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Preface

This volume presents papers devoted to a broad spectrum of areas of Mathematical
Analysis and Probability Theory, in the spirit of the topics treated in the so-called
Strasbourg–Zürich Meetings. These meetings have been organized twice a year
since 2015, taking place once in Zürich and once in Strasbourg each year, and
constitute a place of vibrant mathematical communication that gathers experts from
all over the world.

Topics treated within the scope of this volume include the study of monochro-
matic random waves defined for general Riemannian manifolds, notions of entropy
related to a compact manifold of negative curvature, interacting electrons in a
random background, lp-cohomology (in degree one) of graph and its connections
with other topics, limit operators for circular ensembles, polyharmonic functions
for finite graphs and Markov chains, the ETH approach to quantum mechanics, two-
dimensional quantum Yang–Mills theory, Gibbs measures of nonlinear Schrödinger
equations, interfaces in spectral asymptotics, and nodal sets.

The papers published in this volume have been contributed by experts from the
international community, who have presented the state-of-the-art research in the
corresponding problems treated. The effort has been made for the present volume
to be a valuable source for both graduate students and research mathematicians
working in analysis, probability as well as their interconnections and applications.

We express our warmest thanks to all the contributing authors of this volume,
who have participated in this collective effort. Last but not least, we would like to
extend our appreciation to the Springer staff for their valuable help throughout the
publication process of this work.

Strasbourg, France Nalini Anantharaman

Zürich, Switzerland Ashkan Nikeghbali

Zürich, Switzerland Michael Th. Rassias
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Monochromatic Random Waves for
General Riemannian Manifolds

Yaiza Canzani

1 Introduction

This is a survey article on the recent developments on monochromatic random waves
for general Riemannian manifolds obtained in [7–10, 30]. Let (M, g) be a compact,
smooth, Riemannian manifold without boundary of dimension n ≥ 2, and write
�g for the corresponding positive definite Laplace–Beltrami operator. Consider an
orthonormal basis {ϕλj

}∞
j=1

of L2(M, g) consisting of real-valued eigenfunctions

�gϕλj
= λ2

jϕλj
,

with eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ · · · ↗ ∞, normalized so that ‖ϕλj
‖
L2 = 1.

Laplace eigenfunctions have been a common object of study for the mathematical
physics community since they encode how heat and waves propagate across M .
From a quantum mechanics point of view, |ϕλj

(x)|2 is the probability density for

finding a quantum particle of energy λ2
j at the point x. It is therefore a natural

problem to try to understand how ϕλj
behaves. For example, one would like to

understand how many minimums and maximums ϕλj
has, as they are the most

likely places for the quantum particles to be found at. See Figure 1. Similarly,
understanding the geometry of the zero set of ϕλj

would yield information on the
structure of the least likely places for the quantum particles. See Figure 2.

However, it is often the case that studying such questions for ϕλj
defined on a

general manifold is quite hard, as eigenfunctions cannot be computed explicitly.
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2 Y. Canzani

Fig. 1 Zeros and critical points for an eigenfunction on a torus. The function takes positive values
on the shaded black areas, and negative values on the white areas. The maximums for the function
are attained at the red points, while the minimums occur at the blue points. This picture was created
by E. Vouga

Fig. 2 Nodal domains of a
monochromatic random wave
on the round sphere. Picture
created by D. Beliaev

Even more so, for high energies, numerical methods cannot approximate the
eigenfunctions in an efficient way that would keep track of features such as the
structure of their zero set. It is then natural to randomize the problem and to study
how the eigenfunctions behave on average.

It is then natural to work with monochromatic random waves of frequency λ.
These are random fields on M defined by

φλ := 1
√

dimHη,λ

∑

λj∈[λ,λ+η(λ)]
ajϕλj

, (1)

where the coefficients aj ∼ N(0, 1) are real valued, i.i.d, standard Gaussian random
variables, η = ηλ = η(λ) is a non-negative function satisfying η(λ) = o(λ) as
λ → ∞, and

Hη,λ :=
⊕

λj∈[λ,λ+ηλ]
ker(�g − λ2

j Id).

We write



Monochromatic Random Waves for General Riemannian Manifolds 3

φλ ∈ RWλ(M, g, η)

for short. The ensembles φλ are Gaussian models for eigenfunctions of the Laplacian
with eigenvalue approximately equal to λ2 on a compact Riemannian manifold
(M, g). In the setting of a general smooth manifold, the ensembles RWλ were first
defined by Zelditch in [36]. Zelditch was inspired in large part by the influential
work of Berry [3], which proposes that random planar waves on Euclidean space
and flat tori are good semiclassical models for high frequency eigenfunctions in
quantum systems whose classical dynamics are chaotic. As we will see in Section 2,
when properly scaled, the waves φλ ∈ RWλ(M, g, η) behave like random planar
waves. Random planar waves are Laplace eigenfunctions with eigenvalue 1, and
since their frequency is fixed to be 1 they are said to be monochromatic. The fact
that the scaled φλ behave like random planar waves as λ → ∞ is the reason why
waves in RWλ(M, g, η) are said to be monochromatic.

On round spheres and flat tori the Laplace eigenvalues occur with large multi-
plicity. Indeed, dimH0,λ grows like λn−1 when λ is an eigenvalue. Therefore, in
these cases, one typically takes η ≡ 0 so that φλ ∈ RWλ(M, g, 0) is an exact
eigenfunction and λ ∈ {λj }. However, for a generic metric on any smooth compact
manifold M , the eigenvalues λ2

j are simple. It is then natural to take η so that
dimHη,λ has the same rate of growth in powers of λ as the dimension of the
eigenspaces for a round sphere. In particular, it is known [7] that if (M, g) has
at least one non self-focal point (that is, there exists x ∈ M so that |Lx,x | = 0,
see (11)), then for every c > 0 there exists C > 0 such that dimHc,λ grows like
Cλn−1 as λ → ∞. Since the existence of a non self-focal point is a very weak
condition, it is customary to work with random waves in RWλ(M, g, c) for some
c > 0.

This survey article focuses on the results of [7–10, 30]. The results in [7, 9]
were the first ones to allow for the treatment of monochromatic random waves
to take place on general manifolds by establishing that, when properly rescaled,
the waves have a universal behavior. Prior to these results, monochromatic random
waves had only been studied for the torus or the sphere. The article [8] is the first
one in the literature pertaining statistics of the size of zero set and of the numbers of
critical points for monochromatic random waves on general Riemannian manifolds.
The results in [10, 30] deal with the study of the diffeomorphism types of the
components of the zero sets of the monochromatic random waves, and of the nesting
configurations of the components. These results build on the ground breaking work
of Nazarov–Sodin [31].

In this article we discuss the following aspects of φλ ∈ RWλ(M, g, η).

• Section 2: Universal behavior of φλ.
• Section 3: Number of critical points and size of the zero set of φλ.
• Section 4: Structure of the zero set of φλ.



4 Y. Canzani

The literature about random waves is extensive and rapidly evolving. This survey
by no means attempts to give an overall account of every known result. There are
numerous works directly related to the topics of this survey, including [4–6, 11, 14–
16, 19–22, 25–29, 31, 33, 34].

2 Universal Behavior of φλ

By the Kolmogorov Consistency Theorem, the law of φλ ∈ RWλ(M, g, η), which
is a centered smooth Gaussian field, is completely characterized by its covariance
kernel

�η,λ(x, y) := Cov (φλ(x), φλ(y)) = 1

dimHη,λ

∑

λj∈[λ,λ+ηλ]
ϕλj

(x)ϕλj
(y),

where x, y ∈ M . The function �η,λ(x, y) is the Schwartz kernel for the orthogonal
projection operator �η,λ : L2(M, g)→Hη,λ, normalized to have unit trace. The
study of local quantities, such as the size of the zero set of φλ, or the number
of critical points of φλ, hinges on understanding the statistics of φλ, as λ→∞,
restricted to “wavelength balls” of radius ≈ λ−1 around a fixed point x ∈ M. After
rescaling by 1/λ, the function φλ has frequency approximately equal to 1 on such
balls in the sense that it solves the approximate local eigenvalue equation

�
TxM

φλ(x + u
λ
) ≈ φλ(x + u

λ
), (2)

where �
TxM

denotes the flat Laplacian on the tangent space at x, TxM . One could
therefore expect, after the scaling, for the Gaussian random wave u �→ φλ(x + u

λ
)

to behave like a Gaussian random wave φ∞ on R
n ∼= TxM satisfying

�
Rn φ∞ = φ∞.

The latter is called a random planar wave, and we discuss them in Section 2.1.
Moreover, we shall see in Section 2.2, that for a generic Riemannian metric on M,

the rescaled covariance kernel �η,λ of φλ ∈ RWλ(M, g, η) converges in the C∞
topology to that of a random planar wave φ∞ on R

n ∼= TxM .

2.1 Random Planar Waves

Let σ
Sn−1 be the Haar measure on the round sphere Sn−1, normalized so that

σ
Sn−1 (S

n−1) = 1. Using that the transformation ξ �→ −ξ preserves Sn−1, choose a

real-valued orthonormal basis {ψj }∞j=1 of L2(Sn−1, σ
Sn−1 ) satisfying

ψj (−ξ) = (−1)εj ψj (ξ), εj ∈ {0, 1}. (3)
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A random planar wave is defined to be the random real-valued function φ∞ on R
n

given by

φ∞(u) =
∞∑

j=1

bj iηj ψ̂j (u), (4)

where

ψ̂j (u) =
∫

Rn

ψj (ξ)e
−i〈u,ξ 〉dσ

Sn−1 (ξ), (5)

and the bj ’s are i.i.d, real valued, standard Gaussian random variables. We write

φ∞ ∈ RW1(R
n, g

Rn ),

for short, where g
Rn is the Euclidean metric. We note that the fields in RW1(R

n, g
Rn )

do not depend on the choice of the orthonormal basis {ψj }. In addition, since the
Euclidean Laplacian is �gRn = −∑n

k=1 ∂2
uk

, and �gRn e
−i〈u,ξ 〉 = e−i〈u,ξ 〉∑n

k=1 ξ2
k ,

it is immediate that

�gRn φ∞ = φ∞.

As explained in the introduction, random planar waves are often called monochro-
matic random waves because their frequency (the square root of their eigenvalue) is
equal to 1.

Next, note that the distributional identity
∑∞

j=1 φj (ξ)φj (η) = δ(ξ − η) on Sn−1

together with (3) lead to the explicit expression for the covariance function:

�∞(u, v) := Cov(φ∞(u), φ∞(v)) =
∫

Rn

ei〈u−v,ξ 〉dσ
Sn−1 (ξ), (6)

where u, v ∈ R
n. From (4) it follows that almost all φ∞’s are analytic in u [1]. It is

also known that

�∞(u, v) = 1

(2π)
n
2

Jν(|u− v|)
|u− v|ν , (7)

where Jν is the Bessel function of index ν := n−2
2 .

There is a natural choice of a basis for L2(Sn−1, dσSn−1) given by spherical

harmonics. Let {Y �
m}d�,nm=1 be a real-valued basis for the space of spherical harmonics

E�(Sn−1) of eigenvalue �(� + n − 2), where d�,n = dim E�(Sn−1). In [10,
Corollary 2.2] we prove that the monochromatic Gaussian ensembles φ∞’s take
the form
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φ∞(u) = (2π)
n
2

∞∑

�=0

d�,n∑

m=1

b�,m Y �
m

(
u

|u|
)

J�+ν(|u|)
|u|ν ,

where the b�,m’s are i.i.d standard Gaussian variables.

2.2 Points of Isotropic Scaling

The discussion around (2) shows that it is natural to study φλ by fixing x ∈ M and
considering the rescaled pullback of φλ to the tangent space TxM. We denote this
pullback by

φx
λ(u) := φλ

(
expx

(u
λ

))
, (8)

where expx : TxM → M is the exponential map. The dilated functions φx
λ are

centered Gaussian fields on TxM, and we denote their scaled covariance kernel by

�x
η,λ(u, v) := Cov(φx

λ(u), φ
x
λ(v)) = �η,λ

(
expx

(u
λ

)
, expx

(v
λ

))
.

When x is a point of isotropic scaling (see Definition 1 below), we shall see that the
kernels �x

η,λ converge to the covariance kernel of a random planar wave

φx∞ ∈ RW1(TxM, gx).

Here, gx denotes the constant coefficient metric obtained by freezing g at x. By
the Kolmogorov Extension Theorem, together with (6), the random wave φx∞ is
completely characterized by its two point correlation function kernel

�x∞(u, v) = (2π)
n
2

Jn−2
2

( ‖u− v‖gx
)

‖u− v‖
n−2

2
gx

=
∫

SxM

ei〈u−v,ξ 〉gx dσ
SxM

(ξ). (9)

Here Jν denotes a Bessel function of the first kind with index ν, SxM is the unit
sphere in TxM with respect to gx, and dσ

SxM
is the hypersurface measure on SxM .

Definition 1 A point x ∈ M is a point of isotropic scaling, denoted x ∈
IS(M, g, η), if for every non-negative function rλ satisfying rλ = o(λ) as λ→∞,
and all α, β ∈ N

n, we have

sup
u,v∈Brλ

∣∣∣∂α
u ∂

β
v

[
�x

η,λ(u, v)−�x∞(u, v)
] ∣∣∣ = oα,β(1) (10)
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as λ→∞, where the rate of convergence depends on α, β and Br denotes a ball of
radius r centered at 0 ∈ TxM. We also say that M is a manifold of isotropic scaling
if

M = IS(M, g, η)

and if the convergence in (10) is uniform over x ∈ M for each α, β ∈ N
n.

Verifying that x ∈ M belongs to IS(M, g, η) is difficult to do directly, except
on simple examples such as the flat torus. We briefly recall several settings in which
IS(M, g, η) is known to be large.

• Let Sn be the n-sphere equipped with the round metric g
Sn

. The Mehler–Heine
asymptotics [24] imply that

IS(Sn, g
Sn
, 0) = Sn,

when the limit in (10) is taken along the sequence of eigenvalues λj → ∞ for
the sphere. In this case, the φλ’s are known as random spherical harmonics.

• Let Tn be the n-dimensional torus equipped with the flat metric g
Tn . When n ≥ 5

we have that IS(Tn, g
Tn , 0) = T

n. For 2 ≤ n ≤ 4, the asymptotics (10) hold at
every x ∈ T

n but only for a density one subsequence of eigenvalues [13]. In this
case, the φλ’s are known as random trigonometric polynomials.

• The pointwise Weyl law [17] implies that if limλ→∞ ηλ = ∞, then
IS(M, g, η) = M .

In addition, it is very likely that if (M, g) has no conjugate points, then the
condition

lim
λ→∞ log(λ) · ηλ = ∞

implies IS(M, g, η) = M. This was proved by B. Keeler in [18], but with the
convergence in (10) only holding for α = β = 0. Note that if (M, g) has negative
sectional curvature everywhere, then it has no conjugate points and all points are
non self-focal. In contrast, there exist smooth perturbations of the round metric on
S2 for which IS(S2, g, 1) � S2 (see [23, 35]).

For x, y ∈ M let

Lx,y = {ξ ∈ SxM : ∃t > 0 s.t. expx(tξ) = y} (11)

be the set of directions that generate geodesic arcs from x to y. The set Lx,y

is contained in SxM and SxM is endowed with the Liouville measure. The
corresponding volume of Lx,y is denoted by |Lx,y |.

The main result of this section is the following, and it was proved in [7, 9].
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Theorem 1 Let (M, g) be a compact, smooth, Riemannian manifold, with no
boundary. Let η be a non-negative function with lim infλ→∞ ηλ > 0. Let x ∈ M

be so that
∣∣Lx,x

∣∣ = 0. Then,

x ∈ IS(M, g, η). (12)

By [32, Lem 6.1], the condition that
∣∣Lx,x

∣∣ = 0 for all x ∈ M is generic in the space
of Riemannian metrics on a fixed compact smooth manifold M.

Definition 1 gives that if x ∈ IS(M, g, η), then the scaling limit of waves
in RWλ(M, g, η) around x is universal in the sense that it depends only on the
dimension of M. In the language of Nazarov–Sodin [31] the asymptotics (10)
imply that if M = IS(M, g, η), then the ensembles RWλ(M, g, η) have translation
invariant local limits.

3 Number of Critical Points and Size of the Zero Set

Define the measures of integration over the zero set {φλ = 0} and the set of critical
points {dφλ = 0} by

Zλ(ψ) :=
∫

φ−1
λ (0)

ψ(x)dσ
Zλ

(x) and Critλ(ψ) :=
∑

dφλ(x)=0

ψ(x),

where ψ : M→R and σ
Zλ

is the (n− 1)-dimensional Hausdorff measure over
{φλ = 0}. This section is divided into two parts. In Section 3.1 we give asymptotics
for E [Zλ] and E [Critλ], and bounds for their variances. The results in Section 3.1
rely heavily on a careful analysis of what happens for the scaled random waves φx

λ .
The results for the localized waves are discussed in Section 3.2.

Previous results on the Hausdorff measure of the zero sets focus primarily on
exactly solvable examples. On round spheres, for instance, Bérard [2] proved (14)
(example (1) on p.3). Later, in the same setting, Neuheisel [25] and Wigman [33]
obtained upper bounds for the variance that are of polynomial order in λ. Further, on
S2, Wigman [34] found that the variance actually grows like λ−2 log λ as λ → ∞.
On flat tori T

n (for exact eigenfunctions) Rudnick and Wigman [29] computed
the expected value of the total Hausdorff measure of the zero set and gave an
upper bound of the form λ2(dim(H0,λ))

−1/2 on its variance. Subsequently, on T
2,

Krishnapur, Kurlberg, and Wigman [19] found that the variance is asymptotic to a
constant, while Marinucci, Peccati, Rossi, and Wigman proved that the size of the
zero set converges to a limiting distribution that is not Gaussian and depends on the
angular distribution of lattice points on circles [22].

The behavior of the number of critical points has been studied in detail on S2.
Nicolaescu [26] studied the expected value of the number of critical points, obtain-
ing (15). The variance was studied by Cammarota, Marinucci, and Wigman [6].
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They obtain a polynomial upper bound. This upper bound was later improved by
Cammarota and Wigman [5] who proved that the variance grows like λ2 log λ (as
opposed to our λ7/2 estimate) as λ → ∞. Finally, for smooth domain in R

2,

Nourdin–Peccati–Rossi [27] prove that both for real and complex random waves, the
Hausdorff measure of the nodal set is asymptotically normal in the high frequency
limit.

3.1 Global Statistics

The main result in this section gives asymptotics for the expected value, and esti-
mates for the variance, of the linear statistics of Zλ,Critλ that are valid for generic
Riemannian metrics on M. For the estimates about the means of Zλ(ψ),Critλ(ψ)

one needs to ask that (M, g) be a manifold of isotropic scaling (see Definition 1).
This is true for any manifold with negative curvature, or with no conjugate points.
The variance estimates are more delicate, so one needs to ask in addition that the
restrictions of φλ to small balls centered at different points become asymptotically
uncorrelated. This is the following definition.

Definition 2 The random waves φλ ∈ RWλ(M, g, η) are said to have short-range
correlations if for each ε > 0 and every α, β ∈ N

sup
{x,y: dg(x,y)≥λ−1+ε}

∣∣∣∇α
x∇β

y �η,λ(x, y)

∣∣∣ = oε(λ
α+β), (13)

as λ → ∞, where ∇x,∇y are covariant derivatives.

This condition is again generic in the space of Riemannian metrics on (M, g) and
is satisfied for example if for any pair of points x, y ∈ M the measure of geodesic
arcs joining them is zero. That is, if

∣∣Lx,y

∣∣ = 0 for all x, y ∈ M , then the random
waves in RWλ(M, g, η) have short-range correlations.

The condition that
∣∣Lx,y

∣∣ = 0 for all x, y ∈ M is known to happen on
manifolds of negative curvature, or more generally, with no conjugate points (see
[8, Section 1.5]). It is likely that a similar argument would show that

∣∣Lx,y

∣∣ = 0 for
all x, y ∈ M is also generic but have not checked the details. It is known, however,
that

∣∣Lx,y

∣∣ = 0 holds for all x, y ∈ M if (M, g) is negatively curved or, more
generally, has no conjugate points.

We are ready to state the main theorem of this section. This result was proved
in [8].

Theorem 2 Let (M, g) be a smooth, compact, Riemannian manifold of dimension
n ≥ 2 with no boundary. Let η = η(λ) be a non-negative function satisfying η(λ) =
o(λ) as λ → ∞. Let φλ ∈ RWλ(M, g, η) and suppose that M is a manifold of
isotropic scaling (Definition 1). Then, for any bounded measurable function ψ :
M→R,
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lim
λ→∞E

[
λ−1Zλ(ψ)

]
= 1√

πn

�
(

n+1
2

)

�
(
n
2

)
∫

M

ψ(x)dvg(x) (14)

and

lim
λ→∞E

[
λ−n Critλ(ψ)

] = Cn

∫

M

ψ(x)dvg(x), (15)

where Cn is a positive constant that depends only on n. Suppose further that φλ has
short-range correlations in the sense of (13). Then,

Var
[
λ−1Zλ(ψ)

]
= O(λ−

n−1
2 ) (16)

and

Var
[
λ−n Critλ(ψ)

] = O
(
λ−

n−1
2

)
, (17)

as λ→∞.

Theorem 2 is the first result with a non-trivial variance estimate for the Hausdorff
measure of the nodal set of random waves for a generic smooth Riemannian
manifold (for real analytic (M, g) a weaker estimate was given in [36, Cor. 2]).
A version of (14) was also stated, with a heuristic proof, in [36, Prop. 2.3] for both
Zoll and aperiodic manifolds.

We also note that the test function ψ in Theorem 2 can be replaced by a
function ψ(x) = ψ(x, φλ(x),D

2φλ(x), . . .) depending on the jets of φλ provided
ψ : Rn×C0(Rn,Rk)→R is bounded and continuous when C0(Rn,Rk) is equipped
with the topology of uniform convergence on compact sets. Hence, for example, we
could study the distribution of critical values by taking ψ(u, φλ) = 1{φx

λ≥α}(u), for
α ∈ R.

In addition, the proof of Theorem 2 actually shows that (14) holds as soon as
almost every point is a point of isotropic scaling. That is, it holds provided

volg(M\IS(M, g, η)) = 0,

(see Definition 1).
Furthermore, by the Borel–Cantelli Lemma, if n ≥ 4 and φj are independent

frequency j ∈ N random waves on (M, g), then (16) shows that the total nodal set
measure j−1Zj (ψ)− E

[
j−1Zj (ψ)

]
converges almost surely to 0.

Finally, when n = 2 we have C2 = E
[
Crit∞,1

] = 1
4π

√
6

where C2 is the
dimensional constant in (15), see (25).

Theorem 2 hinges on a careful study of the statistics of φλ when restricted to
“wavelength balls” of radius ≈ λ−1 around a fixed point x ∈ M of isotropic
scaling. The results that describe the behavior of Zλ or Critλ restricted to these
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shrinking balls are described in Sections 3.2.1 and 3.2.2, respectively. The results
are “glued” to obtain Theorem 2. Glueing variance estimates is a delicate matter. It
is instrumental to the proof that the waves have short-range correlations.

3.2 Local Statistics

In this section we discuss the behavior of the zero sets and of the critical points
for the scaled waves φx

λ . When x is a point of isotropic scaling the behavior of
the scaled random wave φx

λ converges to that of the random planar wave φx∞ ∈
RW1(TxM, gx). One can therefore prove much stronger results on statistics for φx

λ

than φλ.

3.2.1 Local Universality of Zeros

Consider the rescaled random wave φx
λ for x ∈ IS(M, g, η) and denote by Zx

λ its
Riemannian hypersurface (i.e. Hausdorff) measure:

Zx
λ(A) := σ

Zλ

((
φx
λ

)−1
(0) ∩ A

)
, ∀A ⊆ TxM measurable.

The main result concerns the restriction of Zx
λ to various balls Br of radius r

centered at 0 ∈ TxM. We set

Zx
λ,r :=

1Br · Zx
λ

vol(Br)
and Zx∞,r :=

1Br · Zx∞
vol(Br)

. (18)

We have denoted by 1Br the characteristic function of the ball Br and by Zx∞ the
hypersurface measure on (φx∞)−1(0) for φx∞ ∈ RW1(TxM, gx). Again, for various
measures μ, we write μ(ψ) for integration of a measurable function ψ against μ.

In particular,

Zx
λ,r (1) =

Hn−1
((

φx
λ

)−1
(0) ∩ Br

)

vol(Br)
.

The following result is proved in [8]. See Figure 3 for a depiction of the
statement.

Theorem 3 (Weak Convergence of Zero Set Measures) Let (M, g) be a smooth,
compact, Riemannian manifold of dimension n ≥ 2 with no boundary. Let η = η(λ)

be a non-negative function satisfying η(λ) = o(λ) as λ → ∞. Fix a non-negative
function rλ that satisfies rλ = o(λ) as λ→∞. Let φλ ∈ RWλ(M, g, η) and x ∈
IS(M, g, η). Suppose limλ→∞ rλ exists and equals r∞ ∈ (0,∞].
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Fig. 3 Depiction of the
universal behavior displayed
by monochromatic random
waves. The zero set measure
for the monochromatic
random wave on the sphere
(left) converges to the zero set
measure for the random
planar wave (right)

Case 1 (r∞ < ∞): The measures Zx
λ,rλ

converge to Zx∞,r∞ weakly in distribu-
tion. That is, for any bounded, measurable function ψ : TxM→R

Zx
λ,rλ

(ψ)
d−→ Zx∞,r∞(ψ) (19)

as λ → ∞, where
d−→ denotes convergence in distribution.

Case 2 (r∞ = ∞): We have the following convergence in probability to a con-
stant:

Zx
λ,rλ

(1)
p−→ 1√

πn

�
(

n+1
2

)

�
(
n
2

) , (20)

as λ→∞. In particular,

lim
λ→∞ Var

[
Zx

λ,rλ
(1)
] = 0. (21)

The function ψ in (19) can be allowed to depend on the jets Djφλ, j ≥ 1.
More precisely, ψ(u) can be replaced by ψ(u,W(u)), where W is a random
field so that u �→ (φx

λ(u),W(u)) is a continuous Gaussian field with values in
R

1+k and ψ : Rn×C0(Rn,Rk)→R is bounded and continuous when C0(Rn,Rk)

is equipped with the topology of uniform convergence on compact sets. Since
(φx

λ(u),Dφx
λ(u),D

2φx
λ(u), . . .) is a smooth Gaussian field, we may take W(u) =(

Djφλ(u), j ≥ 1
)
. Similarly, in (20) and (21), the function 1 = 1(u) can be

replaced by ψ(W(u)) where again ψ : C0(Rn,Rk)→R is bounded and continuous
in the topology of uniform convergence on compact sets. The only difference is
that (20) then reads

Zx
λ,rλ

(ψ)− E
[
Zx∞,rλ

(ψ)
] p−→ 0.

The relations (20) and (21) hold even if the balls Brλ in the definition of Zx
λ,rλ

are
replaced by any λ−dependent sets Aλ,rλ for which the diameter is bounded above
and below by constant times rλ, and whose volume tends to infinity when rλ→∞.
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The rates of convergence in (19)–(21) - even after the generalizations indicated
above- are uniform as x varies over a compact set S ⊂ IS(M, g, η) as long as the
convergence in (10) is uniform over S.

3.2.2 Local Universality of Critical Points

Let x ∈ M and for each r > 0 define the normalized counting measure

Critxλ,r :=
1

vol(Br)

∑

dφx
λ (u)=0
u∈Br

δu (22)

of critical points in a ball of radius r. We define Critx∞,r in the same way as Critxλ,r
but with φx

λ replaced by φx∞ ∈ RW1(TxM, gx), and continue to write μ(ψ) for the
pairing of a measure μ with a function ψ . For example,

Critxλ,r (1) =
#{u ∈ Br : dφx

λ(u) = 0}
vol(Br)

.

Theorem 4 Let (M, g) be a smooth, compact, Riemannian manifold of dimension
n ≥ 2 with no boundary. Let η = η(λ) be a non-negative function satisfying η(λ) =
o(λ) as λ → ∞. Fix a non-negative function rλ that satisfies rλ = o(λ) as λ→∞.
Let φλ ∈ RWλ(M, g, η) and x ∈ IS(M, g, η). Suppose that limλ→∞ rλ exists and
equals r∞ ∈ (0,∞].
Case 1. (r∞ < ∞): For k = 1, 2 and each bounded measurable function ψ :

TxM → R

lim
λ→∞E

[
Critxλ,rλ(ψ)k

]
= E

[
Critx∞,r∞(ψ)k

]
. (23)

Case 2. (r∞ = ∞): We have

lim
λ→∞ Var[Critxλ,rλ(1)] = E

[
Critx∞,1(1)

]
. (24)

This limit is the expected number of critical points in a ball of radius 1 for
frequency 1 random waves on R

n, which is independent of x.

The moments E
[
(Critx∞,r∞(ψ))k

]
are finite for k = 1, 2. In particular, if

dim(M) = 2, then for every x ∈ M

E
[
Critx∞,1(1)

] = 1

4π
√

6
. (25)
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The balls Brλ in (24) can be replaced by any λ−dependent sets Aλ,rλ for which the
diameter is bounded above and below by a constant times rλ and whose volume
tends to infinity with rλ.

Both ψ in (23) and the function 1 being integrated against Critxλ,rλ in (24) can be
replaced by a bounded continuous function of the jets of φλ, giving information for
instance about critical points filtered by critical value.

Also, the rates of convergence in (23) and (24) are uniform over x ∈ S ⊂
IS(M, g, η) if (10) is uniform over S.

On the n-dimensional flat torus, Nicolaescu [26] obtained several results related
to Theorem 4 in the r∞ < ∞ case.

4 Structure of the Zero Set

Let (M, g) be a Riemannian manifold, and let φ be an eigenfunction for the Laplace
operator. The zero set φ−1(0) = {x ∈ M : φ(x) = 0} decomposes into a collection
of connected components which we denote by C(φ). See Figure 4. Our interest is in
the diffeomorphism types of the components in C(φ). For generic φ the components
of C(φ) are smooth (n− 1)-dimensional manifolds. The connected components of
M\φ−1(0) are the nodal domains of φ and our interest is in their nesting properties,
again for generic φ.

The results presented in this section build on the ground breaking work of
Nazarov–Sodin [31]. They studied the number of nodal domains for monochromatic
random waves on manifolds with isotropic scaling. They proved that there exists a
positive constant C so that the mean number of nodal domains for φλ grows like
Cλn. The approach of [10, 30] to study the diffeomorphism types of the zero set
components is very similar in spirit to the work [31] as the rationale is that one is
counting components of the zero set with a given diffeomorphism type. A similar
argument is carried to deal with the nesting configurations.

The argument developed by Nazarov–Sodin hinges on the fact that most zero
set components lie within a ball of radius R/λ for R > 0 large enough. One can
therefore count the number of components of φx

λ within the ball B(0, R) ⊂ TxM .
The latter is done using the universal behavior of φx

λ guaranteed by the fact that M
is a manifold of isotropic scaling.

The works of Gayet–Welshinger [14–16] are also very related to the results
described in this section, only that they are not applicable to monochromatic random
waves.

4.1 Diffeomorphism Types

Let Dn−1 denote the (countable and discrete) set of diffeomorphism classes of
compact connected smooth (n − 1)-dimensional manifolds that can be embedded
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in R
n. The compact components c in C(φ) give rise to elements D(c) in Dn−1 (here

we are assuming that φ is generic with respect to a Gaussian measure so that φ−1(0)
is smooth).

Let φλ ∈ RW(M, g, η). The diffeomorphism types exhibited by the components
of φ−1

λ (0) are described by the probability measure μD(φλ)
on Dn−1 given by

μD(φλ)
:= 1

|C(φλ)|
∑

c∈C(φλ)

δ
D(c)

,

where δ
D

is a point mass at D ∈ Dn−1. The following is part of the main theorem in
[30, Theorem 1.1].

Theorem 5 There exists a probability measure μD supported on Dn−1 such that
the following holds. Let (M, g) be a smooth, compact, Riemannian manifold of
dimension n ≥ 2 with no boundary. Let η = η(λ) be a non-negative function
satisfying η(λ) = o(λ) as λ → ∞. Suppose that M is a manifold of isotropic
scaling. Then, for any given D ∈ Dn−1 and ε > 0,

lim
λ→∞P

(
φλ ∈ RWλ(M, g, η) : |μD(φλ)

(D)− μD (D)| > ε
)
= 0.

The theorem asserts that there exists a probability measure μD on Dn−1 to which
μD(φ) approaches as λ → ∞, for almost all φ. The probability measure μD is
universal in that it only depends on the dimension n of M .

For n ≥ 4, little is known about the space Dn−1. In particular, there is
no classification for the diffeomorphism types of (n − 1)-dimensional smooth

Fig. 4 Zero set of a random
planar wave in R

3. Picture
created by A. Barnett
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manifolds. This makes it difficult to study the support of μD . Remarkably, it is
possible to prove that the support of μD is all of Dn−1. This result is proved in [10].

Theorem 6 Every atom of Dn−1 is positively charged by μD . That is,

supp(μD ) = Dn−1.

Theorem 6 asserts that every diffeomorphism type that can occur will do so with
a positive probability for the universal distribution of topological types of random
monochromatic waves in [30].

The proof of Theorem 6 relies on the fact that for a manifold of isotropic scaling
the statistics of φx

λ converge to those of φx∞ for every x ∈ M . Indeed, the proof
reduces to establishing the following result.

Theorem 7 Given D ∈ Dn−1 there exists φ ∈ ker(�Rn − Id) and c ∈ C(φ) for
which D(c) = D.

Theorem 7 is of basic interest in the understanding of the possible shapes of
nodal sets and domains of eigenfunctions in R

n (it applies equally well to any
eigenfunction with eigenvalue λ2 > 0 instead of 1). To prove Theorem 7 one
applies Whitney’s approximation Theorem to realize c as an embedded real analytic
submanifold of Rn. Then, following some techniques in [12] one can find suitable
approximations of φ ∈ ker(�gRn − 1) and whose zero set contains a diffeomorphic
copy of c. The construction of φ hinges on the Lax–Malgrange Theorem and Thom’s
Isotopy Theorem.

The reduction from Theorem 7 to Theorem 6 is abstract and is based on the
“soft” techniques in [30, 31]. In particular, it offers us no lower bounds for these
probabilities. Developing such lower bounds is an interesting problem.

4.2 Nesting Configurations

Let φ be a Laplace eigenfunction for a Riemannian manifold (M, g). The connected
components of M\φ−1(0) are the nodal domains of φ and our interest is in their
nesting properties, again for generic φ. Let U be a coordinate patch for M . The
components of C(φ) that are contained in U are denoted by CU (φ). To each compact
c ∈ CU (φ) we associate a finite connected rooted tree as follows. By the Jordan–
Brouwer separation Theorem each component c ∈ C(φ) has an exterior and interior.
We choose the interior to be the end that is contained within U . The nodal domains
of φ, which are in the interior of c, are taken to be the vertices of a graph. Two
vertices share an edge if the respective nodal domains have a common boundary
component (unique if there is one). This gives a finite connected rooted tree denoted
T (c); the root being the domain adjacent to c (see Figure 5).

The reason for working in a coordinate patch U for M is that for general (M, g)

there is no global way to define a tree that describes the nesting configuration of the
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Fig. 5 This picture shows a
nodal domain configuration,
where positive nodal domains
are depicted in orange and
negative nodal domains are
green. The corresponding
rooted tree is shown

positive

negative

c

T (c)

zero set in all of M , for all c ∈ C(φ). The reason is that a zero set component may
not divide M into two different regions. It is important to note that in a coordinate
patch this is always the case. However, according to [31] almost all c’s localize to
small coordinate patches. This inconvenience is the reason why [10] is written for
M = Sn the round sphere. By the Jordan–Brouwer separation Theorem, on Sn every
component of the zero set separates Sn into two distinct components. This gives that
the nesting graph for the zero sets is a rooted tree well defined without the need for
a coordinate patch.

Let T be the collection (countable and discrete) of finite connected rooted trees.
The distribution of nested ends of nodal domains of φ that lie within U is described
by the measure μT (φ),U on T given by

μT (φ),U := 1

|CU (φ)|
∑

c∈CU (φ)

δ
T (φ)

,

where δ
T

is the point mass at T ∈ T .
The following is part of the main theorem in [30, Theorem 1.1]. Also, see [10,

Remark 2].

Theorem 8 There exists a probability measure μT supported on T such that
the following holds. Let (M, g) be a smooth, compact, Riemannian manifold of
dimension n ≥ 2 with no boundary. Let η = η(λ) be a non-negative function
satisfying η(λ) = o(λ) as λ → ∞. Suppose that M is a manifold of isotropic
scaling and let U be a coordinate patch for M . Then, for any given T ∈ T and
ε > 0,

lim
λ→∞P

(
φλ ∈ RWλ(M, g, η) : |μT (φ),U (T )− μT (T )| > ε

)
= 0.

Theorem in [30] asserts that there exists a probability measure μT on T to which
μT (φ),U approaches as λ → ∞, for almost all φ provided M is a manifold of
isotropic scaling.

The probability measure μT is universal in that it only depends on the dimension
n of M . The following result is part of theorem in [10] and deals with the support of
μT .
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sin(x) sin(y) sin(x) sin(y) + εh(x, y)

positive

negative

h( ) = −1h( ) = 1

Fig. 6 This picture shows how to perturb the zero set of ψ(x, y) = sin(x) sin(y) by adding h ∈
ker(�

Rn − I ) that we prescribe on the singularities of ψ that lie in its zero set so that the zero set
of φ = ψ + εh, for ε > 0 small, has the correct nesting configuration

Theorem 9 Every atom of T is positively charged by μT . That is,

supp(μT ) = T .

The proof of Theorem 9 hinges on the fact that any rooted tree can be realized by
elements of ker(�Rn − I ) as described by the following result.

Theorem 10 Given T ∈ T there exists φ ∈ ker(�Rn − Id) and c ∈ C(φ) for which
T (c) = T .

As far as Theorem 10, the case n = 2 is resolved in [30] using a deformation of
sin(πx) sin(πy) and a combinatorial chess board type argument. This is described
in Figure 6. In higher dimensions, for example n = 3, one proceeds by deforming

ψ(x, y, z) = sin(πx) sin(πy) sin(πz).

This ψ has enough complexity to produce all elements in T after deformation.
However, it is much more difficult to study than the 2-dimensional case. Unlike
sin(πx) sin(πy), the zero set ψ−1(0) has point and 1-dimensional edge singu-
larities. The analysis of its resolution under deformation requires a lot of care,
especially as far as engineering elements of T . The pay off as we noted is that it
is rich enough to prove Theorem 10.

Acknowledgments The author is very grateful to her collaborators B. Hanin and P. Sarnak. The
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A Brief Review of the “ET H -Approach
to Quantum Mechanics”

Jürg Fröhlich

1 Introduction—Comments on the Foundations of Quantum
Mechanics and Purpose of Paper

Let me start with a few general remarks: I consider it to be an intellectual
scandal that, nearly one hundred years after the discovery of matrix mechanics
by Heisenberg, Born, Jordan and Dirac, many or most professional physicists—
experimentalists and theorists alike— admit to being confused about the deeper
meaning of Quantum Mechanics (QM), or are trying to evade taking a clear
standpoint by resorting to agnosticism or to overly abstract formulations of QM

that often only add to the confusion. Attempts to replace QM by some alternative
deterministic theory, one that does not have a “measurement problem,” yet repro-
duces important predictions of QM , do not appear to have been very successful, so
far. Unfortunately, most physicists have prejudices preventing them from taking a
fresh, unbiased look at the subject, and discussions of the foundations of QM tend
to be surprisingly emotional. I feel it is time to change this situation!

My own interests in the foundations of Quantum Mechanics were aroused in
courses on QM taught by Klaus Hepp and Markus Fierz in the late sixties of the
past century, which I took as an undergraduate student. I suppose that most serious
students of Physics develop such interests during their first courses on QM . But I
felt that the subject had better remain a hobby until later in my career. Not least
because of the appearance of partly contradictory novel “interpretations of QM”,
all of which left me unsatisfied, (see, e.g., [1, 2], and [3] for a brief survey), my views
of the foundations of QM actually remained quite confused until a little more than
ten years ago (which did not prevent me from giving talks about the subject—some
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with modest impact—in numerous places). But when I was approaching mandatory
retirement I felt an urge to clarify my understanding of some of the subjects I had
to teach to my students for thirty years—thermodynamics, effective dynamics (in
particular Brownian motion), and, foremost, the foundations of QM; see [4–7] and
references given there, the last two papers having some relevance for the foundations
of QM .1 At the beginning of 2012, my interests in this subject became more serious,
and I pursued them in joint efforts with my last PhD student, Baptiste Schubnel.
Later, some further colleagues got interested in our efforts, including M. Ballesteros,
Ph. Blanchard, N. Crawford, J. Faupin, and M. Fraas, who collaborated with us in
changing configurations. At this point, I wish to thank my collaborators for their
support in this endeavor, as well as quite a few colleagues—too many to mention
all of them—who were willing to listen to me and discuss ideas on basic questions
concerning the foundations of QM with me. D. Dürr and S. Goldstein deserve my
thanks for the encouragement and understanding they have provided.

In this paper, I present a sketch of the “ETH -Approach to Quantum Mechanics”
[8–10]. The ETH -Approach is supposed to lay the foundations of a logically
coherent quantum theory of “events” [11] and of direct or projective measurements
of physical quantities (serving to record “events”) that does not require invoking
any “deos ex machina,” such as “observers”; (see also [2]). I have given quite a
few talks about this new approach. Technical details have been presented in a short
course taught at Les Diablerets, in January of 2017 [12], and in [13, 14]. Our work
has profited from ideas proposed by the late Rudolf Haag [11], from a paper of D.
Buchholz and the late J. E. Roberts [15], and from discussions with Buchholz. In
completing this paper I enjoyed receiving feedback from a very careful referee who
found many typos and pointed out various unclear statements. A form of the ETH -
Approach compatible with Einstein causality and Relativity Theory is sketched in
[16]. But a comprehensive review of our work has not been written, yet.

Wide-spread recent interest in foundational problems surrounding QM has been
triggered by problems in quantum information theory and by the 2012 Nobel Prize
in Physics awarded to S. Haroche [17] and D. Wineland. Their discoveries, as
well as results described in [18, 19], and references given there have influenced
some of our own work on the theory of indirect measurements in QM , which has
appeared in [20–22] and is briefly sketched at the end of this paper. The theory
of indirect (“non-demolition-” and “weak-”) measurements is quite well developed
and clear, assuming one understands what “events” and “direct measurements and
observations” are, specifically direct observations of “probes” used to indirectly
retrieve information on physical systems. The theory of “events” and of “direct
(projective) measurements” actually constitutes the deep and controversial part of
the foundations of QM , and it is a novel approach to this theory that I intend to
outline in this paper.

1I think it is more appropriate to speak of the “foundations of QM ,” rather than “interpretations
of QM .” We have to understand what QM tells us about Nature, what it means - once this is
accomplished, the correct interpretation of the theory will come almost automatically.
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2 Standard Formulation of Quantum Mechanics and Its
Shortcomings

In our courses on Quantum Mechanics, physical systems, S, are often described as
pairs, (H , U), of a Hilbert space, H , of pure state vectors and a propagator, U ,
consisting of unitary operators

(
U(t, t ′)

)
t,t ′∈R, acting on H seemingly describing

the time evolution of state vectors in H from time t ′ to time t . The state space
H of physically realistic systems tends to be infinite-dimensional (but separable).
Alas, all infinite-dimensional separable Hilbert spaces are isomorphic, and the data
invariantly encoded in the pair (H , U) do not tell us anything interesting about
the physics of S, beyond spectral properties of the operators U(t, t ′), (i.e., “energy
levels”); and they lead one to the mistaken impression that QM might be a linear
and deterministic theory—alas, one that is entirely inadequate to describe events
and the outcome of observations and measurements.

We must therefore clarify what should be added to the formalism of QM in order
to capture its fundamentally probabilistic nature and to arrive at a mathematical
structure that enables one to describe physical phenomena (“events”) in isolated
open systems S, without a need to appeal to the intervention of “observers” with
“free will”—as is done in the conventional “Copenhagen Interpretation of QM”—
or to assume that other “ghosts” not intrinsic to the theory come to our rescue.

Isolated open systems: An isolated system S is one that, for all practical
purposes, does not have any interactions with its complement, i.e., with the rest
of the Universe; meaning that, for periods of time much longer than the time of
monitoring it, interactions between the degrees of freedom of S and those of its
complement can be neglected in the description of the Heisenberg-picture time
evolution of operators. This does, however, not exclude that the state of S may
be entangled with the state of its complement. The special role played by isolated
systems in discussions of the foundations of QM stems from the fact that, only
for an isolated system, S, the time evolution in the Heisenberg picture of arbitrary
operators acting on H is given by conjugation with the unitary propagator, U , of
S (determined by its Hamiltonian). An isolated system S is called open if it can
emit modes to the outside world (the complement of S) that eventually cannot be
recorded, anymore, by any devices belonging to S, yet can be in a state entangled
with the state of S after emission. The reader may think of photons or gravitons
emitted by an isolated system S that escape from detection by any devices in S.
(See also Definition 1, below.) �

Physical quantities characteristic of a system S are described by certain self-
adjoint linear operators, X = X∗, acting on H . This feature is common to all
physical theories used at present.2 The Copenhagen Interpretation of Quantum
Mechanics then stipulates that there are “observers” with “free will” who can

2In classical theories, these operators generate an abelian (C∗-) algebra, and time evolution is
given by a ∗-automorphism group of this algebra generated by a vector field on its spectrum;
while, in QM , the algebra generated by operators representing physical quantities (and events) is
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decide to measure such physical quantities arbitrarily quickly, at arbitrary times,
and at an arbitrary rate. It is argued that the time evolution of physical states of S is
determined by its unitary propagator U , which solves a (deterministic) Schrödinger
equation, except when a measurement of a physical quantity represented by an
operator X = X∗ is made: Immediately after the measurement of X the state of S,
according to the Copenhagen Interpretation, is in an eigenstate of X corresponding
to the measured value of X. If this value is not recorded, one is advised to use a
density matrix describing an incoherent superposition of eigenstates of X, chosen
in accordance with Born’s Rule, to describe the future evolution of S.

For a variety of reasons, this is not a satisfactory recipe for how to apply QM

to describe physical phenomena! One might want to view the evolution of states
in the presence of measurements, as described in the Copenhagen Interpretation of
QM , as some kind of stochastic process. But the problem is that one is dealing
with a stochastic process that does not have a classical state space, and that it is
transition amplitudes, rather than transition probabilities, that are given by matrix
elements of a family of operators (the propagator U ) satisfying a group composition
law, i.e., a kind of Chapman–Kolmogorov equation.3 According to the Copenhagen
Interpretation, predicting/determining the transition probabilities describing the
stochastic time evolution of states of S in the presence of repeated measurements
would apparently require knowing what kind of physical quantities are measured
by the intervention of “observers,” and at what times these measurements are
made. For, any intermediate intervention of an “observer” destroys “interference
effects”; and hence it seemingly affects the value of the transition probability
between an initial state of S in the past and a target state in the future, even
if a sum over all possible outcomes of the intermediate intervention is taken.4

Without complete information on all intermediate measurements performed on S,
which, in the Copenhagen Interpretation, is not provided by the theory, reliable
predictions of future states of the system and of future expectation values of physical
quantities become impossible. As a result, the Copenhagen Interpretation renders
QM nearly “unpredictive”—even though, by experience, it is a heuristic framework
supplementing QM that works well for many or most “practical purposes,” because,
much of the time (in particular when using a scattering matrix), one is interested
in predicting the outcome of only a single measurement. The situation is hardly
improved in a definitive way by resorting to concepts such as “decoherence” and
interpretations such as “consistent histories” [1], “many worlds,” etc.. (See [2, 23]
for further information.)

non-commutative, and time evolution is given by a ∗-automorphism group of such an algebra only
if the system is isolated.
3It is advocated by certain groups of people that the problem arising from this fact can be remedied
by invoking the phenomenon of “decoherence” and appealing to the “consistency” of histories of
events [1]. But I find the arguments supporting this point of view unconvincing.
4This is the case unless perfect “decoherence” holds.
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Fig. 1 ↑ ↑
Q = sub-system “confined” to Ω Particle P propagating into shaded cone

Before proceeding to describe the “ETH -Approach,” I recall an argument,
presented in detail in [13], that shows that the Schrödinger equation does not
describe the time evolution of states of systems in the presence of “events” or
“measurements,” assuming that the usual correlations between the outcomes of Bell-
type measurements, claimed to be confirmed in many experiments, hold.

We consider the following Gedanken-Experiment [13] (see Figures 1 and 2),
which, ultimately, will show that time evolution of states in QM is intrinsically
stochastic, in spite of the deterministic nature of the Schrödinger equation.

We prepare the system Q ∨ P in a state with the property that particle P

propagates into the shaded cone opening to the right, as indicated in Figure 1, except
for tiny tails leaking beyond this region, while the degrees of freedom of Q remain
confined to a vicinity of the region Ω in the complement of the shaded cone, except
for tiny tails. Thanks to cluster properties, expectation values of the Heisenberg-
picture time evolution of physical quantities, such as spin, momentum, etc. referring
to P in this state then turn out to be essentially independent of the time evolution of
the degrees of freedom of Q. In other words, interaction terms in the Hamiltonian
of the system coupling P to Q can be neglected. This is discussed in much detail in
[13].

More concretely, we study the following system sketched in Figure 2.
Temporary assumptions (leading to a contradiction):

• P and P ′: Two spin- 1
2 particles prepared in a spin-singlet initial state, ψL/R ,

localized, initially, in the central region shown in Figure 2; the orbital wave
function of P is chosen such that P propagates into the cone opening to the right
(except for very tiny tails) and that it will eventually undergo a Stern–Gerlach
spin measurement, while the orbital wave function of P ′, an electron, is chosen
such that this particle propagates into the cone opening to the left, with only very
tiny tails leaking beyond this cone into the half-space to the right of the spin filter.
(One may assume, for simplicity, that there are no terms in the total Hamiltonian
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Fig. 2 Q:={spin filter ∨ particle P’} cone opening to right:= ess. supp of orbital wave function
of P

of the system describing direct interactions between P and P ′.) The spin filter
(e.g., a spontaneously magnetized metallic film) is prepared in a poorly known
initial state.

• The dynamics of the state of the total system is assumed to be fully determined by
a Schrödinger equation given by a concrete self-adjoint Hamiltonian containing
only short-range interaction terms. In particular, the initial state of the total
system (consisting of the spin filter, the two particles and possibly some Stern–
Gerlach equipment serving to measure a component of the spin of particle P ) is
assumed to determine whether particle P ′ will pass through the spin filter, or not,
(given that the initial state of P ′ ∨P is a spin-singlet state, with P ′ and P moving
into opposite cones). Since it is assumed that a Schrödinger equation determines
the evolution of states of this system, the Schrödinger picture and the Heisenberg
picture are equivalent.

• Correlations between the outcomes of spin measurements of P ′ and of P are
assumed to be those predicted by standard quantum mechanics, (relying on the
“Copenhagen interpretation” and apparently confirmed in many experiments):
We first note that if P ′ passes through the spin filter, then its spin is “up,”
(i.e., aligned with the majority spin of electrons in the spin filter), if it does
not pass through the filter, (i.e., if it hops into a vacant state localized inside
the spin filter), its spin is “down.” The second assumption stated above then
says that, whether P ′ passes through the filter, or not, is determined by the
initial state of the total system and by solving a deterministic Schrödinger
equation. In addition to the two assumptions already stated, we also assume that
if the spin of P ′ is measured to be “up,” the spin of P is measured to be “down”
(for example, in a Stern–Gerlach experiment involving a magnetic field parallel
to the majority spin of the spin filter), and if the spin of P ′ is “down,” then the
spin of P is “up.”

Next, we recall the
Fact: Expectation values of observables (such as spin, momentum, etc.) referring to
particle P in the state of the system described above are independent of the degrees
of freedom of Q := {P ′ ∨ spin filter}, for arbitrarily long times, up to very tiny
corrections. Thus, to a very good approximation, their evolution can be assumed
to be given by free-particle dynamics. This is a consequence of our choice of an
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initial state (propagation properties of the orbital wave functions of P and P ′) and
of cluster properties of the time evolution—as shown in [13].

It follows that, to a very good approximation, the spin of P is conserved before
it is measured ⇒

Expectation value of spin of P ≈ 0,∀ times before measurement time,
independently of the evolution of Q = {P ′ ∨ spin filter}!

But this contradicts the third (last) assumption stated above: The first two
assumptions imply that the values of the z-component of the spin of P ′ measured
with the help of the spin filter do apparently not introduce any bias in the outcomes
of measurements of the z-component of the spin of P . In other words, the second
assumption stated above is incompatible with the Bell-type “non-locality” of
Quantum Mechanics, as expressed in the third assumption stated above.

This argument is robust, in the sense that it suffices to assume that correlations
between measurements of a component of the spin of P ′ and a component of the
spin of P are fairly close to those predicted by the Bell-type non-locality described
in the third assumption.

Conclusion: If the third assumption holds true, then the quantum-mechanical
time evolution of states of physical systems in the presence of measurements (or
“events”) is not given by a deterministic Schrödinger equation, and the equivalence
of the Heisenberg picture and the Schrödinger picture apparently fails. Quantum
Mechanics appears to be intrinsically probabilistic (and “non-local,” in the sense
of Bell-type correlations—which does, however, not invalidate locality in the sense
of “Einstein causality”)! These conclusions agree with ones reached by studying
Gedanken-experiments such as “Wigner’s friend” and other related ones, e.g., one
recently proposed in [24].

Our task is thus to find out what one has to add to a minimal formulation of
Quantum Mechanics in order to be able to describe the stochastic dynamics of
states of physical systems in the presence of “events” and their recordings (in
projective measurements), in such a way that correlations between the outcomes
of measurements agree with the Bell-type “non-locality” of Quantum Mechanics—
without the need to assume that “observers” intervene. The results reviewed in the
next section are intended to report on some progress in this direction.

3 Summary of the “ETH-Approach”

In this section I briefly describe the so-called ETH-Approach to QuantumMechanics
[8–10, 12–14], which is designed to retain attractive features of the Copenhagen
Interpretation but eliminates its fatal weaknesses; and I note that “E” stands for
“Events,” “T ” for “Trees,” and “H” for “Histories.” In the following, I attempt
to explain what these terms mean, and why the concepts underlying the “ETH -
Approach” are important for an understanding of the foundations of Quantum
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Mechanics (QM). The basic premises and contentions of this approach are as
follows:

I. Potential Events. In the ETH -Approach to QM , Time, denoted by t , is taken
as an irreducible concept. It is described by the real line, R, with its usual
order relation.5 But in order to make the following discussion mathematically
watertight it is advisable to sometimes assume that time is discretized, t ∈ Z.
An important idea underlying the ETH -Approach is that time is not merely
a parameter, but that it can be monitored by recording “events” happening in
an isolated open system. (The precise meaning of this idea will become clearer
later on.)

Let t0 ∈ R be the time of the present. We consider an isolated open physical
system S and we denote by H the Hilbert space of pure state vectors of S. Our
first task is to clarify what is meant by “potential events” in S that may happen
at some future time t > t0, or later: Potential events are described by families,
{πξ , ξ ∈ X } of orthogonal projections acting on H , with the properties that

πξ · πη = δξη πξ , ∀ξ, η in X , (disjointeness)
∑

ξ∈X
πξ = 1, (partition of unity). (1)

For simplicity we henceforth assume that the sets X labelling the projections
that represent potential events are countable, discrete sets. (This merely serves
to avoid technical complications in our exposition; of course, continuous
spectra occur, too.) In the Heisenberg picture, which we will use henceforth, the
concrete projection operators acting on the Hilbert space H of S representing
a specific potential event, e.g., the click of a detector belonging to S when it
is hit by a certain type of particle in S, depend on the time t > t0 in the
future when the event might happen. In an autonomous system, the concrete
projection operators representing a specific potential event that may happen
at a time t > t0 or at another time t ′ > t0 are unitarily conjugated to one
another by the propagator U(t, t ′) of the system; (Heisenberg-picture evolution
of operators). All projection operators representing potential events that may
happen at some time t > t0, or later, generate a ∗-algebra denoted by E≥t . It
immediately follows from this definition that

E≥t ′ ⊆ E≥t , if t ′ > t.

Remark The concrete projection operators representing some potential event
that may happen in system S (see Equations (1)) depend on the time t when
the potential event would start to happen and on the time-interval during which
it would happen. More concretely, if Âi , i = 1, 2, . . . , are abstract operators

5The role of space-time in a relativistic version of the “ETH -Approach” is discussed in [16].
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representing physical quantities of S, (e.g., a component of the spin of a certain
species of particles localized in a certain region of physical space and measured
in a Stern–Gerlach experiment), and if Ai(t) denotes the Heisenberg-picture
operator on H representing Âi at time t , then a potential event arising from
monitoring the quantities Âi , i = 1, 2, . . . , which starts to happen at time t ,
consists of a family of projections satisfying Equations (1) that are functionals
of the operators

{Ai(t
′)| i = 1, 2, . . . ; t ′ ∈ [ t, T ), for some T with t < T ≤ ∞} �.

This remark is inspired by general wisdom from local quantum field theory.

For simplicity we assume that all physically relevant states of S can be
described by density matrices acting on H , and that the algebras E≥t are closed
in the weak topology of the algebra, B(H ), of all bounded operators acting on
H . Typically, all the algebras E≥t are then isomorphic to one universal (von
Neumann) algebra6 N , i.e.,

E≥t � N , ∀t ∈ R. (2)

The algebra, E , of all potential events that may happen in the course of history
is defined by

B(H ) ⊇ E :=
∨

t∈R
E≥t , (3)

(where the closure is taken in the operator norm of B(H )).
II. The Principle of Diminishing Potentialities. In the quantum theory of

(autonomous) systems with finitely many degrees of freedom—as treated in
our introductory courses on QM—the algebras E≥t turn out to be independent
of time t ; and usually E≥t = B(H ). For such systems, one cannot develop
a sensible quantum theory of events, and it is impossible to come up with
a logically coherent, intrinsically quantum-mechanical description of the
retrieval of information on such systems, i.e., of measurements, without adding
further quantum systems with infinitely many degrees of freedom that serve
to “measure” the former systems (or without resorting to something like
“Copenhagen”). In this respect, quantum systems with finitely many degrees of
freedom are as “interesting” as the space-time region outside the event horizon
of a black hole: no information can be extracted! In order to encounter non-
trivial dependence of the algebras E≥t on time t , we must consider isolated
(open) systems with infinitely many degrees of freedom and with the property

6In local relativistic quantum theories with massless particles, the algebra N tends to be a von
Neumann algebra of type III ; see [15].
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that the propagator U of S is generated by a Hamiltonian whose spectrum does
not have any isolated eigenvalues, and (if time is continuous) the spectrum
is unbounded above and below, or, in relativistic quantum theory, it is semi-
bounded, but without any spectral gaps; i.e., we must assume that there exist
massless modes.

Our contention is that a basic property of a quantum theory of isolated open
systems, S, enabling one to describe events and their recording in projective
measurements of physical quantities is captured in the following “Principle of
Diminishing Potentialities” (PDP ):

E≥t ′ � E≥t � E , whenever t ′ > t. (4)

To be more precise, one expects that if time is continuous the relative
commutant

(
E≥t ′

)′ ∩ E≥t , with t ′ > t,

is an infinite-dimensional, non-commutative algebra. (If time is discrete this
relative commutant can, however, be a finite-dimensional algebra.) Examples of
non-relativistic and relativistic systems satisfying property (4) will be discussed
elsewhere, (see also [12]).7 Here I just mention that (PDP ), in the sense
of a relativistic variant of Equation (4), is a theorem in local relativistic
quantum field theories with massless particles in four space-time dimensions.8

This follows from important results in [15] and is used in [16].

Definition 1 Isolated open systems S (featuring events) are henceforth defined
in terms of a filtration, {E≥t }t∈R (or, for the sake of simplicity and precision,
{E≥t }t∈Z), of (von Neumann) algebras satisfying the “Principle of Diminishing
Potentialities” (4), all represented on a common Hilbert space H , whose
projections describe potential events. �

If Ω denotes the density matrix on H representing the actual state of a
system S, we use the notation

ω(X) := tr(Ω X), ∀X ∈ B(H ),

to denote the expectation value of the operator X in the state ω determined by
Ω . We define

ωt(X) := ω(X), ∀X ∈ E≥t , (5)

7I sometimes fear that unrealistically simple examples advanced with the intention to clarify
aspects of the foundations of QM have had the opposite effect: They have contributed to clouding
our views.
8and the algebras E≥t , t ∈ R, are von Neumann algebras of type III .
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i.e., ωt is the restriction of the state ω to the algebra E≥t .
Note that, as a consequence of (PDP ) and of entanglement, the restriction,

ωt , of a state ω on the algebra E to a subalgebra E≥t ⊂ E will usually be mixed
even if ω is a pure state on E .

III. Actual Events. Henceforth we only study isolated open systems S for which
(PDP ), in the form of Equation (4), holds. Let {πξ , ξ ∈ X } ⊂ E≥t be a
potential event that might start to happen at some time t , with {πξ , ξ ∈ X }
not contained in E≥t ′, for t ′ > t . Tentatively, we say that this potential event
actually starts to happen at time t iff

ωt(X) =
∑

ξ∈X
ωt

(
πξ X πξ

)
, ∀X ∈ E≥t , (6)

meaning that ωt is an incoherent superposition of states labelled by the points
ξ ∈ X ; in other words, off-diagonal expectations, ωt

(
πξ X πη

)
, ξ �= η, do not

contribute to the right side of (6). Equation (6) is equivalent to saying that the
projections πξ , ξ ∈ X , belong to the centralizer of the state ωt .

Given a ∗-algebra M and a state ω on M , the centralizer, Cω(M ), of the
state ω is defined to be the subalgebra of M spanned by all operators, Y , in M
with the property that

ω([Y,X]) = 0, ∀X ∈ M .

The center of the centralizer, denoted by Zω(M ), is the abelian subalgebra of
the centralizer consisting of all operators in Cω(M ) commuting with all other
operators in Cω(M ).

We note that the center, Z (M ), of the algebra M is contained in Zω(M ),
for all states ω.

Definition 2 A potential event {πξ , ξ ∈ X } ⊂ E≥t , with {πξ , ξ ∈ X } not
contained in E≥t ′, for t ′ > t , actually starts to happen at time t iff Zωt (E≥t )

is non-trivial,

{πξ , ξ ∈ X } generates Zω t

(
E≥t

)
, (7)

and

ωt(πξj ) is strictly positive, ξj ∈ X , j = 1, 2, . . . , n , (8)

for some n ≥ 2. �
IV. The fundamental Axiom. We are now in a position to describe the evolution of

states in the ETH -Approach to QM. Let ωt be the state of an isolated system
S right before time t . Let us suppose that an event {πξ , ξ ∈ X } generating
Zωt (E≥t ) starts to happen at time t , in the sense of Definition 2.
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Axiom The actual state of the system S right after time t when the event
{πξ , ξ ∈ X } has started to happen is given by one of the states

ωt,ξ∗(·) := [ωt(πξ∗)]−1 ωt

(
πξ∗(·)πξ∗

)
, (9)

for some ξ∗ ∈ X with ωt(πξ∗) > 0, (“state-collapse postulate”9). The
probability for the system S to be found in the state ωt,ξ∗ right after time t

when the event {πξ , ξ ∈ X } has started to happen is given by Born’s Rule,
i.e., by

prob{ξ∗, t} = ωt(πξ∗). (10)

�
Remarks

(1) The projection πξ∗ selecting the actual state ωt,ξ∗ of S (and sometimes also
the point ξ∗ ∈ X ) is called the “actual event” happening at time t .

(2) The contents and meaning of this Axiom are clear and mathematically
watertight as long as time is discrete. (If time is continuous further
precision ought to be provided.)

This Axiom, Equations (9) and (10), conveys the following picture of quantum
dynamics: In Quantum Mechanics, the evolution of states of an isolated open system
S featuring events, in the sense of Definitions 1 and 2 proposed above, is given by
a (rather unusual novel type of) stochastic branching process, whose state space is
what I call the “non-commutative spectrum”, ZS , of S. Assuming that Equation (2)
holds, the non-commutative spectrum of S is defined by

ZS :=
⋃

ω

Zω(N ) , with XS :=
⋃

ω

spec
(
Zω(N )

)
, (11)

where the union over ω is a disjoint union, and ω ranges over all physical states
of S.10 Equation (7) and Born’s Rule, Equation (10), specify the branching
probabilities of the process.

The above picture of the stochastic time evolution of states of an isolated open
system S is illustrated, metaphorically (for discrete time), in Figure 3. It differs
substantially from and supercedes the “decoherence mumbo-jumbo.”

Let us suppose, for the sake of simplicity and mathematical precision, that time
is discrete, (t ∈ Z). It is important to note that, in general, the events (described
by orthogonal projections in E≥t ′ ) predicted to happen at a later time t ′ > t on

9a rather unfortunate name!
10The set XS can also be defined in terms of a certain “flag manifold” associated with the Hilbert
space H .
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Fig. 3 Time evolution of a state of S with initial condition ω := ρ

E: “Events,” T : “Tree” of possible future states, H : “History” of actual events/states

the basis of the states ωt,ξ , ξ ∈ X , where {πξ , ξ ∈ X } generates Zωt (E≥t ), are
different from the events one would predict to happen at time t ′ on the basis of the
state ωt |E≥t ′ , used when the actual event happening at time t is not known (i.e., has
not been recorded); and the projections representing these different sets of events
usually do not commute with one another. Furthermore, for t ′ > t , the operators in
Zωt,ξ (E≥t ′) and in Zωt,η (E≥t ′), ξ, η ∈ X , (with ωt(πξ ), ωt (πη) strictly positive),
but ξ �= η, do not in general commute with each other. This is a fundamental
difference between the “non-commutative branching processes,” described here,
and classical stochastic branching processes.

The discussion above is mathematically sound if time is discrete, but requires
more precision if time is taken to be continuous.

To be on the safe side, we temporarily choose time to be discrete (t ∈ Z). Let H
be the Hamiltonian of an isolated open system, and suppose that

‖eiH − 1‖ � 1 . (12)
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Let us suppose that {πt,ξ , ξ ∈ Xt } is an event that starts to happen at time t , provided
the state of S at time t is given by ωt ; (i.e., {πt,ξ , ξ ∈ Xt } generates Zω t (E≥t )). Let
ξ∗ be the element of Xt with the property that, in accordance with the Axiom stated
in IV., above, the state of S right after time t is given by

ωt,ξ∗(·) := [ωt(πt,ξ∗)]−1 ωt

(
πt,ξ∗(·)πt,ξ∗

)
,

with ωt

(
πt,ξ∗

)
> 0; i.e., πt,ξ∗ is the “actual event” happening at time t . Let t ′ = t+1

be the time following t , and let {πt ′,ξ , ξ ∈ Xt ′ } be the event that starts to happen at
time t ′, provided that the state of S at time t ′ is given by ωt,ξ∗ . Then assumption (12)
suggests that there exists an element ξ� ∈ Xt ′ with the property that

ωt,ξ∗
(
πt ′,ξ�

) ≈ 1, but

ωt,ξ∗
(
πt ′,ξ

) � 1, ∀ ξ �= ξ� , ξ ∈ Xt ′ . (13)

According to the Axiom in IV., in particular Born’s Rule, the actual state of S right
after time t ′ is then very likely given by

ωt,ξ∗,t ′,ξ� (·) := [ωt,ξ∗(πt ′,ξ� )]−1ωt,ξ∗
(
πt ′,ξ� (·)πt ′,ξ�

) ≈ ωt,ξ∗(·) .

The state ωt,ξ∗,t ′,ξ� is close to the one that would commonly be used in the
Heisenberg picture of quantum mechanics in the absence of any “measurements”
or “events” after time t , namely the state ωt,ξ∗(·).

However, for purely statistical (entropic!) reasons, every once in a while, i.e.,
at rare times t ′, an event πt ′,ξ is realized that has a very small Born probability,
ωt ′(πt ′,ξ ) � 1, ξ ∈ Xt ′ .

Digression on “Missing Information” associated with events:11

Given the event {πt,ξ , ξ ∈ Xt } happening at time t , assuming that ωt is the actual
state of S right before time t , we define the “missing information” (or “entropy
production” ), σ(ωt ,Xt ), associated with this event by

σ(ωt ,Xt ) := −
∑

ξ∈Xt

ωt (πt,ξ ) · �n
(
ωt(πt,ξ )

)
(14)

Assuming that (12) holds, the “missing information” associated with most events
that ever happen is very small. If the “missing information” associated with all
events were tiny, then taking the state of S in the Heisenberg picture to be constant
in time would be a good approximation to its stochastic evolution. However, every
once in a while, events corresponding to a large “missing information” (entropy
production) may be encountered, and these are the events that will most likely be

11This digression can be omitted at first reading, and the reader is invited to proceed to point V.,
below.
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noticed and recorded, because they trigger a substantial change of the state of S.
(Some people will want to call them “measurements.”)

Let t0 be the time at which the system S has been prepared in a state ω, (as
discussed in [14]), and tj := t0 + j ∈ Z; further, let πtj ,ξj be the actual event
happening at time tj , given the initial state ω of S and earlier actual events πt�,ξ� , � <

j, j = 1, 2, . . . , n; (see Definition 2 and Axiom). We define

μω

(
ξ1, ξ2, . . . , ξn|X

) := ω
( n∏

j=1

πtj ,ξj ·X ·X∗ · (
n∏

j=1

πtj ,ξj )
∗) , (15)

where the product is ordered according to
∏n

j=1 aj = a1 · a2 · · · an, and X is
an arbitrary non-zero operator in E≥t , for some t > tn, with ω

(
X · X∗) > 0.

Then μω(. . . |X) is a positive measure on the Cartesian product×n

j=1Xtj . Note
that the space Xtk+1 depends on the choice of ω and on all the actual events
πt1,ξ1 , . . . , πtk,ξk that happened at times t1 < · · · < tk , before tk+1; with k =
1, 2, . . . , n− 1. For any m, with 0 < m < n, we set

X(ξ(m,n)) :=
n∏

j=m+1

πtj ,ξj ·X ,

and X(ξ(n,n)) := X. Then

μω

(
ξ1, . . . , ξn|X

) = μω

(
ξ1, . . . , ξm|X(ξ(m,n))

)
.

The measure μω

(
. . . |X) has the (possibly somewhat perplexing) property that∑

ξk+1,...,ξm

μω

(
ξ1, . . . , ξk, ξk+1, . . . , ξm|X(ξ(m,n))

) =

= μω(ξ1, . . . , ξk|X(ξ(m,n))
)
, (16)

for arbitrary k, with 1 ≤ k ≤ m ≤ n, as one easily verifies. (Identity (16)
may look familiar to the reader from a similar one satisfied by the “Lüders–
Schwinger–Wigner formula” [25] for the probability of a sequence of outcomes
of measurements, assuming perfect decoherence. However, it actually has quite a
different origin!) It is sometimes convenient to define μω

(
. . . |X) as a measure on

the space

Xn := (
XS

)×n
,

where XS has been defined in Equation (11), with the convention that

πtk,ξ = 0, unless ξ ∈ Xtk ⊂ XS .
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For X = 1, μω(. . . |1) is a probability measure on Xn. If arbitrarily long sequences
of events are considered, it is useful to introduce the “path space”

X∞ := lim−→
n→∞

Xn .

Thanks to property (16), the measures μω(. . . |1) determine a unique probability
measure on X∞. This follows from a well-known lemma due to Kolmogorov.

Next, we define the “missing information per event” of a sequence of events, as
follows:

σn(μω) := −1

n

∑

ξ1,...,ξn

μω(ξ1, . . . , ξn|1) · �n
(
μω(ξ1, . . . , ξn|1)

)
,

and

σ(μω) := limsupn→∞σn(μω). (17)

If events happening at times t1, . . . , tn are not recorded, then σn(μω) is a measure
of how much the state of the system at time t > tn deviates from the (initial) state ω

used in the Heisenberg picture of standard QM .
Of particular interest is the so-called relative entropy

Sn

(
μω‖μopp

ω

) :=
∑

ξ1,...,ξn

μω(ξ1, . . . , ξn|1)×

×
(
�nμω(ξ1, . . . , ξn|1)− �nμopp

ω (ξ1, . . . , ξn|1)
)
, (18)

where

μopp
ω (ξ1, . . . , ξn|1) := ω

(
(

n∏

j=1

πtj ,ξj )
∗ ·

n∏

j=1

πtj ,ξj

)

is the measure obtained when the order of the events is (time-)reversed. The relative
entropy Sn

(
μω‖μopp

ω

)
is non-negative, and its growth in n, as n → ∞, is a measure

of the irreversibility of histories of events featured by the system and reflects the
“arrow of time.”

End of Digression.

V. Recording events by “projective measurements” of physical quantities. We con-
sider an isolated open system S described in terms of a filtration {E≥t }t∈R of
algebras represented on its Hilbert space H of pure state vectors, as described
in Definition 1, (paragraph I.). We propose to clarify how events happening in
S can be recorded by projectively (directly) measuring “physical quantities”
characteristic of S. (Time may be taken to be continuous; but, for the sake
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of simplicity and mathematical precision, the reader is invited to continue to
assume that t ∈ Z.)

Definition 3 A “physical quantity” characteristic of S is an abelian (C∗-)
algebra, Q, with the property that, for each time t , there exists a representation,
σQ
t , of Q on H as a subalgebra of E≥t . �

For autonomous systems, the representations σQ
t and σQ

t ′ are unitarily
equivalent, with

σQ
t (A) = U(t ′, t) σQ

t ′ (A)U(t, t ′), ∀A ∈ Q ,

where U(t ′, t) = exp
(
i(t − t ′)H

)
is the propagator of S, with t, t ′ arbitrary

times; (Heisenberg-picture dynamics).
For simplicity, we assume that the physical quantities Q available to identify

properties of S or record events all have discrete spectrum; i.e.,

Q = 〈ΠQ
η |η ∈ Y Q〉, (19)

where Y Q ≡ spec(Q) is a discrete set, which we view as a subset of the
real line, and the operators ΠQ

η are disjoint orthogonal projections. (Of course,
continuous spectra can arise, too. But in order to avoid technical complications,
we ignore them here.) We can then describe Q as the algebra given by all
functions of a single self-adjoint operator, Ŷ , with discrete spectrum, spec(Ŷ ) �
Y Q , and spectral projections ΠQ

η . For every time t , there exists a self-adjoint

operator, Y (t) = σQ
t (Ŷ ), acting on H that represents Ŷ at time t .

It is interesting to ask whether physical quantities can serve to detect or record
events happening in S. For a discrete set

OS = {Qj }j∈J
of physical quantities characteristic of S, it is arbitrarily unlikely that one of the

algebras σ
Qj

t (Qj ), j ∈ J, has a non-trivial intersection with (e.g., contains or
is contained in) an algebra Zω t (E≥t ) describing the event happening at time t ,
for some state ωt . To cope with this problem, we have to understand how well
Zω t (E≥t ) can be approximated by an algebra generated by a family, {Qα(t)}Nα=0,
of disjoint orthogonal projections contained in (or equal to) an algebra σQ

t (Q),
for some Q ∈ OS .

There are different ways of quantifying how well the algebra generated
by {Qα(t)}Nα=0 approximates the event described by Zωt (E≥t ). To keep our
discussion brief, it is convenient to introduce “conditional expectations” of
algebras:

Definition 4 Let N be a (von Neumann) subalgebra of a (von Neumann)
algebra M . A linear map
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εω : M →
onto

N (20)

is a conditional expectation from M onto N with respect to a normal state ω

on M iff

(i) ‖εω(X)‖ ≤ ‖X‖, ∀X ∈ M
(ii) εω(X) = X, ∀X ∈ N

(iii) ω ◦ εω = ω

(iv) εω(AXB) = Aεω(X)B, ∀A,B,∈ N , ∀X ∈ M �
Conditional expectations have the following properties:

(v) εω(X
∗X) ≥ 0, ∀X ∈ M

(vi) εω : M → N is completely positive, and εω(1M ) = 1N

See, e.g., [26] for an exposition of the theory of conditional expectations. Under
very general assumptions, there exist conditional expectations

εω t : E≥t → Zω t

(
E≥t

)
, (21)

for arbitrary times t .
Let ωt be the state of a system S right before an event {πξ , ξ ∈ Xt }

generating Zω t (E≥t ) starts to happen. I propose to clarify in which way a
physical quantity Q ∈ OS can be used to record this event, and how precisely
the value of this quantity identifies the actual event, ξ∗ ∈ Xt , happening at time
t .

We assume that there exists a physical quantity Q and a family of disjoint
orthogonal projections {Q̂α}Nα=0 ⊂ Q, N ≥ 2, with the following properties:

(a)
∑N

α=0 Qα(t) = 1, where Qα(t) = σQ
t (Q̂α), α = 1, . . . , N, ∀t ;

(b) there exists a positive number δ � 1 such that

ωt

( N∑

α=1

Qα(t)
)
≥ 1 − δ (or, equivalently, ωt

(
Q0(t)

) ≤ δ );

(c) Given an operator X ∈ E≥t , we define

dist
(
X,Zω t (E≥t )

) := ‖X − εω t (X)‖.

We assume that

dist
(
Qα(t),Zω t (E≥t )

)
< δ , for α = 1, . . . , N . (22)

In the following, we use the notation O(ε) to denote any real number whose
absolute value is bounded above by const. ε, where const. is a uniformly



ETH -Approach 39

bounded positive constant. Properties (a) through (c) of {Q̂α}Nα=0 can be used
to derive the following equations:

For an arbitrary operator X ∈ E≥t ,

ωt(X) =
N∑

α=1

ωt

(
Qα(t)X

)+ O(δ‖X‖)

=
N∑

α=1

ωt

(
Qα(t)[Qα(t)X])+ O(δ‖X‖)

=
N∑

α=1

ωt

(
εω t (Qα(t))[Qα(t)X])+ O(δ N‖X‖)

=
N∑

α=1

ωt

(
Qα(t)X εω t (Qα(t))

)+ O(δ N‖X‖)

=
N∑

α=1

ωt

(
Qα(t)XQα(t)

)+ O(δ N‖X‖). (23)

Apparently, if δ N � 1, then, to a good approximation, the state ωt is an
incoherent superposition of eigenstates of the disjoint projections Qα(t), α =
1, . . . , N . We then say that, at approximately time t , “a projective (direct)
measurement of Q takes place.”

Definition 5 (Resolution of Q in Recording an Event) Assuming that Xt is a
countable set, then, for any δ ∈ (0, 1), there exists a subset X (M)

t ⊆ Xt whose
cardinality is given by a finite integer M such that

ωt

( ∑

ξ∈X (M)
t

πt,ξ

)
≥ 1 − δ .

Then, for an arbitrary operator X ∈ E≥t ,

ωt(X) =
∑

ξ∈X (M)
t

ωt

(
πt,ξ X πt,ξ

)+ O(δ ‖X‖) .

The “resolution” of {Qα(t)}Nα=0 ⊂ Q in recording the event {πt,ξ , ξ ∈ Xt }
starting to happen at time t is defined by

R := N

M
· (1 − δ) , for 2 ≤ N ≤ M , (R = 0, for N = 1) . (24)

�
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It turns out that property (c), Equation (22), above, implies that, given an
orthogonal projection Qα(t) ∈ σQ

t (Q), there exists an orthogonal projection
Pα ∈ Zω t

(
E≥t

)
such that

‖Qα(t)− Pα‖ < O(δ) . (25)

A proof of this simple lemma can be found in the appendix of [3].
Since the projections πt,ξ , ξ ∈ Xt generate the abelian algebra Zω t

(
E≥t

)
,

we have that

πt,ξ · P = πt,ξ , or πt,ξ · P = 0, ∀ξ ∈ Xt , (26)

for any orthogonal projection P ∈ Zω t

(
E≥t

)
. Equations (25) and (26) then

imply the

Result For any α = 1, . . . , N , and for all ξ ∈ Xt ,

‖πt,ξ Qα(t)− πt,ξ‖ < O(δ) , or ‖πt,ξQα(t)‖ < O(δ) .

Suppose that the physical quantity Q is generated by all functions of a single
self-adjoint operator Ŷ . Then the best estimate for the value of Ŷ right after time
t when the event {πt,ξ |ξ ∈ Xt } has started to happen is an eigenvalue of Ŷ

corresponding to an eigenstate of the operator Y (t) ≡ σQ
t (Ŷ ) in the range of the

projection Qα(t). The state of S right after time t is then given by

[ωt(πt,ξ � )]−1ωt

(
πt,ξ � (·)πt,ξ �

)
,

for some ξ � ∈ Xt for which

‖πt,ξ �Qα(t)− πt,ξ �‖ < O(δ) . (27)

Furthermore: The higher the resolution, R, of Q in recording the event {πt,ξ , ξ ∈
Xt }, the more precise the information provided by a measurement of Q is; if
N = M and δ is sufficiently small, then every Q̂α determines a unique point
ξ� ∈ Xt with the property that ‖Qα(t) − πt,ξ�‖ < O(δ). (In the limit where
δ → 0 the information on the event that starts to happen at time t becomes
totally accurate.)

Remarks

(1) The main results of this paragraph are Equation (23), the Result stated
above, and Equation (27).

(2) The concepts presented in paragraph V. and results closely related to the
ones described above can be obtained without ever using the theory of
conditional expectations. However, their use renders the presentation more
elegant.
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This completes our review of the “ETH -Approach to Quantum Mechanics” in
a non-relativistic setting. Some idealized models fitting into this framework are
discussed elsewhere, [12]. A relativistic form of this approach will be presented
in [16]. The material in [16] leads one to speculate that a logically coherent
quantum theory of events, measurements, and observations in realistic autonomous
isolated (open) systems—not involving the intervention of “observers”—can only
be developed in the realm of local relativistic quantum theories with massless
particles, and for even-dimensional space-times.

4 Scattered Remarks About Indirect Measurements,
Conclusions

I start this section with a few comments on “indirect measurements” (see [19, 27]
for important early results) and then sketch some conclusions.

Let S be an isolated open system, as discussed in Sections 2 and 3. I assume that
the system has been prepared in such a way that there is a specific physical quantity,
Q, characteristic of S that repeatedly records events featured by S (i.e., is “measured
projectively”), at times t1 < t2 < · · · < tn, n ∈ N, as discussed in paragraph V. of
Section 4, Equations (23) and (27). Let us assume that the spectrum of Q is a finite
set Y Q = {0, 1, . . . , k}, so that Q is generated by a single self-adjoint operator, Ŷ ,
with eigenvalues 0, 1, 2, . . . , k. Let

η(n) := {η1, η2, . . . , ηn}, ηj ∈ Y Q , j = 1, 2, . . . , n , (28)

be the sequence of values of Ŷ measured at times t1, t2, . . . , tn, as explained in
paragraph V. of Section 4. This means that the state of S right after time tj is in
an approximate eigenstate corresponding to the eigenvalue ηj of the operator Y (tj )

representing Ŷ at time tj , for j = 1, 2, . . . , n, as expressed in Equation (23). The
sequence η(n) is called a “measurement protocol” of length n. As an example, Ŷ
may describe the functioning of k different detectors that click when a certain type
of particle (e.g., a photon or an atom), called a “probe,” belonging to S impacts
them, with the following meaning of its eigenvalues:

η = 0 ↔ none of the detectors clicks , η = � ↔ detector � has clicked ,

� = 1, . . . , k.

Given a measurement protocol η(n) of length n, we define the frequency (of

occurrence) of the value η ∈ Y Q by

fη

(
η(n)

) := 1

n

( n∑

j=1

δη ηj

)
. (29)
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Note that

fη

(
η(n)

) ≥ 0, and
k∑

η=1

fη

(
η(n)

) = 1 .

Of particular interest is the asymptotics of fη

(
η(n)

)
, as n → ∞. Let us temporarily

assume that, ∀η = 0, 1, . . . , k, the limit of fη

(
η(n)

)
, as n → ∞, exists whenever

a copy of S prepared in a fixed initial state is subjected to very many repeated
measurements of Ŷ , with

lim
n→∞ fη

(
η(n)

) ∈ {p(η|α)}Nα=1 , (30)

for some N < ∞; (this is a “Law of Large Numbers,” see [20]). In (30),

p(η|α) ≥ 0, and
k∑

η=1

p(η|α) = 1 , (31)

for all α = 1, . . . , N , for some N < ∞. Apparently, the probability measures
p(·|α), α = 1, . . . , N, describe all possible limiting values the frequencies
f(·)(η(n)) may converge to. We propose to interpret the parameter α as follows:
α characterizes a time-independent property of S, i.e., it is an eigenvalue of a self-
adjoint operator, A, on H representing a physical quantity of S that commutes
with the operators Y (tj ), j = 1, 2, . . . , and is a conservation law, meaning that
A is time-independent (under the Heisenberg time evolution of operators on H ).
Such an indirect measurement of A is called a “non-demolition measurement.” One
expects that conservation laws are elements of

E∞ :=
∧

t∈R
E≥t ,

where E∞ is an algebra in the center of the algebra E defined in (3) (“asymptotic
abelianness” in time). Under suitable hypotheses this expectation can actually be
proven.

Thus, if the frequencies fη

(
η(n)

)
are seen to converge to the value p(η|α∗),

as n → ∞, η ∈ Y Q , for some α∗ ∈ spec(A), and if the measures p(·|α)
separate points in the spectrum, spec(A), of A, then we know that, asymptotically,
as t → ∞, the value of the conservation law A approaches α∗. (The fact that the
measures p(·|α) may depend on α in a non-trivial way, at all, is a consequence of
“entanglement”; see [18–20].)

Evidently, one would like to prove (30) and to predict the probability of indirectly
measuring a value α∗ for A, assuming one knows the initial state of S. However,
this can only be done if the events encoded by the values η1, η2, . . . , of the physical
quantity Ŷ , which is measured at times t1, t2, . . . , are the only events happening in
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S. For a limited class of systems (see [18, 20]), one can prove that if this is the case
then (30) holds, the state of S approaches an eigenstate of A corresponding to some
eigenvalue α∗ ∈ spec(A), as time t → ∞, (“purification”), and the probability of
measuring the value α∗ is given by Born’s Rule applied to the initial state of S and
the operator A, see [20].

Usually, operators on H representing physical quantities of S are not time-
independent. If the rate of change in time of a physical quantity, A, of S that one
attempts to measure indirectly, as described above, is very small, as compared to
the rate of repeated projective measurements of the physical quantity Ŷ used to
determine the value of A,12 then it turns out that, to good accuracy, the dynamics
of the state of the system S is described by a Markov jump process on the set of
eigenspaces of the operator A. The sample paths of this process describe “quantum
jumps” of (the state of) S from one approximate eigenstate of A to another one.
This picture has been given a precise meaning in [20, 22], in the framework of some
simple models.

Concluding Remarks:

(1) The ETH -Approach to QM sketched in this paper is a “Quantum Mechanics
without observers.” It introduces a precise notion of “events” into the quantum
formalism; and it furnishes quantum theory with a clear “ontology.”

(2) The ETH -Approach establishes a precise formalism to describe the stochastic
time evolution of states of isolated (open) systems featuring events. As I have
tried to explain, while, for an isolated system, the Heisenberg-picture time
evolution of operators, in particular of physical quantities characteristic of
such a system, determined by the unitary propagator of the system is perfectly
adequate, the time evolution of its states is described by a novel kind of
stochastic branching process with a “non-commutative state space.” This is
described in some detail in paragraph IV. of Section 3. The analysis presented
there shows that it is simply not true—in any naive sense—that the “Heisenberg
picture” and the “Schrödinger picture” are equivalent.

(3) It is explained in paragraph V. of Section 3 what a “physical quantity” charac-
teristic of an isolated open system is, what it means to measure such a quantity
“projectively,” and how “projective measurements” of physical quantities can
be used to record events. This also lays a basis for a precise theory of indirect
measurements.

(4) It is important to note that, in the ETH -Approach to QM , the expected value
of a conservation law represented by a self-adjoint operator A in the actual state
of an isolated open system featuring events is not constant in time (as it would
be if states evolved according to the Schrödinger equation).

(5) A “passive state” of an isolated open system S prepared at some time t0 is a
state ω for which Zω t (E≥t ) = {C1} , for all times t > t0. We expect that
it often happens that states of S approach “passive states” asymptotically, as

12One speaks of a “weak measurement” of A.



44 J. Fröhlich

t → ∞, (with σ(μω) = 0, see (17)). Thermal equilibrium states are “passive
states.”

(6) Clearly, the ETH -Approach to QM is so general that, for the time being, it is
very hard to use it to carry out explicit calculations for realistic model systems
and to show in which way its predictions differ—usually (hopefully) only ever
so slightly—from those made on the basis of, for example, the Copenhagen
Interpretation of QM , or Bohmian Mechanics. I emphasize, however, that
differences in the predictions of the ETH -Approach and other versions of
QM—however small they may be—really exist!

(7) After completion of this work Bernard Kay has pointed out to me that in two of
his papers—see [28]—ideas somewhat related to some of the ideas proposed in
the present paper have been described. I thank Bernard for valuable discussions.
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Linear and Nonlinear Harmonic
Boundaries of Graphs; An Approach
with �p-Cohomology in Degree One

Antoine Gournay

1 Introduction

Graphs are defined by their vertices (henceforth X) and their edges E ⊂ X×X. In a
sense understanding a graph means to understand how the vertices and edges work
together. In a finite graph, it is common to reduce the whole graph to the incidence
matrix.

In an oriented graph, the incidence matrix B has |X| lines and |E| columns. Each
column contains a −1 and a +1 to indicate the source and target of every edge.
This matrix not only encodes the whole graph, but also a very familiar operation:
the vector space R

|X| is the space of functions on the vertices, R|E| the space of
functions on the edges, and the matrix B is the gradient. More precisely, given a
function on the vertices f (that is an element of R|X|), Bf is a function on the edges
and its value on the edge (x, y) from x to y is f (y)− f (x).

For infinite graphs, the gradient encompasses also all the information of the
graph. Most people would no longer refer to it as a matrix though, but rather as an
operator. In short, �p-cohomology in degree one aims at understanding the image of
this operator.

The history of the topic can be split in two “cases”. The case p = 2 has been
largely studied and offers even more connections to other fields of mathematics
(see Lück [38] or Eckmann [14] among many references). The case p �= 2
has been introduced through Zucker (see [63] and references therein) to study
compactifications of manifolds and Gromov (see [28, §8]) as a large-scale invariant
of groups. Since then, applications have been found to harmonic functions, many
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notions of boundaries, representation theory of groups, quasi-isometry and packing
of graphs; see §2 for details.

The main aim of this paper is to present the connection between �p-cohomology
in degree one and harmonic functions, i.e. to interpret it as a special subspace of
the Poisson boundary. As such the presentation tries to streamline some results of
[21, 22] and [24].

Here is a thinned out version of this result (the actual result applies to a larger
class of graphs, but the statement becomes technical).

Theorem 1.1 LetG be the Cayley graph of a group which is not virtually nilpotent.
Fix some p ∈]1,∞[(and not p ∈ [1∞[). Then (1) "⇒ (2) "⇒ (3) "⇒
(4) "⇒ (5) where

(1) The reduced �p-cohomology in degree one vanishes.
(2) For any functions f with gradient in �p there is a c ∈ R so that lim f (xn) = c

for any sequence xn going to infinity.
(3) There are no non-constant harmonic functions with gradient in �p.
(4) There are no non-constant bounded harmonic functions with gradient in �p.
(5) For any q < p, the reduced �q -cohomology in degree one vanishes.

See §4 and Theorem 4.1 for details. Among others, this has applications to the
question whether the Poisson boundary is invariant under quasi-isometries (see
Corollary 4.16).

Organisation: §1.2 gives the definition of �p-cohomology in degree one. §1.3
follows with examples which are not too hard to grasp. §2 presents some applica-
tions of �p-cohomology in degree one to other problems and topics. §3 shows how
�1-cohomology in degree one can be seen as a space of functions on the ends of
the group, giving a first sign that �p-cohomology has to do with ideal boundaries
of graphs. §4 tackles the connection between �p-cohomology in degree one and
harmonic functions. Lastly, §5.1 tries to summarises some other results and §5.2
presents some questions. But first, let us start with some preliminaries.

1.1 Conventions and Preliminaries

The conventions are that a graph Γ = (X,E) is defined by X, its set of vertices,
and E, its set of edges. All graphs will be assumed to be of bounded valency and
the set of vertices X will always be assumed to be countable. The set of edges will
be thought of as a subset of X × X. The set of edges will be assumed symmetric
(i.e. (x, y) ∈ E "⇒ (y, x) ∈ E). Functions will take value in R (but we could
easily work with C too). Functions on E will often be anti-symmetric (i.e. f (x, y) =
−f (y, x)). This said �p(X) is the Banach space of functions on the vertices which
are p-summable, while �p(E) will be the subspace of functions on the edges which
are p-summable.

The gradient ∇ : RX → R
E is defined by ∇g(x, y) = g(y)− g(x).



Harmonic Boundaries and �p-Cohomology in Degree One 49

c0(X) denotes the space of functions f which tend to 0 at infinity. This can be
defined as follows: f ∈ c0(X), if for any sequence of finite sets An ⊂ X with

∪An = X and Ai ⊂ Ai+1, supx /∈An
f (x)

n→∞−−−→ 0. Another possible description is
the closure of finitely supported functions in �∞-norm.

Lastly, p′ will denote the Hölder conjugate exponent of p, i.e. p′ = p/(p − 1)
(with the usual convention that 1 and ∞ are conjugate).

1.2 �p-Cohomology in Degree One

So our lofty goal is to understand the gradient map from R
X to R

E . The first thing is
that RE is way too big as a space, even if one restricts to anti-symmetric functions.
Indeed, any function on the edge which does not sum to 0 along a 2-cycle cannot
come from the gradient.

Hence we restrict to the image of the gradient (or the kernel of the second
coboundary operator [from edges to cycles] if you are curious about the origins
of the name “cohomology”).

The next step is to bring some simple functional analysis by restricting to �p-
spaces.

At last we have �p-cohomology in degree one: given that the gradient of some
function is in �p(E), can this gradient be approximated by gradients of functions in
�p(X)?

More precisely, the �p-cohomology in degree one of the graph Γ is the quotient

�pH 1(Γ ) := (�p(E) ∩ ∇R
X)/∇�p(X).

Unfortunately, the image of ∇ is not always closed. In order to avoid dealing
with unseparated space (and space which trivially have lots of things in their �p

cohomology), the focus is usually on the largest separated quotient, the reduced
�p-cohomology:

�pH
1
(Γ ) := (�p(E) ∩ ∇R

X)/∇�p(X)
�p(E)

.

Now, if you are wondering when is the image of ∇ actually closed, then

Theorem 1.2 Let p ∈ [1,∞[. The image of ∇ : �p(X) → �p(E) is closed if and
only if the graph is amenable (i.e. there is a sequence of finite sets Fn such that
|∂Fn|
|Fn| → 0, where ∂F is the set of edges with only one extremity in F ).

One direction of the proof is straightforward:

Proof of the “easy” Part Assume there is a sequence of sets Fn ⊂ X so that
|∂Fn|
|Fn| → 0. Take fn = 1

|Fn|1/p 1Fn where 1F is the characteristic function of the
set F (the function which takes value 1 on F and 0 elsewhere). By construction
‖fn‖�p(X) = 1.
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But ∇fn takes value ± 1
|Fn|1/p on ∂Fn (the sign depends on whether the edge

points towards or away from the set Fn) and 0 elsewhere. Hence (the upcoming
factor of 2 comes from the two orientation of the edges)

‖∇fn‖�p(E) = 1
|Fn|1/p ‖1∂Fn‖�p(E) = 1

|Fn|1/p (2|∂Fn|)1/p = 21/p( |∂Fn||Fn|
)1/p

.

By hypothesis, this sequence tends to 0. As a consequence of the closed image
theorem (an operator has a closed image if and only if it has a bounded inverse), the
image of ∇ is not closed. $%

The other direction of the statement is a typical technical slicing argument (given
a sequence of functions fn with norm 1 whose gradient tends to 0, look at “well-
chosen” level sets of these functions). As it is quite technical, the proof would bring
us off-topic, so the reader is encouraged to look up surveys on amenability for all
the details (a very nice book, which is not so easy to find was written by Greenleaf
[26]; there are some surveys freely available in Internet).

Most of the times it is much more convenient to think only in term of functions.
To this end, introduce the Banach space of p-Dirichlet functions as the space of
functions f on X such that ∇f ∈ �p(E). It will be denoted Dp(Γ ).

In order to introduce the Dp(Γ )-norm on R
X, it is necessary to choose a vertex,

denoted eΓ . This said ‖f ‖pDp(Γ )
= ‖∇f ‖p�p(E) + |f (eΓ )|p.

By taking the primitive of these gradients, one may also prefer to think of reduced
�p-cohomology in degree one as:

�pH
1
(Γ ) := Dp(Γ )/�p(X)+ R

Dp

.

A common abuse of language and notation happens, as one says that the reduced
cohomology is equal to the non-reduced one: this means that the “natural” quotient
map �pH 1(Γ ) → �pH 1(Γ ) is injective. By Theorem 1.2 above, this happens
exactly when the graph is non-amenable.

1.3 Some Examples

Before moving on to general statements, the reader might want to look at some
simple examples. Since most of our examples come from Cayley graphs, let us also
shortly recall their construction.

Given a finitely generated group G and a finite set S, the Cayley graph Cay(G, S)

is the graph whose vertices are the element of G and (γ, γ ′) ∈ E if ∃s ∈ S such that
s−1γ = γ ′. (This convention might be unusual from the point of view of random
walks, but is much more convenient to write convolutions.) In order for the resulting
graph to have a symmetric edge set, S is always going to be symmetric (i.e. s ∈
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S "⇒ s−1 ∈ S). Also, Cayley graphs are always going to be connected (i.e. S is
generating).

Example 1.3 The group Z with its most tempting generating set {±1} has the line
as its Cayley graph.

Since there are no cycles, the question is: are all elements of �p(E) in the
closure of ∇�p(X)? The simplest element of �p(E) is the “Dirac mass” (due to
our convention that edges are oriented and function on edges are anti-symmetric,
this is δ(1,0) − δ(0,1)), so that seems a nice place to start.

It is somehow easier to represent it as a function in Dp(X): namely f (x) = 0 for
x ≤ 0 and f (x) = 1 for x > 1.

f

x
= −

2

x
= −

1
x
= 0

x
= 1

x
= 2

x
= 3

x
= 4

x
= 5

x
= 6

f
(−2) =

0

f
(−1) =

0

f
(0) =

0

f
(1) =

1

f
(2) =

1

f
(3) =

1

f
(4) =

1

f
(5) =

1

f
(6) =

1

This function looks hard to approximate: it is not even finitely supported. But
remember, we are trying to approximate its gradient (not the values the function
takes).

fn
f (x) = ...

x = ... −2 −1 0 1 2 3 4 5 6

0 0 0
n−1
n

n−2
n

n−3
n

n−4
n

n−5
n

n−6
n

and fn stays 0 once it reaches 0 (so for x ≥ n). Now the important point is that
we want ∇(f − fn) to tend to 0 (f − fn obviously does not). A quick computation
shows that ∇(f −fn) takes on 2n edges (recall that (0, 1) and (1, 0) are both edges)
the value ± 1

n
. Hence

‖∇(f − fn)‖�p = (
2n

1

np

)1/p = 21/p

n1−1/p .

This tends to 0 given that p > 1.
This shows that the basis of �p(E) is in ∇�p(X). Since this basis is dense in

�p(E), we just showed that �pH 1(Z) is trivial when p > 1.
And what about p = 1? Well, there is a trick (see Martin & Valette [40,

Example 3 in §4] who mention hearing it from M. Bourdon). Let us quickly outline
it here, it will be discussed at length in §3.

Note that any function on the line with gradient in �1 has a value as x → +∞
and x → −∞. For any g ∈ D1(X), define L(g) = lim

x→+∞ g(x)− lim
x→−∞ g(x). Then

L : D1(X) → R is a bounded operator. Its kernel contains �1(X) and so it will also
contain its closure in the D1-norm. Since our function f above has L(f ) = 1 �= 0,
it lies outside of the closure �1(X).
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As an upshot, �1H
1
(Z) is not trivial (in fact, it is a one-dimensional real space).

♦
Example 1.4 Another simple example are the Cayley graphs of free groups on k

generators Fk (resp. free products C2 ∗ C2 ∗ . . . ∗ C2 where C2 is the group with
two elements). The Cayley graphs for the “standard” generating sets (i.e. the k free
generators, resp. the generators of each C2 factor) are 2k-regular (resp. k-regular)
trees.

Again, since trees have no cycles one gets that �p(E) = �p(E) ∩ ∇R
X. If k = 1

(resp. k = 2), then we obtain the same graph as in the previous example. So we may
assume that k > 1 (resp. k > 2). Now it comes in very handy to note that these
graphs are not amenable. By Theorem 1.2, this means that ∇�p(X) is closed or, if
one thinks in terms of functions, that �p(X) is a closed subspace in the Dp-norm.

But functions in �p(X) also belong to c0(X) (the space of functions which tend
to 0 at ∞, see §1.1). Hence, if we can find a function with gradient in �p which is
not in c0(X), then we are done.

But this is fairly easy: (a) pick some edge, (b) removing it will disconnect the tree
in two components, (c) set f to be identically 0 on one component and identically
1 on the other, (d) the gradient of this function is supported on one edge, so it lies
definitively in Dp.

Consequently, �pH 1 and �pH 1, are non-trivial for any p. ♦
It is straightforward to generalise this to any tree which is not amenable: one just
has to make sure that the edge disconnects the tree in two infinite components. In
fact, the argument applies to any non-amenable graph which can be disconnected
into two infinite components by removing a finite number of edges.

These two examples are somehow extreme in the sense that �pH 1 is either trivial
for all p > 1 or not. However, in the case of hyperbolic space, it turns out the p for
which �pH 1 passes from trivial to non-trivial is a significant number (see §2.2.2 for
details).

Also, the last example might make you think that almost all non-amenable graphs
have a non-trivial �pH 1 (for some p). But it turns out it is often hard to construct an
element of Dp(X) \ c0(X). The following proposition can partially explain why (as
well as generalising Example 1.3 and introducing some important proof technique).

Proposition 1.5 Assume Γ is the Cayley graph of a group G whose centre Z :=
Z(G) is infinite. Then �pH 1(Γ ) = {0} for all p > 1.

Proof Needless to say, elements of the centre have the very nice property that, for
any g ∈ G, zg = gz. This translates in a graph theoretical property. Indeed, the
action of an element g of G on the right is a graph automorphism. The action on the
left by the same element g means one follows the path labelled by the generators
si ∈ S so that g = snsn−1 . . . s2s1.

So being in the centre means that if you follow (starting at any vertex) a path
labelled by z = snsn−1 . . . s2s1, then this is a graph automorphism.
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Here is why elements of the centre are so special for this problem. Let ρzf (g) :=
f (gz). Write z = snsn−1 . . . s2s1 and let ti = sisi−1 . . . s2s1 (with t0 = e the identity
element in G). Then

f (g)− ρzf (g) = f (g)− f (gz) = f (g)− f (zg) =
n∑

i=1

f (tig)− f (ti−1g).

Note that this last expression is a sum of n values of the gradient of f . Hence, by the
triangle inequality, ‖f − ρzf ‖�p(X) ≤ n‖∇f ‖�p(E). This implies that f and ρzf

belong to the same equivalence class.
This can be used to bring the following plan into action. Given some function f

with gradient in �p, consider ρznf where zn is some sequence of elements of the
centre which goes to infinity. Since ρznf are images under graph automorphisms of
f , we are effectively translating the gradient of f to infinity.

Since �p(E) ⊂ c0(E), this means that ∇ρznf tends point-wise to 0. Point-
wise convergence is synonymous with weak∗ convergence. But weak∗ and weak
convergence coincide in the reflexive case. And a classical consequence of the
Hahn–Banach theorem is that weak and norm convergence to 0 also coincide.

So we found a way to build a sequence of elements which all belong to the
equivalence class of f (in the quotient space ∇R

X ∩ �p(E)/�p(X)) and whose
gradients tend (in norm) to 0. This shows that 0 is in the (closure) of the class too.

But we made no specific assumption on the function f , hence 0 is in the
equivalence class of any function, and �pH 1(Γ ) = {0}. $%

The previous proposition can be found [often with weaker hypothesis] in Kappos
[32, Theorem 6.4], Martin & Valette [40, Theorem 4.3], Puls [52, Theorem 5.3],
Tessera [59, Proposition 3] or [20, Theorem 3.2].

There are many groups with an infinite centre many of them are not amenable.
This hopefully contrasts with Example 1.4.

2 Applications

Before we move to our main focus (which has to do with harmonic functions), here
is an overview of the different applications of �p-cohomology to themes.

2.1 Quasi-Isometries

One of the original motivation of �p-cohomology was to use it as an invariant of
quasi-isometry, see Gromov [28, §8].

Let us briefly recall that a map f : (X, dX) → (Y, dY ) between two metric
spaces is a quasi-isometry, if there is a constant K > 1 such that:



54 A. Gournay

1
K
dX(x, x′)−K ≤ dY

(
f (x), f (x′)

) ≤ KdX(x, x′)+K.

There are few important “exercises” on this concept, here are two: (1) “being quasi-
isometric” is an equivalence relation; (2) a graph (with its combinatorial distance)
can be quasi-isometric to a manifold (with its Riemannian metric).

In fact, Kanai has shown [31] that any Riemannian manifold with Ricci curvature
and injectivity radius bounded from below is quasi-isometric to a graph (of bounded
valency).

Theorem 2.1 (See Élek [15, §3] or Pansu [45]) If two graphs of bounded valency
Γ and Γ ′ are quasi-isometric, then they have the same �p-cohomology (in all
degrees, reduced or not).

The result is actually much more powerful, in the sense that it holds in a larger
category (measure metric spaces; see above-mentioned references). For shorter
proofs in more specific situations see Puls [55, Lemma 6.1] or Bourdon & Pajot
[7, Théorème 1.1].

The previous theorem is sometimes very convenient, since it means that results
can be transferred between graphs and Riemannian manifolds. This allows for a
great flexibility in the methods that can be used to prove the results.

A consequence of 2.1 is that, if G is a finitely generated group, the �p-
cohomology in degree one of any two Cayley graphs (for a finite generating set)
is isomorphic. Indeed, the identity map on the vertices is a quasi-isometry between
the Cayley graphs (hint: write the generators of one Cayley graph as words in the
generators of the other Cayley graph). Thus, one may speak of the �p-cohomology
of a group without making reference to a Cayley graph.

In [47] and [48], Pansu computed the �p cohomology (in degree 1 and above) of
a variety of homogeneous spaces with pinched negative curvature. He then used the
triviality or non-triviality of this cohomology to show that many of these spaces are
not quasi-isometric, thus answering an old question of Berger.

The study of quasi-isometries also motivated some variants of �p-cohomology.
First, by considering Orlicz spaces (instead of just �p spaces) Carrasco Piaggio [11]
proved a fixed-point result for self-quasi-isometries of (many) Heintze groups.

Second, there is a body of work on the Lpq -cohomology (investigations of the
quotients of the form dp/(R + �q). The interested reader is encourage to look at
Gol’shtein & Troyanov [19], Kopylov [36] and references therein.

2.2 Boundaries

S. Zucker was one of the first person to introduce �p-cohomology and use it to study
manifolds with thin ends (see [63] and references therein). There are however many
other applications to other ideal boundaries of spaces.
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The ends are another typical “ideal boundary” for a space, and it turns out that
the reduced �1-cohomology in degree one is isomorphic to the space of function on
the ends modulo constant functions (see §3 for details).

2.2.1 Poisson Boundary

There is also a strong connection between �p-cohomology in degree one and
harmonic functions. This particular topic will be explained in more details in §4.

The short version is that (if the isoperimetric dimension of the graph is large
enough then) a function with a non-trivial cohomology class gives rise to a non-
constant bounded harmonic function. This is easier to see in the case p = 2, but it
extends to other p �= 2 (if the isoperimetric dimension is large enough).

This is interesting since the Poisson boundary (which can be roughly thought of
as the space of bounded harmonic function) is not an invariant of quasi-isometry
(see, for example, T. Lyons’ examples [39]). Namely, there are quasi-isometric
graphs one of which has many non-constant bounded harmonic functions, while
the other has none.

Theorem 2.1 can be invoked to show that the �p-cohomology in degree one gives
rise to a part of the Poisson boundary which is invariant under quasi-isometries.

2.2.2 Boundary of Hyperbolic Spaces

There are also applications of �p-cohomology to the boundary of hyperbolic spaces,
more precisely to problems which are related to the famous

Conjecture 2.2 (J. Cannon) Let Γ be a hyperbolic group whose ideal boundary
is a 2-sphere. Then Γ is virtually a cocompact lattice in PSL(2,C).

Using a result of Keith & Laakso [34, Corollary 1.0.3], Bonk & Kleiner [2] were
able to show that if Γ is a hyperbolic group whose ideal boundary is a 2-sphere
and the conformal dimension is achieved by some metric, then Γ is virtually a
cocompact lattice in PSL(2,C).

Further results by Bourdon & Pajot [7] show that, for hyperbolic spaces, one can
define a Lp-dimension as the infimum over all p for which �pH 1 is non-trivial. It
turns out that the Lp-dimension coincides with the conformal dimension if there is
a metric which achieves the conformal dimension.

Bourdon & Pajot [7] gave examples where these dimensions do not coincide,
hence one cannot expect that the strategy from Bonk & Kleiner [2] works out of the
box. On the positive side, there has been further work (using �p-cohomology) by
Bourdon & Kleiner [4] which covers the case of Coxeter groups.

For a proof that any hyperbolic space has a non-trivial �p-cohomology in degree
one starting at some p0 see either Bourdon & Pajot [7], Élek [15] or Puls [54].

M. Bourdon pointed out to the author a very interesting point (see also [3,
§2.4.1]). A result of Puls [54, Theorem 1.3] shows that if a group has a non-trivial
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Floyd boundary for a Floyd function φ(g) = a−d(e,g) (where a > 1), then its
[reduced] �p-cohomology will be non-trivial for all p such that φ ∈ �p(G). A
careful reading of the construction of Gerasimov [18] shows that relatively hyper-
bolic groups will have non-trivial Floyd boundaries satisfying these conditions.
Consequently, their reduced �p cohomology is non-trivial for all p larger than some
p0.

On the other hand, D. Osin pointed out to the author that some acylindrically
hyperbolic groups have a trivial �p-cohomology for all p ∈ [1,∞[ (these are right-
angled Artin groups corresponding to the graph •–•–•–•–•).

Pansu [44] showed that among continuous Lie groups, having non-trivial reduced
�p-cohomology is equivalent to hyperbolicity. This extends to algebraic groups over
local fields of characteristic 0 by a result of de Cornulier & Tessera [13].

Lastly, Bourdon & Pajot [7, §3, Proposition 4.1 and the following Remarques]
also showed that for p larger than the conformal dimension of the boundary,
functions with �p-gradient, when extended to the boundary of [Gromov] hyperbolic
spaces, can separate points of its boundary. In fact, they show that (non-trivial)
Lipschitz functions on the boundary give rise to (non-trivial) classes in �p-
cohomology. Bourdon & Kleiner [5, Theorem 3.8(1)] showed that if p is strictly
smaller than the conformal boundary, then extensions of �p classes no longer
separate points.

2.2.3 “Nonlinear” Boundaries

Reduced �p-cohomology (in degree one) is very strongly related to p-harmonic
functions. When p = 2, this is the same as harmonic functions, but for p �= 2 these
are a nonlinear variation of the harmonic equation.

When p is an integer, p-harmonic functions come up naturally when studying
a relaxation of conformal maps (called quasi-regular maps). Given two manifolds
M and N of dimension p, a map f : M → N is called quasi-regular if there is a
constant C so that ‖df ‖p ≤ C| det df |.

When g : N → R is a function, the p-Laplacian is Δp = div(|∇g|p−2∇g)

and p-harmonic functions are functions whose p-Laplacian is 0. A quasi-regular
map will allow to pull-back [non-constant] p-harmonic functions, so the existence
or absence of [non-constant] p-harmonic functions can be used as obstruction to the
existence of quasi-regular maps.

In addition to quasi-regular maps, there are also interesting limiting cases for the
p-harmonic equation: when p → 1 this is related to the mean curvature operator
and when p → ∞ to Lipschitz extensions.

In the setting of graphs there are two things which might be unclear:

(1) what is the divergence? see §4.
(2) what is a quasi-regular map? see either Benjamini, Schramm & Timàr [10, §1.1]

or §2.4.
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Furthermore, much like harmonic functions can be used to construct a Royden
boundary and a harmonic boundary, p-harmonic functions can be used to construct
a p-Royden boundary and a p-harmonic boundary. For the definitions see Puls
[55, §2.1]. These boundaries are spaces constructed with the help of the Gelfand
transform which can be associated with the classes of the reduced �p-cohomology
in degree one. See paragraph after Lemma 4.7 for details.

The relation between reduced �p-cohomology in degree one and p-harmonic
function is fairly straightforward (see Puls [53] or Martin & Valette [40] for details).
Basically, given f ∈ DP (Γ ), one can try to search for the element which belongs
to the same equivalence class as f but whose norm is minimal. For p ∈]1,∞[
such an element will exist by convexity of the norm. Furthermore, for all g of finite
support on the edges d

dt ‖∇f+t∇g‖p�p(E)

∣∣
t=0 = 0 (by minimality of the norm of this

element). Massaging this last equation (and the fact that g is an arbitrary function of
finite support) will show that f is p-harmonic.

Other known consequences of the triviality of the reduced �p-cohomology in
degree one include the triviality of the p-capacity between finite sets and ∞ (see
Yamasaki [62] and Puls [55, Corollary 2.3]) and existence of continuous translation
invariant linear functionals on Dp(Γ )/R (see [55, §8]).

2.3 Representation Theory

For infinite groups it is often interesting to look at their representation on infinite
dimensional space. For example, Property (T) is defined using the topology on the
space of unitary representations in Hilbert spaces. It can also be expressed as a
condition on the first cohomology of these representations.

It turns out that �p-cohomology in degree one (of some Cayley graph of a
finitely generated group) is the same thing as the first cohomology of the regular
representation (in �p), see Martin & Valette [40] or Puls [52]. There is also a nice
text from Bourdon [3] on the topic (isometric actions on Banach space are equivalent
to cohomology linear representations).

Though it might seem a very particular case, it turns out this has a direct and
indirect application to Hilbertian representations. The direct application is that
triviality of the reduced �p-cohomology in degree one implies that the reduced first
cohomology of any unitary representation with coefficients in �p is trivial. (The
coefficients of a unitary representation π are the functions κ(γ ) := 〈πγ ξ | ξ ′〉
where ξ, ξ ′ are elements of the Hilbert space.)

The indirect application is that techniques that are useful to show the vanishing
(or non-triviality) of �p-cohomology may also be applied for unitary representa-
tions. See [24] for more details.
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2.4 Sphere Packings

A last nice application of reduced �p-cohomology in degree one is to sphere
packings of graphs. Circle packings are a lovely topic which the reader should
definitively try to read a survey about (for example, Stephenson [58] and Rohde
[56]). The question of realising a graph as the contact graph of some spheres (of
varying radius) is a natural generalisation of the circle case.

In fact, one can even relax the hypothesis significantly by requiring that the
spheres be some (contractible) domains whose ratio outer radius

inner radius is bounded by some
constant. With this relaxation, every finite graph can be realised as a contact graph
(although the bound on the ratio might get large). But is that true for infinite graphs?

Benjamini & Schramm explore this question in [9] and show that [non-constant]
p-harmonic functions can be an obstruction to such packings. Since non-triviality
of the reduced �p-cohomology in degree one is equivalent to the existence of
non-constant p-harmonic functions, this gives yet another application of �p-
cohomology.

This topic has been developed further by Pansu in [49].

3 �1-Cohomology and the Ends

One of the apparent features of Examples 1.3 and 1.4 is that cutting the graph in two
infinite components by removing an edge helps a lot to find non-trivial elements of
�pH 1.

This feature will be heavily supported in this section as we show that:

1. a function in D1(Γ ) can be assigned a value on each end of the graph (see below
for the definition of the ends of a graph).

2. the function is trivial in reduced �1-cohomology in degree one if and only if it
takes the same value on all the ends.

The ends of a graph are the infinite components of a group which cannot be
separated by a finite (i.e. compact) set. More precisely, an end ξ is a function from
finite sets to infinite connected components of their complement so that ξ(F ) ∩
ξ(F ′) �= ∅ (for any F and F ′). It may also be seen as an equivalence class of
(infinite) rays who eventually leave any finite set. Two rays r and r ′ are equivalent
if, for any finite set F , the infinite part of r and r ′ lie in the same (infinite) connected
component.

Thanks to Stallings’ theorem, groups with infinitely many ends contain an (non-
trivial) amalgamated product or a (non-trivial) HNN extension. Being without ends
is equivalent to being finite, and amenable groups may not have infinitely many
ends. This may be seen using Stallings’ theorem, see also Moon & Valette [41] for
a direct proof.
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Here is an idea of the proof. Assume there are 3 ends or more, that is upon
removing the finite set F , there remains [at least] 3 infinite components, say K1, K2
and K3. By vertex-transitivity, it may be assumed that the identity element belongs
to F . Let c = max

f∈F d(e, f ) where d(e, ·) is the distance to the identity element. Pick

elements hi ∈ Ki so that d(e, ki) > 2c. Then it is not too hard to check that the
set Fhi (the groups acts on the right by graph automorphism) disconnects Ki in [at
least] two infinite components. The technical part comes in when you need to show
that Fhihj (for i �= j ) further disconnects those components. It then follows that
the subgroup generated by 〈h1, h2, h3〉 is isomorphic to a free product H1 ∗H2 ∗H3
where Hi = 〈hi〉 is cyclic (finite or infinite). This then implies the group contains a
free subgroup and, hence, is not amenable.

