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1 Introduction

This is a survey article on the recent developments on monochromatic random waves
for general Riemannian manifolds obtained in [7–10, 30]. Let (M, g) be a compact,
smooth, Riemannian manifold without boundary of dimension n ≥ 2, and write
�g for the corresponding positive definite Laplace–Beltrami operator. Consider an
orthonormal basis {ϕλj

}∞
j=1

of L2(M, g) consisting of real-valued eigenfunctions

�gϕλj
= λ2

jϕλj
,

with eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ · · · ↗ ∞, normalized so that ‖ϕλj
‖
L2 = 1.

Laplace eigenfunctions have been a common object of study for the mathematical
physics community since they encode how heat and waves propagate across M .
From a quantum mechanics point of view, |ϕλj

(x)|2 is the probability density for

finding a quantum particle of energy λ2
j at the point x. It is therefore a natural

problem to try to understand how ϕλj
behaves. For example, one would like to

understand how many minimums and maximums ϕλj
has, as they are the most

likely places for the quantum particles to be found at. See Figure 1. Similarly,
understanding the geometry of the zero set of ϕλj

would yield information on the
structure of the least likely places for the quantum particles. See Figure 2.

However, it is often the case that studying such questions for ϕλj
defined on a

general manifold is quite hard, as eigenfunctions cannot be computed explicitly.
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Fig. 1 Zeros and critical points for an eigenfunction on a torus. The function takes positive values
on the shaded black areas, and negative values on the white areas. The maximums for the function
are attained at the red points, while the minimums occur at the blue points. This picture was created
by E. Vouga

Fig. 2 Nodal domains of a
monochromatic random wave
on the round sphere. Picture
created by D. Beliaev

Even more so, for high energies, numerical methods cannot approximate the
eigenfunctions in an efficient way that would keep track of features such as the
structure of their zero set. It is then natural to randomize the problem and to study
how the eigenfunctions behave on average.

It is then natural to work with monochromatic random waves of frequency λ.
These are random fields on M defined by

φλ := 1
√

dim Hη,λ

∑

λj ∈[λ,λ+η(λ)]
ajϕλj

, (1)

where the coefficients aj ∼ N(0, 1) are real valued, i.i.d, standard Gaussian random
variables, η = ηλ = η(λ) is a non-negative function satisfying η(λ) = o(λ) as
λ → ∞, and

Hη,λ :=
⊕

λj ∈[λ,λ+ηλ]
ker(�g − λ2

j Id).

We write
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φλ ∈ RWλ(M, g, η)

for short. The ensembles φλ are Gaussian models for eigenfunctions of the Laplacian
with eigenvalue approximately equal to λ2 on a compact Riemannian manifold
(M, g). In the setting of a general smooth manifold, the ensembles RWλ were first
defined by Zelditch in [36]. Zelditch was inspired in large part by the influential
work of Berry [3], which proposes that random planar waves on Euclidean space
and flat tori are good semiclassical models for high frequency eigenfunctions in
quantum systems whose classical dynamics are chaotic. As we will see in Section 2,
when properly scaled, the waves φλ ∈ RWλ(M, g, η) behave like random planar
waves. Random planar waves are Laplace eigenfunctions with eigenvalue 1, and
since their frequency is fixed to be 1 they are said to be monochromatic. The fact
that the scaled φλ behave like random planar waves as λ → ∞ is the reason why
waves in RWλ(M, g, η) are said to be monochromatic.

On round spheres and flat tori the Laplace eigenvalues occur with large multi-
plicity. Indeed, dim H0,λ grows like λn−1 when λ is an eigenvalue. Therefore, in
these cases, one typically takes η ≡ 0 so that φλ ∈ RWλ(M, g, 0) is an exact
eigenfunction and λ ∈ {λj }. However, for a generic metric on any smooth compact
manifold M , the eigenvalues λ2

j are simple. It is then natural to take η so that
dim Hη,λ has the same rate of growth in powers of λ as the dimension of the
eigenspaces for a round sphere. In particular, it is known [7] that if (M, g) has
at least one non self-focal point (that is, there exists x ∈ M so that |Lx,x | = 0,
see (11)), then for every c > 0 there exists C > 0 such that dim Hc,λ grows like
Cλn−1 as λ → ∞. Since the existence of a non self-focal point is a very weak
condition, it is customary to work with random waves in RWλ(M, g, c) for some
c > 0.

This survey article focuses on the results of [7–10, 30]. The results in [7, 9]
were the first ones to allow for the treatment of monochromatic random waves
to take place on general manifolds by establishing that, when properly rescaled,
the waves have a universal behavior. Prior to these results, monochromatic random
waves had only been studied for the torus or the sphere. The article [8] is the first
one in the literature pertaining statistics of the size of zero set and of the numbers of
critical points for monochromatic random waves on general Riemannian manifolds.
The results in [10, 30] deal with the study of the diffeomorphism types of the
components of the zero sets of the monochromatic random waves, and of the nesting
configurations of the components. These results build on the ground breaking work
of Nazarov–Sodin [31].

