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Preface

This volume presents papers devoted to a broad spectrum of areas of Mathematical
Analysis and Probability Theory, in the spirit of the topics treated in the so-called
Strasbourg—Ziirich Meetings. These meetings have been organized twice a year
since 2015, taking place once in Ziirich and once in Strasbourg each year, and
constitute a place of vibrant mathematical communication that gathers experts from
all over the world.

Topics treated within the scope of this volume include the study of monochro-
matic random waves defined for general Riemannian manifolds, notions of entropy
related to a compact manifold of negative curvature, interacting electrons in a
random background, 1”-cohomology (in degree one) of graph and its connections
with other topics, limit operators for circular ensembles, polyharmonic functions
for finite graphs and Markov chains, the ETH approach to quantum mechanics, two-
dimensional quantum Yang—Mills theory, Gibbs measures of nonlinear Schrédinger
equations, interfaces in spectral asymptotics, and nodal sets.

The papers published in this volume have been contributed by experts from the
international community, who have presented the state-of-the-art research in the
corresponding problems treated. The effort has been made for the present volume
to be a valuable source for both graduate students and research mathematicians
working in analysis, probability as well as their interconnections and applications.

We express our warmest thanks to all the contributing authors of this volume,
who have participated in this collective effort. Last but not least, we would like to
extend our appreciation to the Springer staff for their valuable help throughout the
publication process of this work.

Strasbourg, France Nalini Anantharaman
Ziirich, Switzerland Ashkan Nikeghbali

Ziirich, Switzerland Michael Th. Rassias
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Monochromatic Random Waves for m)
General Riemannian Manifolds ik

Yaiza Canzani

1 Introduction

This is a survey article on the recent developments on monochromatic random waves
for general Riemannian manifolds obtained in [7-10, 30]. Let (M, g) be a compact,
smooth, Riemannian manifold without boundary of dimension n > 2, and write
A, for the corresponding positive definite Laplace-Beltrami operator. Consider an
orthonormal basis {<ij }jo_l of L3(M, g) consisting of real-valued eigenfunctions

2
Ag‘/’Aj = Aj‘»‘&j»

with eigenvalues 0 = Ag < A} < Ap < --- 7 00, normalized so that ||<ij ||L2 =1.
Laplace eigenfunctions have been a common object of study for the mathematical
physics community since they encode how heat and waves propagate across M.
From a quantum mechanics point of view, Igakj (x)|? is the probability density for
finding a quantum particle of energy k? at the point x. It is therefore a natural
problem to try to understand how b, behaves. For example, one would like to
understand how many minimums and maximums @, has, as they are the most
likely places for the quantum particles to be found at. See Figure 1. Similarly,
understanding the geometry of the zero set of b would yield information on the
structure of the least likely places for the quantum particles. See Figure 2.
However, it is often the case that studying such questions for ¢, = defined on a
general manifold is quite hard, as eigenfunctions cannot be computed explicitly.
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2 Y. Canzani

Fig. 1 Zeros and critical points for an eigenfunction on a torus. The function takes positive values
on the shaded black areas, and negative values on the white areas. The maximums for the function
are attained at the red points, while the minimums occur at the blue points. This picture was created
by E. Vouga

Fig. 2 Nodal domains of a
monochromatic random wave
on the round sphere. Picture
created by D. Beliaev

Even more so, for high energies, numerical methods cannot approximate the
eigenfunctions in an efficient way that would keep track of features such as the
structure of their zero set. It is then natural to randomize the problem and to study
how the eigenfunctions behave on average.

It is then natural to work with monochromatic random waves of frequency A.
These are random fields on M defined by

1
O = —m—= Z aj, .
J
vaim Hy oy o)

where the coefficients a; ~ N(0, 1) are real valued, i.i.d, standard Gaussian random
variables, n = 1, = n(A) is a non-negative function satisfying n(1) = o(A) as
A — 00, and

ey

Hy, = @ ker(a, —231d).
AjE[AA+m]

We write
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¢, € RWi(M, g, 1)

for short. The ensembles ¢, are Gaussian models for eigenfunctions of the Laplacian
with eigenvalue approximately equal to A> on a compact Riemannian manifold
(M, g). In the setting of a general smooth manifold, the ensembles RW,_ were first
defined by Zelditch in [36]. Zelditch was inspired in large part by the influential
work of Berry [3], which proposes that random planar waves on Euclidean space
and flat tori are good semiclassical models for high frequency eigenfunctions in
quantum systems whose classical dynamics are chaotic. As we will see in Section 2,
when properly scaled, the waves ¢, € RW, (M, g, n) behave like random planar
waves. Random planar waves are Laplace eigenfunctions with eigenvalue 1, and
since their frequency is fixed to be 1 they are said to be monochromatic. The fact
that the scaled ¢, behave like random planar waves as A — oo is the reason why
waves in RW, (M, g, n) are said to be monochromatic.

On round spheres and flat tori the Laplace eigenvalues occur with large multi-
plicity. Indeed, dim Ho; grows like A"~ when A is an eigenvalue. Therefore, in
these cases, one typically takes n = 0 so that ¢, € RW;, (M, g,0) is an exact
eigenfunction and A € {A;}. However, for a generic metric on any smooth compact
manifold M, the eigenvalues )\% are simple. It is then natural to take n so that
dim H), 5 has the same rate of growth in powers of A as the dimension of the
eigenspaces for a round sphere. In particular, it is known [7] that if (M, g) has
at least one non self-focal point (that is, there exists x € M so that |L, (| = O,
see (11)), then for every ¢ > O there exists C > 0 such that dim H, ; grows like
Cx*~!as A — oo. Since the existence of a non self-focal point is a very weak
condition, it is customary to work with random waves in RW, (M, g, ¢) for some
c>0.

This survey article focuses on the results of [7-10, 30]. The results in [7, 9]
were the first ones to allow for the treatment of monochromatic random waves
to take place on general manifolds by establishing that, when properly rescaled,
the waves have a universal behavior. Prior to these results, monochromatic random
waves had only been studied for the torus or the sphere. The article [8] is the first
one in the literature pertaining statistics of the size of zero set and of the numbers of
critical points for monochromatic random waves on general Riemannian manifolds.
The results in [10, 30] deal with the study of the diffeomorphism types of the
components of the zero sets of the monochromatic random waves, and of the nesting
configurations of the components. These results build on the ground breaking work
of Nazarov—Sodin [31].

In this article we discuss the following aspects of ¢, € RWy (M, g, n).

¢ Section 2: Universal behavior of ¢.
¢ Section 3: Number of critical points and size of the zero set of ¢;.
¢ Section 4: Structure of the zero set of ¢;.
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The literature about random waves is extensive and rapidly evolving. This survey
by no means attempts to give an overall account of every known result. There are
numerous works directly related to the topics of this survey, including [4-6, 11, 14—
16, 19-22, 25-29, 31, 33, 34].

2 Universal Behavior of ¢,

By the Kolmogorov Consistency Theorem, the law of ¢, € RW, (M, g, n), which
is a centered smooth Gaussian field, is completely characterized by its covariance
kernel

1
My, y) == Cov @), i) = T—— D @ (g, ().
, ;9,

» AjE[AA+ms]

where x, y € M. The function IT,, ; (x, y) is the Schwartz kernel for the orthogonal
projection operator II, ; : L*(M, g)— H, 5, normalized to have unit trace. The
study of local quantities, such as the size of the zero set of ¢,, or the number
of critical points of ¢, hinges on understanding the statistics of ¢, as A— o0,
restricted to “wavelength balls” of radius ~ A ~! around a fixed point x € M. After
rescaling by 1/, the function ¢, has frequency approximately equal to 1 on such
balls in the sense that it solves the approximate local eigenvalue equation

Ap y®n(x + 5) = a(x + ), (2)

where A, ,, denotes the flar Laplacian on the tangent space at x, 7x M. One could
therefore expect, after the scaling, for the Gaussian random wave u — ¢, (x + %)
to behave like a Gaussian random wave ¢, on R" = T, M satisfying

ARn¢OO = ¢OO

The latter is called a random planar wave, and we discuss them in Section 2.1.
Moreover, we shall see in Section 2.2, that for a generic Riemannian metric on M,
the rescaled covariance kernel IT,, ; of ¢, € RW, (M, g, n) converges in the C*
topology to that of a random planar wave ¢o, on R" = T\, M.

2.1 Random Planar Waves

Let O be the Haar measure on the round sphere $"~1 normalized so that
O (8"~1) = 1. Using that the transformation & > —& preserves S"~!, choose a
real-valued orthonormal basis {y j}§° | of L2(s" 1, O ,) satisfying

Vj(=§) = (=DY9;(§), €; €{0,1}. 3)
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A random planar wave is defined to be the random real-valued function ¢, on R”
given by

boo() =D " bji" Prj(u), )
j=1
where
¥ = fR Vi ©eT 1 do, (), )

and the b;’s are i.i.d, real valued, standard Gaussian random variables. We write
¢OO € RW] (Rna an),

for short, where g, is the Euclidean metric. We note that the fields in RW1 (R", g,)
do not depend on the choice of the orthonormal basis {;}. In addition, since the
Euclidean Laplacian is Ag,, = — >/ _, 83k, and Agy, e 1) = 7 E) S Skz,
it is immediate that

Aan ¢OO = ¢OO

As explained in the introduction, random planar waves are often called monochro-
matic random waves because their frequency (the square root of their eigenvalue) is
equalto 1.

Next, note that the distributional identity Z?‘;l ¢;i&)pj(m) =8 —n)on g1
together with (3) lead to the explicit expression for the covariance function:

Moo (1, v) := Cov(gheo (u), oo (v)) = f ¢ do | (8), (6)

RVI

where u, v € R". From (4) it follows that almost all ¢, s are analytic in u [1]. It is
also known that

1 J -
Moo, v) = —— 2= D @)
Q)2 u—vl”
where J, is the Bessel function of index v := %

There is a natural choice of a basis for L2(S”’1,dcrsn71) given by spherical
harmonics. Let {Y% }iﬁl be a real-valued basis for the space of spherical harmonics
Ee(S" 1) of eigenvalue £(£ + n — 2), where den = dim & (S*~1). In [10,
Corollary 2.2] we prove that the monochromatic Gaussian ensembles ¢;’s take
the form
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o0 dEn

B . ¢ J[+v(|u|)
Gool) = QM2 Y Y bem Yy <|u|> Jul”

£=0 m=1

where the by ,,’s are i.i.d standard Gaussian variables.

2.2 Points of Isotropic Scaling

The discussion around (2) shows that it is natural to study ¢, by fixing x € M and
considering the rescaled pullback of ¢, to the tangent space T, M. We denote this
pullback by

AOETACT )} ®)

where exp, : TyM — M is the exponential map. The dilated functions ¢3 are
centered Gaussian fields on T, M, and we denote their scaled covariance kernel by

I , . v) = Cov(g] (). ¢} ) = Ty (exp, (5 ). exp, (3)):

When x is a point of isotropic scaling (see Definition 1 below), we shall see that the
kernels Hf] ,, converge to the covariance kernel of a random planar wave

P € RW(Te M, gx).

Here, g, denotes the constant coefficient metric obtained by freezing g at x. By
the Kolmogorov Extension Theorem, together with (6), the random wave @3 is
completely characterized by its two point correlation function kernel

Tua (llu = vl )
n—2

lu — vl

¥ (u, v) = (27)2

:/;Mei(ufv,é*)gxdaskM(g). 9)

)

Here J, denotes a Bessel function of the first kind with index v, Sy M is the unit
sphere in T M with respect to gy, and do;_,, is the hypersurface measure on Sy M

Definition 1 A point x € M is a point of isotropic scaling, denoted x €
IS8(M, g, n), if for every non-negative function r, satisfying r, = o(X) as A— 00,
and all o, B € N, we have

sup
u,veBrk

3% aP [H;’A(u, v) — %, (u, v)] ) = 0ap(1) (10)
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as A—o00, where the rate of convergence depends on «, 8 and B, denotes a ball of
radius r centered at 0 € T, M. We also say that M is a manifold of isotropic scaling
if

M=18M,g,n)

and if the convergence in (10) is uniform over x € M for each «, 8 € N".

Verifying that x € M belongs to ZS(M, g, n) is difficult to do directly, except
on simple examples such as the flat torus. We briefly recall several settings in which
IZS8(M, g, n) is known to be large.

* Let §" be the n-sphere equipped with the round metric g, . The Mehler—Heine
asymptotics [24] imply that

IS(S", 8gn 5 0) = Sn»

when the limit in (10) is taken along the sequence of eigenvalues A; — oo for
the sphere. In this case, the ¢, s are known as random spherical harmonics.

* Let T" be the n-dimensional torus equipped with the flat metric g,,. Whenn > 5
we have that ZS (T", &m»0) = T". For 2 < n < 4, the asymptotics (10) hold at
every x € T" but only for a density one subsequence of eigenvalues [13]. In this
case, the ¢, ’s are known as random trigonometric polynomials.

e The pointwise Weyl law [17] implies that if limy_.on) = o0, then
ISM,g,n) = M.

In addition, it is very likely that if (M, g) has no conjugate points, then the
condition

lim log(A) - g, = o0
rA—00

implies ZS(M, g, n) = M. This was proved by B. Keeler in [18], but with the
convergence in (10) only holding for « = 8 = 0. Note that if (M, g) has negative
sectional curvature everywhere, then it has no conjugate points and all points are
non self-focal. In contrast, there exist smooth perturbations of the round metric on
$2 for which ZS(52, g, 1) C §? (see [23, 35]).

For x,y € M let

Lyy=1{&€SM: 3t>0s.t exp,(t&) = y} 1D

be the set of directions that generate geodesic arcs from x to y. The set Ly y
is contained in SyM and S, M is endowed with the Liouville measure. The
corresponding volume of £, , is denoted by [L, .

The main result of this section is the following, and it was proved in [7, 9].
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Theorem 1 Let (M, g) be a compact, smooth, Riemannian manifold, with no
boundary. Let n be a non-negative function with liminf, .o n) > 0. Let x € M
be so that |£x,x| = 0. Then,

x€IS(M, g,n). (12)

By [32, Lem 6.1], the condition that ]Ex,x ] = O for all x € M is generic in the space
of Riemannian metrics on a fixed compact smooth manifold M.

Definition 1 gives that if x € ZS(M, g, n), then the scaling limit of waves
in RW, (M, g, n) around x is universal in the sense that it depends only on the
dimension of M. In the language of Nazarov—Sodin [31] the asymptotics (10)
imply that if M = ZS(M, g, n), then the ensembles RW; (M, g, n) have translation
invariant local limits.

3 Number of Critical Points and Size of the Zero Set

Define the measures of integration over the zero set {¢, = 0} and the set of critical
points {d¢; = 0} by

Z(y) = f¢ L VMo, ) and )= 3D,

> de).(x)=0

where ¥ : M—R and oy, is the (n — 1)-dimensional Hausdorff measure over
{¢,. = 0}. This section is divided into two parts. In Section 3.1 we give asymptotics
for E[Z,] and E [Crit, ], and bounds for their variances. The results in Section 3.1
rely heavily on a careful analysis of what happens for the scaled random waves ¢; .
The results for the localized waves are discussed in Section 3.2.

Previous results on the Hausdorff measure of the zero sets focus primarily on
exactly solvable examples. On round spheres, for instance, Bérard [2] proved (14)
(example (1) on p.3). Later, in the same setting, Neuheisel [25] and Wigman [33]
obtained upper bounds for the variance that are of polynomial order in A. Further, on
$2, Wigman [34] found that the variance actually grows like A2 log A as A — oo.
On flat tori T" (for exact eigenfunctions) Rudnick and Wigman [29] computed
the expected value of the total Hausdorff measure of the zero set and gave an
upper bound of the form A2 (dim(Hp, ») 12 on its variance. Subsequently, on T2,
Krishnapur, Kurlberg, and Wigman [19] found that the variance is asymptotic to a
constant, while Marinucci, Peccati, Rossi, and Wigman proved that the size of the
zero set converges to a limiting distribution that is not Gaussian and depends on the
angular distribution of lattice points on circles [22].

The behavior of the number of critical points has been studied in detail on S2.
Nicolaescu [26] studied the expected value of the number of critical points, obtain-
ing (15). The variance was studied by Cammarota, Marinucci, and Wigman [6].
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They obtain a polynomial upper bound. This upper bound was later improved by
Cammarota and Wigman [5] who proved that the variance grows like A2 log A (as
opposed to our A7/? estimate) as A — oo. Finally, for smooth domain in R?,
Nourdin—Peccati—Rossi [27] prove that both for real and complex random waves, the
Hausdorff measure of the nodal set is asymptotically normal in the high frequency
limit.

3.1 Global Statistics

The main result in this section gives asymptotics for the expected value, and esti-
mates for the variance, of the linear statistics of Z;, Crit,, that are valid for generic
Riemannian metrics on M. For the estimates about the means of Z; (v), Crit, ()
one needs to ask that (M, g) be a manifold of isotropic scaling (see Definition 1).
This is true for any manifold with negative curvature, or with no conjugate points.
The variance estimates are more delicate, so one needs to ask in addition that the
restrictions of ¢, to small balls centered at different points become asymptotically
uncorrelated. This is the following definition.

Definition 2 The random waves ¢, € RW, (M, g, n) are said to have short-range
correlations if for each ¢ > 0 and every o, B € N

sup VEVETT, 5 (x, y)| = 0. (WP, (13)
{x.y:dg (x,y)=171+¢}

as A — o0, where Vy, V, are covariant derivatives.

This condition is again generic in the space of Riemannian metrics on (M, g) and
is satisfied for example if for any pair of points x, y € M the measure of geodesic
arcs joining them is zero. That is, if |£ X, y’ = 0 for all x, y € M, then the random
waves in RW, (M, g, n) have short-range correlations.

The condition that |£x, y| = 0 for all x,y € M is known to happen on
manifolds of negative curvature, or more generally, with no conjugate points (see
[8, Section 1.5]). It is likely that a similar argument would show that |£x’y| = 0 for
all x, y € M is also generic but have not checked the details. It is known, however,
that | Ly y| = 0 holds for all x,y € M if (M, g) is negatively curved or, more
generally, has no conjugate points.

We are ready to state the main theorem of this section. This result was proved
in [8].

Theorem 2 Let (M, g) be a smooth, compact, Riemannian manifold of dimension
n > 2 with no boundary. Let n = n()\) be a non-negative function satisfying n(A) =
o(A) as A — oo. Let ¢, € RW, (M, g, n) and suppose that M is a manifold of
isotropic scaling (Definition 1). Then, for any bounded measurable function ¥ :
M—R,
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lim ]E[rlz (1/,)] _ ! ) (% / W (x)dvg(x) (14)
A— 00 A \/ﬁ % 8
and
hm E[A CHIA(W) / Y (x)dvg(x), (15)

where C,, is a positive constant that depends only on n. Suppose further that ¢, has
short-range correlations in the sense of (13). Then,

Var [r‘zx(w)] — 00" (16)
and
Var [ 7" Crity ()] = O(A—%), (17)

as A—00.

Theorem 2 is the first result with a non-trivial variance estimate for the Hausdorff
measure of the nodal set of random waves for a generic smooth Riemannian
manifold (for real analytic (M, g) a weaker estimate was given in [36, Cor. 2]).
A version of (14) was also stated, with a heuristic proof, in [36, Prop. 2.3] for both
Zoll and aperiodic manifolds.

We also note that the test function v in Theorem 2 can be replaced by a
function ¥ (x) = ¥ (x, ¢y (x), D2¢;L(x), ...) depending on the jets of ¢, provided
¥ R*x CO(R", R¥)— R is bounded and continuous when CO(R”, R¥) is equipped
with the topology of uniform convergence on compact sets. Hence, for example, we
could study the distribution of critical values by taking ¥ (u, ¢,) = 1{¢{ >q} (1), for
aeR.

In addition, the proof of Theorem 2 actually shows that (14) holds as soon as
almost every point is a point of isotropic scaling. That is, it holds provided

volg (M\IS(M, g, 1)) =0,

(see Definition 1).

Furthermore, by the Borel-Cantelli Lemma, if n > 4 and ¢; are independent
frequency j € N random waves on (M, g), then (16) shows that the total nodal set
measure j ! Zi(y)—E [j_lzj (W)] converges almost surely to 0.

Finally, when n = 2 we have C; = E|[Crit, ] = W where C, is the
dimensional constant in (15), see (25).

Theorem 2 hinges on a careful study of the statistics of ¢, when restricted to
“wavelength balls” of radius ~ A~! around a fixed point x € M of isotropic
scaling. The results that describe the behavior of Z, or Crit) restricted to these
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shrinking balls are described in Sections 3.2.1 and 3.2.2, respectively. The results
are “glued” to obtain Theorem 2. Glueing variance estimates is a delicate matter. It
is instrumental to the proof that the waves have short-range correlations.

3.2 Local Statistics

In this section we discuss the behavior of the zero sets and of the critical points
for the scaled waves ¢;. When x is a point of isotropic scaling the behavior of
the scaled random wave ¢; converges to that of the random planar wave ¢}, €
RW(TxM, g,). One can therefore prove much stronger results on statistics for ¢7
than ¢,..

3.2.1 Local Universality of Zeros

Consider the rescaled random wave ¢f for x € ZS(M, g, n) and denote by Zf its
Riemannian hypersurface (i.e. Hausdorff) measure:

ZE(A) = azk<(¢§)‘1(0) n A), VA C T, M measurable.

The main result concerns the restriction of ij to various balls B, of radius r
centered at 0 € T,, M. We set
1 - Z7 13 - Z*
e it S, B A S e (18)
’ vol(B,) ’ vol(B,)

We have denoted by 1p, the characteristic function of the ball B, and by ZZ  the
hypersurface measure on (¢f§o)_1(0) for ¢, € RW(Ty M, g.). Again, for various
measures i, we write w(y) for integration of a measurable function i against .
In particular,

H((65) ') 0 By)

Zi )= vol(B,)

The following result is proved in [8]. See Figure 3 for a depiction of the
statement.

Theorem 3 (Weak Convergence of Zero Set Measures) Let (M, g) be a smooth,
compact, Riemannian manifold of dimension n > 2 with no boundary. Let n = n(})
be a non-negative function satisfying n(A) = o(A) as A, — oo. Fix a non-negative
function r,, that satisfies ry, = o()) as A—>00. Let ¢, € RW, (M, g, n) and x €
IS (M, g, n). Suppose lim, _, 1), exists and equals roo € (0, 00].
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Fig. 3 Depiction of the
universal behavior displayed
by monochromatic random
waves. The zero set measure
for the monochromatic
random wave on the sphere
(left) converges to the zero set
measure for the random
planar wave (right)

Casel (rc < 00):  The measures Z; , converge to Zg, . ~weakly in distribu-
tion. That is, for any bounded, measurable function v : Ty M—R

Z5, 0 5z, W) (19)

d . . .
as . — 0o, where — denotes convergence in distribution.
Case 2 (roo = 00):  We have the following convergence in probability to a con-

stant:
P 1 T (ﬂ)

2
Z, () — , (20)
Vi T(3)
as A—o00. In particular,
AILIEOVM [Zi‘“(l)] =0. 21

The function ¥ in (19) can be allowed to depend on the jets D/¢;, j > 1.
More precisely, ¥ (1) can be replaced by ¥ (u, W(u)), where W is a random
field so that u +— (¢ (1), W(u)) is a continuous Gaussian field with values in
R!** and ¢ : R"xCO(R", R¥)—R is bounded and continuous when C°(R”, RK)
is equipped with the topology of uniform convergence on compact sets. Since
(@5 (w), DP3 (u), D2¢f (u), ...) is a smooth Gaussian field, we may take W (u) =
(D/¢;L(u), Jj=> 1). Similarly, in (20) and (21), the function 1 = 1(u) can be
replaced by v (W (1)) where again ¢ : CO(R”, R¥)—R is bounded and continuous
in the topology of uniform convergence on compact sets. The only difference is
that (20) then reads

z, ) ~E[Z5,, ] - o

The relations (20) and (21) hold even if the balls B, in the definition of ij’ ,, are
replaced by any A—dependent sets A, ,, for which the diameter is bounded above
and below by constant times r;, and whose volume tends to infinity when r, — oo.
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The rates of convergence in (19)—(21) - even after the generalizations indicated
above- are uniform as x varies over a compact set S C ZS(M, g, n) as long as the
convergence in (10) is uniform over S.

3.2.2 Local Universality of Critical Points

Let x € M and for each r > 0 define the normalized counting measure

1
Crit) . == ————— 1) 22
it . vol(B,) d¢x%;=0 u (22)
;EB,

of critical points in a ball of radius r. We define Crity , in the same way as Critj ,
but with ¢5 replaced by ¢%, € RW (T M, g.), and continue to write j(v) for the
pairing of a measure p with a function v. For example,

#Hu e B, : de¢y (u) = 0}
vol(B;)

Crit} (1) =

Theorem 4 Let (M, g) be a smooth, compact, Riemannian manifold of dimension
n > 2 with no boundary. Let n = n()\) be a non-negative function satisfying n(A) =
o(A) as A — oo. Fix a non-negative function r that satisfies ry = o(A) as A—00.
Let ¢ € RW; (M, g, n) and x € ZS(M, g, ). Suppose that lim, _, o, r),_exists and
equals r € (0, 00].

Case 1. (roo < 00):  For k = 1,2 and each bounded measurable function  :
.M — R
lim E (crits, )] = E[crits, . "] (23)
Case 2. (roo = 00):  We have

Jim Var[Crit} ,, ()] = E[Crit}, ,(D]. (24)
—00 ’ ’

This limit is the expected number of critical points in a ball of radius 1 for
frequency 1 random waves on R", which is independent of x.

The moments IE[(Critf;o’roo (w))k] are finite for k = 1,2. In particular, if
dim(M) = 2, then for every x € M

1
471\/6'

E[Critt, ,(1)] = 25)
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The balls B,, in (24) can be replaced by any A—dependent sets A, ,, for which the
diameter is bounded above and below by a constant times r; and whose volume
tends to infinity with ry.

Both ¢ in (23) and the function 1 being integrated against Critji’rA in (24) can be
replaced by a bounded continuous function of the jets of ¢,, giving information for
instance about critical points filtered by critical value.

Also, the rates of convergence in (23) and (24) are uniform over x € S C
IS8(M, g, n) if (10) is uniform over S.

On the n-dimensional flat torus, Nicolaescu [26] obtained several results related
to Theorem 4 in the ro, < 00 case.

4 Structure of the Zero Set

Let (M, g) be a Riemannian manifold, and let ¢ be an eigenfunction for the Laplace
operator. The zero set ¢_1(O) ={x € M : ¢(x) = 0} decomposes into a collection
of connected components which we denote by C(¢). See Figure 4. Our interest is in
the diffeomorphism types of the components in C(¢). For generic ¢ the components
of C(¢) are smooth (n — 1)-dimensional manifolds. The connected components of
M\¢~1(0) are the nodal domains of ¢ and our interest is in their nesting properties,
again for generic ¢.

The results presented in this section build on the ground breaking work of
Nazarov—Sodin [31]. They studied the number of nodal domains for monochromatic
random waves on manifolds with isotropic scaling. They proved that there exists a
positive constant C so that the mean number of nodal domains for ¢, grows like
C)\". The approach of [10, 30] to study the diffeomorphism types of the zero set
components is very similar in spirit to the work [31] as the rationale is that one is
counting components of the zero set with a given diffeomorphism type. A similar
argument is carried to deal with the nesting configurations.

The argument developed by Nazarov—Sodin hinges on the fact that most zero
set components lie within a ball of radius R/X for R > 0 large enough. One can
therefore count the number of components of ¢; within the ball B(0, R) C T M.
The latter is done using the universal behavior of ¢; guaranteed by the fact that M
is a manifold of isotropic scaling.

The works of Gayet—Welshinger [14—16] are also very related to the results
described in this section, only that they are not applicable to monochromatic random
waves.

4.1 Diffeomorphism Types

Let D,,_1 denote the (countable and discrete) set of diffeomorphism classes of
compact connected smooth (n — 1)-dimensional manifolds that can be embedded
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in R". The compact components c in C(¢) give rise to elements D(c) in D, (here
we are assuming that ¢ is generic with respect to a Gaussian measure so that ¢~ (0)
is smooth).

Let ¢ € RW(M, g, n). The diffeomorphism types exhibited by the components
of ¢;1 (0) are described by the probability measure 1, g ON D, —1 given by

1
Mb(m) = |C(¢)L)| Z 5D(c)’
ceC(¢y)

where §,, is a point mass at D € D,_1. The following is part of the main theorem in
[30, Theorem 1.1].

Theorem 5 There exists a probability measure (i, supported on D,_1 such that
the following holds. Let (M, g) be a smooth, compact, Riemannian manifold of
dimension n > 2 with no boundary. Let n = n(A) be a non-negative function
satisfying n(A) = o()) as . — o00. Suppose that M is a manifold of isotropic
scaling. Then, for any given D € D,_1 and ¢ > 0,

lim P(¢ € RW(M. 8.1) ¢ |1ty (D) = i (D)] > &) = 0.

The theorem asserts that there exists a probability measure ., on D,,_; to which
WD(p) approaches as A — oo, for almost all ¢. The probability measure py, is
universal in that it only depends on the dimension n of M.

For n > 4, little is known about the space D,_;. In particular, there is
no classification for the diffeomorphism types of (n — 1)-dimensional smooth

Fig. 4 Zero set of a random
planar wave in R3. Picture
created by A. Barnett
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manifolds. This makes it difficult to study the support of i,. Remarkably, it is
possible to prove that the support of 1, is all of D, _j. This result is proved in [10].

Theorem 6 Every atom of D, is positively charged by (i,,. That is,

supp(pp) = Dp—1.

Theorem 6 asserts that every diffeomorphism type that can occur will do so with
a positive probability for the universal distribution of topological types of random
monochromatic waves in [30].

The proof of Theorem 6 relies on the fact that for a manifold of isotropic scaling
the statistics of ¢ converge to those of ¢}, for every x € M. Indeed, the proof
reduces to establishing the following result.

Theorem 7 Given D € D,,_ there exists ¢ € ker(Arn — Id) and ¢ € C(¢) for
which D(c) = D.

Theorem 7 is of basic interest in the understanding of the possible shapes of
nodal sets and domains of eigenfunctions in R” (it applies equally well to any
eigenfunction with eigenvalue A2 > 0 instead of 1). To prove Theorem 7 one
applies Whitney’s approximation Theorem to realize ¢ as an embedded real analytic
submanifold of R”. Then, following some techniques in [12] one can find suitable
approximations of ¢ € ker(Ag,, — 1) and whose zero set contains a diffeomorphic
copy of c. The construction of ¢ hinges on the Lax—Malgrange Theorem and Thom’s
Isotopy Theorem.

The reduction from Theorem 7 to Theorem 6 is abstract and is based on the
“soft” techniques in [30, 31]. In particular, it offers us no lower bounds for these
probabilities. Developing such lower bounds is an interesting problem.

4.2 Nesting Configurations

Let ¢ be a Laplace eigenfunction for a Riemannian manifold (M, g). The connected
components of M\¢~'(0) are the nodal domains of ¢ and our interest is in their
nesting properties, again for generic ¢. Let U/ be a coordinate patch for M. The
components of C(¢) that are contained in ¢/ are denoted by C,, (¢). To each compact
¢ € C,(¢) we associate a finite connected rooted tree as follows. By the Jordan—
Brouwer separation Theorem each component ¢ € C(¢) has an exterior and interior.
We choose the interior to be the end that is contained within /. The nodal domains
of ¢, which are in the interior of ¢, are taken to be the vertices of a graph. Two
vertices share an edge if the respective nodal domains have a common boundary
component (unique if there is one). This gives a finite connected rooted tree denoted
T (c); the root being the domain adjacent to ¢ (see Figure 5).

The reason for working in a coordinate patch ¢/ for M is that for general (M, g)
there is no global way to define a tree that describes the nesting configuration of the
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Fig. 5 This picture shows a 7(c)

nodal domain configuration,

where positive nodal domains positive
are depicted in orange and

negative nodal domains are . negative

green. The corresponding

rooted tree is shown c
(DO

zero set in all of M, for all ¢ € C(¢). The reason is that a zero set component may
not divide M into two different regions. It is important to note that in a coordinate
patch this is always the case. However, according to [31] almost all ¢’s localize to
small coordinate patches. This inconvenience is the reason why [10] is written for
M = S" the round sphere. By the Jordan—Brouwer separation Theorem, on S” every
component of the zero set separates S” into two distinct components. This gives that
the nesting graph for the zero sets is a rooted tree well defined without the need for
a coordinate patch.

Let 7 be the collection (countable and discrete) of finite connected rooted trees.
The distribution of nested ends of nodal domains of ¢ that lie within I/ is described
by the measure 4, ,, on T given by

1
Kr@gu = C, (@) Z Sy
ceCy (@)

where 8, is the point mass at 7 € 7.
The following is part of the main theorem in [30, Theorem 1.1]. Also, see [10,
Remark 2].

Theorem 8 There exists a probability measure . supported on T such that
the following holds. Let (M, g) be a smooth, compact, Riemannian manifold of
dimension n > 2 with no boundary. Let n = n(A) be a non-negative function
satisfying n(A) = o(L) as A — oo. Suppose that M is a manifold of isotropic
scaling and let U be a coordinate patch for M. Then, for any given T € T and
e >0,

lim P(¢ € RWL(M. 8.1) ¢ iy (T) = 1 (T)] > ) = 0.

Theorem in [30] asserts that there exists a probability measure - on 7 to which
Mg approaches as A — oo, for almost all ¢ provided M is a manifold of
isotropic scaling.

The probability measure w7 is universal in that it only depends on the dimension
n of M. The following result is part of theorem in [10] and deals with the support of

Jr—
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h(e) =1 h(e®) = -1

I_T_ _ _Til:izi:::
SaegasE

| |1 |

sin(z) sin(y) sin(z) sin(y) + eh(z,y)

positive

- negative

Fig. 6 This picture shows how to perturb the zero set of ¥ (x, y) = sin(x) sin(y) by adding & €
ker(Ay, — I) that we prescribe on the singularities of ¢ that lie in its zero set so that the zero set
of ¢ = ¥ + eh, for ¢ > 0 small, has the correct nesting configuration

Theorem 9 Every atom of T is positively charged by 1. That i,

supp(i,) = T.

The proof of Theorem 9 hinges on the fact that any rooted tree can be realized by
elements of ker(Ar» — I) as described by the following result.

Theorem 10 Given T € T there exists ¢ € Ker(Agrn — Id) and ¢ € C(¢) for which
T)=T.

As far as Theorem 10, the case n = 2 is resolved in [30] using a deformation of
sin(;rx) sin(;ry) and a combinatorial chess board type argument. This is described
in Figure 6. In higher dimensions, for example n = 3, one proceeds by deforming

Y(x,y,z) = sin(mwx) sin(wy) sin(wz).

This i has enough complexity to produce all elements in 7 after deformation.
However, it is much more difficult to study than the 2-dimensional case. Unlike
sin(7rx) sin(rry), the zero set ¥ ~1(0) has point and 1-dimensional edge singu-
larities. The analysis of its resolution under deformation requires a lot of care,
especially as far as engineering elements of 7. The pay off as we noted is that it
is rich enough to prove Theorem 10.

Acknowledgments The author is very grateful to her collaborators B. Hanin and P. Sarnak. The
author would also like to thank the Alfred P. Sloan Foundation for their support.
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A Brief Review of the “ET H-Approach )
to Quantum Mechanics” fesiie

Jiirg Frohlich

1 Introduction—Comments on the Foundations of Quantum
Mechanics and Purpose of Paper

Let me start with a few general remarks: I consider it to be an intellectual
scandal that, nearly one hundred years after the discovery of matrix mechanics
by Heisenberg, Born, Jordan and Dirac, many or most professional physicists—
experimentalists and theorists alike— admit to being confused about the deeper
meaning of Quantum Mechanics (QM), or are trying to evade taking a clear
standpoint by resorting to agnosticism or to overly abstract formulations of QM
that often only add to the confusion. Attempts to replace QM by some alternative
deterministic theory, one that does not have a “measurement problem,” yet repro-
duces important predictions of Q M, do not appear to have been very successful, so
far. Unfortunately, most physicists have prejudices preventing them from taking a
fresh, unbiased look at the subject, and discussions of the foundations of QM tend
to be surprisingly emotional. I feel it is time to change this situation!

My own interests in the foundations of Quantum Mechanics were aroused in
courses on QM taught by Klaus Hepp and Markus Fierz in the late sixties of the
past century, which I took as an undergraduate student. I suppose that most serious
students of Physics develop such interests during their first courses on QM. But I
felt that the subject had better remain a hobby until later in my career. Not least
because of the appearance of partly contradictory novel “interpretations of QM ”,
all of which left me unsatisfied, (see, e.g., [1, 2], and [3] for a brief survey), my views
of the foundations of QM actually remained quite confused until a little more than
ten years ago (which did not prevent me from giving talks about the subject—some
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with modest impact—in numerous places). But when I was approaching mandatory
retirement I felt an urge to clarify my understanding of some of the subjects I had
to teach to my students for thirty years—thermodynamics, effective dynamics (in
particular Brownian motion), and, foremost, the foundations of Q M; see [4-7] and
references given there, the last two papers having some relevance for the foundations
of QM.! At the beginning of 2012, my interests in this subject became more serious,
and I pursued them in joint efforts with my last PhD student, Baptiste Schubnel.
Later, some further colleagues got interested in our efforts, including M. Ballesteros,
Ph. Blanchard, N. Crawford, J. Faupin, and M. Fraas, who collaborated with us in
changing configurations. At this point, I wish to thank my collaborators for their
support in this endeavor, as well as quite a few colleagues—too many to mention
all of them—who were willing to listen to me and discuss ideas on basic questions
concerning the foundations of QM with me. D. Diirr and S. Goldstein deserve my
thanks for the encouragement and understanding they have provided.

In this paper, I present a sketch of the “ET H-Approach to Quantum Mechanics”
[8-10]. The ET H-Approach is supposed to lay the foundations of a logically
coherent quantum theory of “events” [11] and of direct or projective measurements
of physical quantities (serving to record “events”) that does not require invoking
any “deos ex machina,” such as “observers”; (see also [2]). I have given quite a
few talks about this new approach. Technical details have been presented in a short
course taught at Les Diablerets, in January of 2017 [12], and in [13, 14]. Our work
has profited from ideas proposed by the late Rudolf Haag [11], from a paper of D.
Buchholz and the late J. E. Roberts [15], and from discussions with Buchholz. In
completing this paper I enjoyed receiving feedback from a very careful referee who
found many typos and pointed out various unclear statements. A form of the ET H-
Approach compatible with Einstein causality and Relativity Theory is sketched in
[16]. But a comprehensive review of our work has not been written, yet.

Wide-spread recent interest in foundational problems surrounding Q M has been
triggered by problems in quantum information theory and by the 2012 Nobel Prize
in Physics awarded to S. Haroche [17] and D. Wineland. Their discoveries, as
well as results described in [18, 19], and references given there have influenced
some of our own work on the theory of indirect measurements in Q M, which has
appeared in [20-22] and is briefly sketched at the end of this paper. The theory
of indirect (“non-demolition-" and “weak-"") measurements is quite well developed
and clear, assuming one understands what “events” and “direct measurements and
observations” are, specifically direct observations of “probes” used to indirectly
retrieve information on physical systems. The theory of “events” and of “direct
(projective) measurements” actually constitutes the deep and controversial part of
the foundations of QM, and it is a novel approach to this theory that I intend to
outline in this paper.

1T think it is more appropriate to speak of the “foundations of QM,” rather than “interpretations
of QM.” We have to understand what QM tells us about Nature, what it means - once this is
accomplished, the correct interpretation of the theory will come almost automatically.
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2 Standard Formulation of Quantum Mechanics and Its
Shortcomings

In our courses on Quantum Mechanics, physical systems, S, are often described as
pairs, (2, U), of a Hilbert space, .77, of pure state vectors and a propagator, U,
consisting of unitary operators (U (o )) r1eR? acting on ¢ seemingly describing
the time evolution of state vectors in .7 from time ¢’ to time . The state space
¢ of physically realistic systems tends to be infinite-dimensional (but separable).
Alas, all infinite-dimensional separable Hilbert spaces are isomorphic, and the data
invariantly encoded in the pair (7, U) do not tell us anything interesting about
the physics of §, beyond spectral properties of the operators U(z, t'), (i.e., “energy
levels”); and they lead one to the mistaken impression that Q M might be a linear
and deterministic theory—alas, one that is entirely inadequate to describe events
and the outcome of observations and measurements.

We must therefore clarify what should be added to the formalism of Q M in order
to capture its fundamentally probabilistic nature and to arrive at a mathematical
structure that enables one to describe physical phenomena (“events”) in isolated
open systems S, without a need to appeal to the intervention of “observers” with
“free will”—as is done in the conventional “Copenhagen Interpretation of QM”—
or to assume that other “ghosts” not intrinsic to the theory come to our rescue.

Isolated open systems: An isolated system S is one that, for all practical
purposes, does not have any interactions with its complement, i.e., with the rest
of the Universe; meaning that, for periods of time much longer than the time of
monitoring it, interactions between the degrees of freedom of S and those of its
complement can be neglected in the description of the Heisenberg-picture time
evolution of operators. This does, however, not exclude that the state of S may
be entangled with the state of its complement. The special role played by isolated
systems in discussions of the foundations of QM stems from the fact that, only
for an isolated system, S, the time evolution in the Heisenberg picture of arbitrary
operators acting on 7 is given by conjugation with the unitary propagator, U, of
S (determined by its Hamiltonian). An isolated system S is called open if it can
emit modes to the outside world (the complement of §) that eventually cannot be
recorded, anymore, by any devices belonging to S, yet can be in a state entangled
with the state of § after emission. The reader may think of photons or gravitons
emitted by an isolated system S that escape from detection by any devices in S.
(See also Definition 1, below.) U

Physical quantities characteristic of a system S are described by certain self-
adjoint linear operators, X = X*, acting on #. This feature is common to all
physical theories used at present.”> The Copenhagen Interpretation of Quantum
Mechanics then stipulates that there are “observers” with “free will” who can

2In classical theories, these operators generate an abelian (C*-) algebra, and time evolution is
given by a *-automorphism group of this algebra generated by a vector field on its spectrum;
while, in Q M, the algebra generated by operators representing physical quantities (and events) is
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decide to measure such physical quantities arbitrarily quickly, at arbitrary times,
and at an arbitrary rate. It is argued that the time evolution of physical states of S is
determined by its unitary propagator U, which solves a (deterministic) Schrodinger
equation, except when a measurement of a physical quantity represented by an
operator X = X* is made: Immediately after the measurement of X the state of S,
according to the Copenhagen Interpretation, is in an eigenstate of X corresponding
to the measured value of X. If this value is not recorded, one is advised to use a
density matrix describing an incoherent superposition of eigenstates of X, chosen
in accordance with Born’s Rule, to describe the future evolution of S.

For a variety of reasons, this is not a satisfactory recipe for how to apply QM
to describe physical phenomena! One might want to view the evolution of states
in the presence of measurements, as described in the Copenhagen Interpretation of
OM, as some kind of stochastic process. But the problem is that one is dealing
with a stochastic process that does not have a classical state space, and that it is
transition amplitudes, rather than transition probabilities, that are given by matrix
elements of a family of operators (the propagator U) satisfying a group composition
law, i.e., a kind of Chapman—Kolmogorov equation.®> According to the Copenhagen
Interpretation, predicting/determining the transition probabilities describing the
stochastic time evolution of states of S in the presence of repeated measurements
would apparently require knowing what kind of physical quantities are measured
by the intervention of “observers,” and at what times these measurements are
made. For, any intermediate intervention of an “observer” destroys “interference
effects”; and hence it seemingly affects the value of the transition probability
between an initial state of S in the past and a target state in the future, even
if a sum over all possible outcomes of the intermediate intervention is taken.*
Without complete information on all intermediate measurements performed on S,
which, in the Copenhagen Interpretation, is not provided by the theory, reliable
predictions of future states of the system and of future expectation values of physical
quantities become impossible. As a result, the Copenhagen Interpretation renders
O M nearly “unpredictive”—even though, by experience, it is a heuristic framework
supplementing Q M that works well for many or most “practical purposes,” because,
much of the time (in particular when using a scattering matrix), one is interested
in predicting the outcome of only a single measurement. The situation is hardly
improved in a definitive way by resorting to concepts such as “decoherence” and
interpretations such as “consistent histories” [1], “many worlds,” etc.. (See [2, 23]
for further information.)

non-commutative, and time evolution is given by a *-automorphism group of such an algebra only
if the system is isolated.

31t is advocated by certain groups of people that the problem arising from this fact can be remedied
by invoking the phenomenon of “decoherence” and appealing to the “consistency’ of histories of
events [1]. But I find the arguments supporting this point of view unconvincing.

“This is the case unless perfect “decoherence” holds.
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Fig. 1 4 2
Q = sub-system “confined” to 2  Particle P propagating into shaded cone

Before proceeding to describe the “ET H-Approach,” I recall an argument,
presented in detail in [13], that shows that the Schrédinger equation does not
describe the time evolution of states of systems in the presence of “events” or
“measurements,” assuming that the usual correlations between the outcomes of Bell-
type measurements, claimed to be confirmed in many experiments, hold.

We consider the following Gedanken-Experiment [13] (see Figures 1 and 2),
which, ultimately, will show that time evolution of states in QM is intrinsically
stochastic, in spite of the deterministic nature of the Schrodinger equation.

We prepare the system Q V P in a state with the property that particle P
propagates into the shaded cone opening to the right, as indicated in Figure 1, except
for tiny tails leaking beyond this region, while the degrees of freedom of Q remain
confined to a vicinity of the region §2 in the complement of the shaded cone, except
for tiny tails. Thanks to cluster properties, expectation values of the Heisenberg-
picture time evolution of physical quantities, such as spin, momentum, etc. referring
to P in this state then turn out to be essentially independent of the time evolution of
the degrees of freedom of Q. In other words, interaction terms in the Hamiltonian
of the system coupling P to Q can be neglected. This is discussed in much detail in
[13].

More concretely, we study the following system sketched in Figure 2.

Temporary assumptions (leading to a contradiction):

e P and P: Two spin-% particles prepared in a spin-singlet initial state, ¥ /g,
localized, initially, in the central region shown in Figure 2; the orbital wave
function of P is chosen such that P propagates into the cone opening to the right
(except for very tiny tails) and that it will eventually undergo a Stern—Gerlach
spin measurement, while the orbital wave function of P’, an electron, is chosen
such that this particle propagates into the cone opening to the left, with only very
tiny tails leaking beyond this cone into the half-space to the right of the spin filter.
(One may assume, for simplicity, that there are no terms in the total Hamiltonian
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Spin filter

Fig. 2 Q:={spin filter Vv particle P’} cone opening to right:= ess. supp of orbital wave function
of P

of the system describing direct interactions between P and P’.) The spin filter
(e.g., a spontaneously magnetized metallic film) is prepared in a poorly known
initial state.

» The dynamics of the state of the total system is assumed to be fully determined by
a Schrodinger equation given by a concrete self-adjoint Hamiltonian containing
only short-range interaction terms. In particular, the initial state of the total
system (consisting of the spin filter, the two particles and possibly some Stern—
Gerlach equipment serving to measure a component of the spin of particle P) is
assumed to determine whether particle P’ will pass through the spin filter, or not,
(given that the initial state of P’V P is a spin-singlet state, with P’ and P moving
into opposite cones). Since it is assumed that a Schrodinger equation determines
the evolution of states of this system, the Schrédinger picture and the Heisenberg
picture are equivalent.

* Correlations between the outcomes of spin measurements of P’ and of P are
assumed to be those predicted by standard quantum mechanics, (relying on the
“Copenhagen interpretation” and apparently confirmed in many experiments):
We first note that if P’ passes through the spin filter, then its spin is “up,”
(i.e., aligned with the majority spin of electrons in the spin filter), if it does
not pass through the filter, (i.e., if it hops into a vacant state localized inside
the spin filter), its spin is “down.” The second assumption stated above then
says that, whether P’ passes through the filter, or not, is determined by the
initial state of the total system and by solving a deterministic Schrodinger
equation. In addition to the two assumptions already stated, we also assume that
if the spin of P’ is measured to be “up,” the spin of P is measured to be “down”
(for example, in a Stern—Gerlach experiment involving a magnetic field parallel
to the majority spin of the spin filter), and if the spin of P’ is “down,” then the
spin of P is “up.”

Next, we recall the
Fact: Expectation values of observables (such as spin, momentum, etc.) referring to
particle P in the state of the system described above are independent of the degrees
of freedom of Q := {P’ Vv spin filter}, for arbitrarily long times, up to very tiny
corrections. Thus, to a very good approximation, their evolution can be assumed
to be given by free-particle dynamics. This is a consequence of our choice of an
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initial state (propagation properties of the orbital wave functions of P and P’) and
of cluster properties of the time evolution—as shown in [13].

It follows that, to a very good approximation, the spin of P is conserved before
it is measured =

Expectation value of spin of P = 0, V times before measurement time,
independently of the evolution of Q = {P’ Vv spin filter}!

But this contradicts the third (last) assumption stated above: The first two
assumptions imply that the values of the z-component of the spin of P’ measured
with the help of the spin filter do apparently not introduce any bias in the outcomes
of measurements of the z-component of the spin of P. In other words, the second
assumption stated above is incompatible with the Bell-type “non-locality” of
Quantum Mechanics, as expressed in the third assumption stated above.

This argument is robust, in the sense that it suffices to assume that correlations
between measurements of a component of the spin of P’ and a component of the
spin of P are fairly close to those predicted by the Bell-type non-locality described
in the third assumption.

Conclusion: If the third assumption holds true, then the quantum-mechanical
time evolution of states of physical systems in the presence of measurements (or
“events”) is not given by a deterministic Schrodinger equation, and the equivalence
of the Heisenberg picture and the Schrodinger picture apparently fails. Quantum
Mechanics appears to be intrinsically probabilistic (and “non-local,” in the sense
of Bell-type correlations—which does, however, not invalidate locality in the sense
of “Einstein causality”’)! These conclusions agree with ones reached by studying
Gedanken-experiments such as “Wigner’s friend” and other related ones, e.g., one
recently proposed in [24].

Our task is thus to find out what one has to add to a minimal formulation of
Quantum Mechanics in order to be able to describe the stochastic dynamics of
states of physical systems in the presence of “events” and their recordings (in
projective measurements), in such a way that correlations between the outcomes
of measurements agree with the Bell-type “non-locality” of Quantum Mechanics—
without the need to assume that “observers” intervene. The results reviewed in the
next section are intended to report on some progress in this direction.

3 Summary of the “ETH-Approach”

In this section I briefly describe the so-called ETH-Approach to Quantum Mechanics
[8-10, 12—14], which is designed to retain attractive features of the Copenhagen
Interpretation but eliminates its fatal weaknesses; and I note that “E” stands for
“Events,” “T” for “Trees,” and “H” for “Histories.” In the following, I attempt
to explain what these terms mean, and why the concepts underlying the “ET H-
Approach” are important for an understanding of the foundations of Quantum
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Mechanics (QM). The basic premises and contentions of this approach are as
follows:

I. Potential Events. In the ET H-Approach to QM, Time, denoted by ¢, is taken

as an irreducible concept. It is described by the real line, R, with its usual
order relation.’ But in order to make the following discussion mathematically
watertight it is advisable to sometimes assume that time is discretized, t € 7.
An important idea underlying the ET H-Approach is that time is not merely
a parameter, but that it can be monitored by recording “events” happening in
an isolated open system. (The precise meaning of this idea will become clearer
later on.)

Let #p € R be the time of the present. We consider an isolated open physical
system S and we denote by .77 the Hilbert space of pure state vectors of S. Our
first task is to clarify what is meant by “potential events” in S that may happen
at some future time ¢ > ¢y, or later: Potential events are described by families,
{me, & € Z'} of orthogonal projections acting on .77°, with the properties that

g -y = 8gp e, VE,pin 27, (disjointeness)

Z me =1, (partition of unity). D
se

For simplicity we henceforth assume that the sets 2~ labelling the projections
that represent potential events are countable, discrete sets. (This merely serves
to avoid technical complications in our exposition; of course, continuous
spectra occur, too.) In the Heisenberg picture, which we will use henceforth, the
concrete projection operators acting on the Hilbert space .7 of S representing
a specific potential event, e.g., the click of a detector belonging to S when it
is hit by a certain type of particle in S, depend on the time ¢t > fy in the
future when the event might happen. In an autonomous system, the concrete
projection operators representing a specific potential event that may happen
at a time t > fy or at another time ¢/ > #y are unitarily conjugated to one
another by the propagator U (¢, t') of the system; (Heisenberg-picture evolution
of operators). All projection operators representing potential events that may
happen at some time ¢ > fp, or later, generate a *-algebra denoted by &>;. It
immediately follows from this definition that

gzﬂggz[, lf t/>t

Remark The concrete projection operators representing some potential event
that may happen in system S (see Equations (1)) depend on the time ¢ when
the potential event would start to happen and on the time-interval during which
it would happen. More concretely, if A;,i =1,2,..., are abstract operators

SThe role of space-time in a relativistic version of the “ET H-Approach” is discussed in [16].
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representing physical quantities of S, (e.g., a component of the spin of a certain
species of particles localized in a certain region of physical space and measured
in a Stern—Gerlach experiment), and if A;(¢) denotes the Heisenberg-picture
operator on .7 representing A; at time ¢, then a potential event arising from
monitoring the quantities Ai ,i = 1,2,..., which starts to happen at time 7,
consists of a family of projections satisfying Equations (1) that are functionals
of the operators

{A;H)i=1,2,...;t €[t,T), forsome T with t < T < oo} O.

This remark is inspired by general wisdom from local quantum field theory.

For simplicity we assume that all physically relevant states of S can be
described by density matrices acting on .5#, and that the algebras &%, are closed
in the weak topology of the algebra, B(7¢), of all bounded operators acting on
€. Typically, all the algebras &%, are then isomorphic to one universal (von
Neumann) algebra6 N, ie.,

Esp =N, VteR. (2)

The algebra, &, of all potential events that may happen in the course of history
is defined by

B)2 & :=\/ & 3)
teR

(where the closure is taken in the operator norm of B(J7)).

