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Abstract We give a short survey concerning sub-Gaussian random elements in a
Banach space and prove a statement about the induced operator of a bounded random
element in a Hilbert space.

1 Sub-Gaussian and Related Random Variables

The sub-Gaussian random variables were explicitly defined by Kahane in [1] (see
also [2]). They were further studied by Buldygin and Kozachenko in [3, 4] (see also
[5, Chap. 3] and [6]).

A real valued random variable ξ given on a probability space (Ω,A,P) is called
sub-Gaussian if there exists a ≥ 0 such that

E etξ ≤ e
1
2 t2a2

, for every t ∈ R .

To a random variable ξ let us associate a quantity τ(ξ) ∈ [0,+∞] defined by the
equality:

τ(ξ) = inf{a ≥ 0 : E etξ ≤ e
1
2 t2a2

for every t ∈ R },

and call it the Gaussian standard of ξ [3] (it is called the Gaussian deviation (“écart
de Gauss”) of ξ in [1]).
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Lemma 1 ([1, 4]; see also, [6, Proposition 2.1 and Corollary 2.1]) For a real valued
random variable ξ the following statements are equivalent:

(i) ξ is sub-Gaussian.
(i i) τ (ξ) < +∞ and E ξ = 0 .

(i i i) There is λ > 0 such that E exp(λξ 2) < +∞ and E ξ = 0.
Moreover, if (i) holds, then

E eλξ 2 ≤ 1
√
1 − 2λτ 2(ξ)

< ∞ f orevery λ ∈
[
0,

1

2τ 2(ξ)

[
,

and

(E |ξ |p)
1
p ≤ βpτ(ξ) f orevery p ∈]0,∞[ ,

where βp = 1 if p ∈]0, 2] and βp = 2
1
p (

p
e )

1
2 if p ∈]2,∞[.

In particular we have

E ξ = 0 and E ξ 2 ≤ τ 2(ξ) .

Remark 1 An interesting application of implication (i) =⇒ (i i i) of Lemma 1 is the
following observation: if ξ is sub-Gaussian random variable with infinitely divisible
distribution, then ξ is (possibly degenerate) Gaussian. This can be derived e.g. from
[7, Theorem 2], or from [8, Theorem 1(a)] or (more directly) from [9, Theorem 2]
which asserts in particular that if for a random variable ξ with infinitely divisible
distribution we have

E exp(α|ξ | ln(|ξ | + 1)) < ∞ for every α > 0 ,

then it is Gaussian.

A sub-Gaussian random variable ξ with τ(ξ) ≤ 1 is called in [2, p. 67] subnormal.
For a centered Gaussian random variable ξ clearly τ 2(ξ) = E ξ 2.

A random variable ξ is called strictly sub-Gaussian if it is sub-Gaussian and
τ 2(ξ) = E ξ 2.

Let SG(Ω) be the set of all sub-Gaussian random variables ξ : Ω → R. It is
known that SG(Ω) is a vector space with respect to the natural point-wise opera-
tions, the functional τ(·) is a norm on SG(Ω) (provided the random variables which
coincide a.s. are identified) and, moreover, (SG(Ω), τ (·)) is a Banach space [3, 4].
It follows, that if ξ1 and ξ2 are centered Gaussian random variables (not necessarily
jointly Gaussian) then the random variable ξ1 + ξ2 is sub-Gaussian, but in general
ξ1 + ξ2 may not be strictly sub-Gaussian (even if E ξ1ξ2 = 0) [6, Example 3.7 (d)].

From Lemma 1 we can conclude that for every p ∈]0,+∞[ we have

SG(Ω) ⊂ L p(Ω)

and the norm of the inclusion mapping ≤ βp.
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2 Sub-Gaussian Random Elements

Below X will be a real normed space with the dual space X∗.
We recall that a mapping η : Ω → X is a random element (in X ) if

〈x∗, η〉 := x∗ ◦ η

is a random variable for every x∗ ∈ X∗.
A random element η : Ω → X is calledGaussian if for every x∗ ∈ X∗ the random

variable 〈x∗, η〉 is Gaussian.
Such a definition of a Gaussian random element goes back to Kolmogorov [10]

and Fréchet [11]. For a Gaussian random element we have the following important
integrability result (Vakhania [12] for X = lp, 1 ≤ p < +∞; Fernique [13], Landau-
Shepp [14], Skorokhod [15] in general; see [16, Corollary 2 of Proposition V.5.5, p.
329–330] for a proof):

Theorem 1 Let η be a separably valued Gaussian random element in a normed
space X. Then there is λ > 0 such that E exp(λ‖η‖2) < +∞.