In this article we discuss the following aspects of φλ ∈ RWλ(M, g, η).

• Section 2: Universal behavior of φλ.
• Section 3: Number of critical points and size of the zero set of φλ.
• Section 4: Structure of the zero set of φλ.
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The literature about random waves is extensive and rapidly evolving. This survey
by no means attempts to give an overall account of every known result. There are
numerous works directly related to the topics of this survey, including [4–6, 11, 14–
16, 19–22, 25–29, 31, 33, 34].

2 Universal Behavior of φλ

By the Kolmogorov Consistency Theorem, the law of φλ ∈ RWλ(M, g, η), which
is a centered smooth Gaussian field, is completely characterized by its covariance
kernel

�η,λ(x, y) := Cov (φλ(x), φλ(y)) = 1

dim Hη,λ

∑

λj ∈[λ,λ+ηλ]
ϕλj

(x)ϕλj
(y),

where x, y ∈ M . The function �η,λ(x, y) is the Schwartz kernel for the orthogonal
projection operator �η,λ : L2(M, g)→Hη,λ, normalized to have unit trace. The
study of local quantities, such as the size of the zero set of φλ, or the number
of critical points of φλ, hinges on understanding the statistics of φλ, as λ→∞,
restricted to “wavelength balls” of radius ≈ λ−1 around a fixed point x ∈ M. After
rescaling by 1/λ, the function φλ has frequency approximately equal to 1 on such
balls in the sense that it solves the approximate local eigenvalue equation

�
TxM

φλ(x + u
λ
) ≈ φλ(x + u

λ
), (2)

where �
TxM

denotes the flat Laplacian on the tangent space at x, TxM . One could
therefore expect, after the scaling, for the Gaussian random wave u �→ φλ(x + u

λ
)

to behave like a Gaussian random wave φ∞ on R
n ∼= TxM satisfying

�
Rn φ∞ = φ∞.

The latter is called a random planar wave, and we discuss them in Section 2.1.
Moreover, we shall see in Section 2.2, that for a generic Riemannian metric on M,

the rescaled covariance kernel �η,λ of φλ ∈ RWλ(M, g, η) converges in the C∞
topology to that of a random planar wave φ∞ on R

n ∼= TxM .

2.1 Random Planar Waves

Let σ
Sn−1 be the Haar measure on the round sphere Sn−1, normalized so that

σ
Sn−1 (S

n−1) = 1. Using that the transformation ξ �→ −ξ preserves Sn−1, choose a

real-valued orthonormal basis {ψj }∞j=1 of L2(Sn−1, σ
Sn−1 ) satisfying

ψj (−ξ) = (−1)εj ψj (ξ), εj ∈ {0, 1}. (3)
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A random planar wave is defined to be the random real-valued function φ∞ on R
n

given by

φ∞(u) =
∞∑

j=1

bj iηj ψ̂j (u), (4)

where

ψ̂j (u) =
∫

Rn

ψj (ξ)e−i〈u,ξ 〉dσ
Sn−1 (ξ), (5)

and the bj ’s are i.i.d, real valued, standard Gaussian random variables. We write

φ∞ ∈ RW1(R
n, g

Rn ),

for short, where g
Rn is the Euclidean metric. We note that the fields in RW1(R

n, g
Rn )

do not depend on the choice of the orthonormal basis {ψj }. In addition, since the
Euclidean Laplacian is �gRn = −∑n

k=1 ∂2
uk

, and �gRn e−i〈u,ξ 〉 = e−i〈u,ξ 〉 ∑n
k=1 ξ2

k ,
it is immediate that

�gRn φ∞ = φ∞.

As explained in the introduction, random planar waves are often called monochro-
matic random waves because their frequency (the square root of their eigenvalue) is
equal to 1.

Next, note that the distributional identity
∑∞

j=1 φj (ξ)φj (η) = δ(ξ − η) on Sn−1

together with (3) lead to the explicit expression for the covariance function:

�∞(u, v) := Cov(φ∞(u), φ∞(v)) =
∫

Rn

ei〈u−v,ξ 〉dσ
Sn−1 (ξ), (6)

where u, v ∈ R
n. From (4) it follows that almost all φ∞’s are analytic in u [1]. It is

also known that

�∞(u, v) = 1

(2π)
n
2

Jν(|u − v|)
|u − v|ν , (7)

where Jν is the Bessel function of index ν := n−2
2 .

