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3.1	 �Chronic Pelvic Pain

Chronic pelvic pain (CPP) is well defined by the European Association of Urology 
(EAU) as “chronic or persistent pain perceived in structures associated to the pelvis 
in both men and women. It is frequently correlated with negative behavioral, cogni-
tive, emotional, and sexual effects as well as with suggestive signs of lower urinary 
tract, bowel, pelvic floor, or gynecological dysfunction. For documented nocicep-
tive pain that becomes chronic/persistent over time, pain must have been permanent 
or recurrent for at least 6 months. If the sensitization mechanisms of pain are well 
documented, the pain may be considered chronic, regardless of the time period” [1, 
2]. CPP in the female or male genital zone may be localized to the vulva, vagina, or 
perineum, or may involve intra-abdominal organs, including uterus, ovaries, and 
fallopian tubes (females), or can involve the prostate, epididymis, scrotum, penis, or 
testicles (males) [3] (see Table 3.1).

These conditions lead to a substantial burden on limited health care resources. 
For example, an estimated £158 million are spent every year for the treatment of this 
disorder in the UK National Health Service [4, 5].

Additionally, in Europe, a study undertaken in 2004 by Breivik and colleagues 
[6] found that chronic pain of moderate maximum severe intensity occurs in 19% of 
adult Europeans, extremely disturbing the quality of their lives. There are some 
changes between states but not much spread is seen.

Considering the complexity of CPP, it is very difficult to treat and these lead to 
frustration for both patients and their physicians. Treatment should include 
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Table 3.1  Classification and actual treatment of CPP in men and women

Urological aspect Prostate pain 
syndrome

α-Blockers [152–159]
Antibiotic therapy [160–163]
Anti-inflammatory drugs [164–167]
Opioids [168]
5-α-reductase inhibitors [169–171]
Allopurinol [172–174]
Phytotherapy [175–177]
Pentosan polysulfate [178]
Muscle relaxants [155]
Pregabalin [179, 180]
Botulinum toxin A [181, 182]
Physical treatments [183–189]
Surgical management [190, 191]
Psychological treatment [192, 193]

Bladder pain 
syndrome

Analgesics [168]
Corticosteroids [194–196]
Antiallergics [197–199]
Antibiotics [200]
Immunosuppressants [201–204]
Gabapentin [205, 206]
Pregabalin [207]
Suplatast tosilate [208]
Quercetin [209, 210]
Tanezumab [211]

Genital pain 
syndrome

Conservative treatment [183, 212–215]
Surgery [216]
Microsurgical denervation [216–218]
Epididymectomy [219–224]
Orchiectomy [1, 225]
Vasovasostomy [226, 227]

Urethral pain 
syndrome

Laser therapy [228]
Behavioral therapy [229, 230]

Gynecological 
aspects

Dysmenorrhea NSAIDs [231, 232]

Infection Treatment of infection depends on the causative 
organisms such as chlamydia or gonorrhea, or 
herpes simplex or urinary retention [232–234]

Endometriosis and 
Adenomyosis

NSAIDs [231, 232]
Laparoscopy [235–237]

Organ prolapse Mesh-excisional surgery [238, 239]
Vaginal and vulvar 
pain syndromes

Psychological treatment [240–242]

Gastrointestinal 
aspects

Hemorrhoids Excisional hemorrhoidectomy [243, 244]
Rubber band ligation [243, 244]
Hemorrhoidopexy [245]

Anal fissure Nitrates and calcium channel blockers [246]
Botulinum toxin A injection [247]
Sphincterotomy [248]

(continued)
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multifactorial approaches involving counseling, psychosocial support, medication 
management, physical therapy, and interventional procedures [1].

3.2	 �Neuroinflammation

Neuroinflammation is described as an inflammatory reaction inside the spinal cord 
or brain [7]. Inflammatory events in the peripheral nervous system (PNS) or in the 
central nervous system (CNS) happen at diverse levels from those of other tissues 
and involved different types of cells [8, 9]. In particular, the primary distinction 
relies in the lack of resident dendritic cells in the CNS parenchyma and perivascular 
macrophages and vascular pericytes take over the functions of mature dendritic 
cells in the CNS [10]. Secondary, the stimulation of the innate immune cells of CNS 
parenchyma, such as astrocytes, microglia, and, in some regions, mast cells, may be 
amplified in clinical conditions such as trauma, stroke, neurodegenerative disease, 
or growth of a tumor [11–13]. Furthermore, the extravasation of immune cells and 
molecules towards the inflamed region, indispensable to stimulate complement cas-
cades and maintain the immunity reaction, is crucial for the inflammatory response 
of the total organism.