A randomelement η : Ω → X is calledweakly sub-Gaussian if for every x∗ ∈ X∗
the random variable 〈x∗, η〉 is sub-Gaussian (cf. [6, 17]).

In [17] it was shown that an analogue of Theorem 1 may fail for weakly sub-
Gaussian random elements (see also [6, Theorem 4.2 and Remark 4.1]).

Let us call a random element η : Ω → X strictly sub-Gaussian if for every x∗ ∈
X∗ the random variable 〈x∗, η〉 is strictly sub-Gaussian.
Definition 1 ([18]) A random element η : Ω → X is called sub-Gaussian, if there
is a finite constant Cη ≥ 0 such that

τ(〈x∗, η〉) ≤ Cη

(
E |〈x∗, η〉|2) 1

2 < +∞ for every x∗ ∈ X∗ .

We call a random element η : Ω → X satisfying conditions of Definition 1 sub-
Gaussian in Fukuda’s sense, or F-sub-Gaussian.

An analogue of Theorem 1 remains true for F-sub-Gaussian random elements
with values in X = L p with 1 ≤ p < +∞ [18, Theorem 4.3]; however, it may fail
for X = c0 (S. Kwapien, personal communication).

In [18] (motivating by [19, Theorem 15 (p. 120)], where a similar concept is
implicitly used) a random element η : Ω → X is called γ -sub-Gaussian if there
exists a centered Gaussian random element ζ in X such that

E e〈x∗, η〉 ≤ E e〈x∗, ζ 〉 for every x∗ ∈ X∗ .

We call a γ -sub-Gaussian random element sub-Gaussian in Talagrand’s sense
or T -sub-Gaussian. In [20, Remark 4] the definition of a γ -sub-Gaussian random
element in a Hilbert space is attributed to [19].
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An analogue of Theorem 1 remains true for γ -sub-Gaussian random elements in
a Banach space [18, Theorem 3.4].

If X = R then the notion of a T -sub-Gaussian, as well as the notion of a F-
sub-Gaussian random element coincides with the notion of a sub-Gaussian random
variable and the notion of a F-sub-Gaussian random variable ξ with the constant
Cξ = 1 coincides with the notion of a strictly sub-Gaussian random variable.

If X is a finite-dimensional Banach space then weakly sub-Gaussian random
elements are γ -sub-Gaussian (see [6, Proposition 4.4]). In every infinite-dimensional
Banach space there exists a weakly sub-Gaussian random element, which is not γ -
sub-Gaussian (see [6, Theorem 4.4]).

In what follows H will denote an infinite-dimensional separable Hilbert space
with the inner product 〈·, ·〉.
Definition 2 ([20, Definition 2.1]) Let e := {en, n ∈ N} be an orthonormal basis of
H . A random element η with values in H is subgaussian with respect to e if the
following conditions are satisfied:

(1) For every x ∈ H the real valued random variable 〈x, η〉 is sub-Gaussian (i.e.
η is weakly sub-Gaussian),

(2)
∑∞

n=1 τ 2(〈en, η〉) < ∞.

Using the terminology of the definition we have obtained (see [21, Theorem
1.6]) the following characterization of weakly sub-Gaussian random elements in a
separable Hilbert space which are γ -sub-Gaussian.

Theorem 2 For a random element η with values in H the following statements are
equivalent:

(i) η is γ -sub-Gaussian.
(i i) For every orthonormal basis e := {en, n ∈ N} of H the random element η is

subgaussian with respect to e.

For a weakly sub-Gaussian random element η in a Banach space X let

Tη : X∗ → SG(Ω)

be the induced operator, which sends each x∗ ∈ X∗ to the element 〈x∗, η〉 ∈ SG(Ω)

(the continuity and other related properties of induced operators can be seen in [6,
Proposition 4.2]).