There is a natural choice of a basis for L2(Sn−1, dσSn−1) given by spherical

harmonics. Let {Y �
m}d�,n

m=1 be a real-valued basis for the space of spherical harmonics
E�(S

n−1) of eigenvalue �(� + n − 2), where d�,n = dim E�(S
n−1). In [10,

Corollary 2.2] we prove that the monochromatic Gaussian ensembles φ∞’s take
the form
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φ∞(u) = (2π)
n
2

∞∑

�=0

d�,n∑

m=1

b�,m Y �
m

(
u

|u|
)

J�+ν(|u|)
|u|ν ,

where the b�,m’s are i.i.d standard Gaussian variables.

2.2 Points of Isotropic Scaling

The discussion around (2) shows that it is natural to study φλ by fixing x ∈ M and
considering the rescaled pullback of φλ to the tangent space TxM. We denote this
pullback by

φx
λ(u) := φλ

(
expx

(u

λ

))
, (8)

where expx : TxM → M is the exponential map. The dilated functions φx
λ are

centered Gaussian fields on TxM, and we denote their scaled covariance kernel by

�x
η,λ(u, v) := Cov(φx

λ(u), φx
λ(v)) = �η,λ

(
expx

(u

λ

)
, expx

(v

λ

))
.

When x is a point of isotropic scaling (see Definition 1 below), we shall see that the
kernels �x

η,λ converge to the covariance kernel of a random planar wave

φx∞ ∈ RW1(TxM, gx).

Here, gx denotes the constant coefficient metric obtained by freezing g at x. By
the Kolmogorov Extension Theorem, together with (6), the random wave φx∞ is
completely characterized by its two point correlation function kernel

�x∞(u, v) = (2π)
n
2

Jn−2
2

( ‖u − v‖gx

)

‖u − v‖
n−2

2
gx

=
∫

SxM

ei〈u−v,ξ 〉gx dσ
SxM

(ξ). (9)

Here Jν denotes a Bessel function of the first kind with index ν, SxM is the unit
sphere in TxM with respect to gx, and dσ

SxM
is the hypersurface measure on SxM .

Definition 1 A point x ∈ M is a point of isotropic scaling, denoted x ∈
IS(M, g, η), if for every non-negative function rλ satisfying rλ = o(λ) as λ→∞,
and all α, β ∈ N

n, we have

sup
u,v∈Brλ

∣∣∣∂α
u ∂β

v

[
�x

η,λ(u, v) − �x∞(u, v)
] ∣∣∣ = oα,β(1) (10)
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as λ→∞, where the rate of convergence depends on α, β and Br denotes a ball of
radius r centered at 0 ∈ TxM. We also say that M is a manifold of isotropic scaling
if

M = IS(M, g, η)

and if the convergence in (10) is uniform over x ∈ M for each α, β ∈ N
n.

Verifying that x ∈ M belongs to IS(M, g, η) is difficult to do directly, except
on simple examples such as the flat torus. We briefly recall several settings in which
IS(M, g, η) is known to be large.

• Let Sn be the n-sphere equipped with the round metric g
Sn . The Mehler–Heine

asymptotics [24] imply that

IS(Sn, g
Sn , 0) = Sn,

when the limit in (10) is taken along the sequence of eigenvalues λj → ∞ for
the sphere. In this case, the φλ’s are known as random spherical harmonics.

• Let Tn be the n-dimensional torus equipped with the flat metric g
Tn . When n ≥ 5

we have that IS(Tn, g
Tn , 0) = T

n. For 2 ≤ n ≤ 4, the asymptotics (10) hold at
every x ∈ T

n but only for a density one subsequence of eigenvalues [13]. In this
case, the φλ’s are known as random trigonometric polynomials.

• The pointwise Weyl law [17] implies that if limλ→∞ ηλ = ∞, then
IS(M, g, η) = M .

In addition, it is very likely that if (M, g) has no conjugate points, then the
condition

lim
λ→∞ log(λ) · ηλ = ∞

implies IS(M, g, η) = M. This was proved by B. Keeler in [18], but with the
convergence in (10) only holding for α = β = 0. Note that if (M, g) has negative
sectional curvature everywhere, then it has no conjugate points and all points are
non self-focal. In contrast, there exist smooth perturbations of the round metric on
S2 for which IS(S2, g, 1) � S2 (see [23, 35]).

For x, y ∈ M let

Lx,y = {ξ ∈ SxM : ∃t > 0 s.t. expx(tξ) = y} (11)

be the set of directions that generate geodesic arcs from x to y. The set Lx,y

is contained in SxM and SxM is endowed with the Liouville measure. The
corresponding volume of Lx,y is denoted by |Lx,y |.

The main result of this section is the following, and it was proved in [7, 9].
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Theorem 1 Let (M, g) be a compact, smooth, Riemannian manifold, with no
boundary. Let η be a non-negative function with lim infλ→∞ ηλ > 0. Let x ∈ M

be so that
∣∣Lx,x

∣∣ = 0. Then,

x ∈ IS(M, g, η). (12)

By [32, Lem 6.1], the condition that
∣∣Lx,x

∣∣ = 0 for all x ∈ M is generic in the space
of Riemannian metrics on a fixed compact smooth manifold M.