However, in the CNS, the blood–CNS barrier limited the permeability of 
microvessels, making thus the entire inflammatory response incredibly different and 
difficult. Just stimulated T cells may infiltrate the barrier, but they do not elicit an 
effective response to inflammation equivalent with that observed in peripheral tis-
sues, where dendritic cells are responsible for the adaptive immune reaction [14]. 
Due to these features, it is curious to point out that CNS replies to inflammatory 
events when these exert a direct effect on CNS, for example, in the case of patho-
gens and tissue injury, and when the inflammatory events are so austere that pene-
trating T cells are involved. With these clarifications it is crucial to understand the 
“neuroinflammation” terms that differentiates inflammatory response in the CNS 
from inflammation reaction in different tissues.

In this view the neuroinflammation terms are a reply of the CNS to altered 
homeostasis. Principally, one maybe two cell systems are competent to intermediate 

Table 3.1  (continued)

Proctitis Antidepressants [249]
Irritable bowel 
disease

Fecal microbiota transplantation [250]
Dietary modifications [251]
Exercise [252–254]
Prebiotics and Probiotics [255]
Antispasmodic drugs [256, 257]
Peppermint oil [256, 258]
Antidepressants [259–261]
Drugs acting on opioid receptors [262, 263]

Peripherical 
aspect

Pudendal neuralgia Conservative management [264, 265]
Pudendal nerve block [266, 267]
Pudendal nerve decompression [268–270]
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this response: glia of the CNS, lymphocytes, macrophages of the hematopoietic 
system, and monocytes [15]. The actions encouraged by the neuroinflammations are 
classified as:

•	 Homeostatic: when it involves different events such as vasodilation or the release 
of cytokines and neurotrophic factors

•	 Maladaptive or neurotoxic: when it is characterized by the release of pro-
inflammatory factors or the breakdown of blood–CNS barrier

•	 Anti-inflammatory: when, contrary to what was said above, it involves the release 
of pro-inflammatory cytokines, neurotrophic factors, neurotransmitters, and cell 
adhesion molecules

After injury neuroinflammation is dynamically coordinated by a complex net-
work of regulatory mechanisms, which confine the hypothetically damaging effects 
of persistent inflammation.

In particular, chronic, uncontrolled inflammation is characterized by overexpres-
sion of reactive oxygen species (ROS), cytokines, such as TNF-α and IL-1β, and 
other inflammatory mediators, such as inducible nitric oxide synthase (iNOS).

All these inflammatory molecules are detected following trauma to the CNS, and 
are involved by employment and trafficking of neutrophils and peripheral macro-
phages to the injury place. Anyhow, when the inflammatory event is protracted, and 
the hyperactivation of macrophages is continued, it overpowers the bounds of physi-
ological control and leads to a series of deleterious effects that involve the activation 
of pro-inflammatory signaling pathways, increase oxidative stress, and death of 
nearby neurons that provide to the pathogenesis of chronic pain, such as neuro-
pathic pain or neurodegeneration [16, 17].

Last but not least is the role played by neuroinflammation in animal pain models 
of neuropathic, incisional, inflammatory, and central pain and it is also closely asso-
ciated with a number of comorbidities of chronic pain such as diabetes, sleep and 
anxiety disorders, obesity, and depression [18] and for these reasons targeting 
excessive neuroinflammation can offer new therapeutic approaches for the manage-
ment of chronic pain and related neurological and psychiatric disorders.