Theorem 2 in [21] is derived from the following general result (the definitions of
a 2-summing operator and a type 2 space can be seen e.g.. in [16]):

Theorem 3 For a weakly sub-Gaussian random element η with values in a Banach
space X consider the assertions:

(i) η is γ -sub-Gaussian;
(i i) Tη : X∗ → SG(Ω) is a 2-summing operator.
Then (i) ⇒ (i i). The implication (i i) ⇒ (i) is true when X is a reflexive type 2

space.
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The following statement, which is a refinement of a similar assertion contained
in [5, Chap. 3], shows in particular that the implication (i) =⇒ (i i) of Theorem 2
may fail for a bounded symmetrically distributed elementary random element η.

Proposition 1 Let e := {en, n ∈ N} be an orthonormal basis of H. Then there exists
a symmetric bounded random element η : Ω → H with a countable range, such that

(a)
∑∞

i=1 ‖〈η, ei 〉‖2L p
< ∞ for every p ∈]0,∞[;

(b)
∑∞

i=1 (τ (〈η, ei 〉))2 = ∞ and hence η is not subgaussian with respect to e.

Proof (a). Denote

In = {2n − 1, . . . , 2n+1 − 2}, n = 1, 2, . . .

and
bn = 2−n

∑

k∈In

ek, n = 1, 2, . . . .

Observe that ∞∑

k=1

‖bk‖2 =
∞∑

n=1

∑

k∈In

‖bk‖2 =
∞∑

n=1

2−2n · 2n = 1 .

Thus we can define a probability measure P on Ω := N and a random element
η : Ω → H by setting:

P({2n − 1}) = P({2n}) = 1

2
‖bn‖2, n = 1, 2, . . .

and

η(2n − 1) = − bn

‖bn‖ , η(2n) = bn

‖bn‖ , n = 1, 2, . . . .

Fix now p ∈]0,∞[ and i ∈ N. Clearly,

E|〈η, ei 〉|p =
∞∑

n=1

⎛

⎝
∑

k∈In

〈ek, ei 〉
⎞

⎠ 1

2n(1+p/2)
.

Hence

E|〈η, ei 〉|p = 1

2n(1+p/2)
for every i ∈ In, n = 1, 2, . . .

and so ∞∑

i=1

‖Tηei‖2L p
= (

E|〈η, ei 〉|p
)2/p =

∞∑

n=1

∑

k∈In

1

2n(1+2/p)
=
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∞∑

n=1

2n

2n(1+2/p)
=

∞∑

n=1

1

22n/p
< ∞ .

(b). To a (real-valued) random variable ξ let us associate a quantity ϑ2(ξ) ∈
[0,+∞] defined by the equality:

ϑ2(ξ) = sup
m∈N

(
E |ξ |2m

)1/2m

√
m

.

According to [6, Proposition 2.9(b)] we have:

ϑ2(ξ) ≤ 2√
e
τ(ξ) for every ξ ∈ SG(Ω).

So, it is sufficient to show that

∞∑

i=1

(
ϑ2(Tηei )

)2 = ∞ . (2.1)

We have for every n ∈ N and i ∈ In:

ϑ2(〈η, ei 〉) = sup
m

(
E |〈η, ei 〉|2m

)1/2m

√
m

= sup
m

1

2n(1/2+1/2m)
√

m
≥

1

2n(1/2+1/2n)
√

n
.

Hence

∞∑

i=1

ϑ2
2 (〈η, ei 〉) =

∞∑

n=1

∑

i∈In

ϑ2
2 (〈η, ei 〉) ≥

∞∑

n=1

2n

(
1

2n(1/2+1/2n)
√

n

)2

=

1

2

∞∑

n=1

1

n
= ∞

and (2.1) is proved.

The authors do not know whether the following conjecture related with Proposi-
tion 1 is true.

Conjecture 1 There exists a symmetric bounded random element η : Ω → H such
that

(a)
∑∞

i=1 ‖〈η, ei 〉‖2L p
< ∞ for every p ∈]0,∞[ and for every orthonormal basis

e := {en, n ∈ N} of H ;
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(b)
∑∞

i=1 (τ (〈η, ei 〉))2 = ∞ for some orthonormal basis e := {en, n ∈ N} of H .
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