Definition 1 gives that if x ∈ IS(M, g, η), then the scaling limit of waves
in RWλ(M, g, η) around x is universal in the sense that it depends only on the
dimension of M. In the language of Nazarov–Sodin [31] the asymptotics (10)
imply that if M = IS(M, g, η), then the ensembles RWλ(M, g, η) have translation
invariant local limits.

3 Number of Critical Points and Size of the Zero Set

Define the measures of integration over the zero set {φλ = 0} and the set of critical
points {dφλ = 0} by

Zλ(ψ) :=
∫

φ−1
λ (0)

ψ(x)dσ
Zλ

(x) and Critλ(ψ) :=
∑

dφλ(x)=0

ψ(x),

where ψ : M→R and σ
Zλ

is the (n − 1)-dimensional Hausdorff measure over
{φλ = 0}. This section is divided into two parts. In Section 3.1 we give asymptotics
for E [Zλ] and E [Critλ], and bounds for their variances. The results in Section 3.1
rely heavily on a careful analysis of what happens for the scaled random waves φx

λ .
The results for the localized waves are discussed in Section 3.2.

Previous results on the Hausdorff measure of the zero sets focus primarily on
exactly solvable examples. On round spheres, for instance, Bérard [2] proved (14)
(example (1) on p.3). Later, in the same setting, Neuheisel [25] and Wigman [33]
obtained upper bounds for the variance that are of polynomial order in λ. Further, on
S2, Wigman [34] found that the variance actually grows like λ−2 log λ as λ → ∞.
On flat tori T

n (for exact eigenfunctions) Rudnick and Wigman [29] computed
the expected value of the total Hausdorff measure of the zero set and gave an
upper bound of the form λ2(dim(H0,λ))

−1/2 on its variance. Subsequently, on T
2,

Krishnapur, Kurlberg, and Wigman [19] found that the variance is asymptotic to a
constant, while Marinucci, Peccati, Rossi, and Wigman proved that the size of the
zero set converges to a limiting distribution that is not Gaussian and depends on the
angular distribution of lattice points on circles [22].

The behavior of the number of critical points has been studied in detail on S2.
Nicolaescu [26] studied the expected value of the number of critical points, obtain-
ing (15). The variance was studied by Cammarota, Marinucci, and Wigman [6].
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They obtain a polynomial upper bound. This upper bound was later improved by
Cammarota and Wigman [5] who proved that the variance grows like λ2 log λ (as
opposed to our λ7/2 estimate) as λ → ∞. Finally, for smooth domain in R

2,

Nourdin–Peccati–Rossi [27] prove that both for real and complex random waves, the
Hausdorff measure of the nodal set is asymptotically normal in the high frequency
limit.

3.1 Global Statistics

The main result in this section gives asymptotics for the expected value, and esti-
mates for the variance, of the linear statistics of Zλ, Critλ that are valid for generic
Riemannian metrics on M. For the estimates about the means of Zλ(ψ), Critλ(ψ)

one needs to ask that (M, g) be a manifold of isotropic scaling (see Definition 1).
This is true for any manifold with negative curvature, or with no conjugate points.
The variance estimates are more delicate, so one needs to ask in addition that the
restrictions of φλ to small balls centered at different points become asymptotically
uncorrelated. This is the following definition.

Definition 2 The random waves φλ ∈ RWλ(M, g, η) are said to have short-range
correlations if for each ε > 0 and every α, β ∈ N

sup
{x,y: dg(x,y)≥λ−1+ε}

∣∣∣∇α
x ∇β

y �η,λ(x, y)

∣∣∣ = oε(λ
α+β), (13)

as λ → ∞, where ∇x,∇y are covariant derivatives.

This condition is again generic in the space of Riemannian metrics on (M, g) and
is satisfied for example if for any pair of points x, y ∈ M the measure of geodesic
arcs joining them is zero. That is, if

∣∣Lx,y

∣∣ = 0 for all x, y ∈ M , then the random
waves in RWλ(M, g, η) have short-range correlations.

The condition that
∣∣Lx,y

∣∣ = 0 for all x, y ∈ M is known to happen on
manifolds of negative curvature, or more generally, with no conjugate points (see
[8, Section 1.5]). It is likely that a similar argument would show that

∣∣Lx,y

∣∣ = 0 for
all x, y ∈ M is also generic but have not checked the details. It is known, however,
that

∣∣Lx,y

∣∣ = 0 holds for all x, y ∈ M if (M, g) is negatively curved or, more
generally, has no conjugate points.

We are ready to state the main theorem of this section. This result was proved
in [8].

