
Specification and Analysis of ABAC
Policies in a Rule-Based Framework

Besik Dundua, Temur Kutsia, Mircea Marin, and Mikheil Rukhaia

Abstract Attribute-based access control (ABAC) is an access control paradigm
whereby access rights to system resources are granted through the use of policies
that are evaluated against the attributes of entities (user, subject, and object), opera-
tions, and the environment relevant to a request. Many ABACmodels, with different
variations, have been proposed and formalized. Since the access control policies that
can be implemented in ABAC have inherent rule-based specifications, it is natural to
adopt a rule-based framework to specify and analyse their properties.We describe the
design and implementation of a software tool implemented inMathematica. Our tool
makes use of the rule-based capabilities of a rule-based package developed by us,
can be used to specify configurations for the foundational model ABACα of ABAC,
and to check safety properties.

Keywords Rules-based programming · Access control policies · Safety analysis

B. Dundua · M. Rukhaia
VIAM, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
e-mail: bdundua@gmail.com

M. Rukhaia
e-mail: mrukhaia@yahoo.com

B. Dundua
FBT, International Black Sea University, Tbilisi, Georgia

T. Kutsia
RISC, Johannes Kepler University Linz, Linz, Austria
e-mail: kutsia@risc.jku.at

M. Marin (B)
West University of Timişoara, Timişoara, Romania
e-mail: mircea.marin@e-uvt.ro

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
G. Jaiani and D. Natroshvili (eds.), Applications of Mathematics and Informatics
in Natural Sciences and Engineering, Springer Proceedings in Mathematics
& Statistics 334, https://doi.org/10.1007/978-3-030-56356-1_7

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56356-1_7&domain=pdf
mailto:bdundua@gmail.com
mailto:mrukhaia@yahoo.com
mailto:kutsia@risc.jku.at
mailto:mircea.marin@e-uvt.ro
https://doi.org/10.1007/978-3-030-56356-1_7

102 B. Dundua et al.

1 Introduction

Access (authorization) control is a fundamental security technique concerned with
determining the allowed activities of legitimate users, andmediating every attempt by
a user to access a resource in a computing environment. Over the years, many access
control models have been developed to address various aspects of computer security,
including: Mandatory Access Control (MAC) [12], Discretionary Access Control
(DAC) [13], and Role-based Access Control (RBAC) [4]. Attribute-Based Access
Control (ABAC) has received significant attention recently, although the concept has
existed for more than twenty years. According to NIST [5]

ABAC is an access control method where subject requests to perform operations on objects
are granted or denied based on assigned attributes of the subject, assigned attributes of the
object, environment conditions, and a set of policies that are specified in terms of those
attributes and conditions.

ABAC is considered a next generation authorization paradigm which eliminates
many limitations of the previous access control paradigms. It is dynamic: access
control permissions are determined when the access control request is made; it is
fine-grained: attributes canbe added, to formdetailed rules for access control policies;
it has support for contextual/environmental conditions; and last but not least: it is
flexible, and scalable. In fact, the access control policies that can be implemented
in ABAC are limited only by the computational language and the richness of the
available attributes. In particular, ABAC policies can be easily configured to simulate
DAC, MAC and RBAC.

Until recently, there were no widely accepted formal models for ABAC. The
foundational operational models ABACα and ABACβ , and the administrative model
GURA were proposed recently [6] as models with “just sufficient” features that can
be used to easily and naturally configure the traditional access control models and
some advanced features and extensions of RBAC.

The (efficient) implementation and analysis of these formal operational models of
ABAC is of great importance. We argue that a rule-based framework is adequate to
achieve these goals. For this purpose, we designed and implemented a software tool
that allows to specify configurations of ABACα policies, and to analyse them. The
tool is implemented in Mathematica [15] and is based on the capabilities of ρLog [8,
9], a rule-based system implemented by us on top of the rule-based capabilities
of Mathematica. We highlight the main features that make our rule-based system
adequate to specify and analyze the configurations of the access control policies of
ABACα .

The rest of this chapter is structured as follows. Section 2 contains a brief descrip-
tion of ρLog and the foundational model ABACα . In Sect. 3 we describe the rule-
based tool designed by us for the specification and analysis of ABACα . In Sect. 4 we
draw some conclusions and directions for future work.

Specification and Analysis of ABAC Policies in a Rule-Based Framework 103

2 Preliminaries

2.1 The ρLog System

ρLog is a system for rule-based programming with strategies and built-in support
for constraint logic programming (CLP). This is a programming style similar to
Constraint Logic Programming, where programs consist of rules which are used
to answer queries using a calculus based on a variation of SLDNF-resolution [2]
combined with constraint solving. There are, however, some significant differences.

The specification language has an alphabetA consisting of the following pairwise
disjoint sets of symbols:

• VT: term variables, denoted by x, y, z, . . .,
• VS: hedge variables, denoted by x, y, z, . . .,
• VF: function variables, denoted by X,Y, Z , . . .,
• VC: context variables, denoted by X ,Y ,Y , . . .,
• F : unranked function symbols, denoted by f, g, h,

and distinguishes the following syntactic categories:

t :: = x | f (s̃) | X (s̃) | X(t) Term

t̃ :: = t1, . . . , tn (n ≥ 0) Sequence of terms

s:: = t | x Hedge element

s̃:: = s1, . . . , sn (n ≥ 0) Hedge

C :: = ◦ | f (s̃1,C, s̃2) | X (s̃1,C, s̃2) | X(C) Context

Hence, hedges are sequences of hedge elements, hedge variables are not terms,
term sequences do not contain hedge variables, contexts (which are not terms either)
contain a single occurrence of the hole. We do not distinguish between a singleton
hedge and its sole element.

