with the Axiom stated
in IV., above, the state of S right after time t is given by

ωt,ξ∗(·) := [ωt(πt,ξ∗)]−1 ωt

(
πt,ξ∗(·)πt,ξ∗

)
,

with ωt

(
πt,ξ∗

)
> 0; i.e., πt,ξ∗ is the “actual event” happening at time t . Let t ′ = t+1

be the time following t , and let {πt ′,ξ , ξ ∈ Xt ′ } be the event that starts to happen at
time t ′, provided that the state of S at time t ′ is given by ωt,ξ∗ . Then assumption (12)
suggests that there exists an element ξ
 ∈ Xt ′ with the property that

ωt,ξ∗
(
πt ′,ξ


) ≈ 1, but

ωt,ξ∗
(
πt ′,ξ

) � 1, ∀ ξ �= ξ
 , ξ ∈ Xt ′ . (13)

According to the Axiom in IV., in particular Born’s Rule, the actual state of S right
after time t ′ is then very likely given by

ωt,ξ∗,t ′,ξ

(·) := [ωt,ξ∗(πt ′,ξ


)]−1ωt,ξ∗
(
πt ′,ξ


(·)πt ′,ξ


) ≈ ωt,ξ∗(·) .

The state ωt,ξ∗,t ′,ξ

is close to the one that would commonly be used in the

Heisenberg picture of quantum mechanics in the absence of any “measurements”
or “events” after time t , namely the state ωt,ξ∗(·).

However, for purely statistical (entropic!) reasons, every once in a while, i.e.,
at rare times t ′, an event πt ′,ξ is realized that has a very small Born probability,
ωt ′(πt ′,ξ ) � 1, ξ ∈ Xt ′ .

Digression on “Missing Information” associated with events:11

Given the event {πt,ξ , ξ ∈ Xt } happening at time t , assuming that ωt is the actual
state of S right before time t , we define the “missing information” (or “entropy
production” ), σ(ωt ,Xt ), associated with this event by

σ(ωt ,Xt ) := −
∑

ξ∈Xt

ωt (πt,ξ ) · �n
(
ωt(πt,ξ )

)
(14)

Assuming that (12) holds, the “missing information” associated with most events
that ever happen is very small. If the “missing information” associated with all
events were tiny, then taking the state of S in the Heisenberg picture to be constant
in time would be a good approximation to its stochastic evolution. However, every
once in a while, events corresponding to a large “missing information” (entropy
production) may be encountered, and these are the events that will most likely be

11This digression can be omitted at first reading, and the reader is invited to proceed to point V.,
below.
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noticed and recorded, because they trigger a substantial change of the state of S.
(Some people will want to call them “measurements.”)

Let t0 be the time at which the system S has been prepared in a state ω, (as
discussed in [14]), and tj := t0 + j ∈ Z; further, let πtj ,ξj

be the actual event
happening at time tj , given the initial state ω of S and earlier actual events πt�,ξ�

, � <

j, j = 1, 2, . . . , n; (see Definition 2 and Axiom). We define

μω

(
ξ1, ξ2, . . . , ξn|X

) := ω
( n∏

j=1

πtj ,ξj
· X · X∗ · (

n∏

j=1

πtj ,ξj
)∗

)
, (15)

where the product is ordered according to
∏n

j=1 aj = a1 · a2 · · · an, and X is
an arbitrary non-zero operator in E≥t , for some t > tn, with ω

(
X · X∗) > 0.

Then μω(. . . |X) is a positive measure on the Cartesian product×n

j=1Xtj . Note
that the space Xtk+1 depends on the choice of ω and on all the actual events
πt1,ξ1 , . . . , πtk,ξk

that happened at times t1 < · · · < tk , before tk+1; with k =
1, 2, . . . , n − 1. For any m, with 0 < m < n, we set

X(ξ(m,n)) :=
n∏

j=m+1

πtj ,ξj
· X ,

and X(ξ(n,n)) := X. Then

μω

(
ξ1, . . . , ξn|X

) = μω

(
ξ1, . . . , ξm|X(ξ(m,n))

)
.