II. The Principle of Diminishing Potentialities. In the quantum theory of
(autonomous) systems with finitely many degrees of freedom—as treated in
our introductory courses on Q M—the algebras &%, turn out to be independent
of time ¢; and usually &; = B(J¢). For such systems, one cannot develop
a sensible quantum theory of events, and it is impossible to come up with
a logically coherent, intrinsically quantum-mechanical description of the
retrieval of information on such systems, i.e., of measurements, without adding
further quantum systems with infinitely many degrees of freedom that serve
to “measure” the former systems (or without resorting to something like
“Copenhagen”). In this respect, quantum systems with finitely many degrees of
freedom are as “interesting” as the space-time region outside the event horizon
of a black hole: no information can be extracted! In order to encounter non-
trivial dependence of the algebras &%; on time 7, we must consider isolated
(open) systems with infinitely many degrees of freedom and with the property

%In local relativistic quantum theories with massless particles, the algebra .4 tends to be a von
Neumann algebra of type 111; see [15].
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that the propagator U of S is generated by a Hamiltonian whose spectrum does
not have any isolated eigenvalues, and (if time is continuous) the spectrum
is unbounded above and below, or, in relativistic quantum theory, it is semi-
bounded, but without any spectral gaps; i.e., we must assume that there exist
massless modes.

Our contention is that a basic property of a quantum theory of isolated open
systems, S, enabling one to describe events and their recording in projective
measurements of physical quantities is captured in the following “Principle of
Diminishing Potentialities” (P D P):

Eopr G G &, whenever 1 > 1. 4)

To be more precise, one expects that if time is continuous the relative
commutant

((g)zﬂ)/ N (g)Z[, with [/ > f,

is an infinite-dimensional, non-commutative algebra. (If time is discrete this
relative commutant can, however, be a finite-dimensional algebra.) Examples of
non-relativistic and relativistic systems satisfying property (4) will be discussed
elsewhere, (see also [12]).” Here I just mention that (PDP), in the sense
of a relativistic variant of Equation (4), is a theorem in local relativistic
quantum field theories with massless particles in four space-time dimensions.
This follows from important results in [15] and is used in [16].

8

Definition 1 Isolated open systems S (featuring events) are henceforth defined
in terms of a filtration, {>;};er (or, for the sake of simplicity and precision,
{&~1}1ez), of (von Neumann) algebras satisfying the “Principle of Diminishing
Potentialities” (4), all represented on a common Hilbert space 57, whose
projections describe potential events. U

If £2 denotes the density matrix on J# representing the actual state of a
system S, we use the notation

w(X) =tr(2 X), VX € B(J7),

to denote the expectation value of the operator X in the state w determined by
£2. We define

w:(X) = w(X), VX € &, (5)

71 sometimes fear that unrealistically simple examples advanced with the intention to clarify
aspects of the foundations of Q M have had the opposite effect: They have contributed to clouding
our views.

8and the algebras &, t € R, are von Neumann algebras of type I71.
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III.

Iv.

i.e., w; is the restriction of the state w to the algebra &%,.

Note that, as a consequence of (P D P) and of entanglement, the restriction,

wy, of a state @ on the algebra & to a subalgebra &%, C & will usually be mixed
even if w is a pure state on &.
Actual Events. Henceforth we only study isolated open systems S for which
(PDP), in the form of Equation (4), holds. Let {7, € Z} C & be a
potential event that might start to happen at some time ¢, with {7, & € 27}
not contained in &, for ¢ > t. Tentatively, we say that this potential event
actually starts to happen at time 7 iff

a)t(X): Z wt(ﬂé Xﬂs), VXG(g)Zt, (6)
seZ

meaning that w; is an incoherent superposition of states labelled by the points
£ € Z; in other words, off-diagonal expectations, o, (¢ X ), & # 7, do not
contribute to the right side of (6). Equation (6) is equivalent to saying that the
projections g, £ € 2, belong to the centralizer of the state w;.

Given a *-algebra .# and a state w on .#, the centralizer, 6, (.#), of the
state w is defined to be the subalgebra of .# spanned by all operators, Y, in .#
with the property that

(Y, X]) =0, VX e .

The center of the centralizer, denoted by Z,,(.#), is the abelian subalgebra of
the centralizer consisting of all operators in %, (.#) commuting with all other
operators in 6, (A).

We note that the center, 2°(.#), of the algebra ./ is contained in Z,(.#),
for all states w.

Definition 2 A potential event {nz, & € Z'} C &, with {7, & € 2’} not
contained in &, for ' > t, actually starts to happen at time ¢ iff 2, (&>;)
18 non-trivial,

{me, & € 27} generates pr,(gzt), @)

and
wt(ngj) is strictly positive, £, € ', j=1,2,...,n, ®)
for some n > 2. t

The fundamental Axiom. We are now in a position to describe the evolution of
states in the ET H-Approach to QM. Let w, be the state of an isolated system
S right before time ¢. Let us suppose that an event {mz, & € 2} generating
Z., (&5;) starts to happen at time ¢, in the sense of Definition 2.
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Axiom The actual state of the system S right after time ¢ when the event
{me, & € 27} has started to happen is given by one of the states

wre, () 1= [0 )] ™ 04 (e, (D7, ) )

for some &, € 2 with w,(mg,) > 0, (“state-collapse postulate”?. The
probability for the system S to be found in the state w, g, right after time ¢
when the event {rz, £ € 27} has started to happen is given by Born’s Rule,
i.e., by

prob{é,, 1t} = w(mg,). (10)

O
Remarks

(1) The projection g, selecting the actual state @, ¢, of S (and sometimes also
the point &, € 27) is called the “actual event” happening at time 7.

(2) The contents and meaning of this Axiom are clear and mathematically
watertight as long as time is discrete. (If time is continuous further
precision ought to be provided.)

This Axiom, Equations (9) and (10), conveys the following picture of quantum
dynamics: In Quantum Mechanics, the evolution of states of an isolated open system
S featuring events, in the sense of Definitions 1 and 2 proposed above, is given by
a (rather unusual novel type of) stochastic branching process, whose state space is
what I call the “non-commutative spectrum”, 3g, of S. Assuming that Equation (2)
holds, the non-commutative spectrum of S is defined by

35:=JZu(r), with Xs :=Uspec<ffw(,/1/)>, (11)

where the union over w is a disjoint union, and w ranges over all physical states
of §.° Equation (7) and Born’s Rule, Equation (10), specify the branching
probabilities of the process.

The above picture of the stochastic time evolution of states of an isolated open
system S is illustrated, metaphorically (for discrete time), in Figure 3. It differs
substantially from and supercedes the “decoherence mumbo-jumbo.”

Let us suppose, for the sake of simplicity and mathematical precision, that time
is discrete, (¢ € Z). It is important to note that, in general, the events (described
by orthogonal projections in &,) predicted to happen at a later time ¢ > ¢ on

9a rather unfortunate name!

10The set X can also be defined in terms of a certain “flag manifold” associated with the Hilbert
space .
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ETH

Fig. 3 Time evolution of a state of S with initial condition w := p
E: “Events,” 7: “Tree” of possible future states, H: “History” of actual events/states

the basis of the states w; ¢, & € 27, where {nz, & € 27} generates Z,, (6%,), are
different from the events one would predict to happen at time ¢’ on the basis of the
state a;|4_,, used when the actual event happening at time # is not known (i.e., has
not been recorded); and the projections representing these different sets of events
usually do not commute with one another. Furthermore, for # > ¢, the operators in
Zoye (&5p) and in Zy, (E5p), 6, € X7, (With o (7g), w;(my) strictly positive),
but & # n, do not in general commute with each other. This is a fundamental
difference between the “non-commutative branching processes,” described here,
and classical stochastic branching processes.

The discussion above is mathematically sound if time is discrete, but requires
more precision if time is taken to be continuous.

To be on the safe side, we temporarily choose time to be discrete (t € Z). Let H
be the Hamiltonian of an isolated open system, and suppose that

e — 1] < 1. (12)
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Let us suppose that {mr; ¢, £ € Z;} is an event that starts to happen at time ¢, provided
the state of S at time ¢ is given by w; (i.e., {7, ¢, & € %;} generates Z,,, (6>;)). Let
&, be the element of Z; with the property that, in accordance with the Axiom stated
in IV., above, the state of S right after time # is given by

wt,s*(') = [wt(”t,s*)]_l O)t(ﬂt,s*(')ﬂt,s*) s

with wt(n,,g*) > 0;i.e., 71y ¢, is the “actual event” happening at time ¢. Let t' = 41
be the time following ¢, and let {r, ¢, £ € 2} be the event that starts to happen at
time ', provided that the state of S at time ¢’ is given by w; ¢, . Then assumption (12)
suggests that there exists an element &, € 2/ with the property that

a),,g*(nt/,gj) ~ 1, but
wrg (mrg) K1, VE#E, E€ Xy, (13)

According to the Axiom in IV., in particular Born’s Rule, the actual state of S right
after time ¢’ is then very likely given by

O 606 () = e, (T e)] o, (Tr6, O ) ~ 0, ()

The state w;g, g is close to the one that would commonly be used in the
Heisenberg picture of quantum mechanics in the absence of any “measurements”
or “events” after time 7, namely the state w, ¢, (-).

However, for purely statistical (entropic!) reasons, every once in a while, i.e.,
at rare times #/, an event 7, ¢ is realized that has a very small Born probability,
Wy (T g) K 1, tEe 2.

Digression on “Missing Information” associated with events:'!

Given the event {n; ¢, £ € Z;} happening at time ¢, assuming that «; is the actual
state of S right before time ¢, we define the “missing information” (or “entropy
production”), o (w;, Z;), associated with this event by

ol ) ==Y me) - nfw () (14)
EeZ;

Assuming that (12) holds, the “missing information” associated with most events
that ever happen is very small. If the “missing information” associated with all
events were tiny, then taking the state of S in the Heisenberg picture to be constant
in time would be a good approximation to its stochastic evolution. However, every
once in a while, events corresponding to a large “missing information” (entropy
production) may be encountered, and these are the events that will most likely be

1I'This digression can be omitted at first reading, and the reader is invited to proceed to point V.,
below.
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noticed and recorded, because they trigger a substantial change of the state of S.
(Some people will want to call them “measurements.”)

Let 7o be the time at which the system S has been prepared in a state w, (as
discussed in [14]), and t; := fy + j € Z; further, let Tt & be the actual event
happening at time ¢, given the initial state w of S and earlier actual events 7y, ¢,, £ <
Jj,j=1,2,...,n; (see Definition 2 and Axiom). We define

n n
toler &, &alX) = o [T e - X - X" ([T m,807). (15)
j=1 j=1
where the product is ordered according to ]_[7:1 aj = ay -ax---ay, and X is

an arbitrary non-zero operator in &5;, for some ¢t > t,, with a)(X - X *) > 0.
Then py(...]X) is a positive measure on the Cartesian product X;ZI%I.. Note
that the space 2., depends on the choice of w and on all the actual events
Ty & -+ - s Ty & that happened at times t; < --- < Iy, before fy1; with k =
1,2,...,n — 1. For any m, with 0 < m < n, we set

n
X(é(m,n)) — 1_[ T X,
j=m+1

and X (§") := X. Then

Mw(é], XX v§n|X) = Mw(sl, ey §m|X(§(m,n))) '

The measure /Lw( X ) has the (possibly somewhat perplexing) property that

g ZE to(Els o B bkt Enl XE™M)) =
k41525 m

= poEr. ... &IXE™")), (16)

for arbitrary k, with 1 < k& < m < n, as one easily verifies. (Identity (16)
may look familiar to the reader from a similar one satisfied by the “Liiders—
Schwinger—Wigner formula” [25] for the probability of a sequence of outcomes
of measurements, assuming perfect decoherence. However, it actually has quite a
different origin!) It is sometimes convenient to define Mw( X ) as a measure on
the space

X, = (X6)",
where X has been defined in Equation (11), with the convention that

Tye =0, unless £ € 2, C Xg.
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For X =1, wy(...|1) is a probability measure on X,,. If arbitrarily long sequences
of events are considered, it is useful to introduce the “path space”

Xoo = lim X, .

n—o00

Thanks to property (16), the measures (... |1) determine a unique probability
measure on X,. This follows from a well-known lemma due to Kolmogorov.

Next, we define the “missing information per event” of a sequence of events, as
follows:

1
on(e) 1= o Z Mw($1,~--,$n|]1)-fn(liw(El,n-,Enlﬂ)),

gl ----- En
and
0 () = limsup,,_, ..0n (Uw)- 17
If events happening at times ?1, ..., t, are not recorded, then o, (1,,) iS a measure

of how much the state of the system at time ¢ > #, deviates from the (initial) state w
used in the Heisenberg picture of standard QM.
Of particular interest is the so-called relative entropy

Su(ollt?) = Y poEr, ..., &ll) x
SlV""En

x (ko1 &l = pP G GID) L (18)

where

@, Gl = o [T e [T )
j=1

j=1

is the measure obtained when the order of the events is (time-)reversed. The relative
entropy Sy (1w lliee ") is non-negative, and its growth in n, as n — 00, is a measure
of the irreversibility of histories of events featured by the system and reflects the
“arrow of time.”

End of Digression.

V. Recording events by “projective measurements” of physical quantities. We con-
sider an isolated open system S described in terms of a filtration {&>;};er of
algebras represented on its Hilbert space .#” of pure state vectors, as described
in Definition 1, (paragraph 1.). We propose to clarify how events happening in
S can be recorded by projectively (directly) measuring “physical quantities”
characteristic of S. (Time may be taken to be continuous; but, for the sake
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of simplicity and mathematical precision, the reader is invited to continue to
assume that r € Z.)

Definition 3 A “physical quantity” characteristic of S is an abelian (C*-)
algebra, 2, with the property that, for each time ¢, there exists a representation,
02, of 2 on # as a subalgebra of &. O

. 9 . .
For autonomous systems, the representations a;@ and 0;/ are unitarily

equivalent, with
(A) =U(, t)a (A)U(t t), VYAe2,

where U(t',1) = exp(i(t — t")H) is the propagator of S, with ¢, ¢’ arbitrary
times; (Heisenberg-picture dynamics).

For simplicity, we assume that the physical quantities 2 available to identify
properties of S or record events all have discrete spectrum; i.e.,

2= (17 1ne¥?), (19)

where < = spec(2) is a discrete set, which we view as a subset of the
real line, and the operators 17;19 are disjoint orthogonal projections. (Of course,
continuous spectra can arise, too. But in order to avoid technical complications,
we ignore them here.) We can then describe 2 as the algebra given by all
functions of a single self-adjoint operator, Y, with discrete spectrum, spec(Y ) ~

%< and spectral prOJectlons T, < For every time ¢, there exists a self-adjoint

operator, Y (1) = 0, (Y) acting on 7 that represents Y at time 7.
It is interesting to ask whether physical quantities can serve to detect or record
events happening in S. For a discrete set

Os ={2j}je3

of physical quantities characteristic of S, it is arbitrarily unlikely that one of the

algebras (rl (Q ), j € J, has a non-trivial intersection with (e.g., contains or
is contained in) an algebra Z,, (&%) describing the event happening at time ¢,
for some state w,. To cope with this problem, we have to understand how well
Z.,, (&) can be approximated by an algebra generated by a family, { Q (¢)} 2’20,
of disjoint orthogonal projections contained in (or equal to) an algebra o;@ (2),
for some 2 € 0.

There are different ways of quantifying how well the algebra generated
by {Q(),(t)}fx\’:0 approximates the event described by 2, (&>;). To keep our
discussion brief, it is convenient to introduce “conditional expectations” of
algebras:

Definition 4 Let .4 be a (von Neumann) subalgebra of a (von Neumann)
algebra .# . A linear map
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€w: M — N (20)

onto

is a conditional expectation from .# onto .4 with respect to a normal state @
on ./ iff

@ lewXONI = 1XIl, VX e .#
(i) ,(X) =X, VXe N
(iil) woe€, =w
(iv) €x(AXB) = Aep,(X)B, VYA,B,e ¥/, NX el ]
Conditional expectations have the following properties:

V) €,(X*X) >0, VXeH
(vi) €y : M — A is completely positive, and €,(1_5) =1 4

See, e.g., [26] for an exposition of the theory of conditional expectations. Under
very general assumptions, there exist conditional expectations

Ew’ . éozt — pr[(th) , (21)

for arbitrary times ¢.

Let w; be the state of a system S right before an event {7g,& € 2}
generating %, (&%) starts to happen. I propose to clarify in which way a
physical quantity 2 € Oy can be used to record this event, and how precisely
the value of this quantity identifies the actual event, &, € Z;, happening at time
t.

We assume that there exists a physical quantity 2 and a family of disjoint
orthogonal projections {@a }é\’:o C 2, N > 2, with the following properties:

(@) YN_p Qo) =1, where Qu(t) =0;2(Qo), @ =1,..., N, Vt;
(b) there exists a positive number § < 1 such that

N
“”(Z Qa(t)) >1—38 (or, equivalently, w;(Qo(t)) <§);
a=1
(c) Given an operator X € &>, we define
dist(X, 25, (21) == |1 X — €0, (X)].
We assume that

dist(Qq (1), Z,, (E=1)) <8, for a=1,...,N. (22)

In the following, we use the notation &'(g) to denote any real number whose
absolute value is bounded above by const.e, where const. is a uniformly
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bounded positive constant. Properties (a) through (c) of {Qa

N
a=0

to derive the following equations:
For an arbitrary operator X € &%,

N
w,(X) =)

a=l1

N

M=

S
—_

I
M=

I
0=

@ (Qa (1) X) + OGIX])

w0 (Qa(D[Qa()X]) + CGIXI)

w1 (€0, (Qu()[Qa(®)X]) + OB NIIX|)

@1 (Qa (X €0, (Qa () + 0@ NIIX|)

@1 (Qa()X Qu(t)) + O N|IX|).
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can be used

(23)

Apparently, if § N < 1, then, to a good approximation, the state w; is an
incoherent superposition of eigenstates of the disjoint projections Q(f), o =
1,..., N. We then say that, at approximately time ¢, “a projective (direct)
measurement of 2 takes place.”

Definition 5 (Resolution of 2 in Recording an Event) Assuming that Z; is a
countable set, then, for any § € (0, 1), there exists a subset %(M) C %, whose
cardinality is given by a finite integer M such that

oY me)z1-8.

ge,

Then, for an arbitrary operator X € &>,

w (X) =

3 or(me Xmg) + 061X .
ge2, M

The “resolution” of {Qqy (z)}fo:O C £ in recording the event {m; ¢,& € %7}
starting to happen at time ¢ is defined by

N

R=—-A-6),for2<N<M,

M

MR =0, for N =

1). 24)

O
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It turns out that property (c), Equation (22), above, implies that, given an
orthogonal projection Qq(f) € o < (2), there exists an orthogonal projection
Py € Z,,(&=) such that

1Qa(t) — Poll < O5). (25)
A proof of this simple lemma can be found in the appendix of [3].
Since the projections 7; ¢, & € Z; generate the abelian algebra &Ww,(éaz,),
we have that

Me-P=mg, orme-P=0, VEe X, (26)

for any orthogonal projection P € wat(fzt). Equations (25) and (26) then
imply the

Result Forany o = 1,..., N,and forall § € Z;,

76 Qu(®) — 7zl < O(8), or |7 e Qo) < O0).

Suppose that the physical quantity 2 is generated by all functions of a single
self-adjoint operator Y. Then the best estimate for the value of ¥ right after time
t when the event {7, ¢|§ € Z;} has started to happen is an eigenvalue of Y
corresponding to an eigenstate of the operator Y (1) = o7 2 (Y) in the range of the
projection Q, (¢). The state of S right after time ¢ is then given by

[ ()] @ (6, (OTr g, ) s

for some &, € Z; for which

71,8, Qa (1) — 12, Il < O(S) . 27)

Furthermore: The higher the resolution, R, of 2 in recording the event {m; ¢, £ €
Z:}, the more precise the information provided by a measurement of 2 is; if
N = M and § is sufficiently small, then every Qx determines a unique point
& € Z; with the property that ||Qq () — g | < ©(8). (In the limit where
8 — 0 the information on the event that starts to happen at time ¢ becomes
totally accurate.)

Remarks

(1) The main results of this paragraph are Equation (23), the Result stated
above, and Equation (27).

(2) The concepts presented in paragraph V. and results closely related to the
ones described above can be obtained without ever using the theory of
conditional expectations. However, their use renders the presentation more
elegant.
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This completes our review of the “ET H-Approach to Quantum Mechanics” in
a non-relativistic setting. Some idealized models fitting into this framework are
discussed elsewhere, [12]. A relativistic form of this approach will be presented
in [16]. The material in [16] leads one to speculate that a logically coherent
quantum theory of events, measurements, and observations in realistic autonomous
isolated (open) systems—not involving the intervention of “observers”’—can only
be developed in the realm of local relativistic quantum theories with massless
particles, and for even-dimensional space-times.

4 Scattered Remarks About Indirect Measurements,
Conclusions

I start this section with a few comments on “indirect measurements” (see [19, 27]
for important early results) and then sketch some conclusions.

Let S be an isolated open system, as discussed in Sections 2 and 3. I assume that
the system has been prepared in such a way that there is a specific physical quantity,
2, characteristic of S that repeatedly records events featured by S (i.e., is “measured
projectively”), at times 1] < t» < --- < t,,n € N, as discussed in paragraph V. of
Section 4, Equations (23) and (27). Let us assume that the spectrum of 2 is a finite
set 2 = {0, 1, ..., k}, so that 2 is generated by a single self-adjoint operator, Y,
with eigenvalues 0, 1, 2, ..., k. Let

"=, mj €Y, j=1,2,...n, (28)

be the sequence of values of Y measured at times t,t, ..., 1, as explained in
paragraph V. of Section 4. This means that the state of S right after time #; is in
an approximate eigenstate corresponding to the eigenvalue 7; of the operator Y (¢;)
representing Y at time ¢ j,for j = 1,2,...,n, as expressed in Equation (23). The
sequence 1™ is called a “measurement protocol” of length n. As an example, Y
may describe the functioning of k different detectors that click when a certain type
of particle (e.g., a photon or an atom), called a “probe,” belonging to S impacts
them, with the following meaning of its eigenvalues:

n = 0 < none of the detectors clicks , n = £ < detector £ has clicked,

£=1,... k.

Given a measurement protocol Q(") of length n, we define the frequency (of

occurrence) of the value n € & 2 by

n

f"(ﬂ(n)) = %(Z‘Snn,’)- (29)

j=1
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Note that
k
f@™) =0, and Y f(n") =1.
n=1

Of particular interest is the asymptotics of f;, (Q(”)), as n — oo. Let us temporarily

assume that, ¥y = 0, 1, ..., k, the limit of f, (Q(”)), as n — 0o, exists whenever
a copy of § prepared in a fixed initial state is subjected to very many repeated
measurements of Y, with

Tim £, (n™) € (p@la))i, . 30)

for some N < oo; (this is a “Law of Large Numbers,” see [20]). In (30),

k
p(rle) =0, and Y pGrle) =1, (31)

n=1
forall« = 1,..., N, for some N < oo. Apparently, the probability measures
pCla), « = 1,..., N, describe all possible limiting values the frequencies

f(A)(n(”)) may converge to. We propose to interpret the parameter o as follows:
o characterizes a time-independent property of S, i.e., it is an eigenvalue of a self-
adjoint operator, A, on JZ representing a physical quantity of S that commutes
with the operators Y (¢;), j = 1,2, ..., and is a conservation law, meaning that
A is time-independent (under the Heisenberg time evolution of operators on 7).
Such an indirect measurement of A is called a “non-demolition measurement.” One
expects that conservation laws are elements of

Eno = J\ &
teR

where &4 is an algebra in the center of the algebra & defined in (3) (“asymptotic
abelianness” in time). Under suitable hypotheses this expectation can actually be
proven.

Thus, if the frequencies f; (Q(")) are seen to converge to the value p(n|ay),

asn — oo, n € @9, for some o, € spec(A), and if the measures p(-|o)
separate points in the spectrum, spec(A), of A, then we know that, asymptotically,
ast — oo, the value of the conservation law A approaches a,. (The fact that the
measures p(-|o) may depend on « in a non-trivial way, at all, is a consequence of
“entanglement”; see [18-20].)

Evidently, one would like to prove (30) and to predict the probability of indirectly
measuring a value a, for A, assuming one knows the initial state of S. However,
this can only be done if the events encoded by the values 71, 12, .. ., of the physical
quantity Y, which is measured at times 1, 1, . . ., are the only events happening in
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S. For a limited class of systems (see [18, 20]), one can prove that if this is the case
then (30) holds, the state of S approaches an eigenstate of A corresponding to some
eigenvalue o, € spec(A), as time t — oo, (“purification”), and the probability of
measuring the value «, is given by Born’s Rule applied to the initial state of S and
the operator A, see [20].

Usually, operators on ¢ representing physical quantities of S are not time-
independent. If the rate of change in time of a physical quantity, A, of S that one
attempts to measure indirectly, as described above, is very small, as compared to
the rate of repeated projective measurements of the physical quantity Y used to
determine the value of A,'2 then it turns out that, to good accuracy, the dynamics
of the state of the system S is described by a Markov jump process on the set of
eigenspaces of the operator A. The sample paths of this process describe “quantum
jumps” of (the state of) S from one approximate eigenstate of A to another one.
This picture has been given a precise meaning in [20, 22], in the framework of some
simple models.

Concluding Remarks:

(1) The ET H-Approach to QM sketched in this paper is a “Quantum Mechanics
without observers.” It introduces a precise notion of “events” into the quantum
formalism; and it furnishes quantum theory with a clear “ontology.”

(2) The ET H-Approach establishes a precise formalism to describe the stochastic
time evolution of states of isolated (open) systems featuring events. As I have
tried to explain, while, for an isolated system, the Heisenberg-picture time
evolution of operators, in particular of physical quantities characteristic of
such a system, determined by the unitary propagator of the system is perfectly
adequate, the time evolution of its states is described by a novel kind of
stochastic branching process with a “non-commutative state space.” This is
described in some detail in paragraph IV. of Section 3. The analysis presented
there shows that it is simply not true—in any naive sense—that the “Heisenberg
picture” and the “Schrodinger picture” are equivalent.

(3) It is explained in paragraph V. of Section 3 what a “physical quantity” charac-
teristic of an isolated open system is, what it means to measure such a quantity
“projectively,” and how “projective measurements” of physical quantities can
be used to record events. This also lays a basis for a precise theory of indirect
measurements.

(4) Tt is important to note that, in the ET H-Approach to Q M, the expected value
of a conservation law represented by a self-adjoint operator A in the actual state
of an isolated open system featuring events is not constant in time (as it would
be if states evolved according to the Schrodinger equation).

(5) A “passive state” of an isolated open system S prepared at some time # is a
state @ for which Z,,(6%,) = {C1}, for all times t > fy. We expect that
it often happens that states of S approach “passive states” asymptotically, as

120ne speaks of a “weak measurement” of A.
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t — oo, (with o () = 0, see (17)). Thermal equilibrium states are “passive
states.”

Clearly, the ET H-Approach to QM is so general that, for the time being, it is
very hard to use it to carry out explicit calculations for realistic model systems
and to show in which way its predictions differ—usually (hopefully) only ever
so slightly—from those made on the basis of, for example, the Copenhagen
Interpretation of QM, or Bohmian Mechanics. 1 emphasize, however, that
differences in the predictions of the ET H-Approach and other versions of
O M—however small they may be—really exist!

After completion of this work Bernard Kay has pointed out to me that in two of
his papers—see [28]—ideas somewhat related to some of the ideas proposed in
the present paper have been described. I thank Bernard for valuable discussions.
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Linear and Nonlinear Harmonic m)
Boundaries of Graphs; An Approach G
with £7-Cohomology in Degree One

Antoine Gournay

1 Introduction

Graphs are defined by their vertices (henceforth X) and their edges E C X x X.Ina
sense understanding a graph means to understand how the vertices and edges work
together. In a finite graph, it is common to reduce the whole graph to the incidence
matrix.

In an oriented graph, the incidence matrix B has | X| lines and | E| columns. Each
column contains a —1 and a +1 to indicate the source and target of every edge.
This matrix not only encodes the whole graph, but also a very familiar operation:
the vector space RIX! is the space of functions on the vertices, RIZ! the space of
functions on the edges, and the matrix B is the gradient. More precisely, given a
function on the vertices f (that is an element of RIX!), Bf is a function on the edges
and its value on the edge (x, y) from x to y is f(y) — f(x).

For infinite graphs, the gradient encompasses also all the information of the
graph. Most people would no longer refer to it as a matrix though, but rather as an
operator. In short, £7-cohomology in degree one aims at understanding the image of
this operator.

The history of the topic can be split in two “cases”. The case p = 2 has been
largely studied and offers even more connections to other fields of mathematics
(see Liick [38] or Eckmann [14] among many references). The case p # 2
has been introduced through Zucker (see [63] and references therein) to study
compactifications of manifolds and Gromov (see [28, §8]) as a large-scale invariant
of groups. Since then, applications have been found to harmonic functions, many
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notions of boundaries, representation theory of groups, quasi-isometry and packing
of graphs; see §2 for details.

The main aim of this paper is to present the connection between £”-cohomology
in degree one and harmonic functions, i.e. to interpret it as a special subspace of
the Poisson boundary. As such the presentation tries to streamline some results of
[21, 22] and [24].

Here is a thinned out version of this result (the actual result applies to a larger
class of graphs, but the statement becomes technical).

Theorem 1.1 Let G be the Cayley graph of a group which is not virtually nilpotent.
Fix some p €]1,00[(and not p € [loo]). Then (1) — (2) = (B) =
4) = (5) where

(1) The reduced £P-cohomology in degree one vanishes.

(2) For any functions f with gradient in £? there is a ¢ € R so that lim f(x,) = ¢
for any sequence x,, going to infinity.

(3) There are no non-constant harmonic functions with gradient in £7.

(4) There are no non-constant bounded harmonic functions with gradient in £7.

(5) Forany q < p, the reduced €1-cohomology in degree one vanishes.

See §4 and Theorem 4.1 for details. Among others, this has applications to the
question whether the Poisson boundary is invariant under quasi-isometries (see
Corollary 4.16).

Organisation: §1.2 gives the definition of £7-cohomology in degree one. §1.3
follows with examples which are not too hard to grasp. §2 presents some applica-
tions of £”-cohomology in degree one to other problems and topics. §3 shows how
¢'-cohomology in degree one can be seen as a space of functions on the ends of
the group, giving a first sign that £”-cohomology has to do with ideal boundaries
of graphs. §4 tackles the connection between £7-cohomology in degree one and
harmonic functions. Lastly, §5.1 tries to summarises some other results and §5.2
presents some questions. But first, let us start with some preliminaries.

1.1 Conventions and Preliminaries

The conventions are that a graph I' = (X, E) is defined by X, its set of vertices,
and E, its set of edges. All graphs will be assumed to be of bounded valency and
the set of vertices X will always be assumed to be countable. The set of edges will
be thought of as a subset of X x X. The set of edges will be assumed symmetric
(i.e. (x,y) € E = (y,x) € E). Functions will take value in R (but we could
easily work with C too). Functions on E will often be anti-symmetric (i.e. f(x,y) =
— f(y, x)). This said £7(X) is the Banach space of functions on the vertices which
are p-summable, while £7 (E) will be the subspace of functions on the edges which
are p-summable.
The gradient V : RX — RF is defined by Vg(x, y) = g(y) — g(x).
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co(X) denotes the space of functions f which tend to O at infinity. This can be
defined as follows: f € co(X), if for any sequence of finite sets A, C X with
UAp, = X and A; C Aj41, sup,gy, f(x) 2%, 0. Another possible description is
the closure of finitely supported functions in £°°-norm.

Lastly, p’ will denote the Holder conjugate exponent of p, i.e. p’ = p/(p — 1)
(with the usual convention that 1 and oo are conjugate).

1.2 £P-Cohomology in Degree One

So our lofty goal is to understand the gradient map from RX to R . The first thing is
that R is way too big as a space, even if one restricts to anti-symmetric functions.
Indeed, any function on the edge which does not sum to 0 along a 2-cycle cannot
come from the gradient.

Hence we restrict to the image of the gradient (or the kernel of the second
coboundary operator [from edges to cycles] if you are curious about the origins
of the name “cohomology”).

The next step is to bring some simple functional analysis by restricting to £7-
spaces.

At last we have £”-cohomology in degree one: given that the gradient of some
function is in £7 (E), can this gradient be approximated by gradients of functions in
P (X)?

More precisely, the £7-cohomology in degree one of the graph I is the quotient

¢PHY(I) := (LP(E) N VRY)/VeP(X).

Unfortunately, the image of V is not always closed. In order to avoid dealing
with unseparated space (and space which trivially have lots of things in their £7
cohomology), the focus is usually on the largest separated quotient, the reduced
£? -cohomology:

P H\(I) = @ (E)n VRY)/verx)" .

Now, if you are wondering when is the image of V actually closed, then

Theorem 1.2 Let p € [1, oo[. The image of V : £P(X) — (P (E) is closed if and

only if the graph is amenable (i.e. there is a sequence of finite sets F, such that

—lﬁFFn"l‘ — 0, where OF is the set of edges with only one extremity in F ).

One direction of the proof is straightforward:

Proof of the “easy” Part Assume there is a sequence of sets F, C X so that
|‘3FL‘|‘ — 0. Take f, = WHF}[ where 1 is the characteristic function of the

set F' (the function which takes value 1 on F and O elsewhere). By construction
Il fullercxy = 1.
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But V f, takes value :tm

points towards or away from the set F},) and O elsewhere. Hence (the upcoming
factor of 2 comes from the two orientation of the edges)

on dF, (the sign depends on whether the edge

dFul)1
IV fallercey = i I Lar, lere) = s QIAFaD'P = 217 (Il v,

By hypothesis, this sequence tends to 0. As a consequence of the closed image
theorem (an operator has a closed image if and only if it has a bounded inverse), the
image of V is not closed. O

The other direction of the statement is a typical technical slicing argument (given
a sequence of functions f,, with norm 1 whose gradient tends to 0, look at “well-
chosen” level sets of these functions). As it is quite technical, the proof would bring
us off-topic, so the reader is encouraged to look up surveys on amenability for all
the details (a very nice book, which is not so easy to find was written by Greenleaf
[26]; there are some surveys freely available in Internet).

Most of the times it is much more convenient to think only in term of functions.
To this end, introduce the Banach space of p-Dirichlet functions as the space of
functions f on X such that V f € £P(E). It will be denoted D? (I").

In order to introduce the D? (I")-norm on RX, itis necessary to choose a vertex,
denoted e This said ||f||g,,(m = IV fllgpcgy + 1/ er)I?.

By taking the primitive of these gradients, one may also prefer to think of reduced
£P-cohomology in degree one as:

e H\(I') == DP(I') /P (X) + R" .

A common abuse of language and notation happens, as one says that the reduced
cohomology is equal to the non-reduced one: this means that the “natural” quotient
map (PHY(IM) — E"_Hl (I'") is injective. By Theorem 1.2 above, this happens
exactly when the graph is non-amenable.

1.3 Some Examples

Before moving on to general statements, the reader might want to look at some
simple examples. Since most of our examples come from Cayley graphs, let us also
shortly recall their construction.

Given a finitely generated group G and a finite set S, the Cayley graph Cay(G, S)
is the graph whose vertices are the element of G and (y, y’) € E if 3s € S such that
s~y = y’. (This convention might be unusual from the point of view of random
walks, but is much more convenient to write convolutions.) In order for the resulting
graph to have a symmetric edge set, S is always going to be symmetric (i.e. s €
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S = 7!

generating).

€ S). Also, Cayley graphs are always going to be connected (i.e. S is

Example 1.3 The group Z with its most tempting generating set {1} has the line
as its Cayley graph.

Since there are no cycles, the question is: are all elements of £7(E) in the
closure of V£P(X)? The simplest element of £7(E) is the “Dirac mass” (due to
our convention that edges are oriented and function on edges are anti-symmetric,
this is 6¢1,0) — 8(0,1)), so that seems a nice place to start.

It is somehow easier to represent it as a function in D” (X): namely f(x) = 0 for
x <0and f(x) =1forx > 1.

TR - — — - - — —
Y ) ) & & % &) O
N N N N N N N N N
f \0 \0 \0 \/ \/ \/ \/ \/ \/
Vv Q N Vv ™ ™ “ ©
4 4 7 7 7 7 7 7 7
4 7 + + Y + 5 5 Y

This function looks hard to approximate: it is not even finitely supported. But
remember, we are trying to approximate its gradient (not the values the function
takes).

n—1 n—2 n=3 n—4 n—>5 n—6

f)=.. 0 0 0
X =.. -2 —1 0

In

Hz‘

n n n n n
2 3 4 5 6

and f;, stays O once it reaches O (so for x > n). Now the important point is that
we want V(f — f,) totend to O (f — f,, obviously does not). A quick computation
shows that V(f — f,) takes on 2n edges (recall that (0, 1) and (1, 0) are both edges)
the value :I:%. Hence

1 1yp 21/p

This tends to O given that p > 1.

This shows that the basis of ¢7(E) is in V£P(X). Since this basis is dense in
£P(E), we just showed that £” H'(Z) is trivial when p > 1.

And what about p = 1?7 Well, there is a trick (see Martin & Valette [40,
Example 3 in §4] who mention hearing it from M. Bourdon). Let us quickly outline
it here, it will be discussed at length in §3.

Note that any function on the line with gradient in ¢! has a value as x — 400
and x — —oo. Forany g € D'(X), define L(g) = Xlir}rloog(x) —xlimoog(x). Then

L :D'(X) — Ris abounded operator. Its kernel contains £! (X) and so it will also
contain its closure in the D'-norm. Since our function f abovehas L(f) =1 #0,
it lies outside of the closure £!(X).
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As an upshot, 2L H (Z) is not trivial (in fact, it is a one-dimensional real space).

O

Example 1.4 Another simple example are the Cayley graphs of free groups on k
generators Fj (resp. free products Ca * C2 * ... x Co where C3 is the group with
two elements). The Cayley graphs for the “standard” generating sets (i.e. the k free
generators, resp. the generators of each C» factor) are 2k-regular (resp. k-regular)
trees.

Again, since trees have no cycles one gets that £7(E) = ¢ (E) N VRX  Ifk = 1
(resp. k = 2), then we obtain the same graph as in the previous example. So we may
assume that k > 1 (resp. & > 2). Now it comes in very handy to note that these
graphs are not amenable. By Theorem 1.2, this means that V£? (X) is closed or, if
one thinks in terms of functions, that £7(X) is a closed subspace in the D”-norm.

But functions in £7 (X) also belong to co(X) (the space of functions which tend
to 0 at oo, see §1.1). Hence, if we can find a function with gradient in £7 which is
not in c¢o(X), then we are done.

But this is fairly easy: (a) pick some edge, (b) removing it will disconnect the tree
in two components, (c) set f to be identically O on one component and identically
1 on the other, (d) the gradient of this function is supported on one edge, so it lies
definitively in D?.

Consequently, £ H' and ¢” H', are non-trivial for any p. %

It is straightforward to generalise this to any tree which is not amenable: one just
has to make sure that the edge disconnects the tree in two infinite components. In
fact, the argument applies to any non-amenable graph which can be disconnected
into two infinite components by removing a finite number of edges.

These two examples are somehow extreme in the sense that £ H !is either trivial
for all p > 1 or not. However, in the case of hyperbolic space, it turns out the p for
which €7 H' passes from trivial to non-trivial is a significant number (see §2.2.2 for
details).

Also, the last example might make you think that almost all non-amenable graphs
have a non-trivial £” H ! (for some p). But it turns out it is often hard to construct an
element of D” (X) \ co(X). The following proposition can partially explain why (as
well as generalising Example 1.3 and introducing some important proof technique).

Proposition 1.5 Assume I’ is the Cayley graph of a group G whose centre Z :=
Z(G) is infinite. Then € H'(I'") = {0} for all p > 1.

Proof Needless to say, elements of the centre have the very nice property that, for
any g € G, zg = gz. This translates in a graph theoretical property. Indeed, the
action of an element g of G on the right is a graph automorphism. The action on the
left by the same element g means one follows the path labelled by the generators
si € Ssothat g = s,8,—1...525].

So being in the centre means that if you follow (starting at any vertex) a path
labelled by z = s,,8,—1 . . . s251, then this is a graph automorphism.
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Here is why elements of the centre are so special for this problem. Let p, f(g) :=
f(gz). Write z = s,8,—1 ...5251 and let#; = s;5;_1 ... 5251 (with #y = e the identity
element in G). Then

f(@) = pf(@)=f(g)— f(g2) = f(®) — fzg) =) fltig) = f(ti19).

i=1

Note that this last expression is a sum of n values of the gradient of f. Hence, by the
triangle inequality, || f — oz fllerx)y < nlIV fller(g). This implies that f and p, f
belong to the same equivalence class.

This can be used to bring the following plan into action. Given some function f
with gradient in £7, consider p,, f where z, is some sequence of elements of the
centre which goes to infinity. Since p,, f are images under graph automorphisms of
f, we are effectively translating the gradient of f to infinity.

Since ¢7(E) C co(E), this means that Vp, f tends point-wise to 0. Point-
wise convergence is synonymous with weak* convergence. But weak™ and weak
convergence coincide in the reflexive case. And a classical consequence of the
Hahn-Banach theorem is that weak and norm convergence to 0 also coincide.

So we found a way to build a sequence of elements which all belong to the
equivalence class of f (in the quotient space VRX N ¢7(E)/£P (X)) and whose
gradients tend (in norm) to 0. This shows that 0 is in the (closure) of the class too.

But we made no specific assumption on the function f, hence O is in the
equivalence class of any function, and £ H ! (I = {0}. O

The previous proposition can be found [often with weaker hypothesis] in Kappos
[32, Theorem 6.4], Martin & Valette [40, Theorem 4.3], Puls [52, Theorem 5.3],
Tessera [59, Proposition 3] or [20, Theorem 3.2].

There are many groups with an infinite centre many of them are not amenable.
This hopefully contrasts with Example 1.4.

2 Applications

Before we move to our main focus (which has to do with harmonic functions), here
is an overview of the different applications of £”-cohomology to themes.

2.1 Quasi-Isometries

One of the original motivation of £”-cohomology was to use it as an invariant of
quasi-isometry, see Gromov [28, §8].

Let us briefly recall that a map f : (X,dx) — (Y, dy) between two metric
spaces is a quasi-isometry, if there is a constant K > 1 such that:
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Fdx(x,x") — K <dy(f(x), f(x))) < Kdx(x,x') + K.

There are few important “exercises” on this concept, here are two: (1) “being quasi-
isometric” is an equivalence relation; (2) a graph (with its combinatorial distance)
can be quasi-isometric to a manifold (with its Riemannian metric).

In fact, Kanai has shown [31] that any Riemannian manifold with Ricci curvature
and injectivity radius bounded from below is quasi-isometric to a graph (of bounded
valency).

Theorem 2.1 (See Elek [15, §3] or Pansu [45]) If two graphs of bounded valency
I' and T'' are quasi-isometric, then they have the same {P-cohomology (in all
degrees, reduced or not).

The result is actually much more powerful, in the sense that it holds in a larger
category (measure metric spaces; see above-mentioned references). For shorter
proofs in more specific situations see Puls [55, Lemma 6.1] or Bourdon & Pajot
[7, Théoreme 1.1].

The previous theorem is sometimes very convenient, since it means that results
can be transferred between graphs and Riemannian manifolds. This allows for a
great flexibility in the methods that can be used to prove the results.

A consequence of 2.1 is that, if G is a finitely generated group, the £7-
cohomology in degree one of any two Cayley graphs (for a finite generating set)
is isomorphic. Indeed, the identity map on the vertices is a quasi-isometry between
the Cayley graphs (hint: write the generators of one Cayley graph as words in the
generators of the other Cayley graph). Thus, one may speak of the £7-cohomology
of a group without making reference to a Cayley graph.

In [47] and [48], Pansu computed the £7 cohomology (in degree 1 and above) of
a variety of homogeneous spaces with pinched negative curvature. He then used the
triviality or non-triviality of this cohomology to show that many of these spaces are
not quasi-isometric, thus answering an old question of Berger.

The study of quasi-isometries also motivated some variants of £”-cohomology.
First, by considering Orlicz spaces (instead of just £7 spaces) Carrasco Piaggio [11]
proved a fixed-point result for self-quasi-isometries of (many) Heintze groups.

Second, there is a body of work on the L ,,-cohomology (investigations of the
quotients of the form d” /(R + £7). The interested reader is encourage to look at
Gol’shtein & Troyanov [19], Kopylov [36] and references therein.

2.2 Boundaries

S. Zucker was one of the first person to introduce £”-cohomology and use it to study
manifolds with thin ends (see [63] and references therein). There are however many
other applications to other ideal boundaries of spaces.
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The ends are another typical “ideal boundary” for a space, and it turns out that
the reduced £'-cohomology in degree one is isomorphic to the space of function on
the ends modulo constant functions (see §3 for details).

2.2.1 Poisson Boundary

There is also a strong connection between ¢”-cohomology in degree one and
harmonic functions. This particular topic will be explained in more details in §4.

The short version is that (if the isoperimetric dimension of the graph is large
enough then) a function with a non-trivial cohomology class gives rise to a non-
constant bounded harmonic function. This is easier to see in the case p = 2, but it
extends to other p # 2 (if the isoperimetric dimension is large enough).

This is interesting since the Poisson boundary (which can be roughly thought of
as the space of bounded harmonic function) is not an invariant of quasi-isometry
(see, for example, T. Lyons’ examples [39]). Namely, there are quasi-isometric
graphs one of which has many non-constant bounded harmonic functions, while
the other has none.

Theorem 2.1 can be invoked to show that the £”-cohomology in degree one gives
rise to a part of the Poisson boundary which is invariant under quasi-isometries.

2.2.2 Boundary of Hyperbolic Spaces

There are also applications of £”-cohomology to the boundary of hyperbolic spaces,
more precisely to problems which are related to the famous

Conjecture 2.2 (J. Cannon) Let I' be a hyperbolic group whose ideal boundary
is a 2-sphere. Then I is virtually a cocompact lattice in PSL(2, C).

Using a result of Keith & Laakso [34, Corollary 1.0.3], Bonk & Kleiner [2] were
able to show that if I" is a hyperbolic group whose ideal boundary is a 2-sphere
and the conformal dimension is achieved by some metric, then I is virtually a
cocompact lattice in PSL(2, C).

Further results by Bourdon & Pajot [7] show that, for hyperbolic spaces, one can
define a LP-dimension as the infimum over all p for which £” H' is non-trivial. It
turns out that the L”-dimension coincides with the conformal dimension if there is
a metric which achieves the conformal dimension.

Bourdon & Pajot [7] gave examples where these dimensions do not coincide,
hence one cannot expect that the strategy from Bonk & Kleiner [2] works out of the
box. On the positive side, there has been further work (using £7-cohomology) by
Bourdon & Kleiner [4] which covers the case of Coxeter groups.

For a proof that any hyperbolic space has a non-trivial £”-cohomology in degree
one starting at some p see either Bourdon & Pajot [7], Elek [15] or Puls [54].

M. Bourdon pointed out to the author a very interesting point (see also [3,
§2.4.1]). A result of Puls [54, Theorem 1.3] shows that if a group has a non-trivial
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Floyd boundary for a Floyd function ¢(g) = a~%(& (where a > 1), then its
[reduced] ¢”-cohomology will be non-trivial for all p such that ¢ € €7(G). A
careful reading of the construction of Gerasimov [18] shows that relatively hyper-
bolic groups will have non-trivial Floyd boundaries satisfying these conditions.
Consequently, their reduced ¢£” cohomology is non-trivial for all p larger than some
Po-

On the other hand, D. Osin pointed out to the author that some acylindrically
hyperbolic groups have a trivial £”-cohomology for all p € [1, ool (these are right-
angled Artin groups corresponding to the graph e—e—e—e—e),

Pansu [44] showed that among continuous Lie groups, having non-trivial reduced
£P-cohomology is equivalent to hyperbolicity. This extends to algebraic groups over
local fields of characteristic 0 by a result of de Cornulier & Tessera [13].

Lastly, Bourdon & Pajot [7, §3, Proposition 4.1 and the following Remarques]
also showed that for p larger than the conformal dimension of the boundary,
functions with £”-gradient, when extended to the boundary of [Gromov] hyperbolic
spaces, can separate points of its boundary. In fact, they show that (non-trivial)
Lipschitz functions on the boundary give rise to (non-trivial) classes in £7-
cohomology. Bourdon & Kleiner [5, Theorem 3.8(1)] showed that if p is strictly
smaller than the conformal boundary, then extensions of ¢” classes no longer
separate points.

2.2.3 “Nonlinear’ Boundaries

Reduced ¢7-cohomology (in degree one) is very strongly related to p-harmonic
functions. When p = 2, this is the same as harmonic functions, but for p # 2 these
are a nonlinear variation of the harmonic equation.

When p is an integer, p-harmonic functions come up naturally when studying
a relaxation of conformal maps (called quasi-regular maps). Given two manifolds
M and N of dimension p, amap f : M — N is called quasi-regular if there is a
constant C so that ||[df||? < C|detdf].

When ¢ : N — R is a function, the p-Laplacian is A, = div(|Vg|P~2Vg)
and p-harmonic functions are functions whose p-Laplacian is 0. A quasi-regular
map will allow to pull-back [non-constant] p-harmonic functions, so the existence
or absence of [non-constant] p-harmonic functions can be used as obstruction to the
existence of quasi-regular maps.

In addition to quasi-regular maps, there are also interesting limiting cases for the
p-harmonic equation: when p — 1 this is related to the mean curvature operator
and when p — oo to Lipschitz extensions.

In the setting of graphs there are two things which might be unclear:

(1) what is the divergence? see §4.
(2) whatis a quasi-regular map? see either Benjamini, Schramm & Timar [10, §1.1]
or §2.4.
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Furthermore, much like harmonic functions can be used to construct a Royden
boundary and a harmonic boundary, p-harmonic functions can be used to construct
a p-Royden boundary and a p-harmonic boundary. For the definitions see Puls
[55, §2.1]. These boundaries are spaces constructed with the help of the Gelfand
transform which can be associated with the classes of the reduced £7-cohomology
in degree one. See paragraph after Lemma 4.7 for details.

The relation between reduced ¢”-cohomology in degree one and p-harmonic
function is fairly straightforward (see Puls [53] or Martin & Valette [40] for details).
Basically, given f € D”(I"), one can try to search for the element which belongs
to the same equivalence class as f but whose norm is minimal. For p €]1, oo
such an element will exist by convexity of the norm. Furthermore, for all g of finite
support on the edges % IVf+tVg] f P(E) | —o = 0 (by minimality of the norm of this
element). Massaging this last equation (and the fact that g is an arbitrary function of
finite support) will show that f is p-harmonic.

Other known consequences of the triviality of the reduced ¢”-cohomology in
degree one include the triviality of the p-capacity between finite sets and oo (see
Yamasaki [62] and Puls [55, Corollary 2.3]) and existence of continuous translation
invariant linear functionals on D?(I") /R (see [55, §8]).

2.3 Representation Theory

For infinite groups it is often interesting to look at their representation on infinite
dimensional space. For example, Property (T) is defined using the topology on the
space of unitary representations in Hilbert spaces. It can also be expressed as a
condition on the first cohomology of these representations.

It turns out that £”-cohomology in degree one (of some Cayley graph of a
finitely generated group) is the same thing as the first cohomology of the regular
representation (in £7), see Martin & Valette [40] or Puls [52]. There is also a nice
text from Bourdon [3] on the topic (isometric actions on Banach space are equivalent
to cohomology linear representations).

Though it might seem a very particular case, it turns out this has a direct and
indirect application to Hilbertian representations. The direct application is that
triviality of the reduced £7-cohomology in degree one implies that the reduced first
cohomology of any unitary representation with coefficients in £ is trivial. (The
coefficients of a unitary representation 7 are the functions k(y) := (m,& | &)
where &, &’ are elements of the Hilbert space.)

The indirect application is that techniques that are useful to show the vanishing
(or non-triviality) of ¢”-cohomology may also be applied for unitary representa-
tions. See [24] for more details.
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2.4 Sphere Packings

A last nice application of reduced £7-cohomology in degree one is to sphere
packings of graphs. Circle packings are a lovely topic which the reader should
definitively try to read a survey about (for example, Stephenson [58] and Rohde
[56]). The question of realising a graph as the contact graph of some spheres (of
varying radius) is a natural generalisation of the circle case.

In fact, one can even relax the hypothesis significantly by requiring that the
spheres be some (contractible) domains whose ratio % is bounded by some
constant. With this relaxation, every finite graph can be realised as a contact graph
(although the bound on the ratio might get large). But is that true for infinite graphs?

Benjamini & Schramm explore this question in [9] and show that [non-constant]
p-harmonic functions can be an obstruction to such packings. Since non-triviality
of the reduced ¢P-cohomology in degree one is equivalent to the existence of
non-constant p-harmonic functions, this gives yet another application of £7-
cohomology.

This topic has been developed further by Pansu in [49].

3 ¢1-Cohomology and the Ends

One of the apparent features of Examples 1.3 and 1.4 is that cutting the graph in two
infinite components by removing an edge helps a lot to find non-trivial elements of
ePH'.

This feature will be heavily supported in this section as we show that:

1. a function in D' (I") can be assigned a value on each end of the graph (see below
for the definition of the ends of a graph).

2. the function is trivial in reduced £!-cohomology in degree one if and only if it
takes the same value on all the ends.

The ends of a graph are the infinite components of a group which cannot be
separated by a finite (i.e. compact) set. More precisely, an end £ is a function from
finite sets to infinite connected components of their complement so that £(F) N
E(F') # @ (for any F and F’). It may also be seen as an equivalence class of
(infinite) rays who eventually leave any finite set. Two rays r and r’ are equivalent
if, for any finite set F, the infinite part of  and r’ lie in the same (infinite) connected
component.

Thanks to Stallings’ theorem, groups with infinitely many ends contain an (non-
trivial) amalgamated product or a (non-trivial) HNN extension. Being without ends
is equivalent to being finite, and amenable groups may not have infinitely many
ends. This may be seen using Stallings’ theorem, see also Moon & Valette [41] for
a direct proof.