3.3	 �Microglia and Astrocytes in Chronic Pain

The involvement of microglia and astrocytes in pain processing has been progres-
sively recognized by many laboratories using varied procedures and animal models 
of temporary or persistent pain. These activations play a crucial role during neuro-
nal recovery after central or peripheral injury [19]. Microglia are macrophage-like 
cells in the CNS that originate from bone marrow-derived monocytes and that 
migrate during perinatal development. They are heterogeneously disseminated 
throughout the CNS. Under physiological situations, microglia are not inactive as 
many researchers initially assumed, but it has been shown that microglia dynami-
cally sense their environment with their ramified processes [20–22]. In particular, 
microglia energetically cooperate with synapses to regulate their organizations and 
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functions in healthy brain [23]. During growth, microglial processes can engulf 
synapses, and synaptic pruning by microglia, which includes the activation of the 
complement system, is necessary for normal brain development [24, 25].

During activation, microglia exhibit morphological changes, such as a changing 
into the amoeboid form, from ramified, to and upregulation of microglial markers 
such as CCR3/CD11b, major histocompatibility complex II [MHC II], or ionized 
calcium-binding adaptor molecule-1 [IBA1] [20, 26–28].

Various studies have shown that microglia plays a critical role in neuropathic 
pain development as well as acute inflammatory pain [29–33]. For instance, it has 
been shown that minocycline, a nonselective microglia inhibitor, reduces inflamma-
tory or postoperative or neuropathic pain. However, its function in decreasing neu-
ropathic pain in the late phase is restricted [32, 34–36].

Astrocytes are the most abundant cells in the CNS and play several active functions 
in acute and chronic neurological diseases such as stroke or ischemia [37]. In contrast 
to microglia and oligodendrocytes, astrocytes formed physically coupled networks 
intermediated by gap junctions, which, among other roles, simplify intercellular trans-
mission of Ca2+ signaling, exchange of cytosolic contents, and display oscillations in 
ion permeability across astrocytic networks. Gap junction communication is mediated 
by homo- and heteromeric associations of hemichannels, such as connexin-43 (Cx43), 
the most prevalent connexin expressed in astrocytes [38]. Although astrocytes are 
naturally immune labeled by glial fibrillary acidic protein (GFAP).

It is important to note that, every astrocyte forms a nonoverlapping territory or 
domain, which all together resemble a lattice framework, looking crystalline in 
nature. On the other hand, the implications of this organization are not fully under-
stood; it becomes lost when astrocytes transition to reactive states [37, 39, 40]. 
Moreover, astrocytes have wide-ranging interactions with both cerebral blood ves-
sels and synapses, and through these connections they control the increase in blood 
flow induced by synaptic activity. The astrocyte-mediated blood flow increased is 
fundamental to the blood-oxygen-level-dependent (BOLD) signal detected by func-
tional magnetic resonance imaging (fMRI) [39]. It is assessed that, in rodents, a 
single astrocyte can enwrap 140,000 synapses and 4–6 neuronal somata, and can 
interact to 300–600 neuronal dendrites [40–42]. During synaptic transmission, 
close contact with neurons and synapses allows astrocytes not only to help and 
nourish neurons but also to control the external chemical environment. The increas-
ing appreciation for active roles of astrocytes has led to the proposal of a “tripartite 
synapse” theory, founded on the facts that glia respond to neuronal activity with an 
increase of their internal Ca2+ concentration and cause the release of chemical trans-
mitters from glia themselves, and glial transmitters through a feedback regulation of 
neuronal activity and synaptic strength [43, 44]. According to this, astrocytic pro-
cesses are active components of synapses, in addition to pre- and postsynaptic com-
ponents [45]. On the other hand, active contribution to synaptic activity remains just 
a possibility because several recent studies have challenged this theory, by demon-
strating that alterations in astrocytic Ca2+ do not modulate synaptic transmission 
[46–48].
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Due to important modifications in the expression of membrane proteins as well 
as neural circuits during growth, it is feasible that the notion of receptor-mediated 
Ca2+ signaling will be extended to include other intracellular signaling pathways as 
a main element defining astrocytic involvement in greater neural function. For 
example, in the young or adult rodent brain, glutamate-dependent neuroglial Ca2+ 
signaling is different [49–51]. Freshly, it has been demonstrated that receptor-
mediated increases in astrocytic Ca2+ can control neural network activity by active 
uptake of extracellular K+ [52]. Considering that the extracellular concentration of 
K+ is an important determinant of the resting membrane potential and thereby of 
neuronal activity, active uptake of K+ represents a simple yet powerful tool for rapid 
variation of neural networks.