Theorem 2 Let (M, g) be a smooth, compact, Riemannian manifold of dimension
n ≥ 2 with no boundary. Let η = η(λ) be a non-negative function satisfying η(λ) =
o(λ) as λ → ∞. Let φλ ∈ RWλ(M, g, η) and suppose that M is a manifold of
isotropic scaling (Definition 1). Then, for any bounded measurable function ψ :
M→R,
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lim
λ→∞E

[
λ−1Zλ(ψ)

]
= 1√

πn

�
(

n+1
2

)

�
(

n
2

)
∫

M

ψ(x)dvg(x) (14)

and

lim
λ→∞E

[
λ−n Critλ(ψ)

] = Cn

∫

M

ψ(x)dvg(x), (15)

where Cn is a positive constant that depends only on n. Suppose further that φλ has
short-range correlations in the sense of (13). Then,

Var
[
λ−1Zλ(ψ)

]
= O(λ− n−1

2 ) (16)

and

Var
[
λ−n Critλ(ψ)

] = O
(
λ− n−1

2

)
, (17)

as λ→∞.

Theorem 2 is the first result with a non-trivial variance estimate for the Hausdorff
measure of the nodal set of random waves for a generic smooth Riemannian
manifold (for real analytic (M, g) a weaker estimate was given in [36, Cor. 2]).
A version of (14) was also stated, with a heuristic proof, in [36, Prop. 2.3] for both
Zoll and aperiodic manifolds.

We also note that the test function ψ in Theorem 2 can be replaced by a
function ψ(x) = ψ(x, φλ(x),D2φλ(x), . . .) depending on the jets of φλ provided
ψ : Rn×C0(Rn,Rk)→R is bounded and continuous when C0(Rn,Rk) is equipped
with the topology of uniform convergence on compact sets. Hence, for example, we
could study the distribution of critical values by taking ψ(u, φλ) = 1{φx

λ≥α}(u), for
α ∈ R.

In addition, the proof of Theorem 2 actually shows that (14) holds as soon as
almost every point is a point of isotropic scaling. That is, it holds provided

volg(M\IS(M, g, η)) = 0,

(see Definition 1).
Furthermore, by the Borel–Cantelli Lemma, if n ≥ 4 and φj are independent

frequency j ∈ N random waves on (M, g), then (16) shows that the total nodal set
measure j−1Zj (ψ) − E

[
j−1Zj (ψ)

]
converges almost surely to 0.

Finally, when n = 2 we have C2 = E
[
Crit∞,1

] = 1
4π

√
6

where C2 is the
dimensional constant in (15), see (25).

Theorem 2 hinges on a careful study of the statistics of φλ when restricted to
“wavelength balls” of radius ≈ λ−1 around a fixed point x ∈ M of isotropic
scaling. The results that describe the behavior of Zλ or Critλ restricted to these
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shrinking balls are described in Sections 3.2.1 and 3.2.2, respectively. The results
are “glued” to obtain Theorem 2. Glueing variance estimates is a delicate matter. It
is instrumental to the proof that the waves have short-range correlations.

3.2 Local Statistics

In this section we discuss the behavior of the zero sets and of the critical points
for the scaled waves φx

λ . When x is a point of isotropic scaling the behavior of
the scaled random wave φx

λ converges to that of the random planar wave φx∞ ∈
RW1(TxM, gx). One can therefore prove much stronger results on statistics for φx

λ

than φλ.

3.2.1 Local Universality of Zeros

Consider the rescaled random wave φx
λ for x ∈ IS(M, g, η) and denote by Zx

λ its
Riemannian hypersurface (i.e. Hausdorff) measure:

Zx
λ(A) := σ

Zλ

((
φx

λ

)−1
(0) ∩ A

)
, ∀A ⊆ TxM measurable.

The main result concerns the restriction of Zx
λ to various balls Br of radius r

centered at 0 ∈ TxM. We set

Zx
λ,r := 1Br · Zx

λ

vol(Br)
and Zx∞,r := 1Br · Zx∞

vol(Br)
. (18)

We have denoted by 1Br the characteristic function of the ball Br and by Zx∞ the
hypersurface measure on (φx∞)−1(0) for φx∞ ∈ RW1(TxM, gx). Again, for various
measures μ, we write μ(ψ) for integration of a measurable function ψ against μ.

In particular,

Zx
λ,r (1) =

Hn−1
((

φx
λ

)−1
(0) ∩ Br

)

vol(Br)
.

The following result is proved in [8]. See Figure 3 for a depiction of the
statement.