Groups with two ends admit Z as a finite index subgroup. These groups are
peculiar, as they have non-trivial reduced �1-cohomology in degree 1, even if their
reduced �p-cohomology (in all degrees) vanishes for 1 < p < ∞.

So outside virtually-Z groups, all infinite amenable groups have one end.
Before moving on, let me mention that the results of this section were first written

up in [21, Appendix A]. This result was partially remarked by Pansu (essentially,
case where there is one end). As mentioned in Example 1.3, the special case of the
group Z was written down in Martin & Valette [40, Example 3 in §4], who learned
it from M. Bourdon (like the author, a former student of Pansu). So the case with
two ends was already known to Bourdon. There is only a small step to make to the
general case, so that the author is uncertain if he deserves any credit there.

Proposition 3.1 Let Γ be a connected graph, then �1H
1
(Γ ) = 0 if and only if

the number of ends of Γ is ≤ 1. More precisely, let = R
ends(Γ )/R be the vector

space of functions on ends modulo constants. There is a boundary value map β :
D1(Γ ) → such that β(g) = β(h) ⇐⇒ [g] = [h] ∈ �1H

1
(Γ ).

Note that the isomorphism β between �1H
1
(Γ ) and R

ends(Γ )/R is in the category
of vector spaces, not of normed vector spaces. In a few cases, the norm on
resembles the norm of the quotient �∞(|ends|)/R (see Question 5.1). The proof
is barely different from the argument of M. Bourdon found in Martin & Valette [40,
Example 3 in §4].

Proof Note that D1(Γ ) ⊂ �∞(X): if g ∈ D1(Γ ), then, for P a path from x to y,

|g(y)| = |g(x)+
∑

e∈P
g(e)| ≤ |g(x)| + ‖∇g‖�1(E).

In fact, ‖g‖�∞(X) ≤ ‖g‖D1(Γ )
+ inf

x∈X |g(x)|. Since functions in �1 decrease at ∞, if

one removes a large enough finite set, the function g on the resulting graph is almost
constant. In particular, it is possible to define a value of g on each end: let Bn be the
ball of radius n at some fixed vertex (root) o, then
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βg(ξ) := lim
n→∞ g(xn) where xn ∈ ξ(Bn).

Alternatively, if r : Z≥0 → X is a ray representing the end ξ , then the value at ξ
can also be defined as lim

n→∞ g
(
r(n)

)
. It is fairly straightforward to check these limits

do not depend on the choice (of xn and o or of the ray r).
Fix an end ξ0. Then, define β : D1(Γ ) → by changing with a constant the

value of g to be 0 at ξ0 and then looking at the values at the ends. This map is
continuous and trivial on �1(X) + R (since functions in �1(X) have trivial value at

the ends). By continuity, �1(X)+ R
D1(Γ ) ⊂ kerβ.

Assume, β(f ) = 0, this means that, ∀ε > 0, ∃Xε ⊂ X a finite set such that
f (Xc

ε ) ⊂ [−ε, ε]. Set

fε(γ ) =
{
εf (γ )/|f (γ )| if |f (γ )| > ε,

f (γ ) otherwise.

Then gε := f −fε is finitely supported, so in �1(X). Furthermore, ‖f −gε‖D1(Γ )
=

‖fε‖D1(Γ )
.

Let Xε be as before, then

∇fε is

⎧
⎨

⎩

equal to ∇f on E ∩ (Xc
ε ×Xc

ε ),

smaller in | · | than ∇f on ∂Xε,

0 on E ∩ (Xε ×Xε).

But E ∩ (Xε × Xε) increases, as ε → 0, to the whole of E. More importantly, the
�1-norm of ∇f outside this set tends to 0. Thus ‖fε‖D1(Γ )

→ 0 as ε → 0, and
consequently gε → f as ε → 0. Since gε are finitely supported, they belongs to

�1(X). This shows that f ∈ �1(X)
D1(Γ )

. $%
Groups with two ends step strangely out of the crowd: although their reduced
�p-cohomology is always trivial if p > 1, it is non-trivial for p = 1 (actually
isomorphic to the base field). An amusing corollary is

Corollary 3.2 Let G be a finitely generated group. G has infinitely many ends if
and only if for some (and hence all) Cayley graph Γ , ∀p ∈ [1,∞[, �pH 1(Γ ) �= 0.
G has two ends if and only if for some (and hence all) Cayley graph Γ , ∀p ∈
]1,∞[, �pH 1(Γ ) = 0 but �1H

1
(Γ ) = R.

Proof Use Proposition 3.1 for reduced �1-cohomology, use any vanishing theorem
on groups of polynomial growth (such groups have an infinite centre, so see
Proposition 1.5, Kappos [32] or Tessera [59]) to get the remaining values of p for
groups with two ends.

Theorem 4.10 (which we have not discussed yet) will give the conclusion for
groups with infinitely many ends (which are in particular non-amenable). $%
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It is worth noting that Bekka & Valette showed in [1, Lemma 2, p.316] that (for
G discrete) the cohomology H 1(G,CG) is also isomorphic (as a vector space)
to . Furthermore, by [1, Proposition 1], there is an embedding H 1(G,CG) ↪→
�1H 1(G). A careful reading would probably reveal this remains injective in reduced
cohomology (the only case to check is when G has two ends).

4 �p-Cohomology and Harmonic Functions

In §3, we dealt with one of the apparent features of Examples 1.3 and 1.4. Another
feature which is present in those examples as well as the previous section is that it
is very useful to think in terms of values at infinity.

However, for functions with gradient in �p with p > 1 this is somewhat counter
intuitive. Indeed, the reader can quickly come up with a function on the graph of
the line (a Cayley graph of Z) which grows to ∞ even though its gradient is in �2.
Nevertheless, this obstacle can be overcome.

The main motivation in this section is to show that the reduced �p-cohomology
in degree one can be seen as a space of function on an ideal boundary, namely the
Poisson boundary. The oldest result in this direction is a theorem of Lohoué [37]
which says that in a non-amenable graph there is exactly one harmonic function in
each equivalence class of �pH 1(Γ ). The results presented in this section come from
[21], with some simplifications in the presentation coming mostly from [24].

In contrast to the result of Lohoué [37], the amenable case is trickier, so this result
can only be generalised to some extent. To say how, some preliminary definitions
are required.

Isoperimetric profiles. For F ⊂ X a subset of the vertices, recall that ∂F is set
of edges between F and F c. Let d ∈ R≥1. Then, a graph Γ has

ISd if there is a κ > 0 such that for all finite F ⊂ X, |F |(d−1)/d ≤ κ|∂F |;
ISω if there is a κ > 0 such that for all finite F ⊂ X, |F | ≤ κ|∂F |.

Quasi-homogeneous graphs with a certain (uniformly bounded below) volume
growth in nd will satisfy these isoperimetric profiles, see Woess’ book [61, (4.18)
Theorem].

A Cayley graph will satisfy ISd (for any d ≤ δ) if the growth of balls in this
Cayley graph is bounded below by Knδ (for some K > 0). A Cayley graph will not
satisfy ISd (for any d > δ) if the growth of balls in this Cayley graph is bounded
above by K ′nδ (for some K ′ > 0).

Using Gromov’s theorem on groups of polynomial growth [27], that the only
groups which do not satisfy ISd for all d are virtually nilpotent groups.

Cayley graphs of a group G does not satisfy ISω if and only if G is amenable.
(There are many amenable groups which are not virtually nilpotent.) The upcoming
result will apply best to groups which are not virtually nilpotent. See [61, §14] for
more details.
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Values at infinity. It is difficult to speak of a value at infinity, since it is not clear
with what we can identify infinity (yet). However it is easy to say if a function is
constant at infinity. This means that it belongs to R+ c0(X), i.e. a constant function
plus an element of c0(X).

More precisely, let Bn be a sequence of balls in the graph with the same centre
and Bc

n the sequence of their complement. On a connected graph, a function f :
X → R is constant at infinity if ∃c ∈ R so that ∀ε > 0, ∃nε satisfying f (Bc

nε
) ⊂

[c − ε, c + ε].
Harmonic functions. A function f : X → R is harmonic if it satisfies the

mean-value property: for any vertex x ∈ X,
∑

y∈N(x)

(
f (y)−f (x)

) = 0 (where N(x)

denotes the neighbours of x).
Let us define the following spaces of harmonic functions:

• H (Γ ) is the space of harmonic functions.
• HDp(Γ ) = H (Γ )∩Dp(Γ ) is the space of harmonic functions whose gradient

is in �p.
• BHDp(Γ ) = �∞(X) ∩ H (Γ ) ∩ Dp(Γ ) is the space of bounded harmonic

functions whose gradient is in �p.

Divergence. There is another way to define harmonic functions by introducing
the divergence. For two finitely supported function f and g on a countable set Y ,
define the pairing 〈f | g〉Y = ∑

y∈Y f (y)g(y). (The subscript Y will often be
dropped.) This allows to define the adjoint of the gradient ∇, denoted ∇∗ and called
divergence, by 〈f | ∇g〉E = 〈∇∗f | g〉X. More precisely, for f : E → R, one
finds

∇∗f (x) =
∑

y∈N(x)

f (y, x)−
∑

y∈N(x)

f (x, y).

In particular

∇∗∇f (x) = 2
∑

y∈N(x)

(
f (y)− f (x)

)
.

Thus, harmonic functions are exactly the functions for which the divergence of the
gradient is trivial.

Four conditions. Define for p ≥ 1:

(1p) The reduced �p-cohomology in degree one vanishes (for short, �pH 1 = {0}).
(2p) All functions in Dp(G) take only one value at infinity.
(3p) There are no non-constant functions in HDp(G).
(4p) There are no non-constant functions in BHDp(G).

For the record, note that (11) ⇐⇒ (21) ⇐⇒ the number of ends is ≤ 1 (see
Proposition 3.1 above).

Here is the best known to date extension of Lohoué’s result [37].
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Theorem 4.1 Assume a graph Γ is of bounded valency and has ISd . For 1 < p <

d/2, (1p) ⇐⇒ (2p) "⇒ (3p) "⇒ (4p) and, for q ≥ dp
d−2p , (4q) "⇒ (1p).

If Γ has ISd for all d, then “∀p ∈]1,∞[, (ip) holds” where i ∈ {1, 2, 3, 4} are
four equivalent conditions.

The proof is split as follows: (1p) ⇐⇒ (2p) is the content of §4.2 (see
Corollary 4.9). (2p) "⇒ (3p) is a fairly easy consequence of the maximum
principle (see Lemma 4.12). (3p) "⇒ (4p) is obvious (since BHDp(Γ ) ⊂
HDp(Γ )). (4p) "⇒ (1q) is the bulk of §4.3 (see Theorem 4.14).

4.1 Reduction to Bounded Functions

Now the first step in order to associate a value at infinity to any function in Dp(Γ )

is to show that one can restrict to bounded functions.
This is basically the content of Lemma 4.4 from Holopainen & Soardi [30]. The

Lemma is there stated in terms of p-harmonic functions, but its proof can be adapted
without much difficulty.

We will use [f ] ∈ �pH 1(Γ ) to denote the equivalence class of the function f ,

i.e. the closure of f + �p(X) in Dp-norm (or f + �p(X)
Dp

).

Lemma 4.2 (Holopainen & Soardi [30], 1994) Let g ∈ Dp(Γ ) be such that g /∈
[0] ∈ �pH 1(Γ ). For t ∈ R>0, let gt be defined as

gt (x) =
{
g(x) if |g(x)| < t,

t
g(x)
|g(x)| if |g(x)| ≥ t.

Then there exists t0 such that gt /∈ [0], for any t > t0.
In particular, the reduced �p cohomology is trivial if and only if all bounded

functions in Dp(Γ ) have trivial classes.

Proof The proof goes essentially as in Proposition 3.1. Assume without loss of
generality that g(o) = 0 for some preferred vertex (i.e. root) o ∈ X. Since
‖∇g‖�∞(E) ≤ ‖∇g‖�p(E) =: K , given x ∈ X and P a path from o to x,

|g(x)| = |g(x)− g(o)| =
∑

e∈P :o→x

∇g(e) ≤ d(o, x)‖∇g‖�p(E).

In particular, gt is identical to g on Bt/K . Hence ‖g − gt‖Dp(Γ ) ≤ ‖∇g‖�p(Bc
t/K ),

where �p(Bc
t/K) denotes the �p-norm restricted to edges which are not inside Bt/K .

Because ∇g ∈ �p(E), ‖∇g‖�p(Bc
t/K ) tends to 0, as t tends to ∞.

Now if there is an infinite sequence tn such that gtn are in [0] and tn → ∞, then
gtn is a sequence of functions in [0] which tends (in Dp-norm) to g. This implies
g ∈ [0], a contradiction. Hence, for some t0, gt /∈ [0] given that t > t0. $%
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4.2 Values at Infinity

The aim of the current subsection is to show that (if the proper isoperimetric profile
is present) functions in Dp(Γ ) corresponding to the trivial class are exactly those
which are constant at infinity. Some concepts from nonlinear potential theory will
also come in handy.

Definition 4.3 Let (X,E) be an infinite connected graph. The inverse p-capacity
of a vertex x ∈ X is

icpp(x) :=
(

inf{‖∇f ‖�pE | f : X → C is finitely supported and f (x) = 1})−1
.

The graph is called p-parabolic if icpp(x) = +∞ for some x ∈ X. A graph is
called p-hyperbolic if it is not p-parabolic.

One might also like to call the inverse p-capacity the “p-resistance to ∞”. (When
p = 2 capacity and resistance are strongly related.)

Recall (see Holopainen [29], Puls [55] or Yamasaki [62]) that if icpp(x0) = 0
for some x0, then icpp(x) = 0 for all x ∈ X. Recall also that 2-parabolicity is
equivalent to recurrence.

Remark 4.4

1. If the graph Γ is vertex-transitive, icpp(x) = icpp(y) for all x, y ∈ X.
Let icpp(Γ ) := icpp(x) be this constant. It is also easy to see that if the
automorphism group acts co-compactly on the graph, the inverse p-capacity is
bounded from below.

2. Note that in the definition of p-capacity, one may also assume that the functions
take value only in R≥0. Indeed, looking at |f | instead of f reduces the norm
of the gradient. Likewise, one can even assume f takes value only in [0, 1] as
truncating f at values larger than 1 will again reduce the norm of the gradient. ♦

The following proposition is an adaptation of a result of Keller, Lenz, Schmidt &
Wojchiechowski [35, Theorem 2.1].

Proposition 4.5 Assume Γ is vertex-transitive and has ISd . Let p < d. If f ∈
Dp(Γ ) represents a trivial class in �pH 1(Γ ), then f is constant at infinity.
Furthermore, c0(X) ⊂ Dp(Γ ) and ∀f ∈ c0(X), ‖f ‖�∞(X) ≤ icpp(Γ )‖∇f ‖�p(E).

Proof A consequence of the Sobolev embedding corresponding to ISd is that the
graph is p-hyperbolic. See Troyanov [60, §7] as well as Woess’ book [61, §4 and
§14] and references therein for details.

As Γ is p-hyperbolic and by Remark 4.4.2, one has ∀f of finite support |f (x)| ≤
icpp(x)‖∇f ‖p. However, by Remark 4.4.1, there is no dependence on x on the
right-hand side. So ∀x ∈ G,∀f of finite support |f (x)| ≤ icpp‖∇f ‖p where icpp

is icpp(Γ ). Trivially this implies

∀f : G → C of finite support ‖f ‖∞ ≤ icpp‖∇f ‖p.
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As a first consequence, assume fn
Dp

→ f with fn finitely supported. Then fn also
converge to f in �∞(X). Since c0(X) is the closure of finitely supported functions

in �∞(X), this shows that f ∈ �p(X)
Dp

implies f ∈ c0(X). In other words, if f

represents a trivial class in reduced �p-cohomology, then f is constant at infinity.
As a second consequence, let us show the “Furthermore”. Pick some f ∈ c0(X).

Apply the inequality to gε = f − fε where fε is the truncation of f :

fε(x) =
{
εf (x)/|f (x)| if |f (x)| > ε

f (x) else.

Indeed, gε is finitely supported so it satisfies ‖gε‖∞ ≤ icpp‖∇gε‖p (recall that
icpp = icpp(Γ )). Also ‖∇gε‖p ≤ ‖∇f ‖p and ‖f ‖∞ ≤ ε + ‖gε‖∞. Hence
‖f ‖∞ ≤ ε + icpp‖∇f ‖p and the conclusion follows by letting ε → 0. $%
The above proposition gives the following very nice characterisation of functions
corresponding to the trivial class.

Corollary 4.6 Assume Γ is vertex-transitive and has ISd . Let d > p. f ∈ Dp(Γ )

represents a trivial class in �pH 1(Γ ) if and only if f is constant at infinity.

Proof Without loss of generality the constant at infinity is 0 (because one may add a
constant function to f ). Considering again gε = f − fε (where fε is the truncation

of f as in Lemma 4.2 and Proposition 4.5), one can check that, as ε → 0, gε
Dp

→ f .
Since gε is finitely supported, it is in �p(X) (and this concludes the proof). $%

The above results are very nice, but they do require a fairly strong hypothesis,
namely that the graph is vertex-transitive. If the isoperimetric profile is good enough,
this can be remedied.

As in Keller, Lenz, Schmidt & Wojchiechowski [35], say that the graph Γ is
uniformly p-hyperbolic if icpp(Γ ) := sup

x∈X
icpp(x) is finite. One can show:

Lemma 4.7 If Γ is a graph of bounded valency with d-dimensional isoperimetry
and d > 2p, then Γ is uniformly p-hyperbolic.

Proof First, recall that d-dimensional isoperimetry implies that the Green’s kernel
(ko := ∑

n≥0 Pn
o where Pn

o is the random walk distribution at times n starting at
the vertex o) has an �q(X)-norm (for some q < p′ = p

p−1 ) which is bounded
independently from o.

Indeed, d-dimensional isoperimetry implies that ‖Pn
o ‖∞ ≤ κn−d/2 (where

κ ∈ R comes from the constant in the isoperimetric profile; see Woess’ book [61,
(14.5) Corollary] for details). From there, one gets that ‖Pn

o ‖qq ≤ ‖Pn
o ‖q−1

q ‖Pn
o ‖1 ≤

κq−1n−d(q−1)/2. This implies that ‖ko‖q ≤ ∑
n≥0 κ1/q ′n−d/2q ′ (a series which

converges if d > 2q ′).
Second, let f be a finitely supported function with f (o) = 1, then

〈∇f | ∇ko〉 = 〈f | ∇∗∇ko〉 = 〈f | δo〉 = f (o) = 1.
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Since ‖∇f ‖p ≥ ‖∇ko‖−1
p′ 〈∇f | ∇ko〉, ‖∇ko‖p′ ≤ 2ν‖ko‖p′ ≤ 2ν‖ko‖q = 2νκ−1

q

(where ν is the maximal valency of a vertex) and there is no dependence in o, this
means that icpp(Γ ) ≤ κq/2ν.

Noting that, for the above, the conditions q ≤ p′ and 2q ′ < d need to hold, one
gets that the bound holds as long as 2p < d. $%
Remark 4.8 Pansu pointed out the following shortcut. The Sobolev (or Nash)
inequality corresponding to ISd and the exponent p is actually: for any finitely
supported function f and all p < d, ‖f ‖ pd

d−p
≤ K‖∇f ‖p (where K depends only

on the constant in the isoperimetric profile and p). Consequently, inf{‖∇f ‖�pE |
f : X → C is finitely supported and f (x) = 1} ≥ 1

K
. Hence icpp(x) ≤ K for any

x. So the graph is uniformly hyperbolic for any p < d. ♦
An amusing corollary is that, most of the time (i.e. if the isoperimetric dimension

of the graph is large enough), the p-Royden and p-harmonic boundaries are equal.
See [24, Corollary 5.10]. However, for our current purpose, only the corollary will
be required.

Corollary 4.9 Assume Γ has ISd and that d > p. Then f ∈ Dp(Γ ) represents a
trivial class in �pH 1(Γ ) if and only if f is constant at infinity.

The proof is essentially the same as Proposition 4.5 and Corollary 4.6 above.
There are two very useful consequences of this result.
Note that for q < p, Dq(Γ ) ⊂ Dp(Γ ). This means that the identity map

�qH 1(Γ ) → �pH 1(Γ ) is a quotient map (since one quotients out by a larger
subspace in �pH 1(Γ )).

Theorem 4.10 Assume Γ has ISd and that d > p. Then, for 1 ≤ q < p, the
natural quotient map �qH 1(Γ ) → �pH 1(Γ ) is injective.

Proof According to Corollary 4.9 (or Proposition 3.1 if q = 1), if there is a function
f ∈ Dq(Γ ) such that [f ] �= 0 ∈ �qH 1(Γ ), then f is not constant at ∞. But since
f is not constant at infinity, Corollary 4.9 implies that f is not in the trivial class in
�pH 1(Γ ) too. Consequently, the map is injective. $%
This is very effective in the realm of groups since:

• either the group is nilpotent, and in that case Proposition 1.5 shows that �pH 1(Γ )

is trivial for any p ∈]1,∞[.
• or the group is not nilpotent, and in that case it has ISd for any d ≥ 1. Hence

�qH 1(Γ ) → �pH 1(Γ ) is injective for any 1 ≤ q < p.

This also shows that for any amenable group and for all p ∈]1, 2], �pH 1(Γ )

is trivial. Indeed, Cheeger & Gromov [12] showed that �2H
1
(Γ ) is trivial for any

amenable group.
Theorem 4.10 is also counter intuitive if one thinks in terms of p-harmonic

functions. Indeed, there is a priori no reason to believe that the absence of non-
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constant p-harmonic function implies the absence of non-constant q-harmonic
function. These are different nonlinear equations.

Another powerful consequence of this result is

Theorem 4.11 Assume Γ has a spanning connected subgraph Γ ′ such that: Γ ′
has ISd and �pH 1(Γ ′) is trivial for some p < d. Then �pH 1(Γ ) is trivial for any
q ≤ p.

Proof It follows from the definition of ISd that Γ has ISd too. Take any f ∈ Dq(Γ ).
Then f ∈ Dp(Γ ′) too (since q ≤ p and there are less edges in Γ ′ so the norm of
the gradient can only be smaller). By Corollary 4.9 (applied to Γ ′), f is constant
at infinity. But then Corollary 4.9 (applied to Γ ) tells us that f must have a trivial
class in �qH 1(Γ ). $%
There are many applications of this simple fact. It can be used to show that many
wreath products and Cartesian products of graph have trivial �pH 1 for all p ∈
[1,∞[. In fact, the Cartesian product of any two groups G = G1 × G2 has trivial
�pH 1 for all p ∈ [1,∞[. See [22] for details.

4.3 Harmonic Functions

Harmonic functions come naturally into play not only because of the result of
Lohoué [37]. Because of the maximum principle, a harmonic function which is
constant at infinity is constant. Hence

Lemma 4.12 Assume Γ has ISd . Assume either that

• Γ is vertex-transitive and d > p.
• or d > 2p.

IfHDp(Γ ) contains a non-constant harmonic function then �pH 1(Γ ) is not trivial.

The reverse implication is essentially a question of Pansu [46, Question 6 in §1.9]
(Pansu restricts the question to groups which are not nilpotent). A short answer (and
the best to date) is “almost yes, because we lose a bit of regularity”:

Lemma 4.13 Let Γ be a graph with ISd and 1 ≤ p < d/2. For any g ∈ Dp(Γ ),
there is a function g̃ such that:

• g̃ is harmonic.
• g̃ is bounded if g is.
• g̃ − g ∈ �r(X) for any r >

dp
d−2p .

Proof It turns out g̃ is in the most obvious function which could fit the bill. Indeed,
given g one can make it “more harmonic” by replacing the value at a vertex by the
average if its values at neighbouring vertices. Since harmonic functions are exactly
those which have the mean-value property, repeating this process infinitely many
times, one finds the desired function g̃.
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So, let R be the random walk operator, i.e. given a function g : X → R,
Rg(x) =

∑

y∈N(x)

g(y) (where N(x) are the neighbours of x). We want to show that

g̃ = lim
n→∞Rng is a well-defined function with all the above properties. Actually the

two first properties are essentially automatic (if the limit converges even just in the
point-wise sense).

The operator R and its iterations Rn are given by very simple kernels. Recall that
Pn
x (y) is the probability that a simple random walk from x lands at y after n steps.

Then Rng(x) =
∑

y∈X
Pn
x (y)g(y).

Write:

g̃ − g = lim
n→∞Rng − g =

∑

i≥0

(Ri+1g − Rig) =
∑

i≥0

Ri(R − Id)g,

where Id is the identity operator. Let h = (R− Id)g, then h(x) is a finite average of
values of the gradient of g. Since g ∈ Dp(Γ ) then h ∈ �p(X). In fact ‖h‖�p(X) ≤
2‖∇g‖�p(E).

Since Ri are operators defined by a kernel one may use Young’s inequality (see
e.g. Sogge’s book [57, Theorem 0.3.1]): for r > p and 1 + 1

r
= 1

p
+ 1

q
,

‖g̃ − g‖�r (X) =
∥∥∥
(∑

i≥0

Ri
)
h

∥∥∥
�r (X)

≤ sup
x∈X

∥∥∥
∑

i≥0

P i
x

∥∥∥
�q (X)

‖h‖�p(X)

≤ 2 sup
x∈X

∥∥∥
∑

i≥0

P i
x

∥∥∥
�q (X)

‖∇g‖�p(E).

We are done if one can show that sup
x∈X

‖
∑

i≥0

P i
x‖�q (X) < +∞ for all q ′ < d/2.

Indeed this would mean that g̃ − g ∈ �r(X) (for all r >
dp

d−2p ). This shows the
convergence (and existence of g̃) and concludes the proof.

Fortunately, there are very good estimates at hand for ‖P i
x‖�q(X), which rely only

on isoperimetric profiles (see proof of Lemma 4.7). Indeed, if Γ has ISd , then

∃K > 0, ∀x, y ∈ X, Pn
x (y) ≤ Kn−d/2.

Obviously ‖Pn
x ‖�1(X) = 1 (because it is a probability distribution). By Hölder’s

inequality,

‖Pn
x ‖�q (X) ≤ ‖Pn

x ‖1/q
�1(X)

‖Pn
x ‖1/q ′

�∞(X).

Hence ‖P (n)
x ‖�q (X) ≤ K ′n−d/2q ′ uniformly in x, for some K ′ > 0. The condition

d
2q ′ > 1 translates as q > d

d−2 . Plunging this in 1 + 1
r
= 1

p
+ 1

q
yields r >

pd
d−2p .

$%
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Theorem 4.14 If Γ has ISd , p < d
2 and q >

dp
d−2p then (4q) "⇒ (1p).

Proof We will show the contrapositive. So assume ¬(1p), i.e. there is f ∈ Dp(Γ )

which is not trivial in �pH 1(Γ ). Then, by Lemma 4.2 one may assume f is actually
bounded (otherwise, consider some truncation of f ). By Corollary 4.9, f is not
constant at infinity. By Lemma 4.13, there is a harmonic bounded function f̃ which
differs from f by an element of �q(X).

Since �q(X) ⊂ c0(X), f̃ is not constant at infinity either and hence not constant.
Lastly, since ∇ : �q(X) → �q(E) is bounded, f̃ ∈ Dq(Γ ).

To sum up f̃ is not constant, bounded, harmonic and its gradient is in �q . So
f ∈ BHDq(Γ ). This shows ¬(4q) as claimed. $%

The most effective application of Theorem 4.14 are the two following corollaries:

Corollary 4.15 Assume a graph has the Liouville property (i.e. there are no non-
constant bounded harmonic functions) and satisfies ISd for some d > 2. Then
�pH 1(Γ ) is trivial for any p < d

2 .

This is again very effective in the realm of groups since one may assume ISd for any
d. Also, there are many amenable groups which are known to have the Liouville
property (in some Cayley graph). Hence the previous corollary covers a lot of
amenable groups (for all p).

Corollary 4.16 Assume Γ has ISd . If �pH
1(Γ ) is not trivial for some p < d

2 , then
any graph quasi-isometric to Γ has a non-trivial Poisson boundary.

As mentioned before, this contrasts with the fact that the triviality of the Poisson
boundary is not invariant under quasi-isometries.

5 Epilogue

5.1 Further Results

Let us summarise some of the results in the realm of groups. It is known that the
reduced �p-cohomology in degree one is trivial in degree 1 for the following groups
(1 < p < ∞):

1. G has an infinite FC-centre (see Kappos [32, Theorem 6.4], Martin & Valette
[40, Theorem 4.3], Puls [52, Theorem 5.3], Tessera [59, Proposition 3] or [20,
Theorem 3.2])

2. G has a finitely supported measure with the Liouville property, i.e. no bounded
μ-harmonic functions (see [21, Theorem 1.2 or Corollary 3.14]). This includes
all polycyclic groups (for such groups, see also Tessera [59])

3. G is a direct product of two infinite finitely generated groups (see [22, Corol-
lary 3]).
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4. G is a wreath product with infinite base group (see [22, Proposition 1] and Martin
& Valette [40, Theorem.(iv)]) unless the base group has infinitely many ends and
the lamp group is amenable. Arguments from Georgakopoulos [17] show that
this also holds for finite lamp groups (even if the base group has infinitely many
ends).

5. G is some specific type of semi-direct product N � H with N not finitely
generated (see [23] for the full hypothesis).

6. Lp-cohomology can be defined for groups which are not endowed with the
discrete topology. Amenable groups can then be non-unimodular. For such
groups results of Tessera show the Lp-cohomology in degree one is trivial, see
[59].

It is also trivial in any amenable group for any 1 < p ≤ 2 (see [21] or Theorem 4.10
above ).

Lastly:

• (see [24, Corollary 1.3]) if G is finitely generated and there is a finitely generated
subgroup K so that (a) either �pH 1(K) is trivial or K has an infinite FC-
centraliser, (b) K has growth at least polynomial of degree d > p, and (c) K

is not contained in an almost-malnormal strict subgroup of G, then �pH 1(G) is
trivial.

• (see [24, Corollary 5.11] or Bourdon, Martin & Valette [6, Theorem 1.1)] for a
weaker version) if K < G is an infinite subgroup and �pH 1(K) = {0}, then
either �pH 1(G) = 0 or there is an almost-malnormal subgroup H � G so that
K < H .

In particular, Baumslag–Solitar groups also have trivial reduced �p-cohomology
for all p ∈ [1,∞[.

These last two can actually be interpreted as a trichotomy (resp. a dichotomy)
which resembles a result of Gaboriau [16, Théorème 6.8] (in the case p = 2).
Gaboriau presents [16, Théorème 6.8] as a generalisation of a result of Schreier
[16, ¶ after Théorème 6.8 in §0]. Gaboriau’s result cannot be generalised to p > 2:
Bourdon in [3, paragraph 4) in §1.6] gives an example to this effect.

As for groups where the �p-cohomology is not trivial:

1. any hyperbolic group or relatively hyperbolic group has a p0 so that �pH 1(G) is
not trivial for any p > p0 (see §2.2.2 for details).

2. there are torsion groups (of infinite exponent) for which �pH 1(G) is not trivial
for all p > 2. These groups have no free subgroups, yet are not amenable. They
do not have a finite presentation. See Osin [42].

However, there are acylindrically hyperbolic groups for which �pH 1 is trivial for all
p ∈ [1,∞[ (see §2.2.2 for details).

As for graphs it is easy to construct graphs which are amenable and have non-
trivial �pH 1. Indeed, take any graph Γ which has ISd for some d > 2 and more

than two ends. By Proposition 3.1, �1H
1
(Γ ) is not trivial. By Theorem 4.10, for

any p ∈ [1, d
2 [, �pH 1(Γ ) is also non-trivial.
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To make the example slightly more specific, take two copies of a Cayley graph of
some group which is amenable but not nilpotent. Join these two copies by an edge.
Then it fits the description of the previous paragraph and has ISd for any d.

5.2 Questions

It was shown in §3 that the reduced �1-cohomology in degree one identifies to the
space of functions on the ends modulo constant functions. This is an isomorphism
of vector space, but the norm on the space of functions is probably related to how
“large” the ends are and how they are connected.

Question 5.1 Describe the norm on the vector space �1H
1
(Γ ) � =

R
ends(Γ )/constants.

A question dating back at least to Gromov [28, §8.A1.(A2), p.226]:

Question 5.2 Let G be an amenable group, is it true that for one (and hence all)
Cayley graph Γ and all 1 < p < ∞, �pH 1(Γ ) = 0?

The original question concerns cohomology in all degrees.
Of course, this brings up the question what should be the cohomology of a graph

in higher degree. The only results (beyond Cheeger & Gromov [12]) are those of
Kappos [32] (in the discrete case) and those of Bourdon & Rémy [8], Pansu &
Rumin [50], and Pansu & Tripaldi [51] (in the continuous case).

One of the problems is that there are many possibilities (and that unlike in
degree one, they do not coincide). The simplest possibility pops up in the case of
groups. One considers the left-regular representation on �p(G). There are standard
definitions to speak of the cohomology of this representation in higher degree.

Another simple definition is in the continuous set-up (i.e. the cohomology of
manifolds). We dealt almost exclusively with the case of graphs, but for manifolds
�p-cohomology in degree k can be defined as “(k − 1)-forms ω so that dω ∈
Lp”/“(k − 1)-forms ω in Lp”.

In the case of graphs (which are not necessarily Cayley graphs), one possibility
(for degree two) is to look at the space of cycles C. There are some technicalities
in finding the reasonable (e.g. countable) basis of this space so as to make it
tractable. For example, in the Cayley graph of a group with a finite presentation,
the presentation gives a good basis for the space of cycles. One can then define the
“rotational” as follows: if c is a[n oriented] cycle given by following the oriented
edges e1, . . ., en and g is a function on the edges, then rotg(c) = ∑

i g(ei).
Assuming the rotational gives a bounded operator (in the case groups, this amounts
to the fact that the presentation is finite), a possibility for the cohomology in degree
two is then given by taking the quotient “functions on the edges with rotational in
�p(C)”/“functions which are in �p(E)”.
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Question 5.3 Given a Cayley graph of a finitely presented amenable group, are the
triviality of both definitions above equivalent? invariant under quasi-isometry? for
which class of groups are they trivial?

Élek [15] showed that the following three definition of �p-cohomology coincide
for groups which possess a finite K(π, 1):

– the coarse �p-cohomology of finitely generated groups defined by Élek himself
in [15];

– the singular �p-cohomology for any countable group defined as the �2-
cohomology from Cheeger & Gromov [12];

– Pansu’s asymptotic Lp-cohomology defined for any measured metric space (see
[45]).

Note that Pansu’s definition can also be used for graphs (in degree two, it should
coincide with the definition given above using the rotational).

Here is a conjecture motivated by Osin [43, Problem 3.3] (do �2H
1
(Γ ) �= 0 and

finite presentation imply acylindrically hyperbolic)

Conjecture 5.4 Assume Γ is a torsion-free finitely presented group. If, for some
p ∈]1,∞[, �pH 1(Γ ) �= {0} then Γ contains a free subgroup (of rank 2).

One could also strengthen the hypothesis to “finite K(Γ, 1)”. Osin [42] showed that
there are (non-amenable) groups without free subgroups (in fact, infinite torsion
groups), whose reduced �2-cohomology in degree one is not trivial.

Note that these groups also show that groups whose �p-cohomology is not trivial
can have a trivial Floyd boundary (a natural question coming from Puls [54]).
Indeed, Karlsson [33] showed that groups with a non-trivial Floyd boundary contain
free subgroups.

The next step for a positive answer to question 5.2 would be:

Question 5.5 If G is a finitely generated solvable group, does �pH 1(G) = {0} for
any 1 < p < ∞?

Already the metabelian (derived length 2) case is not clear. In fact the special
case “locally nilpotent not finitely generated”-by-Abelian would probably suffice
to answer the question.

An interesting strengthening of Question 5.2 is

Question 5.6 Can an amenable group have a Cayley graph with a non-constant
harmonic function with gradient in c0?

The case of nilpotent group (more generally, groups with an infinite centre) is
already treated in [25, Proposition 1.5 and Lemma 2.7].

Note that this is not the same thing as reduced c0-cohomology in degree one. In
fact, it is not too hard to see that reduced c0-cohomology in degree one is always
trivial, while reduced �∞-cohomology in degree one is never trivial.
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As mentioned in Corollary 4.16, �pH 1(Γ ) can be a great way to see that some
harmonic functions may not disappear after a quasi-isometry. However, because
there is a small loss in the exponent in Theorem 4.1, the following remains open:

Question 5.7 Are there two graphs Γ and Γ ′ which are quasi-isometric but so that
HDp(Γ ) contains only the constant function, while HDp(Γ ′) contains more than
just these functions? In other words, is the triviality ofHDp invariant under quasi-
isometries?

The same question could be asked with BHDp (with the chance of a negative answer
being higher).

In a similar vein, one could ask, in the spirit of a question of Pansu [46,
Question 6 in §1.9], whether there is a harmonic function in each equivalence class
of �pH 1(G). The uniqueness up to a constant can be easily obtained: if h1 and
h2 are two such functions, then h1 − h2 is harmonic and belongs to the trivial
class; by Corollary 4.9, h1 − h2 is harmonic and constant at infinity, hence constant
everywhere.

The referee pointed out the following interesting question, related to Corol-
lary 4.16:

Question 5.8 When (i.e. for which groups and which p) can the �p-cohomology
be used to define a boundary of the random walk (i.e. a quotient of the Poisson
boundary)?

In the hyperbolic set-up, this question should admit a positive answer. Indeed,
Bourdon & Pajot [7] showed that when p is larger than the conformal dimension
of the boundary, functions in different cohomology classes can separate points on
the boundary. It is to be expected that the Gromov boundary is a quotient of the
p-harmonic boundary (see Puls [55])

Simple cases of groups which are not hyperbolic but have non-trivial [reduced]
�p-cohomology are groups of the form Z

n ∗ Z
m with n + m ≥ 3 (and m, n > 0).

To see that the �p-cohomology is non-trivial for any p ∈ [1,∞[, note that there are
infinitely many ends and use the embedding of �pH 1 in �qH 1 for p < q; to see that
it is not hyperbolic, use the fact it contains Z2 as a subgroup.

Let me conclude with a technical question:

Question 5.9 If Γ is the Cayley graph of a group, can one relax the condition
p < d

2 in Lemma 4.13 to p < d?

Indeed, Proposition 4.5 shows that the second condition is sufficient. Note that
the condition p < d

2 of Lemma 4.13 comes from the same estimates as those of
Lemma 4.7 (which themselves do not really require p < d

2 , see Remark 4.8).
On the one hand, the proof of Lemma 4.13 uses very crude estimates, so an

improvement seems likely. On the other hand, one really looks for an estimate on
the functions τn ∈ R

E on the edges so that ∇∗τn = δx − Px
n . For p = 2, the

only point where an improvement might occur is to avoid the triangle inequality (as
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τn = ∇(
∑n−1

i=0 P i
x) is the function minimising the �2E-norm). For other p, there

might be more room for improvement.
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Polyharmonic Functions for Finite
Graphs and Markov Chains

Thomas Hirschler and Wolfgang Woess

1 Introduction

In the setting of the classical Laplacian � on a Euclidean domain, or the Laplace-
Beltrami operator on a Riemannian manifold, a polyharmonic function f is one
for which �nf = 0. Their study goes back to work in the 19th century, see,
e.g., ALMANSI [1]. A basic reference is the monograph by ARONSZAJN, CREESE

AND LIPKIN [3]. A more recent one is the volume by GAZZOLA, GRUNAU AND

SWEERS [8], with a nice introduction to classical problems from elasticity where
polyharmonic (in fact biharmonic) functions and �2 come up.

While there is a huge body of literature in the smooth case, the literature in
the discrete setting is quite restricted: an early reference is VORONKOVA [14], who
analysed the discretised version of �2f = 0 in a half-strip [0 ,∞]× [0 , H ]. Other
quite early references are YAMASAKI [16] and KAYANO AND YAMASAKI [10]
who investigated the Green kernel for the bi-Laplacian on an infinite network,
and a follow-up of this is VENKATARAMAN [13]. Biharmonic Laplacians on trees
where also studied by COHEN, COLONNA AND SINGMAN [6, 7], seemingly without
link to [16] and [10]. Prior to that, COHEN, COLONNA, GOWRISANKARAN AND

SINGMAN [5] were the first to undertake a detailed study of polyharmonic functions
on infinite, locally finite trees. In particular, for the standard Laplacian arising
from simple random walk on a regular tree, they provided a boundary integral
representation which is an analogue of Almansi’s expansion of polyharmonic
functions on the unit disk. (To get a flavour of the many close analogies between
the potential theory of the unit disk and regular trees, the reader is invited to the
introductory sections of BOIKO AND WOESS [4].) Recently, PICARDELLO AND
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WOESS [12] extended the study of [5] and proved, among others, a boundary
integral representation of λ-polyharmonic functions (see below for more details) for
arbitrary nearest neighbour transition operators on countable trees, not necessarily
required to be locally finite.

In all this work, finite graphs, resp. Markov chains had only marginal appear-
ances: in [16] for the biharmonic Green function of finite subnetworks of an infinite
network, and in [5] for finite trees and an associated boundary value problem for
biharmonic functions. ANANDAM [2] also studies polyharmonic functions on finite
subtrees of infinite trees.

In the present note, we elaborate a detailed account of the general finite case, in
which the mentioned potential theoretic questions turn into issues of linear algebra
which can be solved rather easily.

The setting. We start with a finite set X, subdivided into the disjoint union of
two non-empty subsets Xo, the interior, and ∂X, the boundary. On X, we consider
a stochastic transition matrix P = (

p(x, y)
)
x,y∈X with the following properties,

where p(n)(x, y) denotes the (x, y)-entry of the matrix power Pn.

(i) For all x ∈ Xo, there is w ∈ ∂X such that p(n)(x,w) > 0 for some n.
(ii) For all w ∈ ∂X, we have p(w,w) = 1, and thus p(w, x) = 0 for all x ∈

X \ {w}.
(iii) For all w ∈ ∂X, there is x ∈ Xo such that p(n)(x,w) > 0 for some n.

Thus, X can be given the structure of a digraph, where we have an oriented
edge x → y when p(x, y) > 0. Then (i) means that the boundary can be reached
from any interior point by an oriented path, (ii) means that each boundary point is
absorbing, i.e., the only outgoing edge is a loop at that point and (iii) means that
every boundary point is active in the sense that it is reached by some oriented path
from an interior point. In probabilistic terms, we have a Markov chain (random
process) on X, whose evolution is governed by P : if the current position is x, then
the next step is from x to y with probability p(x, y).

Example 1.1 The most typical situation is the one where we start with a finite
resistive network, that is, a connected, non-oriented graph (X,E) where each edge
e = [x, y] = [y, x] carries a positive conductance a(e) = a(x, y). Then we
choose our partition X = Xo ∪ ∂X, and we set m(x) =∑

y a(x, y). The transition
probabilities become p(x, y) = a(x, y)/m(x), if x ∈ Xo and y ∈ X, while
p(w,w) = 1 for w ∈ ∂X. This defines a reversible Markov chain which is absorbed
in ∂X, see, e.g., WOESS [15, Ch. 4]. In particular, setting all a(x, y) equal to 1, the
conductances correspond to the adjacency matrix.

The transition matrix P acts on functions (column vectors) f : X → C by

Pf (x) =
∑

y

p(x, y)f (y) ,
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and the (normalised) graph Laplacian is I − P , where I = IX is the identity matrix
over X. It is typically defined on X without assigning a boundary ∂X, but the study
undertaken here makes sense only in presence of absorbing points. Note that the
more direct analogue of the (negative definite) smooth Laplacian would in reality be
P − I . More generally, we shall work with suitable variant of λ · I − P for λ ∈ C.

A λ-harmonic function h : X → C is one for which

Ph(x) = λ h(x) for every x ∈ Xo . (1.2)

When λ = 1, we speak of a harmonic function. When speaking of λ-polyharmonic
functions of order n, we have two possible approaches: one is to look for functions
f : X → C which satisfy

(λ · I − P)nf = 0 on X. (1.3)

These global λ-polyharmonic functions can be easily described.
The more interesting version is related with the pre-assignment of boundary

values. Let PXo and Q be the restrictions of P to Xo×Xo and Xo×∂X, respectively.
Then we define the λ-Laplacian as the matrix given in block-form by

�λ =
(
λ · IXo − PXo −Q

0 0

)

=
(
λ · IXo 0

0 I∂X

)

− P , (1.4)

where the 0s stand for the zero matrices in the respective dimensions. Here, the
identity matrix over ∂X is not multiplied by λ, so that functions annihilated by �λ

are λ-harmonic only in Xo.
Our main focus is on polyharmonic functions in the sense that they satisfy

�n
λf = 0 (1.5)

on X, or – more reasonably, as we shall see – on the “n-th interior” of X, i.e., all
points in Xo from which ∂X cannot be reached in less than n steps. When λ = 1,
the two notions (1.3) and (1.5) coincide.

This note is organised as follows. In Section 2, we first consider ordinary
harmonic and polyharmonic functions, that is, the case λ = 1. After recalling
the well-known solution of the Dirichlet problem for harmonic functions with
preassigned boundary values (Lemma 2.2), we explain why all global harmonic
functions in the sense of (1.3) (with λ = 1) are indeed harmonic (Proposition 2.6).
Then we look at all global λ-polyharmonic functions as in (1.3). In this case, λ must
belong to the spectrum of PXo , and the solutions can be described in terms of a
Jordan basis (Proposition 2.7).

In Section 3, we turn to studying �λ and its powers, for λ in the resolvent set
of PXo (the spectrum being settled in Section 2). There is a direct analogue to the
solution of the Dirichlet problem, and again, any function which satisfies �n

λf =
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0 on all of X must be λ-harmonic (Proposition 3.2). Finally, we give the precise
formulation of the Riquier problem, which consists in assigning boundary functions
g1 , . . . , gn and – loosely spoken – searching for a function f such that the boundary
values of �r−1

λ f coincide with gr for r = 1, . . . , n. That problem for the special
case of finite trees is briefly touched in [5]. Here, we provide the general solution
(Theorem 3.4).

Finally, in Section 4, we undertake a comparison of those results with the case
of infinite trees without leaves, which was studied recently in [12] by use of Martin
boundary theory.

All results of this note are achieved by applying basic tools from Linear Algebra
in the right way. We believe that this material provides a useful basis, firstly as a
link to the classical, smooth case (regarding the Laplacian on bounded domains),
and secondly, as a basis for handling and understanding polyharmonic functions not
only on infinite trees but also on more general infinite graphs and their boundaries
at infinity.

2 The Dirichlet Problem and Global λ-Polyharmonic
Functions

We start with some observations on the case λ = n = 1, that is, ordinary harmonic
functions. We start with a simple observation on spec(PXo), the set of eigenvalues
of PXo .

Lemma 2.1 The spectral radius ρ = ρ(PXo) = max{|λ| : λ ∈ spec(PXo)}
satisfies ρ < 1.

Proof (Outline) Condition (i) on P implies that for each x ∈ Xo, there is n such
that

∑
v∈Xo p(n)(x, v) < 1, that is, Pn

Xo is strictly substochastic in the row of x. One
easily deduces that there is m such that Pm

Xo is strictly substochastic in every row,
which yields the claim. �

The following solution of the Dirichlet problem is folklore in the Markov chain
community; see, e.g., [15, §6.A]. It keeps being “rediscovered” by analysts who
deviate into the discrete world, see, for example, KISELMAN [11].

Lemma 2.2 For every function g : ∂X → C there is a unique harmonic function h

on X such that h|∂X = g. It is given by

h(x) =
∑

w∈∂X
F (x,w)g(w) ,

where F(x,w) is the probability that the Markov chain starting at x hits ∂X in the
point v.
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We next want to describe the kernel F(x,w) in matrix terminology. Let
res(PXo) = C \ spec(PXo) be the resolvent set of PXo . For λ ∈ res(PXo), the
resolvent is the Xo ×Xo-matrix

G(λ) = (
G(x, y|λ))

x,y∈Xo = (λ · IXo − PXo)−1. (2.3)

The kernels G(x, y|λ) are called Green functions. They are rational functions of λ.
Now we define the Xo × ∂X-matrix

F(λ) = (
F(x,w|λ))

x∈Xo,w∈∂X = G(λ)Q. (2.4)

We can extend it to X × ∂X by setting F(v,w|λ) = δw(v) for v,w ∈ ∂X. When
λ = 1, we just write G(x, y) for G(x, y|1) and F(x,w) for F(x,w|1). For |λ| > ρ,
we can expand

G(x, y|λ) =
∞∑

n=0

p(n)(x, y)/λn+1 and F(x,w|λ) =
∞∑

n=0

f (n)(x,w)/λn ,

where the probabilistic meaning is that for the Markov chain starting at x, the
probability to be at y at time n is p(n)(x, y), while f (n)(x,w) is the probability
that the first visit in w ∈ ∂X occurs at time n.

Coming back to the Dirichlet problem, it is a straightforward matrix computation
to see that the function h, as defined in Lemma 2.2, is harmonic. Its uniqueness
follows from invertibility of (IXo − PXo). Instead, it may also be instructive to
deduce uniqueness from the potential theoretic maximum principle: every real-
valued harmonic function attains its maximum on ∂X, see [15, §6.A].

This also yields one way to see that the Markov chain must hit the boundary
almost surely, that is,

∑

w∈∂X
F (x,w) = 1 for every x ∈ Xo.

Namely, the unique harmonic extension of the constant boundary function g ≡ 1 is
the constant function h ≡ 1 on X. Also, the function x �→ F(x,w) provides the
unique harmonic extension of the boundary function g = 1v .

Corollary 2.5 The geometric and the algebraic multiplicity of the eigenvalue λ = 1
of P coincide and are equal to |∂X|.
Proof Lemma 2.2 yields that the geometric multiplicity is |∂X|. The characteristic
polynomial of the matrix P is

χP (λ) = det(λ · I − P) = (λ− 1)|∂X|χPo(λ).

By Lemma 2.1, χPo(1) �= 0. �
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Now we can easily describe all free polyharmonic functions of order n ≥ 1, that
is, those which satisfy (I − P)nf = 0 on X.

Proposition 2.6 A function f : X → C satisfies (I − P)nf = 0 if and only if f is
harmonic.

Proof Suppose n ≥ 2, and let h = (I − P)n−1f . Then h is harmonic, and (I −
P)f = h. Since (I − P)n−1f = 0 on ∂X, the function h solves the Dirichlet
problem with boundary values 0. Therefore h = 0, that is, (I − P)n−1f = 0.
Proceeding by induction, we obtain that f is harmonic. �

Similarly, we can handle the case (λ · I − P)nf = 0, when λ �= 1. First of all,
when n ≥ 2 then the function h = (λ · I − P)n−1f satisfies Ph = λ · h. Second,
we see that f = 0 in ∂X, so (by abuse of notation) we consider f as a function on
Xo. In other words, λ ∈ spec(PXo).

Let κ = κ(λ) and μ = μ(λ) be the algebraic and geometric eigenvalue
multiplicities of λ. Let h1 , . . . , hμ be a basis of ker(λ · IXo − PXo). For each j ∈
{1, . . . , μ}, let κj be the length of the associated Jordan chain (= dimension of the
associated Jordan block in the Jordan normal form). That is, κ1 + · · ·+ κμ = κ , and

we have functions f (k)
j , k = 1, . . . , κj such that f (1)

j = hj and (λ·IXo−PXo)f
(k)
j =

f
(k−1)
j for k ≥ 2. All those functions are extended to X by assigning value 0 on ∂X.

Then it is clear that {f (k)
j : k = 1, . . . , κj , j = 1, . . . , μ} is a basis of the linear

space of all global λ-polyharmonic functions (of arbitrary order). We subsume.

Proposition 2.7 With the above notation, for λ ∈ spec(PXo), the space of
functions f : X → C with (λ · I − P)nf = 0 is spanned by

{
f

(k)
j : k = 1, . . . ,min{n, κj } , j = 1, . . . , μ

}
.

Corollary 2.8 For a finite network with boundary as in Example (1.1), every
global λ-polyharmonic h function satisfies Ph = λ · h, and λ ∈ spec(P ) ⊂ R.
Furthermore, h vanishes on ∂X when λ �= 1.

Proof If we define the diagonal matrix M = diag
(√

m(x)
)
x∈Xo , then M PXo M−1

is symmetric, so that the spectrum is real and the geometric and algebraic multiplic-
ities of the eigenvalues of PXo coincide. �

3 Boundary Value Problems for λ-Polyharmonic Functions

In this section, we assume that λ ∈ res(PXo) and study the operator (resp. matrix)
�λ of (1.4) and its powers.
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Notation: in accordance with the block form used above, for any function f :
X → C we write f =

(f o

f ∂

)
, where f o = f |Xo and f ∂ = f |∂X . Also, we write

�o
λ for the restriction of the matrix of (1.4) to X ×Xo, that is, �o

λf = (�λf )o.
First of all, there is an obvious λ-variant of the solution of the Dirichlet problem.

Lemma 3.1 Let λ ∈ res(PXo). For every function g : ∂X → C there is a unique
λ-harmonic function h on X such that h|∂X = g. It is given by

h(x) =
∑

w∈∂X
F (x,w|λ)g(w) , x ∈ Xo ,

where F(x,w|λ) is defined by (2.4).

Proof We write h =
(
ho

g

)
, where ho = h|Xo and g is the given boundary function.

Then the equation �λ = 0 transforms into

(λ · IXo − PXo)ho = Qg ,

which has the unique solution ho = G(λ)Qg , as proposed. �
Next, we note that

�n
λ =

(
(λ · IXo − PXo)n −(λ · IXo − PXo)n−1Q

0 0

)

.

Thus, if we look for a solution of �n
λh = 0 then with h =

(
ho

g

)
as above, we get

the equation

(λ · IXo − PXo)nho = (λ · IXo − PXo)n−1Qg ,

which has the same solution as in Lemma 3.1. Thus, we have the following general
version of Proposition 2.6.

Proposition 3.2 A function f : X → C satisfies �n
λf = 0 on all of X if and only

if f is λ-harmonic.

For n ≥ 2, what is more interesting is to assign further boundary conditions.
Recall that �λf always vanishes on ∂X. The analogue of the Dirichlet problem is
the Riquier problem of order n. We assign n boundary functions g1 , . . . , gn : ∂X →
C and look for a function f : X → C such that we have a “tower” of boundary value
problems for functions fn , fn−1 , . . . , f1 = f : X → C as follows:

fr =
(f o

r

gr

)
, �o

λfn = 0 , and �o
λfr = f o

r+1 for r = n−1, n−2, . . . , 1 .

(3.3)
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Theorem 3.4 For λ ∈ res(PXo) , the unique solution f = f1 of (3.3) is given by

f (x) =
n∑

r=1

[
G(λ)r Qgr

]
(x) , x ∈ Xo ,

where G(λ)r is the r-th matrix power of G(λ).

Proof We use induction on n. For n = 1, this is Lemma 3.1. Suppose the statement
is true for n − 1. The function f2 is the solution of the Riquier problem of order
n− 1 for the boundary functions g2 , . . . , gn. By the induction hypothesis,

f2(x) =
n∑

r=2

[
G(λ)r−1 Qgr

]
(x) , x ∈ Xo ,

and this is the unique solution. The last one of the “tower” of Equations (3.3) is

�o
λf = f o

2 , where f =
(
f o

g1

)
.

This can be rewritten as

(λ · IXo − PXo)f o −Qg1 = f o
2 .

Inserting the solution for f o
2 and multiplying by G(λ), we get the solution for f ,

and it is unique. �
Note that the solution f does not satisfy (1.5) on all of Xo. This is due to the fact

that our discrete Laplacian is not infinitesimal. Let

∂nX = {x ∈ X : p(k)(x,w) > 0 for some w ∈ ∂X and k ≤ n− 1} , (3.5)

the set of all points in X from which ∂X can be reached in n− 1 or less steps. Then
�n

λf = 0 only on the n-th interior X \ ∂nX, while the values on ∂nX depend on the
boundary functions g1 , . . . , gn .

The functions λ �→ G(x, y|λ) are rational, and the union of the set of their
poles is spec(PXo). For λ ∈ res(PXo), we can differentiate the identity λ · G(λ)−
P G(λ) = IXo k times, and Leibniz’ rule yields

(λ · IXo − PXo)G(r)(λ) = −k · G(r−1)(λ) ,

where G(r)(λ) is the (elementwise) r-th derivative of G(λ) with respect to λ. From
this, we get recursively for the matrix powers of G(λ)

G(λ)r = (−1)r−1

(r − 1)! G(r−1)(λ) . (3.6)
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We can insert this in the formula of Theorem 3.4 for an alternative form of the
solution of the Riquier problem.

4 Comparison with the Case of Infinite Trees; Examples

We now want to relate the preceding material, and in particular Theorem 3.4, with
the potential theory of countable Markov chains, and more specifically, with Martin
boundary theory and λ-polyharmonic functions on trees, as studied in [12]. We
choose and fix a reference point (origin) o ∈ Xo and consider the rational functions
λ �→ F(o,w|λ) of (2.4) for λ ∈ res(PXo) and w ∈ ∂X. They have (at most) finitely
many zeros. Let

res∗(PXo) = res(PXo) \ {λ : F(o,w|λ) = 0 for some w ∈ ∂X} .

Every positive real λ > ρ(P ) belongs to res∗(PXo), in particular, λ = 1. For
λ ∈ res∗(PXo), we define the λ-Martin kernel

K(X)(x,w|λ) = F(x,w|λ)
F (o,w|λ) , x ∈ X , w ∈ ∂X . (4.1)

The function x �→ K(X)(x,w|λ) is the unique solution of the λ-Dirichlet problem
of Lemma 3.1 with value 1 at the root o and the boundary function gv proportional
to δw , that is, gw(v) = δw(v)/F (o,w|λ). Thus, for a generic boundary function
g : ∂X → C, we can write the solution of the λ-Dirichlet problem for x ∈ Xo as

h(x) =
∑

w∈∂X
K(X)(x,w|λ)ν(w) =:

∫

∂X

K(X)(x, · |λ) dν (x ∈ Xo), where

ν(w) = g(w)F (o,w|λ).
(4.2)

The integral notation indicates that we think of ν = νg as a complex distribution
on ∂X. In the same way, the solution of the Riquier problem in Theorem 3.4 can be
written as

f (x) =
n∑

r=1

∫

∂X

K(X)
r (x, · |λ) dνr , where for w ∈ ∂X

K(X)
r (·, w|λ) = G(λ)r−1K(·, w|λ) and νr(w) = gr(w) F (o,w|λ) .

(4.3)

Now let us look at the case of a nearest neighbour transition operator P = PT on
a countable tree T without leaves (i.e., vertices distinct from o have more than just
one neighbour): there, the geometric boundary is attached to the tree “at infinity”,
and there is no “interior” of T which appears as a subset of the vertex set: the interior
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is T itself. The Martin kernel K(T )(x, ξ |λ) is defined for x ∈ T and ξ ∈ ∂T , and it
satisfies (λ · I − P)K(T )(·, ξ |λ) = 0, without any restriction to a sub-matrix such
as PXo . In this setting, [12, Thm. 5.4] says that any λ-polyharmonic function f of
order n on T has a unique representation of the form

f (x) =
n∑

r=1

∫

∂T

K(T )
r (x, · |λ) dνr , where

K(T )
r (x, ξ |λ) = (−1)r−1

(r − 1)!
dr−1

dλr−1 K(x, ξ |λ) (x ∈ T , ξ ∈ ∂T ),

(4.4)

and ν1 , . . . , νn are distributions on ∂T . The normalisation is slightly different here
from the one chosen in [12], and in particular,

(λ · IT − PT )K
(T )
r (·, ξ |λ) = K

(T )
r−1(·, ξ |λ) for r ≥ 2 . (4.5)

Let us compare the kernels K
(X)
r and K

(T )
r . We have

(λ · IXo − PXo)r−1K(X)
r (·, w|λ) = K(X)(·, w|λ) for w ∈ ∂X , and

(λ · IT − PT )
r−1K(T )

r (·, ξ |λ) = K(T )(·, ξ |λ) for ξ ∈ ∂T .

(4.6)
The only, but crucial difference is that in the first of the two identities, we may
multiply from the left by G(X)(λ)r−1 = (λ·IXo−PXo)−(r−1). In the second identity,
we may not multiply by G(T )(λ)r−1, where G(T )(λ) = (λ · IT − PT )

−1 is the
resolvent of P as an operator on the Hilbert space �2(T ,m), with the weights m(x)

analogous to Example 1.1 above. Indeed, K(T )(·, ξ |λ) does in general not belong to
�2(T ,m).

“Forward only” Laplacians on finite and infinite trees
We now consider a class of examples which constitute the finite analogue of

[12, §6]. They were also studied, from the viewpoint of Information Theory, by
HIRSCHLER AND WOESS [9].

In order to carry the above comparison with the infinite case a bit further, we need
some more details on the geometry of an infinite tree T with root o. We assume that
T is locally finite and has no leaves. Each vertex x �= o has a unique predecessor
x−, its neighbour which is closer to o. For each x ∈ T there is the unique geodesic
path π(o, x) = [o = x0 , x1 , . . . , xn = x] from o to x, where x−k = xk−1 for
k = 1, . . . , n. In this case, |x| = n is the length of x.

The boundary at infinity ∂T of T consists of all geodesic rays ξ = [o =
x0 , x1 , x2 , . . . ], where x−k = xk−1 for k ≥ 1. For a vertex x ∈ T , we define
the boundary arc

∂xT = {ξ ∈ ∂T : x ∈ ξ} .
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The collection of all ∂xT , x ∈ T , is the basis of a topology on ∂T , which thus
becomes a compact, totally disconnected space, and each boundary arc is open and
compact. We now take a Borel probability measure P on ∂T which is supported by
the entire boundary, that is, P(∂xT ) > 0 for all x ∈ T . It induces a forward only
Markov operator on T , as follows:

p(x, y) =
{
P(∂yT )/P(∂xT ) , if y− = x ,

0 , otherwise.
(4.7)

Conversely, if we start with transition probabilities p(x, y) such that p(x, y) > 0
precisely when y− = x, then we can construct P on ∂xT by setting

P(∂xT ) = p(o, x1)p(x1, x2) · · ·p(xn−1, x) , if

π(o, x) = [o = x0 , x1 , . . . , xn = x].

This determines P on the Borel σ -algebra of ∂T .
More generally, a distribution on ∂T is a set function

ν : {∂xT : x ∈ T } → C with ν(∂xT ) =
∑

y:y−=x

ν(∂yT ) for all x ∈ T .

(4.8)

If ν is non-negative real, then it extends uniquely to a Borel measure on ∂T .
A locally constant function ϕ on ∂T is one such that every ξ ∈ ∂T has a
neighbourhood on which ϕ is constant. Thus, one can write it as a finite linear
combination of boundary arcs

ϕ =
m∑

j=1

cj 1∂x(j)T ,

and we can define

∫

∂T

ϕ dν =
m∑

j=1

cj ν(∂x(j)T ) .

Indeed, in this way, the space of all distributions is the dual of the linear space of all
locally constant functions on ∂T .

Now take λ ∈ C \ {0}. Following [12, §6], the λ-Martin kernel on T is

K(T )(x, ξ |λ) =
{
λ|x|/P(∂xT ) , if ξ ∈ ∂xT ,

0 , otherwise.
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For fixed x, the function ξ �→ K(T )(x, ξ |λ) and its derivatives with respect to λ

are locally constant, whence they can be integrated against distributions on ∂T .
According to (4.4), we get

K(T )
r (x, ξ |λ) =

⎧
⎨

⎩
(−1)r−1 λ|x|−(r−1)

( |x|
r − 1

)
1

P(∂xT )
, if ξ ∈ ∂xT ,

0 , otherwise,
(4.9)

and every λ-polyharmonic function of order n on T has a unique representation

f (x) =
n∑

r=1

(−1)r−1 λ|x|−(r−1)
( |x|
r − 1

)
νr(∂xT )

P(∂xT )
, (4.10)

where the νr = ν
(T )
r (r = 1, . . . , n) are distributions on ∂T .

We now consider the finite situation. The graph X under consideration is a finite
subtree of T with the same root o. The boundary consists of the leaves of the tree:

∂X = {w ∈ X : w �= o , deg(w) = 1} .

We suppose that ∂X is a section of T in the sense of [9]: For every ξ ∈ ∂T , the
geodesic ray starting from o that represents ξ intersects ∂X in a unique vertex. (A
typical special case is the one where ∂X = {x ∈ T : |x| = L} with L ∈ N.) For
each x ∈ X, we define the finite version of the boundary arc rooted at x as

∂xX = {w ∈ ∂X : x ∈ π(o,w)}.

In particular, ∂oX = ∂X, and ∂wX = {w} for w ∈ ∂X.
We consider the restriction to X of the given forward transition matrix PT on T .

That is,

pX(x, y) = P(∂yT )/P(∂xT ) , if y− = x ∈ Xo, and pX(w,w) = 1 if w ∈ ∂X,

while pX(x, y) = 0 in all other cases. Exactly as on the whole tree, we have for
x, y ∈ X

p(n)(x, y) > 0 ⇐⇒ x ∈ π(o, y) and n = |y| − |x| ,
and then p(n)(x, y) = P(∂yT )/P(∂xT ) .

The matrix PXo is nilpotent, so that spec(P ) = {0, 1}, and the algebraic
multiplicities of those two eigenvalues are |Xo| and |∂X|, respectively. For λ ∈
C \ {0} = res(PXo) and x, y ∈ Xo, we have
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G(x, y|λ) =
{
λ−d(x,y)−1

P(∂yT )/P(∂xT ) , if x ∈ π(o, y) ,

0 , otherwise.

Therefore in this example, the right-hand side of (3.6) is obtained by

(−1)r−1

(r − 1)! G
(r−1)(x, y|λ) = λ−d(x,y)−r

(
d(x, y)+ r − 1

r − 1

)
P(∂yT )/P(∂xT ) ,

if x ∈ π(o, y) . We note that res∗(PXo) = res(PXo) and that F(o,w|λ) =
λ−|w|

P(∂wT ) for w ∈ ∂X. We can now compute the kernels K
(X)
r of (4.3) as

follows:

K(X)
r (x,w|λ) =

⎧
⎨

⎩
λ|x|−r+1

(
d(x,w)+ r − 2

r − 1

)
1

P(∂xT )
, if w ∈ ∂xT ,

0 , otherwise.
(4.11)

Then, given boundary functions g1 , . . . , gn , the associated solution of the Riquier
problem reads

f (x) =
n∑

r=1

∫

∂X

K(X)
r (x, · |λ) dν(X)

r , with ν(X)
r (w) = λ−|w| gr(w)P(∂wT ) .

Now consider (4.6) and the fact that PXo is the restriction of PT to Xo. In spite
of this, when n ≥ 2 we see that for w ∈ ∂X, the function x �→ K

(X)
n (x,w|λ)

is not the restriction to Xo of x �→ K
(T )
n (x, ξ |λ), where ξ ∈ ∂wX. (The value is

the same for every such ξ , when x ∈ Xo.) For a closer look, fix ξ ∈ ∂wT and let
f (x) = K

(T )
n (x, ξ |λ) for x ∈ X. This function solves the Riquier problem on X

with boundary functions

gr(v) = K
(T )
n+1−r (w, ξ |λ) δw(v) , v ∈ ∂X ,

or, equivalently, with boundary measures on ∂X

ν(X)
r = (−λ)n−r

( |w|
n− r

)
δw .

Indeed, verification of

K(T )
n (x, ξ |λ) =

n∑

r=1

∫

∂X

K(X)
r (x, · |λ) dν(X)

r

leads to known combinatorial identity
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( |w|
n− 1

)
=

n∑

r=1

(−1)n−r

(|w| − |x| − r − 2

r − 1

)( |w|
n− r

)
,

in which |w| and |x| can be arbitrary integers with |w| > |x| ≥ 0.
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1 Introduction: The Model and the Main Results

On R, consider a Poisson point process dμ(ω) of intensity μ. Let (xk(ω))k∈Z denote
its support (i.e., dμ(ω) =

∑

k∈Z
δxk(ω)), the points being ordered increasingly.

On L2(R), define the Luttinger-Sy or pieces model (see e.g. [13, 14]), that is, the
random operator

Hω =
⊕

k∈Z
−�D|[xk,xk+1]

where, for an interval I , −�D|I denotes the Dirichlet Laplacian on I .
Pick L > 0 and let " = "L = [0, L]. Restrict Hω to " with Dirichlet boundary

conditions: on H := L2("), define
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Hω(L) = Hω(") =
⊕

k−−1�k�k+
−�D

|�k(ω) (1.1)

where we have defined �k(ω) := [xk(ω), xk+1(ω)] to be the k-th piece and we have
set

k− = min{k; xk > 0}, xk−−1 = 0,

k+ = max{k; xk < L}, xk++1 = L.

From now on, we let m(ω) be the number of pieces and renumber them from 1 to
m(ω) (i.e., k− = 2 and k+ = m(ω)). For L large, with probability 1 − O(L−∞),
one has m(ω) = μL+O(L2/3).

The pieces model admits an integrated density of states that can be computed
explicitly (see Section 2.2 or [13, 20]), namely,

Nμ(E) := lim
L→+∞

#{eigenvalues of Hω(L) in (−∞, E]}
L

= μ · exp(−μ�E)

1 − exp(−μ�E)
1E�0 where �E := π√

E
.

(1.2)

1.1 Interacting Electrons

Consider first n free electrons restricted to the box " in the background Hamiltonian
Hω("), that is, on the space

Hn(") = Hn("L) =
n∧

j=1

L2(") = L2−("n), (1.3)

consider the operator

H 0
ω(", n) =

n∑

i=1

1H ⊗ . . .⊗ 1H︸ ︷︷ ︸
i−1 times

⊗Hω(")⊗ 1H ⊗ . . .⊗ 1H︸ ︷︷ ︸
n−i times

. (1.4)

This operator is self-adjoint and lower semi-bounded. Let E0
ω(", n) be its ground

state energy and #0
ω(", n) be its ground state.

To H 0
ω(", n), we now add a repulsive finite range pair interaction potential.

Therefore, pick U : R → R satisfying

(HU): U is a repulsive (i.e., non-negative), even pair interaction potential decay-
ing sufficiently fast at infinity. More precisely, we assume
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x3
∫ +∞

x

U(t)dt −−−−→
x→+∞ 0. (1.5)

To control the possible local singularities of the interactions, we require that U ∈
Lp(R) for some p ∈ (1,+∞].

On Hn("), we define

HU
ω (", n) = H 0

ω(", n)+Wn (1.6)

where

Wn(x
1, · · · , xn) :=

∑

i<j

U(xi − xj ) (1.7)

on the domain

Dn(") := C∞0

⎛

⎝

⎛

⎝
m(ω)⋃

k=1

]xk, xk+1[
⎞

⎠

n⎞

⎠ ∩ Hn("). (1.8)

As U is non-negative, HU
ω (", n) is non-negative. From now on, we let HU

ω (", n)

be the Friedrichs extension of this operator. As Wn is a sum of pair interactions, the
fact that U ∈ Lp(R) for some p > 1 (see assumption (HU)) guarantees that Wn

is H 0
ω(", n)-form bounded with relative form bound 0 (see, e.g., [5, section 1.2]).

Thus, the form domain of the operator HU
ω (", n) is

Hn∞(") :=
⎛

⎝H 1
0

⎛

⎝
m(ω)⋃

k=1

]xk, xk+1[
⎞

⎠

⎞

⎠

⊗n

∩ Hn("). (1.9)

Moreover, HU
ω (", n) admits Dn(") as a form core (see, e.g., [5, section 1.3]) and

it has a compact resolvent, thus, only discrete spectrum.
We define EU

ω (", n) to be its ground state energy, that is,

EU
ω (", n) := inf

#∈Dn(")
‖#‖=1

〈HU
ω (", n)#,#〉 (1.10)

and #U
ω (", n) to be a ground state, i.e., to be an eigenfunction associated to the

eigenvalue EU
ω (", n).

By construction, there is no unique continuation principle for the pieces model
(as the union of disjoint non-empty intervals is not connected); so, one should not
expect uniqueness for the ground state. Nevertheless due to the properties of the
Poisson process, for the non-interacting system, one easily sees that the ground state
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#0
ω(", n) is unique ω almost surely (see Section 2.4). For the interacting system, it

is not as clear. Nonetheless, one proves

Theorem 1.1 (Almost Sure Non-degeneracy of the Ground State) Suppose that
U is real analytic. Then, ω-almost surely, for any L and n, the ground state of
HU

ω (L, n) is non-degenerate.

For a general U , while we don’t know whether the ground state is degenerate or
not, our analysis will show where the degeneracy may come from: we shall actually
write Hn(") as an orthogonal sum of subspaces invariant by HU

ω (L, n) such that
on each such subspace, the ground state of HU

ω (L, n) is unique. This will enable us
to show that all the ground states of HU

ω (L, n) on Hn(") are very similar to each
other, i.e., they differ only by a small number of particles.

The goal of the present paper is to understand the thermodynamic limits of
EU

ω (", n) and #U
ω (", n). As usual, we define the thermodynamic limit to be the

limit L → ∞ and n/L → ρ where ρ is a positive constant. The constant ρ is the
density of particles.

We will describe the thermodynamic limits of EU
ω (", n), or rather n−1EU

ω (", n),
and #U

ω (", n) when ρ is positive and small (but independent of L and n). We will
be specially interested in the influence of the interaction U , i.e., we will compare
the thermodynamic limits for the non-interacting and the interacting systems.

1.2 The Ground State Energy Per Particle

Our first result describes the thermodynamic limit of n−1EU
ω (", n) when we assume

the density of particles n/L to be ρ. For the sake of comparison, we also included
the corresponding result on the ground state energy of the free particles, i.e., on
n−1E0

ω(", n).
We prove

Theorem 1.2 Under the assumptions made above, the following limits exist ω-
almost surely and in L1

ω

E0(ρ, μ) := lim
L→+∞
n/L→ρ

E0
ω(", n)

n
and EU(ρ, μ) := lim

L→+∞
n/L→ρ

EU
ω (", n)

n
(1.11)

and they are independent of ω.

In [21] (see also [20]), the almost sure existence of the thermodynamic limit of
the ground state energy per particle is established for quite general systems of
interacting electrons in a random medium if one assumes that the interaction has
compact support. For decaying interactions (as in (HU)), only the L2

ω convergence
is proved. The improvement needed on the results of [21] to obtain the almost sure
convergence is the purpose of Theorem 5.1.
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In [3], the authors study the existence of the above limits in the grand canonical
ensemble for Coulomb interactions.

The energy E0(ρ, μ) can be computed explicitly for our model (see Sec-
tion 2.4.1). We shall obtain a two-term asymptotic formula for EU(ρ, μ) in the case
when the disorder is not too large and the Fermi length �ρ,μ is sufficiently large.

Define

• the effective density is defined as the ratio of the density of particles to the density

of impurities, i.e., ρμ = ρ

μ
,

• the Fermi energy Eρ,μ is the unique solution to Nμ(Eρ,μ) = ρ,
• the Fermi length �ρ,μ := �Eρ,μ where �E is defined in (1.2); the explicit formula

for Nμ yields

�ρ,μ = 1

μ

∣∣∣∣log
ρμ

1 + ρμ

∣∣∣∣ =
1

μ

∣∣∣∣log
ρ

μ+ ρ

∣∣∣∣ . (1.12)

For the free ground state energy per particle, a direct computation using (1.2) yields

E0(ρ, μ) = 1

ρ

∫ Eρ,μ

−∞
E dNμ(E) = Eρ,μ

(
1 +O

(√
Eρ,μ

))
(1.13)

We prove

Theorem 1.3 Under the assumptions made above, for μ > 0 fixed, one computes

EU(ρ, μ) = E0(ρ, μ)+ π2 γ
μ∗ μ−1 ρμ �−3

ρ,μ (1 + o(1)) where o(1) −−−→
ρμ→0

0.

(1.14)
The positive constant γ μ∗ depends solely on U and μ; it is defined in (1.17) below.

At fixed disorder, in the small density regime, the Fermi length is large and the
Fermi energy is small. Moreover, the shift of ground state energy (per particle) due
to the interaction is exponentially small compared to the free ground state energy:
indeed, it is of order ρ| log ρ|−3 while the ground state energy is of order | log ρ|−2.

For fixed μ, a coarse version of (1.14) was established, in the PhD thesis of the
second author [20], namely, for ρ sufficiently small, one has

1

Cμ

ρ| log ρ|−3 � EU(ρ, μ)− E0(ρ, μ) � Cμ ρ| log ρ|−3.

Moreover, from [21, Propositions 3.6 and 3.7], we know that the function ρ �→
EU(ρ, μ) is a non-decreasing continuous function and that the function r �→
EU(r−1, μ) is convex.

Let us now define the constant γ μ∗ . Therefore, we prove

Proposition 1.4 Consider two electrons in [0, �] interacting via an even non-
negative pair potential U ∈ Lp(R+) for some p > 1 and such that
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∫

R

x2U(x)dx < +∞.

That is, on H2([0, �]) = L2([0, �]) ∧ L2([0, �]), consider the Hamiltonian
(
−�D

x1|[0,�]
)
⊗ 1H + 1H ⊗

(
−�D

x2|[0,�]
)
+ U(x1 − x2), (1.15)

i.e., the Friedrichs extension of the same differential expression defined on the
domain D2([0, �]) (see (1.8)).

For large �, EU([0, �], 2), the ground state energy of this Hamiltonian admits
the following expansion

EU([0, �], 2) = 5π2

�2 + γ

�3 + o

(
1

�3

)
(1.16)

where γ = γ (U) > 0 when U does not vanish a.e.

Let us first notice that the expansion (1.16) immediately implies that U �→ γ (U)

is a non-decreasing concave function of the (non-negative) interaction potential U
such that γ (0) = 0; for α small positive, one computes

γ (αU)

α
= 10π2

∫

R

x2U(x)dx (1 +O(α)).

Concavity and monotony follow immediately from the definition of EU([0, �], 2)
and the form of (1.16).

In terms of γ , we then define

γ
μ∗ := 1 − exp

(
−μγ

8π2

)
. (1.17)

1.3 The Ground State: Its One- and Two-Particle Density
Matrices

We shall now describe our results on the ground state. We start with a description
of the spectral data of the one-particle Luttinger-Sy model. Then, we describe the
non-interacting ground state.



Interacting Electrons in a Random Medium 97

1.3.1 The Spectrum of the One-Particle Luttinger-Sy Model

Let (E"
j,ω)j�1 and (ϕ"

j,ω)j�1, respectively, denote the eigenvalues (ordered
increasingly) and the associated eigenfunctions of Hω(") (see (1.1)). Clearly,
the eigenvalues and the eigenfunctions are explicitly computable from the points
(xk)1�k�m(ω)+1. In particular, one sees that the eigenvalues are simple ω almost
surely.

As n/L is close to ρ and L is large, the n first eigenvalues are essentially all the
eigenvalues below the Fermi energy Eρ,μ. These eigenvalues are the eigenvalues of
−�D

|�k(ω) below Eρ,μ for all the pieces (�k(ω))k−−1�k�k+ of length at least �ρ,μ
(see (1.2) and (1.13)). ω-Almost surely, the number of pieces (�k(ω))1�k�m(ω)

longer than �ρ,μ is asymptotic to n (see Section 2.3), the number of those longer
than 2�ρ,μ to ρμ n, the number of those longer than 3�ρ,μ to ρ2

μ n, etc. We refer to
Section 2.2 for more details.

1.3.2 The Non-interacting Ground State

The ground state of the non-interacting Hamiltonian H 0
ω(", n) is given by the

(normalized) Slater determinant

#0
ω(", n) =

n∧

j=1

ϕ"
j,ω = 1√

n!Det
((

ϕ"
j,ω(xk)

))

1�j,k�n
. (1.18)

Here and in the sequel, the exterior product is normalized so that the L2-norm of
the product be equal to the product of the L2-norms of the factors (see (C.2) in
Appendix C).

It will be convenient to describe the interacting ground state using its one-particle
and two-particle reduced density matrices. Let us define these now (see Section 4
for more details). Let # ∈ Hn(") be a normalized n-particle wave function. The
corresponding one-particle density matrix is an operator on H1(") = L2(") with
the kernel

γ#(x, y) = γ
(1)
# (x, y) = n

∫

"n−1
#(x, x̃)#∗(y, x̃)dx̃ (1.19)

where x̃ = (x2, . . . , xn) and dx̃ = dx2 · · · dxn.
The two-particle density matrix of # is an operator acting on H2(") =

2∧

j=1

L2(") and its kernel is given by

γ
(2)
# (x1, x2, y1, y2) = n(n− 1)

2

∫

"n−2
#(x1, x2, x̃)#∗(y1, y2, x̃)dx̃ (1.20)

where x̃ = (x3, . . . , xn) and dx̃ = dx3 · · · dxn.
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Both γ# and γ
(2)
# are positive trace class operators satisfying

Tr γ# = n, and Tr γ (2)
# = n(n− 1)

2
. (1.21)

So, for the non-interacting ground state, using the description of the eigenvalues and
eigenvectors of Hω(") given in Section 1.3.1, as a consequence of Proposition 4.8,
we obtain that

γ#0
ω(",n) =

n∑

j=1

γϕ"
j,ω

=
∑

�ρ,μ�|�k(ω)|<3�ρ,μ

γϕ1
�k(ω)

+
∑

2�ρ,μ�|�k(ω)|<3�ρ,μ

γϕ2
�k(ω)

+R(1)

(1.22)
where

• |�k(ω)| denotes the length of the piece �k(ω);
• ϕ

j

�k(ω) denotes the j -th normalized eigenvector of −�D
|�k(ω);

• the operator R(1) is trace class and ‖R(1)‖tr � 2 n ρ2
μ.

Here, ‖ · ‖tr denotes the trace norm in the ambient space, i.e., in L2(") for the one-
particle density matrix, and in L2(") ∧ L2(") for the two-particle density matrix.

For the two-particle density matrix, again as a consequence of Proposition 4.8,
we obtain

γ
(2)
#0

ω(",n)
= 1

2
(Id−Ex)

[
γ#0

ω(",n) ⊗ γ#0
ω(",n)

]
+ R(2) (1.23)

where

• Id is the identity operator, Ex is the exchange operator on a two-particle space:

Ex [f ⊗ g] = g ⊗ f, f, g ∈ H,

• the operator R(2) is trace class and ‖R(2)‖tr � Cρ,μn.

One can represent graphically the ground state of the non- interacting system by
representing the distribution of its particles within the pieces: in abscissa, one puts
the length of the pieces, in ordinate, the number of particles the ground state puts in
a piece of that length. Figure 1 shows the picture thus obtained.

Fig. 1 The distribution of
particles in the
non-interacting ground state.

k

2
1

k�ρ,μ (k + 1)�ρ,μ3�ρ,μ2�ρ,μ�ρ,μ
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1.3.3 The Interacting Ground State

To describe the ground state of the interacting system, we shall describe its one-
particle and two-particle reduced density matrices. Therefore, it will be useful to
introduce the following approximate one-particle reduced density matrices.

For a piece �k(ω), let ζ
j

�k(ω) be the j -th normalized eigenvector of

−-D
|�k(ω)×�k(ω) + U acting on L2(�k(ω)) ∧ L2(�k(ω)). We note that, for U = 0,

the two-particle ground state can be rewritten as ζ
1,U=0
�k(ω) = ϕ1

�k(ω) ∧ ϕ2
�k(ω).

Define the following one-particle density matrix

γ
#

opt
",n

=
∑

�ρ,μ−ρμγ
μ∗ �|�k(ω)|�2�ρ,μ−log(1−γ

μ∗ )

γϕ1
�k(ω)

+
∑

2�ρ,μ−log(1−γ
μ∗ )�|�k(ω)|

γζ 1
�k(ω)

.

(1.24)
Because of the possible long range of the interaction U (see the remarks following
Theorem 1.5 below), to describe our results precisely, it will be useful to introduce
trace norms reduced to certain pieces. For � � 0, we define the projection onto the
pieces shorter than �

11
<� =

∑

|�k(ω)|<�

1�k(ω). (1.25)

We shall use the following function to control remainder terms: define

Z(x) = sup
x�v

(
v3
∫ +∞

v

U(t)dt

)
. (1.26)

Under assumption (HU), the function Z is continuous and monotonously decreasing
on [0,+∞) and tends to 0 at infinity.

We prove

Theorem 1.5 Fix μ > 0. Assume (HU) holds. Then, there exist ρ0 > 0 and C > 0
such that, for ρ ∈ (0, ρ0), ω-a.s., one has

lim sup
L→+∞
n/L→ρ

1

n

∥∥∥
(
γ#U

ω (",n) − γ
#

opt
",n

)
11
<�ρ,μ+C

∥∥∥
tr
� 1

ρ0
max

(
ρμ

�ρ,μ
,
√
ρμ Z( �ρ,μ)

)
,

lim sup
L→+∞
n/L→ρ

1

n

∥∥∥
(
γ#U

ω (",n)−γ
#

opt
",n

) (
1−11

<�ρ,μ+C

)∥∥∥
tr
� 1

ρ0
max

(
ρμ

�ρ,μ
, ρμ

√
Z( �ρ,μ)

)
.

Here, ‖ · ‖tr denotes the trace norm in L2(").

This result calls for some comments. Let us first note that, if Z, that is, U , decays
sufficiently fast at infinity, typically exponentially fast with a large rate, then the two
estimates in Theorem 1.5 can be united into
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Fig. 2 The distribution of
particles in the interacting
ground state.

2
1

�ρ,μ − γ
μ∗ ρμ

2�ρ,μ�ρ,μ 3�ρ,μ

2�ρ,μ − log(1 − γ
μ∗ )

lim sup
L→+∞
n/L→ρμ

1

n

∥∥∥γ#U
ω (",n) − γ

#
opt
",n

∥∥∥
tr
� C

ρμ

�ρ,μ
.

In this case, Theorem 1.5 can be summarized graphically. In Figure 2, using
the same representation as in Figure 1, we compare the non-interacting and the
interacting ground state. The non-interacting ground state distribution of particles
is represented in blue, the interacting one in green. We assume that U has compact
support and restrict ourselves to pieces shorter than 3�ρ,μ.

Indeed, in this case, comparing (1.22) and (1.24), we see

γ#0
ω(",n) − γ

#
opt
",n

=
∑

2�ρ,μ−log(1−γ
μ∗ )�|�k(ω)|

(
γϕ1

�k(ω)
+ γϕ2

�k(ω)
− γζ 1

�k(ω)

)

−
∑

�ρ,μ−ρμγ
μ∗ �|�k(ω)|��ρ,μ

γϕ1
�k(ω)

+
∑

2�ρ,μ�|�k(ω)|�2�ρ,μ−log(1−γ
μ∗ )

γϕ2
�k(ω)

+R̃(1)

(1.27)
where R̃(1) satisfies the same properties as R(1) in (1.22).

Thus, to obtain γ
#

opt
",n

from γ#0
ω(",n), we have displaced (roughly) γ

μ∗ ρμn

particles living in pieces of length within [2�ρ,μ, 2�ρ,μ − log(1 − γ
μ∗ )] (i.e., pieces

containing exactly two states below energy Eρ,μ and the energy of the top state

stays above Eρ,μ

(
1 + log(1−γ

μ∗ )
�ρ,μ

)
up to smaller order terms in �−1

ρ,μ) to pieces

having lengths within [�ρ,μ − ργ
μ∗ , �ρ,μ] (i.e., having ground state energy within

the interval
[
Eρ,μ,Eρ,μ

(
1 + 2ργ μ∗

�ρ,μ

)]
up to smaller order terms in �−1

ρ,μ). In the

remaining of (roughly) (1 − γ
μ∗ )ρn pieces containing exactly two states below

energy Eρ,μ (that is, pieces of length within [2�ρ,μ − log(1 − γ
μ∗ ), 3�Eρ,μ ] or

alternatively those with the top state below Eρ,μ

(
1 + log(1−γ

μ∗ )
�ρ,μ

)
(up to smaller

order terms in �−1
ρ,μ), we have substituted the free two-particle ground state (given by

the anti-symmetric tensor product of the first two Dirichlet levels in this piece) by the
ground state of the interacting system (1.15). In particular, we compute (remark that
the first sum in (1.27) contributes only to the error term according to Corollary 6.12)
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lim
L→+∞
n/L→ρ

1

n

∥∥∥γ#0
ω(",n) − γ

#
opt
",n

∥∥∥
tr
= 2γ μ∗ ρμ +O

(
ρμ

�ρ,μ

)
,

and, recalling (1.23), we then compute

lim
L→+∞
n/L→ρ

1

n2

∥∥∥∥γ
(2)
#0

ω(",n)
− 1

2
(Id−Ex)

[
γ
#

opt
",n

⊗ γ
#

opt
",n

]∥∥∥∥
tr
= 2γ μ∗ ρμ +O

(
ρμ

�ρ,μ

)
.

(1.28)
So the main effect of the interaction is to shift a macroscopic (though small when
ρμ is small) fraction of the particles to different pieces.

Let us now discuss what happens when the interaction does not decay so fast,
typically, if it decays only polynomially. In this case, Theorem 1.5 tells us that one
has to distinguish between short and long pieces. In the long pieces, the description
of the ground state is still quite good as the error estimate is still of order o(ρμ). Of
course, this result only tells us something for the pieces of length at most 3�ρ,μ: the
larger ones are very few, thus, can only carry so few particles (see Lemma 3.27) that
these can be integrated into the remainder term. For short intervals, the situation
is quite different. Here, the remainder term becomes much larger, only of order

O
(√

ρμ�
−k/2
ρ,μ

)
if Z(x) . x−k at infinity. This loss is explained in the following

way. The short pieces carry the majority of the particles. When U is of longer range,
particles in rather distant pieces start to interact in a way that is not negligible with
respect to the second term of the expansion (1.14) (which gives an average surplus of
energy per particle for the interacting ground state compared to the free one); thus,
it may become energetically profitable to relocate some of these particles to new
pieces so as to minimize the interaction energy. When the range of the interaction
increases, the ground state will relocate more and more particles. Nevertheless, the
shift in energy will still be smaller than the correction term obtained by relocating
some of the particles living in pairs in not too long intervals; this is going to be the
case as long as U satisfies the decay assumption (HU). When U decays slower than
that, the main correction to the interacting ground state energy per particle can be
expected to be given by the relocation of many particles living alone in their piece
to new pieces so as to diminish the interaction energy.

We also obtain an analogue of Theorem 1.5 for the two-particle density matrix
of the ground state #U . We prove

Theorem 1.6 Fix μ > 0. Assume (HU) holds. Then, there exist ρ0 > 0 such that,
for ρ ∈ (0, ρ0), ω-a.s., one has

lim sup
L→+∞
n/L→ρ

1

n2

∥∥∥∥

(
γ

(2)
#U

ω (",n)
− 1

2
(Id−Ex)

[
γ
#

opt
",n

⊗ γ
#

opt
",n

])
12
<�ρ,μ+C

∥∥∥∥
tr

� 1

ρ0
max

(
ρμ

�ρ,μ
,
√
ρμ Z( �ρ,μ)

)
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and

lim sup
L→+∞
n/L→ρ

1

n2

∥∥∥∥

(
γ

(2)
#U

ω (",n)
− 1

2
(Id−Ex)

[
γ
#

opt
",n

⊗ γ
#

opt
",n

])(
1 − 12

<�ρ,μ+C

)∥∥∥∥
tr

� 1

ρ0
max

(
ρμ

�ρ,μ
, ρμ

√
Z( �ρ,μ)

)

where, for � � 0, we recall that ‖ · ‖tr denotes the trace norm in L2(") ∧ L2("),
recall (1.25) and define

12
<� = 11

<� ⊗ 11
<�. (1.29)

1.4 Discussion and Perspectives

While a very large body of mathematical works has been devoted to one- particle
random Schrödinger operators (see, e.g., [10, 16]), there are only few works dealing
with many interacting particles in a random medium (for the case of finitely many
particles, see, for example, [1] or [4]).

The general Hamiltonian describing n electrons in a random background poten-
tial Vω interacting via a pair potential U can be described as follows. In a
d-dimensional domain ", consider the operator

Hω(", n) = −-nd

∣∣
"n +

n∑

i=1

Vω(x
i)+

∑

i<j

U(xi − xj ),

where, for j ∈ {1, . . . , n}, xj denotes the coordinates of the j -th particle. The

operator Hω(", n) acts on a space of totally anti-symmetric functions
n∧

i=1

L2(")

which reflects the electronic nature of particles.
The general problem is to understand the behavior of Hω(", n) in the thermody-

namic limit " → ∞ while n/|"| → ρ > 0; ρ is the particle density. One of the
questions of interest is that of the behavior of the ground state energy, say, Eω(", n)

and of the ground state #ω(", n).
While the thermodynamic limit is known to exist for various quantities and

in various settings (see [21] for the micro-canonical ensemble that we study in
the present paper and [3] for the grand canonical ensemble), we don’t know of
examples, except for the model studied in the present paper, where the limiting
quantities have been studied. In particular, it is of interest to study the dependence
of these limiting quantities in the different physical parameters like the density of
particles, the strength of the disorder or the interaction potential.



Interacting Electrons in a Random Medium 103

As we shall argue now, for these questions to be tractable, one needs a good
description of the spectral data of the underlying one-particle random model.

1.4.1 Why the Pieces Model?

In order to tackle the question of the behavior of n-electron ground state, let us first
consider the system without interactions. This is not equivalent to a one-particle
system as Fermi-Dirac statistics play a crucial role.

Let us assume our one-particle model is ergodic and admits an integrated density
of states (see (1.2) and e.g. [11, 16]). As described above for the pieces model, the
ground state of the n non-interacting electrons is given by (1.18) and its energy per
particle is given by

E0
ω(", n)

n
= 1

n

n∑

j=1

E"
j,ω = |"|

∫ E"
n,ω

−∞
E d

[
#{eigenvalues of Hω(") below E}

|"|
]

(1.30)
where E"

n,ω is the n-th eigenvalue of the one- particle random Hamiltonian Hω("),
i.e., the smallest energy E such that

#{eigenvalues of Hω(") below E}
|"| = n

|"| . (1.31)

Here, we have kept the notations of the beginning of Section 1.3.
The existence of the density of states, say N(E), (see (1.2)), then, ensures the

convergence of E(", n) to a solution to the equation N(E) = ρ, say Eρ . Thus, to
control the non-interacting ground state, one needs to control all (or at least most
of) the energies of the random operator Hω(") up to some macroscopic energy Eρ .
In particular, one needs to control simultaneously a number of energies of Hω(")

that is of size the volume of ".
To the best of our knowledge, up to now, there are no available mathematical

results that give the simultaneous control over that many eigenvalues for general
random systems. The results dealing with the spectral statistics of (one-particle)
random models deal with much smaller intervals: in [15], eigenvalues are controlled
in intervals of size K/|"| for arbitrarily large K if " is sufficiently large; in [7, 8],
the interval is of size |"|1−β for some not too large positive β.

The second problem is that all these results only give a very rough picture of the
eigenfunctions, a picture so rough that it actually is of no use to control the effect
of the interaction on such states: the only information is that the eigenstates live in
regions of linear size at most log |"| and decay exponentially outside such regions
(see, e.g., [7] and the references therein).

The pieces model that we deal with in the present paper exhibits the typical
behavior of a random system in the localized regime: for Hω("),
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• the eigenfunctions are localized (on a scale log |"|)
• the localization centers and the eigenvalues satisfy Poisson statistics.

The advantage of the pieces model is that the eigenfunctions and eigenvalues are
known explicitly and easily controlled. This is a consequence of the fact that a
crucial quantum phenomenon is missing in the pieces model, namely, tunneling. Of
course, once the particles do interact with each other, tunneling is again re-enabled.

All of this could lead one to think that the pieces model is very particular.
Actually, at low energies, general one-dimensional random models exhibit the same
characteristics as the pieces model up to some exponentially small errors which are
essentially due to tunneling (see [12]).

It seems reasonable to guess that the behavior will be comparable for general
random operators in higher dimensions and, thus, that the results of the present
paper on interacting electrons in a random potentials should find their analogues for
these models.

1.4.2 Outline of the Paper

In Section 2, after rescaling the parameters of the problem so as to send μ to 1 and
ρ to ρ/μ, we first discuss the validity of our results in a more general asymptotic
regime in μ and ρ. We, then, gather some basic but crucial statistical properties of
the distribution of the pieces. We first describe the free electrons. For the pieces
model, a statistical analysis of the distribution of pieces gives exact expressions for
the one-particle integrated density of states and the Fermi energy in Proposition 2.6.
We also study the non- interacting model and introduce notations for later use.

In Section 3, we first introduce the occupation numbers (i.e., the number of
particles a given state puts in each piece); the existence of the occupation numbers
is tantamount to the existence of a particular orthogonal sum decomposition of the
Hamiltonian HU

ω (", n). We prove that the ground state of HU
ω (", n) restricted to a

fixed occupation space is non- degenerate and, from this result, derive Theorem 1.1,
the almost sure non-degeneracy of the ground state for real analytic interaction.

Next, still in Section 3, we prove the asymptotic formula for the interacting
ground state energy per particle. The proof relies essentially on the minimizing
properties of the ground state. This minimizing property yields a good description
for the occupation numbers associated to a ground state. To get this description, we
first study the ground state of the Hamiltonian HUp

ω (", n) where the interactions
have been cut off at infinity (i.e., Up is compactly supported). We construct an
approximate ground state #opt which can essentially be thought of as the ground
state for the Hamiltonian HUp

ω (", n) restricted to the pieces shorter than 3�ρ,μ.
Then, letting Wr(", n) := HU

ω (", n) − HUp

ω (", n) be the long range behavior of
the interactions, one has

EUp

ω (", n) � EU
ω (", n) � 〈HUp

ω (", n)#opt, #opt〉 + 〈Wr(", n)#opt, #opt〉
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The minimizing property of #opt yields

EUp

ω (", n) � 〈HUp

ω (", n)#opt, #opt〉 + n o(ρμ μ−1 �−3
ρ,μ)

(see Theorem 3.28).
On the other hand, the decay assumption (HU) on U and the explicit construction

of #opt yield

〈Wr(", n)#opt, #opt〉 = n o(ρμ μ−1 �−3
ρ,μ)

(see Proposition 2.7). This yields the proof of Theorem 1.3.
In the course of these proofs, we also prove a certain number of estimates on the

distance between the occupation numbers of the interacting ground state(s) to the
state #opt.

Section 4 is devoted to the proofs of Theorems 1.5 and 1.6. Therefore, we
transform the bounds of the distance between occupation numbers into bounds on
the trace class norms of the difference between the one- (and the two-) particle
densities of the interacting ground state(s) and the state #opt.

In Theorems 4.2 (resp. Theorem 4.4), we derive general formulas for the one-
particle (resp. two particles) density of a state expressed in a certain well-chosen
basis of Hn("). One of the main steps on the path going from occupation number
bounds to the trace class norm bounds is to prove that, in most pieces, once the
particle number is known, the state must be in the ground state for the given particle
number. This is the purpose of Lemma 4.12; it relies on the minimizing properties
of the ground state; actually, it is proved for a larger set of states, states satisfying a
certain energy bound.

We then use Theorems 4.2 (resp. Theorem 4.4) to derive Theorems 1.5 (resp.
Theorem 1.6).

Section 5 is devoted to the proof of the almost sure convergence of the ground
state energy per particle. The proof is essentially identical to that found in [21]
except for the sub-additive estimate crucial to the proof. This estimate is provided
by Theorem 5.1.

In Section 6, we prove Proposition 1.4 as well as a number of estimates on the
ground states and ground state energies for a finite number of electrons living in a
fixed number of pieces and interacting.

In three appendices, we gather a number of results used in the main body of
paper. In Appendix A, we prove the results on the statistics of the pieces stated
in Section 2. Appendix B is devoted to a simple technical lemma used intensively
in the derivation of Theorems 1.5 and 1.6 in Section 4. Appendix C is devoted to
anti-symmetric tensor products.
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2 Preliminary Results

In this section, we state a number of results on the Luttinger-Sy model defined
in Section 1 on which our analysis is based. We first recall some results on
the thermodynamic limit specialized to the pieces model. Then, we describe the
statistics of the eigenvalues and eigenfunctions of the pieces model defined in (1.1);
in the case of the pieces model, it suffices therefore to describe the statistics of the
pieces (see Section 2.2).

In Section 2.4, we describe the non-interacting system of n electrons.

2.1 Rescaling the Operator

Consider the scaling x̃ = μx, that is, define

Sμ :
n∧

j=1

L2([0, L]) →
n∧

j=1

L2([0, L̃])

u �→ Sμu where (Sμu)(x) = μn/2u(μx) and L̃ = μL.

(2.1)
One then computes

S∗
μHω(L, n)Sμ = μ2H̃ω(L̃, n)

where H̃ω(L̃, n) is the interacting pieces model on the interval [0, L̃] defined by a
Poisson process of intensity 1 and with pair interaction potential

Uμ(·) = μ−2U(μ−1·). (2.2)

For H̃ω(L̃, n), the thermodynamic limit becomes

n

L̃
= n

μL
→ ρ

μ
= ρμ.

We shall prove Theorems 1.3, 1.5, and 1.6 under the additional assumption μ = 1.
Let us now explain how Theorems 1.3, 1.5, and 1.6 get modified when one goes
from μ = 1 to arbitrary μ.

If one denotes by γ μ the constant defined by Proposition 1.4 applied to the
interaction potential Uμ instead of U , a direct computation yields γ μ = μγ .

In the same way, a direct computation yields that Zμ, the analogue of Z in
assumption (HU) for Uμ, is given by Zμ(·) = μ2Z(μ−1·). Thus, for the function
fZμ (see (1.26), (3.28) and (3.29)) defined for Uμ, see (2.2), one obtains fZμ(·) =
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μ2fZ(μ
−1·). This suffices to obtain Theorems 1.5 and 1.6 for μ arbitrary fixed from

the case μ = 1.

2.1.1 Other Asymptotic Regimes

In the introduction, for the sake of simplicity we chose to state our results at fixed μ

and sufficiently small ρ (depending on μ). Actually, the results that we obtained stay
correct under less restrictive conditions on μ and ρ. The conditions that are required
are the following. Fix μ0 > 0; then, Theorems 1.3, 1.5, and 1.6 stay correct as long
as μ ∈ (0, μ0), ρμ be sufficiently small and �ρ,μ sufficiently large depending only
on μ0. Let us now explain this.

Therefore, we analyze the remainder terms of (3.80) (thus, of (3.82)). The second
term in the last equality in (3.80) multiplied by μ2 (to rescale energy properly, see
above) becomes

π2μ2γ
μ∗

ρμ

| log ρμ|3 = π2 γ
μ∗ μ−1 ρμ �−3

ρ,μ + o
(
ρμ �−3

ρ,μ

)

by (1.12). Note that, by (1.17), γ μ∗ μ−1 stays bound from above and below as μ →
0+.

The remainder term in the last equality in (3.80) multiplied by μ2 (to rescale
energy properly, see above) becomes

μ2 ρμ

| log ρμ|3 O
(
fZμ(| log ρμ|))

) = ρμ μ4

�3
ρ,μ

O
(
fZ

(
�ρ,μ(1 + o(1))

)) = o

(
ρμ μ−1

�3
ρ,μ

)

when ρμ → 0 and �ρ,μ → +∞ while μ stays bounded.
This then yields Theorem 1.3 for (μ, ρ) arbitrary in the regime described above

from the case μ = 1 and ρ small.
To obtain Theorems 1.5 and 1.6 for μ arbitrary, we just use Zμ(·) = μ2Z(μ−1·)

and the fact that Z is decaying; indeed, this implies that

Zμ(2| log ρμ|) = μ2Z(2�ρ,μ(1 + o(1))) � μ2Z(�ρ,μ)

when ρμ → 0 and �ρ,μ → +∞ while μ stays bounded.
This suffices to obtain Theorems 1.5 and 1.6 for (μ, ρ) arbitrary in the regime

described above from the case μ = 1 and ρ small.
From now on, we fix μ = 1 and assume ρ be small. Thus, we shall drop the

sub- or superscript μ and write, e.g., �ρ for �ρ,μ, Eρ for Eρ,μ, etc. Similarly, the
dependence on the random parameter ω will be frequently dropped so as to simplify
notations.
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2.2 The Analysis of the One-Particle Pieces Model

Most of the proofs of the results stated in the present section can be found
in Appendix A.

Recall that we partition [0, L] using a Poisson process of intensity 1 and write

[0, L] =
m(ω)⋃

j=1

�j(ω). (2.3)

Note that, by a standard large deviation principle, for β ∈ (0, 1/2), with probability

at least 1 − e−Lβ
, one has m = L+O

(
L1/2+β

)
.

Moreover, with probability one,

• min
1�j�m(ω)

|�j(ω)| > 0,

• if j �= j ′ then
|�j(ω)|2
|�j ′(ω)|2 �∈ Q.

Thus, distinct pieces generate distinct Dirichlet Laplacian energy levels. In partic-
ular, with probability one, all the eigenfunctions of the one-particle Hamiltonian
Hω(L) = Hω(L, 1) are supported on a single piece �j(ω) and the corresponding
eigenvalues are simple.

Hence, we will enumerate the eigenvalues and the eigenfunctions of Hω(L) using
a two-component index (�j , k) where

• �j is the piece of the partition (2.3) on which the eigenfunction is supported,
• k is the index of the eigenvalue within the ordered list of eigenvalues of this piece,

i.e.,

ψ(�j ,k)(x) =
√

2

|�j | sin

(
πk(x − inf�j)

|�j |
)

1�j
(x)

and the corresponding energy

E(�j ,k) =
(

πk

|�j |
)2

. (2.4)

Let P = P(ω) denote the set of all available indices enumerating single-particle
states, i.e., P = {�j }m(ω)

j=1 × N.
In parallel to this two-component enumeration system, we will use a direct

indexing procedure: {(Ej , ψj )}j∈N are the eigenvalues and associated eigenfunc-
tions of the one-particle Hamiltonian Hω(L) counted with multiplicity ordered with
increasing energy.
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2.3 The Statistics of the Pieces

We first study the statistical distribution of the pieces generated by the Poisson
process. We will primarily be interested in the joint distributions of their lengths.
These statistics immediately provide the statistics of the eigenvalues and eigenfunc-
tions of the pieces model. These results are presumably well known; as we don’t
know a convenient reference, we provide their proofs in Appendix A for the sake of
completeness.

In the sequel, the probability of the events will typically be 1 − O(L−∞): we
recall that Ak = O(k−∞) if ∀N � 0, lim

k→+∞ kNAk = 0. Actually, the proofs show

that the probabilities lie at an exponentially small distance from 1, i.e., O(L−∞) =
e−Lβ

for some β > 0.
We prove

Proposition 2.1 With probability 1 − O(L−∞), the largest piece has length
bounded by logL · log logL, i.e.,

max
1�k�m(ω)

|�k(ω)| � logL · log logL.

On the distribution of the length of the pieces, one proves

Proposition 2.2 Fix β ∈ (2/3, 1). Then, for L large, for any (aL, bL) ∈ [0, logL ·
log logL]2, with probability 1−O(L−∞), the number of pieces of length contained
in [aL, aL + bL] is equal to

e−aL(1 − e−bL) · L+ RL · Lβ where |RL| � κ

and the positive constant κ is independent of aL, bL.

The proof of Proposition 2.2 is given in Appendix A.
We will also use the joint distributions of pairs and triplets of pieces that are close

to each other. We prove

Proposition 2.3 Fix β ∈ (2/3, 1). Then, for any a, b, c, d, g, f positive, with
probability 1 −O(L−∞), the number of pairs of pieces such that

• the length of the left most piece is contained in [a, a + b],
• the length of the right most piece is contained in [c, c + d],
• the distance between the two pieces belongs to [g, g + f ]
is equal to

f e−a−c(1 − e−b)(1 − e−d) · L+ RL · Lβ where |RL| � κ (2.5)

and the positive constant κ may depend on (a, b, c, d, f, g).

For pairs of pieces, we shall also use
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Proposition 2.4 For �, �′, d > 0, with probability 1 −O(L−∞), one has

#

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pairs of pieces at most at a dis-

tance d from each other such that

the left most piece is longer than �,

the right most piece is longer than �′.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

� (2 + d)e−�−�′L.

Finally, for triplets of pieces, we shall use

Proposition 2.5 For �, �′, �′′, d > 0, with probability 1 −O(L−∞), one has

#

⎧
⎪⎪⎨

⎪⎪⎩
(�, �′, �′′) s.t.

∣∣∣∣∣∣∣∣

�′ between � and �′′

dist(�,�′) � d, dist(�′,�′′) � d

|�| � �, |�′| � �′, |�′′| � �′′.

⎫
⎪⎪⎬

⎪⎪⎭
� (2+d2)e−�−�′−�′′L.

As a straightforward consequence of Proposition 2.2, exploiting the formula (2.4)
for the Dirichlet eigenvalues of the Laplacian on an interval, one obtains the explicit
formula (1.2) for the one-particle integrated density of states for the pieces model
defined in (1.2) (here, μ = 1) That is, one proves

Proposition 2.6 (The One-Particle IDS) The one-particle integrated density of
states for the pieces model is given by

N(E) = exp(−�E)

1 − exp(−�E)
1E>0 (2.6)

where �E is defined in (1.2).

Formula (2.6) was already obtained in [14]; in Appendix A.1, we give a short proof
for the readers convenience.

Recalling the scaling defined in Section 2.1 immediately yields (1.2) for
general μ.

2.4 Free Electrons

Understanding the system without interactions will be key to answering the main
questions raised in the present work. For free electrons, i.e., when the interactions
are absent, U ≡ 0, the energy per particle E0(ρ) can be expressed in terms of one-
particle density of states measure.
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2.4.1 The Ground State Energy Per Particle

Recall that (see Theorem 1.3), for a density of particles ρ, the Fermi energy Eρ is
a solution of the equation N(Eρ) = ρ. In the present case, as N is continuous and
strictly increasing from 0 to +∞, the solution to this equation is unique for any
ρ > 0. The length of the interval whose Dirichlet Laplacian has the Fermi energy
Eρ as ground state energy is the Fermi length �ρ given by

�ρ := π/
√
Eρ (2.7)

As a direct corollary to (1.2) (recall that μ = 1) or equivalently Proposition 2.6, we
see that the Fermi energy is given by

Eρ = π2
(

log(ρ−1 + 1)
)−2 ∼ π2| log ρ|−2 when ρ → 0 (2.8)

and the Fermi length by:

�ρ = log
(
ρ−1 + 1

)
∼ |log ρ| when ρ → 0. (2.9)

We recall

Proposition 2.7 ([21, Theorem 5.13 and Lemma 5.14]) Let E"
n,ω denote the n-th

energy level of Hω(L) (counting multiplicity). Then, ω-a.s., one has

E"
n,ω −−−−→

L→∞
n/L→ρ

Eρ and E0(ρ) = 1

ρ

∫ Eρ

−∞
E dN(E). (2.10)

Proposition 2.7 follows easily from Lemma 3.13, (1.30), (1.31), and (A.17).
We see that

• the highest energy level occupied by a system of non-interacting electrons tends
to the Fermi energy in the thermodynamic limit;

• the n-electron ground state energy per particle is the energy averaged with
respect to the density of states measure of the one-particle system conditioned
on energies less than the Fermi energy.

Combining formulas (2.8) and (2.10), one can expand E0(ρ) into inverse powers of
log ρ up to an arbitrary order. Taking the scaling defined in Section 2.1 into account,
(2.10) immediately implies (1.13).
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2.4.2 The Eigenfunctions

Let us now describe the eigenfunctions of H 0
ω(L, n). Let us recall that (Ep)p∈P

are the eigenvalues of the one-particle operator Hω(L) and (ψp)p∈P are the
corresponding normalized eigenfunctions; here, p in P is a (piece–energy level)
index. The n-electron eigenstates without interactions are given by the following
procedure. Pick a set α := {α1, . . . , αn} ⊂ P of n indices, cardα = |α| = n. The
normalized eigenstate associated to α is given by the Slater determinant

#α(x
1, x2, · · · , xn) := ψα1 ∧ · · · ∧ ψαn := 1√

n! det
(
ψp(x

j )
)

p∈α
1�j�n

. (2.11)

One easily checks that (H 0
ω(", n)− Eα)#α = 0 for the energy Eα defined by

Eα =
∑

p∈α
Ep. (2.12)

The subset α indicates which one-particle energy levels are occupied in the multi-
particle state #α . For instance, in the ground state of n electrons, one chooses the
states with the lowest possible energy.

Notation 2.8 For a Slater determinant #α (see (2.11)) and p ∈ α, we will refer to
the one-particle functions ψp as particles that constitute the n-electron state indexed
by α. Moreover, with a slight abuse of terminology, we will refer to a multi-index α

as an (n-electron) state and to p in α as a particle.

3 The Asymptotics for the Ground State Energy Per Particle

In this section, we prove Theorem 1.3 on the asymptotic expansion of the ground
state energy per particle in terms of small particle density. We assume that the pair
interaction potential U satisfies condition (HU).

3.1 Decomposition by Occupation Numbers

We give a definition of the number of particles occupying a given piece. Therefore,
we shall use the special structure of the Hamiltonian H 0

ω(", n), that is, that of
Hω(L) (see (1.4) and (1.1)).

Fix ω. Recall that (�j (ω))1�j�m) are the pieces defined in (2.3) (m = m(ω)).
The one-particle space is then decomposed into
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L2(") = L2([0, L]) =
⊥⊕

1�j�m

L2(�j (ω)). (3.1)

Thus, for the n-particle space Hn (see (1.3)), we obtain the decomposition

Hn = Hn(") =
n∧

j=1

L2(") =
⊕

Q=(Q1,··· ,Qm)∈Nm

Q1+···+Qm=n

HQ (3.2)

where we have defined

Definition 3.1 For Q = (Q1, · · · ,Qm) ∈ N
m s.t. Q1 + · · ·Qm = n, the space of

states of fixed occupation Q denoted by HQ is given by

HQ =
m∧

j=1

⎛

⎝
Qj∧

k=1

L2(�j (ω))

⎞

⎠ . (3.3)

Here, as usual, we set
∧0

k=1 L2(�j (ω)) = C.

An occupation Q is a multi-index of length m and of “modulus” n. Note that, as
�j(ω) ∩�j ′(ω) = ∅ for j �= j ′, we can identify

HQ =
m⊗

j=1

⎛

⎝
Qj∧

k=1

L2(�j (ω))

⎞

⎠ .

Remark 3.2 The spaces of fixed occupation could also be defined starting from the
eigenstates of H 0

ω(L, n) as in [20]. Indeed, each of the eigenstates of H 0
ω(L, n), the

non-interacting Hamiltonian, belongs to a state of fixed occupation. More precisely,
if #α ∈ Hn is the eigenstate of H 0

ω(L, n) given by (2.11) where α ⊂ P , cardα = n,
then, defining the occupation Q(α) = (Q1(α), · · · ,Qm(α)) where, for 1 � j � m,
Qj(α) := #

{
p ∈ α| suppψp = �j

}
, we see that #α ∈ HQ.

The following lemma is crucial in our analysis as it gives global information on the
structure of the ground state of the Hamiltonian HU

ω (L, n) = H 0
ω(L, n) + Wn. We

prove

Lemma 3.3 Let ω be fixed and let α and β be two n-electron indices corresponding
each to an eigenstate of H 0

ω(L, n).
If their occupations are different, then the corresponding n-particle states do not

interact:

Q(α) �= Q(β) ⇒ 〈#α,Wn#β〉 = 0.
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Proof If α and β have different occupation numbers, the supports of #α and #β

in "n intersect at a set of measure zero: indeed, these supports are obtained by
symmetrizing different collections of products of pieces (with repetitions for the
pieces that are occupied more than once):

Q(α) �= Q(β) ⇒ meas
(
supp#α ∩ supp#β

) = 0.

The latter means that #α · #β ≡ 0 as a function in L2 ("n). Then, clearly, by
definition, for the matrix elements, one obtains

〈#α,Wn#β〉 =
∫

"n

Wn(x)#α(x)#∗
β(x)dx = 0.

Lemma 3.3 is proved. �
As an immediate corollary to Lemma 3.3, we obtain

Corollary 3.4 (Decomposition by Occupation) Fix ω. For any Q ∈ N
m (m =

m(ω)), the subspace HQ is invariant under the action of the n-particle Hamiltonian
HU

ω (L, n) = H 0
ω(L, n)+Wn, i.e.,

(HU
ω (L, n)+ i)−1HQ ⊂ HQ. (3.4)

Thus, the total Hamiltonian HU
ω (L, n) is decomposed according to (3.2) in direct

sum of its parts HQ on subspaces of fixed occupation, i.e.,

HU
ω (L, n) =

⊕

Q∈Nm

Q1+···+Qm=n

HQ, (3.5)

where HQ = HU
ω (L, n)

∣∣
HQ

.

Remark 3.5 All terms of this decomposition as well as the number of pieces m

depend on the randomness ω, i.e., the configuration of pieces.

Proof of Corollary 3.4 Fix ω. The space

Dn
ω := C∞0

⎛

⎝

⎛

⎝
⋃

1�j�m

◦
�j(ω)

⎞

⎠

n⎞

⎠
⋂

Hn

is a core for HU
ω (L, n). Here,

◦
�j(ω) denotes the interior of �j(ω).

It, thus, suffices to check that, for HU
ω (L, n)

(
HQ ∩Dn

ω

) ⊂ HQ; this follows
immediately from Lemma 3.3. This ensures the existence of the decomposition (3.5)
and completes the proof of Corollary 3.4. �
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Corollary 3.4 states that the interaction operator Wn is partially diagonalized in
the basis of eigenfunctions of H 0

ω(L, n), i.e., its matrix representation has a block
structure corresponding to the subspaces of constant occupation.