Studies using astroglial toxins or astroglial aconitase inhibitor or inhibitors of the 
astroglial enzyme glutamine synthetase in adult animals suggest that astrocytes play 
a key role both for the stimulation and preservation of inflammatory and for neuro-
pathic pain [41, 53–60].

Models of neuropathic pain such as rhizotomy and spinal nerve ligation have 
shown proliferation of spinal cord astrocytes [61, 62]. Conversely, inhibiting astro-
cyte proliferation in the spinal cord was shown to reduce neuropathic pain [61].

3.4	 �Molecular Mediators in Chronic Pain

A main problem with regard to glial pain control is understanding how glial media-
tors are generated and released. In particular, glia produce large molecules such as 
chemokines, cytokines, proteases, and growth factors, as well as small molecules 
like glutamate, prostaglandin E2 (PGE2), ATP, and D-serine. These glial mediators 
can control neuronal and synaptic activity and, most important, pain sensitivity. 
Among the most well-studied glial mediators are pro-inflammatory cytokines such 
as tumor necrosis factor-α (TNF-α) and IL-1β.

These cytokines are upregulated in spinal cord glia after nerve injury, inflamma-
tion, and others, and they are involved in the development and maintenance of 
inflammatory, neuropathic, and cancer pain and morphine tolerance [63–66].

In relation to its well-documented role in modulating peripheral sensitization, 
TNF-α plays a main role in generating central sensitization and persistent pain [67–
73]. IL-1β is induced in astrocytes and microglia after bone cancer, inflammation, 
and nerve injury [55, 67, 74–78]. It was clearly demonstrated that the inhibition of 
spinal and brain IL-1β signaling reduces inflammatory, neuropathic, and cancer 
pain and enhances morphine analgesia [55, 66, 74, 76, 79–81]. Also, chemokines 
are produced by glial cells, particularly in astrocytes and in neurons [82, 83]. In 
primary cultures of astrocytes, TNF-α induced rapid expression of (C-C motif) 
Ligand 2 (CCL2), C-X-C motif chemokine 10 (CXCL10), and C-X-C motif chemo-
kine 1(CXCL1) [84]. Spinal injection of TNF-α-activated astrocytes leads to con-
stant mechanical allodynia through CCL2 release [85]. Additionally, CCL2 
expression is further increased in astrocytes of the medullary dorsal horn and con-
tributes to trigeminal neuropathic pain and in spinal nerve ligation induces CCL2 
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release in spinal astrocytes, and it was observed that intrathecal administration of an 
MCP-1 neutralizing antibody diminished neuropathic pain [84, 86]. In fact, mice 
with CCL2 overexpression in astrocytes display pain hypersensitivity [87].

Moreover, growth factors are well known to be induced in spinal glia by nerve 
injury. In particular, brain-derived neurotrophic factor (BDNF) was upregulated 
during nerve ligation in spinal microglia, via activation of P2X4 and p38 [88, 89]. 
Additionally, spinal injection of ATP-activated microglia is sufficient to stimulate 
mechanical allodynia via releasing BDNF, and, equally, neuropathic pain is 
repressed by spinal blockade of the BDNF receptor TrkB [30]. Furthermore, treat-
ment of microglial cultures with morphine increases BDNF release, which does not 
require l-opioid receptor and TLR [90]. BDNF is also induced in dorsal root gan-
glion (DRG) neurons after nerve injury and can be produced from primary afferents 
in the spinal cord [91, 92]. Unlike BDNF, basic fibroblast growth factor (bFGF or 
FGF-2) is produced in activate astrocytes of the spinal cord in the late phase 
(3 weeks) of nerve injury [56].

Intrathecal infusion of bFGF produces persistent activation of spinal astrocytes 
through the upregulation of P-JNK and GFAP and sustained mechanical allodynia 
and chronic pain [56]. On the other hand, intrathecal administration of a bFGF-
neutralizing antibody reduces established neuropathic pain [93].