We denote the set of terms by T (F ,V), hedges byH (F ,V), and contexts by
C (F ,V). Ground (i.e., variable-free) subsets of these sets are denoted by T (F),
H (F), and C (F), respectively.

We make a couple of conventions to improve readability. We put parentheses
around hedges, writing, e.g., (f (a), x, b) instead of f (a), x, b. The empty hedge is
written as (). The termsa() and X () are abbreviated asa and X , respectively,when it is
guaranteed that terms and symbols are not confused. For hedges s̃ = (s1, . . . , sn) and
s̃ ′ = (s ′

1, . . . , s
′
m), the notation (s̃, s̃ ′) stands for the hedge (s1, . . . , sn, s ′

1, . . . , s
′
m).

We use s̃ and r̃ for arbitrary hedges, and t̃ for sequences of terms.
We will also need anonymous variables for each variable category. They are

variables without name, well-known in declarative programming. We write just _ for
an anonymous term or function variable, and __ for an anonymous hedge or context
variable. The set of anonymous variables is denoted by VAn.

104 B. Dundua et al.

A syntactic expression (or, just an expression) is an element of the set F ∪
V ∪ T (F ,V) ∪ H (F ,V) ∪ C (F ,V). We denote expressions by E . Atoms are
reducibility formulas t ::t1 =⇒ t2 with the intended reading “t1 reduces to t2 with
strategy t .” The negation of this atom is written as t ::t1 \=⇒t2.

The rules of ρLog are of the form

f (s̃)::t ′ =⇒ t ′′ ← cond1, . . . , condn . (1)

with the intended reading “ f (s̃)::t ′ =⇒ t ′′ holds whenever cond1 and … and condn
hold”, and provide declarative semantics for reducibility formulas. f is the identifier
of the strategy and s̃ is its argument: If s̃ is (), the strategy is atomic, otherwise it is
parametric. We view (1) as a partial definition of f .

Some strategies with frequent applications are predefined:

• id::s =⇒ t holds if s = t .
• elem::l =⇒ e holds if e is an element of list l.
• subset::l =⇒ s holds if s is subset of set l.
• fmap(t):: f (s1, . . . , sn) =⇒ f (t1, . . . , tn) holds if t ::si =⇒ ti for 1 ≤ i ≤ n.

Another way to specify strategies is by using the predefined combinators:

• t1 ◦ t2::t ′ =⇒ t ′′ holds if t1::t ′ =⇒ u and t2::u =⇒ t ′′ hold for some u.
• t1|t2::t ′ =⇒ t ′′ holds if either t1::t ′ =⇒ t ′′ or t2::t ′ =⇒ t ′′ holds.
• t∗::t ′ =⇒ t ′′ holds if either t ′ = t ′′ or there exist u1, . . . , un such that u1 = t ′,
un = t ′′ and t ::ui =⇒ ui+1 for all 1 ≤ i < n.

• first_one(t1, . . . , tn)::t ′ =⇒ t ′′ holds if there exists 1 ≤ i ≤ n such that
ti ::t ′ =⇒ t ′′ and t j ::t ′ \=⇒t ′′ hold for 1 ≤ j < i .

• nf(t)::t ′ =⇒ t ′′ holds if both t∗::t ′ =⇒ t ′′ and t ::t ′′ \=⇒_ hold.

ρLog can answer queries of the form cond1 ∧ . . . ∧ condm where the variables are
(implicitly) existentially quantified. The constraints condi in queries and programs
are of three kinds: reducibility atoms t ::t ′ =⇒ t ′′, irreducibility literals t ::t ′ \=⇒t ′′;
and (3) boolean formulas that can be properly interpreted by the constraint solving
component of ρLog. To instruct our system to compute one (resp. all) substitution(s)
for the variables in the query cond1 ∧ . . . ∧ condn for which it holds, we can submit
requests of the form

Request(cond1 ∧ . . . ∧ condn) or RequestAll(cond1 ∧ . . . ∧ condn)

Another use of ρLog is to compute one or all reducts of a term with respect to a
strategy. The request

ApplyRule(t, t ′)

instructs ρLog to compute one (if any) reduct of t ′ with respect to strategy t , that
is, a term t ′′ such that formula t ::t ′ =⇒ t ′′ holds. ρLog reports “no solution
found.” if there is no reduct of t ′ with t . ρLog can also be instructed to find all
reducts of a term with respect to a strategy, with

Specification and Analysis of ABAC Policies in a Rule-Based Framework 105

ApplyRuleList(t, t ′)

To illustrate, consider the rule-based solutions to the following problems:

1. To eliminate all duplicates of elements in a list L, we submit the request
ApplyRule(nf(elim2),L) where strategy elim2 is defined by the rule

elim2::{x, x, y, x, z} =⇒ {x, x, y, z} ← .