The measure μω

(
. . . |X)

has the (possibly somewhat perplexing) property that∑

ξk+1,...,ξm

μω

(
ξ1, . . . , ξk, ξk+1, . . . , ξm|X(ξ(m,n))

) =

= μω(ξ1, . . . , ξk|X(ξ(m,n))
)
, (16)

for arbitrary k, with 1 ≤ k ≤ m ≤ n, as one easily verifies. (Identity (16)
may look familiar to the reader from a similar one satisfied by the “Lüders–
Schwinger–Wigner formula” [25] for the probability of a sequence of outcomes
of measurements, assuming perfect decoherence. However, it actually has quite a
different origin!) It is sometimes convenient to define μω

(
. . . |X)

as a measure on
the space

Xn := (
XS

)×n
,

where XS has been defined in Equation (11), with the convention that

πtk,ξ = 0, unless ξ ∈ Xtk ⊂ XS .
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For X = 1, μω(. . . |1) is a probability measure on Xn. If arbitrarily long sequences
of events are considered, it is useful to introduce the “path space”

X∞ := lim−→
n→∞

Xn .

Thanks to property (16), the measures μω(. . . |1) determine a unique probability
measure on X∞. This follows from a well-known lemma due to Kolmogorov.

Next, we define the “missing information per event” of a sequence of events, as
follows:

σn(μω) := −1

n

∑

ξ1,...,ξn

μω(ξ1, . . . , ξn|1) · �n
(
μω(ξ1, . . . , ξn|1)

)
,

and

σ(μω) := limsupn→∞σn(μω). (17)

If events happening at times t1, . . . , tn are not recorded, then σn(μω) is a measure
of how much the state of the system at time t > tn deviates from the (initial) state ω

used in the Heisenberg picture of standard QM .
Of particular interest is the so-called relative entropy

Sn

(
μω‖μopp

ω

) :=
∑

ξ1,...,ξn

μω(ξ1, . . . , ξn|1) ×

×
(
�nμω(ξ1, . . . , ξn|1) − �nμopp

ω (ξ1, . . . , ξn|1)
)

, (18)

where

μopp
ω (ξ1, . . . , ξn|1) := ω

(
(

n∏

j=1

πtj ,ξj
)∗ ·

n∏

j=1

πtj ,ξj

)

is the measure obtained when the order of the events is (time-)reversed. The relative
entropy Sn

(
μω‖μopp

ω

)
is non-negative, and its growth in n, as n → ∞, is a measure

of the irreversibility of histories of events featured by the system and reflects the
“arrow of time.”

End of Digression.

V. Recording events by “projective measurements” of physical quantities. We con-
sider an isolated open system S described in terms of a filtration {E≥t }t∈R of
algebras represented on its Hilbert space H of pure state vectors, as described
in Definition 1, (paragraph I.). We propose to clarify how events happening in
S can be recorded by projectively (directly) measuring “physical quantities”
characteristic of S. (Time may be taken to be continuous; but, for the sake
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of simplicity and mathematical precision, the reader is invited to continue to
assume that t ∈ Z.)

Definition 3 A “physical quantity” characteristic of S is an abelian (C∗-)
algebra, Q, with the property that, for each time t , there exists a representation,
σQ

t , of Q on H as a subalgebra of E≥t . �

For autonomous systems, the representations σQ
t and σQ

t ′ are unitarily
equivalent, with

σQ
t (A) = U(t ′, t) σQ

t ′ (A)U(t, t ′), ∀A ∈ Q ,

where U(t ′, t) = exp
(
i(t − t ′)H

)
is the propagator of S, with t, t ′ arbitrary

times; (Heisenberg-picture dynamics).
For simplicity, we assume that the physical quantities Q available to identify

properties of S or record events all have discrete spectrum; i.e.,

Q = 〈ΠQ
η |η ∈ Y Q〉, (19)

where Y Q ≡ spec(Q) is a discrete set, which we view as a subset of the
real line, and the operators ΠQ