Harmonic Boundaries and ¢£”-Cohomology in Degree One 59

Here is an idea of the proof. Assume there are 3 ends or more, that is upon
removing the finite set F, there remains [at least] 3 infinite components, say K1, K>
and K3. By vertex-transitivity, it may be assumed that the identity element belongs
to F.Letc = 1}1a;:( d(e, f) where d(e, -) is the distance to the identity element. Pick

€

elements h; € K; so that d(e, k;) > 2c. Then it is not too hard to check that the
set Fh; (the groups acts on the right by graph automorphism) disconnects K; in [at
least] two infinite components. The technical part comes in when you need to show
that Fh;hj (fori # j) further disconnects those components. It then follows that
the subgroup generated by (h1, h2, h3) is isomorphic to a free product H; x Hy x H3
where H; = (h;) is cyclic (finite or infinite). This then implies the group contains a
free subgroup and, hence, is not amenable.

Groups with two ends admit Z as a finite index subgroup. These groups are
peculiar, as they have non-trivial reduced £'-cohomology in degree 1, even if their
reduced £”-cohomology (in all degrees) vanishes for 1 < p < oco.

So outside virtually-Z groups, all infinite amenable groups have one end.

Before moving on, let me mention that the results of this section were first written
up in [21, Appendix A]. This result was partially remarked by Pansu (essentially,
case where there is one end). As mentioned in Example 1.3, the special case of the
group 7Z was written down in Martin & Valette [40, Example 3 in §4], who learned
it from M. Bourdon (like the author, a former student of Pansu). So the case with
two ends was already known to Bourdon. There is only a small step to make to the
general case, so that the author is uncertain if he deserves any credit there.

Proposition 3.1 Let I" be a connected graph, then £'H : (I') = 0 if and only if
the number of ends of I is < 1. More precisely, let /= R"SU) /R be the vector
space of functions on ends modulo constants. There is a boundary value map B :

D'(I') — W such that B(g) = B(h) < [g] = [h] € £'H (I").

Note that the isomorphism S between £' H ! (I') and R"(7) /R is in the category
of vector spaces, not of normed vector spaces. In a few cases, the norm on &
resembles the norm of the quotient £°°(Jends|)/R (see Question 5.1). The proof
is barely different from the argument of M. Bourdon found in Martin & Valette [40,
Example 3 in §4].

Proof Note that DY (I") C £°(X): ifge D'(I"), then, for P a path from x to y,

gl =1g(x) + Zg(E)I =18+ 1IVeller (k-

ecP

In fact, [|gllge(x) < ||g||D1(F) + in)f( |g(x)]. Since functions in ¢! decrease at oo, if
xe

one removes a large enough finite set, the function g on the resulting graph is almost
constant. In particular, it is possible to define a value of g on each end: let B,, be the
ball of radius n at some fixed vertex (root) o, then
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Pg(§) := lim g(x,) where x, € §(By).

Alternatively, if r : Z>9 — X is a ray representing the end &, then the value at §
can also be defined as lim g(r (n)). It is fairly straightforward to check these limits
n—o0

do not depend on the choice (of x,, and o or of the ray r).
Fix an end &. Then, define 8 : D'(I") - by changing with a constant the
value of g to be 0 at £ and then looking at the values at the ends. This map is

continuous and trivial on £!(X) + R (since functions in £!(X) have trivial value at
——Ddir
the ends). By continuity, £!(X) + R o C ker 8.

Assume, S(f) = 0, this means that, Ve > 0,3X, C X a finite set such that
F(XO) C[—e, €]. Set

efWMINFWIELf )] > e,

fev) = {f(y) otherwise.

Then g, := f — fe is finitely supported, so in 21(X). Furthermore, I f—ge ||D1(F) =

”ff”Dl(F)‘
Let X, be as before, then

equal to V f on EN (XS x X°),
V feis { smallerin |- | than Vf on d X,
0 on EN (X x Xe).

But E N (X x X¢) increases, as € — 0, to the whole of E. More importantly, the
¢-norm of V f outside this set tends to 0. Thus ||f€”D'(F) — OQase — 0, and

consequently g — f as € — 0. Since g. are finitely supported, they belongs to
—oD'()

£'(X). This shows that f € £1(X) O

Groups with two ends step strangely out of the crowd: although their reduced
£P-cohomology is always trivial if p > 1, it is non-trivial for p = 1 (actually
isomorphic to the base field). An amusing corollary is

Corollary 3.2 Let G be a finitely generated group. G has infinitely many ends if
and only if for some (and hence all) Cayley graph I', Vp € [1, ool El’_Hl(F) # 0.
G has two ends if and only if for some (and hence all) Cayley graph I', Yp €
1, 00l, £7H' (I = 0 but €' H' (1) =R

Proof Use Proposition 3.1 for reduced £!-cohomology, use any vanishing theorem
on groups of polynomial growth (such groups have an infinite centre, so see
Proposition 1.5, Kappos [32] or Tessera [59]) to get the remaining values of p for
groups with two ends.

Theorem 4.10 (which we have not discussed yet) will give the conclusion for
groups with infinitely many ends (which are in particular non-amenable). O
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It is worth noting that Bekka & Valette showed in [1, Lemma 2, p.316] that (for
G discrete) the cohomology H (G, CG) is also isomorphic (as a vector space)
to 4. Furthermore, by [1, Proposition 1], there is an embedding H 1 (G,CG) —
¢'H'(G). A careful reading would probably reveal this remains injective in reduced
cohomology (the only case to check is when G has two ends).

4 (P-Cohomology and Harmonic Functions

In §3, we dealt with one of the apparent features of Examples 1.3 and 1.4. Another
feature which is present in those examples as well as the previous section is that it
is very useful to think in terms of values at infinity.

However, for functions with gradient in £ with p > 1 this is somewhat counter
intuitive. Indeed, the reader can quickly come up with a function on the graph of
the line (a Cayley graph of Z) which grows to co even though its gradient is in £,
Nevertheless, this obstacle can be overcome.

The main motivation in this section is to show that the reduced £”-cohomology
in degree one can be seen as a space of function on an ideal boundary, namely the
Poisson boundary. The oldest result in this direction is a theorem of Lohoué [37]
which says that in a non-amenable graph there is exactly one harmonic function in
each equivalence class of £7 H 1(I"). The results presented in this section come from
[21], with some simplifications in the presentation coming mostly from [24].

In contrast to the result of Lohoué [37], the amenable case is trickier, so this result
can only be generalised to some extent. To say how, some preliminary definitions
are required.

Isoperimetric profiles. For F C X a subset of the vertices, recall that 9 F is set
of edges between F and F°. Letd € Rs. Then, a graph I" has

IS, if there is a k > 0 such that for all finite F C X, |F|“=D/4 < |3 F|;
IS,, if there is a ¥ > 0 such that for all finite F' C X, |F| < k|dF]|.

Quasi-homogeneous graphs with a certain (uniformly bounded below) volume
growth in n¢ will satisfy these isoperimetric profiles, see Woess” book [61, (4.18)
Theorem].

A Cayley graph will satisfy IS; (for any d < §) if the growth of balls in this
Cayley graph is bounded below by Kn® (for some K > 0). A Cayley graph will not
satisfy IS, (for any d > §) if the growth of balls in this Cayley graph is bounded
above by K'n® (for some K’ > 0).

Using Gromov’s theorem on groups of polynomial growth [27], that the only
groups which do not satisfy IS, for all d are virtually nilpotent groups.

Cayley graphs of a group G does not satisfy IS, if and only if G is amenable.
(There are many amenable groups which are not virtually nilpotent.) The upcoming
result will apply best to groups which are not virtually nilpotent. See [61, §14] for
more details.
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Values at infinity. It is difficult to speak of a value at infinity, since it is not clear
with what we can identify infinity (yet). However it is easy to say if a function is
constant at infinity. This means that it belongs to R + co(X), i.e. a constant function
plus an element of co(X).

More precisely, let B, be a sequence of balls in the graph with the same centre
and BS the sequence of their complement. On a connected graph, a function f :
X — R s constant at infinity if 3¢ € R so that Ve > 0, In, satisfying f(B,fs) C
[c —€,c+e€]l

Harmonic functions. A function f : X — R is harmonic if it satisfies the
mean-value property: for any vertex x € X, Z ( fo—f (x)) = 0 (where N (x)

YEN(x)
denotes the neighbours of x).
Let us define the following spaces of harmonic functions:

e JZ(I') is the space of harmonic functions.

o HDP(I') = #(I") NDP(I') is the space of harmonic functions whose gradient
isin £7.

o« B#DP(I') = (X)) N (") N DP(I') is the space of bounded harmonic
functions whose gradient is in £7.

Divergence. There is another way to define harmonic functions by introducing
the divergence. For two finitely supported function f and g on a countable set Y,
define the pairing (f | g)y = Zyey F()g(y). (The subscript ¥ will often be
dropped.) This allows to define the adjoint of the gradient V, denoted V* and called
divergence, by (f | Vg)g = (V*f | g)x. More precisely, for f : E — R, one
finds

ViR = Y fon = Y fy).

yeN(x) yeN(x)

In particular

VIV =2 Y (fO) - fW).

YEN(x)

Thus, harmonic functions are exactly the functions for which the divergence of the
gradient is trivial.
Four conditions. Define for p > 1:

(1,) The reduced £”-cohomology in degree one vanishes (for short, £ H - {O}).
(2) All functions in D”(G) take only one value at infinity.

(3,) There are no non-constant functions in #D” (G).

(4,) There are no non-constant functions in B#D” (G).

For the record, note that (1;) <= (21) <= the number of ends is < 1 (see
Proposition 3.1 above).
Here is the best known to date extension of Lohoué’s result [37].
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Theorem 4.1 Assume a graph I is of bounded valency and has 1Sg4. For 1 < p <
d/2, (1) <= 2,) = () = @) and, forq = 7%=, (49 = (1,).

If I has 1S, for all d, then “Vp €]1, ool (ip) holds” where i € {1,2,3,4} are
four equivalent conditions.

The proof is split as follows: (1,) <= (2,) is the content of §4.2 (see
Corollary 4.9). (2,) == (3,) is a fairly easy consequence of the maximum
principle (see Lemma 4.12). (3,) = (4,) is obvious (since B#D”(I") C
JDP(IN)). (4p) = (1,) is the bulk of §4.3 (see Theorem 4.14).

4.1 Reduction to Bounded Functions

Now the first step in order to associate a value at infinity to any function in D? (I")
is to show that one can restrict to bounded functions.

This is basically the content of Lemma 4.4 from Holopainen & Soardi [30]. The
Lemma is there stated in terms of p-harmonic functions, but its proof can be adapted
without much difficulty.

We will use [ f] € £PH (") to denote the equivalence class of the function f,

i.e. the closure of f + £7(X) in D”-norm (or f + €7 (X)Dp).

Lemma 4.2 (Holopainen & Soardi [30], 1994) Let g € DP(I') be such that g ¢
[0] € K”HI(F). Fort € R, let g; be defined as

w2 (2@ e <
& tég; iflgx)l =1.

Then there exists to such that g; ¢ [0], for any t > 1.
In particular, the reduced £P cohomology is trivial if and only if all bounded
functions in DP (I") have trivial classes.

Proof The proof goes essentially as in Proposition 3.1. Assume without loss of
generality that g(o) = 0 for some preferred vertex (i.e. root) 0o € X. Since
IVglleo(ey < IVEllerey =: K, given x € X and P a path from o to x,

g =1g(x) —glo) = Y Vgle) <d(o,)IVglerr)-
ecP:o—>x

In particular, g, is identical to g on B k. Hence |lg — g/llpr(r) < ||Vg||(p(3rc/l(),
where £P (Blc ) denotes the £7-norm restricted to edges which are not inside B;/k .
Because Vg € £7(E), ||Vg||£p(Btc/K) tends to 0, as ¢ tends to co.

Now if there is an infinite sequence #, such that g; are in [0] and #, — oo, then
g1, 1s a sequence of functions in [0] which tends (in D”-norm) to g. This implies
g € [0], a contradiction. Hence, for some #o, g; ¢ [0] given that ¢ > 1y. |
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4.2 Values at Infinity

The aim of the current subsection is to show that (if the proper isoperimetric profile
is present) functions in D? (I") corresponding to the trivial class are exactly those
which are constant at infinity. Some concepts from nonlinear potential theory will
also come in handy.

Definition 4.3 Let (X, E) be an infinite connected graph. The inverse p-capacity
of avertex x € X is

icp, (x) = (inf{||Vf||ng | f: X — Cis finitely supported and f(x) = 1})_1.

The graph is called p-parabolic if icp,(x) = +oo for some x € X. A graph is
called p-hyperbolic if it is not p-parabolic.

One might also like to call the inverse p-capacity the “p-resistance to co”. (When
p = 2 capacity and resistance are strongly related.)

Recall (see Holopainen [29], Puls [55] or Yamasaki [62]) that if icpp (x0) =0
for some xo, then icp,(x) = 0 for all x € X. Recall also that 2-parabolicity is
equivalent to recurrence.

Remark 4.4

1. If the graph I" is vertex-transitive, icp,(x) = icp,(y) for all x,y € X.
Let icp,(I") := icp,(x) be this constant. It is also easy to see that if the
automorphism group acts co-compactly on the graph, the inverse p-capacity is
bounded from below.

2. Note that in the definition of p-capacity, one may also assume that the functions
take value only in Rx(. Indeed, looking at | f| instead of f reduces the norm
of the gradient. Likewise, one can even assume f takes value only in [0, 1] as
truncating f at values larger than 1 will again reduce the norm of the gradient. ¢

The following proposition is an adaptation of a result of Keller, Lenz, Schmidt &
Wojchiechowski [35, Theorem 2.1].

Proposition 4.5 Assume I' is vertex-transitive and has 1Sy4. Let p < d. If f €
DP(I') represents a trivial class in 7 H N(I"), then f is constant at infinity.
Furthermore, co(X) C DP(I") andV f € co(X), || flle=x) < icp,(IDNV fller E)-

Proof A consequence of the Sobolev embedding corresponding to IS, is that the
graph is p-hyperbolic. See Troyanov [60, §7] as well as Woess’ book [61, §4 and
§14] and references therein for details.

As I' is p-hyperbolic and by Remark 4.4.2, one has V f of finite support | f (x)| <
icp, (X) IV fll . However, by Remark 4.4.1, there is no dependence on x on the
right-hand side. So Vx € G,V f of finite support | f (x)| < icp, [V fll, where icp,,
isicp, (I"). Trivially this implies

Vf : G — Cof finite support || fllooc <icp, IV flp-
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D? . .
As a first consequence, assume f,, — f with f, finitely supported. Then f; also
converge to f in £°°(X). Since co(X) is the closure of finitely supported functions

in £°°(X), this shows that f € EP(X)DP implies f € co(X). In other words, if f
represents a trivial class in reduced £”-cohomology, then f is constant at infinity.

As a second consequence, let us show the “Furthermore”. Pick some f € co(X).
Apply the inequality to g = f — fc where f. is the truncation of f:

ef(x x)|if | f(x)] > €
£(x) = S/ f (o)l

fx) else.
Indeed, g, is finitely supported so it satisfies ||ge¢lloo < icpp||Vg€|| p (recall that
icp, = icp,(I"). Also [[Vgell, = IIVSfllp and [|fllooc =< € + [[gelloo. Hence
1 flloo <€+ icpp||Vf||,, and the conclusion follows by letting € — 0. m|

The above proposition gives the following very nice characterisation of functions
corresponding to the trivial class.

Corollary 4.6 Assume I is vertex-transitive and has 1Sy. Letd > p. f € DP(I")
represents a trivial class in £ H ) if and only if f is constant at infinity.

Proof Without loss of generality the constant at infinity is O (because one may add a
constant function to f). Considering again g = f — fc (where f. is the truncation

4
of f asin Lemma 4.2 and Proposition 4.5), one can check that, as € — 0, g E> f.
Since g is finitely supported, it is in £7 (X) (and this concludes the proof). O

The above results are very nice, but they do require a fairly strong hypothesis,
namely that the graph is vertex-transitive. If the isoperimetric profile is good enough,
this can be remedied.

As in Keller, Lenz, Schmidt & Wojchiechowski [35], say that the graph I is
uniformly p-hyperbolic if icp,(I") := sug icp, (x) is finite. One can show:

xXe

Lemma 4.7 If I" is a graph of bounded valency with d-dimensional isoperimetry
and d > 2p, then I' is uniformly p-hyperbolic.

Proof First, recall that d-dimensional isoperimetry implies that the Green’s kernel
(ko 1= ) >0 P) where P} is the random walk distribution at times n starting at
the vertex o) has an £9(X)-norm (for some ¢ < p’ = %) which is bounded
independently from o.

Indeed, d-dimensional isoperimetry implies that ||P)'[lcc < kn~4/% (where
k € R comes from the constant in the isoperimetric profile; see Woess’ book [61,
(14.5) Corollary] for details). From there, one gets that || P}’ ||Z <P} ||Z_1 P <
4= 1n=4@=D/2 This implies that [[k,]l;, < 3,0k /4 n=4/%" (a series which
converges if d > 2¢q). B

Second, let f be a finitely supported function with f(0) = 1, then

(VI I Vko) = (f | V*Vko) = (f | 8o) = f(o) = L.
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Since [V 1, = [Vkoll (V£ | Vko). [Vkolly < 20lkolly < 20llkolly = 20"
(where v is the maximal valency of a vertex) and there is no dependence in o, this
means that icpp(F) < kq/2v.

Noting that, for the above, the conditions ¢ < p’ and 2g’ < d need to hold, one
gets that the bound holds as long as 2p < d. O

Remark 4.8 Pansu pointed out the following shortcut. The Sobolev (or Nash)

inequality corresponding to IS; and the exponent p is actually: for any finitely

supported function f and all p < d, || fll p« < K|V f|, (Where K depends only
d

on the constant in the isoperimetric proﬁle_ pand p). Consequently, inf{||V f|l¢rg |
f : X — Cis finitely supported and f(x) = 1} > % Hence icp,,(x) < K for any
x. So the graph is uniformly hyperbolic for any p < d. O

An amusing corollary is that, most of the time (i.e. if the isoperimetric dimension
of the graph is large enough), the p-Royden and p-harmonic boundaries are equal.
See [24, Corollary 5.10]. However, for our current purpose, only the corollary will
be required.

Corollary 4.9 Assume I' has 1Sy and that d > p. Then f € DP(I") represents a
trivial class in €7 H'(I") if and only if f is constant at infinity.

The proof is essentially the same as Proposition 4.5 and Corollary 4.6 above.
There are two very useful consequences of this result.
Note that for ¢ < p, DY(I") c DP(I'). This means that the identity map
1H Y -» PH "ryisa quotient map (since one quotients out by a larger
subspace in N_Hl ).

Theorem 4.10 Assume I has IS; and that d > p. Then, for 1 < q < p, the
natural quotient map Equ(F) — E”HI(F) is injective.

Proof According to Corollary 4.9 (or Proposition 3.1 if ¢ = 1), if there is a function
f eDi(I) suchthat [f] £ 0 € Eq_Hl (I"), then f is not constant at co. But since
f is not constant at infinity, Corollary 4.9 implies that f is not in the trivial class in
tPH L(I) too. Consequently, the map is injective. O

This is very effective in the realm of groups since:

* cither the group is nilpotent, and in that case Proposition 1.5 shows that £ H ')
is trivial for any p €]1, ool.

e or the group is not nilpotent, and in that case it has IS; for any d > 1. Hence
Eq_Hl(F) — EP_HI(F) is injective forany 1 < g < p.

This also shows that for any amenable group and for all p €]1,2], ¢2H ')
is trivial. Indeed, Cheeger & Gromov [12] showed that £2H : (I') is trivial for any
amenable group.

Theorem 4.10 is also counter intuitive if one thinks in terms of p-harmonic
functions. Indeed, there is a priori no reason to believe that the absence of non-
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constant p-harmonic function implies the absence of non-constant g-harmonic
function. These are different nonlinear equations.
Another powerful consequence of this result is

Theorem 4.11 Assume I' has a spanning connected subgraph I'' such that: T"'
has 1S4 and ¢P H'(I'') is trivial for some p < d. Then PHN (D) is trivial for any
q = p.

Proof 1t follows from the definition of IS, that I" has IS, too. Take any f € DY (I").
Then f € DP(I') too (since ¢ < p and there are less edges in I'’ so the norm of
the gradient can only be smaller). By Corollary 4.9 (applied to I''), f is constant
at infinity. But then Corollary 4.9 (applied to I") tells us that f must have a trivial
class in £4H' (I"). O

There are many applications of this simple fact. It can be used to show that many
wreath products and Cartesian products of graph have trivial £7 H ! for all p €
[1, oo[. In fact, the Cartesian product of any two groups G = G| x G has trivial
El’_Hl for all p € [1, oo[. See [22] for details.

4.3 Harmonic Functions

Harmonic functions come naturally into play not only because of the result of
Lohoué [37]. Because of the maximum principle, a harmonic function which is
constant at infinity is constant. Hence

Lemma 4.12 Assume I' has 1S,. Assume either that

o [ isvertex-transitive and d > p.
e ord > 2p.

If 2£DP (I") contains a non-constant harmonic function then £° H 1 (I'") is not trivial.

The reverse implication is essentially a question of Pansu [46, Question 6 in §1.9]
(Pansu restricts the question to groups which are not nilpotent). A short answer (and
the best to date) is “almost yes, because we lose a bit of regularity”:

Lemma 4.13 Let I be a graph with1S; and 1 < p < d/2. For any g € DP(I"),
there is a function g such that:

e g is harmonic.
e g is bounded if g is.
. g—gGE’(X)foranyr>df—’;p.

Proof 1t turns out g is in the most obvious function which could fit the bill. Indeed,
given g one can make it “more harmonic” by replacing the value at a vertex by the
average if its values at neighbouring vertices. Since harmonic functions are exactly
those which have the mean-value property, repeating this process infinitely many
times, one finds the desired function g.
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So, let R be the random walk operator, i.e. given a function g : X — R,
Rg(x) = Z g(y) (where N (x) are the neighbours of x). We want to show that
YEN(x)
g = lim R"g is a well-defined function with all the above properties. Actually the
n—0o0
two first properties are essentially automatic (if the limit converges even just in the
point-wise sense).

The operator R and its iterations R” are given by very simple kernels. Recall that
P! (y) is the probability that a simple random walk from x lands at y after n steps.
Then R"g(x) = Y P/ (»)g(y).

yeX
Write:

g—g=lim R'g—g=) (R*'g—Rg)=) R(R-1dg,

n—oQ N N
i>0 i>0

where Id is the identity operator. Let h = (R — Id)g, then h(x) is a finite average of
values of the gradient of g. Since g € DP(I") then i € £7(X). In fact ||A¢er(x) <
2(IVgliere).-

Since R' are operators defined by a kernel one may use Young’s inequality (see

e.g. Sogge’s book [57, Theorem 0.3.1]): forr > p and 1 + % = % + ql,

18 = glleron = [ (3 R)n <sup [ SR llencx
g —gllex (g ) o0 sup ; % ga oy 1P 0

< 2sup H Z P;
i>0

xeX

\% 0 () -
eq(X)” gller ey

We are done if one can show that sup || Z P;HM(X) < +oo for all ¢’ < d/2.
xeX
i>0
Indeed this would mean that g — g € £"(X) (for all r > di—gp). This shows the
convergence (and existence of g) and concludes the proof. '
Fortunately, there are very good estimates at hand for || P} || ¢s(x), which rely only

on isoperimetric profiles (see proof of Lemma 4.7). Indeed, if I" has IS, then
3K >0, Vx,yeX, P'(y)<Kn 92

Obviously [|P[l,1(xy = 1 (because it is a probability distribution). By Holder’s
inequality,

1 1/q’
12 llencey < IR PR

Hence ||Px(") leaxy < K'n=4/ 24’ uniformly in x, for some K’ > 0. The condition
2%/ > ] translates as g > dde. Plunging this in 1 + % = % + % yields r > %.
]



Harmonic Boundaries and ¢£”-Cohomology in Degree One 69

Theorem 4.14 If I" has 1Sy, p < % and q > di_p2p then (4,) = (1,).

Proof We will show the contrapositive. So assume —(1,), i.e. there is f € D”(I")
which is not trivial in £7 H'(I"). Then, by Lemma 4.2 one may assume f is actually
bounded (otherwise, consider some truncation of f). By Corollary 4.9, f is not
constant at infinity. By Lemma 4.13, there is a harmonic bounded function f which
differs from f by an element of £9(X).

Since £9(X) C co(X), f is not constant at infinity either and hence not constant.
Lastly, since V : £9(X) — ¢9(E) is bounded, f e DY(I").

To sum up f is not constant, bounded, harmonic and its gradient is in £9. So
f € B#DI(I"). This shows —(4,) as claimed. ]

The most effective application of Theorem 4.14 are the two following corollaries:

Corollary 4.15 Assume a graph has the Liouville property (i.e. there are no non-
constant bounded harmonic functions) and satisfies 1Sy for some d > 2. Then
ePH'(I) is trivial for any p < %

This is again very effective in the realm of groups since one may assume IS, for any
d. Also, there are many amenable groups which are known to have the Liouville
property (in some Cayley graph). Hence the previous corollary covers a lot of
amenable groups (for all p).

Corollary 4.16 Assume I" has 1Sq. If €° H' (I") is not trivial for some p < %, then
any graph quasi-isometric to I' has a non-trivial Poisson boundary.

As mentioned before, this contrasts with the fact that the triviality of the Poisson
boundary is not invariant under quasi-isometries.

5 Epilogue
5.1 Further Results

Let us summarise some of the results in the realm of groups. It is known that the
reduced £”-cohomology in degree one is trivial in degree 1 for the following groups
(1 < p < o00):

1. G has an infinite FC-centre (see Kappos [32, Theorem 6.4], Martin & Valette
[40, Theorem 4.3], Puls [52, Theorem 5.3], Tessera [59, Proposition 3] or [20,
Theorem 3.2])

2. G has a finitely supported measure with the Liouville property, i.e. no bounded
w-harmonic functions (see [21, Theorem 1.2 or Corollary 3.14]). This includes
all polycyclic groups (for such groups, see also Tessera [59])

3. G is a direct product of two infinite finitely generated groups (see [22, Corol-
lary 3]).
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4. G is a wreath product with infinite base group (see [22, Proposition 1] and Martin
& Valette [40, Theorem.(iv)]) unless the base group has infinitely many ends and
the lamp group is amenable. Arguments from Georgakopoulos [17] show that
this also holds for finite lamp groups (even if the base group has infinitely many
ends).

5. G is some specific type of semi-direct product N x H with N not finitely
generated (see [23] for the full hypothesis).

6. L”-cohomology can be defined for groups which are not endowed with the
discrete topology. Amenable groups can then be non-unimodular. For such
groups results of Tessera show the L”-cohomology in degree one is trivial, see
[59].

It is also trivial in any amenable group for any 1 < p < 2 (see [21] or Theorem 4.10
above ).
Lastly:

* (see [24, Corollary 1.3]) if G is finitely generated and there is a finitely generated
subgroup K so that (a) either £P H '(K) is trivial or K has an infinite FC-
centraliser, (b) K has growth at least polynomial of degree d > p, and (c) K
is not contained in an almost-malnormal strict subgroup of G, then £” H'(G) is
trivial.

* (see [24, Corollary 5.11] or Bourdon, Martin & Valette [6, Theorem 1.1)] for a
weaker version) if K < G is an infinite subgroup and ¢’ H!(K) = {0}, then
either £7 H'(G) = 0 or there is an almost-malnormal subgroup H < G so that
K < H.

In particular, Baumslag—Solitar groups also have trivial reduced £”-cohomology
for all p € [1, ool.

These last two can actually be interpreted as a trichotomy (resp. a dichotomy)
which resembles a result of Gaboriau [16, Théoreme 6.8] (in the case p = 2).
Gaboriau presents [16, Théoreme 6.8] as a generalisation of a result of Schreier
[16, ] after Théoreme 6.8 in §0]. Gaboriau’s result cannot be generalised to p > 2:
Bourdon in [3, paragraph 4) in §1.6] gives an example to this effect.

As for groups where the ¢7-cohomology is not trivial:

1. any hyperbolic group or relatively hyperbolic group has a pg so that £2 H'(G) is
not trivial for any p > po (see §2.2.2 for details).

2. there are torsion groups (of infinite exponent) for which £7 H'(G) is not trivial
for all p > 2. These groups have no free subgroups, yet are not amenable. They
do not have a finite presentation. See Osin [42].

However, there are acylindrically hyperbolic groups for which ¢ H' is trivial for all
p € [1, oo[ (see §2.2.2 for details).

As for graphs it is easy to construct graphs which are amenable and have non-
trivial £ H ! Indeed, take any graph I" which has IS, for some d > 2 and more

than two ends. By Proposition 3.1, EIHI(F) is not trivial. By Theorem 4.10, for
any p € [1, %[, EPHI(F) is also non-trivial.
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To make the example slightly more specific, take two copies of a Cayley graph of
some group which is amenable but not nilpotent. Join these two copies by an edge.
Then it fits the description of the previous paragraph and has IS, for any d.

5.2 Questions

It was shown in §3 that the reduced £'-cohomology in degree one identifies to the
space of functions on the ends modulo constant functions. This is an isomorphism
of vector space, but the norm on the space of functions is probably related to how
“large” the ends are and how they are connected.

Question 5.1 Describe the norm on the vector space ¢'H 1(1") ~ N =
Re"s(D) /constants.

A question dating back at least to Gromov [28, §8.A1.(A2), p.226]:

Question 5.2 Let G be an amenable group, is it true that for one (and hence all)
Cayley graph I’ and all 1 < p < oo, PHY (M) =07

The original question concerns cohomology in all degrees.

Of course, this brings up the question what should be the cohomology of a graph
in higher degree. The only results (beyond Cheeger & Gromov [12]) are those of
Kappos [32] (in the discrete case) and those of Bourdon & Rémy [8], Pansu &
Rumin [50], and Pansu & Tripaldi [51] (in the continuous case).

One of the problems is that there are many possibilities (and that unlike in
degree one, they do not coincide). The simplest possibility pops up in the case of
groups. One considers the left-regular representation on £7 (G). There are standard
definitions to speak of the cohomology of this representation in higher degree.

Another simple definition is in the continuous set-up (i.e. the cohomology of
manifolds). We dealt almost exclusively with the case of graphs, but for manifolds
£P-cohomology in degree k can be defined as “(k — 1)-forms w so that dw €
LP>/“(k — 1)-forms w in LP”.

In the case of graphs (which are not necessarily Cayley graphs), one possibility
(for degree two) is to look at the space of cycles C. There are some technicalities
in finding the reasonable (e.g. countable) basis of this space so as to make it
tractable. For example, in the Cayley graph of a group with a finite presentation,
the presentation gives a good basis for the space of cycles. One can then define the
“rotational” as follows: if ¢ is a[n oriented] cycle given by following the oriented
edges ej, ..., ¢, and g is a function on the edges, then rotg(c) = )_; g(e;).
Assuming the rotational gives a bounded operator (in the case groups, this amounts
to the fact that the presentation is finite), a possibility for the cohomology in degree
two is then given by taking the quotient “functions on the edges with rotational in
£P (C)”[“functions which are in £7 (E)”.
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Question 5.3 Given a Cayley graph of a finitely presented amenable group, are the
triviality of both definitions above equivalent? invariant under quasi-isometry? for
which class of groups are they trivial?

Elek [15] showed that the following three definition of £”-cohomology coincide
for groups which possess a finite K (7, 1):

— the coarse £”-cohomology of finitely generated groups defined by Elek himself
in [15];

— the singular ¢”-cohomology for any countable group defined as the £2-
cohomology from Cheeger & Gromov [12];

— Pansu’s asymptotic L?”-cohomology defined for any measured metric space (see
[45]).

Note that Pansu’s definition can also be used for graphs (in degree two, it should
coincide with the definition given above using the rotational).

Here is a conjecture motivated by Osin [43, Problem 3.3] (do £>H ! (I') # 0 and
finite presentation imply acylindrically hyperbolic)

Conjecture 5.4 Assume I is a torsion-free finitely presented group. If, for some
p €]1, oo, PHY(IN) # {0} then I" contains a free subgroup (of rank 2).

One could also strengthen the hypothesis to “finite K (I, 1)”. Osin [42] showed that
there are (non-amenable) groups without free subgroups (in fact, infinite torsion
groups), whose reduced £2-cohomology in degree one is not trivial.

Note that these groups also show that groups whose £”-cohomology is not trivial
can have a trivial Floyd boundary (a natural question coming from Puls [54]).
Indeed, Karlsson [33] showed that groups with a non-trivial Floyd boundary contain
free subgroups.

The next step for a positive answer to question 5.2 would be:

Question 5.5 If G is a finitely generated solvable group, does ¢ H LG) = {0} for
anyl < p < o00?

Already the metabelian (derived length 2) case is not clear. In fact the special
case “locally nilpotent not finitely generated”’-by-Abelian would probably suffice
to answer the question.

An interesting strengthening of Question 5.2 is

Question 5.6 Can an amenable group have a Cayley graph with a non-constant
harmonic function with gradient in co?

The case of nilpotent group (more generally, groups with an infinite centre) is
already treated in [25, Proposition 1.5 and Lemma 2.7].

Note that this is not the same thing as reduced cp-cohomology in degree one. In
fact, it is not too hard to see that reduced co-cohomology in degree one is always
trivial, while reduced £°°-cohomology in degree one is never trivial.
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As mentioned in Corollary 4.16, ¢ H Y(I") can be a great way to see that some
harmonic functions may not disappear after a quasi-isometry. However, because
there is a small loss in the exponent in Theorem 4.1, the following remains open:

Question 5.7 Are there two graphs I' and I"' which are quasi-isometric but so that
HFDP (I') contains only the constant function, while ¢DP (I'') contains more than
Just these functions? In other words, is the triviality of D" invariant under quasi-
isometries?

The same question could be asked with B#D? (with the chance of a negative answer
being higher).

In a similar vein, one could ask, in the spirit of a question of Pansu [46,
Question 6 in §1.9], whether there is a harmonic function in each equivalence class
of ¢PH 1(G). The uniqueness up to a constant can be easily obtained: if /; and
hy are two such functions, then | — hy is harmonic and belongs to the trivial
class; by Corollary 4.9, h| — h; is harmonic and constant at infinity, hence constant
everywhere.

The referee pointed out the following interesting question, related to Corol-
lary 4.16:

Question 5.8 When (i.e. for which groups and which p) can the £P-cohomology
be used to define a boundary of the random walk (i.e. a quotient of the Poisson
boundary)?

In the hyperbolic set-up, this question should admit a positive answer. Indeed,
Bourdon & Pajot [7] showed that when p is larger than the conformal dimension
of the boundary, functions in different cohomology classes can separate points on
the boundary. It is to be expected that the Gromov boundary is a quotient of the
p-harmonic boundary (see Puls [55])

Simple cases of groups which are not hyperbolic but have non-trivial [reduced]
£?P-cohomology are groups of the form Z" x Z™ withn +m > 3 (and m,n > 0).
To see that the £7-cohomology is non-trivial for any p € [1, oo[, note that there are
infinitely many ends and use the embedding of ¢” H Vin L1H ! for p < q;to see that
it is not hyperbolic, use the fact it contains Z? as a subgroup.

Let me conclude with a technical question:

Question 5.9 [f I' is the Cayley graph of a group, can one relax the condition
p< % in Lemma4.13top < d?

Indeed, Proposition 4.5 shows that the second condition is sufficient. Note that
the condition p < % of Lemma 4.13 comes from the same estimates as those of
Lemma 4.7 (which themselves do not really require p < %, see Remark 4.8).

On the one hand, the proof of Lemma 4.13 uses very crude estimates, so an
improvement seems likely. On the other hand, one really looks for an estimate on
the functions 7, € RE on the edges so that V*r, = §, — P;. For p = 2, the
only point where an improvement might occur is to avoid the triangle inequality (as



74

Tn

A. Gournay

= V(Z:l'-’z_o1 P)ﬁ) is the function minimising the £2 E-norm). For other p, there

might be more room for improvement.
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Polyharmonic Functions for Finite )
Graphs and Markov Chains e

Thomas Hirschler and Wolfgang Woess

1 Introduction

In the setting of the classical Laplacian A on a Euclidean domain, or the Laplace-
Beltrami operator on a Riemannian manifold, a polyharmonic function f is one
for which A" f = 0. Their study goes back to work in the 19" century, see,
e.g., ALMANSI [1]. A basic reference is the monograph by ARONSZAJIN, CREESE
AND LIPKIN [3]. A more recent one is the volume by GAZZOLA, GRUNAU AND
SWEERS [8], with a nice introduction to classical problems from elasticity where
polyharmonic (in fact biharmonic) functions and A% come up.

While there is a huge body of literature in the smooth case, the literature in
the discrete setting is quite restricted: an early reference is VORONKOVA [14], who
analysed the discretised version of A2f = 01in a half-strip [0, oco] x [0, H]. Other
quite early references are YAMASAKI [16] and KAYANO AND YAMASAKI [10]
who investigated the Green kernel for the bi-Laplacian on an infinite network,
and a follow-up of this is VENKATARAMAN [13]. Biharmonic Laplacians on trees
where also studied by COHEN, COLONNA AND SINGMAN [6, 7], seemingly without
link to [16] and [10]. Prior to that, COHEN, COLONNA, GOWRISANKARAN AND
SINGMAN [5] were the first to undertake a detailed study of polyharmonic functions
on infinite, locally finite trees. In particular, for the standard Laplacian arising
from simple random walk on a regular tree, they provided a boundary integral
representation which is an analogue of Almansi’s expansion of polyharmonic
functions on the unit disk. (To get a flavour of the many close analogies between
the potential theory of the unit disk and regular trees, the reader is invited to the
introductory sections of BOIKO AND WOESS [4].) Recently, PICARDELLO AND
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WOESS [12] extended the study of [5] and proved, among others, a boundary
integral representation of A-polyharmonic functions (see below for more details) for
arbitrary nearest neighbour transition operators on countable trees, not necessarily
required to be locally finite.

In all this work, finite graphs, resp. Markov chains had only marginal appear-
ances: in [16] for the biharmonic Green function of finite subnetworks of an infinite
network, and in [5] for finite trees and an associated boundary value problem for
biharmonic functions. ANANDAM [2] also studies polyharmonic functions on finite
subtrees of infinite trees.

In the present note, we elaborate a detailed account of the general finite case, in
which the mentioned potential theoretic questions turn into issues of linear algebra
which can be solved rather easily.

The setting. We start with a finite set X, subdivided into the disjoint union of
two non-empty subsets X, the interior, and 9 X, the boundary. On X, we consider

a stochastic transition matrix P = (p(x, y))_ yex With the following properties,

where p™ (x, y) denotes the (x, y)-entry of the matrix power P".

(i) Forall x € X?, there is w € 38X such that p (x, w) > 0 for some .
(i) For all w € 90X, we have p(w, w) = 1, and thus p(w,x) = 0 for all x €
X\ {w}.
(iii) For all w € 8X, there is x € X? such that p (x, w) > 0 for some n.

Thus, X can be given the structure of a digraph, where we have an oriented
edge x — y when p(x, y) > 0. Then (i) means that the boundary can be reached
from any interior point by an oriented path, (ii) means that each boundary point is
absorbing, i.e., the only outgoing edge is a loop at that point and (iii) means that
every boundary point is active in the sense that it is reached by some oriented path
from an interior point. In probabilistic terms, we have a Markov chain (random
process) on X, whose evolution is governed by P : if the current position is x, then
the next step is from x to y with probability p(x, y).

Example 1.1 The most typical situation is the one where we start with a finite
resistive network, that is, a connected, non-oriented graph (X, E) where each edge
e = [x,y] = [y, x] carries a positive conductance a(e) = a(x,y). Then we
choose our partition X = X° U dX, and we set m(x) = Zy a(x, y). The transition
probabilities become p(x,y) = a(x,y)/m(x), if x € X° and y € X, while
p(w, w) = 1 forw € 9X. This defines a reversible Markov chain which is absorbed
in 0X, see, e.g., WOESS [15, Ch. 4]. In particular, setting all a(x, y) equal to 1, the
conductances correspond to the adjacency matrix.

The transition matrix P acts on functions (column vectors) f : X — C by

Pfx) =) px,NfG),
y
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and the (normalised) graph Laplacian is I — P, where I = Iy is the identity matrix

over X. It is typically defined on X without assigning a boundary d X, but the study

undertaken here makes sense only in presence of absorbing points. Note that the

more direct analogue of the (negative definite) smooth Laplacian would in reality be

P — 1. More generally, we shall work with suitable variantof A - I — P for A € C.
A A-harmonic function h : X — C is one for which

Ph(x) = Lh(x) forevery x e X°. (1.2)

When A = 1, we speak of a harmonic function. When speaking of A-polyharmonic
functions of order n, we have two possible approaches: one is to look for functions
f : X — C which satisfy

A-I—P)'f=0 on X. (1.3)

These global \-polyharmonic functions can be easily described.

The more interesting version is related with the pre-assignment of boundary
values. Let Pxo and Q be the restrictions of P to X? x X and X° x 9 X, respectively.
Then we define the A-Laplacian as the matrix given in block-form by

A-Ixo — Pyo — A-Ixe O
Ay = xo = Pxe —Q) _ X —P. (1.4)
0 0 0 Iy

where the Os stand for the zero matrices in the respective dimensions. Here, the
identity matrix over d X is not multiplied by A, so that functions annihilated by A
are A-harmonic only in X°.

Our main focus is on polyharmonic functions in the sense that they satisfy

Alf=0 (1.5)

on X, or — more reasonably, as we shall see — on the “n-th interior” of X, i.e., all
points in X from which d X cannot be reached in less than n steps. When A = 1,
the two notions (1.3) and (1.5) coincide.

This note is organised as follows. In Section 2, we first consider ordinary
harmonic and polyharmonic functions, that is, the case A = 1. After recalling
the well-known solution of the Dirichlet problem for harmonic functions with
preassigned boundary values (Lemma 2.2), we explain why all global harmonic
functions in the sense of (1.3) (with A = 1) are indeed harmonic (Proposition 2.6).
Then we look at all global A-polyharmonic functions as in (1.3). In this case, A must
belong to the spectrum of Pxo, and the solutions can be described in terms of a
Jordan basis (Proposition 2.7).

In Section 3, we turn to studying A, and its powers, for A in the resolvent set
of Pyxo (the spectrum being settled in Section 2). There is a direct analogue to the
solution of the Dirichlet problem, and again, any function which satisfies A} f =
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0 on all of X must be A-harmonic (Proposition 3.2). Finally, we give the precise
formulation of the Riguier problem, which consists in assigning boundary functions
g1, ..., 8n and —loosely spoken — searching for a function f such that the boundary
values of A;_l f coincide with g, for r = 1, ..., n. That problem for the special
case of finite trees is briefly touched in [5]. Here, we provide the general solution
(Theorem 3.4).

Finally, in Section 4, we undertake a comparison of those results with the case
of infinite trees without leaves, which was studied recently in [12] by use of Martin
boundary theory.

All results of this note are achieved by applying basic tools from Linear Algebra
in the right way. We believe that this material provides a useful basis, firstly as a
link to the classical, smooth case (regarding the Laplacian on bounded domains),
and secondly, as a basis for handling and understanding polyharmonic functions not
only on infinite trees but also on more general infinite graphs and their boundaries
at infinity.

2 The Dirichlet Problem and Global A-Polyharmonic
Functions

We start with some observations on the case A = n = 1, that is, ordinary harmonic
functions. We start with a simple observation on spec(Py-), the set of eigenvalues
of P Xo.

Lemma 2.1 The spectral radius p = p(Pxo) = max{|A| : A € spec(Pxo)}
satisfies p < 1.

Proof (Outline) Condition (i) on P implies that for each x € X, there is n such
that Zv exo p(") (x,v) < 1, that s, P}”(,, is strictly substochastic in the row of x. One
easily deduces that there is m such that Py, is strictly substochastic in every row,
which yields the claim. (|

The following solution of the Dirichlet problem is folklore in the Markov chain
community; see, e.g., [15, §6.A]. It keeps being “rediscovered” by analysts who
deviate into the discrete world, see, for example, KISELMAN [11].

Lemma 2.2 For every function g : dX — C there is a unique harmonic function h
on X such that hlyx = g. It is given by

h(x) = Y Fx,w)gw),

wedX

where F (x, w) is the probability that the Markov chain starting at x hits X in the
point v.
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We next want to describe the kernel F(x,w) in matrix terminology. Let
res(Pxo) = C \ spec(Pxo) be the resolvent set of Pxo. For A € res(Pxo), the
resolvent is the X° x X?-matrix

G = (G(x, yv) = (A~ Ixo — Pxo)™ L. (2.3)

x,yeX?

The kernels G (x, y|1) are called Green functions. They are rational functions of A.
Now we define the X° x 9 X-matrix

F() = (F(x, wlb) cyo peyy = GO 0. (2.4)

We can extend it to X x dX by setting F (v, w|A) = 8, (v) for v, w € 3X. When
A =1, wejust write G(x, y) for G(x, y|1) and F (x, w) for F(x, w|l). For |A| > p,
we can expand

o o
GG, ylv) =Y p™ @, /A" and  Fex,wlh) =) fP @, w)/A",
n=0 n=0

where the probabilistic meaning is that for the Markov chain starting at x, the
probability to be at y at time n is p™ (x, y), while £ (x, w) is the probability
that the first visit in w € dX occurs at time 7.

Coming back to the Dirichlet problem, it is a straightforward matrix computation
to see that the function /4, as defined in Lemma 2.2, is harmonic. Its uniqueness
follows from invertibility of (Ixo — Pxo). Instead, it may also be instructive to
deduce uniqueness from the potential theoretic maximum principle: every real-
valued harmonic function attains its maximum on 0 X, see [15, §6.A].

This also yields one way to see that the Markov chain must hit the boundary
almost surely, that is,

Z F(x,w)=1 forevery x € X°.
wedX

Namely, the unique harmonic extension of the constant boundary function g = 1 is
the constant function 7 = 1 on X. Also, the function x +— F(x, w) provides the
unique harmonic extension of the boundary function g = 1,,.

Corollary 2.5 The geometric and the algebraic multiplicity of the eigenvalue ). = 1
of P coincide and are equal to |0 X|.

Proof Lemma 2.2 yields that the geometric multiplicity is |0 X |. The characteristic
polynomial of the matrix P is

xp(W) =det(- I — P) = (. — DXy po ().

By Lemma 2.1, ypo(1) # 0. O
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Now we can easily describe all free polyharmonic functions of order n > 1, that
is, those which satisfy (I — P)" f =0on X.

Proposition 2.6 A function f : X — C satisfies (I — P)" f = 0if and only if f is
harmonic.

Proof Suppose n > 2, and let h = (I — P)"~! f. Then h is harmonic, and (I —
P)f = h. Since (I — P)”’lf = 0 on 90X, the function & solves the Dirichlet
problem with boundary values 0. Therefore 7 = 0, that is, (I — P)"~'f = 0.
Proceeding by induction, we obtain that f is harmonic. U

Similarly, we can handle the case (A - I — P)" f = 0, when A # 1. First of all,
when n > 2 then the function 7 = (A - I — P)”_lf satisfies Ph = X - h. Second,
we see that f = 01in dX, so (by abuse of notation) we consider f as a function on
X, In other words, A € spec(Pxo).

Let «k = «(A) and u = wu(X) be the algebraic and geometric eigenvalue
multiplicities of A. Let A1, ... , h, be a basis of ker(A - Ixo — Pxo). For each j €
{1,..., u}, let k; be the length of the associated Jordan chain (= dimension of the
associated Jordan block in the Jordan normal form). That is, k1 + - - - 4+, = «, and
we have functions fj(k), k=1,...,«; such that f;l) =hjand (A-Ixo —Pxo)fj(k) =
f j(k_l) for k > 2. All those functions are extended to X by assigning value 0 on 0X.

Then it is clear that {fj(k) ck=1,...,«;, j=1,..., u} is a basis of the linear
space of all global A-polyharmonic functions (of arbitrary order). We subsume.

Proposition 2.7 With the above notation, for . € Spec(Pxo), the space of
functions f : X — Cwith (A -1 — P)" f = 0 is spanned by

{fj(k):k:l,...,min{n,/cj}, j:l,...,,u}.

Corollary 2.8 For a finite network with boundary as in Example (1.1), every
global \-polyharmonic h function satisfies Ph = A - h, and A € spec(P) C R.
Furthermore, h vanishes on X when A # 1.

Proof 1f we define the diagonal matrix M = diag(«/m(x) )xeX"’ then M Pxo M~!
is symmetric, so that the spectrum is real and the geometric and algebraic multiplic-
ities of the eigenvalues of Pxo coincide. t

3 Boundary Value Problems for A-Polyharmonic Functions

In this section, we assume that A € res(Pxo) and study the operator (resp. matrix)
A, of (1.4) and its powers.
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Notation: in accordance with the block form used above, for any function f :
o

X — C we write f = (;a), where f° = f|xo and f? = f|3x . Also, we write

A{ for the restriction of the matrix of (1.4) to X x X, that is, Aif = (A f)°.
First of all, there is an obvious A-variant of the solution of the Dirichlet problem.

Lemma 3.1 Let A € res(Px,). For every function g : 0X — C there is a unique
A-harmonic function h on X such that hlyx = g. It is given by

h(x)= Y F(x,wlMgw), xeX°,
wedX
where F(x, w|)) is defined by (2.4).
o
Proof We write h = (l?g
Then the equation A, = 0 transforms into

), where h° = h|x0 and g is the given boundary function.

(A - Ixo — Pxo)h’ = Qg

which has the unique solution #° = G(1) Qg , as proposed. O

Next, we note that

Al =

(A - Ixo — Pxo)" —(A-1Ixo — Pxo)""1Q
0 0 '

o

Thus, if we look for a solution of A’;h = 0 then with h = (h

g ) as above, we get

the equation
(A Ixo — Pxo)"h® = (A - Ixo — Pxo)" ' Qg
which has the same solution as in Lemma 3.1. Thus, we have the following general

version of Proposition 2.6.

Proposition 3.2 A function f : X — C satisfies A} f = 0 on all of X if and only
if f is A-harmonic.

For n > 2, what is more interesting is to assign further boundary conditions.
Recall that A, f always vanishes on dX. The analogue of the Dirichlet problem is

the Riquier problem of order n. We assign n boundary functions g1, ..., g, : X —
C and look for a function f : X — C such that we have a “tower” of boundary value
problems for functions f, , fu—1,..., fi = f : X — C as follows:

Iy

f,:(g), ASfu=0, and Af =fC, for r=n—1,n-2,...1.
' (3.3)
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Theorem 3.4 For 1 € res(Pxo), the unique solution f = f1 of (3.3) is given by

f) =) [6G0) Qg ]®), x € X,
r=1
where G(L)" is the r-th matrix power of G(A).

Proof We use induction on n. For n = 1, this is Lemma 3.1. Suppose the statement
is true for n — 1. The function f; is the solution of the Riquier problem of order
n — 1 for the boundary functions g3, ..., g,. By the induction hypothesis,

n

A=) [6 Qg ]kx), xeXx’,

r=2

and this is the unique solution. The last one of the “tower” of Equations (3.3) is

0 0 fo
Ay f=f,, where f=(g1>.
This can be rewritten as

()‘_.Ixo —qu)fo— le :fZO

Inserting the solution for f; and multiplying by G(), we get the solution for f,
and it is unique. O

Note that the solution f does not satisfy (1.5) on all of X°. This is due to the fact
that our discrete Laplacian is not infinitesimal. Let

"X ={xeX: p(k)(x, w) > 0 forsome w € 9X and k <n — 1}, 3.5)

the set of all points in X from which dX can be reached in n — 1 or less steps. Then
A" f = 0 only on the n-th interior X \ 3" X, while the values on 9" X depend on the
boundary functions g1, ..., g, -

The functions A — G(x, y|A) are rational, and the union of the set of their
poles is spec(Pxe). For A € res(Px0), we can differentiate the identity A - G(A) —
P G()) = Ixo k times, and Leibniz’ rule yields

(A-Ixo — Pxo) GV ) = —k -GV,
where G (1) is the (elementwise) r-th derivative of G() with respect to A. From
this, we get recursively for the matrix powers of G(1)

-1 r—1
Goy =

T GrYm). (3.6)
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We can insert this in the formula of Theorem 3.4 for an alternative form of the
solution of the Riquier problem.

4 Comparison with the Case of Infinite Trees; Examples

We now want to relate the preceding material, and in particular Theorem 3.4, with
the potential theory of countable Markov chains, and more specifically, with Martin
boundary theory and A-polyharmonic functions on trees, as studied in [12]. We
choose and fix a reference point (origin) 0 € X° and consider the rational functions
A+ F(o,w|A) of (2.4) for A € res(Pxo) and w € dX. They have (at most) finitely
many zeros. Let

res*(Pxo) = res(Pxo) \ {A : F(o, w|A) = 0 for some w € 3X}.

Every positive real A > p(P) belongs to res*(Pxeo), in particular, . = 1. For
A € res*(Pxo), we define the A-Martin kernel

F(x,w|))

KX (x, wr) =
F(o, w|A)

, xeX, weodX. 4.1)

The function x — K (x, w|A) is the unique solution of the A-Dirichlet problem
of Lemma 3.1 with value 1 at the root o and the boundary function g, proportional
to 8y , that is, g, (v) = 8y (v)/F (0, w|A). Thus, for a generic boundary function
g : 30X — C, we can write the solution of the A-Dirichlet problem for x € X as

h(x) = Z KX (x, wihv(w) =: / K(X)(x, -IM)dv (x € X°), where
wedX X

v(w) = g(w) F(o, w|)).
4.2)
The integral notation indicates that we think of v = v, as a complex distribution
on 9 X. In the same way, the solution of the Riquier problem in Theorem 3.4 can be
written as

n
fx) = Z/ KX (x,-|A)dv,, where for w e dX
r=179% (4.3)

KX wh) =60 'K, wia) and v (w) = g, (w) F(o, w|A).