Theorem 3 (Weak Convergence of Zero Set Measures) Let (M, g) be a smooth,
compact, Riemannian manifold of dimension n ≥ 2 with no boundary. Let η = η(λ)

be a non-negative function satisfying η(λ) = o(λ) as λ → ∞. Fix a non-negative
function rλ that satisfies rλ = o(λ) as λ→∞. Let φλ ∈ RWλ(M, g, η) and x ∈
IS(M, g, η). Suppose limλ→∞ rλ exists and equals r∞ ∈ (0,∞].
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Fig. 3 Depiction of the
universal behavior displayed
by monochromatic random
waves. The zero set measure
for the monochromatic
random wave on the sphere
(left) converges to the zero set
measure for the random
planar wave (right)

Case 1 (r∞ < ∞): The measures Zx
λ,rλ

converge to Zx∞,r∞ weakly in distribu-
tion. That is, for any bounded, measurable function ψ : TxM→R

Zx
λ,rλ

(ψ)
d−→ Zx∞,r∞(ψ) (19)

as λ → ∞, where
d−→ denotes convergence in distribution.

Case 2 (r∞ = ∞): We have the following convergence in probability to a con-
stant:

Zx
λ,rλ

(1)
p−→ 1√

πn

�
(

n+1
2

)

�
(

n
2

) , (20)

as λ→∞. In particular,

lim
λ→∞ Var

[
Zx

λ,rλ
(1)

] = 0. (21)

The function ψ in (19) can be allowed to depend on the jets Djφλ, j ≥ 1.

More precisely, ψ(u) can be replaced by ψ(u,W(u)), where W is a random
field so that u �→ (φx

λ(u),W(u)) is a continuous Gaussian field with values in
R

1+k and ψ : Rn×C0(Rn,Rk)→R is bounded and continuous when C0(Rn,Rk)

is equipped with the topology of uniform convergence on compact sets. Since
(φx

λ(u),Dφx
λ(u),D2φx

λ(u), . . .) is a smooth Gaussian field, we may take W(u) =(
Djφλ(u), j ≥ 1

)
. Similarly, in (20) and (21), the function 1 = 1(u) can be

replaced by ψ(W(u)) where again ψ : C0(Rn,Rk)→R is bounded and continuous
in the topology of uniform convergence on compact sets. The only difference is
that (20) then reads

Zx
λ,rλ

(ψ) − E
[
Zx∞,rλ

(ψ)
] p−→ 0.

The relations (20) and (21) hold even if the balls Brλ in the definition of Zx
λ,rλ

are
replaced by any λ−dependent sets Aλ,rλ for which the diameter is bounded above
and below by constant times rλ, and whose volume tends to infinity when rλ→∞.
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The rates of convergence in (19)–(21) - even after the generalizations indicated
above- are uniform as x varies over a compact set S ⊂ IS(M, g, η) as long as the
convergence in (10) is uniform over S.

3.2.2 Local Universality of Critical Points

Let x ∈ M and for each r > 0 define the normalized counting measure

Critxλ,r := 1

vol(Br)

∑

dφx
λ (u)=0
u∈Br

δu (22)

of critical points in a ball of radius r. We define Critx∞,r in the same way as Critxλ,r

but with φx
λ replaced by φx∞ ∈ RW1(TxM, gx), and continue to write μ(ψ) for the

pairing of a measure μ with a function ψ . For example,

Critxλ,r (1) = #{u ∈ Br : dφx
λ(u) = 0}

vol(Br)
.

Theorem 4 Let (M, g) be a smooth, compact, Riemannian manifold of dimension
n ≥ 2 with no boundary. Let η = η(λ) be a non-negative function satisfying η(λ) =
o(λ) as λ → ∞. Fix a non-negative function rλ that satisfies rλ = o(λ) as λ→∞.
Let φλ ∈ RWλ(M, g, η) and x ∈ IS(M, g, η). Suppose that limλ→∞ rλ exists and
equals r∞ ∈ (0,∞].
Case 1. (r∞ < ∞): For k = 1, 2 and each bounded measurable function ψ :

TxM → R

lim
λ→∞E

[
Critxλ,rλ

(ψ)k
]

= E

[
Critx∞,r∞(ψ)k

]
. (23)

Case 2. (r∞ = ∞): We have

lim
λ→∞ Var[Critxλ,rλ

(1)] = E
[
Critx∞,1(1)

]
. (24)

This limit is the expected number of critical points in a ball of radius 1 for
frequency 1 random waves on R

n, which is independent of x.

The moments E
[
(Critx∞,r∞(ψ))k

]
are finite for k = 1, 2. In particular, if

dim(M) = 2, then for every x ∈ M

E
[
Critx∞,1(1)

] = 1

4π
√

6
. (25)
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The balls Brλ in (24) can be replaced by any λ−dependent sets Aλ,rλ for which the
diameter is bounded above and below by a constant times rλ and whose volume
tends to infinity with rλ.

Both ψ in (23) and the function 1 being integrated against Critxλ,rλ
in (24) can be

replaced by a bounded continuous function of the jets of φλ, giving information for
instance about critical points filtered by critical value.