3.2 Almost Sure Non-degeneracy of the Interacting Ground
State

We first restrict ourselves to spaces with fixed occupation to prove

Lemma 3.6 Fix an occupation Q. The ground state of HU
ω (L, n)

∣∣
HQ

is non-

degenerate.

Proof To simplify notations, let us write H = HU
ω (L, n) and H 0 = H 0

ω(L, n). Let
(�jp )1�p�n be the pieces such that Qjp � 1; in the list (�jp)1�p�n, each piece
�jp is repeated Qjp times. We enumerate the pieces so that their left endpoints are
non- decreasing (i.e., from the leftmost piece to the rightmost piece). So, p �→ jp
is non-decreasing. Then, the operator H 0

Q is the Dirichlet Laplacian on a space of
anti-symmetric functions defined on the symmetrized domain

�Q = Sym

(
n×

p=1

�jp

)

:=
⋃

σ∈Sn

n×
p=1

�σ(jp). (3.6)

Anti-symmetric functions on the domain (3.6) that vanish on the boundary ∂(�Q)

are in one-to-one correspondence with functions defined on the domain

δQ =
{
(x1, . . . , xn) s.t. xp ∈ �jp and xp � xq for p < q

}
(3.7)

that vanish on ∂(δQ), the boundary of δQ. Actually,

�Q =
⋃

σ∈Sn

σ (δQ) and, for (σ, σ ′) ∈ S2
n, σ (δQ) ∩ σ ′(δQ) = ∅ if σ �= σ ′.

Here, for σ ∈ Sn, we have set σ : (x1, · · · , xn) �→ (xσ(1), · · · , xσ(n)).
Thus, finding the ground state of HQ = H 0 + W is equivalent to finding the

ground state of the Schrödinger operator −� + W with Dirichlet boundary condi-
tions on the domain δQ. As the domain δQ is connected and has a piecewise linear
boundary, the ground state of −� + W is non-degenerate (see [6, Theorems 1.4.3,
1.8.2 and 3.3.5] and [17, Section XIII.12]). This completes the proof of Lemma 3.6.
�



116 F. Klopp and N. A. Veniaminov

3.3 The Proof of Theorem 1.1

Considering the decomposition (3.5), Lemma 3.6 implies that the only possible
source of degeneracy of the ground state is that different occupations, i.e., distri-
butions of particles in the pieces, provide the same ground state energy. Let us show
that, almost surely, this does not happen.

Let � be the support of dμ(ω), the Poisson process of intensity 1 on R+. Let
#(�∩[0, L]) be the number of points the Poisson process puts into (0, L). Suppose
now that the probability that the ground state of HU

ω (L, n) is degenerate is positive.
Thus, for some m � 0, conditioned on the fact that the Poisson process puts m

points into (0, L) (i.e., #(� ∩ [0, L]) = m), the probability that the ground state of
HU

ω (L, n) be degenerate is positive. Let (�j )j be the lengths of the pieces (�j (ω))j ,
i.e., the (�j )j are connected and ∪j�j (ω) = (0, L) \ (� ∩ [0, L]). Conditioned
#(� ∩ [0, L]) = m, the joint distribution of the vector (�j )j is known.

Proposition 3.7 ([9]) Under the condition #(� ∩ [0, L]) = m, the vector
(�1, . . . , �m+1) has the same distribution as the random vector

(
L · η1

η1 + . . .+ ηm+1
,

L · η2

η1 + . . .+ ηm+1
, . . . ,

L · ηm+1

η1 + . . .+ ηm+1

)
, (3.8)

where (ηi)1�i�m are i.i.d. exponential random variables of parameter 1.

As the lengths (�j )j are continuous functions of the parameters (ηj )j , we know that
there exists an open set in (R+)m+1, say O, such that, for each (�j )1�j�m+1 ∈ O,
there are at least two occupations Q1((�j )1�j�m+1) and Q2((�j )1�j�m+1) that
have the same ground state energy (which is at the same time the smallest possible
among the ground state energies for all the occupations). Let us denote these
branches of energy by (�j )1�j�m+1 �→ E1((�j )1�j�m+1) and (�j )1�j�m+1 �→
E2((�j )1�j�m+1), respectively.

For a fixed number of pieces, there are finitely many occupations and a change
in the number of pieces occurs only when a wall, i.e., an endpoint of a piece,
crosses 0 or L. Thus, there exists a non- empty open subset O1 ⊂ O, such that
Q1((�j )1�j�m+1) and Q2((�j )1�j�m+1) are constant on O1.

Now, let us fix an initial set of lengths (�0
j )1�j�m+1 in O1 and move it

continuously inside this exceptional set O1. This actually corresponds to moving
continuously walls inside the interval (0, L). As Q1 and Q2 are two different
occupations, there exists a piece [a, b] ⊂ [0, L], such that Q1 and Q2 put different
number of particles in this piece, i.e., Q1([a, b]) �= Q2([a, b]).

Now, we move a continuously towards b; if a = 0, we will move b towards a.
Let a0 be the value of a in the configuration (�0

j )1�j�m+1. Let E1(a) and E2(a)

be the ground state energies corresponding to the two different occupations Q1 and
Q2. In a small neighborhood of a0, by the definition of O1, one has

E1(a) = E2(a).
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As U is real analytic and as the ground state of HQ is simple for any occupation Q,
the functions E1(a) and E2(a) are analytic in the open interval (c, b) where c is the
end of the piece [c, a] to the left of the piece [a, b]. Indeed, E1 (and E2) is analytic
around a0. Assume that E1(a) stops being analytic somewhere inside (c, b). This
would mean that the eigenvalue E1(a) of HQ1 becomes degenerate, thus, that the
ground state of HQ1 becomes degenerate. This was already ruled out.

This immediately implies that E1(a) = E2(a) for all a ∈ (c, b).
But this cannot be. Indeed, if Q1 puts k1 particles in the piece [a, b], and Q2 puts

k2 particles in the piece [a, b] with k1 �= k2, the functions E1 and E2 have different
asymptotics as a approaches b, indeed,

Ei(a) ∼ k3
i /(b − a)2 as a → b.

This contradicts the fact that the two functions agree on the whole interval. This
completes the proof of Theorem 1.1. $%

Finally, we use the results from Section 3.1 together with Theorem 1.1 to obtain
the following

Corollary 3.8 Assume U is real analytic. Then, ω-almost surely, for any L and n,
the ground state of HU

ω (L, n) belongs to a unique occupation subspace HQ.

Proof Consider the orthogonal decomposition (3.5). As any projection of #ω(L, n)

on HQ is either a ground state or zero and as the ground state is ω-a.s. simple, only
one of the projections of the ground state on a space of fixed occupation is different
from zero. Thus, #ω(L, n) belongs to one of the subspaces HQ. This completes the
proof of Corollary 3.8. �

3.4 The Approximate Ground State �opt

The basic idea of the construction of #opt is to find the optimal configuration
with respect to different occupations. All the n-electron states are considered as
deformations of the unperturbed ground state #0 which, we recall (2.11), is given
by the Slater determinant:

#0 = ψ1 ∧ ψ2 ∧ . . . ∧ ψn.

When the interactions are turned on, the particles in the state #0 start to interact. For
some particles, these interactions may be quite large. In particular, it may become
energetically favorable to “decouple” some particles by moving them apart from
each other to unoccupied pieces; obviously, it is better to move the more excited
particles. One, thus, reduces the interaction energy but this will necessarily result in
an increase of the “non-interaction” energy of the state, i.e., of 〈H 0

ω(L, n)#,#〉:
indeed, in the non-interacting ground state, the n particles occupy the n lowest
levels of the system. Nevertheless the decrease of the interaction energy, i.e.,
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〈Wn#,#〉 may compensate the increase in “non-interacting” energy. The “optimal”
configuration then arises through the optimization on the occupation governed by
the interplay between the loss of interaction energy and the gain of “non-interacting”
energy: it is achieved when loss and gain balance.

Let us note that a ground state # is obviously the ground state of the Hamiltonian
restricted to the appropriate fixed occupation subspace, i.e., # is the ground state of
HQ(#) (see (3.5)). This corresponds to writing the minimization problem in the form

inf
%∈Hn

‖%‖=1

〈Hω(L, n)%,%〉 = inf
Q∈Nm

|Q|=n

inf
%∈HQ

‖%‖=1

〈HQ%,%〉. (3.9)

This reduces the problem to finding the optimal occupations rather than the optimal
n-electron state itself.

Recalling that the constant γ is defined in Proposition 1.4, we set

A∗ := γ

8π2 , x∗ := 1 − e
− γ

8π2 . (3.10)

Note that

A∗ = − log(1 − x∗).

Let us now define #opt. Therefore, recall that the pieces in the model are denoted
by (�k(ω))1�k�m(ω) (see Section 1) and that for �k(ω), a piece, we define (see
Sections 1.3.2 and 1.3.3)

• ϕ
j

�k(ω) to be the j -th normalized eigenvector of −�D
|�k(ω),

• ζ
j

�k(ω) to be the j -th normalized eigenvector of −-D
|�k(ω)2 + U acting on

2∧

j=1

L2(�k(ω)).

We will define the state #opt in two steps. We first define #
opt
m : it will contain less

than n particles and will be the main part of #opt. We, then, add the missing particles
to get the n-particle state #opt.

Definition 3.9 Consider all the pieces in [0, L]. For each piece, depending on its
length, do one of the following:

(a) keep the pieces of length in [0, �ρ − ρx∗) ∪ [3�ρ,∞) empty;
(b) put one particle in its ground state in each piece of length in [�ρ − ρx∗, 2�ρ +

A∗);
(c) in pieces of length in [2�ρ + A∗, 3�ρ), put the ground state of a two-particle

system with interactions (see Proposition 1.4 and Section 6.1);

We define the state #
opt
m = #

opt
m (L, n) to be the anti-symmetric tensor product of

the thus constructed one- and two-particle sub-states, that is,
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#
opt
m (L, n) =

∧

|�j (ω)|∈[�ρ−ρx∗,2�ρ+A∗)
ϕ1
�j (ω)∧

∧

|�j (ω)|∈[2�ρ+A∗,3�ρ)
ζ 1
�j (ω). (3.11)

Note that, as the (ζ 1
�j (ω))j carry two particles, #opt

m (L, n) is not given by a Slater
determinant; an explicit formula for such an anti-symmetric tensor product is given
in (C.2) in Appendix C.

Remark 3.10 Note that, in step (c) of Definition 3.9, we put two interacting particles
within these pieces. Because of the interactions, this is different from putting
separately two particles on the two lowest one-particle energy levels (see Section 6).

Let us now compute the total number of particles contained in #
opt
m . We prove

Lemma 3.11 With probability 1−O(L−∞), for L sufficiently large, in the thermo-
dynamic limit, the total number of particles in #

opt
m constructed in Definition 3.9 is

given by

N (#
opt
m ) = n

[
1 − ρ2

(
3 − x∗ − x2∗

2

)
+O(ρ3)

]
.

Proof It suffices to count the number of pieces of each type and multiply by the
corresponding number of particles. We recall that, by (3.10), one has exp(−�ρ) =

ρ

1 + ρ
and exp(−A∗) = 1 − x∗. Thus, for β ∈ (0, 1/2), using Proposition 2.2 and

the second equation in (3.10), with probability 1 −O(L−∞), one computes

N (#
opt
m ) = &{l ∈ [�ρ − ρx∗, 2�ρ + A∗)} + 2 · &{l ∈ [2�ρ + A∗, 3�ρ)}

= L
[
e−(�ρ−ρx∗) − e−(2�ρ+A∗) + 2e−(2�ρ+A∗) − 2e−3�ρ

]
+O

(
L1/2+β

)

= Lρ

1 + ρ

[
eρx∗ + ρe−A∗ − ρ2e−A∗ − 2ρ2 +O(ρ3)

]

= Lρ

1 + ρ

[
1 + ρ − ρ2

(
e−A∗ + 2 − x2∗

2

)
+O(ρ3)

]

= n

[
1 − ρ2

(
3 − x∗ − x2∗

2

)
+O(ρ3)

]
.

This completes the proof of Lemma 3.11. �
Lemma 3.11 shows that, for ρ small, #opt

m contains less than n particles. Let us now
add particles to #

opt
m to complete it into #opt. Therefore, we prove

Lemma 3.12 Let (ϕ̃k)1�k�kρ(ω) be the particles that #0, the non-interacting
ground state, puts in the pieces longer than 3�ρ ordered by increasing energy.

With probability 1−O(L−∞), for L sufficiently large, one has kρ(ω) � nρ2(3−
18ρ).
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Proof By Proposition 2.2, with probability 1 − O(L−∞), the number of pieces of
length in �ρ[3 + ρ, 4) is equal to

n
ρ2

(1 + ρ)3

(
e−ρ − ρ

1 + ρ

)
+ o(L) � nρ2 (1 − 6ρ)

for L large.
To complete the proof of Lemma 3.12, let us now establish some auxiliary

results. By (2.10) in Proposition 2.7, we know that E"
n,ω converges to Eρ in the

thermodynamic limit. We will first investigate the rate of convergence in (2.10).

Lemma 3.13 Denote by �n,L the length of an interval having a ground state energy
equal to E"

n,ω, i.e.,

�n,L = π
√
E"

n,ω

.

Let ρ > 0 be fixed. For any δ > 0, in the thermodynamic limit L → ∞, n/L → ρ,
with probability 1 −O(L−∞), one has

�n,L = �ρ +O(L−(1/2−δ))+O
(∣∣∣

n

L
− ρ

∣∣∣
)
,

E"
n,ω = Eρ +O(L−(1/2−δ))+O

(∣∣∣
n

L
− ρ

∣∣∣
)
.

In view of Lemma 3.13 and by the definition of #0, for L sufficiently large, each
piece of length in �ρ[3 + ρ, 4) contains at least 3 particles of #0. This completes
the proof of Lemma 3.12. �
Proof of Lemma 3.13 By (A.17), with probability 1 − O(L−∞), the normalized
counting function for the Dirichlet eigenvalues of Hω(L, 1) (see (2.4)) satisfies

n

L
= ND

L (E"
n,ω) =

exp(−�n,L)

1 − exp(−�n,L)
+O(L−(1/2−δ)).

Taking into account the fact that

ρ = N(Eρ) = exp(−�ρ)

1 − exp(−�ρ)
,

we deduce that

exp(−�n,L)

1 − exp(−�n,L)
= exp(−�ρ)

1 − exp(−�ρ)
+O(L−(1/2−δ))+O

(∣∣∣
n

L
− ρ

∣∣∣
)
.

This immediately yields
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exp(−�n,L) = exp(−�ρ)+O(L−(1/2−δ))+O
(∣∣∣

n

L
− ρ

∣∣∣
)
.

The proof of Lemma 3.13 is complete. �
For ρ small, by Lemmas 3.11 and 3.12, one has n − N (#

opt
m ) < kρ(ω). Thus, to

construct #opt, we just add n −N (#
opt
m ) particles of #0 living in pieces of length

in �ρ[3 + ρ, 4) to #
opt
m .

Definition 3.14 We define

#opt = #opt(L, n) := #
opt
m (L, n) ∧

n−N (#
opt
m )∧

k=1

ϕ̃k. (3.12)

Remark 3.15 Let us give an alternative approach to defining #opt which does not
result in exactly the same #opt but which can serve exactly the same purpose in the
subsequent arguments.

We start with the non-interacting ground state #0 and describe how it is
modified:

• for pairs of particles living in the same piece, the modification depends on the
length of this piece:

– for the pieces of length between 2�ρ and 2�ρ + A∗, remove the more excited
particle and put it into an unoccupied piece of length between �ρ − ρx∗ and
�ρ ;

– for the remaining pieces, i.e., the pieces of length between 2�ρ +A∗ and 3�ρ ,
the factorized two-particle state corresponding to #0 should be replaced by a
true ground state of a two-particle system with interaction in this piece (see
Section 6.1 for a description of such a two-particle state);

• do not modify any of the particles in #0 that are either alone or live in groups of
three or more pieces.

One can easily verify that, in the above procedure, up to a small relative error, the
number of pieces to which the excited particles are displaced is equal to the number
of pieces where we decouple the particles. Indeed, according to Proposition 2.2,
with probability at least 1 −O(L−∞), for the former, one has

&{l ∈ (2�ρ, 2�ρ − log(1 − x∗))} = L exp(−2�ρ)x∗ +O(L1/2+β)

= nρx∗(1 +O(ρ)),
(3.13)

and, for the latter, one has

&{l ∈ (�ρ − ρx∗, �ρ)} = L exp(−�ρ)(exp(ρx∗)− 1)+O(L1/2+β)

= nρx∗(1 +O(ρ)).
(3.14)
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Thus, both sets contain the same number of pieces (up to an error of order nρ2).
This completes the construction of #opt.

3.5 Comparing �opt with the Ground State of the Interacting
System

Our goal in the sections to come is to estimate how much #opt differs from a true
ground state #U = #U

ω (L, n) (and to show that it doesn’t differ much). This will
be done through the comparison of their occupation numbers. We shall see that the
ground states of the interacting Hamiltonian must live in subspaces with special
occupation numbers (see Corollary 3.32).

To compare occupation numbers, we introduce the distance dist1.

Definition 3.16 Let m = m(ω) be the number of pieces in [0, L]. For j ∈ {1, 2},
pick an occupation

Qj = (Q
j

1,Q
j

2, . . . ,Q
j
m) ∈ N

m, |Qj | = n.

Define

dist1(Q
1,Q2) =

m∑

i=1

|Q1
i −Q2

i |.

Remark 3.17 Recall that the non-interacting ground state #0 has a single occu-
pation Q(#0): all the states with energy below E"

n,ω (where we recall that E"
n,ω

denote the n-th (counting multiplicity) energy level of the one-particle Hamiltonian
Hω(L)); moreover, only those states are occupied. In [20], for U compactly
supported, for #U an interacting ground state, it was proved that

C−1nρ � dist0(Q(#U),Q(#0)) � Cnρ. (3.15)

where dist0 is defined by dist0(Q
1,Q2) =

m∑

i=1

1Q1
i �=Q2

i
. Clearly, one has

dist0 �dist1.
In the sequel, we shall prove that #opt is a better approximation of a ground state

of the interacting system than is the non-interacting ground state #0 (compare (3.83)
with (3.15)).

For interaction potentials that decrease at infinity sufficiently fast (see (HU)), we
will prove that the main modification to the ground state energy comes from U

restricted to some (sufficiently large) compact set.
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Fix a constant B > 2. We decompose the interaction potential in the sum of the
“principal” and “residual” parts that is, write U = Up + Ur where

Up := 1[−B�ρ,B�ρ ]U and Ur := 1(−∞,−B�ρ)∪(B�ρ,+∞)U. (3.16)

As the sum of pair interactions Wn is linear in U , this yields the following
decomposition for the full Hamiltonian:

HU = H 0 +Wn = H 0 +WUp

n +WUr

n = HUp +Wr
n . (3.17)

Our analysis is done in the following steps:

(a) first, we prove that #opt approximates well the ground state for the system with
compactified interactions #Up

;
(b) second, we show that the quadratic form of the residual interactions Wr

n on #opt

contributes only to the error term; this will imply (1.16);
(c) finally, we will conclude that the same #opt gives also a good approximation

for the full Hamiltonian HU ground state #U in terms of the distance dist1 for
the respective occupations.

Remark 3.18 Let us clarify a point of terminology: we will minimize the quadratic
form 〈HQ#,#〉 = 〈H 0

Q#,#〉 + 〈Wn#,#〉; the term 〈H 0
Q#,#〉 is referred to as

the “non- interacting energy” term and 〈Wn#,#〉 the “interaction energy” term; we
use the same decomposition and terminology for smaller groups of particles or at
the single particle level.

3.6 The Analysis of HUp

We start with the analysis of HUp
, in particular, of its ground state energy and

ground state(s). Later, we show that the addition of Wr
n will not change much in the

ground state energy and ground state(s). First, we compute the energy of #opt. We
prove

Theorem 3.19 There exists ρ0 > 0 such that, for ρ ∈ (0, ρ0), in the thermodynamic
limit, with probability 1, one has

lim
L→∞
n/L→ρ

1

n

〈
HUp

ω (L, n)#opt(L, n),#opt(L, n)
〉

= E0(ρ)+ π2γ∗ρ| log ρ|−3 (1 +O (fZ(| log ρ|))) (3.18)

where γ∗ is defined in (1.17) and fZ is a continuous function satisfying fZ(x) → 0
as x → +∞ no faster than 1/x (for more details, see (3.29)).
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Proof To shorten the notations, we will frequently drop the arguments L, n, and the
subscript ω in this proof. We will show that, up to error terms, the only terms that
contribute to 〈HUp

#opt, #opt〉 − 〈H 0#0, #0〉 are those due to

(a) the interactions between two particles in the same piece,
(b) the decoupling of a fraction of these particles following the construction of

#opt.

In (3.18), the interactions between neighboring distinct pieces will be shown to
contribute only to the error term where we have defined

Definition 3.20 A pair of neighboring or interacting pieces is a pair of distinct
pieces at distance at most B�ρ from one another; in particular, particles in two such
pieces can still interact via the potential Up.

Let us now outline the main idea of the proof of Theorem 3.19. The pieces longer
than 2�ρ + A∗ contain two particles both in #0 and #opt. Hence, for each piece of
this type, the energy difference is given by the second term in the asymptotics (1.16)
in Proposition 1.4. On the contrary, in pieces of length between 2�ρ and 2�ρ+A∗, in
#0, the two particles were decoupled in order to construct #opt, keeping one intact
and displacing another to a piece of length between �ρ−ρx∗ and �ρ . In this case, the
energy difference is given by the increase of non- interacting energy of the second
(displaced) particle. The single particles in #0 remain untouched in #opt and groups
of three and more particles contribute only to the error term (as they carry only a
small number of particles).

To put the above arguments into a rigorous form, we will use the following
partition of the set of available pieces according to their length. Choose K large
but independent of L. For k ∈ {1, . . . , K}, consider the sets of pieces

L1
k =

{
pieces of length in

[
�ρ − k

K
ρ, �ρ − k−1

K
ρ
)}

,

L2
k =

{
pieces of length in

[
2�ρ − log

(
1 − k−1

K

)
, 2�ρ − log

(
1 − k

K

))}
.

As K is independent of L, with probability 1 − O(L−∞), the number of pieces
in the classes ((Lj

k )) j∈{1,2}
k∈{1,...,K}

is given by Proposition 2.2. We will, henceforth, use

these estimates without reference to probabilities.
As in (3.13) and (3.14), one shows that these two sets map one-to-one onto one

another up to an error estimated as follows:

cardL1
k = cardL2

k +O(nρ2K−1) = nρK−1(1 +O(ρ)).

Recall that x∗ is defined in (3.10). For k � Kx∗, according to our scheme, the pairs
of particles in pieces belonging to L2

k get decoupled, one of the particles being sent
to occupy a piece belonging to L1

k . For k > Kx∗, the pairs of particles in the pieces
of L2

k are kept untouched. The latter pieces are those of size at least 2�ρ + A∗. It is
easily seen that the number of such pieces is given by
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&{j : |�j(ω)| � 2�ρ + A∗} = nρe−A∗(1 +O(ρ)) = nρ(1 − x∗)+O(nρ2).

The majority of these pieces is smaller than 2�ρ + A∗ + log �ρ ; indeed,

&{j : |�j(ω)| ∈ 2�ρ + A∗ + [0, log �ρ]} = nρ(1 − x∗)+O(nρ| log ρ|−1).

By Proposition 1.4, for a piece of length � in 2�ρ +A∗ + [0, log �ρ], the interaction
energy of the two-particle system is given by

γ

�3 + o(�−3) = γ

8�3
ρ

+ o(�−3
ρ ).

For the difference of energies, this yields

〈HUp

#opt, #opt〉 − 〈H 0#0, #0〉

= nρ

K

Kx∗∑

k=1

[
π2

(
�ρ − k

K
ρ
)2 − 4π2

(
2�ρ − log

(
1 − k

K

))2

]

+ γ

8�3
ρ

nρ(1 − x∗)+ o
(
nρ| log ρ|−3

)
.

(3.19)

Taking K large, we approximate the Riemann sum in the last expression by an
integral

1

K

Kx∗∑

k=1

[
π2

(
�ρ − k

K
ρ
)2 − 4π2

(
2�ρ − log

(
1 − k

K

))2

]

= x∗
∫ 1

0

⎡

⎢
⎣

π2

(
�ρ − tx∗ρ

)2 − π2

(
�ρ − 1

2 log(1 − tx∗)
)2

⎤

⎥
⎦ dt +O

(
1

K

)

= x∗

(

−
∫ 1

0

π2

�3
ρ

log(1 − tx∗)dt + o(�−3
ρ )

)

+O

(
1

K

)

= π2�−3
ρ (x∗ − (1 − x∗)A∗)(1 + o(1))+O

(
1

K

)
.

Picking δ ∈ (0, 1), letting K = ρ−δ , and recalling (3.10) for A∗ and x∗, for δ small,
we get
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〈HUp

#opt, #opt〉 − 〈H 0#0, #0〉 = nρ�−3
ρ

(
π2(x∗ − (1 − x∗)A∗)+ γ

8
(1 − x∗)

)

+ o
(
nρ�−3

ρ

)

= nρ�−3
ρ π2

(
1 − e

− γ

8π2

)
+ o

(
nρ�−3

ρ

)
.

(3.20)
In order to finish the proof of (3.18) and, thus, of Theorem 3.19, it suffices to upper
bound the interactions between distinct pieces. Recall that #opt is an anti-symmetric
exterior product of one- and two-particle eigenstates (see (3.11) and (3.12)):

#opt =
k̂1∧

i=1

ϕi ∧
k2∧

j=1

ζj ∧
k̃1∧

i=1

φ̃i , (3.21)

where the numbers of sub-states in each group are, respectively,

k̂1 = n

(
1 − 2ρ(1 − x∗)+ ρ2

(
3(1 − x∗)+ x2∗

2

)
+O(ρ3)

)
,

k2 = nρ(1 − x∗ − ρ(3 − 2x∗)+O(ρ2)),

k̃1 = n−N (#
opt
m ) = nρ2

(
3 − x∗ − x2∗

2

)
(1 +O(ρ)).

The functions ϕi and φ̃i are one-particle ground states in certain and the functions
ζj are two-particle ground states in certain pieces. Of course, k̂1 + k2 + k̃1 = n.
As in what follows we will only need to distinguish between one- and two-particle
states, let us put the two groups of one-particle sub-states from (3.21) together, i.e.
write

#opt =
k1∧

i=1

φi ∧
k2∧

j=1

ζj , (3.22)

where k1 = k̂1 + k̃1 and {φi}k1
i=1 = {ϕi}k̂1

i=1 ∪ {φ̃i}k̃1
i=1. As Wp is a totally symmetric

sum of pair interaction potentials, one computes

〈Wp#opt, #opt〉 =
∑

1�i<j�n

∫

[0,L]n
U(xi − xj )

∣∣#opt(x)
∣∣2 dx

= n(n− 1)

2

∫

[0,L]n
U(x1 − x2)

∣∣#opt(x)
∣∣2 dx = Tr

(
Upγ

(2)
#opt

)
.

(3.23)
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According to Proposition 4.8, for #opt having the structure (3.22), its two-particle
density matrix is given by

γ
(2)
#opt =

k2∑

j=1

γ
(2)
ζj

+ (Id−Ex)
∑

i,j=1,...,k1
i<j

γφi
⊗s γφj

+ (Id−Ex)
k1∑

i=1

k2∑

j=1

γφi
⊗s γζj

+ (Id−Ex)
∑

i,j=1,...,k2
i<j

γζi ⊗s γζj .

(3.24)
As ζj is a two-particle state and φj is a one-particle state, one has

γ
(2)
ζj

= 〈·, ζj 〉ζj and γφj
= 〈·, φj 〉φj .

The decomposition (3.24) being plugged in the r.h.s. of (3.23) reads as follows:

(a) the first term corresponds to the interaction of two particles living in the same
piece; this term is the leading one in the difference (3.19) and has been already
taken into account in the first part of the proof;

(b) the second term is the interaction between two one-particle sub-states living in
distinct pieces;

(c) the third term is due to the interaction between a one-particle sub-state in
one piece and a two-particle sub-state (represented by its one-particle reduced
density matrix) in another piece;

(d) finally, the last term describes the interaction between two distinct two-particle
sub-states.

Thus, we are interested in upper bounds on Tr(Upβ) where β is any of the last
three terms in (3.24). Let γ1 and γ2 be two arbitrary one-particle density matrices
encountered in the above expressions. Then, the kernel of (Id−Ex)γ1⊗s γ2 is given
by

(Id−Ex)(γ1 ⊗s γ2)(x, y, x
′, y′) = 1

2

(
γ1(x, x

′)γ2(y, y
′)+ γ2(x, x

′)γ1(y, y
′)

− γ1(y, x
′)γ2(x, y

′)− γ2(y, x
′)γ1(x, y

′)
)
.

(3.25)
Taking into account the fact that in our case γ1 and γ2 live on distinct pieces �1 and
�2, respectively, (3.25) implies

Tr
(
Up(Id−Ex)γ1 ⊗s γ2

) =
∫

R2
Up(x − y)(Id−Ex)(γ1 ⊗s γ2)(x, y, x, y)dxdy

=
∫

�1

∫

�2

Up(x − y)γ1(x, x)γ2(y, y)dxdy.

(3.26)



128 F. Klopp and N. A. Veniaminov

To upper bound the last expression, we use the estimates proved in Section 6.2. We
now study the different sums in (3.24).

For pairs of one-particle states, we estimate the number of pairs of pieces at a
certain distance by Proposition 2.3 and we bound individual terms by Lemma 6.18.
We compute that, for any η > 0 and ε > 0, for L sufficiently large, with probability
1 −O(L−∞), one has

Tr
(
Up(Id−Ex)

∑

i,j=1,...,k1
i<j

γφi
⊗s γφj

)

�
∑

|�i |��ρ−ρx∗
|�j |��ρ−ρx∗

dist(�i ,�j )�B�ρ

∫

�i×�j

U(x − y)|ϕ1
�i

(x)|2|ϕ1
�j

(y)|2dxdy

�
B�ρ/η∑

k=0

∑

|�i |��ρ−ρx∗
|�j |��ρ−ρx∗

kη�dist(�i ,�j )<(k+1)η

∫

�i×�j

U(x − y)|ϕ1
�i

(x)|2|ϕ1
�j

(y)|2dxdy

� C

B�ρ/η∑

k=0

#

⎧
⎪⎪⎨

⎪⎪⎩

|�i | � �ρ − ρx∗,

|�j | � �ρ − ρx∗
kη � dist(�i,�j ) < (k + 1)η

⎫
⎪⎪⎬

⎪⎪⎭
�−4+ε
ρ ((k + 1)η)−εZ((k + 1)η)

� CLe−2�ρ �−4+ε
ρ

B�ρ/η∑

k=0

((k + 1)η)−ε Z((k + 1)η)η.

Here, to get line three from line two, we have used Lemma 6.18, and to get line four
from line three, we have used Proposition 2.3 to bound the counting function with a
probability 1 −O(L−∞).

Thus, by the continuity and local integrability of x �→ x−εZ(x), choosing η

small and ε ∈ [0, 1), we obtain that, for L sufficiently large, with probability 1 −
O(L−∞), one has

Tr
(
Up(Id−Ex)

∑

i,j=1,...,k1
i<j

γφi
⊗s γφj

)
� C nρ �−4+ε

ρ

∫ B�ρ

0
a−εZ(a)da.

(3.27)
Let us now estimate the last integral. For ε ∈ [0, 1) and 0 � Y < X, one computes
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∫ X

0
a−εZ(a)da �

(∫ Y

0
+
∫ X

Y

)
a−εZ(a)da

� (1 − ε)−1
[
Z(0)Y 1−ε + Z(Y )X1−ε − Z(Y )Y 1−ε

]

= (1 − ε)−1X1−ε
[
(Y/X)1−ε(Z(0)− Z(Y ))+ Z(Y )

]
.

Let us now optimize the last expression with respect to α = Y/X ∈ [0, 1]. Consider

f (X, α) := α1−ε(Z(0)− Z(αX))+ Z(αX). (3.28)

In general, the more rapidly Z goes to zero at infinity, the smaller the optimal α and,
thus, the smaller is the minimal value. Let us define the following functional of Z

(depending also on X):

fZ(X) = inf
α∈[0,1] f (X, α). (3.29)

Obviously, as soon as Z(X) = o(1) for X → +∞, one finds that fZ(X) = o(1) for
X → +∞. Then, plugging this into the estimate (3.27), we obtain

Tr
(
Up(Id−Ex)

∑

i,j=1,...,k1
i<j

γφi
⊗s γφj

)
� C1 n ρ �−3

ρ · fZ(B�ρ). (3.30)

In particular, the last expression is o(nρ�−3
ρ ). Note also that it can never be made

better than O(nρ�−4
ρ ) as there is no control of the size of Z near the origin.

To estimate the interactions between a one-particle state and a one-particle
density matrix of a two-particle state, we use the bound derived in Lemma 6.20.
We estimate the number of pairs of pieces of this type at a certain distance by
Proposition 2.4 (in this case, there is no need for a more precise Proposition 2.3
as in the derivation of (3.30) above). This yields

Tr
(
Up(Id−Ex)

k1∑

i=1

k2∑

j=1

γφi
⊗s γζj

)

�
∑

|�i |��ρ−ρx∗
|�j |∈[2�ρ+A∗,3�ρ)
dist(�i ,�j )�B�ρ

∫

�i×�j

U(x − y)|ϕ1
�i

(x)|2γζ 1
�j

(y, y)dxdy

� C nρ2 �ρ �−7/2+ε
ρ

∫ B�ρ

0
a−εZ(a)da.

(3.31)
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Finally, for interactions between two reduced density matrices of two-particle sub-
states, we proceed as before; using Lemma 6.21 for each term, we compute

Tr
(
Up(Id−Ex)

∑

i,j=1,...,k2
i<j

γζi ⊗s γζj

)

=
∑

|�i |,|�j |∈[2�ρ+A∗,3�ρ)
i<j

dist(�i ,�j )�B�ρ

∫

�i×�j

U(x − y)γζ 1
�i

(x, x)γζ 1
�j

(y, y)dxdy

� C nρ3
∫ B�ρ

0
min(1, a−2Z(a))da.

(3.32)

Summing (3.30), (3.31), (3.32), we obtain

〈Wp#opt, #opt〉 � C nρ �−3
ρ · fZ(B�ρ). (3.33)

Taking (3.20) into account, this completes the proof of Theorem 3.19. �
To formulate our next result, we will first need to define the notion of occupation
restricted to a subset of the total set of pieces.

Definition 3.21 Let Pω = {�k(ω)}m(ω)
k=1 be the total set of pieces and let Q ∈ N

m

be an occupation. For P ⊂ Pω a subset of pieces, define the corresponding sub-
occupation (or a restriction of occupation) as an occupation vector containing only
those components that are singled out by P :

Q|P = (Qk)k : �k∈P .

When the subset P is defined by a condition on the length of the pieces, we will
use a shorthand notation involving only this condition, e.g., Q|>�ρ stands for the
occupation Q restricted to the pieces of length greater than the Fermi length �ρ .

Recall that #opt is constructed in Definition 3.14.

Theorem 3.22 For any non-negative function r : [0, ρ0] → R
+ such that r(ρ) =

o(1) when ρ → 0+, there exist C > 0 and ρr > 0 such that, for ρ ∈ (0, ρr ), in the
thermodynamic limit, with probability 1−O(L−∞), if# is a normalized n-particles
state in HQ(#) ∩ Hn∞([0, L]) (see (3.3)) satisfying

1

n

〈
HUp

ω (L, n)#,#
〉
� 1

n

〈
HUp

ω (L, n)#opt, #opt〉+ ρ| log ρ|−3(r(ρ))2, (3.34)

then



Interacting Electrons in a Random Medium 131

dist1
(
Q|��ρ+C(#),Q|��ρ+C(#

opt)
)
� Cnρ · max(r(ρ), | log ρ|−1),

dist1
(
Q|<�ρ+C(#),Q|<�ρ+C(#

opt)
)
� Cnmax(

√
ρ · r(ρ), ρ| log ρ|−1).

(3.35)

Proof of Theorem 3.22 First of all, taking into account the form of the first
inequality in (3.35), while dealing with its proof we may suppose without loss of
generality that | log ρ|−1 is asymptotically bounded by r(ρ), i.e., for ρ small,

| log ρ|−1 � r(ρ). (3.36)

For the proof of the second inequality in (3.35), we will no longer assume (3.36).
Consider now the pieces (�k(ω))1�k�m(ω) (see Section 1). Fix ε > 0. We say

that a piece �k(ω) is of ε-type

(a) if |�k(ω)| � 3�ρ(1 − ε), that is, it has length at least 3�ρ(1 − ε);
(b) if |�k(ω)| � 2�ρ(1 − ε) and �k(ω) has at least one neighbor (in the sense of

interactions Up from (3.16)) of length at least �ρ(1 − ε);
(c) if |�k(ω)| � �ρ(1 − ε) and �k(ω) has at least two neighbors, each of length at

least �ρ(1 − ε).

Note that, by (3.16), as Up is of compact support of radius at most B�ρ , there exists
ρ0 > 0 such that for ρ ∈ (0, ρ0) and ε ∈ (0, 1/2), a given piece can have at most
2B neighbors of length at least �ρ(1 − ε).

We first prove that “exceptional” pieces contribute only to the error term.

Lemma 3.23 Fix η ∈ (0, 1/3). There exists ε ∈ (0, 1/2) and ρ0 > 0 such that,
for ρ ∈ (0, ρ0), in the thermodynamic limit, with probability 1 − O(L−∞), if # ∈
HQ(#) ∩ Hn∞([0, L]) satisfies

〈HUp

ω (L, n)#,#〉 � 2E0(ρ)n‖#‖2, (3.37)

then

∑

•∈{a,b,c}

∑

�k(ω) of ε-type (•)
Qk(#) � nρ1+η/2. (3.38)

and

∑

�k(ω) of ε-type (a)

[Qk(#)]2 � E0(ρ)n · log n · log log n. (3.39)

Let us postpone the proof of this result for a while and continue with the proof of
Theorem 3.22. The following lemma estimates the total contribution of “normal”
pieces (i.e., that are not of ε-type) that carry too many particles.

Lemma 3.24 Recall that {�k}m(ω)
k=1 denote the pieces.
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There exists C > 0 such that, for L sufficiently large, with probability 1 −
O(L−∞), for a normalized n-state # in HQ(#) ∩ Hn∞([0, L]) satisfying (3.34) and
Q(#) = (Qk)1�k�m(ω), the occupation number of the state #, one has

∑

|�k |��ρ(1−ρ2)

Qk�2

Qk +
∑

|�k |∈[�ρ(1−ρ2),2�ρ(1−ρ2))

Qk�3

Qk +
∑

|�k |∈[2�ρ(1−ρ2),3�ρ(1−ρ2))

Qk�4

Qk � Cnρ�−1
ρ

(3.40)

and

∑

|�k |�3�ρ(1−ρ2)

Q2
k � Cnρ�−1

ρ (3.41)

and, for ε ∈ (ρ2, 1/4),

∑

|�k |��ρ(1−ε)

Qk�1

Qk+
∑

|�k |�2�ρ(1−ε)

Qk�2

Qk+
∑

|�k |�3�ρ(1−ε)

Qk�3

Qk � Cn
ρ

ε − ρ2 �
−1
ρ . (3.42)

Proof First, note that by Theorem 3.19 and (3.34), there exists a constant C̃ such
that

〈HUp

ω #,#〉 � 〈HUp

ω #opt, #opt〉+ nρ| log ρ|−3(r(ρ))2 � 〈H 0
ω#

0, #0〉+ C̃nρ�−3
ρ .

(3.43)
Moreover, if −�

Qk

�k
denotes the Laplacian with Dirichlet boundary conditions on

Qk∧
L2(�k), one has

(HUp

ω )HQ(#)
� (H 0

ω)HQ(#)
�

m(ω)∑

k=1

inf(σ (−�
Qk

�k
))=

m(ω)∑

k=1

Qk∑

j=1

π2j2

|�k|2 =
m(ω)∑

k=1

π2P(Qk)

|�k|2
(3.44)

where P(X) := (2X + 1)(X + 1)X

6
.

On the other hand, by the description of #0, for some C > 0, one has

〈H 0
ω#

0, #0〉�
∑

|�k |∈[�ρ(1−ρ2),2�ρ(1−ρ2))

P (1) π2

|�k|2 +
∑

|�k |∈[2�ρ(1−ρ2),3�ρ(1−ρ2))

P (2) π2

|�k|2 +Cnρ2

Plugging this and (3.44) into (3.43), we obtain
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∑

|�k |��ρ(1−ρ2)

π2

|�k|2 P(Qk)+
∑

|�k |∈[�ρ(1−ρ2),2�ρ(1−ρ2))

π2

|�k|2 (P (Qk)− P(1))

+
∑

|�k |∈[2�ρ(1−ρ2),3�ρ(1−ρ2))

π2

|�k|2 (P (Qk)− P(2)) � Cnρ�−3
ρ .

(3.45)
By Lemma 3.23 and the explicit description of the non- interacting ground state #0

(see the beginning of Section 3.5), for some C > 0 and ρ sufficiently small, for L

sufficiently large, with probability 1 −O(L−∞), one has

∑

|�k |��ρ(1−ρ2)

Qk +
∑

|�k |∈[�ρ(1−ρ2),2�ρ(1−ρ2))

Qk +
∑

|�k |∈[2�ρ(1−ρ2),3�ρ(1−ρ2))

Qk

� n(1 − Cρ2)

�

⎡

⎣
∑

|�k |∈[�ρ(1+ρ2),2�ρ(1−ρ2))

1 +
∑

|�k |∈[2�ρ(1+ρ2),3�ρ(1−ρ2))

2

⎤

⎦− 2Cnρ2

�

⎡

⎣
∑

|�k |∈[�ρ(1−ρ2),2�ρ(1−ρ2))

1 +
∑

|�k |∈[2�ρ(1−ρ2),3�ρ(1−ρ2))

2

⎤

⎦− 3Cnρ2

(3.46)
as

#{k; |�k| ∈ [�ρ(1 − ρ2), �ρ(1 + ρ2)) ∪ [2�ρ(1 − ρ2), 2�ρ(1 + ρ2))} � Cnρ2.

Thus, (3.46) yields

∑

|�k |��ρ(1−ρ2)

Qk�1

Qk +
∑

|�k |∈[�ρ(1−ρ2),2�ρ(1−ρ2))

Qk�2

(Qk − 1)+
∑

|�k |∈[2�ρ(1−ρ2),3�ρ(1−ρ2))

Qk�3

(Qk − 2)

�

⎡

⎢⎢⎢
⎣

∑

|�k |∈[�ρ(1−ρ2),2�ρ(1−ρ2))
Qk=0

1 +
∑

|�k |∈[2�ρ(1−ρ2),3�ρ(1−ρ2))

Qk�1

2

⎤

⎥⎥⎥
⎦
− 3nρ1+η

(3.47)
Rewrite (3.45) as
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Cnρ�−1
ρ �

∑

|�k |��ρ(1−ρ2)

Qk�1

π2

|�k|2 P(Qk)+
∑

|�k |∈[�ρ(1−ρ2),2�ρ(1−ρ2))

Qk�2

π2

|�k|2 (P (Qk)− P(1))

+
∑

|�k |∈[2�ρ(1−ρ2),3�ρ(1−ρ2))

Qk�3

π2

|�k|2 (P (Qk)− P(2))

−
∑

|�k |∈[�ρ(1−ρ2),2�ρ(1−ρ2))
Qk=0

P(1)π2

|�k|2

−
∑

|�k |∈[2�ρ(1−ρ2),3�ρ(1−ρ2))

Qk�1

(P (2)− P(Qk))π
2

|�k|2

�
∑

|�k |��ρ(1−ρ2)

Qk�1

π2

|�k|2 P(Qk)+
∑

|�k |∈[�ρ(1−ρ2),2�ρ(1−ρ2))

Qk�2

π2

|�k|2 (P (Qk)−P(1))

+
∑

|�k |∈[2�ρ(1−ρ2),3�ρ(1−ρ2))

Qk�3

π2

|�k|2 (P (Qk)− P(2))

− P(1)

⎛

⎜⎜⎜
⎝

∑

|�k |∈[�ρ(1−ρ2),2�ρ(1−ρ2))
Qk=0

π2

|�k|2

⎞

⎟⎟⎟
⎠
−

P(2)

⎛

⎜⎜⎜
⎝

∑

|�k |∈[2�ρ(1−ρ2),3�ρ(1−ρ2))

Qk�1

π2

|�k|2

⎞

⎟⎟⎟
⎠

.

Hence,
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Cnρ�−1
ρ �

∑

|�k |��ρ(1−ρ2)

Qk�1

π2

|�k|2 P(Qk)+
∑

|�k |∈[�ρ(1−ρ2),2�ρ(1−ρ2))

Qk�2

π2

|�k|2 (P (Qk)−P(1))

+
∑

|�k |∈[2�ρ(1−ρ2),3�ρ(1−ρ2))

Qk�3

π2

|�k|2 (P (Qk)− P(2))

− π2

|�ρ(1 − ρ2)|2

⎡

⎣
∑

|�k |∈[�ρ(1−ρ2),2�ρ(1−ρ2))

1 +
∑

|�k |∈[2�ρ(1−ρ2),3�ρ(1−ρ2))

2

⎤

⎦

as P(1) = 1 and P(2) = 5 � 8 = 23P(1).
Using (3.47), we then obtain

Cnρ�−1
ρ �

∑

|�k |��ρ(1−ρ2)

Qk�1

(
π2

|�k|2 P(Qk)− π2

|�ρ(1 − ρ2)|2 Qk

)

+
∑

|�k |∈[�ρ(1−ρ2),2�ρ(1−ρ2))

Qk�2

(
π2

|�k|2 (P (Qk)−P(1))− π2

|�ρ(1−ρ2)|2 (Qk−1)

)

+
∑

|�k |∈[2�ρ(1−ρ2),3�ρ(1−ρ2))

Qk�3

(
π2

|�k|2 (P (Qk)−P(2))− π2

|�ρ(1−ρ2)|2 (Qk−2)

)
.

(3.48)
Now, we note that, for X � n+ 1, X integer, one has

P(X)− P(n) =
X∑

k=n+1

k2 � (n+ 1)2(X − n). (3.49)

This yields

• for Qk � 1 and |�k| � �ρ(1 − ρ2), one has

π2

|�k|2 P(Qk)− π2

|�ρ(1 − ρ2)|2 Qk >
π2Qk(Qk − 1)(2Qk + 3)

6|�ρ(1 − ρ2)|2 � 0; (3.50)

if, moreover, |�k| � �ρ(1 − ε) (ρ2 < ε < 1/2), by (3.49), one has

π2

|�k|2 P(Qk)− π2

|�ρ(1−ρ2)|2 Qk�
(

π2

|�k|2−
π2

|�ρ(1−ρ2)|2
)
Qk�

(8π)2(ε−ρ2)

|�ρ |2 Qk;
(3.51)
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• for Qk � 2 and |�k| � 2�ρ(1 − ρ2), one has

π2

|�k|2 (P (Qk)−P(1))− π2

|�ρ(1−ρ2)|2 (Qk−1) >
π2(2Qk+9)(Qk−2)(Qk−1)

24|�ρ(1−ρ2)|2
� 0;

(3.52)
if, moreover, |�k| � 2�ρ(1 − ε) (ρ2 < ε < 1/2), by (3.49), one has

π2

|�k|2 (P (Qk)−P(1))− π2

|�ρ(1−ρ2)|2 (Qk−1)�
(

4π2

|�k|2−
π2

|�ρ(1−ρ2)|2
)
(Qk−1)

� (8π)2(ε−ρ2)

|�ρ |2 (Qk−1);
(3.53)

• for Qk � 3 and |�k| � 3�ρ(1 − ρ2), one has

π2

|�k|2 (P (Qk)−P(2))− π2

|�ρ(1−ρ2)|2 (Qk−2) >
π2(2Qk+13)(Qk−3)(Qk−2)

|�ρ(1−ρ2)|2
� 0;

(3.54)
if, moreover, |�k| � 3�ρ(1 − ε) (ρ2 < ε < 1/2), by (3.49), one has

π2

|�k|2 (P (Qk)−P(2))− π2

|�ρ(1−ρ2)|2 (Qk−2) �
(

9π2

|�k|2−
π2

|�ρ(1−ρ2)|2
)
(Qk−9)

� (8π)2(ε−ρ2)

|�ρ |2 (Qk−2).

(3.55)

Plugging (3.50)–(3.55) into (3.48) immediately yields (3.40) and (3.42), thus,
completes the proof of (3.40) and (3.42) in Lemma 3.24.

To derive (3.41), we proceed as follows. Clearly, for Qk � 4, the right-hand sides
of (3.50), (3.52), and (3.54) are larger than δ ·Q2

k (for some δ ∈ (0, 1)). Thus, (3.48)
implies

∑

|�k |�3�ρ(1−ρ2)

Qk�4

Q2
k � Cnρ�−1

ρ .

On the other hand, by (3.40), one clearly has

∑

|�k |�3�ρ(1−ρ2)

Qk�3

Q2
k � 3

∑

|�k |�3�ρ(1−ρ2)

Qk�3

Qk � Cnρ�−1
ρ .
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Thus, the proof of (3.41) is complete. This completes the proof of Lemma 3.24. �
We also remark the following

Lemma 3.25 Consider #Up

ω , the ground state of HUp

ω (L, n).
There exists C > 0 such that for L sufficiently large, with probability at least

1 −O(L−∞), no piece of length smaller than

�min = �ρ − Cρ�ρ (3.56)

is occupied by particles of #Up
.

Remark 3.26 The proof of Lemma 3.25 shows that it suffices to take C > 4B + 4
for ρ sufficiently small; here, B is the constant defining Up (see (3.16)).

Proof Suppose that the claim of the lemma is false. Then, a piece shorter than �min

is occupied.
Let us show now that, as there are too many such pieces, pieces longer than �min

cannot be all in interaction with n particles, no matter where these n particles are.
First of all, according to Proposition 2.2, the total number of pieces longer than

�min is

&{j : |�j(ω)| � �min} = Le−�min +O(L1/2+0) = L
ρ

1 + ρ
(1 + Cρ�ρ +O(ρ2�2

ρ)

= n(1 + Cρ�ρ +O(ρ)).

The number of pieces of length larger than 2�ρ is nρ(1 + O(ρ)). If a particle lies
in one of these pieces, it can interact with at most 2B other pieces of length greater
than �min.

For pieces smaller than 2�ρ (but as always larger than �min), we remark that if
two such pieces are at a distance greater than (2B + 2)�ρ from one another then
they cannot interact with the same particle, except for the cases already taken into
account above.

Moreover, according to Proposition 2.3, the number of pairs of such pieces at
distance at most (2B + 2)�ρ is given by

&{(�i,�j ), |�i | > �min, |�j | > �min, dist(�i,�j ) � (2B + 2)�ρ}

= 2(2B + 2)�ρL
(
e−�min

)2 +O(L3/4)

= (4B + 4)nρ�ρ(1 +O(ρ�ρ)).

Consequently, the rest of these pieces are at larger distances from each other. This
leaves at least

n(1 + Cρ�ρ +O(ρ))− (2B + 1)nρ(1 +O(ρ))− (4B + 4)nρ�ρ(1 +O(ρ�ρ))

= n(1 + (C − 4B − 4)ρ�ρ +O(ρ))
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pieces such that no two of them can interact with the same particle. Remark that it
suffices to take C > 4B + 4 to ensure that this number is larger than n for ρ small.
This proves that there exists at least one piece longer than �min which is neither
occupied nor interacting with any particle in a ground state #Up

ω (L, n).
This leads to a contradiction with the fact that the ground state #Up

ω (L, n) puts
at least one particle in a piece smaller than �min: indeed, moving this particle to the
piece longer than �min which was singled out just above would result in a decrease
of energy as no interaction energy would be added and non-interacting energy would
obviously decrease with the increase of the piece’s length. This completes the proof
of Lemma 3.25. �
Let us now resume the proof of Theorem 3.22. In what follows, # is a function
satisfying condition (3.34). By Theorem 3.19, using #opt(L, n) as a trial function,
we see that both # and #opt(L, n) satisfy the assumptions of Lemma 3.23. Thus,
picking η ∈ (0, 1/3) and ε sufficiently small, by Lemma 3.23, for ρ sufficiently
small and L sufficiently large, with probability 1 −O(L−∞), we have

∑

•∈{a,b,c}

∑

�k(ω) of ε-type (•)

(
Qk(#

opt(L, n))+Qk(#)
)
� nρ1+η. (3.57)

We will now reason on the particles in #Up

ω (L, n) that live in pieces that are not of
ε-type (a), (b) or (c).

Recall that, by definition (see Definitions 3.9 and 3.14), #opt(L, n) puts

• no particle in each piece of length in (0, �ρ − x∗ρ);
• one particle in each piece of length in [�ρ − x∗ρ, 2�ρ + A∗);
• two particles (as a true two-particle state) in each piece of length in [2�ρ +

A∗, 3�ρ);

Let C be the constant from the claim of Theorem 3.22 that we will fix later on.
Define

• n+0 to be the total number of pieces of length in (0, �ρ − x∗ρ) where # puts
exactly 1 particle;

• n−1 to be the total number of pieces of length in [�ρ −x∗ρ, �ρ +C) where # puts
no particle;

• n+1 to be the total number of pieces of length in [�ρ −x∗ρ, �ρ +C) where # puts
exactly 2 particles;

• ñ−1 to be the total number of pieces of length in [�ρ +C, 2�ρ +A∗) where # puts
no particle;

• ñ+1 to be the total number of pieces of length in [�ρ +C, 2�ρ +A∗) where # puts
exactly 2 particles;

• n−2 to be the total number of pieces of length in [2�ρ +A∗, 3�ρ(1− ε)) where #

puts exactly 1 particle;
• n+2 to be the total number of pieces of length in [2�ρ +A∗, 3�ρ(1− ε)) where #

puts exactly 3 particles.
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The general idea of the forthcoming proof is the following. On the one hand,
Lemma 3.23 tells that pieces with too many neighbors are a sort of exception in a
sense that they occur relatively rarely and carry relatively few particles. On the other
hand, according to Lemma 3.24, pieces with too many particles are also relatively
exceptional.

Finally, let us complement these two observations by noting that no particle in
a piece of length in [2�ρ + A∗, 3�ρ(1 − ε)) can also occur for a small fraction of
them. Therefore, we first note that it is sufficient to argue for pieces that are not of
ε-type (as those of ε-type are already handled by Lemma 3.23). Let us now take
a look at the distribution of particles in the state #opt in the pieces of length in
[2�ρ + A∗, 3�ρ(1 − ε)) that have no particles and no neighbors (as they are not
of ε-type) in #. Obviously, moving a particle from a piece of length greater than
2�ρ + A∗ to a smaller piece induces an increase of the non-interacting energy of
order �−2

ρ just because the pieces longer than �ρ − ρx∗ are already occupied by at
least one particle (thus, the non-interacting energy of a second particle is at best
4π2/(2�ρ + A∗)2 and π2/(�ρ − ρx∗)2 if a particle is placed in a non- occupied
piece). Thus, the total number of pieces of length greater than 2�ρ + A∗ with no
particles is bounded by O(nρ�−1

ρ ).
The last three arguments together prove essentially that the distances dist0 and

dist1 coincide for the matter of the current proof up to an admissible error, i.e. of
size O(nρ�−1

ρ ). Namely, by the definition of the distance dist1, one has

dist1(Q|<�ρ+C(#),Q|<�ρ+C(#
opt)) = n+0 + n+1 + n−1 + r,

dist1(Q|��ρ+C(#),Q|��ρ+C(#
opt)) = ñ+1 + ñ−1 + n+2 + n−2 + r ′,

(3.58)

and, by the fact that the total number of particles in both states is the same, one gets

n+0 + n+1 + ñ+1 + n+2 + r ′′ = n−1 + ñ−1 + n−2 + r ′′′ (3.59)

where

max(r, r ′, r ′′, r ′′′) � Cnρ�−1
ρ . (3.60)

Recall that r(ρ) is of order at most | log ρ|−1. Hence, if (3.35) does not hold, for any
constant C1, if L is large enough, either one has

ñ+1 + ñ−1 + n+2 + n−2 � C1nρ · r(ρ) (3.61)

or one has

n+0 + n+1 + n−1 � C1n
√
ρ · r(ρ). (3.62)
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First, we simplify (3.61). Suppose that, for some C1 large, one has

n+2 � C1

4
nρ · r(ρ). (3.63)

The number of pieces of length in
[

5
2�ρ, 3�ρ(1 − ε)

)
is given by

&

{
j : |�j(ω)| ∈

[
5

2
�ρ, 3�ρ(1 − ε)

)}
= O(nρ3/2).

Thus, at least C1
5 nρ · r(ρ) of the pieces with three particles (as given by (3.63))

have their length in
[
2�ρ + A∗, 5

2�ρ

)
. Hence, the non-interacting energy excess

(compared to the non-interacting energy in the ground state) for each of these pieces
is lower bounded by O(�−2

ρ ) which, in turn, being multiplied by their total number,
contradicts (3.34). This simplifies (3.61) into

ñ+1 + ñ−1 + n−2 � C1nρ · r(ρ). (3.64)

The conditions (3.59), (3.60) and either (3.62) or (3.64) lead us to a number of
possibilities that we will now study one by one. More precisely, there are nine
possible variants as at least one among n−1 , ñ−1 and n−2 should be “large” and the
same is true for either n+0 , n+1 , n+2 and ñ+1 . We now discuss these cases.

(a) Consider first the case when

min(̃n+1 , n−2 ) � C2nρ · r(ρ) (3.65)

with C2 < C1/3.
This corresponds to taking the same configuration of particles as in #opt and

move some of them from pieces of length in [2�ρ + A∗, 3�ρ(1 − ε)) to pieces
of length in [�ρ + C, 2�ρ + A∗) that already contain one particle each. As we
are now dealing only with pieces that are not of ε-type, this implies in particular
that the pieces of length in [2�ρ + A∗, 3�ρ(1 − ε)) from which we withdraw
particles and that originally contain 2 particles do not have any neighbors.

Taking the smallest available pieces for particle donors and the largest
available for particle acceptors gives a lower bound on the total energy increase
induced by this operation. Suppose that C2nρr(ρ) smallest pieces have their
length between 2�ρ +A∗ and 2�ρ +A∗ + δ. Then, choosing C1 (thus, C2) much
larger than the constant in Lemma 3.24 for the case when r(ρ) . | log ρ|−1, we
obtain

Le−2�ρ−A∗(1 − e−δ) � C2

2
nρ · r(ρ),
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which yields

δ � C2e
A∗

2
r(ρ). (3.66)

Moreover, analogous calculations show that at least C2
3 nρr(ρ) of these pieces

have length in (2�ρ +A∗ + δ/2, 2�ρ +A∗ + δ). For the particles in these pieces,
the increase of energy is lower bounded by

4π2

(2�ρ + A∗ + δ/2)2
+ γ

(2�ρ + A∗ + δ/2)3

− 4π2

(2�ρ + A∗)2 − γ

(2�ρ + A∗)3 +O(�−4
ρ ) � C3r(ρ)�

−3
ρ , (3.67)

where C3 > 0. Multiplying the number of pieces by the lower bound (3.67)
gives a total energy excess that contradicts (3.34) if we choose C2 (hence, C1)
sufficiently large.

(b) The case

min(n+1 , n−2 ) � C2nρ · r(ρ)

is even simpler than the previous one. Indeed, in #opt, the occupations of the
pieces of length in [�ρ − ρx∗, �ρ + C) and in [�ρ + C, 2�ρ + A∗) are the same
but the lengths considered in the previous case are smaller. Hence, the arguments
developed in point (a) above enable one to conclude with the only difference that
the increase of energy is even larger. Moreover, there is no need to remove the
small interval of size δ.

(c) Next, the situation when

min(n+0 , n−2 ) � C2nρ · r(ρ) (3.68)

corresponds to moving excited particles, i.e., particles occupying the second
energy level, from pieces of length in [2�ρ +A∗, 3�ρ(1− ε)) to empty pieces of
length smaller than �ρ − ρx∗. Recall that actually the approximate equilibrium
between the gain in interaction energy due to decoupling and the increase of
non-interaction energy was part of the definition of values of x∗ and A∗, i.e.,

4π2

(2�ρ + A∗)2 + γ �−3
ρ = π2

(�ρ − ρx∗)2 +O(�−4
ρ ). (3.69)

Obviously, the smaller the piece we choose to remove the second particle from,
the more energy one gains. On the other hand, the larger the piece where one
puts the particle, the smaller the non-interacting energy increase, thus, the better.
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According to these two observations, we choose to move particles from the
C2nρ · r(ρ) smallest pieces longer than 2�ρ + A∗. Suppose that the largest of
these pieces has length 2�ρ + A∗ + B2. Then, by Proposition 2.2, B2 satisfies

Le−2�ρ−A∗(1 − e−B2)+O(L1/2+0) = C2nρ · r(ρ).

Hence, B2 = C2e
A∗r(ρ)(1 + O(r(ρ))). Moreover, the number of such pieces

with length in [2�ρ + A∗ + B2/2, 2�ρ + A∗ + B2) is

&{k; |�k(ω)| − 2�ρ − A∗ ∈ [B2/2, B2)}

= Le−2�ρ−A∗(e−B2/2 − e−B2)+O(L1/2+0) � C2

3
nρ · r(ρ).

(3.70)

Clearly, for all these C2
3 nρ�−1

ρ pieces, the non-interacting energy excess is
proportional to C2�

−3
ρ r(ρ); thus, multiplied by their total number (3.70), for

large C2, this energy excess does not fit within the margin allowed by (3.34).
(d) Yet another possibility for (3.64) is that

min(max(n+1 , ñ+1 ),max(n−1 , ñ−1 )) � C2nρ · r(ρ).

Obviously, the variant

min(̃n+1 , n−1 ) � C2nρ · r(ρ).

is more advantageous from the energetic point of view. The question here is
whether it is worth moving a particle from a piece of length close to the lower
bound of the corresponding group, i.e., �ρ − ρx∗, to another piece (but as the
second particle because there is already another particle in that piece) of length
close to the upper bound, i.e., 2�ρ +A∗. In a certain sense, this is the opposite to
the case (c) as the latter tells that the threshold value A∗ is not too small, while
the current case will explain why A∗ is not too big.

As above, one shows that, in order to choose the C2nρ · r(ρ) largest pieces
of length in [�ρ − ρx∗, 2�ρ + A∗), it is sufficient to solve

Le−2�ρ−A∗(eB1 − 1)+O(L1/2+0) = C2nρ · r(ρ),

which also implies B1 = C2e
A∗r(ρ)(1 + O(r(ρ))). Then, as above, the

energy excess is proportional to C2�
−3
ρ r(ρ) (where the constant C2 can be

chosen arbitrarily large) whereas the interaction terms are uniformly bounded
by O(�−4+0

ρ ). Thus, the total energy gained by such an operation exceeds the
limits imposed by (3.34).

(e) The next possible option is that

min(n+0 , ñ−1 ) � C2nρ · r(ρ). (3.71)
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This corresponds to moving particles in #opt from pieces longer than �ρ +C to
pieces shorter than �ρ − ρx∗. Remark first that the increase of non- interacting
energy is at least

π2

(�ρ − ρx∗)2 − π2

(�ρ + C)2 � 2π2C

�3
ρ

, (3.72)

which always dominates the possible interaction with a particle in a neighboring
piece: this interaction is O(�−4+0

ρ ) by Lemma 6.18. Multiplying the left- hand
sides of (3.71) and (3.72) gives a lower estimate on the energy excess that
contradicts (3.34) because r(ρ) = o(1).

(f) Finally, the only case left is when

min(n+0 , n−1 ) � C2n
√
ρ · r(ρ). (3.73)

Informally speaking, this is about the question if the threshold �ρ−ρx∗ between
occupation zero and occupation one is placed correctly.

It is also remarkable that the allowed number of particle displacements
for this case is much larger than in the other cases: one has to compare
o(n

√
ρ) to o(nρ). This is due to the following mechanism. First, note that

moving a particle that interacts with another particle in a neighboring piece
may result in a decrease of the total energy. Obviously, the contribution of the
displacement of such particles is upper bounded by O(nρ�−4+0

ρ ) because there
are at most O(nρ) neighboring particles and the size of interaction is O(�−4+0

ρ )

by Lemma 6.18. Thus, these particles may be neglected for the precision of the
current proof.

Then, reasoning as we did many times above, we observe that at least
C2
2 n

√
ρr(ρ) of particles that are removed from pieces of length in [�ρ −

ρx∗, �ρ +C) have their length greater than �ρ +C3
√
ρr(ρ), where the constant

C3 grows together with C2. But, for each of these particles the non-interacting
energy increase is of order C3�

−3
ρ

√
ρ · r(ρ). As above, multiplying the number

of involved particles by the lower bound on the energy change, we get a
contradiction with (3.34).

This completes the proof of Theorem 3.22. �
We are now left with proving Lemma 3.23.

The Proof of Lemma 3.23 We first prove the estimate (3.38). It will be a conse-
quence of the fact that the number of pieces in any of the three type is small and of
the following

Lemma 3.27 Pick k pieces of respective lengths l1 � l2 � · · · � lk . Assume that,
for 1 � i � k, the state # ∈ Hn

Q(#) ∩ Hn∞([0, L]) puts exactly νi particles in the
piece i so that ν1 + · · · + νk = ν. Then, one has
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π2ν3

3l2k k
2
� 〈H 0(L, n)#,#〉 � 〈HUp

ω (L, n)#,#〉 � 〈HU
ω (L, n)#,#〉. (3.74)

Let us postpone the proof of this result for a while and complete the proof of
Lemma 3.23. We shall write out the proof for pieces of type (a). Those for pieces of
type (b) and (c) is similar.

Pick η ∈ (0, 1) and ε > 0 such that η+2ε < 1/6. The proofs of Propositions 2.2
and 2.1 show that there exists ρε > 0 such that, for ρ ∈ (0, ρε), for L sufficiently
large, with probability 1 −O(L−∞), one has

#
{
k; |�k(ω)| ∈ [3�ρ(1 − ε), 4�ρ)

}
� nρ2−3ε (3.75)

and, for 4 � k � logL · log logL,

#
{
k; |�k(ω)| ∈ [k�ρ, (k + 1)�ρ)

}
� nρk−1−ε. (3.76)

Now, if # places more than nρ1+η particles in pieces of type a then

• either it places at least 2−1nρ1+η particles in pieces of length in [3�ρ(1−ε), 4�ρ);
in this case, by Lemma 3.27, as 3(η + 2ε) < 1, we know that

〈H 0(L, n)#,#〉 � π2(nρ1+η)3

8(4�ρ)2(nρ2−3ε)2 � n�−2
ρ ρ−1+3(η+2ε) 0 n�−2

ρ (3.77)

for ρ small;
• or, for some 4 � k � logL, it places at least nρ1+η2−k+2 particles in pieces of

length in [k�ρ, (k + 1)�ρ); in this case, by Lemma 3.27, we know that

〈H 0(L, n)#,#〉 � nρ3+3η−2k−2ε

((k + 1)�ρ)223k � n�−2
ρ ρ−1 (8ρ)−k

(k + 1)2 � n�−2
ρ ρ−1

(3.78)
for ρ sufficiently small.

Hence, for ρ sufficiently small, recalling (1.13) and (2.7) (and that here μ = 1), one
has 〈H 0(L, n)#,#〉 > 2E0(ρ)n.

This completes the proof of (3.38) in Lemma 3.23 for particles of type (a).
To deal with the particles of type (b) (resp. (c)), we replace the upper

bounds (3.75) and (3.76) obtained using Proposition 2.2 by analogous upper bounds
on the numbers of pieces of type (b) (resp. (c)) obtained through Proposition 2.4
(resp. Proposition 2.5).

This completes the proof of (3.38) in Lemma 3.23.
Let us now prove (3.39). By (3.44), one has
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m(ω)∑

k=1

π2P(Qk(#))

|�k|2 � 〈HUp

ω (L, n)#,#〉 � 2E0(ρ)n

where P is defined in (3.44).
Taking Proposition 2.1 into account immediately yields (3.39) and completes the

proof of Lemma 3.23. �
The Proof of Lemma 3.27 The form of the Hamiltonians (1.4), (3.16) (the defini-
tion of Up), (1.6) and the non- negativity of the interactions guarantee that

〈HUp

ω (L, n)#,#〉 � 〈H 0(L, n)#,#〉 �
k∑

i=1

νi∑

m=1

(
παi

m

li

)2

where (αi
m)1�m�νi ∈ (N∗)νi and αi

1 < αi
2 < · · · < αi

νi
.

Thus

〈H 0(L, n)#,#〉 �
k∑

i=1

νi∑

m=1

(
πm

li

)2

� π2

3l2k

k∑

i=1

ν3
i � π2ν3

3l2k k
2

as ν1 + · · · + νk = ν.
This completes the proof of Lemma 3.27. �

Theorem 3.28 For ρ sufficiently small, in the thermodynamic limit, with probabil-
ity 1 −O(L−∞), for any function # ∈ Hn ∩ Hn∞([0, L]),

1

n
〈HUp

ω (L, n)#,#〉 � 1

n
〈HUp

ω (L, n)#opt, #opt〉 − o(ρ| log ρ|−3). (3.79)

Proof This result can easily be traced throughout the proof of Theorem 3.22 by
considering each of the cases. Before doing so, let us give some preliminary remarks
that correspond exactly to the three remarks found in the beginning of the proof of
Theorem 3.22.

First, the energy gain due to moving a single particle is always bounded by
O(�−2

ρ ) just because each individual particle in #opt brings to the system at most
this amount of energy.

Next, the number of pieces of ε-type is O(nρ1+η) (see Lemma 3.23); thus, the
energy gain due to them is at most O(nρ1+η�−2

ρ ).
The pieces with too many particles are also rare by Lemma 3.24. Moreover, the

many particles in these pieces always bring an excess of energy and never an energy
gain.

Finally, the analysis of n+2 large (see (3.63)) shows that moving an extra particle
to the majority of these pieces results in an energy increase of order of O(�−2

ρ ),
whereas for only O(nρ3/2) of them adding a particle may be energetically favorable.
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We treat now the cases from (a) to (f) of the last part of the proof of Theorem 3.22.
For the matter of the current proof we shall put r(ρ) = 0 (because we are interested
only in those states that have the energy smaller than #opt), thus, reducing the claim
of Theorem 3.22 to

dist1(Q(#),Q(#opt)) = O(nρ�−1
ρ ).

• For those displacements when the possible energy gain is due to removing
interaction with neighbors (this includes the cases (d), (e), and (f)), it suffices
to remark that, by Lemma 6.18, the size of the interacting energy is bounded
by O(�−4+0

ρ ). Combined with the fact that, in total, there are O(nρ) pairs of
neighboring particles, this yields a total energy gain of size O(nρ�−4+0

ρ ).
• For those displacements when the possible energy gain is due to decoupling

particles living in the same piece (cases (a), (b) and (c)), the individual interacting
energy is of size O(�−3

ρ ) while their total number is O(nρ�−1
ρ ). This yields a total

energy gain of size O(nρ�−4
ρ ).

• Finally, when the energy gain results from a non-interacting energy decrease (like
in the case (d)), it is at most O(�−3

ρ ) and the total number of displacements that
result in energy decrease is O(nρ�−1

ρ ). This again yields a total energy gain of
size O(nρ�−4

ρ ).

This concludes the proof of (3.79). �
Corollary 3.29 There exists ρ0 > 0 such that for ρ ∈ (0, ρ0), in the thermodynamic
limit, with probability 1 −O(L−∞),

1

n
〈HUp

ω (L, n)#Up

,#Up 〉 = 1

n
〈HUp

ω (L, n)#opt, #opt〉 +O(ρ| log ρ|−4)

= E0(ρ)+ π2γ∗
ρ

| log ρ|3 + ρ

| log ρ|3 O (fZ(| log ρ|)) ,
(3.80)

where the constant γ∗ is given in (1.17), Z describes the behavior of U at infinity
and fZ is defined in Theorem 3.19.

Proof The upper bound is given by the fact that #Up
is the ground state of HUp

ω .
The lower bound is a direct consequence of (3.79) and (3.18). This proves (3.80). �
Remark 3.30 The ground state #Up

satisfies the conditions of Theorem 3.22.
Hence, the inequalities (3.35) hold for the distance between the occupations of #Up

and #opt.
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3.7 The Proof of Theorem 1.3

Theorem 3.22 and Theorem 3.28 give a rather complete description of the ground
state for the operator with compactified interactions HUp

ω (L, n). The description
is given in terms of comparison with #opt (see Definitions 3.9 and 3.14). In this
section, we complement it with estimates on the residual part of interactions Wr

(see (3.16)).

Proposition 3.31 There exists ρ0 such that, for ρ ∈ (0, ρ0), in the thermodynamic
limit, for L sufficiently large, with probability 1 −O(L−∞), one has

1

n
〈Wr#opt, #opt〉 = O(ρ| log ρ|−3Z(2| log ρ|)). (3.81)

Proof We will mostly follow the lines of the second part of the proof of Theo-
rem 3.19 (see formula (3.21) and what follows). First, as in (3.23), one computes

〈Wr#opt, #opt〉 = Tr
(
Urγ

(2)
#opt

)

where γ
(2)
#opt is given by (3.24). Let us treat here only the contribution of the second

sum (3.24). It corresponds to interactions between single particles in pieces of length
in [�ρ − ρx∗, 2�ρ + A∗). The other three sums only contribute error terms as the
number of two-particle sub-states in #opt is by a factor ρ smaller than that of single-
particle sub-states. For the second sum in (3.24)., using Lemma 6.17, one obtains

Tr
(
Ur(Id−Ex)

∑

i,j=1,...,k1
i<j

γφi
⊗s γφj

)

�
∑

|�i |,|�j |∈[�ρ−ρx∗,2�ρ+A∗)∪[3�ρ,+∞)

i<j
dist(�i ,�j )>B�ρ

∫

�i×�j

U(x − y)|ϕ1
�i

(x)|2|ϕ1
�j

(y)|2dxdy

� C1nρ

∫ +∞

B�ρ

�−1
ρ a−3Z(a)da.

Recall that Z is defined in (1.26).
We compute next

∫ +∞

B�ρ

a−3Z(a)da =
∫ +∞

B�ρ

∫ +∞

a

U(x)dxda �
∫ +∞

B�ρ

xU(x)dx � C�−2
ρ Z(B�ρ),

where the last inequality is just (6.61) for ε = 2. This completes the proof of (3.81).
�
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Proof of Theorem 1.3 Proposition 3.31 immediately entails the asymptotics of the
interacting ground state energy EU(ρ). Indeed, as HUp � HU , one has EUp

(ρ) �
EU(ρ); thus, the announced lower bound is given by (3.80). On the other hand, by
Theorem 3.19 and Proposition 3.31, one has

〈HU#U,#U 〉 � 〈HU#opt, #opt〉 = 〈HUp

#opt, #opt〉 + 〈Wr#opt, #opt〉
= E0(ρ)+ π2γ∗ρ| log ρ|−3 (1 +O (fZ(| log ρ|))) ,

(3.82)
which gives the announced upper bound.

This, the facts that B > 2 and that Z is decreasing complete the proof of
Theorem 1.3. �
Our analysis yields the following description for the possible occupations of the
ground state of the full Hamiltonian.

Corollary 3.32 There exists C > 0 such that, ω almost surely, in the thermody-
namic limit, with probability 1 − O(L−∞), for any #U , ground state of the full
Hamiltonian of fixed occupation Q(#U), one has

Q(#U) ∈ Qρ :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Q occ.;

dist1
(
Q|��ρ+C,Q|��ρ+C(#

opt)
)

� Cnρ max
(√

Z(2| log ρ|), | log ρ|−1
)
,

dist1
(
Q|<�ρ+C,Q|<�ρ+C(#

opt)
)

� Cnmax
(√

ρ Z(2| log ρ|), ρ| log ρ|−1
)
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(3.83)

Proof Note that

〈HUp

#U,#U 〉 � 〈HU#U,#U 〉 � 〈HUp

#opt, #opt〉 + 〈Wr#opt, #opt〉.

Thus, according to Proposition 3.31, #U satisfies the condition (3.34) with

r(ρ) = C
√
Z(2| log ρ|)

for some C > 0 sufficiently large.
Then, Theorem 3.22 is applicable and yields (3.83). This completes the proof of

Corollary 3.32. �
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4 From the Occupation and Energy Bounds to the Control of
the Density Matrices

In this section, we will derive Theorem 1.5 from Theorem 1.3, Corollary 3.32 and a
computation of the reduced one-particle and two-particle density matrix of a (non-
factorized) state. More precisely, from Theorem 1.3 and Corollary 3.32, we will
infer a description of the ground state #U in most of the pieces: roughly, in most
of the pieces, the only occupied state is the ground state (up to a controllable error).
We then use this knowledge to compute the reduced one-particle and two-particle
density matrix of #U (up to a controllable error).

4.1 From the Occupation Decomposition to the Reduced
Density Matrices

Fix a configuration of the Poisson points, say, ω, and a state # ∈ Hn("). Recall that,
in the configuration ω, the pieces are denoted by (�j (ω))1�j�m = (�j )1�j�m

(where m = m(ω), see Section 2.2). For 1 � j � m and q � 1, let (Ej
q,n)1�n be

the eigenvalues (ordered increasingly) and (ϕ
j
q,n)1�n be the associated eigenvectors

of q interacting electronic particles in the piece �j(ω), i.e. the eigenvalues and
eigenvectors of the Hamiltonian

H
q

�j (ω) = −
q∑

l=1

d2

dx2
l

+
∑

1�l<l′�q

Up(xl − xl′) (4.1)

acting on
q∧

l=1

L2(�j (ω)) with Dirichlet boundary conditions. Recall that Up is

defined in Section 3.5 (see (3.16)).
The occupation number decomposition (see Section 3.1) implies that one can

write

# =
∑

Q

#Q and #Q =
∑

n∈Nm

a
Q
n %

Q
n =

∑

(nj )1�j�m

∀j, nj�1

aQ
n1,··· ,nm

(#)

m∧

j=1

ϕ
j
Qj ,nj

(4.2)
where

• the first sum is taken over the occupation number Q = (Qj )1�j�m; recall
m∑

j=1

Qj = n;
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• we have defined %
Q
n :=

m∧

j=1

ϕ
j
Qj ,nj

; we refer to (C.2) in Appendix C for an

explicit description of the anti-symmetric tensor product.

Remark 4.1 In (4.2), the convention in the exterior product is that, if Qj = 0, then
the corresponding basis vector drops out of the exterior product. Thus, the product
is only at most n fold. Moreover, in this case, aQ

n1,··· ,nm
= 0 if nj � 2.

For n = (n1, · · · , nm) ∈ N
m, we write a

Q
n = a

Q
n1,··· ,nm

= a
Q
n1,··· ,nm

(#). These
coefficients are uniquely determined by #.

4.1.1 The One-Particle Density Matrix

We shall first compute the one-particle reduced density matrix in terms of the
coefficients (a

Q
n )Q,n coming up in the occupation number decomposition (4.2). We

prove

Theorem 4.2 The one-particle density γ
(1)
# (see (1.19)) is written as γ

(1)
# =

γ
(1),d
# + γ

(1),o
# where

γ
(1),d
# =

m∑

j=1

∑

Q occ.
Qj�1

∑

nj�1
n′j�1

∑

ñ∈Nm−1

a
Q

ñj
a
Q

ñ′j
γ

(1)
Qj

nj ,n
′
j

(4.3)

γ
(1),o
# =

m∑

i,j=1
i �=j

∑

Q, occ. Qj�1
Q′: Q′

k=Qk if k �∈{i,j}
Q′

i=Qi+1
Q′

j=Qj−1

C1(Q, i, j)
∑

ñ∈Nm−2

∑

ni ,nj�1
n′i ,n′j�1

a
Q

ñi,j
a
Q′
ñ′i,j

γ
(1)
Qi,Qj
ni ,nj

n′i ,n′j

(4.4)

and

• we have used the shorthands

– ñj for the vector (ñ1 · · · , ñj−1, nj , ñj , · · · , ñm−1)when ñ = (ñ1, · · · , ñm−1),
– ñi,j for (ñ1, · · · , ñi−1, ni, ñi , · · · , ñj−2, nj , ñj−1, · · · , ñm−2) when i < j

and ñ = (ñ1, · · · , ñm−2),

• the trace class operator γ (1)
Qj

nj ,n
′
j

: L2(�j ) → L2(�j ) has the kernel

γ
(1)
Qj

nj ,n
′
j

(x, y) = Qj

∫

�
Qj−1

j

ϕ
j
Qj ,nj

(x, z)ϕ
j

Qj ,n
′
j

(y, z)dz,
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• C1(Q, i, j) = (n−Qj −Qi − 1)!Qi !Qj !
(n− 1)! ;

• the rank 1 operator γ (1)
Qi,Qj
ni ,nj

n′i ,n′j

: L2(�i) → L2(�j ) has the kernel

γ
(1)
Qi,Qj
ni ,nj

n′i ,n′j

(x, y)=
∫

�
Qj−1

j

ϕ
j
Qj ,nj

(x, z)ϕ
j

Qj−1,n′j
(z)dz

∫

�
Qi
i

ϕi
Qi,ni

(z)ϕi
Qi+1,n′i

(y, z)dz.

(4.5)

Theorem 4.2 follows from a direct computation that we perform in Appendix D.1.

Remark 4.3 In (4.5), in accordance with Remark 4.1, we use the following conven-
tion

• if Qj = 1 and Qi = 0, then n′j = 1 and ni = 1 (i.e. for different indices, the

coefficient aQ

ñi,j
a
Q′
ñ′i,j

vanishes) and

γ
(1)
Qi,Qj

1,nj

n′i ,1

(x, y) = ϕ
j

1,nj
(x) · ϕi

1,n′i
(y), (4.6)

• if Qj � 2 and Qi = 0, then ni = 1 and

γ
(1)
Qi,Qj

1,nj

n′i ,n′j

(x, y) = ϕi
1,n′i

(y)

∫

�
Qj−1

j

ϕ
j

Qj−1,n′j
(z)ϕ

j
Qj ,nj

(x, z)dz, (4.7)

• if Qj = 1 and Qi � 1, then n′j = 1 and

γ
(1)
Qi,Qj
ni ,nj

n′i ,1

(x, y) = ϕ
j

1,nj
(x)

∫

�
Qi
i

ϕi
Qi,ni

(z)ϕi
Qi+1,n′i

(y, z)dz. (4.8)

4.1.2 The Two-Particle Density Matrix

We shall now compute the two-particle reduced density matrix in terms of the
coefficients (a

Q
n )Q,n coming up in the occupation number decomposition (4.2). We

prove

Theorem 4.4 The two-particle density γ
(2)
# (see (1.19)) is written as

γ
(2)
# = γ

(2),d,d
# +γ

(2),d,o
# +γ

(2),2
# +γ

(2),4,2
# +γ

(2),4,3
# +γ

(2),4,3′
# +γ

(2),4,4
# (4.9)
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where

γ
(2),d,d
# =

m∑

j=1

∑

Q occ.
Qj�2

∑

nj�1
n′j�1

∑

ñ∈Nm−1

a
Q

ñj
a
Q

ñ′j
γ

(2),d,d
Qj

nj ,n
′
j

(4.10)

γ
(2),d,o
# =

∑

1�i<j�m

∑

Q occ.
Qi�1
Qj�1

∑

ñ∈Nm−2

∑

nj ,n
′
j�1

ni ,n
′
i�1

a
Q

ñi,j
a
Q

ñ′i,j
γ

(2),d,o
Qi,Qj
ni ,nj

n′i ,n′j

(4.11)

γ
(2),2
# =

m∑

i,j=1
i �=j

∑

Q, occ. Qj�1
Q′: Q′

k=Qk if k �∈{i,j}
Q′

i=Qi+1
Q′

j=Qj−1

∑

ñ∈Nm−1

C2(Q, i, j)
∑

nj ,n
′
j�1

ni ,n
′
i�1

a
Q

ñi,j
a
Q′
ñ′i,j

γ
(2),2
Qi,Qj
ni ,nj

n′i ,n′j

(4.12)

γ
(2),4,2
# =

∑

i �=j

∑

ñ∈Nm−2

∑

Q occ.
Qj�2

Q′: Q′
k=Qk if k �∈{i,j}
Q′

i=Qi+2
Q′

j=Qj−2

C2(Q, i, j)
∑

nj ,n
′
j�1

ni ,n
′
i�1

a
Q

ñi,j
a
Q′
ñ′i,j

γ
(2),4,2
Qi,Qj
ni ,nj

n′i ,n′j

(4.13)

γ
(2),4,3
# =

∑

i,j,k
distinct

∑

ñ∈Nm−3

∑

Q occ.
Qj�2

Q′: Q′
l=Ql if l �∈{i,j,k}
Q′

i=Qi+1
Q′

j=Qj−2

Q′
k=Qk+1

C3(Q, i, j, k)
∑

ni ,nj ,nk�1
n′i ,n′j ,n′k�1

a
Q

ñi,j,k
a
Q′
ñ′i,j,k

γ
(2),4,3
Qi,Qj ,Qk
ni ,nj ,nk

n′i ,n′j ,n′k

(4.14)

γ
(2),4,3′
# =

∑

i,j,k
distinct

∑

ñ∈Nm−3

∑

Q occ.
Qi�1, Qk�1

Q′: Q′
l=Ql if l �∈{i,j,k}
Q′

i=Qi−1
Q′

j=Qj+2

Q′
k=Qk−1

C3(Q, i, j, k)
∑

ni ,nj ,nk�1
n′i ,n′j ,n′k�1

a
Q

ñi,j,k
a
Q′
ñ′i,j,k

γ
(2),4,3′
Qi,Qj ,Qk
ni ,nj ,nk

n′i ,n′j ,n′k

,

(4.15)

and
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γ
(2),4,4
# =

∑

i,j,k,l
distinct

∑

ñ∈Nm−4

∑

Q occ.
Qi�1, Qj�1

Q′: Q′
p=Qp if p �∈{i,j,k,l}

Q′
i=Qi−1, Q′

j=Qj−1

Q′
k=Qk+1, Q′

l=Ql+1

C4(Q, i, j, k, l)
∑

ni ,nj ,nk,nl�1
n′i ,n′j ,n′k,n′l�1

a
Q

ñi,j,k,l
a
Q′
ñ′i,j,k,l

γ
(2),4,4
Qi,Qj ,Qk,Ql
ni ,nj ,nk,nl

n′i ,n′j ,n′k,n′l

,

(4.16)

where

• we have used the shorthands defined in Theorem 4.2 and defined

– ñi,j,k for (ñ1, · · · , ñi−1, ni, ñi , · · · , ñj−2, nj , ñj−1, · · · , ñk−3, nk, ñk−2,

· · · , ñm−3) when i < j < k and ñ = (ñ1, · · · , ñm−3),
– ñi,j,k,l for (ñ1, · · · , ñi−1, ni, ñi , · · · , ñj−2, nj , ñj−1, · · · , ñk−3, nk, ñk−2,

· · · , ñl−4, nl, ñl−3, · · · , ñm−4) when i < j < k < l and ñ = (ñ1, · · · , ñm−4),

• the trace class operator γ (2),d,d
Qj

nj ,n
′
j

: L2(�j )
∧

L2(�j ) → L2(�j )
∧

L2(�j ) has

the kernel

γ
(2),d,d
Qj

nj ,n
′
j

(x, x′, y, y′) = Qj(Qj − 1)

2

∫

�
Qj−2

j

ϕ
j
Qj ,nj

(x, x′, z)ϕj

Qj ,n
′
j

(y, y′, z)dz

(4.17)
• the trace class operator γ (2),d,o

Qi,Qj
ni ,nj

n′i ,n′j

: L2(�i)
∧

L2(�j ) → L2(�i)
∧

L2(�j ) has

the kernel

γ
(2),d,o
Qi,Qj
ni ,nj

n′i ,n′j

(x, x′, y, y′) = QiQj

∫

�
Qi−1
i ×�

Qj−1

j

dzdz′

∣∣∣∣∣
ϕi
Qi,ni

(x, z) ϕi
Qi,ni

(x′, z)
ϕ
j
Qj ,nj

(x, z′) ϕ
j
Qj ,nj

(x′, z′)

∣∣∣∣∣
·
∣∣∣∣∣∣

ϕi
Qi,n

′
i

(y, z) ϕi
Qi,n

′
i

(y′, z)
ϕ
j

Qj ,n
′
j

(y, z′) ϕ
j

Qj ,n
′
j

(y′, z′)

∣∣∣∣∣∣
(4.18)

• C2(Q, i, j) = (n−Qj −Qi − 2)!Qi !Qj !
2 (n− 2)! ;

• the trace class operator γ
(2),2
Qi,Qj
ni ,nj

n′i ,n′j

: L2(�j )
∧

L2(�j ) → L2(�i)
∧

L2(�i) has

the kernel
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γ
(2),2
Qi,Qj
ni ,nj

n′i ,n′j

(x, y) = 1Qj�2

∫

�
Qj−2

j ×�
Qi
i

ϕ
j
Qj ,nj

(x, x′, z)ϕi
Qi,ni

(z′)

×
∣∣∣∣∣∣

ϕ
j

Qj−1,n′j
(y′, z) ϕ

j

Qj−1,n′j
(y, z)

ϕi
Qi+1,n′i

(y′, z′) ϕi
Qi+1,n′i

(y, z′)

∣∣∣∣∣∣
dzdz′

+ 1Qi�1

∫

�
Qj−1

j ×�
Qi−1
i

∣∣∣∣∣
ϕ
j
Qj ,nj

(x′, z) ϕ
j
Qj ,nj

(x, z)

ϕi
Qi,ni

(x′, z′) ϕi
Qi,ni

(x, z′)

∣∣∣∣∣

× ϕ
j

Qj−1,n′j
(z)ϕi

Qi+1,n′i
(y, y′, z′)dzdz′,

(4.19)

• the rank 1 operator γ
(2),4,2
Qi,Qj
ni ,nj

n′i ,n′j

: L2(�j )
∧

L2(�j ) → L2(�i)
∧

L2(�i) has the

kernel

γ
(2),4,2
Qi,Qj
ni ,nj

n′i ,n′j

(x, x′, y, y′) =
∫

�
Qj−2

j

ϕ
j
Qj ,nj

(x, x′, z)ϕj

Qj−2,n′j
(z)dz

∫

�
Qi
i

ϕi
Qi,ni

(z)

× ϕi
Qi+2,n′i

(y, y′, z)dz.
(4.20)

• the rank 2 operator γ
(2),4,3
Qi,Qj ,Qk
ni ,nj ,nk

n′i ,n′j ,n′k

: L2(�i ∪ �k)
∧

L2(�i ∪ �k) →

L2(�j )
∧

L2(�j ) has the kernel

γ
(2),4,3
Qi,Qj ,Qk
ni ,nj ,nk

n′i ,n′j ,n′k

(x, x′, y, y′) =
∫

�
Qj−2

j

ϕ
j
Qj ,nj

(x, x′, z)ϕj

Qj−2,n′j
(z)dz

×
∣∣∣∣∣∣

∫
�

Qi
i

ϕi
Qi,ni

(z)ϕi
Qi+1,n′i

(y, z)dz
∫
�

Qi
i

ϕi
Qi,ni

(z)ϕi
Qi+1,n′i

(y′, z)dz
∫
�

Qk
k

ϕk
Qk,nk

(z)ϕk
Qk+1,n′k

(y, z)dz
∫
�

Qk
k

ϕk
Qk,nk

(z)ϕk
Qk+1,n′k

(y′, z)dz

∣∣∣∣∣∣
,

(4.21)

• C3(Q, i, j, k) = (n−Qi −Qj −Qk − 2)!Qi !Qj !Qk!
2 (n− 2)! ;

• the rank 2 operator γ (2),4,3′
Qi,Qj ,Qk
ni ,nj ,nk

n′i ,n′j ,n′k

: L2(�j )
∧

L2(�j ) → L2(�i ∪�k)
∧

L2(�i ∪

�k) has the kernel
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γ
(2),4,3′
Qi,Qj ,Qk
ni ,nj ,nk

n′i ,n′j ,n′k

(x, x′, y, y′) =

∣∣∣∣∣∣

∫
�

Qi−1
i

ϕi
Qi,ni

(x, z)ϕi
Qi−1,n′i

(z)dz
∫
�

Qi−1
i

ϕi
Qi,ni

(x′, z)ϕi
Qi−1,n′i

(z)dz
∫
�

Qk−1
k

ϕk
Qk,nk

(x, z)ϕk
Qk−1,n′k

(z)dz
∫
�

Qk−1
k

ϕk
Qk,nk

(x′, z)ϕk
Qk−1,n′k

(z)dz

∣∣∣∣∣∣

×
∫

�
Qj
j

ϕ
j
Qj ,nj

(z)ϕ
j

Qj+2,n′j
(y, y′, z)dz,

(4.22)
• the operator γ

(2),4,4
Qi,Qj ,Qk,Ql
ni ,nj ,nk,nl

n′i ,n′j ,n′k,n′l

: L2(�l ∪ �k)
∧

L2(�l ∪ �k) → L2(�i ∪

�j)
∧

L2(�i ∪�j) is rank 4 and has the kernel

γ
(2),4,4
Qi,Qj ,Qk,Ql
ni ,nj ,nk,nl

n′i ,n′j ,n′k,n′l

(x, x′, y, y′) =

∣∣∣∣∣∣∣

∫
�

Qi−1
i

ϕi
Qi,ni

(x, z)ϕi
Qi−1,n′i

(z)dz
∫
�

Qi−1
i

ϕi
Qi,ni

(x′, z)ϕi
Qi−1,n′i

(z)dz

∫
�

Qj−1

j

ϕ
j
Qj ,nj

(x, z)ϕ
j

Qj−1,n′j
(z)dz

∫
�

Qj−1

j

ϕ
j
Qj ,nj

(x′, z)ϕj

Qj−1,n′j
(z)dz

∣∣∣∣∣∣∣

×
∣∣∣∣∣∣

∫
�

Qk
k

ϕk
Qk,nk

(z)ϕk
Qk+1,n′k

(y, z)dz
∫
�

Qk
k

ϕk
Qk,nk

(z)ϕk
Qk+1,n′k

(y′, z)dz
∫
�

Ql
l

ϕl
Ql,nl

(z)ϕl
Ql+1,n′l

(y, z)dz
∫
�

Ql
l

ϕl
Ql,nl

(z)ϕl
Ql+1,n′l

(y′, z)dz

∣∣∣∣∣∣
(4.23)

• C4(Q, i, j, k, l) = (n−Qi −Qj −Qk −Ql − 2)!Qi !Qj !Qk!Ql !
2 (n− 2)! ;

Theorem 4.4 follows from a direct computation that we perform in Appendix D.1.

Remark 4.5 In (4.17)–(4.23), in accordance with Remark 4.1, in the degenerate
cases, we use the conventions derived from those in Remark 4.3 in an obvious way.

For example, in (4.18), if Qi = Qj = 1, one has

γ
(2),d,o
Qi,Qj
ni ,nj

n′i ,n′j

(x,x′, y, y′) = QiQj

∣∣∣∣∣
ϕi
Qi,ni

(x) ϕi
Qi,ni

(x′)
ϕ
j
Qj ,nj

(x) ϕ
j
Qj ,nj

(x′)

∣∣∣∣∣
·
∣∣∣∣∣∣

ϕi
Qi,n

′
i

(y) ϕi
Qi,n

′
i

(y′)
ϕ
j

Qj ,n
′
j

(y) ϕ
j

Qj ,n
′
j

(y′)

∣∣∣∣∣∣
.

(4.24)



156 F. Klopp and N. A. Veniaminov

4.1.3 A Particular Case

Let us now explain how the structure of the one-particle and two-particle density
matrices may be simplified in the particular case when the ground state is factorized.
This in particular immediately yields the expansions (1.22) and (1.23) for the one-
particle and two-particle density matrices of the non- interacting ground state.

Definition 4.6 Let α ∈ Hi (L) and β ∈ Hj (L) be two states describing
i and j electrons, respectively. We say α and β do not interact if for all
(x2, . . . , xi, y2, . . . , yj ) ∈ [0, L]i+j−2,

∫ L

0
α(x1, . . . , xi)β∗(y1, . . . , yj )

∣∣
x1=y1 dx1 = 0. (4.25)

To denote this complete orthogonality, we will write α ⊥⊥ β.

Remark 4.7 Because of the anti-symmetric nature of the states α and β in the above
definition, it is sufficient to impose the orthogonality only on the first variables.
Thus, an integral of the type (4.25) vanishes for any pair of coordinates xi1 = yj1

for i1 ∈ {1, . . . , i}, and j1 ∈ {1, . . . , j}.
We prove

Proposition 4.8 Suppose that an n-particle state # ∈ Hn(L) is decomposed in its
non-interacting parts:

# =
k∧

j=1

ζj ,

where each ζj ∈ Hkj (L) is a kj -particle state describing a packet of particles
that do not interact with other packets, i.e., for i �= j , ζi ⊥⊥ ζj in the sense of
Definition 4.6. Then

γ# =
k∑

j=1

γζj (4.26)

and

γ
(2)
# =

k∑

j=1

[
γ

(2)
ζj

− 1

2
(Id−Ex)γζj ⊗ γζj

]
+ 1

2
(Id−Ex)γ# ⊗ γ#, (4.27)

where Id is the identity, Ex is the exchange operator on the two-particle space
defined as

Ex f ⊗ g = g ⊗ f, f, g ∈ H,

and with the obvious convention that γ (2)
ζj

= 0 if ζj is a one-particle state.
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While Proposition 4.8 could be obtained as a consequence of Theorems 4.2 and 4.4,
we will derive it from the following auxiliary lemma.

Lemma 4.9 Let α ∈ Hn(L) and β ∈ Hm(L) be two vectors describing n and m

electrons, respectively. Suppose that α and β do not interact:

α ⊥⊥ β.

Then,

γα∧β = γα + γβ (4.28)

and

γ
(2)
α∧β = γ (2)

α + γ
(2)
β + (Id−Ex)γα ⊗s γβ (4.29)

where ⊗s denotes the symmetrized tensor product:

A⊗s B = 1

2
(A⊗ B + B ⊗ A).

Proof Define Nn := {1, . . . , n}. Consider the two-particle density matrix. By (C.2),
the anti-symmetrized product of two eigenfunctions in, respectively, n and m

variables is given by

(α ∧ β)(x1, . . . , xn+m) = 1
√(

n+m
n

)
∑

J∪J ′=Nn+m

J∩J ′=∅, |J |=n

(−1)sign J α(xJ )β(xJ ′
).

where sign J is the signature of the unique permutation σ of {1, · · · , n + m} such
that, if we write J = {ai; 1 � i � n} and J ′ = {a′i; 1 � i � m}, both ordered
increasingly, then σ(ai) = i and σ(a′i ) = n+ i (see Appendix C).

Thus, the corresponding two-particle density matrix can be written as

γ
(2)
α∧β(x

1, x2, y1, y2)

= (n+m)(n+m−1)

2

∫

[0,L]n+m−2
(α ∧ β)(x1, x2, x) (α ∧ β)∗(y1, y2, x)dx

= (n+m)(n+m−1)

2
(
n+m
n

)

∑

I∪I ′=Nn+m

I∩I ′=∅, |I |=n
J∪J ′=Nn+m

J∩J ′=∅, |J |=n

∫

[0,L]n+m−2
(−1)sign I+ sign J α(xI )β(xI ′)α∗(yJ )β∗(yJ ′

)

∣∣∣ yj=xj

j∈{3,...,n+m}
dx.

(4.30)
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As α and β do not interact, the integrals in the sum in the last part of (4.30) vanish if
I differs from J by more than two elements, i.e., |I\J | � 2. Moreover, if |I\J | � 1,
such an integral does not vanish if and only if

(a) if {1, 2} ⊂ I , then I = J ; indeed, otherwise J would contain an index in I ′ and

the integration of β(xI ′)α∗(yJ )

∣∣∣ yj=xj

j∈{3,...,n+m}
over the corresponding variable

would produce zero because α ⊥⊥ β.
(b) if {1, 2} ⊂ J , then I = J .
(c) if (1, 2) ∈ (I × I ′) ∪ (I ′ × I ), then (1, 2) ∈ (J × J ′) ∪ (J ′ × J ) by the same

argument as above.

As the functions α and β are completely anti-symmetric under permutations of
variables, the terms of the sums over I and J corresponding to different cases
described above are all the same. If we denote x̂k = x3, . . . , xk and dx̂k =
dx3 . . . dxk for k ∈ {n,m, n+ n}, this finally yields

γ
(2)
α∧β(x

1, x2, y1, y2) = A+ B + C

where

A := (n+m)(n+m−1)

2

1
(
n+m
n

)
(
n+m−2

n−2

)∫

[0,L]n−2
α(x1, x2, x̂n)α∗(y1, y2, x̂n)dx̂n

= γ (2)
α (x1, x2, y1, y2),

B:= (n+m)(n+m−1)

2

1
(
n+m
n

)
(
n+m−2

m−2

)∫

[0,L]m−2
β(x1, x2, x̂m)β∗(y1, y2, x̂m)dx̂m

= γ
(2)
β (x1, x2, y1, y2)

and

C := (n+m)(n+m− 1)

2

1
(
n+m
n

)
(
n+m− 2

m− 1

)∫

[0,L]n+m−2
dx̂n+m

(
α(x1, . . .)β(x2, . . .)α∗(y1, . . .)β∗(y2, . . .)

− α(x1, . . .)β(x2, . . .)α∗(y2, . . .)β∗(y1, . . .)

− α(x2, . . .)β(x1, . . .)α∗(y1, . . .)β∗(y2, . . .)

+α(x2, . . .)β(x1, . . .)α∗(y2, . . .)β∗(y1, . . .)
)

= 1

2

(
γα(x

1, y1)γβ(x
2, y2)− γα(x

1, y2)γβ(x
2, y1)

−γα(x
2, y1)γβ(x

1, y2)+ γα(x
2, y2)γβ(x

1, y1)
)
.
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This completes the proof of (4.29). The proof for the one-particle density
matrix (4.28) is done similarly and is even simpler. This completes the proof of
Lemma 4.9. �
Proof of Proposition 4.8 The identity (4.26) for one-particle density matrix is a
direct consequence of (4.28). We prove (4.27) by induction on k.

For k = 2, (4.27) is equivalent to (4.29) after noting that

A⊗s B = 1

2
((A+ B)⊗ (A+ B)− A⊗ A− B ⊗ B) .

This remark also proves that

γ
(2)
# =

k∑

j=1

γ
(2)
ζj

+ (Id−Ex)
∑

i<j

γζi ⊗s γζj (4.31)

which is equality (4.27).
Let us prove (4.31) inductively. Suppose now that (4.31) holds true and consider

#k+1 =
k+1∧

j=1

ζj =
⎛

⎝
k∧

j=1

ζj

⎞

⎠ ∧ ζk+1 = #k ∧ ζk+1.

By (4.29), we get

γ
(2)
#k+1

= γ
(2)
#k

+ γ
(2)
ζk+1

+ (Id−Ex)γ#k
⊗s γζk+1

=
k∑

j=1

γ
(2)
ζj

+ (Id−Ex)

⎛

⎜⎜
⎝

∑

i<j
i,j=1,...,k

γζi ⊗s γζj

⎞

⎟⎟
⎠+ γ

(2)
ζk+1

+ (Id−Ex)

⎛

⎝
k∑

j=1

γζj

⎞

⎠⊗s γζk+1

=
k+1∑

j=1

γ
(2)
ζj

+ (Id−Ex)
∑

i<j
i,j=1,...,k+1

γζi ⊗s γζj .

This completes the proof of Proposition 4.8. �
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4.2 The Proof of Theorem 1.5

The proof of Theorem 1.5 will rely on Theorem 4.2 and the analysis of #U
ω (L, n)

performed in Section 3. The two sums in (4.3) will be analyzed separately and will
be split into various components according to the lengths of the pieces coming into
play in each component.

As in the beginning of Section 4.1 (see (4.2)), write #U
ω (L, n) =

∑

Q occ.
n∈Nm

a
Q
n %Q,n.

We will first transform the results on the ground state obtained in Section 3 into a
statement on the coefficients ((a

Q
n ))Q,n, namely,

Proposition 4.10 There exists ρ0 > 0 such that, for ρ ∈ (0, ρ0) and ε ∈ (0, 1/10),
ω almost surely, in the thermodynamic limit, with probability 1 − O(L−∞), one
has

(a) for an occupation Q �∈ Qρ (see (3.83)) and any n ∈ N
m, one has aQ

n = 0;
(b) let P− be the (indices j of the) pieces (�j (ω))j of lengths less than 3�ρ(1− ε),

and, for Q an occupation, let PQ
− be the (indices j of the) pieces in P− such

that Qj � 3.
Then, for Q, an occupation number of a ground state #U

ω (L, n), letting

(a
Q
n )Q,n be its coefficients in the decomposition (4.2), one has

∑

Q occ.
n∈Nm

#{j ∈ PQ
− ; nj � 2}

∣∣∣aQ
n

∣∣∣
2
� o

(
n · ρ
| log ρ|

)
. (4.32)

The second part of Proposition 4.10 controls the excited particles in the ground state
#U

ω (L, n). Actually, as the proof shows, we shall prove (4.32) not only for a ground
state of HU

ω (L, n), but, also for any state # satisfying

1

n
〈HUp

ω (L, n)#,#〉 � E0(ρ)+ π2γ∗
ρ

| log ρ|−3 + o

(
ρ

| log ρ|−3

)
. (4.33)

Proof of Proposition 4.10 Point (a) is a rephrasing of Corollary 3.32.
Let us prove point (b). Pick an n-state # and decompose it as #U

ω (L, n) =
∑

Q∈Qρ

#Q. Then, if E
j,Up

Qj ,nj
denotes the nj -th eigenvalue of −

Qj∑

l=1

d2

dx2
l

+

∑

1�k<l�Qj

Up(xk −xl) acting on

Qj∧

l=1

L2(�j (ω)) with Dirichlet boundary conditions

(if Qj = 0, we set Ej,Up

Qj ,nj
= 0 for all nj ), as HU � HUp

(see (3.17)), by (3.82),
one has
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n
(
E0(ρ)+π2γ'ρ| log ρ|−3 (1+O (fZ(| log ρ|)))

)
�〈HUp

#Up

,#Up 〉

�
∑

Q occ.
n∈Nm

⎛

⎜⎜⎜⎜
⎝

∑

j∈PQ
−

Qj�1

E
j,Up

Qj ,nj

⎞

⎟⎟⎟⎟
⎠

∣∣∣aQ
n

∣∣∣
2
.

(4.34)
One proves

Lemma 4.11 There exists C > 0 such that, for j ∈ PQ
− , Qj � 1 and nj � 2, one

has

E
j,Up

Qj ,nj
� E

j,Up

Qj ,1
+ 1

C�2
ρ

. (4.35)

Plugging (4.35) into (4.34) yields

∑

Q occ.
n∈Nm

⎛

⎜⎜⎜⎜
⎝

∑

j∈PQ
−

Qj�1

E
j,Up

Qj ,1

⎞

⎟⎟⎟⎟
⎠

∣∣∣aQ
n

∣∣∣
2 +

∑

Q occ.
n∈Nm

#{j ∈ PQ
− ; nj � 2}
C�2

ρ

∣∣∣aQ
n

∣∣∣
2

� n
(
E0(ρ)+ π2γ'ρ| log ρ|−3 (1 +O (fZ(| log ρ|)))

)
(4.36)

We prove

Lemma 4.12 There exists ρ0 > 0 such that, for ρ ∈ (0, ρ0), ε ∈ (0, 1) and ω

almost surely, for L sufficiently large and |n/L − ρ| sufficiently small, if Q is an
occupation such that

∑

j∈P−
E

j,Up

Qj ,1
� n

(
E0(ρ)+ ρ| log ρ|−3

(
π2γ' + ε

))
(4.37)

then

∑

j∈PQ
−

Qj�1

E
j,Up

Qj ,1
� n

(
E0(ρ)+ ρ| log ρ|−3

(
π2γ' − 1

ρ0
(ε + fZ(| log ρ|))

))
.

(4.38)

Lemma 4.12 shows that, for low energy states, most of the energy is carried by
pieces carrying three particles and less (compare the set P− and PQ

− ).
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Let us postpone the proof of this result for a while and complete the proof of

Proposition 4.10. From (4.38) and (4.36), as
∑

Q occ.
n∈Nm

∣∣∣aQ
n

∣∣∣
2 = 1 and fZ(| log ρ|) =

o(1), we get that

∑

Q occ.
n∈Nm

#{j ∈ PQ
− ; nj � 2}
C�2

ρ

∣∣∣aQ
n

∣∣∣
2
� o

(
nρ| log ρ|−3

)
.

As �ρ . | log ρ|, this immediately yields (4.32) and completes the proof of
Proposition 4.10. �
Proof of Lemma 4.12 By Theorem 3.19, for L large and n/L close to ρ, we have

〈
HUp

ω #opt, #opt
〉
� n

(
E0(ρ)+ π2γ'ρ| log ρ|−3 (1 +O (fZ(| log ρ|)))

)
.

Recall that the occupation Qopt of #opt satisfies

Q
opt
j =

⎧
⎪⎪⎨

⎪⎪⎩

0 if |�j(ω)| ∈ [0, �ρ − ρx∗),
1 if |�j(ω)| ∈ [�ρ − ρx∗, 2�ρ + A∗),
2 if |�j(ω)| ∈ [2�ρ + A∗, 3�ρ(1 − ε)).

(4.39)

Theorem 3.19 shows that
∣∣∣∣∣∣∣∣∣∣

〈
HUp

ω #opt, #opt
〉
−

∑

j∈P−
Q

opt
j =1

E
j,Up

1,1 −
∑

j∈P−
Q

opt
j =2

E
j,Up

2,1

∣∣∣∣∣∣∣∣∣∣

� n
ρ

| log ρ|3 fZ(| log ρ|).

(4.40)
Let

�E :=
∑

j∈P−
E

j,Up

Qj ,1
−

∑

j∈P−
Q

opt
j =1

E
j,Up

1,1 −
∑

j∈P−
Q

opt
j =2

E
j,Up

2,1 . (4.41)

Then, (4.40) and assumption (4.37) imply that

|�E| � C nρ

| log ρ|3 (fZ(| log ρ|)+ ε) . (4.42)

Moreover, one has



Interacting Electrons in a Random Medium 163

�E �
∑

j∈P−
Q

opt
j =0

E
j,Up

Qj ,1
+

∑

j∈P−
Q

opt
j =1

(E
j,Up

Qj ,1
− E

j,Up

1,1 )+
∑

j∈P−
Q

opt
j =2

(E
j,Up

Qj ,1
− E

j,Up

2,1 )

=
∑

j∈P−
Q

opt
j =0

Qj�1

E
j,Up

Qj ,1
+

∑

j∈P−
Q

opt
j =1

Qj�2

(E
j,Up

Qj ,1
− E

j,Up

1,1 )+
∑

j∈P−
Q

opt
j =2

Qj�3

(E
j,Up

Qj ,1
− E

j,Up

2,1 )

−
∑

j∈P−
Q

opt
j =1

Qj=0

E
j,Up

1,1 −
∑

j∈P−
Q

opt
j =2

Qj�1

(E
j,Up

2,1 − E
j,Up

Qj ,1
).

(4.43)
On the other hand, as |Q| = n = |Qopt|, using Lemma 3.23 as #U

ω (L, n)

satisfies (4.33), we know that

∑

j∈P−
Q

opt
j =1

Qj=0

1+
∑

j∈P−
Q

opt
j =2

Qj�1

(2−Qj) =
∑

j∈P−
Q

opt
j =0

Qj�1

Qj+
∑

j∈P−
Q

opt
j =1

Qj�2

(Qj−1)+
∑

j∈P−
Q

opt
j =2

Qj�3

(Qj−2)+O(nρ1+η).

(4.44)
Define

B := max

⎛

⎜⎜
⎝ max

j ; Qj=0

Q
opt
j =1

E
j,Up

1,1 , max
j ; Q

opt
j =2

0�Qj�1

E
j,Up

2,1 − E
j,Up

Qj ,1

2 −Qj

⎞

⎟⎟
⎠ .

Then, (4.43) implies that

�E �
∑

j∈P−
Q

opt
j =0

Qj�1

E
j,Up

Qj ,1
+

∑

j∈P−
Q

opt
j =1

Qj�2

(E
j,Up

Qj ,1
− E

j,Up

1,1 )+
∑

j∈P−
Q

opt
j =2

Qj�3

(E
j,Up

Qj ,1
− E

j,Up

2,1 )

− B
∑

j∈P−
Q

opt
j =1

Qj=0

1 − B
∑

j∈P−
Q

opt
j =2

Qj�1

(2 −Qj).

Hence, (4.44) implies that, for some C > 0, for ρ sufficiently small, one has
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�E + C nρ1+η �
∑

j∈P−
Q

opt
j =0

Qj�1

(E
j,Up

Qj ,1
− B)+

∑

j∈P−
Q

opt
j =1

Qj�2

(E
j,Up

Qj ,1
− E

j,Up

1,1 − B(Qj − 1))

+
∑

j∈P−
Q

opt
j =2

Qj�3

(E
j,Up

Qj ,1
− E

j,Up

2,1 − B(Qj − 2)).

(4.45)
Let us upper bound B. Recalling that for a single particle in a piece there is no
interaction, a direct computation and (4.39) show that

max
j ; Qj=0

Q
opt
j =1

E
j,Up

1,1 � π2

(�ρ − ρx∗)2 . (4.46)

Proposition 1.4 and (4.39) show that, for ρ sufficiently small, one has

max
j ; Qj=0

Q
opt
j =2

E
j,Up

2,1 − E
j,Up

Qj ,1

2 −Qj

� 5π2

2(2�ρ + A∗)2 + 2γ

(2�ρ + A∗)3 � π2

(�ρ − ρx∗)2

max
j ; Qj=1

Q
opt
j =2

E
j,Up

2,1 − E
j,Up

Qj ,1

2 −Qj

� 4π2

(2�ρ + A∗)2 + 2γ

(2�ρ + A∗)3 � π2

(�ρ − ρx∗)2 .

Thus,

B � π2

(�ρ − ρx∗)2 . (4.47)

Now, notice that

• for j s.t. Qopt
j = 0 (see (4.39)):

– if Qj = 1, one has

E
j,Up

Qj ,1
− π2

(�ρ − ρx∗)2
� π2

|�j(ω)|2 − π2

(�ρ − ρx∗)2
� 0;

– if Qj � 2, one has

E
j,Up

Qj ,1
− π2

(�ρ − ρx∗)2 � 1

2
E

j,Up

Qj ,1
+ 5π2

2|�j(ω)|2 − π2

(�ρ − ρx∗)2 � 1

2
E

j,Up

Qj ,1
;
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• for j s.t. Qopt
j = 1 (see (4.39)):

– if Qj = 2, one has

E
j,Up

Qj ,1
− E

j,Up

1,1 − π2

(�ρ − ρx∗)2

� 4π2

|�j(ω)|2 + γ

|�j(ω)|3 + o(�−3
ρ )− π2

(�ρ − ρx∗)2

� 4π2

|2�ρ+A∗+ερ |2+
γ

|2�ρ+A∗+ερ |3+o(�−3
ρ )− π2

(�ρ−ρx∗)2

� π2

�2
ρ

−A∗π2

2�3
ρ

+ γ

4�3
ρ

+π2ερ

2�3
ρ

+o(�−3
ρ )− π2

(�ρ−ρx∗)2

� π2ερ

2�3
ρ

+ o(�−3
ρ ) � 0

if ρ sufficiently small (see (3.10)) and |�j(ω)| � 2�ρ +A∗ − ερ ; here, ερ →
0+ (but not too fast) as ρ → 0+; on the other hand, the number of pieces of
length in 2�ρ +A∗ + [−ερ, 0] is bounded by Cρnερ (see Proposition 2.2) and
for such pieces, one has

∣∣∣∣E
j,Up

2,1 − E
j,Up

1,1 − π2

(�ρ − ρx∗)2

∣∣∣∣ = o(�−3
ρ ); (4.48)

– if Qj � 3, one has

E
j,Up

Qj ,1
−E

j,Up

1,1 − π2

(�ρ−ρx∗)2
(Qj−1) � 1

2
E

j,Up

Qj ,1
+1

2
E

j,0
Qj ,1

− π2

(�ρ−ρx∗)2
(Qj−1)

� 1

2
E

j,Up

Qj ,1
+ π2

4�2
ρ

5

12
(Qj−1) � 1

2
E

j,Up

Qj ,1

• for j s.t. Qopt
j = 2 (see (4.39)):

– if Qj � 3, one has

E
j,Up

Qj ,1
−E

j,Up

2,1 − π2

(�ρ−ρx∗)2
(Qj−2)� 1

3
E

j,Up

Qj ,1
+2

3
E

j,0
Qj ,1

− π2

(�ρ−ρx∗)2
(Qj−2)

� 1

3
E

j,Up

Qj ,1
+ π2

9(1−ε)2�2
ρ

(
102

9
−9

)
(Qj−2)

� 1

3
E

j,Up

Qj ,1
.
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Plugging these estimates and (4.47) into (4.45), we get that, for ρ sufficiently small,

�E +
∑

|�j (ω)|∈2�ρ+A∗+[−ερ,0]

∣∣∣∣E
j,Up

2,1 − E
j,Up

1,1 − π2

(�ρ − ρx∗)2

∣∣∣∣+ C nρ1+η

� 1

2

∑

j∈P−
Q

opt
j =0

Qj�2

E
j,Up

Qj ,1
+ 1

2

∑

j∈P−
Q

opt
j =1

Qj�3

E
j,Up

Qj ,1
+ 1

3

∑

j∈P−
Q

opt
j =2

Qj�3

E
j,Up

Qj ,1
.