η are disjoint orthogonal projections. (Of course,
continuous spectra can arise, too. But in order to avoid technical complications,
we ignore them here.) We can then describe Q as the algebra given by all
functions of a single self-adjoint operator, Ŷ , with discrete spectrum, spec(Ŷ ) �
Y Q , and spectral projections ΠQ

η . For every time t , there exists a self-adjoint

operator, Y (t) = σQ
t (Ŷ ), acting on H that represents Ŷ at time t .

It is interesting to ask whether physical quantities can serve to detect or record
events happening in S. For a discrete set

OS = {Qj }j∈J

of physical quantities characteristic of S, it is arbitrarily unlikely that one of the

algebras σ
Qj

t (Qj ), j ∈ J, has a non-trivial intersection with (e.g., contains or
is contained in) an algebra Zω t (E≥t ) describing the event happening at time t ,
for some state ωt . To cope with this problem, we have to understand how well
Zω t (E≥t ) can be approximated by an algebra generated by a family, {Qα(t)}Nα=0,
of disjoint orthogonal projections contained in (or equal to) an algebra σQ

t (Q),
for some Q ∈ OS .

There are different ways of quantifying how well the algebra generated
by {Qα(t)}Nα=0 approximates the event described by Zωt (E≥t ). To keep our
discussion brief, it is convenient to introduce “conditional expectations” of
algebras:

Definition 4 Let N be a (von Neumann) subalgebra of a (von Neumann)
algebra M . A linear map
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εω : M →
onto

N (20)

is a conditional expectation from M onto N with respect to a normal state ω

on M iff

(i) ‖εω(X)‖ ≤ ‖X‖, ∀X ∈ M
(ii) εω(X) = X, ∀X ∈ N

(iii) ω ◦ εω = ω

(iv) εω(AXB) = Aεω(X)B, ∀A,B,∈ N , ∀X ∈ M �
Conditional expectations have the following properties:

(v) εω(X∗X) ≥ 0, ∀X ∈ M
(vi) εω : M → N is completely positive, and εω(1M ) = 1N

See, e.g., [26] for an exposition of the theory of conditional expectations. Under
very general assumptions, there exist conditional expectations

εω t : E≥t → Zω t

(
E≥t

)
, (21)

for arbitrary times t .
Let ωt be the state of a system S right before an event {πξ , ξ ∈ Xt }

generating Zω t (E≥t ) starts to happen. I propose to clarify in which way a
physical quantity Q ∈ OS can be used to record this event, and how precisely
the value of this quantity identifies the actual event, ξ∗ ∈ Xt , happening at time
t .

We assume that there exists a physical quantity Q and a family of disjoint
orthogonal projections {Q̂α}Nα=0 ⊂ Q, N ≥ 2, with the following properties:

(a)
∑N

α=0 Qα(t) = 1, where Qα(t) = σQ
t (Q̂α), α = 1, . . . , N, ∀t ;

(b) there exists a positive number δ � 1 such that

ωt

( N∑

α=1

Qα(t)
)

≥ 1 − δ (or, equivalently, ωt

(
Q0(t)

) ≤ δ );

(c) Given an operator X ∈ E≥t , we define

dist
(
X,Zω t (E≥t )

) := ‖X − εω t (X)‖.