Now let us look at the case of a nearest neighbour transition operator P = Pr on
a countable tree T without leaves (i.e., vertices distinct from o have more than just
one neighbour): there, the geometric boundary is attached to the tree “at infinity”,
and there is no “interior” of T which appears as a subset of the vertex set: the interior
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is T itself. The Martin kernel K 7)(x, &|1) is defined for x € T and & € 9T, and it
satisfies (A - I — P)KD (., &|1) = 0, without any restriction to a sub-matrix such
as Pyo . In this setting, [12, Thm. 5.4] says that any A-polyharmonic function f of
order n on T has a unique representation of the form

n
fx) = Z/ KD (x,-1x)dv,, where
r=1 aT

4.4)
-1 r—1
1) (=D d
KD 60 = 5y g Ko glh) - (e T, g eaD),
and vy, ..., v, are distributions on d7. The normalisation is slightly different here
from the one chosen in [12], and in particular,
(- Ir — PRKD (L E1) = K (L €10 for r>2. 45)
Let us compare the kernels K,(X) and K,(T). We have
(A Ixo — Pxo) LK win) = KE(,wlr) for wedX, and
- Ir = P T KD (g = KD g0 for £ €T,
(4.6)

The only, but crucial difference is that in the first of the two identities, we may
multiply from the left by G (1)"~! = (A Ixo — Pxo)~ "~V In the second identity,
we may not multiply by GD )1, where G (L) = (A - It — Pr)~ ! is the
resolvent of P as an operator on the Hilbert space 02(T, m), with the weights m(x)
analogous to Example 1.1 above. Indeed, K 7 (-, £|1) does in general not belong to
(T, m).

“Forward only” Laplacians on finite and infinite trees

We now consider a class of examples which constitute the finite analogue of
[12, §6]. They were also studied, from the viewpoint of Information Theory, by
HIRSCHLER AND WOESS [9].

In order to carry the above comparison with the infinite case a bit further, we need
some more details on the geometry of an infinite tree 7 with root 0. We assume that
T is locally finite and has no leaves. Each vertex x # o has a unique predecessor
x~, its neighbour which is closer to 0. For each x € T there is the unique geodesic

path w(o,x) = [0 = Xx0,X1,...,%, = x] from o to x, where x, = x;_ for
k=1,...,n. Inthis case, |x| = n is the length of x.

The boundary at infinity 07 of T consists of all geodesic rays & = [0 =
X0,X1,X2,...], where x,7 = xx_1 for k > 1. For a vertex x € T, we define

the boundary arc

0xT ={£ € 0T : x € &}.
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The collection of all 0,7, x € T, is the basis of a topology on d7, which thus
becomes a compact, totally disconnected space, and each boundary arc is open and
compact. We now take a Borel probability measure P on 97 which is supported by
the entire boundary, that is, P(d,7) > 0 for all x € T. It induces a forward only
Markov operator on 7', as follows:

P(3,T)/P(0,T), if y~=x,

, otherwise.

px,y) = 4.7)

Conversely, if we start with transition probabilities p(x, y) such that p(x,y) > 0
precisely when y~ = x, then we can construct P on 9, 7' by setting

P(0xT) = p(o, x1) p(x1,x2) - p(xp—1,%x), if
m(o,x)=[0=x0,X1,...,X, = X].

This determines [P on the Borel o -algebra of 97 .
More generally, a distribution on 9T is a set function

V:{orT :x €T} —> C with v(0,T) = Z v(0yT) forall xeT.

yiyT=x
4.8)

If v is non-negative real, then it extends uniquely to a Borel measure on 97.
A locally constant function ¢ on T is one such that every & € 97T has a
neighbourhood on which ¢ is constant. Thus, one can write it as a finite linear
combination of boundary arcs

m
$= Zc-/ Loy
j=1

and we can define

m

/ odv = ch v(@x()T) -
oT

j=1

Indeed, in this way, the space of all distributions is the dual of the linear space of all
locally constant functions on 97 .
Now take A € C \ {0}. Following [12, §6], the A-Martin kernel on T is

AP@TY, if £ €0, T,

, otherwise.

KD (x, &0 = {
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For fixed x, the function £ — K @) (x, &|)) and its derivatives with respect to A
are locally constant, whence they can be integrated against distributions on d7.
According to (4.4), we get

1
11 )Lxl(rl)< x| ) , if £ €0,T,
=D r—1)P,T) § 4.9)

0, otherwise,

K (x, &) =

and every A-polyharmonic function of order n on 7 has a unique representation

“ x| \ v (8, T)
— 1y~ 1= rAvY , 4.10
f@) ; ) ) Pan (4.10)
where the v, = v,(T) (r =1,...,n) are distributions on 97 .

We now consider the finite situation. The graph X under consideration is a finite
subtree of T with the same root 0. The boundary consists of the leaves of the tree:

X={weX:w#o, dg(w)=1}.

We suppose that 0X is a section of T in the sense of [9]: For every & € 9T, the
geodesic ray starting from o that represents £ intersects d X in a unique vertex. (A
typical special case is the one where 0X = {x € T : |x| = L} with L € N.) For
each x € X, we define the finite version of the boundary arc rooted at x as

X ={w e adX :x € m(o, w)}.
In particular, 9,X = 90X, and 9, X = {w} for w € 9X.
We consider the restriction to X of the given forward transition matrix Py on 7.
That is,
px(x,y) =P@,T)/P@,T), if y~ =x € X° and px(w,w)=1 if we X,

while px(x, y) = 0 in all other cases. Exactly as on the whole tree, we have for
x,yeX

P (x,y) >0 < x emnlo,y)andn =|y| —|x],

andthen p™(x,y) =Pd,T)/P(3,T).
The matrix Pyxo is nilpotent, so that spec(P) = {0, 1}, and the algebraic

multiplicities of those two eigenvalues are |X°| and |0 X|, respectively. For A €
C\ {0} = res(Px0) and x, y € X°, we have
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ATAEDTIP@,T) /RO, if ),
G(X,yl)»)z{o @,T)/P(3,T), if x em(o,y)

, otherwise.
Therefore in this example, the right-hand side of (3.6) is obtained by

(_l)r—l
r—1n!

dx,y)+r—1

G(r—l)(x y|A) = 4@ y)=r <
' r—1

) P@yT)/P(0T),

if x € m(o,y). We note that res*(Pxo) = res(Pxe) and that F(o, w|A) =
AP, T) for w € dX. We can now compute the kernels Kr(x) of (4.3) as
follows:

| =r1 (d(x’ wy+r - 2) 1 rwear
KX (x, wr) = r—1 P(3xT) " o
0, otherwise.
4.11)
Then, given boundary functions g1, ..., g, , the associated solution of the Riquier

problem reads
n

f(x):Z/ KXW, - 0)dv®,  with v (w) =17 g, (w)P@®,T).
r=1 X

Now consider (4.6) and the fact that Pxo is the restriction of Pr to X°. In spite
of this, when n > 2 we see that for w € 90X, the function x K,EX)(x, w|A)
is not the restriction to X° of x — K,(IT)(x, &|L), where & € 9, X. (The value is
the same for every such &, when x € X°.) For a closer look, fix £ € 9,,T and let

fx) = K,ST) (x, &|A) for x € X. This function solves the Riquier problem on X
with boundary functions
_
gr) =K, |, (w,§[A) (), veIX,

or, equivalently, with boundary measures on 9 X

—f lwl
UrgX) = (_)‘)n r(n _ Ow -

Indeed, verification of
n
KD (x, E10) = Z/ K (x, - 1) dv®
r=1 aX

leads to known combinatorial identity
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Wi\ N (= = =2\ [ wl
() =2 (L))

in which |w| and |x| can be arbitrary integers with |w| > |x| > 0.
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1 Introduction: The Model and the Main Results

On R, consider a Poisson point process d u(w) of intensity . Let (xx (w))kez denote
its support (i.e., du(w) = Z 8. (w))» the points being ordered increasingly.
keZ
On Lz(R), define the Luttinger-Sy or pieces model (see e.g. [13, 14]), that is, the
random operator

_ D
Ho =@~y n
keZ

where, for an interval 7, —Al? denotes the Dirichlet Laplacian on /.
Pick L > Oandlet A = Ay = [0, L]. Restrict H,, to A with Dirichlet boundary
conditions: on §) := L2(A), define

This work is partially supported by the grant ANR-08-BLAN-0261-01. The authors also
acknowledge the support of the IMS (NU Singapore) where part of this work was done. FK.
thanks T. Duquesne for his explaining the Palm formula.

F. Klopp (P<)

Sorbonne Université, Université Paris Diderot, CNRS, Institut de Mathématiques de Jussieu -
Paris Rive Gauche, F-75005 Paris, France

e-mail: frederic.klopp @imj-prg.fr

N. A. Veniaminov

CEREMADE, UMR CNRS 7534, Université Paris IX Dauphine, Place du Maréchal De Lattre De
Tassigny, F-75775 Paris cedex 16, France

e-mail: veniaminov @ ceremade.dauphine.fr

© Springer Nature Switzerland AG 2020 91
N. Anantharaman et al. (eds.), Frontiers in Analysis and Probability,
https://doi.org/10.1007/978-3-030-56409-4_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56409-4_5&domain=pdf
mailto:frederic.klopp@imj-prg.fr
mailto:veniaminov@ceremade.dauphine.fr
https://doi.org/10.1007/978-3-030-56409-4_5

92 F. Klopp and N. A. Veniaminov

HoL)=HoM) = O D (1D
ke —1<k<ks

where we have defined Ag (@) := [xx(w), Xk+1(w)] to be the k-th piece and we have
set

k_ =min{k; xy > 0}, x__1 =0,

ki =max{k; xy < L}, x .41 =0L.

From now on, we let m(w) be the number of pieces and renumber them from 1 to
m(w) (i.e., k- = 2 and k. = m(w)). For L large, with probability 1 — O (L™°°),
one has m(w) = uL + O(L*?).

The pieces model admits an integrated density of states that can be computed
explicitly (see Section 2.2 or [13, 20]), namely,

#{eigenvalues of H, (L) in (—oo, E]}

B = i ;
(1.2)
= M1E>O Where eE — L
1 —exp(—ulg) = - JVE

1.1 Interacting Electrons

Consider first n free electrons restricted to the box A in the background Hamiltonian
H,(A), that is, on the space

H(A) =9"(AL) = [\ LX(A) = L2(A"), (1.3)
j=1

consider the operator

n
Hg(A,n)=215®...®1,\3®Hw(A)®15®...®15. (1.4)

. — N——

=1, | times n—i times

This operator is self-adjoint and lower semi-bounded. Let Eg(A, n) be its ground
state energy and ‘llg(A, n) be its ground state.

To Hg(A, n), we now add a repulsive finite range pair interaction potential.
Therefore, pick U : R — R satisfying

(HU): U is arepulsive (i.e., non-negative), even pair interaction potential decay-
ing sufficiently fast at infinity. More precisely, we assume
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+oo
x3/ U(t)dt —> 0. (1.5)

X—> 400

To control the possible local singularities of the interactions, we require that U €
LP(R) for some p € (1, +o00].

On $H"(A), we define

HY(A,n) = HY (A, n) + W, (1.6)
where
Wy, x™) =Y UG —x)) (1.7)
i<j
on the domain
m(w) "
D'(A) =5 | | (U b vl | | 9" (). (1.8)
k=1

As U is non-negative, H(f)] (A, n) is non-negative. From now on, we let Hg (A, n)
be the Friedrichs extension of this operator. As W, is a sum of pair interactions, the
fact that U € LP(R) for some p > 1 (see assumption (HU)) guarantees that W,
is Hg (A, n)-form bounded with relative form bound O (see, e.g., [5, section 1.2]).
Thus, the form domain of the operator Hg (A, n)is

m(w) ®n

95, (A) = | Hy [ [ Ik, xegal NH"(A). (1.9)
k=1

Moreover, Hg (A, n) admits D"(A) as a form core (see, e.g., [5, section 1.3]) and
it has a compact resolvent, thus, only discrete spectrum.
We define E g (A, n) to be its ground state energy, that is,

EY(A,n) = \Pe%l;f(A)(Hg(A, n)v, W) (1.10)
Iwi=1

and \Ilg (A, n) to be a ground state, i.e., to be an eigenfunction associated to the
eigenvalue Eg (A, n).

By construction, there is no unique continuation principle for the pieces model
(as the union of disjoint non-empty intervals is not connected); so, one should not
expect uniqueness for the ground state. Nevertheless due to the properties of the
Poisson process, for the non-interacting system, one easily sees that the ground state
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\IJS)(A, n) is unique w almost surely (see Section 2.4). For the interacting system, it
is not as clear. Nonetheless, one proves

Theorem 1.1 (Almost Sure Non-degeneracy of the Ground State) Suppose that
U is real analytic. Then, w-almost surely, for any L and n, the ground state of
Hg (L, n) is non-degenerate.

For a general U, while we don’t know whether the ground state is degenerate or
not, our analysis will show where the degeneracy may come from: we shall actually
write $)" (A) as an orthogonal sum of subspaces invariant by Hal)] (L, n) such that
on each such subspace, the ground state of HY (L, n) is unique. This will enable us
to show that all the ground states of Hal)] (L, n) on $H"(A) are very similar to each
other, i.e., they differ only by a small number of particles.

The goal of the present paper is to understand the thermodynamic limits of
Eg (A, n) and \Ilg (A, n). As usual, we define the thermodynamic limit to be the
limit L — oo and n/L — p where p is a positive constant. The constant p is the
density of particles.

We will describe the thermodynamic limits of E g (A, n), or rather nlE g (A, n),
and \Ilg (A, n) when p is positive and small (but independent of L and n). We will
be specially interested in the influence of the interaction U, i.e., we will compare
the thermodynamic limits for the non-interacting and the interacting systems.

1.2 The Ground State Energy Per Particle

Our first result describes the thermodynamic limit of n™~ lE g (A, n) when we assume
the density of particles n/L to be p. For the sake of comparison, we also included
the corresponding result on the ground state energy of the free particles, i.e., on
n1 Eg(A, n).

We prove

Theorem 1.2 Under the assumptions made above, the following limits exist w-
almost surely and in Li)

E%(A, EY(A,
E%p, p) ;= lim L, m) and EY(p,p) = lim E,(Am (1.11)
L—+o00 n L—+o00 n
n/L—p n/L—p

and they are independent of w.

In [21] (see also [20]), the almost sure existence of the thermodynamic limit of
the ground state energy per particle is established for quite general systems of
interacting electrons in a random medium if one assumes that the interaction has
compact support. For decaying interactions (as in (HU)), only the L(Zy convergence
is proved. The improvement needed on the results of [21] to obtain the almost sure
convergence is the purpose of Theorem 5.1.
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In [3], the authors study the existence of the above limits in the grand canonical
ensemble for Coulomb interactions.

The energy £%(p, ) can be computed explicitly for our model (see Sec-
tion 2.4.1). We shall obtain a two-term asymptotic formula for £Y (p, 1) in the case
when the disorder is not too large and the Fermi length £, ,, is sufficiently large.

Define

¢ the effective density is defined as the ratio of the density of particles to the density

. .. . 1%
of impurities, i.e., o, = —,

* the Fermi energy E, , is the unique solution to N, (E, ;) = p,

* the Fermilength {, ,, := {g, , where £ is defined in (1.2); the explicit formula
for N, yields

log —2— (1.12)

log—p” =l’
I n+p

Y2 =
P 1+ pu

1
I
For the free ground state energy per particle, a direct computation using (1.2) yields

Epp

1
E%p. ) = —/
0

—00

EdN,(E)=E,, (1 +0 (\/m)) (1.13)

We prove

Theorem 1.3 Under the assumptions made above, for ;1 > 0 fixed, one computes

EVp, ) =E%p, ) + 72yl ut ou ;3# (1+4+o0(1)) where o(l) p—0> 0.
=

(1.14)
The positive constant y}' depends solely on U and pu; it is defined in (1.17) below.

At fixed disorder, in the small density regime, the Fermi length is large and the
Fermi energy is small. Moreover, the shift of ground state energy (per particle) due
to the interaction is exponentially small compared to the free ground state energy:
indeed, it is of order p| log p|~3 while the ground state energy is of order | log p| 2.

For fixed u, a coarse version of (1.14) was established, in the PhD thesis of the
second author [20], namely, for p sufficiently small, one has

1 _ _
o Pllogpl = <%0, 1) = £%p, 1) < Cu pllog pI .
n
Moreover, from [21, Propositions 3.6 and 3.7], we know that the function p
EY(p, u) is a non-decreasing continuous function and that the function r >
EV(r~1, ) is convex.
Let us now define the constant . Therefore, we prove

Proposition 1.4 Consider two electrons in [0, £] interacting via an even non-
negative pair potential U € LP (R™) for some p > 1 and such that
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/ sz(x)dx < 4o00.
R

That is, on $H%([0, £]) = L%([0, £]) A L%([0, £]), consider the Hamiltonian

i.e., the Friedrichs extension of the same differential expression defined on the
domain D*([0, £]) (see (1.8)).

For large ¢, EY ([0, £], 2), the ground state energy of this Hamiltonian admits
the following expansion

52 1
EU([0,41,2>=€—2+€13+0<£—3> (1.16)

where y = y(U) > 0 when U does not vanish a.e.

Let us first notice that the expansion (1.16) immediately implies that U +— y(U)
is a non-decreasing concave function of the (non-negative) interaction potential U
such that y (0) = 0; for @ small positive, one computes

y(aU)
o

= 10712/ x2U(x)dx (1 + O()).
R

Concavity and monotony follow immediately from the definition of EY ([0, £], 2)
and the form of (1.16).
In terms of y, we then define

w
vii=1—exp (—87_[—)/2) (1.17)

1.3 The Ground State: Its One- and Two-Particle Density
Matrices

We shall now describe our results on the ground state. We start with a description
of the spectral data of the one-particle Luttinger-Sy model. Then, we describe the
non-interacting ground state.
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1.3.1 The Spectrum of the One-Particle Luttinger-Sy Model

Let (FE ﬁw) j>1 and (qoﬁw) j>1, respectively, denote the eigenvalues (ordered
increasingly) and the associated eigenfunctions of H,(A) (see (1.1)). Clearly,
the eigenvalues and the eigenfunctions are explicitly computable from the points
(Xk)1<k<m(w)+1- In particular, one sees that the eigenvalues are simple @ almost
surely.

Asn/L is close to p and L is large, the n first eigenvalues are essentially all the
eigenvalues below the Fermi energy E,, . These eigenvalues are the eigenvalues of

AlA @) below E, , for all the pieces (A (w))k_—1<k<k, of length at least £,
(see (1.2) and (1.13)). w-Almost surely, the number of pieces (Ax(w))1<k<m(w)
longer than £, , is asymptotic to n (see Section 2.3), the number of those longer
than 2¢, , to p, n, the number of those longer than 3¢, , to pi n, etc. We refer to
Section 2.2 for more details.

1.3.2 The Non-interacting Ground State

The ground state of the non-interacting Hamiltonian Hg(A, n) is given by the
(normalized) Slater determinant

WO (A, n) = /\¢1w=—Det<(¢j§w(xk))) . (1.18)

1<j.k<n

Here and in the sequel, the exterior product is normalized so that the L2-norm of
the product be equal to the product of the L?-norms of the factors (see (C.2) in
Appendix C).

It will be convenient to describe the interacting ground state using its one-particle
and two-particle reduced density matrices. Let us define these now (see Section 4
for more details). Let ¥ € $"(A) be a normalized n-particle wave function. The
corresponding one-particle density matrix is an operator on $!(A) = L*(A) with
the kernel

Yo, y) =y (x, y) :n/A”_] W(x, 5)W*(y, X)dx (1.19)

where X = (xz, .., xMand dx = dx? ... dx".

The two-particle density matrix of W is an operator acting on H(N) =
2

/\ L%(A) and its kernel is given by
j=l1

nn—1)

W 2 HWr(y v BdE (1.20)
2 An72

2
pd e X2yl v =

where ¥ = (x3, ..., x") and dX = dx3 - - dx".
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Both yy and yé,z) are positive trace class operators satisfying

) _ I’l(l’l — l)
v —_— .

Tryy =n, and Try, 5 (1.21)

So, for the non-interacting ground state, using the description of the eigenvalues and
eigenvectors of H,(A) given in Section 1.3.1, as a consequence of Proposition 4.8,
we obtain that

n
_ — )]
yq’g(A»”) - Z y(ﬁjl'tw - Z VW]A (@) + Z y(pik((,)) +R

j=1 Con <A @) <3, 20, 1 <Ak (@) <38, 4
(1.22)
where
¢ |Ag(w)| denotes the length of the piece Ay (w);
(pJAk ) denotes the j-th normalized eigenvector of _AIDAk( )}
* the operator RO is trace class and ||R(1) le <2n pi.
Here, || - || denotes the trace norm in the ambient space, i.e., in LZ(A) for the one-

particle density matrix, and in L2(A) A L?(A) for the two-particle density matrix.
For the two-particle density matrix, again as a consequence of Proposition 4.8,
we obtain

1
@ >
Vetiam = 50— EX) [yq,g(Ayn) ® yq,g(A‘n)iI +R® (1.23)

where

e Id is the identity operator, Ex is the exchange operator on a two-particle space:

EX[f®g]=g®f, f’ge‘ﬁ’

 the operator R®@ is trace class and | R® le < Cp, pn.

One can represent graphically the ground state of the non- interacting system by
representing the distribution of its particles within the pieces: in abscissa, one puts
the length of the pieces, in ordinate, the number of particles the ground state puts in
a piece of that length. Figure 1 shows the picture thus obtained.

Fig. 1 The distribution of k JF

particles in the

non-interacting ground state. 9
[

Lo 2pp Blpp klpyp (k+1Dlpp
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1.3.3 The Interacting Ground State

To describe the ground state of the interacting system, we shall describe its one-
particle and two-particle reduced density matrices. Therefore, it will be useful to
introduce the following approximate one-particle reduced density matrices.

For a piece Ap(w), let ¢ ik(w) be the j-th normalized eigenvector of
— AR oyx @ T U acting on L?(Ap(@)) A L*(Ag(@)). We note that, for U = 0,

. . LLU=0 _ 1 2
the two-particle groqnd state can be rewrl.tten as g“ @) = Par) N Par)
Define the following one-particle density matrix

Yo, = Z Yok + Z Ve

Cou—Puvt <IAK(@)|<26p i ~log(1-y) 26, ~log(1-yf) <[ A ()]
(1.24)
Because of the possible long range of the interaction U (see the remarks following
Theorem 1.5 below), to describe our results precisely, it will be useful to introduce
trace norms reduced to certain pieces. For £ > 0, we define the projection onto the
pieces shorter than ¢

L= > 1nwe. (1.25)
| Ak ()| <

We shall use the following function to control remainder terms: define

“+00
Z(x) = sup <v3 / U(t)dt). (1.26)

x<v

Under assumption (HU), the function Z is continuous and monotonously decreasing
on [0, +00) and tends to 0 at infinity.
We prove

Theorem 1.5 Fix ;1 > 0. Assume (HU) holds. Then, there exist pg > 0 and C > 0
such that, for p € (0, po), w-a.s., one has

1 P
< L (L 5 2080,

. l 1
lim sup — H (V\yg(A,n) - V\PZ”L) 1<€M+C o pPo
, N

L—+oo I
n/L—p

1 yom
<—max | —, puVZ(£,, )>.
£o (f g i

1
hm Sup - H (le/U(A )_ylyapt) (1_11 ¢ +C>
n Ch An e P

L—+00
n/L—p

tr

Here, || - ||, denotes the trace norm in L>(A).

This result calls for some comments. Let us first note that, if Z, that is, U, decays
sufficiently fast at infinity, typically exponentially fast with a large rate, then the two
estimates in Theorem 1.5 can be united into
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particles in the interacting 1

Fig. 2 The distribution of 2
ground state. <|J:

/ Cp.p 2‘/);/\ 3o,

M
Cp,pu = Y pp 20,1 — log(1 — )

. 1 P
lim sup — H y\IJU(A,n) — )/\yopt < —M
L—too 111 Aon ltr L
n/L—py

In this case, Theorem 1.5 can be summarized graphically. In Figure 2, using
the same representation as in Figure 1, we compare the non-interacting and the
interacting ground state. The non-interacting ground state distribution of particles
is represented in blue, the interacting one in green. We assume that U has compact
support and restrict ourselves to pieces shorter than 3¢, ,,.

Indeed, in this case, comparing (1.22) and (1.24), we see

0 - == 1 2 - 1
y\pw(A»”) V\I/X[jtn Z (y(PAk(w) + y(pAk(w) V(m(@))
20, —log(1—y£)<|Ap (@)

- 1
Z V‘PAk (@)

Ep.M_PuVr<|Ak(w)|gep.p.

R (1)
+ Z Vwik(zz))-’_R
205, 1 SIAK(@) 26, —log(1 -1
- (1.27)
where RV satisfies the same properties as R‘" in (1.22).

Thus, to obtain ygopt from ygo, ), We have displaced (roughly) Vi pun
A,I’l @ ?

particles living in pieces of length within [2¢, ., 2¢, ,, — log(1 — ¥{")] (i.e., pieces

containing exactly two states below energy E, , and the energy of the top state
m

stays above E, (1 + log(zlp—_[*)) up to smaller order terms in E;,lu) to pieces

having lengths within [£, ,, — ovi. e o] (.., having ground state energy within

m
the interval [E o Eou (1 + 25’; V: )] up to smaller order terms in £,). In the

remaining of (roughly) (1 — y/)pn pieces containing exactly two states below
energy E, , (that is, pieces of length within [2¢, , — log(1 — v, 3tg,,] or

i
alternatively those with the top state below E, , (1 + %) (up to smaller

order terms in E;,IM), we have substituted the free two-particle ground state (given by
the anti-symmetric tensor product of the first two Dirichlet levels in this piece) by the
ground state of the interacting system (1.15). In particular, we compute (remark that
the first sum in (1.27) contributes only to the error term according to Corollary 6.12)
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1 o
lim — H e | =20+ 0 (21,
it VWO (A,n) V\;;AI?; "« Vs Pp + 0
n/L—p

and, recalling (1.23), we then compute

1 1

T I N o Pu
L [ Yesam T o TTED [V‘I’XP.Z ® V‘I’X‘TL] . 2reout O (zp M) ’
n/L—p )

(1.28)
So the main effect of the interaction is to shift a macroscopic (though small when
oy 1s small) fraction of the particles to different pieces.

Let us now discuss what happens when the interaction does not decay so fast,
typically, if it decays only polynomially. In this case, Theorem 1.5 tells us that one
has to distinguish between short and long pieces. In the long pieces, the description
of the ground state is still quite good as the error estimate is still of order o(p,,). Of
course, this result only tells us something for the pieces of length at most 3¢, ,: the
larger ones are very few, thus, can only carry so few particles (see Lemma 3.27) that
these can be integrated into the remainder term. For short intervals, the situation
is quite different. Here, the remainder term becomes much larger, only of order
o (Wﬁ;lj{2> if Z(x) = x* at infinity. This loss is explained in the following
way. The short pieces carry the majority of the particles. When U is of longer range,
particles in rather distant pieces start to interact in a way that is not negligible with
respect to the second term of the expansion (1.14) (which gives an average surplus of
energy per particle for the interacting ground state compared to the free one); thus,
it may become energetically profitable to relocate some of these particles to new
pieces so as to minimize the interaction energy. When the range of the interaction
increases, the ground state will relocate more and more particles. Nevertheless, the
shift in energy will still be smaller than the correction term obtained by relocating
some of the particles living in pairs in not too long intervals; this is going to be the
case as long as U satisfies the decay assumption (HU). When U decays slower than
that, the main correction to the interacting ground state energy per particle can be
expected to be given by the relocation of many particles living alone in their piece
to new pieces so as to diminish the interaction energy.

We also obtain an analogue of Theorem 1.5 for the two-particle density matrix
of the ground state WY . We prove

Theorem 1.6 Fix p > 0. Assume (HU) holds. Then, there exist pg > 0 such that,
for p € (0, po), w-a.s., one has

. 1

limsup—
L—>+oco

n/L—p

1
@ 2
(V\PE am ~ 1B 7oy ® VWX”,LD Lty e

r

1 Iy
< — max <£—“ Vou Z(ﬁp,u)>

P



102 F. Klopp and N. A. Veniaminov

and
limsup— | (@ —l(Id—Ex)[ o ® ] (1—12 )
L—>+oop ”l2 V\yal)/ (A,n) 2 yq}/\’j" y‘y/\]ﬁ <toutC tr
n/L—p
Pu
< —max | —, pu/Z(L ))
20 (Zp,u w Pl

where, for £ > 0, we recall that || - ||, denotes the trace norm in L2(A) A LZ(A),
recall (1.25) and define

12,=1,01.,. (1.29)

1.4 Discussion and Perspectives

While a very large body of mathematical works has been devoted to one- particle
random Schrddinger operators (see, e.g., [10, 16]), there are only few works dealing
with many interacting particles in a random medium (for the case of finitely many
particles, see, for example, [1] or [4]).

The general Hamiltonian describing n electrons in a random background poten-
tial V,, interacting via a pair potential U can be described as follows. In a
d-dimensional domain A, consider the operator

n
Hoy(A,n) = —Bpa| yo + Y Vo) + > UG = x),

i=1 i<j

where, for j € {1,...,n}, xJ denotes the coordinates of the Jj-th particle. The

n
operator H, (A, n) acts on a space of totally anti-symmetric functions /\ L%(A)
which reflects the electronic nature of particles. =

The general problem is to understand the behavior of H,, (A, n) in the thermody-
namic limit A — oo while n/|A| — p > 0; p is the particle density. One of the
questions of interest is that of the behavior of the ground state energy, say, E,, (A, n)
and of the ground state W,,(A, n).

While the thermodynamic limit is known to exist for various quantities and
in various settings (see [21] for the micro-canonical ensemble that we study in
the present paper and [3] for the grand canonical ensemble), we don’t know of
examples, except for the model studied in the present paper, where the limiting
quantities have been studied. In particular, it is of interest to study the dependence
of these limiting quantities in the different physical parameters like the density of
particles, the strength of the disorder or the interaction potential.
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As we shall argue now, for these questions to be tractable, one needs a good
description of the spectral data of the underlying one-particle random model.

1.4.1 Why the Pieces Model?

In order to tackle the question of the behavior of n-electron ground state, let us first
consider the system without interactions. This is not equivalent to a one-particle
system as Fermi-Dirac statistics play a crucial role.

Let us assume our one-particle model is ergodic and admits an integrated density
of states (see (1.2) and e.g. [11, 16]). As described above for the pieces model, the
ground state of the n non-interacting electrons is given by (1.18) and its energy per
particle is given by

E0 (A n) _ l E N /Er[r\-w Ed |:#{eigenvalues of H,(A) below E}]
[A]
(1.30)

where E,? » 18 the n-th eigenvalue of the one- particle random Hamiltonian H,,(A),

i.e., the smallest energy E such that

#{eigenvalues of H,(A) below E} _n
[A] IAl

(1.31)

Here, we have kept the notations of the beginning of Section 1.3.

The existence of the density of states, say N(E), (see (1.2)), then, ensures the
convergence of E(A, n) to a solution to the equation N(E) = p, say E,. Thus, to
control the non-interacting ground state, one needs to control all (or at least most
of) the energies of the random operator H,,(A) up to some macroscopic energy E,,.
In particular, one needs to control simultaneously a number of energies of H,(A)
that is of size the volume of A.

To the best of our knowledge, up to now, there are no available mathematical
results that give the simultaneous control over that many eigenvalues for general
random systems. The results dealing with the spectral statistics of (one-particle)
random models deal with much smaller intervals: in [15], eigenvalues are controlled
in intervals of size K /|A| for arbitrarily large K if A is sufficiently large; in [7, 8],
the interval is of size |A|!~# for some not too large positive S.

The second problem is that all these results only give a very rough picture of the
eigenfunctions, a picture so rough that it actually is of no use to control the effect
of the interaction on such states: the only information is that the eigenstates live in
regions of linear size at most log | A| and decay exponentially outside such regions
(see, e.g., [7] and the references therein).

The pieces model that we deal with in the present paper exhibits the typical
behavior of a random system in the localized regime: for H,(A),
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* the eigenfunctions are localized (on a scale log |A|)
* the localization centers and the eigenvalues satisfy Poisson statistics.

The advantage of the pieces model is that the eigenfunctions and eigenvalues are
known explicitly and easily controlled. This is a consequence of the fact that a
crucial quantum phenomenon is missing in the pieces model, namely, tunneling. Of
course, once the particles do interact with each other, tunneling is again re-enabled.

All of this could lead one to think that the pieces model is very particular.
Actually, at low energies, general one-dimensional random models exhibit the same
characteristics as the pieces model up to some exponentially small errors which are
essentially due to tunneling (see [12]).

It seems reasonable to guess that the behavior will be comparable for general
random operators in higher dimensions and, thus, that the results of the present
paper on interacting electrons in a random potentials should find their analogues for
these models.

1.4.2 Outline of the Paper

In Section 2, after rescaling the parameters of the problem so as to send p to 1 and
p to p/u, we first discuss the validity of our results in a more general asymptotic
regime in u and p. We, then, gather some basic but crucial statistical properties of
the distribution of the pieces. We first describe the free electrons. For the pieces
model, a statistical analysis of the distribution of pieces gives exact expressions for
the one-particle integrated density of states and the Fermi energy in Proposition 2.6.
We also study the non- interacting model and introduce notations for later use.

In Section 3, we first introduce the occupation numbers (i.e., the number of
particles a given state puts in each piece); the existence of the occupation numbers
is tantamount to the existence of a particular orthogonal sum decomposition of the
Hamiltonian Hg (A, n). We prove that the ground state of Hal,] (A, n) restricted to a
fixed occupation space is non- degenerate and, from this result, derive Theorem 1.1,
the almost sure non-degeneracy of the ground state for real analytic interaction.

Next, still in Section 3, we prove the asymptotic formula for the interacting
ground state energy per particle. The proof relies essentially on the minimizing
properties of the ground state. This minimizing property yields a good description
for the occupation numbers associated to a ground state. To get this description, we
first study the ground state of the Hamiltonian HY "(A, n) where the interactions
have been cut off at infinity (i.e., U” is compactly supported). We construct an
approximate ground state WOP' which can essentially be thought of as the ground
state for the Hamiltonian Hg "(A, n) restricted to the pieces shorter than 3¢, ,.
Then, letting W" (A, n) := H(f)] (A, n) — ng(A, n) be the long range behavior of
the interactions, one has

EV" (A, n) < EY(A, n) < (HY" (A, n)WwOPt, WOPY 1 (W (A, n) WP, wOP')
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The minimizing property of W°P' yields
EY (A n) = (HY" (A, m)WOP, WYY - no(p, ™' €3)

(see Theorem 3.28).
On the other hand, the decay assumption (HU) on U and the explicit construction
of WPt yield

(W' (A, myWOP, WP = 1 o(p, ' €33)

(see Proposition 2.7). This yields the proof of Theorem 1.3.

In the course of these proofs, we also prove a certain number of estimates on the
distance between the occupation numbers of the interacting ground state(s) to the
state WOP',

Section 4 is devoted to the proofs of Theorems 1.5 and 1.6. Therefore, we
transform the bounds of the distance between occupation numbers into bounds on
the trace class norms of the difference between the one- (and the two-) particle
densities of the interacting ground state(s) and the state WOP',

In Theorems 4.2 (resp. Theorem 4.4), we derive general formulas for the one-
particle (resp. two particles) density of a state expressed in a certain well-chosen
basis of " (A). One of the main steps on the path going from occupation number
bounds to the trace class norm bounds is to prove that, in most pieces, once the
particle number is known, the state must be in the ground state for the given particle
number. This is the purpose of Lemma 4.12; it relies on the minimizing properties
of the ground state; actually, it is proved for a larger set of states, states satisfying a
certain energy bound.

We then use Theorems 4.2 (resp. Theorem 4.4) to derive Theorems 1.5 (resp.
Theorem 1.6).

Section 5 is devoted to the proof of the almost sure convergence of the ground
state energy per particle. The proof is essentially identical to that found in [21]
except for the sub-additive estimate crucial to the proof. This estimate is provided
by Theorem 5.1.

In Section 6, we prove Proposition 1.4 as well as a number of estimates on the
ground states and ground state energies for a finite number of electrons living in a
fixed number of pieces and interacting.

In three appendices, we gather a number of results used in the main body of
paper. In Appendix A, we prove the results on the statistics of the pieces stated
in Section 2. Appendix B is devoted to a simple technical lemma used intensively
in the derivation of Theorems 1.5 and 1.6 in Section 4. Appendix C is devoted to
anti-symmetric tensor products.
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2 Preliminary Results

In this section, we state a number of results on the Luttinger-Sy model defined
in Section 1 on which our analysis is based. We first recall some results on
the thermodynamic limit specialized to the pieces model. Then, we describe the
statistics of the eigenvalues and eigenfunctions of the pieces model defined in (1.1);
in the case of the pieces model, it suffices therefore to describe the statistics of the
pieces (see Section 2.2).

In Section 2.4, we describe the non-interacting system of n electrons.

2.1 Rescaling the Operator

Consider the scaling X = ux, that is, define

Se o /\ L2(10. L) — /\ L*([0, L])

j=1 j=1

u> Syu where (Suu)(x) = u?u(ux) and L = puL.
2.1)
One then computes

St Ho(L,n)Sy = p? Hy(L, n)

where ﬁw(Z, n) is the interacting pieces model on the interval [0, Z] defined by a
Poisson process of intensity 1 and with pair interaction potential

UrC) = pu2Uw™"). (2.2)
For I-7w (Z , n), the thermodynamic limit becomes

n no__ P
L uL ~u Pu-
We shall prove Theorems 1.3, 1.5, and 1.6 under the additional assumption p = 1.
Let us now explain how Theorems 1.3, 1.5, and 1.6 get modified when one goes
from p = 1 to arbitrary u.

If one denotes by y# the constant defined by Proposition 1.4 applied to the
interaction potential U* instead of U, a direct computation yields y* = uy.

In the same way, a direct computation yields that Z*, the analogue of Z in
assumption (HU) for U*, is given by Z*(-) = /Lzz(pb_1~). Thus, for the function
fzr (see (1.26), (3.28) and (3.29)) defined for U*, see (2.2), one obtains fzu(-) =
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w? fz(u~"'.). This suffices to obtain Theorems 1.5 and 1.6 for 1 arbitrary fixed from
the case u = 1.

2.1.1 Other Asymptotic Regimes

In the introduction, for the sake of simplicity we chose to state our results at fixed
and sufficiently small p (depending on w). Actually, the results that we obtained stay
correct under less restrictive conditions on p and p. The conditions that are required
are the following. Fix g > 0; then, Theorems 1.3, 1.5, and 1.6 stay correct as long
as u € (0, no), py be sufficiently small and £, ,, sufficiently large depending only
on io. Let us now explain this.

Therefore, we analyze the remainder terms of (3.80) (thus, of (3.82)). The second
term in the last equality in (3.80) multiplied by u? (to rescale energy properly, see
above) becomes

0
jTZMZ%éI 14 -
[log pul

=m2ytu o, Z;?M +o (,ou E;?M)
by (1.12). Note that, by (1.17), y£* w! stays bound from above and below as u© —
0.

The remainder term in the last equality in (3.80) multiplied by 12 (to rescale
energy properly, see above) becomes

4

-1
2 Pu . _ Pu KL _ Pu M
2z TTog o’ O (fzr(log pul))) Q. O (fz(Lp,u(14+0(1))) =0 ( Q. )

when p, — Oand £, , — +oo while u stays bounded.

This then yields Theorem 1.3 for (i, p) arbitrary in the regime described above
from the case © = 1 and p small.

To obtain Theorems 1.5 and 1.6 for u arbitrary, we just use Z*(-) = /,LZZ([,L_I 2)
and the fact that Z is decaying; indeed, this implies that

ZHQ2llog pul) = U*Z (2L, (1 +0(1)) < n2Z(€y )

when p,, — Oand £, , — +o00 while u stays bounded.

This suffices to obtain Theorems 1.5 and 1.6 for (u, p) arbitrary in the regime
described above from the case 4 = 1 and p small.

From now on, we fix © = 1 and assume p be small. Thus, we shall drop the
sub- or superscript (v and write, e.g., £, for £, ,, E, for E, ,, etc. Similarly, the
dependence on the random parameter w will be frequently dropped so as to simplify
notations.
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2.2 The Analysis of the One-Particle Pieces Model

Most of the proofs of the results stated in the present section can be found
in Appendix A.
Recall that we partition [0, L] using a Poisson process of intensity 1 and write

m(w)

0. L1 = [ Aj(). (2.3)
j=1

Note that, by a standard large deviation principle, for 8 € (0, 1/2), with probability
atleast 1 — e’ onehasm = L + O (L1/2+ﬂ).

Moreover, with probability one,
. min |Aj(w)| > 0,

1< jsm(@)

A @)
o if j #£ j/ then —/—— ¢ Q.

1A jr(w)|?

Thus, distinct pieces generate distinct Dirichlet Laplacian energy levels. In partic-
ular, with probability one, all the eigenfunctions of the one-particle Hamiltonian
H,(L) = Hy(L, 1) are supported on a single piece A j(w) and the corresponding
eigenvalues are simple.

Hence, we will enumerate the eigenvalues and the eigenfunctions of H,,(L) using
a two-component index (A j, k) where

* A/ is the piece of the partition (2.3) on which the eigenfunction is supported,
* ks the index of the eigenvalue within the ordered list of eigenvalues of this piece,

" ) = 2 in (nk(x—ianj)>1 )
R VN Al Af'

and the corresponding energy

i.e.,

7k \?
Ewnh = <—|A,|) : (2.4)
J

Let P = P(w) denote the set of all available indices enumerating single-particle

states, i.e., P = {Aj};ﬁ"l’) x N.

In parallel to this two-component enumeration system, we will use a direct
indexing procedure: {(E, ¥;)}jen are the eigenvalues and associated eigenfunc-
tions of the one-particle Hamiltonian H,, (L) counted with multiplicity ordered with

increasing energy.
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2.3 The Statistics of the Pieces

We first study the statistical distribution of the pieces generated by the Poisson
process. We will primarily be interested in the joint distributions of their lengths.
These statistics immediately provide the statistics of the eigenvalues and eigenfunc-
tions of the pieces model. These results are presumably well known; as we don’t
know a convenient reference, we provide their proofs in Appendix A for the sake of
completeness.

In the sequel, the probability of the events will typically be 1 — O(L™°): we
recall that Ay = O(k~°) if VN > 0, . lim &V A = 0. Actually, the proofs show

——+00
that the probabilities lie at an exponentially small distance from 1, i.e., O(L™%°) =

_LB
e L for some B > 0.
We prove

Proposition 2.1 With probability 1 — O(L™°), the largest piece has length
bounded by log L - loglog L, i.e.,

ma A <logL -loglog L.
1<k<2(w>| k()] g g log

On the distribution of the length of the pieces, one proves

Proposition 2.2 Fix 8 € (2/3, 1). Then, for L large, for any (ar, br) € [0,log L -
log log L1?, with probability 1 — O (L~°), the number of pieces of length contained
inlap,ar + br] is equal to

e (1 —e ). L+R,-LP where |Ry| <k

and the positive constant k is independent of ar , by

The proof of Proposition 2.2 is given in Appendix A.
We will also use the joint distributions of pairs and triplets of pieces that are close
to each other. We prove

Proposition 2.3 Fix 8 € (2/3,1). Then, for any a,b,c,d, g, f positive, with
probability 1 — O (L™%°), the number of pairs of pieces such that

* the length of the left most piece is contained in [a, a + b],
e the length of the right most piece is contained in [c, ¢ + d],
* the distance between the two pieces belongs to (g, g + f1]

is equal to
fe“A—eA—e % -L+Ry-LP where |Rp| <k (2.5)

and the positive constant k may depend on (a, b, c, d, f, g).

For pairs of pieces, we shall also use
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Proposition 2.4 For £, ¢, d > 0, with probability 1 — O(L™%°), one has

pairs of pieces at most at a dis-

tance d from each other such that ot
<Q24+de " L.
the left most piece is longer than £,

the right most piece is longer than {'.

Finally, for triplets of pieces, we shall use

Proposition 2.5 For ¢, ¢',¢",d > 0, with probability 1 — O (L™°), one has

A’ between A and A"
#1(A, A, Ay st |dist(A, A < d, dist(A, A"y <d } < +dPe 0L,
Al =€, A=, A" =1

As a straightforward consequence of Proposition 2.2, exploiting the formula (2.4)
for the Dirichlet eigenvalues of the Laplacian on an interval, one obtains the explicit
formula (1.2) for the one-particle integrated density of states for the pieces model
defined in (1.2) (here, © = 1) That is, one proves

Proposition 2.6 (The One-Particle IDS) The one-particle integrated density of
states for the pieces model is given by

exp(—£k)

N(E) = m E>0

(2.6)

where L is defined in (1.2).

Formula (2.6) was already obtained in [14]; in Appendix A.1, we give a short proof
for the readers convenience.

Recalling the scaling defined in Section 2.1 immediately yields (1.2) for
general L.

2.4 Free Electrons

Understanding the system without interactions will be key to answering the main
questions raised in the present work. For free electrons, i.e., when the interactions
are absent, U = 0, the energy per particle £°(p) can be expressed in terms of one-
particle density of states measure.
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2.4.1 The Ground State Energy Per Particle

Recall that (see Theorem 1.3), for a density of particles p, the Fermi energy E, is
a solution of the equation N(E,) = p. In the present case, as N is continuous and
strictly increasing from 0 to 400, the solution to this equation is unique for any
p > 0. The length of the interval whose Dirichlet Laplacian has the Fermi energy
E, as ground state energy is the Fermi length £, given by

ty :=n/JE, 2.7)

As a direct corollary to (1.2) (recall that u = 1) or equivalently Proposition 2.6, we
see that the Fermi energy is given by

E, = 72 <log(,<f1 + 1))_2 ~ n2| log ,olf2 when p — 0 (2.8)
and the Fermi length by:
£, =log (,0_1 + 1) ~ |logp| when p — 0. (2.9)
We recall

Proposition 2.7 ([21, Theorem 5.13 and Lemma 5.14]) Let E,{‘ o denote the n-th
energy level of Hy, (L) (counting multiplicity). Then, w-a.s., one has

1 [Ee
EA — > E, and 50(p)=—/ EdN(E). (2.10)
7 L—>oo P J—co
n/L—p

Proposition 2.7 follows easily from Lemma 3.13, (1.30), (1.31), and (A.17).
We see that

* the highest energy level occupied by a system of non-interacting electrons tends
to the Fermi energy in the thermodynamic limit;

* the n-electron ground state energy per particle is the energy averaged with
respect to the density of states measure of the one-particle system conditioned
on energies less than the Fermi energy.

Combining formulas (2.8) and (2.10), one can expand & O(p) into inverse powers of
log p up to an arbitrary order. Taking the scaling defined in Section 2.1 into account,
(2.10) immediately implies (1.13).
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2.4.2 The Eigenfunctions

Let us now describe the eigenfunctions of HS(L, n). Let us recall that (Ep) ,ep
are the eigenvalues of the one-particle operator H,(L) and (¥p),ep are the
corresponding normalized eigenfunctions; here, p in P is a (piece—energy level)
index. The n-electron eigenstates without interactions are given by the following
procedure. Pick a set o := {«y, ..., ®,} C P of n indices, carda = |«| = n. The
normalized eigenstate associated to « is given by the Slater determinant

1 .
W, (x X% X = Yoy A A VY, 1= fdet (wp(xf)) pea - (211
n: I<j<n
One easily checks that (Hg(A, n) — Ey)V, = 0 for the energy E, defined by
E“:ZEP' (2.12)
pea

The subset « indicates which one-particle energy levels are occupied in the multi-
particle state W,,. For instance, in the ground state of n electrons, one chooses the
states with the lowest possible energy.

Notation 2.8 For a Slater determinant W,, (see (2.11)) and p € «, we will refer to
the one-particle functions v, as particles that constitute the n-electron state indexed
by . Moreover, with a slight abuse of terminology, we will refer to a multi-index «
as an (n-electron) state and to p in « as a particle.

3 The Asymptotics for the Ground State Energy Per Particle

In this section, we prove Theorem 1.3 on the asymptotic expansion of the ground
state energy per particle in terms of small particle density. We assume that the pair
interaction potential U satisfies condition (HU).

3.1 Decomposition by Occupation Numbers

We give a definition of the number of particles occupying a given piece. Therefore,
we shall use the special structure of the Hamiltonian Hg(A, n), that is, that of
H, (L) (see (1.4) and (1.1)).

Fix w. Recall that (A j(w))1<jgm) are the pieces defined in (2.3) (m = m(w)).
The one-particle space is then decomposed into
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1
L* (M) =L*([0.L) = @ L*(A;)). (3.1)
1<j<m

Thus, for the n-particle space $” (see (1.3)), we obtain the decomposition

9" =9"n) = \ L) = . Ho (3.2)
j=1 0=(Q1,,0m)eN"
Q1++0m=n

where we have defined

Definition 3.1 For Q = (Q1, -, Qn) € N" s.t. Q1 + --- Oy = n, the space of
states of fixed occupation Q denoted by ) is given by

m Q)
0= N\|/\L*j)]. (3.3)
j=1 \k=1

Here, as usual, we set /\2:1 LZ(A]‘(CU)) =C.

An occupation Q is a multi-index of length m and of “modulus” n. Note that, as
Aj(w) N Aj(w) =0 for j # j', we can identify

m [0
90=Q) | /\ L*(Aj(@))
j=1 \k=1

Remark 3.2 The spaces of fixed occupation could also be defined starting from the
eigenstates of Hg(L, n) as in [20]. Indeed, each of the eigenstates of Hg(L, n), the
non-interacting Hamiltonian, belongs to a state of fixed occupation. More precisely,
if W, € $H”" is the eigenstate of Hg(L, n) given by (2.11) where « C P, cardo = n,
then, defining the occupation Q(«) = (Q1(x), - -+ , Om(e)) where, for 1 < j < m,
Qj(a) :=#{peal suppy, = A}, wesee that U, € Hg.

The following lemma is crucial in our analysis as it gives global information on the
structure of the ground state of the Hamiltonian Hg (L,n) = Hg(L, n) + W,. We
prove

Lemma 3.3 Let w be fixed and let o and B be two n-electron indices corresponding
each to an eigenstate of Hg(L, n).

If their occupations are different, then the corresponding n-particle states do not
interact:

Qo) # Q(B) = (Vo, Wy Wp) = 0.
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Proof If a and B have different occupation numbers, the supports of W, and Wg
in A" intersect at a set of measure zero: indeed, these supports are obtained by
symmetrizing different collections of products of pieces (with repetitions for the
pieces that are occupied more than once):

Q) # Q(B) = meas (supp Wo N supp Wg) = 0.

The latter means that W, - Wg = 0 as a function in L% (A™). Then, clearly, by
definition, for the matrix elements, one obtains

(W, W, W) =/ Wi (%) W (%) W (x)dx = 0.
Al’l

Lemma 3.3 is proved. (|
As an immediate corollary to Lemma 3.3, we obtain

Corollary 3.4 (Decomposition by Occupation) Fix w. For any Q € N" (m =
m(w)), the subspace $) ¢ is invariant under the action of the n-particle Hamiltonian
HY(L,n) = HYL,n) + W,, i.e.,

HY(L,m)+)7'99 C $Ho. (3.4)

Thus, the total Hamiltonian Hg (L, n) is decomposed according to (3.2) in direct
sum of its parts Hg on subspaces of fixed occupation, i.e.,

HY(L.my= @ Ho. (3.5)
QeN"
Q1++0m=n

where Hp = Hg(L,n)|ﬁQ.

Remark 3.5 All terms of this decomposition as well as the number of pieces m
depend on the randomness w, i.e., the configuration of pieces.

Proof of Corollary 3.4 Fix w. The space

pr=ce (| U A@]| |9

INVA

is a core for Hal)] (L, n). Here, 2 j (@) denotes the interior of A ;(w).

It, thus, suffices to check that, for Hg (L,n) (5’)Q N DZ)) C $; this follows
immediately from Lemma 3.3. This ensures the existence of the decomposition (3.5)
and completes the proof of Corollary 3.4. (]
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Corollary 3.4 states that the interaction operator W, is partially diagonalized in
the basis of eigenfunctions of Hg(L, n), i.e., its matrix representation has a block
structure corresponding to the subspaces of constant occupation.

3.2 Almost Sure Non-degeneracy of the Interacting Ground
State

We first restrict ourselves to spaces with fixed occupation to prove

Lemma 3.6 Fix an occupation Q. The ground state of Hg(L,n)’y)Q is non-
degenerate.

Proof To simplify notations, let us write H = Haf’(L, n) and HY = H(B(L, n). Let
(Aj,)1<p<n be the pieces such that Q;, > 15 in the list (A, )1<p<n, €ach piece
Aj, is repeated Q;, times. We enumerate the pieces so that their left endpoints are
non- decreasing (i.e., from the leftmost piece to the rightmost piece). So, p — j,
is non-decreasing. Then, the operator HY is the Dirichlet Laplacian on a space of
anti-symmetric functions defined on the symmetrized domain

Ao = Sym (x A,-p) = J X Asip- (3.6)

p=1 0e6, p=1

Anti-symmetric functions on the domain (3.6) that vanish on the boundary d(Ag)
are in one-to-one correspondence with functions defined on the domain

so = {(xl, conxM)stxP e Ay and xP < xf for p < q} (3.7)
that vanish on 9(8¢), the boundary of 6. Actually,

Ag = U o(8g) and, for (0,0') € &2, o(8g)Na'(8g) =WBifo #0’.

oe®,

Here, foro € G,, we have seto : (x1,- -, x") > (x®D ... xom),

Thus, finding the ground state of Hyp = H O + W is equivalent to finding the
ground state of the Schrodinger operator —A + W with Dirichlet boundary condi-
tions on the domain 8. As the domain 8¢ is connected and has a piecewise linear
boundary, the ground state of —A + W is non-degenerate (see [6, Theorems 1.4.3,
1.8.2 and 3.3.5] and [17, Section XIII.12]). This completes the proof of Lemma 3.6.
O
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3.3 The Proof of Theorem 1.1

Considering the decomposition (3.5), Lemma 3.6 implies that the only possible
source of degeneracy of the ground state is that different occupations, i.e., distri-
butions of particles in the pieces, provide the same ground state energy. Let us show
that, almost surely, this does not happen.