Also, the rates of convergence in (23) and (24) are uniform over x ∈ S ⊂
IS(M, g, η) if (10) is uniform over S.

On the n-dimensional flat torus, Nicolaescu [26] obtained several results related
to Theorem 4 in the r∞ < ∞ case.

4 Structure of the Zero Set

Let (M, g) be a Riemannian manifold, and let φ be an eigenfunction for the Laplace
operator. The zero set φ−1(0) = {x ∈ M : φ(x) = 0} decomposes into a collection
of connected components which we denote by C(φ). See Figure 4. Our interest is in
the diffeomorphism types of the components in C(φ). For generic φ the components
of C(φ) are smooth (n − 1)-dimensional manifolds. The connected components of
M\φ−1(0) are the nodal domains of φ and our interest is in their nesting properties,
again for generic φ.

The results presented in this section build on the ground breaking work of
Nazarov–Sodin [31]. They studied the number of nodal domains for monochromatic
random waves on manifolds with isotropic scaling. They proved that there exists a
positive constant C so that the mean number of nodal domains for φλ grows like
Cλn. The approach of [10, 30] to study the diffeomorphism types of the zero set
components is very similar in spirit to the work [31] as the rationale is that one is
counting components of the zero set with a given diffeomorphism type. A similar
argument is carried to deal with the nesting configurations.

The argument developed by Nazarov–Sodin hinges on the fact that most zero
set components lie within a ball of radius R/λ for R > 0 large enough. One can
therefore count the number of components of φx

λ within the ball B(0, R) ⊂ TxM .
The latter is done using the universal behavior of φx

λ guaranteed by the fact that M

is a manifold of isotropic scaling.
The works of Gayet–Welshinger [14–16] are also very related to the results

described in this section, only that they are not applicable to monochromatic random
waves.

4.1 Diffeomorphism Types

Let Dn−1 denote the (countable and discrete) set of diffeomorphism classes of
compact connected smooth (n − 1)-dimensional manifolds that can be embedded
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in R
n. The compact components c in C(φ) give rise to elements D(c) in Dn−1 (here

we are assuming that φ is generic with respect to a Gaussian measure so that φ−1(0)

is smooth).
Let φλ ∈ RW(M, g, η). The diffeomorphism types exhibited by the components

of φ−1
λ (0) are described by the probability measure μD(φλ)

on Dn−1 given by

μD(φλ)
:= 1

|C(φλ)|
∑

c∈C(φλ)

δ
D(c)

,

where δ
D

is a point mass at D ∈ Dn−1. The following is part of the main theorem in
[30, Theorem 1.1].

Theorem 5 There exists a probability measure μD supported on Dn−1 such that
the following holds. Let (M, g) be a smooth, compact, Riemannian manifold of
dimension n ≥ 2 with no boundary. Let η = η(λ) be a non-negative function
satisfying η(λ) = o(λ) as λ → ∞. Suppose that M is a manifold of isotropic
scaling. Then, for any given D ∈ Dn−1 and ε > 0,

lim
λ→∞P

(
φλ ∈ RWλ(M, g, η) : |μD(φλ)

(D) − μD (D)| > ε
)

= 0.

The theorem asserts that there exists a probability measure μD on Dn−1 to which
μD(φ) approaches as λ → ∞, for almost all φ. The probability measure μD is
universal in that it only depends on the dimension n of M .

For n ≥ 4, little is known about the space Dn−1. In particular, there is
no classification for the diffeomorphism types of (n − 1)-dimensional smooth

Fig. 4 Zero set of a random
planar wave in R

3. Picture
created by A. Barnett
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manifolds. This makes it difficult to study the support of μD . Remarkably, it is
possible to prove that the support of μD is all of Dn−1. This result is proved in [10].

Theorem 6 Every atom of Dn−1 is positively charged by μD . That is,

supp(μD ) = Dn−1.

Theorem 6 asserts that every diffeomorphism type that can occur will do so with
a positive probability for the universal distribution of topological types of random
monochromatic waves in [30].

The proof of Theorem 6 relies on the fact that for a manifold of isotropic scaling
the statistics of φx

λ converge to those of φx∞ for every x ∈ M . Indeed, the proof
reduces to establishing the following result.

Theorem 7 Given D ∈ Dn−1 there exists φ ∈ ker(�Rn − Id) and c ∈ C(φ) for
which D(c) = D.

Theorem 7 is of basic interest in the understanding of the possible shapes of
nodal sets and domains of eigenfunctions in R

n (it applies equally well to any
eigenfunction with eigenvalue λ2 > 0 instead of 1). To prove Theorem 7 one
applies Whitney’s approximation Theorem to realize c as an embedded real analytic
submanifold of Rn. Then, following some techniques in [12] one can find suitable
approximations of φ ∈ ker(�gRn − 1) and whose zero set contains a diffeomorphic
copy of c. The construction of φ hinges on the Lax–Malgrange Theorem and Thom’s
Isotopy Theorem.