For example, ApplyRule(nf(elim2),{1, 2, 7, 2, 3, 1}) yields answer {1, 2,
7, 3}.

2. To find out if (or which) e is an element of a list L , we can submit the request
Request(elem::L =⇒ x) where strategy elim is defined by the rule

elem::{__, x,__} =⇒ x ← .

For example, Request(elem::{1, 2, 3} =⇒ x) can return the answer {x �→ 1},
and RequestAll(elem::{1, 2, 3} =⇒ x) returns {{x �→ 1}, {x �→ 2}, {x �→ 3}}.

3. To find all function symbols from a list L that occur in an expression E , we can
submit the request ApplyRuleList(getF(L), E), where the parametric strategy
getF is defined by the rule

getF(y)::__(F(__)) =⇒ F ← (elem::y =⇒ F).

For example, {f,g} is the answer to the query

ApplyRuleList(getF({f,g,u,v,w}),f(g(a(),h(),b())))

Sequence and context variables permit matching to descend to arbitrary depth and
width in a tree-like term. The downside of using these kinds of variables in full
generality is infinitary unification, and thus the impossibility to find a sound and
complete calculus for ρLog. To avoid this problem, we adopted a natural syntactic
restriction, called determinism [8], that ensures that all inference steps of our calculus
can be performed by computing matchers instead of most general unifiers. The good
news is that matching with sequence and context variables is finitary [3].

2.2 The Operational Model of ABACα

ABACα is a formal model of ABAC proposed by X. Jin in his Ph.D. thesis [6] with
a minimal set of features to configure the well-known access control models DAC,
MAC, and RBAC. The core components of this operational model are: : users (U),
subjects (S), objects (O), user attributes (UA), subject attributes (SA), object attributes
(OA), permissions (P), authorization policy, creation and modification policy, and
policy languages (Fig. 1).

Users represent human beings who create and modify subjects, and access
resources through subjects. Subjects represent processes created by users to per-
form some actions in the system. Objects represent system entities that should be

106 B. Dundua et al.

user attrs. subject attrs. object attrs.

U S OAuthorization

P

1. Authorization policy

3.1. Constraint on object attrs.
at creation time

3.2. Constraint on object attrs.
at modification time

2.1. Constraint on subject attrs.
at creation time

2.2. Constraint on subject attrs.
at modification time

Fig. 1 The structure of ABACα model (adapted from [7])

protected. Users, subjects and objects are mutually disjoint in ABACα , and are col-
lectively called entities. Each user, subject, object is associated with a finite set
of user attributes (UA), subject attributes (SA) and object attributes (OA) respec-
tively. Every attribute att has a type, scope, and range of possible values. The sets
of attributes specific to each kind of entity, together with their corresponding type,
scope, and range, are specified in a configuration type of ABACα: there will be one
configuration type for DAC, and others for MAC, RBAC, etc.

In ABACα , the type of an attribute is either atomic or set. The scope of each
attribute is a finite set of values SCOPE(at). If at is of atomic type, then at can
assume any value from SCOPE(at), otherwise it can assume any subset of values
from SCOPE(at). Formally, this means that the range Range(at) of possible values
of an attribute at is either SCOPE(at) if at is atomic or 2SCOPE(at) if at is set, where
each SCOPE(at) is either an unordered, a totally ordered, or a partially ordered finite
set. There are six policies that control the operational behaviour of an ABACα-based
system, and each of them involves the interaction of two entities:

• authorization policies,which control the permissions that a user can hold on objects
and exercise through subjects. Every configuration specifies a finite set P of per-
missions, and an authorization policy for every p ∈ P ,

• policies to control the creation of a subject by a user, or of an object by a subject,
• policies for attribute value assignment: to a subject by the user who created it; or
to an object by a subject,

• policies to control subject deletion by its creator.

All these policies grant/deny the corresponding operation based on the result of a
boolean function which depends on the old and new attribute values of the interacting
entities. According to [1, 6], each of these six boolean functions can be specified
as a boolean formula in an instance of a language scheme called Common Policy
Language (CPL). In CPL, the syntax of any formula φ is of the form

Specification and Analysis of ABAC Policies in a Rule-Based Framework 107

φ ::= φ ∧ φ | φ ∨ φ | (φ) | ¬φ

| ∃x ∈ set.φ | ∀x ∈ set.φ | set setcompare set
| atomic ∈ set | atomic atomiccompare atomic

setcompare ::= ⊂|⊆|�
atomiccompare ::= <|=|≤

where set is a finite set of values, and atomic are concrete values.

3 A Rule-Based Framework for ABACα

Our rule-based tool for the specification and analysis of ABACα is built on top of the
rule-based programming capabilities of ρLog. The user can specify (1) any particular
ABACα configuration via the commandsDeclareCfgType andDeclareConfiguration,
and (2) any specific policies compatible with the operational model of ABACα by
declaring in ρLog defining rules for the parametric strategies

ConstrS(typeId) ConstrO(typeId)

ConstrModS(typeId) ConstrModO(typeId) Auth(typeId, p)

createS(cId) createO(cId) modSA(cId) modOA(cId)

Afterwards, we can check whether it is safe to assume that a subject s can never
obtain permission p on an object o in anABACα-configuration cIdwith the command
CheckSafety[cId, s, o, p].