Let IT be the support of du(w), the Poisson process of intensity 1 on R. Let
#(ITN [0, L]) be the number of points the Poisson process puts into (0, L). Suppose
now that the probability that the ground state of H, g (L, n) is degenerate is positive.

Thus, for some m > 0, conditioned on the fact that the Poisson process puts m
points into (0, L) (i.e., #(I1 N [0, L]) = m), the probability that the ground state of
Hal)] (L, n) be degenerate is positive. Let (£ ) ; be the lengths of the pieces (A j(w)) ;,
i.e., the (Aj); are connected and U; A j(w) = (0, L) \ (IT N [0, L]). Conditioned
#(I1 N[0, L]) = m, the joint distribution of the vector (£;); is known.

Proposition 3.7 ([9]) Under the condition #(I1 N [0,L]) = m, the vector
1, ..., Lm+1) has the same distribution as the random vector
< L-n L-m L1+ ) (3.8)
M4t mA A mar m A ) ‘

where (n;)1<i<m are i.i.d. exponential random variables of parameter 1.

As the lengths (£;) ; are continuous functions of the parameters (7;) j, we know that
there exists an open set in (RT)ym+1, say O, such that, for each (¢;)1<j<m+1 € O,
there are at least two occupations Q1((£;)1<j<m+1) and O2((£;)1<j<m+1) that
have the same ground state energy (which is at the same time the smallest possible
among the ground state energies for all the occupations). Let us denote these
branches of energy by (£;)1<j<m+1 = E1((€j)1<igm+1) and (€)1 j<mr1 >
E>((£)1<<m+1), respectively.

For a fixed number of pieces, there are finitely many occupations and a change
in the number of pieces occurs only when a wall, i.e., an endpoint of a piece,
crosses 0 or L. Thus, there exists a non- empty open subset O; C O, such that
O1((€j)1gjgm+1) and Q2((£j)1<j<m+1) are constant on Oy.

Now, let us fix an initial set of lengths (E?)K j<m+1 in O1 and move it
continuously inside this exceptional set O. This actually corresponds to moving
continuously walls inside the interval (0, L). As Q1 and Q; are two different
occupations, there exists a piece [a, b] C [0, L], such that Q1 and Q, put different
number of particles in this piece, i.e., Q1([a, b]) # O2([a, b)).

Now, we move a continuously towards b; if a = 0, we will move b towards a.
Let a° be the value of @ in the configuration (5(})1<j<m+1~ Let Eq(a) and E5(a)
be the ground state energies corresponding to the two different occupations Q1 and
Q». In a small neighborhood of ag, by the definition of Oy, one has

Ei(a) = Ex(a).
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As U is real analytic and as the ground state of Hy is simple for any occupation Q,
the functions E(a) and E3(a) are analytic in the open interval (c, b) where c is the
end of the piece [c, a] to the left of the piece [a, b]. Indeed, E| (and E») is analytic
around ag. Assume that Ej(a) stops being analytic somewhere inside (c, ). This
would mean that the eigenvalue E(a) of Hp, becomes degenerate, thus, that the
ground state of Hp, becomes degenerate. This was already ruled out.

This immediately implies that E1(a) = E»(a) foralla € (c, b).

But this cannot be. Indeed, if Q; puts k| particles in the piece [a, b], and Q> puts
ko particles in the piece [a, b] with k; # k», the functions E| and E» have different
asymptotics as a approaches b, indeed,

Ei(@) ~k}/(b—a)* as a— b.

This contradicts the fact that the two functions agree on the whole interval. This
completes the proof of Theorem 1.1. O

Finally, we use the results from Section 3.1 together with Theorem 1.1 to obtain
the following

Corollary 3.8 Assume U is real analytic. Then, w-almost surely, for any L and n,
the ground state of Hal)] (L, n) belongs to a unique occupation subspace §)g.

Proof Consider the orthogonal decomposition (3.5). As any projection of W,, (L, n)
on $) is either a ground state or zero and as the ground state is w-a.s. simple, only
one of the projections of the ground state on a space of fixed occupation is different
from zero. Thus, W, (L, n) belongs to one of the subspaces £ . This completes the
proof of Corollary 3.8. O

3.4 The Approximate Ground State W°P'

The basic idea of the construction of W' is to find the optimal configuration
with respect to different occupations. All the n-electron states are considered as
deformations of the unperturbed ground state W which, we recall (2.11), is given
by the Slater determinant:

U=y AU AL A Y.

When the interactions are turned on, the particles in the state W0 start to interact. For
some particles, these interactions may be quite large. In particular, it may become
energetically favorable to “decouple” some particles by moving them apart from
each other to unoccupied pieces; obviously, it is better to move the more excited
particles. One, thus, reduces the interaction energy but this will necessarily result in
an increase of the “non-interaction” energy of the state, i.e., of (Hg(L, nmv, w):
indeed, in the non-interacting ground state, the n particles occupy the n lowest
levels of the system. Nevertheless the decrease of the interaction energy, i.e.,
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(W, ¥, &) may compensate the increase in “non-interacting” energy. The “optimal”
configuration then arises through the optimization on the occupation governed by
the interplay between the loss of interaction energy and the gain of “non-interacting”
energy: it is achieved when loss and gain balance.

Let us note that a ground state W is obviously the ground state of the Hamiltonian
restricted to the appropriate fixed occupation subspace, i.e., W is the ground state of
Hg(w) (see (3.5)). This corresponds to writing the minimization problem in the form

inf (H,(L,n)®, &)= inf inf (Hp®, ). (3.9)
PeH" QeN" defp
lef=1 10l=n |®|=1

This reduces the problem to finding the optimal occupations rather than the optimal
n-electron state itself.
Recalling that the constant y is defined in Proposition 1.4, we set

v
14 =4

Ay = —, Xy :=1—¢e 8 (3.10)

Note that
A, = —log(l — xy).

Let us now define WOP!, Therefore, recall that the pieces in the model are denoted
by (Ar(w))1<k<m(w) (see Section 1) and that for Ay (w), a piece, we define (see
Sections 1.3.2 and 1.3.3)

D
[Ak(w)?

J . . . D )
CA () to be the j-th normalized eigenvector of —Al A2 T U acting on

wgk(w) to be the j-th normalized eigenvector of —A

2
N L*(Ak(@)).

j=1

We will define the state W°P' in two steps. We first define WPt it will contain less
than n particles and will be the main part of W°P', We, then, add the missing particles
to get the n-particle state WP,

Definition 3.9 Consider all the pieces in [0, L]. For each piece, depending on its
length, do one of the following:

(a) keep the pieces of length in [0, £, — px,) U [3£,, c0) empty;

(b) put one particle in its ground state in each piece of length in [£, — pxy, 2¢, +
Ay);

(c) in pieces of length in [2¢, + Ay, 3£,), put the ground state of a two-particle
system with interactions (see Proposition 1.4 and Section 6.1);

We define the state \I/,(,)ft = \If,(:,pt(L, n) to be the anti-symmetric tensor product of
the thus constructed one- and two-particle sub-states, that is,
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t
W (L, n) = JA\ OAj @) N A\ Ay BID)
1A @)|€lty —pxe. 26, +As) 1A @)€12¢,+Ar.38)

Note that, as the ({ij (w)) j carry two particles, \IJ&Pt (L, n) is not given by a Slater
determinant; an explicit formula for such an anti-symmetric tensor product is given
in (C.2) in Appendix C.

Remark 3.10 Note that, in step (c) of Definition 3.9, we put two interacting particles
within these pieces. Because of the interactions, this is different from putting
separately two particles on the two lowest one-particle energy levels (see Section 6).

Let us now compute the total number of particles contained in WP We prove

Lemma 3.11 With probability 1 — O (L~°), for L sufficiently large, in the thermo-
dynamic limit, the total number of particles in \Il,(;lpt constructed in Definition 3.9 is
given by

2
NP =n [1 —p? (3 — Xy — %) + 0(p3>] .

Proof 1t suffices to count the number of pieces of each type and multiply by the
corresponding number of particles. We recall that, by (3.10), one has exp(—£,) =

I _'i and exp(—Ay) = 1 — x,. Thus, for 8 € (0, 1/2), using Proposition 2.2 and
0

the second equation in (3.10), with probability 1 — O (L~°°), one computes

NP =8l € [€) — pxe, 20, + A} +2 - {1 € [20, + Ay, 3,))

- [e—(zp—px*) e QA 4 9~ QLA _ 26—3@,,] 10 (L1/2+,3)

L
— 10 |:e,0x* +p€7A* _ pZefA* _ 2)02 + 0(/03)]
1+p
_ Lr 1+p—p? e*A*+2—x—’% +0(p)
I1+p 2
%2
=n[1—p2 (3—x*—7*> +0<p3)]
This completes the proof of Lemma 3.11. (|

Lemma 3.11 shows that, for p small, \Il,%pt contains less than n particles. Let us now
add particles to WP 1o complete it into WOP', Therefore, we prove

Lemma 3.12 Let (%k)lgkgk (@) be the particles that WO the non-interacting
ground state, puts in the pieces longer than 3{, ordered by increasing energy.

With probability 1 — O (L™°), for L sufficiently large, one has k,(w) > np?(3 —
18p).
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Proof By Proposition 2.2, with probability 1 — O (L ™), the number of pieces of
lengthin £,[3 + p, 4) is equal to
02

P 2
n—(1~|—,0)3 <e —1+p>+o(L)>n,0 (1 —6p)

for L large.

To complete the proof of Lemma 3.12, let us now establish some auxiliary
results. By (2.10) in Proposition 2.7, we know that E,fw converges to E, in the
thermodynamic limit. We will first investigate the rate of convergence in (2.10).

Lemma 3.13 Denote by £, 1 the length of an interval having a ground state energy
equal to EM | i.e

n,w L€

/4
luL = .
JEA,

Let p > 0 be fixed. For any § > 0, in the thermodynamic limit L — oo, n/L — p,
with probability 1 — O (L™%°), one has

lor =L, + 0L~ 4 0 (’% -]},
EN, =E,+ 0L~ 1 0 (‘% - pD .

In view of Lemma 3.13 and by the definition of W°, for L sufficiently large, each
piece of length in £,[3 + p, 4) contains at least 3 particles of WO This completes
the proof of Lemma 3.12. O

Proof of Lemma 3.13 By (A.17), with probability 1 — O(L™°°), the normalized
counting function for the Dirichlet eigenvalues of H, (L, 1) (see (2.4)) satisfies

n exp(—~£n, 1)
7= NP(ER,) = "

=_— "2 Lo U2,
1 —exp(—£,,L)

Taking into account the fact that

exp(—£,)
p=N(E, = #’

I —exp(—£,)
we deduce that

exp(—¥€n,1) _ exp(—£,)
1 —exp(—¥€,,L) I —exp(—£,)

Fou o (1)

This immediately yields
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exp(—Ln.1) = exp(—L,) + 0L~y 1 0 (\% _ p\) .

The proof of Lemma 3.13 is complete. (|

For p small, by Lemmas 3.11 and 3.12, one has n — N(\L',(;,p[) < ky(w). Thus, to
construct WP, we just add n — N (\IJ,(,),pt) particles of W living in pieces of length
in€,[34 p,4) to W,

Definition 3.14 We define

n=N (")
WO = WL, n) = WL A\ G (3.12)
k=1

Remark 3.15 Let us give an alternative approach to defining W°P' which does not
result in exactly the same W°P! but which can serve exactly the same purpose in the
subsequent arguments.

We start with the non-interacting ground state W® and describe how it is
modified:

 for pairs of particles living in the same piece, the modification depends on the
length of this piece:

— for the pieces of length between 2¢,, and 2¢,, + A, remove the more excited
particle and put it into an unoccupied piece of length between £, — px, and
£o;

— for the remaining pieces, i.e., the pieces of length between 2¢, + A and 3¢,
the factorized two-particle state corresponding to WO should be replaced by a
true ground state of a two-particle system with interaction in this piece (see
Section 6.1 for a description of such a two-particle state);

+ do not modify any of the particles in W that are either alone or live in groups of
three or more pieces.

One can easily verify that, in the above procedure, up to a small relative error, the
number of pieces to which the excited particles are displaced is equal to the number
of pieces where we decouple the particles. Indeed, according to Proposition 2.2,
with probability at least 1 — O (L~°°), for the former, one has

ﬁ{l € (2£p, 2€p — 10g(1 — X*))} = Lexp(_zep)x* + 0(L1/2+ﬁ)
= npx.(1 + O0(p)),

(3.13)

and, for the latter, one has

{1 € (€p — pxs. £,)} = Lexp(—Lp)(exp(pxy) — 1) + O(L'/**F)
= npx.(1+ O(p)).

(3.14)
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Thus, both sets contain the same number of pieces (up to an error of order np?).
This completes the construction of W°P',

3.5 Comparing VP with the Ground State of the Interacting
System

Our goal in the sections to come is to estimate how much WP differs from a true
ground state WY = WY(L, n) (and to show that it doesn’t differ much). This will
be done through the comparison of their occupation numbers. We shall see that the
ground states of the interacting Hamiltonian must live in subspaces with special
occupation numbers (see Corollary 3.32).

To compare occupation numbers, we introduce the distance dist;.

Definition 3.16 Let m = m(w) be the number of pieces in [0, L]. For j € {1, 2},
pick an occupation

0/ =(0],0}.....0l)eN", |0/|=n.

Define

dist; (@', 0% =Y 10} - 071,

i=1

Remark 3.17 Recall that the non-interacting ground state W has a single occu-
pation Q(W0): all the states with energy below E,ﬁw (where we recall that E,{‘w
denote the n-th (counting multiplicity) energy level of the one-particle Hamiltonian
H,(L)); moreover, only those states are occupied. In [20], for U compactly

supported, for WY an interacting ground state, it was proved that

C™'np < disto(Q(¥Y), 0(¥°)) < Cnp. (3.15)

m
where distg is defined by disto(Q] , Qz) = Z 1 01202 Clearly, one has
i=1
distg <dist;.
In the sequel, we shall prove that W°P' is a better approximation of a ground state
of the interacting system than is the non-interacting ground state W (compare (3.83)
with (3.15)).

For interaction potentials that decrease at infinity sufficiently fast (see (HU)), we
will prove that the main modification to the ground state energy comes from U
restricted to some (sufficiently large) compact set.
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Fix a constant B > 2. We decompose the interaction potential in the sum of the
“principal” and “residual” parts that is, write U = U? + U" where

U? .= 1[73(/)’13@”(] and U" := 1(—oo,—BEp)U(B€p,+oo)U~ (3.16)

As the sum of pair interactions W, is linear in U, this yields the following
decomposition for the full Hamiltonian:

HY  =H +w, =H + W/ + wV = HY" +w!. (3.17)

Our analysis is done in the following steps:

(a) first, we prove that WOP' approximates well the ground state for the system with
compactified interactions \IIUP;

(b) second, we show that the quadratic form of the residual interactions W), on WOP!
contributes only to the error term; this will imply (1.16);

(c) finally, we will conclude that the same W°P! gives also a good approximation
for the full Hamiltonian HY ground state WY in terms of the distance dist; for
the respective occupations.

Remark 3.18 Let us clarify a point of terminology: we will minimize the quadratic
form (HoV, W) = (Hg\y, W) + (W, W, ¥); the term <ng11, W) is referred to as
the “non- interacting energy” term and (W, W, W) the “interaction energy” term; we
use the same decomposition and terminology for smaller groups of particles or at
the single particle level.

3.6 The Analysis of HU”

We start with the analysis of HY”, in particular, of its ground state energy and
ground state(s). Later, we show that the addition of W,; will not change much in the
ground state energy and ground state(s). First, we compute the energy of WP, We
prove

Theorem 3.19 There exists pg > 0 such that, for p € (0, po), in the thermodynamic
limit, with probability 1, one has

1 2
lim —(HY" (L, n)¥°P (L, n), $P(L, n))
et

=E%p) + 72yupllogpl > (14 O (fz(IlogpD))  (3.18)

where y, is defined in (1.17) and f7 is a continuous function satisfying fz(x) — 0
as x — +00 no faster than 1/x (for more details, see (3.29)).
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Proof To shorten the notations, we will frequently drop the arguments L, n, and the
subscript  in this proof. We will show that, up to error terms, the only terms that
contribute to (HY"Wwopt worty — (HOWO W0 are those due to

(a) the interactions between two particles in the same piece,
(b) the decoupling of a fraction of these particles following the construction of
WPt

In (3.18), the interactions between neighboring distinct pieces will be shown to
contribute only to the error term where we have defined

Definition 3.20 A pair of neighboring or interacting pieces is a pair of distinct
pieces at distance at most B£,, from one another; in particular, particles in two such
pieces can still interact via the potential U”.

Let us now outline the main idea of the proof of Theorem 3.19. The pieces longer
than 2¢,, + A, contain two particles both in W9 and WP, Hence, for each piece of
this type, the energy difference is given by the second term in the asymptotics (1.16)
in Proposition 1.4. On the contrary, in pieces of length between 2¢,, and 2, + Ay, in
WO, the two particles were decoupled in order to construct WP, keeping one intact
and displacing another to a piece of length between £, — px and £,,. In this case, the
energy difference is given by the increase of non- interacting energy of the second
(displaced) particle. The single particles in W remain untouched in W°P' and groups
of three and more particles contribute only to the error term (as they carry only a
small number of particles).

To put the above arguments into a rigorous form, we will use the following
partition of the set of available pieces according to their length. Choose K large
but independent of L. For k € {1, ..., K}, consider the sets of pieces

L= {pieces of length in [Ep - %p, L, — u,0)} ,
PR I : k—1 k
L; = {pleces of length in [28,, —log (1 — T) ,2¢, —log (1 — ?))} :

As K is independent of L, with probability 1 — O(L~°°), the number of pieces

in the classes (([Z,i)) jef1,2) 1is given by Proposition 2.2. We will, henceforth, use
ke(l,... K}
these estimates without reference to probabilities.

As in (3.13) and (3.14), one shows that these two sets map one-to-one onto one
another up to an error estimated as follows:

cardﬁ,i = cardﬁi + O(n,ozK_l) =npK (1 + O(p)).

Recall that x, is defined in (3.10). For k < K x,, according to our scheme, the pairs
of particles in pieces belonging to ﬁ,% get decoupled, one of the particles being sent
to occupy a piece belonging to E}(. For k > K x,, the pairs of particles in the pieces
of /3,% are kept untouched. The latter pieces are those of size at least 2¢,, + A,. Itis
easily seen that the number of such pieces is given by



Interacting Electrons in a Random Medium 125

8 18j(@)] =2, + Ay = npe” (1 + 0(p)) = np(1 — x,) + O(np?).
The majority of these pieces is smaller than 2¢, + A, + log £,,; indeed,
i1 1A (@) € 2L, + Ax 40, log £,1} = np(1 — x.) + O(np|log p| ™).

By Proposition 1.4, for a piece of length £ in 2¢,, + A, + [0, log £,], the interaction
energy of the two-particle system is given by

o3y =" +o(6,3).

E3 8£3
For the difference of energies, this yields
(HU”WoPt gopty _ (00 0y
_ o 4 }
Z [ — Lpy? B (2¢, —log (1 — £))? (3.19)

14 _
+gane( = %)+ 0 (nollog pI ).

Taking K large, we approximate the Riemann sum in the last expression by an
integral

1 2 2 1
= X*/ i B - i P dt + 0 (E)
0 | (€ —tx:p) (Ep ~1

Llog(1 - 1x,))
=x |- /1 i log(1 — tx,)dt +0(t33) ) + O <l)
o 0 P K
= 72030 — (1= x) AN+ o(D) + 0 (%) .

Picking § € (0, 1), letting K = p*‘s, and recalling (3.10) for A, and x,, for § small,
we get
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(YW, WP — (O, W0) = npt? (e — (1 = x) A0 + (1 = x)
+o (n,oﬂf)
3.2 -1 3
=npl,’m (1 —e 87T2) +0(n,0€; )
(3.20)
In order to finish the proof of (3.18) and, thus, of Theorem 3.19, it suffices to upper

bound the interactions between distinct pieces. Recall that W°P! is an anti-symmetric
exterior product of one- and two-particle eigenstates (see (3.11) and (3.12)):

k1 ko k1
v = Agin A\ gin \éi, (321)
i=1 j=1 i=1

where the numbers of sub-states in each group are, respectively,

2
a=nQ—am1—nrHFGa—no+%)+ow%)

ky=np(1 —x, — p(3 = 2x,) + 0(p?),

2
ki =n—NWPY = np? <3 e %) (1+ 0(p)).

The functions ¢; and 51‘ are one-particle ground states in certain and the functions
¢ are two-particle ground states in certain pieces. Of course, ki + ko + ki = n.
As in what follows we will only need to distinguish between one- and two-particle
states, let us put the two groups of one-particle sub-states from (3.21) together, i.e.
write

ky k
v = Agin N\ g (3.22)
i=1 j=1

where ki = k; + k1 and {¢; flzl = {go,'}],":1 U {ds flzl As WP is a totally symmetric

1
sum of pair interaction potentials, one computes

(WPOPt oty — / Ulxi —xj) [ (x)[* dx
1<i<j<n (0.}

—1
D [ G — ) [ =T (U

? Ly (3.23)
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According to Proposition 4.8, for W°P! having the structure (3.22), its two-particle
density matrix is given by

ko ki kp
2 2 ‘ !
Yo =D Ve +Md—Ex) Y 4@y +WA—E0 Y Y v, &y

j=1 ij=1,...k i=1j=1

i<j

+Ud—Ex) >y, ® v
i,j=1,....ky
i<j
(3.24)
As ¢} is a two-particle state and ¢; is a one-particle state, one has

”c(.fz) =(.¢)¢ and vy, = (. ¢))¢;.

The decomposition (3.24) being plugged in the r.h.s. of (3.23) reads as follows:

(a) the first term corresponds to the interaction of two particles living in the same
piece; this term is the leading one in the difference (3.19) and has been already
taken into account in the first part of the proof;

(b) the second term is the interaction between two one-particle sub-states living in
distinct pieces;

(c) the third term is due to the interaction between a one-particle sub-state in
one piece and a two-particle sub-state (represented by its one-particle reduced
density matrix) in another piece;

(d) finally, the last term describes the interaction between two distinct two-particle
sub-states.

Thus, we are interested in upper bounds on Tr(U?B) where § is any of the last
three terms in (3.24). Let y; and y» be two arbitrary one-particle density matrices
encountered in the above expressions. Then, the kernel of (Id — Ex)y; ®° y» is given
by

1
Id—Ex)(y1 ®° y2)(x, y,x',y) = 5(yl<x, Ny, y) + v D, y)
=1, D, YY) = . Xy, ).
(3.25)

Taking into account the fact that in our case y; and y» live on distinct pieces A and
Ao, respectively, (3.25) implies

Tr (U7 (1d - By @' 1) = /R UP(x = »)(1d=E)(1 @' y)(x, y. x, y)dxdy

:/ / UP(x — y)yi(x, x)ya2(y, y)dxdy.
Ay J Ay
(3.26)
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To upper bound the last expression, we use the estimates proved in Section 6.2. We
now study the different sums in (3.24).

For pairs of one-particle states, we estimate the number of pairs of pieces at a
certain distance by Proposition 2.3 and we bound individual terms by Lemma 6.18.
We compute that, for any n > 0 and ¢ > 0, for L sufficiently large, with probability
1 — O(L™°), one has

Tr (Up(Id—Ex) o e yd,j)
i =1,k

< X[ ua =ik wPiek, 0Py
A =Ep—px, L BIXA
|Aj|>£p_px*
diSt(A,‘,Aj)<BZp

<y 3 [ vt - ik, Pk, o) Paxdy
k=0 |Ai 1> —pae AixAj
|Aj1=p—pxs
kn<dist(A;, A j)<(k+1)n
Bep/)7 |Al| 2 ep — PXx,
<C ) # 1A > £, — px, 64 ((k+ DM~ Z((k+ D)
k=0 .
kn < dist(A;, Aj) < (k+ 1)y
BEp/n
< CLe ' £, " ((k+ D)™ Z((k + D,
k=0

Here, to get line three from line two, we have used Lemma 6.18, and to get line four
from line three, we have used Proposition 2.3 to bound the counting function with a
probability 1 — O (L™%°).

Thus, by the continuity and local integrability of x +— x~°Z(x), choosing n
small and ¢ € [0, 1), we obtain that, for L sufficiently large, with probability 1 —
O (L™°), one has

B¢
Tr (Up(Id—Ex) Z Ve ®° J/¢j) < Cnp€;4+5/ ’ a ¢ Z(a)da.
i,j=.1,....,k1 0
i<j
(3.27)
Let us now estimate the last integral. For ¢ € [0, 1) and 0 < Y < X, one computes
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X Y X
f a ¢Z(a)da < (f +/ )a_SZ(a)da
0 0 Y

<=9 [zOY' 4 zx' - Zy' ]
= (-~ X' [/ 0! 20 - 2 + 2]
Let us now optimize the last expression with respect to @ = ¥/ X & [0, 1]. Consider
FX, @) = a' "5 (Z(0) — Z(@X)) + Z(aX). (3.28)

In general, the more rapidly Z goes to zero at infinity, the smaller the optimal « and,
thus, the smaller is the minimal value. Let us define the following functional of Z
(depending also on X):

fz(X) = aei{?fu fX, ). (3.29)

Obviously, as soon as Z(X) = o(1) for X — 400, one finds that fz(X) = o(1) for
X — +o00. Then, plugging this into the estimate (3.27), we obtain

T (UP(Id—Ex) Y e y¢j> <Cinpls f2(BL,). (3.30)

i,j=1,....k
i<j

In particular, the last expression is o(np£;3). Note also that it can never be made

better than 0(n,0€;4) as there is no control of the size of Z near the origin.

To estimate the interactions between a one-particle state and a one-particle
density matrix of a two-particle state, we use the bound derived in Lemma 6.20.
We estimate the number of pairs of pieces of this type at a certain distance by
Proposition 2.4 (in this case, there is no need for a more precise Proposition 2.3
as in the derivation of (3.30) above). This yields

ki k

Tr(UPAd—Ex) YD ve ® 1)

i=1 j=1

< > / Ux = ey, 0Py, (v, y)dxdy

I8 >lp—px, DX !
|Aj|€26,+A,.3C,)
dist(A;, A )< B,

(3.31)

Bt,
<Cnp? L, 4;7/2+8 / a tZ(a)da.
0



130 F. Klopp and N. A. Veniaminov

Finally, for interactions between two reduced density matrices of two-particle sub-
states, we proceed as before; using Lemma 6.21 for each term, we compute

Tr (U”(Id B0 Yy, ® ygj)

i,j:.l,....,kz
i<j
= Z / Ux — y)y§1 (x,x)y{1 (y, y)dxdy
ALIA |20+ Ay 30) Y B4 A; A; (3.32)
i<j
dist(A;,A)<BL,
Be,
<Cnp’ / min(1, a *Z(a))da.
0
Summing (3.30), (3.31), (3.32), we obtain
(WPWOP oPYy < Cp p£;3 - fz(BEy). (3.33)
Taking (3.20) into account, this completes the proof of Theorem 3.19. (]

To formulate our next result, we will first need to define the notion of occupation
restricted to a subset of the total set of pieces.

Definition 3.21 Let P, = {Ag (a))}f:(‘i)) be the total set of pieces and let Q € N
be an occupation. For P C P, a subset of pieces, define the corresponding sub-
occupation (or a restriction of occupation) as an occupation vector containing only
those components that are singled out by P:

Olp = (Qp)k: AreP-

When the subset P is defined by a condition on the length of the pieces, we will
use a shorthand notation involving only this condition, e.g., Q|-, stands for the
occupation Q restricted to the pieces of length greater than the Fermi length €.

Recall that WOP! is constructed in Definition 3.14.

Theorem 3.22 For any non-negative function r : [0, pg] — R such that r(p) =
o(1) when p — OV, there exist C > 0 and p, > 0 such that, for p € (0, p,), in the
thermodynamic limit, with probability 1 — O (L~°°), if ¥ is a normalized n-particles
state in How) N N0, L) (see (3.3)) satisfying

1
S(H (L, my W, W) < —(H (L, )W, W)+ pllog pl P (p))?, (334)

S| =

then
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dist; (Qlz¢,+¢ (W), Qlze,+c(¥°P)) < Cnp - max(r(p). |log p| "),

dist; (Ql<,+c(¥), Ql<t,+c (W) < Cnmax(/p - r(p), pllogp|™").
(3.35)

Proof of Theorem 3.22 First of all, taking into account the form of the first
inequality in (3.35), while dealing with its proof we may suppose without loss of
generality that | log p|~! is asymptotically bounded by r(p), i.e., for p small,

[log p| ™" < 7(p). (3.36)

For the proof of the second inequality in (3.35), we will no longer assume (3.36).
Consider now the pieces (Ax(w))1<k<m(w) (see Section 1). Fix ¢ > 0. We say
that a piece A (w) is of e-type

(a) if |Ag(w)| = 3£,(1 — ¢), that is, it has length at least 3¢, (1 — €);

(b) if |Ag(w)| = 2€,(1 — €) and Ay (w) has at least one neighbor (in the sense of
interactions U” from (3.16)) of length at least £,(1 — €);

(c) if |Ag(w)| = £,(1 — ¢) and Ag(w) has at least two neighbors, each of length at
least £,(1 — ¢).

Note that, by (3.16), as U” is of compact support of radius at most B¢, there exists
po > 0 such that for p € (0, pp) and ¢ € (0, 1/2), a given piece can have at most
2B neighbors of length at least £,(1 — ¢).

We first prove that “exceptional” pieces contribute only to the error term.

Lemma 3.23 Fix n € (0, 1/3). There exists € € (0,1/2) and po > 0 such that,
for p € (0, po), in the thermodynamic limit, with probability 1 — O(L™°), if ¥ €
Howwy NHL(0, L)) satisfies

(HY" (L, nyw, w) < 26°%p)n||@ |, (3.37)
then
> Y. Q) <np'ty2. (3.38)
ec{a,b,c} Ax(w) of e-type (o)
and

> [0k (W)]* < E%p)n - logn - loglogn. (3.39)
Ag(w) of e-type (a)

Let us postpone the proof of this result for a while and continue with the proof of
Theorem 3.22. The following lemma estimates the total contribution of “normal”
pieces (i.e., that are not of e-type) that carry too many particles.

Lemma 3.24 Recall that {Ak}f:(?) denote the pieces.
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There exists C > 0 such that, for L sufficiently large, with probability 1 —
O(L™), for a normalized n-state W in ) ow) N H%, ([0, L)) satisfying (3.34) and
O¥) = (Qr)1<k<m(w), the occupation number of the state W, one has

> o+ > Ox + > Ok < Cnpt)!

|AKI< L, (1—p2) |Aklele,(1—p?),2¢,(1—p%)) |Aklel2¢,(1—p2),3¢,(1—p%))
02 01 >3 O >4
(3.40)

and

> 0t < Cnpt)! (3.41)
|k <38, (1—p?)

and, for ¢ € (,02, 1/4),

P,
Yo+ Y. et Y Qk<Cn8_p2zp1. (3.42)
MG (-8) A2, (1-) A3, (1)
QOrz1 Ok 22 0 >3

Proof First, note that by Theorem 3.19 and (3.34), there exists a constant C such
that

(HY" W, w) < (HY WO, W) +np|log p| 7 (r(p))* < (HJWO, W°) + Cnpt;,”.
(3.43)

Moreover, if —Ag: denotes the Laplacian with Dirichlet boundary conditions on

Ok

/\ L2(Ak), one has

p e e ) gy
(Hy )0 > (H) 50, > § :inf(f’(—%fi)) = Z Z 2 :Z 2
—~ porfirri 1AV] el FAVY
= =1 j= =
(3.44)

QX + D)X + DX

6
On the other hand, by the description of WO for some C > 0, one has

where P(X) :=

P(1) 2 PQ) 2
(HOWO, )< > At > A +Cnp?
|Akl€le, (1—02),2¢,(1—p2)) |Alel2e, (1—p2). 3, (1—p2)'

Plugging this and (3.44) into (3.43), we obtain
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7'[2 7'[2
> apreo+ > AP0 - P()
[Ak<Lp(1=p?) |Akl€le, (1—p2),2L,(1—p2)) g
7[2 -3
+ > A (P(Q0 = P) < Cnpt,>.

|AkI€[2€,(1—p2),3L,(1—p%))
(3.45)
By Lemma 3.23 and the explicit description of the non- interacting ground state W
(see the beginning of Section 3.5), for some C > 0 and p sufficiently small, for L
sufficiently large, with probability 1 — O (L~°°), one has

Z Ok + Z Ok + Z o

[ArI<Ep(1—p) |Akl€ll,(1—p2),2¢,(1—p2)) [Akl€[2€,(1—p2),3,(1—p2))
> n(1 - Cp?)
> Z 1+ Z 2 | —2Cnp?
LIAKI€l€,(1402),2¢,(1—p?)) [Ak|€[26,(14p2),38,(1—p%))
= Z 1+ Z 2| —3Cnp?
LIAkIE€LL,(1=p2),2€,(1—p2)) |Akl€2¢,(1—=p2),3E,(1-p%) |
(3.46)

as

#k; |Ax] € [L,(1 = p?), (14 p?)) U2L,(1 — p?),2¢,(1 + p*)} < Cnp?.

Thus, (3.46) yields
> o+ > Q=1+ > (O —2)
|AKI<E,(1-0) |AKI€[L, (1—p?),20,(1—p%)) |AkI€[28,(1—p?),30,(1—p%))
k=1 0 >2 0r>3

> Z 1+ Z 2| = 3np!t"

|Aklele,(1—p?),2¢,(1—p%)  1Ak|€[2€,(1—p%),30,(1—p?))
k=0 0 <1
(3.47)
Rewrite (3.45) as
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2 2
cnpty'> Y |Z|2P(Qk)+ 3 |Z2(P(Qk)—P(1))
|AkI<E,(1-p?) g |Aklele, (1—p?),2¢,(1—p?)) il
Qr=>1 >
7.[2
- > AP0 - P@)

|AkI€[20,(1—p2),30,(1—p?))

k=

Z P(l)n?
> L 1A
|Aklell, (1—p2),2¢,(1—p))
Q=0

¥ (P(2) — P(Q))m?

> 5 |Ag|?
|AKl€[2€,(1—p%),3€,(1—p?))
k<
7.[2 7.[2
> Y a0t > A (PP
[AI<E, (1—p%) |Aklele,(1—p?),2¢,(1—p%))
Or=>1 k=
7.[2
+ > AP0 —PQ)
|Akl€[2¢,(1—p?),3¢,(1—p%))
0 >3
2
T
I R S
|AkI€Ll, (1—p?),20,(1—p?))
0x=0
2

T
P(Z) Z Ak|2
|AkI€[20,(1—p2),30,(1—p%))

k<

Hence,
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2 2
_ 4 4
Crpt,' > ) P+ > A PP
|AkI<E,(1—p%) |Akl€ll, (1—p2),2€,(1—p2))
Or>1 Qr=>2
71,2
+ > AP0~ P
|Akl€2€,(1—p%).3¢,(1—p?))
k=
nz
- 1+ 2
wp(l - P2)|2 Zz: 2 22: 2
|AKIELl,(1-p2).20,(1=p2) | Ar|€[2€,(1—p2).3€,(1—p2))

as P(1) =1and P(2) =5 <8 =23P(1).
Using (3.47), we then obtain

1 712 n2
Cnpty' > ) )<—|Ak|2P(Qk)——wp(l_pz)'sz)

|AkI<E,(1-p?

Or>1
7'[2 7'[2
+ Z (_Z(P(Qk)—P(l))——H(Qk—l)>
> , \A [€p(1—p7)]
|AkI€le, (1=p).20,(1-p2))
Qr =2
7'[2 ]'[2
+ > ( 2(P(Qw—P(Z))——QZ(Qk—2>).
~ , \A] [€o(1—p?)|
|Akl€r26,(1-p2).3¢, (1-p%)
k=
(3.48)

Now, we note that, for X > n + 1, X integer, one has

X
P(X)— P(n) = Z K >0+ DXX —n). (3.49)
k=n+1
This yields
o for Qx > land |Ag| < £,(1 — p?), one has
LI T s T —DQOGHY g
) k) — T v Yk = U, .
|Ak|? 1€, (1 — p2)|? 61€,(1 — p?)|?

if, moreover, |[Ag| < £,(1 —€) (,02 < & < 1/2), by (3.49), one has

T poy-—" o >(”2_ n? )Q>(8n>2(5—p2)Q_
AP 1 (=p2) P T AP 16, (=p)) 27 g (35;
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e for Qr > 2and |Ay| < 2¢ (1—,0 ), one has

72 e 72 2Q0k+9)(Qk—2)(Qk—1)
P P(1)—————— (0«1
T |2( (QK)—P(1)— |ep(l_pz)lz(gk ) > e, (1)

= 0;
(3.52)
if, moreover, |Ag| < 2,(1 —¢) (0% <& < 1/2), by (3.49), one has

2 2 47.[2 7.[2

T g
— _(P(Q))—-P(1)——————(Qx—1)> - —1
agp PPN = e (Gl <|Ak|2 |ep<1—p2)|2>(Q" )

- (87)*(e—p?)

= _1 ;
e (Qk—1)
(3.53)
e for Qr > 3 and |Ag| < 3£p(1—p2),onehas
w2 n? 7220k +13)(Qx—3)(Qx—2)
P P2 _ -2
™ |2< (QK)—P(2)— IZp(l_pzm(gk ) > i a—pP
> 0;
(3.54)

if, moreover, [Ay| < 3£,(1 — &) (,o < ¢ < 1/2), by (3.49), one has

2 2

|2(1”(Q1<) P(2)—

2

T s 9712_ T 9
0, (=pP & )/(|Ak|2 |ep<1—p2>|2)(Qk )

S (87)%(e—p?)
1€, 2

| A

(Qk—2).
(3.55)
Plugging (3.50)—(3.55) into (3.48) immediately yields (3.40) and (3.42), thus,
completes the proof of (3.40) and (3.42) in Lemma 3.24.
To derive (3.41), we proceed as follows. Clearly, for Qy > 4, the right-hand sides

of (3.50), (3.52), and (3.54) are larger than § - Q,% (for some & € (0, 1)). Thus, (3.48)
implies

2 —1
> 07 < Cnpt, .
|k <3E,(1—p?)
Qi >4

On the other hand, by (3.40), one clearly has

Y. Q<3 ). Q<Cmpt,.

|AkI<3E,(1-p?) [Ak1<3L,(1—p?)
0k <3 <3
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Thus, the proof of (3.41) is complete. This completes the proof of Lemma 3.24. [J
We also remark the following

Lemma 3.25 Consider WU, the ground state of HY" (L, n).
There exists C > 0 such that for L sufficiently large, with probability at least
1 — O(L™°), no piece of length smaller than

Emin = £, — Cpt, (3.56)

is occupied by particles of WU” .

Remark 3.26 The proof of Lemma 3.25 shows that it suffices to take C > 4B + 4
for p sufficiently small; here, B is the constant defining U” (see (3.16)).

Proof Suppose that the claim of the lemma is false. Then, a piece shorter than £,,;,
is occupied.
Let us show now that, as there are too many such pieces, pieces longer than €,,;,
cannot be all in interaction with n particles, no matter where these n particles are.
First of all, according to Proposition 2.2, the total number of pieces longer than
Lnin 18

8j 187 (@)] = bpin} = Le~"min 4 O(L1*10) = Lﬁ(l +Cpl, + 0(p*C3)

=n(1+ Cpt, + O(p)).

The number of pieces of length larger than 2¢, is no(1 + O(p)). If a particle lies
in one of these pieces, it can interact with at most 2B other pieces of length greater
than £,,,;,,.

For pieces smaller than 2¢,, (but as always larger than £,,;,), we remark that if
two such pieces are at a distance greater than (2B + 2)£, from one another then
they cannot interact with the same particle, except for the cases already taken into
account above.

Moreover, according to Proposition 2.3, the number of pairs of such pieces at
distance at most (2B + 2){,, is given by

(AL, Aj), [Ail > Liin, [Aj] > Cnin, dist(A;, Aj) < (2B +2)L,}
2

=208 +2)6,L (e7nn) + 0L

= (4B + Hnpl,(1 + 0(pl,)).

Consequently, the rest of these pieces are at larger distances from each other. This
leaves at least

n(l1+Cply, + 0(p)) — 2B + Dnp(1+ O(p)) — (4B +DHnpl,(1 + O(pl)p))
=n(1+(C—-4B —4)pt, + O(p))
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pieces such that no two of them can interact with the same particle. Remark that it
suffices to take C > 4B + 4 to ensure that this number is larger than n for p small.
This proves that there exists at least one piece longer than ¢,,;,, which is neither
occupied nor interacting with any particle in a ground state ! "(L,n).

This leads to a contradiction with the fact that the ground state ¢ "(L,n) puts
at least one particle in a piece smaller than ¢,,;,: indeed, moving this particle to the
piece longer than ¢,,;, which was singled out just above would result in a decrease
of energy as no interaction energy would be added and non-interacting energy would
obviously decrease with the increase of the piece’s length. This completes the proof
of Lemma 3.25. O

Let us now resume the proof of Theorem 3.22. In what follows, W is a function
satisfying condition (3.34). By Theorem 3.19, using W°P'(L, n) as a trial function,
we see that both W and WOPY(L, n) satisfy the assumptions of Lemma 3.23. Thus,
picking n € (0, 1/3) and ¢ sufficiently small, by Lemma 3.23, for p sufficiently
small and L sufficiently large, with probability 1 — O (L~°°), we have

> Yo (kWL ) + Qk(W)) < np' . (3.57)

ecf{a,b,c} Ar(w) of e-type (o)

We will now reason on the particles in \Pg ’ (L, n) that live in pieces that are not of

e-type (a), (b) or (c).
Recall that, by definition (see Definitions 3.9 and 3.14), W°PY(L, n) puts

* no particle in each piece of length in (0, £, — x4p);

* one particle in each piece of length in [£, — x40, 2, + Ay);

* two particles (as a true two-particle state) in each piece of length in [2¢, +
Ay, 3£p);

Let C be the constant from the claim of Theorem 3.22 that we will fix later on.
Define

. ng' to be the total number of pieces of length in (0, £, — x,p) where W puts
exactly 1 particle;

* n; to be the total number of pieces of length in [£, — x40, £, + C) where ¥ puts
no particle;

. nf to be the total number of pieces of length in [£, — x40, £, + C) where W puts
exactly 2 particles;

* 7 to be the total number of pieces of length in [£, + C, 2£, + A,) where W puts
no particle;

. ﬁf to be the total number of pieces of length in [£, 4+ C, 2¢, 4+ A,) where ¥ puts
exactly 2 particles;

* n, to be the total number of pieces of length in [2€, + Ay, 3¢,(1 — &)) where W
puts exactly 1 particle;

. n;' to be the total number of pieces of length in [2€, + Ay, 3£,(1 — ¢)) where W
puts exactly 3 particles.
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The general idea of the forthcoming proof is the following. On the one hand,
Lemma 3.23 tells that pieces with too many neighbors are a sort of exception in a
sense that they occur relatively rarely and carry relatively few particles. On the other
hand, according to Lemma 3.24, pieces with too many particles are also relatively
exceptional.

Finally, let us complement these two observations by noting that no particle in
a piece of length in [2£, + Ay, 3£,(1 — €)) can also occur for a small fraction of
them. Therefore, we first note that it is sufficient to argue for pieces that are not of
e-type (as those of e-type are already handled by Lemma 3.23). Let us now take
a look at the distribution of particles in the state W°P' in the pieces of length in
[2¢, + A4, 3£,(1 — ¢)) that have no particles and no neighbors (as they are not
of e-type) in W. Obviously, moving a particle from a piece of length greater than
2¢, + Ay to a smaller piece induces an increase of the non-interacting energy of
order 6;2 just because the pieces longer than £, — px, are already occupied by at
least one particle (thus, the non-interacting energy of a second particle is at best
4712/(2Kp + A,)? and nz/(ﬁp — pxx)?ifa particle is placed in a non- occupied
piece). Thus, the total number of pieces of length greater than 2¢, + A, with no
particles is bounded by 0(np£;1 ).

The last three arguments together prove essentially that the distances distgp and
dist; coincide for the matter of the current proof up to an admissible error, i.e. of
size O (n,o@;] ). Namely, by the definition of the distance dist;, one has

dist; (Ql<e,+c(¥), Qla,+c(¥P) = nf +nf +n] +r,
(3.58)
dist; (Qlze,4¢(W), Qlze,+c(VPY)) =0T + 7] +n3 +ny +7/,
and, by the fact that the total number of particles in both states is the same, one gets
ng +nf +77 +ny +r"=n] +0] +n;, +r"” (3.59)
where

max(r, ', ", r"") < Cnpt, . (3.60)

Recall that 7(p) is of order at most | log p|~!. Hence, if (3.35) does not hold, for any
constant C1, if L is large enough, either one has

nl+7] +nf +n; = Cinp-r(p) (3.61)
or one has

n(')" + n"l" +ny = Cinyp -r(p). (3.62)
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First, we simplify (3.61). Suppose that, for some C large, one has

C
n; > Tlnp -r(p). (3.63)

The number of pieces of length in [%E 05 3p(1 — 8)) is given by

- 5 3/2
n{]. 1Aj ()] € [560,35,,(1 —8))} = 0np*?).

Thus, at least %np - r(p) of the pieces with three particles (as given by (3.63))

have their length in [28,, + Ay, gﬁp). Hence, the non-interacting energy excess

(compared to the non-interacting energy in the ground state) for each of these pieces
is lower bounded by 0(5;2) which, in turn, being multiplied by their total number,
contradicts (3.34). This simplifies (3.61) into

il +7; +ny = Cinp-r(p). (3.64)

The conditions (3.59), (3.60) and either (3.62) or (3.64) lead us to a number of
possibilities that we will now study one by one. More precisely, there are nine
possible variants as at least one among n|, 71; and n, should be “large” and the
same is true for either n(J)r s nf, n;“ and ﬁf. ‘We now discuss these cases.

(a) Consider first the case when
min(ii], ny) > Canp - r(p) (3.65)

with C, < C1/3.

This corresponds to taking the same configuration of particles as in W°P' and
move some of them from pieces of length in [2¢, + Ay, 3£,(1 — ¢)) to pieces
of length in [¢, + C,2¢, + A,) that already contain one particle each. As we
are now dealing only with pieces that are not of e-type, this implies in particular
that the pieces of length in [2¢, + Ay, 3¢,(1 — ¢)) from which we withdraw
particles and that originally contain 2 particles do not have any neighbors.

Taking the smallest available pieces for particle donors and the largest
available for particle acceptors gives a lower bound on the total energy increase
induced by this operation. Suppose that Canpr(p) smallest pieces have their
length between 2¢, + A, and 2¢, + A, + 6. Then, choosing C; (thus, C3) much
larger than the constant in Lemma 3.24 for the case when r(p) = | log p| ™!, we
obtain

2
np - r(p),

Le 20 (1 —e™%) > %
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(b)

(©)

which yields

CzeA*

5>
2

r(p). (3.66)

Moreover, analogous calculations show that at least %n,or(p) of these pieces
have length in (2¢, + A4 +8/2, 2¢,, + A, + 8). For the particles in these pieces,
the increase of energy is lower bounded by

472 n y
(20, + Ac+68/2)% (2, + A +5/2)3

472 y
(20, + A)? (20, + Ay)?

+0W,h = Cr(p)e,?, (367

where C3 > 0. Multiplying the number of pieces by the lower bound (3.67)
gives a total energy excess that contradicts (3.34) if we choose C; (hence, C1)
sufficiently large.

The case

min(n}, n3) > Canp - r(p)

is even simpler than the previous one. Indeed, in W°P', the occupations of the
pieces of length in [£, — pxy, £, + C) andin [£, + C, 2¢, + A,) are the same
but the lengths considered in the previous case are smaller. Hence, the arguments
developed in point (a) above enable one to conclude with the only difference that
the increase of energy is even larger. Moreover, there is no need to remove the
small interval of size §.

Next, the situation when

min(ng, ny) > Canp - r(p) (3.68)

corresponds to moving excited particles, i.e., particles occupying the second
energy level, from pieces of length in [2£, + Ay, 3£,(1 — ¢)) to empty pieces of
length smaller than £, — px,. Recall that actually the approximate equilibrium
between the gain in interaction energy due to decoupling and the increase of
non-interaction energy was part of the definition of values of x, and A, i.e.,

__4n? +ye3 = o + 0. (3.69)
(2, + As)? P (8 — pxy)? r

Obviously, the smaller the piece we choose to remove the second particle from,
the more energy one gains. On the other hand, the larger the piece where one
puts the particle, the smaller the non-interacting energy increase, thus, the better.
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According to these two observations, we choose to move particles from the
Canp - r(p) smallest pieces longer than 2¢, + A,. Suppose that the largest of
these pieces has length 2¢,, + A, + B». Then, by Proposition 2.2, B, satisfies

Le 2741 — e B2y 4+ O(L'?*0) = Canp - r(p).

Hence, By = Cae*r(p)(1 + O(r(p))). Moreover, the number of such pieces
with lengthin [2¢, + Ay + B3/2,2¢, + Ax + Bp) is

#{k; [Ax(w)| —2€, — Ay € [B2/2, By)}

c (3.70)
_ Le—zzp—A*(e—Bz/z _ e—Bz) + 0(L1/2+0) > ?2,1’0 r(p).

Clearly, for all these %np@;] pieces, the non-interacting energy excess is

proportional to C2£;3r(,o); thus, multiplied by their total number (3.70), for

large C», this energy excess does not fit within the margin allowed by (3.34).
(d) Yet another possibility for (3.64) is that

min(max(nf', 71‘1"), max(n; ,n;)) = Canp - r(p).
Obviously, the variant
min(ii|, ny) = Canp - r(p).

is more advantageous from the energetic point of view. The question here is
whether it is worth moving a particle from a piece of length close to the lower
bound of the corresponding group, i.e., £, — pxx, to another piece (but as the
second particle because there is already another particle in that piece) of length
close to the upper bound, i.e., 2¢,, 4+ A,. In a certain sense, this is the opposite to
the case (c) as the latter tells that the threshold value A, is not too small, while
the current case will explain why A, is not too big.

As above, one shows that, in order to choose the Canp - r(p) largest pieces
of length in [£, — px4, 2¢, + A), it is sufficient to solve

Le 2= 4Br — 1) + OLV**0) = Canp - r(p),

which also implies B; = Cze?*r(p)(1 + O(r(p))). Then, as above, the
energy excess is proportional to C2€;3r(p) (where the constant Cy can be
chosen arbitrarily large) whereas the interaction terms are uniformly bounded
by 0(6;4“'0). Thus, the total energy gained by such an operation exceeds the
limits imposed by (3.34).

(e) The next possible option is that

min(ng,7;) > Canp - r(p). (3.71)
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This corresponds to moving particles in WP' from pieces longer than £, + C to
pieces shorter than £, — px,. Remark first that the increase of non- interacting
energy is at least

2 2 272C
(o —px)> Uy +0O)? 7 O

, (3.72)

which always dominates the possible interaction with a particle in a neighboring
piece: this interaction is O(Z;‘”O) by Lemma 6.18. Multiplying the left- hand
sides of (3.71) and (3.72) gives a lower estimate on the energy excess that
contradicts (3.34) because r(p) = o(1).

(f) Finally, the only case left is when

min(nar, ny) = Cny/p-r(p). (3.73)

Informally speaking, this is about the question if the threshold £, — px, between
occupation zero and occupation one is placed correctly.

It is also remarkable that the allowed number of particle displacements
for this case is much larger than in the other cases: one has to compare
o(n,/p) to o(np). This is due to the following mechanism. First, note that
moving a particle that interacts with another particle in a neighboring piece
may result in a decrease of the total energy. Obviously, the contribution of the
displacement of such particles is upper bounded by 0(np£;4+0) because there
are at most O (np) neighboring particles and the size of interaction is O (6;4+0)
by Lemma 6.18. Thus, these particles may be neglected for the precision of the
current proof.

Then, reasoning as we did many times above, we observe that at least
%nﬁr(p) of particles that are removed from pieces of length in [£, —
0%y, £, + C) have their length greater than £, + C3,/pr (p), where the constant
C3 grows together with C,. But, for each of these particles the non-interacting
energy increase is of order C3£;3ﬁ - r(p). As above, multiplying the number
of involved particles by the lower bound on the energy change, we get a
contradiction with (3.34).

This completes the proof of Theorem 3.22. (]
We are now left with proving Lemma 3.23.

The Proof of Lemma 3.23 We first prove the estimate (3.38). It will be a conse-
quence of the fact that the number of pieces in any of the three type is small and of
the following

Lemma 3.27 Pick k pieces of respective lengths ] < lp < --- < lx. Assume that,
for 1 < i <k, the state ¥ € ﬁnQ(q,) N HZ.([0, L]) puts exactly v; particles in the
piece i so that vi + - - - + vg = v. Then, one has
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723

2
307K2

< (HY L, ), ¥) < (HY" (L, )W, W) < (HY (L, n)W, ¥). (3.74)

Let us postpone the proof of this result for a while and complete the proof of
Lemma 3.23. We shall write out the proof for pieces of type (a). Those for pieces of
type (b) and (c) is similar.

Pick n € (0, 1) and ¢ > 0 such that n+2¢ < 1/6. The proofs of Propositions 2.2
and 2.1 show that there exists p; > 0 such that, for p € (0, p¢), for L sufficiently
large, with probability 1 — O (L~°°), one has

#{k; |Ak(@)] € [30,(1 — &), 4L,)} < np*™* (3.75)
and, for4 < k <logL -loglogL,
#{k; |Ak(@)] € [kLp, (k+ 1)Ey)} < mp*~17%. (3.76)

Now, if W places more than 10!+ particles in pieces of type a then

» either it places at least 2~ 'np! 7 particles in pieces of length in [3¢,(1—¢),4¢L,);
in this case, by Lemma 3.27, as 3(n + 2¢) < 1, we know that

HO L W) > 7-’:2(’1101-’_7’)3 > Z—Z —14+3(n+2e¢) E—Z 3.77
( (,n),)/anpp > nt, (3.77)

for p small;
* or, for some 4 < k < log L, it places at least np'T727%*2 particles in pieces of
lengthin [k£,, (k + 1)£,); in this case, by Lemma 3.27, we know that

k+2

np3+377—2k—28 .- —Zp—l (8p)_k . _210-1
((k + 1)€,)223k ~ 77 k+127"°

(HO(L, n)v, W) >

(3.78)
for p sufficiently small.