Hence, in view of (4.48) and the estimate on the number of terms in the sum in the
left-hand side, one gets

3
(
�E + o

(
nρ�−3

ρ

))
�

∑

j∈P−
Q

opt
j =0

Qj�2

E
j,Up

Qj ,1
+

∑

j∈P−
Q

opt
j =1

Qj�3

E
j,Up

Qj ,1
+

∑

j∈P−
Q

opt
j =2

Qj�3

E
j,Up

Qj ,1
� 0.

(4.49)
This implies that

o
(
nρ�−3

ρ

)
� �E =

∑

j∈P−
E

j,Up

Qj ,1
−

∑

j∈P−
Q

opt
j =1

E
j,Up

1,1 −
∑

j∈P−
Q

opt
j =2

E
j,Up

2,1

hence, by (4.40), that, for some C > 0 and ρ sufficiently small, one has

∑

j∈P−
E

j,Up

Qj ,1
� n

(
E0(ρ)+ π2γ'ρ| log ρ|−3 (1 − C fZ(| log ρ|))

)
(4.50)

We complete the proof of Lemma 4.12 by noting that, by the definition of PQ
− , one

has

∑

j∈PQ
−

Qj�1

E
j,Up

Qj ,1
=
∑

j∈P−
E

j,Up

Qj ,1
−

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

∑

j∈P−
Q

opt
j =0

Qj�3

E
j,Up

Qj ,1
+

∑

j∈P−
Q

opt
j =1

Qj�3

E
j,Up

Qj ,1
+

∑

j∈P−
Q

opt
j =2

Qj�3

E
j,Up

Qj ,1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

� n
(
E0(ρ)+ π2γ'ρ| log ρ|−3 (1 − C(ε + fZ(| log ρ|)))

)

where the last lower bound follows from (4.42) and (4.49).
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This completes the proof of Lemma 4.12. �
Let us resume the proof of Theorem 1.5. Recall Theorem 4.2; we analyze the two

components γ
(1),d
#U

ω (L,n)
and γ

(1),o
#U

ω (L,n)
separately.

Let us start with the analysis of γ (1),o
#U

ω (L,n)
. We prove

Lemma 4.13 Under the assumptions of Theorem 4.2, in the thermodynamic limit,
with probability 1 −O(L−∞), one has

∥∥∥γ (1),o
#U

ω (L,n)

∥∥∥
tr
� 3. (4.51)

Proof We recall (4.4) from Theorem 4.2 and write

γ
(1),o
#U

ω (L,n)
=

∑

Q occ.

m∑

i,j=1
i �=j

Qj�1

C1(Q, i, j)
∑

ñ∈Nm−1

∑

ni ,nj�1
n′i ,n′j�1

a
Q

ñi,j
a
Q′
ñ′i,j

γ
(1)
Qi,Qj
ni ,nj

n′i ,n′j

where, by definition, in the above sums, Q′ satisfies Q′
k = Qk if k �∈ {i, j}, Q′

i =
Qi + 1 and Q′

j = Qj − 1.
Note that, by point (a) of Proposition 4.10, here and in the sequel when summing

over the occupations Q, we can always restrict ourselves to the occupations in Qρ .
Decompose

γ
(1),o
#U

ω (L,n)
= γ

(1),o,+,+
#U

ω (L,n)
+ γ

(1),o,+,−
#U

ω (L,n)
+ γ

(1),o,−,+
#U

ω (L,n)
+ γ

(1),o,−,−
#U

ω (L,n)
(4.52)

where (see (4.5), (4.6), (4.7), and (4.8))

γ
(1),o,+,+
#U

ω (L,n)
:=

∑

Q occ.
ñ∈Nm−1

i �=j
Qj�2
Qi�1

C1(Q, i, j)a
Q

ñi,j
a
Q′
ñ′i,j

γ
(1),1,+,+
Q,Q′,i,j,ñ, γ

(1),o,+,−
#U

ω (L,n)

:=
∑

Q occ.
ñ∈Nm−1

i �=j
Qj�2
Qi=0

C1(Q, i, j)a
Q

ñi,j
a
Q′
ñ′i,j

γ
(1),1,+,−
Q,Q′,i,j,ñ,

γ
(1),o,−,+
#U

ω (L,n)
:=

∑

Q occ.
ñ∈Nm−1

i �=j
Qj=1
Qi�1

C1(Q, i, j)a
Q

ñi,j
a
Q′
ñ′i,j

γ
(1),1,−,+
Q,Q′,i,j,ñ, γ

(1),o,−,−
#U

ω (L,n)
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:=
∑

Q occ.
ñ∈Nm−1

i �=j
Qj=1
Qi=0

C1(Q, i, j)a
Q

ñi,j
a
Q′
ñ′i,j

γ
(1),1,−,−
Q,Q′,i,j,ñ

and

γ
(1),1,+,+
Q,Q′,i,j,ñ(x, y) :=

∫

�
Qi
i ×�

Qj−1

j

⎛

⎜⎜
⎝
∑

ni�1
nj�1

a
Q

ñi,j
ϕi
Qi,ni

(z)ϕ
j
Qj ,nj

(x, z′)

⎞

⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

∑

n′j�1

n′j�1

a
Q′
ñ′i,j

ϕi
Q′

i ,n
′
i

(y, z)ϕ
j

Q′
j ,n

′
j

(z′)

⎞

⎟⎟⎟⎟
⎠

dzdz′,

γ
(1),1,+,−
Q,Q′,i,j,ñ(x, y) :=

∫

�
Qj−1

j

⎛

⎜⎜
⎝
∑

ni=1
nj�1

a
Q

ñi,j
ϕ
j
Qj ,nj

(x, z′)

⎞

⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

∑

n′i�1
n′j�1

a
Q

ñ′i,j
ϕi

1,n′i
(y)ϕ

j

Qj−1,n′j
(z′)

⎞

⎟⎟⎟⎟
⎠

dz′,

γ
(1),1,−,+
Q,Q′,i,j,ñ(x, y):=

∫

�
Qi
i

⎛

⎜⎜
⎝
∑

ni�1
nj�1

a
Q

ñi,j
ϕ
j

1,nj
(x)ϕi

Qi,ni
(z)

⎞

⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

∑

n′j=1

n′i�1

a
Q

ñ′i,j
ϕi
Qi+1,n′i

(y, z)

⎞

⎟⎟⎟⎟
⎠
dz,

and γ
(1),1,−,−
Q,Q′,i,j,ñ(x, y) :=

⎛

⎜⎜
⎝
∑

ni=1
nj�1

a
Q

ñi,j
ϕi

1,nj
(x)

⎞

⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

∑

n′j=1

n′i�1

a
Q′
ñ′i,j

ϕi
1,n′i

(y)

⎞

⎟⎟⎟⎟
⎠

.

Let us first analyze γ
(1),o,+,+
#U

ω (L,n)
. By Lemma B.1, using the orthonormality of the

families (ϕ
j
Qj ,nj

)nj∈N (see the beginning of Section 4.1), we know that
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∥∥∥γ (1),1,+,+
Q,Q′,i,j,ñ

∥∥∥
tr
�

∥∥∥∥∥∥

∑

ni ,nj

a
Q

ñi,j
ϕi
Qi,ni

⊗ ϕ
j
Qj ,nj

∥∥∥∥∥∥
·

∥∥∥∥∥∥∥

∑

n′i ,n′j

a
Q′
ñ′i,j

ϕi
Q′

i ,n
′
i
⊗ ϕ

j

Q′
j ,n

′
j

∥∥∥∥∥∥∥

� 1

2

⎛

⎝
∑

ni ,nj

∣∣∣aQ

ñi,j

∣∣∣
2 +

∑

ni ,nj

∣∣∣aQ′
ñi,j

∣∣∣
2

⎞

⎠ .

Hence, by definition (see the formula following (4.52)) and the symmetry of
C1(Q, i, j) in i and j , we have

∥∥∥γ (1),o,+,+
#U

ω (L,n)

∥∥∥
tr
�

m∑

i,j=1
i �=j

∑

Q occ.
Qj�2
Qi�1

C1(Q, i, j)
∑

n∈Nm

∣∣∣aQ
n

∣∣∣
2
.

Now, by definition (see Theorem 4.2), for Qj � 2 and Qi � 1, one has

C1(Q, i, j) � Qi Qj

(n− 1)(n− 2)(n− 3)
.

Thus,

∥∥∥γ (1),o,+,+
#U

ω (L,n)

∥∥∥
tr
� 1

(n− 1)(n− 2)(n− 3)

∑

Q occ.
Qj�2
Qi�1

⎛

⎝
∑

j

Qj

⎞

⎠

2
∑

n∈Nm

∣∣∣aQ
n

∣∣∣
2

� n2

(n− 1)(n− 2)(n− 3)

∑

Q, n∈Nm

∣∣∣aQ
n

∣∣∣
2 = n2

(n− 1)(n− 2)(n− 3)
.

(4.53)
Let us now analyze γ

(1),o,−,−
#U

ω (L,n)
. By the definition of C1(Q, i, j), we write

γ
(1),o,−,−
#U

ω (L,n)
(x, y)= 1

n−1

∑

ñ∈Nm−1

Q occ.

m∑

i,j=1
i �=j

Qj=1
Qi=0

⎛

⎝
∑

ni=1,nj

a
Q

ñi,j
ϕ
j

1,nj
(x)

⎞

⎠

⎛

⎜
⎝

∑

n′j=1,n′i

a
Q′
ñ′i,j

ϕi
1,n′i

(y)

⎞

⎟
⎠ .

Thus, by Lemma B.1, one has
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∥∥∥γ (1),o,−,−
#U

ω (L,n)

∥∥∥
tr
� 1

n− 1

∑

ñ∈Nm−1

Q occ.

∥∥∥∥∥∥

∑

j, Qj=1

∑

ni=1,nj

a
Q
ñi,j

ϕ
j
1,nj

∥∥∥∥∥∥
·

∥∥∥∥∥∥∥

m∑

i, Qi=0

∑

n′j=1,n′i

a
Q′
ñ′i,j

ϕi
1,n′i

∥∥∥∥∥∥∥

� 1

2n−2

∑

ñ∈Nm−1

Q occ.

∥∥∥∥∥∥

∑

j, Qj=1

∑

ni=1,nj

a
Q
ñi,j

ϕ
j
1,nj

∥∥∥∥∥∥

2

+

∥∥∥∥∥∥∥

∑

i, Qi=0

∑

n′j=1,n′i

a
Q′
ñ′i,j

ϕi
1,n′i

∥∥∥∥∥∥∥

2

� 1

2n− 2

∑

n∈Nm

Q occ.

∣∣∣aQñ

∣∣∣
2 = 1

2n− 2
.

(4.54)
Let us now analyze γ

(1),o,+,−
#U

ω (L,n)
. One has

γ
(1),o,+,−
#U

ω (L,n)
=

∑

ñ∈Nm−1

Q occ.

∑

i �=j
Qj�2
Qi=0

(n−Qj−1)!Qj !
(n−1)!

∫

�
Qj−1

j

⎛

⎝
∑

ni=1,nj

a
Q

ñi,j
ϕ
j
Qj ,nj

(x, z′)

⎞

⎠×

⎛

⎜
⎝
∑

n′i ,n′j

a
Q

ñ′i,j
ϕi

1,n′i
(y)ϕ

j

Qj−1,n′j
(z′)

⎞

⎟
⎠ dz′

=
∑

ñ∈Nm−1

Q occ.

∑

j ; Qj�2

(n−Qj−1)!Qj !
(n−1)!

∫

�
Qj−1

j

⎛

⎝
∑

ni=1,nj

a
Q

ñi,j
ϕ
j
Qj ,nj

(x, z′)

⎞

⎠×

⎛

⎜
⎝

∑

i; Qi=0

∑

n′i ,n′j

a
Q

ñ′i,j
ϕi

1,n′i
(y)ϕ

j

Qj−1,n′j
(z′)

⎞

⎟
⎠ dz′.

Thus, using Lemma B.1 and the orthonormality properties of the families
(ϕ

j
Qj ,nj

)nj∈N, as (n−Qj)!Qj ! � n! and
∑

j Qj = n, we get

∥∥∥γ (1),o,+,−
#U

ω (L,n)

∥∥∥
tr
� 1

n− 1

∑

ñ∈Nm−1

Q occ.

m∑

j=1

Qj

∑

ni=1,nj

∣∣∣aQ

ñi,j

∣∣∣
2
� n

n− 1

∑

n∈Nm

Q occ.

∣∣∣aQ
n

∣∣∣
2
.

(4.55)
The term γ

(1),o,−,+
#U

ω (L,n)
is analyzed in the same way. Gathering (4.53), (4.54), (4.55)

and using (4.52), we obtain (4.51) and, thus, complete the proof of Lemma 4.13. �

Let us now turn to the analysis of γ (1),d
#U

ω (L,n)
. Therefore, we write
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γ
(1),d
#U

ω (L,n)
= γ

(1),d,−
#U

ω (L,n)
+γ

(1),d,+
#U

ω (L,n)
where γ

(1),d,−
#U

ω (L,n)
:=

∑

Q occ.
ñ∈Nm−1

∑

j∈PQ
−

∑

nj�1
n′j�1

a
Q

ñj
a
Q

ñ′j
γ

(1)
Qj

nj ,n
′
j

.

(4.56)
We prove

Lemma 4.14 Under the assumptions of Theorem 4.2, for η ∈ (0, 1), there exists
ε0 > 0 and C > 1 such that, for ε ∈ (0, ε0), in the thermodynamic limit, with
probability 1 −O(L−∞), one has

∥∥∥γ (1),d,+
#U

ω (L,n)

∥∥∥
tr
� Cn

ρ

�ρ
. (4.57)

Proof Define

γ
(1),d,+
#U

ω (L,n)
= γ

(1),d,+,+
#U

ω (L,n)
+ γ

(1),d,+,0
#U

ω (L,n)
(4.58)

where

γ
(1),d,+,+
#U

ω (L,n)
=

∑

Q occ.
ñ∈Nm−1

∑

j �∈P−

∑

nj�1
n′j�1

a
Q

ñj
a
Q

ñ′j
γ

(1)
Qj

nj ,n
′
j

and

γ
(1),d,+,0
#U

ω (L,n)
=

∑

Q occ.
ñ∈Nm−1

∑

j∈PQ
−

Qj�4

∑

nj�1
n′j�1

a
Q

ñj
a
Q

ñ′j
γ

(1)
Qj

nj ,n
′
j

.

One computes

γ
(1),d,+,+
#U

ω (L,n)
(x, y) =

∑

Q occ.

∑

j �∈P−

∑

nj�1
n′j�1

∑

ñ∈Nm−1

a
Q

ñj
a
Q

ñ′j
γ

(1)
Qj

nj ,n
′
j

(x, y)

=
∑

Q occ.
ñ∈Nm−1

∑

j �∈P−
Qj

∫

�
Qj−1

j

⎛

⎝
+∞∑

nj=1

a
Q

ñj
ϕ
j
Qj ,nj

(x, z)

⎞

⎠

×
⎛

⎝
+∞∑

nj=1

a
Q

ñj
ϕ
j
Qj ,nj

(y, z)

⎞

⎠ dz.

Thus, by Lemma B.1, we get
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∥∥∥γ (1),d,+,+
#U

ω (L,n)

∥∥∥
tr
�

∑

Q occ.
Q∈Qρ

ñ∈Nm−1

∑

j �∈P−
Qj

+∞∑

nj=1

∣∣∣aQ

ñj

∣∣∣
2
�

∑

Q occ. in Qρ

⎛

⎝
∑

j �∈P−
Qj

⎞

⎠
∑

n∈Nm

∣∣∣aQ
n

∣∣∣
2

� max
Q occ. in Qρ

⎛

⎝
∑

j �∈P−
Qj

⎞

⎠ � Cnρ1+η

(4.59)
by Lemma 3.23.

Finally, one has

γ
(1),d,+,0
#U

ω (L,n)
=

∑

Q occ.

∑

j∈P−
Qj�4

∑

nj�1
n′j�1

∑

ñ∈Nm−1

a
Q

ñj
a
Q

ñ′j
γ

(1)
Qj

nj ,n
′
j

.

Thus, the same computation as above yields

∥∥∥γ (1),d,+,0
#U

ω (L,n)

∥∥∥
tr
�

∑

Q occ.
Q∈Qρ

ñ∈Nm−1

⎛

⎜⎜⎜
⎝

∑

j, |�j (ω)|�3�ρ(1−ε)

Qj�4

Qj

⎞

⎟⎟⎟
⎠

+∞∑

nj=1

∣∣∣aQ

ñj

∣∣∣
2
� Cn

ρ

�ρ

by Lemma 3.24.
This completes the proof of Lemma 4.14. �

Let us now analyze γ
(1),d,−
#U

ω (L,n)
. We recall and compute

γ
(1),d,−
#U

ω (L,n)
:=

∑

Q occ.
ñ∈Nm−1

∑

j∈PQ
−

∑

nj�1
n′j�1

a
Q

ñj
a
Q

ñ′j
γ

(1)
Qj

nj ,n
′
j

=
∑

Q occ.
ñ∈Nm−1

∑

j∈PQ
−

Qj

∣∣∣ϕñ
j

〉 〈
ϕñ
j

∣∣∣

where ϕñ
j =

∑

nj�1

a
Q

ñj
ϕ
j
Qj ,nj

.

For ñ and Q given, define the two sets

PQ,ñ
−,+:=

{
j ∈ PQ

− ; a
Q
ñj
=0 if nj � 2

}
and PQ,ñ

−,−:=
{
j ∈ PQ

− ; ∃nj � 2 s.t. aQ
ñj

� =0
}
.

(4.60)
Define also

ϕ̃ñ
j =

{
ϕñ
j if nj = 1,

‖ϕñ
j ‖ϕj

Qj ,1
if nj � 2.

(4.61)



Interacting Electrons in a Random Medium 173

Then, we compute

γ
(1),d,−
#U

ω (L,n)
=

∑

Q occ.
ñ∈Nm−1

∑

j∈PQ,ñ
−,−

Qj

∣∣∣ϕñ
j

〉 〈
ϕñ
j

∣∣∣+
∑

Q occ.
ñ∈Nm−1

∑

j∈PQ,ñ
−,−

Qj

∣∣∣ϕñ
j

〉 〈
ϕñ
j

∣∣∣

=
∑

Q occ.
ñ∈Nm−1

∑

j∈PQ
−

Qj

∣∣∣ϕ̃ñ
j

〉 〈
ϕ̃ñ
j

∣∣∣+
∑

Q occ.
ñ∈Nm−1

∑

j∈PQ,ñ
−,−

Qj

(∣∣∣ϕñ
j

〉 〈
ϕñ
j

∣∣∣−
∣∣∣ϕ̃ñ

j

〉 〈
ϕ̃ñ
j

∣∣∣
)
.

(4.62)
The second term in the sum above we estimate by

∥∥∥∥∥∥∥∥

∑

Q occ.
ñ∈Nm−1

∑

j∈PQ,ñ
−,−

Qj

(∣∣∣ϕñ
j

〉 〈
ϕñ
j

∣∣∣−
∣∣∣ϕ̃ñ

j

〉 〈
ϕ̃ñ
j

∣∣∣
)

∥∥∥∥∥∥∥∥
tr

�
∑

Q occ.
ñ∈Nm−1

∑

j∈PQ,ñ
−,−

Qj

(∥∥∥ϕñ
j

∥∥∥
2 +

∥∥∥ϕ̃ñ
j

∥∥∥
2
)

�
∑

Q occ.
n∈Nm

∑

j∈PQ
−

#{j ; nj � 2}
∣∣∣aQ

n

∣∣∣
2

�n
ρ

ρ0| log ρ| fZ(| log ρ|).
(4.63)

by Lemma 4.11.
As for the first term in the second equality in (4.62), letting Popt be the pieces of

length less than 3�ρ(1 − ε) where #opt puts at least one particle, we write

∑

Q occ.
ñ∈Nm−1

∑

j∈PQ
−

Qj

∣∣∣ϕ̃ñ
j

〉 〈
ϕ̃ñ
j

∣∣∣ =
∑

Q occ.
ñ∈Nm−1

⎛

⎜
⎝
∑

j∈Popt

+
∑

j∈PQ
− \Popt

−
∑

j∈Popt\PQ
−

⎞

⎟
⎠Qj

∣∣∣ϕ̃ñ
j

〉 〈
ϕ̃ñ
j

∣∣∣

(4.64)
One computes

∑

Q occ.
ñ∈Nm−1

∑

j∈Popt

Qj

∣∣∣ϕ̃ñ
j

〉 〈
ϕ̃ñ
j

∣∣∣ =
∑

j∈Popt

Qj

⎛

⎜⎜
⎝
∑

Q occ.
n∈Nm

∣∣∣aQ
n

∣∣∣
2

⎞

⎟⎟
⎠

∣∣∣ϕj

Qj ,1

〉 〈
ϕ
j

Qj ,1

∣∣∣

=
∑

j∈Popt

Qj

∣∣∣ϕj

Qj ,1

〉 〈
ϕ
j

Qj ,1

∣∣∣ = γ#opt + R

(4.65)

where ‖R‖tr � Cnρ1+η.
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By Corollary 3.32, we know that

∥∥∥∥∥∥∥∥∥∥

∑

Q occ.
ñ∈Nm−1

⎛

⎜⎜⎜⎜
⎝

∑

j∈PQ
− \Popt

|�j (ω)|��ρ+C

−
∑

j∈Popt\PQ
−|�j (ω)|��ρ+C

⎞

⎟⎟⎟⎟
⎠

Qj

∣∣∣ϕ̃ñ
j

〉 〈
ϕ̃ñ
j

∣∣∣

∥∥∥∥∥∥∥∥∥∥
tr

�
∑

Q occ.

⎛

⎜⎜⎜⎜
⎝

∑

j∈PQ
− \Popt

|�j (ω)|��ρ+C

+
∑

j∈Popt\PQ
−|�j (ω)|��ρ+C

⎞

⎟⎟⎟⎟
⎠

Qj

∑

n∈Nm

∣∣∣aQ
n

∣∣∣
2

� Cnρ max
(√

Z(2| log ρ|), �−1
ρ

) ∑

Q occ.
n∈Nm

∣∣∣aQ
n

∣∣∣
2 = Cnρ max

(√
Z(2| log ρ|), �−1

ρ

)

and, in the same way,

∥∥∥∥∥∥∥∥∥∥

∑

Q occ.
ñ∈Nm−1

⎛

⎜⎜⎜⎜
⎝

∑

j∈Popt\PQ
−|�j (ω)|<�ρ+C

−
∑

j∈PQ
− \Popt

|�j (ω)|<�ρ+C

⎞

⎟⎟⎟⎟
⎠

Qj

∣∣∣ϕ̃ñ
j

〉 〈
ϕ̃ñ
j

∣∣∣

∥∥∥∥∥∥∥∥∥∥
tr

� Cnmax
(√

ρZ(2| log ρ|), ρ| log ρ|−1
)
.

Plugging this and (4.65) into (4.64) and then into (4.62), using (4.63), we obtain

∥∥∥γ (1),d,−
#U

ω (L,n)
− γ

(1)
#opt

∥∥∥
tr,<�ρ+C

� Cnmax
(√

ρZ(2| log ρ|), ρ| log ρ|−1
)

∥∥∥γ (1),d,−
#U

ω (L,n)
− γ

(1)
#opt

∥∥∥
tr,��ρ+C

� Cnρ max
(√

Z(2| log ρ|), �−1
ρ

)
.

Taking into account the decomposition (4.56), Theorem 4.2 and Lemmas 4.13
and 4.14 then completes the proof of Theorem 1.5. $%

4.3 The Proof of Theorem 1.6

We proceed as in the proof of Theorem 1.5: for #U
ω (L, n) a ground state of the

Hamiltonian HU
ω (L, n), we analyze each of the components of the decomposi-

tion (4.9) separately.
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We prove

Lemma 4.15 Under the assumptions of Theorem 4.2, in the thermodynamic limit,
with probability 1 −O(L−∞), one has

∥∥∥γ (2),d,d
#U

ω (L,n)

∥∥∥
tr
� n log n · log log n.

Proof Using Lemma B.1 and the orthonormality properties of the families
(ϕ

j
Qj ,nj

)nj∈N, we compute

∥∥∥γ (2),d,d
#U

ω (L,n)

∥∥∥
tr
�

∑

Q occ. for #U
ω (L,n)

m∑

j=1
Qj�2

Qj(Qj − 1)

2

∑

ñ∈Nm−1

∑

nj�1

∣∣∣aQ

ñj

∣∣∣
2

�
∑

Q occ. for #U
ω (L,n)

m∑

j=1
Qj�2

Qj(Qj − 1)

2

∑

ñ∈Nm

∣∣∣aQ
n

∣∣∣
2
.

Applying Lemmas 3.23 and 3.24 yields that, in the thermodynamic limit, with
probability 1 −O(L−∞), one has

max
Q occ. for #U

ω (L,n)

m∑

j=1
Qj�2

Qj(Qj − 1)

2
� n log n · log log n.

This completes the proof of Lemma 4.15 as
∑

Q, ñ∈Nm

∣∣∣aQ
n

∣∣∣
2 = 1. �

Lemma 4.16 Under the assumptions of Theorem 4.2, in the thermodynamic limit,
with probability 1 −O(L−∞), one has

∥∥∥γ (2),2
#U

ω (L,n)

∥∥∥
tr
� 2.

Proof Using Lemma B.1 and the orthonormality properties of the families
(ϕ

j
Qj ,nj

)nj∈N, we compute

∥∥∥γ (2),2
#U

ω (L,n)

∥∥∥
tr
�
∑

i �=j

⎛

⎜⎜⎜⎜⎜
⎝

∑

Q occ.
Qj�2

+
∑

Q occ.
Qi�1
Qj�1

⎞

⎟⎟⎟⎟⎟
⎠

∑

ñ∈Nm−2

C2(Q, i, j)
∑

ni ,nj�1

∣∣∣aQ

ñi,j

∣∣∣
2
.
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For Qj � 1 and Qi � 1, one has

C2(Q, i, j) = (n−Qj −Qi − 2)!Qi !Qj !
2 (n−2)!

= (Qi+Qj−2)!(n−(Qj+Qi−2)−4)!
(n−4)!

(Qi−1)!(Qj−1)!
(Qi+Qj−2)!

QiQj

2(n−2)(n−3)

� QiQj

2(n−2)(n−3)
.

For Qj � 2, one has

C2(Q, i, j) = Qi !(Qj − 2)!(n− 4 − (Qj +Qi − 2))!
(n− 4)!

Qj(Qj − 1)

2(n− 2)(n− 3)

� Qj(Qj − 1)

2(n− 2)(n− 3)
.

(4.66)
Thus, as

∑

j

Qj = n, one estimates

∥∥∥γ (2),2
#U

ω (L,n)

∥∥∥
tr
� 2

2(n− 2)(n− 3)

∑

Q occ.
n∈Nm

⎛

⎝
∑

j

Qj

⎞

⎠

2
∣∣∣aQ

n

∣∣∣
2
� n2

(n− 2)(n− 3)
.

This proves Lemma 4.16. �
Lemma 4.17 Under the assumptions of Theorem 4.2, in the thermodynamic limit,
with probability 1 −O(L−∞), one has

∥∥∥γ (2),4,2
#U

ω (L,n)

∥∥∥
tr
� 1.

Proof Using Lemma B.1 and the orthonormality properties of the families
(ϕ

j
Qj ,nj

)nj∈N, we compute

∥∥∥γ (2),4,2
#U

ω (L,n)

∥∥∥
tr
�
∑

i �=j

∑

ñ∈Nm−2

∑

Q occ.
Qj�2

Q′: Q′
k=Qk if k �∈{i,j}
Q′

i=Qi+2
Q′

j=Qj−2

C2(Q, i, j)
∑

ni ,nj�1

∣∣∣aQ

ñi,j

∣∣∣
2
.

The bound (4.66) then yields
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∥∥∥γ (2),4,2
#U

ω (L,n)

∥∥∥
tr
� 2

2(n− 2)(n− 3)

∑

Q occ.
n∈Nm

⎛

⎝
∑

j

Qj

⎞

⎠

2
∣∣∣aQ

n

∣∣∣
2
� n2

2(n− 2)(n− 3)
.

This proves Lemma 4.17. �
Lemma 4.18 Under the assumptions of Theorem 4.2, in the thermodynamic limit,
with probability 1 −O(L−∞), one has

∥∥∥γ (2),4,3
#U

ω (L,n)

∥∥∥
tr
+
∥∥∥γ (2),4,3′

#U
ω (L,n)

∥∥∥
tr
� 2n

ρ
.

Proof Using Lemma B.1 and the orthonormality properties of the families
(ϕ

j
Qj ,nj

)nj∈N, we compute

∥∥∥γ (2),4,3
#U

ω (L,n)

∥∥∥
tr
�

∑

i,j,k
distinct

∑

ñ∈Nm−3

∑

Q occ.
Qj�2

Q′: Q′
l=Ql if l �∈{i,j,k}
Q′

i=Qi+1
Q′

j=Qj−2

Q′
k=Qk+1

C3(Q, i, j, k)
∑

ni ,nj ,nk�1

∣∣∣aQ

ñi,j,k

∣∣∣
2
.

For Qj � 2, one has

C3(Q, i, j, k)=Qk!Qi !(Qj−2)!(n−(Qk+Qi+Qj−2)−4)!
(n− 4)!

Qj(Qj − 1)

2(n− 2)(n− 3)

� Qj(Qj − 1)

2(n− 2)(n− 3)
.

(4.67)
Hence, by Proposition 2.2, one has

∥∥∥γ (2),4,3
#U

ω (L,n)

∥∥∥
tr
� 1

2(n− 2)(n− 3)

∑

n∈Nm

Q occ.

⎛

⎝
∑

j

1

⎞

⎠

⎛

⎝
∑

j

Qj

⎞

⎠

2
∣∣∣aQ

n

∣∣∣
2

� Ln2

2(n− 2)(n− 3)
� n

ρ
.

The computation for γ
(2),4,3′
#U

ω (L,n)
is the same except that, instead of (4.67), one uses,

for Qk � 1 and Qi � 1,
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C3(Q, i, j, k)= (Qk−1)!(Qi−1)!(Qj )!(n−(Qj+Qi+Qk−2)−4)!
(n−4)!

QkQi

2(n−2)(n−3)

� QkQi

2(n−2)(n−3)
.

This proves Lemma 4.17. �
Lemma 4.19 Under the assumptions of Theorem 4.2, in the thermodynamic limit,
with probability 1 −O(L−∞), one has

∥∥∥γ (2),4,4
#U

ω (L,n)

∥∥∥
tr
� n−1.

Proof As in the proof of Lemma 4.13, we will have to deal with the degenerate
cases separately (see Remarks 4.3 and 4.5).

Recall (4.16) and write

γ
(2),4,4
#U

ω (L,n)
=

∑

σ∈{±}4
γ

(2),4,σ
#U

ω (L,n)
(4.68)

where σ = (σi, σj , σk, σl) ∈ {±1}4,

γ
(2),4,σ
#U

ω (L,n)
=
∑

i,j,k,l
distinct

∑

ñ∈Nm−4

∑

Q occ.
(Qi,Qj ,Qk,Ql)∈Qσ

Q′: Q′
o=Qo if o �∈{i,j,k,l}

Q′
i=Qi−1, Q′

j=Qj−1

Q′
k=Qk+1, Q′

l=Ql+1

C4(Q, i, j, k, l)
∑

ni ,nj ,nk,nl�1
n′i ,n′j ,n′k,n′l�1

a
Q

ñi,j,k,l
a
Q′
ñ′i,j,k,l

γ
(2),4,4
Qi,Qj ,Qk,Ql
ni ,nj ,nk,nl

n′i ,n′j ,n′k,n′l

,

(4.69)
and

Qσ =
{
Qi � 1 and σi(Qi−1) � σi+1

2

}
∩
{
Qj � 1 and σj (Qj−1) � σj+1

2

}

∩
{
Qk � 0 and σkQk � σk+1

2

}
∩
{
Ql � 0 and σlQl �

σl+1

2

}
.

A term in the right-hand side of (4.68) degenerates if some σ• takes the value −1.
Assume now σ = (1, 1, 1, 1). Then,

γ
(2),4,(1,1,1,1)
#U

ω (L,n)
=
∑

i,j,k,l
distinct

∑

ñ∈Nm−4

∑

Q occ.
Qi,Qj�2, Qk,Ql�1

Q′: Q′
o=Qo if o �∈{i,j,k,l}

Q′
i
=Qi−1, Q′

j
=Qj−1

Q′
k
=Qk+1, Q′

l
=Ql+1

C4(Q, i, j, k, l)
∑

ni ,nj ,nk,nl�1
n′
i
,n′

j
,n′

k
,n′

l
�1

a
Q
ñi,j,k,l

a
Q′
ñ′
i,j,k,l

γ
(2),4,4
Qi,Qj ,Qk,Ql
ni ,nj ,nk,nl

n′
i
,n′

j
,n′

k
,n′

l

.
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Using Lemma B.1 and the orthonormality properties of the families (ϕ
j
Qj ,nj

)nj∈N,
we compute

∥∥∥γ (2),4,(+,+,+,+)

#U
ω (L,n)

∥∥∥
tr
�4

∑

i,j,k,l
distinct

∑

ñ∈Nm−4

∑

Q occ.
Qi,Qj�2, Qk,Ql�1

Q′: Q′
o=Qo if o �∈{i,j,k,l}

Q′
i=Qi−1, Q′

j=Qj−1

Q′
k=Qk+1, Q′

l=Ql+1

C4(Q, i, j, k, l)
∑

ni ,nj ,nk,nl�1

∣∣∣aQ

ñi,j,k,l

∣∣∣
2
.

When Qi � 2, Qj � 2, Qk � 1 and Ql � 1 one has

C4(Q, i, j, k, l) � Qi(Qi − 1)Qj (Qj − 1)QkQl

2n(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)(n− 7)
.

Thus, by Lemma 3.23, we obtain

∥∥∥γ (2),4,(1,1,1,1)
#U

ω (L,n)

∥∥∥
tr
� 2

(n− 5)6

∑

n∈Nm

∑

Q occ.

⎛

⎝
∑

j

Qj

⎞

⎠

2⎛

⎝
∑

j

Q2
j

⎞

⎠

2
∣∣∣aQ

n

∣∣∣
2

� n4(log n)4

2(n− 7)6 � n−1

(4.70)
for n large.

Assume now σ = (−1,−1,−1,−1). Then,

γ
(2),4,(−1,−1,−1,−1)
#U

ω (L,n)
=

∑

i,j,k,l
distinct

∑

ñ∈Nm−4

∑

Q occ.
Qi=Qj=1, Qk=Ql=0

Q′: Q′
o=Qo if o �∈{i,j,k,l}

Q′
i
=Qi−1, Q′

j
=Qj−1

Q′
k
=Qk+1, Q′

l
=Ql+1

C4(Q, i, j, k, l)
∑

ni ,nj�1
nk=nl=1
n′
i
=n′

j
=1

n′
k
,n′

l
�1

a
Q
ñi,j,k,l

a
Q′
ñ′
i,j,k,l

γ
(2),4,4
1,1,0,0

ni ,nj ,1,1
1,1,n′

k
,n′

l

where

γ
(2),4,4
1,1,0,0

ni ,nj ,1,1
1,1,n′k,n′l

(x, x′, y, y′) = ϕi
1,ni

(x)ϕ
j

1,nj
(x′)ϕk

1,n′k
(y)ϕl

1,n′l
(y′)+ ϕi

1,ni
(x′)ϕj

1,nj
(x)

× ϕk
1,n′k

(y)ϕl
1,n′l

(y′)

+ ϕi
1,ni

(x)ϕ
j

1,nj
(x′)ϕk

1,n′k
(y′)ϕl

1,n′l
(y)+ ϕi

1,ni
(x′)ϕj

1,nj
(x)

× ϕk
1,n′k

(y′)ϕl
1,n′l

(y).
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As in the derivation of (4.54), using Lemma B.1 and the orthonormality properties
of the families (ϕ

j
Qj ,nj

)nj∈N, we compute

∥∥∥γ (2),4,(−1,−1,−1,−1)
#U

ω (L,n)

∥∥∥
tr
� 2

(n−2)(n−3)

∑

ñ∈Nm−4

Q occ.

∥∥∥∥∥∥∥∥∥∥

∑

(i,j)
Qi=Qj=1

∑

ni=1
nj=1
nk,nl

a
Q

ñi,j,k,l
ϕk

1,nk
⊗ ϕl

1,nl

∥∥∥∥∥∥∥∥∥∥

2

+

∥∥∥∥∥∥∥∥∥∥

∑

(k,l)
Qk=Ql=0

∑

nk=1
nl=1
ni ,nj

a
Q

ñi,j,k,l
ϕi

1,ni
⊗ ϕ

j

1,nj

∥∥∥∥∥∥∥∥∥∥

2

� 4

(n− 3)2

∑

n∈Nm

Q occ.

∣∣∣aQ
n

∣∣∣
2 = 4

(n− 3)2
.

Assume now σ = (−1, 1, 1, 1). Then,

γ
(2),4,(−1,1,1,1)
#U

ω (L,n)
=
∑

i,j,k,l
distinct

∑

ñ∈Nm−4

∑

Q occ.
Qi=1, Qj�2
Qk,Ql�1

Q′: Q′
o=Qo if o �∈{i,j,k,l}

Q′
i=Qi−1, Q′

j=Qj−1

Q′
k=Qk+1, Q′

l=Ql+1

C4(Q, i, j, k, l)
∑

ni ,nj ,nk,nl�1
n′j ,n′k,n′l�1

n′i=1

a
Q

ñi,j,k,l
a
Q′
ñ′i,j,k,l

γ
(2),4,4
1,Qj ,Qk,Ql
ni ,nj ,nk,nl

1,n′j ,n′k,n′l

where

C4(Q, i, j, k, l) = (n−Qj −Qk −Ql − 3)!Qj !Qk!Ql !
2 (n− 2)!

� Qj(Qj − 1)QkQl

2(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)
.

(4.71)

The operator γ (2),4,4
1,Qj ,Qk,Ql
ni ,nj ,nk,nl

1,n′j ,n′k,n′l

is given by (4.23) and

σ(x, x′, y, y′) = ϕi
1,ni

(x)

∫

�
Qj−1

j

ϕ
j
Qj ,nj

(x′, z)ϕj

Qj−1,n′j
(z)dz

×
∫

�
Qk
k

ϕk
Qk,nk

(z)ϕk
Qk+1,n′k

(y, z)dz

∫

�
Ql
l

ϕl
Ql,nl

(z)ϕl
Ql+1,n′l

(y′, z)dz.
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Hence, as in the derivation of (4.55), using Lemma B.1, (4.71) and the orthonormal-
ity properties of the families (ϕ

j
Qj ,nj

)nj∈N, we compute

∥∥∥γ (2),4,(−1,1,1,1)
#U

ω (L,n)

∥∥∥
tr
� 2

(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)

×
∑

ñ∈Nm

Q occ.

⎛

⎝
m∑

j=1

Q2
j

⎞

⎠

⎛

⎝
m∑

j=1

Qj

⎞

⎠

2
∣∣∣aQ

ñi,j

∣∣∣
2

� n10/3(log n)2/3

(n− 6)5
� n−3/2.

In the same way, we obtain that, if σ contains a least one −1 then
∥∥∥γ (2),4,σ

#U
ω (L,n)

∥∥∥
tr
�

n−1.
This completes the proof of Lemma 4.19. �

Let us now turn to the analysis of γ (2),d,o
#U

ω (L,n)
, the main term of γ (2)

#U
ω (L,n)

. The analysis

will be similar to that of γ (1),d
# in the proof of Theorem 4.2.

Recall that PQ
− is defined in Proposition 4.10 and write

γ
(2),d,o
#U

ω (L,n)
= γ

(2),d,o,−
#U

ω (L,n)
+ γ

(2),d,o,+
#U

ω (L,n)
(4.72)

where

γ
(2),d,o,−
#U

ω (L,n)
=

∑

Q occ.
Qi�1
Qj�1

∑

ñ∈Nm−2

∑

1�i<j�m

(i,j)∈(PQ
− )2

∑

nj ,n
′
j�1

ni ,n
′
i�1

a
Q

ñi,j
a
Q

ñ′i,j
γ

(2),d,o
Qi,Qj
ni ,nj

n′i ,n′j

. (4.73)

We prove

Lemma 4.20 Under the assumptions of Theorem 4.4, for η ∈ (0, 1), there exists
ε0 > 0 such that, for ε ∈ (0, ε0), in the thermodynamic limit, with probability
1 −O(L−∞), one has

∥∥∥γ (2),d,o,+
#U

ω (L,n)

∥∥∥
tr
� n2 ρ

�ρ
.

Proof The proof follows that of Lemma 4.14. One estimates
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∥∥∥γ (2),d,o,+
#U

ω (L,n)

∥∥∥
tr
=

∥∥∥∥∥∥∥∥∥∥∥

∑

Q occ.
Qi�1
Qj�1

∑

1�i<j�m

(i,j) �∈(PQ
− )2

∑

ñ∈Nm−2

∑

nj ,n
′
j�1

ni ,n
′
i�1

a
Q

ñi,j
a
Q

ñ′i,j
γ

(2),d,o
Qi,Qj
ni ,nj

n′i ,n′j

∥∥∥∥∥∥∥∥∥∥∥
tr

�
∑

Q occ.
Qi�1
Qj�1

∑

ñ∈Nm−2

⎛

⎜⎜⎜
⎝

∑

1�i<j�m

i �∈PQ
−

+
∑

1�i<j�m

j �∈PQ
−

⎞

⎟⎟⎟
⎠

∥∥∥∥∥∥∥∥∥∥

∑

nj ,n
′
j�1

ni ,n
′
i�1

a
Q

ñi,j
a
Q

ñ′i,j
γ

(2),d,o
Qi,Qj
ni ,nj

n′i ,n′j

∥∥∥∥∥∥∥∥∥∥
tr

.

(4.74)
Let us analyze the first sum in the right-hand side above. Using (4.18), Lemma B.1,
and the orthonormality properties of the families (ϕ

j
Qj ,nj

)nj∈N, we compute

∑

Q occ.
Qi�1
Qj�1

∑

1�i<j�m

i �∈PQ
−

∑

ñ∈Nm−2

∥∥∥∥∥∥∥∥∥∥

∑

nj ,n
′
j�1

ni ,n
′
i�1

a
Q

ñi,j
a
Q

ñ′i,j
γ

(2),d,o
Qi,Qj
ni ,nj

n′i ,n′j

∥∥∥∥∥∥∥∥∥∥
tr

�
∑

Q occ.
Qi�1
Qj�1

∑

1�i<j�m

i �∈PQ
−

∑

ñ∈Nm−2

QiQj

2

∑

ni ,nj�1

∣∣∣aQ

ñi,j

∣∣∣
2

� 1

2

∑

n∈Nm

Q occ.

⎛

⎜
⎝
∑

i �∈PQ
−

Qi

⎞

⎟
⎠

⎛

⎝
∑

j

Qj

⎞

⎠
∣∣∣aQ

n

∣∣∣
2

� Cn2 ρ

�ρ

as in the proof of Lemma 4.14 by Lemmas 3.23 and 3.24.
The other sum in the right-hand side of (4.74) is analyzed in the same way. This

completes the proof of Lemma 4.20. �

Let us now analyze γ
(2),d,o,−
#U

ω (L,n)
. We proceed as in the analysis of γ

(1),d
#U

ω (L,n)

(see (4.56) and Lemma 4.14). We recall and compute

γ
(2),d,o,−
#U

ω (L,n)
=

∑

Q occ.
Qi�1
Qj�1
ñ∈Nm−2

∑

1�i<j�m

(i,j)∈(PQ
− )2

∑

nj ,n
′
j�1

ni ,n
′
i�1

a
Q

ñi,j
a
Q

ñ′i,j
γ

(2),d,o
Qi,Qj
ni ,nj

n′i ,n′j
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=
∑

Q occ.
ñ∈Nm−2

∑

1�i<j�m

(i,j)∈(PQ
− )2

QiQj

2
(Id − Ex)ϕñ

i,j ⊗s ϕñ
i,j .

where ϕñ
i,j :=

∑

ni�1
nj�1

a
Q

ñi,j
ϕi
Qi,ni

∧ ϕ
j
Qj ,nj

and the operators Ex and ⊗s are defined in

Proposition 4.8.
Define also

ϕ̃ñ
i,j =

{
ϕñ
i,j if ni + nj = 2

‖ϕñ
i,j‖ϕi

Qi,1
∧ ϕ

j

Qj ,1
if ni + nj � 3.

(4.75)

Then, recalling (4.60), we compute

γ
(2),d,o,−
#U

ω (L,n)
=

∑

Q occ.
ñ∈Nm−2

∑

1�i<j�m

(i,j)∈(PQ
−,−)2

QiQj

2
(Id − Ex)ϕñ

i,j ⊗s ϕñ
i,j

+
∑

Q occ.
ñ∈Nm−2

∑

1�i<j�m

i∈PQ
−,+

or j∈PQ
−,+

QiQj

2
(Id − Ex)ϕñ

i,j ⊗s ϕñ
i,j

=
∑

Q occ.
ñ∈Nm−2

∑

1�i<j�m

(i,j)∈(PQ
− )2

QiQj

2
(Id − Ex)ϕ̃ñ

i,j ⊗s ϕ̃ñ
i,j

+
∑

Q occ.
ñ∈Nm−2

∑

1�i<j�m

i∈PQ
−,+

or j∈PQ
−,+

QiQj

2
(Id − Ex)

(
ϕñ
i,j ⊗s ϕñ

i,j − ϕ̃ñ
i,j ⊗s ϕ̃ñ

i,j

)
.

(4.76)
The second term in the sum above we estimate by
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∥∥∥∥∥∥∥∥∥∥∥∥∥

∑

Q occ.
ñ∈Nm−2

∑

1�i<j�m

i∈PQ
−,+

or j∈PQ
−,+

QiQj

2
(Id − Ex)

(
ϕñ
i,j ⊗s ϕñ

i,j − ϕ̃ñ
i,j ⊗s ϕ̃ñ

i,j

)

∥∥∥∥∥∥∥∥∥∥∥∥∥
tr

�
∑

Q occ.
ñ∈Nm−2

∑

1�i<j�m

i∈PQ
−,+

or j∈PQ
−,+

QiQj

(∥∥∥ϕñ
i,j

∥∥∥
2 +

∥∥∥ϕ̃ñ
i,j

∥∥∥
2
)

�
∑

Q occ.
n∈Nm

⎛

⎜
⎝
∑

j∈PQ
−

#{j ; nj � 2}
⎞

⎟
⎠

⎛

⎜
⎝
∑

j∈PQ
−

Qj

⎞

⎟
⎠
∣∣∣aQ

n

∣∣∣
2

� n2 ρ

ρ0| log ρ| fZ(2| log ρ|).

(4.77)

by Lemma 4.11.
As for the first term in the second equality in (4.76), letting Popt be the pieces of

length less than 3�ρ(1 − ε) where #opt puts at least one particle, we write

∑

Q occ.
ñ∈Nm−2

∑

1�i<j�m

(i,j)∈(PQ
− )2

QiQj

2
(Id − Ex)ϕ̃ñ

i,j ⊗s ϕ̃ñ
i,j

=
∑

Q occ.
ñ∈Nm−2

⎛

⎜⎜⎜
⎝

∑

1�i<j�m

(i,j)∈(Popt)
2

+
∑

1�i<j�m

i or j in PQ
− \Popt

−
∑

1�i<j�m

i or j in Popt\PQ
−

⎞

⎟⎟⎟
⎠

QiQj

2
(Id−Ex)ϕ̃ñ

i,j⊗s ϕ̃ñ
i,j

(4.78)

For the first of the three sums above, one computes
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∑

Q occ.
ñ∈Nm−2

∑

1�i<j�m

(i,j)∈(Popt)
2

QiQj

2
(Id − Ex)ϕ̃ñ

i,j ⊗s ϕ̃ñ
i,j

=
∑

1�i<j�m

(i,j)∈(Popt)
2

⎛

⎜⎜
⎝
∑

Q occ.
n∈Nm

∣∣∣aQ
n

∣∣∣
2

⎞

⎟⎟
⎠

QiQj

2
(Id − Ex)ϕ̃ñ

i,j ⊗s ϕ̃ñ
i,j

=
∑

1�i<j�m

(i,j)∈(Popt)
2

QiQj

2
(Id − Ex)γ (1)

ϕi
Qi ,1

⊗s γ
(1)

ϕ
j
Qj ,1

= γ
(2)
#opt + R

(4.79)
where ‖R‖tr � Cn2ρ1+η.

In the last line of (4.79), we have used Proposition 4.8, the definition of
#opt (3.12) and Lemma 3.23 to obtain the bound on R.

To estimate the remaining two sums in (4.77), we split them into sums where the
summation over pieces is restricted to pieces either longer than �ρ + C or shorter
than �ρ + C (C is given by Corollary 3.32).

By Corollary 3.32, we know that

∥∥∥∥∥∥∥∥∥∥∥∥

∑

Q occ.
ñ∈Nm−2

⎛

⎜⎜⎜⎜⎜⎜
⎝

∑

1�i<j�m

i∈PQ
− \Popt

and |�i(ω)|<�ρ+C

−
∑

1�i<j�m

i∈PQ
− \Popt

and |�i(ω)|<�ρ+C

⎞

⎟⎟⎟⎟⎟⎟
⎠

QiQj

2
(Id − Ex)ϕ̃ñ

i,j ⊗s ϕ̃ñ
i,j

∥∥∥∥∥∥∥∥∥∥∥∥
tr

�
∑

Q occ.
ñ∈Nm−2

⎛

⎜⎜⎜⎜⎜⎜
⎝

∑

1�i<j�m

i∈PQ
− \Popt

and |�i(ω)|<�ρ+C

+
∑

1�i<j�m

i∈PQ
− \Popt

and |�i(ω)|<�ρ+C

⎞

⎟⎟⎟⎟⎟⎟
⎠

QiQj

2

∥∥∥(Id − Ex)ϕ̃ñ
i,j ⊗s ϕ̃ñ

i,j

∥∥∥
tr

� Cn2ρ max
(√

Z(2| log ρ|), �−1
ρ

) ∑

Q occ.
n∈Nm

∣∣∣aQ
n

∣∣∣
2 =Cn2 max

(√
ρZ(2| log ρ|), ρ| log ρ|−1

)
.

In the same way, we estimate



186 F. Klopp and N. A. Veniaminov

∥∥∥∥∥∥∥∥∥∥∥∥

∑

Q occ.
ñ∈Nm−2

⎛

⎜⎜⎜⎜⎜⎜
⎝

∑

1�i<j�m

i∈Popt\PQ
−

and |�i(ω)|��ρ+C

−
∑

1�i<j�m

i∈Popt\PQ
−

and |�i(ω)|��ρ+C

⎞

⎟⎟⎟⎟⎟⎟
⎠

QiQj

2
(Id − Ex)ϕ̃ñ

i,j ⊗s ϕ̃ñ
i,j

∥∥∥∥∥∥∥∥∥∥∥∥
tr

� Cn2ρ max
(√

Z(2| log ρ|), �−1
ρ

)

and one has the same estimates when i is replaced by j .
Plugging these estimates, (4.77) and (4.78) into (4.72), recalling (1.29), we obtain

∥∥∥
(
γ

(2),d,o,−
#U

ω (L,n)
− γ

(2)
#opt

)
12
<�ρ+C

∥∥∥
tr
� Cn2 max

(√
ρZ(2| log ρ|), ρ| log ρ|−1

)

∥∥∥
(
γ

(2),d,o,−
#U

ω (L,n)
− γ

(2)
#opt

) (
1 − 12

<�ρ+C

)∥∥∥
tr,��ρ+C

� Cn2ρ max
(√

Z(2| log ρ|), �−1
ρ

)
.

Taking into account the decomposition (4.9) and Lemmas 4.15, 4.16, 4.17, 4.18,
4.19 then completes the proof of Theorem 1.5. $%

5 Almost Sure Convergence for the Ground State Energy Per
Particle

In this section, we prove that, if interactions decay sufficiently fast at infinity, then
the convergence in the thermodynamic limit of the ground state energy per particle
EU

ω (L, n)/n to EU(ρ) holds not only in L2
ω (see [21, Theorem 3.5]) but also ω-

almost surely.
From the proof of [21, Theorem 3.5], one clearly sees that it suffices to improve

upon the sub-additive estimate given in [21, Lemma 4.1]. We prove

Theorem 5.1 Assume that the pair potential U be even and such that U ∈ Lr(R)

for some r > 1 and that for some α > 2, one has
∫ +∞

0
xαU(x)dx < +∞.

In the thermodynamic limit, for disjoint intervals "1 and "2 with n1 and n2
electrons, respectively, for min(|"1|, |"2|) sufficiently large, with probability 1 −
O(min(|"1|, |"2|)−∞), one has

EU
ω ("1 ∪"2, n1 + n2) � EU

ω ("1, n1)+ EU
ω ("2, n2)+ o(n1 + n2). (5.1)

Here, EU
ω (", n) denotes the ground state energy of HU

ω (", n) (see Section 1.1).

To apply this result to U satisfying (HU), it suffices to check
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Lemma 5.2 If U satisfies (HU) then for any 0 < α < 3, one has∫ +∞

0
xαU(x)dx < +∞.

Proof Clearly, for n � 0, one has

∫ 2n+1

2n

xαU(x)dx � 2α(n+1)
∫ 2n+1

2n

U(x)dx � 2(α−3)n+αZ(2n).

As Z is bounded, summing over n yields

∫ +∞

1
xαU(x)dx �

∑

n�1

2(α−3)n+α < +∞.

This completes the proof of Lemma 5.2. �
Thus, the sub-additive estimate (5.1) holds for our model and, following the analysis
provided in [21], we obtain Theorem 1.2.

Proof of Theorem 5.1 Without loss of generality, let us assume that "1 = [−L1, 0]
and "2 = [0, L2]. For i ∈ {1, 2}, we denote by #U

i ground states of HU
ω ("i, ni).

In case of degeneracy, we may additionally choose particular ground states #U
i ,

i ∈ {1, 2} such that each of them belongs to a fixed occupation subspace. Thus,
occupation is well defined for #U

i . As usual, we will implicitly suppose that #U
i is

extended by zero outside "
ni

i . Consider now

# = #U
1 ∧#U

2 .

Then,

EU
ω ("1 ∪"2, n1 + n2) �

〈
HU

ω ("1 ∪"2, n1 + n2)#,#
〉

= EU
ω ("1, n1)+ EU

ω ("2, n2)+ Tr(Uγ
(1)
#U

1
⊗s γ

(2)
#U

2
)

= EU
ω ("1, n1)+ EU

ω ("2, n2)

+
∫

"1×"2

U(x − y)ρ#U
1
(x)ρ#U

2
(y)dxdy

The proof will be accomplished by the following

Lemma 5.3 Under the assumptions of Theorem 5.1, one has

∫

"1×"2

U(x − y)ρ#U
1
(x)ρ#U

2
(y)dxdy = o(n1 + n2). (5.2)
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Proof By Proposition 2.1, with probability 1 − O(min(|"1|, |"2|)−∞), for i ∈
{1, 2}, the largest piece in "i is of length bounded by log |"i | · log log |"i |. This
implies that one can partition "i into sub-intervals each containing an integer
number of original pieces (i.e., the extremities of these sub-intervals coincide
with the extremities of pieces given by the Poisson random process) of length
between log2 |"i | and 2 log2 |"i |. Let these new sub-intervals be denoted by "

j
i ,

j ∈ {1, . . . , mi}; we order the intervals in such a way that their distance to 0
increases with j . Thus,

"i =
mi⋃

j=1

"
j
i

and

log2 |"i | � |"j
i | � 2 log2 |"i |. (5.3)

The last inequalities and the ordering convention imply that

dist("j1
1 ,"

j2
2 ) � (j1 − 1) · log2 |"1| + (j2 − 1) · log2 |"2| (5.4)

and

|"i |
2 log2 |"i |

� mi �
|"i |

log2 |"i |
. (5.5)

We now count the number of particles that #U
i puts in an interval "j

i . Let {�i
k}Mi

k=1
be the pieces in "i and let Qi

k be the corresponding occupation numbers. According

to the choice of sub-intervals "
j
i above, each "

j
i is a union of some of the pieces

(�i
k)k . We establish the following natural

Lemma 5.4 With the above notations, one has

∫

�i
k

ρ#U
i
(x)dx = Qi

k, i ∈ {1, 2}, k ∈ {1, . . . ,Mi}.

Proof For convenience, we drop the superscript i in this proof. Recall the decom-
position (4.2)

# =
∑

(nk)1�k�M

∀k, nk�1

an

M∧

k=1

ϕk
nk
,
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where ϕk
nk

are functions of Qk variables in the piece �k . Keeping the notations, by
Theorem 4.2, one has

γ
(1)
# =

M∑

k=1

∑

nk�1
n′k�1

∑

ñ∈NM−1

añk
añ′k γ

(1)
nk,n

′
k

,

where

γ
(1)
nk,n

′
k

(x, y) = Qk

∫

(�k)
Qk−1

ϕk
nk
(x, z)ϕk

n′k
(y, z)dz.

The off-diagonal term γ
(1),o
# vanishes because the functions #1,2 were chosen of a

fixed occupation. This immediately yields

∫

�k

ρ#(x)dx = Qk

∑

nk�1
n′k�1

∑

ñ∈NM−1

añk
añ′k

∫

(�k)
Qk

ϕk
nk
(x)ϕk

n′k
(x)dx

= Qk

∑

ñ∈NM−1

∫

(�k)
Qk

∑

nk�1

|añk
|2|ϕk

nk
(x)|2dx = Qk,

where, in the second equality, we used the orthogonality of different Qk-particle
levels in the piece �k and, in the third equality, we used the fact that # is
normalized.

This completes the proof of Lemma 5.4. �
Lemma 5.4 immediately entails

Corollary 5.5 One computes

∫

"
j
i

ρ#U
i
(x)dx =

∑

k|�i
k⊂"

j
i

Qi
k, i ∈ {1, 2}, j ∈ {1, . . . , mi}.

Next, we derive a simple bound on the number of particles in "
j
i . The total ground

state energy is bounded by

EU
ω ("i, ni) � C�−2

ρ ni .

On the other hand, a system of q =
∑

k|�i
k⊂"

j
i

Qi
k particles in "

j
i has non- interacting

energy at least
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q∑

s=1

π2s2

|"j
i |2

. q3|"j
i |−2.

This implies that

q3|"j
i |−2 � C�−2

ρ ni

or, equivalently,

∑

k|�i
k⊂"

j
i

Qi
k � C1

(
|"j

i |/�ρ
)2/3

n
1/3
i � C2n

1/3
i log4/3 Li.

Let us now estimate the left-hand side of (5.2) using Hölder’s inequality (1/p +
1/q = 1, p, q � 1) as

∫

"1×"2

U(x−y)ρ
#U

1
(x)ρ

#U
2
(y)dxdy=

m1∑

j1=1

m2∑

j2=1

∫

"
j1
1 ×"

j2
2

U(x−y)ρ
#U

1
(x)ρ

#U
2
(y)dxdy

�
m1∑

j1=1

m2∑

j2=1

‖U‖
p,"

j1
1 ×"

j2
2
‖ρ

#U
1
‖q‖ρ#U

2
‖q .

(5.6)
where we have set

‖U‖
p,"

j1
1 ×"

j2
2
:=
(∫

"
j1
1 ×"

j2
2

Up(x − y)dxdy

)1/p

. (5.7)

Now, recall that by (6.57), for i ∈ {1, 2}, on "
ji
i , one has

‖ρ
#U

i
‖∞,"

ji
i

� 4‖#U
i ‖

H 1("
ji
i )

‖#U
i ‖

2,"
ji
i

� C

(
〈HU

ω ("
ji
i
, ni)#

U
i ,#U

i 〉
"

ji
i

)1/2
‖#U

i ‖2.

Hence, by Corollary 5.5,

‖ρ#U
i
‖q =

(∫

"
ji
i

ρ
q−1
#U

i

ρ#U
i

)1/q

� (Q
ji
i )1/q

(
〈HU

ω ("
ji
i , ni)#

U
i ,#U

i 〉
"

ji
i

)(q−1)/2q

‖#U
i ‖(q−1)/q

2,"
ji
i

.

Recalling (5.6), as ‖#U
i ‖

2,"
ji
i

� 1 for i ∈ {1, 2}, we estimate
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∫

"1×"2

U(x − y)ρ#U
1
(x)ρ#U

2
(y)dxdy

�
m1∑

j1=1

m2∑

j2=1

‖U‖
p,"

j1
1 ×"

j2
2
(Q

j1
1 Q

j2
2 )1/q

×
(
〈HU

ω ("
j1
1 , n1)#

U
1 , #U

1 〉
"

j1
1
〈HU

ω ("
j2
2 , n2)#

U
2 , #U

2 〉
"

j2
2

)(q−1)/2q

. (5.8)

Now, as Q#U
i
� n

1/3
i log4/3 Li � n1/3 log4/3 n and as

〈HU
ω ("

ji
i , ni)#

U
i ,#U

i 〉
"

ji
i

� 〈HU
ω ("i)#

U
i ,#U

i 〉 � Cni � Cn,

the estimate (5.8) entails

∫

"1×"2

U(x − y)ρ#U
1
(x)ρ#U

2
(y)dxdy � n(3q−1)/3q (log n)8/(3q)

×
m1∑

j1=1

m2∑

j2=1

‖U‖
p,"

j1
1 ×"

j2
2
.

(5.9)

Hence, to prove (5.1), it suffices to choose q (recall q � 1 and 1/p+1/q = 1) such
that

m1∑

j1=1

m2∑

j2=1

‖U‖
p,"

j1
1 ×"

j2
2
= o

(
n1/3q (log n)−8/(3q)

)
. (5.10)

Therefore, we recall (5.7) and using the definition of the ("
ji
i )i,j , in particular (5.4)

and (5.5), we estimate

‖U‖
p,"

j1
1 ×"

j2
2
� ((j1+j2)| logL|2)−k/p

(∫

"
j1
1 ×"

j2
2

(x − y)kUp(x − y)dxdy

)1/p

.

(5.11)
Now, by (5.3), as U is even, we have

(∫

"
j1
1 ×"

j2
2

(x − y)kUp(x − y)dxdy

)1/p

� (log n)2/p
(∫

R+
ukUp(u)du

)1/p

.

(5.12)
On the other hand, if k/p > 1 and max(m1,m2) � L/ logL � n/ log n (with a
good probability), one estimates
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∑

1�j1�m1
1�j2�m2

(j1 + j2)
−k/p � (log n)k/p−2n2−k/p.

Plugging this (5.12) and (5.11) into the sum in (5.10), we see that (5.10) is a
consequence of

(log n)2−2/p+8/(3q)n2−k/p−1/(3q) = (log n)14/3(p−1)/pn5/3−(3k−1)/(3p) = o(1).

as p−1 + q−1 = 1.
Thus, it suffices to find k > 0, p > 1 such that u �→ uk/pU(u) be in Lp(R+) and

5

3
− 3k − 1

3p
< 0.

Recall that, by assumption u �→ uαU(u) is integrable (for some α > 2) and U ∈
Lr(R+) for some r > 1.

We pick η ∈ (0, 1) and pick p and k of the form p = 1 + η(r − 1) and k =
5p + 1

3
+ η. Thus, for r ∈ (1,min (r̃, 2)

]
, setting p̃ := r − p

r − 1
∈ (0, 1), we have

5

3
− 3k − 1

3p
= − η

p
< 0, p−p̃

1−p̃
= r and

k

p̃
= k

r − 1

r − p

=
(

2 + 5

3
η(r − 1)

)
1

1 − η
= α

for η ∈ (0, 1) well chosen.
For this choice of p, p̃ and k, using Hölder’s inequality, we then estimate

∫

R+
ukUp(u)du �

(∫

R+
uk/p̃U(u)du

)p̃ (∫

R+
U(p−p̃)/(1−p̃)(u)du

)1−p̃

< +∞

This completes the proof of (5.10) and, thus, of Lemma 5.3. �
Lemma 5.4 implies that, under the assumption of Theorem 5.1, in the thermody-
namic limit, with probability exponentially close to 1, one has

∫

"1×"2

U(x − y)ρ#U
1
(x)ρ#U

2
(y)dxdy = o(n1 + n2).

This completes the proof of Theorem 5.1. �
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6 Multiple Electrons Interacting in a Fixed Number of Pieces

The main goal of this section is to study a system of two interacting electrons
in the interval [0, �] for large � and prove Proposition 1.4; this is the purpose of
Section 6.1. The two-particle Hamiltonian is given by (1.15). In Section 6.2, we
study two electrons in two distinct pieces.

We shall also state and prove one result for more than two interacting electrons
in a single piece.

6.1 Two Electrons in the Same Piece

We now study two electrons in a large interval interacting through a pair potential
U , that is, the Hamiltonian defined in (1.15). We first prove Proposition 1.4. Next,
in Section 6.1.3, we compare the ground state of the interacting system with that of
the non-interacting system.

Throughout this section, we will assume U is a repulsive, even pair interaction
potential. In the present section, our assumptions on U will be weaker than (HU).

6.1.1 The Proof of Proposition 1.4

Scaling variables to the unit square, the two-particle Hamiltonians HU(�, 2) and
�−2HU�

(1, 2) are unitarily equivalent. Here, we have defined

U�(·) := �2U(� ·). (6.1)

Recall that, for i �= j , i, j ∈ N, the normalized eigenfunctions of H 0(1, 2) (i.e., of
the two-particle free Hamiltonian in a unit square) are given by the determinant

φ(i,j)(x, y) =
√

2

∣∣∣∣
sin(πix) sin(πjx)
sin(πiy) sin(πjy)

∣∣∣∣ for (x, y) ∈ [0, 1]2. (6.2)

For a two-component index, we will use the shorthand notation ı̄ = (i, j). For
the non-interacting ground state φ(1,2) we will also use the notation φ0. The
corresponding ground state energy is 5π2 and the first excited energy level is at
10π2.

We decompose L2([0, 1]) ∧ L2([0, 1]) = Cφ0
⊥⊕ φ⊥

0 . By the Schur complement

formula, E is the ground state energy of HU�
(1, 2) if and only if E < 10π2 and E

satisfies

5π2 + U�
00 − E = U�

0+(H+ + U�++ − E)−1U�
+0, (6.3)

where �+ is the orthogonal projector on φ⊥
0 and
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U�
00 = 〈φ0, U

�φ0〉, H+ = �+H 0�+,

U�++ = �+U��+, U�
+0 = �+U�φ0 U�

0+ =
(
�+U�φ0

)∗
.

(6.4)

We expand the r.h.s. of (6.3) as

U�
0+(H+ + U�++ − E)−1U�+0 = 〈

U�φ0, (H+ − E)−1/2

×
(

Id+(H+ − E)−1/2U�(H+ − E)−1/2
)−1

× (H+ − E)−1/2U�φ0
〉

= 1

�

〈
φ̃�, A�(Id+A∗

�A�)
−1A∗

�φ̃�

〉

= 1

�

〈
φ̃�, A�A

∗
�(Id+A�A

∗
�)

−1φ̃�

〉
,

(6.5)
where

φ̃� =
√
�
√
U�φ0 and A� = A�(E) =

√
U�(H+ − E)−1/2. (6.6)

To simplify notations we will drop the reference to the energy E. As � → +∞, the
convergence of

〈
φ̃�, A�A

∗
�(Id+A�A

∗
�)

−1φ̃�

〉
is locally uniform in (−∞, 10π2). To

compute this limit, we shall transform the expression
〈
φ̃�, A�A

∗
�(Id+A�A

∗
�)

−1φ̃�

〉

once more.
Consider the domain R� = {(u, y) ∈ R × [0, 1], s.t. y + �−1u ∈ [0, 1]} and the

change of variables

t� : R� → [0, 1]2

(u, y) �→
(
y + u

�
, y
)
.

Define the partial isometry

T� : L2([0, 1]2) → L2(R× [0, 1])
v �→ �−1/21R�

· v ◦ t�,

that is, (T�v)(u, y) = 1√
�

1R�
(u, y)v

(
y + u

�
, y
)

.

One computes its adjoint

T ∗
� : L2(R× [0, 1]) → L2([0, 1]2)

v �→ �1/2(1R�
v) ◦ t−1

� ,

that is, (T ∗
� v)(x, y) = √

�(1R�
· v)(�(x − y), y).
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One easily checks that

T�T
∗
� = 1R�

and T ∗
� T� = IdL2([0,1]2) (6.7)

where 1R�
: L2(R × [0, 1]) → L2(R × [0, 1]) is the orthogonal projector on the

functions supported in R�.
One then computes

〈
φ̃�, A�A

∗
�(Id+A�A

∗
�)

−1φ̃�

〉

L2([0,1]2) =
〈
φ�,K�(Id+K�)

−1φ�

〉

L2(R×[0,1])
(6.8)

where we have defined

φ� := T�φ̃� and K� := K�(E) := T�A�A
∗
�T

∗
� . (6.9)

Define

• the following functions

– φ(u) := u
√
U(u) for u ∈ R,

– χ0(y) := π
√

2 (sin (3πy)− 3 sin (πy)) for y ∈ [0, 1].
• the non-negative (see (6.47)) operator K on L2(R) by the kernel

K(u, u′) = 1

2

√
U(u)(|u+ u′| − |u− u′|)√U(u′). (6.10)

Define also

φ̃ = φ ⊗ χ0 and K̃ = K ⊗ Id. (6.11)

We prove

Lemma 6.1 Assume that U is non-negative, even, such that U ∈ Lp(R) for some
p > 1 and x �→ x2U(x) is integrable.

As � → +∞, one has:

(a) in L2(R× [0, 1]), φ� converges to φ̃;
(b) for ϕ ∈ C∞0 (R × (0, 1)), as � → +∞, the sequence (K�ϕ)� converges in L2-

norm to K̃ϕ

Proposition 1.4 follows from this result as we shall see now. First, we prove

Lemma 6.2 Under the assumptions of Lemma 6.1, all the operators (K�)� and the
operator K are bounded, respectively, on L2(R× [0, 1]) and L2(R).

Note however that, depending on U , one may have
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‖K�‖L2(R×[0,1])→L2(R×[0,1]) −−−−→
�→+∞ +∞.

Proof By (6.9), to show the boundedness of K�, it suffices to show that K̃� :=√
U�(H+ − E)−1√U� is bounded. Note that, by our assumption on U , U� is in

Lp([0, 1]2). Using the eigenfunction expansion of −� on L2−([0, 1]2), we write

K̃� =
∑

j �=(2,1)

1

π2|j̄ |2 − E

√
U�φj̄ ⊗ φj̄

√
U� (6.12)

where the sum is over j = (i, j) where (i, j) ∈ N such that i > j .
For u ∈ L2−([0, 1]2), as u

√
U� ∈ L

2p/(1+p)
− ([0, 1]2) and as the functions (φj̄ )j

are uniformly bounded, by the Hausdorff-Young inequality (see, e.g., [19]), one has

∑

j

∣∣∣
〈√

U�φj̄ , u
〉∣∣∣

p/(p−1)
� C�‖u‖p/(p−1)

2 . (6.13)

Moreover, for some C�, one has ‖√U�φj̄‖2 � C�. Thus, by (6.12), as p > 1, we
obtain

‖K̃�u‖2 � C�

⎛

⎝
∑

j �=(2,1)

1

(π2|j̄ |2 − E)p

⎞

⎠

1/p

‖u‖2 � C�‖u‖2.

Using the explicit kernel for K given in (6.10), for u ∈ L2(R), we compute

(Ku)(x)=2
√
U(x)

∫ x

−x

x′
√
U(x′)u(x′)dx′+2

√
U(x)x

∫ −x

−∞

√
U(x′)(u(x′)−u(−x′))dx′

Thus,

‖K‖L(L2(R)) � 4
√
‖U‖1‖(·)2U(·)‖1.

This completes the proof of Lemma 6.2. �
By Lemma 6.2, C∞0 (R× (0, 1)) is a common core for all K� and K ⊗ Id. Thus,

by [18, Theorem VIII.25], we know that K� −−−−→
�→+∞ K ⊗ Id in the strong resolvent

sense. Hence, by [18, Theorem VIII.20], the sequence (K�(Id+K�)
−1)� converges

to K(Id+K)−1 ⊗ Id strongly. These operators are all bounded uniformly by 1 (as
K� and K are non-negative). Thus, by point (a) of Lemma 6.1 and (6.8), we obtain
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〈
φ̃�, A�A

'
�(Id+A�A

'
�)

−1φ̃�

〉
= 〈φ ⊗ χ0,

[
K(Id+K)−1 ⊗ Id

]
φ ⊗ χ0〉 + o(1)

=
〈
φ,K(Id+K)−1φ

〉
·
∫ 1

0
χ2

0 (y)dy + o(1)

= π2 ·
〈
φ,K(Id+K)−1φ

〉
+ o(1).

(6.14)
By point (a) of Lemma 6.1, one also computes

�U�
00 = ‖φ ⊗ χ0‖2 + o(1) =

∫

R

u2U(u)du
∫ 1

0
χ2

0 (y)dy + o(1)

= 5

2
π2
∫

R

u2U(u)du+ o(1)

(6.15)

By (6.15), the eigenvalue equation (6.3) yields that, under the assumptions of
Lemma 6.2, the ground state energy of HU�

(1, 2) satisfies

EU�

([0, 1], 2) = 5π2 + γ (U)

�
+ o

(
1

�

)
(6.16)

where

γ (U) = 10π2
[
‖φ‖2 −

〈
φ,K(Id+K)−1φ

〉]
= 10π2

〈
φ, (Id+K)−1φ

〉
. (6.17)

By Lemma 5.2 and assumption (HU), we know that the assumptions of Lemma 6.2
are satisfied. This proves the asymptotic expansion announced in Proposition 1.4.
To complete the proof of this proposition, we simply note that, as K is non-negative
and bounded by Lemma 6.2, by (6.17), we know that γ (U) = 0 if and only if φ ≡ 0,
i.e., if and only if U ≡ 0. $%
Remark 6.3 If one assumes x �→ x4U(x) to be integrable and U to be in
some Lp(R) (p > 1) (which is clearly stronger than (HU)), one obtains that,
EU([0, �], 2), the ground state energy of the Hamiltonian defined in (1.15) admits
the following more precise expansion

EU�

([0, 1], 2) = 5π2 + γ (U)

�
+O

(
�−2

)
. (6.18)

6.1.2 The Proof of Lemma 6.1

We start with a lemma, the result of a computation, that will be used in several parts
of the proof.
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Lemma 6.4 For j̄ = (j1, j2), j1 > j2, recall that φj̄ , the j̄ -th normalized
eigenvector of H0, is given by (6.2).

One has

φj̄

(
y + u

�
, y
)
= φ0

j̄

(u
�
, y
)
+ φ+

j̄

(u
�
, y
)
+ φ−

j̄

(u
�
, y
)

(6.19)

where

φ0
j̄ (2x, y) := 2

√
2 sin(π(j1 + j2)x) sin(π(j2 − j1)x) sin(πj1y) sin(πj2y),

φ+
j̄ (2x, y) := √

2 cos(π(j2 − j1)x) sin(π(j2 + j1)x) sin(π(j1 − j2)y)

φ−
j̄ (2x, y) := √

2 cos(π(j2 + j1)x) sin(π(j2 − j1)x) sin(π(j1 + j2)y)

(6.20)

Proof Using standard sum and product formulas for the sine and cosine, we
compute

1√
2
φj̄

(
y + u

�
, y
)
=
∣∣∣∣
sin
(
πj1

(
y + u

�

))
sin (πj1y)

sin
(
πj2

(
y + u

�

))
sin (πj2y)

∣∣∣∣

= sin
(
πj1

u

�

)
cos (πj1y) sin (πj2y)− sin

(
πj2

u

�

)
cos (πj2y) sin (πj1y)

+
(

cos
(
πj1

u

�

)
− cos

(
πj2

u

�

))
sin (πj1y) sin (πj2y)

= 1

2
sin
(
πj1

u

�

)
(sin (π (j1 + j2) y)− sin (π (j1 − j2) y))

− 1

2
sin
(
πj2

u

�

)
(sin (π (j1 + j2) y)+ sin (π (j1 − j2) y))

+
(

cos
(
πj1

u

�

)
− cos

(
πj2

u

�

))
sin (πj1y) sin (πj2y)

= 1

2

(
sin
(
πj1

u

�

)
− sin

(
πj2

u

�

))
sin (π (j1 + j2) y)

− 1

2

(
sin
(
πj1

u

�

)
+ sin

(
πj2

u

�

))
sin (π (j1 − j2) y)

+
(

cos
(
πj1

u

�

)
− cos

(
πj2

u

�

))
sin (πj1y) sin (πj2y) .

Thus,
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1√
2
φj̄

(
y + u

�
, y
)
= sin

(
π
j1 − j2

2

u

�

)
cos

(
π
j1 + j2

2

u

�

)
sin (π (j1 + j2) y)

− sin

(
π
j1 + j2

2

u

�

)
cos

(
π
j1 − j2

2

u

�

)
sin (π (j1 − j2) y)

− 2 sin

(
π
j1 − j2

2

u

�

)
sin

(
π
j1 + j2

2

u

�

)
sin (πj1y)

sin (πj2y) .

This completes the proof of Lemma 6.4. �
We start with the proof of point (a) of Lemma 6.1. As φ0 = φ(2,1), by (6.19)
and (6.20), using the Taylor expansion of the sine and cosine near 0, we compute

(T�φ̃�)(u, y) = �
√
U(u)1R�

(u, y)φ(2,1)

(
y + u

�
, y
)

= u
√
U(u)χ0(y)1R�

(u, y)+ u2

�

√
U(u)χ1

(u
�
, y
)

1R�
(u, y)

where χ0 is defined in Lemma 6.1 and χ1 is continuous and bounded on R× [0, 1].
We estimate

∥∥∥∥
(·)2

�

√
U(·)χ1

( ·
�
, ·
)

1R�

∥∥∥∥

2

L2(R×[0,1])
�
∫

R�

u2

�2
u2U(u)du�

∫

R

u21|u|��

�2
u2U(u)du.

The last integral tends to 0 by the dominated convergence theorem as u �→ u2U(u)

is integrable.
This completes the proof of point (a) of Lemma 6.1.
Let us now turn to the analysis of the operator family (K�)�. It is easily seen that

its kernel (we use the same notations for the operator and its kernel) is given by

K�(E; u, y, u′, y′) = �1R�×R�

√
U(u)U(u′) · K̃

(
E; y + u

�
, y, y′ + u′

�
, y′
)

where K̃(E; x, y, x′, y′) is the kernel of (H+ − E)−1. The kernel K̃(E) is easily
expressed in terms of the eigenfunctions of H . Using this and the representation
yielded by Lemma 6.4 leads to the following representation for the kernel K�

K�

(
E;u, y, u′, y′) = �1R�×R�

∑

j̄ �=(2,1)

√
U (u)U

(
u′
)

π2|j̄ |2 − E
φj̄

(
y + u

�
, y
)
φj̄

(
y′ + u′

�
, y′
)

= K−
�

(
E; u, y, u′, y′)+K+

�

(
E;u, y, u′, y′)+K0

�

(
E; u, y, u′, y′)

(6.21)
where, for • ∈ {0,+,−}, we have set
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K•
�

(
E; u, y, u′, y′) = �1R�×R�

∑

j̄ �=(2,1)

√
U (u)U (u′)
π2|j̄ |2 − E

φj̄

(
y + u

�
, y
)
φ•̄
j

(
u′

�
, y′
)
.

To prove point (b) of Lemma 6.1, if suffices to prove that, for v ∈ C∞0 (R× (0, 1)),
one has Klv → K̃v in L2(R× [0, 1]). We first prove

Lemma 6.5 For v ∈ C∞0 (R× (0, 1)), one has

(a) ‖K−
� v‖2 → 0 as � → +∞,

(b) ‖K0
� v‖2 → 0 as � → +∞.

Proof We first study the sequence K+
� v. We compute

(K−
�
v)(u, y) = √

U(u)
∑

j�1,k�1
(j,k) �=(1,1)

Cj,k(v)

π2((j + k)2 + j2)− E
1R�

(u, y)φ(j+k,j)

(
y + u

�
, y
)

(6.22)
where

Cj,k(v) := �

∫ �

−�

√
U(u′) sin

(
π
(2j + k)u′

2�

)
cos

(
π
ku′

�

)
c2j+k(u

′)du′

(6.23)
and

cj (u
′) :=

∫ 1

0
(1R�

v)(u′, y′) sin(πjy′)dy′ =
∫ min(1,1−u′/�)

max(0,−u′/�)
v(u′, y′) sin(πjy′)dy′

=
∫ 1

0
v(u′, y′) sin(πjy′)dy′

(6.24)
for � sufficiently large as v ∈ C∞0 (R× (0, 1)).

Integrating the last integral in (6.24) by parts, we obtain

‖cj‖L2(R) = O
(
j−∞) . (6.25)

By (6.24) and (6.23), as u �→ u2U(u) is summable, we obtain

|Cj,k(v)| � O
(
(2j + k)−∞) �

√∫

R

U(u′) sin2
(
π
(2j + k)u′

2�

)
du′

� O
(
(2j + k)−∞)min(�, 2j + k)

(6.26)

Estimating ‖K−
� v‖ using (6.22) and the triangular inequality, as
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∫

R×[0,1]
U(u)1R�

(u, y)φ2
(j+k,j)

(
y + u

�
, y
)
dudy

�
∫

R

U(u) sin2
(
πk

u

�

)
du+

∫

R

U(u) sin2
(
π(2j + k)

u

�

)
du

� min2(2j + k, �)+ min2(k, �)

�2
,

(6.27)

for p � 4, we get

∥∥K−
� v
∥∥ � 1

�

∑

j�1,k�1
(j,k) �=(1,1)

1

(j + k)p
.

Thus, one gets that
∥∥K−

� v
∥∥→ 0 as � → +∞. This completes the proof of point (a)

of Lemma 6.5.
To prove point (b), as 2 sin a sin b = cos(a − b)− cos(a + b), we compute

(K0
� v)(u, y) =

√
U(u)

∑

j�1,k�1
(j,k) �=(1,1)

A−
j,k(v)− A+

j,k(v)

π2((j + k)2 + j2)− E
1R�

(u, y)φ(j+k,j)

(
y + u

�
, y
)

where

A+
j,k(v) := �

∫ �

−�

√
U(u′) sin

(
π
(2j + k)u′

2�

)
sin

(
π
ku′

�

)
a2j+k(u

′)du′,

A−
j,k(v) := �

∫ �

−�

√
U(u′) sin

(
π
(2j + k)u′

2�

)
sin

(
π
ku′

�

)
ak(u

′)du′

and

ak(u
′) :=

∫ 1

0
(1R�

v)(u′, y′) cos(πky′)dy′.

As in (6.24), we obtain

‖ak‖L2(R) = O
(
k−∞) .

As in (6.26), we obtain

|A±
j,k(v)| � O

(
k−∞)min(�, k).
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By (6.27), for p � 2, we then get

∥∥∥K0
� v

∥∥∥ � 1

�

∑

j�1,k�1
(j,k) �=(1,1)

min(�, k)(min(�, k)+min(�, j + k))

k−p((j + k)2 + j2)
� 1

�
+
∑

j�1

min(1, j/�)

j2

(6.28)
The last term converges to 0 by the dominated convergence theorem. This completes
the proof of point (b) of Lemma 6.5, thus, of Lemma 6.5. �
Next, we decompose K+

� expanding φj̄ (y + u/�, y) according to (6.19). This gives

K+
� = K

+,+
� +K

+,−
� +K

+,0
� ,

where, for • ∈ {0,+,−}, we have set

K
+,•
�

(
E; u, y, u′, y′) = �1R�×R�

∑

j̄ �=(2,1)

√
U (u)U

(
u′
)

π2|j̄ |2 − E
φ•̄j
(
y + u

�
, y
)
× φ+

j̄

(
u′
�
, y

)
.

We now prove

Lemma 6.6 For v ∈ C∞0 (R× (0, 1)), one has

(a) ‖K−,+
� v‖ → 0 as � → +∞,

(b) ‖K0,+
� v‖ → 0 as � → +∞.

Proof As in the proof of Lemma 6.5, the two points in Lemma 6.6 are proved in
very similar ways. We will only detail the proof of point (a).

We compute

(K
−,+
�

v)(u, y) = √
U(u)

∑

j�1,k�1
(j,k) �=(1,1)

Cj,k(v)

π2((j + k)2 + j2)− E
1R�

(u, y)φ−
(j+k,j)

(
y + u

�
, y
)

(6.29)
where

Cj,k(v) := �

∫ �

−�

√
U(u′) sin

(
π
(2j + k)u′

2�

)
cos

(
π
ku′

2�

)
ck(u

′)du′ (6.30)

and

ck(u
′) :=

∫ 1

0
(1R�

v)(u′, y′) sin(πky′)dy′ =
∫ 1

0
v(u′, y′) sin(πky′)dy′

for � sufficiently large as v ∈ C∞0 (R× (0, 1)).
Integrating the last integral in (6.24) by parts, we obtain
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‖ck‖L2(R) = O
(
k−∞) . (6.31)

As in (6.26), we obtain

|Cj,k(v)| � O
(
k−∞)min(�, 2j + k). (6.32)

Using (6.20), one estimates

√∫

R×[0,1]
U(u)1R�

(u, y)

∣∣∣φ−
(j+k,j)

(
y + u

�
, y
)∣∣∣

2
dudy � min(k, �)

�
. (6.33)

Thus, for p � 2, we get

∥∥∥K−,+
� v

∥∥∥ �
∑

j�1,k�1
(j,k) �=(1,1)

min(k, �)

�

min(2j + k, �)

kp((j + k)2 + j2)
. (6.34)

Thus, by the dominated convergence theorem, as in (6.28), one gets that∥∥∥K−,+
� v

∥∥∥→ 0 as � → +∞. This completes the proof of point (a) of Lemma 6.6.

Point (b) is proved similarly except that estimate (6.33) is replaced with

√∫

R×[0,1]
U(u)1R�

(u, y)

∣∣∣φ0
(j+k,j)

(
y + u

�
, y
)∣∣∣

2
dudy � min(k, �)min(2j + k, �)

�2
.

Thus, taking p > 3, estimate (6.34) in this case becomes

∥∥∥K0,+
� v

∥∥∥ �
∑

j�1,k�1
(j,k) �=(1,1)

min(k, �)

kp

min2(2j + k, �)

�2((j + k)2 + j2)
�

∑

j�1,k�1
(j,k) �=(1,1)

1

kp−2

min2(j, �)

�2j2

�
∑

j�1

min2(j, �)

�2

1

j2

which converges to 0 as � → +∞.
This completes the proof of Lemma 6.6. �

We are now left with computing the limit of K+,+
� where

K
+,+
� (u, y, u′, y′) =

∑

j�1,k�1
(j,k) �=(1,1)

�
√
U(u)U(u′)

π2((j + k)2 + j2)− E
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× φ+
(j+k,j)

(
y + u

�
, y
)
φ+
(j,j+k)

(
y′ + u′

�
, y′
)
. (6.35)

We prove

Lemma 6.7 In the strong topology, one has

K
+,+
� → K ⊗ Id as � → +∞. (6.36)

where K is defined in (6.10).

Proof To simplify the computations, we note that it suffices to show the conver-
gence of K+,+

� v for v ∈ C∞0 (R× (0, 1)).For � sufficiently large, compute

(K
+,+
� v)(u, y) =

∑

k�1

sin(πky)1R�
(u, y)c

(
K�

k , u
)

where

c
(
K�

k , u
)
:= 1

2

√
U(u)

∫

R

K�
k (u, u

′)
√
U(u′)ck(u′)du′, (6.37)

u �→ ck(u) being defined by (6.24), and

K�
k (u, u

′) := �
∑

j∈N
(j,k) �=(1,1)

sin
(
π

2j+k
2� u

)
sin
(
π

2j+k
2� u′

)
cos

(
π k

2�u
)

cos
(
π k

2�u
′)

π2 (j + k/2)2 + (πk/2)2 − E

(6.38)
Define

L�
k(u, u

′) := �
∑

j∈N
(j,k) �=(1,1)

sin
(
π

2j+k
2� u

)
sin
(
π

2j+k
2� u′

)

π2 (j + k/2)2 ,

M�
k (u, u

′) := K�
k (u, u

′)− L�
k(u, u

′),

(L
+,+
� v)(u, y) :=

∑

k�1

sin(πky)1R�
(u, y)c

(
L�

k, u
)
,

(M
+,+
� v)(u, y) :=

∑

k�1

sin(πky)1R�
(u, y)c

(
M�

k , u
)
.

(6.39)

Here and in the sequel, c
(
L�

k, u
)

and c
(
M�

k , u
)

are defined as c
(
K�

k , u
)

in (6.37)
with K�

k Replaced, respectively, by L�
k and M�

k
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Note that

∥∥∥L+,+
� v

∥∥∥
2

L2(R×[0,1]) :=
1

2

∑

k�1

∫ 1

0

∥∥∥1R�
(y, ·)c

(
L�

k, ·
)∥∥∥

2

L2(R)
dy � 1

2

∑

k�1

∥∥∥c
(
L�

k, ·
)∥∥∥

2

L2(R)

(6.40)
We prove

Lemma 6.8 As � → +∞,
∥∥∥M+,+

� v

∥∥∥
L2(R×[0,1]) → 0

Proof The proof is similar to those of Lemmas 6.5 and 6.6. We write

M�
k (u, u

′) = M
1,�
k (u, u′)+M

2,�
k (u, u′)+M

3,�
k (u, u′)

where

M
1,�
k

(u, u′) = �
∑

j∈N
(j,k) �=(1,1)

sin
(
π

2j+k
2� u

)
sin
(
π

2j+k
2� u′

)
cos

(
π k

2� u
)

cos
(
π k

2� u
′) ((πk/2)2 − E

)

π4 (j + k/2)2
(
(j + k/2)2 + (πk/2)2 − E

)

M
2,�
k

(u, u′) := �
∑

j∈N
(j,k) �=(1,1)

sin
(
π

2j+k
2� u

)
sin
(
π

2j+k
2� u′

)
cos

(
π k

2� u
) (

cos
(
π k

2� u
′)− 1

)

π2 (j + k/2)2

M
3,�
k

(u, u′) := �
∑

j∈N
(j,k) �=(1,1)

sin
(
π

2j+k
2� u

)
sin
(
π

2j+k
2� u′

) (
cos

(
π k

2� u
)
− 1

)

π2 (j + k/2)2
.

Following the definitions (6.38) and using (6.40), we estimate

∥∥∥M1,+,+
� v

∥∥∥
2

L2(R×[0,1]) �
1

2

∑

k�1

∥∥∥c
(
M

1,�
k , ·

)∥∥∥
2

L2(R)

�
∑

k�1

k2‖ck‖2
L2(R)

∑

j�1
(j,k) �=(1,1)

(min(2j + k, �))2

�(2j + k)4

� 1

�

∑

k�1

k2‖ck‖2
L2(R)

which, by (6.31), converges to 0 as � goes to +∞.
That the term coming from M

2,+,+
� (resp. M3,+,+

� ) also vanishes as � → +∞
follows from computations similar to those done in Lemma 6.5 (resp. Lemma 6.6).
This completes the proof of Lemma 6.8. �
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Note that

L�
k(u, u

′) = 1

�

∑

j∈N
(j,k) �=(1,1)

sin
(
π

2j+k
2� u

)
sin
(
π

2j+k
2� u′

)

π2
(

2j+k
2�

)2 (6.41)

Define

a(L+, u) := 1

2

√
U(u)

∫

R

L+(u, u′)
√
U(u′)ck(u′)du′ (6.42)

where

L+(u, u′) =
∫ +∞

0

sin(πxu) sin(πxu′)
π2x2

dx. (6.43)

We prove

Lemma 6.9 For any k � 1, one has

sup
(u,u′)∈[−�,�]2

∣∣L�
k(u, u

′)− L+(u, u′)
∣∣

|u||u′| � k

�
. (6.44)

Proof Define

l(x, u, u′) := sin(πxu) sin(πxu′)
π2x2

.

Assume first k �= 1. As l is an even function of x, write

L�
k(u, u

′) = 1

2�

∑

j∈Z
l

(
j + k/2

�
, u, u′

)
− 1

2�

0∑

j=−k

l

(
j + k/2

�
, u, u′

)
. (6.45)

Using the Poisson formula, one computes

1

2�

∑

j∈Z
l

(
j + k/2

�
, u, u′

)
= 1

2

∑

j∈Z
eiπkj · l̂ (j, u, u′) (6.46)

where l̂(·, u, u′) is the Fourier transform of x �→ l(x, u, u′).
By the Paley-Wiener Theorem (or by a direct computation of the Fourier

transform), one checks that l̂(·, u, u′) is supported in [−π(|u|+ |u′|), π(|u|+ |u′|)].
Thus, for −� � u, u′ � l, all the terms in right-hand side of (6.46) vanish except
the term for j = 0. That is, for −� � u, u′ � l, one has
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1

2�

∑

j∈Z
l

(
j + k/2

�
, u, u′

)
= 1

2
l̂
(
0, u, u′

) = L+(u, u′).

This and (6.46) then yield that, for −� � u, u′ � l,

L�
k(u, u

′)− L+(u, u′) = −u u′

2�

0∑

j=−k

l
(

j+k/2
�

, u, u′
)

u u′
.

Now, as

sup
(x,u,u′)∈R3

∣∣∣∣
l(x, u, u′)

u u′

∣∣∣∣ < +∞,

we immediately obtain (6.44) and complete the proof of Lemma 6.9 when k �= 1.
When k = 1, the proof is done in the same way up to a shift in the index j . This

completes the proof of Lemma 6.9. �
As v ∈ C∞0 (R× (0, 1)), one has

∀N � 0, ∃CN > 0, ∀k ∈ Z, ‖ck‖L2(R) � CN

1

1 + |k|N .

Thus, as x �→ x
√
U(x) is square integrable, the bound (6.44) yields that, for some

C2 > 0, one has

∀k ∈ Z,

∥∥∥c
(
K�

k , ·
)
− c

(
L+, ·)

∥∥∥
L2([−�,�]) �

1

�

C2

1 + |k|2 .

Thus, taking into account the following computation

L+(u, u′) =
∫

R

sin(πxu) sin(πxu′)
π2x2 dx

= 1

2π2

[∫

R

cos(πx(u− u′))− 1

x2 dx +
∫

R

1 − cos(πx(u+ u′))
x2 dx

]

= 1

2π2

[
|u− u′|

∫

R

cos(πx)− 1

x2
dx + |u+ u′|

∫

R

1 − cos(πx)

x2
dx

]

= 1

2
(|u+ u′| − |u− u′|),

(6.47)
the definition of K , (6.10) and (6.40), we obtain that

∥∥∥L+,+
� v − (K ⊗ 1)v

∥∥∥
L2(R×[0,1]) −−−−→�→+∞ 0
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Thus, Lemma 6.7 is proved. �
Clearly, the proof of Lemma 6.1 generalizes to arbitrary φ(i,j), a normalized
eigenfunction of H 0(1, 2); one thus proves

Corollary 6.10 Consider two particles on the i-th and j -th energy levels in an
interval of length �. Their interaction amplitude is given by

〈Uφ(i,j), φ(i,j)〉 = 2π2(i2 + j2) ·
∫

R

u2U(u)du · �−3(1 +O(�−1)). (6.48)

6.1.3 The Ground State of Two Interacting Electrons and Its Density
Matrices

Recall that ϕj

[0,�] denotes the j -th normalized eigenvector of −-D|[0,�] and ζ
j

[0,�] the
j -th normalized eigenvector of (1.15). In the sequel, we drop the subscript [0, �] as
we always work on the interval [0, �].

We remark that, when the interactions are absent, one has

ζ 1,0 = ϕ1 ∧ ϕ2. (6.49)

The next proposition estimates the difference ζ 1,U − ζ 1,0 induced by the presence
of interactions.

Proposition 6.11 For � � 1, one has

∥∥∥ζ 1,U − ζ 1,0
∥∥∥
L2([0,�]2) � �−1/2. (6.50)

Proof Scaling the variables to the unit square (see Section 6.1.1), it suffices to show
that the normalized ground state of HU�

(1, 2) (see (6.1)), say, φU�

0 satisfies

∥∥∥φU�

0 − φ0

∥∥∥
L2([0,1]2) � �−1/2. (6.51)

where we recall that φ0 = φ(1,2) (see (6.2)).

Decomposing L2([0, 1]) ∧ L2([0, 1]) = Cφ0
⊥⊕ φ⊥

0 and defining EU�

0 to be the

ground state energy of HU�
(1, 2), we rewrite φU�

0 as

φU�

0 = αφ0 + φ̃, φ̃ ⊥ φ0, α ∈ R
+

and the eigenvalue equation it satisfies as

(
5π2 + U�

00 − EU�

0 U�
0+

U�
+0 H+ + U�++ − EU�

0

)(
α

φ̃

)
= 0. (6.52)
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where the terms in the matrix are defined in (6.4).
Thus, to prove (6.51) it suffices to prove that

‖φ̃‖L2([0,1])∧L2([0,1]) � C�−1/2.

By (6.52), as φU�

0 is normalized, as 10π2 � H+ + U�++ and as EU�

0 −−−−→
�→+∞ 5π2,

using (6.4) and (6.8), one computes

‖φ̃‖2
L2([0,1])∧L2([0,1]) � U�

0+
(
H+ + U�++ − EU�

0

)−2
U�
+0

� C

�

〈
φ�,K�(Id+K�)

−1φ�

〉

L2(R×[0,1]) .

Thus, (6.51) is an immediate consequence of Lemma 6.1. This completes the proof
of Proposition 6.11. �
We obtain the following corollary for the one-particle density matrices of ζ 1,U .

Corollary 6.12 Under assumptions of Proposition 6.11, one has

∥∥γζ 1,U − γϕ1 − γϕ2

∥∥
1
= O

(
�−1

)
.

Corollary 6.12 is an immediate consequence of (6.50) and

Lemma 6.13 Let ψ, φ ∈ L2([0, �]) ∧ L2([0, �]) be two normalized two-particle
states. Then

‖γψ − γφ‖1 � 4‖ψ − φ‖.

Proof of Lemma 6.13 For ϕ ∈ L2([0, �]) ∧ L2([0, �]), consider the operator Aϕ

defined as

(Aϕf )(x) =
∫ �

0
ϕ(x, y)f (y)dy.

Note that Aϕ is a Hilbert-Schmidt operator and ‖Aϕ‖2 = ‖ϕ‖ and the one-particle
density matrix of ϕ satisfies γϕ = 2A∗

ϕAϕ . Thus, for ψ , φ as in Lemma 6.13, we
obtain

‖γψ − γφ‖1 = 2‖A∗
ψAψ − A∗

φAφ‖1 � 2
(
‖A∗

ψ‖2‖Aψ − Aφ‖2 + ‖A∗
ψ − A∗

φ‖2‖Aφ‖2

)
� 4‖ψ − φ‖.

This completes the proof of Lemma 6.13. �
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6.2 Electrons in Distinct Pieces

In the present section, we assume that U satisfies (HU) (see Section 1.1); thus, it
decreases sufficiently fast at infinity (roughly better than x−4) and is in Lp for some
p > 1.

Let the first piece be �1 = [−�1, 0] and the second be �2 = [a, a + �2]; so,
the pieces’ lengths are �1 and �2, while the distance between them is denoted by a.
As for the one-particle systems living in each of these pieces, we will primarily be
interested in the following three cases:

(a) the interaction of two eigenstates of the one-particle Hamiltonian on each piece,
i.e., following the notations of Section 6.1, of ϕi

�1
and ϕ

j
�2

,
(b) the interaction of a one-particle eigenstate with a one-particle reduced density

matrix of a two-particle ground state, i.e., ϕi
�1

with γζ 1
�2

,

(c) the interaction of two one-particle density matrices, i.e., γζ 1
�1

and γζ 1
�2

.

We observe that for a one-particle eigenstate in a piece of length �, the following
uniform pointwise bound holds true:

‖ϕi
[0,�]‖L∞ �

√
2

�
. (6.53)

For the one-particle reduced density matrix we establish the following estimates.

Lemma 6.14 Let ζ ∈ L2([0, �]) ∧ L2([0, �]) be a two-particle state and γζ (x, y)

the kernel of the corresponding one-particle density matrix. Let p ∈ N. Then, ζ ∈
Hp([0, �]2) implies γζ ∈ Hp([0, �]2) and

‖γζ‖Hp � 4‖ζ‖Hp . (6.54)

In particular, unconditionally ‖γζ‖L2 � 4.

Proof First recall that

γζ (x, y) = 2
∫ �

0
ζ(x, z)ζ ∗(y, z)dz.

Then, one differentiates under the integration sign to get

∂p

∂xp
γζ (x, y) = 2

∫ �

0
∂
p
x ζ(x, z)ζ

∗(y, z)dz.

This in turn implies by the Cauchy-Schwarz inequality that
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∥∥∥∥
∂p

∂xp
γζ

∥∥∥∥

2

L2
= 4

∫

[0,�]2

∣∣∣∣

∫ �

0
∂
p
x ζ(x, z)ζ

∗(y, z)dz
∣∣∣∣

2

dxdy

� 4
∫

[0,�]4
∣∣∂p

x ζ(x, z)
∣∣2 · ∣∣ζ(y, z′)∣∣2 dxdydzdz′ = 4

∥∥∂p
x ζ
∥∥2
L2 ,

which proves (6.54). �

Lemma 6.15 Let ζ = ζ
1,U
[0,�] be the ground state of a system of two interacting

electrons in [0, �]. Then, ζ ∈ H 1([0, �]2) and there exists a constant C > 0
independent of � such that

‖ζ‖H 1 � C/
√
�. (6.55)

Proof We use the construction of the proof of Proposition 6.11. Then, employing
the same notations, for the problem scaled to the unit square one has

φU�

0 = αφ0 + φ̃,

where φ0 is the ground state for a system of two non-interacting electrons, |α| � 1
and φ̃ ⊥ φ0. Obviously, φ0 ∈ Hp for all p ∈ N. Moreover, according to (6.52),

‖φ̃‖H 1 =
∥∥∥(H+ + U�++ − EU�

0 )−1U�
+0αφ0

∥∥∥
H 1

�
∥∥∥(H+ + U�++ − EU�

0 )−1
∥∥∥
L2→H 1

·
∥∥∥U�

+0φ0

∥∥∥
L2

�
∥∥∥(H+ − EU�

0 )−1
∥∥∥
L2→H 1

·
∥∥∥U�

+0φ0

∥∥∥
L2

.

Arguing as in Section 6.1, one can prove that

∥∥∥U�
+0φ0

∥∥∥
L2

�
∥∥∥U�φ0

∥∥∥
L2

� C
√
�

and (H+ − EU�

0 )−1 is a bounded operator from L2([0, 1]2) to H 1([0, 1]2) because
H+ is just a part of −-2 acting in a subspace of functions orthogonal to φ0 and the
bottom of its spectrum is separated from EU�

0 . Thus, we proved that

‖φ̃‖H 1 � C
√
�

which immediately implies

‖φU�

0 ‖H 1 � C
√
�.
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Scaling back to the original domain [0, �]2 yields (6.55) and completes the proof of
Lemma 6.15. �
Corollary 6.16 Restricted to the diagonal, the kernel of the ground state one-
particle density matrix x ∈ [0, �] �→ γζ (x, x) is a bounded function; more precisely,
there exists a constant C > 0 such that

‖γζ‖L∞([0,�]) � C/�. (6.56)

Proof Remark first that, as ζ satisfies Dirichlet boundary conditions, so does the
kernel (x, y) �→ γζ (x, y). Using anti-symmetry, we compute

|γζ (x, x)| = 2

∣∣∣∣

∫ x

0

d

dt

[
γζ (t, t)

]
∣∣∣∣ = 4

∣∣∣∣Im
(∫ x

0

∫ �

0
∂t ζ(t, x)ζ(t, x)dxdt

)∣∣∣∣

� 4‖∂t ζ‖L2 · ‖ζ‖L2 � 4‖ζ‖2
H 1

(6.57)
Combining this with (6.55) gives (6.56) and completes the proof of Corollary 6.16.
�
Having now pointwise bounds (6.53) and (6.56), we estimate the interactions in
each of the three cases described in the beginning of the current section. We will
also obtain different bounds for close enough and distant pieces �1 = [−�1, 0] and
�2 = [a, a + �2], i.e., we will discuss different bounds depending on whether a is
large or small.

For the case (a) of two interacting one-particle eigenstates we prove the following
two estimates. For long distance interactions, i.e., when a is large, we will use

Lemma 6.17 SupposeU satisfies (HU). Then, for�1 = [−�1, 0] and�2 = [a, a+
�2], one has

sup
i,j

∫

�1×�2

U(x − y)|ϕi
�1

(x)|2 · |ϕj
�2

(y)|2dxdy � 2a−3Z(a)

max(�1, �2)
(6.58)

where Z is defined in (1.26).

Proof Let us suppose without loss of generality that �1 is the larger piece, i.e.,
�1 � �2. Then, using (6.53) and the fact that the functions (ϕi

�j
)i,j are normalized,

we compute

∫ �1

0

∫ �2

0
U(x + y + a)|ϕi

�1
(x)|2 · |ϕj

�2
(y)|2dxdy

� 2

�1

∫ �1

0

∫ �2

0
U(x + y + a)|ϕj

�2
(y)|2dxdy
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� 2

�1
sup

y∈[0,�2]

∫ �1

0
U(x + y + a)dx

� 2

�1

∫ +∞

0
U(x + a)dx

= 2

�1
a−3Z(a), a → +∞.

This completes the proof of Lemma 6.17. �
On the other hand, for close by interactions, i.e., a small and low-lying one-particle
energy levels the following lemma gives a more precise estimate.

Lemma 6.18 Suppose U satisfies (HU). Let (i, j) ∈ {1, 2}2. Then, for any ε ∈
(0, 2) and �1 = [−�1, 0] and �2 = [a, a + �2], one has
∫

�1×�2

U(x−y)|ϕi
�1

(x)|2 · |ϕj
�2

(y)|2dxdy = O

(
a−εZ(a)

max(�1, �2)2 min(�1, �2)2−ε

)
.

(6.59)
If Z(a) = O(a−0), a → +∞, then ε can be taken to zero.

Proof As in the proof of the previous lemma we suppose that �1 � �2. If j ∈ {1, 2},
then

|ϕj
�1

(x)| =
∣∣∣∣∣

√
2

�1
sin

(
πix

�1

)∣∣∣∣∣
�
√

2

�1

π |x|
�1

(6.60)

and the same type inequality holds for ϕ
j
�2

(y). Then, using (6.60) and (6.53), we
compute

∫ �1

0

∫ �2

0
U(x + y + a)|ϕi

�1
(x)|2 · |ϕj

�2
(y)|2dxdy

� C1

�2
1�

2−ε
2

∫ �1

0

∫ �2

0
U(x + y + a)xy1−εdxdy

� C1

�2
1�

2−ε
2

∫

R
2+
U(x + y + a)xy1−εdxdy

= C2

�2
1�

2−ε
2

∫ +∞

0

∫ s

−s

U(s + a)(s + t)(s − t)1−εdtds

� C3

�2
1�

2−ε
2

∫ +∞

a

U(s)s3−εds.

It is now only left to prove that (HU) and (1.26) imply that the last integral converges
and is O(a−εZ(a)). Therefore, we note that
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∫ +∞

a

U(s)s3−εds =
+∞∑

n=0

∫ 2n+1a

2na

U(s)s3−εds �
+∞∑

n=0

(
2n+1a

)3−ε
∫ 2n+1a

2na

U(s)ds

� 23−εa−ε
+∞∑

n=0

2−εn
(
2na

)3
∫ +∞

2na

U(s)ds

= 23−εa−ε
+∞∑

n=0

2−εnZ
(
2na

)
� Ca−εZ(a).

(6.61)
If Z(a) = O(a−0), i.e., if there exists δ > 0 s.t. Z(a) = O(a−δ) for a → +∞,
then the sum in the second line of (6.61) converges for ε = 0.

This concludes the proof of (6.59). �
Let us now pass to the case (b) of one-particle eigenstate interacting with a one-
particle density matrix of a two-particle eigenstate. For large a, we prove

Lemma 6.19 Suppose U satisfies (HU). Then, for a sufficiently large, one has

sup
i,j

∫

�1×�2

U(x − y)|ϕi
�1

(x)|2 · γ
ζ
j
�2

(y, y)dxdy � 4a−3Z(a)

�1
. (6.62)

Proof The proof follows that of Lemma 6.17. The only change concerns the
replacement of the fact that ϕ

j
�2

is normalized,
∫
�2

|ϕj
�2

(y)|2dy = 1, by the fact
that the trace of γ

ζ
j
�2

is equal to 2. �

For a small, we prove

Lemma 6.20 Suppose U satisfies (HU). Let i ∈ {1, 2}. Then, for any ε ∈ (0, 2),

∫

�1×�2

U(x − y)|ϕi
�1

(x)|2 · γ
ζ
j
�2

(y, y)dxdy = O
(
�−3+ε

1 �
−1/2
2 a−εZ(a)

)
.

(6.63)
If Z(a) = O(a−0) as a → +∞, one can choose ε = 0.

Proof As in the proof of Lemma 6.18 mixing once more (6.53), (6.56), and (6.60),
we obtain

∫ �1

0

∫ �2

0
U(x + y + a)|ϕi

�1
(x)|2γ

ζ
j
�2

(y, y)dxdy

� C1

�3−ε
1 �

1/2
2

∫ �1

0

∫ �2

0
U(x + y + a)x2−εdxdy
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� C1

�3−ε
1 �

1/2
2

∫ +∞

0

∫ +∞

a

U(x + y)x2−εdxdy

= C2

�3−ε
1 �

1/2
2

∫ +∞

a

∫ s

−s

U(s)(s + t)2−εdtds

� C3

�3−ε
1 �

1/2
2

∫ +∞

a

U(s)s3−εds

� C4a
−εZ(a)

�3−ε
1 �

1/2
2

.

This completes the proof of Lemma 6.20. �
We are left with the case (c) of two interacting reduced density matrices. We do not
make the difference between close and far away pieces in this case.

Lemma 6.21 Suppose U satisfies (HU). Then, there exists C > 0 such that

sup
i,j

∫

�1×�2

U(x−y)γζ i
�1

(x, x) ·γ
ζ
j
�2

(y, y)dxdy � C�
−1/2
1 �

−1/2
2 min(1, a−2Z(a))

(6.64)

Proof Using (6.56) one obtains

∫ �1

0

∫ �2

0
U(x + y + a)γζ i

�1
(x, x)γ

ζ
j
�2

(y, y)dxdy

� C1√
�1�2

∫

R
2+
U(x + y + a)dxdy

� C2√
�1�2

∫ +∞

0
U(s + a)sds

� C2√
�1�2

∫ +∞

a

(∫ +∞

t

U(s)ds

)
dt

Thus,

∫ �1

0

∫ �2

0
U(x + y + a)γζ i

�1
(x, x)γ

ζ
j
�2

(y, y)dxdy � C3 min(C, a−2Z(a))√
�1�2

where the last equality is just (6.61) for ε = 2 and C :=
∫ +∞

0

(∫ +∞

t

U(s)ds

)
dt

< +∞. This completes the proof of Lemma 6.21. �
Finally, we give estimates for the case of compactly supported interaction potential
U . We prove
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Lemma 6.22 Assume that U has a compact support. Then, there exists C > 0 such
that, for i � 1 and j � 1, one has

〈Uφ(i,j), φ(i,j)〉 � C · [min(i, �1)min(j, �2)]2

�3
1�

3
2

.

Proof Due to the anti-symmetry of the functions (φ(i,j))i,j,, it suffices to compute
the scalar product on [−�1, 0] × [a, a + �2]. Thus,

〈Uφ(i,j), φ(i,j)〉 � sup
|a|�diam(supp(U))

1

2�1�2

∫

[0,�1]×[0,�2]
U(x + y + a)

× sin2
(
iπx

�1

)
sin2

(
jπy

�2

)
dxdy

� C(U)
[min(i, �1)min(j, �2)]2

�3
1�

3
2

where

C(U) := 1

2
sup

0�a�diam(supp(U))

∫

R+×R+
U(x + y + a)(1 + x2)(1 + y2)dxdy.

This completes the proof of Lemma 6.22. �
Proposition 6.23 Consider a system of two interacting electrons, one in [0, �1],
another in [�1 + r, �1 + r + �2] with r � R0. Then, the ground state energy of this
system has the following asymptotic expansion

E((�1, r, �2), (1, 1)) = π2

�2
1

+ π2

�2
2

+O(�−6
1 + �−6

2 ). (6.65)

Proof Obviously, the energy of this system is greater than the energy of the system
without interactions that is given by the main term of (6.65). Taking the ground state
of a non-interacting system as a test function and using Lemma 6.22 to estimate
the quadratic form of the interaction potential gives the upper bound and, thus,
completes the proof. �

6.3 The Proof of Lemma 4.11

Recall that EU
q,n denotes the n-th eigenvalue of −

q∑

l=1

d2

dx2
l

+
∑

1�k<l�q

U(xk − xl)

acting on
q∧

l=1

L2([0, �]). Rescaling as in Section 6.1.1, we need to study the case
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� = 1 and prove that, in this case, there exists C > 1 such that, for n � 2 and U�

given by (6.1), one has

EU�

q,n � EU�

q,1 +
1

C
. (6.66)

Indeed in Lemma 4.11, the length � is assumed to be less than 3�ρ .
As q � 3, the same computations as in the beginning of Section 6.1.1 show that

EU�

q,1 satisfies, for some C > 1, for � large,

EU�

q,1 � E0
q,1 + 〈φ0, U

�φ0〉 � E0
q,1 +

C

�
. (6.67)

On the other hand, for some C > 1, one has

EU�

q,n � E0
q,n � E0

q,1 +
2

C
.

Plugging (6.67) into this immediately yields (6.66) and completes the proof of
Lemma 4.11. $%

Appendix A The Statistics of the Pieces

In this appendix, we prove most of the results on the statistics of the pieces stated in
Section 2.2.

A.1 Facts on the Poisson Process

Let � be the support of dμ(ω), the Poisson process of intensity 1 on R+ (see
Section 1). Let � ∩ [0, L] = {xi; 1 � i � m(ω)− 1} (where xi < xi+1). Then,

P(#(� ∩ [0, L]) = k) = e−LLk

k! , k ∈ N. (A.1)

The following large deviation principle is well known (and easily checked): for any
β ∈ (1/2, 1), one has

P(|#(� ∩ [0, L])− L| � Lβ) = O(L−∞). (A.2)

The points (xi)1�i�m(ω)−1 partition the interval [0, L] in m(ω) pieces of
lengths �i .
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For L > ee
2
, one has

P(∃i; |�i | � logL log logL) � P(∃n ∈ [0, L] ∩ N;
#[� ∩ (n+ [0, logL log logL/2])] = 0)

� Le− logL log logL/2 = O(L−∞).

This proves Proposition 2.1.

A.2 The Proof of Proposition 2.2

Consider the partition of [0, L] into pieces (see Section 1). For a, b both non-
negative, let now X[0,L] to be the number of pieces of length in [a, a + b]. We
first compute the expectation of X[0,L]/L, that is, prove

Proposition A.1 For L � a + b, one has

E

[
X[0,L]

L

]
= e−a(1 − e−b)+ e−a((a + b)e−b − a)

L
= e−a

(
1 − a

L

)
− e−a−b

(
1 − a + b

L

)
.

Proof Let � be the support of the support of dμ(ω), the Poisson process of intensity
1 on R+ (see Section 1). Then, one has

X[0,L] =
∑

X∈�
G(� ∩ [0, X))

where the set-function G is defined as

G(� ∩ [0, X)) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if the distance from X to the right most point

in {0} ∪ (� ∩ [0, X)) belongs to [a, a + b],
0 if not.

(A.3)

The Palm formula (see, e.g., [2, Lemma 2.3 ]) yields

E(X[0,L]) =
∫

0�x�L

E [G(� ∩ [0, x))] dx.

Now, let E be an exponential random variable with parameter 1. As the Poisson
point process has independent increments, one easily checks that
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E [G(� ∩ [0, x))] = P (min(x, E) ∈ [a, a + b]) =

⎧
⎪⎪⎨

⎪⎪⎩

e−a
(

1 − e−b
)

if x � a + b,

e−a if x ∈ [a, a + b],
0 if x � a,

(A.4)
Hence,

E(X[0,L]) = e−a
(

1 − e−b
) ∫

0�x�L
dx + e−a−b

∫ a+b

a
dx − e−a

(
1 − e−b

)

∫ a

0
dx = e−a(1 − e−b)L− R

where

R = e−a((a + b)e−b − a). (A.5)

This completes the proof of Proposition A.1. �
Let us now prove Proposition 2.2. Therefore, set M := e−a(1 − e−b) and partition
[0, L] = ∪J

j=1[j�, (j + 1)�] so that J . Lν and � . L1−ν for some ν ∈ (0, 1) to

be fixed. As (a, b) = (aL, bL) ∈ [0, logL · log logL]2, one then has

∣∣∣∣∣∣
X[0,L] −

J∑

j=1

X[j�,(j+1)�]

∣∣∣∣∣∣
� 2J. (A.6)

Moreover, the random variables (�−1X[j�,(j+1)�])1�j�J are independent sub-
exponential random variables. Indeed, X[0,L] is clearly bounded by #(� ∩ [0, L]),
the number of points the Poisson process puts in [0, L] and L−1#(�∩ [0, L]) has a
Poisson law with parameter 1. We want to use the Bernstein inequality (see e.g. [22,

Proposition 5.16]). To estimate
∥∥∥�−1X[j�,(j+1)�]

∥∥∥
#1

(see e.g. [22, Definition 5.13]),

we use this bound and the Stirling formula to get, for p � 1,

E
(∣∣X[j�,(j+1)�]

∣∣p) � e−�
∑

k�1

kp �k

k! � e−�

2p−1∑

k=1

kp �k

k! + e−�
∑

k�2p

kp �k

k!