The meaning of these commands and parametric strategies is described in the
remainder of this section.

Every entity (user, subject, or object) is completely described by its attribute val-
ues. Therefore, we chose to represent every entity as a term K (at1(v1), . . . , atm(vm))

where K ∈ {U,S,O} indicates the kind of entity, and every subterm ati (vi) indicates
that attribute ati has value vi . Every user has a unique identifier given by the value of
its attribute id. Subjects are created by users and retain the identifier of their creator
in the value of subject attribute id. From now on, we will assume the existence of a
function UId(e) which returns the value of attribute id for every entity e ∈ U ∪ S.

Apart from this, the attribute names, their types and scope are characteristic to a
particular configuration of ABACα .

With our tool we can specify a configuration type for every configuration of
interest, with the command

DeclareCfgType(typeId,
{UA→ {uAt1, . . . , uAtm},SA→ {s At1, . . . , s Atn},OA→ {oAt1, . . . , oAtp},
Scope→ {at1 → {s I d1, τ1}, . . . , atr → {s I dr , τr }}})

This declaration specifies a configuration type with identifier typeId, where

108 B. Dundua et al.

• {uAt1, . . . , uAtm} is the set of user attributes; {s At1, …, s Atn} is the set of subject
attributes, and {oAt1, …, oAtp} is the set of object attributes;

• the scope of every attribute ati is the set bound to identifier s I di in a particular
configuration (see below), and its type is τi ∈ {elem,subset}, where elem
stands for atomic and subset for set.

A configuration is an instance of a configuration type, which specifies (1) the config-
uration type which it instantiates; (2) the sets of values for the identifiers s I di from
the specification of the configuration type, and (3) the initial sets U , S, and O of
entities (users, subjects, objects) in the configuration. In our system, the declaration
of a concrete configuration of ABACα has the syntax

DeclareConfiguration(cId,
{CfgType→typeId,Users→{uId1→u1, . . . , uIdm→um},
Range→{UId→{uId1, . . . , uIdm},

s I d2 → SCOPE(at2), . . . , s I dr → SCOPE(atr)},
Subjects→{s1, . . . , sn},Objects→{o1, . . . , oq}})

Its side effect is to instantiate some globally visible entries:
CfgType(cId) with typeId,
Users(cId) with the set {u1, …, um} of terms for users,
every User(cId,uIdi) with the term ui ,
Subjects(cId) with the set {s1, . . . , sn} of terms for subjects, and
Objects(cId) with the set {o1, . . . , oq} of terms for objects.

To illustrate, consider the mandatory access control model (MAC). Users and
subjects have a clearance attribute of type elem, whose value is a number from
a finite set of integers L = {1, 2, . . . , N }, which indicates the security level of the
corresponding entity. Objects have a sensitivity attribute of type elem whose
value is also from L , and represents the sensitivity degree of the information in that
object. When read and write are the only permissions on objects, we can assume the
set of permissions P to be {read,write}.

A configuration type for MAC can be defined as follows:

DeclareCfgType(MAC,
{UA→ {id,clearance},SA→ {id,clearance},OA→ {sensitivity},
Scope→{id →{uId,elem},clearance →{level,elem},

sensitivity →{level,elem}}})

A particular MAC configuration can be defined by

DeclareConfiguration(MAC-Cfg01,
{CfgType→MAC,
Users→ {u1 → U(id(u),clearance(3)),

u2 → U(id(u2),clearance(4))},
Range→{uId→ {u1,u2},level→ {1, 2, 3, 4, 5}},
Subjects→ {S(id(u1),clearance(3)),

S(id(u2),clearance(2))},
Objects→ {O(sensitivity(1)),O(sensitivity(4))}})

Specification and Analysis of ABAC Policies in a Rule-Based Framework 109

3.1 Rules for the Policies of the Configuration Points

The constraint solving component ofρLog allows to specify and interpret correctly all
formulas written in instances of the CPL scheme. Therefore, for every configuration
type typeId, we can use ρLog to define parametric strategies for the policies of
interaction between system entities:

• Auser u can create a subject s if ConstrS(typeId)::{u, s} =⇒ true holds,
where the defining rule of strategy ConstrS is of the form

ConstrS(typeId)::{U(s̃1),S(s̃2)}=⇒ true ← φ1.

• A subject s can create an object o if ConstrO(typeId)::{s, o} =⇒ true
holds, where the defining rule of strategy ConstrO is of the form

ConstrO(typeId)::{S(s̃1),O(s̃2)}=⇒ true ← φ2.

• A user u can modify a subject s to become a subject s ′ if the reducibility formula
ConstrModS(typeId)::{u, s, s ′} =⇒ true holds, where the defining rule
of strategy ConstrModS is of the form

ConstrModS(typeId)::{U(s̃1),S(s̃2),S(s̃3)}=⇒ true ← φ3.

• Asubject s canmodify an object o to become an object o′ if the reducibility formula
ConstrModO(typeId)::{s, o, o′} =⇒ true holds, where the defining rule
of strategy ConstrModO is of the form

ConstrModO(typeId)::{S(s̃1),O(s̃2),O(s̃3)}=⇒ true ← φ4.

• A subject s is authorized to hold permissionp ∈ P on an object o if the reducibility
formula Auth(typeId,p)::{s, o} =⇒ true holds, where the defining rule
of strategy Auth is of the form

Auth(x, z)::{S(s̃1),O(s̃2)}=⇒ true ← φ5,p.