Hence, for p sufficiently small, recalling (1.13) and (2.7) (and that here & = 1), one
has (HO(L, n)¥, W) > 2% p)n.

This completes the proof of (3.38) in Lemma 3.23 for particles of type (a).

To deal with the particles of type (b) (resp. (c)), we replace the upper
bounds (3.75) and (3.76) obtained using Proposition 2.2 by analogous upper bounds
on the numbers of pieces of type (b) (resp. (c)) obtained through Proposition 2.4
(resp. Proposition 2.5).

This completes the proof of (3.38) in Lemma 3.23.

Let us now prove (3.39). By (3.44), one has
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’% T2 P(Q(Y)) _

AR <(HY (L, n)W, W) <2E%p)n

k=1

where P is defined in (3.44).
Taking Proposition 2.1 into account immediately yields (3.39) and completes the
proof of Lemma 3.23. i

The Proof of Lemma 3.27 The form of the Hamiltonians (1.4), (3.16) (the defini-
tion of U”), (1.6) and the non- negativity of the interactions guarantee that

k Vi i 2
(HY (L, W) > (HOL,mw, %) > > ) (%)

where (o)) 1<m<y, € NV and o) <o < -+ <ol .
Thus

kv 2 2k
0 mm b/ 3 TV
(H(L,mW, W) > (—l_ ) >y v -
: i 317 31tk

i=1 m=1

asvy+---+ v =v.
This completes the proof of Lemma 3.27. (|

Theorem 3.28 For p sufficiently small, in the thermodynamic limit, with probabil-
ity 1 — O(L™°), for any function ¥ € $" N HZ ([0, L]),

[u—

1
—(HY" (L, ), W) > —(HY" (L, )W, W) —o(p|logp| ).  (3.79)
n

S

Proof This result can easily be traced throughout the proof of Theorem 3.22 by
considering each of the cases. Before doing so, let us give some preliminary remarks
that correspond exactly to the three remarks found in the beginning of the proof of
Theorem 3.22.

First, the energy gain due to moving a single particle is always bounded by
0(£;2) just because each individual particle in WOP' brings to the system at most
this amount of energy.

Next, the number of pieces of e-type is O(np””) (see Lemma 3.23); thus, the
energy gain due to them is at most O(n,o”"K;z).

The pieces with too many particles are also rare by Lemma 3.24. Moreover, the
many particles in these pieces always bring an excess of energy and never an energy
gain.

Finally, the analysis of n2 large (see (3.63)) shows that moving an extra particle
to the majority of these pieces results in an energy increase of order of O (¢ pz),

whereas for only O (np>/?) of them adding a particle may be energetically favorable.
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We treat now the cases from (a) to (f) of the last part of the proof of Theorem 3.22.
For the matter of the current proof we shall put r(p) = 0 (because we are interested
only in those states that have the energy smaller than WOPY), thus, reducing the claim
of Theorem 3.22 to

disti (Q(V), Q(¥°™) = O(npt,) ).

* For those displacements when the possible energy gain is due to removing
interaction with neighbors (this includes the cases (d), (e), and (f)), it suffices
to remark that, by Lemma 6.18, the size of the interacting energy is bounded
by 0(2;4"’0). Combined with the fact that, in total, there are O(np) pairs of
neighboring particles, this yields a total energy gain of size 0(np£;4+0).

* For those displacements when the possible energy gain is due to decoupling
particles living in the same piece (cases (a), (b) and (c)), the individual interacting
energy is of size O (6;3) while their total number is O (n,o@;l). This yields a total
energy gain of size O(npﬂg“).

* Finally, when the energy gain results from a non-interacting energy decrease (like
in the case (d)), it is at most 0(653) and the total number of displacements that
result in energy decrease is O(npﬁ';l). This again yields a total energy gain of

size O(np€;4).
This concludes the proof of (3.79). O

Corollary 3.29 There exists po > 0 such that for p € (0, po), in the thermodynamic
limit, with probability 1 — O(L™°),

1
(HY" (L, n)WwOP', W) + 0 (p|log p| ™)

1 )
(" (L e ) =

n
o o

=&%p) + 7’y +
“llogpl?  [logpl3

O (fz(|log p))) .

(3.80)
where the constant y, is given in (1.17), Z describes the behavior of U at infinity
and fz is defined in Theorem 3.19.

Proof The upper bound is given by the fact that WU” is the ground state of Hg "
The lower bound is a direct consequence of (3.79) and (3.18). This proves (3.80). [

Remark 3.30 The ground state WU’ satisfies the conditions of Theorem 3.22.
Hence, the inequalities (3.35) hold for the distance between the occupations of wur
and WoPt,
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3.7 The Proof of Theorem 1.3

Theorem 3.22 and Theorem 3.28 give a rather complete description of the ground
state for the operator with compactified interactions Hg "(L,n). The description
is given in terms of comparison with WP (see Definitions 3.9 and 3.14). In this
section, we complement it with estimates on the residual part of interactions W”
(see (3.16)).

Proposition 3.31 There exists pg such that, for p € (0, pg), in the thermodynamic
limit, for L sufficiently large, with probability 1 — O (L™%°), one has

1
S(WTUOPL W) = O(p|log p|Z(2l log pI)). (3.81)

Proof We will mostly follow the lines of the second part of the proof of Theo-
rem 3.19 (see formula (3.21) and what follows). First, as in (3.23), one computes

W ) =T (U7 y i)

where y\;zo)pl is given by (3.24). Let us treat here only the contribution of the second
sum (3.24). It corresponds to interactions between single particles in pieces of length
in [£, — px«, 2, + A,). The other three sums only contribute error terms as the
number of two-particle sub-states in W°P! is by a factor p smaller than that of single-

particle sub-states. For the second sum in (3.24)., using Lemma 6.17, one obtains

Tr <U’(Id —Bx) Y v ® V¢_i>
i,j=1,....k
i<j

< ) [ vk oPieh 0 Paxay
IAiLIA €16y —pxa,2Lp+ AUI3E,,+00) ¥ Bi XA
i<j
dist(A;,A)> B,
—+00
< Cln,o/ Z;la_3Z(a)da.
o

Recall that Z is defined in (1.26).
We compute next

400 +o0  p+4o00 +00
/ a3Z(a)da = / U(x)dxda < / xU(x)dx < CL,2Z(BL,),
Be, Bt, Ja Bl,

where the last inequality is just (6.61) for ¢ = 2. This completes the proof of (3.81).
O
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Proof of Theorem 1.3 Proposition 3.31 immediately entails the asymptotics of the
interacting ground state energy EU (p). Indeed, as HV” < HY, one has £V (p) <
EY(p); thus, the announced lower bound is given by (3.80). On the other hand, by
Theorem 3.19 and Proposition 3.31, one has

<HU\IJU, \IIU> g (HU\IIOPt, \IJOpt) — (HUp\IJOPt, \I/0pt> + (eryopt, WOP()

= &%p) +my.pllog p| > (1+ 0 (fz(log p)))).
(3.82)
which gives the announced upper bound.
This, the facts that B > 2 and that Z is decreasing complete the proof of
Theorem 1.3. u

Our analysis yields the following description for the possible occupations of the
ground state of the full Hamiltonian.

Corollary 3.32 There exists C > 0 such that, o almost surely, in the thermody-
namic limit, with probability 1 — O(L™%), for any WY, ground state of the full
Hamiltonian of fixed occupation Q(¥Y), one has

dist; (Qlx¢,+c¢, Qlze,+c(¥P)
< Cnpmax (\/Z@llog o). [log oI ™).
dist; (Ql<t, 1> Ql<t, 1 (¥P))

< cnmax (Vo Z@llog o). pllog oI ™).

(3.83)

oY) e Q,: =10 occ;

Proof Note that
(HUP\IJU, q_,U> < (HU\I'U, \IJU) < <HU1’\I/0pt’ lpopt> + <qu/0pt’ lIJOpt>.
Thus, according to Proposition 3.31, WU gatisfies the condition (3.34) with
r(p) = Cy/Z(2|log pl)
for some C > 0 sufficiently large.

Then, Theorem 3.22 is applicable and yields (3.83). This completes the proof of
Corollary 3.32. 0
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4 From the Occupation and Energy Bounds to the Control of
the Density Matrices

In this section, we will derive Theorem 1.5 from Theorem 1.3, Corollary 3.32 and a
computation of the reduced one-particle and two-particle density matrix of a (non-
factorized) state. More precisely, from Theorem 1.3 and Corollary 3.32, we will
infer a description of the ground state WV in most of the pieces: roughly, in most
of the pieces, the only occupied state is the ground state (up to a controllable error).
We then use this knowledge to compute the reduced one-particle and two-particle
density matrix of WY (up to a controllable error).

4.1 From the Occupation Decomposition to the Reduced
Density Matrices

Fix a configuration of the Poisson points, say, w, and a state ¥ € £" (A). Recall that,
in the configuration w, the pieces are denoted by (A ;j(w))i1<j<m = (Aj)i<i<m
(where m = m(w), see Section 2.2). For 1 < j < mandg > 1, let (Eéy,,)lg,, be
the eigenvalues (ordered increasingly) and ((pé, n)1<n be the associated eigenvectors
of ¢ interacting electronic particles in the piece A (w), i.e. the eigenvalues and
eigenvectors of the Hamiltonian

4 2
d
HY () ==Y —+ Y. Ultu—x) 4.1

2
1= 4% 1<I<I'<q

q
acting on /\ LZ(A j(w)) with Dirichlet boundary conditions. Recall that U? is

=1
defined in Section 3.5 (see (3.16)).

The occupation number decomposition (see Section 3.1) implies that one can
write

m
v=3"wo and Wo=Y alel= Y a2 . W) A¢),
j=1

o neN™ (j)1<i<m
Vj, n_/-21
4.2)
where
* the first sum is taken over the occupation number O = (Q;)1g;gm; recall

m
Y Qj=m
Jj=1
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m
e we have defined GJHQ = /\ (p]Q_/,n_/; we refer to (C.2) in Appendix C for an
j=1
explicit description of the anti-symmetric tensor product.
Remark 4.1 1In (4.2), the convention in the exterior product is that, if Q; = 0, then
the corresponding basis vector drops out of the exterior product. Thus, the product

is only at most n fold. Moreover, in this case, a,%... oy =0ifn; > 2.

= _ m : o _ 0 _ 0
Forn = (n, snm) € N™, we write af = @y ... n,, = any, ., (V). These
coefficients are uniquely determined by W.

4.1.1 The One-Particle Density Matrix

We shall first compute the one-particle reduced density matrix in terms of the
coefficients (aﬁQ ) 0,7 coming up in the occupation number decomposition (4.2). We
prove

Theorem 4.2 The one-particle density yé,l) (see (1.19)) is written as yé,l) =

(1) d + y(l) ° where

m
=333 N aQaQy(g (4.3)

neNm—1 ! nj, n]

WY ain Y Y f,af?’yénl,)gj

i.j=1 Q. occ. Q;>1 AeNm=2n;n;>1 By
7] Q' Q=0 ifk¢li.j) njni>1 nm;
0i=0i+1
0,=0;-1
“4.4)

and

e we have used the shorthands

- ﬁjforthevecmr(ﬁl CL A 1nj,n/,~-- Np—1)whenn = (ny, -+ ,Am—1),
— R j for (Ay, - Ri—1, 0, R, R0, Ny, 1, Aig—2) When @ < ]
andn:(”la"'anm—Z)

* the trace class operator y( ) : Lz(Aj) — Lz(Aj) has the kernel

. /
nj,n

r'o, @) =0; / 90, DY (D2,

n_, n
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(n—0Q;—0;—D!Q;!0;!

e Ci1(0,i,))= ;
10,1, ) D
* the rank I operator Vgi),Qj : L3(A) > LQ(AJ-) has the kernel
ni,n;
nl’.,ni
1 . - . _—_—
Vo, 0,06 M= /Agj_. 00,000 DO,y (2 /AQi 001 (D, 11y (¥ D
nij,n; J ’ i
nln',

LA

4.5)
Theorem 4.2 follows from a direct computation that we perform in Appendix D.1.

Remark 4.3 1In (4.5), in accordance with Remark 4.1, we use the following conven-
tion

 if 0; =1and Q; =0, then n/] = 1 and n; = 1 (i.e. for different indices, the

—r
coefficient aﬁQ_ ,a’g vanishes) and
i,j ij

1 j i

Vo0, ) = 9], () - 6], (). (4.6)
Ln;
nl,1

 if Q; >2and Q; =0, thenn; = 1 and

)/éi),Qj @, ) = ¢, () /AQ/._I <.0]Qj_1’n; (Z)ﬁDJQj,,,j (x, 2)dz, (4.7)
1,11_/' J

4 ’
s

« ifQ;=1and Q; > l,thenn/j =1and

1 i i NN

Yoro, 60 =], (%) fA 0, P, @01 (. Dz, (4.8)
n,-,n_/ i

nj,1

4.1.2 The Two-Particle Density Matrix

We shall now compute the two-particle reduced density matrix in terms of the

coefficients (aﬁQ ) 0,7 coming up in the occupation number decomposition (4.2). We
prove

Theorem 4.4 The two-particle density yé,z) (see (1.19)) is written as

2 _ . @),dd 2).d,o

2),2
Yo =Yy + vy @

2),4,2
+Yy ;)

2),4,3
+7s 2

2),4,3
+78 2

+y Pyt 49



F. Klopp and N. A. Veniaminov
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where
TS 5 2B 3D B 7% TR
Jj=1Qocc.n;j=1j3eNm-1 n, n]
Qj22n>1
2),d,0o _ 2).d,o
AR DD DD DI D R @11)
1<i<j<m Q occ. jeNm— 2nj,nj>1 n, n]
iz cnl>1 n n/
Q21 i 2
(2)2 2),2
-y % Y a0y Y af ol v5y
i, j=1 Q,o0cc. Q=1 jeNm-! n],n/.>l "' "/
#] Q' 0} =0k if ki, j) ninl >1 nj
0;=0i+1
0,=0;-1
“4.12)
2),4,2 2),4,2
v t=30 > G@in Y e Vé,)g,-
i#j neNm—=2 Q occ. nj’nj>1 ' i n/j
Q=2 ni,ni>1 ot
0" 0}=0x ifkg(i, ]} !
0;=0;+2
0'=0;-2
4.13)
(2)43 .o (0] Q' 2),4,3
Z Z Z C3(Q.1, j, k) aﬁf,j,kaﬁ’ kyQuQ/an
i,j.k ieNm—=3 Q occ. n,-,nj,nk>l I’l,,n,,l’lk
distinct 0;=>2 nﬁ,n’-,n}()l n n nk
Q' Q=0 if1¢li, ).k} !
0/=0;+1
0=0;-2
0 =0k +1
“4.14)
(2) 4, 3/ Q’ 2),4,3
Z Z Z C3(Q. 1, j. k) Z anljk il ik yQistva’
i,j.k ieNm—3 Q occ. n,,n, ne>1 ninjsnk
distinct 0:>1, Or>1 nl n =1 n;,n’j,n;
Q" 01=0; if I1¢i, j.k}
0;=0i—1
0}=0;+2
0, =0x—1
4.15)

and
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(2),4,4__ .. (0] Q' 2),4,4
Y —Z Z Z Ca(Q. i, j k. D) Z D s 5] V010010

L i,j.k,
i,j.k,fieNm—4 Q occ. ninj,ng,n 21 ML T

distinct 0,21, 0;>1 n/.,n’-,n;(,n}>1 ni,nj,nk,nl
Q" Q,=Qp if peli,j.k,1) o
0;=0i-1, 0/=0;-1
0, =0k +1, 0j=0/+1

(4.16)
where
* we have used the shorthands defined in Theorem 4.2 and defined
— Rjjkfor Ay, -+ Ri—1, R gy oo e 0, Ny, Rj_1, -, Ag—3, N, Rg—2,
JAm—3) Wheni < j <kandn = (ny,--- ,nym—3),
— Rjjkgfor Ay, oo Ri—1, R, Ry e e R0, My, A1, -, Ag—3, g, Rg—2,
JAl—4, N, =3, -+, Am—a) Wheni < j <k <landn = (ny,--- , Ny—4),
* the trace class operator y(z) dod L2(A WA L2(A N — LZ(A )/\Lz(A i) has
nj,n’j
the kernel
2).d.d 0;Q;—1 RN
V() (x,x',y, y)——’ Qj,sz (X z)wQ PSR RRIZE
nj,n’j
4.17)
* the trace class operator yézl)gjo : LY2(A) A Lz(Aj) — L2(A)) A LZ(AJ-) has
ni,n;j
nl’,ni
the kernel

2).d,
J/é)QO(x,x’,y,y/) =0;0; /AQ"’leQf” dzd7
i j

n,nj
nl’,n’j
Py (X2 W, (¥ 2) <pQ n (50 <pQ V')
0,00 2) 0, D |0, PACESLACEED
4.18)
n—0;—0i—2)!0;!0;!
L4 C , ‘, i) = 5
2(Q. 1, )) =)
e the trace class operator yg)éj D L2A) AN L2(A)) — L2(A) N\ L*(A;) has
n.nj
nl.n';

the kernel !
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2),2 i i
yéi),Qj (x, ) =1g;>2 f 0j-2 0 (ijlej (x, ', D0, n; )
ni,nj Aj xA;
n;,n/j
J / J
wQ_i_l»”} (y ’ Z) goQ_j_l»n} (yv Z) dZdZ/
P01 V2D Wy 052 (4.19)
J ’ J
Flgs / - ¢Qj,nj(x ,2) <P_Qj,nj(x,z)
a;’ XA:'Qi_I lei,ni (', 2 (plQis"i (x,2)
X (ijj—l,n/j (Z)(piQi-H,n; >,y Z/)dZdZ/,
* the rank I operator Vg,)é,z : Lz(Aj) /\Lz(Aj) — L2(A) \ L*(A;) has the
ni,n;i
nl’.,nj.
kernel
2),4,2 / N o_ J / J i
yinQj (-xv-x ) y1 y ) - / Qj*z gij’nj (xvx ) Z)(ij—Z,n/.(Z)dZ/ Qi ¢Qi7ni (Z)
n,-,nj Aj J Ai
n;.,n’j
X Gl w2 OV 2.
243 (4.20)
the rank 2 operator yéi)”Q;',Qk : L2(A; U Ap) /\Lz(Ai U Ap) —
ni,nj,ng
i j’n;c

L2(Aj) A\ LZ(A]-) has the kernel

2).4.3 . -
yéi)’Qj’Qk(x,x/, ¥ = / 0;-2 (ijj,ﬂj (x, x', Z)ﬁ”jQ._z,n/, (2)dz
ni,nj,ng Aj j f
ni, j,n;c
fAIQi (piQiJl,' (Z)(Pin._H’n; (y» Z)dZ fAin- goiQ,',n,' (Z)QOiQH—],n; (y/, Z)dZ
y K (5. 2) k - |
./‘Aka (ka’nk(Z)(ka+l,n;( (y, Z)dZ fA]?k (ka’”k(Z)kaJrl,nl’( (y/’ Z)dZ
4.21)
n—ui—¢j— —-D!10:'0 10!
Cy(0.i. iy = Q= Q) — O — 21010104
2(n—2)!
the rank 2 operator ygl)ngk . LZ(A]') A LZ(Aj) L L2(AUAY) A L2(A,U
ni,nj,ng
n;,né,n;(

Ay) has the kernel
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2),4,3
8,5, =

ng,nj,ny

i j’”;c
Jpeir1 0,0 D0} i @dz [ 01 0, (D0, (2)dz
k k l k 4 k
fAka_] (kaJlk (-xv Z)(ka—l,n;( (Z)dz fAka_] (ka’nk (.X ’ Z)(ka—l,n;{ (Z)dz

j J /
X ,/;Ql (ij»n_/ (Z)QOQj_;’_z’n/j (y, Y Z)dZ,
J
D ad (4.22)
* the operator yéi)y’Q}ka,Ql : L2(AJ U A AL* (A U A — L*(A; U
ninj,ng,n
nl’.,n/j,nl’(,n;
ADNA L?(A; U Aj) is rank 4 and has the kernel
2),4,4
yéi),ijQk,Ql(x’ X', Y y/) =

ni NNy
’ !’ ’ !
gy

S0 00,0, 5 DG,y Dz [ 0010, s DO,y ()

fAij—] 90, (1, z)fp/Qj_Ln;_ (2)dz fAij—l 00, (s z)goJQj_l,n/j (2)dz

k k k k /
fA,?k P0r.m (Z)¢Qk+l,nl’c (. 2)dz fAka P0rm (Z)(kaH,n;c (', )dz

1 1 ] 1
S0 901 D41, 32 Dz 300 0,0, D0, 4, (75 D2
(4.23)

—0i— Q) — Ok — 01 — 20,1010, 0;!
o CyQ.i, k= L L= O sz(n_QIZ)z 10101001

Theorem 4.4 follows from a direct computation that we perform in Appendix D.1.

Remark 4.5 In (4.17)—-(4.23), in accordance with Remark 4.1, in the degenerate
cases, we use the conventions derived from those in Remark 4.3 in an obvious way.
For example, in (4.18), if Q; = Q; = 1, one has

Popm ) P, )

wbi,ni (x) (piQis"i @)
J ] J J INE
90, » 901, 0"

J ’
90,0, %) €0, (X)

2),d,

Yoro, (' vy = 0iQ;
ni,nj
nl’,n’j

(4.24)
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4.1.3 A Particular Case

Let us now explain how the structure of the one-particle and two-particle density
matrices may be simplified in the particular case when the ground state is factorized.
This in particular immediately yields the expansions (1.22) and (1.23) for the one-
particle and two-particle density matrices of the non- interacting ground state.

Definition 4.6 Let « € $(L) and B € $H/(L) be two states describing
i and j electrons, respectively. We say « and B do not interact if for all
('xz’ ""xl7y2’ ""yJ) e [O’ L]l+]_2’

L
fo alx, . xHBOL L yj)|x1:yldx1 =0. (4.25)

To denote this complete orthogonality, we will write o L .

Remark 4.7 Because of the anti-symmetric nature of the states o and § in the above
definition, it is sufficient to impose the orthogonality only on the first variables.
Thus, an integral of the type (4.25) vanishes for any pair of coordinates x/! = y/!
fori; € {1,...,i},and j; € {1,..., j}.

We prove

Proposition 4.8 Suppose that an n-particle state W € $" (L) is decomposed in its
non-interacting parts:

k
V= /\Cj,
j=1

where each {; € 9% (L) is a kj-particle state describing a packet of particles
that do not interact with other packets, i.e., for i # j, & 1 ¢; in the sense of
Definition 4.6. Then

k
Yo = Z Ve, (4.26)

j=1

and
k 1 1
2 2
v = |:y£(j) — 5 (d—Exy; ® )/;,} +51d—Exye @ yu, (4.27)
j=1

where 1d is the identity, EX is the exchange operator on the two-particle space
defined as

Exfg=g®f [f.gen,

@ _o

and with the obvious convention that Ve; if ¢j is a one-particle state.
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While Proposition 4.8 could be obtained as a consequence of Theorems 4.2 and 4.4,
we will derive it from the following auxiliary lemma.

Lemma 4.9 Let o € H"(L) and B € $" (L) be two vectors describing n and m
electrons, respectively. Suppose that a and B do not interact:

ol B.
Then,
Yanp = Ya + Vg (4.28)
and
Yoy = v + v + 1d—Ex)ye @' vp (4.29)

where @° denotes the symmetrized tensor product:
1
AR'B = §(A®B+B®A).

Proof DefineN,, := {1, ..., n}. Consider the two-particle density matrix. By (C.2),
the anti-symmetrized product of two eigenfunctions in, respectively, n and m
variables is given by

@A B,y = Yoo i) g,

n—+m
( n ) JUJ/:Nn+m
JNJ'=0, |J|=n

where sign J is the signature of the unique permutation o of {1, --- , n 4+ m} such
that, if we write J = {a;; 1 <i < n}and J' = {alf; 1 < i < m}, both ordered
increasingly, then o (a;) = i and o(alf ) = n +1i (see Appendix C).

Thus, the corresponding two-particle density matrix can be written as

2 1 .2 .1 .2
V()E/\)ﬁ(-x » X 1y vy)

_(tm)@tm—1) @A B 22T (@ A YA DT

2 [O,L]"er*z
_(n+m)(n+m—1)
=
2("7)
/ (_1)sign1+signla(x1)’3(x1 )Ol*(yj)ﬂ*(yj )‘ yj:xj df
U1 =Nyt [0, L]r+m=2 jeB,....n+m)
INI'=, |I|=n

JUJ' =N,
JNJ'=0, |J|=n

(4.30)
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As « and B do not interact, the integrals in the sum in the last part of (4.30) vanish if
I differs from J by more than two elements, i.e., |I\J| > 2. Moreover, if [I\J]| < 1,
such an integral does not vanish if and only if

(a) if {1,2} C I, then I = J;indeed, otherwise J would contain an index in I’ and

the integration of B(x! /)oz*(yJ ) over the corresponding variable

yi=xi
je{3,....n+m}
would produce zero because o L S.

(b) if{1,2} C J,then I = J.
(¢) if (1,2) e I x I"YU ' x I),then (1,2) € (J x J') U (J' x J) by the same
argument as above.

As the functions o and 8 are completely anti-symmetric under permutations of
variables, the terms of the sums over / and J corresponding to different cases
described above are all the same. If we denote ¥ = x3,...,x* and dx* =
dx3...dxk fork e {n, m, n 4 n}, this finally yields

2
sl xt Yy = A+ B+ C
where

A (n+m)(n+m—1) 1 n+m—2
T 2 (ntm) n—=2

) / a(xl’XZ’ )?")ot*(yl, y2’£n)d‘£n
[0,L]”72

=yP @ Xyt Y,

-1 1 -2
gl (”+'" ) [ sl e
2 ( n ) m—2 [O,L]m_2
=yl x% )
and
C::(n—l—m)(n-i-m—l) 1 n+m-—2 / gintm
2 (n—:;m) m—1 [O’L]n+m72

<a(x1, COBGE et G  )BEOR )
—a(x', . B3, ), BTG L)
—a(x?, . B )G, BTG )
a2 )BGL, L )at O VBTG .))

(Va(xl, v v — ve (L yHyp (% yh

N =

—re G2 Yy ) + v 6 3Dy 3D
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This completes the proof of (4.29). The proof for the one-particle density
matrix (4.28) is done similarly and is even simpler. This completes the proof of
Lemma 4.9. O

Proof of Proposition 4.8 The identity (4.26) for one-particle density matrix is a
direct consequence of (4.28). We prove (4.27) by induction on k.
For k = 2, (4.27) is equivalent to (4.29) after noting that

1
A®SB=5((A+B)®(A+B)—A®A—B®B).

This remark also proves that

vy Z D+ Ud-Ex) Y v, @ v (4.31)
i<j
which is equality (4.27).
Let us prove (4.31) inductively. Suppose now that (4.31) holds true and consider
k+1 k
Wit = /\é“j = /\é“j ALkl = Vi A Srg1-
. i

By (4.29), we get

2 2 2 s
y‘g’k)Jrl - V‘g’k) + yC(szl + (1d —Ex)yp @ Vo

k

2 2

=S 24— 0| Y v |+
j=1

k
+ (Id - Ex) Z Ve | © Yo
j=1
k+1

= Zy(z) + (Id — Ex) Z Yo @ V-

This completes the proof of Proposition 4.8. (]
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4.2 The Proof of Theorem 1.5

The proof of Theorem 1.5 will rely on Theorem 4.2 and the analysis of ‘-I-’g (L,n)
performed in Section 3. The two sums in (4.3) will be analyzed separately and will
be split into various components according to the lengths of the pieces coming into
play in each component.

As in the beginning of Section 4.1 (see (4.2)), write \Ilg (L,n) = Z aﬁQCDQﬁ.

Q occ.
: L JeN
We will first transform the results on the ground state obtained in Section 3 into a

statement on the coefficients ((aﬁQ )) 0,7, namely,

Proposition 4.10 There exists pg > 0 such that, for p € (0, pg) and ¢ € (0, 1/10),
w almost surely, in the thermodynamic limit, with probability 1 — O(L™°°), one
has

(a) for an occupation Q & Q,, (see (3.83)) and any n € N, one has aﬁQ =0,

(b) let’P_ be the (indices j of the) pieces (A j(w))j of lengths less than 3¢,(1 —¢),
and, for Q an occupation, let P_Q be the (indices j of the) pieces in P_ such
that Q; < 3.

Then, for Q, an occupation number of a ground state \Ilg (L, n), letting
(aﬁQ )o.7 be its coefficients in the decomposition (4.2), one has

o<"'p>. (4.32)
[log p

The second part of Proposition 4.10 controls the excited particles in the ground state
\I—'aL)/ (L, n). Actually, as the proof shows, we shall prove (4.32) not only for a ground
state of HY (L, n), but, also for any state ¥ satisfying

2
0
Az

> #{jePCin; >2)
Q occ.
neN™"

1
~(HY" (L, )W, W) < £%p) + 72y — _3+o( p _3>. 4.33)
n |log pl |log p!

Proof of Proposition 4.10 Point (a) is a rephrasing of Corollary 3.32.
Let us prove point (b). Pick an n-state W and decompose it as ‘llg (L,n) =
iup 9 d2
Z Wo. Then, if E JQjUn, denotes the n;-th eigenvalue of — Z W +
0eQ, =1 "7
Qj
Z U? (x; — x;) acting on /\ L2(A j(w)) with Dirichlet boundary conditions
1<k<I<Q; =1
: Jur U ur
Gf Q@ = 0, we set EQj’nj = O0forallnj),as HY > H"”" (see (3.17)), by (3.82),
one has
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n (£%0) +yapllog oI = (14 0 (fz(l1og ph)) ) > (HY"wV”, W)

. 2
ur 0
> E E EQj,nj az| .
Qocc. | ; 73Q
= N JEFZ
neN 0;>1
4.34)

One proves

Lemma 4.11 There exists C > 0 such that, for j € P,Q, Qj>1landnj > 2, one
has

j.ur Jur 1

G = Epr + e (4.35)

Plugging (4.35) into (4.34) yields

. 0

j.ur ik #jePZin; 22} ol?
Do 2 Eoa | fer| + 22 T ;
Q occ. jePQ 14
neN™ = neN™

0;=1
<n (5°<p> +2ypllogp| =2 (14 O (f2(] logm)))) (4.36)
We prove

Lemma 4.12 There exists po > 0 such that, for p € (0, pg), ¢ € (0,1) and w
almost surely, for L sufficiently large and |n/L — p| sufficiently small, if Q is an
occupation such that

. B
> ELY <n (%0 + pllog ol (72 +¢)) (4.37)
JjeP—
then
P 0 32, 1
Y Egu =n|E%0) +pllogpl 7 (nlya — — (e + fz(log ) ) ).
jeP_Q P
0j=>1

(4.38)

Lemma 4.12 shows that, for low energy states, most of the energy is carried by
pieces carrying three particles and less (compare the set P_ and PY ).
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Let us postpone the proof of this result for a while and complete the proof of
2
Proposition 4.10. From (4.38) and (4.36), as Z )aﬁQ’ = 1and fz(|logp|) =

Q occ.
neN"
o(1), we get that
#jePLnj 22 op _3
> — 2" <o (nollogpl ).
0 occ. P
neN™"

As £, = |logpl|, this immediately yields (4.32) and completes the proof of
Proposition 4.10. O

Proof of Lemma 4.12 By Theorem 3.19, for L large and n/L close to p, we have
(Hff "wort, w‘mt) >n (5°<p) + 72 vapllog |7 (1 + O (f2(| logm)))) :
Recall that the occupation Q°P! of WOP! satisfies

Oif|Aj(a))| e [0, Kp — PXs),
OF =1 1if |Aj(@)] € [£, — pxs, 20, + A, (4.39)
2if |Aj(@)] € [20, + Ay, 3E,(1 —£)).

Theorem 3.19 shows that

j,uP j,UP o
(Y wert wert) = S BT - 3 B S i (log .

3
JjeP- JjeP- |log p
Q?p[=1 Q(;pt=2
(4.40)
Let
L j’Ul) jYUP j,UP
AE:= ) Ep — ) El\ — ) Ej . (4.41)
jeP— jeP- jeP-
Q‘}P‘zl Q‘;Ptzz
Then, (4.40) and assumption (4.37) imply that
Cnp
|AE| < W(fz(IIngl)JrS). (4.42)

Moreover, one has
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A% A%

AE> Y Ejo + ) (Eg
jeP- jeP-
Q({pt —0 Qopl 1

163

Jur J,ur j.ur
—E{V D)+ ) (Eg.1—Exy )

jeP-
opt__
0%F'=2

= Y Ep+ Y EG BN+ Y G - R

JjeEP— JeEP—
Q‘?f" =0 Q‘?P‘ 1
Q,>1 Q,>2

On the other hand, as Q| = n

satisfies (4.33), we know that

JjEP—
opt
oF'=2
023
p P P
R DN U DRIz A
P- P_
f;,l_l -
Q= 0 =
0;=0 0;<1

(4.43)
|Q°PY|, using Lemma 3.23 as WY (L, n)

DY @-0p= D> 0+ > Q=D+ Y (Qj=2)+0mp"t).

jeP_ jeP- jeP- jeP- jeP-
of'=1 o=z 0P'=0 o=l oF'=2
J J
;=0 ;<1 ;=1 ;22 023
(4.44)
Define
By - g
B :=max | max Elj1 . max ’—
J; 0j=0 i %= -0
opt Ut
0/ =1 0<0;<I1
Then, (4.43) implies that
jur j,ur jur j,ur j,ur
AE> ). Egin+ > (Eg,a —Eiy )+ > (Eg,q — B3y )
ieP_ ieP_ jeP_
é‘f”‘:o éf."‘:l é‘?”‘:z
0,>1 0,>2 0,23
-B > 1-B Y @2-0).
jeP- jeP_
Q(;Ptzl Q3p1=2
0;=0 0;<l1

Hence, (4.44) implies that, for some C > 0, for p sufficiently small, one has
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i,UpP jup Rold
AE+Cnp™z 37 (Bgy =B+ 3 (Eg — Bl = BQ;—1)
JjeP- jeP-
Q(;Pl:() Q(}ptzl
;=1 0;>2
- -
+ ) (Epoy —Efy — B(Q; —2)).
JjeP-
of'=2
0;>3

(4.45)
Let us upper bound B. Recalling that for a single particle in a piece there is no
interaction, a direct computation and (4.39) show that

) 2
X (L — (4.46)
Ji Q=0 > £y — pxs)
o'=1
Proposition 1.4 and (4.39) show that, for p sufficiently small, one has
U U
Eé,] - Eij,l 52 2y 72
max < 5t 3 S 2
Q=0 2-—0; 22, + A*) (2L, + A¥) (Lp — pxs)
oF'=2
,ur j,uP
Eil - EJQj,l 472 2y 72
max < 5+ 3 < 5
Jji Q=1 2—-0; (2L, + A*) (2¢, + A%) (Lp — pxs)
of'=2
Thus,
B " (4.47)
b (Zp - Px*)z. '
Now, notice that
e for j s.t. Q(j).lDt = 0 (see (4.39)):
— if Q; =1, one has
2 2 2
i b4
EJQUT o i 7 2 i 2 ;20
Ly — pxs) |Aj(w)] (Lp — pxs)
— if Q; > 2, one has
2 2 2
j,up /] 1 j.ur 5w T 1 j.ur.
EJ 1+

- >-F - =z zEq s
Ol —px? T 2700 T 2A @) (g, — px)? T 200!



Interacting Electrons in a Random Medium

e for j s.t. Q(j).lDt =1 (see (4.39)):
— if Q; =2, one has

165

Ej’Up—Ej’Up— 7T2
2.1 (£p — pxs)?
4r? y n?
> + +ot,) - ———
1Aj(@)]> " |Aj()]3 r Ly — pxs)?
s 4 4 o
Z 0 ——
|26p+A*+8p|2 |2Zp+A*+8p|3 r (Ep_px*)z
2 2 2, 2
Te AT y 7 3
> St Lo -
E% 262 452 263 (Lp—pxs)?
’ -3
> I
. 23 +o(6;%) =
if p sufficiently small (see (3.10)) and |A j(w)| < 2¢, + Ay — &p; here, g, —

07T (but not too fast) as p — 0T; on the other hand, the number of pieces of
length in 2¢, + A, +[—¢,, 0] is bounded by Cpne, (see Proposition 2.2) and

for such pieces, one has

. 2
IR o G Y (4.48)
21 (Ep_:ox*)z P
- if Q; > 3, one has
. 2 1 r 1 72
EjUp 5UP T 1> = ]U ]0 1
o =B g o GiTD 2 B0 e T e Y
1 » w2 S 1 »
I piU JU
>3 Q.zl+4152 @i~ = 3Eg,
e forj s.t. Q‘j’.pt = 2 (see (4.39)):
— if Q; > 3, one has
. . 2 2 7.[2
BT f*U"——” (Q;-2>3 E’U 2B (0,
S (R 13 (Lp—px)? 7
1 _iyr 2 102
YR
>l 44— ([——9 —2
3701 9(1—8)2£%( 9 >(Q’ )
1 _.yr
YR
>3EG,1-
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Plugging these estimates and (4.47) into (4.45), we get that, for p sufficiently small,

n.2
j,U! jU‘
s E s

1+
T @, | T

AE + >

1A (@)|€2€,+As+[—6,,0]

JjeP- jeP_ jeP_
opt opt__ opt
0;7=0 0, =1 0, =2
Q;=>2 Q;=>3 Q;=>3

Hence, in view of (4.48) and the estimate on the number of terms in the sum in the
left-hand side, one gets

O C ED M HED R HE I

jeP- jeP- jeP_
Q.(;[n:o Q(;ptzl Q.(;Ptzz
Q;2>2 0;2>3 ;>3
(4.49)
This implies that
-3 nur ior j,ur
o(me?) <aE= X - X B - X
jeP- JjeP— jeP-
opt opt
o= oF'=2
hence, by (4.40), that, for some C > 0 and p sufficiently small, one has
Rl _
> ES = (%) + 7trpllog o (1= C fz(llogol))  (450)

jeP-

We complete the proof of Lemma 4.12 by noting that, by the definition of P_Q, one
has

»ur iur Js U’ Js U"
Egia = Egia > Egat > Ep HL > Ep
je’P,Q JEP— JjeP— JjeP- JeEP—
0;>1 o'=0 =1 of'=2
0;>3 ;>3 0;>3

n (€% + 7.l log ol (1 = Cle + f2 (I log p1))))

where the last lower bound follows from (4.42) and (4.49).
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This completes the proof of Lemma 4.12. (]

Let us resume the proof of Theorem 1.5. Recall Theorem 4.2; we analyze the two

components yé‘,j'é n) and y\SJ’(OL ) separately.

Let us start with the analysis of y‘)°

WU (L) We prove

Lemma 4.13 Under the assumptions of Theorem 4.2, in the thermodynamic limit,
with probability 1 — O (L™%°), one has

<3 (4.51)

(1),0
H VWU (L)

Proof We recall (4.4) from Theorem 4.2 and write

Véfl}’&,n): Z Z Ci(Q.i. ) Z Z gl)Q]

Q occ. i,j=1 eNm— 1,,1 nj>1 b ng, nj
Ql¢>jl n} nj}l ”i*”j
iz

where, by definition, in the above sums, Q’ satisfies Q) = Qx if k & {i, j}, Q) =
Qi+1andQ/j=Qj—1.
Note that, by point (a) of Proposition 4.10, here and in the sequel when summing
over the occupations Q, we can always restrict ourselves to the occupations in Q,,.
Decompose

(D),o0 (1),0,+,+

(1),0,4,—
YoUwa = Yol TV

1,0,—,—
WL +, (4.52)

(D,0,—,+
tr W (L.n)

v (L,n)

where (see (4.5), (4.6), (4.7), and (4.8))

(D),0,4,+ ._ 0 0 (DAt (Do
YUl = 2 C1Q.i g % V0.0 Vel L
Q occ.
ieNm=1
i#]
Q;=>2
0i>1

1,1
= ). CiQ.i g a/ Vé)Q/fjn,
Q occ.
ﬁENm_l
i#]
022
0i=0

D,0,—+ . _ . 14—+ _ 1.0——
Yelam = D Ci(Q.i. jag ay J/Q 0iji YU (Ln
Q occ.
AeNm—1
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D,1,—,
= Z CI(Q l J)an Cl, )’é)Q/ij;l

Q occ.
ieNm=1
i#]
gj=1
0;=0
and
M), 1,4,+ ._
vewinen = [ o | X a bl @eh, 5.2
AT XA ni>1
njzl
Z a~, <pQ, n O z)pr (z’) dzdz,
n >1
n]}l
), 1,+,~ W2
! :;51
> ay K s i @) [ 47
n121
n]}l
()1
QQ,i]n( y) / ”z]gol ”/( )(th "t(Z) Z Q-‘rln/(y Z) dZ’
11121 ,’;1
.1
and yplps A y) = a5 ¢, () Z“/ 9"1n/(y)
i=1 n'.=1
'}11121 121
D),0,+,+

Let us first analyze y g L)

families (¢Jéj,nj)njeN (see the beginning of Section 4.1), we know that

. By Lemma B.1, using the orthonormality of the
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(D, 1,+,+ o i J
”VQ,Q’,i,j,ﬁ r Z aﬁi‘ijis"i ® Pojm;| - Z a” QDQ/ n! ® gOQ '
ni.nj n;
1 o |? o 2
S 2 Z aﬁLj + Z aﬁi,j
n,-,nj n,-,nj

Hence, by definition (see the formula following (4.52)) and the symmetry of
C1(Q,1i, j)ini and j, we have

” (1).0,+.+
VY (L.n) tr Y
i,j=1 Q occ. neNm
i#j Qj=2
0i=1

Now, by definition (see Theorem 4.2), for Q; > 2 and Q; > 1, one has

0:Q;

Ci1(Q,1,j) < .
W LD S G D — =)
Thus,
2
1 2
M.o+.+| - . o
H v e = 1)m—2)n —3) 2 Z Qi ,Z “a
Q occ. J neN"
0;>2
0i>1
2 2 2
S 2 et = e -
m—Dm—-2)(n—-3) £ " n—1DMm—-2)(n—3)
Q, neN”"

(4.53)

Let us now analyze y( 3 (OL o) . By the definition of C1(Q, i, j), we write

(1),0,— o
TR DI S I DT N1 | I SR

nGNm 1[/ 1 n,—:l,nj n —ln
Qocc. i#j

0j=1

0i=0

Thus, by Lemma B.1, one has
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m

1 ;o
o1 Z Z Z n,j(plnj ’ Z Z af?.(pll,n,’.

i

YU (L.n) 1 i
o FeNn1 | J, Q=1 m=Tn; i 0=0n =t
Q occ.
> 2
1
= DR I e R
ieNm=1|j, Qj=1n;=1L,n; i, Qi= On =1,n] "
Q occ.
1 Q2 1
< 7= :
s 2 9| =
neerl
Q occ.
(4.54)

Let us now analyze yé/l,j’(olj";l’)_. One has

(1)0+7 (n— Q/_l)'Q/ 0 ,
YoUwm = Z Z (n—1)! i Z a,;,._jﬁ/’Qj,nj(X,Z) X
AeN"=l i#j i ni=ln;

Qocc. Q;=22
0;=0

Y a? O ey, w @) |7

l’ll l’l]

(n— Qj_l)‘Qj 0o ,
Z Z (n—1)! R Z aﬁ[,jﬁﬂQj!nj(X,Z) X
aeNm=1j; Q;22 J ni=l,n;
Q occ.

Z Zai <P1 ,,(y)qu i () | d7.

i; Qi=0n!, nl

Thus, using Lemma B.l1 and the orthonormality properties of the families
(QDQJ JnjeN,as (n— 0! Q;l <nland ) ; Q; =n, we get

2 2
M,0,+,— 0 n Y
H wLm |, S Z Gl S T Z b
neN’” 1j=1 ni=1l,n; neN
Q occ. Q occ.
(4.55)
The term yélg . ) is analyzed in the same way. Gathering (4.53), (4.54), (4.55)

and using (4. 52) we obtain (4.51) and, thus, complete the proof of Lemma 4.13. [J

1).d

WU (L) Therefore, we write

Let us now turn to the analysis of y,
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(1),d . (,d,— (1),d,+ ,d,— . )
A e AL T ) DD DD B _“” Vo
Q occ. an]>l nj.n'

~ J
fenm-1” n'; =1

(4.56)
We prove

Lemma 4.14 Under the assumptions of Theorem 4.2, for n € (0, 1), there exists
go > 0and C > 1 such that, for ¢ € (0, &g), in the thermodynamic limit, with
probability 1 — O(L™%°), one has

().d,+
v, CnZ (4.57)
Proof Define
(D).d,+ (1), d,+,+ (1),d,+,0
YoUwm = Ywlwn T YeUwn (4.58)

where

\i}llg(i:)Jr Z Z Z“ a4z 7/(1Q), and

Qoce. jégP_n;=1 nj,n]
fieNn—1 =1
(1)d+0 (e))
i = X L Y aradyd,
Q occ. anj>1 ! njn/

neN"~ 1Q >4nj>]

One computes

v @ =3 3 3 Y alafyy oy

Qocc. j¢P_nj>1jeNm—1 n],n/j
n}}l
=X Yoo > by 5
Qocc. jeP_ nj=l
ieNm!

+o00
Qi
D a5 0,0, 022 | da.

nj=1

Thus, by Lemma B.1, we get
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+00
2
).d. 4.+ ) 0 . o
H WU (L.n) tr< Z Z QJZ az | S Z Z Qj Z G
Qocc. jgP-_ nj=l Qocc.in Q, \j&P- neNm
QeQ,
AeNm-1
< max Z o} < Cnp't
Qocc.in Q) \ .
JEP-
(4.59)
by Lemma 3.23.
Finally, one has
(l) d,+,0 _ (€))
YwU(L.n) ZZZ ZaayQ,
Qocc. jeP_nj>1jeNn-! n],nj
Qj>4n;.21
Thus, the same computation as above yields
(1.d.+.0 | ol
+
v <2 DR DI AR
Qoce. | j. 1A;(@)]<3t,(1—¢) nj=1 p
0eQ, Q>4
ieNm1
by Lemma 3.24.
This completes the proof of Lemma 4.14. ]

Let us now analyze yqj U We recall and compute

(L)

i = 2 X Yatadyd = 3 X ol

~roc1 /e’PQ”/>1 nj, n ~QO(:CIJEPQ
Nﬁl /,21 Nm
i 0
where ¢; = nj(ij 0

nj=1
For n and Q given, define the two sets

Qi _ [ cpQ 400 0. 0,
PLli={j e P2 al=0ifn; > 2} and PLT={j e PL: 3n; > 25002 20},
(4.60)
Define also
; <p;? ifn; =1,

g 4.61)

leflleg,  ifnj>2.
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Then, we compute

(l)d* i\ [ i
i~ X L @)l XX ol
Qoec jepl! Loee jePl!
=X Y oldwls X 2 o ()] -7
Qonc, jep? Lo jePlt
n

(4.62)

)

The second term in the sum above we estimate by

> X ol < £ ¥ o

Q occ. ljepr 0 occ.ljepg.ﬁ
neN"= tr neN"

<Y D #Ming =2

Q‘f{ﬁ jeP?

LS

0

<n—— fz(|log p|).
ool log p|

(4.63)
by Lemma 4.11.
As for the first term in the second equality in (4.62), letting Pop be the pieces of
length less than 3¢, (1 — &) where W°P' puts at least one particle, we write

DRI END DN D VD SIS D PNt A1
Qe <P 2o, NIPo PP P\ P
(4.64)
One computes
~ J J
> Y o= ¥ o 90,0} (¢6,.]
o
- Z Qj‘(ijj’1><(pJQj~1‘ = Yuer + R
jep()p[

where || R|ly < Cnp'*"
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By Corollary 3.32, we know that

2

2
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Qj

a1\

,,Q Ofr:li] jepg\Popt jE'POP[\'P,Q
neN [Aj(@)]Z2Lp+C  |Aj(@)]2Lp+C ir
2
. 0
<2l X o+ X |eXw

Q occ.

jEP_Q\Popt
[Aj ()| ZL,+C

jeP(,pt\P_Q
[Aj(w)|Z2Lp+C

neNm

2
gcnpmax( Z(2|1ogp|),£;1) 3 ag( =Cnpmax( Z(2|1ogp|),e;1)

Q occ.
neN™

and, in the same way,

X - X |k
ﬁg}\‘]’;il J€Pop\ P2 JEPE\ Popt

[Aj()]<lp+C  |Aj(@)|<tp+C

tr

< Cnmax (VpZ@llog o)), pllog oI ")

Plugging this and (4.65) into (4.64) and then into (4.62), using (4.63), we obtain

< cnmax (V/pZ(@llog D), pllog pI ™)

< Cnp max ( Z Q| log p)), z;l) .

D.d,— 1)
” y\IJg(L,n) - y\yopt

tr,<l,+C

1).,d,— Y]
H V\UE(L,H) - y\yopl

tr,>L,+C

Taking into account the decomposition (4.56), Theorem 4.2 and Lemmas 4.13
and 4.14 then completes the proof of Theorem 1.5. O

4.3 The Proof of Theorem 1.6

We proceed as in the proof of Theorem 1.5: for WY (L, n) a ground state of the
Hamiltonian HY (L, n), we analyze each of the components of the decomposi-
tion (4.9) separately.
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We prove
Lemma 4.15 Under the assumptions of Theorem 4.2, in the thermodynamic limit,

with probability 1 — O (L™°), one has

2),d,d
Yoy Lm |,

<nlogn -loglogn.

Proof Using Lemma B.1 and the orthonormality properties of the families

J
(gij’nj )n,- eN, We compute

@).d.d Qj(Qj -1
i D DD'S
Q occ. for WY (L,n) j=1 neNm— 1nj>l
]/
— 0,(Q; -1 o|?
J J
< X XTS5 2
Q occ. for WY (L,n) j=1 neNm
jz

Applying Lemmas 3.23 and 3.24 yields that, in the thermodynamic limit, with
probability 1 — O(L~°°), one has

0;©Q; -1
max —<n10 n -loglogn.
Q occ. for WY (L,n) Z ~ & glog
Q,>2
. 0 2
This completes the proof of Lemma 4.15 as Z a;r| =1. ]

Q, neNm
Lemma 4.16 Under the assumptions of Theorem 4.2, in the thermodynamic limit,
with probability 1 — O (L™%°), one has

2),2
H ylya[;j (Lon) ||

Proof Using Lemma B.1 and the orthonormality properties of the families

(WJQ_/,n_,-)njEN’ we compute

2),2
H YwU(L.n)

DN DIED M IDBRANEDY
i#j | Qocc. Qocc. | neNm—2 ni,nj=l1

0;=22 0>l
0;>1
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For Q; > 1and Q; > 1, one has

(n—Q; — Qi —2)!10;!0;!

C2(0,1, j) = (2]
Qi+ 0;-D!n—(Q;+0i=2)—-H! (O —DH!(Q,;—D! 0i0;
B (n—4)! (Qi+0;-2)! 2(n—-2)(n—-3)
0i0;

S 2(n=2)(n=3)"

For Q; > 2, one has

0i'(Q; —2ln—4—-(Q; +0;—2)! Q;(Q;—1

Co(0.i. ) =
20,1, J) (n — 4)! 2(0n —2)(n —3)
Q;(Q;—1)
S 2n—2)(n—3)° 466)
Thus, as Z Q; =n,one estimates
J
2 2
2 2 n
(2).2 <— el s ——
HV\I/E(L,n) o 2(n—2)(n—73) Z ZQ’ WS - m-3)
Q occ. J
neN™
This proves Lemma 4.16. (]

Lemma 4.17 Under the assumptions of Theorem 4.2, in the thermodynamic limit,
with probability 1 — O (L™°), one has

2).4.2
Youwm |,

Proof Using Lemma B.1 and the orthonormality properties of the families
(go’Qj,n/.)njeN, we compute

<Yy > C2Q.i.j) Y |a

i#] neNm—2 Q();CZ ni, n/>]
VES
0': 0j=0x ifkelli. )
0/=0i+2
0'=0,-2

H (2),4,2 2

\Ilg (L,n)

I’ll}

The bound (4.66) then yields
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2
] I — A oJaef < —"
H Yotwm |y S 2(n —2)(n —3) Z Z Qi | Jar| < 2(n —2)(n —3)°
Q occ. Jj
neN"
This proves Lemma 4.17. O

Lemma 4.18 Under the assumptions of Theorem 4.2, in the thermodynamic limit,
with probability 1 — O(L™%°), one has

2n

< .
tr 1Y

2).4,3

2),4,3
H YoU (L)

YWy (L.

+

tr

Proof Using Lemma B.1 and the orthonormality properties of the families

(wéj’nj)njeN, we compute

2
(2).4.3 .. 0
Hy\IJg(L,n) o S > ) C3(Q.i.j. k) ) ik
i,j,k neNm—3 Q occ. ni,nj,ngzl1
distinct Q22
0" 01=0; ifIg{i,j.k}
0;=0i+1
0/=0;-2
0;=0i+1
For Q; > 2, one has
10;'(Qi—2)!(n— +0i+0;—2)—4)! (0, —1
C3(Q,i,j,k)=Qk 0; (Q] N(n—(Qk+Q; Q] )—4) Q](Q] )
(n—4)! 2(n —2)(n — 3)
Q;(Q;—1)
S 2n—=2)(n—3)°
4.67)
Hence, by Proposition 2.2, one has
2
1 2
2),4,3 < 1 . Q0
H J/\L'(f,’(L,n) v 2(n—2)(n—23) EGXN:"’ XJ: XJ: Q; “n

Q occ.