� (2p)p + e−�
∑

k�2p

kp �p

k · · · (k − p + 1)

�k−p

(k − p)!

� (2p)p + �p max
k�p

(k + p)p k!
(k + p)! � (2p)p + (e�)p.

Hence, for � � 1,
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∥∥∥�−1X[j�,(j+1)�]
∥∥∥
#1

= 1

�

∥∥X[j�,(j+1)�]
∥∥
#1

= 1

�
sup
p�1

1

p

p

√
E
(∣∣X[j�,(j+1)�]

∣∣p)

� sup
p�1

p

√
2p

�p
+ ep

pp
� 2

�
+ e � 2e.

Thus, the Bernstein inequality, estimate (A.6), and Proposition A.2 yield that there
exists κ > 0 (independent of a, b) such that, for α = α(L) � 2(R + 2)/� (here, R
is given by (A.5)), one has

P

(∣∣∣∣
X[0,L]

L
−M

∣∣∣∣ � α

)
� P

⎛

⎝

∣∣∣∣∣∣

J∑

j=1

X[j�,(j+1)�] − E[X[j�,(j+1)�]]
�

∣∣∣∣∣∣
� J

(
α − R + 2

�

)⎞

⎠

� 2e−κα2J .

To obtain Proposition 2.3, it now suffices to take α = Lβ−1 and (β, ν) ∈ (0, 1) such
that 1 − β < 1 − ν and 2(β − 1)+ ν > 0; this requires β > 2/3.

The proof of Proposition 2.2 is complete. $%

A.3 The Proof of Propositions 2.3 and 2.4

For any a, b, c, d, f, g all positive, define now X[0,L] to be the number of pairs of
pieces such that

• the length of the left most piece is contained in [a, a + b],
• the length of the right most piece is contained in [c, c + d],
• the distance between the two pieces belongs to [g, g + f ].
Again, we first compute the expectation of X[0,L]/L, that is, prove

Proposition A.2 For L � a + b + c + d + f + g, one has

E

[
X[0,L]

L

]
= f e−a−c(1 − e−b)(1 − e−d)+ RL

L
where |RL| � f e−a−c.

(A.7)

Proof Recall that � denotes the support of dμ(ω), the Poisson process of intensity
1 on R+. Then, one can rewrite

X[0,L] =
∑

(X,Y )∈�2

X<Y

1g�Y−X�g+fG(� ∩ [0, X))H(� ∩ (Y, L])

where the set-functions G and H have been defined, respectively, by (A.3) and
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H(� ∩ (Y, L]) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if the distance from Y to the left most point

in {L} ∪ (� ∩ (Y, L]) belongs to [c, c + d],
0 if not.

(A.8)

The Palm formula, thus, yields

E(X[0,L]) =
∫

0�x,y�L
g�y−x�g+f

E [G(� ∩ [0, x))H(� ∩ (y, L])] dxdy

=
∫

0�x,y�L
g�y−x�g+f

E [G(� ∩ [0, x))]E [H(� ∩ (y, L])] dxdy

as the random sets � ∩ [0, x)) and � ∩ (y, L]) are independent.
As in (A.4), one checks that

E [H(� ∩ (y, L])] = P (min(L− y, E) ∈ [c, c + d])

=

⎧
⎪⎪⎨

⎪⎪⎩

e−c
(
1 − e−d

)
if y � L− c − d,

e−c if y ∈ L− [c, c + d],
0 if y � L− c.

Hence,

E(X[0,L]) = e−a−c
(

1 − e−d
) (

1 − e−b
) ∫

0�x,y�L
g�y−x�g+f

dxdy + R1

= f e−a−c(1 − e−b)(1 − e−d)L+ R2

where, respectively, R1 � e−a−c and

R2 � R := e−a−c(1 + f 2 + fg). (A.9)

This completes the proof of Proposition A.2. �
Let us now prove Proposition 2.3. We want to go along the same lines as in the proof
of Proposition 2.2. Therefore, we set M := f e−a−c(1−e−b)(1−e−d) and partition
[0, L] = ∪J

j=0[j�, (j+1)�] so that J . Lν and � . L1−ν for some ν ∈ (0, 1) to be

fixed. For the same reasons as before, the random variables (�−1X[j�,(j+1)�])1�j�J

are independent sub-exponential random variables.
We now need a replacement for (A.6). Therefore, we set

r := 1 + a + b + c + d + f + g (A.10)
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and, for 0 � j � J , we let

• Yj be the number of pieces in the interval (j+1)�+[−r, 0] of length in [a, a+b],
• Zj be the number of pieces in the interval j�+ [0, r] of length in [c, c + d].
Then, we have

−Ka

J∑

j=0

Yj −Kc

J∑

j=0

Zj � X[0,L] −
J∑

j=0

X[j�,(j+1)�] � Ka

J∑

j=0

Yj +Kc

J∑

j=0

Zj

(A.11)
where we have set

Ka := 1 + f + g

a
and Kc = 1 + f + g

c
. (A.12)

Indeed, if a pair of pieces counted by X[0,L] does not have any of its intervals in
any of the (j� + [−r, r])1�j�J , then the convex closure of the pair is inside some
j� + [0, �], thus, the pair is counted by X[j�,(j+1)�]. This yields the upper bound
in (A.11) as, any given interval is the left (resp. right) most interval for at most
1 + (f + g)/c (resp. 1 + (f + g)/a) pairs satisfying both the requirements on
lengths and distance. The lower bound is obtained in the same way.

For L sufficiently large, the random variables (Yj )1�j�J and (Zj )1�j�J

are i.i.d. sub-exponential. Thus, applying the Bernstein inequality as in the
proof of Proposition 2.2 yields that, for some constant κ > 0 (independent of
(a, b, c, d, f, g)) and β ∈ (2/3, 1), with probability 1 −O(J−∞) = 1 −O(L−∞),
one has

J∑

j=1

Yj � κJ (e−a + Jβ−1)r and
J−1∑

j=0

Zj � κJ (e−c + Jβ−1)r; (A.13)

Now, we can estimate
∥∥�−1X[j�,(j+1)�]

∥∥
#1

as in the proof of Proposition 2.2. Thus,
the Bernstein inequality and Proposition A.2 yield that, for some κ (independent of
(a, b, c, d, f, g)), for ν ∈ (2/3, 1) and � . L1−ν , with probability 1 − O(L−∞),
one has

∣∣∣∣∣∣

J∑

j=0

X[j�,(j+1)�]
�

− J M

∣∣∣∣∣∣
� κ

RL J

�
.

Taking (A.11) and (A.13) into account, we get that, for some κ > 0 (independent of
(a, b, c, d, f, g)), with probability 1 −O(L−∞), one has

∣∣∣∣
X[0,L]

L
−M

∣∣∣∣ � κ
R + (Kae

−a +Kce
−c + (Ka +Kc)J

β−1)r

�
.
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This proves (2.5) where the constants are given by

R(a, b, c, d, f, g) = κr
(
R +Kae

−a +Kce
−c
)

and K(a, c, f, g) = (Ka+Kc)r

(A.14)
(see (A.9), (A.10), and (A.12).)

The proof of Proposition 2.3 is complete. $%
The proof of Proposition 2.4 is identical to that of Proposition 2.3: it suffices to

take b = d = +∞.

A.4 The Proof of Proposition 2.5

This proof is essentially identical to that of Proposition 2.3. Let us just say a word
about the differences.

For �, �′, �′′, d > 0, let now X[0,L] to be the number of triplets of pieces at most
at a distance d from each other such that

• the left most piece is longer than �,
• the middle piece is longer than �′,
• the right most piece is longer than �′′.

Then, one has

X[0,L] =
∑

(X,Y,W,Z)∈�4

X<Y<W<Z

10<Y−X�d
l′�W−Y

0<Z−W�d

G(� ∩ [0, X))K(� ∩ (Y,W))H(� ∩ (Z,L])

where the set-functions G and H have been defined as

G(� ∩ [0, X)) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if the distance from X to the right most point

in {0} ∪ (� ∩ [0, X)) belongs to [l,+∞),

0 if not,

K(� ∩ (Y,W)) =
{

1 if � ∩ (Y,W) = ∅,
0 if not,

H(� ∩ (Z,L]) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if the distance from Z to the left most point

in {L} ∪ (� ∩ (Z,L]) belongs to [l′′,+∞),

0 if not.

Following the proof of Proposition A.2, one proves

Proposition A.3 For L sufficiently large, one has
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E

[
X[0,L]

L

]
= d2e−�−�′−�′′ + RL

L
where |RL| � d2e−�−�′−�′′ .

One then derives Proposition 2.2 from Proposition A.3 in the same way as
Proposition 2.3 was derived from Proposition A.2.

A.5 The Proof of Proposition 2.6

First of all, let us note that a piece of length l in [k�E, (k + 1)�E) generates exactly
k energy levels that do not exceed E. To count the energies less than E, we are only
interested in intervals of length l larger than �E . Other intervals do not generate
any energy levels we are interested in. Thus, by Proposition 2.2, for β ∈ (2/3, 1),
we obtain that with probability 1 − O(L−∞), the number of intervals generating k

energy levels below energy E is

L(e−k�E − e−(k+1)�E )+ LβRL where |RL| � 3 (A.15)

where O(·) is uniform in k.
Let mL = logL · log logL. By Proposition 2.1, with probability 1 − O(L−∞),

for L large, one computes

ND
L (E) = L−1

[mL/�E ]∑

k=1

k · L(e−k�E− e−(k+ 1)�E )+mLL
−1+βRL where |RL| � 1

�E

=
[mL/�E ]∑

k=1

e−k�E − [mL/�E]

e([mL/�E ]+1)�E
+mLL

−1+βRL

=
+∞∑

k=1

e−k�E +mLL
−1+β(RL + 1) = e−�E

1 − e−�E
+mLL

−1+β(RL + 2).

Thus, decreasing β above somewhat, with probability 1 − O(L−∞), for L suffi-
ciently large, one has

∣∣∣∣N
D
L (E)− e−�E

1 − e−�E

∣∣∣∣ � L−1+β. (A.16)

This proves (2.6). Using the fact that E �→ ND
L (E) is monotonous and the Lipschitz

continuity of E �→ N(E), (A.16) yields that, for E0 > 0, with probability 1 −
O(L−∞), for L sufficiently large, one has
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sup
E∈[0,E0]

∣∣∣∣N
D
L (E)− e−�E

1 − e−�E

∣∣∣∣ � L−1+β. (A.17)

The formulas (2.8) and (2.9) for the Fermi energy and the Fermi length follow
trivially. This completes the proof of Proposition 2.6.

Appendix B A Simple Lemma on Trace Class Operators

The purpose of the present section is to prove

Lemma B.1 Pick (H, 〈·, ·〉) a separable Hilbert space and (Z,μ) a measured
space with μ a positive measure. Consider a weakly measurable mapping z ∈ Z →
T (z) ∈ S1(H). Here,S1(H) denotes the trace class operators inH, the trace class
norm being denoted by ‖ · ‖tr.

Assume
∫

Z

‖T (z)‖trdμ(z) < +∞. (B.1)

Then, the integral T :=
∫

Z

T (z)dμ(z) converges weakly and defines a trace class

operator that satisfies

‖T ‖tr =
∥∥∥∥

∫

Z

T (z)dμ(z)

∥∥∥∥
tr
�
∫

Z

‖T (z)‖trdμ(z). (B.2)

Proof By assumption, for (ϕ, ψ) ∈ H2, one has z → 〈T (z)ϕ,ψ〉 is measurable
and bounded by z → ‖T (z)‖tr‖ϕ‖‖ψ‖ which by (B.1) is integrable. It, thus, is
integrable and one has

∣∣∣∣

∫

Z

〈T (z)ϕ,ψ〉dμ(z)

∣∣∣∣ �
∫

Z

|〈T (z)ϕ,ψ〉| dμ(z) �
∫

Z

‖T (z)‖trdμ(z) ‖ϕ‖ ‖ψ‖.

Thus, the operator T :=
∫

Z

T (z)dμ(z) is well defined by

〈T ϕ,ψ〉 :=
∫

Z

〈T (z)ϕ,ψ〉dμ(z).

and bounded.
Let us prove that it is trace class and satisfies (B.2). Let (ϕn)n�1 be an

orthonormal basis of H. Then,



226 F. Klopp and N. A. Veniaminov

|〈T ϕn, ϕn〉| �
∫

Z

|〈T (z)ϕn, ϕn〉| dμ(z).

Thus,

N∑

n=1

|〈T ϕn, ϕn〉| �
∫

Z

(
N∑

n=1

|〈T (z)ϕn, ϕn〉|
)

dμ(z) �
∫

Z

‖T (z)‖trdμ(z).

Taking N → +∞ proves that, for any orthonormal basis of H, say, (ϕn)n�1, one
has

+∞∑

n=1

|〈T ϕn, ϕn〉| �
∫

Z

‖T (z)‖trdμ(z) < +∞.

Thus, T is trace class (see, e.g., [18]) and satisfies (B.2). This completes the proof
of Lemma B.1. �

Appendix C Anti-symmetric Tensors: The Projector on
Anti-symmetric Functions

Pick # ∈ L2("n) and let �∧
n : L2("n) → ∧n

L2(") be the orthogonal projector
on totally anti-symmetric functions. Then,

(�∧
n#)(x) = 1

n!
∑

σ permutation
of {1,··· ,n}

sgn σ ·#(σx)

where, for x = (x1, · · · , xn), σx = (xσ(1), · · · , xσ(n)) and sgn σ is the signature of
the permutation σ .

Hence, if n = Q1 +· · ·+Qm and, for 1 � j � m, ϕj ∈∧Qj L2(�j ), we define

⎛

⎝
m∏

j=1

∥∥∥ϕj
∥∥∥

⎞

⎠

−1
m∧

j=1

ϕj :=
∥∥∥∥∥∥
�∧

n

⎛

⎝
m⊗

j=1

ϕj

⎞

⎠

∥∥∥∥∥∥

−1

�∧
n

⎛

⎝
m⊗

j=1

ϕj

⎞

⎠ (C.1)

and compute



Interacting Electrons in a Random Medium 227

�∧
n

⎛

⎝
m⊗

j=1

ϕj

⎞

⎠ = 1

n!
∑

σ permutation
of {1,··· ,n}

sgn σ

⎛

⎝
m⊗

j=1

ϕj

⎞

⎠ (σx)

= 1

n!
∑

σ permutation
of {1,··· ,n}

sgn σ

⎛

⎝
m∏

j=1

ϕj (xσ(Qj ))

⎞

⎠

where

xσ(Qj ) = (xσ(Q1+···+Qj−1+1), · · · , xσ(Q1+···+Qj−1+Qj )),

Qj = {Q1 + · · · +Qj−1 + 1, · · · ,Q1 + · · · +Qj−1 +Qj }.
Thus,

n! ·�∧
n

⎛

⎝
m⊗

j=1

ϕj

⎞

⎠ =
∑

|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

∑

σ permutation
of {1,··· ,n}

s.t. ∀j, σ (Qj )=Aj

sgn σ

⎛

⎝
m∏

j=1

ϕj (xσ(Qj )
)

⎞

⎠

=
∑

|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

⎛

⎜⎜⎜⎜⎜⎜
⎝

∑

σ permutation
of {1,··· ,n}

s.t. ∀j, σ (Qj )=Aj

⎛

⎝sgn σ

m∏

j=1

sgn σ|Qj

⎞

⎠

⎛

⎝
m∏

j=1

ϕj (xAj
)

⎞

⎠

⎞

⎟⎟⎟⎟⎟⎟
⎠

=
m∏

j=1

Qj !
∑

|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

ε(A1, · · · , Am)

⎛

⎝
m∏

j=1

ϕj (xAj
)

⎞

⎠

where we recall that ε(A1, · · · , Am) is the signature of σ(A1, · · · , Am), the unique
permutation of {1, · · · , n} such that, if Aj = {aij ; 1 � i � Qj, ai1j <

ai2j for i1 < i2} for 1 � j � m then σ(aij ) = Q1 + · · · +Qj−1 + i.
As �j ∩�k = ∅ if j �= k, one has

∥∥∥∥∥∥∥∥∥∥∥∥

∑

|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

ε(A1, · · · , Am)

⎛

⎝
m∏

j=1

ϕj (xAj
)

⎞

⎠

∥∥∥∥∥∥∥∥∥∥∥∥

2

=
m∏

j=1

∥∥∥ϕj
∥∥∥

2 ∑

|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

1

= n!
∏m

j=1 Qj !
m∏

j=1

∥∥∥ϕj
∥∥∥

2
.
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Hence, by (C.1), we get

⎛

⎝
m∧

j=1

ϕj

⎞

⎠ (x) =
√∏m

j=1 Qj !
n!

∑

|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

ε(A1, · · · , Am)

⎛

⎝
m∏

j=1

ϕj (xAj
)

⎞

⎠ .

(C.2)

Appendix D The Proofs of the Particle Density Matrix
Reduction Theorems

We shall now prove Theorem 4.2 and Theorem 4.4. They will follow from direct
computations.

D.1 Proof of the One-Particle Density Matrix Reduction,
Theorem 4.2

First, by the bilinearity of formula (1.19), one has

γ
(1)
# = n

∑

Q occ.
n∈Nm

∑

Q′ occ.
n′∈Nm

a
Q
n a

Q′
n′ γ

(1)
Q,n
Q′,n′

(D.1)

where the trace class operator γ (1)
Q,n,Q′,n′ acts on L2([0, L]) and has the kernel

γ
(1)
Q,n
Q′,n′

(x, y) :=
∫

[0,L]n−1

⎡

⎣
m∧

j=1

ϕ
j
Qj ,nj

⎤

⎦ (x, z)

⎡

⎣
m∧

j=1

ϕ
j

Q′
j ,n

′
j

⎤

⎦ (y, z)dz.

Recall (C.2), that is, in the present case

⎡

⎣
m∧

j=1

ϕ
j
Qj ,nj

⎤

⎦ (z1, z2, · · · , zn)

= c(Q) ·
∑

|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

ε(A1, · · · , Am)

m∏

j=1

ϕ
j
Qj ,nj

((zl)l∈Aj
) (D.2)
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where

• ε(A1, · · · , Am) is the signature of σ(A1, · · · , Am), the unique permutation of
{1, · · · , n} such that, if Aj = {aij ; 1 � i � Qj } for 1 � j � m then σ(aij ) =
Q1 + · · · +Qj−1 + i,

• and c(Q) is such that ‖ ∧j ϕ
j
Qj ,nj

‖ = 1, i.e.

c(Q) =
√∏m

j=1 Qj !
n! . (D.3)

Thus, by (1.19), one has

γ
(1)
Q,n
Q′,n′

(x, y)

c(Q)c(Q′)
=

∑

|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

∑

|A′
j |=Q′

j , ∀1�j�m

A′
1∪···∪A′

m={1,··· ,n}
A′

j∩A′
j ′=∅ if j �=j ′

(−1)ε((Aj ))+ε((A′
j ))I ((Aj )j , (A

′
j )j )

(D.4)
where

I (A,A′) := I ((Aj )j , (A
′
j )j )

=
∫

[0,L]n−1

⎡

⎣
m∏

j=1

ϕ
j
Qj ,nj

((xl)l∈Aj
)ϕ

j

Q′
j ,n

′
j

((yl)l∈A′
j
)

⎤

⎦
x1=x
y1=y

xj=yj if j�2

dx2 · · · dxn.

(D.5)
To evaluate this last integral, we note that, for any pair of partitions (Aj )j and (A′

j )j

(as in the indices of the sum in (D.4)), if there exists j �= j ′ such that Aj ∩ A′
j ′ ∩

{2, · · · , n} �= ∅, then the integral I (A,A′) vanishes.
Now, note that, if d1(Q,Q′) > 2, then, for any pair of partitions (Aj )j and

(A′
j )j , there exists j �= j ′ such that Aj ∩ A′

j ′ ∩ {2, · · · , n} �= ∅; thus, the integral
I (A,A′) above always vanishes and, summing this, one has

γ
(1)
Q,n
Q′,n′

= 0 if d1(Q,Q′) > 2.

So we are left with the case Q = Q′ or d1(Q,Q′) = 2.
Assume first Q = Q′. Consider the sums in (D.4). If 1 ∈ Aj0 and 1 �∈ A′

j0
, then,

as ∀j , |A′
j | = |Aj |, there exists α ∈ A′

j0
= A′

j0
∩ {2, · · · , n} and j �= j0 such that

α ∈ Aj . That is, there exists j �= j ′ such that Aj ∩ A′
j ′ ∩ {2, · · · , n} �= ∅, thus, the

integral I (A,A′) vanishes. Thus, we rewrite
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γ
(1)
Q,n
Q,n′

(x, y)

c2(Q)
=

m∑

j0=1
Qj0�1

∑

1∈Aj0|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

∑

1∈A′
j0

|A′
j0
|=Qj0

A′
j=Aj if j �=j0

(−1)ε((Aj ))+ε((A′
j ))I (A,A′)

=
m∑

j0=1
Qj0�1

∑

1∈Aj0|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

I (A)

(D.6)
where, using the support and orthonormality properties of the functions (ϕ

j
q,n)1�n,

one computes

I (A):=
(∫

�
Qj0

−1

j0

ϕ
j0
Qj0 ,nj0

(x, z) ϕ
j0
Qj0 ,n

′
j0

(y, z)dz

)
m∏

j=1
j �=j0

∫

�
Qj
j

ϕ
j
Qj ,nj

(z)ϕ
j

Qj ,n
′
j

(z)dz

=
∏

j �=j0

δnj=n′j ·
(∫

�
Qj0

−1

j0

ϕ
j0
Qj0 ,nj0

(x, z)ϕ
j0
Qj0 ,n

′
j0

(y, z)dz

)

.

As

#{(Aj )j ; 1 ∈ Aj0 , ∀j, |Aj | = Qj } = (n− 1)!Qj0∏m
j=1 Qj !

by (D.3) and (D.6), one computes

γ
(1)
Q,n
Q,n′

(x, y) =
m∑

j=1
Qj�1

Qj

n

∫

�
Qj−1

j

ϕ
j
Qj ,nj

(x, z) ϕ
j

Qj ,n
′
j

(y, z)dz
∏

j �=j0

δnj=n′j

= 1

n

m∑

j=1
Qj�1

γ
(1)
Qj

nj ,n
′
j

(x, y).

We now assume that d1(Q,Q′) = 2. Thus, there exist 1 � i0 �= j0 � m such that
Qj0 � 1, Q′

i0
= Qi0 + 1, Qj0 = Q′

j0
+ 1 and Qk = Q′

k for k �∈ {i0, j0}.
Consider the sums in (D.4). If 1 �∈ Aj0 (or 1 �∈ A′

i0
), then as |A′

j0
| = Q′

j0
= Qj0 −1,

there exists α ∈ Aj0 = Aj0 ∩ {2, · · · , n} and i �= j0 such that α ∈ A′
i . That is,

there exists j �= j ′ such that Aj ∩A′
j ′ ∩ {2, · · · , n} �= ∅, thus, the integral I (A,A′)

vanishes. The reasoning is the same if 1 �∈ A′
i0

. Moreover, if 1 ∈ Aj0 and 1 ∈ A′
i0

,



Interacting Electrons in a Random Medium 231

then, as in the derivation of (D.6), we see that I (A,A′) = 0 except if Aj = A′
j for

all j �∈ {i0, j0}. Therefore, if d1(Q,Q′) = 2, we rewrite

γ
(1)
Q,n
Q′,n′

(x, y)

c2(Q)
=

m∑

j0,i0=1
i0 �=j0
Qj0�1

∑

1∈Aj0|Al |=Ql, ∀1�j�m
A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

∑

A′
i0
={1}∪Ai0

A′
j0
=Aj0\{1}

A′
j=Aj if j �∈{i0,j0}

(−1)ε((Aj ))+ε((A′
j ))I (A,A′).

(D.7)
For such (Aj )j and (A′

j )j , one has (−1)ε((Aj ))+ε((A′
j )) = 1 and we compute

I (A,A′) =
∫

�
Qj0

−1

j0

ϕ
j0
Qj0 ,nj0

(x, z)ϕ
j0
Qj0−1,n′j0

(z)dz

∫

�
Qi0
i0

ϕ
i0
Qi0 ,ni0

(z)ϕ
i0
Qi0+1,n′i0

(y, z)dz
∏

j �∈{i0,j0}
δnj=n′j

(D.8)
with the convention described in Remark 4.3.

The number of partitions coming up in (D.7) is given by

∑

1∈Aj0|Al |=Ql, ∀1�j�m
A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

∑

A′
i0
={1}∪Ai0

A′
j0
=Aj0\{1}

A′
j=Aj if j �∈{i0,j0}

1 = (n−Qj0 −Qi0 − 1)!Qi0 !Qj0 !
Q1! · · ·Qm! .

Plugging this and (D.8) into (D.7), we obtain (4.5). This completes the proof of
Theorem 4.2.

D.2 Proof of the Two-Particle Density Matrix Reduction,
Theorem 4.4

Theorem 4.4 follows from a direct computation that we now perform. First, by the
bilinearity of formula (1.20), one has

γ
(2)
# = n(n− 1)

2

∑

Q occ.
n∈Nm

∑

Q′ occ.
n′∈Nm

a
Q
n a

Q′
n′ γ

(2)
Q,n
Q′,n′

(D.9)

where the trace class operator γ
(2)
Q,n
Q′,n′

acts on L2([0, L])∧L2([0, L]) and has the

kernel
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γ
(2)
Q,n
Q′,n′

(x, x′, y, y′) :=
∫

[0,L]n−2

⎡

⎣
m∧

j=1

ϕ
j
Qj ,nj

⎤

⎦ (x, x′, z3, · · · , zn)

⎡

⎣
m∧

j=1

ϕ
j

Q′
j ,n

′
j

⎤

⎦ (y, y′, z3, · · · , zn)dz3 · · · dzn. (D.10)

By (D.2), one has

γ
(2)
Q,n
Q′,n′

(x, x′, y, y′)

c(Q)c(Q′) =
∑

|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

∑

|A′
j |=Q′

j , ∀1�j�m

A′
1∪···∪A′

m={1,··· ,n}
A′

j∩A′
j ′=∅ if j �=j ′

(−1)ε((Aj ))+ε((A′
j ))I (A,A′)

(D.11)
where

I (A,A′):=
∫

[0,L]n−2

⎡

⎣
m∏

j=1

ϕ
j
Qj ,nj

((xl)l∈Aj
)ϕ

j

Q′
j ,n

′
j

((yl)l∈A′
j
)

⎤

⎦
x1=x, x2=x′
y1=y, y2=y′
xj=yj if j�3

dx3 · · · dxn.

(D.12)
To evaluate this last integral, we note that, for any pair of partitions (Aj )j and (A′

j )j

(as in the indices of the above sum), if there exists j �= j ′ such that Aj ∩ A′
j ′ ∩

{3, · · · , n} �= ∅, then the integral I (A,A′) vanishes.
Now, note that, if d1(Q,Q′) > 4, then, for any pair of partitions (Aj )j and

(A′
j )j , there exists j �= j ′ such that Aj ∩ A′

j ′ ∩ {3, · · · , n} �= ∅; thus, the integral
I (A,A′) above always vanishes and, summing this, one has

γ
(2)
Q,n
Q′,n′

= 0 if d1(Q,Q′) > 4.

So we are left with the cases Q = Q′, d1(Q,Q′) = 2 or d1(Q,Q′) = 4.
Assume first Q = Q′. Consider the sums in (D.11). If {1, 2} ⊂ Ai0 ∪ Aj0 and

{1, 2} �⊂ A′
i0
∪A′

j0
then, as ∀j , |A′

j | = |Aj |, there exists α ∈ (A′
i0
∪A′

j0
)∩{3, · · · , n}

and j �∈ {i0, j0} such that α ∈ Aj . That is, there exists j �= j ′ such that Aj ∩ A′
j ′ ∩

{3, · · · , n} �= ∅, thus, the integral I (A,A′) vanishes. Moreover, if {1, 2} ⊂ Aj0 and
{1, 2} �⊂ A′

j0
, then there exists α ∈ A′

j0
∩ {3, · · · , n} and j �= j0 such that α ∈ Aj ,

thus, the integral I (A,A′) vanishes. Thus, we rewrite
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γ
(2)
Q,n
Q,n′

(x, x′, y, y′)

c2(Q)
=

m∑

i0,j0=1

∑

{1,2}⊂Ai0∪Aj0|Al |=Ql, ∀1�j�m
A1∪···∪Am={1,··· ,n}
Aj∩Aj ′ =∅ if j �=j ′

∑

{1,2}⊂A′
i0
∪A′

j0
|A′

i0
|=Qi0

|A′
j0
|=Qj0

A′
j=Aj if j �∈{i0,j0}

(−1)ε((Aj ))+ε((A′
j ))I (A,A′)

=
m∑

j0=1
Qj0�2

∑

{1,2}⊂Aj0|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′ =∅ if j �=j ′

I (A)+
∑

i0 �=j0
Qi0�1
Qj0�1

∑

1∈Ai0 , 2∈Aj0|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′ =∅ if j �=j ′

J (A)

(D.13)
where

J (A) :=
∏

j �∈{i0,j0}
δnj=n′j

(∫

�
Qi0

−1

i0

ϕ
i0
Qi0 ,ni0

(x, z)ϕ
i0
Qi0 ,n

′
i0

(y, z)dz

·
∫

�
Qj0

−1

j0

ϕ
j0
Qj0 ,nj0

(x′, z′)ϕj0
Qj0 ,n

′
j0

(y′, z′)dz′

−
∫

�
Qj0

−1

j0

ϕ
j0
Qj0 ,nj0

(x, z)ϕ
j0
Qj0 ,n

′
j0

(y′, z)dz

·
∫

�
Qi0

−1

i0

ϕ
i0
Qi0 ,ni0

(x′, z′)ϕi0
Qi0 ,n

′
i0

(y, z′)dz′

−
∫

�
Qj0

−1

j0

ϕ
j0
Qj0 ,nj0

(x′, z)ϕj0
Qj0 ,n

′
j0

(y, z)dz

·
∫

�
Qi0

−1

i0

ϕ
i0
Qi0 ,ni0

(x, z′)ϕi0
Qi0 ,n

′
i0

(y′, z′)dz′

+
∫

�
Qj0

−1

j0

ϕ
j0
Qj0 ,nj0

(x, z)ϕ
j0
Qj0 ,n

′
j0

(y, z)dz

·
∫

�
Qi0

−1

i0

ϕ
i0
Qi0 ,ni0

(x′, z′)ϕi0
Qi0 ,n

′
i0

(y′, z′)dz′
)

and

I (A) :=
∏

j �=j0

δnj=n′j

∫

�
Qj0

−2

j0

ϕ
j0
Qj0 ,nj0

(x, x′, z)ϕj0
Qj0 ,n

′
j0

(y, y′, z)dz.
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As

#{(Aj )j ; {1, 2} ⊂ Aj0, ∀j, |Aj | = Qj } = (n− 2)!Qj0(Qj0 − 1)
∏m

j=1 Qj !

and

#{(Aj )j ; 1 ∈ Ai0 , 2 ∈ Aj0, ∀j, |Aj | = Qj } = (n− 2)!Qi0Qj0∏m
j=1 Qj ! if i0 �= j0

by (D.3) and (D.13), one obtains

∑

Q occ.
n∈Nm

n′∈Nm

a
Q
n a

Q

n′ γ
(2)
Q,n
Q,n′

= γ
(2),d,d
# + γ

(2),d,o
# (D.14)

where γ
(2),d,d
# and γ

(2),d,o
# are defined in Theorem 4.4.

Let us now assume d1(Q,Q′) = 2. Thus, there exists 1 � i0 �= j0 � m such that
Qj0 � 1, Q′

i0
= Qi0 + 1, Qj0 = Q′

j0
+ 1 and Qk = Q′

k for k �∈ {i0, j0}.
Consider now the sums in (D.11). If {1, 2} ∩ Aj0 = ∅, then as |A′

j0
| = Q′

j0
=

Qj0 − 1, there exists α ∈ Aj0 = Aj0 ∩ {3, · · · , n} and i �= j0 such that α ∈ A′
i .

Thus, the integral I (A,A′) vanishes. If Aj0 = {1} ∪ B (resp. Aj0 = {2} ∪ B)
with B ⊂ {3, · · · , n}, either A′

j0
= B (and {1, 2} ⊂ A′

i0
) or the integral I (A,A′)

vanishes. Finally, if Aj0 = {1, 2} ∪ B with B ⊂ {3, · · · , n}, then A′
j0

= {1} ∪ B or
A′

j0
= {2} ∪ B or I (A,A′) = 0. The same holds true for Aj0 replaced with A′

i0
.

Therefore, using the definition of ε((Aj )), if d1(Q,Q′) = 2, we rewrite

γ
(2)
Q,n
Q′,n′

(x, y)

c2(Q)
=

∑

i0 �=j0
Qj0�2

+1(i0, j0)−+2(i0, j0)+
∑

i0 �=j0
Qi0�1

+3(i0, j0)−+4(i0, j0)

(D.15)
where

+1(i0, j0) :=
∑

{1,2}⊂Aj0|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

∑

A′
i0
={1}∪Ai0

A′
j0
=Aj0\{1}

A′
j=Aj if j �∈{i0,j0}

I (A,A′), (D.16)
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+2(i0, j0) :=
∑

{1,2}⊂Aj0|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

∑

A′
i0
={2}∪Ai0

A′
j0
=Aj0\{2}

A′
j=Aj if j �∈{i0,j0}

I (A,A′), (D.17)

+3(i0, j0) :=
∑

{1,2}⊂A′
i0|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

∑

Ai0=A′
i0
\{1}

Aj0=A′
j0
∪{1}

A′
j=Aj if j �∈{i0,j0}

I (A,A′), (D.18)

+4(i0, j0) :=
∑

{1,2}⊂A′
i0|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

∑

Ai0=A′
i0
\{2}

Aj0=A′
j0
∪{2}

A′
j=Aj if j �∈{i0,j0}

I (A,A′) (D.19)

and

• for the summands in +1(i0, j0):

I (A,A′) =
∫

�
Qj0

−2

j0

ϕ
j0
Qj0 ,nj0

(x, x′, z)ϕj0
Qj0−1,n′j0

(y′, z)dz

∫

�
Qi0
i0

ϕ
i0
Qi0 ,ni0

(z′)ϕi0
Qi0+1,n′i0

(y, z′)dz′
∏

j �∈{i0,j0}
δnj=n′j

• for the summands in +2(i0, j0):

I (A,A′) =
∫

�
Qj0

−2

j0

ϕ
j0
Qj0 ,nj0

(x, x′, z)ϕj0
Qj0−1,n′j0

(y, z)dz

∫

�
Qi0
i0

ϕ
i0
Qi0 ,ni0

(z′)ϕi0
Qi0+1,n′i0

(y′, z′)dz′
∏

j �∈{i0,j0}
δnj=n′j

• for the summands in +3(i0, j0):

I (A,A′) =
∫

�
Qj0

−1

j0

ϕ
j0
Qj0 ,nj0

(x′, z)ϕj0
Qj0−1,n′j0

(z)dz

∫

�
Qi0

−1

i0

ϕ
i0
Qi0 ,ni0

(x, z′)ϕi0
Qi0+1,n′i0

(y, y′, z′)dz′
∏

j �∈{i0,j0}
δnj=n′j
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• for the summands in +4(i0, j0):

I (A,A′) =
∫

�
Qj0

−1

j0

ϕ
j0
Qj0 ,nj0

(x, z)ϕ
j0
Qj0−1,n′j0

(z)dz

∫

�
Qi0

−1

i0

ϕ
i0
Qi0 ,ni0

(x′, z′)ϕi0
Qi0+1,n′i0

(y, y′, z′)dz′
∏

j �∈{i0,j0}
δnj=n′j

with the convention described in Remark 4.1.
The number of partitions coming up in (D.16), (D.17), (D.18), and (D.19) is the

same: indeed, it suffices to invert the roles of 1 and 2 and i0 and j0. We compute

∑

{1,2}⊂Aj0|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

∑

A′
i0
={1}∪Ai0

A′
j0
=Aj0\{1}

A′
j=Aj if j �∈{i0,j0}

1 = (n−Qj0 −Qi0 − 2)!Qi0 !Qj0 !
Q1! · · ·Qm! .

Hence, we get that

n(n− 1)

2

∑

Q, Q′ occ.
d1(Q,Q′)=2
n, n′∈Nm

a
Q
n a

Q′
n′ γ

(2)
Q,n
Q′,n′

=
∑

i �=j

∑

ñ∈Nm−2

∑

Q occ.
Qj�1

Q′ : Q′
k=Qk if k �∈{i,j}
Q′

i=Qi+1
Q′

j=Qj−1

∑

nj ,n
′
j�1

ni ,n
′
i�1

a
Q

ñi,j
a
Q′
ñ′i,j

γ
(2),2
Qi,Qj
ni ,nj

n′i ,n′j

(D.20)
where γ

(2),2
Qi,Qj
ni ,nj

n′i ,n′j

is defined in (4.19).

Let us now assume d1(Q,Q′) = 4. Thus,

(a) either there exist 1 � i0 �= j0 � m such that Qj0 � 2, Q′
i0

= Qi0 + 2,
Qj0 = Q′

j0
+ 2 and Qk = Q′

k for k �∈ {i0, j0}.
In this case, either Aj0 = {1, 2}∪A′

j0
and A′

i0
= {1, 2}∪Ai0 with Ai0 , A

′
j0
,⊂

{3, · · · , n} or I (A,A′) = 0 vanishes. Thus,

γ
(2)
Q,n
Q′,n′

(x, y)

c2(Q)
=

∑

{1,2}⊂Aj0|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

∑

A′
i0
={1,2}∪Ai0

A′
j0
=Aj0\{1,2}

A′
j=Aj if j �∈{i0,j0}

(−1)ε((Aj ))+ε((A′
j ))I (A,A′),

(D.21)
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and

I (A,A′) =
∫

�
Qj0

−2

j0

ϕ
j0
Qj0 ,nj0

(x, x′, z)ϕj0
Qj0−2,n′j0

(z)dz

∫

�
Qi0
i0

ϕ
i0
Qi0 ,ni0

(z′)ϕi0
Qi0+2,n′i0

(y, y′, z′)dz′
∏

j �∈{i0,j0}
δnj=n′j .

Hence, taking (4.20) into account, we get

n(n− 1)

2

∑

Q, Q′ occ.
∃i �=j, Qj�2

Q′: Q′
k=Qk if k �∈{i,j}
Q′

i=Qi+2
Q′

j=Qj−2

∑

n∈Nm

n′∈Nm

a
Q
n a

Q′
n′ γ

(2)
Q,n
Q′,n′

=
∑

i �=j

∑

ñ∈Nm−2

∑

Q occ.
Qj�2

Q′: Q′
k=Qk if k �∈{i,j}
Q′

i=Qi+2
Q′

j=Qj−2

C2(Q, i, j)
∑

nj ,n
′
j�1

ni ,n
′
i�1

a
Q

ñi,j
a
Q′
ñ′i,j

γ
(2),4,2
Qi,Qj
ni ,nj

n′i ,n′j

(D.22)

as

∑

{1,2}⊂Aj

|Al |=Ql, ∀1�l�m
A1∪···∪Am={1,··· ,n}

Al∩Al′=∅ if l �=l′

∑

A′
i={1,2}∪Ai

A′
j=Aj \{1,2}

A′
l=Al if j �∈{i,j}

1 = (n−Qj −Qi − 2)!Qi !Qj !
Q1! · · ·Qm! = 2C2(Q, i, j)

n(n− 1) c(Q)2
.

(b) or there exist 1 � i0, j0, k0 � m distinct such that Qj0 � 2, Q′
j0

= Qj0 − 2,
Qi0 = Q′

i0
+ 1, Qk0 = Q′

k0
+ 1, and Qk = Q′

k for k �∈ {i0, j0, k0}.
In this case, either Aj0 = {1, 2}∪A′

j0
and ((A′

i0
= {1}∪Ai0 and A′

k0
= {2}∪Ak0 )

or (A′
i0
= {2} ∪Ai0 and A′

k0
= {1} ∪Ak0 ) ) with Aj0 , A

′
i0
, A′

k0
⊂ {3, · · · , n} or

I (A,A′) = 0 vanishes. Thus,
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γ
(2)
Q,n
Q′,n′

(x, y)

c2(Q)

=
∑

{1,2}⊂Aj0|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∑

A′
i0
={1}∪Ai0

A′
k0
={2}∪Ak0

A′
j0
=Aj0\{1,2}

A′
j=Aj if j �∈{i0,j0,k0}

I (A,A′)−
∑

A′
i0
={2}∪Ai0

A′
k0
={1}∪Ak0

A′
j0
=Aj0\{1,2}

A′
j=Aj if j �∈{i0,j0,k0}

I (A,A′)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(D.23)

and, if A′
i0
= {1} ∪ Ai0 and A′

k0
= {2} ∪ Ak0 , one has

I (A,A′) =
∫

�
Qj0

−2

j0

ϕ
j0
Qj0 ,nj0

(x, x′, z)ϕj0
Qj0−2,n′j0

(z)dz

∫

�
Qi0
i0

ϕ
i0
Qi0 ,ni0

(z′)ϕi0
Qi0+1,n′i0

(y, z′)dz′

∫

�
Qk0
k0

ϕ
i0
Qk0 ,nk0

(z′′)ϕk0
Qk0+1,n′k0

(y′, z′′)dz′′
∏

j �∈{i0,j0,k0}
δnj=n′j

and, if A′
i0
= {2} ∪ Ai0 and A′

k0
= {1} ∪ Ak0 , one has

I (A,A′) =
∫

�
Qj0

−2

j0

ϕ
j0
Qj0 ,nj0

(x, x′, z)ϕj0
Qj0−2,n′j0

(z)dz

∫

�
Qi0
i0

ϕ
i0
Qi0 ,ni0

(z′)ϕi0
Qi0+1,n′i0

(y′, z′)dz′

∫

�
Qk0
k0

ϕ
i0
Qk0 ,nk0

(z′′)ϕk0
Qk0+1,n′k0

(y, z′′)dz′′
∏

j �∈{i0,j0,k0}
δnj=n′j .

For i0, j0, k0 distinct, one has
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∑

{1,2}⊂Aj0|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

∑

A′
i0
={1}∪Ai0

A′
k0
={2}∪Ak0

A′
j0
=Aj0\{1,2}

A′
j=Aj if j �∈{i0,j0,k0}

1 = (n−Qj0 −Qi0 −Qk0 − 2)!Qi0 !Qj0 !Qk0 !
Q1! · · ·Qm!

= 2C3(Q, i0, j0, k0)

n(n− 1) c(Q)2 .

Inverting the roles of 1 and 2 we see that the number of partitions coming up in
the second sum in (D.23) is the same. Thus, taking (4.20) into account, we get

n(n− 1)

2

∑

Q, Q′ occ.
∃i,j,k distinct

Qj�2
Q′: Q′

l=Ql if l �∈{i,j,k}
Q′

j=Qj−2

Q′
i=Qi+1, Q′

k=Qk+1

∑

n∈Nm

n′∈Nm

a
Q
n
a
Q′
n′ γ

(2)
Q,n
Q′,n′

=
∑

i,j,k
distinct

∑

ñ∈Nm−3

∑

Q occ.
Qj�2

Q′: Q′
l=Ql if l �∈{i,j,k}
Q′

j=Qj−2

Q′
i=Qi+1, Q′

k=Qk+1

C3(Q, i, j, k)
∑

ni ,nj ,nk�1
n′i ,n′j ,n′k�1

a
Q
ñi,j,k

a
Q′
ñ′i,j,k

γ
(2),4,3
Qi,Qj ,Qk
ni ,nj ,nk

n′i ,n′j ,n′k

.

(D.24)

(c) or there exist 1 � i0, j0, k0 � m distinct such that Qi0 � 1, Qk0 � 1, Q′
j0

=
Qj0 + 2, Qi0 = Q′

i0
− 1, Qk0 = Q′

k0
− 1, and Qk = Q′

k for k �∈ {i0, j0, k0}.
We see that we are back to case (b) if we invert the roles of Q and Q′. Thus,

we get

n(n− 1)

2

∑

Q, Q′ occ.
∃i,j,k distinct
Qi�1, Qk�1

Q′: Q′
l=Ql if l �∈{i,j,k}
Q′

j=Qj+2

Q′
i=Qi−1, Q′

k=Qk−1

∑

n∈Nm

n′∈Nm

a
Q
n
a
Q′
n′ γ

(2)
Q,n
Q′,n′

=
∑

i,j,k
distinct

∑

ñ∈Nm−3

∑

Q occ.
Qi�1, Qk�1

Q′: Q′
l=Ql if l �∈{i,j,k}
Q′

j=Qj+2

Q′
i=Qi−1, Q′

k=Qk−1

C3(Q, i, j, k)
∑

ni ,nj ,nk�1
n′i ,n′j ,n′k�1

a
Q
ñi,j,k

a
Q′
ñ′i,j,k

γ
(2),4,3′
Qi,Qj ,Qk
ni ,nj ,nk

n′i ,n′j ,n′k

.

(D.25)
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(d) or there exist 1 � i0, j0, k0, l0 � m distinct such that Qj0 � 1, Ql0 � 1,
Q′

i0
= Qi0 − 1, Qj0 = Q′

j0
− 1, Q′

k0
= Qk0 + 1, Ql0 = Q′

l0
+ 1 and Qk = Q′

k

for k �∈ {i0, j0, k0, l0}.
Then, either I (A,A′) = 0 or

(i) either Ai0 = {1} ∪ A′
i0

and Aj0 = {2} ∪ A′
j0

and A′
i0
, A′

j0
⊂ {3, · · · , n},

(ii) or Ai0 = {2} ∪ A′
i0

and Aj0 = {1} ∪ A′
j0

and A′
i0
, A′

j0
⊂ {3, · · · , n}.

Moreover, in each of the cases (i) and (ii), either I (A,A′) = 0 or

(i) either A′
k0

= {1} ∪ Ak0 and A′
l0
= {2} ∪ Al0 and Ak0 , Al0 ⊂ {3, · · · , n},

(ii) or A′
k0

= {2} ∪ Ak0 and A′
l0
= {1} ∪ Al0 and Ak0 , Al0 ⊂ {3, · · · , n}.

In the 4 cases when I (A,A′) does not vanish, one computes

• I (A,A′) = α(x, x′, y, y′) in case (i.i),
• I (A,A′) = α(x′, x, y, y′) in case (ii.i),
• I (A,A′) = α(x, x′, y, y′) in case (i.ii),
• I (A,A′) = α(x′, x, y′, y) in case (ii.ii),

where

α(x, x′, y, y′) :=
∫

�
Qi−1
i

ϕi
Qi ,ni

(x, z)ϕi
Qi−1,n′

i

(z)dz

∫

�
Qj−1
j

ϕ
j
Qj ,nj

(x′, z)ϕj

Qj−1,n′
j

(z)dz

×
∫

�
Qk
k

ϕk
Qk,nk

(z)ϕk
Qk+1,n′

k

(y, z)dz

∫

�
Ql
l

ϕl
Ql ,nl

(z)ϕl
Ql+1,n′

l

(y′, z)dz.

Hence, if d1(Q,Q′) = 4, we obtain

γ
(2)
Q,n

Q′,n′
(x, y)

c2(Q)

=
∑

1∈Ai0
, 2∈Aj0|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∑

A′
k0
={1}∪Ak0

, A′
l0
={2}∪Al0

A′
i0
=Ai0

\{1}, A′
j0
=Aj0

\{2}
A′
j
=Aj if j �∈{i0,j0,k0,l0}

I (A,A′)−
∑

A′
k0
={2}∪Ak0

, A′
l0
={1}∪Al0

A′
i0
=Ai0

\{1}, A′
j0
=Aj0

\{2}
A′
j
=Aj if j �∈{i0,j0,k0,l0}

I (A,A′)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

−
∑

2∈Ai0
, 1∈Aj0|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∑

A′
k0
={1}∪Ak0

, A′
l0
={2}∪Al0

A′
i0
=Ai0

\{2}, A′
j0
=Aj0

\{1}
A′
j
=Aj if j �∈{i0,j0,k0,l0}

I (A,A′)−
∑

A′
k0
={2}∪Ak0

, A′
l0
={1}∪Al0

A′
i0
=Ai0

\{2}, A′
j0
=Aj0

\{1}
A′
j
=Aj if j �∈{i0,j0,k0,l0}

I (A,A′)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(D.26)
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For i0, j0, k0, l0 distinct, the number of partitions coming up in the first sum
in (D.26) is given by

∑

1∈Ai0 , 2∈Aj0|Aj |=Qj , ∀1�j�m

A1∪···∪Am={1,··· ,n}
Aj∩Aj ′=∅ if j �=j ′

∑

A′
k0
={1}∪Ak0 , A′

l0
={2}∪Al0

A′
i0
=Ai0\{1}, A′

j0
=Aj0\{2}

A′
j=Aj if j �∈{i0,j0,k0,l0}

1

= (n−Qj0 −Qi0 −Qk0 −Ql0 − 2)!Qi0 !Qj0 !Qk0 !Ql0 !
Q1! · · ·Qm!

= 2C4(Q, i0, j0, k0, l0)

n(n− 1) c(Q)2 .

Inverting the roles of i0, j0, k0, l0, we see that the number of partitions involved
is the same in the three remaining sums of (D.26).

Thus, taking (4.20) into account, we get

n(n− 1)

2

∑

Q, Q′ occ.
∃i,j,k,l distinct
Qi�1, Qj�1

Q′: Q′
p=Qp if p �∈{i,j,k,l}

Q′
i=Qi−1, Q′

j=Qj−1

Q′
k=Qk+1, Q′

l=Ql+1

∑

n∈Nm

n′∈Nm

a
Q
n a

Q′
n′ γ

(2)
Q,n
Q′,n′

=
∑

i,j,k,l
distinct

∑

ñ∈Nm−4

∑

Q occ.
Qi�1, Qj�1

Q′: Q′
p=Qp if p �∈{i,j,k,l}

Q′
i=Qi−1, Q′

j=Qj−1

Q′
k=Qk+1, Q′

l=Ql+1

C4(Q, i, j, k)
∑

ni ,nj ,nk,nl�1
n′i ,n′j ,n′k,n′l�1

a
Q

ñi,j,k,l
a
Q′
ñ′i,j,k,l

γ
(2),4,4
Qi,Qj ,Qk,Ql
ni ,nj ,nk,nl

n′i ,n′j ,n′k,n′l

.

(D.27)

Plugging this (D.22) and (D.20) into (D.9), we obtain (4.9). This completes the
proof of Theorem 4.4.
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Entropies for Negatively Curved
Manifolds
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This is a survey of several notions of entropy related to a compact manifold of
negative curvature and of some relations between them. Namely, let (M, g) be a C∞
compact boundaryless Riemannian connected manifold with negative curvature.
After recalling the basic definitions, we will define and state the first properties
of

(1) the volume entropy V ,
(2) the dynamical entropies of the geodesic flow, in particular the entropy H of the

Liouville measure and the topological entropy (which coincides with V ),
(3) the stochastic entropy hρ of a family of (biased) diffusions related to the stable

foliation of the geodesic flow,
(4) the relative dynamical entropy of natural stochastic flows representing the

(biased) diffusions.

Most of the material in this survey are not new, some are classical, and we
apologize in advance for any inaccuracy in the attributions. New observations are
Theorems 2.5 and 4.9, but the main goal of this survey is to present together related
notions that are spread out in the literature. In particular, we are interested in the
different so-called rigidity results and problems that (aim to) characterize locally
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symmetric spaces among negatively curved manifolds by equalities in general
entropy inequalities.

These notes grew out from lectures delivered by the second author in the
workshop Probabilistic methods in negative curvature in ICTS, Bengaluru, India,
and we thank Riddhipratim Basu, Anish Ghosh, and Mahan Mj for giving us this
opportunity. We also thank Nalini Anantharaman, Ashkan Nikeghbali for organizing
the 2nd Strasbourg/Zurich Meeting on Frontiers in Analysis and Probability and
Michail Rassias for allowing us to publish these notes that have only a loose
connection with the talk of the first author there.

1 Local Symmetry and Volume Growth

Let (M, g) be a C∞ compact boundaryless connected d-dimensional Riemannian
manifold and for u, v vector fields on M we denote ∇uv the covariant derivative of
v in the direction of u. Given u, v ∈ TxM , the curvature tensor R associates with a
vector w ∈ TxM the vector R(u, v)w given by

R(u, v)w = ∇u∇vw − ∇v∇uw −∇[u,v]w.

The space (M, g) is called locally symmetric if ∇R = 0.
Consider the case (M, g) has negative sectional curvature; i.e., for all non-

colinear u, v ∈ TxM, x ∈ M̃ , the sectional curvature K(u, v) := < R(u, v)v, u >

|u ∧ v|2
is negative. Simply connected locally symmetric spaces of negative sectional
curvature are non-compact. They have been classified and are one of the hyperbolic
spaces H

n
R
,Hn

C
,Hn

H
,H2

O
, respectively of dimension respectively n, 2n, 4n, 16.

Hyperbolic spaces are obtained as quotients of semisimple Lie groups of real rank
one (respectively SO(n, 1), SU(n, 1), Sp(n, 1), F4(−20)), endowed with the metrics
coming from the Killing forms, by maximal compact subgroups. By general results
of Borel [6] and Selberg [51], these spaces admit compact boundaryless quotient
manifolds and those locally symmetric (M, g0) are the basic examples of our objects
of study. Clearly, C2 small C∞ perturbations of g0 on the same space M yield
other examples of compact negatively curved manifolds. Different examples of non-
locally symmetric, compact, negatively curved manifolds have been constructed
(see [16, 18, 22, 45]). They are supposed to be abundant, even if constructing explicit
ones is often delicate.

It is natural to ask if we can recognize locally symmetric spaces through global
properties or quantities. One supportive example is the volume entropy. Let M̃ be
the universal cover space of M such that M = M̃/�, where � := �1(M) is the
fundamental group of M , and endow M̃ with metric g̃, which is the �-invariant
extension of g. The volumes on (M, g) and (M̃, g̃) are denoted Volg and Volg̃ ,
respectively. (We will fix a connected fundamental domain M0 for the action of
� on M̃ . The restriction of Volg̃ on M0 is also denoted Volg .) For x ∈ M̃ , let
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BM̃(x, r), r > 0, denote the ball centered at x with radius r . The following limit
exists (independent of x ∈ M̃) and defines the volume entropy (Manning, [43]):

V (g) := lim
r→∞

1

r
log Volg̃BM̃(x, r).

Since (M, g) is negatively curved, by Bishop comparison theorem, V (g) > 0. The
following rigidity result is shown by Besson–Courtois–Gallot [5]:

Theorem 1.1 ([5]) Let (M, g0) be closed locally symmetric space of negative
curvature, and consider another metric g on M with negative curvature and such
that Volg(M) = Volg0(M). Then,

V (g) ≥ V (g0).

If d = dim(M) > 2, one has equality only if (M, g) is isometric to (M, g0).

If d = 2, equality holds if, and only if, the curvature is constant (Katok, [30]).
In the case d > 2, Katok [30] proved Theorem 1.1 under the hypothesis that g is
conformally equivalent to g0.

Remark 1.2 The theorem holds even if g′ is a metric on another manifold M ′,
homotopically equivalent to M.

The locally symmetric property can also be interpreted as geodesic symmetry. A
geodesic in M is a curve t �→ γ (t), t ∈ R, such that, if γ̇ (t) := d

dt
γ (s)

∣∣
s=t

, satisfies
∇γ̇ (t)γ̇ (t) = 0 for all t . For all v ∈ TM, there is a unique geodesic γv such that
γ̇v(0) = v. The exponential map expx : TxM → M is given by expx v = γv(1). By
compactness, there exists ι > 0 such that, for all x ∈ M, expx is a diffeomorphism
between the ball of radius ι in (TxM, gx) and the ball of radius ι about x in M .
The Cartan–Ambrose–Hicks Theorem implies that the space is locally symmetric
if, and only if, for any x ∈ M , the geodesic symmetry about x defined by y �→
expx(− exp−1

x y) is a local isometry.
One natural dynamics related to geodesics is the geodesic flow. Let SM :=

{v, v ∈ TM : ‖v‖ = 1} be the unit tangent bundle. The geodesic flow ϕt on
SM is such that ϕt (v) = γ̇v(t) for t ∈ R. Denote X(v) ∈ TvSM the vector field
on SM generating the geodesic flow. The derivative Dvϕt is described using Jacobi
fields. Let s �→ v(s) be a curve in SM with v(0) = v, v̇(0) = w ∈ TvSM. Then,
s �→ γv(s)(t) is a curve with tangent vector J (t) at γv(t). J (t) satisfies the Jacobi
equation:

∇γ̇∇γ̇ J (t)+ R(J (t), γ̇ (t))γ̇ (t) = 0. (1.1)

Proof By definition,

R(J (t), γ̇ (t))γ̇ (t) = ∇J (t)∇γ̇ (t)γ̇ (t)−∇γ̇ (t)∇J (t)γ̇ (t)−∇[J (t),γ̇ (t)]γ̇ (t).
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We have ∇γ̇ (t)γ̇ (t) = 0 by definition, [J (t), γ̇ (t)] = [ ∂
∂s

, ∂
∂t
] = 0 and so

∇J (t)γ̇ (t) = ∇γ̇ (t)J (t) (we use the fact that ∇uv − ∇vu = [u, v]). $%
We will consider C∞ compact boundaryless connected Riemannian manifolds

with negative sectional curvature. It follows from (1.1) that t �→ ‖J (t)‖2 is a strictly
convex function (by a direct computation). In particular, expx is a diffeomorphism
from TxM to the universal cover M̃ . Two geodesic rays γ1, γ2 in M̃ are said to be
equivalent if supt≥0 d(γ1(t), γ2(t)) < ∞. The space of equivalence classes ∂M̃ :=
{[γv(t), t ≥ 0], v ∈ TM} is the geometric boundary at infinity. For x ∈ M̃, πx :
SxM̃ → ∂M̃, πx(v) = [γv(t), t ≥ 0] is one-to-one (πx is injective by convexity (of
t �→ d(γv(t), γw(t)) for w ∈ SxM̃ with w �= v) and for any geodesic ray γ , any
t > 0, one can find vt ∈ SxM̃ such that γ (t) ∈ γvt (s), s ≥ 0; any limit point v

of vt , t → +∞, is such that γv is equivalent to γ ). Thus, the unit tangent bundle
SM̃ is identified with M̃ × ∂M̃. For any two points ξ, η in ∂M̃ , there is a unique
geodesic γη,ξ (up to time translation) such that γη,ξ (+∞) := limt→+∞ γη,ξ (t) = ξ

and γη,ξ (−∞) := limt→−∞ γη,ξ (t) = η. The topology on M̃ × ∂M̃ is such that
two pairs (x, ξ) and (y, η) are close if x and y are close and the distance from x to
the geodesic γη,ξ is large. The group � acts discretely and cocompactly on M̃ . The
action of � extends continuously to ∂M̃ and the diagonal action of � on M̃ × ∂M̃

is again discrete and cocompact. The quotient (M̃ × ∂M̃)/� = SM̃/� is identified
with SM .

We continue to use ϕt to denote the geodesic flow on SM̃ . It has the Anosov
property [3]: each ϕt , t �= 0, has no fixed point and there is a continuous
decomposition {TvSM̃ = Ess(v) ⊕ X(v) ⊕ Esu(v), v ∈ SM̃} with X(v) being the
geodesic spray tangent to the flow direction and constants C, C > 0, λ, λ ∈ (0, 1),
such that, for t > 0,

‖Dvϕtws‖ ≤ Cλt‖ws‖, ∀ws ∈ Ess(v), ‖Dvϕ−twu‖ ≤ Cλt‖wu‖, ∀wu ∈ Esu(v).

For v = (x, ξ) ∈ SM̃ , the stable manifold at v of the geodesic flow,

W̃ s(v) := {
w : sup

t≥0
d(ϕtw, ϕtv) < +∞}

is tangent to Ess(v)⊕ X(v). The W̃ s(v) can be identified with M̃ × {ξ} and hence
is endowed naturally with the metric g̃. The quotient (M̃ × {ξ})/� is the stable
manifold Ws(v). As ξ varies, they form a Hölder continuous lamination Ws of SM
into C∞ manifolds of dimension d which is called the stable foliation. Therefore,
the metric on each individual stable manifold comes from the local identification
with M̃. The strong stable manifold at v,

W̃ ss(v) := {
(y, ξ) : lim

t→+∞ d(γx,ξ (t), γy,ξ (t)) = 0
}

has tangent Ess(v). Let v be the projection of v on SM; then, W̃ ss(v) projects onto
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Wss(v) := {
w ∈ SM : lim

t→+∞ d(γw(t), γv(t)) = 0
}
.

The collection of {Wss(v), v ∈ SM} forms a Hölder continuous lamination Wss

of SM into C∞ manifolds of dimension d − 1 which is called the strong stable
foliation.

For v = (x, ξ) ∈ SM̃ , define the Busemann function

bx,ξ (y) = bx,ξ (y, ξ) := lim
z→ξ

(d(y, z)− d(x, z)) , ∀y ∈ M̃.

The level set {(y, ξ) : bx,ξ (y, ξ) = 0} coincides with W̃ ss(x, ξ) and the set of its
foot points is the horosphere of (x, ξ). Denote Divs ,∇s the divergence and gradient
along W̃ s (and Ws) induced by the metric g̃ on M̃ × {ξ}, �s = Divs∇s . Then,

∇ybx,ξ (y)|y=x = −(x, ξ) or ∇s
wbv(w)|w=v = −X(v).

Set

B(x, ξ) := �ybx,ξ (y)|y=x = −DivsX(v).

Geometrically, the B(x, ξ) is the mean curvature at x of the horosphere of (x, ξ).
The function B is a �-invariant function on SM̃ . We still denote B the function on
the quotient SM . From the definition follows:

B(v) = − d

dt
log DetDvϕt |Wss(v)

∣∣
t=0. (1.2)

So, dynamically, −B tells the exponential growth rate of the volume on Wss under
the geodesic flow ϕt , t > 0. It follows from (1.2) that the function B is Hölder
continuous on SM . The main property of the function B is the following, whose
proof combines the works of Benoist–Foulon–Labourie [4], Foulon–Labourie [20],
and Besson–Courtois–Gallot [5].

Theorem 1.3 ([4, 5, 20]) The functionB is constant if, and only if, the space (M, g)

is locally symmetric.

Remark 1.4 There is a positive operator U on the orthogonal space to v in TxM

satisfying the Riccati equation U̇+U2+R(·, γ̇ (t))γ̇ (t) = 0 and such that B = TrU.

If d = 2, the equation reduces to Ḃ+B2+K = 0. Clearly, if B is constant, then the
curvature K is the constant −B2. If d = 3, one can also conclude from the Riccati
equation and some matrix calculations that B is constant if, and only if, the sectional
curvature is constant (see Knieper [33]).
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2 Dynamical Entropy and an Application
of Thermodynamical Formalism

More quantities related to V,B can be introduced through a dynamical point of
view.

2.1 Dynamical Entropy

Let T be a continuous transformation of a compact metric space X. For x ∈ X, ε >

0, n ∈ N, define the Bowen ball B(x, ε, n)

B(x, ε, n) := {y ∈ X : d(T jy, T jx) < ε for 0 ≤ j ≤ n}

and the entropy hm(T ) of a T -invariant probability measure m

hm(T ) := sup
ε

∫ (
lim sup

n
−1

n
logm(B(x, ε, n))

)
dm(x).

It is easy to see that for j ∈ Z, hm(T j ) = |j |hm(T ). A useful upper bound of
hm(T ) is given by Ruelle inequality [50] using the average maximal exponential
growth rate of all the parallelograms under the iteration of the tangent map DT .

Theorem 2.1 (Ruelle, [50]) Assume X is a compact manifold and T a C1 mapping
of X. Then, for any T -invariant probability measure m,

hm(T ) ≤
∫ (

sup
k

lim sup
n

1

n
log ‖ ∧k DxT

n‖
)

dm(x),

where ∧kDxT
n denotes the k-th exterior power of DxT

n.

Corollary 2.2 If X = SM , where (M, g) is a compact, boundaryless, C2

Riemannian manifold with negative sectional curvature and dimension d, m a
geodesic flow invariant probability measure, and t ∈ R,

hm(ϕt ) ≤ |t |
∫

SM

B dm.

Proof For v ∈ SM, t < 0, |t | large, the highest value of ‖ ∧k Dvϕt‖ is obtained
for k = d − 1 and is the Jacobian of Dvϕt restricted to TvW

ss(v). By (1.1), this is

e
∫ 0
t B(ϕsv) ds . By the ergodic theorem,

lim
n→+∞

1

n
log

∥∥ ∧d−1 Dvϕnt |Wss

∥∥ = lim
n→+∞

1

n

∫ 0

nt

B(ϕsv) ds
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exists and has integral |t | ∫ B dm. The conclusion follows by Ruelle inequality. $%
Another general inequality is given by

Theorem 2.3 (Manning, [43]) Let (M, g) be a compact, boundaryless, C2 Rie-
mannian manifold with negative sectional curvature and dimension d,m a geodesic
flow invariant probability measure, and t ∈ R,

hm(ϕt ) ≤ |t |V.

Remark 2.4 The proof of Theorem 2.3 is based on the following consequence of
nonpositive curvature ([43], Lemma page 571). For any v,w ∈ SM , any r ≥ 1,

max{ sup
0≤s≤1

d(ϕsv, ϕsw), sup
r−1≤s≤r

d(ϕsv, ϕsw)} ≤ sup
0≤s≤r

d(ϕsv, ϕsw)

≤ sup
0≤s≤1

d(ϕsv, ϕsw)

+ sup
r−1≤s≤r

d(ϕsv, ϕsw).

This observation can also be used to give a direct proof of Corollary 2.2.

2.2 Thermodynamical Formalism

For simplicity, we introduce the notion of pressure by the classical variational
principle. Let (X, T ) be a continuous mapping of a compact metric space. The
Pressure P(F) of a continuous function F : X → R is defined by

P(F) := sup
m

{
hm(T )+

∫
F dm

}
,

where m runs over all T -invariant probability measures. Let X = SM , where M is
closed negatively curved and T = ϕ1. From Ruelle and Manning inequalities follow

P(−B) ≤ 0 and P(0) ≤ V.

We will construct later the Liouville measure mL with the property (Theorem 2.6)

hmL
(ϕ1) =

∫
B dmL =: H (2.1)

and the Bowen–Margulis measure mBM such that (Theorem 3.3)

hmBM
(ϕ1) = V. (2.2)
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This will show that P(−B) = 0 and P(0) = V . Using these properties, we can
prove:

Theorem 2.5 Let (SM, ϕt ) be the geodesic flow on a closed manifold of negative
curvature. Let M be the set of ϕt -invariant probability measures, H and V as
defined above. Then,

inf
m∈M

∫
B dm ≤ H ≤ V ≤ sup

m∈M

∫
B dm, (2.3)

with equality in one of the inequalities if, and only if,mL = mBM.Moreover, in that
case,

∫
B dm = V for all m ∈ M.

Proof Since the function B is Hölder continuous on SM , for each s ∈ R, there
exists a unique invariant probability measure ms (equilibrium measure for sB) such
that P(s) := P(sB) = hms (ϕ1) + s

∫
B dms [46, Proposition 4.10].1For example,

by (2.1), (2.2), mL, mBM are equilibrium measures for −B and 0, respectively.
Together with Corollary 2.2, we obtain

inf
m∈M

∫
B dm ≤

∫
B dmL = H ≤ sup

m∈M
{hm(ϕ1)} = V ≤

∫
B dmBM ≤ sup

m∈M

∫
B dm,

which gives (2.3).
Clearly, using the uniqueness of ms , we have that H = V if, and only if mL =

mBM . To show any equality in the other inequalities of (2.3) holds if, and only if,
mL = mBM, we use properties of the Pressure function, in particular of the convex
function s �→ P(s). We already know that P(−1) = 0 and that P(0) = V. From
the definition follows that infm∈M

∫
B dm and supm∈M

∫
B dm are the slopes of

the asymptotes of the function P(s) as s → −∞ and +∞, respectively. Since the
function B is Hölder continuous on SM , the function s �→ P(s) is real analytic
[46, Proposition 4.8]. Moreover, the slope at s is given by

∫
B dms [46, Proposition

4.10]. Now, if H = infm∈M
∫
B dm, the function s �→ P(s) is affine on [−∞,−1]

and thus everywhere. Since the slopes of P(s) at −1 and 0 are
∫
B dmL = H

and
∫
B dmBM, respectively, and H ≤ V ≤ ∫

B dmBM , hence we must have
V = ∫

B dmBM , which implies that mBM coincides with mL and V = H . Finally,
if V = supm∈M

∫
B dm, the measure mBM is the equilibrium measure for −B,

which must coincide with mL.
Assume mBM and mL coincide, then by [46, Proposition 4.9], there exists a

continuous function F on SM , C1 along the trajectories of the geodesic flow, such
that

1Chapter 4 in [46] is only concerned with subshifts of finite type. The extension of [46]
Propositions 4.8, 4.9, 4.10 to suspended flows is direct (see [46], Chapter 6) and the application to
geodesic flows on compact negatively curved manifolds is standard (cf. [46], Appendix 3).
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−B = P(−1)− P(0)+ ∂

∂t
F ◦ ϕt

∣∣
t=0.

In particular,
∫
B dm = P(0) = V for all m ∈ M. $%

2.3 Liouville Measure

For x ∈ M̃ , let λx denote the pull back measure on ∂M̃ of the Lebesgue probability
measure on SxM̃ through the mapping π−1

x : ∂M̃ �→ SxM̃, ξ �→ (x, ξ). Define a
measure m̃L on M̃ × ∂M̃ by setting

∫
F(x, ξ) dm̃L =

∫

M̃

(∫

∂M̃

F (x, ξ) dλx(ξ)

)
dVolg̃(x)

Volg(M)
.

It is clear from the definition that the measure m̃L is �-invariant. There is a Dϕt -

invariant 2-form on X
⊥

in T SM defined by the Wronskian W

W
(
(J1, J

′
1), (J2, J

′
2)
) := < J1(t), J

′
2(t) > − < J ′

1(t), J2(t) > .

Assume M is orientable. The (2d − 1)-form ∧d−1W ∧ dt is nondegenerate and
invariant. For v ∈ SM , take a positively oriented orthonormal basis {e0, · · · , en−1}
in TxM such that e0 = v. By computing ∧d−1W ∧ dt on the (2d − 1)-vector(
(e1, 0), (0, e1), · · · , (en−1, 0), (0, en−1),X

)
, one sees that the measure associated

with this volume form is the one we defined. So the measure m̃L is invariant under
the geodesic flow. We do the same computation on a double cover of M if M is not
orientable.

The measure mL on SM that extends to m̃L is a ϕt -invariant probability measure
which is called the Liouville probability measure. It satisfies

Theorem 2.6 For all t ∈ R, hmL
(ϕt ) = |t | ∫ B dmL.

Proof (Sketch) It suffices to prove the theorem for t = −1. In the definition of
entropy, we can use the flow Bowen balls B(v, ε, r), ε, r > 0,

B(v, ε, r) :=
{

w : sup
−r≤s≤0

d(ϕsv, ϕsw) < ε

}

.

By Remark 2.4,

B(v, ε/2, 1) ∩ ϕr−1B(ϕ−r+1v, ε/2, 1) ⊂ B(v, ε, r) ⊂ B(v, ε, 1) ∩ ϕr−1B(ϕ−r+1v, ε, 1).

Estimating the Liouville measure of B(v, ε, 1) ∩ ϕr−1B(ϕ−r+1v, ε, 1) reduces to
estimating the d-dimensional measure of Bs(v, ε) ∩ ϕr−1B

s(ϕ−r+1v, ε), where
Bs(v, a) is the ball of radius a and center v in Ws(v). It follows from (1.2) that
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this measure is, up to error terms that depend on ε small enough, but not on r , equal
to

DetDϕ−r+1vϕr |Ws(ϕ−r+1v) = e−
∫ 0
−r+1 B(ϕsv) ds .

It follows that, if one takes ε small enough,

hmL
(ϕ−1) = lim

r→+∞
1

r

∫

SM

(∫ 0

−r+1
B(ϕsv) ds

)
dmL(v) =

∫

SM

B dmL.

$%
Observe that, since mL is a measure realizing the maximum in P(−B), it is

ergodic.

Remark 2.7 Basic facts about ergodic theory and thermodynamic formalism are in
Bowen [8]; see also Parry–Pollicott [46]. The definition of the entropy given here is
due to Brin–Katok [11]. The ergodicity of mL with respect to the geodesic flow is a
landmark result of Anosov [3].

3 Patterson–Sullivan, Bowen–Margulis, Burger–Roblin

In analogy to the construction of the measure mL, one can obtain the Bowen–
Margulis measure mBM using a class of measures (Patterson–Sullivan measures)
on the boundary at infinity.

3.1 Patterson–Sullivan

Theorem 3.1 There exists a family of measures on ∂M̃ , x �→ νx, x ∈ M̃ , such that

νβx = β∗νx, for β ∈ �, and
dνy

dνx
(ξ) = e−V bx,ξ (y). (3.1)

The family is unique if normalized by
∫

M

νx(∂M̃) dVolg(x) = 1. Moreover, the

measures νx are continuous.

Proof We first show the existence of such a family. Fix x0 ∈ M̃ . It suffices to
construct the family νβx0 , β ∈ �, such that

for all β ∈ �, νβx0 = β∗νx0 and
dνβx0

dνx0

(ξ) = e−V bx0,ξ (βx0). (3.2)
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Indeed, assume such a family νβx0 , β ∈ �, is constructed, we then set νy :=
e−V bx0,ξ (y)νx0 for all y ∈ M̃ . Using the cocycle property of the Busemann function:

bx,ξ (βy) = bx,β−1ξ (y)+ bx,ξ (βx), ∀x, y ∈ M̃, ξ ∈ ∂M̃,

one can easily check that the class of measures {νy} satisfies the requirement of
(3.1).

Recall V = lim
R→+∞

1
R

log Volg̃BM̃(x0, R). Set, for s > V , a family νs
βx0

, β ∈ �,

with dνs
βx0

(y) := e−sd(βx0,y) dVolg̃(y)∫
M̃

e−sd(x0,y) dVolg̃(y)
. We have

β∗dνs
x0
(y) = dνs

x0
(β−1y) = e−sd(x0,β

−1y) dVolg̃(y)∫
M̃

e−sd(x0,y) dVolg̃(y)

= e−sd(βx0,y) dVolg̃(y)∫
M̃

e−sd(x0,y) dVolg̃(y)
= dνs

βx0
(y).

Recall that M̃ ∪ ∂M̃ is compact and assume that
∫
M̃

e−sd(x0,y) dVolg̃(y) → ∞
as s ↘ V . Choose sn ↘ V such that ν

sn
x0 weak* converge to νx0 . Then, νx0 is

supported by ∂M̃. Moreover, for any β ∈ �, ν
sn
βx0

weak* converge as well and

call νβx0 := limsn↘V ν
sn
βx0

. The family νβx0 , β ∈ �, satisfies (3.2). Indeed, νβx0 =
β∗νx0 . Moreover, consider an open cone C based on x0. We have, for any β ∈ �,

νβx0(C) = lim
sn↘V

ν
sn
βx0

(C) = lim
sn↘V

∫

C

e−sn(d(βx0,y)−d(x0,y)) dνsn
x0
(y).

As sn ↘ V, most of the ν
sn
x0 measure is supported by a neighborhood of ∂M̃ and,

for y close to ξ ∈ ∂M̃, d(βx0, y) − d(x0, y) is close to bx0,ξ (βx0). The density
property follows.

If
∫
M̃

e−sd(x0,y) dVolg̃(y) is bounded, use Patterson’s trick [47, Lemma 3.1]: one
can find a real function L on R+ such that

lim
s↘V

∫

M̃

L(d(x0, y))e
−sd(x0,y) dVolg̃(y) = ∞ and ∀a ∈ R, lim

t→+∞
L(t + a)

L(t)
= 1.

We can then replace the previous family νs
βx0

, β ∈�, by ν′sβx0
β ∈�, with

dν′sβx0
(y) := L(d(βx0,y))e

−sd(βx0,y) dVolg̃ (y)∫
M̃ L(d(x0,y))e

−sd(x0,y) dVolg̃ (y)
.

The function x �→ νx(∂M̃) is �-invariant and continuous; in particular, it is
bounded. This implies that the measure νx0 is continuous since otherwise, there is
ξ ∈ ∂M̃ with νx0({ξ}) = a > 0. When {yn}n∈N ∈ M̃ converge to ξ , νyn({ξ}) =
e−V bx0,ξ (yn)a → +∞, a contradiction.

We will see later (Remark 3.5) that such a family is unique, up to multiplication
by a constant factor. $%
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The family νx, x ∈ M̃, is called the family of Patterson–Sullivan measures.

3.2 Bowen–Margulis

Define, for x ∈ M̃, ξ, η ∈ ∂M̃, the Gromov product

(ξ, η)x := 1

2
lim

y→ξ,z→η
(d(x, y)+ d(x, z)− d(y, z)) .

The Gromov product is a nonnegative number (by the triangle inequality) and
because of pinched negative curvature, the Gromov product is finite; actually it is
(exercise) uniformly bounded away from the distance from x to the geodesic γη,ξ .

Moreover, the Gromov product satisfies the cocycle relation

(ξ, η)x′ − (ξ, η)x = 1

2
(bx,ξ (x

′)+ bx,η(x
′)). (3.3)

Let M̃(2) := {(ξ, η) ∈ ∂M̃ × ∂M̃, ξ �= η}. Then, SM̃ is identified with M̃(2) ×R by
the Hopf coordinates:

v �→ (γv(+∞), γv(−∞), bv(x0)).

Proposition 3.2 Let νx, x ∈ M̃, be the family of Patterson–Sullivan measures. The
measure ν with dν(ξ, η) := dνx(ξ)×dνx(η)

e−2V (ξ,η)x
does not depend on x. The measure ν×dt

on M̃(2) × R is �-invariant and invariant by the geodesic flow.

Proof The first affirmation follows directly from the cocycle relation (3.3). In
particular, the measure ν is �-invariant on ∂M̃ × ∂M̃ . The measure ν is supported
by M̃(2) because νx is continuous. The actions of � and of ϕs in Hopf coordinates
are given by:

β(ξ, η, t) = (βξ, βη, t + bx0,ξ (β
−1x0)), for β ∈ �,

ϕs(ξ, η, t) = (ξ, η, t + s).

The invariance of ν × dt under the actions of � and of ϕs follows. $%
We call Bowen–Margulis measure mBM the unique probability measure on SM

such that its �-invariant extension is proportional to ν × dt . It satisfies

Theorem 3.3 hmBM
(ϕt ) = |t |V.

Proof (Sketch) We follow the sketch of the proof of Theorem 2.6. We have to
estimate mBM (B(v, ε, 1) ∩ ϕr−1B(ϕ−r+1v, ε, 1)) . Choose ε small enough that this
set lifts to SM̃ into a set of the same form. In Hopf coordinates, this is, up to some
constant A, of the form:
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B(v, ε, 1)

.
{
(ξ, η, t) : ξ∈C(ϕ1/2v,A

±1ε), η ∈ C(−ϕ1/2v,A
±1ε), bv(x0)≤t≤bv(x0)+1

}
,

where, for w ∈ SM̃ and 0 < δ < π,C(w, δ) is the cone of geodesics starting from
w with an angle smaller than δ. Our set B(v, ε, 1) ∩ ϕr−1B(ϕ−r+1v, ε, 1) is

{
(ξ, η, t) : ξ∈C(ϕ1/2v,A

±1ε), η ∈ C(−ϕ−r+3/2v,A
±1ε), bv(x0)≤t≤bv(x0)+1

}
.

The ν × dt measure of this set is within A±2e(−r+3/2)V mBM(B(v, ε, 1)). $%
Corollary 3.4 P(0) = V and mBM is the measure of maximal entropy for the
geodesic flow ϕt . In particular, mBM is ergodic.

Remark 3.5 It also follows from this construction that the Patterson–Sullivan family
νx is unique. Indeed, let ν′x be another Patterson–Sullivan family. One can construct

as above a family ν′, dν′(ξ, η) := dνx(ξ)×dν′x(η)
e−2V (ξ,η)x

. By the same reasoning, the measure
ν′×dt is proportional to an invariant probability measure with entropy V . It follows
that ν′ is proportional to ν; i.e., ν′x is proportional to νx for all x.

3.3 Burger–Roblin

Define a measure m̃BR on M̃ × ∂M̃ by setting, for all continuous function F with
compact support on SM̃ ,

∫
F(x, ξ) dm̃BR =

∫

M̃

(∫

∂M̃

F (x, ξ) dνx(ξ)

)
dVolg̃(x). (3.4)

It follows from the definition that the measure m̃BR is �-invariant. Call mBR the
induced measure on SM; by our normalization, we have mBR(SM) = 1. The
measure mBR is called the Burger–Roblin measure. Many of its properties follow
from

Theorem 3.6 For any vector field Z on SM such that Z(v) is tangent to Ws(v) for
all v ∈ SM , we have

∫

SM

DivsZ(v)+ V < Z(v),X(v) > dmBR(v) = 0. (3.5)

Proof Using a partition of unity, we may assume that Z has compact support
inside a flow-box for the foliation. Choosing a reference point x0, we can write
dmBR(x, ξ) = e−V bx0,ξ (y)dνx0(y)dVolg̃(y). Since Z has compact support on each
local stable leaf Ws

loc(x, ξ), we have
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∫

Ws
loc(x,ξ)

Divs
y

(
e−V bx0,ξ (y)Z(y, ξ)

) ∣∣∣
y=z

dVolg̃(z) = 0

for all (x, ξ) ∈ SM̃ . Then, (3.5) follows by developing

Divs
y

(
e−V bx0,ξ (y)Z(y, ξ)

) ∣∣∣
y=z

=
(

Divs
yZ(y, ξ)

∣∣∣
y=z

+ V < Z(z, ξ),X(z, ξ) >

)
e−V bx0,ξ (z).

$%
Corollary 3.7

∫
B dmBR = V.

Proof Apply (3.5) to Z = X. $%
Corollary 3.8 The operator �s + VX is symmetric for mBR: for F1, F2 ∈
C∞(SM), the set of smooth functions on SM ,

∫

SM

F1(�
s + VX)F2 dmBR =

∫

SM

F2(�
s + VX)F1 dmBR.

Hence,mBR is also stationary for the operator�s+VX, i.e., for all F ∈ C∞(SM),∫
SM

(�s + VX)F dmBR = 0.

Proof Apply (3.5) to Z = F1∇sF2 to get

∫

SM

F1(�
s + VX)F2 dmBR = −

∫

SM

< ∇sF1,∇sF2 > dmBR.

The Right Hand Side is invariant when switching F1 and F2. $%
Corollary 3.9 The measure mBR is symmetric for the Laplacian �ss along the
strong stable foliation Wss: for F1, F2 ∈ C∞(SM),

∫

SM

F1�
ssF2 dmBR =

∫

SM

F2�
ssF1 dmBR.

So, mBR is also stationary for the operator �ss , i.e., for all F ∈ C∞(SM),∫
SM

�ssF dmBR = 0.

Proof Apply (3.5) to Z = F1
d
dt
F2 ◦ ϕt

∣∣
t=0X to obtain that

∫

SM

F1

(
d2

dt2
F2 ◦ ϕt

∣∣
t=0 − B

d

dt
F2 ◦ ϕt

∣∣
t=0 + V

d

dt
F2 ◦ ϕt

∣∣
t=0

)
dmBR

= −
∫

SM

XF1XF2 dmBR.
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Recall that in horospherical coordinates, �s can be written as

�sF = d2

dt2
F ◦ ϕt

∣∣
t=0 − B

d

dt
F ◦ ϕt

∣∣
t=0 +�ssF.

Replacing in the formula above, we get that

−
∫

SM

F1�
ssF2 dmBR +

∫

SM

F1(�
s +VX)F2 dmBR = −

∫

SM

XF1XF2 dmBR.

The conclusion follows from Corollary 3.8. $%
Remark 3.10 We observe that mBR is ergodic. Indeed, strong stable manifolds have
polynomial volume growth2, so a symmetric measure for the Laplacian �ss along
the strong stable foliation Wss is given locally by the product of the Lebesgue
measure along the Wss leaves and some family of measures on the transversals
(Kaimanovich, [28]). This family has to be invariant under the holonomy map of
the Wss leaves. By Bowen–Marcus [9], there exists only one holonomy-invariant
family on the transversals to the Wss foliation, up to a multiplication by a constant
factor.

Remark 3.11 The family of measures in this section has a long history. The
invariant measures for the Wss foliation were first constructed by Margulis [44] and
used to construct the invariant measure mBM . Margulis’ construction (in the strong
unstable case) amounts to taking the limit of the normalized Lebesgue measure on
ϕT SxM (see also Knieper [33]). Margulis did not state that the measure mBM has
maximal entropy, and the measure of maximal entropy was constructed by Bowen
(cf. Bowen [8], Bowen–Ruelle [10]) as the limit as T → +∞ of equidistributed
measures on closed geodesics of length smaller than T . Bowen also showed that
the measure of maximal entropy is unique, so that the two constructions give the
same measure mBM . Independently, Patterson [47] constructed the measures νx in
the case of hyperbolic surfaces, not necessarily compact; Sullivan [52] extended the
construction to a general hyperbolic space, observed that it is, up to normalization,
the Hausdorff measure on the limit set of the discrete group in its Hausdorff
dimension for the angle metric, that it is also the conformal measure for the action
of the group on its limit set and moreover, the exit measure of the Brownian motion
with suitable drift. He also made its connection with the measure of maximal
entropy (in the constant curvature case). Hamenstädt [24] connected mBM with
the Patterson–Sullivan construction and then many authors extended the Patterson–
Sullivan construction to many circumstances (see Paulin–Pollicott–Schapira [48] for
a detailed recent survey). Again in the hyperbolic geometrically finite case, Burger
[12] considered mBR as the measure invariant by the horocycle action; finally,

2There are constants C, k such that the volume of the balls of radius r for the induced metric on
strong stable manifolds is bounded by Crk .
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Roblin [49] considered the general case of a group acting discretely on a CAT (−1)
space. What is remarkable is that in all these constructions, these measures were
introduced as tools, and not, like here, as objects interesting in their own right. A
posteriori, their interest comes from all these applications.

4 A Family of Stable Diffusions; Probabilistic Rigidity

Recall (Corollary 3.8) that the Burger–Roblin measure mBR is a stationary measure
for �s+VX. In this section, we study the stationary measures for �s+ρX, ρ < V,

characterize them in analogy to mBR , and state a rigidity result concerning these
measures.

4.1 Foliated Diffusions

A differential operator L on SM is called subordinate to the stable foliation Ws if,
for any F ∈ C∞(SM), LF(v) depends only on the values of F along Ws(v). It is
given by a �-equivariant family Lξ on M̃ × {ξ}. A probability measure m is called
stationary for L (or L-stationary, L-harmonic) if, for all F ∈ C∞(SM),

∫
LF(v) dm(v) = 0.

Theorem 4.1 (Garnett, [21]) Assume L-stationary is an operator which is subor-
dinate toWs , has continuous coefficients, and is elliptic onWs leaves. Then, the set
of L-stationary probability measures is a non-empty convex compact set. Extremal
points are called ergodic.

We will consider the operators Lρ := �s + ρX for ρ ∈ R. Clearly, each Lρ is
subordinate to Ws and for all F ∈ C∞(SM),

Lρ
ξ F (x, ξ) = �s

yF (y, ξ)|y=x + ρ < X,∇s
yF (y, ξ)|y=x >x,ξ .

For a fixed ξ, Lρ
ξ is elliptic on M̃ and Markovian (Lρ

ξ 1 = 0). Hence, by Theo-
rem 4.1, there is always some Lρ-stationary measure. Let mρ be a Lρ-stationary
measure. Then, locally [21], on a local flow-box of the lamination the measure
mρ has conditional measures along the leaves that are absolutely continuous with
respect to Lebesgue, and the density Kρ satisfies Lρ∗Kρ = 0, where Lρ∗ is the
formal adjoint of Lρ with respect to Lebesgue measure on the leaf, i.e.,

Lρ∗F = �sF − ρDivs(FX). (4.1)
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Globally, there exists a �-equivariant family of measures ν
ρ
x such that the �-

invariant extension m̃ρ of mρ is given by a formula analogous to (3.4):

∫
F(x, ξ) dm̃ρ =

∫

M̃

(∫

∂M̃

F (x, ξ) dνρ
x (ξ)

)
dVolg̃(x).

Indeed, choose a transversal to the foliation Ws , say the sphere Sx0M and write SM

as M0 × Sx0M. A stationary measure mρ is given by an integral for some measure
dν(ξ) of measures of the form Kρ(x, ξ) dVolg(x), where Volg is the volume on M0.
We can arrange that Kρ(x0, ξ) = 1, ν-a.e.. For a lift x̃0 =: x, set νρ

x = (πx)∗ν. The
family ν

ρ
βx, β ∈ �, is �-equivariant by construction. Starting from a different point

y0 ∈ M0, the same construction gives a �-equivariant family ν
ρ
βy, β ∈ �, for the

lifts y of y0. By construction also,

dν
ρ
y

dν
ρ
x

(ξ) = Kρ(y, ξ)

Kρ(x, ξ)
.

The same proof as for the relation (3.5) yields, for any vector field Z on SM such
that Z(v) is tangent to Ws(v) for all v ∈ SM ,

∫

SM

DivsZ+ < Z,∇s
y logKρ(y, ξ)

∣∣
y=x

> dmρ(v) = 0. (4.2)

For each Lρ , there is a diffusion, i.e., a �-equivariant family of probability
measures P̃

ρ
x,ξ on C(R+, SM̃) such that t �→ ω̃(t) is a Markov process with

generator Lρ
ξ , P̃

ρ
x,ξ -a.s. ω̃(0) = (x, ξ) and ω̃(t) ∈ M̃ × {ξ}, ∀t > 0. The

distribution of ω̃(t) under P̃ρ
x,ξ is pρ

ξ (t, x, y)dVolg̃(y)δξ (η), where p
ρ
ξ (t, x, y) is the

fundamental solution of the equation ∂F
∂t

= Lρ
ξ F . The quotient Pρ

v defines a Markov
process on SM such that for all t ≥ 0, ω(t) ∈ Ws(ω(0)). For any Lρ-stationary
measure mρ , the probability measure P

ρ
mρ

:= ∫
P
ρ
v dmρ(v) is invariant under the

shift on C(R+, SM) (cf. [21, 26]). If the measure mρ is an extremal point of the set
of stationary measures for Lρ , then the probability measure Pρ

mρ
is invariant ergodic

under the shift on C(R+, SM).

Proposition 4.2 Letmρ be a stationary ergodic measure for Lρ . Then, for Pρ
mρ

a.e.
ω and any lift ω̃ of ω to SM̃ ,

lim
t→+∞

1

t
bω̃(0)(ω̃(t)) = −ρ +

∫
B dmρ =: �ρ(mρ). (4.3)



260 F. Ledrappier and L. Shu

In particular, for ρ = V,mρ = mBR , we have �V (mBR) = V − ∫
B dmBR = 0.

By Remark 3.10, the measure mBR is ergodic.

Proof Let σt , t ∈ R+, be the shift transformation on C(R+, SM̃). For any ω̃ ∈
C(R+, SM̃), t, s ∈ R+, bω̃(0)(ω̃(t + s)) = bω̃(0)(ω̃(t)) + bσt ω̃(0)(σt ω̃(s)). By �-
equivariance, bω̃(0)(ω̃(t)) takes the same value for all ω̃ with the same projection
in C(R+, SM) and defines an additive functional on C(R+, SM). Moreover,
sup0≤t≤1 bω̃(0)(ω̃(t)) ≤ sup0≤t≤1 d(ω̃(0), ω̃(t)), so that the convergence in (4.3)
holds P

ρ
mρ

-a.e. and in L1(P
ρ
mρ

). By ergodicity of the process and additivity of the

functional bω̃(0)(ω̃(t)), the limit is 1
t
E

ρ
mρ

(
bω̃(0)(ω̃(t))

)
, for all t > 0. In particular,

lim
t→+∞

1

t
bω̃(0)(ω̃(t)) = lim

t→0+
1

t
E

ρ
mρ

(
bω̃(0)(ω̃(t))

)

=
∫

SM

�s
ybx,ξ (y)

∣∣
y=x

+ρ < X,∇s
ybx,ξ (y)

∣∣
y=x

>x,ξ dmρ(x, ξ).

Equation (4.3) follows. $%
Following Ancona [1] and Hamenstädt [26], we call our operator Lρ weakly

coercive if there is some ε > 0 such that for all ξ ∈ ∂M̃, there exists a positive
superharmonic function for the operator Lρ

ξ + ε (i.e., a positive F such that Lρ
ξ F +

εF ≤ 0). As a corollary of Proposition 4.2, we see that if mρ is a Lρ-stationary
measure with �ρ(mρ) > 0, then for m̃ρ almost all ω̃(0) and P̃

ρ
x,ξ almost all ω̃,

ω̃(+∞) = limt→+∞ ω̃(t) ∈ (∂M̃ \ {ξ}) × {ξ}. This, together with the negative
curvature and the cocompact assumption of the underlying space, implies that

Corollary 4.3 [26, Corollary 3.10] Assume the operator Lρ is such that there exists
some Lρ-stationary ergodic measure mρ with �ρ(mρ) > 0. Then, Lρ is weakly
coercive.

4.2 Stable Diffusions

For a weakly coercive Lρ , we want to understand more about its diffusions.
Hamenstädt developed in [26] many tools for the study of the foliated diffusions
subordinate to the stable foliation Ws , using dynamics and thermodynamical
formalism. We review in this subsection her results when applied for our Lρ.

For each Lρ , ρ ∈ R, recall that p
ρ
ξ (t, x, y) is the fundamental solution of the

equation ∂F
∂t

= Lρ
ξ F . We write G

ρ
ξ (x, y) for the Green function of Lρ : for x, y ∈

M̃,

G
ρ
ξ (x, y) :=

∫ ∞

0
p
ρ
ξ (t, x, y) dt.
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For weakly coercive operators on a pinched negatively curved simply connected
manifold, Ancona’s Martin boundary theory [1] shows the following

Theorem 4.4 ([1]) Assume that the operator�s+ρX is weakly coercive and recall
that the sectional curvature of M̃ is between two constants −a2 and −b2. There
exists a constant C such that for any ξ ∈ ∂M̃ , any three points x, y, z in that order
on the same geodesic in M̃ and such that d(x, y), d(y, z) ≥ 1, we have:

C−1G
ρ
ξ (x, y)G

ρ
ξ (y, z) ≤ G

ρ
ξ (x, z) ≤ CG

ρ
ξ (x, y)G

ρ
ξ (y, z). (4.4)

(In particular, by Corollary 4.3, the inequality (4.4) holds for ρ such that there is
an ergodic Lρ-stationary measure mρ with �ρ(mρ) > 0.)

Ancona [1] deduced from (4.4) that the Martin boundary of each weakly
coercive operator Lρ

ξ is the geometric boundary ∂M̃. Namely, for any x, y ∈
M̃, ξ, η ∈ ∂M̃, there exists a function K

ρ
ξ,η(x, y) such that

lim
z→η

G
ρ
ξ (y, z)

G
ρ
ξ (x, z)

= K
ρ
ξ,η(x, y).

The function K
ρ
ξ,η(x, y) is Lρ

ξ -harmonic and therefore smooth in x and y. Moreover,

the functions (x, η) �→ K
ρ
ξ,η(x, y), (x, η) �→ ∇yK

ρ
ξ,η(x, y)

∣∣
y=x

are Hölder
continuous (cf. [26], Appendix B). By uniformity of the constant C in (4.4), the
functions (x, ξ) �→ K

ρ
ξ,η(x, y), ξ �→ ∇yK

ρ
ξ,η(x, y)

∣∣
y=x

are continuous into the
space of Hölder continuous functions on SM (see e.g. [37], Proposition 3.9).

Let Lρ∗ be the leafwise formal adjoint of Lρ (see (4.1)). Then, Lρ∗ is subordinate
to Ws and the corresponding Green function G

ρ∗
ξ (x, y) is given by G

ρ∗
ξ (x, y) =

G
ρ
ξ (y, x). In particular, the Green function G

ρ∗
ξ (x, y) satisfies (4.4) as well and we

find, for ξ, η ∈ ∂M̃, x, y ∈ M̃ , the Martin kernel Kρ∗
ξ,η(x, y) given by:

K
ρ∗
ξ,η(x, y) = lim

z→η

G
ρ∗
ξ (y, z)

G
ρ∗
ξ (x, z)

= lim
z→η

G
ρ
ξ (z, y)

G
ρ
ξ (z, x)

.

Again, the function K
ρ∗
ξ,η(x, y) is Lρ

ξ -harmonic and therefore smooth in x and y.

Moreover, the functions (x, η) �→ K
ρ∗
ξ,η(x, y), (x, η) �→ ∇yK

ρ∗
ξ,η(x, y)

∣∣
y=x

are

Hölder continuous and the functions (x, ξ) �→ K
ρ∗
ξ,η(x, y), ξ �→ ∇yK

ρ∗
ξ,η(x, y)

∣∣
y=x

are continuous into the space of Hölder continuous functions on SM . Observe
also that the relation (4.4) is satisfied also by the resolvent G

λ,ρ∗
ξ (x, y) :=

∫∞
0 e−λtp

ρ
ξ (t, y, x) dt , uniformly for λ > 0 close to 0 and for ξ ∈ ∂M̃ , so that

we also have:
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K
ρ∗
ξ,η(x, y) = lim

z→η,λ→0+

G
λ,ρ∗
ξ (y, z)

G
λ,ρ∗
ξ (x, z)

. (4.5)

We can use the function K
ρ,∗
ξ,η (x, y) to express the function Kρ in (4.2).

Proposition 4.5 Assume �ρ(mρ) > 0 and mρ is ergodic. Then, the corresponding

Kρ in (4.2) is given by Kρ(y,ξ)

Kρ(x,ξ)
= K

ρ∗
ξ,ξ (x, y).

Proof Let ν
ρ
x be the family such that dm̃ρ(x, ξ) = dVolg̃(x)dν

ρ
x (ξ). For F ∈

C(SM), the set of continuous functions on SM , set F̃ for the �-periodic function
on M̃ × ∂M̃ extending F . Since mρ is ergodic, we have, for mρ-a.e. (x, ξ),

∫

SM

F dmρ = lim
λ→0+

λ

∫ ∞

0
e−λt

(∫
p
ρ
ξ (t, x, y)F̃ (y, ξ) dVolg̃(y)

)
dt.

The inner integral can be written

∑

β∈�

∫
p
ρ
ξ (t, x, βy)F̃ (βy, ξ) dVolg(y) =

∑

β∈�

∫
p
ρ

β−1ξ
(t, β−1x, y)F̃ (y, β−1ξ) dVolg(y),

where Volg is the restriction of Volg̃ on the fundamental domain M0, so that we have

∫

SM

F dmρ = lim
λ→0+

∑

β∈�
λ

∫
G

λ,ρ∗
β−1ξ

(y, β−1x)F (y, β−1ξ) dVolg(y).

By Harnack inequality, all ratios
G

λ,ρ∗
β−1ξ

(y,β−1x)

G
λ,ρ∗
β−1ξ

(z,β−1x)
for y, z ∈ M0 are of the same order

as soon as d(β−1x,M0) ≥ 1. Choose an open A ⊂ ∂M̃ disjoint from {ξ}. If, for
β large enough, β−1ξ ∈ A, then β−1x is close to A. Then, by (4.5) and Harnack
inequality, given ε > 0, for all x ∈ M0, ξ ∈ ∂M̃ , for all β ∈ � so that β−1x is close
enough to β−1ξ , y′ close enough to y, z′ close enough to z,

G
λ,ρ∗
β−1ξ

(y′, β−1x)

G
λ,ρ∗
β−1ξ

(z′, β−1x)
∼1+ε K

ρ,∗
β−1ξ,β−1ξ

(z, y),

where, for a, b ∈ R, a ∼1+ε b means (1 + ε)−1b ≤ a ≤ (1 + ε)b. Consider as
functions Fy, Fz the indicator of Uy × A,Uz × A, where Uy,Uz are respectively
small neighborhoods of y, z. Then

∫

SM

Fy dmρ=
∫

Uy

ν
ρ

y′(A) dVolg(y
′) = lim

λ→0+

∑

β∈�,β−1ξ∈A
λ

∫

Uy

G
λ,ρ∗
β−1ξ

(y′, β−1x) dVolg(y
′),
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∫

SM

Fz dmρ=
∫

Uz

ν
ρ

z′(A) dVolg(z
′) = lim

λ→0+

∑

β∈�,β−1ξ∈A
λ

∫

Uz

G
λ,ρ∗
β−1ξ

(z′, β−1x) dVolg(z
′).

As λ → 0+, the β’s involved in the sums are such that the distance
d(y, β−1x), d(z, β−1x) is larger and larger. It follows that, for νρ

z -a.e. η,

dν
ρ
y

dν
ρ
z

(η) = Kρ,∗
η,η (z, y).

$%
Corollary 4.6 Assume �ρ(mρ) > 0 for some ergodic Lρ-stationary measure mρ .
Then, mρ is the only Lρ-stationary probability measure.

Proof By Proposition 4.5, any ergodic Lρ-stationary measure is described by a �-
equivariant family of measures at the boundary νx that satisfies

dνy

dνz
(η) = Kρ,∗

η,η (z, y).

Since the cocycle depends Hölder-continuously on η, there is a unique equivariant
family with that property (see, e.g., [36, Théorème 1.d], [48, Corollary 5.12]). $%

4.3 Stochastic Entropy and Rigidity

Let mρ be an ergodic Lρ-stationary measure, and assume that �ρ(mρ) > 0. The
following theorems are the counterpart of the more familiar random walks properties
in our setting.

Theorem 4.7 (Kaimanovich, [27]) Let mρ be an ergodic Lρ-stationary measure,
and assume that �ρ(mρ) > 0. For Pmρ -a.e. ω ∈ C(R+, SM), the following limits
exist

hρ(mρ) = lim
t→+∞−1

t
logp

ρ
ξ (t, ω̃(0), ω̃(t))

= lim
t→+∞−1

t
logG

ρ
ξ (ω̃(0), ω̃(t)),

where ω̃(t), t ≥ 0, is a lift of ω to SM̃. Moreover,

hρ(mρ) =
∫

SM

(
‖∇s logKρ(x, ξ)‖2 − ρB(x, ξ)

)
dmρ.
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Proof The first part is proven in details in [38], Proposition 2.4. For the final
formula, we follow [38], Erratum. Since the notations are not exactly the same,
for the sake of clarity, we give the main ideas of the proof. We firstly claim is that,
since �ρ(mρ) > 0, for Pmρ -a.e. ω ∈ C(R+, SM),

lim sup
t→+∞

∣∣∣logG
ρ
ξ (ω̃(0), ω̃(t))− logK

ρ∗
ξ,ξ (ω̃(0), ω̃(t))

∣∣∣ < +∞.

Indeed, let zt be the point on the geodesic ray γω̃(t),ξ closest to x. Then, as t → +∞,

G
ρ
ξ (ω̃(0), ω̃(t)) . G

ρ
ξ (zt , ω̃(t)) . G

ρ
ξ (y, ω̃(t))

G
ρ
ξ (y, zt )

for all y on the geodesic going from ω̃(t) to ξ with d(y, ω̃(t)) ≥ d(y, zt ) + 1,
where . means up to some multiplicative constant independent of t . The first .
comes from Harnack inequality using the fact that supt d(x, zt ) is finite Pmρ -almost
everywhere. (Since �ρ(mρ) > 0, for Pmρ -a.e. ω ∈ C(R+, SM), η = limt→+∞ ω̃(t)

differs from ξ and d(x, zt ), as t → +∞, converge to the distance between x and

γξ,η.) The second . comes from Ancona inequality (4.4). Replace
G

ρ
ξ (y,ω̃(t))

G
ρ
ξ (y,zt )

by its

limit as y → ξ , which is K
ρ∗
ξ,ξ (zt , ω̃(t)) by (4.5), which is itself . K

ρ∗
ξ,ξ (ω̃(0), ω̃(t))

by Harnack inequality again. It follows that, for Pρ
mρ

-a.e. ω ∈ C(R+, SM),

hρ(mρ) = lim
t→+∞−1

t
logK

ρ∗
ξ,ξ (ω̃(0), ω̃(t)).

By Harnack inequality, there is a constant C such that | logK
ρ∗
ξ,ξ (ω̃(0), ω̃(t))| ≤

Cd(ω̃(0), ω̃(t)). Since logK
ρ∗
ξ,ξ (ω̃(0), ω̃(t)) is additive along the trajectories, and

P
ρ
mρ

is shift ergodic, the limit reduces to

hρ(mρ) = lim
t→0+

−1

t
Emρ logK

ρ∗
ξ,ξ (ω̃(0), ω̃(t))

= −
∫

SM

(
�s

y logK
ρ∗
ξ,ξ (x, y)

∣∣
y=x

+ρ < X,∇s
y logK

ρ∗
ξ,ξ (x, y)

∣∣
y=x

>x,ξ

)
dmρ(x, ξ)

= −
∫

SM

(
�s logKρ(x, ξ)+ ρ < X,∇s logKρ > (x, ξ)

)
dmρ(x, ξ),

where we used Proposition 4.5 to replace ∇s
y logK

ρ∗
ξ,ξ (x, y)

∣∣
y=x

by ∇s logKρ(x, ξ).

Finally, we use (4.2) applied to Z = ∇s logKρ(x, ξ) to write

−
∫

SM

�s logKρ(x, ξ) dmρ(x, ξ) =
∫

SM

‖∇s logKρ(x, ξ)‖2 dmρ(x, ξ)
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and applied to Z = X to write

∫
B dmρ =

∫
< X,∇s logKρ > dmρ. (4.6)

The formula for the entropy follows. $%
Theorem 4.8 (Guivarc’h, [23]) Assume that �ρ(mρ) > 0. Then, hρ(mρ) ≤
�ρ(mρ)V .

Proof Fix (x, ξ) ∈ SM̃ such that 1
t
bx,ξ (ω̃(t)) → �ρ(mρ) and − 1

t
logp

ρ
ξ (t, ω̃(0),

ω̃(t)) → hρ(mρ), P̃
ρ
x,ξ -a.e., as t → +∞. There is a constant C̃ depending only

on the curvature bounds such that one can find a partition A = {Ak, k ∈ N} of
M̃ such that the sets Ak have diameter at most C̃ and inner diameter at least 1. Set
for k ∈ N, t > 0, qρ

k (t) := P̃
ρ
x,ξ ({ω̃ : ω̃(t) ∈ Ak}). The family {qρ

k (t), k ∈ N} is a

probability on N with the property that, with high probability, qρ
k (t) ≤ e−t (hρ(mρ)−ε)

and k ∈ Nt, where Nt := {k : Ak ⊂ B(x, t (�ρ(mρ)+ ε))}. Then,

−
∑

k∈Nt

q
ρ
k (t) log q

ρ
k (t) ≤

∑

k∈Nt

q
ρ
k (t)× log #Nt .

Since #Nt ≤ Cet(�ρ(mρ)+ε)(V+ε), for some constant C, Theorem 4.8 follows. $%
Theorem 4.9 Assume that �ρ(mρ) > 0. Then,

∫
B dmρ ≤ V , with equality in this

inequality only when (M, g) is locally symmetric.

Proof Recall Equation (4.6):
∫
B dmρ = ∫

< X,∇s logKρ > dmρ, so that, by
Schwarz inequality,

(∫
B dmρ

)2

≤
∫

SM

‖∇s logKρ
x,ξ‖2 dmρ,

with equality only if ∇s logKρ = τ(ρ)X for some real number τ(ρ). Abbreviate
hρ(mρ), �ρ(mρ) as hρ, �ρ . We write

hρ =
∫

SM

(
‖∇s logKρ

x,ξ‖2 − ρB(x, ξ)
)

dmρ

≥
(∫

B dmρ

)2

− ρ

∫
B dmρ = �ρ

∫
B dmρ.

We indeed have
∫
B dmρ ≤ V , with equality only if ∇s logKρ = τ(ρ)X for

some real number τ(ρ). Then, Equation (3.5) holds with V replaced by τ(ρ).
The proof of Corollary 3.9 applies and the operator �ss is symmetric with respect
to the measure mρ . By Remark 3.10, mρ = mBR. Then, τ(ρ) = V and from∫
B dmρ = ∫

B dmBR = V and �ρ(mρ) > 0, we have ρ �= V. We have
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0 = Lρ∗
y e−V bx,ξ (y)

∣∣
y=x

= (V −B(x, ξ))(V −ρ). It follows that B = V is constant.
By Theorem 1.3, the space (M, g) is locally symmetric. $%

The conclusion in Theorem 4.9 actually holds true for all ρ < V due to the
following.

Proposition 4.10 Let ρ ∈ R. There is some Lρ-stationary ergodic measure mρ

such that �ρ(mρ) > 0 if, and only if, ρ < V . Moreover, the measures mρ weak*
converge to mBR as ρ ↗ V.

Proof Let ρ0 be such that there is some Lρ0 -stationary measure mρ0 with
�ρ0(mρ0) ≤ 0, but such that there exist {ρn}n∈N with limn→+∞ ρn = ρ0 and
�ρn(mρn) > 0 (we know that mρn is unique by Corollary 4.6). Observe that
by Equation (4.3), �ρ > 0 for ρ sufficiently close to −∞. On the other hand,
if �ρn(mρn) > 0, we must have ρn < V by Equation (4.3) and Theorem 4.9.
Therefore one can choose ρ0 and ρn with those properties. Let m be a weak* limit
of the measures mρn . We are going to show that m = mBR and that ρ0 = V .

Observe that �ρ0(m) ≤ 0 since otherwise m is the only stationary measure and
we cannot have �ρ0(mρ0) ≤ 0 for some other Lρ0 -stationary measure mρ0 . On the
other hand, �ρ0(m) ≥ 0 by continuity, so �ρ0(m) = 0 and limn→+∞ �ρn(mρn) = 0.
By Theorem 4.8, limn→+∞ hρn(mρn) = 0 as well. We have

0 = lim
n→+∞hρn(mρn) = lim

n→+∞

∫

SM

(
‖∇s logKρn(x, ξ)‖2 − ρnB(x, ξ)

)
dmρn

= lim
n→+∞

∫

SM

(
‖∇s logKρn(x, ξ)‖2 − ρn < X,∇s logKρn >

)
dmρn.

Write Zn := ∇s logKρn(x, ξ)− (∫
SM

< X,∇s logKρn > dmρn

)
X. We have

lim
n→+∞

∫

SM
‖Zn‖2 dmρn = lim

n→+∞

∫

SM

(
‖∇s logKρn(x, ξ)‖2

)
dmρn −

(∫

SM
B dmρn

)2

= lim
n→+∞

(
hρn(mρn)−�ρn(mρn)

∫

SM
B dmρn

)

and so limn→+∞
∫
SM

‖Zn‖2 dmρn = 0. In other words, Equation (3.5) holds with
V replaced by

∫
SM

B dmρn with an error
∫
SM

< Z,Zn > dmρn . The proof of
Corollary 3.9 applies and the operator �ss is symmetric with respect to the measure
mρn, up to an error which goes to 0 as n → +∞. It follows that the operator �ss is
symmetric with respect to the limit measure m. By Remark 3.10, m = mBR. Since
�ρ0(m) = 0, ρ0 = ∫

SM
B dm = ∫

SM
B dmBR = V. $%

Remark 4.11 Anderson and Schoen [2] described the Martin boundary for the
Laplacian on a simply connected manifold with pinched negative curvature. Reg-
ularity of the Martin kernel in the [2] proof yields, in the cocompact case, nice
properties of the harmonic measure (i.e., the stationary measure for L0 = �s).
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This was observed by [25, 29] and [34]. Ancona [1] extended [2]’s results to the
general weakly coercive operator and proved the basic inequality (4.4). This allowed
Hamenstädt to consider the general case that L = �s + Y , with Y ∗, the dual of
Y in the cotangent bundle to the stable foliation over SM , satisfying dY ∗ = 0
leafwisely [26]. The criterion she obtained for the existence of a L-stationary
ergodic measure m with �L(m) := ∫

M0×∂M̃

(− < Y,X > +B
)

dm > 0 is

P
(− < X,Y >

)
> 0. Our presentation follows [26], with a few simplifications

when Y = ρX. Theorem 4.9 was shown by Kaimanovich [27] in the case ρ = 0.
From [26], Theorem A (2), the measure mBR is the only symmetric measure for
LV . It is not known whether mBR is the only stationary measure for LV . The second
statement in Proposition 4.10 would also follow from such a uniqueness result.

5 Stochastic Flows of Diffeomorphisms and a Relative
Entropy

In this section, we introduce a stochastic flow associated with Lρ. In the case of ρ =
0 our object has been considered as a stochastic (analogue of) the geodesic flow (cf.
[14, 17]). It gives rise to a random walk on the space of homeomorphisms of a bigger
compact manifold and the relative entropy of this random walk of homeomorphisms
is our fourth entropy. The continuity of this entropy as ρ → −∞ will be used to
prove that the measures mρ converge to mL as ρ → −∞ (see Theorem 5.5 below).

5.1 Stochastic Flow Adapted to Lρ

Let OM̃ be the orthonormal frame bundle (OFB) of (M̃, g̃):

OM̃ := {
x �→ u(x) : u(x) = (u1, · · · , ud) ∈ O(SxM̃)

}

and consider OM̃ × {ξ} =: OsSM̃ , the OFB in T W̃ s and OsSM := OsSM̃/�,
the OFB in TWs. For v ∈ SM̃, u ∈ Os

vSM̃ , the horizontal subspace of TuO
sSM̃

is the space of directions w such that ∇uw = 0.
Denote Dr(OsSM̃) (r ∈ N or r = ∞) the space of homeomorphisms % such

that

%(x, u, ξ) := (
φξ (x, u), ξ

)
,

where φξ is a Cr diffeomorphism of OM̃ , which depends continuously on ξ in ∂M̃.

We use stochastic flow theory to define a random walk on D∞(OsSM̃).
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Theorem 5.1 ([17]) Let (0,P) be a R
d Brownian motion (with covariance 2tI).

For P-a.e. ω ∈ 0, all t > 0, there exists %
ρ
t = (

φ
ρ
ξ,t , ξ

) ∈ D∞(OsSM̃) such

that for all u ∈ OsSM̃, (ω, t) �→ ut = φ
ρ
ξ,t (u) solves the Stratonovich Stochastic

Differential Equation (SDE)

dut = ρX̂(ut )+
d∑

i=1

Ĥ (ui
t ) ◦ dBi

t , (5.1)

where X̂, Ĥ (ui) are the horizontal lifts of X, ui ∈ TvW̃
s(v) to TuO

sSM̃ .
Moreover,

1) for P-a.e. ω ∈ 0, all t, s > 0, ρ < V, ξ ∈ ∂M̃,

φ
ρ
ξ,t+s(ω) = φ

ρ
ξ,t (σsω) ◦ φ

ρ
ξ,s(ω),

where σs is the shift on 0,
2) for P-a.e. ω ∈ 0, for all β ∈ �, all t > 0, Dβ ◦ φ

ρ
ξ,t (ω) = φ

ρ
ξ,t (ω) ◦Dβ, and

3) for P-a.e. ω ∈ 0, all t > 0, ρ �→ %
ρ
t (ω) is continuous in D∞(OsSM̃) and the

derivatives are solutions to the derivative SDE.

Relation (5.1) implies that for all (x, ξ, u), u ∈ OSxM̃, the projection of
φ
ρ
ξ,t (ω)(u) on SM̃ is a realization of the Lρ diffusion starting from (x, ξ).

Property 1) and independence of the increments of the Brownian motion give
that if κρ,s is the distribution of %ρ,s(ω) in D∞(OsSM̃), we can write

κρ,s+t = κρ,t ∗ κρ,s,

where ∗ denotes the convolution in the group D∞(OsSM̃). So we have a stochastic
flow. Property 2) yields a stochastic flow on D∞(OsSM). Property 3) will allow to
control derivatives.

Fix t > 0. A probability measure m on OsSM is said to be stationary for κρ,t ,
if for any F ∈ C(OsSM), the set of continuous functions on OsSM ,

∫

OsSM

F(u) dm(u) =
∫

D∞(OsSM)

∫

OsSM

F(%u) dm(u) dκρ,t (%).

Proposition 5.2 Fix any ρ < V, t > 0. The probability measure mρ on OsSM

that projects to mρ on SM and is the normalized Lebesgue measure on the fibers
is stationary for κρ,t . If we identify OsSM = {(x, u, ξ) : x ∈ M0, u ∈ OxM̃, ξ ∈
∂M̃}, then, up to a normalizing constant,

dmρ(x, u, ξ) = dνρ
x (ξ)dVol(x, u).
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5.2 Entropy of a Random Transformation

There is a notion of entropy for random transformations with a stationary measure
(see [31] for details).

Let X be a compact metric space and D0X the group of homeomorphisms of X.
Let κ be a probability measure on D0X and let m be a stationary measure for κ.

Let σ be the shift on (D0X)⊗N, K = κ⊗N the Bernoulli σ -invariant measure, σ the
skew-product transformation on (D0X)⊗N × X

σ(φ, x) := (σφ, φ0x), ∀φ = (φ0, φ1, · · · ) ∈ (D0X)⊗N.

Proposition 5.3 Let m be a stationary measure for κ . Then, the measure K ×m is
σ -invariant.

For φ ∈ (D0X)⊗N, x ∈ X, ε > 0, n ∈ N, define a random Bowen ball by

B(φ, x, ε, n) := {y : y ∈ X, d(φk ◦ · · · ◦ φ0y, φk ◦ · · · ◦ φ0x) < ε, ∀0 ≤ k < n}

and the relative entropy hm(K) as the K-a.e. value of

sup
ε

∫

X
lim sup
n→+∞

−1

n
logm(B(φ, x, ε, n)) dm(x).