After nerve injury, also proteases are upregulated in spinal glia. It is well known 
that, spinal nerve ligation induces matrix metalloprotease-2 (MMP-2) in spinal cord 
astrocytes and DRG and satellite glial cells (SGCs) in the late phase of neuropathic 
pain to maintain neuropathic state, via activation of IL-1β and ERK [94].

Nerve injury additionally stimulates the production of cathepsin S in spinal 
microglia [95] and tissue-type plasminogen activator (tPA) in spinal astrocytes to 
enhance neuropathic pain [96]. A recent study indicated that nerve injury also 
increased the production of thrombospondin-4 (TSP4), an extracellular matrix gly-
coprotein, in spinal cord astrocytes correlated for the development of neuropathic 
pain and for synaptogenesis [97, 98].

To increase and to maintain the pain state, astrocytes produce small molecule 
mediators such as D-serine, ATP, and glutamate [41].

On the other hand, the anti-inflammatory and antinociceptive mediators IL-4, 
IL-10, and TGF-β were produced by glial cells for the recovery and resolution of 
pain [20, 99–102]. Improvement of endogenous production of IL-10 via gene ther-
apy has been demonstrated to produce long-term relief in neuropathic pain. Of 
interest, a possible off-target effect of high doses of siRNAs is to induce IFN-α in 
spinal astrocytes for eliciting antinociceptive effects [103, 104].

3.5	 �Targeting Excessive Inflammation as a Therapy 
for Neuropathic Pain

There is currently strong suggestion from preclinical studies, and more restricted 
evidence in clinical studies, that damage to the nervous system can lead to a mal-
adaptive inflammatory reaction contributing to the generation of persistent pain. 
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There remain various obstacles to making an interpretation of this information into 
patient benefit. For this reason, there are several challenges in the design of appro-
priate clinical trials.

Using pain animal models are most successful at the time of injury, while delayed 
treatment is a more likely clinical scenario. On the other hand, only a subset of patients 
develop neuropathic pain after a lesion and we do not yet have effective predictive 
models. Increasingly evidences suggest that there are multiple pathophysiological 
mechanisms leading to persistent pain after nerve injury. It would be of great benefit 
to use either clinical or molecular biomarkers to individualize treatment, for example, 
targeting excessive inflammation only in those patients where there is evidence of an 
ongoing inflammatory response [105]. Some agents that modulate inflammation are 
already being used in selected groups of patients with neuropathic pain, although 
there is often a lack of evidence from the trial. It is well known that corticosteroids 
suppress pro-inflammatory cytokine expression and cell-mediated immunity. They 
are administered by several routes for the treatment of several neuropathic pain condi-
tions, such as post-herpetic neuralgia or radicular back pain; however, definitive evi-
dence for their efficacy is absent because of the scarcity of placebo-controlled studies 
and, in some cases, trials have shown side effects [106–109].

Another approach, recently studied, involved the use of select cytokines 
inhibitors [110, 111]. One probable trouble is the significant redundancy in the 
action of cytokines. Furthermore, as with corticosteroid suppression of the 
immune system, if these agents are given systemically they may be associated 
with an appreciably amplified risk of infection. The use of pro-resolution agents 
such as resolvins would be one strategy that could use a wide anti-inflammatory 
intervention [112].

The inhibition of microglial function is another novel option. Minocycline clini-
cal trials for the prevention of postoperative intercostal pain, an optimal situation for 
testing this agent, are ongoing (NCT0131 4482).

Propentofylline decreases the production of free radicals and microglia activa-
tion. A randomized controlled trial of this agent did not find efficacy in the treatment 
of post-herpetic neuralgia [62]. Further approaches would be to target key ligand-
gated ion channels expressed in microglia such as P2X4 and P2X7 or downstream 
signaling pathways that drive microglia towards an effector state such as p38 
MAP kinase.

In a small double-blind crossover trial, the p38 mitogen-activated protein kinase 
inhibitor SB-681323 significantly decreased the daily pain score in patients with 
neuropathic pain [8, 113].