In these rule-based specifications, φi and φ5,p are formulas written in the instance of
the CPL scheme for the values of the attributes of the interacting entities mentioned
in the left-hand side of the corresponding rule.

For example, the mandatory access control (MAC) configuration type with read
and write permissions can have the following rule-based specifications

ConstrS(MAC)::{U(x,clearance(y)),S(x,clearance(z))}
=⇒ true ← (z ≤ y).

ConstrO(MAC)::{S(_,clearance(x)),O(sensitivity(y))}
=⇒ true ← (x ≤ y).

ConstrModS(MAC)::{_,_,_}=⇒ false ←.
ConstrModO(MAC)::{_,_,_}=⇒ false ←.
Auth(MAC,read)::{S(_,clearance(x)),O(sensitivity(y))}

=⇒ true ← (y ≤ x).
Auth(MAC,write)::{S(_,clearance(x)),O(sensitivity(y))}

=⇒ true ← (x ≤ y).

These policies do not allow to modify the attribute values of subjects and objects.

110 B. Dundua et al.

3.2 Rules for the Operational Model

3.2.1 Subject and Object Creation

These are nondeterministic operations: at any time, a user can create any subject
whose attribute values satisfy the CPL-formula for the subject creation policy; simi-
larly, a subject can create any object whose attribute values satisfy the CPL-formula
for the object creation policy. These operations are implemented in two steps:

1. We use the auxiliary functions sSeed(cId) to compute the term
S(s At1(SCOPE(s At1), τ1), . . . , s Atn(SCOPE(s Atn), τn))
and oSeed(cId) which computes the term
O(oAt1(SCOPE(oAt1), τ1), . . . , oAtp(SCOPE(oAtp), τp)),
where τi is the corresponding attribute type.
For example, for the MAC configuration MAC-Cfg01 illustrated before, the
terms computed by sSeed(MAC-Cfg01) and oSeed(MAC-Cfg01) are
S(id({u1,u2},elem),clearance({1,2,3,4,5},elem)) and
O(sensitivity({1,2,3,4,5},elem)).

2. We use the terms computed by sSeed(cId) and oSeed(cId) as “seeds” to create
any entity allowed by the creation policies. In rule-based thinking, an entity
(subject or object) K (att1(v1), . . . , attk(vk)) can be generated from the “seed”
term K (att1(scope1, τ1), . . . , attk(scopek, τk)) if and only if the reducibility
formulas scopei →τi vi hold. If we define the auxiliary strategy

setAt::Fat (yscope, xtype) =⇒ Fat (x) ← (xtype::yscope =⇒ x).

then the set of entities that can be generated from a seed term st is the set of all e
for which the reducibility formula fmap(setAt)::st =⇒ e holds. Therefore,
for a given ABACα configuration cId:

(1) a user u can create a subject s if createS(cId)::u =⇒ s holds, where
the defining rule of the parametric strategy createS is

createS(xcId)::xu =⇒ xs ←(fmap(setAt)::sSeed(xcId) =⇒ xs),
(id::UId(xu) =⇒ UId(xs)),
(ConstrS(CfgType(xcId))::{xu, xs} =⇒true).

(2) a subject s can create an object o if createO(cId)::s =⇒ o holds, where
the defining rule of the parametric strategy createO is

createO(xcId)::xs =⇒ xo ←(fmap(setAt)::oSeed(xcId) =⇒ xo),
(id::UId(xu) =⇒ UId(xs)),
(ConstrO(CfgType(xcId))::{xs, xo} =⇒true).

Specification and Analysis of ABAC Policies in a Rule-Based Framework 111

3.2.2 Modification of Entity Attributes

Users can try to modify the attributes of subjects created by them, and subjects can
try to modify the attributes of objects. A simple way to model these operations for
an ABACα configuration cId of type typeId is as follows:

(1) Modification of the attribute values of a subject s by a useru can be viewed as gen-
erating a subject s ′ for which ConstrModS(typeId)::{u, s, s ′} =⇒true
holds. The outcome of changing the attribute values of s is s ′. We define

modSA(xcId)::{xu, xs} =⇒ x ′
s ← (fmap(setAt::sSeed(xcId) =⇒ x ′

s),
(id::UId(xu) =⇒ UId(xs)),(id::UId(xs) =⇒ UId(x ′

s)),
(ConstrModS(CfgType(xcId)::{xu, xs, x ′

s} =⇒true).

and note that modSA(cId)::s =⇒ s ′ holds if and only if the user u who created
subject s is allowed to modify the attribute values of s to become s ′.

(2) Modification of the attribute values of an object o by a subject s can be viewed
as generating an object o′ for which ConstrModO(typeId)::{s, o, o′} =⇒
true holds. The outcome of changing the attribute values of o is o′. We define

modOA(xcId)::{xs, xo} =⇒ x ′
o ← (fmap(setAt::oSeed(xcId) =⇒ x ′

o),
(ConstrModO(CfgType(xcId)::{xs, xo, x ′

o} =⇒true).

3.2.3 State Transitions

A system with an ABACα access control model can be viewed as a state transition
systemwhose states are triples {U, S, O} consisting of the existing users (U), subjects
(S), andobjects (O), andwhose transitions correspond to the six operations controlled
by the policies of ABACα .