Ln?
<o—0———— < —.
20 —2)(n—=3) " p

S

The computation for yfg’(?n)

for Qx > 1and Q; > 1,

is the same except that, instead of (4.67), one uses,
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(O —DIQi =D (n—(Q;+0i+0k—2D)—D! Ok Qi

C3(Q.0, ), )= (n—4)! 2(n—2)(n—3)
01 Qi
S 2m=2)(n=3)"
This proves Lemma 4.17. U

Lemma 4.19 Under the assumptions of Theorem 4.2, in the thermodynamic limit,
with probability 1 — O (L™%°), one has

2),4,4
H YU (L.n)

Proof As in the proof of Lemma 4.13, we will have to deal with the degenerate
cases separately (see Remarks 4.3 and 4.5).
Recall (4.16) and write

@).4.4 @40
YoUuw.m = Z YU (L.n) (4.68)
oe{£}*

where 0 = (0;, 0,01, 07) € {1},

YoU L= Z Z Z Ca(Q. i, . k. D) Z Diii jus iy, “le 0;.01.01°

i,j,k,lijeNm—4 Q occ. ninjngn =1 ”t ”J ”k n
distinct (0i,0;.0k.01€Qs n;g,,/i’n;(,n»] n} n 'l
0" 0,=0, if odli,j,k,l} '
0i=0i-1, 0}=0Q,-1
0,=0i+1, 0;=0;+1
(4.69)
and
oi+1 oi+l
Qa:{Qi>lando—i(Qi_1)>lT} {Qj lando;(Q;—1) > ]2 }
or+1 oj+1
N {Qk > 0and 03 Oy > kz }m {Qz >0and 0/ Q) > ZT}

A term in the right-hand side of (4.68) degenerates if some o, takes the value —1.
Assume now o = (1, 1, 1, 1). Then,

2),4,(1,1,1,1 ’ 2),4,4
\LL)/(L(H) = Z Z Z C4(Q b ] k l) Z a”z J.k, l(an k1 él) Q/ 0. 01"
i,j.k i eNm—4 Q occ. n, n; nk =1 i, nl nj nk nl

distinct 0i.0;>2 0r.0>1 w21 np ]
Q' Q=0 if ogli.j k1) J
0j=0;-1, 0}=0;-1
0} =0i+1, Q}=0+1
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Using Lemma B.1 and the orthonormality properties of the families (‘péj,nj)njEN’
we compute

2
.. 0
HVLIJg(L,n) Z Z Z Ca(Q.1. j. k. D) Z fli,_/,k,l‘
i,j.k,ljeNm—4 Q occ. ni,nj,ng,n =1
distinct 0i,0;22, 0k, 0121
0" 0,=0, if od{i, j,k,1}
0;=0i-1, 0/=0;-1
0, =0k+1, Ql 0i+1
When Q; > 2,0; > 2, Or > 1 and Q; > 1 one has
C4(Q,i,j,k,l)§ Qi (Q; )QJ(Q] )00 )
2nn —2)(n —3)(n —4H(n —5n —-6)(n —17)
Thus, by Lemma 3.23, we obtain
2 2
2
2 0
i <oz £ X (o) (Xg)
eN™ ( occ. Jj j
n4(log n)4 1
S 2n-=T7)96
4.70)
for n large.
Assume now 0 = (—1, —1, —1, —1). Then,
@4, (-1,—1—1,-1) _ . 7 (2).4,4
V\[,U(L n Z Z Z Ca(Q.1, J K, ’>Z“ﬁQ,-_,,ky,a§ ) 110,0
i,j,k, 15 cNm—4 Q occ. npni=1" BIEE ngn, 101
distinct Q= Q]—l 0r=0/= ng=n;=1 l,l,n;c.n;
0! 0,20, ost i n=n'=1
0/=0i-1. 0}=0,-1 s

0}=0u+1. 0j=01+1
where

2 . : —_— . )
y(l )l 0,0 (x’ )C/, Y, y/) = gDll,rli ('x)(p{,l’lj (x/)(p]f,i1’k (y)wi,n; (y/) + (plls”i (x/)(/){’n,_ (.X)
ni,nj,1,1 ’
l,l,rlzl’(,n;

X @y @] (")
+ 01 DL, G G0N ) + @1, (e, (x)

X §011{7n;€ (y/)‘pi’n; ).
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As in the derivation of (4.54), using Lemma B.1 and the orthonormality properties

of the families (<ij]_ n;)njeN: We compute

2
)4, (—1,—1,—1, 2 ;
H o Lom S -2 n—3) 2 > D O Pl © P
fieNm—4 @) ni=l1
Qocc. [[Qi=0j=1n;=1
ng,nj
2
0 i J
+ Z Z a;li,j,k,l(pll’"i ® (pl,n_,'
(k,l) ng=1
Qk=01=0m=1
n,-,nj
4
T =3
roc
Assume now o = (—1, 1, 1, 1). Then,
@.4.(-1.1,1,1)_ 0’ (2),4,4
V\IIU(L n) Z Z Z Ca(Q. 0, j k. D) Z an,,kl i} )/1 0,0k Q1
i,j.k,lzeNm—4  Q occ. ni, nj nk n>1 i, "J sy
distinct 0,=1, Q_j}Z }’l ”k "121 1, n nk nl
Ok, 0121 =1
0" 0,=0, if odli,j,k,l} i
0;=0i—1, 0/=0;-1
0,=0x+1, 0;=0;+1
where
.. (n—0;—0r— Q1 —3)!0,;!0' 0!
Ca(Q.i. j. k1) = ——S -
' 4.71)

0;(Q; — D00
S22 —2)(n—-3)n—Hn—-5n—6)

The operator yl(’zé’i’gk, 0 is given by (4.23) and

ninj,ng,nj
’ ’ I
l,nj,nk,n,

’ N Jj ’ J
o(x,x, y,y) =@, (x) /A_Qj,l P0in;* ’Z)(ij—l,n;(Z)dZ
J

o e S
X /Aka goQlek (Z)goQk-‘rl,n/k (yv Z)dZ /;IQI §0Ql’nl (Z)¢Q1+1,n; (y R Z)dZ.
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Hence, as in the derivation of (4.}55), using Lemma B.1, (4.71) and the orthonormal-
ity properties of the families (¢ij,nj )njeN, We compute

2
Hy‘l’g(b") v (n—2)(n—23)n—4)(n—5{n—6)
2
2
<> (X Xe] |2
nENm j=1 Jj=1
OCC
- n10/3(10gn)2/3 < Lap
(n — 6)°

In the same way, we obtain that, if o contains a least one —1 then H y&ﬂ’&%
12 ) tr
-1

n
This completes the proof of Lemma 4.19. O
. (2).d,o . ) .
Let us now turn to the analysis of Yau (L the main term of Yau The analysis
will be similar to that of yé,l)’d in the proof of Theorem 4.2.
Recall that P2 is defined in Proposition 4.10 and write
2).d,0 2),d,0,— (2).d,0.+
Youwam = Yelwm T YelLn (4.72)
where
(2) d.o,— (2).d,o
\IJU(L n) Z Z Z Z an, ,a"l Yo, Qj 4.73)
Q occ. jjeNm—2 1<z<]<m nj, n. >1 n; n{
52 WDEPE? nin>1 "
We prove

Lemma 4.20 Under the assumptions of Theorem 4.4, for n € (0, 1), there exists
eo > 0 such that, for ¢ € (0, &), in the thermodynamic limit, with probability
1 — O(L™°), one has

(2) d,o+
\IIU(L n)

<n?Z
£y

Proof The proof follows that of Lemma 4.14. One estimates
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Wit | Z > X X % Yeo)
V\pg n, j "1 Y0:.0;
Q occ. 1<i<j<m jieNm—2n;, n >1 n, n/
8@11(1 HePL)? ni. n,>1 nion;

tr

30 3l ID oINS ol | D STt

Qocc.jeNn—2 | I<i<j<m  I<i<j<m nj,n;.>1 i ”/

0i>1 cpQ iap@ . nl,n';

0;>1 igP= JE€P~ n,,niZI J .
4.74)

Let us analyze the first sum in the right-hand side above. Using (4.18), Lemma B.1,
and the orthonormality properties of the families (ijj,n,- )n;eN, We compute

o Q (2).d,o0
> 2 X | X e Yoo
Q occ. IKi<j<m jieN"=2 | nj.n', >1 n, n/
izl ;gp? / o

. !
0;>1 it 21 "l

Qi0;
<2 X XS5t
(0] O;C. 1<i<j<m jeNm—2 ni,nj>=1
gigll igP?

e

0 2

A j

(Y]
ag

1
SEZ Yool
J

neN™ 1¢P9

as in the proof of Lemma 4.14 by Lemmas 3.23 and 3.24.
The other sum in the right-hand side of (4.74) is analyzed in the same way. This
completes the proof of Lemma 4.20. (]
Let us now analyze yé?{ion; . We proceed as in the analysis of V\S(f}’(i,n)
(see (4.56) and Lemma 4.14). We recall and compute

(Z)do— 2).d,o
YoUwm = Z Z Z ﬁl,aﬁ, Y0:,0;
Qocc. 1<i<j<m nj, n. >1 n, n]

SiZ] P a1 i
1=

fieNm—2
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QQ - ~
> Y %o e,

Qocc. I<i<j<m
AeN""2 ; je(P2)?

where <pff j= Z aﬁQi,_,- ‘piQ,-,ni A goéj’nj and the operators Ex and ®° are defined in

n,-}l
anI

Proposition 4.8.
Define also

s galﬁ’j ifn; +n; =2

Pii = Y i i ; . (4.75)
S L A TR

Then, recalling (4.60), we compute

2).d.0.— QlQ,
y\I’U(LOn) = Z Z (Id - EX)‘/’11® %/

Qocc. I<i<j<m
AeN""2 (i, je(P2_)?

QQ ~ ~
+ > > ’zf(ld—Ex)wgfj@‘w;fj

Qocc. 1<i<j<m
fieNm =2 ie’P_Q+

or jepg+

(0] occ.2 1<i<j<m
AeN""2 (; e(P2)?

+ > > Qi Q](Id Ex)(¢,j® o - <p,]®*¢?])
Qocc. 1<i<j<m
ieNm=2 e’P_? N
or jEP_Q_,_
(4.76)
The second term in the sum above we estimate by
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Z Z QlQ](Id EX)(</>,,® <p,j go,j® <p,j)

Qocc. 1<i<j<m
AeN"=2 jep?

orje77,Q,+

SIS ST (P e

)
Qocc. I<i<j<m 4.77)
ﬁeN’”‘z l‘G’P_Q'_*_

or jGP,Q,+

tr

Y| S win || Y o |

ﬁQe(I)\(I:’(’:" jeP? jeP?

2 P

n”——— f7(2| log pl).
pol log p|

by Lemma 4.11.
As for the first term in the second equality in (4.76), letting Pop be the pieces of
length less than 3¢, (1 — &) where W°P! puts at least one particle, we write

oy QQ’(Id EX)@l; ® ¢l

Qocc. 1<i<j<m
AeN""2 (i, j)e(P2)?

= > D D Y Q’Q’ad Ex)@] &3] ;

Q occ. 1<i<j<m 1<i<j<m 1<i<j<m
AeN""2\ (i, )€(Pop)? i or j in P2\ Popc i or j in Popt\ P2
4.78)

For the first of the three sums above, one computes
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Z Z Ql Q] (Id EX)(P, ' ® (pz '

Qocc. 1<i<j<m
AeN"2 (i, j)e(Pop)?

= ¥ [ XS

1<i<j<m Q occ.
(i.))E(Popr)? \EN"

= ¥ Q’Qf(ld Ex)y‘” ®° y;)
,1

1<i<j<m Q)1
(i, ))€(Pop)?

2
o+ R

Qi Q & &
212 (1d — Ex)@" e

(4.79)
where || R||, < Cn?p!'*7.
In the last line of (4.79), we have used Proposition 4.8, the definition of
WOPt (3.12) and Lemma 3.23 to obtain the bound on R.
To estimate the remaining two sums in (4.77), we split them into sums where the
summation over pieces is restricted to pieces either longer than £, + C or shorter

than £, + C (C is given by Corollary 3.32).
By Corollary 3.32, we know that

Z Z _ Z QtQJ(Id EX)%J®A ¢ln_]

Q occ. I<i<j<m I<i<j<m
ieNm=2 ieP2\Pop ieP2\Pop

and |A; (w)|<€,+C and |A; (w)|<€,+C r

0i0; N

=550 D SERETD SR £
0 occ. 1<i<j<m 1<i<j<m
ieNm=2 ieP2\ Popt ieP2\ Popt

and [A; (w)[<€,+C  and |A;(w)|<€,+C

2
< cn?pmax (VZQ@logpD. £') 3 [al| =Cn* max (V/oZClTog o). pllog ol ™).
Q occ.
neN™

In the same way, we estimate
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QiQ; i i
2 >, - X |G ru-Evg e
0 occ. 1<i<j<m 1<i<j<m

fieNm=2 i€Popr\ P2 i€Popi\ P2

and |A; (w)| 2£,+C  and |A;(w)|>€,+C ir

< Cn?p max (\/Z(2| 10g o)), e;l)

and one has the same estimates when i is replaced by j.
Plugging these estimates, (4.77) and (4.78) into (4.72), recalling (1.29), we obtain

2).,d,o,— 2 —
| (vt = vim) Pyac| < cn?max (VoZ@llog oD pllog ol ")
(2).d,0,— (@) 2
H (ng @ ”W) (1 ~Legvc )

Taking into account the decomposition (4.9) and Lemmas 4.15, 4.16, 4.17, 4.18,
4.19 then completes the proof of Theorem 1.5. O

< Cn? ( Z2 ,e*‘).
. 20,4C n”p max (2[log p), £,

5 Almost Sure Convergence for the Ground State Energy Per
Particle

In this section, we prove that, if interactions decay sufficiently fast at infinity, then
the convergence in the thermodynamic limit of the ground state energy per particle
EY(L,n)/n to £Y(p) holds not only in L2 (see [21, Theorem 3.5]) but also w-
almost surely.

From the proof of [21, Theorem 3.5], one clearly sees that it suffices to improve
upon the sub-additive estimate given in [21, Lemma 4.1]. We prove
Theorem 5.1 Assume that the pair potential U be even and such that U € L"(R)

“+o00

for some r > 1 and that for some o > 2, one has xU(x)dx < +o0.

0
In the thermodynamic limit, for disjoint intervals A1 and Ay with ny and nj
electrons, respectively, for min(|A 1], |Az|) sufficiently large, with probability 1 —
O(min(|A1], [A2])™%°), one has

EY(A1U Ay ny +n2) < EV (A1, n1) 4+ EY(Aa, o) + o(ny + n2). (5.1)

Here, Eal)/ (A, n) denotes the ground state energy of Hae/ (A, n) (see Section 1.1).

To apply this result to U satisfying (HU), it suffices to check
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Lemma 5.2 If U satisfies (HU) then for any 0 < o < 3, one has
+o00
/ x*U(x)dx < +oo0.
0
Proof Clearly, for n > 0, one has
2n+1 2n+1

f XU (x)dx < 2% +D / U(x)dx < 2@tz ony,

n

As Z is bounded, summing over n yields

+00
/ x*Ux)dx < Z pla=dnta o 4o,
! n>1
This completes the proof of Lemma 5.2. O

Thus, the sub-additive estimate (5.1) holds for our model and, following the analysis
provided in [21], we obtain Theorem 1.2.

Proof of Theorem 5.1 Without loss of generality, let us assume that A; = [—L1, 0]
and Ay = [0, L,]. For i € {1, 2}, we denote by \Ill.U ground states of H{f)](Ai, ni).
In case of degeneracy, we may additionally choose particular ground states \Ill.U,
i € {1, 2} such that each of them belongs to a fixed occupation subspace. Thus,
occupation is well defined for \IliU. As usual, we will implicitly suppose that \Ill.U is
extended by zero outside Al'.” . Consider now

v=wl Al
Then,
Ey(A1U Az ni +n2) < <Ha[)](Al U Az, ny +n2)VY, \IJ>
= EJ (A1, n1) + EJ (A2, n2) +Tr(ny§:1§3 &° V\LZZJ)

= EY(Ay,n1) + EY (A2, n2)

[ UGy @y ey
A]XAZ

The proof will be accomplished by the following

Lemma 5.3 Under the assumptions of Theorem 5.1, one has

[ UG = ypap p4y ()dsdy = ot + ). 52)
1 X242
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Proof By Proposition 2.1, with probability 1 — O (min(|A ], |[A2])™°), for i €
{1, 2}, the largest piece in A; is of length bounded by log|A;]| - loglog |A;|. This
implies that one can partition A; into sub-intervals each containing an integer
number of original pieces (i.e., the extremities of these sub-intervals coincide
with the extremities of pieces given by the Poisson random process) of length

between log2 |A;] and 210g2 |A;]. Let these new sub-intervals be denoted by A{ s
j € {1,...,m;}; we order the intervals in such a way that their distance to 0
increases with j. Thus,

m; .
A=A
j=1
and
log? | Al < |A]| < 2log” |Ail. (53)
The last inequalities and the ordering convention imply that

dist(A]', A?) = (ji — 1) - log? |A1] + (ja — 1) - log? | Aa| (5.4)

and
[A;l << [A;]

— <my < ——. (5.5)
210g% [A;] ' log? Al

We now count the number of particles that \Ill.U puts in an interval Alj . Let {Af{};{‘il
be the pieces in A; and let Q}; be _the correspondin_g occupation numbers. According
to the choice of sub-intervals A/ above, each A/ is a union of some of the pieces
(Ai) k. We establish the following natural

Lemma 5.4 With the above notations, one has
/_ pgu()dx = Qf, ie{l,2), kell,..., M}
AL

Proof For convenience, we drop the superscript i in this proof. Recall the decom-
position (4.2)

M
V= Z Gn /\ gosk,
k=1

(n1<k<m
Vk, ng>1
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where (p,/fk are functions of Qy variables in the piece A;. Keeping the notations, by
Theorem 4.2, one has

WYY Y ma

k=1 ng>1 reNM-1
n =1

where

1
y () = Ok / ok (x. 20k (v, 2)dz.
(A& k

nk ny

The off-diagonal term y\g,l)’o vanishes because the functions W  were chosen of a
fixed occupation. This immediately yields

/Ap\y(x)dx oY > ana /k)ka',ik(X)fpﬁ/k(x)dx

ng21peNM-1
nk21
2d _
jaz, Plok (v)2dx = O,
nENM 1/ (A0 kn =1

where, in the second equality, we used the orthogonality of different Qy-particle
levels in the piece Aj and, in the third equality, we used the fact that W is
normalized.

This completes the proof of Lemma 5.4. o

Lemma 5.4 immediately entails

Corollary 5.5 One computes

/,O\I,U(x)dx— Y 0O ie{l2), je{l,...om)

k|A’CA’

Next, we derive a simple bound on the number of particles in Al.j . The total ground
state energy is bounded by

EU(A,,n ) < CZ n;.

On the other hand, a system of ¢ = Z Q}‘C particles in A{ has non- interacting
k|IALCA]
energy at least
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This implies that
PIA] 17 < Ce

or, equivalently,

. . 2/3
> oi<ca(1al76) " n? < confProg L.
klALcA]

Let us now estimate the left-hand side of (5.2) using Holder’s inequality (1/p +
l/g=1,p,qg=1)as

mp mp
fA IxAzU<x—y>pw;f(X>ng<y>dxdy=ZZ /A i U@=y)pgu (0)pgu (y)dxdy

J1=lhp=1
mp mp
<D0 2 ULy g logulilegsly:
ji=1jp=1 e
(5.6)
where we have set
1/p
WU iy 2= / ~UP(x — y)dxdy ) (5.7)
PaAl XAQ AJIIXAéz

Now, recall that by (6.57), for i € {1, 2}, on A{i, one has

. 1/2
logull g pit <Ay 0 191 4 < C (<H£ A vl v >A;[> 1w 1l

Hence, by Corollary 5.5,

(g=1)/2q

1/q
-1 i i
lpgully = ( fA Py p\piu) < <<Hg (A npywl, wiU>A;,-)

U g—D/q
ROV

Recalling (5.6), as ||\l'iU|| < 1fori € {1, 2}, we estimate

jA
2,A]
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/ Ux = y)pgu (¥)pyy (y)dxdy
AIXAZ

mp  mj

. ) J1 nJ2y1
<22 D MU, pp (010
J1=1 jp=1
x (<H£<Afl,n1>wU, vl

U U U (g—1)/2q
A (Hy (A2, no)Wy , Wy >Aj2> . (5.8)
1 2

1/3

Now, as Qv S n; log*3 L; < n'31og*?n and as

(Hy (A el W) < (Hy (0%, W) < Cni < Cn,

the estimate (5.8) entails

f U(x = 1)pygy (0)pgy (dxdy S n@1=D34 (log m)® G0
A1 xXA>

my  mp
x> ||U”,;,A{1xA§2'
Ji=1jp=1
5.9

Hence, to prove (5.1), it suffices to choose g (recallg > 1and 1/p+1/g = 1) such
that

mip  mj

> D MU,y =0 (117 Gogm) H09). (5.10)

. . 2
Ji=1 ja=1

Therefore, we recall (5.7) and using the definition of the (Alj Hi, j»in particular (5.4)
and (5.5), we estimate

I/p
WUN, p a2 S ki)l log LIHTHP ( /

A'{l X

L, @ =0 U@ = y)dxdy
A2

(5.11)
Now, by (5.3), as U is even, we have

1/p 1/p
/ L= WEUP (x — y)dxdy < (logn)*/? </ ukU”(u)du> .
Al x A2 R+

(5.12)
On the other hand, if k/p > 1 and max(m,my) < L/logL < n/logn (with a
good probability), one estimates
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Y. G ™7 < (dogmH P22 h,
ISjism
1< jas<ma

Plugging this (5.12) and (5.11) into the sum in (5.10), we see that (5.10) is a
consequence of

(logn)z—z/p+8/(3q)n2—k/p—1/<3q) — (logn)14/3([7—1)/pn5/3—(3k—1)/(3p) = o(1).

aspl4qg 1 =1.
Thus, it suffices to find k > 0, p > 1 such that u — u*/PU (1) be in LP(RT) and

3k — 1
3p

< 0.

5
3

Recall that, by assumption u — u“U (u) is integrable (for some « > 2) and U €
L"(RT) for some r > 1.
We pick n € (0, 1) and pick p and k of the form p = 1 + n(r — 1) and k =

5 1 _
P+ + n. Thus, for r € (1, min (7, 2)], setting p := 4 ll) € (0, 1), we have
r—

5 3k-—1 , k —1
o =-2<0, 2=y and = =k>
3 3p p p D r—p
2+5( 1) !
et —_ r — —_— =
377 1—n

for n € (0, 1) well chosen.
For this choice of p, p and k, using Holder’s inequality, we then estimate

B p B B 1-p
/ Wk UP (u)du < (/ uk/pU(u)du> (/ U(p_p)/(l_p)(u)du> < 400
R+ R+ R+

This completes the proof of (5.10) and, thus, of Lemma 5.3. O

Lemma 5.4 implies that, under the assumption of Theorem 5.1, in the thermody-
namic limit, with probability exponentially close to 1, one has

| U= e pgy (1drdy = ot + o).
/\1 ></\2

This completes the proof of Theorem 5.1. (]
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6 Multiple Electrons Interacting in a Fixed Number of Pieces

The main goal of this section is to study a system of two interacting electrons
in the interval [0, £] for large £ and prove Proposition 1.4; this is the purpose of
Section 6.1. The two-particle Hamiltonian is given by (1.15). In Section 6.2, we
study two electrons in two distinct pieces.

We shall also state and prove one result for more than two interacting electrons
in a single piece.

6.1 Two Electrons in the Same Piece

We now study two electrons in a large interval interacting through a pair potential
U, that is, the Hamiltonian defined in (1.15). We first prove Proposition 1.4. Next,
in Section 6.1.3, we compare the ground state of the interacting system with that of
the non-interacting system.

Throughout this section, we will assume U is a repulsive, even pair interaction
potential. In the present section, our assumptions on U will be weaker than (HU).

6.1.1 The Proof of Proposition 1.4

Scaling variables to the unit square, the two-particle Hamiltonians HY (¢, 2) and
¢’H Ut (1, 2) are unitarily equivalent. Here, we have defined

Ul := 02U ). 6.1)

Recall that, for i # j, i, j € N, the normalized eigenfunctions of H 0(1, 2) (i.e., of
the two-particle free Hamiltonian in a unit square) are given by the determinant

sin(wix) sin(mwjx)

TR TV for (x, ) € [0, 177 (6.2)
sin(iy) sin(mwjy)

O, jH(x,y) = V2

For a two-component index, we will use the shorthand notation 1 = (i, j). For
the non-interacting ground state ¢;,2) we will also use the notation ¢p. The
corresponding ground state energy is 572 and the first excited energy level is at
1072,

We decompose L2([0, 1Hh A Lz([O, 17) = Ce¢y é ¢0l. By the Schur complement
formula, FE is the ground state energy of H ut (1,2) if and only if E < 1072 and E

satisfies

St?+ Uy — E = U, (Hy + UL, — E)7'UY,, (6.3)

where I1; is the orthogonal projector on qbol and
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Ul = (b0, U'po), Hy =TI H'TL,,
* (6.4)
¢ _ ¢ ¢ _ ¢ ¢ _ ¢

ULy =TLU T, Ul =TU, Ug, = (T:U")
We expand the r.h.s. of (6.3) as

Ul (Hy + UL, — B0 = (U 0. (Hy — E)71/2
-1
x (Id+(H+ — B V2utH, - E)*W)

x (Hy — E)~'2U% )

L~ * —1 4%
= - (B0 Aca+a7A) T 475
1/~ ~
= 2 (Pe. Acazaa+ac4) ' By).
(6.5)
where
¢e =V UGy and A, = A(E) = VU'(Hy — E)"'/2, (6.6)

To simplify notations we will drop the reference to the energy E. As £ — 400, the
convergence of (¢7@, AgAr(d —i—AgA;f)_]ag) is locally uniform in (—oo, 107%). To
compute this limit, we shall transform the expression <$g, AgA%(1d —|—A@A2‘)*1$g)
once more.

Consider the domain Ry = {(u#,y) € R x [0, 1],s.t. y + ¢~y €0, 1]} and the
change of variables

te: Ry — [0, 1%
e ()
.y y+g.y)
Define the partial isometry
T, : L2([0,11%) — L*(R x [0, 1])

V> E_l/lee -voty,

. 1 u
that s, (Te) @, 3) = —=1r, (. )0 (v+ L ¥).

One computes its adjoint

T/ . L2(R x [0, 1]) — L*([0,11%)

v g, v) 0t

that is, (Z;v)(x, y) = VE(1g, - V)(E(x — y), ).
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One easily checks that
T[ TZ* = lRZ and T[*TZ = IdLZ([O,l]Z) (67)

where 1g, : Lz(R x [0,1]) — L2(R x [0, 1]) is the orthogonal projector on the
functions supported in Ry.
One then computes

(B, AcA7ad+AcAD ™ B0) b, Ke(d+Ke) ™' o)

L2([0,1]%) - < L2(Rx[0,1])

where we have defined
d)g = ngg and Kg = Kg(E) = TgAgAzTe*. (6.9)

Define

¢ the following functions

— ¢) :=u~/U(u) foru € R,
- xo0(y) := nﬁ(sin (Bmy) — 3sin(ry)) for y € [0, 1].

* the non-negative (see (6.47)) operator K on L*(R) by the kernel

1
Ku,u) = zw/U(u)(Iu +u'| —u—u)VU@W). (6.10)

Define also
b=0dp®x and K =K®®Id 6.11)

We prove

Lemma 6.1 Assume that U is non-negative, even, such that U € L?(R) for some
p>landx — x2U (x) is integrable.
As £ — +00, one has:

(@) in L2(R x [0, 1]), ¢¢ converges to (5;
(b) for ¢ € Cg°(R x (0, 1)), as £ — 00, the sequence (K@), converges in L2-
norm to Igtp

Proposition 1.4 follows from this result as we shall see now. First, we prove

Lemma 6.2 Under the assumptions of Lemma 6.1, all the operators (Ky¢)¢ and the
operator K are bounded, respectively, on L*(R x [0, 1]) and L*(R).

Note however that, depending on U, one may have
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IKell L2®x0, 11— L2®x[0,11) e T

Proof By (6.9), to show the boundedness of Kp, it suffices to show that K ¢ =
VU (Hy — E)_I«/Ug is bounded. Note that, by our assumption on U, U, is in
L?([0, 11%). Using the eigenfunction expansion of —A on L? ([0, 11%), we write

K=Y W@%@@@ (6.12)

J#2, 1

where the sum is over j = (i, j) where (i, j) € N such thati > j.
For u € L2 ([0, 11%), as uy/TU; € Lz,p/(Hp)([O, 11%) and as the functions (¢j)7
are uniformly bounded, by the Hausdorff-Young inequality (see, e.g., [19]), one has

" oo

r/(p—=1) _1
< Collu))§/P7Y. (6.13)

Moreover, for some Cy, one has ||/ Ugdjlla < Cy. Thus, by (6.12), as p > 1, we
obtain

1/p

Il Iz < E T 21 [lee| [lee|
Koulr < C — ullr < Cellu
eull2 I4 72 (] E)P S 2.
J#2,1)

Using the explicit kernel for K given in (6.10), for u € LZ(R), we compute

(Ku)(x)=2y/U(x) / VU u(x)dx'+2/U (x)x _\X/U(x’)(u(x’)—u(—x’))dx'

Thus,

1K Il 22y < W IUIIOU Ol

This completes the proof of Lemma 6.2. (]

By Lemma 6.2, C°(R x (0, 1)) is a common core for all K, and K ® Id. Thus,
by [18, Theorem VIII.25], we know that K, —— K ® Id in the strong resolvent

{—+00
sense. Hence, by [18, Theorem VIII.20], the sequence (K, (Id —}—Kg)_l)g converges
to K(Id +K)~! ® Id strongly. These operators are all bounded uniformly by 1 (as
K, and K are non-negative). Thus, by point (a) of Lemma 6.1 and (6.8), we obtain
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(B, AcATAd+AAD 1 B) = (@ @ x0, [K1+K) ™ ©1d] ¢ ® 10} +0(1)

1
— (6. K 1-+5)79)- [ 1oy + o)

= 2. (¢, K(Id+K)_1¢> +o(D).
(6.14)
By point (a) of Lemma 6.1, one also computes

1
CUG = 16 ® ol + o(1) = / WU (u)du / K )dy + o(1)
R 0 (6.15)

= 5712/ u?U (u)du + o(1)
2 Jr

By (6.15), the eigenvalue equation (6.3) yields that, under the assumptions of
Lemma 6.2, the ground state energy of H ut (1, 2) satisfies

V(01,9 = 5w+ X 4o @) 6.16)

where
y(U) = 1072 [||¢||2 - <¢, K(d +K)—1¢>] — 1072 <¢, (Id +K)—1¢> . (6.17)

By Lemma 5.2 and assumption (HU), we know that the assumptions of Lemma 6.2
are satisfied. This proves the asymptotic expansion announced in Proposition 1.4.
To complete the proof of this proposition, we simply note that, as K is non-negative
and bounded by Lemma 6.2, by (6.17), we know that y (U) = O if and only if ¢ = O,
i.e.,if and only if U = 0. O

Remark 6.3 If one assumes x +— x*U(x) to be integrable and U to be in
some LP(R) (p > 1) (which is clearly stronger than (HU)), one obtains that,
EY([0, ¢], 2), the ground state energy of the Hamiltonian defined in (1.15) admits
the following more precise expansion

EV (10,11, 2) = 572 + # +o0 (5—2) . (6.18)

6.1.2 The Proof of Lemma 6.1

We start with a lemma, the result of a computation, that will be used in several parts
of the proof.
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Lemma 6.4 For j = (ji,j2), j1 > Jj2 recall that ¢j, the j-th normalized
eigenvector of Hy, is given by (6.2).
One has
] )y =0 (X +(4 -(“
o (v+30) =62 (5.9) + 07 (3.9) +97 (5.v) (6.19)
where

$92x, ) 1= 2v/2sin(r(ji + jo)x) sin(r (o — j1)x) sin( i) sin(joy),
¢F (2x. y) 1= V2eos(r(ja — ji)x) sin(r(ja + ji)x) sin(r (i — j2)y)

¢; 2x,y) = V2cos(x(jo + ji)x) sin(x (jo — ji)x) sin(w (i + j2)y)
(6.20)

Proof Using standard sum and product formulas for the sine and cosine, we
compute

R
V2

sin (71 (v + %)) sin (1)
sin (ja (y + %)) sin (7 j2y)

(o)

= sm (”Jl Z) cos (1rj1y) sin (mjpy) — sin (ﬂjzz) cos (1 jay) sin (j1 y)
u u . .
+ (Cos (njl Z) — cos (nsz)) sin (71 y) sin (7w joy)

1
= 3 sin (w13 ) Gsin (r G+ 2) ) = sin (x (i = j2) )

— Ssin (xp'%) i Gi + j2) )+ sin e G = j2) )
+ (cos (15 ) = cos (wja ) ) sin (rjry) sin (o)
=5 (sin (i) = sin (i ) ) sin G G + ) )
- % (sin (715 ) +sin (w25 ) ) sin G (it = J2) )
+ <cos (njl%) — cos (njg%» sin (7 j1y) sin (Tjpy) .

Thus,
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L uo o\ J—jau At+jpuy .. L
7¢j<y+7,y)_sm<7r 7 cos|m 7 sin (7 (j1 + j2) y)

V2 L
— sin nj1+j25 cos y'rjl_jzE sin (7w (j1 — j2)y)
2 ¢ 2 ¢
— 2sin njl_jZE sin ﬂj1+j2g sin (77 j1y)
2 ¢ 2 ¢
sin (mj2y) .
This completes the proof of Lemma 6.4. (]

We start with the proof of point (a) of Lemma 6.1. As ¢9 = ¢(2,1), by (6.19)
and (6.20), using the Taylor expansion of the sine and cosine near 0, we compute

2
= uy/U)x00) -, (0, 3) + VU@ (3.7) 1r, 0. 7)

where g is defined in Lemma 6.1 and x; is continuous and bounded on R x [0, 1].
We estimate

[ v (5 )e

2 21
< M—LﬂU(u)dué/ wuzU(u)du.
2 R ﬁ2

~

L2(Rx[0,1]) Ry

The last integral tends to 0 by the dominated convergence theorem as u +— u>U (u)
is integrable.

This completes the proof of point (a) of Lemma 6.1.

Let us now turn to the analysis of the operator family (Ky),. It is easily seen that
its kernel (we use the same notations for the operator and its kernel) is given by

- u u'
Ke(E;u, y,u',y) =g, xg/UWU W) - K (E; v v + 7 y’)

where K (E; x, y, x', y) is the kernel of (H, — E)~!. The kernel K(E) is easily
expressed in terms of the eigenfunctions of H. Using this and the representation
yielded by Lemma 6.4 leads to the following representation for the kernel K,

, U@ U (u') " LW
Ko (Eiu,y,u',y') = 01g,«R, Z f‘i’j()""f)’)‘f’j y+?,y
ey TUE-E
=K, (E;u,y,u’,y')—f—KZ(E;u,y,u’,y’)+K?(E;u,y,u’,y’)

(6.21)
where, for e € {0, +, —}, we have set
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w2 —E ¥ !

. VU@ U W (W
K[ (E;M,y,u/,y/)zﬁlRéng Z (M) (u) < +%7 }’)4’ <u7’y/)
J#2,1)

To prove point (b) of Lemma 6.1, if suffices to prove that, for v € Cgo R x (0, 1)),
one has Kjv — Kvin L2(R x [0, 1]). We first prove
Lemma 6.5 Forv € C°(R x (0, 1)), one has

(@) K, vll2 — O0ast— +oo,
() 1KQvll2 — 0as € — +oc.

Proof We first study the sequence K zrv. We compute

_ Cjx) u
Ky =0 3 b e g (r+3v)
Jjzlk>1
(J,k)#(1,1)
(6.22)
where
¢ 2j + k)’ ku'
Cjr(v) = E/ VU W) sin <rr %) cos (JT %) c2jx(u)du'
—L
(6.23)
and
1 min(1,1—u'/€)
cj) = f (Ar,0) (W', y") sin(jy")dy' = / v(', y') sin(jy")dy’
0 max(0,—u’/¢)
1
= [ vt ysintajyray
0
(6.24)
for € sufficiently large as v € C3°(R x (0, 1)).
Integrating the last integral in (6.24) by parts, we obtain
lejll 2@ =0 (). (6.25)
By (6.24) and (6.23), as u +— u2U (1) is summable, we obtain
(2] + k)u
ICix(W) < O(2j+k™ [ U(u’) sin du’
! / \/ (6.26)

<O(@j+k~™ )min(£,2j+k)

Estimating || K, v|| using (6.22) and the triangular inequality, as
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u
f U@ R Gt )83 (v + ) dudy
Rx[0,1]

) u .2 . u
§/RU(u)sm (rrkz) du—i—/RU(u) sin (rr(2] +k)z) du (6.27)

- min®(2j + k, £) + min?(k, £)
~ 62 ?

for p > 4, we get
1 1
- < E -

jzLk>1
(o)A, 1)

Thus, one gets that H K, v H — (0 as £ — +oo. This completes the proof of point (a)
of Lemma 6.5.
To prove point (b), as 2sina sinb = cos(a — b) — cos(a + b), we compute

A7) — AIk(v)
2 ((j+k?>+ 5 —E

Ky, y) =U@w) Y

1R, (u, Y)P(i1k, j)

jzlLk=>1
(.#(1,1)
u
(v+7)
where
¢ 27 +ku’ ku'
A;Tk(v) = Z/ VU @) sin (n%) sin (n%) azjx(u)du’,
’ —t
¢ 2j +ku ku’
AT ) = e/ JU@) sin (n %) sin (an‘> ar )du'
’ —t
and

1
) i= [ A,y costrkydy'
0
As in (6.24), we obtain
||ak||L2(R) =0 (kioo)~
As in (6.26), we obtain

|AT ()] < 0 (k™) min(¢, k).
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By (6.27), for p > 2, we then get

HKQUH 5% Z min(¢, k)(min(¢, k) +min(¢, j + k)) < l+z min(1, j/€)

_ . 2 %) ~ )
. PG+ + ) Ce
(kA1 1)
(6.28)
The last term converges to 0 by the dominated convergence theorem. This completes
the proof of point (b) of Lemma 6.5, thus, of Lemma 6.5. O

Next, we decompose KZ’ expanding ¢;(y + u/£, y) according to (6.19). This gives
+ +,+ +,— +,0
KZ = K@ + KZ + Ke B
where, for e € {0, +, —}, we have set

U@U () u u

+,0 . ’oN ° +

K, (Eiu,y.u',y') = 1R, xR, 72 m%‘()"i‘z,Y) X ¢5 (7,)’>-
J#2.1)

‘We now prove

Lemma 6.6 Forv € C°(R x (0, 1)), one has

@ K, Tl = 0as € — +oo,

®) K ol — 0as € — 4o0.

Proof As in the proof of Lemma 6.5, the two points in Lemma 6.6 are proved in
very similar ways. We will only detail the proof of point (a).

We compute
K, 0w, =yuw Y Cjk ) ot 0+ 0)
‘ , ji>1k>1 n2((.j+k)2+j2)—E e (j+k,j) ¢’
(Gao#LD
(6.29)
where
¢ 2Pt o
Ciu) = 5/ VU)sin (”%) o (”Ti) c@du (6.30)
—t
and

1 1
cx(u') = / ()W’ y') sin(rwky)dy’ = / (', y) sin(ky")dy'
0 0

for ¢ sufficiently large as v € Cj°(R x (0, 1)).
Integrating the last integral in (6.24) by parts, we obtain
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lexll 2wy = O (k7). (6.31)
As in (6.26), we obtain
ICj k()| < O (k=) min(¢, 2 + k). (6.32)
Using (6.20), one estimates
_ u 2 min(k, £)
. . — < 7
\//Rx[o,l] U@)lg,(u,y) }(b(ﬁk’” (y + 7’ y)‘ dudy S . . (6.33)

Thus, for p > 2, we get

. (2

RIS mm(gk’ 9 k;n (2] k+2k’ o (6.34)
iSTEs (G +0+j9)

(J.k)7#(1,1)

Thus, by the dominated convergence theorem, as in (6.28), one gets that

H K, o H — 0 as £ — 4o00. This completes the proof of point (a) of Lemma 6.6.

Point (b) is proved similarly except that estimate (6.33) is replaced with

U u 2 min(k, £) min(2;j + k, £)
1g, (u, ) o (y+ -, ‘ dudy < |
\//Rx[o,u (LR, 13 |0k (y ¢ y) uay 3 2

Thus, taking p > 3, estimate (6.34) in this case becomes

H K?’JFUH < Z mink(llf, £) £r2nin.2(2§'€~|2— k, E; < Z 1 minz(j, £)
iSTRsI ((G+K)+ %)
(o#(,1) (J,k)#(1,1)

me (] Z) 1

izl

which converges to 0 as ¢ — +00.
This completes the proof of Lemma 6.6. (|

We are now left with computing the limit of K Z "+ where

K oy y) =

Z LU )U (1)
20(; 21 2y _
istis T AR+ - E
(J,k)7#(1,1)
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. u i , u
X¢(j+k,j) (y+z, y)¢(j,j+k) (y +7,y>- (6.35)
We prove
Lemma 6.7 In the strong topology, one has
+.+
K, "> K®Id as {£— +oo. (6.36)

where K is defined in (6.10).

Proof To simplify the computations, we note that it suffices to show the conver-
gence of KZ”JFU forv e Cg" (R x (0, 1)).For ¢ sufficiently large, compute

(K0 3) = 3 sinGrkn i, (e e (K u)
k>1

where
1
c (K,f, u) = VU@ / KL, u)U @ yerydu, (6.37)
R
u +— ci(u) being defined by (6.24), and

. 24k \ 2j+k k ko
sin (n T”) sin (n L u ) cos (7 57u) cos (7 57u’)

72 (j +k/2)* 4+ (nk/2)? — E

K= >

jeN
(R
(6.38)
Define
e Z sin (7-[ %u) sin (7'[ 2]'2—£k u/)
Li(u,u') :=¢ ’
VF 2
e 72 (j +k/2)
(R
M (u,u') == Kf(u,u') — Li(u,u),
Lu, ) g, u’) — Li(u,u’) (6.39)
(LT, ) = Y sinGrky) L, e (L u).
>1
(M o), ) o= 3 sinGrkn) e, (s y)e (M u)
k>l

Here and in the sequel, ¢ (L{, u) and ¢ (M{, u) are defined as ¢ (K}, u) in (6.37)
with K ,f Replaced, respectively, by Lﬁ and M ,f



Interacting Electrons in a Random Medium 205

Note that

L”(]Rx[Ol]) 72/ HIR"(y )C Ll )

+ty
|-

L2(®R) sy ZH ( )

L2(R)
(6.40)
We prove

— 0

Lemma 6.8 As { — 400,
L2(Rx[0,1])

v ’

Proof The proof is similar to those of Lemmas 6.5 and 6.6. We write

M, u'y = My 'y + M, u') + M ()

where

sin (n 2]'22']6 u) sin (77 21'22'1( u’) cos ( PTA ) cos (n ) ((Jrk/Z)2 )
j%:, 74+ /22 (G + /2% + (2k/2)2 — E)
(oA, 1)

. 2j+k . 2j+k k k .1
Z Sl[‘l(]‘[ 57 u) sin (r[ 57 u)cos (”2(3 ) (cos (ﬂﬂu)—l)

72 (j +k/2)?

M o) = ¢

M ') =

jeN
(,)#A(1,1)

. 2j+k N 2j+k k
Z sm(rr 57 u)sm<77 57 u)(cos(nﬂu)—]>

72 (j + k/2)2

M ) =t
jeN
(01

Following the definitions (6.38) and using (6.40), we estimate

2
HM61,+,+ ‘

v L2(Rx[0,1]) _ZH ( ’ )‘

S Y Kl

L2(R)

z: (min(2j + &, £))?

i 4
>1 i1 L2 +k)
(. k)#(,1)
1 2 2
SE DL L1
k>1

which, by (6.31), converges to 0 as £ goes to +oo.

That the term coming from M{2,+,+ (resp. M2‘+’+) also vanishes as £ — 400
follows from computations similar to those done in Lemma 6.5 (resp. Lemma 6.6).
This completes the proof of Lemma 6.8. t
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Note that

2j+k : 2j+k 1
SIH(JTTM) SlIl(T[ T M)

1
Liu,u') = 7 — (6.41)
N 22 (M)
(GRAELD 2
Define
1
a(LT, u) = 5,/U(u)/ LY, u )V U W) er(u)du' (6.42)
R
where
Lt u) = f - Sin(”x”);ilzl(””/)dx. (6.43)
0 X
We prove

Lemma 6.9 Forany k > 1, one has

|LEu,u'y — LT (u, u)] _k

sup NI (6.44)
u'ye[—, 02 2] ]u’| £
Proof Define
, sin(rxu) sin(wxu’)
I(x,u,u) =

w2x2
Assume first kK # 1. As [ is an even function of x, write
0

Liwu) = 55 Zl(’+k/2,u,u’> —% 3 1(#1“4) (6.45)

Using the Poisson formula, one computes

1 j+k/2 I inki 7/
ﬁZl( ; ,u,u’):EZe’”/-l(J,u,u’) (6.46)

JEL JEZ

where [(-, u, u') is the Fourier transform of x — [(x, u, u’).

By the Paley-Wiener Theorem (or by a direct computation of the Fourier
transform), one checks that /(-, u, u’) is supported in [—m (Ju| + |u/]), 7 (Ju| + |u'])].
Thus, for —¢ < u, u’ < I, all the terms in right-hand side of (6.46) vanish except
the term for j = 0. That is, for —¢ < u, u’ < I, one has
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1 i+ k/2 1
=21 Itk cu ') ==l (O,Lt,u/) =L (u,u).
2¢ 1 2

JEZ

This and (6.46) then yield that, for —¢ < u, u’ <1,

jtk/2
L ) N . wu' 0 l( 7 71/1,14/)
v u) — LT uu') = —— T E—

20 uu
j=—k
Now, as
I(x,u,u’)
sup — | < +o0,
(x,u,u’)eR3 uu

we immediately obtain (6.44) and complete the proof of Lemma 6.9 when k # 1.
When k = 1, the proof is done in the same way up to a shift in the index j. This
completes the proof of Lemma 6.9. ]

Asv € Ci°(R x (0, 1)), one has

1

YN0, 3Cy >0, VkeZ el < Ovyy

Thus, as x +— x4/U (x) is square integrable, the bound (6.44) yields that, for some
Cp > 0, one has

1 ¢
< - .
L2q-ce) - L1+ k|2

Vk € Z,

c(K,f, ) —C(L+, )

Thus, taking into account the following computation

. . ,
Lt u') = / s1n(7txu)2s1121(71xu )dx
R T-X

1 |:/ cos(mx(u —u')) — ldx +/ 1 —cos(mx(u+u ))dx:|
R R

T ox2 x2 x2

1 -1 1-—
=_— |:|u - u’|/ —cos(n);) dx + |u + u/|/ —Cozs(nx) dx:|
2 R X R X

= l(lu +u'| = Ju—u'])
2 K

(6.47)
the definition of K, (6.10) and (6.40), we obtain that

HLZ"H) —(K® v

_
L2(Rx[0,1]) £—+o0
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Thus, Lemma 6.7 is proved. O

Clearly, the proof of Lemma 6.1 generalizes to arbitrary ¢, j), a normalized
eigenfunction of H 0(1, 2); one thus proves

Corollary 6.10 Consider two particles on the i-th and j-th energy levels in an
interval of length £. Their interaction amplitude is given by

(Ui jy, ba.j)) = 202G + j2) - /RuzU(u)du 230+ 00¢™h). (6.48)

6.1.3 The Ground State of Two Interacting Electrons and Its Density
Matrices

Recall that (p[JOy 0 denotes the j-th normalized eigenvector of _Aﬁo, ¢ and g“[{)’ ¢ the
Jj-th normalized eigenvector of (1.15). In the sequel, we drop the subscript [0, £] as
we always work on the interval [0, £].

We remark that, when the interactions are absent, one has

0=l A2 (6.49)

The next proposition estimates the difference ¢'Y — ¢1-? induced by the presence
of interactions.

Proposition 6.11 For £ > 1, one has

Hg_l,u _ 41,0‘ < 12 (6.50)

L2([0,612) ™

Proof Scaling the variables to the unit square (see Section 6.1.1), it suffices to show
that the normalized ground state of H ut (1,2) (see (6.1)), say, ¢g ‘ satisfies

<712, 6.51)
L2([0,112) ™

Hq&éﬂ — o

where we recall that ¢ = ¢(1,2) (see (6.2)).

1
Decomposing L2([0, 1]) A L3([0, 11) = C¢hp ® - and defining EY" to be the
ground state energy of H ut (1, 2), we rewrite ¢>g “as

oV =ago+¢. ¢ Lo, ocR*

and the eigenvalue equation it satisfies as

2 ¢ Ut [/
Sre+ Uy — E; U0+ a\ _
' h Ut 0. (6.52)
Uko Hy + ULy — Ej ¢
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where the terms in the matrix are defined in (6.4).
Thus, to prove (6.51) it suffices to prove that

& —1/2
1612201y Ar2q0,1) < CE2.

By (6.52), as ¢(L)][ is normalized, as 1072 < Hi + ULF and as Eéﬂ e—) 5712,
—+00
using (6.4) and (6.8), one computes

17 <vl (H.+vt. —EU\ e
L2qo.pazzqo.1p S Yor A+ + Uiy = £o 0

c
< (00 Kea+K0 00 .
;e Keaarkn T,

Thus, (6.51) is an immediate consequence of Lemma 6.1. This completes the proof
of Proposition 6.11. (]

We obtain the following corollary for the one-particle density matrices of ¢ V.

Corollary 6.12 Under assumptions of Proposition 6.11, one has

[vers = v = val, =0 (¢7).

Corollary 6.12 is an immediate consequence of (6.50) and

Lemma 6.13 Ler v, ¢ € L*([0, £]) A L2([0, £]) be two normalized two-particle
states. Then

vy —velli <4V — &Il

Proof of Lemma 6.13 For ¢ € L?([0, £]) A L([0, £]), consider the operator A,
defined as

Y4
(A f)(x) = fo o(x, ) £ ()dy.

Note that A, is a Hilbert-Schmidt operator and ||Ay|l> = |||l and the one-particle
density matrix of ¢ satisfies y, = 2A;‘,A¢,. Thus, for v, ¢ as in Lemma 6.13, we
obtain

vy — vol = 2145 Ay — AGAslI < 2

(IlAfpllzllAw — Apll2 + 147, — AZII2||A¢|I2) <Ay — ol

This completes the proof of Lemma 6.13. (]
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6.2 Electrons in Distinct Pieces

In the present section, we assume that U satisfies (HU) (see Section 1.1); thus, it
decreases sufficiently fast at infinity (roughly better than x ~*) and is in L? for some
p> 1

Let the first piece be A; = [—¥¢1, 0] and the second be Ay = [a, a + £3]; so,
the pieces’ lengths are 1 and ¢», while the distance between them is denoted by a.
As for the one-particle systems living in each of these pieces, we will primarily be
interested in the following three cases:
(a) the interaction of two eigenstates of the one-particle Hamiltonian on each piece,

i.e., following the notations of Section 6.1, of <piA] and <ij2,
(b) the interaction of a one-particle eigenstate with a one-particle reduced density
matrix of a two-particle ground state, i.e., <p’A1 with Vel o
A2

(c) the interaction of two one-particle density matrices, i.e., Vel and Vel -
1 2

We observe that for a one-particle eigenstate in a piece of length ¢, the following
uniform pointwise bound holds true:

: 2
||¢7Eo,g]||L°° < \/; (6.53)

For the one-particle reduced density matrix we establish the following estimates.

Lemma 6.14 Ler { € L%([0, £]) A L*([0, £]) be a two-particle state and ve(x,y)
the kernel of the corresponding one-particle density matrix. Let p € N. Then, ¢ €
HP ([0, €1%) implies v, € HP ([0, €1*) and

lvellar < 4NSlHp- (6.54)

In particular, unconditionally ||y, || 2 < 4.

Proof First recall that

¢
ve(x,y) = 2f() Z(x,2)¢*(y, 2)dz.

Then, one differentiates under the integration sign to get

or

14
. — p *
v =2 [ a0 oo

This in turn implies by the Cauchy-Schwarz inequality that
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2

ar 2 ¢
‘ PR = 4/ / ¢ (x, 2)¢*(y, 2)dz| dxdy
dxP " |2 0.2 |Jo
2 2 2
<af Iatee ol le ) asdvasa =4 ol
which proves (6.54). 0

Lemma 6.15 Let ¢ = C[B’(Z] be the ground state of a system of two interacting

electrons in [0, £]. Then, ¢ € H([0, £1%) and there exists a constant C > 0
independent of £ such that

¢l < C/VE. (6.55)

Proof We use the construction of the proof of Proposition 6.11. Then, employing
the same notations, for the problem scaled to the unit square one has

ol = ado + ¢,

where ¢y is the ground state for a system of two non-interacting electrons, |o| < 1
and ¢ L ¢g. Obviously, ¢pg € H? for all p € N. Moreover, according to (6.52),

Py ¢ =1yt
1§ = | (s + UL, = EYO U gamo|

e, _
< |+ vt - B9

ot

L2—H! L?

e
< H(H+—E(§]) 1‘ : ‘Uioqﬁo‘

L2 H1 L2’

Arguing as in Section 6.1, one can prove that

<CVe

L2

<Jorad

4
|z

and (H; — E(l)jg)_1 is a bounded operator from L2([0, 11%) to H1([0, 1]%) because

H, is just a part of —Aj acting in a subspace of functions orthogonal to ¢y and the
. . 12
bottom of its spectrum is separated from Eéj . Thus, we proved that

16l < CVE
which immediately implies

1
IS 1l 1 < CVE.
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Scaling back to the original domain [0, £]? yields (6.55) and completes the proof of
Lemma 6.15. ]

Corollary 6.16 Restricted to the diagonal, the kernel of the ground state one-
particle density matrix x € [0, £] = y; (x, x) is a bounded function; more precisely,
there exists a constant C > 0 such that

lve llLeo o,y < C/X. (6.56)

Proof Remark first that, as ¢ satisfies Dirichlet boundary conditions, so does the
kernel (x, y) = y;(x, y). Using anti-symmetry, we compute

lye (x, x)| _2‘/ y{(t t) ‘—4'Im(f f 0:¢(t, x)(t, x)dxdt)‘

<Al - ISz < 4|IC|IH1
(6.57)

Combining this with (6.55) gives (6.56) and completes the proof of Corollary 6.16.
O

Having now pointwise bounds (6.53) and (6.56), we estimate the interactions in
each of the three cases described in the beginning of the current section. We will
also obtain different bounds for close enough and distant pieces A; = [—£1, 0] and
Ay = [a, a + €>], i.e., we will discuss different bounds depending on whether a is
large or small.