3.6	 �Clinical Significance and Future Perspectives

The delivery of anti-inflammatory drugs to the CNS is critical, given the signifi-
cant role of key neuroinflammation in keeping chronic pain. Neuroinflammation 
consequential from neuroglial and neuro-immune interactions not only assists as 
a driving force for chronic pain but is also involved in other neurological and 
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psychiatric diseases such as Alzheimer’s and Parkinson’s disease, multiple sclero-
sis (SM), autism, and others, as well as in cognitive deficits after major surgeries 
[114, 115]. Chronic pain is, in fact, commonly linked with depression, anxiety, 
sleep disorders, and cognitive decline, which are clinical sequelae of particular 
concern to the growing aging population which has increasingly high prevalence 
of chronic pain. Neuroinflammation and astrocyte reactivity is also connected 
with chronic pain in postmortem human spinal cord samples [116]. The develop-
ment of effective new treatments for the prevention and resolution of neuroinflam-
mation and postoperative pain is mandatory. Actually to counteract 
neuroinflammatory processes a new therapeutic approach is represented by the 
use of natural compound. In this chapter we focused our attention on some recent 
evidences that involved the use of aliamides, alone, or in association with antioxi-
dant molecules.

3.7	 �PEA

N-Acylethanolamines are classified as naturally occurring lipidic mediator molecules 
composed of a fatty acid and ethanolamine, collectively namely “fatty acid ethanol-
amines” (FAEs). They are endogenous molecules involved in endogenous protective 
mechanisms, activated in the body as a result of different types of tissue damage 
or stimulation of inflammatory responses and nociceptive fibers. The members of 
FAE family are the endocannabinoid N-arachidonoylethanolamine (anandamide, or 
5Z,8Z,11Z,14Z)-N-(2-hydroxyethyl)icosa-5,8,11,14-tetraenamide) and its congeners 
N-stearoylethanolamine (N-(2-hydroxyethyl)-stearamide), N-oleoylethanolamine 
(N-2-hydroxyethyl- 9(Z)-octadecenamide), and N-palmitoylethanolamine (PEA, or 
palmitoylethanolamide) (N-(2-hydroxyethyl)- hexadecanamide).

PEA and its congeners are formed from N-acylated phosphatidylethanolamine 
(NAPE) by several enzymatic pathways [117], the principal one involving a 
membrane-associated NAPE-phospholipase D which generates the respective 
NAE and phosphatidic acid. This enzyme is able to convert N-palmitoyl-
phosphatidyl-ethanolamine into PEA. In the mammalian brain, NAEs are hydro-
lyzed by: (1) fatty acid amide hydrolase in the endoplasmic reticulum, which 
breaks down NAEs into the corresponding fatty acid and ethanolamine; (2) lyso-
somal NAE-hydrolyzing acid amidase (NAAA) [118]. NAAA is found mainly in 
macrophages, where it hydrolyzes NAEs with less than 18 carbon atoms, i.e., 
PEA, but not N-oleoylethanolamine and N-stearoylethanolamine. In contrast, 
fatty acid amide hydrolase hydrolyzes all three NAEs. PEA is abundant in mam-
mals; there are evidences for the presence of PEA as well as other FAEs in marine 
species and sea urchin ovaries [119]. Biologically, PEA is produced and hydro-
lyzed by microglia [120], inhibits mast cell activation [121], and increases in 
glutamate-treated neocortical neurons ex vivo and in cortex after CNS injury, as 
well as in muscle dialysate from women with chronic neck/shoulder pain [122]. 
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PEA levels are also increased in a mouse model of experimental allergic encepha-
lomyelitis [123].

Mechanistically PEA may be a ligand for peroxisome proliferator activated 
receptor α (PPARα), one of a group of nuclear receptor proteins that function as 
transcription factors regulating the expression of genes. In particular, the α- and 
γ-isoforms of PPAR are associated with pro-inflammatory effects. Moreover, in 
PPARα null mice or blocked by PPARα antagonists the anti-inflammatory, antino-
ciceptive/anti-neuropathic, and neuroprotective effect of PEA were not detected 
[124]. PEA is produced through an “on-demand” synthesis within the lipid bilayer 
where N -phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) 
releases it from its membrane precursor, N-palmitoyl phosphatidylethanolamine.

An “entourage effect” has also been hypothesized to clarify the pharmacological 
actions of PEA, whereby PEA enhances the anti-inflammatory and antinociceptive 
activity of other endogenous compounds by potentiating their affinity for a receptor 
or by inhibiting their metabolic degradation.