Except for authorized access, the other five operations from the functional spec-
ification of ABACα determine state transitions. Their rule-based specifications are:

createSubj(xcId)::{{x, xu, y}, xS, xO} =⇒
{{x, xu, y}, xS ∪ {xs}, xO} ← (createS(xcId)::xu =⇒ xs), xs /∈ xS.

deleteSubj(_)::{{x1, xu, x2}, {y1, xs, y2}, xO} =⇒
{{x1, xu, x2}, {y1, y2}, xO} ← (id::UId(xu) =⇒ UId(xs)).

createObj(xcId)::{xU , {x, xs, y}, xO} =⇒
{xU , {x, xs, y}, xO ∪ {xo}} ← (createO(xcId)::xs =⇒ xo), xo /∈ xO .

modifySubj(xcId)::{xU , {x, xs, y}, xO} =⇒
{xU , {x, x ′

s, y}, xO} ← (modSA(xcId)::{xU , xs} =⇒ x ′
s).

modifyObj(xcId)::{xU , {x1, xs, x2}, {y1, xo, y2}} =⇒
{xU , {x1, xs, x2}, {y1, x ′

o, y2}} ← (modOA(xcId)::{xs, xo} =⇒ x ′
o).

In the state transitions defined by these rules, the entities matched by xu, xs, xo are
those who interact during rule application.

112 B. Dundua et al.

3.3 Safety Analysis

Safety is a fundamental problem for any protection system. The safety problem for
ABACα asks whether a subject s can obtain permission p for an object o. Recently,
it has been shown that this problem is decidable [1], by identifying a state-matching
reduction from ABACα to the pre-authorization usage control model with finite
attribute domains (UCONfinite

preA). The result follows from the facts that (1) the safety
problem of UCONfinite

preA is decidable [11], and (2) state-matching reductions, like the
one defined in [1], preserve security properties including safety. It provides an indirect
way to implement an algorithm to decide the safety problem of ABACα . In [10] we
noticed that this indirection can be avoided: a direct analysis of the operational model
of ABACα revealed the main reasons when a configuration is unsafe. In this section
we recall the theoretical results reported in [10], and illustrate how to use ρLog to turn
our theoretical findings into rule-based specifications that can be directly executed.
We claim that our approach is a natural and effective way to solve the safety problem
for any configuration of ABACα .

3.3.1 Properties of ABACα Derivations

We start from the state transition view of the operational model described in Sect.
3.2.3. If e ∈ S ∪ O then a derivation Π : St = {U, S, O} =⇒ . . . =⇒ {U, S′, O ′}
whose transition steps do not delete e may modify the attributes values of e. To
analyze the possible changes of the attribute values of e in ABACα , we introduce the
auxiliary notion of descendant of e in Π : descΠ(e) is the entity e′ ∈ S′ ∪ O ′ which
represents e after performing the operations op1, . . . , opn in this order. Another
useful auxiliary notion is DescSt (e) = {descΠ(e) | Π : St =⇒∗ {U, S′, O ′}}.

With these preparations, the safety problem for ABACα is

Given an ABACα configuration cId with initial state St = {U, S, O}, a subject
s ∈ S, an object o ∈ O , and a permission p ∈ P ,

Decide if there is a derivation Π : St =⇒ . . . =⇒ {U, S′, O ′} whose transitions
steps do not delete the descendants of s, such that subject descΠ(s) can
be authorized to obtain permission p on object descΠ(o). Formally, this
means that the formula Auth(typeId, p)::{descΠ(s), descΠ(o)} =⇒
true holds, where typeId is the configuration type of cId.

In this state transition system, objects can only participate at changing their own
attributes. Therefore, objects from O − {o} do not affect the truth value of the for-
mula Auth(typeId, p)::{descΠ(s), descΠ(o)} =⇒ true. Hence it is harmless
to assume that the initial state is {U, S, {o}) and Π has no object creation steps.
Also, if {U, S, O} =⇒ {U, S′, O ′} then {U, S ∪ S′′, O ′} =⇒ {U, S ∪ S′′, O ′} holds
too, because we can choose the same participating entities to perform the transition.
Therefore, we can assume that Π has no subject deletion steps.

Thus, we can assume without loss of generality that the safety problem is

Specification and Analysis of ABAC Policies in a Rule-Based Framework 113

Given anABACα configurationcIdwith initial state St0 = {U, S, {o}}with s ∈ S,
and a permission p ∈ P ,

Decide UNSAFE if there is a derivation Π : St →∗ (U, S′, {o′}) without subject
deletion and object creation steps, such that the reducibility formula

Auth(CfgType(cId), p)::{descΠ(s), o′} =⇒ true

holds, and SAFE otherwise.

By [10, Theorem 1], the answer is UNSAFE if and only if there exist s ′ ∈
DescSt (s) and o′ ∈ DescSt (o) such that Auth(typeId, p)::{s ′, o′} =⇒ true
holds. In ABACα , all attributes assume values from finite sets specified for cId,
therefore DescSt (s) and DescSt (o) are finite sets that can be computed. Based on
this observation, we designed a safety decision algorithm that computes incremen-
tally the finite sets DescSt (s) and DescSt (o), and interleaves their computation with
testing if Auth(typeId, p)::{s ′, o′} =⇒ true holds for some s ′ ∈ DescSt (s) and
o′ ∈ DescSt (o).