For the case (a) of two interacting one-particle eigenstates we prove the following
two estimates. For long distance interactions, i.e., when a is large, we will use

Lemma 6.17 Suppose U satisfies (HU). Then, for A1 = [—£1,0] and Ay = [a, a+

£7], one has

‘ ; 2a73Z(a)
su Ux — g, 01 - lox, 0)Pdxdy < ————— (6.58)
i,jP/Alez YPa Yoy Y ax(er, £)

where Z is defined in (1.26).

Proof Let us suppose without loss of generality that A; is the larger piece, i.e.,
£1 = £;. Then, using (6.53) and the fact that the functions ((plAj),; ;j are normalized,
we compute

Ly pl . .
/O /0 U<x+y+a>|¢gl<x>|2~|¢gz<y>|2dxdy

04 1%
< / UG +y+a)loh, () Pdrdy
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2 b
< — sup / Ux+y+a)dx
L1 yelo0,e,1Jo

2 [t

<_
L1 Jo

U(x +a)dx

2 -3
= E_a Z(Cl), a — +OO
1

This completes the proof of Lemma 6.17. O

On the other hand, for close by interactions, i.e., a small and low-lying one-particle
energy levels the following lemma gives a more precise estimate.

Lemma 6.18 Suppose U satisfies (HU). Let (i, j) € {1,2}% Then, for any ¢ €
0,2) and Ay = [—£1,0] and Ay = [a, a + €3], one has

. . —8Z
/ Ux = loh, )P0k, () Pdxdy = O ( @ 2@ ) .
A1 xXAs

max({y, £2)% min(¢y, £2)%~¢
(6.59)
If Z(a) = 0(a™9), a — +o0, then & can be taken to zero.

Proof As in the proof of the previous lemma we suppose that £1 > £,.1If j € {1, 2},

then
i 2 . (mix 2 x|
] =|./— — ) <) —— 6.60
oA, ()] ‘,/el sm(z1 )‘ T (6.60)

and the same type inequality holds for wiz (y). Then, using (6.60) and (6.53), we
compute

L pl ) .
/O /0 Ux +y +a)lgh, 01 - lpx, () dxdy

Cy
22—
EIZZ ‘
Ci /ﬂ 1—
— U(x+y+a)xy *dxdy
aeoe Jre
C +00 K}
=2 / / U(s 4+ a)(s +1)(s — ) ¢drds
0 —s

2p2—
EIZZ ‘

+o00
< C—ff U (s)s>~*ds.
03057° Ja

6 b
< f / Ux +y+a)xy' ~¢dxdy
o Jo

<

It is now only left to prove that (HU) and (1.26) imply that the last integral converges
and is O(a~¢Z(a)). Therefore, we note that
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400 “+00 2n+la +00 J_e 2n+la
U(s)s>8ds = / U(s)s>8ds < (2”+1a) / U (s)ds

T 5 [t

<227Fa* Y 27 (2") / U(s)ds
n=0 2’la
+00

=27 ) 277 (2"a) < Ca~*Z(a).
n=0

(6.61)

If Z(a) = 0(a™Y), ie., if there exists § > 0 s.t. Z(a) = O(a~%) fora — o0,
then the sum in the second line of (6.61) converges for ¢ = 0.

This concludes the proof of (6.59). O

Let us now pass to the case (b) of one-particle eigenstate interacting with a one-
particle density matrix of a two-particle eigenstate. For large a, we prove

Lemma 6.19 Suppose U satisfies (HU). Then, for a sufficiently large, one has

4a=37(a)

0 (6.62)

sup / U = 0lel, 017y, (3, y)dady <
L,j JAIxAy L)

Proof The proof follows that of Lemma 6.17. The only change concerns the

replacement of the fact that goiz is normalized, [ A, |<pi2 (y)|?dy = 1, by the fact
that the trace of Ve is equal to 2. U
Ay

For a small, we prove

Lemma 6.20 Suppose U satisfies (HU). Let i € {1, 2}. Then, for any ¢ € (0, 2),

] - =172 —
f U = »lgh, @F -y (v dedy = 0 (€776, a2 (@)
A1 XAy A

(6.63)
If Z(a) = 0(a™ ) as a — 400, one can choose ¢ = 0.

Proof As in the proof of Lemma 6.18 mixing once more (6.53), (6.56), and (6.60),
we obtain

24 12 .
/ / Ux+y+a)lgy, (x)|2y§j (¥, y)dxdy
0 0 Y]

Cl 1 1% )
< 3_—1/2/ / U(x +y+a)x 7€dxdy
%" o Jo
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C +o0o  p+4o0 )
< TI/Z / f Ux + y)x _‘dedy
ﬂl 52 0 a

C2 +o0o K}
= ﬁf / U(s)(s 4+ 1)>*drds
2?_%2/ a —s

C3 +oo _
< —1/2/0 U(s)s>~eds

3_
078,
Cya¢Z(a)

S g

0%,

This completes the proof of Lemma 6.20. (]

We are left with the case (c) of two interacting reduced density matrices. We do not
make the difference between close and far away pieces in this case.

Lemma 6.21 Suppose U satisfies (HU). Then, there exists C > 0 such that

172 ,—1

sup / U =My & x) v (v, »dedy < €626 min(l, a2 Z (@)
i,j JAIxA, Al Ay
(6.64)

Proof Using (6.56) one obtains

b plr
/ / Uk +y+a)y, (x,x)y, (v, y)dxdy
0 0 1 Ay
<G / Ux +y + a)dxd
< — x +y+a)dxdy
Vit Jr2

CZ 400
U(s +a)sds
Vel /0

C2 +o0 +00
< =
< m/a (/t U(s)ds) dt

<

Thus,

C3;min(C, a"2Z(a))
Nz

Ly plo
/ / Ux +y+a)y (x,x)y,; (v, y)drdy <
0 0 1 42

+00 +00
where the last equality is just (6.61) for e =2 and C := / (/ U(s)ds) dt
0 t
< + o00. This completes the proof of Lemma 6.21.

Finally, we give estimates for the case of compactly supported interaction potential
U. We prove
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Lemma 6.22 Assume that U has a compact support. Then, there exists C > 0 such
that, fori > 1 and j > 1, one has

[min(, £1) min(j, £2)]

353
6152

(U, jy, ba,j)) < C -
Proof Due to the anti-symmetry of the functions (¢, ;)i ;.. it suffices to compute
the scalar product on [—£1, 0] X [a, a + £2]. Thus,

1
sup / Ux+y+a)
lal<diam(supp(U)) 2€1€2 J10,¢,1x[0.£5]

x sin’ 7y sin’ Y dxdy
4 %)

[min(i, £1) min(j, £2)]?

(U, jy. ba, j)) <

<CW) —
66
where
1
CU) = - sup / U +y+a)d+ x>+ y>)dxdy.
2 0<a<diam(supp(U)) /Rt xR+
This completes the proof of Lemma 6.22. O

Proposition 6.23 Consider a system of two interacting electrons, one in [0, £1],
another in [£1 +r, L1 +r + £2] with r < Rg. Then, the ground state energy of this
system has the following asymptotic expansion

n —6_ y=6
1 2

Proof Obviously, the energy of this system is greater than the energy of the system
without interactions that is given by the main term of (6.65). Taking the ground state
of a non-interacting system as a test function and using Lemma 6.22 to estimate
the quadratic form of the interaction potential gives the upper bound and, thus,
completes the proof. (]

6.3 The Proof of Lemma 4.11

q 2
. d
Recall that E ;’ ,, denotes the n-th eigenvalue of — Z ? + Z U — x1)
1=1 1 1<k<I<q
q
acting on /\ L2([0, £]). Rescaling as in Section 6.1.1, we need to study the case
I=1
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£ = 1 and prove that, in this case, there exists C > 1 such that, for n > 2 and U ¢
given by (6.1), one has

1 L
E], > EJ +=. (6.66)

Indeed in Lemma 4.11, the length £ is assumed to be less than 3¢,,.
As g < 3, the same computations as in the beginning of Section 6.1.1 show that

e
E;’l satisfies, for some C > 1, for ¢ large,

¢ C
EJy < Egy+ (. Ulho) < Egy + (6.67)
On the other hand, for some C > 1, one has
Ut 0 0o , 2
Eq’n > Eq’n > Eq’1 + ok

Plugging (6.67) into this immediately yields (6.66) and completes the proof of
Lemma 4.11. O

Appendix A The Statistics of the Pieces

In this appendix, we prove most of the results on the statistics of the pieces stated in
Section 2.2.

A.1 Facts on the Poisson Process
Let IT be the support of du(w), the Poisson process of intensity 1 on R4 (see
Section 1). Let TN [0, L] = {x;; 1 <i < m(w) — 1} (where x; < x;j+1). Then,
Lk
PH#IINO, L]) =k) = e’LF, ke N. (A.1)

The following large deviation principle is well known (and easily checked): for any
B € (1/2, 1), one has

P(#TI N[0, L]) — L| > LP) = O(L™). (A.2)

The points (x;)1<i<m(@w)—1 partition the interval [0, L] in m(w) pieces of
lengths A;.
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For L > eez, one has
P(3i; |Ai| = logLloglogL) < P@En €[0,L]NN;
#[I1N (n + [0, log Lloglog L/2])] = 0)

< Le—longoglogL/Z — O(L_OO).

This proves Proposition 2.1.

A.2 The Proof of Proposition 2.2

Consider the partition of [0, L] into pieces (see Section 1). For a, b both non-
negative, let now Xo,z] to be the number of pieces of length in [a,a + b]. We
first compute the expectation of X|[o 11/L, that is, prove

Proposition A.1 For L > a + b, one has

E [X?u} et oty CaE e e

I =ée
D)

Proof Let I be the support of the support of d it (w), the Poisson process of intensity
1 on R (see Section 1). Then, one has

Xp.p= Y GIIN[0, X))
Xell

where the set-function G is defined as

1 if the distance from X to the right most point
G(IN[0, X)) = in {0} U (IT N [0, X)) belongs to [a, a + b], (A.3)
0 ifnot.

The Palm formula (see, e.g., [2, Lemma 2.3 ]) yields

E(Xjo,1) = / E[GIN][O0,x))]dx.
0<x<L

Now, let £ be an exponential random variable with parameter 1. As the Poisson
point process has independent increments, one easily checks that
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e 4 (1 —e_b> ifx >a-+b,
E[G(IN[0,x))] =P (min(x, &) € [a,a +b]) = {4 ifx € [a,a+ b],

0 ifx <a,

(A4)
Hence,

a+b

E(Xj0.) = ¢™° (1 - e*b) /O<X<L dx + e*“*b/a dx —e™¢ (1 - e*b)

/a dx=e %1 —e LR
0
where
R=e¢"%(a+b)e " —a). (A.5)

This completes the proof of Proposition A.1. O
Let us now prove Proposition 2.2. Therefore, set M := ¢~%(1 — ¢~?) and partition
[0, L] = Uszl[jE, (j+ D] sothat J < LY and £ =< L'~ for some v € (0, 1) to
be fixed. As (a, b) = (ar,br) € [0,log L - loglog L]?, one then has

J

Xo,.L] — Z Xije.G+na| < 2J. (A.6)
j=1

Moreover, the random variables (£~1X [ie,(j+DeD1<j<J are independent sub-

exponential random variables. Indeed, X|o, 1 is clearly bounded by #(IT N [0, L]),

the number of points the Poisson process puts in [0, L] and L~#(I1NJ0, L]) has a

Poisson law with parameter 1. We want to use the Bernstein inequality (see e.g. [22,

" (see e.g. [22, Definition 5.13]),
1

we use this bound and the Stirling formula to get, for p > 1,

Proposition 5.16]). To estimate ”E_IXW,(]'H)@]‘

_ kl’gk B 2p—1 kpﬁk ) P Zk
E(ul’) < Y o <ot T BE et
k>1 =1 K>3
kP ¢p gk—p

<@pf+et

k>2p

k P k!
< (2p)? + £P max &+ pPkt
kzp (k+ p)!

k---(k—=p+1) (k—p)!
< @2p)P + (eb)”.

Hence, for £ > 1,
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e r
R \/]E (|Xtje.+nal")

< "2p+ep<2+ <2
< su — + — < —+ e < 2e.
p>p1 Y24 pP Y4

Thus, the Bernstein inequality, estimate (A.6), and Proposition A.2 yield that there
exists k > 0 (independent of a, b) such that, for « = «(L) > 2(R + 2)/¢ (here, R
is given by (A.5)), one has

) I
[ Xje4na H% = 7 [Xuegroaly,

J
X Xpie v — BIX[je. (i
p(|X00 s )< Lie.G+va — BlXjje g+nal > 7 (e BE2
L Z [ ¢
j=1
< 26‘_’(‘12".

To obtain Proposition 2.3, it now suffices to take o = LA~ and (B,v) € (0, 1) such
that ] — 8 <1 —vand 2(8 — 1) + v > 0; this requires 8 > 2/3.
The proof of Proposition 2.2 is complete. O

A.3 The Proof of Propositions 2.3 and 2.4

For any a, b, ¢, d, f, g all positive, define now X[o,z to be the number of pairs of
pieces such that

* the length of the left most piece is contained in [a, a + b],
 the length of the right most piece is contained in [c, ¢ + d],
* the distance between the two pieces belongs to [g, g + f1.

Again, we first compute the expectation of X|o, /L, that is, prove

Proposition A.2 For L >a+b+c+d+ f + g, one has

X X R .
E |:—[0’L]i| =fe " (1I—-e b)(l —e d) + L where |Ry| < fe 7.
(A.7)

Proof Recall that IT denotes the support of du(w), the Poisson process of intensity
1 on R . Then, one can rewrite

X1 = Y, le<r-x<grsGUIN[0, X)) H(TIN (Y, L))

(X,Y)el?
X<Y

where the set-functions G and H have been defined, respectively, by (A.3) and
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1  if the distance from Y to the left most point
H{IIN(Y,L]) = in {L} U (IT N (Y, L)) belongs to [c, ¢ + d],
0 ifnot.

The Palm formula, thus, yields

E(Xjo,L) = E[GIIN[0, x)HITN (y, LD]dxdy

0<x,y<L
gy—x<g+f

= | geryer EIGAINI0.)DIE[H (TN (y, L])]dxdy

gSy—x<g+f

as the random sets I1 N [0, x)) and IT N (y, L]) are independent.
As in (A.4), one checks that

E[HIIN (y, LD] =P (min(L — y,€&) € [¢,c+ d])

e“'(l—e_d) ify<L—-c—d,
=qe¢ ifyeL —[c,c+d],
0 ify>L—c.

Hence,

E(Xjo.1)) = ¢ 9¢ (1 _ e—d) (1 _ e—h) / vcryey d¥dy+R)
gy—x<g+f

=fe " A—e®HUQ =L+ Ry
where, respectively, R| < e~ %~ and
Ry <R:i=e "1+ f2+ fyg).

This completes the proof of Proposition A.2.

221

(A.8)

(A.9)

O

Let us now prove Proposition 2.3. We want to go along the same lines as in the proof
of Proposition 2.2. Therefore, we set M := f e “~“(1 —e~?)(1—e~?) and partition
[0,L] = Ufzo[jﬁ, (j+1)¢]sothat J < L' and £ < L'~ for some v € (0, 1) to be

fixed. For the same reasons as before, the random variables (€~ X{j¢,(j+1)e) 1</ </

are independent sub-exponential random variables.
We now need a replacement for (A.6). Therefore, we set

r=14+a+b+c+d+ f+g (A.10)
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and, for0 < j < J, we let

* Y; be the number of pieces in the interval (j+1)£+[—r, 0] of lengthin [a, a+b],
* Z; be the number of pieces in the interval j£ + [0, r] of length in [c, ¢ + d].

Then, we have

J J J
— KoY Yi—Ke Y Zj < Xpo1— Y Xjjeirne < Ka ZY + K ZZ
j=0 j=0 j=0
(All)
where we have set
Ko=14+758 g ko=141F8 (A.12)
a c

Indeed, if a pair of pieces counted by X[o ;| does not have any of its intervals in
any of the (j£ + [—r, r])1< <y, then the convex closure of the pair is inside some
Jj€ + 10, £], thus, the pair is counted by X|j¢ (j+1)¢)- This yields the upper bound
in (A.11) as, any given interval is the left (resp. right) most interval for at most
14+ (f + g)/c (resp. 1 + (f + g)/a) pairs satisfying both the requirements on
lengths and distance. The lower bound is obtained in the same way.

For L sufficiently large, the random variables (Y;)1<j<s and (Z))1<j<u
are i.i.d. sub-exponential. Thus, applying the Bernstein inequality as in the
proof of Proposition 2.2 yields that, for some constant k > 0 (independent of
(a,b,c,d, f,g))and B € (2/3, 1), with probability 1 — O(J~>°) =1 — O(L™%),
one has

J—1
DY <kde+ I and Y Zy<wde + 1 (A13)
j=1 j=0

Now, we can estimate ||€_1X[jg,(j+1)g] || p, a8 in the proof of Proposition 2.2. Thus,
the Bernstein inequality and Proposition A.2 yield that, for some « (independent of
(a,b,c,d, f,g)),forv e (2/3,1) and £ < L=V, with probability 1 — O (L™°),
one has

J
3 Xije.i+08 _ g oarl o RLS
; ¢ S
Jj=0

Taking (A.11) and (A.13) into account, we get that, for some k > 0 (independent of
(a, b, c,d, f, g)), with probability 1 — O(L~°°), one has

‘X[O,L] ' . R+ (Kye ®+ Kee C+ (Ky+ K)JPYHr
L = I '
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This proves (2.5) where the constants are given by

R(a,b,c.d, f,g) =kr (R+ Kee™® + Kce™®) and K(a,c, f,8) = (Ka+Ko)r
(A.14)
(see (A.9), (A.10), and (A.12).)
The proof of Proposition 2.3 is complete. O
The proof of Proposition 2.4 is identical to that of Proposition 2.3: it suffices to
take b = d = +o0.

A.4 The Proof of Proposition 2.5

This proof is essentially identical to that of Proposition 2.3. Let us just say a word
about the differences.

For £,¢',¢",d > 0, let now X|o,1] to be the number of triplets of pieces at most
at a distance d from each other such that

* the left most piece is longer than ¢,
* the middle piece is longer than ¢/,
* the right most piece is longer than £”.

Then, one has

Xoo= Y. locy-x<aGIN[0, X)) KN (Y, W) H(ITN (Z, L))
X,Y,W,Z)el* ISW-Y
YIRS 0<z-wsa

where the set-functions G and H have been defined as

1 if the distance from X to the right most point

G(IIN[0, X)) = in {0} U (IT N [0, X)) belongs to [/, +-00),
0 if not,
1 iflINny,w)=
K@n@wy=] ToNEW=0
0 if not,
1 if the distance from Z to the left most point
HIN(Z, L) = in {L} U (IT N (Z, L]) belongs to [I”, +00),

0 if not.

Following the proof of Proposition A.2, one proves

Proposition A.3 For L sufficiently large, one has
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X ! " R / "
E [%} =d?e 0 4+ TL where |Rp | < d?e 00,

One then derives Proposition 2.2 from Proposition A.3 in the same way as
Proposition 2.3 was derived from Proposition A.2.

A.5 The Proof of Proposition 2.6

First of all, let us note that a piece of length [/ in [k{g, (k + 1){g) generates exactly
k energy levels that do not exceed E. To count the energies less than E, we are only
interested in intervals of length / larger than £g. Other intervals do not generate
any energy levels we are interested in. Thus, by Proposition 2.2, for 8 € (2/3, 1),
we obtain that with probability 1 — O (L~°°), the number of intervals generating k
energy levels below energy E is

L(e e — o=ktDtey 4 1AR,  where |Rz| < 3 (A.15)
where O (-) is uniform in k.
Let m;, = log L - loglog L. By Proposition 2.1, with probability 1 — O (L™%),

for L large, one computes

lmp/Ce]
1
NP(E) =L E k-L(e *E—e=®k+Dley 4y [ 717P R where |RL| < =
E
k=1

[mp/CE]
T 0905 B
= ¢ JOmiing Tl R
k=1
+o00

—l

e

=2 e m LT PR+ ) = o A me LT PR D),
1

>-
Il

Thus, decreasing B above somewhat, with probability 1 — O(L™%°), for L suffi-
ciently large, one has

_EE

NP(E) - < LA, (A.16)

1 —ete

This proves (2.6). Using the fact that E — N LD (E) is monotonous and the Lipschitz
continuity of £ +— N(E), (A.16) yields that, for Ey > 0, with probability 1 —
O (L™°), for L sufficiently large, one has
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—lg
sup  |NP(E) - 16—765 < L1H+B (A17)
E€[0,Ep] —e

The formulas (2.8) and (2.9) for the Fermi energy and the Fermi length follow
trivially. This completes the proof of Proposition 2.6.

Appendix B A Simple Lemma on Trace Class Operators

The purpose of the present section is to prove

Lemma B.1 Pick (H, (-, -)) a separable Hilbert space and (Z, 1) a measured
space with w a positive measure. Consider a weakly measurable mapping 7 € Z —
T (z) € S (H). Here, S| (H) denotes the trace class operators in H, the trace class
norm being denoted by || - ||

Assume

/ZIIT(Z)IItrdu(Z) < +o0. (B.1)

Then, the integral T := / T (2)du(z) converges weakly and defines a trace class
z

operator that satisfies

ITlly = H / T(2)dp()
Z

< / 1T @ lrdi(2). (B2)
tr V4

Proof By assumption, for (¢, ) € H?, one has z — (T (z)¢, ) is measurable
and bounded by z — ||T(2)|l«ll¢llll¥|| which by (B.1) is integrable. It, thus, is
integrable and one has

' /Z (T, ¥)du()| < /Z (T (@e. ¥ dp(2) < fz IT@lldie (@) Il ]

Thus, the operator 7' := f T (z)duu(z) is well defined by
z

(T, ¥) :=/Z<T(Z)90, V)dp(z).

and bounded.
Let us prove that it is trace class and satisfies (B.2). Let (¢,),>1 be an
orthonormal basis of . Then,
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(T ms 0n)] <L|<T(z)¢n,¢n>|du(z).

Thus,

Z (T @n, o) < / <Z| (T (2)pn, (Pn>|> du(z) < / 1T (2)lwdp(z).

Taking N — o0 proves that, for any orthonormal basis of H, say, (¢;)n>1, one
has

+00

> Tgn gl < [ IT@ @) <+oc.

n=1

Thus, T is trace class (see, e.g., [18]) and satisfies (B.2). This completes the proof
of Lemma B.1. O

Appendix C Anti-symmetric Tensors: The Projector on
Anti-symmetric Functions

Pick W € L?>(A") and let TT) : L?(A") — A" L?(A) be the orthogonal projector
on totally anti-symmetric functions. Then,

(HQW)@):% > sgno-W(ox)

" o permutation
of {1,---,n}

where, forx = (x1, -+, x,), 0% = (X5(1), "+ , Xo(n)) and sgn o is the signature of
the permutation o.
Hence,ifn = Q1+---+ Qp and,for 1 < j <m, ¢; € /\Qf Lz(Aj),wedeﬁne

—1

m . - m ) m ' m ‘
HH‘”/H Ao’ =M Q¢ || 1 | Qe (C.1)
J=1 j=1 j=1 j=1

and compute
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) 1 .
m (@)=L ¥ e (@)oo
j=1 o permutation j=1
of {1,---,n}
1 m
= Z sgn o l_[ ¢’ (xs(Q;))
o permutation j=1
of {1,---,n}
where
X5(Q)) = (o (@140 1415 " s X (Q1+++0,-1+0))>
Qj={01+--+0Q0j1+1L-, 014+ Q1+ 0}
Thus,

nl- T (®¢j) = Z Z sgno (H (pj(xrr(Qj)))
j=1

J=t [Aj|=Q;, VI<j<m o permutation
A U-UA, =(1,- ,n} O,f“*"'~"}
AjﬂAj/:(zj if j#£j s.t. Vj, J(Qj):Aj

= Z Z (sgna ﬁsgnagj) (lrj_[]‘pj(fo))

[Aj|1=0Q;, VIS j<m o permutation j=l
A U-UAy={1,- ,n} of {1,---,n}
AjNA=0if j£j Bt Vj. o(Qj)=A;

m m
=]] e > s(Ar - Am) [ [T/ (cap)
J=l 0 1Aj1=Q;. VIS jSm Jj=1
ApU--UAy,={1,-,n}
AjﬂAﬂ:Vj if j#j

where we recall that e(Aq, - - - , Aj) is the signature of 0 (Aq, - - - , Ap), the unique
permutation of {I,---,n} such that, if A; = {a;;; 1 < i < Qj, a;j <
aj,jforiy <izjforl < j<mtheno(a;j) =01+ -+ Qj_1+1.

As Aj N Ay =0if j # k, one has

2
m m 2
> canean([Teen ] =TTl £ o
[Aj|=0j, VIS j<m j=1 j=1 [AjI=0j, VIS j<m
ALUUA,=(1,-n} AYU-UA,=(1,n)
AijjIZ(/)ifj#j/ AjﬁAﬂ:Qifj#j/

"o T
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Hence, by (C.1), we get

/\ (x) = anlQ’ > s(An, - An) | [T/ (ap)

[Aj|=0;, V1<]<m Jj=1
A1U UA,,={1,-
AjﬂAj/:Vjifj;ﬁj,
(C.2)

Appendix D The Proofs of the Particle Density Matrix
Reduction Theorems

We shall now prove Theorem 4.2 and Theorem 4.4. They will follow from direct
computations.

D.1 Proof of the One-Particle Density Matrix Reduction,
Theorem 4.2

First, by the bilinearity of formula (1.19), one has

YW= 3T aQaQ,y(é)n D.1)
Q occ. Q' occ. o'
neN" 7/ cNm

where the trace class operator yQ n. 0 ACts on L%([0, L]) and has the kernel

m m
M — J J
Yonu 7 (x,y) = /0 J— /\ 0., (x,2) /\ <PQ/I,’,1/], (v, 2)dz.
o 0.L] j=1 j=1

Recall (C.2), that is, in the present case

m .

J
A Poim; | @122, 2n)
j=1

m
=c(Q)- > eAL - An) [T 00,0, (@iea,)  (D2)
[Aj1=0j, VIS j<m Jj=1
AIU“'UAm:{l"“’n}
AjNA =0 if j#j’
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where
* g(Ay,---, Ap) is the signature of o (Aq, - -, Ap), the unique permutation of
{1,---,n}suchthat,if A; = {a;;; 1 <i < Qj}forl < j<mtheno(aj) =

Or+---+0;1+1i, _
* and ¢(Q) is such that || A; 90, | =1,1ie.

HT:I QJ'

(@) =/ == (D.3)
n:

Thus, by (1.19), one has

1
V(Q?ﬁ (xs y)

@ _ A Ay (ALY
(o) = 2 > D 1((A);. (A)))

|4j1=0;. VI j<m |A}|=0';, V1<j<m
MU= ) 73],
j =01 J#J A/jﬂA/j,=@ifj;ﬁj/

(D.4)
where
I(A,A) :=1((A))], (A/j)j)
m . -
— J J ,
_/[o L 1_[1 §0Qj,nj((xl)leAj)<PQ/j’n}((yz)zeAj) e dxy---dxp.
, = =
x,«:ﬁ i >
(D.5)

To evaluate this last integral, we note that, for any pair of partitions (A ;) ; and (A’j) j
(as in the indices of the sum in (D.4)), if there exists j # j’ such that A; N A;, N
{2,---,n} # @, then the integral I (A, A”) vanishes.

Now, note that, if d;(Q, Q') > 2, then, for any pair of partitions (A j)j and
(A’);, there exists j # j" such that A; N A’j, N{2,---,n} # @ thus, the integral
I(A, A") above always vanishes and, summing this, one has

ygfﬁ =0 if d(Q,Q)>2.
o'
So we are left with the case Q = Q' ord;(Q, Q') = 2.

Assume first Q = Q’. Consider the sums in (D.4).If 1 € Ajj and 1 ¢ A/jo’ then,
as vj, |A’J.| = |A}|, there exists « € A/jo = A’j(J N{2,---,n}and j # jo such that
o € A;. That is, there exists j # j’ such that A; N A’j, N{2,---,n} # @, thus, the
integral 1 (A, A’) vanishes. Thus, we rewrite
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o Z > > DA a0

Jo= leAj, led!
Qjy 21 14j1=0;. 1<]<m ;0

= 14, 1=0j

AU A =1, n}

AjNA ;=0 1f/¢J’ A A if j#jo

m
=X 2 @
Jjo=1 leA
Qjp2114;1=0;, V1<]<m
AUy ={1,oe 1}
AjﬂA"-/zﬂ ifj;éj/
~ (D.6)
where, using the support and orthonormality properties of the functions ((pé,,,) 1<n>
one computes

- m -
._ Jo Jo J J
[(A):= (/AQjo‘] $0jnj, x,2) ¢Q_/O,n}O o, z)dz) 1_[1 /AQj $0;.n; (Z)wQ.iv”} (e
Jo = J
J#Jo
_ .. Jo Jo
- l_[ 8nj:nj (Agjo—l (ijO,njO ()C, Z)(ijo’”;o (ya Z)d2> .
Jo

J#Jo

(n—D'Qj,

#H(Ajj 1€Aj, V), |Ajl=0j} = T, 0!
1 0!

by (D.3) and (D.6), one computes

Qj
y(Ql?ﬁ(xv Y) Z / /Q/fl (pQ] l’l](‘x Z)(PQ n/ (y Z)dZ 1_[ an/:n

on Q>1 J#Jo
=
_ 1 2 a
=Yy @
n
j=1 njn’
Q>1

We now assume that di(Q, Q') = 2. Thus, there exist 1 < iy # jo < m such that
Qjy > 1.0} = Qi+ 1.0y = Q) + 1and Qi = Q} for k ¢ {io. jo}.

Consider the sums in (D.4). If 1 ¢ Aj (or 1 ¢ A;O), then as |A’].0| = Q’j0 =Qj,—1,
there exists « € Aj, = Ajy N{2,---,n}and i # jo such that o € A;. That is,
there exists j # j’ such that A; N A’j, N{2,---,n} # @, thus, the integral 1 (A, A")
vanishes. The reasoning is the same if 1 ¢ A;O. Moreover, if 1 € Aj, and 1 € A;O,



Interacting Electrons in a Random Medium 231

then, as in the derivation of (D.6), we see that / (A, A’) = 0 exceptif A; = A’j for
all j ¢ {ig, jo}. Therefore, if d; (Q, Q') = 2, we rewrite

6]

y Q n (xs y) m

oer - 3 S @@ g g
2 - : ’ :
Q) Josio=1 1eAj, Al ,=t1uA;,

W0#jo |A/l=0;, Vl<]<m 0
Qjo21 AjU--UA,=({1,- .n} Ajo=Aio\1}
AjNA =0 if j#)' A A if j&{io, jo}

(D.7)
For such (A;); and (A/j)j, one has (—1)8((Af))+5((A/‘)) = 1 and we compute

N Jo Jo
1A = [ o 0l 0 20l
Jo
i
[ TR CEY |
0

Jjétio. jo}
(D.8)
with the convention described in Remark 4.3.
The number of partitions coming up in (D.7) is given by

Z Z | = (n_Qj()_Qio_l)!Qio!Qjo!
l... ! ’

leAj, A§0={1}UAi0 0! Om!

|A;|=0;, V1< < ’_

A]L]_J Uzl4 _{1/ m A =Aj\{1}

AjNA /—ﬂlf];é], Al A if j&{io, jo}

Plugging this and (D.8) into (D.7), we obtain (4.5). This completes the proof of
Theorem 4.2.

D.2  Proof of the Two-Particle Density Matrix Reduction,
Theorem 4.4

Theorem 4.4 follows from a direct computation that we now perform. First, by the
bilinearity of formula (1.20), one has

2 n(n — 1) = e
yé,) E E aQaQ y(Q)n (D.9)
Q occ. Q' occ. o'
neN"™ 7/ cNm

where the trace class operator y(z) acts on L2([0, L]) A L2([0, L]) and has the
Q 7
kernel
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m
2 ’ "N oe— J ’
J/QQ/ LA /[0 L2 '/\1¢Qf’"-f (X230 2n)
) =

>, ¥, 23, ,zn)dz3 - - dzy. (D.10)

By (D.2), one has

v o . x v )
Ly,
A Aj A
Sono . X S A
[Ajl=0;, VI<j<m IA\ Q/ viji<m
A]U UA,={1,- n}A U UA/ ={1,-,n}
AjNA =R if j#] A, na’ _wlfj#,

(D.11)
where
m . -
I(A, A= Lo ((x el / dxz---dx,.
A=l [[lwg_,,,,_/(( Diea)Ogy  Oiea) | dxseedi
= =y, =y
xj=y;if j=3
(D.12)

To evaluate this last integral, we note that, for any pair of partitions (A ) ; and (A’J.) j
(as in the indices of the above sum), if there exists j # j’ such that A; N A’j, N
{3, -, n} # @, then the integral I (A, A’) vanishes.

Now, note that, if d;(Q, Q') > 4, then, for any pair of partitions (A j)j and
(A/j)j, there exists j # j’ such that A; N A/j, N{3,---,n} # @, thus, the integral
I(A, A’) above always vanishes and, summing this, one has

Yo =0 if 41(0.0)>4.
Q/f/

So we are left with the cases Q = Q', d|(Q, Q') =2 ordi(Q, Q') = 4.

Assume first Q = Q’. Consider the sums in (D.11). If {1,2} C A;, U A}, and
{1,2} ¢ A;OUA’j0 then, as v, |A/j| = |A}|, there exists « € (A;OUA/].O)D{?), <o, n}
and j ¢ {io, jo} such that @ € A;. That is, there exists j # j" such that A; N A’j, N
{3, ,n} # ¢, thus, the integral (A, A’) vanishes. Moreover, if {1, 2} C A}, and
{1, 2} ¢ A’ , then there exists « € A’ N{3,---,n}and j # josuchthata € A},
thus, the mtegral I1(A, A’) vanishes. Thus we rewrite
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2
Yo (6 X',y m
o e((A))+e((A")) ’
—— o = (=D ITI(A, A
CZ(Q) Xz Z Z ,
io.jo=1 {1,.2}JCAjjUAj, {1, Z}CA,OUA,O
|A/|=0, V1<]<m |A! 1=0;
AIU UAm [1 ] ‘0
AjNA ;= (Jlf]#] \A \ Qj
A= A, 1f]¢{lo Jo}
m
= Z PO E D DD DI 0
{1, Z]CA 107 Jo IEA 2€A
Q,O/Z |Aj1=0;. v1<,<m Qig21 |Aj|= QJ,V1<j<m
Alu UAu=(1,--,n} Qjy= 1A1u UAp=(1,--,n}
AjﬁAjr:Vlifj;éj’ AjNA ,—Vhfﬁéj
(D.13)
where
J(A) =

io io
1_[ 8}'1/':}1//- AQiO_l (inO’niO (x’ Z)(inO’nl{O (y’ Z)dz

Jélio.jo} io

Jo /N Jo N
. X', , (v, 2)d
/Agjo_l 90, ¢ Z)(pQIO’”jo(y )dz

Jo

_ Jjo Jjo /
/ngoil (ijO’njO ()C, Z)(ijO’n/jO (y ) Z)dZ

Jo

. io AR ) ’ /
/AQ,-O—I TN C )(ino’"ﬁo (v, 2)dz

i

_ Jo ’ Jo
/AQJ'O_' $0jynio o Z)(pQJO’"}o (¥ 2)dz

Jo

. io N, 10 r oA
/;QiQ’I ©0iy.m (¥, 2 )(inovnl/'O ', 2dz

o
Jjo PN
+ ‘/A.Qjo—l (ijO’nj() (X, Z)(ijO’n./i() (y, Z)dZ
Jo
Agio—l P01 ¥ 2 )(in()’nt,‘O (v, 2)dz
io

and

1) = ] 85z, f 01y Py, X+ DG,y 0432z,
J#Jo Jo
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As

(n=2!0;(Qj, — 1D
HT:] Q]'

#{(Aj);; {1,2} C Ajy, V), |Ajl = Qj} =

and

(I’l - 2) Qlo Q]()

#H(Apj; 1€ Ay, 2€ Aj, Vj, |Ajl=Qj} = if o # Jo
H]:l Q]'
by (D.3) and (D.13), one obtains
2 2),d,d 2),d,
> afaly s = v 4y (D.14)
0 occ. o.n
neN"
n'eN™
where y ¢ and y,{?"*** are defined in Theorem 4.4.

Let us now assume d;(Q, Q) = 2. Thus, there exists 1 < iy # jo < m such that
Qjy 21,0} = Qi +1,0Qj,= Q) + 1and Qx = @ fork & {io, jo}.

Consider now the sums in (D. 11) If {1, 2} N Aj, = @, then as |A’ | = QJ0 =
Qj,— 1, thereexistsa € Ajy = AjyN{3,--- ,n}andi # jo such thatoz € Al

Thus, the integral /(A, A”) vanishes. If Aj; = {1} U B (resp. Aj, = {2} U B)
with B C {3, -, n}, either A’J.O = B (and {1,2} C A;O) or the integral 1(A, A”)
vanishes. Finally, if A, = {1,2} U B with B C {3, --- , n}, then A/jo ={1}UBor
={2}UBorI(A, A’) = 0. The same holds true for A j, replaced with A;O.
Therefore, using the definition of £((A)), if d1(Q, Q') = 2, we rewrite

(3]

an(xv y)
L = 3 TG0, jo) — Zalio. o) + Y Ssio. jo) — alio. jo)
2(Q) oy L
07 Jo 1070
Qjy=2 Qig=1
(D.15)
where
1o, Jjo) = > Yo A4, (D.16)
{1.2)CAj, Al ={1)UA;,
|Ajl=0 Vl<]<m 0
AQU-- u/x =(1,~ Ajp=Aio\1}

Aj ﬂA/—ﬂlfjgé]/ A A if j¢{io. jo}
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a(io, Jo) = > Y. 1A A, (D.17)
{1.,2}CAj, A} =(2JUA),
|Aj|= Q,V1<]<m ,_
A1U U/jtm_{l Ajp=Aio\2)
AjNA ;= Q)n‘ﬁej’ Al A if j¢{io. jo}
3(io. jo) == > > 1AA), (D.18)
{1,2}CAI’.0 A,-O:A;O\{l}

[Ajl=0j, VISjsm A _A’jou{l}

AlU UAm—{l n} 7 oy L.
AjnA it g A AT I Elio-Jo)

Talo.jo) = ) DD (WD (D.19)
{1.2)cA] Aig=A; \(2)
IAj|=Qj,V1<j<m Aj _A/ U2}
AUl 1) i et o)

AjNA ;=0 lfﬁs 2

and

» for the summands in X1 (ig, jo):

N o Jo / Jo /
I(A.A) = /;QJ‘()f2 ¢Q.i0’".i0 (x, x, Z)('OQJ‘O—l,n;.0 O, 2)dz

Jo

i
/Agio 901 iy @ )‘/’Q +1f .2z ] O j=n
io J¢lio. jo}

e for the summands in X5 (ig, jo):

"N — Jo / Jjo
I(A,A)—/Agjo_z 90 miy XX ,z)thjO,l‘,,_/iO(y,z)dz

Jo

io
/AQ,,O 00y @ )wQ g, o d? ] S j=n,
io Jéio.jo}

e for the summands in X3(ig, jo):

N _ Jo ’ Jo
I(A,A)) = /AQ/o*I 2 (x ’Z)¢Qj0_l’n}0 (2)dz

Jo

i !
\/AQio_l (pQOi()’nio (x’ < )wQ +1, n (y y Z/)dz l_[ 8”/_nj
io Jélio, jo}
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e for the summands in X4 (ig, jo):

no_ Jo Jo
UAA%—A%NM&MMQJW%er@M

Jjo

1
/AQiO‘l goQoiole o, Z)(’OQ +Ln, (v, ¥’ 2)d?! l_[ 8"1—"
io Jé€lio, jo}

with the convention described in Remark 4.1.
The number of partitions coming up in (D.16), (D.17), (D.18), and (D.19) is the
same: indeed, it suffices to invert the roles of 1 and 2 and ip and jy. We compute

3> 3 L= 1= Q) = Qiy = 10410
I O] :

{1.2)cAj, Al =(1)UAy, Q1!+ Om!

|Ajl= Q,V1<]<m /_

AU OAp=1.- Ajp=Aio\1}

AjNA /—ﬂlf];é], Al A if j¢#{io. jo}

Hence, we get that

(n—1 - —
=Y ey =Y % > Zfﬁ@%

0, Q' occ. Q' i#j ieNm-2 Q occ. njn'y 21 i
41(0,0)=2 0,>1 pawie n
n, i eN" Q" Q,’(:Qk if ke{i, j} !
Qi=0i+1
0/=0;-1
(D.20)
where y > is defined in (4.19).
1
ni,nj]
nl.n';

J

Let us now assume d1(Q, Q') = 4. Thus,
(a) either there exist 1 < iy # jo < m such that Qj, > 2, Q;O = Qi + 2,
Qj, = Q/jo +2and Q = Q) fork ¢ {io, jo}.
In this case, either A j, = {1, 2}UA’jO and A;.O = {1, 2}UA;, with A;,, A/
{3,---,n}or I(A, A") = 0 vanishes. Thus,

2
V(Q)n (x, y)

L= = S D

2
c*(Q) {1.2)cAj, Al =(1,2)U4;,

A= QJ,V]<]<m AL A \(12
A.u UAp={1,,n} ~J0 io\1:2)
AjNA=if j#£]' A=A; if jélio. jo}

(D.21)
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(b)

and

A Jo / Jo
I(AA) = /AQ.io*Z 9000 (x,x ’Z)(pro—z’"}o (z)dz

Jjo

io AR
/AQr‘o ©0ig.niy @ )(p igt2.1, .y, 2hd! 1_[ 8"1_”1
io J¢lio, jo}

Hence, taking (4.20) into account, we get

n(n — 1) Q/ )
5 X X aravgs
Q, Q' occ. neNm o'
Ji#j, ;22 ' eN™
0"t 0} =0k if ke{i, j}

0;=0;+2
0)=0;-2
2),4,2
ZZ Z Z C2(Q l ‘]) Z anl_] n’ yél)Qj
i#] ieNm—2 80§02~ nj.n;21 it
j = LT nl n'.
0 04=01 ifkeli.j) oot ’
0;=0i+2
0/=0;-2
(D.22)
as
3 )3 1_(n—Qj—Qi—2)!Qi!Qj!_ 2C(Q.4, )
= = o — 2
{1.2)cA, AI’.={1,2}UAi 1t Om! nin=1DeQ)
|A|=01, V1<l<m =A;j\{1,2}
AU-UAp=(1,-

AINAy =0 1fl;£l’ AI_AI if j&i, j}

or there exist 1 < i, jo, ko < m distinct such that Q , > 2, Q’/.O =Q0j, — 2,
Qip = 0}, + 1, Ok, = @y, + 1, and Ok = Q; for k & {io, jo. ko}-

In this case, either A j, = {1, 2}UA’jO and ((A;O = {1}JUA;, and A;{O = {2}UAg)
or (A}, = {2} U A, and A} = {1} U Ag,) ) with Ajy, A}, A} C {3, .n}or
I(A, A") = 0 vanishes. Thus,
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2
Yo ()

Ql,ﬁ,
c2(Q)
= > > I1(A, A — > I1(A, A)
{1.2)cAj, Aj =(1)UA;, A =(2)UA;,
1Aj1=0;. VI<j<m O A=
Alb.-.ufxmz{l,m,n} Ako_{Z}UAkO Ay =111UAg
AjNA =0 if j#] A=A \1,2} A _Afo\ 1.2}

Aj A_ it j&lio,jo.ko} A A_ if j&{io. jo.ko}
(D.23)

and, if A;O = {1} U A;, and A;{O = {2} U A, one has

/ —_—
I(A,A)—/AQIO,Z 90Q]O ny (0 Z)so 2~"’,~0(Z)dz

Jo

io /
ig

" 1
/ 0y S W1, 0 TT b
J#tio. jo.ko}

and, if A;O = {2} U A;, and A}CO = {1} U Ag,, one has

/ —_—
I(AA) = ‘/AQ/OJ (pQJO (x, x Z)(ﬂ 2’,1;0 (z)dz

Jo

ko N0y 2hde
/AQiO (inO,n,o( )(pQ 1, n ', 2)dz
io

io 7 Y
/AQko (kao*”k & )(ka +1, n/ (v, 2")dz H 8"-/:".//'
ko J€lio. jo.ko}

For iy, jo, ko distinct, one has
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(I’l - Qj() - Qio - Qko _2)'Q10'Qjo'Qko'

Z Z I= 01! On!

{1.2}CAj, A’ ={1}U4;,
1A;1=0;, Vl<]<m A, ,=(21UAy
A1U UAn={1,

AjNA ;=0 1f];é] A' _Ajo\{lsz}

A’]-:A_,' if jlio. jo.ko}
nn—1)c(Q)>?

Inverting the roles of 1 and 2 we see that the number of partitions coming up in
the second sum in (D.23) is the same. Thus, taking (4.20) into account, we get

n(n —1) 0 0 (2
2 Z Z dy dg n an
0, 0’ occ. neN” o'
3i, j,k distinct n'eN"
0;=>2
0" Q=0 ifI¢fi, j.k}
0=0;-2

0i=0i+1, 0;=0r+1

= P Q Q’ (2).4,3
=2 X X C3(Qij k) ), ay, G V6,000,
ni,nj,ngzl nz njvnk

i,j.k fieNm=3  Q occ.
distinct 0;22 i’ np =1 n n A
Q' Q=0 if Igi.j.k} t
0,=0;-2
0i=0i+1, 0;=0x+1
(D.24)

(c) or there exist 1 < ip, jo, ko < m distinct such that Q;, > 1, Qy, = 1, Q/j0 =
Q) +2,Qiy = Q) — 1, Ok, = O}, — L.and O = Q for k ¢ {io, jo. ko}-
We see that we are back to case (b) if we invert the roles of Q and Q’. Thus,

we get

nn—1 3 Y a2a®y 2,

2 0, Q' occ. neN™ o'
3i, j,k distinct ' eN™
0i=1, Or21
Q" Q=0 if I¢{i, ]k}
0/=0Q;+2

0i=0i-1, ;=01

Y Y % 0. j kY aan]k“nT oronor

i,j.k fieNm=3 Q occ. ni,n]-,nk;l ﬂ, n] ng
distinct Qi?lv Qk>l n’.,n’.,n;(>] n n Ilk
Q'+ Q=0 if I¢{i.j.k} t
0)=0;+2

0/=0i—1, 0;=0x—1
(D.25)
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(d) or there exist 1 < io, jo, ko, lo < m distinct such that Q;, > 1, Q) > 1,
Q;O = Qfof L, Qj, = Q/jo_ L, Q}CO =0+ 0= Q;O—i—land Ok = Q)
for k & {io. jo. ko, lo}.

Then, either I(A, A’) =0 or
(i) either Aj, = {1} UA] and Aj, = {2} U A’].O and A] , A’,.0 c{3,---,n},
(i) or A;, = {2} U Ago and Aj, = {1} U A’/.O and A;O, A/jo c{3,---,n}
Moreover, in each of the cases (i) and (ii), either I (A, A") = 0 or
(i) either A’0 = {1} U Ay, and A;O = {2} U A;, and Ag,, A, C {3, -+, n},
(ii) or A’O = {2} U Ay, and A;O = {1} U Ay, and Ay, Ay C {3, . n}.

In the 4 cases when (A, A’) does not vanish, one computes

e I(A,A) =a(x,x’,y,y)in case (i.i),
e I(A,A) =a(x/,x,y,y)in case (iii),
o I(A,A) =a(x,x',y,y')in case (iii),
e I(A,A) =a(x/,x,y,y)in case (iiii),
where

’ A i i J / J
alx, X', y,y) = /A_Ql.,l in,ni(x,z)inan;(Z)dZ/A‘Qj_l 90,.n;* ,z)(per’n,/(z)dz
1 J “
x o e (DF (5. 0dz | o @l (¢! (/. 2)dz
Aka OQp:nk O+1,mp " AJQ; Qr.ny Qr+1,np ’

Hence, if d1(Q, Q') = 4, we obtain

2
V(Q)ﬁ ()

o
2(Q)

= 3 > I(A,A) - > (A, A

leAy). 2€Aj, A;{O=[1}UAkO, A;0={2}UA,0 A;€0={2)UAkO, A;O ={1)u4y,
[A1=0j, VISTSm [ ar_ 40 \(1), A%, =4, \(2 AL =AM} A=A \[2
AU--UAp=(1,- .0} | 10, ’0\( } o’ io\2) o ’0\{ } o’ i\
AjNA =0t j#] A=A; if j¢lio, jo.ko.lo} A=A if j¢lio. jo-kolo}

- 3 3 1A, A)) - > 1(A, A)

A ZIE/ZOY \lffﬁj-% Ao =(1VAKy. Ay =(21U4), Ay =IAkg Ajp =104y
JIEL VSIS Al —A; \[2), A=A \{1 Al =A; \[2}, A, =A;\(1
ApU-UAm=(1,--.n) | "0 ’0\{ } o’ io M) fo ‘0\{ } Jo” io MU
AjNA y=0if j#j’ AG=Aj if j¢lio, jo-ko.lo} A=A if j¢lio. jo.ko.lo}

(D.26)
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For iy, jo, ko, lo distinct, the number of partitions coming up in the first sum
in (D.26) is given by

2 2. !
leAig, 2€Aj,  Af =(1}UAL,. 4] ={2)UA),
U8 SIS A= AnMIl A =Ai\2
Ay ={1 . 4G =4,
flljﬂAj/:@ if j£j  Aj=Ajif jdlio.jo.ko.lo}
_ (n— Q/() - Qi() - Qko - Ql() - 2)'Ql()‘Qj()‘Qk0‘Ql()‘
01l Q!
_ 2C4(Q, o, Jjo, ko, lo)
n(n —1)c(Q)?

Inverting the roles of i, jo, ko, lo, we see that the number of partitions involved
is the same in the three remaining sums of (D.26).
Thus, taking (4.20) into account, we get

nn—1) 0T
2 Z Z A 4w Y onm
0, Q' occ. neN" o'
3i, j,k,l distinct n'eN™
0i=1, 0j>1

Q' 0,=0, if pgli.j.k.1)
0/=0;-1. 0'/=0;~1
0,=0i+1. 0j=0+1

= Z Z Z C4(Q’ 2 j’ k)z aﬁQi,j.k,lal%_,ij.,yé%)vg’j“: Ok, 01"

i,j.k.leNm—4  Q occ. ni,nj,ng,n 21 A R
distinct ) /Q’?]’.Q’?]. ‘ n;’n/j’n;ﬁn;>1 n, g n;
Q' 0,=0,if p&{i.j.k.l}
0;=0i-1. 0j=0;-1

0, =0i+1, 0;=0;+1
(D.27)

Plugging this (D.22) and (D.20) into (D.9), we obtain (4.9). This completes the
proof of Theorem 4.4.
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This is a survey of several notions of entropy related to a compact manifold of
negative curvature and of some relations between them. Namely, let (M, g) be a C*°
compact boundaryless Riemannian connected manifold with negative curvature.
After recalling the basic definitions, we will define and state the first properties
of

(1) the volume entropy V,

(2) the dynamical entropies of the geodesic flow, in particular the entropy H of the
Liouville measure and the topological entropy (which coincides with V),

(3) the stochastic entropy %, of a family of (biased) diffusions related to the stable
foliation of the geodesic flow,

(4) the relative dynamical entropy of natural stochastic flows representing the
(biased) diffusions.

Most of the material in this survey are not new, some are classical, and we
apologize in advance for any inaccuracy in the attributions. New observations are
Theorems 2.5 and 4.9, but the main goal of this survey is to present together related
notions that are spread out in the literature. In particular, we are interested in the
different so-called rigidity results and problems that (aim to) characterize locally
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symmetric spaces among negatively curved manifolds by equalities in general
entropy inequalities.

These notes grew out from lectures delivered by the second author in the
workshop Probabilistic methods in negative curvature in ICTS, Bengaluru, India,
and we thank Riddhipratim Basu, Anish Ghosh, and Mahan Mj for giving us this
opportunity. We also thank Nalini Anantharaman, Ashkan Nikeghbali for organizing
the 2nd Strasbourg/Zurich Meeting on Frontiers in Analysis and Probability and
Michail Rassias for allowing us to publish these notes that have only a loose
connection with the talk of the first author there.

1 Local Symmetry and Volume Growth

Let (M, g) be a C* compact boundaryless connected d-dimensional Riemannian
manifold and for u, v vector fields on M we denote V, v the covariant derivative of
v in the direction of u. Given u, v € T M, the curvature tensor R associates with a
vector w € T, M the vector R(u, v)w given by

R(M, U)w = Vuvvw - Vvvuw - V[u,v]U)-

The space (M, g) is called locally symmetric if VR = 0.

Consider the case (M, g) has negative sectional curvature; i.e., for all non-

. ~ . < R(u,v)v,u >
colinear u, v € Ty M, x € M, the sectional curvature K (u, v) := W
is negative. Simply connected locally symmetric spaces of negative sectional
curvature are non- compact They have been classified and are one of the hyperbolic
spaces Hlp, Hz,, Hi; H©, respectively of dimension respectively n,2n, 4n, 16.
Hyperbolic spaces are obtained as quotients of semisimple Lie groups of real rank
one (respectively SO (n, 1), SU (n, 1), Sp(n, 1)