Anandamide and its congeners like PEA have in common the transient receptor 
potential vanilloid type 1 (TRPV1) receptor that is activated by noxious heat, low 
pH, and capsaicin. Anandamide itself is a TRPV1 receptor agonist, and PEA 
enhances anandamide stimulation of the human TRPV1 receptor in a cannabinoid 
CB2 receptor antagonist-sensitive fashion—which could be interpreted as PEA act-
ing indirectly by potentiating anandamide actions. Mast cells and microglia report-
edly express TRPV1 receptors [125].

3.8	 �Polydatin

Polydatin (PO), also called piceid, is a traditional Chinese medicine, detected in 
many daily diets food that has wide-ranging pharmacological activities [126, 127]. 
There are four main derivatives of PO in nature, including trans-polydatin, trans-
resveratrol, cis-polydatin, and cis-resveratrol [128].

PO has a range of biological effects, such as the ability to protect lung, brain, 
heart, and intestine against ischemia-reperfusion (I/R) injury, anti-platelet aggrega-
tion, as well as anti-inflammatory, anti-shock, and anti-oxidation effects [129–135]. 
Additionally, two studies done in the last year demonstrated that PO protects against 
acetaminophen-induced hepatotoxicity in mice and suppresses nucleus pulposus 
cell senescence, promoting matrix homeostasis and attenuating intervertebral disc 
degeneration in rats [136, 137].

3.9	 �PEA and Polydatin as Future Treatment of Chronic 
Pelvic Pain

Preclinical studies about the management of chronic pain with the association of 
PEA and PO showed a significant reduction in the inflammatory process and pain 
associated with an experimental rat model of surgically induced endometriosis or 
carrageenan-induced acute inflammation as well as possess the ability to decrease 
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prostate weight, DHT production, inflammation and oxidative stress process and 
apoptosis dysregulation in an experimental model of testosterone induced benign 
prostatic hyperplasia [138–140].

Clinical trials in which PEA/PO was first used was published in 2010 [141, 142], 
suggesting that a combination of micronized PEA/PO was efficient in endometriosis-
related chronic pelvic pain. Indraccolo et al. [142] reported only 4 cases of endome-
triosis treatment with oral micronized PEA/PO (400 mg/40 mg) twice a day for 
3 months, while Cobellis et al. [143] treated 18 patients in one arm of a randomized 
trial with micronized PEA/PO (200 mg/20 mg) orally, three times a day for 3 months. 
Both studies showed an improvement in mean pain visual analog scale (VAS) scores 
for chronic pelvic pain and other endometriotic pains (with improvement in the 
micronized PEA/PO arm versus placebo arm in the randomized trial [143]). The 
above observations were substantiated by results of VAS score improvement in a 
study on 610 patients [144] treated with micronized PEA (600 mg twice daily) for 
chronic pain due to several causes, leading us to speculate that micronized PEA is 
effective also on chronic pelvic pain, even in the presence of endometriosis.

Additionally, another study provides preliminary evidence on the efficacy and 
safety of um-PEA/PO as an add-on treatment to conventional pharmacological regi-
mens in patients suffering from IC/BPS, showing a significantly decreased pain in 
75% of patients [145].

In another set of experiment, Tartaglia and colleagues considered the effective-
ness of an oral combination of PEA and trans-polydatin in the treatment of primary 
dysmenorrhea in healthy adolescents and young women and found a reduction in 
symptoms, exerting a neuroprotective and antinociceptive effect during primary 
dysmenorrhea [146].

Interestingly, all mechanistic studies showing a benefit of active treatment in the 
management of several pathologies failed to exactly clarify the exact mechanism of 
action of the active compound, confirming the complexity of these type of studies 
[147–149]. Whether the PEA/PO effect is centrally related, secondary to mast cell 
stabilization or to modulation of the endocannabinoid system remains to be further 
investigated [150, 151].

In fact, confirmation of these initial findings will require randomized, double-
blind, placebo-controlled clinical trials of sufficient power to assess rates of respon-
dents in subgroups of patients, in order to fully appreciate the efficacy of micronized 
PEA/PO combination as a therapy for endometriosis, together with cohort studies to 
assess long-term effects of such therapy [142].
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