We assume that

dist
(
Qα(t),Zω t (E≥t )

)
< δ , for α = 1, . . . , N . (22)

In the following, we use the notation O(ε) to denote any real number whose
absolute value is bounded above by const. ε, where const. is a uniformly
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bounded positive constant. Properties (a) through (c) of {Q̂α}Nα=0 can be used
to derive the following equations:

For an arbitrary operator X ∈ E≥t ,

ωt(X) =
N∑

α=1

ωt

(
Qα(t)X

) + O(δ‖X‖)

=
N∑

α=1

ωt

(
Qα(t)[Qα(t)X]) + O(δ‖X‖)

=
N∑

α=1

ωt

(
εω t (Qα(t))[Qα(t)X]) + O(δ N‖X‖)

=
N∑

α=1

ωt

(
Qα(t)X εω t (Qα(t))

) + O(δ N‖X‖)

=
N∑

α=1

ωt

(
Qα(t)X Qα(t)

) + O(δ N‖X‖). (23)

Apparently, if δ N � 1, then, to a good approximation, the state ωt is an
incoherent superposition of eigenstates of the disjoint projections Qα(t), α =
1, . . . , N . We then say that, at approximately time t , “a projective (direct)
measurement of Q takes place.”

Definition 5 (Resolution of Q in Recording an Event) Assuming that Xt is a
countable set, then, for any δ ∈ (0, 1), there exists a subset X (M)

t ⊆ Xt whose
cardinality is given by a finite integer M such that

ωt

( ∑

ξ∈X (M)
t

πt,ξ

)
≥ 1 − δ .

Then, for an arbitrary operator X ∈ E≥t ,

ωt(X) =
∑

ξ∈X (M)
t

ωt

(
πt,ξ X πt,ξ

) + O(δ ‖X‖) .

The “resolution” of {Qα(t)}Nα=0 ⊂ Q in recording the event {πt,ξ , ξ ∈ Xt }
starting to happen at time t is defined by

R := N

M
· (1 − δ) , for 2 ≤ N ≤ M , (R = 0, for N = 1) . (24)

�
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It turns out that property (c), Equation (22), above, implies that, given an
orthogonal projection Qα(t) ∈ σQ

t (Q), there exists an orthogonal projection
Pα ∈ Zω t

(
E≥t

)
such that

‖Qα(t) − Pα‖ < O(δ) . (25)

A proof of this simple lemma can be found in the appendix of [3].
Since the projections πt,ξ , ξ ∈ Xt generate the abelian algebra Zω t

(
E≥t

)
,

we have that

πt,ξ · P = πt,ξ , or πt,ξ · P = 0, ∀ξ ∈ Xt , (26)

for any orthogonal projection P ∈ Zω t

(
E≥t

)
. Equations (25) and (26) then

imply the

Result For any α = 1, . . . , N , and for all ξ ∈ Xt ,

‖πt,ξ Qα(t) − πt,ξ‖ < O(δ) , or ‖πt,ξQα(t)‖ < O(δ) .

Suppose that the physical quantity Q is generated by all functions of a single
self-adjoint operator Ŷ . Then the best estimate for the value of Ŷ right after time
t when the event {πt,ξ |ξ ∈ Xt } has started to happen is an eigenvalue of Ŷ

corresponding to an eigenstate of the operator Y (t) ≡ σQ
t (Ŷ ) in the range of the

projection Qα(t). The state of S right after time t is then given by

[ωt(πt,ξ � )]−1ωt

(
πt,ξ � (·)πt,ξ �

)
,

for some ξ � ∈ Xt for which

‖πt,ξ �Qα(t) − πt,ξ �‖ < O(δ) . (27)

Furthermore: The higher the resolution, R, of Q in recording the event {πt,ξ , ξ ∈
Xt }, the more precise the information provided by a measurement of Q is; if
N = M and δ is sufficiently small, then every Q̂α determines a unique point
ξ� ∈ Xt with the property that ‖Qα(t) − πt,ξ�‖ < O(δ). (In the limit where
δ → 0 the information on the event that starts to happen at time t becomes
totally accurate.)

Remarks

(1) The main results of this paragraph are Equation (23), the Result stated
above, and Equation (27).