3.3.2 A Rule-Based Safety Decision Algorithm

Suppose u is the creator of s. If u /∈ U then DescSt (s) = {s}, otherwise DescSt (s) =⋃∞
k=1 Sk where S1 = {s} and

Sn+1 =
{

s ′′ /∈
n⋃

k=1

Sk | ∃s ′ ∈
n⋃

k=1

Sk .(ModSA(cId)::{u, s ′} =⇒ s ′′)

}

if n ≥ 1.

Because DescSt (s) is finite, DescSt (s) = ⋃n0
k=1 Sk where n0 = min{n ∈ N | Sn =

∅}. The partition {Sk | 1 ≤ k ≤ n0} of DescSt (s) can be computed iteratively:
S1 = {s}, and Sk+1 = ApplyRuleList(nextS(cId,

⋃k
i=1 Si), {U, Sk}) where the

parametric strategy nextS is defined by the rule

nextS(xcId , xS)::{{__, xu,__}, {__, xs,__}} =⇒
x ′
s ← (modSA(xcId)::{xu, xs} =⇒ x ′

s), x
′
s /∈ xS .

We can speed up the safety decision algorithm by interleaving the computation of
every Sk with testing if Auth(CfgType(cId), p)::{s ′, o} =⇒ true holds for some
s ′ ∈ Sk . We can do this test by checking if ApplyRule(auth?(p,cId), {Sk, {o}})
yields true, where the parametric strategy auth? is defined by the rule

auth?(xp, xcId)::{{__, xs,__}, {__, xo,__}} =⇒ true ←
Auth(CfgType(xcId , xp))::{xs, xo} =⇒true).

As soon as any of these tests yields true, the decision algorithm stops by return-
ing UNSAFE. Otherwise, we end up computing the set DescSt (s) and will start
computing DescSt (o). The computation of this set can proceed in two steps:

114 B. Dundua et al.

1. First, we compute the set Sall of all subjects that can show up in the system:
Sall = ⋃∞

k=1 Sk where S1 = S, S2 is the set of all subjects that can be created by
users in U , and

Sn+1 =
{

s ′′ /∈
n⋃

k=1

Sk | ∃u ∈ U.∃s ′ ∈
n⋃

k=1

Sk .(ModSA(cId)::{u, s ′} =⇒ s ′′)

}

If n ≥ 2. Because Sall is finite, Sall = ⋃n1
k=1 Sk where n1 = min{n ≥ 2 | ∧Sn =

∅}. The partition {Sk | 1 ≤ k ≤ n1} of Sall can be computed incrementally:

S2 =
⋃

u∈U
ApplyRuleList(createS(cId), u)

Sn+1 = ApplyRuleList(nextS(cId,

n⋃

k=1

Sk), {U, Sk}) if n ≥ 2.

2. Descst (o) = ⋃∞
k=1 Ok where O1 = {o} and

On+1 =
⎧
⎨

⎩
o′′ /∈

n⋃

k=1

ok | ∃s′ ∈ Sall .∃o′ ∈
n⋃

k=1

Ok .(ModOA(cId)::{s′, o′} =⇒ o′′)

⎫
⎬

⎭

if n ≥ 1. Since Descst (o) is finite, Descst (o) = ⋃n2
k=1 Ok where n2 = min{n ∈

N | On = ∅}.
With ρLog, it is easy to compute incrementally the partition {Ok | 1 ≤ k ≤ n2} of
Descst (o): for every k ≥ 1 we have

Ok+1 = ApplyRuleList(nextO(cId),

k⋃

i=1

Oi), {Sall , Ok})

where the parametric strategy nextO is defined by the rule

nextS(xcId , xO)::{{__, xs,__}, {__, xo,__}} =⇒
x ′
o ← (modOA(xcId)::{xs, xo} =⇒ x ′

o), x
′
o /∈ xO .

Here, again, we can speed up the safety decision algorithm by interleaving the com-
putation of every Ok with testing if Auth(CfgType(cId), p)::{s ′, o′} =⇒ true
holds for some s ′ ∈ Sall and o′ ∈ Ok . We can do this test by checking if the request
ApplyRule(auth?(p,cId), Sall , Ok) yields true. As soon as this happens, the
algorithm stops by returning UNSAFE. Otherwise, we stop and return SAFE.

This decision algorithm is implemented in the method CheckSafety
[cId, s, o, p], which returns SAFE if, in configuration cIt, subject s can not get per-
mission p on object o, and UNSAFE otherwise.

For example, the command

Specification and Analysis of ABAC Policies in a Rule-Based Framework 115

CheckSafety(MAC-Cfg01,S(id(u1),clearance(3)),

O(sensitivity(1)),write)

returns SAFE because the clearance of subject S(id(u1),clearance(3)) is
too high to grant write permission to object O(sensitivity(1)).

4 Conclusion

State-matching reduction [14] is a powerful technique to prove security properties
(including safety) of state transition systems. This indirect way to define an algorithm
for the safety problem of ABACα configurations makes hard to observe some impor-
tant properties that can be used to improve its performance. The direct rule-based
analysis performed by us has the following advantages:

1. It provides a unified framework to specify policies for ABACα configurations, the
operational model, execute them, and verify some security properties, including
safety.