With the preceding notations, take X = OsSM, κ = κρ,t for some (ρ, t), ρ <

V, t > 0, and the stationary measure mρ . We want to estimate the relative entropy
hmρ (Kρ,t ).

Proposition 5.4 ([39]) We have

hmρ (Kρ,t ) ≥
∫

log
∣∣∣DetDu%

∣∣
TuOsSM̃

∣∣∣ dκρ,t (%) dmρ(u).

Recall that mρ has absolutely continuous conditional measures on the foliation
Ws

defined by (OM̃ × {ξ})/�. The proof uses ingredients from the proof of Pesin
formula in the non-uniformly hyperbolic case (cf. [42]) and the non-invertible case
[40, 41]. Observe that, even if %−1

∣∣
Ws has only nonnegative exponents, there might

be negative exponents for the random walk, and the inequality in Proposition 5.4
might be strict.

5.3 Continuity of the Relative Entropy

We now indicate the main ideas of the proof of the following theorem
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Theorem 5.5 ([39]) For ρ < V , let mρ be the stationary measure for the diffusion
on SM with generator Lρ = �s + ρX. Then, as ρ → −∞, mρ weak* converge to
the Liouville measure mL.

Corollary 5.6 lim
ρ→−∞

∫
B dmρ = ∫

B dmL = H.

Proof Set κρ = κ
ρ,−1

ρ
. We first observe that as ρ → −∞, κρ weak* converge on

D∞(OsSM) to the Dirac measure on the reverse frame flow %−1. Moreover, for
any r ∈ N, r ≥ 1,

lim sup
ρ→−∞

Cr(ρ) < +∞, where Cr(ρ) :=
∫

‖%‖Dr(OsSM) dκρ(%),

where ‖ · ‖Dr(OsSM) is the supremum of leafwise Cr norm. Indeed, by definition,
κρ is the distribution of the time one of the stochastic flow associated with the
Stratonovich SDE

dut = −X̂(ut )+ −1

ρ

d∑

i=1

Ĥ (ui
t ) ◦ dBi

t .

When ρ → −∞, the SDE converge to the ODE on OsSM, dut = −X̂(ut ).
The convergence, and the control on Cr , follow by continuity of the solutions in
D∞(OsSM).

Let then m be a weak* limit of the measures mρ as ρ → −∞, m its extension to
OsSM by the Lebesgue measure on the fibers. The measure m is ϕ−1 invariant, m is
the weak* limit of the measures mρ , and m is %−1 invariant. Moreover, hm(ϕ−1) =
hm(%−1) (this is a compact isometric extension) and

∫
log

∣∣∣DetDvϕ−1
∣∣
TvWs(v)

∣∣∣ dm(v) =
∫

log
∣∣∣DetDu%−1

∣∣
TuOsSM̃

∣∣∣ dm(u)

= lim
ρ→−∞

∫
log

∣∣∣DetDu%
∣∣
TuOsSM̃

∣∣∣ dmρ(u) dκρ(%).

By [10], the Liouville measure is the only ϕ−1 invariant measure with

hm(ϕ−1) =
∫

log
∣∣∣DetDvϕ−1

∣∣
TvWs(v)

∣∣∣ dm(v).

To conclude the theorem, using Proposition 5.4, it suffices to show

hm(%−1) ≥ lim sup
ρ→−∞

hmρ (Kρ).

This will follow from the properties of the topological relative conditional entropy
in the next subsection. $%
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5.4 Topological Relative Conditional Entropy

The following definition extends the definition of Bowen [7] to the random case,
following Kifer–Yomdin [32] and Cowieson–Young [15].

For ε > 0 and φ ∈ (D0X)⊗N, x ∈ X, τ > 0+, n ∈ N, set r(ε, φ, x, τ, n) for the

smallest number of random B(φ, y, τ, n) balls needed to cover B(φ, x, ε, n) and

hloc(ε, φ) := sup
x

lim
τ→0+

lim sup
n→+∞

1

n
log r(ε, φ, x, τ, n).

The function φ �→ hloc(ε, φ) is σ -invariant. For X = OsSM , write hρ,loc(ε) for
the Kρ-essential value of hloc(ε, φ). The conclusion follows from the two following
facts (cf. [39], Section 4).

Proposition 5.7 For all ε > 0,

hm(%−1) ≥ lim sup
ρ→−∞

hmρ (Kρ)− lim sup
ρ→−∞

hρ,loc(ε).

Proposition 5.8 There is a constant C such that, for all r ∈ N, r ≥ 1, there is ρr

such that, for ρ < ρr,

lim
ε→0+

sup
ρ<ρr

hρ,loc(ε) ≤ C

r
C1,

where C1 = supρ<ρ1

∫ ‖%‖D1(OsSM) dκρ(%).

Proposition 5.7 in the deterministic case is due to Bowen [7]. Proposition 5.8
in the deterministic case is a famous result of Yomdin [53, 54] and Buzzi [13].
By Proposition 5.8, since r is arbitrary, limε→0+ lim supρ→−∞ hρ,loc(ε) = 0.
Proposition 5.7 then yields the claimed inequality.

5.5 Conclusion. Katok’s Conjecture

Let (M, g) be a C∞ d-dimensional Riemannian manifold with negative curvature.
We introduced in Sections 1 and 2 the numbers H, the entropy of the Liouville
measure for the geodesic flow, V, the topological entropy of the geodesic flow, and
the function B on SM . The function B is constant if, and only if (M, g) is a locally
symmetric space (Theorem 1.3). Using thermodynamical formalism, H ≤ V and if
H = V, there exists a continuous function F on SM , C1 along the trajectories of
the flow, such that B = V − ∂

∂t
F ◦ϕt

∣∣
t=0 (see Theorem 2.5). Katok’s conjecture (see

[35] and [55] for some history of this topic) is that this can only happen when (M, g)

is a locally symmetric space, that is, when B is constant on SM . This was proven
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by Katok [30] in dimension 2 and more generally if g is conformally equivalent to a
locally symmetric g0. It was also proven by Flaminio [19] in a C2 neighborhood of a
constant curvature metric g0. Here, we introduced a family of measures mρ, ρ ≤ V,

such that
∫
B dmV = V and for ρ < V,

∫
B dmρ ≤ V with equality only in the

case of locally symmetric spaces (Theorem 4.9). Finally, in the C∞ case, we also
show that limρ→−∞

∫
B dmρ = H (Corollary 5.6).
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Introduction

These notes, echoing a conference given at the Strasbourg–Zurich seminar in
October 2017, are written to serve as an introduction to 2-dimensional quantum
Yang–Mills theory and to the results obtained in the last five to ten years about its
so-called large N limit.

Quantum Yang–Mills theory, at least in the flavour that we will describe,
combines differential geometric and probabilistic ideas. We would like to think,
and hope to convince the reader, that this is less a complication than a source of
beauty and enjoyment.

Some parts of our presentation will rely more distinctly on a probabilistic
or a differential geometric background. We will however always try to keep
technicalities aside and to favour explanation over demonstration. This is thus not,
in the purest sense, a mathematical text: there will be essentially no proof. On the
other hand, we will give fairly detailed examples of some computations that, we
hope, are typical of the theory and illustrate it.

Slightly different in aim and content, but also introductory, the notes [26] written
with four hands with Ambar Sengupta can serve as counterpoint, or complement, to
the present text.
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These notes are split in three parts. In the first, we explain the nature of the
Yang–Mills holonomy process, which is the main object of interest of the theory. We
do it from two perspectives, one differential geometric, and one probabilistic. This
leads us to the definition of Wilson loop expectations, which are the most important
numerical quantities of the theory.

In the second part, we discuss several approaches to the computation of Wilson
loop expectations, and illustrate them on several examples. The large N limit of the
theory makes a first appearance in this section, and we derive by hand some concrete
instances of the Makeenko–Migdal equations which are the subject of the third part.
We also included in the second part a discussion of the holonomy process on the
sphere, and of the Douglas–Kazakov phase transition.

In the third part, we describe the Makeenko–Migdal equations. In keeping with
the style of these notes, we do not offer a proof of these equations, but we describe
as carefully as we can Makeenko and Migdal’s original derivation of them. Then,
we discuss the amount of information carried by these equations and illustrate their
power in the computation of the so-called master field, that is the large N limit of
Wilson loop functionals.

1 Quantum Yang–Mills Theory on Compact Surfaces

1.1 The Holonomy Process and the Yang–Mills Action

The central object of study of quantum 2-dimensional Yang–Mills theory is a
collection of random unitary matrices indexed by the class Lm(M) of Lipschitz
continuous loops based at some point m on a compact surface M . This collection of
random variables is called the Yang–Mills holonomy process and it is denoted by

(H�)�∈Lm(M) (1)

The idea of this collection of random variables arose, along a fairly convoluted
path, from physical considerations relating to the description of certain kinds of
fundamental interactions.1 It is, fortunately, not necessary to be familiar with the
original motivation of Yang and Mills to understand what the Yang–Mills holonomy
process is.

In very broad terms, the basic data of the theory is a compact surface M (for
example a disk, a sphere, a cylinder, a torus) and a compact matrix group G (for

1We will not describe this path, but indicate that it is marked by contributions of Chen Ning Yang
and Robert Mills, the classical reference being [48], of Alexander Migdal, who in [32] provided
mathematicians with a usable description of a crucial part of Yang–Mills theory, of Leonard Gross
who initiated a school of mathematical study of the 2-dimensional Yang–Mills theory [13–15], of
Bruce Driver and Ambar Sengupta, who finally gave in [6, 40] the first mathematically rigorous
definitions of the Yang–Mills holonomy process. This enumeration is of course much too short
not to leave many important contributions aside: a more extensive bibliography can for instance be
found in [26].
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example U(1), SO(3), U(N)). From this data, an infinite dimensional space of
connections can be built2, on which an infinite dimensional symmetry group, the
gauge group acts3, with infinite dimensional quotient, and one of the fundamental
maps of the theory is the holonomy map

{connections}/{gauge group}
holonomy

�� Maps(Lm(M),G)
/
G

On the right-hand side, the action of G on the space of maps from Lm(M) to G is
by conjugation. Leaving this action aside, note that the distribution of the holonomy
process (1) is a probability measure on the space Maps(Lm(M),G). We will call
this space the space of holonomies.

One property that makes the holonomy map so important is that it is injective. It
is thus legitimate to say that a connection is well described by its holonomy.

Another fundamental map of the theory is the Yang–Mills action SYM which is
a non-negative functional traditionally defined on the space of connections, but that
can also be defined on the space of holonomies, so that the situation is

{connections}/{gauge group}
holonomy

��

SYM ����
���

���
���

���
Maps(Lm(M),G)

/
G

SYM�����
���

���
���

[0,∞]
(2)

The Yang–Mills measure is heuristically described as the Boltzmann probability
measure, on the space of connections or on the space of holonomies, associated
with the Yang–Mills action. The typical formula that one finds in the literature is

dμYM(ω) = 1

Z
e−

1
2T SYM(ω) dω (3)

where T is a positive real parameter called the coupling constant. Here, ω is
meant to stand for a connection or for a holonomy, depending on one’s preferred
point of view. This expression is however plagued with difficulties: on the infinite
dimensional spaces where the Yang–Mills measure is supposed to live, there is no
Lebesgue-like reference measure that could reasonably play the role of dω, and
even if there were, one would not expect the Yang–Mills measure to be absolutely

2The exact nature of these connections can be ignored for the moment. If G = U(1), they can be
pictured as magnetic potentials on M .
3In physical terms, two connections related by a gauge transformation represent two magnetic
potentials corresponding to the same magnetic field.
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continuous with respect to it; moreover, because of the action of the gauge group,
the most sensible value for the normalisation constant would be Z = +∞; and one
does finally not expect a typical ω in the sense of the Yang–Mills measure to be
regular enough to have a finite Yang–Mills action.

One of the goals of the 2-dimensional quantum Yang–Mills theory is to find
a way of sorting out these difficulties and to construct rigorously a probability
measure that can honestly be called the Yang–Mills measure. The situation may
look rather desperate, but it is uplifting to realise that after replacing the space of
connections, or holonomies, by a space of real-valued functions on [0, 1] and the
Yang–Mills action by the square of the Sobolev H 1 norm, the analogous problem
is almost just as ill-posed but has a very well-known solution, namely the Wiener
measure. The main difference between the Wiener and the Yang–Mills cases is the
presence in the latter of the gauge symmetry. Symmetry can however be a nuisance
or a guide, and it turns out to be possible, in Yang–Mills theory, to make gauge
symmetry an ally rather than a foe.

We will now describe more precisely the three maps appearing in the diagram
(2). The holonomy map and the Yang–Mills action on the space of connections are
differential geometric in nature. We start by describing them, and then turn to the
Yang–Mills action on the space of holonomies. It would be unfair to say that the
content of Section 1.2 can safely be completely ignored: we will refer to it later, in
particular in Section 3.2. However, it is certainly possible to skip it at first reading
and to jump to Section 1.3.

1.2 The Yang–Mills Action: Connections

In this section, we assume from the reader some familiarity with the differential
geometry of principal bundles. We give brief reminders of the main definitions, but
this is of course not the place for a complete exposition. For details, and although
some might find it too Bourbakist in style, we recommend the second chapter of the
first volume of the classical opus by Kobayashi and Nomizu [21].

1.2.1 The Yang–Mills Action

Although we are concerned in this text with compact surfaces, we will describe the
Yang–Mills action in the more general context of compact Riemannian manifolds
of arbitrary dimension—this is not more difficult.

Let M be a compact connected Riemannian manifold. Let G be a compact Lie
group with Lie algebra g. Assume that g is endowed with a scalar product 〈·, ·〉 that
is invariant under the adjoint representation Ad : G → GL(g).4 Let π : P → M

4The typical example that we have in mind is G = U(N) and, for all X, Y ∈ u(N) skew-Hermitian
N ×N matrices, 〈X, Y 〉 = NTr(X∗Y ).
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be a principal G-bundle over M .5 Let A denote the space of connections on P . It
is an affine subspace of the space of g-valued differential 1-forms on P . For every
connection ω ∈ A , the curvature of ω is the form 0 = dω + 1

2 [ω ∧ ω].6 This g-
valued 2-form on P vanishes on vertical vectors and is G-equivariant. It can thus be
seen as a 2-form on M with values in the adjoint bundle Ad(P ). Using the Hodge
operator of the Riemannian structure of M , one can form the (Ad(P ) ⊗ Ad(P ))-
valued form of top degree 0 ∧ '0 on M . Contracting this form with the Euclidean
structure of Ad(P ) induced by the invariant scalar product on g yields the real-
valued differential form of top degree 〈0 ∧ '0〉. This form can be integrated7 to

5The manifold P is thus acted on, on the right, by G. For small open subsets U of M , the part
π−1(U) of the manifold P that sits above U is equivariantly diffeomorphic to U × G, with π

being the first coordinate map and G acting by translations on the right on the second coordinate.
A principal bundle is trivial if it is globally isomorphic to M ×G.
6This definition of the curvature is made slightly ambiguous by the coexistence, in the literature,
of two different conventions regarding the definition of the exterior product and the exterior
differential of differential forms. Since it took me some time to clarify this elementary point, I
want to record it here, to the price of a rather long footnote.

The two conventions could be called ‘simplicial’ and ‘cubical’ according to their respective
definitions of the exterior product of 1-forms:

(α1 ∧ . . . ∧ αk)(X1, . . . , Xk) =
{ 1

k! det
[
(αi(Xj ))i,j=1...k

]
(simplicial)

det
[
(αi(Xj ))i,j=1...k

]
(cubical)

Each convention is supported by illustrious authors, including, for the simplicial one, Kobayashi
and Nomizu [21, p. 35] and Morita [33, Eq. (2.14) p. 70], and for the cubical one, Spivak [43, p.
203]. Since everyone agrees on the formula d(α∧β) = dα∧β+(−1)deg(α)deg(β)α∧dβ, there must
also be two competing definitions of the exterior differential. Specifically, the two definitions are
related by the formula dsimplicialα = 1

deg(α)+1
dcubicalα (compare, for instance, [21, p. 36] or [33,

Thm. 2.9 p. 71] and [43, Thm 13 p. 213]). The formula dα(X, Y ) = Xα(Y )−Yα(X)−α([X, Y ]),
for instance, belongs to the cubical school.

Returning to the definition of the curvature, it has a different meaning with each convention,
but fortunately, the simple relation 0simplicial = 1

20
cubical holds. Let us be more explicit about

this definition: the expression ω ∧ ω is to be understood as a g ⊗ g-valued 2-form, which is then
composed by the Lie bracket to yield a g-valued 2-form. Explicitly, if X and Y are two vector fields
defined on an open subset of P , then the curvature of ω is defined on this open set by

0cubical(X, Y ) = 20simplicial(X, Y ) = Xω(Y )− Yω(X)− ω([X, Y ])+ [ω(X), ω(Y )]
Note that there is universal agreement on what it means for the curvature to vanish.

Finally, since everyone also agrees that Stokes’ formula is free of any coefficient, each
convention on the definition of the exterior differential entails its own definition of the integral.
This is slightly hidden by the fact that everyone agrees on the formula

∫
[0,1]n dx1 ∧ . . . ∧ dxn = 1

(see [33, Sec. 3.2 (a), p. 104] and [43, Prop. 1 p. 247]), but it must be realised that the differential
form that is denoted by dx1 ∧ . . . ∧ dxn is not the same for everyone. Specifically, the relation is∫ simplicial

α = deg(α)! ∫ cubical
α.

Finally, there is agreement on the meaning of the curvature as a linear map from the space of
smooth 2-chains in P to g.
7The definition of the Yang–Mills action seems to require an orientation of M . In fact, this
orientation is used twice, once to define the Hodge dual '0 of 0 and once to integrate 〈0, '0〉
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yield the Yang–Mills action of ω:

SYM(ω) = 1

2

∫

M

〈0 ∧ '0〉 (4)

In words, the Yang–Mills action of a connection is nothing more than one half of
the squared L2 norm of its curvature.8

Let us describe locally, in coordinates, the scalar function that is integrated over
M to compute SYM(ω). For this, let us consider an open subset U of M on which
there exist local coordinates x1, . . . , xn on M and over which P is trivial. Let us
choose a section9 σ : U → P of P over U . Let us define A = σ ∗ω. Then in
the local coordinates on U , the 1-form A writes A1 dx1 + . . . + An dxn, where
A1, . . . , An are maps from U to g. Then F = σ ∗0 writes

F =
∑

1�i<j�n

(
∂iAj − ∂jAi + [Ai,Aj ]

)
dxi ∧ dxj

and the contribution of U to the Yang–Mills action of ω is

1

2

∫

U

〈0 ∧ '0〉 = 1

2

∑

1�i<j�n

∫

U

∥∥∂iAj − ∂jAi + [Ai,Aj ]
∥∥2 dvol(x)

where dvol(x) is the Riemannian volume measure on M , and ‖ · ‖ is the Euclidean
norm on g associated with the invariant scalar product 〈·, ·〉. The analogy with the
squared Sobolev H 1 norm should be even more obvious on this expression.

1.2.2 Gauge Transformations

The gauge group, that we denote by J , is the group of G-equivariant dif-
feomorphisms of P over the identity of M .10It acts by pull-back on A and a

over M . Reversing the orientation changes the Hodge dual and the integral by a sign, so that if M
is orientable, the definition of SYM is independent of the choice of orientation of M . Moreover, if
M is not orientable, SYM can still be defined using a partition of unity.
8Considering that the curvature is a kind of derivative of the connection, the Yang–Mills action
stands thus in close analogy with the squared H 1 norm of a real-valued function on [0, 1].
9To say that σ is a section of P over U means that π ◦ σ = idU . The existence of such a section
is equivalent to the triviality of the restriction of P over U . In particular, the existence of a global
section σ : M → P is equivalent to the triviality of the bundle π : P → M . The reader who
is more familiar with vector bundles than principal bundles might at first be surprised by this
statement, since a vector bundle can admit a global section, even a non-vanishing one, without
being trivial. However, the existence of a section for a principal bundle corresponds, for a vector
bundle, to the existence of a basis of sections.
10An element j of the gauge group is a diffeomorphism j : P → P that leaves each fibre of P

globally stable, and acts on it in a way that commutes with the action of G on the right on P . For
the bundle P = M × G → M , the gauge group can be identified withJ = C∞(M,G) acting
pointwise on P by multiplication on the left on the second coordinate.
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routine verification shows that it leaves SYM invariant. Thus, the Yang–Mills action
descends to a function

SYM : A /
J → [0,∞)

the study of which is the subject of classical Yang–Mills theory.
Let us display the formulas which give, through a local section of P , the action

of the gauge group on a connection and its curvature. These formulas are indeed
useful, and ubiquitous in the literature. Let j : P → P be a gauge transformation.
Let σ : U → P be a local section of P over an open subset U of M . Then there
exists a unique function g : U → G such that for every x ∈ U , one has j (σ (x)) =
σ(x)g(x). Then, letting j act on a connection ω yields the new connection j · ω =
j∗ω and transforms on one hand A into

Ag = σ ∗(j · ω) = g−1Ag + g−1 dg

and on the other hand F into

Fg = g−1Fg

This formula explains the invariance of the Yang–Mills action: without trying to be
perfectly precise, one can say that the action of a gauge transformation conjugates
the curvature at each point of M by some element of G, and thus leaves its Euclidean
norm unchanged.

1.2.3 Some Questions of Classical Yang–Mills Theory

Let us mention, without giving any details, a few examples of the questions that
arise in the study of the Yang–Mills action.

• The set S−1
YM(0) is the moduli space of flat connections, that is, the quotient of the

set of flat connections by the action of the gauge group. It is a finite-dimensional
orbifold with a rich geometric structure, the study of which is both an old and an
active subject of investigation [11, 12, 20, 28, 29, 45, 46].

• The Yang–Mills action can be understood as arising, through appropriate refor-
mulation and generalisation, from a Lagrangian formulation of Maxwell’s
equations of the electromagnetic field. The critical points of the Yang–Mills
action are thus of special interest: they are, in a sense, the classical physical fields
of Yang–Mills theory. They are called Yang–Mills connections and a milestone
in their study in the 2-dimensional case is [1].

• When M is 4-dimensional, the Yang–Mills action is conformally invariant, in the
sense that it depends on the Riemannian metric on M only through its conformal
class. There is an extensive literature devoted to Yang–Mills connections on 4-
dimensional manifolds [18]. Looking for self-dual Yang–Mills connections on
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R4 that are invariant by translation in two directions, for example, leads to the
study of Hitchin equations and Higgs bundles [19].

• From a physical point of view, the Yang–Mills action of a connection is an
appropriate measure of its non-triviality. From an analytical point of view,
however, it turns out that a natural way of measuring a connection is its Sobolev
H 1 norm.11 The Yang–Mills action is controlled by the H 1 norm, but not
conversely. A flat connection, that is, a connection with Yang–Mills action 0, can
be given an arbitrarily large H 1 norm by an appropriate gauge transformation.
A beautiful theorem of Karen Uhlenbeck states that level sets of the Yang–Mills
action, that is, the sets of the form {SYM � c}, c ∈ R+, are sequentially weakly
compact in H 1 up to gauge transformation: from any sequence of connections
with bounded Yang–Mills action, one can extract a subsequence which, after
suitable gauge transformation of each term, converges weakly in H 1 [44].

• The Yang–Mills action gives rise to a gradient flow, which formally is the solution
of the differential equation ∂tωt = −∇ωt SYM. This is the Yang–Mills flow [36].
There is currently an active investigation of stochastic perturbations of this flow
in cases where M is 2- or 3-dimensional [4, 41].

1.2.4 The Holonomy Map

A fundamental construction associated with a connection is that of the holonomy,
or parallel transport, that it induces. For every continuous and piecewise smooth
curve c : [0, 1] → M , the parallel transport along c determined by the connection
ω is the G-equivariant mapping hol(ω, c) : Pc0 → Pc1 which to every point p of
Pc0 associates the endpoint of the unique continuous curve c̃ : [0, 1] → P such that
c̃0 = p, π ◦ c̃ = c and for all t ∈ [0, 1] at which c is differentiable, ω( ˙̃ct ) = 0.

This parallel transport enjoys the following properties, which are of fundamental
importance.

• It is unaffected by a change of parametrisation of the curve.
• If c : [0, 1] → M is a curve and c−1 denotes the same curve traced backwards,

that is, c−1
t = c1−t , then hol(ω, c−1) = hol(ω, c)−1.

• If c and c′ are two curves such that c1 = c′0, so that the concatenation cc′ is well
defined, then hol(ω, cc′) = hol(ω, c′) ◦ hol(ω, c).

It will be useful to understand a bit more concretely how this parallel transport
can be computed, and how it gives rise to a holonomy in the sense that we gave to
this word in Section 1.1.

Assume that the range of the curve c lies in an open subset U of M over which the
fibre bundle P is trivial.12 Let σ : U → P be a section of P over U . Set A = σ ∗ω.

11Here, we are talking about connections as elements of A , not of the quotient A /J .
12If c does not lie in such an open subset, it can be split into finitely many pieces which do and the
holonomy along c is simply the product of the holonomies along these shorter pieces.
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It is a 1-form on U with values in g. The solution of the differential equation

ḣt = −A(ċt )ht , h0 = 1G (5)

is a curve h : [0, 1] → G which starts from the unit element 1G. The endpoint of
this curve computes the parallel transport along c determined by ω in the sense that

hol(ω, c)(σ (c0)) = σ(c1)h1

This relation is illustrated in Figure 1.
Let us introduce the notation

holσ (ω, c) = h1

the holonomy of ω along c read in the section σ . This object has the drawback of
depending on the choice of a local section of the bundle, but the great advantage of
being fairly concrete, namely an element of G, that is, in many situations, a matrix.

If j ∈J is a gauge transformation of P , recall from Section 1.2.2 that j · ω =
j∗ω is the pull-back of ω by the diffeomorphism j of P . Then the holonomy of j ·ω
along c is related to that of ω by the relation

hol(j · ω, c) = j−1
|Pc1

◦ hol(ω, c) ◦ j|Pc0

Through the local section σ : U → M , and letting g : U → G be the function such
that j (σ (x)) = σ(x)g(x) for every x ∈ U , this relation takes the more explicit form

holσ (j · ω, c) = g−1
c1

holσ (ω, c)gc0 (6)

Fig. 1 The difference between the horizontal lift of c starting at σ(c0), denoted in this picture by
c̃, and σ(c), the image of c by the local section σ , is measured by the function h which solves (5)
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It follows from (6) that for all loop � on M , that is, all curve which ends at
its starting point, the conjugacy class of holσ (ω, �) is not affected13 by a gauge
transformation of ω.

More generally, given a base point m on M , and denoting by L∞
m (M) the class

of piecewise smooth loops on M based at m, the orbit of

(holσ (ω, �) : � ∈ L∞
m (M)) ∈ Maps(L∞

m (M),G)

under the action of G by simultaneous conjugation is not affected by a gauge
transformation of ω. This explains how a connection modulo gauge transformation
defines a holonomy modulo conjugation.

The following result makes precise the statement that the horizontal arrow of (2)
is injective.

Theorem 1.1 Let m be a point of M . Let σ be a section of P in a neighbourhood
of m. For any two connections ω and ω′ on P , the following assertions are
equivalent.

1. There exists a gauge transformation j ∈J such that j · ω = ω′.
2. There exists g ∈ G such that for all loop � ∈ L∞

m (M), the equality holσ (ω′, l) =
g−1holσ (ω, l)g holds.

1.3 The Yang–Mills Action: Holonomies

We will now give an alternative of the Yang–Mills action that is less classical and,
most importantly, specific to the 2-dimensional case. To give an idea of the nature
of this second description, let us pursue the analogy with the Wiener measure and
the Sobolev H 1 norm. Consider a smooth function b : [0, 1] → R with b(0) = 0.
The squared H 1 norm of b can be expressed at least in the following two ways:

‖b‖2
H 1 =

∫ 1

0
|ḃ(t)|2 dt = sup

0�t0<t1<...<tn�1

n∑

k=1

|b(tk)− b(tk−1)|2
tk − tk−1

(7)

The integral expression corresponds to the description of the Yang–Mills action that
we gave in the last section and is very similar to (4). We will now give another
description, similar to the second, more combinatorial one.

13Incidentally, this class does not depend on the local section σ either.
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1.3.1 Holonomies

The main algebraic property of the holonomy of a connection, already mentioned in
Section 1.2.4, is that it is a multiplicative map from L∞

m (M) to G. Let us formulate
this in a slightly different way.

Recall that M is a compact Riemannian manifold and G a compact Lie group.
Let P(M) denote the set of all Lipschitz continuous14 paths on M , two paths being
identified if they differ only by an increasing change of parametrisation. Let us
call a function h : P(M) → G multiplicative if it satisfies the following two
properties.

• For all path c, letting c−1 denote the same path traced backwards, one has
h(c−1) = h(c)−1.

• For all paths c and c′ such that c finishes where c′ starts, so that the concatenated
path cc′ is defined, one has h(cc′) = h(c′)h(c).

More generally, given a subset P of P(M), we say that a function h : P → G

is multiplicative if it satisfies the above conditions whenever all the paths involved
belong to the subset P .

Let us denote by Mult(P(M),G) (resp. by Mult(P,G)) the subset of
Maps(P(M),G) (resp. of Maps(P,G)) formed by all multiplicative maps.

There is an action of the gauge group Maps(M,G) on Mult(P(M),G) defined
as follows. Consider g : M → G and a multiplicative map h : P(M) → G. For all
path c starting at c0 and finishing at c1, define

(g · h)(c) = g−1
c1

h(c)gc0 (8)

an equation that should be compared with (6). It is not difficult to check that the
map g · h is still multiplicative.

Let m be a point of M . A multiplicative function can be restricted to Lm(M)

and the action of Maps(M,G) on this restricted map reduces to the action of G

by conjugation. The following fact may seem surprising at first sight, but it is not
difficult to prove.

Proposition 1.2 For all m ∈ M , the restriction map

Mult(P(M),G)
/
Maps(M,G) −→ Mult(Lm(M),G)

/
G

is a bijection.

14In this text, we consider alternatively paths that are piecewise smooth and paths that are Lipschitz
continuous. We do so for reasons of technical convenience, and the reader should not be overly
worried by what can safely be regarded as a secondary issue.
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We call either side of this bijection the space of holonomies. Thanks to the
multiplicativity and the gauge symmetry, a holonomy can either be seen as a group-
valued function on the set of all paths, or on the set of all loops based at some
reference point m on M .

1.3.2 Graphs on Surfaces

We will now assume that M is a 2-dimensional manifold: it is thus a compact
surface. We announced an expression of the Yang–Mills action similar to the
rightmost term of (7): the role of subdivisions of the interval [0, 1] will be played
by graphs on M . This will be the occasion of a first encounter with this notion that
is central to the construction of the 2-dimensional Yang–Mills measure.

Let us call edge an element of P(M) that is injective — note that this does not
depend on the way in which the path is parameterised. A graph is a finite set of
edges, stable by the reversal map e �→ e−1, and in which any two edges either form
a pair {e, e−1}, or meet, if at all, at some of their endpoints.

The vertices of a graph are the endpoints of its edges. The faces of a graph are the
connected components of the complement in M of the union of its edges. A graph
is conveniently described as a triple G = (V,E,F) consisting of a set of vertices, a
set of edges and a set of faces, but it is in fact entirely determined by the set E of its
edges.

A crucial additional assumption is that every face of a graph must be homeomor-
phic to a disk. This guarantees that the 1-skeleton of the graph correctly represents
the topology of the surface, to the extent that a 1-dimensional object can represent a
2-dimensional one.

1.3.3 The Yang–Mills Action

Let G be a graph on our compact surface M . We will denote byP(G) the set of
paths that can be constructed as concatenations of edges of G. To each face F of
G, we can associate in an almost unequivocal way a loop ∂F that winds exactly
once around F . To give a perfectly rigourous definition of this loop is less simple
than one might expect, but there is nothing counterintuitive in it. It is only almost
well defined because there is no preferred starting point for this loop. However, if
f : P(G) → G is a multiplicative function, then the conjugacy class of the element
h(∂F ) of G is well defined. In particular, the Riemannian distance, in G, between
the element h(∂F ) and the unit element 1G, is well defined.15 This distance is,
moreover, not affected by the action of an element of the gauge group Maps(M,G)

on h.

15This distance is defined by the bi-invariant Riemannian metric on G associated with the invariant
scalar product chosen on its Lie algebra, see the first lines of Section 1.2.1.
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We can now define the Yang–Mills action on the space of holonomies by setting,
for all h ∈ Mult(P(M),G),

SYM(h) = sup

{∑

F∈F

dG(1G, h(∂F ))2

area(F )
: G graph on M

}
(9)

where the area of a face F is computed using the Riemannian structure on M .
It is manifest on this expression that, in the case where M is a surface, the only

part of the Riemannian structure on M that is used in the definition of the Yang–
Mills action is the Riemannian volume, in this case the Riemannian area. This is of
course also true, be it in a slightly less apparent way, of the definition (4).

Proposition 1.3 Assume that M is 2-dimensional. Then the definitions (4) and (9)
of the Yang–Mills action agree. More precisely, for every connection ω inducing a
holonomy h, the equality SYM(ω) = SYM(h) holds.

1.4 The Yang–Mills Holonomy Process

We will now explain how to construct the Yang–Mills holonomy process. Although
the definition of this process is derived, at a heuristic level, from the Yang–Mills
action, the process and the action are logically unrelated. We can thus start afresh,
from a compact surface M on which we have a Riemannian structure, or at least a
measure of area, and a compact Lie group G, on the Lie algebra of which we have
an invariant scalar product.

1.4.1 The Configuration Space of Lattice Yang–Mills Theory

One piece of information that we need to retain from the previous sections is the
notion of graph on our surface M (see Section 1.3.2). Let us choose a graph G =
(V,E,F) on M . The configuration space associated with a graph G on our surface
M is the manifold

CG = {g = (ge)e∈E ∈ GE : ∀g ∈ G, ge−1 = g−1
e } = Mult(E,G)

of all ways of assigning an element of G to each oriented edge, in a way that is
consistent with the orientation reversal.

Recall that we denote by P(G) the set of paths that can be constructed as
concatenations of edges of G. The configuration space CG is naturally in one-to-
one correspondence with the set Mult(P(G),G) of all multiplicative maps from
P(G) to G.
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Choosing an orientation of G, that is, a subset E+ ⊂ E containing exactly one
element in each pair {e, e−1} allows one to realise the configuration space in the
slightly less canonical, but easier to handle, way

CG = GE+

This makes it easy, for instance, to endow CG with a probability measure, namely
the Haar measure on GE+

. The invariance of the Haar measure on the compact
group G under the inverse map x �→ x−1 implies that this measure on CG does not
depend on the choice of orientation. We denote it by dg.

Every path c ∈ P(G) can be uniquely written as a concatenation of edges c =
e
ε1
1 . . . e

εn
n with e1, . . . , en ∈ E+ and ε1, . . . , εn ∈ {−1, 1}. To such a path c =

e
ε1
1 . . . e

εn
n we associate a holonomy map

hc : CG −→ G (10)

g �−→ gεn
en

. . . gε1
e1

Our goal is to endow the configuration space CG with an interesting probability
measure, so as to make the collection of maps (hc)c∈P(G) into a collection of G-
valued random variables.

1.4.2 The Driver–Sengupta Formula

In order to define this probability measure, we need to introduce the heat kernel on
G, or more accurately the fundamental solution of the heat equation. The invariant
scalar product on the Lie algebra g determines a bi-invariant Riemannian structure
on G, and a Laplace-Beltrami operator �. We consider the function p : R∗+ ×G →
R∗+ that is the unique positive solution of the heat equation (∂t − 1

2�)p = 0 with
initial condition p(t, x) dx ⇒ δ1G

as t → 0. We use the notation pt (x) = p(t, x).
A crucial property of this function is that, for all t > 0 and all x, y ∈ G, we have
pt (yxy

−1) = pt (x). We refer to this property as the invariance under conjugation
of the heat kernel.

We mentioned at the end of Section 1.3.3 that, in the 2-dimensional setting, the
Yang–Mills action depends on a Riemannian structure of the surface M only through
the Riemannian area that it induces. We will denote by |F | the area of a Borel subset
F of M .

Given a face F of our graph, recall that we denote by ∂F a path that goes once
around this face in the positive direction. Recall also that this path is ill-defined
because there is no preferred vertex on the boundary of F from which to start it.
However, this indeterminacy only results in an indeterminacy up to conjugation for
the holonomy map h∂F . Thanks to the invariance under conjugation of the heat
kernel, the function g �→ pt (h∂F (g)) is still well defined on CG for every t > 0.
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We can now write the formula which is the basis of the definition of the 2-
dimensional Yang–Mills measure. It is due to Bruce Driver in the case where M

is the plane, or a disk, and to Ambar Sengupta when M is an arbitrary compact
surface. Recall that T is a positive real parameter of the measure. We define, on CG,
the probability measure

dμG,T
YM (g) = 1

Z(G, T )

∏

F∈F
pT |F |(h∂F (g)) dg (DS)

Here, Z(G, T ) is the normalisation constant that makes μ
G,T
YM a probability measure

on CG.
The gauge group Maps(V,G) acts on the configuration space CG by a formula

analogous to (8), and the measure μ
G,T
YM is invariant under this action. Indeed, this

action preserves the reference measure dg and transforms the holonomy along
loops, in this case along boundaries of faces, by conjugation, which leaves the value
of the fundamental solution of the heat equation on these holonomies unchanged.16

16Let us say a word about the way in which the presence of a boundary to the surface M should
be taken into account in (DS), and how to treat the case where M is not orientable. The only place
where we used the orientability and orientation of M is when we defined the boundary of a face
as a loop winding positively around M . However, since the heat kernel also enjoys the invariance
property pt (x) = pt (x

−1), it does not matter which orientation we choose around each face of the
graph. Thus, (DS) is valid without any modification on a non-orientable surface.

In the case where M has a boundary, this boundary is a finite union of circles. Our assumption
that each face of a graph is homeomorphic to a disk implies that each of these circles is a path in
any graph on M . In this case, (DS) still makes sense and corresponds to free boundary conditions
along the boundary of M . Fixed boundary conditions can be imposed: it is possible to insist that the
holonomy along each boundary component belongs to a specific conjugacy class in G. If we wish
to set the boundary condition for which the holonomy along a boundary component c = e1 . . . en
belongs to a conjugacy class C of G, the basic ingredient is the unique probability measure νn,C
on On,C = {(x1, . . . , xn) ∈ Gn : xn . . . x1 ∈ C} invariant under the transitive action of Gn given
by

(y1, . . . , yn) · (x1, . . . , xn) = (y1x1y
−1
n , y2x2y

−1
1 , . . . , ynxny

−1
n−1)

This measure is easily described by the formula
∫

On,C

f dνn,C =
∫

Gn

f (x1, . . . , xn−1, xnzx
−1
n x−1

1 . . . x−1
n−1) dx1 . . . dxn

for an arbitrary z ∈ C. The way in which (DS) should be modified is that the uniform measure
on C should be replaced, for the edges lying on the boundary of M , by the appropriate copy of a
measure of the form νn,C .



290 T. Lévy

1.4.3 Invariance Under Subdivision

Starting from a graph G on our surface M , we built the configuration space CG
and endowed, thanks to the Driver–Sengupta formula, this space with a probability
measure, the lattice 2-dimensional Yang–Mills measure on G. In doing so, we
automatically produced a collection

(hc)c∈P(G) or (h�)�∈Lm(G)

of G-valued random variables.17

The property of this construction that makes it so extremely pleasant is the fact
that it is invariant under subdivision.

To articulate this fundamental property, let us say that a graph G2 is finer than
a graph G1 if G2 can be obtained from G1 by subdividing and adding edges. More
precisely, G2 is finer than G1 if E1 ⊂ P(G2): each edge of G1 is a path in G2. When
this happens, there is a natural map

CG2 −→ CG1

g(2) �−→ (
h(2)
e (g(2))

)
e∈E1

where each edge e of G1 is seen as a path in G2 and thus assigned a holonomy by
the configuration g(2).

The main result of 2-dimensional lattice Yang–Mills theory is the following.

Theorem 1.4 Let G1 and G2 be two graphs on M . Assume that G2 is finer than G1.
Then for all T > 0, the equality Z(G1, T ) = Z(G2, T ) holds and the push-forward
of the measure μ

G2,T

YM by the natural map CG2 → CG1 is the measure μ
G1,T

YM .

This theorem is so important that we are going to give an idea of the mechanism
of its proof.

Proof The first observation is that one can always go from a graph to a finer graph
by an appropriate succession of elementary operations consisting either in adding a
new vertex in the middle of an existing edge or in adding a new edge between two
existing vertices. We need to understand why neither of these elementary operations
affect the partition function, nor transform essentially the measure.

The subdivision of an edge e into two new edges e′ and e′′ amounts, in the integral
defining the partition function and in the expression defining the discrete Yang–
Mills measure, to the replacement of every occurrence of the integration variable ge

by the product of the two new variables ge′′ge′ . The invariance by translation of the
Haar measure ensures that this does not affect the result of any computation.

17Thanks to the multiplicativity of the holonomy and the gauge invariance of the construction of
the lattice Yang–Mills measure, the point of view of a collection of random variables indexed by all
paths in G or by the set of loops based at a specific reference point is equivalent, see Proposition 1.2.
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The case of the addition of a new edge is more interesting. This edge e splits a
face F into two faces F1 and F2, the boundaries of which are of the form ea and
be−1 for some paths a and b. Observe that ba is a loop going along the boundary
of F . In the computation of the partition function of the Yang–Mills measure on the
finer graph, or of the integral of any functional on the configuration space of the
coarser graph with respect to the image of the discrete Yang–Mills measure on the
finer graph, we find an integral of a product of many factors, among which the two
factors

pT |F1|
(
ha(g)ge

)
pT |F2|

(
g−1
e hb(g)

)

contain the only two occurrences of the integration variable ge. We can thus easily
integrate with respect to ge, using the convolution property of the heat kernel,
namely the equality pt ∗ ps = pt+s , to find these two factors replaced by

pT (|F1|+|F2|)
(
ha(g)hb(g)

) = pT |F |
(
hba(g)

) = pT |F |
(
h∂F (g)

)

We are thus left with the partition function, or the integral of our functional, relative
to the coarser graph. $%

The partition function Z(G, T ), which is now promoted to a function of T alone,
is a very interesting object. Let us give without proof an expression of this function.
We use the notation [a, b] = aba−1b−1 for the commutator of two elements a and
b of G.

Proposition 1.5 Assume thatM is a surface of genus g without boundary. Then for
all T > 0, the partition function of the 2-dimensional Yang–Mills theory on M is
given by

ZM(T ) =
∫

G2g
pT |M|([a1, b1] . . . [ag, bg]) da1db1 . . . dagdbg

1.4.4 The Continuum Limit

Up to some conceptually inessential but technically annoying complications, the
invariance by subdivision of the discrete theory allows one to take the limit of the
discrete measures as the graphs on the surface become infinitely fine. The technical
complications have to do with the fact that, because two edges of two distinct
graphs can intersect in a rather pathological way, it is not always true that given two
graphs, there exists a third graph that is finer than these two graphs. The net effect
of this complication is the persistence, in the theorem asserting the existence and
uniqueness of the Yang–Mills holonomy process, of a continuity condition. We say
that a sequence of paths (cn)n�1 on M converges to a path c with fixed endpoints
if all paths c, c1, c2, . . . start at the same point and finish at the same (possibly
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different) point, and if the sequence of the paths (cn)n�1 parameterised at unit speed
converges uniformly to c.

Theorem 1.6 (The Yang–Mills holonomy process, [23, 40]) Let M be a compact
surface endowed with a smooth18 measure of area. Let G be a compact Lie group,
the Lie algebra of which is endowed with an invariant scalar product. There exists
a collection of G-valued random variables (Hc)c∈P(M) such that

• for every graph G = (V,E,F), the distribution of (He)e∈E is the measure μ
G,T
YM ,

• whenever a sequence (cn)n�1 of paths converges with fixed endpoints to a path
c, the sequence of random variables (Hcn)n�1 converges in probability to Hc.

Moreover, any two collections of G-valued random variables with these properties
have the same distribution.

The Yang–Mills holonomy process (Hc)c∈P(M) is invariant in distribution under
the action of the gauge group. This means that for every function g : M → G, the
following equality in distribution holds:

(
g(c)−1Hcg(c)

)

c∈P(M)

(d)= (Hc)c∈P(M) (11)

where c and c denote respectively the starting and finishing point of a path c. In
particular, the distribution of Hc is uniform on G for every path c that is not a
loop. Of course, this huge collection of uniform random variables is correlated in a
complicated way, in particular to allow the random variables associated with loops
to have non-uniform distributions.

The holonomy process also enjoys a property of invariance under area-preserving
maps of M: if φ : M → M is an area-preserving diffeomorphism, then φ preserves
the class P(M) and the family (Hφ(c))c∈P(M) has the same distribution as the
family (Hc)c∈P(M). This is because the Driver–Sengupta formula depends only
on the combinatorial structure of the graph under consideration, and on the areas
of its faces. This is consistent with the fact that the Yang–Mills action, which we
originally defined on a Riemannian manifold by (4), depends, if the manifold is 2-
dimensional, on the Riemannian structure only through the Riemannian area. We
already mentioned this important point in relation with the expression (9) of the
Yang–Mills action.

18By a smooth measure, we mean a measure that admits a smooth positive density with respect to
the Lebesgue measure in any coordinate chart.
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1.4.5 The Structure of the Holonomy Process

The structure of the Yang–Mills holonomy process can be described fairly con-
cretely provided one understands the structure of the set of loops on a graph.

Let us consider a graph G on M and a vertex m of this graph. We denote naturally
by Lm(G) the set of loops in G based at m. The operation of concatenation makes
Lm(G) a monoid, with unit element the constant loop at m. Each element � of this
monoid has an ‘inverse’ �−1, but it is not true, unless � is already the constant loop,
that ��−1 is the constant loop. In order to make Lm(G) a group, into which �−1 is
truly the inverse of �, it is natural to introduce on it the backtracking equivalence
relation, for which two loops are equivalent if one can go from one to the other by
successively erasing or inserting sub-loops of the form ee−1, where e is an edge of
the graph.

Each equivalence class of loops contains a unique loop of shortest length, which
is also the unique reduced loop in this class, where by a reduced loop we mean one
without any sub-loop of the form ee−1.

Moreover, concatenation is compatible with this equivalence relation and the
quotient monoid is a group. This quotient monoid can be more concretely described
as the set L red

m (G) of reduced loops endowed with the operation of concatenation-
followed-by-reduction.

With this group of reduced loops in hand, we can make several observations.

• Each element g of the configuration space CG induces, by the holonomy map,
a map L red

m (G) → G, which sends a loop � to h�(g). This map is a group
homomorphism, and the map

CG −→ Hom(L red
m (G),G)

is onto. Moreover, it descends to a bijection

CG/Maps(V,G)
∼−→Hom(L red

m (G),G)/G

where the action on the left is that of the gauge group, and on the action on the
right is that of G by conjugation.

• Let � denote the 1-skeleton of the graph, that is, the union of the ranges of its
edges. The map L red

m (G) → π1(�,m) which simply sends a reduced loop to its
homotopy class is an isomorphism.

• The group L red
m (G), being isomorphic to the fundamental group of a graph, or

of a 1-dimensional complex, is a free group. The rank of this group is equal to
|E| − |V| + 1 = |F| − χ(M) + 1 = |F| + 2g − 1, where χ(M) is the Euler
characteristic of M and g its genus.
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It is useful to recognise that the free group L red
m (G) admits nice bases.19 Let us

call lasso around a face F of G any loop of the form c.∂F.c−1, where c is a path
from m to a vertex on the boundary of F , and ∂F is a loop going once around F .

It is now quite easy to describe the holonomy process. Let us begin with the case
of the plane, or the disk.

Proposition 1.7 Assume that M is a disk or the plane. Let G be a graph on M . The
free group L red

m (G) admits a basis {λF : F ∈ F} such that

• for each face F , the loop λF is a lasso around F ,
• under the lattice Yang–Mills measure μ

G,T
YM , the random variables (HλF

:
F ∈ F) are independent, each HλF

being distributed according to the measure
pT |F |(g) dg.

In a sense, the holonomy process has independent increments distributed accord-
ing to the fundamental solution of the heat equation: it can be described as a
‘Brownian motion on G indexed by loops’ on the disk, or on the plane. The role
of time is played by area, and increments occur along faces of the graph, or lassos,
instead of intervals of time.

In the case of a closed surface, the situation is slightly different. In this case, the
most natural presentation of the group L red

m (G) is not as a free group (which it is),
but with one generator too many, and one relation.

Proposition 1.8 Assume that M is a closed surface of genus g. Let G be a graph
on M . Set r = |F|. The free group L red

m (G) admits a presentation

L red
m (G) = 〈

λF1, . . . , λFr , a1, b1, . . . , ag, gb

∣∣ [a1, b1] . . . [ag, bg] = λF1 . . . λFr

〉

where

• the loops λF1, . . . , λFr are lassos around the r faces of G,
• the homotopy classes of the loops a1, b1, . . . , ag, bg generate π1(M,m),
• for every test function f : G2g+r → C, one has

∫

C
f (Hλ1 , . . . , Hλr ,Ha1 ,Hb1 , . . . , Hag ,Hbg ) dμG,T

YM (12)

= ZM(T )−1
∫

G2g+r−1
f (z1, . . . , zr−1, zr , x1, y1, . . . , xg, yg)pT |F1|(z1) . . .

pT |Fr |(zr ) dz1 . . . dzr−1 dx1 dy1 . . . dxg dyg

where in the last integral, zr stands for

19Recall that a free group admits bases, that is, subsets by which it is freely generated. Any two
bases have the same cardinality, called the rank of the group. Any subgroup of a free group is itself
a free group, but the rank of a subgroup can be larger than the rank of the group. In fact, the free
group of rank 2 contains subgroups of arbitrary finite or (countably) infinite rank.
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zr = (zr−1 . . . z1[ag, bg] . . . [a1, b1])−1

Let us try to spell out the probabilistic content of this result. The presenta-
tion of the group L red

m (G) that we chose splits it into a homotopically trivial
part, giving rise to the random variables Hλ1 , . . . , Hλr , and a system of gen-
erators of the fundamental group of M , associated with the random variables
Ha1 ,Hb1 , . . . , Hag ,Hbg . A particular role is played by the homotopically trivial
loop C = [a1, b1] . . . [ag, bg].
• The distribution of the random variable HC is such that for every continuous test

function f̃ : G → C,

∫

CG

f̃ (HC) dμG,T
YM = ZM(T )−1

∫

G2g
(f̃ pT |M|)([a1, b1] . . . [ag, bg]) da1 db1 . . . dag dbg

This does not seem to be a particularly well-known distribution. It needs not
have a density with respect to the Haar measure: for instance if G = U(N),
it is supported by the Haar-negligible subgroup SU(N). However, it is, by
definition, absolutely continuous with respect to the distribution of the product
of g independent commutators of independent uniformly distributed random
variables, and this distribution, for example if G = SU(N) and provided
g � 2, is absolutely continuous with respect to the Haar measure. It is also
possible to write a Fourier series for this distribution, but it involves Littlewood–
Richardson coefficients, or more generally an understanding of the tensor product
of irreducible representations of G.

• Conditional on HC , the families (Hλ1 , . . . , Hλr ) and (Ha1,Hb1 , . . . , Hag ,Hbg )

are independent. It is also true that the random variables

(Hλ1 , . . . , Hλr ) mod G and (Ha1,Hb1 , . . . , Hag ,Hbg ) mod G

with values in Gr/G and G2g/G, where G acts by conjugation, are independent
conditional on HC mod G, that is, conditional on the conjugacy class of HC .

On a surface of genus g, the probabilistic backbone of the holonomy process
can thus be described as consisting of a segment of a Brownian motion on G of
length T |M| and 2g independent Haar distributed random variables on G, jointly
conditioned on the final point of the Brownian motion being equal to the products
of the g commutators of the uniform random variables taken in pairs.

The case where M is a sphere is special, in the sense that it involves no uniform
random variables, but only a Brownian bridge on G going from 1G to 1G in a time
equal to T times the total area of the sphere.
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1.5 Wilson Loop Expectations

A different approach to the description of the distribution of the Yang–Mills
holonomy process consists in identifying a natural class of scalar, gauge-invariant,
functionals of this process, the distribution of which is hoped to contain as much
information as possible. The most natural class of such functionals is that of Wilson
loop functionals, which are indeed the most important scalar observables of the
theory. A Wilson loop functional is constructed by choosing a certain number of
loops �1, . . . , �n on M , then the same number of conjugation-invariant functions
χ1, . . . , χn : G → C and by forming the product

χ1(H�1) . . . χn(H�n) (13)

When G is a group of matrices, the simplest choice of conjugation-invariant function
is the trace. The Wilson loop expectations, which play in this theory the role of n-
point functions, are the numbers

E[Tr(H�1) . . .Tr(H�n)] (14)

the computation of which is a seemingly endless subject of reflection. We will
discuss in the next section a few concrete examples of computation of such numbers.
For the time being, let us say a word about the amount of information that they carry.

Suppose we know the collection of all the numbers (14), or more generally the
expectation of all functionals of the form (13). Then we know the joint distribution
of all random variables of the form χ(H�) where � is a loop and χ : G → C is
an invariant function. Since G is compact, invariant functions separate conjugacy
classes and we know, in fact, the joint distribution of the conjugacy classes of all
variables H�. This is certainly an important piece of information. However, the form
of the action of the group of gauge transformations on the collection of holonomies,
as given by (11), indicates that this action preserves more than just the individual
conjugacy classes of the holonomies. Indeed, if �1, . . . , �n are based at the same
point, then it is the orbit of (H�1 , . . . , H�n) under the operation of simultaneous
conjugation

(h1, . . . , hn) �→ (gh1g
−1, . . . , ghng

−1)

that is gauge-invariant. To grasp the geometric meaning of this invariance, it is
useful to take a concrete example for G, say G = SU(N) or even G = SO(3). In
these groups, knowing the individual conjugacy classes of a collection of elements
amounts to knowing their eigenvalues, that is, in the case of SO(3), the angles
of the rotations. On the other hand, to know the orbit of these elements under
simultaneous conjugation requires the additional knowledge of the relative positions
of their eigenspaces, or for rotations, the relative positions of their axes.
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The main question is then the following. Is it the case that the Wilson loop
expectations describe not only the individual conjugacy classes of the G-valued
random variables that constitute the Yang–Mills process, but also the simultaneous
conjugacy class of all variables associated with the loops based at some point m of
M? In more precise terms, is it true that the algebra of functions on A /J generated
by Wilson loop functionals separates points? If not, it cannot be said that the Wilson
loop functionals constitute a complete set of gauge-invariant scalar observables.

The answer turns out to depend entirely on the group G, and it does not seem
to be known in all cases, even for compact Lie groups.20 The property that G must
have for the answer to be positive is the following.21

Definition 1 (Property W) We say that a group G has the property W if for any
n � 2 and any two collections x1, . . . , xn and x′1, . . . , x′n of elements of G, the
assumption that every word in x1, . . . , xn and their inverses is conjugated to the
same word in x′1, . . . , x′n and their inverses implies the existence of an element y of
G such that x′1 = yx1y

−1, . . . , x′n = yxny
−1.

Since this long definition is maybe not very pleasant to read, let us word it
differently. We are comparing two relations between n-tuples (x1, . . . , xn) and
(x′1, . . . , x′n) of elements of G. The first is the relation of simultaneous conjugation

∃y ∈ G, x′1 = yx1y
−1, . . . , x′n = yxny

−1 (SC)

The second could be called lexical conjugation and holds exactly when

every word in x1, . . . , xn is conjugated to the same word in x′1, . . . , x′n (LC)

where a word in a certain set of letters can involve these letters and their inverses.
We also considered a third property of individual conjugation

∃y1, . . . , yn ∈ G, x′1 = y1x1y
−1
1 , . . . , x′n = ynxny

−1
n (IC)

In any group, one has the chain of implications

(SC) ⇒ (LC) ⇒ (IC)

Unless the group G has very special properties (for instance that of being abelian),
the second implication is not an equivalence, and the property (IC) is much weaker
than the property (LC). For the group G to have the property W means that the
properties (SC) and (LC) are equivalent. The proof of the following result can be
found in [22], see also [10, 39].

20It would be more prudent to say that it is not known to the author.
21The name of Property W is by no means standard.
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Theorem 1.9 Any Cartesian product of special orthogonal, orthogonal, special
unitary, unitary and symplectic groups has the property W.

It is known that some non-compact groups fail to have the property W. However,
it seems not be known whether this equivalence holds, for instance, for spin groups.

2 Computation of Wilson Loop Expectations

In this section, we will give a few concrete examples of computations with the
Yang–Mills holonomy process, with an eye to its so-called large N limit, that is,
its behaviour when the group G is taken to be U(N) with an appropriately scaled
invariant product on its Lie algebra, and N tends to infinity.22

The basis of virtually any computation in 2-dimensional Yang–Mills theory is the
Driver–Sengupta formula (DS). This formula can be combined with an expression
of the heat kernel on G, for example its Fourier expansion, and lead to very
concrete calculations. It is also possible to use a more dynamical, either analytic
or probabilistic approach to the heat kernel, by seeing it as the solution of the heat
equation or, almost equivalently, as the density of the distribution of the Brownian
motion on G. We will illustrate these possibilities on a few examples in the simplest
case where M is the plane, and then turn to the much more complicated case where
M is the 2-dimensional sphere. For the sake of simplicity, we will assume in this
section that the coupling constant T that appears in (DS) is equal to 1.

2.1 The Brownian Motion on the Unitary Group

In order to be as concrete as possible, and because we are interested in the large N

limit, we will in this section choose G = U(N), the unitary group of rank N . As
indicated earlier (see Footnote 4), we endow the Lie algebra of U(N), which is the
space u(N) of N × N skew-Hermitian matrices, with the scalar product 〈X, Y 〉 =
NTr(X∗Y ). In the Euclidian space (u(N), 〈·, ·〉), we consider a linear Brownian
motion (Kt )t�0, use it to form the stochastic differential equation

dUt = Ut dKt − 1

2
Ut dt , U0 = IN (15)

and call the unique solution to this equation the Brownian motion on U(N).

22The notion of large N limit also applies to the cases where G = SO(N) and G = Sp(N), the real
and quaternionic analogues of U(N) or SU(N). As far as we understand today, there is no essential
difference between the three cases. More precisely, the computations for finite N are similar in the
three cases, if generally a bit more complicated in the orthogonal case and even more so in the
symplectic case, and the large N limits are identical.
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Using the notation Tr for the usual trace of a N × N matrix and tr = 1
N

Tr for
its normalised trace, the usual rules of stochastic calculus take, in this matricial
context, the following nice form: for all N × N matrix A, measurable with respect
to σ(Ks : s � t), we have

dKtA dKt = −tr(A) dt and dKt tr(A dKt) = − 1

N2
A dt (16)

This relation can be used to check that d(UtU
∗
t ) = 0, so that the trajectories of the

process B stay almost surely, as expected, in U(N).
The density of the distribution of Ut with respect to the normalised Haar measure

on U(N) is the function pt appearing in the Driver–Sengupta formula, and that we
described in Section 1.4.2.

It will be useful to know the Fourier series of this function pt : U(N) → R.
To describe it, let us introduce the set Û(N) of equivalence classes of irreducible
representations (or irreps) of U(N). For every α ∈ Û(N), let us denote by dα the
degree of α, that is, the dimension of the space on which U(N) acts through α. Let
us also denote by χα : U(N) → C the character of α, and by c2(α) the quadratic
Casimir number of α, that is, the non-negative real number such that

�χα = −c2(α)χα

The Fourier series of the heat kernel is then

pt =
∑

α∈Û(N)

e−
c2(α)t

2 dαχα (17)

and there is nothing specific to U(N) in this formula.
It is however possible, in the case of U(N), to write explicitly each of its

ingredients. Indeed, the set of irreps of U(N) is conveniently labelled by non-
increasing sequences of N relative integers λ = (λ1 � . . . � λN), called dominant
weights. The dimension and quadratic Casimir number of the irrep with highest
weight λ are given by the formulas

dλ =
∏

1�i<j�N

λi − λj + j − i

j − i
and Nc2(λ) =

∑

1�i�N

λ2
i +

∑

1�i<j�N

(λi − λj )

(18)
The character of this representation is given, up to a power of the determinant, by a
Schur function, but we will not need its explicit formula.

We are now equipped to make some computations with the Yang–Mills holon-
omy process.
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2.2 The Simple Loop on the Plane

2.2.1 Using Harmonic Analysis

Let us consider, on the plane, a loop � that is a simple loop going once around a
domain of area t (see, if needed, Figure 2). The partition function of the Yang–Mills
model on the plane is equal to 1 and the Driver–Sengupta formula (DS) tells us that
for every continuous test function f : U(N) → C, we have

E[f (H�)] =
∫

U(N)

f (x)pt (x) dx

In other words, H� has the same distribution as Ut , the value at time t of the
Brownian motion on U(N) defined in the previous section.

Using the Fourier expansion (17) and the classical orthogonality relations
between characters, we find, for every irrep α of U(N) acting on the vector space
Vα , the equality

E[α(H�)] = e−
c2(α)t

2 idVα

which holds in End(Vα). In particular, since the usual trace is, on U(N), the
character of the natural representation, which has highest weight (1, 0, . . . , 0),
dimension N and quadratic Casimir 1, we find

E[H�] = e−
t
2 IN and E[tr(H�)] = e−

t
2 (19)

Fig. 2 A simple loop on the plane
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Suppose now that we want to compute the expectation of tr(H 2
� ), which is also

the expectation of tr(H�2), where �2 is the loop � gone along twice. From the
Driver–Sengupta formula and the Fourier expansion of the heat kernel, we get the
expression

E[tr(H 2
� )] =

∑

λ∈Û(N)

e−
c2(λ)t

2 dλ

∫

U(N)

tr(x2)χλ(x) dx

In order to go further, we need to know that, at least when N � 2,

tr(x2) = χ(2,0,...,0)(x)− χ(1,1,0...,0)(x)

Using again the orthogonality of characters, we find, after some reordering of the
terms,

E[tr(H 2
� )] = e−t

(
cosh

t

N
−N sinh

t

N

)
(20)

It is possible to go further down this road, by systematically writing the function
x �→ tr(xn) as a linear combination of characters. This is what Philippe Biane did
to determine the large N limit of the non-commutative distribution of the Brownian
motion on the unitary group. The simplest non-trivial case is the large N limit of
(20):

lim
N→∞E[tr(H 2

� )] = e−t (1 − t) (21)

The general formula is nice enough, at least in the limit when N tends to infinity,
to be quoted explicitly. It was discovered independently by Philippe Biane and Eric
Rains, who formulated it in terms of the Brownian motion on U(N) rather than the
Yang–Mills holonomy process.

Theorem 2.1 (Biane [2], Rains [37]) With the current notation, and for every
integer n � 1,

lim
N→∞E[tr(Hn

� )] = e−
nt
2

n−1∑

k=0

(−t)k

k! nk−1
(

n

k + 1

)
(22)

It must be said that this result already appeared, without proof, in Isadore Singer’s
seminal paper on the large N limit of the Yang–Mills holonomy field [42].23

23Singer and Rains recognise, in the right-hand side of (22), modified Laguerre polynomials of the
first kind. As far as I know, a structural explanation for the appearance of these polynomials in this
context has yet to be given.
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One of Biane’s aims in [2] was to prove the following theorem concerning
the limit as N tends to infinity of the Brownian motion on U(N) as a stochastic
process. This convergence result is stated in the language of free probability, a theory
presented in detail in the book of Alexandru Nica and Roland Speicher [34].

Theorem 2.2 (Biane [2]) As N tends to infinity, the Brownian motion on U(N)

converges in non-commutative distribution, as a process, towards a unitary non-
commutative process (ut )t�0 with free stationary multiplicative increments such
that for all integer n � 0 and all real t � 0, the expectation of un

t and that of (u∗t )n
are given by the right-hand side of (22).

2.2.2 Using Stochastic Calculus

Let us illustrate, on the same example of a simple loop on the plane, the dynamical
approach to the same computations, based on the use of Itō’s formula. The general
principle of these computations is to see the quantities such as the left-hand sides of
(19) and (20) as functions of t , and to write a differential equation that they satisfy.
Recall that t , in our current notation, is the area of the disk enclosed by the simple
loop �. A variation of t can thus be described, in geometrical terms, as a variation
of the area of the unique face enclosed by �.

As a first example, let us use (15) and Itō’s formula to find

d

dt
E[tr(H�)] = d

dt
E[tr(Ut )] = −1

2
E[tr(Ut )]

which, together with the information E[tr(U0)] = 1, yield immediately (19).
Let us apply the same strategy to the computation of E[tr(H 2

� )] = E[tr(U2
t )]. The

computation is more interesting and involves the first of the two rules (16). We find

d

dt
E[tr(U2

t )] = −E[tr(U2
t )] − E[tr(Ut )

2] (23)

and see a function of t pop up that we were initially not interested in, namely
E[tr(Ut )

2]. The only way out left to us is retreat forwards and we compute the
derivative with respect to t of this new function, using now the second rule of (16):

d

dt
E[tr(Ut )

2] = − 1

N2E[tr(U2
t )] − E[tr(Ut )

2] (24)

All’s well that ends well: (23) and (24) form a closed system of ordinary differential
equations that is easily solved and from which we recover, in particular, (20). As a
bonus, we get

E[tr(H�)
2] = e−t

(
cosh

t

N
− 1

N
sinh

t

N

)
(25)
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The only change with respect to (20) is the change from N to 1
N

in front of the
hyperbolic sine, with the effect that

lim
N→∞E[tr(H�)

2] = e−t = lim
N→∞E[tr(H�)]2 (26)

This is an instance of a general factorisation property which was observed, among
others, by Feng Xu [47], and which is a consequence of the concentration, in the
limit where N tends to infinity, of the spectra of the random matrices that we are
considering.

2.3 Yin . . .

Let us consider a slightly more complicated loop depicted on Figure 3. This loop
goes once around a domain of area s + t and then once around a smaller domain of
area t contained in the first one.

Let us apply the Driver–Sengupta formula in this case. We denote a generic
element of the configuration space U(N)2 by (xa, xb), in relation with our labelling
by a and b of the two edges of the graph formed by �. Thus, for every continuous
test function f : U(N) → C, we have

E[f (H�)] =
∫

U(N)2
f (xbxa)ps(x

−1
b xa)pt (xb) dxa dxb

Note that, according to (10), the discrete holonomy map is order-reversing, so that
the loop � = ab gives rise to the map h�(xa, xb) = xbxa .

The change of variables (y, z) = (x−1
b xa, xb) preserves the Haar measure on

U(N)2 and we have

E[f (H�)] =
∫

U(N)2
f (z2y)ps(y)pt (z) dy dz (27)

Fig. 3 The loop � goes first once along the larger circle (the edge a) and then once along the
smaller circle (the edge b). The loop ab is equivalent to the concatenation of ab−1, b and b. The
loops ab−1 and b are essentially simple loops surrounding disjoint domains
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This corresponds to the fact, explained in the caption of Figure 3, that the loop � can
be written as �1�2�2, where �1 goes around the moon-shaped domain sitting between
the two disks, and �2 goes around the small circle of area t . These loops enclose
disjoint domains, and although �1 is not strictly speaking self-intersection free, they
are essentially simple, in the sense that they can be approximated by simple loops.

From this graphical decomposition of �, or from (27), we infer that H� has
the distribution of V 2

t Us , where U and V are independent Brownian motions on
U(N).24 Using the independence, the fact that the expectation of Us is e− s

2 IN (see
(19)), and (20), we find

E[tr(H�)] = e−
s
2−t
(

cosh
t

N
−N sinh

t

N

)
(28)

and, letting N tend to infinity,

lim
N→∞E[tr(H�)] = e−

s
2−t (1 − t) (29)

We succeeded in computing the expectation of tr(H�), but we did so by taking
advantage of the favourable circumstances, namely the fact that the word V 2

t Us is
a very simple one, with two independent Brownian motions appearing one after the
other (and not, for example, as UsVtUsVt ), and the fact that the expectation of Us is
a very simple matrix.

A more systematic approach is possible, by looking at E[tr(V 2
t Us)] as a function

of s and t and by using Itō’s formula to compute its partial derivatives. One finds

∂sE[tr(V 2
t Us)] = −1

2
E[tr(V 2

t Us)]

∂tE[tr(V 2
t Us)] = −E[tr(V 2

t Us)] − E[tr(Vt )tr(VtUs)]

Once again, a function appears that we were not considering at first. Let us apply
the same treatment to this new function:

∂sE[tr(Vt )tr(VtUs)] = −1

2
E[tr(Vt )tr(VtUs)]

∂tE[tr(Vt )tr(VtUs)] = −E[tr(Vt )tr(VtUs)] − 1

N2
E[tr(V 2

t Us)]

It is possible to solve this system and to recover (28).

24Thanks to the independence of the multiplicative increments of the Brownian motion, this
distribution is of course also that of V 2

t (V
−1
t Vt+s ) = VtVs+t . Reasoning in this way amounts

to undo the change of variables that we did to obtain (27).
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An interesting observation is the fact that the linear combination 2∂s − ∂t of
partial derivatives is particularly simple:

(2∂s − ∂t )E[tr(V 2
t Us)] = E[tr(Vt )tr(VtUs)] (30)

and (2∂s − ∂t )E[tr(Vt )tr(VtUs)] = 1

N2
E[tr(V 2

t Us)] (31)

These are instances of the Makeenko–Migdal equations that we will discuss in
greater detail in the next section. Before that, let us study another example.

2.4 . . . And Yang

Let us now consider the eight-shaped loop drawn on Figure 4. The Driver–Sengupta
formula yields, with the by now usual notation, and taking the inversion of the order
into account,

E[f (H�)] =
∫

U(N)6
f (xf xexdxcxbxa)ps(xaxcxe)pt (xf xbxd)pu(x

−1
c xf )pv(x

−1
a xd) dx

The appropriate change of variables is dictated by the geometry of the loop, more
precisely by a decomposition in product of lassos, one of which is given in the
caption of Figure 4. Accordingly, let us set

(y, z, g, h, e, f ) = (xcxexa, xf xbxd, xcx
−1
f , x−1

d xa, xe, xf )

Fig. 4 An eight-shaped loop on the plane. The letters s, t, u, v in the faces indicate the areas of
the faces. The other letters label the edges of the graph. The loop can be decomposed, as we did
for the heart-shaped loop, as a product of lassos enclosing pairwise disjoint domains: abcdef =
(ad−1)(dbf )(f−1c)(da−1)(aec)(c−1f ). Here, by a lasso, we mean a loop of the form clc−1,
where c is a path starting from the starting point of our loop and l is a simple loop. In this particular
case, the path c is always the constant path
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This change of variables preserves the Haar measure on U(N)6.25 Thus, we find

E[f (H�)] =
∫

U(N)4
f (g−1yh−1gzh)ps(y)pt (z)pu(g)pv(h) dg dh dy dz

after integrating with respect to e and f which do not appear in the integrand. Thus,
considering four independent Brownian motions G,H,Z, Y on U(N), we find the
equality in distribution

H�
dist.= G−1

u YsH
−1
v GuZtHv (32)

The quantity E[tr(H�)] appears now as a function of the four real parameters
s, t, u, v and we can use stochastic calculus to differentiate it with respect to each
of them. In fact, using the first assertion of (19), which in the language of Brownian
motion reads E[Ys] = e− s

2 IN and E[Zt ] = e− t
2 IN , we can simplify the problem to

E[tr(H�)] = e−
s+t

2 E[tr(G−1
u H−1

v GuHv)]

The expectation in the right-hand side of this equality is a symmetric function of u

and v. Using stochastic calculus, we find

∂uE[tr(G−1
u H−1

v GuHv)] = −E[tr(G−1
u H−1

v GuHv)] + E[tr(H−1
v )tr(Hv)] (33)

The new function E[tr(H−1
v )tr(Hv)] of v can in turn be computed using Itō’s

formula, since it is equal to 1 when v = 0 and satisfies the differential equation

∂vE[tr(H−1
v )tr(Hv)] = −E[tr(H−1

v )tr(Hv)] + 1

N2

25This is because the normalised Haar measure on U(N)n, or on Gn for any compact topological
group G, is pushed forward onto itself by each of the elementary maps

• (x1, x2, . . . , xn) �→ (x−1
1 , x2, . . . , xn)

• (x1, x2, . . . , xn) �→ (x1x2, x2, . . . , xn)

• (x1, . . . , xn) �→ (xσ(1), . . . , xσ(n)), where σ is any permutation of {1, . . . , n}
and it is not difficult to check that our change of variables can be obtained as a composition of
these maps.

Interestingly, these elementary operations are exactly the Nielsen transformations, which
generate the group of automorphisms of the free group of rank n (see [30]). Thus, the random
homomorphism from the free group Fn to a compact topological group G constructed by picking
a basis of Fn and sending this basis to a uniformly chosen element of Gn does not depend, in
distribution, on the basis of Fn used to construct it. In particular, the distribution of the image
of every element of the free group is intrinsically defined, and one may for instance wonder, for
specific or for general G, which elements of Fn are sent to a uniformly distributed element of G. I
am grateful to the referee for pointing out to me that this problem was solved for finite groups in
[35].
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which is solved in

E[tr(H−1
v )tr(Hv)] = 1

N2 (1 − e−v)+ e−v (34)

Replacing in (33) and solving, we find finally

E[tr(H�)] = e−
s+t

2

(
e−u + e−v − e−(u+v) + 1

N2 (1 − e−u)(1 − e−v)
)

(35)

and, letting N tend to infinity,

lim
N→∞E[tr(H�)] = e−

s+t
2
(
e−u + e−v − e−(u+v)

)
(36)

We did these computations without taking great care of a possible geometric
meaning of the successive steps. Anticipating our discussion of the Makeenko–
Migdal equations, it is interesting to check that

(∂u + ∂v − ∂s − ∂t )E[tr(H�)] = e− s+t
2

(
e−(u+v) + 1

N2
(1− e−(u+v))

)
= E[tr(H�′)tr(H�′′)]

(37)
where �′ and �′′ are the loops drawn on Figure 5.

Perhaps even more interesting than the fact that (37) holds, which after all is a
consequence of Theorem 3.1, is the observation that (37) does not seem to be easily
guessed from (32) and Itō’s formula. More precisely, Itō’s formula allows us to give
an expression of the left-hand side of (37) and it is not obvious that this expression
coincides with the right-hand side of (37). We take this as a sign that the Makeenko–
Migdal equations give an information that is practically non-trivial.

Fig. 5 The loops �′ and �′′ are obtained from � by an operation that will feature prominently in
Section 3
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2.5 The Case of the Sphere: A Not So Simple Loop

Computations involving the Yang–Mills holonomy process on the sphere, although
in principle based on the same formulas as in the case of the plane, are in general
much more complicated. This can be explained by the fact that, as we indicated in
Section 1.4.5, the stochastic core of the Yang–Mills holonomy process on a sphere is
a Brownian bridge on U(N), or on the compact Lie group G, instead of a Brownian
motion.

In this section, we are going to illustrate some of the difficulties that one meets
when working on a sphere. The first is that the partition function is not equal to 1
anymore. Instead, according to (1.5), it is given, on a sphere of total area T , by

ZS2(T ) = pT (IN) = ‖pT
2
‖2
L2(U(N))

=
∑

α∈Û(N)

e−
T
2 c2(α)d2

α

This is also an expression in which nothing is specific to U(N): it is valid for any
compact Lie group.26

The most basic question about the Yang–Mills holonomy process on the sphere
is the analogue to the question that we treated in Section 2.2, namely to compute the
expectation of the normalised trace of the holonomy along a simple loop � enclosing
a domain of area t . The Driver–Sengupta formula yields the following expression
for this expectation:

E[tr(H�)] = 1

ZS2(T )

∫

U(N)

tr(x)pt (x)pT−t (x
−1) dx (38)

Using the Fourier expansion of the heat kernel, one finds

E[tr(H�)] = 1

ZS2(T )

∑

λ,μ∈Û(N)

e−c2(λ)
t
2−c2(μ) T−t

2 dλdμ

∫

U(N)

tr(x)χλ(x)χμ(x
−1) dx

The integral can be computed thanks to Pieri’s rule: it is equal to 0 unless μ is
obtained from λ by adding 1 to exactly one component, in which case it is equal to
1. We write λ ↗ μ when this happens. Thus,

E[tr(H�)] = 1

ZS2(T )

∑

λ∈Û(N)

e−c2(λ)
T
2 d2

λ

[ ∑

μ∈Û(N)
λ↗μ

e−(c2(μ)−c2(λ))
T−t

2
dμ

dλ

]

︸ ︷︷ ︸
f1(λ)

(39)

26Note that T , which used to denote the coupling constant in (1.5), now denotes the total area
of our surface. This is not a problem because the only meaningful quantity is the product of the
coupling constant by the total area of the surface.
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It seems difficult to give an expression of E[tr(H�)] much simpler than (38) or (39)
which, as is hardly necessary to emphasise, is much more complicated than the one
that we obtained in the case of the plane.27

It is, however, possible to analyse the limit of this quantity as N tends to infinity.
A first step in this direction is based on the realisation that Pieri’s rule is simple, and
the quantity between square brackets, which we denote by f1(λ) is a finite sum and
can be written explicitly using (18):

f1(λ) = e−
T−t

2

N∑

i=1

1{i=1 or λi−1>λi }e
−(T−t)

(
λi+N−2i+1

2

) ∏

1�j�N
j �=i

(
1 + 1

λi − λj + j − i

)

This suggests to associate with the highest weight λ the decreasing sequence l =
(l1 > . . . > lN) of half-integers defined by

li = λi + N − 2i + 1

2

so that

f1(λ) = e−
T−t

2

N∑

i=1

1{i=1 or λi−1>λi }e−
T−t
N

li
∏

1�j�N
j �=i

(
1 + 1

li − lj

)

Let us now introduce the probability measure πN,T on Û(N) such that for every
highest weight λ, one has

πN,T ({λ}) ∝ e−c2(λ)
T
2 d2

λ

Then (39) can be written more compactly as

E[tr(H�)] =
∫

Û(N)

f1(λ) dπN,T (λ) (40)

Moreover, there exists for each integer n � 2 a function fn on Û(N), not very
different from f1, and the integral of which against πN,T yields E[tr(Hn

� )].
We would like to express that, as N tends to infinity, the measure πN,T

concentrates on a few highest weights, characterised by a certain limiting shape.
One unpleasant feature of (40) in this respect is that the set on which the integral is
taken, namely Û(N), depends on N . It is thus uneasy to formulate a concentration

27Let us drive the point home: (39), once made fully explicit using (18), is the exact analogue of
the e− t

2 that we see in the second assertion of (19).
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Fig. 6 With N = 9, the highest weight λ = (5, 4, 4, 2, 2, 1, 0,−2,−4) drawn in the style of a
Young diagram, and its empirical measure. Each dot represents 1

9 of mass and any two dots are

distant by a multiple of 1
9

result. One classical and efficient way around this problem is to associate with each
highest weight λ its empirical measure (Figure 6)

μ̂λ = 1

N

N∑

i=1

δ li
N

= 1

N

N∑

i=1

δ 1
N
(λi+N−2i+1

2 )

Pushing the probability measure πN,T forward by the map λ �→ μ̂λ yields a
probability measure, which we denote by �N,T , on the set of probability measures
on the real line. It is possible to predict the behaviour of this probability as N tends
to infinity by writing c2(λ) and dλ in terms of the empirical measure of λ. Up to
some inessential terms (see [25, Eq. (24)] for complete expressions), one finds

c2(λ) � N2
∫

R
x2 dμ̂λ(x) and

d2
λ � exp

[
−N2

∫

{(x,y)∈R2,x �=y}
− log |x − y| dμ̂λ(x) dμ̂λ(y)

]

Introducing, for every probability measure μ, the quantity

JT (μ) =
∫

{(x,y)∈R2,x �=y}
− log |x − y| dμ(x) dμ(y)+ T

2

∫

R
x2 dμ(x)

we see that the probability measure �N,T assigns to any probability measure μ that
is the empirical measure of a highest weight a mass proportional to

�N,T ({μ}) ∝ exp(−N2JT (μ))

In the large N limit, it seems plausible that �N,T will concentrate on the minimisers,
or even better, on the unique minimiser of the functional JT . This turns out to be
true, with a little twist that we will explain and contributes to making the story much
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more interesting than it already is. Let us summarise the main results on which one
can ground a rigorous analysis of the situation.

• Minimising the functional JT on the space of all probability measures on R is
one of the simplest examples of a rich and well-developed theory which is, for
example, exposed in the book of Edward Saff and Vilmos Totik [38]. This is also
a very common problem in random matrix theory. Indeed, the unique minimiser
of JT is Wigner’s semi-circular distribution with variance 1

T
:

dσ1/T (x) = T

2π

√
4

T
− x2 1[− 2√

T
, 2√

T

](t) dt (41)

• The fact that the measure �N,T concentrates, as N tends to infinity, to the
minimiser of JT is a special case of a principle of large deviations proved by
Alice Guionnet and Mylène Maïda in [16]. However, the minimiser of JT that
one must consider is not the absolute minimiser on the set of all probability
measures on R. Indeed, for all N � 1, the measure �N,T is supported by the set
of empirical measures of highest weights of U(N), which form a rather special
set of probability measures. A distinctive feature of these measures is that they
are atomic, with atoms of mass 1

N
spaced by integer multiples of 1

N
. Weak limits,

as N tends to infinity, of such measures can only be absolutely continuous with
respect to the Lebesgue measure on R, with a density not exceeding 1: a class
of probability measures that we will denote by L(R). The result of Guionnet and
Maïda asserts that the measure �N,T concentrates exponentially fast, as N tends
to infinity, around the unique minimiser μ∗

T of JT on the closed set L(R).
• The problem of minimising JT under the constraint of having a density not

exceeding 1 is a problem that is, in principle, just as well understood as the
unconstrained problem. The book [38] contains results ensuring the existence and
uniqueness of the minimiser, and others allowing one to determine its support. In
fact, the measure σ1/T given by (41), and which is the absolute minimiser of JT ,
is absolutely continuous with a maximal density of

√
T /π , so that it belongs to

L(R) provided T � π2. For T > π2, the constraint becomes truly restrictive,
and one must make do with a probability measure which is, in L(R), the best
available substitute for σ1/T . The actual determination of this minimiser μ∗

T is,
depending on one’s background, a more or less elementary exercise in Riemann–
Hilbert theory, and involves manipulating elliptic functions. The density of μ∗

T

for T > π2 is represented on Figure 7. An exact expression of this density can
be found in [25, Eq. (37)].

Having established the exponential concentration, as N tends to infinity, of the
measure �N,T around μ∗

T , it is possible to come back to our initial problem of
computing E[tr(H�)]. After noticing that f1(λ) can be expressed as a functional
F1(μ̂λ) of the empirical measure of λ, it can be guessed that E[tr(H�)] is related
to F1(μ

∗
T ). Antoine Dahlqvist and James Norris were the first to rigorously and
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Fig. 7 For T > π2, the absolute minimiser of the functional JT does not belong to the class of
probabilities on R with a density not exceeding 1. The minimiser within this class is represented on
the right. Its density is identically equal to 1 on an interval in the middle of its support, and given
by elliptic functions outside this interval

successfully pursue this line of reasoning, and to obtain the following remarkably
elegant result.

Theorem 2.3 (Dahlqvist–Norris [5]) Let ρT denote the density of the minimiser
μ∗

T . Then, for all integer n � 0, one has

lim
N→∞E[tr(Hn

� )] = lim
N→∞E[tr(H−n

� )] = 1

nπ

∫

R
cosh

(nx
2

(T−2t)
)

sin(nπρT (x)) dx

(42)

To conclude this long discussion of the simple loop on the sphere, let us
mention another result for the statement of which we have all the concepts at hand.
Our description of the behaviour of the measure �N,T suggests that the partition
function itself is dominated by the contribution of the highest weights that have an
empirical measure close to μ∗

T . This is indeed true, and the fact that the shape of
μ∗

T changes suddenly when T crosses the critical value π2 gives rise to a phase
transition, in this case of third order, first discovered by Douglas and Kazakov, and
named after them. It was first proved rigorously, in a slightly different but equivalent
language, by Karl Liechty and Dong Wang in [27], and by Mylène Maïda and the
author in [25].

Theorem 2.4 (Douglas–Kazakov phase transition) The free energy of the Yang–
Mills model on a sphere of total area T is given by

F(T ) = lim
N→∞

1

N2
logZS2(T ) = T

24
+ 3

2
− JT (μ

∗
T )

The function F is of class C2 on (0,∞) and smooth on (0,∞) \ {π2}. The third
derivative of F admits a jump discontinuity at π2.

This phase transition is not one that is easily detected numerically, as Figure 8
shows.
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Fig. 8 The graphs of T �→ F(T ) (on the left) and of T �→ F (3)(T ) near T = π2 (on the right)

3 The Makeenko–Migdal Equations

3.1 First Approach

It is now time that we discuss the equations discovered by Yuri Makeenko and
Alexander Migdal and which give their title to these notes. These equations are a
powerful tool for the study of the Wilson loop expectations of which we gave a few
examples in the previous section. They are related to the approach that we called
dynamical, in which an expectation of the form E[tr(H�)], where � is some nice
loop on a surface M , is seen as a function of the areas of the faces cut by � on the
surface M . The Makeenko–Migdal equations give a remarkably elegant expression
of the alternated sum of the derivatives of E[tr(H�)] with respect to the areas of the
four faces that surround a generic point of self-intersection of �. This expression is
of the form E[tr(H�′)tr(H�′′)], where �′ and �′′ are two loops obtained from � by a
very simple operation at this point of self-intersection �. This operation consists in
taking the two incoming strands of � at this point and connecting them with the two
outgoing strands in the ‘other’ way, the way that is not realised by �, see Figure 9.

On this figure, we see four faces around the self-intersection point, which need
not be pairwise distinct. We denote their areas by t1, t2, t3, t4 as indicated on
Figure 9. The Makeenko–Migdal equation in this case reads

(
∂

∂t1
− ∂

∂t2
+ ∂

∂t3
− ∂

∂t4

)
E[tr(H�)] = E[ tr(H�′)tr(H�′′)] (MM)

The relation (30), that we derived earlier in an elementary way, is an instance of this
equation.

The relation (MM) would become particularly useful if we could combine it with
a result saying that E[tr(H�′)tr(H�′′)] = E[tr(H�′)]E[tr(H�′′)]. A crucial fact is that
this equality, which is of course false in general, becomes true in the large N limit
in all cases where this limit has been studied, that is, on the plane and on the sphere.
It corresponds to a concentration phenomenon, namely to the fact that the complex-
valued random variable tr(H�) converges, in the large N limit, to a deterministic
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Fig. 9 On the left, we see a loop � around a generic self-intersection point. The dotted and dashed
part of � can be arbitrarily complicated, and can meet many times outside the small region of the
surface that we are focusing on. It is nevertheless true that after escaping this small region through
the North-East corner (resp. North-West corner), the first time � comes back is through the South-
East corner (resp. South-West corner). This is why the ‘desingularisation’ operation illustrated on
the right produces exactly two loops, that we call �′ and �′′

complex, indeed real number %(�). This behaviour is expected to occur on any
compact surface, and the function % : L (M) → R, whose existence has so far
been proved when M is the plane or the sphere, is called the master field.

In the large N limit, the Makeenko–Migdal equation (MM) becomes a kind of
differential equation satisfied by this master field %:

(
∂

∂t1
− ∂

∂t2
+ ∂

∂t3
− ∂

∂t4

)
%(�) = %(�′)%(�′′) (MM∞)

On the plane, we will see that this equation, together with the very simple
equation (19), essentially characterises the function %.

3.2 Makeenko and Migdal’s Proof

Makeenko and Migdal discovered the relation (MM), and the extensions that we
will describe later, by doing a very clever integration by parts in the functional
integral with respect to the Yang–Mills measure (see (3)) that defines a Wilson loop
expectation:

E[tr(H�)] = 1

Z

∫

A
tr(hol(ω, �))e−

1
2 SYM(ω) dω

or instead, as we will explain, in a closely related integral (see [31] and [9]). That
this integration by parts performed in an ill-defined integral yields as a final product
a perfectly meaningful formula, makes Makeenko and Migdal’s original derivation
the more intriguing. It is described in mathematical language in the introduction of
[24], but this derivation is so beautiful that we reproduce its description here.

The finite-dimensional prototype of the so-called Schwinger–Dyson equations,
obtained by integration by parts in functional integrals, is the fact that for all smooth
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function f : Rn → R with bounded differential, and for all h ∈ Rn, the equality

∫

Rn
dxf (h)e−

1
2 ‖x‖2

dx =
∫

Rn
〈x, h〉f (x)e−

1
2 ‖x‖2

dx

holds. This equality ultimately relies on the invariance by translation of the
Lebesgue measure on Rn and it can be proved by writing

0 = d

dt |t=0

∫

Rn
f (x + th)e−

1
2 ‖x+th‖2

dx

In our description of the Yang–Mills measure μYM (see (3)), we mentioned
that the measure dω on the space A of connections was meant to be a kind of
Lebesgue measure, invariant by translations. This is the key to the derivation of the
Schwinger–Dyson equations, as we will now explain. In what follows, we will use
the differential geometric language introduced in Section 1.2.

Let ψ : A → R be an observable, that is, a function. In general, we are interested
in the integral of ψ with respect to the measure μYM. The tangent space to the
affine space A is the linear space 01(M) ⊗ Ad(P ). To say that the measure dω is
translation invariant means that for every element η of this linear space,

0 = d

dt |t=0

∫

A
ψ(ω + tη)e−

1
2 SYM(ω+tη) dω

and the Schwinger–Dyson equations follow in their abstract form

∫

A
dωψ(η) dμYM(ω) = 1

2

∫

A
ψ(ω)dωSYM(η) dμYM(ω) (43)

The directional differential of the Yang–Mills action is well known (see for
example [3]) and most easily expressed using the covariant exterior differential
dω : 00(M) ⊗ Ad(P ) → 01(M) ⊗ Ad(P ) defined by dωα = dα + [ω ∧ α].
It is given by

dωSYM(η) = 2
∫

M

〈η ∧ dω ∗0〉

The problem is now to apply this formula to a well-chosen observable ψ and to
differentiate in the right direction.

Given a loop � on M , Makeenko and Migdal applied (43) to the observable
defined by choosing a skew-Hermitian matrix X ∈ u(N) and setting, for all ω ∈ A ,

ψX(ω) = Tr(X hol(ω, �)) (44)
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To make this definition perfectly meaningful, one needs to choose a reference point
in the fibre of P over the base point of �: we will assume that such a point has been
chosen and fixed, and compute holonomies with respect to this point.

Let us choose a parametrisation � : [0, 1] → M of �. The directional derivative
of the observable ψX in the direction of a 1-form η ∈ 01(M)⊗ Ad(P ) is given by

dωψX(η) = −
∫ 1

0
Tr
(
X hol(ω, �[s,1])η(�̇(s))hol(ω, �[0,s])

)
ds (45)

where we denote by �[a,b] the restriction of � to the interval [a, b].28

One must now choose the direction of differentiation η. Let us assume that �

is a nice loop which around each point of self-intersection looks like the left half
of Figure 9. Let us assume that for some s0 ∈ (0, 1), we have �(s0) = �(0) and
det(�̇(0), �̇(s0)) = 1. Makeenko and Migdal choose for η a distributional 1-form
supported at the self-intersection point �(0), which one could write as29

∀m ∈ M,∀v ∈ TmM, ηm(v) = δm,�(0) det(�̇(0), v)X

with det(�̇(0), v) denoting the determinant of the two vectors �̇(0) and v. With this
choice of η, the directional derivative of ψX is given by

dωψX(η) = −Tr
(
X hol(ω, �[s0,1])X hol(ω, �[0,s0])

) = −Tr
(
X hol(ω, �′)X hol(ω, �′′)

)

(46)

where �′ and �′′ are the loops defined on the right of Figure 9. Recall that u(N) is
endowed with the invariant scalar product 〈X, Y 〉 = −NTr(XY ). The directional
derivative of the Yang–Mills action is thus given by

dωSYM(η) = −2〈X, (dω∗0)(�̇(0))〉 = −2NTr
(
Xdω∗0(�̇(0))

)

or so it seems from a naive computation. We shall soon see that this expression
needs to be reconsidered. For the time being, our Schwinger–Dyson equation reads

∫

A
Tr
(
X hol(ω, �′)X hol(ω, �′′)

)
dμYM(ω) = N

∫

A
Tr(X hol(ω, �))Tr(X dω∗0(�̇(0))) dμYM(ω)

(SDX)

28At first glance, (45) may seem to require the choice of a point in P�(s) for each s, but in fact
it does not, for the way in which the two holonomies and the term η(�̇(s)) would depend on the
choice of this point cancel exactly.
29It may seem that we are progressively letting go of the intrinsic character of our construction, but
the interested reader can check that everything is still geometrically meaningful at this point.
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Let us add the equalities (SDX) obtained by letting X take all the values
X1, . . . , XN2 of an orthonormal basis of u(N). With the scalar product which
we chose, the relations30

N2∑

k=1

Tr(XkAXkB) = − 1

N
Tr(A)Tr(B) and

N2∑

k=1

Tr(XkA)Tr(XkB) = − 1

N
Tr(AB)

(47)

hold for any two matrices A and B, so that we find

∫

A
tr
(
hol(ω, �′))tr(hol(ω, �′′)

)
dμYM(ω) =

∫

A
tr
(
hol(ω, �)dω∗0(�̇(0))

)
dμYM(ω).

The left-hand side of this equation is the right-hand side of (MM). The last and
most delicate heuristic step is to interpret the right-hand side of this equation. For
this, we must understand the term dω ∗0(�̇(0)) and we do this by combining two
facts: the fact that dω acts by differentiation in the horizontal direction and the
fact that ∗0 computes the holonomy along infinitesimal rectangles. We must also
remember that this term comes from the computation of the exterior product of the
distributional form η with the form dω ∗0. It turns out that, instead of a derivative in
the horizontal direction with respect to s at s = 0, we should think of the difference
between the values at 0+ and at 0−, which we denote by �|s=0.

With all this preparation and, it must be said, a small leap of faith, the right-hand
side of the Schwinger–Dyson equation can finally be drawn as follows:

This is indeed the left-hand side of the Makeenko–Migdal equation (MM).

30These relations are strictly equivalent to (16). They are, in one form or the other, the fundamental
fact of all this story.
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3.3 The Equations, Their Merits and Demerits

The strategy of proof described in the previous section can be used, and was used by
Makeenko and Migdal, to derive equations slightly more general than (MM). Let us
indeed consider a collection �1, . . . , �n of loops on the surface M . We assume that
these loops are nice and in generic position, in the sense that every crossing between
two portions of these loops, be they two portions of the same loop or portions of two
different loops, is a simple transverse intersection. Around such a crossing, we see,
as before, four faces of the graph cut on M by �1, . . . , �n, and we label the areas
of these faces t1, t2, t3, t4 as indicated on Figures 9 and 10. The Makeenko–Migdal
equations express the alternated sum of the derivatives with respect to t1, t2, t3, t4 of
E[tr(H�1) . . . tr(H�n)]. The equations come in two variants, depending on whether
the crossing is between two strands of the same loop (let us call this the case I) or
between strands of two distinct loops (the case II). In the case II, where the crossing
is between strands of two distinct loops, say �1 and �2, the same desingularisation
operation explained at the beginning of Section 3.1 gives rise to one new loop �12,
as explained in Figure 10.

Calling, in all cases, �1 the loop containing the South-West – North-East strand,
one should replace the observable ψX defined in (44) by

ψX(ω) = Tr(Xhol(ω, �1))Tr(hol(ω, �2)) . . .Tr(hol(ω, �n))

Then the directional derivative of ψX is given by

dωψX(η) =
∣∣∣∣∣
Tr
(
X hol(ω, �′)X hol(ω, �′′)

)
Tr(hol(ω, �2)) . . .Tr(hol(ω, �n)) (case I)

Tr(X hol(ω, �1))Tr(X hol(ω, �2))Tr(hol(ω, �3)) . . .Tr(hol(ω, �n)) (case II)

Then, the key to the computation is, as always, given by the equations (47). The
final result, with the current notation, is the following.

Theorem 3.1 (Makeenko–Migdal equations) Let �1, . . . , �n be nice loops on M in
generic position. Consider a crossing point of two strands of �1 (case I) or of one
strand of �1 and one strand of �2 (case II). Let t1, t2, t3, t4 denote the areas of the

Fig. 10 When performed at a crossing of two distinct loops �1 and �2, the operation of
reconnecting the incoming and outgoing strands in the other way that is consistent with orientation
produces, from �1 and �2, one bigger loop that we denote by �12
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four faces around this crossing point, as illustrated on Figures 9 and 10. Then, with
the notation of these figures,

(
∂

∂t1
− ∂

∂t2
+ ∂

∂t3
− ∂

∂t4

)
E[tr(H�1 ) . . . tr(H�n )] =

∣∣∣∣∣∣

E[tr(H�′ )tr(H�′′ )tr(H�2 ) . . . tr(H�n)] (I)
1
N2 E[tr(H�12 )tr(H�3 ) . . . tr(H�n)] (II)

It is understood that if two of the four faces around the crossing under consideration
are identical, then the corresponding derivative should be taken twice. Moreover, in
the case where M = R2, any term corresponding to the derivative with respect to
the area of the unbounded face should be ignored.

Makeenko and Migdal’s original paper on this subject is [31]. The first mathe-
matical proof of the equations was given in [24]. It was rather long and convoluted,
and restricted to the case where the surface M is the plane R2. Three very short and
elegant proofs of the equations were then given, still for the case of the plane, by
Bruce Driver, Brian Hall and Todd Kemp in [8]. Immediately after, the same team
joined by Franck Gabriel proved in [7] that the equations hold on any compact
surface. There is little point in reproducing here the content of these beautiful
papers. Let us simply emphasise that the fundamental computations remain those
summarised in (47).

In addition to their simplicity, the Makeenko–Migdal equations have one major
quality which is the fact that the collection of loops appearing in the right-hand
side has one crossing less compared with the original collection of loops. Indeed,
the operation of desingularisation replaces the crossing where it takes place by a
tangential contact which, to the price of an arbitrarily small deformation of the
loops, can be suppressed. This suggests the possibility of a recursive computation
of Wilson loop expectations. We will explain in the next section that it is indeed
possible to use the Makeenko–Migdal equations to set up a recursive computation
of the large N limit of Wilson loop expectations.

What the Makeenko–Migdal do not do however, is to give a simple formula
for the derivative of a Wilson loop expectation with respect to the area of a single
face of the graph traced by a given configuration of loops. Only very special linear
combinations of these derivatives are accessible. Of course, unless one is working
on the plane, the total area of the surface is prescribed and the best one could hope
for is a formula describing the variation of the Wilson loop expectations under an
arbitrary variation of the areas of the faces that preserves the total area. However,
this is, in general, not given by the Makeenko–Migdal equations, see for example
Figure 11.

It is, in fact, not too difficult to understand what information is available in the
Makeenko–Migdal equations. Let us consider n loops �1, . . . , �n on our surface M .
Let F1, . . . , Fr denote the faces of the graph traced by these loops. Let us identify a
vector (c1, . . . , cr ) of the vector space Rr with the linear combination of derivatives

c1
∂

∂|F1| + . . .+ cr
∂

∂|Fr |
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Fig. 11 Consider this configuration of two loops on a sphere. It has five faces and three vertices.
Moreover, of the three instances of the Makeenko–Migdal equations, two compute the same linear
combination of derivatives. There is no hope that the Makeenko–Migdal equations alone will allow
one to compute the corresponding Wilson loop expectation

acting on Wilson loop expectations. Let us define the linear subspace M ⊂ Rr

generated by the linear combinations given by the Makeenko–Migdal equations
applied at each crossing of the loops �1, . . . , �n. This subspace M is of course
contained in the hyperplane Rr

0 of equation c1 + . . . + cr = 0. Every element of
Rr can naturally be identified with a function on M that is constant on each face of
the graph. To each loop �i , we can associate the unique element n�i of Rr

0 which,
as a function on M , varies by 1 across �i

31 and is constant across every other loop.
This function is a substitute for the winding number of the loop �i on the surface M .

It is not difficult to check that it is equivalent, for an element of Rr , to be
orthogonal, for the simplest scalar product, to the subspace M , or to have a constant
jump across every loop, the constant possibly depending on the loop. A more formal
statement is the following. We denote by 1 the vector (1, . . . , 1).

Proposition 3.2 In Rr , one has the equality of linear subspaces

M = Vect(1,n�1 , . . . ,n�n)
⊥

In particular, dimM = dimRr
0 − n.

The greater the number of loops, the worse the situation. Even with one single
loop, we see that all the information about the Wilson loop expectations is not
contained in the Makeenko–Migdal equations.

It is time to turn to a case where things improve drastically, namely the large N

limit of the Wilson loop expectations.

3.4 The Master Field on Compact Surfaces

We saw in Section 2 that when G = U(N), Wilson loop expectations tend to take
simpler forms in the limit where N tends to infinity (compare for example (20)
and (21)). We also observed some instances of a property of factorisation, see for

31A convention must be chosen regarding the definition of a positive crossing of �i .



Two-Dimensional Quantum Yang–Mills Theory and the Makeenko–Migdal Equations 321

example (26). The factorisation is due to a phenomenon of concentration, with the
effect that, as N tends to infinity, and provided one scales the scalar product on
u(N) correctly (which we did), the Wilson loop functionals, that is, the normalised
traces of the random holonomies, become deterministic. The limit is thus a number
depending on a loop, and this function is relatively simple, at least when one is
working on the plane, because it satisfies, and is essentially determined, by the
Makeenko–Migdal equations.

The main theorem of convergence is the following.

Theorem 3.3 (Master field) LetM be either the plane R2 or the sphere S2. For each
N � 1, let (HN,�)�∈L (M) be the Yang–Mills holonomy process on M with structure
group G = U(N), and with scalar product 〈X, Y 〉 = NTr(X∗Y ) on u(N). Then for
every loop � ∈ L (M), the convergence of complex-valued random variables

tr(HN,�)
P−→

N→∞%(�) (48)

holds in probability, towards a deterministic real limit.

This theorem was proved in [24] in the case of the plane, and in [5] in the case of
the sphere, see also [17]. In the case of the plane, which is simpler, it is also known
that the convergence occurs quickly, in the sense that the series

∑
N�1 Var(tr(HN,�))

converges. Thus, the convergence (48) holds almost surely. The conclusion is also
known to be true if one replaces the unitary group by the special unitary group, the
special orthogonal group, or the symplectic group.

It is expected that Theorem 3.3 is true on any compact surface, but a proof of this
fact still has to be given.

In any case, when this theorem holds, the aforementioned asymptotic factorisa-
tion takes place, in the sense that for all loops �1, . . . , �n,

lim
N→∞E[tr(H�1) . . . tr(H�n)]= lim

N→∞E[tr(H�1)] . . . lim
N→∞E[tr(H�n)]=%(�1) . . . %(�n)

The function % : L (M) → R which appears in (48) is called the master
field. This is a continuous function with respect to the convergence of loops with
fixed endpoints (see the beginning of Section 1.4.4) and it satisfies, crucially, the
Makeenko–Migdal equation (MM∞), which is all that there is left of the full set of
equations stated in Theorem 3.1 as N tends to infinity.

Theorem 3.4 Assume that M is either the plane R2 or the sphere S2. The function
% : L (M) → R is the unique function that is continuous, invariant under area-
preserving diffeomorphisms, satisfying the Makeenko–Migdal equation (MM∞) and
such that for every simple loop � enclosing a domain of area t , one has, depending
on whether M is the plane or a sphere of total area T ,

%(�) = e−
t
2 (M = R2)
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or

%(�) = 1

π

∫

R
cosh

(x
2
(T − 2t)

)
sin(πρT (x)) dx (M = S2)

3.5 A Value of the Master Field on the Plane

As a conclusion to these notes, we give an example of computation of a value of the
master field % on the plane, and choose an example that is not listed at the end of
[24]. We choose the loop � represented on the left half of Figure 12.

Although we did not include this in our description of the function % on the plane
R2, it is not difficult to check that the derivative of % of any loop with respect to the
area of a face adjacent to the unbounded face is equal to − 1

2 times the value of % on
this loop. This factor − 1

2 comes of course from the stochastic differential equation
(15) satisfied by the Brownian motion on U(N).

Given the value of % on simple loops and (29), the Makeenko–Migdal equation
applied to the vertex of �0 that is marked in Figure 12 yields

(2∂s − ∂t2)%(�0) = (−1 − ∂t2)%(�0) = e−
s
2−t1−t2(1 − t1)

which is solved in

%(�0) = e−
s
2−t1−t2(1 − t1)(1 − t2)

If we can determine ∂u%(�) explicitly, we are done, since %(�0) is exactly the
value of %(�) at u = 0. Applying the Makeenko–Migdal equations at the three
marked vertices in Figure 12 yields the derivatives (∂s1 + ∂s2 − ∂t2)%(�), (∂s1 +
∂s2 − ∂t1)%(�), and (∂t1 + ∂t2 − ∂s2 − ∂u)%(�). Adding the three expressions and
using the fact that ∂s1%(�) = ∂s2%(�) = − 1

2%(�), we find

Fig. 12 We are interested in computing %(�). The strategy is to use the Makeenko–Migdal
equations to compute ∂u%(�). As u = 0, the two inner windings of � disentangle, and � becomes
identical to �0. This loop �0 is similar to the loop that we studied in Section 2.3, and becomes
exactly this loop when t2 = 0. Our first task is thus to compute ∂t2%(�0)
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(
− 3

2
− ∂u

)
%(�) = e−

s1+s2
2 −t1−t2− 3u

2 (3 − t1 − t2 − u)

and finally

%(�) = e−
s1+s2

2 −(t1+t2)− 3u
2

(u2

2
+ (t1 + t2 − 3)u+ (1 − t1)(1 − t2)

)

(49)

Evaluating this expression with s1 = s2 = t1 = t2 = 0 yields the large N limit of
the third moment of the unitary Brownian motion at time u, as expressed by (22)
with n = 3. This is consistent with the fact that shrinking all faces but the face of
area u reduces � to a loop winding three times around a simple domain of area u.
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Limit Operators for Circular Ensembles

Kenneth Maples, Joseph Najnudel, and Ashkan Nikeghbali

Notation

If v ∈ C
n is a vector, then we write v[m] for the image of v under the canonical

projection map C
n → C

m onto the first m standard basis vectors and we write vk
or (v)k for its k-th coordinate. We denote by C

∞ the set of infinite sequences of
complex numbers.

We write U(n) for the unitary group of dimension n, which preserves the
standard complex inner product.

We write U = U(1) for the unit circle in C, i.e. those complex numbers with
modulus 1.

Calligraphic characters denote σ -algebras, i.e. A, B, C, etc. If A and B are σ -
algebras on a common set, then A ∨ B denotes the smallest σ -algebra containing
both A and B.

We also write a∨b, for a, b ≥ 0, to mean max(a, b) and a∧b to mean min(a, b).
We employ asymptotic notation for inequalities where precise constants are not

important. In particular, we write X = O(Y) to mean that there exists a constant
C > 0, possibly random, such that |X| ≤ CY . We also use (modified) Vinogradov
notation, where X � Y means X = O(Y), for convenience.

If t is a real number, we write 5t6 its integer part.
If H is a Hilbert space with scalar product 〈., .〉, and if F ⊂ H , then F⊥ = {x ∈

H ; 〈x, y〉 = 0 ∀y ∈ F }. If H is a complex Hilbert space, then we will always
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use the scalar product, which is linear in the first variable and conjugate linear in the
second, i.e. 〈ax, by〉 = ab〈x, y〉.

1 Introduction

It has been observed that for many models of random matrices, the eigenvalues
have a limiting short-scale behavior when the dimension goes to infinity, which
depends on the global symmetries of the model, but not on its detailed features.
For example, the Gaussian Orthogonal Ensemble (GOE), for which the matrices
are real symmetric with independent gaussian entries on and above the diagonal,
corresponds to a limiting short-scale behavior for the eigenvalues that is also
obtained for several other models of random real symmetric matrices. Similarly,
the limiting spectral behavior of a large class of random hermitian and unitary
ensembles, including the Gaussian Unitary Ensemble (GUE, with independent,
complex gaussians above the diagonal), and the Circular Unitary Ensemble (CUE,
corresponding to the Haar measure on the unitary group of a given dimension),
involves a remarkable random point process, called the determinantal sine-kernel
process. It is a point process for which the k-point correlation function is given by

ρk(x1, . . . , xk) = det

(
sin(π(xp − xq))

π(xp − xq)

)

1≤p,q≤k

.

From an observation of Montgomery, it has been conjectured that the limiting short-
scale behavior of the imaginary parts of the zeros of the Riemann zeta function
is also described by a determinantal sine-kernel process. This similar behavior
supports the conjecture of Hilbert and Pólya, who suggested that the non-trivial
zeros of the Riemann zeta functions should be interpreted as the spectrum of an
operator 1

2 + iH with H an unbounded Hermitian operator.
In order to understand the kind of randomness that would be involved in such

an operator, it is natural to try to construct a random version H0 of it, for which
the spectrum has the conjectured limiting behavior of the zeros of the Riemann zeta
function, i.e. is a determinantal sine-kernel point process. Since the spectrum of H0
should also correspond to the limiting behavior of many ensembles of hermitian
and unitary matrices, it is natural to expect that these ensembles can, in one way and
another, be related to H0.

Instead of looking directly for H0, one can also directly seek the flow of linear
operators (Uα

0 )α∈R := (eiαH0)α∈R generated by exponentiation. This point of
view is both consistent with what would be a possible interpretation in quantum
mechanics (Uα

0 playing the role of the operator of evolution at time α, whereas H0
corresponds to the Hamiltonian), and with the number theoretic point of view: if the
Hilbert–Pólya operator H would exist, the Chebyshev function ψ0, which is defined
as
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ψ0(x) =
∑

pm<x

logp + 1

2

{
logp, x = pm for some prime power pm

0, otherwise

where the summation is through all powers of primes bounded by x, would formally
satisfy

ψ0(e
x) =

∫ x

−∞

(
ey − ey/2 Tr(eiHy)

)
dy +O(1),

which suggests an important role played by the conjectural flow (eiHy)y∈R of
unitary operators. To see this, recall the von Mangoldt formula (see e.g. [19]):

ψ0(x) = x −
∑

ρ

xρ

ρ
+O(1),

where the summation is over all zeros ρ of the Riemann zeta function. Now taking

x = ey in the above, writing ey −∑
ρ

eyρ

ρ
as the integral of its derivative and then

writing the last sum as the trace of the operator yields the formal identity above.
On the other hand, as we will see below, considering the flow (eiαH0)α∈R, instead
of taking directly H0, is also consistent with the main construction of the present
article, since, in a sense which will be made precise, this flow is an approximation,
for large n, of the successive powers of a random matrix following the Haar measure
on U(n).

It should be mentioned that the problem of the existence of the operator H0 is
also hinted at in the work by Katz and Sarnak [6]. For instance, the zeta function of
algebraic curves is related to the unitary group or some other compact groups (e.g.
the symplectic group), and there the question of coupling all different dimensions of
the unitary group together in a consistent way in order to prove strong limit theorems
(i.e. almost sure convergence) and having an infinite dimension space and operator
sitting above is raised.

The main goal of the present paper is the construction of a flow of random
operators (V α)α∈R, whose spectrum, in a sense which can be made precise, is
a determinantal sine-kernel process, and which is directly related to the Circular
Unitary Ensemble. A similar, but simpler, construction has been made in [15],
in which we consider permutation matrices instead of unitary matrices. The
construction that is made in the present paper uses the recent construction of virtual
isometries given in [2] and needs several further steps.

First, the space on which (V α)α∈R acts must be infinite dimensional. In order to
relate this space with the Circular Unitary Ensemble, we will construct a coupling
between the matrix models of each dimension. That is, we define a sequence (un)n≥1
of random unitary matrices, in such a way that for all n ≥ 1, each matrix un ∈ U(n)

is Haar distributed on the unitary group. Of course, there are many ways to couple
the random variables un to each other: for example, by taking all the matrices to be
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independent. However, in order to have sufficient consistency to construct limiting
objects, we need to be more subtle.

In fact, we will couple (un)n≥1 in such a way that almost surely, this sequence
of random matrices is a virtual isometry. The notion of virtual isometry has been
introduced in one of our former articles [2], generalizing both the notion of virtual
permutation studied by Kerov, Olshanski and Vershik [9], and the previous notion
of virtual unitary group introduced by Neretin [16].

By definition, a virtual isometry is a sequence (un)n≥1 of unitary matrices un of
dimension n, such that for all n, un is the matrix u such that, for un+1 fixed, the rank
of the difference

(
u 0
0 1

)
− un+1

is minimal (which is always 0 or 1). From this definition, one can deduce that
for all n ≥ 1, un completely determines the sequence u1, u2, . . . , un−1, and from
these matrices, one directly obtains a decomposition of un as a product of complex
reflections. Moreover, the Haar measures in different dimensions are compatible
with respect to the notion of virtual isometries, i.e. it is possible to construct a
probability distribution on the space of virtual isometries in such a way that for all
n ≥ 1, the marginal distribution of the n-dimensional component coincides with the
Haar measure on U(n). Therefore, the Circular Unitary Ensemble can be coupled
in all dimensions by considering a random virtual isometry following a suitable
probability distribution.

Note that in the notion of virtual isometry defined here, the vectors of the
canonical basis of C

n play a particular role. One could attempt to generalize the
notion of virtual isometries by considering sequences of unitary operators on En,
n ≥ 1, where (En)n≥1 is a sequence of complex inner product spaces, En being of
dimension n. However, this reduces to the particular case En = C

n by a change of
basis and so we have chosen to use the standard basis for simplicity.

In [2], it is shown that if (un)n≥1 follows this distribution, then for all k, the
kth positive (respectively negative) eigenangle of un, multiplied by n/2π (i.e.
the inverse of the average spacing between eigenangles for any matrix in U(n)),
converges almost surely to a random variable yk (respectively y1−k). The random set
(yk)k∈Z is a determinantal sine-kernel process, and for each k, the convergence holds
with a rate dominated by some negative power of n. In [12], we improve our estimate
of this rate, and more importantly, we prove that almost sure convergence not only
holds for the eigenangles of un but also for the components of the corresponding
eigenvectors. More precisely, we show that, for all k, � ≥ 1, the �th component
of the eigenvector of un associated with the kth positive (respectively negative)
eigenangle converges almost surely to a non-zero limit tk,� (respectively t1−k,�)
when n goes to infinity, if the norm of the eigenvector is taken equal to

√
n and if

the phases are suitably chosen. Moreover, the variables (tk,�)k∈Z,�≥1 are iid complex
gaussians. Note that taking a norm equal to

√
n is natural in this setting: with this

normalization, the expectation of the squared modulus of each coordinate of a given
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eigenvector of un is equal to 1, so we can expect a convergence to a non-trivial
limit. If the norm of the eigenvectors is taken equal to 1 instead of

√
n, then the

coordinates converge to zero when n goes to infinity.
Knowing the joint convergence of the renormalized eigenvalues and the corre-

sponding eigenvectors, it is natural to expect that, in a sense which has to be made
precise, the limiting behavior of (un)n≥1 when n goes to infinity can be described
by an operator whose eigenvectors are the sequences (tk,�)�≥1, k ∈ Z and for which
the corresponding eigenvalues are (yk)k∈Z.

The precise statement of our main result can in fact be described as follows:

Theorem 1.1 Almost surely there exists a random vector subspace F of C∞ and
a flow of linear maps (V α)α∈R on F , such that V α+β = V αV β , and satisfying the
following properties, for any sequence w = (w�)�≥1 in F:

(1) For any fixed � ≥ 1, the �th component of the n-dimensional vector of
u
5αn6
n (w1, . . . , wn) tends to the �th component of V α(w) when n goes to infinity.

(2) If w �= 0, the L2 distance between u
5αn6
n (w1, . . . , wn) and ((V αw)1, . . . ,

(V αw)n) is negligible with respect to the norm of (w1, . . . , wn).

Moreover, the eigenvectors of the flow, i.e. the sequences w ∈ F such that there
exists λ ∈ R for which V αw = e2iπλαw for all α ∈ R, are exactly the sequences
proportional to (tk,�)�≥1 for some k ∈ Z. The corresponding value of λ is equal to
yk .

Let us emphasize that the last part of this theorem gives the complete family of
eigenvectors of the flow (V α)α∈R. In particular, the eigenvalues form exactly the
determinantal sine-kernel process (yk)k∈Z, with no extra eigenvalue. Note that the
notion of eigenvalue and eigenvector is not exactly the same as in the usual situation
where a single operator is considered.

Intuitively, the operator V α can be viewed as a limit, for sequences in the space
F , of the iteration u

5αn6
n , when n goes to infinity. The flow (V α)α∈R can be compared

with the flow constructed in [15] for permutation matrices. The space F is random
and explicitly defined in terms of the virtual isometry (un)n≥1.

Some natural questions that can then be asked are the following:

(1) Is it possible to replace the space F by another space with a simpler description?
(2) Is it possible to define a version of the flow (V α)α∈R of operators, which can

be naturally related to ensembles of unitary or Hermitian matrices, which are
different from the CUE?

An answer to this last question would give a more generic version of (V α)α∈R,
which may enlighten in a new, more geometric way, the properties of universality
enjoyed by the sine-kernel process in random matrix theory.