The reduction from Theorem 7 to Theorem 6 is abstract and is based on the
“soft” techniques in [30, 31]. In particular, it offers us no lower bounds for these
probabilities. Developing such lower bounds is an interesting problem.

4.2 Nesting Configurations

Let φ be a Laplace eigenfunction for a Riemannian manifold (M, g). The connected
components of M\φ−1(0) are the nodal domains of φ and our interest is in their
nesting properties, again for generic φ. Let U be a coordinate patch for M . The
components of C(φ) that are contained in U are denoted by CU (φ). To each compact
c ∈ CU (φ) we associate a finite connected rooted tree as follows. By the Jordan–
Brouwer separation Theorem each component c ∈ C(φ) has an exterior and interior.
We choose the interior to be the end that is contained within U . The nodal domains
of φ, which are in the interior of c, are taken to be the vertices of a graph. Two
vertices share an edge if the respective nodal domains have a common boundary
component (unique if there is one). This gives a finite connected rooted tree denoted
T (c); the root being the domain adjacent to c (see Figure 5).

The reason for working in a coordinate patch U for M is that for general (M, g)

there is no global way to define a tree that describes the nesting configuration of the
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Fig. 5 This picture shows a
nodal domain configuration,
where positive nodal domains
are depicted in orange and
negative nodal domains are
green. The corresponding
rooted tree is shown

positive

negative

c

T (c)

zero set in all of M , for all c ∈ C(φ). The reason is that a zero set component may
not divide M into two different regions. It is important to note that in a coordinate
patch this is always the case. However, according to [31] almost all c’s localize to
small coordinate patches. This inconvenience is the reason why [10] is written for
M = Sn the round sphere. By the Jordan–Brouwer separation Theorem, on Sn every
component of the zero set separates Sn into two distinct components. This gives that
the nesting graph for the zero sets is a rooted tree well defined without the need for
a coordinate patch.

Let T be the collection (countable and discrete) of finite connected rooted trees.
The distribution of nested ends of nodal domains of φ that lie within U is described
by the measure μT (φ),U on T given by

μT (φ),U := 1

|CU (φ)|
∑

c∈CU (φ)

δ
T (φ)

,

where δ
T

is the point mass at T ∈ T .
The following is part of the main theorem in [30, Theorem 1.1]. Also, see [10,

Remark 2].

Theorem 8 There exists a probability measure μT supported on T such that
the following holds. Let (M, g) be a smooth, compact, Riemannian manifold of
dimension n ≥ 2 with no boundary. Let η = η(λ) be a non-negative function
satisfying η(λ) = o(λ) as λ → ∞. Suppose that M is a manifold of isotropic
scaling and let U be a coordinate patch for M . Then, for any given T ∈ T and
ε > 0,

lim
λ→∞P

(
φλ ∈ RWλ(M, g, η) : |μT (φ),U (T ) − μT (T )| > ε

)
= 0.

Theorem in [30] asserts that there exists a probability measure μT on T to which
μT (φ),U approaches as λ → ∞, for almost all φ provided M is a manifold of
isotropic scaling.

The probability measure μT is universal in that it only depends on the dimension
n of M . The following result is part of theorem in [10] and deals with the support of
μT .
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sin(x) sin(y) sin(x) sin(y) + εh(x, y)

positive

negative

h( ) = −1h( ) = 1

Fig. 6 This picture shows how to perturb the zero set of ψ(x, y) = sin(x) sin(y) by adding h ∈
ker(�

Rn − I ) that we prescribe on the singularities of ψ that lie in its zero set so that the zero set
of φ = ψ + εh, for ε > 0 small, has the correct nesting configuration

Theorem 9 Every atom of T is positively charged by μT . That is,

supp(μT ) = T .

The proof of Theorem 9 hinges on the fact that any rooted tree can be realized by
elements of ker(�Rn − I ) as described by the following result.

Theorem 10 Given T ∈ T there exists φ ∈ ker(�Rn − Id) and c ∈ C(φ) for which
T (c) = T .

As far as Theorem 10, the case n = 2 is resolved in [30] using a deformation of
sin(πx) sin(πy) and a combinatorial chess board type argument. This is described
in Figure 6. In higher dimensions, for example n = 3, one proceeds by deforming

ψ(x, y, z) = sin(πx) sin(πy) sin(πz).

This ψ has enough complexity to produce all elements in T after deformation.
However, it is much more difficult to study than the 2-dimensional case. Unlike
sin(πx) sin(πy), the zero set ψ−1(0) has point and 1-dimensional edge singu-
larities. The analysis of its resolution under deformation requires a lot of care,
especially as far as engineering elements of T . The pay off as we noted is that it
is rich enough to prove Theorem 10.
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