(2) The concepts presented in paragraph V. and results closely related to the
ones described above can be obtained without ever using the theory of
conditional expectations. However, their use renders the presentation more
elegant.
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This completes our review of the “ET H -Approach to Quantum Mechanics” in
a non-relativistic setting. Some idealized models fitting into this framework are
discussed elsewhere, [12]. A relativistic form of this approach will be presented
in [16]. The material in [16] leads one to speculate that a logically coherent
quantum theory of events, measurements, and observations in realistic autonomous
isolated (open) systems—not involving the intervention of “observers”—can only
be developed in the realm of local relativistic quantum theories with massless
particles, and for even-dimensional space-times.

4 Scattered Remarks About Indirect Measurements,
Conclusions

I start this section with a few comments on “indirect measurements” (see [19, 27]
for important early results) and then sketch some conclusions.

Let S be an isolated open system, as discussed in Sections 2 and 3. I assume that
the system has been prepared in such a way that there is a specific physical quantity,
Q, characteristic of S that repeatedly records events featured by S (i.e., is “measured
projectively”), at times t1 < t2 < · · · < tn, n ∈ N, as discussed in paragraph V. of
Section 4, Equations (23) and (27). Let us assume that the spectrum of Q is a finite
set Y Q = {0, 1, . . . , k}, so that Q is generated by a single self-adjoint operator, Ŷ ,
with eigenvalues 0, 1, 2, . . . , k. Let

η(n) := {η1, η2, . . . , ηn}, ηj ∈ Y Q , j = 1, 2, . . . , n , (28)

be the sequence of values of Ŷ measured at times t1, t2, . . . , tn, as explained in
paragraph V. of Section 4. This means that the state of S right after time tj is in
an approximate eigenstate corresponding to the eigenvalue ηj of the operator Y (tj )

representing Ŷ at time tj , for j = 1, 2, . . . , n, as expressed in Equation (23). The
sequence η(n) is called a “measurement protocol” of length n. As an example, Ŷ

may describe the functioning of k different detectors that click when a certain type
of particle (e.g., a photon or an atom), called a “probe,” belonging to S impacts
them, with the following meaning of its eigenvalues:

η = 0 ↔ none of the detectors clicks , η = � ↔ detector � has clicked ,

� = 1, . . . , k.

Given a measurement protocol η(n) of length n, we define the frequency (of

occurrence) of the value η ∈ Y Q by

fη

(
η(n)

) := 1

n

( n∑

j=1

δη ηj

)
. (29)
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Note that

fη

(
η(n)

) ≥ 0, and
k∑

η=1

fη

(
η(n)

) = 1 .

Of particular interest is the asymptotics of fη

(
η(n)

)
, as n → ∞. Let us temporarily

assume that, ∀η = 0, 1, . . . , k, the limit of fη

(
η(n)

)
, as n → ∞, exists whenever

a copy of S prepared in a fixed initial state is subjected to very many repeated
measurements of Ŷ , with

lim
n→∞ fη

(
η(n)

) ∈ {p(η|α)}Nα=1 , (30)

for some N < ∞; (this is a “Law of Large Numbers,” see [20]). In (30),

p(η|α) ≥ 0, and
k∑

η=1

p(η|α) = 1 , (31)

for all α = 1, . . . , N , for some N < ∞. Apparently, the probability measures
p(·|α), α = 1, . . . , N, describe all possible limiting values the frequencies
f(·)(η(n)) may converge to. We propose to interpret the parameter α as follows:
α characterizes a time-independent property of S, i.e., it is an eigenvalue of a self-
adjoint operator, A, on H representing a physical quantity of S that commutes
with the operators Y (tj ), j = 1, 2, . . . , and is a conservation law, meaning that
A is time-independent (under the Heisenberg time evolution of operators on H ).
Such an indirect measurement of A is called a “non-demolition measurement.” One
expects that conservation laws are elements of

E∞ :=
∧

t∈R
E≥t ,

where E∞ is an algebra in the center of the algebra E defined in (3) (“asymptotic
abelianness” in time). Under suitable hypotheses this expectation can actually be
proven.