Such a generalization seems to be very difficult to construct. In particular, we
do not know how one could couple the GUE in such a way that the renormalized
eigenvalues converge almost surely. Note that the successive minors of an infinite
GUE matrix cannot converge almost surely to a non-trivial (i.e. non-constant)
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limiting distribution. Indeed, if we note (An)n≥1 the successive minors, and Fn :
Mn(C) → R, which depends only on the eigenvalues and such that Fn(An)

converges a.s. to X, then Fn(An) and F2n(A2n) both converge a.s. to X. In particular
(Fn(An), F2n(A2n)) converges in law to (X,X). Since we work with GUE matrices,
it also follows that (Fn(Bn), F2n(A2n)) also converges to (X,X), where Bn is the
n by n bloc matrix obtained by taking the lower right bloc in A2n. Thus it follows
that Fn(An) − F2n(A2n) converges in law (and also in probability) to X − X = 0.
Similarly Fn(Bn) − F2n(A2n) also converges in probability to 0. Summing up we
obtain that Fn(Bn) − Fn(An) converges in probability to 0. On the other hand,
Fn(Bn)−Fn(An) also converges to X−Y where X and Y are independent with the
same law. This implies that |E[eitX]|2 = 1, and hence X is equal to a constant a.s.

It would also be interesting to relate the operators we construct to the Brownian
carousel construction, which was introduced by Valkó and Virág in [20] (or
alternatively to the work by Killip and Stoiciu [10]), in order to generalize the sine-
kernel process to the setting of β-ensembles for any β ∈ (0,∞) (instead of just
β = 2).

The paper is devoted to providing the details of the construction of the flow of
operators given in Theorem 1.1. In Section 2, we state some results proven in [12],
which are used in the present article. In Section 3, we construct a flow of operators
satisfying Theorem 1.1, on the random vector subspace E of C

∞ containing the
finite linear combinations of the sequences (tk,�)�≥1 for k ∈ Z. In Section 4, we
define a scalar product on E , and we use it in order to extend the definition of the
flow constructed in Section 3 to a larger space. Another extension of the flow is
defined in Section 5, in such a way that its definition does not explicitly involve the
limiting eigenvectors of the random virtual isometry (un)n≥1. Some open problems
are discussed in Section 6.

The results of the present article, as well as the convergence of eigenvectors
proven in [12], are also stated in our preprint [11].

2 Preliminary Results from [12]

We start with a random virtual isometry (un)n≥1, such that un is Haar distributed
for each n ≥ 1. As in [12], we may assume that this virtual isometry is constructed
as follows:

(1) We consider a sequence (xn)n≥1 of independent random vectors, xn being
uniform on the unit sphere of Cn.

(2) Almost surely, for all n ≥ 1, xn is different from the last basis vector en of Cn,
which implies that there exists a unique rn ∈ U(n) such that rn(en) = xn and
rn − In has rank one.

(3) We define (un)n≥1 by induction as follows: u1 = x1 and for all n ≥ 2,
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un = rn

(
un−1 0

0 1

)
.

We denote by λ
(n)
1 = eiθ

(n)
1 , . . . , λ

(n)
n = eiθ

(n)
n the eigenvalues of un, almost surely

distinct and different from 1, with the ordering 0 < θ
(n)
1 < · · · < θ

(n)
n < 2π . It will

be convenient to extend the notation λ
(n)
k and θ

(n)
k to all k ∈ Z, in such a way that

θ
(n)
k+n = θ

(n)
k + 2π and λ

(n)
k+n = λ

(n)
k , i.e. the sequence (λ

(n)
k )k∈Z is n-periodic. Note

that with this convention, (θ(n)
k )k∈Z is the increasing sequence of eigenangles of un,

taken in the whole real line. The following result is proven in [12]:

Theorem 2.1 There is a sine-kernel point process (yk)k∈Z such that almost surely,

n

2π
θ
(n)
k = yk +O((1 + k2)n−

1
3+ε),

for all n ≥ 1, |k| ≤ n1/4 and ε > 0, where the implied constant may depend on
(um)m≥1 and ε, but not on n and k.

We can now construct, for each n ≥ 1, a basis (f (n)
k )1≤k≤n of unit eigenvectors of

un, f (n)
k corresponding to the eigenvalue λ

(n)
k . The construction is done as follows.

For n = 1, we define f
(1)
1 := 1. If we assume that the basis (f

(n)
k )1≤k≤n is

constructed for some n ≥ 1, then we can expand rn+1(en+1) in this basis:

rn+1(en+1) =
n∑

j=1

μ
(n)
j f

(n)
j + νnen+1.

Notice that here f
(n)
j ∈ C

n and the other terms are in C
n+1: we identify C

n as a

subset of Cn+1 by adding a (n + 1)-th coordinate equal to 0. Then, as written in
[12], the eigenvalues of un+1 are precisely the zeros of the equation:

n∑

j=1

|μ(n)
j |2 λ

(n)
j

λ
(n)
j − z

+ |1 − νn|2
1 − z

= 1 − νn

Moreover, we can define the unit eigenvectors (f
(n+1)
k )1≤k≤n+1 of un+1 as the

solutions of the system of equations:

Ckf
(n+1)
k =

n∑

j=1

μ
(n)
j

λ
(n)
j − λ

(n+1)
k

f
(n)
j + νn − 1

1 − λ
(n+1)
k

en+1, (1)
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where Ck ∈ R
+ is a suitably chosen constant. Moreover, we can extend the notation

f
(n)
k , μ(n)

j to all j, k ∈ Z, in such a way that the sequences (f
(n)
k )k∈Z and (μ

(n)
j )j∈Z

are n-periodic.
Comparing the norm of the vectors, we see that Ck = (h

(n+1)
k )1/2 where

h
(n+1)
k :=

n∑

j=1

|μ(n)
j |2

|λ(n)
j − λ

(n+1)
k |2

+ |νn − 1|2
|1 − λ

(n+1)
k |2

.

For n ≥ k ≥ 1, we introduce another normalization of the k-th eigenvector of
un, namely

g
(n)
k := D

(n)
k f

(n)
k

where

D
(n)
k :=

n−1∏

s=k

(h
(s+1)
k )1/2 λ

(s)
k − λ

(s+1)
k

μ
(s)
k

.

The advantage of this normalization is the martingale properties satisfied by the
sequence (g

(n)
k )n≥k , which come from the following equalities, satisfied for all

k, � ∈ {1, . . . , n}, and deduced from (1):

〈g(n+1)
k , e�〉 = D

(n+1)
k (h

(n+1)
k )−

1
2

n∑

j=1

μ
(n)
j

λ
(n)
j − λ

(n+1)
k

〈f (n)
j , e�〉

= D
(n)
k

λ
(n)
k − λ

(n+1)
k

μ
(n)
k

n∑

j=1

μ
(n)
j

λ
(n)
j − λ

(n+1)
k

〈f (n)
j , e�〉

= 〈g(n)
k , e�〉 +D

(n)
k

λ
(n)
k − λ

(n+1)
k

μ
(n)
k

∑

1≤j≤n
j �=k

μ
(n)
j

λ
(n)
j − λ

(n+1)
k

〈f (n)
j , e�〉.

(2)

More precisely, as in [12], let us define the following σ -algebras:

(1) For n ≥ 1, the σ -algebra An generated by the eigenvalues of um, for 1 ≤ m ≤
n. This σ -algebra is equal, up to completion, to the σ -algebra generated by u1,
the variables |μ(m)

j | and νm for 1 ≤ m ≤ n− 1 and 1 ≤ j ≤ m.
(2) The σ -algebra A := ∨∞

n=1An generated by the eigenvalues of um for all m ≥ 1.
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(3) For n ≥ 1, the σ -algebra Bn generated by A and by the phases μ
(n)
j /|μ(n)

j | for
1 ≤ m ≤ n − 1, 1 ≤ j ≤ m. This σ -algebra is equal, up to completion, to the
σ -algebra generated by A and the eigenvectors f

(m)
j for 1 ≤ j ≤ m ≤ n.

(4) The σ -algebra B := ∨∞
n=1Bn.

With these definition, it is not difficult to check that |D(n)
k |2 (but not D

(n)
k ) is

A-measurable. The following result is proven in [12]:

Proposition 2.2 For each k ≥ 1 and � ≥ 1, there exists an increasing sequence
(Hj )j≥1 of events in A, with probability tending to 1, such that for all j ≥ 1,

(1Hj
〈g(n)

k , e�〉)n≥k∨� is a martingale with respect to the filtration (Bn)n≥k∨� and the

conditional expectation of 1Hj
〈g(n)

k , e�〉, given A, is almost surely bounded when n

varies.

Moreover, in [12], we prove that, for 1 ≤ k, � ≤ n,

E[|〈g(n+1)
k − g

(n)
k , e�〉|2 |A] = |D(n)

k |2 |λ
(n)
k − λ

(n+1)
k |2

|μ(n)
k |2

S, (3)

where

S =
∑

1≤j≤n
j �=k

|μ(n)
j |2

|λ(n)
j − λ

(n+1)
k |2

E[|〈f (n)
j , e�〉|2 | A]. (4)

From Proposition 2.2, the following corollary is deduced:

Corollary 2.3 Almost surely, for all k ∈ Z and � ≥ 1, the scalar product 〈g(n)
k , e�〉

converges to a limit gk,� when n goes to infinity.

The main theorem of [12] is strongly related to this corollary and is stated as
follows:

Theorem 2.4 Let (un)n≥1 be a virtual isometry, following the Haar measure. For

k ∈ Z and n ≥ 1, let v(n)
k be a unit eigenvector corresponding to the kth smallest

nonnegative eigenangle of un for k ≥ 1, and the (1 − k)th largest strictly negative
eigenangle of un for k ≤ 0. Then for all k ∈ Z, there almost surely exist some
complex numbers (ψ

(n)
k )n≥1 of modulus 1, and a sequence (tk,�)�≥1, such that for

all � ≥ 1,

√
n 〈ψ(n)

k v
(n)
k , e�〉 −→

n→∞ tk,�.

Almost surely, for all k ∈ Z, the sequence (tk,�)�≥1 depends, up to a multi-
plicative factor of modulus one, only on the virtual rotation (un)n≥1. Moreover,
if (ψk)k∈Z is a sequence of iid, uniform variables on U, independent of (tk,�)�≥1,
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then (ψktk,�)k∈Z,�≥1 is an iid family of standard complex gaussian variables
(E[|ψktk,�|2] = 1).

Remark 2.5 The vectors v
(n)
k are equal to f

(n)
k , up to a multiplicative factor of

modulus 1. The independent phases ψk introduced in the last part of the theorem
are needed in order to get iid complex gaussian variables. This is not the case, for
example, if we normalize (tk,�)�≥1 in such a way that tk,1 ∈ R+.

The random variables tk,� are strongly related to the variables gk,�. More
precisely, the following estimate is proven in [12]:

|D(n)
k |2 = Dkn(1 +O(n−

1
3+ε)), (5)

where Dk is a non-zero random variable that depends only on k. Then, the following
equality is deduced:

gk,� =
√
Dktk,�. (6)

3 A Flow of Operators on the Space Generated by the
Limiting Eigenvectors

For each α ∈ R, let (αn)n≥1 be a sequence such that αn is equivalent to αn when n

goes to infinity. For n ≥ 1, k ∈ Z, we have

uαn
n f

(n)
k = eiθ

(n)
k αnf

(n)
k .

Now, eiθ
(n)
k αn tends to e2iπαyk and after normalization, the coordinates of f (n)

k tend to
the corresponding coordinates of the sequence (tk,�)�≥1. It is then natural to expect
that, in a sense which needs to be made precise, uαn

n tends to some operator U , acting
on some infinite sequences, such that

U((tk,�)�≥1) = e2iπαyk (tk,�)�≥1.

This motivates the following definition:

Definition 3.1 The space E is the random vector subspace of C∞, consisting of all
finite linear combinations of the sequences (tk,�)�≥1, or equivalently, (gk,�)�≥1, for
k ∈ Z.
For α ∈ R, the operator Uα is the unique linear application from E to E such that
for all k ∈ Z,

Uα((tk,�)�≥1) = e2iπαyk (tk,�)�≥1,
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or equivalently,

Uα((gk,�)�≥1) = e2iπαyk (gk,�)�≥1.

Remark 3.2 For each k, the sequence (tk,�)�≥1 is almost surely well-defined up to a
multiplicative constant of modulus 1. Moreover, the sequences (tk,�)�≥1 for k ∈ Z

are a.s. linearly independent, since for a suitable normalization, (tk,�)k∈Z,�≥1 are iid
standard complex gaussian. This ensures that the definition of Uα given above is
meaningful. The notation Uα is motivated by the immediate fact that (Uα)α∈R is a
flow of operators on E , i.e. U0 = IE and Uα+β = UαUβ for all α, β ∈ R.

As suggested before, we expect that Uα is a kind of limit for uαn
n when n goes to

infinity. Of course, these operators do not act on the same space, so we need to be
more precise.

Theorem 3.3 Almost surely, for any sequence (s�)�≥1 in E and for all integers
m ≥ 1,

[
uαn
n ((s�)1≤�≤n)

]
m

−→
n→∞

[
Uα((s�)�≥1)

]
m
,

where [ · ]m denotes the mth coordinate of a vector or a sequence.

By linearity, it is sufficient to show the theorem for (s�)�≥1 = (gk,�)�≥1. Hence,
Theorem 3.3 can be deduced from the following proposition:

Proposition 3.4 For all k ∈ Z, � ≥ 1, one has almost surely:

〈uαn
n (gk[n]), e�〉 → e2πiαykgk,�

as n → ∞, for gk[n] := (gk,�)1≤�≤n.

In the next section, we will give a more intrinsic way to define a flow of operators
similar to (Uα)α∈R. In order to make this construction, we need a more precise
and stronger result than Proposition 3.4, which is given by the following two
propositions:

Proposition 3.5 Let ε > 0. Almost surely, for all k ∈ Z, we have the following:

(1) The euclidean norm ‖gk[n]‖ is equivalent to a strictly positive random variable
times

√
n, when n goes to infinity.

(2) ‖gk[n] − g
(n)
k ‖ = O(n

1
3+ε).

(3) For any T > 0 and δ ∈ (0, 1/6),

sup
α∈[−T ,T ]

sup
αn∈[n(α−n−δ),n(α+n−δ)]

‖uαn
n gk[n] − e2πiαykgk[n]‖ = O(n

1
2−δ).

Proposition 3.6 Almost surely, for all k ∈ Z, � ≥ 1, α, γ ∈ R, and for all
sequences (αn)n≥1 and (γn)n≥1 such that αn/n = α + o(n−δ) and γn/n =
γ + o(n−δ) for some δ ∈ [0, 1/6),
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〈uαn
n (gk[n])− e2πiαykgk[n], uγn

n (e�)〉 = o(n−δ),

when n goes to infinity. Moreover, for δ ∈ (0, 1/6), we get the uniform estimate:

sup
αn∈[n(α−n−δ),n(α+n−δ)]
γn∈[n(γ−n−δ),n(γ+n−δ)]

〈uαn
n (gk[n])− e2πiαykgk[n], uγn

n (e�)〉 = O(n−δ).

Proof We now prove Propositions 3.5 and 3.6: it is clear that this last proposition
implies Proposition 3.4 (by taking δ = γn = 0).

Using (6), we get the following:

‖gk[n]‖2 = |Dk|
n∑

�=1

|tk,�|2,

where (tk,�)�≥1 are up to independent and uniform random phases iid standard
complex gaussian variables. By the law of large numbers, ‖gk[n]‖2 is a.s. equivalent
to n|Dk| when n goes to infinity, which shows the first item of Proposition 3.5.

Now, the third item can be quickly deduced from the second one. Indeed, if we

have the estimate ‖gk[n] − g
(n)
k ‖ = O(n

1
3+ε) for all ε > 0, then, since δ < 1/6,

we also have ‖gk[n] − g
(n)
k ‖ = O(n

1
2−δ), which implies, for all α ∈ [−T , T ] and

αn ∈ [n(α − n−δ), n(α + n−δ)],

‖uαn
n gk[n] − e2πiαykgk[n]‖

≤ ‖uαn
n (gk[n] − g

(n)
k )‖ + ‖uαn

n g
(n)
k − e2πiαykg

(n)
k ‖ + ‖e2πiαyk (gk[n] − g

(n)
k )‖

= 2‖gk[n] − g
(n)
k ‖ + |eiαnθ

(n)
k − e2πiαyk | ‖g(n)

k ‖.

Now,

‖gk[n] − g
(n)
k ‖ = O(n

1
2−δ),

‖g(n)
k ‖ ≤ ‖gk[n]‖ + ‖gk[n] − g

(n)
k ‖ = O(

√
n)+O(n

1
2−δ) = O(

√
n),

and

|eiαnθ
(n)
k − e2πiαyk | ≤ |αnθ

(n)
k − 2παyk|

≤ |θ(n)
k ||αn − αn| + |α||nθ(n)

k − 2πyk|
= O(1/n)O(n1−δ)+O(n−1/4) = O(n−δ),
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where the implied constant does not depend on α and αn (recall that |α| is assumed
to be uniformly bounded by T ). Note that we used Theorem 2.1 (for k fixed and
ε = 1/12) at the last step of the computation. This gives

‖uαn
n gk[n] − e2πiαykgk[n]‖ = O(n

1
2−δ),

uniformly with respect to α and αn, i.e. the third item of Proposition 3.5. In order
to complete the proof of this proposition, it then remains to show the second item,
which needs several intermediate steps. $%
Lemma 3.7 For fixed k ≥ 1, ε > 0, there exists a A-measurable random variable
M > 0, such that, almost surely, for all N ≥ n ≥ k,

E[‖g(n)
k − gk[n]‖2 |A] ≤ M n

2
3+ε,

and

E[‖g(n)
k − g

(N)
k,n ‖2 |A] ≤ M (N − n) n−

1
3+ε,

where g
(N)
k,n denotes the vector obtained by taking the n first coordinates of g(N)

k .

Proof One has, for n ≥ 1, and N ∈ {n, n+ 1, n+ 2, ...} ∪ {∞},

E[‖g(n)
k − g

(N)
k,n ‖2 |A] =

n∑

�=1

E[|〈g(n)
k , e�〉 − 〈g(N)

k , e�〉|2 |A],

for and g
(∞)
k := gk = (gg,�)�≥1 and g

(∞)
k,n := gk[n]. By the martingale property

satisfied by the scalar products 〈g(m)
k , e�〉 for m ≥ k (see [12] for more detail),

E[|〈g(n)
k , e�〉 − 〈g(N)

k , e�〉|2 |A] =
∑

n≤m<N

�
(m)
�

where

�
(m)
� = E[|〈g(m+1)

k , e�〉 − 〈g(m)
k , e�〉|2 |A],

and then by (3) and (4),

�
(m)
� = |D(m)

k |2 |λ
(m)
k − λ

(m+1)
k |2

|μ(m)
k |2

∑

1≤j≤m, j �=k

|μ(m)
j |2

|λ(m)
j − λ

(m+1)
k |2

E

[
|〈f (m)

j , e�〉|2 |A
]

≤ M1 m−3+ε
∑

j∈Jm\{k}
|λ(m)

j − λ
(m+1)
k |−2

E

[
|〈f (m)

j , e�〉|2 |A
]
, (7)
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where Jm is the random set of m consecutive integers, such that θ
(m+1)
k − π <

θ
(m)
j ≤ θ

(m+1)
k + π , and where

M1 := sup
m≥k,1≤j≤m,j �=k

m3−ε |D(m)
k |2 |λ

(m)
k − λ

(m+1)
k |2 |μ(m)

j |2
|μ(m)

k |2
.

In [12], we prove the following estimate:

|λ(m+1)
k − λ

(m)
k | = θ

(m+1)
k |μ(m)

k |2(1 +O(m− 1
3+ε)). (8)

Moreover, from the convergence of the renormalized eigenangles, we have θ
(m+1)
k =

O(1/m) almost surely, and by classical tail estimates on beta random variables,
|μ(m)

j |2 and |μ(m)
k |2 are almost surely dominated by m−1+ ε

2 . Using (8) and (5), we
deduce that the A-measurable quantity M1 is almost surely finite.

Similarly, one has, for all j ∈ Jm\{k},

|λ(m)
j − λ

(m+1)
k |−2 ≤ M2

(

m2+ε ∧ m
10
3 +ε

|k − j |2
)

≤ M2
m

8
3+ε

|k − j | , (9)

where

M2 := sup
m≥k,j∈Jm\{k}

|λ(m)
j − λ

(m+1)
k |−2

(

m2+ε ∧ m
10
3 +ε

|k − j |2
)−1

.

Now, M2 is A-measurable, and we have proven in [12] that the following estimates
almost surely hold, uniformly in m ≥ k, j ∈ Jm:

|λ(m)
j − λ

(m+1)
k | � m−1−ε,

|λ(m)
j − λ

(m+1)
k | � |j − k|m− 5

3−ε .

The estimates show that M2 is almost surely finite. From (7) and (9), we deduce
(with the change of variable p = j − k):

�
(m)
� ≤ M1 M2 m− 1

3+2ε
∑

p∈{−m−1,−m+1,...,−1,1,...m+1}

1

|p|E
[
|〈f (m)

k+p, e�〉|2 |A
]
.

Therefore,
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E[|〈g(n)
k , e�〉 − 〈g(N)

k , e�〉|2 |A]

≤ M1M2

∑

n≤m<N

m− 1
3+2ε

∑

p∈{−m,−m+1,...,−1,1,...m}

1

|p|E
[
|〈f (m)

k+p, e�〉|2 |A
]
,

and then, summing for � between 1 and n,

E[‖g(n)
k − g

(N)
k,n ‖2 |A]

≤ M1M2

∑

n≤m<N

m− 1
3+2ε

∑

p∈{−m,−m+1,...,−1,1,...m}

1

|p|E
[

n∑

�=1

|〈f (m)
k+p, e�〉|2 |A

]

.

Let us first suppose that N is finite. One has

n∑

�=1

|〈f (m)
k+p, e�〉|2 ≤

m∑

�=1

|〈f (m)
k+p, e�〉|2 = ‖f (m)

k+p‖2 = 1,

which implies

E[||g(n)
k − g

(N)
k,n ‖2 |A] ≤ M1 M2

∑

n≤m<N

m− 1
3+2ε

∑

p∈{−m,−m+1,...,−1,1,...m}

1

|p|

≤ M3

∑

n≤m<N

m− 1
3+3ε ≤ M3(N −m)m− 1

3+3ε,

where

M3 := M1M2 sup
m≥1

⎛

⎝m−ε
∑

p∈{−m,−m+1,...,−1,1,...m}

1

|p|

⎞

⎠ < ∞

is A-measurable. Hence, we have the desired bound, after changing ε and taking
M = M3. In the case where N is infinite, we proceed as follows. Consider the
vector f

(m)
j for each fixed j and m. By the invariance by conjugation of the Haar

measure on U(m), this eigenvector is, up to multiplication by a complex of modulus
1, a uniform vector on the unit sphere of Cm. More precisely, if ξ ∈ C is uniform on
the unit circle, and independent of f

(m)
j , then ξf

(m)
j is uniform on the unit sphere.

One deduces, from classical estimates on beta and gamma variables, that for all
m, j, �, y > 0,

P(|〈f (m)
j , e�〉|2 > m−1y) = O(exp(−κy))

for some universal constant κ > 0. We deduce
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E[|〈f (m)
j , e�〉|8/ε] =

∫ ∞

0
P[|〈f (m)

j , e�〉|2 ≥ δε/4]dδ

�
∫ ∞

0
e−mκδε/4

dδ

=
∫ ∞

0
e−κzε/4

d(z/m4/ε) = O(m−4/ε).

We deduce

P

(
E[|〈f (m)

j , e�〉|8/ε |A] ≥ m4− 4
ε

)
≤ m

4
ε
−4

E

[
E[|〈f (m)

j , e�〉|8/ε |A]
]

= m
4
ε
−4

E[|〈f (m)
j , e�〉|8/ε] = O(m−4).

By the Borel–Cantelli lemma, almost surely, for all but finitely many m ≥ 1, 1 ≤
j, � ≤ m,

E[|〈f (m)
j , e�〉|8/ε |A] ≤ m4− 4

ε .

By the Hölder inequality applied to the conditional expectation, for ε sufficiently
small, this implies

E[|〈f (m)
j , e�〉|2|A] ≤

(
E[|〈f (m)

j , e�〉|8/ε |A]
)ε/4 ≤ m−1+ε .

Hence, for p ∈ {−m, . . . ,−1, 1, . . . , m},

E

[
|〈f (m)

k+p, e�〉|2 |A
]
≤ M4m

−1+ε,

where

M4 := sup
m≥1,1≤k,�≤m

m1−ε
E

[
|〈f (m)

k , e�〉|2 |A
]

is A-measurable and almost surely finite. Hence,

E[‖g(n)
k − gk[n]‖2 |A]

≤ M1M2M4

∑

m≥n

m− 4
3+3ε

∑

p∈{−m,−m+1,...,−1,1,...m}

n

|p| ,

which is easily dominated by a finite, A-measurable quantity, multiplied by n
2
3+4ε .

$%
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We have now an L2 bound on ‖g(n)
k − g

(∞)
k,n ‖, conditionally on A. The next goal

is to deduce an almost sure bound, by using Borel–Cantelli lemma. This cannot be
made directly, since the corresponding probabilities do not decay sufficiently fast,
but one can solve this problem by using subsequences.

Lemma 3.8 For fixed k ≥ 1, ε ∈ (0, 1), let ν := 1 + 53/ε6, and for r ≥ 1, let
nr := k + rν . Then, almost surely,

‖g(nr )
k − gk[nr ]‖2 = O(n

2
3+ε
r ).

Proof From Lemma 3.7 (applied to ε/2 instead of ε), there exists M ′ almost surely
finite and A-measurable such that for all r ≥ 1,

P[‖g(nr )
k − gk[nr ]‖2 ≥ n

2
3+ε
r |A] ≤ n

− 2
3−ε

r E[‖g(nr )
k − gk[nr ]‖2|A]

≤ M ′n−
2
3−ε

r n
2
3+ ε

2
r ≤ M ′n−ε/2

r

= M ′(k + rν)−ε/2 ≤ M ′(r3/ε)−ε/2 = M ′r−3/2,

and then

1

M ′ + 1
E

⎡

⎣
∑

r≥1

1
‖g(nr )

k −gk[nr ]‖2≥n
2
3 +ε

r

|A
⎤

⎦ ≤ M ′

M ′ + 1

∑

r≥1

r−3/2 ≤ 3.

By taking the expectation and using the fact that 1/(M ′ + 1) is A-measurable, one
deduces

E

⎡

⎣ 1

M ′ + 1

∑

r≥1

1
‖g(nr )

k −gk[nr ]‖2≥n
2
3 +ε

r

⎤

⎦ ≤ 3,

and then

1

M ′ + 1

∑

r≥1

1
‖g(nr )

k −gk[nr ]‖2≥n
2
3 +ε

r

< ∞

almost surely. Hence, almost surely, ‖g(nr )
k − gk[nr ]‖2 ≤ n

2
3+ε
r for all but finitely

many r ≥ 1. $%
The next lemma gives a way to go from a given subsequence to a less sparse

subsequence. We will say that a value δ ∈ (0, 1] is good if the conclusion of
Lemma 3.8 remains valid after replacing the sequence (k+rν)r≥1 by (k+5r1/δ6)r≥1,
the brackets denoting the integer part: from Lemma 3.8, we know that 1/ν is good.
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Lemma 3.9 If δ ∈ [1/ν, (ν − 1)/ν] is good, then δ + 1/ν is good.

Proof For r ≥ 1, let nr := k + 5r1/(δ+1/ν)6 and let Nr the smallest element of the
sequence (k + 5s1/δ6)s≥1, such that Nr ≥ nr . The sequence (Nr)r≥1, as (nr)r≥1,
tends to infinity with r: moreover, it is a subsequence of (k + 5s1/δ6)s≥1 (but some
terms of this sequence may appear several times in (Nr)r≥1). By assumption, one
has almost surely:

‖g(Nr )
k − gk[Nr ]‖2 = O(N

2
3+ε
r ).

Now, it is easy to check that Nr = O(nr) (with a constant depending only on δ).
Hence, by restricting the vectors to their nr first coordinates, one deduces, almost
surely,

‖g(Nr )
k,nr

− gk[nr ]‖2 ≤ ‖g(Nr )
k − gk[Nr ]‖2 = O(n

2
3+ε
r ). (10)

On the other hand, the distance between two consecutive terms of the sequence
(k + 5s1/δ6)s≥1 satisfies the following:

(k + 5(s + 1)1/δ6)− (k + 5s1/δ6) = (s + 1)1/δ − s1/δ +O(1)

� s1/δ−1 � (k + 5s1/δ6)1−δ,

which implies

Nr − nr = O(n1−δ
r ),

where the implied constant depends only on k and δ. One deduces, by Lemma 3.7:

E[‖g(nr )
k − g

(Nr )
k,nr

‖2 |A] ≤ M ′ (Nr − nr) (nr)
− 1

3+ ε
2 � M ′n

2
3+ ε

2−δ
r ,

and then

P[‖g(nr )
k − g

(Nr )
k,nr

‖2 ≥ n
2
3+ε
r |A] � M ′n−

ε
2−δ

r � M ′r(−
ε
2−δ)/

(
δ+ 1

ν

)

,

where the implied constant depends only on k and δ. Since the exponent of r is
strictly smaller than −1, one deduces, by using Borel–Cantelli lemma similarly as
in the proof of Lemma 3.8, that almost surely,

‖g(nr )
k − g

(Nr )
k,nr

‖2 = O(n
2
3+ε
r ). (11)

Combining (10) and (11) gives the desired result. $%
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By applying Lemma 3.8 and (ν − 1 times) Lemma 3.9, one deduces that 1 is
good, which gives the second item of Proposition 3.5 for k ≥ 1: the situation for
k ≤ 0 is similar.

Let us now prove Proposition 3.6. By the triangle inequality, we get

|〈uαn
n (gk[n])− e2πiαykgk[n], uγn

n (e�)〉|
≤ |〈uαn

n (gk[n] − g
(n)
k ), u

γn
n (e�)〉| + |〈uαn

n g
(n)
k − e2πiαykg

(n)
k , u

γn
n (e�)〉|

+ |〈e2πiαyk (g
(n)
k − gk[n]), uγn

n (e�)〉| ≤ |〈g(n)
k − gk[n], uγn−αn

n (e�)〉|
+ |eiαnθ

(n)
k − e2πiαyk ||〈g(n)

k , u
γn
n (e�)〉| + |〈g(n)

k − gk[n], uγn
n (e�)〉|.

To prove the first part or the proposition, since the sequence (αn − γn)n≥1 satisfies
exactly the same assumptions as (γn)n≥1 (replacing γ by γ − α), it is sufficient to
prove the almost sure estimates:

|eiαnθ
(n)
k − e2πiαyk ||〈g(n)

k , u
γn
n (e�)〉| = o(n−δ) (12)

and

|〈g(n)
k − gk[n], uγn

n (e�)〉| = o(n−δ). (13)

For the uniform part of the Proposition 3.6, it is sufficient to prove the same
estimates, with o(n−δ) replaced by O(n−δ), this bound being uniform with respect
to αn ∈ [n(α − n−δ), n(α + n−δ)], and γn ∈ [n(γ − 2n−δ), n(γ + 2n−δ)] (the
factor 2 comes from the term where γn plays the role of γn − αn). Now, under the
assumption of the first part of the proposition, (12) is a consequence of the two
following estimates:

|eiαnθ
(n)
k − e2πiαyk | ≤ |αnθ

(n)
k − 2παyk|

≤ |θ(n)
k ||αn − αn| + |α||nθ(n)

k − 2πyk|
= O(1/n)o(n1−δ)+O(n−1/4) = o(n−δ),

and

|〈g(n)
k , u

γn
n (e�)〉| = |〈u−γn

n g
(n)
k , e�〉| = |〈e−iγnθ

(n)
k g

(n)
k , e�〉|

= |〈g(n)
k , e�〉| = O(1),

the last estimate coming from the almost sure convergence of 〈g(n)
k , e�〉 towards gk,�.

This computation is also available (after replacing small o by big O) for the second



346 K. Maples et al.

part of the proposition, since all the estimates are easily checked to be uniform with
respect to αn ∈ [n(α − n−δ), n(α + n−δ)] and γn ∈ [n(γ − 2n−δ), n(γ + 2n−δ)].

It remains to prove (13). From the second item of Proposition 3.5 and the fact
that δ < 1/6 we have the estimate:

‖g(n)
k − gk[n]‖ = o(n

1
2−δ′)

for some δ′ > δ. Hence, in order to complete the proof of Proposition 3.6, it is
sufficient to show the following property of delocalization:

sup
γn∈[n(γ−2n−δ),n(γ+2n−δ)]

|〈g(n)
k − gk[n], uγn

n (e�)〉|
‖g(n)

k − gk[n]‖
= O(n−

1
2+δ′−δ). (14)

This will be a consequence of the following lemma:

Lemma 3.10 For all n ≥ 1, the quotient

|〈g(n)
k − gk[n], uγn

n (e�)〉|2

‖g(n)
k − gk[n]‖2

is a beta random variable of parameters 1 and n − 1, i.e. it has the same law as
|x1|2, where (x1, . . . , xn) is a uniform vector on the complex sphere Sn.

Proof Let m ≥ 1, let σ be a random matrix in U(m), independent of (un)n≥1 and
following the Haar measure. Let us define (u′n)n≥1 as the unique virtual isometry
such that for all n ≥ m,

u′n =
(
σ 0
0 In−m

)
un

(
σ 0
0 In−m

)−1

.

The invariance by conjugation of the Haar measure on the space of virtual isometries

implies that (u′n)n≥1 has the same law as (un)n≥1. Let (g(n)′
k )n≥1 be the sequence of

eigenvectors constructed from (u′n)n≥1 in the same way as (g
(n)
k )n≥1 is constructed

from (un)n≥1. Since (u′n)n≥1 has the same law as (un)n≥1, one deduces that almost

surely, each coordinate of g(n)′
k with a given index converges to a limit when n goes

to infinity: let g′k be the corresponding limiting sequence, which is the analog of gk

when (un)n≥1 is replaced by (u′n)n≥1. One knows that for n ≥ m,

g̃
(n)
k :=

(
σ 0
0 In−m

)
g
(n)
k

is an eigenvector of (u′n)n≥1, corresponding to the eigenvalue λ
(n)
k (recall that for

n ≥ m, un and u′n have the same eigenvalues). Hence, almost surely, there exists
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κn ∈ C
∗ such that g(n)′

k = κng̃
(n)
k . Moreover, from (2), and from the fact that g(n)

k is

orthogonal to f
(n)
j for j �= k, one obtains that

〈g(n+1)
k,n − g

(n)
k , g

(n)
k 〉 = 〈g(n+1)′

k,n − g
(n)′
k , g

(n)′
k 〉 = 0,

and then

〈κn+1g̃
(n+1)
k,n − κng̃

(n)
k , κng̃

(n)
k 〉 = 0.

Applying diag(σ−1, In−m) to the vectors in the scalar product and dividing by |κn|2
give

〈
κn+1 g

(n+1)
k,n

κn
− g

(n)
k , g

(n)
k

〉

= 0,

and then
(
κn+1

κn
− 1

)
〈g(n+1)

k,n , g
(n)
k 〉

=
〈
κn+1 g

(n+1)
k,n

κn
− g

(n)
k , g

(n)
k

〉

− 〈g(n+1)
k,n − g

(n)
k , g

(n)
k 〉 = 0,

which implies κn+1 = κn, since

〈g(n+1)
k,n , g

(n)
k 〉 = 〈g(n+1)

k,n − g
(n)
k , g

(n)
k 〉 + ‖g(n)

k ‖2 = ‖g(n)
k ‖2 > 0.

Hence, one has g
(n)′
k = κmg̃

(n)
k for all n ≥ m: by taking the limit for n → ∞,

one deduces that g′k = κmg̃k , where g̃k is the infinite sequence obtained from gk

by applying σ to the vector formed by the m first coordinates, and by letting the
coordinates fixed for the indices strictly larger than m. One deduces the following
(with obvious notation):

〈g(m)′
k − g′k[m], (u′m)γm(e�0)〉 = κm 〈g̃(m)

k − g̃k[m], (u′m)γm(e�0)〉
= κm 〈σ(g

(m)
k )− σ(gk[m]), σ (um)γmσ−1(e�0)〉

= κm 〈g(m)
k − gk[m], (um)γmσ−1(e�0)〉

= κm 〈(um)−γm(g
(m)
k − gk[m]), σ−1(e�0)〉.

Similarly,
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‖g(m)′
k − g′k[m]‖2 = |κm|2 ‖g̃(m)

k − g̃k[m]‖2 = |κm|2 ‖σ(g
(m)
k )− σ(gk[m])‖2

= |κm|2 ‖g(m)
k − gk[m]‖2 = |κm|2 ‖(um)−γm(g

(m)
k − gk[m])‖2.

Hence,

|〈g(m)′
k − g′k[m], (u′m)γm(e�0)〉|2

‖g(m)′
k − g′k[m]‖2

= |〈x, y〉|2
‖x‖2 , (15)

where x = (um)−γm(g
(m)
k − gk[m]) and y = σ−1(e�0) is independent of x (since σ

is independent of (un)n≥1) and uniform on the unit sphere of Cm (since σ is uniform
on U(m)). One deduces that the left-hand side of (15) is a beta random variable with
parameters 1 and m− 1. Since (u′n)n≥1 and (un)n≥1 have the same distribution, one
can remove the primes from this left-hand side, which gives the announced result.

$%
Now, applying Lemma 3.10, we get

P

(

sup
γn∈[n(γ−2n−δ),n(γ+2n−δ)]

|〈g(n)
k − gk[n], uγn

n (e�)〉|
‖g(n)

k − gk[n]‖
≥ n−

1
2+δ′−δ

)

≤ (1 + 4n1−δ)P[β(1, n− 1) ≥ n−1+2(δ′−δ)].

By classical estimates on beta random variables and Borel–Cantelli lemma, we
deduce the estimate (14), which completes the proof of Proposition 3.6. $%

4 An Inner Product on the Domain of the Operators

We return now to the original space E consisting of the finite linear combinations
of the eigenvectors of the flow. Most of the infinite-dimensional operators that are
considered in the literature are defined on Hilbert spaces. Here, the space E does not
have a Hilbert structure, since infinite linear combinations of the basis vectors are
not permitted. On the other hand, it is possible to construct an inner product on E .
Since eigenspaces of Hermitian and unitary operators are pairwise orthogonal, it is
natural to define our scalar product in such a way that the sequences (tk,�)�≥1, k ∈ Z

are orthogonal. If we also suppose that these sequences have norm 1, we then define
a scalar product on E as follows:

〈w,w′〉 =
∑

k∈Z
λkλ

′
k

for
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w� =
∑

k∈Z
λktk,�, w

′
� =

∑

k∈Z
λ′ktk,�,

where (λk)k∈Z and (λ′k)k∈Z are sequences containing finitely many non-zero terms.
This definition does not depend on the phases of the vectors (tk,�)�≥1, k ∈ Z, which
are chosen: indeed, if tk,� is multiplied by zk ∈ U, for all k ∈ Z, � ≥ 1, then λk

and λ′k are both multiplied by z−1
k , and λkλ

′
k is not changed. Hence, one can choose

the phases in such a way that the variables (tk,�)�≥1,k∈Z are iid, complex gaussian.
In particular, the vectors (tk,�)�≥1, k ∈ Z, are linearly independent, and then the
sequences (λk)k∈Z and (λ′k)k∈Z are uniquely determined by w,w′ ∈ E .

In fact, the scalar product 〈w,w′〉 we have defined can almost surely be written
as a function of the coordinates of w and w′, without referring to the sequences
(tk,�)�≥1, k ∈ Z:

Proposition 4.1 Let (w�)�≥1 and (w′
�)�≥1 be two vectors in E . Then

〈w,w′〉 = lim
n→∞

1

n

n∑

�=1

w�w
′
� = lim

s→1,s<1
(1 − s)

∞∑

�=1

s�−1w�w
′
�.

Proof By linearity, it is sufficient to show the convergence of the two limits and the
equality almost surely for w = (tk,�)�≥1 and w′ = (tk′,�)�≥1 for every k, k′ ∈ Z.
The first equality can then be written as follows:

1

n

n∑

�=1

Xk,k′,� −→
n→∞ 0,

where Xk,k′,� = tk,�tk′,� − 1k=k′ . This is now a consequence of the law of large
numbers, since the variables (Xk,k′,�)�≥1 are iid, integrable and centered. It remains
to prove that

(1 − s)

∞∑

�=1

s�−1Xk,k′,� −→
s→1,s<1

0.

The sum written here is bounded in L1, and then a.s. finite for all s ∈ (0, 1):
moreover, it is equal to

(1 − s)

∞∑

n=1

(sn−1 − sn)

(
n∑

�=1

Xk,k′,�

)

.

For any ε > 0, there exists n0 ≥ 1 such that for any n ≥ n0,
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∣∣∣∣∣

n∑

�=1

Xk,k′�

∣∣∣∣∣
≤ εn.

Hence,

∣∣∣∣∣
(1 − s)

∞∑

�=1

s�−1Xk,k′,�

∣∣∣∣∣
≤ (1 − s)

⎛

⎝
n0∑

n=1

(sn−1 − sn)

∣∣∣∣∣

n∑

�=1

Xk,k′,�

∣∣∣∣∣
+ ε

∞∑

n=n0+1

n(sn−1 − sn)

⎞

⎠ .

The right-hand side of this inequality tends to ε, hence

lim sup
s→1,s<1

∣∣∣∣∣
(1 − s)

∞∑

�=1

s�−1Xk,k′,�

∣∣∣∣∣
≤ ε,

and we are done by sending ε → 0. $%
The space E that we have constructed is not equipped with a complete metric

topology. One could attempt to construct a completion E (along with an implicit
topology) as the family of formal series:

∑

k∈Z
λk (tk,�)�≥1,

where (λk)k∈Z is in �2(Z). Unfortunately, it is not true that all such sequences in E
would converge to sequences of complex numbers. For example, if λk is chosen in
such a way that |λk| = 1/(1+ |k|) and λktk,1 is a nonnegative real number, then the
first coordinate would be

∑

k∈Z
λktk,1 =

∑

k∈Z
|λktk,1| =

∑

k∈Z

|tk,1|
1 + |k| ,

which is almost surely infinite, since by dominated convergence,

E

[
e
−∑k∈Z

|tk,1|
1+|k|

]
= lim

n→∞E

[
e
−∑|k|≤n

|tk,1|
1+|k|

]

=
∏

k∈Z
E

[
e
− |tk,1|

1+|k|
]

≤
∏

k∈Z

[
P(|t1,1| ≤ 1)+ e−1/(1+|k|)

P(|t1,1| > 1)
]

≤
∏

k �=0

[1 − c|k|−1 +O(k−2)]

= 0.
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We can avoid this problem by restricting, for δ > 0, to the subspace Eδ of E given
by combinations (λk) such that

∑

k∈Z
(1 + |k|1+δ)|λk|2 < ∞.

Indeed, under this assumption, for all � ≥ 1, by Cauchy–Schwarz

∑

k∈Z
|λktk,�| ≤

(
∑

k∈Z
(1 + |k|1+δ)|λk|2

)1/2 (∑

k∈Z

|tk,�|2
1 + |k|1+δ

)1/2

. (16)

The first factor is finite from the definition of Eδ , and the second factor is almost
surely finite, since

E

[
∑

k∈Z

|tk,�|2
1 + |k|1+δ

]

=
∑

k∈Z

1

1 + |k|1+δ
< ∞.

One then has the following:

Proposition 4.2 Let w and w′ be two sequences in Eδ , such that

w� =
∑

k∈Z
λktk,�, w′

� =
∑

k∈Z
λ′ktk,�,

where

∑

k∈Z
(1 + |k|1+δ)(|λk|2 + |λ′k|2) < ∞. (17)

Then, for

〈w,w′〉 :=
∑

k∈Z
λkλ

′
k, (18)

the conclusion of Proposition 4.1 is satisfied.

Remark 4.3 For w,w′ ∈ Eδ , it is a priori not obvious that the coordinates (λk)k∈Z
and (λ′k)k∈Z are uniquely determined, and then the definition given by the formula
(18) is a priori ambiguous. However, the present and the previous propositions show
that for all w ∈ Eδ , one has

λk = 〈w, (tk,�)�≥1〉 = lim
n→∞

1

n

n∑

�=1

w�tk,�,
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which implies that (λk)k∈Z is uniquely determined by w. Notice also that the con-
vergence of the series

∑
k∈Z λkλ

′
k is an immediate consequence of the assumption

(17).

Proof Let us first show that almost surely, for w� =∑
k∈Z λktk,� and

‖λ‖2
δ :=

∑

k∈Z
(1 + |k|1+δ)|λk|2 < ∞,

one has

lim sup
n→∞

1

n

n∑

�=1

|w�|2 ≤ Cδ‖λ‖2
δ , (19)

where Cδ > 0 depends only on δ. Indeed, by (16), one has

|w�|2 ≤ ‖λ‖2
δW�,

where

W� =
∑

k∈Z

|tk,�|2
1 + |k|1+δ

.

Now, the variables (W�)�≥1 are iid, positive, with expectation:

Cδ =
∑

k∈Z

1

1 + |k|1+δ
< ∞.

By the law of large numbers, one deduces that almost surely, (19) holds for all
(λk)k∈Z such that ‖λ‖2

δ < ∞.
By Cauchy–Schwarz, for w� =∑

k∈Z λktk,� and w′
� =

∑
k∈Z λ′ktk,�, one deduces

lim sup
n→∞

1

n

∣∣∣∣∣

n∑

�=1

w�w
′
�

∣∣∣∣∣
≤ Cδ‖λ‖δ‖λ′‖δ.

Now, for K ≥ 1, let use define

w�,K =
∑

|k|≤K

λktk,�, w′
�,K =

∑

|k|≤K

λ′ktk,�,
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note that the corresponding sequences are in E . One has

1

n

n∑

�=1

w�w
′
� =

1

n

n∑

�=1

w�,Kw′
�,K + 1

n

n∑

�=1

(w�−w�,K)w′
�,K + 1

n

n∑

�=1

w�(w
′
�−w′

�,K).

By Proposition 4.1, the first mean tends to

〈(w�,K)�≥1, (w
′
�,K)�≥1〉 =

∑

|k|≤K

λkλ
′
k

when n goes to infinity. The second mean is bounded by

Cδ

⎛

⎝
∑

|k|>K

(1 + |k|1+δ)|λk|2
⎞

⎠

1/2⎛

⎝
∑

|k|≤K

(1 + |k|1+δ)|λ′k|2
⎞

⎠

1/2

,

and the third mean is bounded by

Cδ‖λ‖δ
⎛

⎝
∑

|k|>K

(1 + |k|1+δ)|λ′k|2
⎞

⎠

1/2

.

We deduce

lim sup
n→∞

∣∣∣∣∣∣

1

n

n∑

�=1

w�w
′
�
−
∑

k∈Z
λkλ

′
k

∣∣∣∣∣∣
≤

∑

|k|>K

λkλ
′
k
+ Cδ‖λ‖δ

⎛

⎝
∑

|k|>K

(1 + |k|1+δ)|λ′k |2
⎞

⎠

1/2

+ Cδ‖λ′‖δ
⎛

⎝
∑

|k|>K

(1 + |k|1+δ)|λk |2
⎞

⎠

1/2

.

Letting K −→ ∞ gives the first equality in Proposition 4.1. The second equality is
proven if we show that for s ∈ (0, 1), and X� = w�w

′
� − 〈w,w′〉,

(1 − s)

∞∑

�=1

s�−1X� (20)

is convergent and tends to 0 when s goes to 1. For N ≥ 1,

(1 − s)

N∑

�=1

s�−1X� = (1 − s)

N∑

n=1

(sn−1 − sn)

(
n∑

�=1

X�

)

+ (1 − s)sN
N∑

�=1

X�.
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Since we know that

n∑

�=1

X� = o(n),

the series (20) converges to the sum of the series:

(1 − s)

∞∑

n=1

(sn−1 − sn)

(
n∑

�=1

X�

)

,

which is absolutely convergent. We can then show that this sum tends to zero when
s goes to 1, in the same way as in the proof of Proposition 4.1. $%

The scalar product we have defined on E , and then in Eδ , can be compared with
the following situation. Let (B(k)

t )t∈[0,1], k ∈ Z, be independent Brownian motions.
If (αk)k∈Z is a family of real numbers, such that αk = 0 for all but finitely many
indices k ∈ Z, then one can consider the stochastic process:

(

B
(αk)k∈Z
t :=

∑

k∈Z
αkB

(k)
t

)

t∈[0,1]
.

For two sequences (αk)k∈Z and (βk)k∈Z containing finitely non-zero terms, the
quadratic covariation of B(αk)k∈Z and B(βk)k∈Z is given by

〈B(αk)k∈Z , B(βk)k∈Z〉 =
∑

k∈Z
αkβk.

Its defines a scalar product on the vector space of stochastic processes of the form
(B

(αk)k∈Z
t )t∈[0,1].
Let us now go back to the vector space Eδ . This space contains some infinite

sequences of complex numbers. It is natural to ask if it is possible to embed Eδ
into a space that has a richer structure. An example is obtained by considering the
space of analytic functions on the open unit disc. Indeed, it is possible to identify
the sequence w = (w�)�≥1 with the function:

F(w) : z �→
∑

�≥1

w�z
�−1.

The series for F converges absolutely on the unit disc, since we have

|F(w)| = |
∑

�≥1

w�z
�−1| ≤

⎛

⎝
∑

�≥1

|w�|2|z|�−1

⎞

⎠

1/2⎛

⎝
∑

�≥1

|z|�−1

⎞

⎠

1/2

< ∞
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by Cauchy–Schwarz inequality and the proof of Proposition 4.2. It is then possible
to express the scalar product 〈w,w′〉 on Eδ in terms of integrals involving the
holomorphic functions F(w) and F(w′), as follows:

Proposition 4.4 For all w,w′ ∈ Eδ ,

〈w,w′〉 = 2 lim
s→1,s<1

(1 − s)

∫ 2π

0
F(w)(seiθ )F (w′)(seiθ ) dθ

2π
.

Proof We expand the integral:

∫ 2π
0 F(w)(seiθ )F (w′)(seiθ ) dθ

2π = ∫ 2π
0

(
∑∞

�=1 w�s
�−1eiθ(�−1)

)

(
∑∞

�′=1 w�′s�
′−1e−iθ(�′−1)

)
dθ
2π .

Since

∞∑

�=1

(|w�| + |w′
�|)s�−1 < ∞,

we can apply Fubini’s theorem, which gives

∫ 2π

0
F(w)(seiθ )F (w′)(seiθ ) dθ

2π
=

∞∑

�=1

s2(�−1)w�w
′
�.

By Proposition 4.2, one deduces

(1 − s2)

∫ 2π

0
F(w)(seiθ )F (w′)(seiθ ) dθ

2π
−→

s→1,s<1
〈w,w′〉,

which proves the proposition, since 2(1 − s)/(1 − s2) = 2/(1 + s) tends to 1 when
s goes to 1. $%

The flow (Uα)α∈R can be naturally extended to the space Eδ , by setting

Uα

(
∑

k∈Z
λktk,�

)

=
∑

k∈Z
e2iπαykλktk,�.

Note that for all α ∈ R, the extension of Uα preserves both the norm

w �→ 〈w,w〉1/2 =
(
∑

k∈Z
|λk|2

)1/2

,
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and the norm

w �→
(
∑

k∈Z
(1 + |k|1+δ)|λk|2

)1/2

defining the space Eδ .

5 A More Intrinsic Definition of the Limiting Flow of
Operators

The random space E and the flow (Uα)α∈R of random operators on E defined
previously have the disadvantage of involving explicitly the limiting eigenvectors
of the virtual isometry (un)n≥1. This makes the definition artificial. In this section,
we construct a random space of sequences that contains E and a flow of operators
that restricts to Uα on E . This random space is not constructed directly from the
eigenvectors but is rather the space of sequences on which the action of the finite
matrices (un)

∞
n=1 converges in a suitable way.

All probabilistic statements in this section are assumed to hold almost surely. For
this section, let B(x, r) ⊂ R denote the closed interval in R with center x and radius
r . For any sequence v, we write v[n] for the vector (v�)1≤�≤n ∈ C

n for all n ≥ 1.
We define our random space as follows.

Definition 5.1 Let F denote the space of sequences (w�)�≥1 such that for all α ∈ R,
there exists a sequence V αw, satisfying the following properties:

(1) For all � ≥ 1, α, γ ∈ R and 0 < δ′ < δ < 1/6, there is a constant C > 0 such
that

sup
αn∈B(αn,n1−δ)

γn∈B(γ n,n1−δ)

|〈uαn
n (w[n])− (V αw)[n], uγn

n (e�)〉| ≤ Cn−δ′ .

(2) For all T > 0 and 0 < δ′ < δ < 1/6, there is a constant C > 0 such that

sup
α∈[−T ,T ]

sup
αn∈B(αn,n1−δ)

‖uαn
n w[n] − (V αw)[n]‖ ≤ Cn

1
2−δ′ .

Here the constants may depend on the choices of �, α, γ, δ′, δ and T .

Note that the first condition implies, upon taking αn = 5αn6 and γn = 0, that
for w ∈ F , (V αw)� is the limit of 〈u5αn6n (w[n]), e�〉 when n goes to infinity. Hence
V αw is uniquely determined.

The above definition gives the random space F and the family of operators V α

together. It turns out that this definition gives a flow of operators on a vector space,
which restricts to E in the natural way.
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Theorem 5.2 The set F is a vector space. There is a family (V α)α∈R of linear
maps, V α : F → F , given by the correspondence w �→ V αw. The family satisfies
the semigroup properties V 0 = id and V αV β = V α+β for all α, β ∈ R. Moreover,
almost surely for all k ∈ Z and α ∈ R, one has (gk,�)�≥1 ∈ F and V α((gk,�)�≥1) =
(e2πiαykgk,�)�≥1, so that E is a subspace of F and that Uα is the restriction of V α

to E .
Proof We begin by showing that F is a vector space. Clearly it suffices, for
w1, w2 ∈ F and λ ∈ C, to show that λw1 + w2 ∈ F . Let w = λw1 + w2 as
sequences and define wα = λV αw1 + V αw2. Now consider all � ≥ 1, α, γ ∈ R

and 0 < δ < 1/6. For any αn ∈ B(αn, n1−δ) and γn ∈ B(γ n, n1−δ), by the triangle
inequality:

|〈uαn
n (w[n])− wα[n], uγn

n (e�)〉| ≤ |λ||〈uαn
n (w1[n])− (V αw1)[n], uγn

n (e�)〉|
+ |〈uαn

n (w2[n])− (V αw2)[n], uγn
n (e�)〉|.

Since each w1, w2 ∈ F , there are constants C1, C2, depending on �, α, γ, δ′ and δ,
such that

|〈uαn
n (w[n])− wα[n], uγn

n (e�)〉| ≤ |λ|C1n
−δ′ + C2n

−δ′

so that the first condition is satisfied with constant |λ|C1 + C2. Similarly, we have

‖uαn
n w[n] − wα[n]‖ ≤ |λ|‖uαn

n w1[n] − (V αw1)[n]‖ + ‖uαn
n w2[n] − (V αw2)[n]‖

≤ |λ|C′
1n

1
2−δ′ + C′

2n
1
2−δ′

for some constants C′
1 and C′

2, which implies the second condition with constant
|λ|C′

1 + C′
2. We deduce that w ∈ F with V αw = wα and so F is a vector space as

required.
Now we consider the correspondence w �→ V βw for β ∈ R. The linearity of

such a map follows from the above argument, so it suffices to show that it maps F
to F and that it obeys the semigroup properties.

To see that V 0 = id, it suffices to note that (V 0w)� is the limit of
〈u50n6

n (w[n]), e�〉 = 〈w, e�〉 as n goes to ∞.
Now, let w ∈ F , α, β ∈ R, and let us show that V βw ∈ F and V α(V βw) =

V α+βw. We thus need to show

(1) For all � ≥ 1, α, γ ∈ R and 0 < δ < δ′ < 1/6,

sup
αn∈B(αn,n1−δ)

γn∈B(γ n,n1−δ)

|〈uαn
n (V βw)[n])− (V α+βw)[n], uγn

n (e�)〉| = O(n−δ′).

(2) For all T > 0 and 0 < δ < δ′ < 1/6,
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sup
α∈[−T ,T ]

sup
αn∈B(αn,n1−δ)

‖uαn
n (V βw)[n] − (V α+βw)[n]‖ = O

(
n

1
2−δ′

)
.

Note that the semigroup property follows from this because V α+βw satisfies the
conditions of the definition for V α(V βw).

Let us therefore fix the parameters � ≥ 1, α, γ ∈ R and 0 < δ′ < δ < 1/6.
Consider any choice of αn ∈ B(αn, n1−δ) and γn ∈ B(γ n, n1−δ). Define the
sequence (βn)n≥1, βn ∈ Z by

βn =
{
5βn6, αn ≥ αn

5βn6 + 1, αn < αn.

It is easy to check that βn ∈ B(βn, n1−δ) and αn + βn ∈ B((α + β)n, n1−δ). Now,
by the triangle inequality:

|〈uαn
n (V βw)[n] − (V α+βw)[n], uγnn (e�)〉| ≤ |〈uαn

n (V βw)[n] − u
αn+βn
n (w[n]), uγnn (e�)〉|

+ |〈uαn+βn
n (w[n])− (V α+βw)[n], uγnn (e�)〉|.

By unitary invariance, we see that

|〈uαn
n (V βw)[n]−uαn+βn

n (w[n]), uγn
n (e�)〉|=|〈(V βw)[n]−uβn

n (w[n]), uγn−αn
n (e�)〉|

and therefore, taking suprema,

sup
αn∈B(αn,n1−δ)

γn∈B(γ n,n1−δ)

|〈uαn
n (V βw)[n] − (V α+βw)[n], uγn

n (e�)〉|

≤ sup
αn∈B(αn,n1−δ)

γn∈B(γ n,n1−δ)

|〈(V βw)[n] − uβn
n (w[n]), uγn−αn

n (e�)〉|

+ sup
αn∈B(αn,n1−δ)

γn∈B(γ n,n1−δ)

|〈uαn+βn
n (w[n])− (V α+βw)[n], uγn

n (e�)〉|.

Denoting α′
n = αn+βn and γ ′

n = γn−αn, we have |βn−βn| ≤ 1, |α′
n−(α+β)n| ≤

n1−δ and |γ ′
n − (γ − α)n| ≤ 2n1−δ . Hence,

sup
αn∈B(αn,n1−δ)

γn∈B(γ n,n1−δ)

|〈uαn
n (V βw)[n] − (V α+βw)[n], uγn

n (e�)〉|
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≤ sup
βn∈B(βn,1)

γ ′
n∈B((γ−α)n,2n1−δ)

|〈(V βw)[n] − uβn
n (w[n]), uγ ′

n
n (e�)〉|

+ sup
α′
n∈B((α+β)n,n1−δ)

γn∈B(γ n,n1−δ)

|〈uα′
n

n (w[n])− (V α+βw)[n], uγn
n (e�)〉|.

For δ′′ ∈ (δ′, δ), we deduce for n large enough (so that 2n−δ ≤ n−δ′′),

sup
αn∈B(αn,n1−δ)

γn∈B(γ n,n1−δ)

|〈uαn
n (V βw)[n] − (V α+βw)[n], uγn

n (e�)〉|

≤ sup
βn∈B(βn,n1−δ′′ )

γ ′
n∈B((γ−α)n,n1−δ′′ )

|〈(V βw)[n] − uβn
n (w[n]), uγ ′

n
n (e�)〉|

+ sup
α′
n∈B((α+β)n,n1−δ)

γn∈B(γ n,n1−δ)

|〈uα′
n

n (w[n])− (V α+βw)[n], uγn
n (e�)〉|.

Now, this last expression is dominated by n−δ′ , by definition of the space F and the
maps V β and V α+β . This verifies the first condition.

The second condition follows from a similar computation. Indeed, we have

‖uαn
n (V βw)[n] − (V α+βw)[n]‖ ≤ ‖uαn

n (V βw)[n] − uαn+βn
n w[n]‖

+ ‖uαn+βn
n w[n] − (V α+βw)[n]‖,

which, again by unitary invariance, reduces to

‖uαn
n (V βw)[n]−(V α+βw)[n]‖ ≤ ‖(V βw)[n]−u

βn
n w[n]‖+‖uαn+βn

n w[n]−(V α+βw)[n]‖.

Defining α′ = α + β, α′
n = αn + βn, T ′ = T + |β| and taking suprema for

α ∈ [−T , T ] and αn ∈ B(αn, n1−δ), we get

sup
α∈[−T ,T ]

sup
αn∈B(αn,n1−δ)

‖uαn
n (V βw)[n] − (V α+βw)[n]‖

≤ sup
βn∈B(βn,1)

‖(V βw)[n] − uβn
n w[n]‖

+ sup
α′∈[−T ′,T ′]

sup
α′
n∈B(α′n,n1−δ)

‖uα′
n

n w[n] − (V α′
w)[n]‖.
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Both of the quantities on the right-hand side are bounded by O(n
1
2−δ′). We

have therefore proven the stability of F by the family of maps (V α)α∈R and the
semigroup property.

It remains to show that the eigenvectors are contained in F and V α restricts to
Uα there, but this is an immediate consequence of Propositions 3.5 and 3.6. $%

We have now defined a random space F containing E , on which the flow
(Uα)α∈R is extended to a flow of operators (V α)α∈R. The definition of F is quite
complicated, but it has the strong advantage, compared with the case of E , to be
given intrinsically in terms of (un)n≥1, without referring explicitly to eigenvectors.
A natural question that can now be asked is the following: by extending the space E
to F , do there exist eigenvectors of the flow that are not contained in E? The answer
is negative, in the following precise sense.

Definition 5.3 For w ∈ F different from zero, we say that w is an eigenvector of
the flow (V α)α∈R, if and only if there exists χ ∈ R such that V α(w) = e2iπαχw for
all α ∈ R.

Using this definition, we see that for all k ∈ Z, the sequences (tk,�)�≥1 are
eigenvectors of (V α)α∈R, corresponding to χ = yk . The following result shows
that these sequences are the only eigenvectors of the flow:

Theorem 5.4 The only eigenvectors of (V α)α∈R are the non-zero sequences that
are proportional to (tk,�)�≥1 (or (gk,�)�≥1) for some k ∈ Z.

From this theorem, we deduce in particular that the set of parameters χ associated
with the flow (V α)α∈R is a determinantal sine-kernel process.

Before we begin the proof of this theorem, it is convenient to separately establish
two partial results that will aid in the proof. For convenience, we will define

Mp(λ) := 1

p

p−1∑

j=0

λj = 1 − λp

p(1 − λ)

for p ≥ 1 and λ ∈ C, |λ| = 1.
First, we show that a non-zero element of F cannot be too small in a precise

sense. This in particular shows that F ∩ �2 = {0}.
Proposition 5.5 Let w be an element of F . Suppose there exists a δ > 0 and a

strictly increasing sequence (nq)q≥1 of integers such that ‖w[nq ]‖ = O(n
1
2−δ
q ).

Then, w is identically equal to zero.

Proof In the first part of the definition of F , let us take (δ/3) ∧ (1/7) instead of δ,
and α = γn = 0. Since V 0w = w, we deduce, for all � ≥ 1,

sup

|αn|≤n
1− δ

3

|〈uαn
n (w[n])− w[n], e�〉| = O(n−δ′),



Limit Operators for Circular Ensembles 361

for (say) δ′ = (δ/4) ∧ (1/8) > 0. Hence, if we decompose w[n] in terms of
eigenvectors of un:

w[n] =
n∑

k=1

η
(n)
k f

(n)
k ,

we get

sup

|αn|≤n
1− δ

3

∣∣∣∣∣
w� −

n∑

k=1

(λ
(n)
k )αnη

(n)
k 〈f (n)

k , e�〉
∣∣∣∣∣
= O(n−δ′),

Taking p = 5n1− δ
3 6 + 1 and averaging for αn ∈ {0, 1, . . . , p − 1} give

w� = lim
n→∞

n∑

k=1

Mp(λ
(n)
k )η

(n)
k 〈f (n)

k , e�〉.

Moreover, for all n ≥ 1 and k ∈ {1, . . . , n}, |〈f (n)
k , e�〉|2 is a beta random variable

of parameters 1 and n− 1. From the Borel–Cantelli lemma, we deduce that almost
surely,

〈f (n)
k , e�〉 = O

(
n−

1
2+ δ

3

)
,

and then, using Cauchy–Schwarz inequality, we get

|w�| � n−
1
2+ δ

3

(
n∑

k=1

|Mp(λ
(n)
k )|2

)1/2 ( n∑

k=1

|η(n)
k |2

)1/2

= n−
1
2+ δ

3 ‖w[n]‖
(

n∑

k=1

|Mp(λ
(n)
k )|2

)1/2

. (21)

Let us now assume the following bound:

n∑

k=1

|Mp(λ
(n)
k )|2 = O(nδ). (22)

Then, for n = nq (q ≥ 1), the right-hand side of (21) is dominated by n
−δ/6
q , which

is only possible if w� = 0. Hence, Proposition 5.5 is proven if we are able to show
(22). Now, we have
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|Mp(λ)|2 = 1

p2

p−1∑

j=−p+1

(p − |j |)λj ,

which implies

n∑

k=1

|Mp(λ
(n)
k )|2 = 1

p2

p−1∑

j=−p+1

(p − |j |)Tr(uj
n).

By [5], it is known, that for all integers j1, j2, . . . , jr such that |j1| + |j2| + · · · +
|jr | ≤ n, one has

E

[
r∏

s=1

Tr(ujs
n )

]

= E

[
r∏

s=1

Zjs

]

,

where Z0 = n, (Zj/
√
j)j≥1 are iid standard complex gaussian variables

(E[|Zj |2] = j ) and Z−j = Zj for j ≥ 1. For a fixed integer A > 0, we
deduce, from the fact that p = o(n), that for n large enough:

E

⎡

⎣
(

n∑

k=1

|Mp(λ
(n)
k )|2

)A
⎤

⎦ = E[WA],

where

W := 1

p2

p−1∑

j=−p+1

(p − |j |)Zj .

The variable W is a real-valued gaussian variable, with expectation n/p (coming
from the term j = 0), and variance

1

p4

∑

1≤|j |≤p−1

|j |(p − |j |)2 ≤ 1

p4

∑

1≤|j |≤p−1

p3 ≤ 1.

Hence,

‖W‖LA ≤ (n/p)+ ‖W − (n/p)‖LA ≤ (n/p)+ ‖N(0, 1)‖LA ≤ c(A)+ n/p,

where c(A) > 0 depends only on A. We deduce (for A fixed)
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E

⎡

⎣
(

n∑

k=1

|Mp(λ
(n)
k )|2

)A
⎤

⎦ � (n/p)A � nAδ/3.

Using Markov’s inequality, we get

P

[
n∑

k=1

|Mp(λ
(n)
k )|2 ≥ nδ

]

≤ n−Aδ
E

⎡

⎣
(

n∑

k=1

|Mp(λ
(n)
k )|2

)A
⎤

⎦ � n−2Aδ/3.

Taking any A strictly larger that 3/2δ and using the Borel–Cantelli lemma give the
estimate (22). $%

We also require the following easy technical lemma.

Lemma 5.6 There exists a universal constant c > 0, such that for all λ ∈ C,
|λ| = 1, and n ≥ 1,

|Mn(λ)|2 ≤ 1 − c((n|λ− 1|) ∧ 1)2.

Proof If |λ− 1| ≥ 3/n, we have

|Mn(λ)|2 = |1 − λn|2
n2|1 − λ|2 ≤ 4/9,

and the inequality is true for c = 5/9. If |λ− 1| ≤ 3/n, we can write λ = eiθ where

|λ− 1| ≤ |θ | ≤ π |λ− 1|/2 ≤ 3π/2n.

Then,

1 − |Mn(λ)|2 = 1

n2

n−1∑

j=−n+1

(n− |j |)(1 − λj )

= 1

n2

n−1∑

j=−n+1

(n− |j |)(1 − cos(jθ)),

where |jθ | ≤ 3π/2, which implies that 1 − cos(jθ) � j2θ2. Hence,

1 − |Mn(λ)|2 � 1

n2

n−1∑

j=−n+1

(n− |j |)j2θ2

� n2θ2 ≥ |λ− 1|2n2. $%
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Proof of Theorem 5.4 Let w be an eigenvector of (V α)α∈R, and let χ be the
corresponding eigenvalue. Taking, in the second part of the definition of F , T = 1,
α = j/n for j ∈ {0, 1, . . . , n− 1}, αn = αn = j , we obtain, for any δ ∈ (0, 1/6),

sup
0≤j≤n−1

‖uj
nw[n] − e2iπχj/nw[n]‖ = O

(
n

1
2−δ

)
,

or equivalently,

w[n] = u
j
ne

−2iπχj/nw[n] + vn,j ,

where

sup
0≤j≤n−1

‖vn,j‖ = O
(
n

1
2−δ

)
.

Decomposing in the eigenvector basis of un gives, with the notation of the proof of
Proposition 5.5:

w[n] = vn,j +
n∑

k=1

(λ
(n)
k e−2iπχ/n)j η

(n)
k f

(n)
k .

Averaging with respect to j ∈ {0, . . . , n− 1} gives

w[n] = vn +
n∑

k=1

Mn(λ
(n)
k e−2iπχ/n)η

(n)
k f

(n)
k ,

where

‖vn‖ = O
(
n

1
2−δ

)
.

Hence,

‖w[n]‖ =
(

n∑

k=1

|Mn(λ
(n)
k e−2iπχ/n)|2|η(n)

k |2
)1/2

+O
(
n

1
2−δ

)
. (23)

First let us assume that χ is not one of the values of yk for k ∈ Z. Then, there exists
k ∈ Z, χ1, χ2 ∈ R, such that

yk < χ1 < χ < χ2 < yk+1.

Hence, for n large enough,



Limit Operators for Circular Ensembles 365

nθ
(n)
k

2π
< χ1 < χ < χ2 <

nθ
(n)
k+1

2π
,

and there are no eigenangles of un between 2πχ1/n and 2πχ2/n. One deduces that
for all k ∈ {1, . . . , n},

|λ(n)
k e−2iπχ/n − 1| � 1/n,

and by Lemma 5.6, there exists d < 1 such that for all n large enough, and all
k ∈ {1, . . . , n},

|Mn(λ
(n)
k e−2iπχ/n)| ≤ d.

Therefore, (23) gives, for n large enough,

‖w[n]‖ ≤ d

(
n∑

k=1

|η(n)
k |2

)1/2

+O
(
n

1
2−δ

)
= d‖w[n]‖ +O

(
n

1
2−δ

)
,

and, since 1 − d > 0 is independent of n,

‖w[n]‖ � (1 − d)‖w[n]‖ = O
(
n

1
2−δ

)
.

By Proposition 5.5, w is identically zero, which implies that (V α)α∈R has no
eigenvectors for χ /∈ {yk, k ∈ Z}.

Now, let us assume that χ = yk for k ≥ 1 (the case k ≤ 0 is similar), and let wn

be the projection of w[n] on the orthogonal of f (n)
k . We have

w[n] = wn + η
(n)
k f

(n)
k ,

and then

u
j
nw[n]− e2iπχj/nw[n] = [uj

n(wn)− e2iπχj/nwn]+ η
(n)
k (e2iπjθ(n)

k − e2iπjχ/n)f
(n)
k ,

where the two terms in the last sum are orthogonal vectors. Hence,

sup
0≤j≤n−1

‖uj
n(wn)− e2iπχj/nwn‖ ≤ sup

0≤j≤n−1
‖uj

nw[n] − e2iπχj/nw[n]‖ � n
1
2−δ.

Now, decomposing wn in the eigenvector basis of un and performing the same
computation as for w[n], we obtain an estimate which is similar to (23):
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‖wn‖ =
⎛

⎝
∑

1≤k′≤n,k′ �=k

|Mn(λ
(n)

k′ e−2iπχ/n)|2|η(n)
k |2

⎞

⎠

1/2

+O
(
n

1
2−δ

)
. (24)

Notice that the term k′ = k is not in the sum, since wn is obtained from w[n]
by removing the component proportional to f

(n)
k . Now, it is easy to check that for

k′ ∈ {1, . . . n}\{k}, one has the estimate:

|λ(n)
k e−2iπχ/n − 1| � 1/n

(note that this estimate is not true for k′ = k, since nθ
(n)
k /2π tends to χ = yk when

n goes to infinity). Hence, for n large enough, |Mn(λ
(n)

k′ e−2iπχ/n)| is uniformly
bounded by a quantity that is strictly smaller than 1. As above for w[n], this implies
the estimate:

‖wn‖ = O
(
n

1
2−δ

)
.

If we set κn := η
(n)
k /D

(n)
k , we deduce

‖w[n] − κng
(n)
k ‖ = O

(
n

1
2−δ

)
,

and then

‖w[n] − κngk[n]‖ = O
(
(1 + |κn|)n 1

2−δ
)
, (25)

since

‖gk[n] − g
(n)
k ‖ = O

(
n

1
2−δ

)
.

Now, for any integer m such that n ≤ m ≤ 2n, we have

‖w[m] − κmgk[m]‖ � (1 + |κm|)m 1
2−δ = O

(
(1 + |κm|)n 1

2−δ
)
,

and taking the n first components, we obtain

‖w[n] − κmgk[n]‖ = O
(
(1 + |κm|)n 1

2−δ
)
. (26)

Comparing (25) and (26) gives the following:

|κm − κn|‖gk[n]‖ = O
(
(1 + |κn| + |κm|)n 1

2−δ
)
,
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and then

|κm − κn| = O
(
(1 + |κn| + |κm|)n−δ

)
, (27)

since ‖gk[n]‖ is equivalent to a strictly positive constant times
√
n. In particular, for

n large enough and n ≤ m ≤ 2n,

|κm| − |κn| ≤ |κm − κn| ≤ 1

2
(1 + |κn| + |κm|),

which implies

|κm| ≤ 1 + 3|κn| = O(1 + |κn|),

and (27) can be replaced by

|κm − κn| = O
(
(1 + |κn|)n−δ

)
. (28)

Hence,

|κm| = |κn| +O
(
(1 + |κn|)n−δ

)
,

sup
n≤m≤2n

(1 + |κm|) = (1 + |κn|)(1 +O(n−δ)),

and

Sq+1 ≤ Sq(1 +O(2−δq)),

where Sq denotes the supremum of 1 + |κm| for 2q ≤ m ≤ 2q+1. We deduce that
the sequence (Sq)q≥0 and then the sequence (κn)n≥1 are bounded. The estimate (28)
becomes

|κm − κn| = O
(
n−δ

)
,

for n ≤ m ≤ 2n. If for q ≥ 1, 2qn ≤ m ≤ 2q+1n, we also get

|κm − κn| ≤ |κm − κ2qn| +
q−1∑

r=0

|κ2r+1n − κ2r n| �
q∑

r=0

(2rn)−δ = O(n−δ).

Hence (κn)n≥1 is a Cauchy sequence, and if κ denotes its limit, one has

|κ − κn| = O(n−δ).

Using (25), we deduce
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‖(w − κgk)[n]‖ ≤ ‖w[n] − κngk[n]‖ + |κ − κn|‖gk[n]‖
� (1 + |κn|)n 1

2−δ + n−δ
√
n = O

(
n

1
2−δ

)
.

Now, w − κgk is a sequence in F : by Proposition 5.5, w − κgk = 0, which implies
that w is proportional to gk . $%

6 Further Questions

A natural question that can be asked is whether one could construct a similar
flow of operators for other ensembles of random matrices. In [14], convergence
of the renormalized eigenvalues and eigenvectors is proven for a large class of
infinite-dimensional Hermitian random matrices that are invariant in law by unitary
conjugation. The coordinates of limiting eigenvectors can still be taken as iid
complex Gaussian variables. A flow of operators can then be constructed as in
Section 3, on a space similar to E . However, it is still an open problem to relate
this flow to the infinite random Hermitian matrix considered at the beginning of the
construction, and to define and extend it without explicit reference to the limiting
eigenvectors.

On the other hand, many unitary invariant ensembles of random matrices have a
determinantal structure, in such a way that the eigenvalues tend to a determinantal
sine-kernel process on the microscopic scale, and the components of the suitably
renormalized eigenvectors converge in law to iid complex Gaussian variables.
One can then ask if there is a universal way to couple these ensembles in all
dimensions, in order to get almost sure convergence for renormalized eigenvalues
and eigenvectors.

Another problem consists to see if there exists a natural version of the flow
(V α)α∈R, which is defined on a random space with a Hilbert structure. In this case,
V α would be a “true” unitary operator on this space. Moreover, it would be possible
to define a self-adjoint operator H , whose spectrum is the determinantal sine-kernel
process (ym)m∈Z, and which is equal to 1/2iπ times the infinitesimal generator
of the flow (V α)α∈R. Note that H would be an unbounded operator, and then its
domain would not be the whole Hilbert space where (V α)α∈R is defined. However,
the operator H−1 would be a bounded, and even compact operator.
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Gibbs Measures of Nonlinear
Schrödinger Equations as Limits
of Quantum Many-Body States in
Dimension d ≤ 3

Vedran Sohinger

1 Derivation of Gibbs Measures for NLS from Many-Body
Quantum Systems

We consider the spatial domain Λ = R
d or Td for d = 1, 2, 3. Given a one-body

potential V ≥ 0 and an even positive (defocusing) interaction potential w on Λ, we
consider the nonlinear Schrödinger equation (NLS):

i∂tφ(x) = −Δφ(x)+ V (x)φ(x)+
∫

dy |φ(y)|2 w(x − y) φ(x) . (1)

We consider either nonlocal (Hartree) interactions w ∈ L∞(Λ) or local interactions
w = δ. The NLS (1) is formally given as the Hamiltonian equation of motion on the
space of fields φ : Λ → C with Hamilton function:

H(φ) :=
∫

dx |∇φ(x)|2 + V (x)|φ(x)|2 + 1

2

∫
dx dy |φ(x)|2 w(x − y) |φ(y)|2

(2)
and Poisson bracket satisfying

{φ(x), φ̄(y)} = iδ(x − y), {φ(x), φ(y)} = {φ̄(x), φ̄(y)} = 0 . (3)

V. Sohinger (�)
Mathematics Institute, University of Warwick, Coventry, UK
e-mail: V.Sohinger@warwick.ac.uk

© Springer Nature Switzerland AG 2020
N. Anantharaman et al. (eds.), Frontiers in Analysis and Probability,
https://doi.org/10.1007/978-3-030-56409-4_9

371

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56409-4_9&domain=pdf
mailto:V.Sohinger@warwick.ac.uk
https://doi.org/10.1007/978-3-030-56409-4_9


372 V. Sohinger

The Gibbs measure dP associated with H is formally defined as the probability
measure on the space of fields φ : Λ → C given by

P(dφ) := 1

Z
e−H(φ) dφ , (4)

for a normalisation constant Z and the (formal) Lebesgue measure dφ on the
space of fields. By formal arguments, dP is invariant under the flow of (1). The
first rigorous result of invariance of Gibbs measures for the NLS was obtained by
Bourgain [2]. In proving this, a significant challenge is the infinite dimensionality
of the Hamiltonian system, which is overcome by an approximation argument. The
latter requires a suitable stability analysis of (1). Gibbs measures have since been
extensively studied as tools to construct global solutions of time-dependent NLS
equations with rough initial data, see [3–12, 18, 28, 29, 31, 38–41] and references
therein. Note that the problem of constructing the Gibbs measure (without the
invariance) was first addressed in the constructive quantum field literature in the
1970s [20, 33], and it was introduced to the PDE community in [24].

The main question that we study is whether it is possible to derive (4) as
a classical limit of many-body quantum objects. The analogous question for the
equation (1) was first studied by Hepp [22] and Ginibre and Velo [19]. We refer
the reader to [13–15, 36] and the references therein, as well as to the expository
work [32] for a more detailed discussion on this topic. In our work, we analyse both
stationary and dynamic aspects of the problem. Let us address each of these aspects
separately.

1.1 The Stationary Problem

One starts from a many-body quantum system of n particles with Hamiltonian of
the form:

H(n) :=
n∑

i=1

(−Δxi + V (xi)
)+ λ

∑

1≤i<j≤n

w(xi − xj ) , (5)

for some coupling constant λ > 0 acting on L2
sym(Λn) (the symmetric subspace of

L2(Λn)). At temperature τ > 0, the equilibrium state of H(n) is governed by the
canonical ensemble P

(n)
τ := e−H(n)/τ . The goal is to appropriately combine the

canonical ensembles and obtain the Gibbs measure dP when τ → ∞.
This problem was first considered in 1D and in higher dimensions with

nontranslation-invariant interactions by Lewin, Nam, and Rougerie in [25] (see
also the more recent results [26, 27] by the same group of authors). In [16], we
consider d = 1, 2, 3 and Λ = T

d or Rd . On the one-particle space H := L2(Λ;C),
we work with the densely defined one-body Hamiltonian:
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h := −Δ+ κ + v, (6)

for κ > 0 and v : Λ → [0,∞). We assume that h has compact resolvent and that
for some s < 1 we have

Trhs−1 < ∞ . (7)

The two main cases that we study are when (7) holds for s = −1 and s = 0. When
d ≤ 3, the former holds for Λ = T

d and v = 0 or Λ = R
d and v sufficiently

confining, e.g. v = |x|r for large enough r . The latter holds for Λ = T
1 and v = 0.

Write h = ∑
k∈N λkuku

∗
k with eigenvalues λk and L2-normalised eigenvectors

uk . Let us consider an infinite sequence of independent standard complex Gaussians
μk := π−1e−|z|2/2dz, where dz is Lebesgue measure on C. We work on the
probability space (CN,G , μ), where G is taken to be the product sigma-algebra
and μ := ⊗

k∈N μk . The points of the probability space C
N are denoted by

ω = (ωk)k∈N. Given ω = (ωk)k ∈ C
N, K ∈ N, one defines the truncated classical

free field as

φ[K] :=
K∑

k=0

ωk√
λk

uk .

Then φ[K] → φ as K → ∞ in Hs , where 〈f, g〉Hs
:= 〈f, hsg〉H. The obtained

limit φ is called the classical free field. The classical interaction is given by

W := 1

2

∫
dx dy |φ(x)|2 w(x − y) |φ(y)|2 .

Note that, μ-almost surely, W ≥ 0 under appropriate positivity assumptions on w.
Moreover W is μ-almost surely finite if w ∈ L∞(Λ) and if (7) holds with s = 0. In
this case the classical Gibbs state ρ(·) associated with h and w is defined by

ρ(X) :=
∫
X e−W dμ
∫

e−W dμ
, (8)

for X a random variable. On H(p) (by which we henceforth denote the symmetric
subspace of H⊗p), the classical p-particle correlation function γp is defined by

γp(x1, . . . , xp; y1, . . . , yp) := ρ
(
φ̄(y1) · · · φ̄(yp)φ(x1) · · ·φ(xp)

)
. (9)

When (7) holds with s = −1, but not with s = 0 (which occurs when d = 2, 3),
it is necessary to modify this construction by using the procedure of Wick ordering,
as in [3] for instance. Assuming that this is the case, we note that φ /∈ H almost
surely and so for general w ∈ L∞(Λ) the classical interaction W does not make
sense. For K ∈ N, the truncated Wick-ordered classical interaction is defined as
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W[K] := 1

2

∫
dx dy

(|φ[K](x)|2 − 3[K](x)
)
w(x − y)

(|φ[K](y)|2 − 3[K](y)
)
,

(10)

where the truncated classical density at x is given by 3[K](x) :=
∫

dμ |φ[K](x)|2.
The latter quantity diverges to infinity almost surely as K → ∞. One then has
W[K] → W in

⋂
m≥1 Lm(μ). The limit W is the Wick-ordered classical interaction.

Hence for d = 2, 3, it is necessary to modify the definitions (8) and (9) by replacing
the interaction W by its Wick-ordered version.

In the quantum setting one works on the Bosonic Fock space F ≡ F (H) :=⊕
n∈N H(n). At temperature τ > 0, the many-body quantum Hamiltonian on the

sector H(n) is given by (5) with λ = 1
τ

. The latter choice of coupling constant λ is
necessary in order to ensure a well-defined limit as τ → ∞, see [16, (1.25)]. On F ,
the many-body quantum Hamiltonian is given by

Hτ := 1

τ

⊕

n∈N
H(n) , (11)

and the grand canonical ensemble defined by

Pτ :=
⊕

n∈N
P (n)
τ = e−Hτ . (12)

Furthermore, we define the quantum state ρτ (·) by

ρτ (A ) := Tr (A Pτ )

Tr (Pτ )
, (13)

for A a closed operator on F .
When d = 2, 3, it is necessary to modify (11)–(13) by means of Wick ordering.

More precisely, given f ∈ H, consider the bosonic creation and annihilation oper-
ators b(f ) and b∗(f ) on the Fock space F satisfying the canonical commutation
relations (i.e. [b(f ), b∗(g)] = 〈f, g〉 and [b(f ), b(g)] = [b∗(f ), b∗(g)] = 0).
By rescaling, the quantum field is defined as φτ (f ) := τ−1/2 b(f ), φ∗

τ (f ) :=
τ−1/2 b∗(f ). The associated distribution kernels are denoted by φτ (x) and φ∗

τ (x).
One defines the free HamiltonianHτ,0, the associated free quantum state ρτ,0(·) and
quantum density at x, denoted by 3τ (x) according to

Hτ,0 :=
∫

dx dy φ∗
τ (x) h(x; y) φτ (y) ,

ρτ,0(A ) := Tr (A e−Hτ,0)

Tr (e−Hτ,0)
,

3τ (x) := ρτ,0
(
φ∗
τ (x)φτ (x)

)
.
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With these definitions, we can rewrite (11) as

Hτ = Hτ,0 + 1

2

∫
dx dy φ∗

τ (x)φ
∗
τ (y)w(x − y)φτ (x)φτ (y) . (14)

This is the definition that we use when d = 1. When d = 2, 3, instead of Hτ given
by (11) and (14), we work with the Wick-ordered many-body Hamiltonian, which is
given by Hτ := Hτ,0 +Wτ where the Wick-ordered quantum interaction is

Wτ := 1

2

∫
dx dy

(
φ∗
τ (x)φτ (x)−3τ (x)

)
w(x−y)

(
φ∗
τ (y)φτ (y)−3τ (y)

)
. (15)

In [16], we need to modify (12) when d = 2, 3. This is needed for technical reasons
concerning the analysis of the asymptotic series (18), which will be explained in
more detail in the discussion below. The modification of (12) in [16] consists in
considering a modified grand canonical density operator:

Pη
τ := e−ηHτ,0 e−(1−2η)Hτ,0−Wτ e−ηHτ,0 , (16)

for fixed η ∈ [0, 1/4]. In accordance with (16), we consider a modified quantum
state ρ

η
τ (·). For p ∈ N, we define the quantum p-particle correlation function

γ
η
τ,p by

γ η
τ,p(x1, . . . , xp; y1, . . . , yp) := ρη

τ

(
φ∗
τ (y1) · · ·φ∗

τ (yp)φτ (x1) · · ·φτ (xp)
)
.

In [16] the main result we prove is the following.

Theorem 1 Let Λ = T
d or Λ = R

d . Let κ > 0 and v : Λ → [0,∞). Suppose that
h given by (6) has compact resolvent and satisfies (7) with s = −1. Let w ∈ L∞(Λ)

be an even function, which is pointwise nonnegative when d = 1 or of positive type
(i.e. ŵ ≥ 0) when d = 2, 3. Then for every η ∈ (0, 1/4] and p ∈ N, we have

lim
τ→∞‖γ η

τ,p − γp‖S2(H(p)) = 0 . (17)

Here S2 denotes the class of Hilbert–Schmidt operators.

One interprets (17) as a convergence result of the quantum Gibbs states ρ
η
τ (·) to

the classical Gibbs state ρ(·) in the sense of p-particle correlation functions. In [16,
Theorem 1.8] we also consider the 1D problem where it is possible to take η = 0
and no Wick ordering is necessary. In particular we give an alternative proof of the
1D result given in [25, Theorem 5.3]. In this case, we assume that (7) holds with
s = 0, w is taken to be pointwise nonnegative and (17) holds in the trace class.
Furthermore, in [16, Theorem 1.9] we consider a local nonlinearity on Λ = T

1

with quantum interactions wτ being approximations of the delta function instead of
wτ = δ as in [25, Theorem 5.3].
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Remark 1 We note that, after the completion of our manuscript, a derivation of the
Gibbs measure for a 2D nonlocal NLS with sufficiently regular interaction potential
w was obtained with unmodified grand canonical ensemble (12) in [27] by using
different methods.

Remark 2 For Λ = T
d , the author has recently extended the result of Theorem 1

to the optimal regime of w in the sense of Lp-integrability [34]. In particular, it
is shown in [34, Theorem 1.9] that an appropriate variant of (17) holds for even
w ∈ Lp(Λ) with the same positivity properties in Theorem 1, where

p ∈

⎧
⎪⎪⎨

⎪⎪⎩

[1,∞] if d = 1

(1,∞] if d = 2

(3,∞] if d = 3 .

Moreover, in [34, Theorem 1.10], it is shown that when d = 2 and w ∈ L1,
an analogous result holds if |ŵ(k)| ≤ C/(1 + |k|)ε for some ε > 0. This is in
accordance with results obtained in the classical setting by Bourgain [4].

The strategy of our proof is based on a perturbative expansion in the interaction
and is best illustrated in the example of the (relative) partition function. The general
result follows by the same principle after adding an appropriate observable and
concluding by a duality argument. In particular, if we consider the classical and
quantum partition functions defined, respectively, by

A(z) :=
∫

e−zW dμ , Aτ (z) = Tr (P η
τ (z))

Tr (e−Hτ,0)
,

our goal is to prove that

lim
τ→∞Aτ (z) = A(z) for Re z > 0 .

For M ∈ N, we expand

A(z) =
M−1∑

m=0

amzm + RM(z) , Aτ (z) =
M−1∑

m=0

aτ,mzm + Rτ,M(z) (18)

into asymptotic series by means of Duhamel’s formula. A fundamental difficulty
is that both series have radius of convergence zero. This is remedied by using the
method of Borel summation as formulated in the work of Sokal [35] (see also the
earlier known results [21, Theorem 136] and [30]). Given a formal power series
A (z) = ∑

m≥0 αmzm, its Borel transform is defined as B(z) := ∑
m≥0

αm

m! z
m.

Formally one can recover A from B by a rescaled Laplace transform
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A (z) =
∫ ∞

0
dt e−t B(tz) .

Using the result of [35], this method can be applied to A and Aτ provided that we
have

{
|am| + |aτ,m| ≤ Cmm!
|RM(z)| + |Rτ,M(z)| ≤ CMM!|z|M for Rez ≥ 0 .

(19)

In proving the estimate on the explicit terms am and aτ,m, we use the classical Wick
theorem for Gaussian measures and the quantum Wick theorem for quasi-free states,
respectively. In the quantum setting, this result informally states that an expression
of the form:

1

Tr (e−Hτ,0)
Tr
(
φ∗
τ (x1) · · ·φ∗

τ (xm)φτ (y1) · · ·φτ (ym) e−Hτ,0
)

(20)

is given by a sum over all pairings of the labels x1, . . . , xm, y1, . . . , ym, where each
pairing contributes a product over pairs of two-point functions of the form:

1

Tr (e−Hτ,0)
Tr
(
φ∗
τ (x)φτ (y) e−Hτ,0

)
= Gτ(x; y) ,

which is the quantum Green function. Expressions analogous to those in (20), but
with a different number of creation and annihilation operators, vanish by gauge
invariance of the Hamiltonian.

Due to the Duhamel expansion, we really consider products of time-evolved
quantum Green functions:

Gτ,t := e−th/τ

τ (eh/τ − 1)
for t ≥ −1 (21)

and time-evolved delta functions:

Sτ,t := e−th/τ for t ≥ 0 . (22)

Each contribution from the quantum Wick theorem is then encoded in terms of a
graph and estimated by using an inductive integration algorithm [16, Sections 2.4–
2.6]. A subtle point in the analysis arises from the time evolutions applied to the
operators in (21) and (22). Namely, these operators are bounded only in operator
norm. Part of the algorithm involves cancelling the time evolution [16, Section
2.5]. Finally, the modification of the grand canonical ensemble with η �= 0 (16)
is required to prove the bound in (19) on the remainder term Rτ,M(z).
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1.2 The Time-Dependent Problem

Consider first a general Hamiltonian system (Γ,H, {·, ·}) and denote by P(dφ) :=
1
Z

e−H(φ) dφ the associated Gibbs measure, which is assumed to be well-defined.
Let St denote the flow map of H . Given m ∈ N, X1, . . . , Xm ∈ C∞(Γ ) (which
are henceforth referred to as observables), and times t1, . . . , tm ∈ R, the m-particle
time-dependent correlation function is defined as

QP(X
1, . . . , Xm; t1, . . . , tm) :=

∫
X1(St1φ) · · · Xm(Stmφ) dP .

A time-dependent variant of the problem studied in the previous section is to
obtain a derivation of QP from many-body quantum expectation values in the setting
where St is the Hamiltonian flow map generated by (2) and (3). In [17], we consider
this problem when Λ = T

1 or R, V = κ > 0 and w ∈ L∞(Λ). The fact that the
flow is well-defined in the periodic problem is nontrivial and was first shown in [1].
Before recalling the main result of [17], it is necessary to set up some notation. For
ξ a bounded operator on H(p), we define

Θτ (ξ) :=
∫

dx1 · · · dxp dy1 · · · dyp ξ(x1, . . . , xp; y1, . . . , yp)

× φ∗
τ (x1) · · ·φ∗

τ (xp)φτ (y1) · · ·φτ (yp) (23)

and

Θ(ξ) :=
∫

dx1 · · · dxp dy1 · · · dyp ξ(x1, . . . , xp; y1, . . . , yp)

× φ̄(x1) · · · φ̄(xp)φ(y1) · · ·φ(yp) . (24)

Given an operator A on the Fock space F ≡ F (H) we define

Ψτ,t A := eitτHτ A e−itτHτ . (25)

Furthermore, given an operator B on H, we define

(Ψt B)(f ) := B(f (t)) , (26)

where f (t) is the solution of (1) with initial data f ∈ H. If we set A = Θτ (ξ),
then (25) is the canonical time evolution of the observable given by (23). Likewise,
if B = Θ(ξ), then (26) is the canonical time evolution of (24). We now state the
main result of [17].
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Theorem 2 Consider w ∈ L∞(Λ) pointwise nonnegative and suppose that (7)
holds with s = 0. Let m ∈ N, p1, . . . , pm ∈ N, observables ξj ∈ L (H(pj )) and
times t1, . . . , tm ∈ R be given. We have

ρτ

(
Ψτ,t1Θτ (ξ1) · · ·Ψτ,tmΘτ (ξm)

)→ ρ
(
Ψt1Θ(ξ1) · · ·ΨtmΘ(ξm)

)
as τ → ∞ .

(27)

Let us note that when m = 1 and t1 = 0, (27) follows directly from the
corresponding result in [16]. Moreover, if m = 1, one can use (27) and cyclicity
of the trace to give an alternative proof of the invariance of the Gibbs measure in
this setting. A version of (27) had earlier been proved in the setting when the domain
is a lattice in [23, Section 3.4].

The strategy of proof in [17] is based on the one in [23, Section 3.4]. One first
divides the problem into two parts by adding a smooth cut-off in particle number:

N :=
∫

dx |φ(x)|2 ,

and the rescaled particle number:

Nτ :=
∫

dx φ∗
τ (x) φτ (x) .

The large-particle number contribution can be made arbitrarily small by applying
a version of Markov’s inequality. For the small-particle number contribution, one
applies a Schwinger–Dyson expansion of Ψτ,tj Θ(ξj ) and ΨtjΘτ (ξj ) in tj in the
spirit of [23, Section 4.2]. The main technical step that one needs to prove is that for
a function f ∈ C∞

c (R) with f ≥ 0 we have

ρτ

(
Θτ (ξ)f (Nτ )

)→ ρ
(
Θ(ξ)f (N )

)
as τ → ∞ . (28)

Note that, in [16], the analogous result is obtained with f = 1. The reason why (28)
for compactly supported f is more challenging is that the presence of f destroys
the symmetries that allow us to apply Wick’s theorem. More precisely, it destroys
the Gaussianity of the free measure in the classical setting and the quasi-freeness
of the free measure in the quantum setting. Moreover, the cut-off in the number of
particles coming from f is necessary to ensure the convergence of the Schwinger–
Dyson series [17, Sections 3.2–3.3]. The strategy to prove (28) is to reduce it to the
analysis of [16] by expanding the expressions according to the Helffer–Sjöstrand
formula and then applying the Wick theorem for a Hamiltonian translated by a real
chemical potential.

In [17, Section 5], the local version of (1) is also studied for Λ = T
1 and v = 0.

In particular, a partial result is shown by using an approximation argument from
the nonlocal problem. More precisely, let w be a continuous compactly supported
nonnegative function satisfying

∫
dx w(x) = 1. For ε > 0, define the two-body

potential as
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wε(x) := 1

ε
w

( [x]
ε

)
, (29)

where [x] denotes the unique element of the set (x+Z)∩[−1/2, 1/2). We state the
result [17, Theorem 1.5].

Theorem 3 There exists a sequence (ετ ) of positive numbers satisfying
limτ→∞ ετ = 0, such that, for arbitrary m ∈ N, p1, . . . , pm ∈ N, observables
ξj ∈ L (H(pj )) and times t1 ∈ R, . . . , tm ∈ R, we have

lim
τ→∞ ρετ

τ

(
Ψ t1,ετ

τ Θτ (ξ
1) · · · Ψ tm,ετ

τ Θτ (ξ
m)
)

= ρ
(
Ψ t1 Θ(ξ1) · · · Ψ tm Θ(ξm)

)
.

Here, all the objects on the left-hand side are defined with interaction wετ given
as in (29), and all the objects on the right-hand side are defined with interaction
w = δ.

The approximation argument used to deduce Theorem 3 from Theorem 2 reduces
to a PDE problem. Namely, for φ0 ∈ Hs0(T1) with appropriately chosen s0, one
compares the Cauchy problems:

{
i∂tu+Δu = |u|2u
u|t=0 = φ0

and

{
i∂tuε +Δuε = (wε ∗ |uε |2)uε

uε |t=0 = φ0 ,

and shows that for all T > 0 the solutions satisfy

lim
ε→0

‖uε(·, t)− u(·, t)‖H = 0 uniformly in t ∈ [−T , T ] . (30)

The proof of (30) is based on dispersive properties of the equation through the use
of Xs,b spaces (also known as dispersive Sobolev spaces), which are given by the
norm:

‖f ‖Xs,b := ‖e−itΔf ‖Hb
t H

s
x

∼
∥∥∥
(
1 + |2πk|)s (1 + |η + 2πk2|)b f̃

∥∥∥
L2

ηl
2
k

,

where

f̃ (k, η) :=
∫ ∞

−∞
dt
∫

Λ

dx f (x, t) e−2π ikx−2π iηt

denotes the spacetime Fourier transform. These spaces are a fundamental tool to
study nonlinear dispersive PDEs (see [37, Chapter 2.6]).
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Interfaces in Spectral Asymptotics
and Nodal Sets

Steve Zelditch

1 Introduction

This is mainly an expository article on interfaces in spectral asymptotics. Interfaces
are studied in many fields of mathematics and physics but seem to be a novel
area of spectral asymptotics. Spectral asymptotics refers to the behavior of spectral
projections and nodal sets for a quantum Hamiltonian Ĥh̄, which might be a
Schrödinger operator on L2(Rd) or on a Riemannian manifold (M, g), with
or without boundary, or a Toeplitz Hamiltonian acting on holomorphic sections
H 0(M,Lk) of line bundles over a Kähler manifold. Interface asymptotics refers to
the change in behavior of the spectral projections or nodal sets as a hypersurface is
crossed, either in physical space (configuration space) or in phase space. Interfaces
exist in diverse settings and indeed the purpose of this article is to compare interface
behavior in different settings and to consider possible future settings that have yet
to be explored.

What is meant by an “interface” in the sense of this article? The general idea is
that there is a hypersurface in the phase space separating two regions in which the
asymptotic behavior of a spectral projections kernel has different types of behavior:
In the first, that we will term the “allowed” region, the asymptotics are constant
and, after normalization, equal to 1, so that one has a plateau over the region; in
the second “forbidden” region the asymptotics are rapidly decaying, so that one
has a rather flat 0 region. The interface is the shape of the graph of the spectral
kernel connecting 1 and 0 in a thin region separating the allowed and forbidden
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region. One expects that when scaled properly, the limit shape is universal. More
precisely, universality holds in each type of model (e.g. Schrödinger or Kähler) but
is model-dependent: one expects “Airy interfaces” in the Schrödinger setting and Erf
interfaces in the Kähler setting. The separation into different regions for the spectral
projections kernel often coincides with the separation of other spectral behavior,
such as nodal sets of the eigenfunctions.

The terminology (classically) “allowed” and (classically) “forbidden” is standard
in quantum mechanics for regions inside, resp. outside, of an energy surface in
phase space, or more commonly, the projection of these regions to configuration
space. This will indeed be the meaning of “interface” for most of this article.
We will describe results of B. Hanin, P. Zhou and the author [HZZ15,HZZ16]
on the different behavior of nodal sets of Schrödinger eigenfunctions in allowed
resp. forbidden regions for the simplest Schrödinger Hamiltonian Ĥh̄, namely the
isotropic Harmonic oscillator on R

d . We then consider phase space interfaces
of Wigner distributions for the same model, following [HZ19,HZ19b]. We then
turn to phase space interfaces in the Kähler (complex holomorphic) setting, and
discuss results of Pokorny-Singer [33], Ross-Singer [35], P. Zhou and the author
[ZZ16,ZZ17] on interfaces for partial Bergman kernel asymptotics. In Section 8
we explain that the exact analogue of the results on Wigner distributions for the
isotropic harmonic oscillator in the complex setting is a series of results on interfaces
for disc bundles in the Bargmann-Fock space of a line bundle. This Bargmann-Fock
space and the interface results constitute the new results of the article.

Roughly speaking, interfaces in spectral asymptotics involve two types of local-
ization: (i) spectral, i.e. quantum, localization where the eigenvalues are constrained
to lie in an interval I , (ii) classical, i.e. phase space, localization where a phase
space point is constrained to lie in an open set U of phase space. It has long been
understood that spectral localization Ej(h̄) ∈ I implies phase space localization
in the sense that quantum objects decay in the complement of the allowed region
H−1(I ). But the study of interfaces is devoted to the precise behavior of quantum
objects as one crosses the interface between allowed and forbidden regions, and
more generally, considers all possible combinations of spectral localization Ej(h̄) ∈
I and phase space localization ζ ∈ U , where U may have any position relative to
H−1(I ).

Often, the interface corresponds to a sharp cutoff in a spectral parameter and
signals something discontinuous. In fact, the earliest studies of interface asymptotics
are classical analysis studies of Bernstein polynomials of discontinuous functions
with jump discontinuities [13, 28–31]. These studies were intended to be analogues
of Gibbs phenomena for Fourier series of discontinuous functions, which have been
generalized to wave equations on Riemannian manifolds in [32].

In this article we review the following results on interface asymptotics:

• Interface behavior for spectral projections and for nodal sets of random eigen-
functions of energy EN(h̄) = h̄(N + d

2 ) = E of the isotropic harmonic
oscillator on R

d across the caustic set in physical space, where the potential
V (x) = |x|2/2 = E.
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• Interface behavior for Wigner distributions of the same eigenspace projections,
and more generally for various types of Wigner–Weyl sums across an energy
surface in phase space.

• Interface behavior for the holomorphic analogues of such Wigner distributions,
namely for partial Bergman kernels for general Berezin-Toeplitz Hamiltonians
on general Kähler phase spaces.

• Interface results for partial Bergman kernels corresponding to the canonical S1

action on the total space L∗ of the dual line bundle of an ample line bundle
L → M over a Kähler manifold.

In the case of Schrödinger operators, the results are only proved in the special
case of the isotropic harmonic oscillator. It is plausible that some of the results
should be universal among Schrödinger operators, but at the present time the
generalizations have not been formulated or proved. See Section 9.1 for further
problems. Among other gaps in the theory, Wigner distributions per se are only
defined when the Riemannian manifold is Rd and are closely connected to the rep-
resentation theory of the Heisenberg and metaplectic groups. Wigner distributions
of eigenfunctions are special types of “microlocal lifts” of eigenfunctions; there is
no generally accepted canonical microlocal lift on a general Riemannian manifold.
Despite the restrictive setting, Wigner distributions are important in mathematical
physics, in particular in quantum optics. The results in the complex holomorphic
(Kähler) setting are much more complete, due to the fact that the theory of Bergman
kernels is technically simpler and more complete than the corresponding theory
of Wigner distributions for Schrödinger operators. The results are proved for any
Toeplitz Hamiltonian on any projective Kähler manifold. In fact, the exact analogue
of the Wigner result is proved in Section 8, where a new construction is introduced in
this article: the Bargmann-Fock space of a holomorphic line bundle. It is a Gaussian
space of holomorphic functions on the total space L∗ of the dual of a holomorphic
Hermitian line bundle L → M over a Kähler manifold. This total space carries a
natural S1 action1 and this S1 action plays the role of the propagator of the isotropic
Harmonic Oscillator. Thus, the interfaces are the boundaries of the co-disc bundles
D∗

E ⊂ L∗ of different energy levels (i.e. radii). The interface results in Section 8 are
a “new result” of this article, but the proofs are similar to, and simpler than, those in
[ZZ17,ZZ18].

This survey is organized as follows:

(1) In Section 2, we review the basic linear models: the Harmonic oscillator
in the Schrödinger representation on L2(Rd) and in the Bargmann-Fock
(holomorphic) representation on entire holomorphic functions on C

d . We
also present a list of analogies between the real Schrödinger setting and
the complex holomorphic quantization. Section 3 is devoted to the Bergman
kernel on Bargmann-Fock space, and the Bargmann-Fock representations of
the Heisenberg and Symplectic groups on Bargmann-Fock space.

1S1 always denotes the unit circle.
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(2) In Section 4, we review the interface results in physical space for spectral
projections for the isotropic Harmonic Oscillator. These imply interface results
for nodal sets of random eigenfunctions in a fixed eigenspace.

(3) In Section 5, we change the setting to phase space T ∗
R

d and review the inter-
face results in physical space for Wigner distributions of spectral projections for
the isotropic Harmonic Oscillator.

(4) In Section 6, we switch to the complex holomorphic setting and review interface
results for partial Bergman kernels on general compact Kähler manifolds.

(5) In Section 7 we specialize to the isotropic harmonic oscillator on the standard
Bargmann-Fock space and describe its interfaces.

(6) In Section 8 we introduce a new model: the Bargmann-Fock space of a
holomorphic line bundle. We then consider interfaces with respect to a natural
S1 action on this space, generalizing the previous result on the Bargmann-Fock
isotropic Harmonic oscillator.

(7) In Section 9.1 we list some further problems on interfaces.
(8) In Section 10 we give some background to the holomorphic setting.

1.1 Results Surveyed in This Article

The articles surveyed in this article are the following:
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2 The Basic Linear Models

As mentioned above, our aim in this survey is not only to describe interface results
in various settings but also to compare the results in the real Schrödinger setting
and the complex holomorphic Bargmann-Fock or Berezin-Toeplitz setting. The real
setting is self-explanatory to mathematical physicists but the complex holomorphic
setting is probably less familiar. In this section, we give some background on the
basic linear models (isotropic Harmonic Oscillator in both settings) to make the
relations between the real and complex settings more familiar. We then give a list of
analogies between the two settings. In addition, we present a list of open problems
on interfaces to amplify the scope of spectral interface problems. It would be
laborious to present all of the background for the geometric setting before getting to
the main results and phenomena, so we have put that background into an Appendix
Section 10.

A preliminary remark: Since the early days of quantum mechanics, it was
understood that there are many equivalent representations (or “pictures”) of quan-
tum mechanics. In the case of R

d they correspond to different but unitarily
equivalent representations of the Heisenberg and metaplectic groups (see [16] for
background). The most common are the Schrödinger representation on L2(Rd)

and the Bargmann-Fock representation on H 2(Cd , e−|Z|2dL(Z)), the Bargmann-
Fock space of entire holomorphic functions on C

d which are in L2 with respect to
Gaussian measure; here dL is Lebesgue measure. One refers to R

d as “configuration
space” or “physical space” and to T ∗

R
d as phase space. Of course, T ∗

R
d � C

d , so
that Bargmann-Fock space employs a complex structure on phase space. A natural
unitary intertwining operator is the Bargmann transform (see (26) below). We
refer to [16] and to [25] for background on Bargmann-Fock space and metaplectic
operators.

The first item is to give background on the isotropic Harmonic oscillator in both
the Schrödinger representation and the Bargmann-Fock representation.
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2.1 Schrödinger Representation of the Isotropic Harmonic
Oscillator

The Schrödinger representation of quantum mechanics is too familiar to need
a detailed review here. The isotropic Harmonic Oscillator on L2(Rd , dx) is the
operator,

Ĥh̄ =
d∑

j=1

(

− h̄2

2

∂2

∂x2
j

+ x2
j

2

)

. (1)

It has a discrete spectrum of eigenvalues

EN(h̄) = h̄(N + d/2), (N = 0, 1, 2, . . . ) (2)

with multiplicities given by the composition function p(N, d) of N and d (i.e. the
number of ways to write N as an ordered sum of d non-negative integers). That is,
the eigenspaces

Vh̄,EN (h̄) := {ψ ∈ L2(Rd) : Ĥh̄ψ = EN(h̄)ψ} (3)

have dimensions given by

dimVh̄N ,E = p(N, d) = 1

(d − 1)!N
d−1(1 +O(N−1)). (4)

When EN(h̄) = E we also write

h̄ = h̄N (E) := E

N + d
2

. (5)

An orthonormal basis of its eigenfunctions is given by the product Hermite
functions,

φα,h(x) = h−d/4pα

(
x · h−1/2

)
e−x2/2h, (6)

where α = (α1, . . . , αd) ≥ (0, . . . , 0) is a d−dimensional multi-index and pα(x)

is the product
∏d

j=1 pαj
(xj ) of the Hermite polynomials pk (of degree k) in one

variable.
The eigenspace projections are the orthogonal projections

�h̄,EN(h̄) : L2(Rd) → Vh̄,EN (h̄). (7)
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When EN(h̄) = E (5), their Schwartz kernels are given in terms of an orthonormal
basis by,

�hN,E(x, y) =
∑

|α|=N

φα,hN
(x)φα,hN

(y). (8)

The high multiplicities are due to the U(d)-invariance of the isotropic Harmonic
Oscillator. Due to extreme degeneracy of the spectrum of (1) when d ≥ 2,
the eigenspace projections have very special semi-classical asymptotic properties,
reflecting the periodicity of the classical Hamiltonian flow and of the Schrödinger
propagator exp[− it

h̄
Ĥh̄]. In particular, the eigenspace projections (7) are semi-

classical Fourier integral operators (see, e.g., [19, 20], [HZ19]). We exploit this very
rare property to obtain scaling asymptotics across the caustic. This explains why
the results to date are only available for isotropic oscillators. For general Harmonic
Oscillators with incommensurate frequencies the eigenvalues have multiplicity one
and the eigenspace projections are of a very different type. For general Schrödinger
operator, one would need to take appropriate combinations of eigenspace projec-
tions with eigenvalues in an interval.

As with any 1-parameter metaplectic unitary group [16, 25], one has an explicit

Mehler formula for the Schwartz kernel Uh(t, x, y) of the propagator, e− i
h
tHh . The

Mehler formula [16] reads

Uh(t, x, y)=e−
i
h
tHh(x, y)= 1

(2πih sin t)d/2
exp

(
i

h

(
|x|2 + |y|2

2

cos t

sin t
−x · y

sin t

))

,

(9)

where t ∈ R and x, y ∈ R
d . The right-hand side is singular at t = 0. It is well-

defined as a distribution, however, with t understood as t − i0. Indeed, since Hh has
a positive spectrum the propagator Uh is holomorphic in the lower half-plane and
Uh(t, x, y) is the boundary value of a holomorphic function in {Imt < 0}.

One may express the N th spectral projection as a Fourier coefficient of the
propagator. It is somewhat simpler to work with the number operator N , i.e. the
Schrödinger operator with the same eigenfunctions as Hh and eigenvalues h|α|.
If we replace Uh(t) by e− it

h
N , then the spectral projections �h,E are simply the

Fourier coefficients of e− it
h
N . In [HZZ15, HZZ16] it is shown that

�hN,E(x, y) =
∫ π

−π

Uh(t − iε, x, y)e
i
h
(t−iε)E dt

2π
. (10)

The integral is independent of ε. Combining (10) with the Mehler formula (9), one
has an explicit integral representation of (8).
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2.1.1 Wigner Distributions

For any Schwartz kernel Kh̄ ∈ L2(Rd ×R
d) one may define the Wigner distribution

of Kh̄ by

WK,h̄(x, ξ) :=
∫

Rd

Kh̄

(
x + v

2
, x − v

2

)
e
− i

h̄
vξ dv

(2πh)d
. (11)

The map from Kh̄ → WK,h̄ defines the unitary “Wigner transform,”

Wh̄ : L2(Rd × R
d) → L2(T ∗

R
d).

The inverse Wigner transform is given by (see page 79 of [16])

f ⊗ g∗(x, y) =
∫

Wf,g(
x + y

2
, ξ)ei〈x−y,ξ〉dξ. (12)

Here, Wf,g := Wf⊗g∗ is the Wigner transform of the rank one operator f ⊗ g∗.
The unitary group U(d) acts on L2(Rd ×R

d) by conjugation,U(g) ·K = gKg∗,
where we identify K(x, y) ∈ L2(Rd × R

d) with the associated Hilbert–Schmidt
operator. Metaplectic covariance implies that,

Wh̄U(g) = TgWh̄.

Definition 2.1 The Wigner distributions Wh̄,EN(h̄)(x, p) ∈ L2(T ∗
R

d) of the
eigenspace projections �h̄,EN(h̄) are defined by,

Wh̄,EN(h̄)(x, ξ) =
∫

Rd

�h̄,EN (h̄)

(
x + v

2
, x − v

2

)
e
− i

h̄
v·ξ dv

(2πh)d
. (13)

When EN(h̄) = E, the Wigner distribution Wh̄,EN(h̄) of a single eigenspace
projection (13) is the “quantization” of the energy surface of energy E and should
therefore be localized at the classical energy level H(x, ξ) = E, where H(x, ξ) =
1
2

∑d
j=1(ξ

2
j + x2

j ). We denote the (energy) level sets by,

+E = {(x, ξ) ∈ T ∗
R

d : H(x, ξ) := 1

2
(||x||2 + ||ξ ||2) = E}. (14)

The Hamiltonian flow of H is 2π periodic, and its orbits form the complex
projective space CPd−1 � +E/ ∼ where ∼ is the equivalence relation of belonging
to the same Hamilton orbit. Due to this periodicity, the projections (7) are semi-
classical Fourier integral operators (see [19, 20], [HZZ15]). This is also true for
the Wigner distributions (13). Their properties are basically unique to the isotropic
oscillator (1). These properties are visible in Figure 1 depicting the graph of Wh̄,1/2.
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Fig. 1 The Wigner function Wh̄,EN (h̄) of the eigenspace projection �h̄,EN (h̄) is always radial (see
Proposition 5.1). Displayed above is the graph of the Airy function (orange) and of Wh̄,EN (h̄) with
N = 500 (blue) as a function of the rescaled radial variable ρ in a h̄2/3 tube around the energy
surface H(x, ξ) = EN(h̄) = 1/2. Theorem 5.3 predicts that, when properly scaled, Wh̄,EN (h̄)

should converge to the Airy function (with the rate of convergence being slower farther from the
energy surface, which is defined here by ρ = 0).

2.1.2 Weyl Pseudo-Differential Operators, Metaplectic Covariance

A semi-classical Weyl pseudo-differential operator is defined by the formula,

Opw
h (a)u(x) =

∫

Rd

∫

Rd

ah̄(
1

2
(x + y), ξ)e

i
h̄
〈x−y,ξ〉

u(y)dydξ.

See [16, 47] for background. By using the identity

〈Opw(a)f, f 〉 =
∫

T ∗Rd

a(x, ξ)Wf,f (x, ξ)dxdξ,

of [16, Proposition 2.5] for orthonormal basis elements f = φα,h̄N
of Vh̄,EN (h̄) and

summing over α, one obtains the (well-known) identity,

Tr Opw
h (a)�h̄,EN (h̄) =

∫

T ∗Rd

a(x, ξ)Wh̄,EN (h̄)(x, ξ)dxdξ. (15)

This formula is one of the key properties of Wigner distributions and Weyl
quantization.

The Wigner transform (40) taking kernels to Wigner functions is therefore
an isometry from Hilbert–Schmidt kernels K(x, y) on R

d × R
d to their Wigner

distributions on T ∗
R

d [16]. From (15) and this isometry, it is straightforward to
check that,
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(i)
∫
T ∗Rd Wh̄,EN (h̄)(x, ξ)dxdξ = Tr�h̄,EN (h̄) = dimVh̄,EN (h̄) =

(
N+d−1
d−1

)

(ii)
∫
T ∗Rd

∣∣Wh̄,EN (h̄)(x, ξ)
∣∣2 dxdξ = Tr�2

h̄,EN (h̄) = dimVh̄,EN (h̄) =
(
N+d−1
d−1

)

(iii)
∫
T ∗Rd Wh̄,EN (h̄)(x, ξ)Wh̄,EM(h̄)(x, ξ)dxdξ = Tr�h̄,EN (h̄)�h̄,EM(h̄) = 0, for M �= N.