2. It allowed us to detect some useful properties of the transition model, that sim-
plified significantly the design of our decision algorithm for safety. In partic-
ular, it allowed us to reduce the safety problem of to a simpler one: check
if Auth(CfgType(cId), p)::{s ′, o′} =⇒ true holds for some s ′ ∈ DescSt (s)
and o′ ∈ DescSt (o). We solved it by identifying rule-based algorithms that inter-
leave detection of unsafety with the incremental computation of DescSt (s) and
DescSt (o).

3. With ρLog, we turned such a rule-based specification into executable code and
obtained a practical tool to check the safety of any configuration of interest. The
rule-based specification is parametric with respect to the configuration types of
ABACα . Therefore, whenever we want to check that, for a given configuration, a
subject s never gets permission p on an object o, it is enough to do the following:

a. specify the configuration and its type, as indicated in Sect. 3.
b. call the method CheckSafety(cfgId, s, o, p) which runs our safety-check

algorithm. It returns SAFE if s never gets permission p on o, and UNSAFE
otherwise.

There are many other rule-based systems with support for strategic programming,
that can be used to formalize state transition systems and study their properties. But
ρLog has some outstanding capabilities for this purpose:

1. It has four kinds of variables which give the user flexible control to select the
components of the term which is transformed. The code is usually quite short and
declaratively clear, as witnessed by the rule-based specification of ABACα .

2. It inherits from theWolfram language ofMathematica a rich variety of constraints
that can be used in requests and the conditional parts of rules. In particular, the

116 B. Dundua et al.

boolean formulas that constrain the operations of ABACα have direct translations
as constraints in the CLP component of ρLog.

3. It can generate human-readable traces of the reductions that yield an answer. For
the safety problems of ABACα , this capability could be used to produce scenarios
that indicate the sequence of transitions that yield a state where a subject s can
exercise a permission p on an object o. This capability could become a useful
tool to detect security holes of ABACα configurations, and to fix them. We leave
the extension of our a tool with this capability as a direction of future work.

Acknowledgements This work was supported by Shota Rustaveli National Science Foundation of
Georgia under the grant no. FR17_439 and by the Austrian Science Fund (FWF) under the project
P 28789-N32.

References

1. Ahmed, T., Sandhu, R.: Safety of ABACα is decidable. In: Yan, Z., Molva, R., Mazurczyk,
W., Kantola, R. (eds.) Network and System Security, pp. 257–272. Springer International
Publishing, New York (2017)

2. Apt, K.R., van Emden, M.H.: Contributions to the theory of logic programming. JACM 29(3),
841–862 (1982)

3. Buchberger, B., Campbell, J.A. (eds.): Proceedings of Artificial Intelligence and Symbolic
Computation (AISC 2004). LNCS, vol. 3249. Springer, Berlin (2004)

4. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed NIST stan-
dard for role-based access control. ACM Trans. Inf. Syst. Secur. (TISSEC) 4(3), 224–274
(2001)

5. Hu, V., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K., Miller, R., Scarfone, K.: Guide to
attribute based access control (ABAC) definition and considerations. NIST Special Publication
800-162 (2014)

6. Jin, X.: Attribute-based access control models and implementation in cloud infrastructure as a
service. Ph.D. thesis, University of Texas at San Antonio (2014)

7. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model covering
DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J. (eds.) Data
and Applications Security and Privacy XXVI. LNCS, vol. 7371, pp. 41–55. Springer, Berlin
(2012)

8. Marin, M., Kutsia, T.: Foundations of the rule-based system ρLog. J. Appl. Non-Class. Logics
16(1–2), 151–168 (2006)

9. Marin, M., Piroi, F.: Rule-based programming with mathematica. In: Proceedings of Interna-
tional Mathematica Symposium (IMS 2004), Banff, Canada (2004)

10. Marin, M., Kutsia, T., Dundua, B.: A rule-based approach to the decidability of ABACα .
In: Proceedings of the 24th ACM Symposium on Access Control Models and Technologies,
SACMAT 2019, New York, NY, USA, pp. 173–178. Association for Computing Machinery
(2019)

11. Rajkumar, P.V., Sandhu, R.: Safety decidability for pre-authorization usage control with iden-
tifier attribute domains. IEEE Trans. Dependable Secur. Comput. 1 (2018)

12. Sandhu, R.S.: Lattice-based access control models. Computer 26(11), 9–19 (1993)
13. Sandhu, R.S., Samarati, P.: Access control: principle and practice. IEEE Commun. Mag. 32(9),

40–48 (1994)
14. Tripunitara, M.V., Li, N.: A theory for comparing the expressive power of access control

models. J. Comput. Secur. 15(2), 231–272 (2007)
15. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003)

	 Specification and Analysis of ABAC Policies in a Rule-Based Framework
	1 Introduction
	2 Preliminaries
	2.1 The ρLog System
	2.2 The Operational Model of ABACα

	3 A Rule-Based Framework for ABACα
	3.1 Rules for the Policies of the Configuration Points
	3.2 Rules for the Operational Model
	3.3 Safety Analysis

	4 Conclusion
	References