Thus, if the frequencies fη

(
η(n)

)
are seen to converge to the value p(η|α∗),

as n → ∞, η ∈ Y Q , for some α∗ ∈ spec(A), and if the measures p(·|α)

separate points in the spectrum, spec(A), of A, then we know that, asymptotically,
as t → ∞, the value of the conservation law A approaches α∗. (The fact that the
measures p(·|α) may depend on α in a non-trivial way, at all, is a consequence of
“entanglement”; see [18–20].)

Evidently, one would like to prove (30) and to predict the probability of indirectly
measuring a value α∗ for A, assuming one knows the initial state of S. However,
this can only be done if the events encoded by the values η1, η2, . . . , of the physical
quantity Ŷ , which is measured at times t1, t2, . . . , are the only events happening in
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S. For a limited class of systems (see [18, 20]), one can prove that if this is the case
then (30) holds, the state of S approaches an eigenstate of A corresponding to some
eigenvalue α∗ ∈ spec(A), as time t → ∞, (“purification”), and the probability of
measuring the value α∗ is given by Born’s Rule applied to the initial state of S and
the operator A, see [20].

Usually, operators on H representing physical quantities of S are not time-
independent. If the rate of change in time of a physical quantity, A, of S that one
attempts to measure indirectly, as described above, is very small, as compared to
the rate of repeated projective measurements of the physical quantity Ŷ used to
determine the value of A,12 then it turns out that, to good accuracy, the dynamics
of the state of the system S is described by a Markov jump process on the set of
eigenspaces of the operator A. The sample paths of this process describe “quantum
jumps” of (the state of) S from one approximate eigenstate of A to another one.
This picture has been given a precise meaning in [20, 22], in the framework of some
simple models.

Concluding Remarks:

(1) The ET H -Approach to QM sketched in this paper is a “Quantum Mechanics
without observers.” It introduces a precise notion of “events” into the quantum
formalism; and it furnishes quantum theory with a clear “ontology.”

(2) The ET H -Approach establishes a precise formalism to describe the stochastic
time evolution of states of isolated (open) systems featuring events. As I have
tried to explain, while, for an isolated system, the Heisenberg-picture time
evolution of operators, in particular of physical quantities characteristic of
such a system, determined by the unitary propagator of the system is perfectly
adequate, the time evolution of its states is described by a novel kind of
stochastic branching process with a “non-commutative state space.” This is
described in some detail in paragraph IV. of Section 3. The analysis presented
there shows that it is simply not true—in any naive sense—that the “Heisenberg
picture” and the “Schrödinger picture” are equivalent.

(3) It is explained in paragraph V. of Section 3 what a “physical quantity” charac-
teristic of an isolated open system is, what it means to measure such a quantity
“projectively,” and how “projective measurements” of physical quantities can
be used to record events. This also lays a basis for a precise theory of indirect
measurements.

(4) It is important to note that, in the ET H -Approach to QM , the expected value
of a conservation law represented by a self-adjoint operator A in the actual state
of an isolated open system featuring events is not constant in time (as it would
be if states evolved according to the Schrödinger equation).

(5) A “passive state” of an isolated open system S prepared at some time t0 is a
state ω for which Zω t (E≥t ) = {C1} , for all times t > t0. We expect that
it often happens that states of S approach “passive states” asymptotically, as

12One speaks of a “weak measurement” of A.
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t → ∞, (with σ(μω) = 0, see (17)). Thermal equilibrium states are “passive
states.”

(6) Clearly, the ET H -Approach to QM is so general that, for the time being, it is
very hard to use it to carry out explicit calculations for realistic model systems
and to show in which way its predictions differ—usually (hopefully) only ever
so slightly—from those made on the basis of, for example, the Copenhagen
Interpretation of QM , or Bohmian Mechanics. I emphasize, however, that
differences in the predictions of the ET H -Approach and other versions of
QM—however small they may be—really exist!

(7) After completion of this work Bernard Kay has pointed out to me that in two of
his papers—see [28]—ideas somewhat related to some of the ideas proposed in
the present paper have been described. I thank Bernard for valuable discussions.
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