,

(16)

In these equations, N = E
h̄
− d

2 , and
(
N+d−1
d−1

)
is the composition function of (N, d)

(i.e. the number of ways to write N as an ordered us of d non-negative integers).
Thus, the sequence

{ 1
√

dimVh̄,EN (h̄)

Wh̄,EN (h̄)}∞N=1 ⊂ L2(R2n)

is orthonormal.
In comparing (15), (16)(i)–(ii) one should keep in mind that Wh̄,EN(h̄) is rapidly

oscillating in {H ≤ E} with slowly decaying tails in the interior of {H ≤ E}, with a
large “bump” near +E and with maximum given by Proposition 5.7. Integrals (e.g.
of a ≡ 1) against Wh̄,EN(h̄) involve a lot of cancellation due to the oscillations. The
square integrals in (ii) enhance the “bump” and decrease the tails and of course are
positive.

Another key property of Weyl quantization is its metaplectic covariance (see
Section 3.2 for background). Let Sp(2d,R) = Sp(T ∗

R
d , σ ) denote the symplectic

group and let μ(g) denote the metaplectic representation of its double cover. Then,
μ(g)Opw

h (a)μ(g) = Opw
h (a ◦ Tg), where Tg : T ∗

R
d → T ∗

R
d denotes translation

by g. See [16] and Section 3.2 for background. In particular, U ∈ U(d) acts on
L2(T ∗

R
d) by translation TU of functions, using the identification T ∗

R
d � C

d

defined by the standard complex structure J . U(d) ⊂ Sp(2d,R) is a subgroup of the
symplectic group and the complete symbol H(x, ξ) of (1) is U(d) invariant, so by
metaplectic covariance, Ĥh̄ commutes with the metaplectic representation of U(d).

3 Bargmann-Fock Space and the Toeplitz Representation
of the Isotropic Oscillator

Bargmann-Fock space of degree k on C
m+1 is defined by

Hk = {f (z) holomorphic function on C
m+1,

∫

Cm+1
|f |2e−k|z|2dV olCm+1 < ∞}.

The volume form on C
m+1 is d VolCm+1 = ωm+1/(m + 1)!, and dL(z) denotes

Lebesgue measure. We note that

∫

Cm+1
e−k|z|2dL(z) = ωm+1

∫ ∞

0
e−kρ2

ρ2m+1dρ = ωm+1

∫ ∞

0
e−kxxmdx
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and that
∫ ∞

0
e−kxxmdx = k−(m+1)�(m+ 1) = m!k−(m+1),

where we use polar coordinates (θ, ρ) on C
m+1 and where ωm+1 = |S2m+1| is the

surface measure of the unit sphere in C
m+1. We normalize the Gaussian measure to

have mass 1 and denote it by,

d�m+1,k := k(m+1)

m!ωm+1
e−k|z|2dL(z). (17)

Let us fix k = 1. An orthonormal basis is given by the holomorphic monomials,

{ zα√
α! }|α∈Nm+1 ,

where α = (α1, . . . , αm+1) is a lattice point in the orthant αj ∈ N and zα =
∏m+1

j=1 z
αj

j , α! := ∏m+1
j=1 αj !. If we fix the degree |α| = ∑m+1

j=1 αj we get the

subspaces

HN = Span {zα : |α| = N},

and one has the orthogonal decomposition,

L2
hol(C

m+1, d�m+1,k) =
∞⊕

N=0

HN.

Further, there is a canonical isomorphism

HN � H 0(CPm,O(N))

between HN and the space of holomorphic sections of the N th power of the standard
line bundle O(1) → CP

m over projective space. The isomorphism is essentially by
the lift

ŝ(z, λ) = λ⊗N(s(z))

of a section s ∈ H 0(M,O(N)) to the total space O(−1) → CP
m of the line bundle

dual to O(1), as an equivariant holomorphic function ŝ of degree N . The lifted
function vanishes at the zero section. If one blows down the zero section to a point,
then O(−1) � C

m+1 and the lifted sections are, again, homogeneous holomorphic
polynomials of degree N . This implies that Bargmann-Fock space is, as a vector
space, isomorphic to

⊕∞
N=0 H 0(CPm,O(N)). The direct sum is endowed with the
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Bargmann-Fock Hilbert space inner product and, up to a scalar, this inner product
on HN is the same as the Fubini–Study inner product on H 0(M,O(N)).

The degree k Bargmann-Fock Bergman kernel is the orthogonal projection from
L2(Cm+1, d�m+1,k) → Hk . Its Schwartz kernel relative to Gaussian measure
d�m+1,k is given by

�k(z,w) =
(

k

2π

)m+1

ekzw̄,

i.e. for any function f ∈ L2(Cm+1, d�m+1,k), its orthogonal projection to
Bargmann-Fock space is given by

(�kf )(z) =
∫

Cm

�k(z,w)f (w)d�m+1,k(dw)).

More generally, fix (V , ω) be a real 2m dimensional symplectic vector space.
Let J : V → V be a ω compatible linear complex structure, that is, g(v,w) :=
ω(v, Jw) is a positive-definite bilinear form and ω(v,w) = ω(Jv, Jw). There
exists a canonical identification of V ∼= C

m up to U(m) action, identifying ω and
J . We denote the BF space for (V , ω, J ) by Hk,J .

To put Bargmann-Fock space into the general framework of holomorphic line
bundles over Kähler manifolds, we let M = C

m with coordinate zi = xi +
√−1yi ,

L → M be the trivial line bundle, let L ∼= C
m × C, and let ω = i

∑
i dzi ∧ dz̄i be

the Kähler form, whose potential is ϕ(z) = |z|2 :=∑
i |zi |2.

3.1 Lifting to the Heisenberg Group

It is useful to lift holomorphic sections of line bundles to equivariant functions on
the dual L∗ of the total space of the line bundle. Since they are equivariant with
respect to the natural S1 action, one often restricts them to the unit circle bundle
X = Xh defined by a Hermitian metric h on L∗.

In the case of Bargmann-Fock space, X is the Heisenberg group H
m
red = C

m×S1,
with group multiplication

(z, θ) ◦ (z′, θ ′) = (z+ z′, θ + θ ′ + Im(zz̄′)).

The circle bundle π : X → M can be trivialized as X ∼= C
m×S1. The contact form

on X is

α = dθ + (i/2)
∑

j

(zj dz̄j − z̄j dzj ).
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The contact form α = dθ + i
2

∑
j (zj dz̄j − z̄j dzj ) on H

m
red is invariant under the

left multiplication

L(z0,θ0) : (z, θ) �→ (z0, θ0) ◦ (z, θ) = (z+ z0, θ + θ0 + z0z̄− z̄0z

2i
).

The volume form on X = C
m × S1 is d VolX = (dθ/2π) ∧ ωm/m!.

The action of the Heisenberg group is by Heisenberg translations on phase space.
As seen in the next Lemma, Heisenberg translations are Euclidean translations in
the C

m component but also have a non-trivial change in the angular component.
The infinitesimal Heisenberg group action on X can be identified with the contact
vector field generated by a linear Hamiltonian function H : Cm → R.

Lemma 3.1 ([ZZ17, Section 3.2]) For any β ∈ C
m, we define a linear Hamilto-

nian function on C
m by

H(z) = zβ̄ + βz̄.

The Hamiltonian vector field on C
m is

ξH = −iβ∂z + iβ̄∂z̄,

and its contact lift is

ξ̂H = −iβ∂z + iβ̄∂z̄ − 1

2
(zβ̄ + βz̄)∂θ .

The time t flow ĝt on X is given by left multiplication

ĝt (z, θ) = (−iβt, 0) ◦ (z, θ) = (z− iβt, θ − tRe(βz̄)).

The lift of a holomorphic section of Lk → C
m is the CR-holomorphic function

defined by,

ŝ(z, θ) = ek(iθ−
1
2 |z|2)s(z).

Indeed, the horizontal lift of ∂z̄j is ∂h
z̄j

= ∂z̄j − i
2zj ∂θ , and ∂h

z̄j
ŝ(z, θ) = 0.

The corresponding lift of the degree k Bergman (or, Szegö ) kernel �̂k(ẑ, ŵ) to
X = C

m × S1 is given by

�̂k(ẑ, ŵ) =
(

k

2π

)m

ekψ̂(ẑ,ŵ), (18)

where ẑ = (z, θz), ŵ = (w, θw) and the phase function is

ψ(ẑ, ŵ) = i(θz − θw)+ zw̄ − 1

2
|z|2 − 1

2
|w|2. (19)
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3.2 Metaplectic Representation

The Harmonic oscillator is a quadratic operator. Such operators form the symplectic
Lie algebra. Their representations on Bargmann-Fock space are a unitary represen-
tation of the Lie algebra. The integration of this representation gives the metaplectic
representation. There exist exact formulae for the Schwartz kernels of metaplectic
propagators, generalizing the Mehler formula. We need these formulae later on.
A thorough treatment can be found in [16, 25].

Let R
2m,ω = 2

∑m
j=1 dxj ∧ dyj be a symplectic vector space. The space

Sp(m,R) consists of linear transformation S : R2m → R
2m, such that S∗ω = ω. In

coordinates, we write

(
x′
y′
)
= S

(
x

y

)
=
(
A B

C D

)(
x

y

)
.

The semi-direct product of the symplectic group and Heisenberg group (sometimes
called the Jacobi group) thus consists of linear transformations fixing 0 together
with Heisenberg translations moving 0 to any point.

In complex coordinates zi = xi + iyi , we have then

(
z′
z̄′
)
=
(
P Q

Q̄ P̄

)(
z

z̄

)
=: A

(
z

z̄

)
,

where

(
P Q

Q̄ P̄

)
= W−1

(
A B

C D

)
W, W = 1√

2

(
I I

−iI iI

)
. (20)

The choice of normalization of W is such that W−1 = W ∗.Thus,

P = 1

2
(A+D + i(C − B)).

We say such A ∈ Spc(m,R) ⊂ M(2n,C). The following identities are often useful.

Proposition 3.2 ([16] Prop 4.17) Let A =
(
P Q

Q̄ P̄

)
∈ Spc, then

(1)

(
P Q

Q̄ P̄

)−1

=
(

P ∗ −Qt

−Q∗ P t

)
= KA∗K , where K =

(
I 0
0 −I

)
.

(2) PP ∗ −QQ∗ = I and PQt = QP t .
(3) P ∗P −QtQ̄ = I and P tQ̄ = Q∗P .
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The (double cover) of Sp(m,R) acts on the Bargmann-Fock space Hk of Cm by

integral operators with the following kernels: given M =
(
P Q

Q̄ P̄

)
∈ Spc, we define

Kk,M(z,w)=
(

k

2π

)m

(detP)−1/2 exp

{
k

1

2

(
zQ̄P−1z+2w̄P−1z−w̄P−1Qw̄

)}
,

where the ambiguity of the sign of the square root (detP)−1/2 is determined by the
lift to the double cover. When A = Id, then Kk,A(z, w̄) = �k(z, w̄). The lifted
kernel upstairs on the reduced Heisenberg group X is given by,

K̂k,A(ẑ, ŵ) = Kk,M(z, w̄)ek(iθz−|z|2/2)+k(−iθw−|w|2/2). (21)

3.3 Toeplitz Construction of the Metaplectic Representation

The analogue of Weyl pseudo-differential operators on L2(Rm) is (Berezin-)
Toeplitz operators on Bargmann-Fock space. Given the semi-classical parameter
k, the Berezin-Toeplitz quantization of a multiplication operator by a semi-classical
symbol σk(Z, Z̄) on C

m is defined by

�kσk(Z, Z̄)�k. (22)

It operates on Bargmann-Fock space by multiplying a holomorphic function by σk

and then projecting back onto Bargmann-Fock space. More generally, one could let
σk be a semi-classical pseudo-differential operator.

The isotropic Harmonic oscillator is represented on Hk(C
d) as

Ĥk = �k|Z|2�k.

It is equally well represented by
∑m

j=1 a∗j aj+ d
2 =∑m

j=1 zj
∂

∂zj
+ d

2 , where aj = ∂
∂zj

and a∗j = zj are the annihilation/creation operators. The operator
∑m

j=1 a∗j aj is
called the degree or number operator since its action on a holomorphic polynomial
is to give its degree. In a similar way, the infinitesimal metaplectic representation of
quadratic polynomials Q = Q(z, z̄) is by Toeplitz operators �kQ�k .

The Toeplitz construction of the metaplectic representation is due to
Daubechies [14]. The integrated metaplectic representation WJ (S) of S ∈
Mp(n,R) on HJ is defined as follows: Let S ∈ Sp(n,R) and let US be the unitary
translation operator on L2(R2n, dL) defined by USF(x, ξ) := F(S−1(x, ξ)). The
metaplectic representation of S on HJ is given by ([14], (5.5) and (6.3 b))

WJ (S) = ηJ,S�JUS�J , (23)
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where (see [14] (6.1) and (6.3a)),

ηJ,S = 2−n det(I − iJ )+ S(I + iJ )
1
2 (24)

and �J is the Bargmann-Fock Szegö projector.
In the notation of the previous section, a quadratic Hamiltonian function H :

C
m → R generates a one-parameter family of symplectic linear transformations

At = gt : C
m → C

m, which in general is only R-linear and not C-linear, i.e.
Mt does not preserve the complex structure of Cm. Hence, one needs to orthogonal
project back to holomorphic sections. To compensate for the loss of norm due to the
projection, one needs to multiply a factor ηAt

.

Proposition 3.3 Let A : Cm → C
m be a linear symplectic map, A =

(
P Q

Q̄ P̄

)
,

and let Â : X → X be the contact lift that fixes the fiber over 0, then

K̂k,A(ẑ, ŵ) = (detP ∗)1/2
∫

X

�̂k(ẑ, Âû)�̂k(û, ŵ)d VolX(û).

Proof The contact lift Â : Cm × S1 → C
m × S1 is given by A acting on the first

factor:

Â : (z, θ) �→ (P z+Qz̄, θ),

one can check that Â∗α = α. The integral over X is a standard complex Gaussian
integral, analogous to [16, Prop 4.31], and with determinant Hessian 1/| detP |,
hence we have (detP ∗)1/2/| detP | = (detP)−1/2. $%

3.4 Toeplitz Quantization of Hamiltonian Flows

The Toeplitz construction of the metaplectic representation generalizes to the
construction of a Toeplitz quantization of any symplectic map on any Kähler
manifold as a Toeplitz operator on the quantizing line bundles [45]. In this section
we briefly review the construction of a Toeplitz parametrix for the propagator Uk(t)

of the quantum Hamiltonian (58). We refer to Section 10 and to [ZZ17,ZZ18] for
the details.

Let (M,ω,L, h) be a polarized Kähler manifold, and π : X → M the unit circle
bundle in the dual bundle (L∗, h∗). X is a contact manifold, equipped with the Chern
connection contact one-form α, whose associated Reeb flow R is the rotation ∂θ in
the fiber direction of X. Any Hamiltonian vector field ξH on M generated by a
smooth function H : M → R can be lifted to a contact Hamiltonian vector field
ξ̂H on X, which generates a contact flow ĝt . The following Proposition from [45]
expresses the lift of (76) to H(X) =⊕

k≥0 Hk(X).
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Proposition 3.4 There exists a semi-classical symbol σk(t) so that the unitary
group (76) has the form

Ûk(t) = �̂k(ĝ
−t )∗σk(t)�̂k (25)

modulo smooth kernels of order k−∞.

3.5 Bargmann Intertwining Operator Between Schrödinger
and Bargmann-Fock

The standard unitary intertwining operator between the Schrodinger representation
and the Bargmann-Fock representation is the (Segal-)Bargmann transform,

Bf (Z) =
∫

Rn

exp
(
−(Z · Z − 2

√
2Z ·X +X ·X)/2

)
f (X)dX. (26)

Its inverse is its adjoint,

B∗F(x) =
∫

Cn

exp
(
−(Z̄ · Z̄ − 2

√
2Z̄ ·X +X ·X)/2

)
F(Z)e−|Z|2L(dZ).

Another inversion formula is

f (x) = π−n/4(2π)−n/2e−|x|2
∫

Rn

(Bf )(x + iy)e−|y|2/2dy.

The Bargmann transform is obtained from the Euclidean heat kernel by analytic
continuation in the first variable. It might be surprising that this transform is useful
in studying the Harmonic oscillator. One could just as well analytically continue
the propagator (9), which also defines a unitary intertwining operator. However,
that operator would simply analytically continue Hermite functions, which does
not simply the analysis. The Bargmann transform maps Hermite functions to
holomorphic polynomials, and the Hermite operator to the degree operator (up to
a constant) and this is a significant simplification.

One may also use the Bargmann transform to convert Wigner distributions
associated with spectral projections of the Harmonic oscillator to the much simpler
orthogonal projections onto spaces of holomorphic polynomials of fixed degree. The
density of states (diagonal of a Bergman kernel) is known as a Husimi distribution
in physics. An interesting historical fact is that Cahill–Glauber studied the relation
between Wigner distributions W�h̄,EM

(x, ξ) and the Bargmann-conjugate Bergman
Husimi distributions

B�h̄,EN
B∗(Z, Z̄)
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in [7, 8]. The Bargmann transform is the same as the spectral projections of the
Bargmann-Fock quantization �BF,k|Z|2�BF,k of |Z|2. They showed that

Bx ⊗ By

∫
W�h̄,EN

(
x+y

2 , ξ)ei〈x−y,ξ〉dξ = ∫
Rn

∫
Rn

∫
Rn B(x, Z)B(y, Z)

W�h̄,EN
(
x+y

2 , ξ)ei〈x−y,ξ〉dξdxdy

is convolution of W�h̄,EM
(x, ξ) with a complex Gaussian.

3.6 Analogies and Correspondences Between the Real
and Complex Settings

We now list some important analogies to help navigate the results of this article,
and to compare the results in the real and complex settings. The undefined notation
and terminology will be provided in the relevant section of this article. The reader
is encouraged to consult this list as the article proceeds; it is probably not possible
to understand much of it from the start.

Microlocal analysis provides a generalization of this equivalence to general
manifolds. The generalization of the Bargmann transform (see Section 26) is called
an FBI transform. It is well-recognized that the setting of holomorphic sections
of high powers Lk → M of ample line bundles over Kähler manifolds is quite
analogous to the setting of Schrödinger operators on Riemannian manifolds, to the
extent that one may expect parallel results in both domains. The role of the Planck
constant h̄ in semi-classical analysis is analogous to k−1 in the line bundle setting.
In fact, the relation between Wigner distributions and “Husimi distributions” (or
partial Bergman density of states) was first given by Cahill–Glauber in 1969 [7, 8]
for applications in quantum optics. We refer to [34, 47] for background in semi-
classical analysis and to [5] for background on Toeplitz operators.

Here is a list of analogies which are relevant to the present survey.

• The cotangent bundle (T ∗
R

d , σ ) equipped with its canonical symplectic struc-
ture is analogous to a Kähler manifold (M,ω). One may equip T ∗

R
d with a

complex structure J so that it becomes the Kähler manifold C
d .

• The total space of the dual line bundle L∗ of a holomorphic line bundle L → M

is analogous to C
d . Indeed, if M = CP

d−1 (complex projective space), then
C

d = L∗ where L∗ = O(−1) is the tautological line bundle over CPd−1 (More
precisely, Cd = O(−1) with the zero section “blown down.”).

• When L is an “ample” line bundle, sections sk ∈ H 0(M,Lk) in the space of
holomorphic sections of the kth power of L lift in a canonical way to equivariant
holomorphic functions ŝk on L∗. In the case (M,L) = (CPd−1,O(−1)), lifts of
sections of Lk are the holomorphic homogeneous polynomials on C

d of degree k.
• The total space L carries an S1 (circle) action, namely rotation in the fibers Lz of

π : L → M . The generator Dθ of this circle action is analogous to the isotropic
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harmonic oscillator and to the degree operator. Namely, if Dθ ŝk = kŝk . The
isotropic harmonic oscillator Ĥh̄ on L2(Rd) is unitarily equivalent to the degree
operator on C

d under the Bargmann transform.
• In the case (M,L) = (CPd−1,O(−1)), H 0(CPd−1,O(k)) is canonically

isomorphic to the eigenspace of eigenvalue k + d
2 of the isotropic harmonic

oscillator.
• Eigenspace spectral projection kernels �h̄,EN(h̄)(x, y) for eigenspaces VN of

isotropic harmonic oscillators are analogous to Bergman kernels �hk(z,w) for
spaces H 0(M,Lk) of holomorphic sections of powers of a positive Hermitian
line bundle (L, h) over a Kähler manifold (M,ω).

• The Wigner distribution Wh̄,EN(h̄)(x, ξ) of an eigenspace projection is analo-
gous to the density of states �hk(z, z) where �hk is the Bergman kernel for
H 0(M,Lk). The density of states is the contraction of the diagonal of the
Bergman kernel.

• Airy scaling asymptotics of scaled Wigner distributions of eigenspace projections
of the isotropic harmonic oscillator around an energy surface +E ⊂ T ∗

R
d are

analogous to Gaussian error function asymptotics of scaled Bergman kernels
around an energy surface. Both live on “phase space.” The eigenspace projections
of the oscillator live on configuration (or, physical) space and have no simple
analogue in the Kähler setting.

• The unitary Bargmann transform B : L2(Rd) → H 2(Cd , e−|Z|2dL(Z)) inter-
twines the real Schrödinger and holomorphic Bargmann-Fock representations
of quantum mechanics on R

d . There is no simple analogue for general Kähler
manifolds. It would be a unitary intertwining operator between the Bargmann-
Fock spaces of L∗ and L2(N) where N ⊂ M would be a totally real Lagrangian
submanifold. See Section 26 for background.

There is an important difference between the results on Wigner distributions and
the results on partial Bergman kernels, which indicates that there is much more to
be done on interfaces in spectral asymptotics. Namely, in the Kähler setting we have
two Hamiltonians: (i) A Toeplitz Hamiltonian Ĥk := �hkH�hk (where H : M →
R is a smooth function) and (ii) the operator Dθ on L∗ defining the degree k of a
lifted section. The latter is analogous to the isotropic oscillator. The interfaces for Dθ

are interfaces across “disc bundles” D∗
R ⊂ L∗ defined by a Hermitian metric h on L.

The analogue of Airy scaling asymptotics of Wigner distributions is Gaussian error
function asymptotics for lifts of Bergman kernels to L∗. A Toeplitz Hamiltonian Ĥk

lifts to a Hamiltonian on L∗ which commutes with Dθ , and our results on partial
Bergman kernels pertain to the pair. So far, we have not considered the analogous
problem on L2(Rd) defined by a second Schrödinger operator which commutes with
the isotropic harmonic oscillator. As this brief discussion indicates, there are many
types of interface phenomena that remain to be explored.
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4 Interface Problems for Schrödinger Equations

In this section we consider the simplest Schrödinger operator, namely the isotropic
Harmonic Oscillator on R

d . We review three types of interface scaling results:

• Scaling of the spectral projections kernel for a single eigenspace around the caus-
tic. At the same time, we consider scaling of nodal sets of random eigenfunctions
around the caustic.

• Scaling asymptotics of the Wigner distributions of the spectral projections kernel
around an energy level in phase space.

• Scaling asymptotics of the Wigner distributions of Weyl sums of spectral
projections kernels over an interval of energies at the boundary of the interval.

4.1 Allowed and Forbidden Regions and the Caustic

Consider a general Schrödinger operator Ĥh̄ := −h̄2�+V on L2(Rd) with V (x) →
∞ as |x| → ∞. Then Ĥh̄ has a discrete spectrum of eigenfunctions Ej(h̄),

Ĥh̄ψh̄,j = Ej(h̄)ψh̄,j . (27)

In the semi-classical limit

h̄ → 0, j → ∞, Ej (h̄) = E, (28)

the eigenfunctions of Ĥh̄ are rapidly oscillating in the classically allowed region

AE := {V (x) ≤ E},

and exponentially decaying in the classically forbidden region

FE := Ac
E = {V (x) > E}.

This reflects the fact that a classical particle of energy E is confined to AE =
{V (x) ≤ E}. We define the caustic to be

CE := ∂AE = {V (x) = E}. (29)

The exponential decay rate of eigenfunctions in the forbidden region as h̄ → 0 is
measured by the Agmon distance to the caustic. We refer to [1, 24] for background.

In the first series of results we are interested in the transition between the
oscillatory and exponential decay behavior of eigenfunctions in a zone around the
caustic (29). We review two types of results: (i) Airy scaling asymptotics of spectral
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projections kernels and (ii) interface asymptotics of nodal (i.e. zero) sets of “random
eigenfunctions” in a spectral eigenspace. At this time, results are only proved in the
special case of the isotropic harmonic oscillator, but one may expect that suitably
generalized results hold rather universally.

In the case of the isotropic Harmonic Oscillator, the allowed region AE , resp. the
forbidden region FE are given, respectively, by,

AE = {x : |x|2 < 2E}, FE = {x : |x|2 > 2E}. (30)

Thus, AE is the projection to R
d of the energy surface {H = E} ⊂ T ∗

R
d , FE is its

complement, and the caustic set is given by,

CE = {|x| = 2E}.
The semi-classical limit at the energy level E > 0 is the limit as h̄ → 0, N → ∞

with fixed E, so that h̄ only takes the values (5).

4.2 Scaling Asymptotics Around the Caustic in Physical Space

Due to the homogeneity of the isotropic oscillator, it suffices to consider one value
of E. We fix E = 1

2 and consider EN(h̄) = 1
2 . For this choice of E, (7) is �

h̄, 1
2
.

When d = 1, the eigenspaces Vh̄N ,E have dimension 1 and it is a classical
fact (based on WKB or ODE techniques) that Hermite functions and more general
Schrödinger eigenfunctions exhibit Airy asympotics at the caustic (turning points).
See, for instance, [17, 31, 39]. It is not true for d > 1 that individual eigenfunctions
exhibit analogous Airy scaling asymptotics around the caustic. Indeed, due to
the high multiplicity of eigenvalues, there is a good theory of Gaussian random
eigenfunctions of the isotropic oscillator, and random eigenfunctions do not exhibit
Airy scaling asymptotics. The proper generalization of the d = 1 result is to
consider the scaling asymptotics of the eigenspace projection kernels (7) with x, y

in an h̄2/3-tube around CE .
The first result states that individual eigenspace projection kernels (7) exhibit

Airy scaling asymptotics around a point x0 ∈ CE of the caustic. Let x0 be a point
on the caustic |x0|2 = 1 for E = 1/2. Points in an h̄2/3 neighborhood of x0 may
be expressed as x0 + h̄2/3u with u ∈ R

d . The caustic is a (d − 1)-sphere whose
normal direction at x0 is x0, so the normal component of u is u1x0 when |x0| = 1,
where u1 := 〈x0, u〉. We also put u′ := u − u1x0 for the tangential component,
and identify Tx0CE ∼= T ∗

x0
CE ∼= R

d−1. By rotational symmetry, we may assume
x0 = (1, 0, · · · , 0), so that u = (u1, u2, · · · , ud) =: (u1; u′).
Theorem 4.1 Let x0 be a point on the caustic |x0|2 = 1 for E = 1/2. Then for
u, v ∈ R

d ,

�h̄,1/2(x0 + h̄2/3u, x0 + h̄2/3v) = h̄−2d/3+1/3�0(u, v)(1 +O(h̄1/3)), (31)
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where

�0(u1, u
′; v1, v

′) := 22/3(2π)−d+1
∫

Rd−1
ei〈u′−v′,p〉 Ai(21/3(u1 + p2/2))Ai(21/3(v1 + p2/2))dp,

(32)
and u1 := 〈x0, u〉, u′ := u − u1x0 (similarly for v1.) On the diagonal, let |x|2 =∣∣x0 + h̄2/3u

∣∣2 = 1 + h̄2/3s +O(h̄4/3) with s = 2〈x0, u〉 ∈ R. Then,

�h̄(x, x) = 2−d+1π−d/2h̄(1−2d)/3 Ai−d/2(s)(1 +O(h̄1/3)). (33)

The error terms in (31) and (33) are uniform when u, v, s vary over a compact set.

Above, Ai is the Airy function, and Ai−d/2 is a weighted Airy function, defined for
k ∈ R by

Aik(s) :=
∫

C
T k exp

(
T 3

3
− T s

)
dT

2πi
, u ∈ R, (34)

where C is the usual contour for Airy function, running from e−iπ/3∞ to eiπ/3∞ on
the right half of the complex plane (see Section 11.1 for a brief review of the Airy
function).

Remark 4.2 When d = 3, the kernel (32) with u′ = v′, i.e. �0(u1, u
′; v1, u

′),
coincides modulo the factor of

√
λ with the Airy kernel K(x, y) of the Tracy–

Widom distribution. The “allowed region” of this article is analogous to the “bulk”
in random matrix theory, and the “caustic” of this article is analogous to the “edge
of the spectrum.”

For results on scaling asymptotics on Riemannian manifolds, see [10].

4.3 Nodal Sets of Random Hermite Eigenfunctions

Theorem 4.1 can be used to determine the interface behavior of nodal (zero) sets of
random eigenfunctions of the isotropic oscillator of a fixed eigenvalue. In many
ways, the isotropic oscillator is the analogue among Schrödinger operators on
L2(Rd) of the Laplacian on a standard sphere S

d , and the study of random Hermite
eigenfunctions is somewhat analogous to the study of random spherical harmonics.
However, there are no forbidden regions in the case of Sd , and the interface behavior
of random Hermite eigenfunctions has no parallel for random spherical harmonics.

Definition 4.3 A Gaussian random eigenfunction for Hh with eigenvalue E is the
random series

%N(x) :=
∑

|α|=N

aαφα,hN
(x),
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for aα ∼ N(0, 1)R i.i.d. Equivalently, it is the Gaussian measure γN on VN which
is given by e−

∑
α |aα |2/2∏ daα .

We denote by

Z%N
= {x : %N(x) = 0}

the nodal set of %N and by |Z%h̄,E
| the random measure of integration over Z%N

with respect to the Euclidean surface measure (the Hausdorff measure) of the nodal
set. Thus for any ball B ⊂ R

d ,

|Z%h̄,E
|(B) = Hd−1(B ∩ Z%N

).

Thus E|Z%h̄,E
| is a measure on R

n given by

E|Z%h̄,E
|(B) =

∫

VN

Hd−1(B ∩ Z%N
)dγN .

The first result gives semi-classical asymptotics of the hypersurface volumes of
the nodal sets of random Hermite eigenfunctions of fixed eigenvalue in the allowed,
resp. forbidden region.

Theorem 4.4 Let x ∈ R
d such that 0 < |x| �= √

2E. Then the measure E|Z%h̄,E
|

has a density FN(x) with respect to Lebesgue measure given by

⎧
⎪⎪⎨

⎪⎪⎩

If x ∈ AE\{0}, FN(x) � h−1 · cd
√

2E − |x|2(1 +O(h))

If x ∈ FE, FN(x) � h−1/2 · Cd
E1/2

|x|1/2(|x|2−2E
)1/4 (1 +O(h))

,

where the implied constants in the “O” symbols are uniform on compact subsets of
the interiors of AE\{0} and FE , and where

cd =
�
(

d+1
2

)

√
dπ�

(
d
2

) and Cd =
�
(

d+1
2

)

√
π�
(
d
2

) .

The key point is the different growth rates in h for the density of zeros in the
allowed and forbidden region. In dimension one, eigenfunctions have no zeros in the
forbidden region, but in dimensions d ≥ 2 they do. In the allowed region, nodal sets
of eigenfunctions behave in a similar way to nodal sets on Riemannian manifolds
[11], but in the forbidden region they are sparser (see [15]).

The next result on nodal sets (Theorem 4.5) gives scaling asymptotics for the
average nodal density that “interpolate” between (4.3) and (4.3). Fix x ∈ CE , where
E = 1/2, and study the rescaled ensemble

%
x,α
h̄,E(u) := %h̄,E(x + h̄αu)
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and the associated hypersurface measure

∣∣∣Zx,α
h̄,E

∣∣∣ (B) = Hd−1
(
{%x,α

h̄,E(v) = 0} ∩ B
)
, B ⊂ R

d .

The next result gives the asymptotics of E
∣∣∣Zx,α

h̄,E

∣∣∣ when α = 2/3 is in terms of the

weighted Airy functions Aik (see (34)).

Theorem 4.5 (Nodal Set in a Shrinking Ball Around a Caustic Point) Fix E =
1/2 and x ∈ CE , i.e. |x| = 1. For any bounded measurable B ⊆ R

d ,

E

∣∣∣Zx,2/3
h̄,E

∣∣∣ (B) =
∫

B

F(u)du,

where

F(u) = (2π)−
d+1

2

∫

Rd

|0(u)1/2ξ |e−|ξ |2/2dξ (1 +O(h̄1/3)) (35)

and 0 = (
0ij

)
1≤i,j≤n

is the symmetric matrix

0ij (u) = xixj

(
Ai2−d/2(s)

Ai−d/2(s)
− Ai21−d/2(s)

Ai2−d/2(s)

)

+ δij

2

Ai−1−d/2(s)

Ai−d/2(s)
. (36)

where s = 2〈u, x〉. The implied constant in the error estimate from (35) is uniform
when u varies in compact subsets of Rd .

Remark 4.6 The leading term in F is h̄-independent and positive everywhere since
the matrix 0ij (u) as a linear operator has non-trivial range. The matrix

(
xixj

)
i,j

in (36) is a rank 1 projection onto the x−direction; since the dimension d ≥ 2, it
cannot cancel out the second term. We refer to [HZZ15,HZZ16] for details.

Remark 4.7 Theorem 4.5 says that if x ∈ CE and B̃h̄ = x+h̄2/3B for some bounded
measurable B, then

E
∣∣Z%h̄,E

∣∣(B̃h̄) = h̄2/3(d−1)
E

∣∣∣Zx,α
h̄,E

∣∣∣(B) = h̄−2/3
∫

B̃h̄

F(h̄−2/3(y − x))dy,

which shows that the average (unscaled) density of zeros in a h̄2/3−tube around CE
grows like h̄−2/3 as h̄→0.

Remark 4.8 The scaling asymptotics of zeros around the caustic, especially in the
radial (normal) direction, is analogous to the scaling asymptotics of eigenvalues of
random Hermitian matrices around the edge of the spectrum.
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4.4 Discussion of the Nodal Results

Computer graphics of Bies–Heller [3] (reprinted as Figure 4.3 in [HZZ15]) and the
displayed graphics of Peng Zhou show that the nodal set in AE near the caustic ∂AE

consists of a large number of highly curved nodal components apparently touching
the caustic, while the nodal set in FE near ∂AE consists of fewer and less curved
nodal components all of which touch the caustic. This is because, if ψ ∈ Vh̄,E is
non-zero, �ψ = (V − E)ψ forces ψ and �ψ to have the same sign in FE . In
a nodal domain D we may assume ψ > 0, but then ψ is a positive subharmonic
function in D and cannot be zero on ∂D without vanishing identically. Hence, every
nodal component which intersects FE must also intersect AE and therefore CE .

The scaling limit of the density of zeros in a shrinking neighborhood of the
caustic, or in annular subdomains of AE and FE at shrinking distances from the
caustic, is given in Theorem 4.5.

4.5 The Kac–Rice Formula

The proof of Theorem 4.5 is based on the Kac–Rice formula for the average density
of zeros.
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Lemma 4.9 (Kac–Rice for Gaussian Fields) Let %h̄,E be the random Hermite
eigenfunction of Ĥh̄ with eigenvalue E. Then the density of zeros of%h̄,E is given by

Fh̄,E(x) = (2π)−
d+1

2

∫

Rd

|01/2(x)ξ | e−|ξ |2/2 dξ, (37)

where 0(x) is the d×d matrix

0ij (x) = (∂xi ∂yj log�h̄,E)(x, x)

= (�h̄,E · ∂xi ∂yj�h̄,E)(x, x)− (∂xi�h̄,E · ∂yj�h̄,E)(x, x)

�h̄,E(x, x)2 (38)

and �h̄,E(x, y) is the kernel of eigenspace projection (8).

We refer to [HZZ15, HZZ16] for background. The main task in proving results
on zeros near the caustic is therefore to work out the asymptotics of �h̄,E(x, x) and
its derivatives there.

5 Interfaces in Phase Space for Schrödinger Operators:
Wigner Distributions

We now turn to phase space interfaces. Instead of studying the scaling asymptotics
of the spectral projections (7)

�h̄,EN(h̄) : L2(Rd) → Vh̄,EN (h̄) (39)

we study the scaling asymptotics of their semi-classical Wigner distributions

Wh̄,EN(h̄)(x, ξ) :=
∫

Rd

�h̄,EN (h̄)

(
x + v

2
, x − v

2

)
e
− i

h̄
v·ξ dv

(2πh)d
(40)

across the phase space energy surface (14).
When EN(h̄) = E+o(1) as h̄ → 0, Wh̄,EN(h̄) is thought of as the “quantization”

of the energy surface, and (40) is thought of as an approximate δ-function on (14).
This is true in the weak* sense, but the pointwise behavior is quite a bit more
complicated and is studied in [HZ19].

Wigner distributions were introduced in [43] as phase space densities. Heuristi-
cally, the Wigner distribution (7) is a kind of probability density in phase space of
finding a particle of energy EN(h̄) at the point (x, ξ) ∈ T ∗

R
d . This is not literally

true, since Wh̄,EN(h̄)(x, ξ) is not positive: it oscillates with heavy tails inside the
energy surface (14), has a kind of transition across +E , and then decays rapidly
outside the energy surface. The purpose of this paper is to give detailed results on
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the concentration and oscillation properties of these Wigner distributions in three
phase space regimes, depending on the position of (x, ξ) with respect to +E .

There is an exact formula for the Wigner distributions (13) of the eigenspace
projections for the isotropic Harmonic oscillator in terms of Laguerre functions (see
Appendix 11.2 and [39] for background on Laguerre functions).

Proposition 5.1 The Wigner distribution of Definition 2.1 is given by,

Wh̄,EN(h̄)(x, ξ) = (−1)N

(πh̄)d
e−2H/h̄L

(d−1)
N (4H/h̄), H = H(x, ξ) = |x|2 + |ξ |2

2
,

(41)
where L

(d−1)
N is the associated Laguerre polynomial of degree N and type d − 1.

See [26, 31] for d = 1 and [39, Theorem 1.3.5] and [HZ19] for general
dimensions. The second result is a weak* limit result for normalized Wigner
distributions.

Proposition 5.2 Let a0 be a semi-classical symbol of order zero and letOpw
h (a) be

its Weyl quantization. Then, as h̄ → 0, with EN(h̄) → E,

1

dimVh̄,EN (h̄)

∫

T ∗Rd

a0(x, ξ)Wh̄,EN (h̄)(x, ξ)dxdξ → −
∫

+E

a0dμE,

where dμE is Liouville measure on +E and −
∫
+E

a0dμE = 1
μE(+E)

∫
+E

a0dμE .

Thus, Wh̄,EN(h̄)(x, ξ) → δ+E
in the sense of weak* convergence. But this limit

is due to the oscillations inside the energy ball; the pointwise asymptotics are far
more complicated.

5.1 Interface Asymptotics for Wigner Distributions
of Individual Eigenspace Projections

Our first main result gives the scaling asymptotics for the Wigner function
Wh̄,EN(h̄)(x, ξ) of the projection onto the E-eigenspace of Ĥh̄ when (x, ξ) lies
in an h̄2/3 neighborhood of the energy surface +E.

Theorem 5.3 Fix E > 0, d ≥ 1. Assume EN(h̄) = E and let h̄ = h̄N (E) (5).
Suppose (x, ξ) ∈ T ∗

R
d satisfies

H(x, ξ) = E + u

(
h̄

2E

)2/3

, u ∈ R, H(x, ξ) = ‖x‖2 + ‖ξ‖2

2
(42)
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with |u| < h̄−1/3.2 Then,

Wh̄,EN(h̄)(x, ξ) =

⎧
⎪⎨

⎪⎩

2
(2πh̄)d

(
h̄

2E

)1/3(
Ai(u/E)+O

(
(1 + |u|)1/4u2h̄2/3

))
, u < 0

2
(2πh̄)d

(
h̄

2E

)1/3
Ai(u/E)

(
1 +O

(
(1 + |u|)3/2uh̄2/3

))
, u > 0.

(43)

Here, Ai(x) is the Airy function. The Airy scaling of Wh̄,EN(h̄) is illustrated in
Figure 1. The assumption (42) may be stated more invariantly that (x, ξ) lies in the
tube of radius O(h̄2/3) around +E defined by the gradient flow of H with respect
to the Euclidean metric on T ∗

R
d . The asymptotics are illustrated in Figure 1. Due

to the behavior of the Airy function Ai(s), these formulae show that in the semi-
classical limit h̄ → 0, EN(h̄) → E, Wh̄,EN(h̄)(x, ξ) concentrates on the energy
surface +E , is oscillatory inside the energy ball {H ≤ E}, and is exponentially
decaying outside the ball.

5.2 Interior Bessel Asymptotics

In addition to the Airy asymptotics in an h̄2/3-tube around +E , Wh̄,EN(h̄) exhibits
Bessel asymptotics in the interior of +E . There are two (or three, depending on
taste) uniform asymptotic regimes for the Laguerre polynomial L

(α)
n (x): Bessel,

Trigonometric, Airy.
For t ∈ [0, 1), define

A(t) = 1

2
[
√
t − t2 + sin−1 √t], t ∈ [0, 1].

For t < 0 the sin−1 is replaced by sinh−1 and the 1
2 by i/2 (see [17, (2.7)]). Also,

let Jd−1 be the Bessel function (of the first kind) of index d − 1.

Theorem 5.4 Fix E > 0 and suppose EN(h̄) = E. For each (x, ξ) ∈ T ∗
R

d write

HE := H(x, ξ)

E
= ‖x‖2 + ‖ξ‖2

2E
, νE := 4E

h̄
.

Fix 0 < a < 1/2. Uniformly over a ≤ HE ≤ 1 − a, there is an asymptotic
expansion,

Wh̄,EN(h̄)(x, ξ)= 2

(2πh̄)d

[
Jd−1(νEA(HE))

A(HE)d−1 α0(HE)+O

(
ν−1
E

∣∣∣∣
Jd(νEA(HE))

A(HE)d

∣∣∣∣

)]
.

2The errors blow up when u = h̄−1/3.
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In particular, uniformly over HE in a compact subset of (0, 1), we find

Wh̄,EN(h̄)(x, ξ) = (2πh̄)−d+1/2PH,E cos
(
ξh̄,E,H

)+O
(
h̄−d+3/2

)
, (44)

where we have set

ξh̄,E,H = −π

4
− 2H

h̄

(
H−1

E − 1
)1/2 + 2E

h̄
cos−1

(
H

1/2
E

)

and

PE,H :=
(
πE1/2

(
H−1

E − 1
)1/4

(HE)d/2
)−1

.

5.3 Small Ball Integrals

The interior Bessel asymptotics do not encompass the behavior of Wh̄,EN(h̄) in
shrinking balls around ρ = 0. In that case, we have,

Proposition 5.5 For ε > 0 sufficiently small and for any a(x, ξ) ∈ Cb(T
∗
R

d),

∫

T ∗Rd

a(x, ξ)Wh̄,EN (h̄)(x, ξ)ψε,h̄(x, ξ)dxdξ = O(h̄
1−d

2 −2dε ‖a‖L∞(B0(h̄
1/2−ε ))),

(45)
where ψε,h̄ is a smooth radial cutoff that is identically 1 on the ball of radius h̄1/2−ε

and is identically 0 outside the ball of radius 2h̄1/2−ε .

5.4 Exterior Asymptotics

If EN(h̄) → E, then Wh̄,EN(h̄)(x, ξ) concentrates on +E and is exponentially
decaying in the complement H = H(x, ξ) > E. The precise statement is,

Proposition 5.6 Suppose that HE = H(x, ξ)/E > 1 and let EN(h̄) = E. Then,
there exists C1 > 0 so that

|Wh̄,EN(h̄)(x, ξ)| ≤ C1h̄
−d+ 1

2 e
− 2E

h̄
[
√
H 2

E−HE−cosh−1 √HE ].

Moreover, as H(x, ξ) → ∞, there exists C2 > 0 so that

|Wh̄,EN(h̄)(x, ξ)| ≤ C2h̄
−d+ 1

2 e
− 2H(x,ξ)

h̄ .
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5.5 Supremum at ρ = 0

The reader may notice the “spike” at the origin ρ = 0; it is the point at which
Wh̄,EN(h̄) has its global maximum (see Figure 2). The height is given by

Wh̄,EN(h̄)(0, 0) = (−1)N

(πh̄)d
Ld−1

N (0) = (−1)N

(πh̄)d
�(N+d)

�(N+1)�(d)
� (−1)N

πd Cdh̄
−dNd−1.

(46)
The last statement follows from the explicit formula L

(d−1)
N (0) = �(N+d)

�(N+1)�(d)
=

(N+d−1)!
N !(d−1)! (see, e.g., [39, (1.1.39)]).

On the complement of the ball B(0, h̄
1
2−ε), the Wigner distribution is much

smaller than at its maximum. The following is proved by combining the estimates
of Theorem 5.3 , Theorem 5.4, and Proposition 5.6.

Proposition 5.7 For any ε > 0,

sup
(x,ξ):H(x,ξ)≥ε

|Wh̄,EN(h̄)(x, ξ)| ≤ Ch̄−d+ 1
3 .

The supremum in this region is achieved in {H ≤ E} at (x, ξ) satisfying (42) where
u is the global maximum of Ai(x).

Why the spike at ρ = 0? It is observed in [HZ19] that Wh̄,EN(h̄) is an
eigenfunction of the (essentially isotropic) Schrödinger operator

(

− h̄2

8
(�ξ +�x)+H(x, ξ)

)

Wh̄,EN(h̄) = EN(h̄)Wh̄,EN (h̄), (47)

on T ∗
R

d . By [HZZ15, Lemma 10], the eigenspace spectral projections for the
isotropic harmonic oscillator in dimension d satisfies,

�h,E(x, x) = (2πh)−(d−1)
(

2E − |x|2
) d

2 −1
ωd−1(1 +O(h)),

Fig. 2 The Wigner function
Wh̄,EN (h̄) of the eigenspace
projection �h̄,EN (h̄) is always
radial (see Proposition 5.1).
Displayed above is the
blow-up of the Wigner
function at (0, 0).
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for a dimensional constant ωd . We apply this result to the eigenspace projections
for (47) in dimension 2d and find that at the point (0, 0) its diagonal value is of
order h̄−2d+1. We then express this eigenspace projection in terms of an orthonormal
basis for the eigenspace. From the inner product formulae (16), it is seen that one of
the orthonormal basis elements is 1√

dimVh̄,EN (h̄)
Wh̄,EN (h̄). Note that dimVh̄,EN (h̄) �

h̄−2d+1 in dimension 2d. Due to the normalization and (46),

1
√

dimVh̄,EN (h̄)

Wh̄,EN (h̄)(0, 0) � h̄−2d+1+d− 1
2 = h̄−d+ 1

2 .

There exists a simple spectral geometric explanation for the order of magnitude at
the origin: All eigenfunctions of (47) with the exception of the radial eigenfunction
Wh̄,EN(h̄)(0, 0) vanish at the origin (0, 0) since they transform by non-trivial
characters of U(d) and (0, 0) is a fixed point of the action. Consequently, the value
of the eigenspace projection on the diagonal at (0, 0) is the square of Wh̄,EN(h̄)(0, 0)
and that accounts precisely for the order of growth.

5.6 Sums of Eigenspace Projections

Let us begin by introducing the three types of spectral localization we are studying
and the interfaces in each type.

• (i) h̄-localized Weyl sums over eigenvalues in an h̄-window EN(h̄) ∈ [E −
ah̄, E + bh̄] of width O(h̄). More generally we consider smoothed Weyl
sums Wh̄,E,f with weights f (h̄−1(EN(h̄) − E)); see (49) for such h̄-energy
localization. This is the scale of individual spectral projections but is substantially
more general than the results of [HZ19]. The scaling and asymptotics are in
Theorem 5.9. For general Schrödinger operators, h̄- localization around a single
energy level leads to expansions in terms of periodic orbits. Since all orbits of the
classical isotropic oscillator are periodic, the asymptotics may be stated without
reference to them. The generalization to all Schrödinger operators will be studied
in a future article.

• (ii) Airy-type h̄2/3-spectrally localized Weyl sums Wh̄,f,2/3(x, ξ) over eigenval-
ues in a window [E − ah̄2/3, E + ah̄2/3] of width O(h̄2/3). See Definition 5.10
for the precise definition. The level set +E is viewed as the interface. The
scaling asympotics of its Wigner distribution across the interface are given in
Theorems 5.11 and 5.12. To our knowledge, this scaling has not previously been
considered in spectral asymptotics.

• (iii) Bulk Weyl sums
∑

N :h̄(N+ d
2 )∈[E1,E2] Wh̄,EN(h̄)(x, ξ) over energies in an h̄-

independent “window” [E1, E2] of eigenvalues; this “bulk” Weyl sum runs over
� h̄−1 distinct eigenvalues; See Definition 5.13. We are mainly interested in its
scaling asymptotics around the interface +E2 (see Theorem 5.16). However, we
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also prove that the Wigner distribution approximates the indicator function of the
shell {E1 ≤ H ≤ E2} ⊂ T ∗

R
d (see Proposition 5.15). As far as we know, this is

also a new result and many details are rather subtle because of oscillations inside
the energy shell. Indeed, the results of [HZ19] show that the individual terms
in the sum grow like Wh̄,EN(h̄)(x, ξ) � h̄−d+1/2 when H(x, ξ) ∈ (E1, E2).

Proposition 5.15, in contrast, shows although the bulk Weyl sums have � h̄−1

such terms, their sum has size h̄−d , implying significant cancellation.

We are particularly interested in “interface asymptotics” of the bulk Wigner–
Weyl distributions Wh̄,f,δ(h̄) around the edge (i.e. boundary) of the spectral interval
when (x, ξ) is near the corresponding classical energy surface +E . Such edges occur
when f is discontinuous, e.g. the indicator function of an interval. In other words,
we integrate the empirical measures (48) below over an interval rather than against a
Schwartz test function. At the interface, there is an abrupt change in the asymptotics
with a conjecturally universal shape. Theorem 5.9 gives the shape of the interface
for h̄-localized sums, Theorem 5.11 gives the shape for h̄2/3 localized sums, and
Theorem 5.16 gives results on the bulk sums.

Our results concern asymptotics of integrals of various types of test functions
against the weighted empirical measures,

dμ
(x,ξ)
h̄ (τ ) :=

∞∑

N=0

Wh̄,EN(h̄)(x, ξ)δEN(h̄)(τ ), (48)

and of recentered and rescaled versions of these measures (see (53) below). A key
property of Wigner distributions of eigenspace projections (40) is that the measures
(48) are signed, reflecting the fact that Wigner distributions take both positive and
negative values, and are of infinite mass:

Proposition 5.8 The signed measures (48) are of infinite mass (total variation
norm). On the other hand, the mass of (48) is finite on any one-sided interval of
the form, [−∞, τ ]. Also, ∫

R
dμ

(x,ξ)
h̄ = 1 for all (x, ξ).

Moreover, the L2 norms of the terms Wh̄,EN(h̄) grow in N like N
d−1

2 . Hence, the
measures (48) are highly oscillatory and the summands can be very large.

5.7 Interior Asymptotics for h̄-Localized Weyl Sums

The first result we present pertains to the h̄-spectrally localized Weyl sums of type
(i), defined by

Wh̄,E,f (x, ξ) :=
∑

N

f (h̄−1(E−EN(h̄)))Wh̄,EN (h̄)(x, ξ), f ∈ S(R). (49)
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Theorem 5.9 Fix E > 0, and let Wh̄,E,f be the Wigner distribution as in (49) with
f an even Schwartz function. If H(x, ξ) > E, then Wh̄,E,f (x, ξ) = O(h̄∞). In
contrast, when 0 < H(x, ξ) < E, set HE := H(x, ξ)/E and define

t+,±,k := 4πk ± 2 cos−1
(
H

1/2
E

)
, t−,±,k := 4π

(
k + 1

2

)
± 2 cos−1

(
H

1/2
E

)
,

k ∈ Z.

Fix any δ > 0. Then

Wh̄,f,E(x, ξ) = h̄−d+1
(
1 +Oδ(h̄

1−δ)
)

(2E)1/2(2π)dH
d/2
E (H−1

E − 1)1/4

∑

±1,±2∈{+,−}

e
±2i

(
π
4 − 4E

h̄

)

(±1)
d

∑

k∈Z
f̂ (t±1,±2,k)e

iE
h̄
t±1,±2,k ,

where the notation Oδ means the implicit constant depends on δ.

Note that there are potentially an infinite number of “critical points” in the support
of f̂ .

5.8 Interface Asymptotics for Smooth h̄2/3-Localized Weyl
Sums

We now consider spectrally localized Wigner distributions that are both spectrally
localized and phase space localized on the scale δ(h̄) = h̄2/3. They are mainly
relevant when we study interface behavior around +E of Weyl sums.

Definition 5.10 Let H(x, ξ) = (‖x‖2 + ‖ξ‖2)/2, and assume that (x, ξ) satisfy

H(x, ξ) = E + u(h̄/2E)2/3. (50)

Let δ(h) = h̄2/3 and define the interface-localized Wigner distributions by

Wh̄,f,2/3(x, ξ) : = ∑
N f (h−2/3(E − EN(h̄)))Wh̄,EN

(x, ξ).

Theorem 5.11 Assume that (x, ξ) satisfies (50) with |u| < h̄−2/3. Fix a Schwartz
function f ∈ S(R) with compactly supported Fourier transform. Then

Wh̄,f,2/3(x, ξ) = (2πh̄)−dI0(u; f,E) + O((1 + |u|)h̄−d+2/3),
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where

I0(u; f,E) =
∫

R

f (−λ/CE)Ai
(
λ+ u

E

)
dλ, CE = (E/4)1/3.

More generally, there is an asymptotic expansion

Wh̄,f,2/3(x, ξ) � (2πh̄)d
∑

m≥0

h̄2m/3Im(u; f,E)

in ascending powers of h̄2/3 where Im(u; f,E) are uniformly bounded when u stays
in a compact subset of R.

The calculations show that the results are valid with far less stringent conditions
on f than f ∈ S(R) and f̂ ∈ C∞

0 . To obtain a finite expansion and remainder it is

sufficient that
∫
R
|f̂ (t)||t |kdt < ∞ for all k. It is not necessary that f̂ ∈ Ck for any

k > 0.

5.9 Sharp h̄2/3-Localized Weyl Sums

Next we consider the sums of Definition 5.10 when f is the indicator function of a
spectral interval,

f = 1[λ−,λ+].

Equivalently, we fix integers 0 < n± such that

λ± = h̄1/3n± are bounded,

and consider the corresponding Wigner–Weyl sums Wh̄,f,2/3(x, ξ) of Defini-
tion 5.10:

W2/3,E,λ± (x, ξ) :

=∑
N : λ−h̄2/3≤EN (h̄)−E<λ+h̄2/3 Wh̄,EN (h̄)(x, ξ) =

∑N(E,h̄)+n+−1
N=N(E,h̄)+n− Wh̄,EN (h̄)(x, ξ), (51)

where N(E, h̄) = E/h̄ − d/2. Thus, the sums run over spectral intervals of size
� h̄2/3 centered at a fix E > 0 and consist of sum of � h̄−1/3 Wigner functions for
spectral projections of individual eigenspaces. The following extends Theorem 5.11
to sharp Weyl sums at the cost of only giving a 1-term expansion plus remainder.

Theorem 5.12 Assume that (x, ξ) satisfies
(‖x‖2 + ‖ξ‖2)/2 = E+u

(
h̄

2E

)2/3
with

|u| < h̄−2/3. Then,
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W2/3,E,λ±(x, ξ) = (2πh̄)−dCE

∫ −λ−
−λ+ Ai

(
u
E
+ λCE

)
dλ

+O
(
h̄−d+1/3−δ + (1 + |u|)h̄−d+2/3−δ

)
, (52)

where CE = (E/4)1/3.

Theorem 5.12 can be rephrased in terms of weighted empirical measures

dμ
u,E, 2

3
h̄ := h̄d

∑

N

Wh̄,EN (h̄)

(
E + u(h̄/2E)2/3

)
δ[h̄−2/3(E−EN(h̄))], (53)

obtained by centering and scaling the family (48). Thus, for (x, ξ) satisfying
(‖x‖2 + ‖ξ‖2)/2 = E + u

(
h̄

2E

)2/3
, and for f ∈ S(R),

Wh̄,f,2/3(x, ξ) : =h̄−d

∫

R

f (τ)dμ
u,E, 2

3
h̄

(τ ), W2/3,E,λ±(x, ξ)=h̄−d

∫ λ+

λ−
dμ

u,E, 2
3

h̄
(τ ).

5.10 Bulk Sums

We next consider Weyl sums of eigenspace projections corresponding to an energy
shell (or window) [E1, E2]. We consider both sharp and smoothed sums.

Definition 5.13 Define the “bulk” Wigner distributions for an h̄-independent
energy window [E1, E2] by

Wh̄,[E1,E2](x, ξ) :
∑

N :EN(h̄)∈[E1,E2]
Wh̄,EN(h̄)(x, ξ). (54)

More generally for f ∈ Cb(R) define

Wh̄,f (x, ξ) :=
∞∑

N=1

f (h̄(N + d/2)) Wh̄,EN (h̄)(x, ξ). (55)

Our first result about the bulk Weyl sums concerns the smoothed Weyl sums Wh̄,f .

Proposition 5.14 For f ∈ S(R) with f̂ ∈ C∞
0 , Wh̄,f (x, ξ) admits a complete

asymptotic expansion as h̄ → 0 of the form,
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⎧
⎪⎨

⎪⎩

Wh̄,f (x, ξ) � (πh̄)−d
∑∞

j=0 cj,f,H (x, ξ)h̄j , with

c0,f,H (x, ξ) = f (H(x, ξ)) = ∫
R
f̂ (t)eitH(x,ξ)dt.

In general ck,f,H (x, ξ) is a distribution of finite order on f supported at the point
(x, ξ).

The proof merely involves Taylor expansion of the phase.

5.11 Interior/Exterior Asymptotics for Bulk Weyl Sums of
Definition 5.13

From Proposition 5.14, it is evident that the behavior of Wh̄,[E1,E2](x, ξ) depends
on whether H(x, ξ) ∈ (E1, E2) or H(x, ξ) /∈ [E1, E2]. Some of this dependence is
captured in the following result.

Proposition 5.15 We have,

Wh̄,[E1,E2](x, ξ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(i) (2πh̄)−d(1 +O(h̄1/2)), H(x, ξ) ∈ (E1, E2),

(ii) O(h̄−d+1/2), H(x, ξ) < E1,

(iii) O(h̄∞), H(x, ξ) > E2.

The two “sides” 0 < H(x, ξ) < E1 and H(x, ξ) > E2 also behave differently
because the Wigner distributions have slowly decaying tails inside an energy
ball but are exponentially decaying outside of it. If we write Wh̄,[E1,E2](x, ξ) =
Wh̄,[0,E2](x, ξ)−Wh̄,[0,E1](x, ξ), we see that the two cases with H(x, ξ) > E1 are
covered by results for Wh̄,[0,E] with E = E1 or E = E2. When H(x, ξ) < E1, then
both terms of Wh̄,[0,E2](x, ξ) − Wh̄,[0,E1](x, ξ) have the order of magnitude h̄−d

and the asymptotics reflect the cancellation between the terms. The boundary case
where H(x, ξ) = E1, or H(x, ξ) = E2 is special and is given in Theorem 5.11.

5.12 Interface Asymptotics for Bulk Weyl Sums of
Definition 5.13

Our final result concerns the asymptotics of Wh̄,[E1,E2](x, ξ) in h̄
2
3 -tubes around

the “interface” H(x, ξ) = E2. Again, it is sufficient to consider intervals [0, E].
It is at least intuitively clear that the interface asymptotics will depend only on
the individual eigenspace projections with eigenvalues in an h̄2/3-interval around
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Fig. 3 Plot with
h̄ ≈ 0.02, E = 1/2 of scaled
bulk Wigner–Weyl sum
(2πh̄)dWh̄,[0,E](x, ξ) when
H(x, ξ) = E + u(h̄/2E)2/3

as a function of u (blue)
against its integrated Airy
limit

∫∞
0 Ai(λ+ u/E)dλ

(red) from Theorem 5.16.
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Fig. 4 Scaling at energy
surface of Wigner function of
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interval [0, 1/2].
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the energy level E, and since they add to 1 away from the boundary point, one
may expect the asymptotics to be similar to the interface asymptotics for individual
eigenspace projections in [HZ19].

Theorem 5.16 Assume that (x, ξ) satisfies |x|2+|ξ |2
2 − E = u

(
h̄

2E

)2/3
with |u| <

h̄−2/3. Then, for any ε > 0

Wh̄,[0,E](x, ξ)=(2πh̄)−d

[∫ ∞
0

Ai
( u

E
+τ
)
dτ+O(h̄1/3−ε |u|1/2)+O(|u|5/2 h̄2/3−ε)

]
,

where the implicit constant depends only on d, ε.

The Airy scaling the Wigner function is illustrated in Figures 3 and 4.

5.13 Heuristics

Wigner distributions are normalized so that the Wigner distribution of an L2

normalized eigenfunction has L2 norm 1 in T ∗
R

d . Due to the multiplicity Nd−1

of eigenspaces (3), the L2 norm of Wh̄,EN(h̄) is of order N
d−1

2 .
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In the main results, we sum over windows of eigenvalues, e.g. λ−h̄2/3 ≤ E −
EN(h̄) < λ+h̄2/3 (51), resp. EN(h̄) ∈ [0, E] in (5.13). Inevitably, the asymptotics
are joint in (h̄, N). As h̄ ↓ 0, the number of N contributing to the sum grows at the

rate h̄− 1
3 , resp. h̄−1. Due to the N -dependence of the L2 norm, terms with higher N

have norms of higher weight in N than those of small N but the precise size of the
contribution depends on the position of (x, ξ) relative to the interface {H = E} and
of course the relation (2).

Wh̄,EN(h̄)(x, ξ) peaks when H(x, ξ) = EN(h̄), exponentially decays in h̄

when H(x, ξ) > EN(h̄) and has slowly decaying tails inside the energy ball
{H < EN(h̄)}, which fall into three regimes: (i) Bessel near 0, (ii) oscillatory or
trigonometric in the bulk, and (iii) Airy near {H = E}. In terms of N , when (2)
holds, and H(x, ξ) < EN(h̄), then Wh̄,EN(h̄)(x, ξ) � h̄−d+1/2 � Nd−1/2. Near the
peak point, when H(x, ξ) − EN(h̄) ≈ h̄2/3, we have in contrast Wh̄,EN(h̄)(x, ξ) �
h̄−d+1/3 �E Nd−1/3.

It follows that the terms with a high value of N and with EN(h̄) ≥ H(x, ξ) in
(48) contribute high weights. There are an infinite number of such terms, and so
(48) is a signed measure of infinite mass (as stated in Proposition 5.8). This is why
we mainly consider the restriction of the measures (48) to compact intervals.

5.14 Remark on Nodal Sets in Phase Space

In Section 4 we discussed nodal sets of random eigenfunctions of the isotropic
Harmonic oscillator. It would also make sense to consider nodal sets in phase space
T ∗

R
d for Wigner distributions W%h̄,E

of random eigenfunctions of the isotropic
Harmonic oscillator. This is of interest because Wigner distributions are signed, i.e.
not positive, and their nodal sets and domains signal the extent of this “defect”
in their interpretation as phase space densities. But so far, this has not been done.
However, the covariance function is simply the Wigner distribution of the spectral
projection kernels, so the analysis of Wigner distributions and of their interfaces
across energy surfaces provides the necessary techniques.

In the next section we consider interfaces for partial Bergman kernels. The
analogue in the complex domain of random nodal sets of isotropic oscillator
eigenfunctions is zero sets of random homogeneous holomorphic polynomials of
fixed degree in C

d . This is essentially the same as studying such zero sets on
complex projective space CP

d−1, and to that extent the theory has already been
developed. But interface phenomena for complex zero sets have not so far been
studied.
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6 Interfaces in Phase Space: Partial Bergman Kernels

In this section, we continue to study phase space distributions of orthogonal
projections, but change from the Schrödinger quantization to the holomorphic
quantization. The holomorphic setting consists of Berezin-Toeplitz operators acting
on holomorphic sections of line bundles over Kähler manifolds, and is analytically
simpler than the real Schrödinger setting. Hence we are able to present much
more general results. Instead of fixing a model Schrödinger operator like the
isotropic Harmonic Oscillator, we consider all possible Toeplitz Hamiltonians on
holomorphic sections of Hermitian line bundles (L, h) → (M,ω) over all possible
projective Kähler manifolds. Here it is assumed that i∂∂ logh = ω, i.e. (L, h) is a
positive, ample line bundle. For background on Bargmann-Fock space, and on line
bundles over general Kähler manifolds, we refer to Section 10.

Motivation to study partial Bergman kernels comes from two sources. On the
one hand, they arise in many problems of complex geometry (see [2, 22, 23, 33, 35]
besides the articles surveyed here). On the other hand, they arise in the IQHE
(integer quantum Hall effect). The author’s interest was stimulated by conversations
with A. Abanov, S. Klevtsov, and P. Wiegmann during a Simons’ Center program
on complex geometry and the IQHE. We refer to [9, 41, 42] for some physics
articles where interfaces in the density of states of the IQHE are studied. It should
be emphasized that there are many types of partial Bergman kernels, and the ones
most interesting in physics are still out of reach of the rigorous techniques described
here. What we study here are spectral partial Bergman kernels, i.e. orthogonal
projection kernels onto spectral subspaces for Toeplitz Hamiltonians. By no means
do all pBK’s (partial Bergman kernels) arise from spectral problems, but the spectral
pBK’s are the only types for which there exist general results (or almost any results)
and sometimes the pBK’s of interest in the IQHE are spectral pBK’s.

We do not review the basic definitions here (see Section 10) but head straight
for the interface results. In place of the spectral projections of the previous
sections, we consider partial Bergman kernels on “polarized” Kähler manifolds
(L, h) → (Mm,ω, J ), i.e. Kähler manifolds of (complex) dimension m equipped
with a Hermitian holomorphic line bundle whose curvature form F∇ for the Chern
connection ∇ satisfies ω = iF∇ . Partial Bergman kernels

�k,Sk
: L2(M,Lk) → Sk ⊂ H 0(M,Lk) (56)

are Schwarz kernels for orthogonal projections onto proper subspaces Sk of the
holomorphic sections of Lk .

For general subspaces, there is little one can say about the asymptotics of the
partial density of states �k,Sk

(z), i.e. the contraction of the diagonal of the kernel.
But for certain sequences Sk of subspaces, the partial density of states �k,Sk

(z) has
an asymptotic expansion as k → ∞ which roughly gives the probability density
that a quantum state from Sk is at the point z. More concretely, in terms of an
orthonormal basis {si}Nk

i=1 of Sk , the partial Bergman densities are defined by
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�k,Sk
(z) =

Nk∑

i=1

‖si(z)‖2
hk . (57)

When Sk = H 0(M,Lk), �k,Sk
= �k : L2(M,Lk) → H 0(M,Lk) is the

orthogonal (Szegö or Bergman) projection. We also call the ratio
�k,Sk

(z)

�k(z)
the partial

density of states.
Corresponding to Sk there is an allowed region A where the relative partial

density of states �k,Sk
(z)/�k(z) is one, indicating that the states in Sk “fill up” A,

and a forbidden region F where the relative density of states is O(k−∞), indicating
that the states in Sk are almost zero in F . On the boundary C := ∂A between

the two regions there is a shell of thickness O(k− 1
2 ) in which the density of states

decays from 1 to 0. The
√
k-scaled relative partial density of states is asymptotically

Gaussian along this interface, in a way reminiscent of the central limit theorem. This
was proved in [35] for certain Hamiltonian holomorphic S1 actions, then in greater
generality in [ZZ17]. In fact, it is a universal property of partial Bergman kernels
defined by C∞ Hamiltonians. The first universal scaling results for full Bergman
kernel were obtained in [4].

To begin with, we define the subspaces Sk . They are defined as spectral subspaces
for the quantization of a smooth function H : M → R. By the standard (Kostant)
method of geometric quantization, one can quantize H as the self-adjoint zeroth
order Toeplitz operator

Hk := �k(
i

k
∇ξH +H)�k : H 0(M,Lk) → H 0(M,Lk) (58)

acting on the space H 0(M,Lk) of holomorphic sections. Here, ξH is the Hamilto-
nian vector field of H , ∇ξH is the Chern covariant derivative on sections, and H acts
by multiplication. We denote the eigenvalues (repeated with multiplicity) of Ĥk (58)
by

μk,1 ≤ μk,2 ≤ · · · ≤ μk,Nk
, (59)

where Nk = dimH 0(M,Lk), and the corresponding orthonormal eigensections in
H 0(M,Lk) by sk,j .

Let E be a regular value of H . We denote the partial Bergman kernels for the
corresponding spectral subspaces by

�k,E : H 0(M,Lk) → Hk,E, (60)

where

Sk := Hk,E :=
⊕

μk,j<E

Vμk,j
, (61)
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μk,j being the eigenvalues of Hk and

Vμk,j
:= {s ∈ H 0(M,Lk) : Hks = μk,j s}. (62)

We denote by �k,j : H 0(M,Lk) → Vμk,j
the orthogonal projection to Vμk,j

. The
associated allowed region A is the classical counterpart to (61), and the forbidden
region F and the interface C are

A := {z : H(z) < E}, F = {z : H(z) > E}, C = {z : H(z) = E}. (63)

More generally, for any spectral interval I ⊂ R we define the partial Bergman
kernels to be the orthogonal projections,

�k,I : H 0(M,Lk) → Hk,I , (64)

onto the spectral subspace,

Hk,I := span{sk,j : μk,j ∈ I }. (65)

Its (Schwartz) kernel is defined by

�k,I (z, w) =
∑

μk,j∈I
sk,j (z)sk,j (w) (66)

and the metric contraction of (66) on the diagonal with respect to hk is the partial
density of states,

�k,I (z) =
∑

μk,j∈I
‖sk,j,α(z)‖2.

The classical allowed region A and forbidden region F are the open subsets

A := Int(H−1(I )), F = Int(M\A),

and the interface as

C = ∂A = ∂F .

In [ZZ17] it is proved that

�k,I (z)

�k(z)
=
{

1 if z ∈ A
0 if z ∈ F

mod O(k−∞).
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We denote by �k(z,w) and �k(z) the (full) Bergman kernel and density
function. Here and throughout, we use the notation K(z) for the metric contraction
of the diagonal values K(z, z) of a kernel.

For each z ∈ C, let νz be the unit normal vector to C pointing towards A. And
let γz(t) be the geodesic curve with respect to the Riemannian metric g(X, Y ) =
ω(X, JY ) defined by the Kähler form ω, such that γz(0) = z, γ̇z(0) = νz. For small
enough δ > 0, the map

% : C × (−δ, δ) → M, (z, t) �→ γz(t) (67)

is a diffeomorphism onto its image.

Main Theorem Let (L, h) → (M,ω, J ) be a polarized Kähler manifold. Let H :
M → R be a smooth function and E a regular value of H . Let Sk ⊂ H 0(X,Lk)

be defined as in (61). Then we have the following asymptotics on partial Bergman
densities �k,Sk

(z):

(
�k,Sk

�k

)
(z) =

{
1 if z ∈ A
0 if z ∈ F

mod O(k−∞).

For small enough δ > 0, let % : C × (−δ, δ) → M be given by (67). Then for any
z ∈ C and t ∈ R, we have

(
�k,Sk

�k

)
(%(z, t/

√
k)) = Erf(2

√
πt)+O(k−1/2), (68)

where Erf(x) = ∫ x

−∞ e−s2/2 ds√
2π

is the cumulative distribution function of the

Gaussian, i.e. PX∼N(0,1)(X < x).3

Remark 6.1 The analogous result for critical levels is proved in [ZZ18b]. We could
also choose an interval (E1, E2) with Ei regular values of H 4, and define Sk as
the span of eigensections with eigenvalue within (E1, E2). However, the interval
case can be deduced from the half-ray case (−∞, E) by taking difference of the
corresponding partial Bergman kernel, hence we only consider allowed region of
the type in (63).

Example 6.2 As a quick illustration, holomorphic sections of the trivial line bundle
over C are holomorphic functions on C. We equip the bundle with the Hermitian
metric where 1 has the norm-square e−|z|2 . The kth power has metric e−k|z|2 . Fix

3The usual Gaussian error function erf(x) = (2π)−1/2
∫ x
−x e−s2/2ds is related to Erf by Erf(x) =

1
2 (1 + erf( x√

2
)).

4It does not matter whether the endpoints are included in the interval, since contribution from the
eigenspaces Vk,μ with μ = Ei is of lower order than km.
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rm
ρ

r

B
ν = 1

Fig. 5 “The density profile of the ν = 1 droplet, where the first m levels (represented by the thick
lines) are filled.” From Fig 7.11 in [41].

ε > 0 and define the subspaces Sk = ⊕j≤εkz
j of sections vanishing to order at

most εk at 0, or sections with eigenvalues μ < ε for operator Hk = 1
ik
∂θ quantizing

H = |z|2. The full and partial Bergman densities are

�k(z) = k

2π
, �k,ε(z) =

(
k

2π

) ∑

j≤εk

kj

j ! |z
j |2e−k|z|2 .

As k → ∞, we have

lim
k→∞ k−1�k,ε(z) =

{
1 |z|2 < ε

0 |z|2 > ε.

For the boundary behavior, one can consider sequence zk , such that |zk|2 = ε(1 +
k−1/2u),

lim
k→∞ k−1�k,ε(zk) = Erf(u).

This example is often used to illustrate the notion of “filling domains” in the IQH
(integer Quantum Hall) effect (see Figure 5). In IQH, one considers a free electron
gas confined in plane R

2 � C, with a uniform magnetic field in the perpendicular
direction. A one-particle electron state is said to be in the lowest Landau level
(LLL) if it has the form #(z) = e−|z|2/2f (z), where f (z) is holomorphic as in
Example 6.2. The following image of the density profile is copied from [41], where

the picture on the right illustrates how the states (
√
k z)j√
j ! e−k|z|2/2 with j ≤ εk fill the

disc of radius
√
ε, so that the density profile drops from 1 to 0.

The example is S1 symmetric and therefore the simpler results of [ZZ16] apply.
For more general domains D ⊂ C, it is not obvious how to fill D with LLL states.
The Main Theorem answers the question when D = {H ≤ E} for some H . For a
physics discussion of Erf asymptotics and their (as yet unknown) generalization to
the fractional QH effect, see [9, 42].
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6.1 Three Families of Measures at Different Scales

The rationale for viewing the Erf asymptotics of scaled partial Bergman kernels
along the interface C is explained by considering three different scalings of the
spectral problem.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i) dμz
k(x) =∑

j �k,j (z)δμk,j
(x),

(ii) dμ
z, 1

2
k (x) =∑

j �k,j (z)δ√k(μk,j−H(z))(x),

(iii) dμ
z,1,τ
k (x) =∑

j �k,j (z)δk(μk,j−H(z))+√
kτ (x),

(69)

where as usual, δy is the Dirac point mass at y ∈ R. We use μ(x) = ∫ x

−∞ dμ(y) to
denote the cumulative distribution function.

We view these scalings as analogous to three scalings of the convolution powers
μ∗k of a probability measure μ supported on [−1, 1] (say). The third scaling (iii)
corresponds to μ∗k , which is supported on [−k, k]. The first scaling (i) corresponds
to the Law of Large Numbers, which rescales μ∗k back to [−1, 1]. The second
scaling (ii) corresponds to the CLT (central limit theorem) which rescales the
measure to [−√

k,
√
k].

Our main results give asymptotic formulae for integrals of test functions and
characteristic functions against these measures. To obtain the remainder estimate

(68), we need to apply semi-classical Tauberian theorems to μ
z, 1

2
k and that forces us

to find asymptotics for μz,1,τ
k .

6.2 Unrescaled Bulk Results on dμz
k

The first result is that the behavior of the partial density of states in the allowed
region {z : H(z) < E} is essentially the same as for the full density of states, while
it is rapidly decaying outside this region.

We begin with a simple and general result about partial Bergman kernels for
smooth metrics and Hamiltonians.

Theorem 6.3 Let ω be a C∞ metric on M and let H ∈ C∞(M). Fix a regular
value E of H and let A,F , C be given by (63). Then for any f ∈ C∞(R), we have

�k(z)
−1
∫ E

−∞
f (λ)dμz

k(λ) →
{
f (H(z)) if z ∈ A
0 if z ∈ F .

(70)
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In particular, the density of states of the partial Bergman kernel is given by the
asymptotic formula:

�k(z)
−1�k,E(z) ∼

{
1 mod O(k−∞) if z ∈ A
0 mod O(k−∞) if z ∈ F ,

(71)

where the asymptotics are uniform on compact sets of A or F .

In effect, the leading order asymptotics says that the normalized measure
�k(z)

−1dμz
k → δH(z). This is a kind of Law of Large Numbers for the sequence

dμz
k . The theorem does not specify the behavior of μz

k(−∞, E) when H(z) = E.
The next result pertains to the edge behavior.

6.3
√

k-Scaling Results on dμ
z,1/2
k

The most interesting behavior occurs in k− 1
2 -tubes around the interface C between

the allowed region A and the forbidden region F . For any T > 0, the tube of ‘radius’

T k− 1
2 around C = {H = E} is the flowout of C under the gradient flow of H

F t := exp(t∇H) : M → M,

for |t | < T k−1/2. Thus it suffices to study the partial density of states �k,E(zk)

at points zk = Fβ/
√
k(z0) with z0 ∈ H−1(E). The interface result for any smooth

Hamiltonian is the same as if the Hamiltonian flow generates a holomorphic S1-
actions, and thus our result shows that it is a universal scaling asymptotics around C.

Theorem 6.4 Let ω be aC∞ metric onM and letH ∈ C∞(M). Fix a regular value
E ofH and letA,F , C be given by (63). Let F t : M → M denote the gradient flow
of H by time t . We have the following results:

(1) For any point z ∈ C, any β ∈ R, and any smooth function f ∈ C∞(R), there
exists a complete asymptotic expansion,

∑

j

f (
√
k(μk,j −E))�k,j (F

β/
√
k(z)) �

(
k

2π

)m

(I0+k−
1
2 I1+· · · ), (72)

in descending powers of k
1
2 , with the leading coefficient as

I0(f, z, β) =
∫ ∞

−∞
f (x)e

−
(

x
|∇H |(z)| −β|∇H(z)|

)2
dx√

π |∇H(z)| .
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(2) For any point z ∈ C, and any α ∈ R, the cumulative distribution function
μ

z,1/2
k (α) = ∫ α

−∞ dμ
z,1/2
k is given by

μ
z,1/2
k (α) =

∑

μk,j<E+ α√
k

�k,j (z) =
(

k

2π

)m

Erf

( √
2α

|∇H(z)|

)

+O(km−1/2).

(73)
(3) For any point z ∈ C, and any β ∈ R, the Bergman kernel density near the

interface is given by

�k,E(Fβ/
√
k(z)) =∑

μj,k<E �k,j (F
β/

√
k(z))

= (
k

2π

)m
Erf

(
−√

2β|∇H(z)|
)
+O(km−1/2). (74)

Remark 6.5 The leading power
(

k
2π

)m
is the same as in Theorem 6.3, despite the

fact that we sum over a packet of eigenvalues of width (and cardinality) k− 1
2 times

the width (and cardinality) in Theorem 6.3. This is because the summands �k,j (z)

already localize the sum to μk,j satisfying |μk,j −H(z)| < Ck− 1
2 .

6.4 Energy Level Localization and dμ
z,1,α

k

To obtain the remainder estimate for the
√
k rescaled measure dμ

z,1/2
k in (73)

and (74) , we apply the Tauberian theorem. Roughly speaking, one approximates
dμ

z,1/2
k by convoluting the measure with a smooth function Wh of width h, and

the difference of the two is proportional to h. The smoothed measure dμ
z,1/2
k ∗ Wh

has a density function, the value of which can be estimated by an integral of the
propagator Uk(t, z, z) for |t | ∼ k−1/(hk−1/2). Thus if we choose h = k−1/2, and
Wh to have Fourier transform supported in (−ε,+ε)/h, we only need to evaluate
Uk(t, z, z) for |t | < ε, where ε can be taken to be arbitrarily small.

Theorem 6.6 Let E be a regular value ofH and z ∈ H−1(E). If ε is small enough,
such that the Hamiltonian flow trajectory starting at z does not loop back to z for
time |t | < 2πε, then for any Schwarz function f ∈ S(R) with f̂ supported in
(−ε, ε) and f̂ (0) = ∫

f (x)dx = 1, and for any α ∈ R we have

∫

R

f (x)dμ
z,1,α
k (x) =

(
k

2π

)m−1/2

e
− α2

‖ξH (z)‖2

√
2

2π‖ξH (z)‖ (1 +O(k−1/2)).
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6.5 Critical Levels

In this section we consider interfaces at critical levels. Let H : M → R be a smooth
function with Morse critical points. Henceforth, to simplify notation, we use Kähler
local coordinates u centered at z0 to write points in the k−ε tube around C by

z = z0 + k−εu := expz0
(k−εu), u ∈ Tz0 .C.

The abuse of notation in dropping the higher order terms of the normal exponential
map is harmless since we are working so close to C. At regular points z0 we may use
the exponential map along Nz0C but we also want to consider critical points. More
generally we write z0 + u for the point with Kähler normal coordinate u. In these
coordinates,

ω(z0 + u) = i

m∑

j=1

duj ∧ dūj +O(|u|).

We also choose a local frame eL of L near z, such that the corresponding ϕ =
− log h(eL, eL) is given by

ϕ(z0 + u) = |u|2 +O(|u|3).

See [36] also for more on such adapted frames and Heisenberg coordinates.
Clearly, the formula (72) breaks down at critical points and near such points on

critical levels. Our main goal in this paper is to generalize the interface asymptotics
to the case when the Hamiltonian is a Morse function and the interface C = {H =
E} is a critical level, so that C contains a non-degenerate critical point zc of H . To
allow for non-standard scaling asymptotics, we study the smoothed partial Bergman
density near the critical value E = H(zc),

�k,E,f,δ(z) :=
∑

j

‖sk,j (z)‖2 · f (kδ(μk,j − E)),

where f ∈ S(R) with Fourier transform f̂ ∈ C∞
c (R), and 0 ≤ δ ≤ 1. This is the

smooth analog of summing over eigenvalues within [E − k−δ, E + k−δ].
The behavior of the scaled density of states is encoded in the following measures,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dμz
k(x) =

∑
j ‖sk,j (z)‖2 δμk,j

(x),

dμ
z,δ
k (x) =∑

j ‖sk,j (z)‖2 δkδ(μk,j−H(z))(x),

dμ
(z,u,ε),δ
k (x) =∑

j ‖sk,j (z+ k−εu)‖2 δkδ(μk,j−H(z))(x).

(75)
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For each measure μ we denote by dμ̂ the normalized probability measure

dμ̂(x) = μ(R)−1dμ(x).

For all z ∈ M , we have the following weak limit, reminiscent of the law of large
numbers;

μ̂z
k(x) ⇀ δH(z)(x).

For z ∈ M with dH(z) �= 0, (72) shows that

μ̂
z,1/2
k (x) ⇀ e

− x2

|dH(z)|2 dx√
π |dH(z)| .

6.6 Interface Asymptotics at Critical Levels

The next result generalizes the ERF scaling asymptotics to the critical point case.
We use the following setup: Let zc be a non-degenerate Morse critical point of H ,
then for small enough u ∈ C

m, we denote the Taylor expansion components by

H(zc + u) = E +H2(u)+O(|u|3),

where

E = H(zc), H2(u) = 1

2
HesszcH(u, u).

Theorem 6.7 For any f ∈ S(R) with f̂ ∈ C∞
c (R), we have

�k,E,f,1/2(zc + k−1/4u) :=∑
j ‖sk,j (zc + k−1/4u)‖2 · f (k1/2(μk,j − E))

= (
k

2π

)m
f (H2(u))+Of (k

m−1/4).

Moreover, the normalized rescaled pointwise spectral measure

dμ̂
(zc,u,1/4),1/2
k (x) :=

∑
j ‖sk,j (zc + k−1/4u)‖2 δk1/2(μk,j−E)(x)

∑
j ‖sk,j (zc + k−1/4u)‖2

converges weakly

μ̂
(zc,u,1/4),1/2
k (x) ⇀ δH2(u)(x).
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We notice that the scaling width has changed from k− 1
2 to k−1/4 due to the

critical point. The difference in scalings raises the question of what happens if we

scale by k− 1
2 around a critical point. The result is stated in terms of the metaplectic

representation on the osculating Bargmann-Fock space at zc.

Theorem 6.8 Let 1 0 T > 0 be small enough, such that there is no non-
constant periodic orbit with periods less than T . Then for any f ∈ S(R) with
f̂ ∈ C∞

c ((−T , T )), we have

�k,E,f,1(zc + k−1/2u) =
(

k

2π

)m ∫

R

f̂ (t)U(t, u)
dt

2π
+O(km−1/2),

where U(t, u) is the metaplectic quantization of the Hamiltonian flow of H2(u)

defined as

U(t, u) = (detP)−1/2 exp(ū(P−1 − 1)u+ uQ̄P−1u/2 − ūP−1Qū/2).

Here P = P(t),Q = Q(t) be complex m × m matrices such that if u(t) =
exp(tξH2)u, then

(
u(t)

ū(t)

)
=
(
P(t) Q(t)

Q̄(t) P̄ (t)

)(
u

ū

)
.

Remark 6.9 Unlike the universal Erf decay profile in the 1/
√
k-tube around the

smooth part of C, we cannot give the decay profile of �k,I (z) near the critical
point zc. The reason is that there are eigensections that highly peak near zc and
with eigenvalues clustering around H(zc). Hence it even matters whether we
use [E1, E2] or (E1, E2). See the following case where the Hamiltonian action
is holomorphic, where the peak section at zc is an eigensection, and all other
eigensections vanish at zc.

The next result pertains to Hamiltonians generating R actions, as studied in [35],
[ZZ16]. The Hamiltonian flow always extends to a holomorphic C action.

Proposition 6.10 Assume H generate a holomorphic Hamiltonian R action. The
pointwise spectral measure dμ

zc
k (x) is always a delta-function

μ
zc
k = δH(zc)(x), ∀k = 1, 2 · · ·

Equivalently, for any spectral interval I ,

lim
k→∞�k,I (zc) =

{
1 E ∈ I

0 E /∈ I
.

The above result follows immediately from:
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Proposition 6.11 Let zc be a Morse critical point of H , E = H(zc). Then

(1) The L2-normalized peak section sk,zc (z) = C(zc)�k(z, zc) is an eigensection
of Ĥk with eigenvalue H(zc). And all other eigensections orthogonal to sk,zc
vanish at zc.

(2) If sk,j ∈ H 0(M,Lk) is an eigensection of Ĥk with eigenvalue μk,j < E, then
sk,j vanishes on W+(zc).

(3) If sk,j ∈ H 0(M,Lk) is an eigensection of Ĥk with eigenvalue μk,j > E, then
sk,j vanishes on W−(zc).

In particular, this shows the concentration of eigensection near zc. Depending
on whether the spectral interval I includes boundary point H(zc) or not, the partial
Bergman density will differ by a large Gaussian bump of height ∼ km.

6.7 Sketch of Proof

As in [ZZ17,ZZ18] the proofs involve rescaling parametrices for the propagator

Uk(t) = exp itkĤk (76)

of the Hamiltonian (58). The parametrix construction is reviewed in Section 3.4.
We begin by observing that for all z ∈ M , the time-scaled propagator has pointwise

scaling asymptotics with the k− 1
2 scaling:

Proposition 6.12 ([ZZ17] Proposition 5.3) If z ∈ M , then for any τ ∈ R,

Ûk(t/
√
k, ẑ, ẑ) =

(
k

2π

)m

eit
√
kH(z)e−t2 ‖dH(z)‖2

4 (1 +O(|t |3k−1/2)),

where the constant in the error term is uniform as t varies over compact subset ofR.

The condition dH(z) �= 0 in the original statement in [ZZ17] is never used in
the proof, hence both statement and proof carry over to the critical point case. We
therefore omit the proof of this Proposition.

We also give asymptotics for the trace of the scaled propagator Uk(t/
√
k). It is

based on stationary phase asymptotics and therefore also reflects the structure of the
critical points.

Theorem 6.13 If t �= 0, the trace of the scaled propagator Uk(t/
√
k) = ei

√
ktĤk

admits the following asymptotic expansion
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∫
z∈M Uk(t/

√
k, z)d VolM(z) =

(
k

2π

)m
( t

√
k

4π )−m
∑

zc∈crit(H)
eit

√
kH(zc)e(iπ/4)sgn(Hesszc (H))√| det(Hesszc (H))|

·(1 +O(|t |3k−1/2)),

where sgn(Hesszc (H)) is the signature of the Hessian, i.e. the number of its positive
eigenvalues minus the number of its negative eigenvalues.

7 Interfaces for the Bargmann-Fock Isotropic Harmonic
Oscillator

We continue the discussion of Bargmann-Fock space from Section 3 by considering
partial Bargmann-Fock Bergman kernels. In this section, we tie together the results
on Wigner distributions of spectral projections for the isotropic Harmonic oscillator,
and on density of states for partial Bergman kernels associated with the natural S1

action on Bargmann-Fock space. This is the most direct analogue of the Schrödinger
results.

The classical Bargmann-Fock isotropic Harmonic oscillator corresponds to the
degree operator on H 0(CPm,O(N)). The total space of the associated line bundle
is Cm+1. The harmonic operator generates the standard diagonal S1 action on C

m+1,

eiθ · (z1, . . . , zm+1) = (ein1θ z1, . . . , e
inmθ zm+1).

Its Hamiltonian is H8n(Z) = ∑m+1
j=1 nj |zj |2. The critical point set of H8n is its

minimum set.
The eigenspaces Hk,m,N consist of monomials zα with |α| = N . Given the

Planck constant k, the eigenspace projection is given by

�hk
BF ,N (Z,W) =

∑

|α|=N

(kZ)α)(kW̄ )α

α! , (77)

as a kernel relative to the Bargmann-Fock Gaussian volume form. The partial
Bergman kernels arising from spectral projections of the isotropic oscillator thus
have the form,

�hk
BF ,E =

∑

N :N
k
≥E

�hk
BF ,N (Z,W).

We claim that the eigenspace projector (77) satisfies,

�hk
BF ,N (Z,Z) = CN,k,m||Z||2N, (78)
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where

CN,k,m = p(N,m+ 1)

ωm

kN

�(N +m+ 1)
.

Here, ωm = Vol(S2m+1) is the surface measure of the unit sphere in C
m+1. Also,

dimHk,m,N = p(m+1, N), the partition function which counts the number of ways
to express N as a sum of m+ 1 positive integers. To prove this, we first observe that
the U(m+1)-invariance of the Harmonic oscillator Hamiltonian H = ||Z||2 implies
that U∗�hk

BF ,NU = �hk
BF ,N and therefore �hk

BF ,N (UZ,UZ) = �hk
BF ,N (Z,Z). It

follows that �hk
BF ,N (Z,Z) = F(||Z||2) is radial. It is also homogeneous of degree

2N , hence is a constant multiple CN,k,m||Z||2N as claimed in (78). The constant is
calculated from the fact that

p(m,N) = dimHk,m,N = km+1

(m+1)!
∫
Cm+1 �hk

BF ,N (Z,Z)e−k||Z||2dL(Z)

= ωmCmkm+1
∫∞

0 e−kρ2
ρ2Nρ2m+1dρ

= 1
2ωmCmkm+1

∫∞
0 e−kρρNρmdρ

= 1
2

km+1

(m+1)!k
−(N+m+1)ωmCm,k,N�(N +m+ 1).

Solving for Cm,k,N establishes the formula. It also follows that the density of states
is given by,

∑
N≥εk �hk

BF ,N (Z,Z) = km+1

(m−1)!ωm
e−k||Z||2 ∑

N≥εk
(k||Z||2)Np(m,N)

�(N+m+1)

� km+1

(m−1)!ωm
e−k||Z||2 ∑

N≥εk
(k||Z||2)N

N ! ,

(79)

since p(m+1, N) � 1
(m+1)!N

m(1+O(N−1)) (4); also, �(N+m+1) = (N+m)! �
(N +m) · · · (N + 1)N ! � NmN !.

8 Bargmann-Fock Space of a Line Bundle and Interface
Asymptotics

In this section, we introduce a new model, the Bargmann-Fock space of an ample
line bundle π : L → M over a Kähler manifold, and generalize the results of
the preceding section to density of states for partial Bergman kernels associated
with the natural S1 action on the total space L∗ of the dual line bundle. We let
Xh = ∂D∗

h ⊂ L∗ be the unit S1-bundle given by the boundary of the unit co-disc
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bundle, D∗
h = {(z, λ) ∈ L∗ : |λ|z < 1}. We sketch the proof that “interfaces”

for the Hamiltonian generating the standard S1 action on the Bargmann-Fock space
of L satisfy the central limit theorem or cumulative Gaussian Erf interfaces as in
the compact case of [ZZ16]. The Hamiltonian is simply the norm-square function
N(z, λ) := |λ|2hz

, so the energy balls are simply the co-disc bundles

D∗
E = {(z, λ) ∈ L∗ : |λ|hz ≤ E2}.

As usual, we equivariantly lift sections sk ∈ H 0(M,Lk) to ŝk ∈ Hk(L
∗), which

are homogeneous of degree k in the sense that

ŝk(rx) = rkŝk(x).

8.1 Volume Forms

Xh is a contact manifold with contact volume form dV = α∧ (π∗ω)m. This contact
volume form induces a volume form dV olL∗ on L∗, generalizing the Lebesgue
volume form dV olCm in the standard Bargmann-Fock space. Namely, the Kähler
metric ωh of the Hermitian metric h on L lifts to the partial Kähler metric π∗ωh.
Then,

ωL∗ = π∗ωh + dλ ∧ dλ̄

is a Kähler metric on L∗ with potential |λ|2e−φ where φ = log |eL|2hz
is the local

Kähler potential on M . Since L∗ � Xh × R+ we may use polar coordinates (x, ρ)

on L∗, which correspond to coordinates (z, λ) ∈ M × C in a local trivialization
by ρ = |λ|hz and x = (z, eiθ ). Since dimR X = 2m + 1 when dimC M = m, the
volume form on L∗ is given by

dV olL∗(x, ρ) = ρ2m+1dV (x)dρ.

We then endow L∗ with the (normalized) Gaussian measure analogous to (17),

d�m+1,h̄ := h̄−(m+1)

Vol(Xh)�(m+ 1)
e−||Z||2/h̄dV olL∗(Z). (80)

To check that the measure has mass 1, we note that

∫

L∗
e−||Z||2/h̄dV olL∗(Z) = Vol(Xh)

∫ ∞

0
e−ρ2/h̄ρ2m+1dρ = Vol(Xh)h̄

m+1�(m+1).
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Here, we denote a general point of L∗ by Z = ρx with ρ ∈ R+, x ∈ Xh. In the
future we put

Cm(h) = 1

Vol(Xh)�(m+ 1)
,

so that we do not have to keep track of this constant.

Definition 8.1 The Bargmann-Fock space of (L, h) is the Hilbert space

H2
BF,h̄(L

∗) :=
∞⊕

N=0

HN(L∗)

of entire square integrable holomorphic functions on L∗ with respect to the inner
product

||f ||2h̄,BF =: h̄−(m+1)

Vol(Xh)�(m+ 1)

∫

L∗
|f (Z)|2e−||Z||2/h̄dV olL∗(Z). (81)

8.2 Orthonormal Basis

If s ∈ H 0(M,Lk), then

||ŝk||L2(Xh)
= 1

m!
∫

Xh

|ŝ(x)|2dV (x) =
∫

M

||s(z)||2
hkdVω, (82)

where the right side is the inner product on H 0(M,Lk), where dVω = ωm/m!.
Let Nk = dimH 0(M,Lk) and let {ŝk,j }Nk

j=1 be any orthonormal basis of Hk(L
∗),

corresponding to an orthonormal basis {sk,j } of H 0(M,Lk). We let h̄ = k−1. We
also change the notation for powers of a bundle k → N to agree with the notation
for the real Harmonic oscillator but retain the notation h̄ = k−1. Thus, in effect,
there are two semi-classical parameters: N and k, parallel to the parameters N and
h̄−1 for the Schrödinger representation of the harmonic oscillator. The lifts ŝN,j of
an orthonormal basis sN,j of H 0(M,LN) are orthogonal but no longer normalized.

Lemma 8.2 There exists a constant cm = (Vol(Xh)�(m + 1))− 1
2 so that

{cmh̄−N/2 ŝN,j (Z)√
(N+m+1)! } is an orthonormal basis ofH2

BF .

Proof We have,

||ŝN ||2BF,h̄ = ||ŝ||2
L2(Xh)

Cmh̄−(m+1)
∫∞

0 e−ρ2/h̄ρ2N+2m+1dρ,

= Cm||ŝ||2L2(Xh)
h̄N�(N +m+ 1) = Cmh̄N (N +m)!||ŝ||2

L2(Xh)
,
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since h̄−(m+1)
∫∞

0 e−ρ2/h̄ρ2N+2m+1dρ = h̄N�(N + m + 1). Putting cm = C
− 1

2
m

completes the proof. $%
Corollary 8.3 In the notation above, an orthonormal basis of H2

BF,h̄(L
∗) is given

by {cmh̄−N
2

ŝN,j√
(N+m)! }.

8.3 Bargmann-Fock Bergman Kernel of a Line Bundle

We now define the Bargmann-Fock Bergman kernel:

Definition 8.4 The Bargmann-Fock Bergman kernel is the kernel of the orthogonal
projection,

�̂BF,h̄ : L2(L∗) → HBF (L∗),

with respect to the Gaussian measure �m+1,h̄ of the inner product (81). The density
of states is the positive measure,

�̂BF,h̄(Z,Z)d�m+1,h̄(Z).

Let �hN : L2(M,LN) → H 0(M,LN) be the orthogonal projection with respect
to the inner product (82). It lifts to the orthogonal projection �̂N : L2(Xh) →
HN(Xh) with respect to the inner product on L2(Xh) defined by (82). Again by (81),
�̂N is equal up to the constant CN to the orthogonal projection H2

BF (L∗) → HN .
The next Lemma is an immediate consequence of Corollary 8.3.

Lemma 8.5 The Bargmann-Fock Bergman kernel on H2
BF (L∗) is given for Z =

(z, λ),W = (w,μ) ∈ L∗ by

�̂BF,h̄(Z,W) : =cm
∑∞

N=0
h̄−N

(N+m)! �̂N (Z,W)=Cm
∑∞

N=0 h̄−N (λμ)N

(N+m)! �̂N (z, 1, w, 1),

where the equivariant kernel �̂N on Xh is extended by homogeneity to L∗. The
density of states is given by

�̂BF,h̄(Z,Z)e−||Z||2/h̄ : = cmh̄−(m+1)e−||Z||2/h̄∑∞
N=0

h̄−N

(N+m)!�̂N(Z,Z)

= cmh̄−(m+1)e−||Z||2/h̄∑∞
N=0 h̄−N |λ|2N

(N+m)!�hN (z),

where �hN (z) is the metric contraction of �N(z, z) on M .
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The following is the main result of this section:

Proposition 8.6 Let h̄ = k−1. For Z = (z, λ), the density of states equals

�̂BF,k(Z) := cmkm+1e−k||Z||2
∞∑

N=0

|λ|2N
(N +m)!k

NNm[1 +O(
1

N
)]dV olL∗(Z).

Proof We recall that the density of states admits an asymptotic expansion,

�hN (z) � Nm

m! [1 + a1(z)

N
+ · · · ],

so by Lemma 8.5, the density of states equals

�̂BF,h̄(Z,Z)d�m+1,h̄ := cmh̄−(m+1)e−||Z||2/h̄
∞∑

N=1

h̄−N |λ|2N
(N +m)!N

m[1 + a1(z)

N
+ · · · ]dV olL∗ (Z),

where Cm is a dimensional constant. Substituting h̄ = k−1 completes the proof. $%
We note that Nm

(N+m)! � 1
N ! , so that the asymptotics of Proposition 8.6 agree with

the Bargmann-Fock case (79).

8.4 Interface Asymptotics

The Hamiltonian is the norm square of the Hermitian metric itself, i.e.

H(z, λ) = |λ|2hz
.

The sublevel set {H ≤ E} is the disc bundle of radius E2. We denote its boundary by
+E . The normal direction to +E is the gradient ∇H direction, is given by the radial
vector on L∗ generated by the natural R+ action in the fibers dual to the S1 action
generated by H . Together, the R+ and S1 actions define the standard C

∗ action on
L∗ and ∇H = JξH where ξH = ∂

∂θ
is the Hamilton vector field of H . Thus, the

asymptotics of such partial Bergman kernels falls into the C
∗ equivariant setting of

[ZZ16].
We fix E and consider the partial Bargmann-Fock Bergman kernel of L∗ with

the energy interval [0, E]. Then as in the standard case, the exterior interface
asymptotics pertain to the sums,

∑

N≥εk

�hk
BF ,N (Z,Z) = km+1

ωmm!e
−k||Z||2 ∑

N≥εk

(k||Z||2)NNm

(N +m)! [1 + a1(z)

N
+ · · · ],

(83)
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or to the complementary sums. Comparison with the standard Bargmann-Fock
case of (79) shows that they agree to leading order, due to the Bergman kernel
asymptotics of the summands �N(z, 1, z, 1). The interface asymptotics are there-
fore the same as on Bargmann-Fock space for the Toeplitz isotropic Harmonic
oscillator, and are also essentially the same as in Theorem 6, with H(z, λ) = |λ|
and |∇H(z, λ)| = | ∂

∂θ
| = λ. We refer to orbits of the R+ action as radial orbits.

Theorem 8.7 Let �hk
BF ,(E,∞](Z,Z) = ∑

N≥Ek �hk
BF ,N (Z,Z). Let Z = (z, λ) ∈

L∗ and let ZE = (z, λE) ∈ +E with |λE |hz = E. Let Zk = e
β√
k · ZE = (z, e

β√
k λE)

be sequence of points approaching (z, λE) along a radial R+ orbit, where β ∈ R.
Then, as k → ∞,

�
hk
BF

,(E,∞](Zk) = km Erf

⎛

⎜
⎝
√
k
E − e

β√
k E

E

⎞

⎟
⎠ (1 +O(k−1/2)) = km Erf (−β) (1 +O(k−1/2)).

(84)

The proof of Theorem 8.7 is essentially the same as for Theorem 6, or better the
same as in [ZZ16] for the C

∗ equivariant case. The only difference is that L∗ is of
infinite volume, but this does not affect pointwise asymptotics. However, there is a
more elementary proof in this case.

Let x = |Zk|2 = |λ|2hz
= e

2 β√
k ZE with |ZE | = E. It is well-known that, as

k → ∞,

e−kx
∑

N≤kE2

(kx)NNm

(N +m)! ∼ 1√
2πx

∫ √
k E2−x√

x

−∞
e−

t2
2x dt.

Indeed, Lemma 1 of [44] asserts that

e−kx

xk+y
√
k∑

N=1

(kx)N

N ! ∼ 1√
2π

∫ y√
x

−∞
e−

t2
2 dt +O(

Ax
√

3x + 1√
k((

√
x + y)3

). (85)

We have,

√
x = e

β√
k E � E+ β√

k
"⇒ E2 − x√

x
= E2 − e

2 β√
k E2

e
β√
k E

= −2E
β√
k
(1+O(

1√
k
)).

Then let kx + y
√
k = kE2, i.e. y√

k
= E2 − x � 2E β√

k
, thus y = 2βE, and use

Nm

(N+m)! � 1
N ! to obtain the desired asymptotic.

To see this asymptotic implies Theorem 8.7, we let
√
k E−x√

x
= β or E−x√

x
= β√

k
.

Then we get
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�hk
BF ,(E,∞](Zk) � kme−ke

β√
k E
∑

N≤kE2
(ke

β√
k E)NNm

(N+m)!

∼ km 1√
2πx

∫ β

−∞ e− t2
2E dt (1 +O( 1√

k
)

Remark 8.8 In [38], Szasz introduces the “Szasz operator”

Pf (u, x) := e−xu
∞∑

n=1

(ux)n

n! f (
n

u
),

and shows that, for f ∈ Cb(R), limu→∞ Pf (u, x) = f (x). If we let f (v) =
1[E,∞](v), then f (n

u
) = 1u≤nE . Szasz’s asymptotic does not apply at the point

of discontinuity. Later, Mirakyan introduced the “Szasz- Mirakyan operator” [30]

Pf,N(u, x) := e−xu
N∑

n=1

(ux)n

n! f (
n

u
),

and Omey [31] proved that if N = N(n, x) with limn→∞ N−nx√
n

= C < ∞, then

limn→∞ Pf,N(n, x) = f (x)√
2π

∫ C

−∞ e− 1
2 u

2
du. [44, Lemma 1] is a refinement of this

limit formula.

This asymptotic formula arises in the analysis of Bernstein polynomials of
discontinuous functions with a jump, and we refer to [13, 28, 31, 38, 44, 46] for
the analysis.

9 Further Types of Interface Problems

9.1 Further Types of Interface Problems

Here are some further types of interface asymptotics:

• Entanglement entropy: Sharp spectral cutoffs involve indicator functions
1E1,E2(Ĥh̄) of a quantum Hamiltonian. On the other hand, one might quantize the
indicator function 1E1,E2(H) of a classical Hamiltonian. This is obviously related
but different, since the first is a projection and the second is not. Entanglement
entropy is a measure of how the second fails to be a projection and has been
studied by Charles-Estienne [12] and by the author (unpublished).

• On a manifold M with boundary ∂M one may study the spectral projections
kernel ED[0,λ](x, x) of the Laplacian with Dirichlet boundary conditions. Away

from ∂M , λ−nED[0,λ](x, x) � 1 where n = dimM . Yet ED[0,λ](x, x) = 0 on ∂M .

What is the shape of the drop-off from 1 to 0 n a boundary zone of width λ−1?
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• For the hydrogen atom Hamiltonian Ĥh̄, there is a phase space interface +0 ⊂
T ∗

R
d separating the bound states from the scattering states. The Hamiltonian

flow is periodic on the one side of +0 and unbounded on the other side and
parabolic on +0. The quantization of the bound state region is the discrete
spectral projection �disc,h̄(x, y). How does its Wigner distribution behave along
+0?

• Interfaces arise in the quantum Hall effect, a point process defined by a weight φ
and a Laughlin state which gives probabilities of N electrons to occur in a given
configuration. The Laughlin states concentrate as N → ∞ inside a “droplet.”
The interface asymptotics across the droplet in dimension one have been studied
in [9, 42] and others, and from a mathematical point of view by Hedenmalm and
Wennman [22, 23]. In the next section, we discuss higher dimensional droplets.

• Interfaces are studied for nonlinear equations such as the Allen–Cahn equation,
and are related to phase transition problems; see, e.g., [18] for references to the
literature.

9.2 Droplets in Phase Space

Let us describe droplets in more detail. Droplets in phase space arise as coincidence
sets in envelope problems for plurisubharmonic functions. The boundary of such
coincidence sets is the interface. In special cases, it is the same interface that we
have described for spectral interfaces. But in general, the interface is a free boundary
that must be determined from the envelope, and even its regularity is a problem. We
refer to [2] for the origins of the theory of dimensions > 1.

The definition involves the inner products HilbN(h, ν) induced by the data (h, ν)

on the spaces H 0(M,LN) of holomorphic sections of powers LN → M by

||s||2HilbN (h,ν) :=
∫

M

|s(z)|2
hN dν(z). (86)

We let h be a general C2 Hermitian metric on L, and denote its positivity set by

M(0) = {x ∈ M : ωφ |TxM has only positive eigenvalues}, (87)

i.e. the set where ωφ is a positive (1, 1) form. For a compact set K ⊂ M , also define
the equilibrium potential φeq = V ∗

h,K
5

V ∗
h,K(z) = φeq(z) := sup{u(z) : u ∈ PSH(M,ω0), u ≤ φ on K}, (88)

5Both notations φeq and V ∗
h,K , and also PK(φ), are standard and we use them interchangeably.

V ∗
h,K is called the pluri-complex Green’s function.
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where ω0 is a reference Kähler metric on M and PSH(M,ω0) are the psh functions
u relative to ω0,

PSH(M,ω0) = {u ∈ L1(M,R ∪∞) : ddcu+ ω0 ≥ 0, and u is ω0 − u.s.c.}.
(89)

Further define the coincidence set,

D := {z ∈ M : φ(z) = φe(z)}. (90)

The boundary ∂D is the “interface” and the problem is to determine its regularity
and other properties. It carries an equilibrium measure defined by

dμφ = (ddcφeq)
m/m! = 1D∩M(0)(dd

cφ)m/m!. (91)

Here, dc = 1
i
(∂ − ∂̄).

Some droplets are classically forbidden regions for spectrally defined subspaces.
The extent to which one may construct a spectral problem with this property is
unknown. Since the interface is usually only C1,1, it cannot be the level set (even a
critical level) for a smooth (Morse-Bott) Hamiltonian in general.

10 Appendix on Kähler Analysis

In this Appendix, we give a quick review of the basic notations of Kähler analysis.
First we introduce co-circle bundle X ⊂ L∗ for a positive Hermitian line bundle
(L, h), so that holomorphic sections of Lk for different k can all be represented
in the same space of CR-holomorphic functions on X, H(X) = ⊕kHk(X). The
Hamiltonian flow gt generated by ξH on (M,ω) lifts to a contact flow ĝt generated
by ξ̂H on X.

10.1 Holomorphic Sections in Lk and CR-Holomorphic
Functions on X

Let (L, h) → (M,ω) be a positive Hermitian line bundle, L∗ the dual line bundle.
Let

X := {p ∈ L∗ | ‖p‖h = 1}, π : X → M

be the unit circle bundle over M .
Let eL ∈ �(U,L) be a non-vanishing holomorphic section of L over U , ϕ =

− log ‖eL‖2 and ω = i∂∂̄ϕ. We also have the following trivialization of X:
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U × S1 ∼= X|U , (z; θ) �→ eiθ
e∗L|z
‖e∗L|z‖

. (92)

X has a structure of a contact manifold. Let ρ be a smooth function in a
neighborhood of X in L∗, such that ρ > 0 in the open unit disk bundle, ρ|X = 0
and dρ|X �= 0. Then we have a contact one-form on X

α = −Re(i∂̄ρ)|X, (93)

well-defined up to multiplication by a positive smooth function. We fix a choice of
ρ by

ρ(x) = − log ‖x‖2
h, x ∈ L∗,

then in local trivialization of X (92), we have

α = dθ − 1

2
dcϕ(z). (94)

X is also a strictly pseudoconvex CR manifold. The CR structure on X is defined
as follows: The kernel of α defines a horizontal hyperplane bundle

HX := kerα ⊂ TX, (95)

invariant under J since kerα = ker dρ ∩ ker dcρ. Thus we have a splitting

TX ⊗ C ∼= H 1,0X ⊕H 0,1X ⊕ CR.

A function f : X → C is CR-holomorphic, if df |H 0,1X = 0.
A holomorphic section sk of Lk determines a CR-function ŝk on X by

ŝk(x) := 〈x⊗k, sk〉, x ∈ X ⊂ L∗.

Furthermore ŝk is of degree k under the canonical S1 action rθ on X, ŝk(rθx) =
eikθ ŝk(x). The inner product on L2(M,Lk) is given by

〈s1, s2〉 :=
∫

M

hk(s1(z), s2(z))d VolM(z), d VolM = ωm

m! ,

and inner product on L2(X) is given by

〈f1, f2〉 :=
∫

X

f1(x)f2(x)d VolX(x), d VolX = α

2π
∧ (dα)m

m! .

Thus, sending sk �→ ŝk is an isometry.
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10.2 Szegö Kernel on X

On the circle bundle X over M , we define the orthogonal projection from L2(X)

to the CR-holomorphic subspace H(X) = ⊕̂k≥0Hk(X), and degree-k subspace
Hk(X):

�̂ : L2(X) → H(X), �̂k : L2(X) → Hk(X), �̂ =
∑

k≥0

�̂k.

The Schwarz kernels �̂k(x, y) of �̂k is called the degree-k Szegö kernel, i.e.

(�̂kF )(x) =
∫

X

�̂k(x, y)F (y)d VolX(y), ∀F ∈ L2(X).

If we have an orthonormal basis {ŝk,j }j of Hk(X), then

�̂k(x, y) =
∑

j

ŝk,j (x)ŝk,j (y).

The degree-k kernel can be extracted as the Fourier coefficient of �̂(x, y)

�̂k(x, y) = 1

2π

∫ 2π

0
�̂(rθx, y)e

−ikθ dθ. (96)

We refer to (96) as the semi-classical Bergman kernels.

10.3 Boutet de Monvel-Sjöstrand Parametrix for the Szegö
Kernel

Near the diagonal in X × X, there exists a parametrix due to Boutet de Monvel-
Sjöstrand [6] for the Szegö kernel of the form,

�̂(x, y) =
∫

R+
eσψ̂(x,y)s(x, y, σ )dσ + R̂(x, y), (97)

where ψ̂(x, y) is the almost-CR-analytic extension of ψ̂(x, x) = −ρ(x) =
log ‖x‖2, and s(x, y, σ ) = σmsm(x, y) + σm−1sm−1(x, y) + · · · has a complete
asymptotic expansion. In local trivialization (92),

ψ̂(x, y) = i(θx − θy)+ ψ(z,w)− 1

2
ϕ(z)− 1

2
ϕ(w),

where ψ(z,w) is the almost analytic extension of ϕ(z).
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10.4 Lifting the Hamiltonian Flow to a Contact Flow on Xh

In this section we review the definition of the lifting of a Hamiltonian flow to a
contact flow, following [ZZ17, Section 3.1]. Let H : M → R be a Hamiltonian
function on (M,ω). Let ξH be the Hamiltonian vector field associated with H , such
that dH = ιξH ω. The purpose of this section is to lift ξH to a contact vector field
ξ̂H on X. Let α denote the contact 1-form (94) on X, and R the corresponding Reeb
vector field determined by 〈α,R〉 = 1 and ιRdα = 0. One can check that R = ∂θ .

Definition 10.1

(1) The horizontal lift of ξH is a vector field on X denoted by ξh
H . It is determined by

π∗ξh
H = ξH , 〈α, ξh

H 〉 = 0.

(2) The contact lift of ξH is a vector field on X denoted by ξ̂H . It is determined by

π∗ξ̂H = ξH , L
ξ̂H

α = 0.

Lemma 10.2 The contact lift ξ̂H is given by

ξ̂H = ξh
H −HR.

The Hamiltonian flow on M generated by ξH is denoted by gt

gt : M → M, gt = exp(tξH ).

The contact flow on X generated by ξ̂H is denoted by ĝt

ĝt : X → X, ĝt = exp(t ξ̂H ).

Lemma 10.3 In local trivialization (92), we have a useful formula for the flow, ĝt

has the form (see [ZZ17, Lemma 3.2]):

ĝt (z, θ) = (gt (z), θ +
∫ t

0

1

2
〈dcϕ, ξH 〉(gs(z))ds − tH(z)).

Since ĝt preserves α it preserves the horizontal distribution H(Xh) = kerα, i.e.

Dĝt : H(X)x → H(X)ĝt (x). (98)

It also preserves the vertical (fiber) direction and therefore preserves the splitting
V ⊕ H of TX. Its action in the vertical direction is determined by Lemma 10.3.
When gt is non-holomorphic, ĝt is not CR-holomorphic, i.e. does not preserve the
horizontal complex structure J or the splitting of H(X)⊗C into its ±i eigenspaces.
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11 Appendix

11.1 Appendix on the Airy Function

The Airy function is defined by,

Ai(z) = 1

2πi

∫

L

ev
3/3−zvdv,

where L is any contour that beings at a point at infinity in the sector −π/2 ≤
arg(v) ≤ −π/6 and ends at infinity in the sector π/6 ≤ arg(v) ≤ π/2. In the region

| arg z| ≤ (1 − δ)π in C − {R−} write v = z
1
2 + it

1
2 on the upper half of L and

v = z
1
2 − it

1
2 in the lower half. Then

Ai(z) = #(z)e−
2
3 z

3/2
, with #(z) ∼ z−1/4

∞∑

j=0

aj z
−3j/2, a0 = 1

4
π−3/2. (99)

11.2 Appendix on Laguerre Functions

The Laguerre polynomials Lα
k (x) of degree k and of type α on [0,∞) are defined

by

e−xxαLα
k (x) =

1

k!
dk

dxk
(e−xxk+α). (100)

They are solutions of the Laguerre equation(s),

xy′′ + (α + 1 − x)y(x)′ + ky(x) = 0.

For fixed α they are orthogonal polynomials of L2(R+, e−xxαdx). An orthonor-
mal basis is given by

Lα
k (x) =

(
�(k + 1)

�(k + α + 1)

) 1
2

Lα
k (x).

We will have occasion to use the following generating function:

∞∑

k=0

Lα
k (x)w

k = (1 − w)−α−1e−
w

1−w
x

.
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The most useful integral representation for the Laguerre functions is

e−x/2L(α)
n (x) = (−1)n

∮
e−

x
2 · 1−z

1+z

zn(1 + z)α+1

dz

2πiz
, (101)

where the contour encircles the origin once counterclockwise. Equivalently,

e−x/2L(α)
n (x) = (−1)n

2α

1

2πi

∫ 1+
e−xz/2

(
1 + z

1 − z

)ν/4

(1 − z2)
α−1

2 dz, (102)

where ν = 4n+ α + 2 and the contour encircles z = 1 in the positive direction and
closes at Rez = ∞, |Imz| = constant. In (5.9) of [17] the Laguerre functions are
represented as the oscillatory integrals,

e−νt/2Lα
n(νt) =

(−1)n

2α

1

2πi

∫

L
[1 − z2(u)] α−1

2 exp{ν
(
u3

3
− B2(t)u

)
}du,

(103)
where ν = 4n+ 2α + 2 and B(t) is defined in (5.5) of [17] and L is a branch of the
hyperbolic curve in the right half-plane.
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