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Editorial Preface

The Fourth International Conference on Applications of Mathematics and
Informatics in Natural Sciences and Engineering (AMINSE 2019) took place in the
Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State
University (Tbilisi, Georgia) on September 23–26, 2019.

The aim of AMINSE 2019 was to bring together scientists to discuss their
research in all the aspects of Mathematics, Informatics, and their Applications in
Natural Sciences and Engineering. According to this premise, all the lecturers were
invited personally for their active interest in their relative field. There were 80
participants from 10 countries. The main topics of the conference were: Partial
Differential Equations, Operator Theory, Numerical Analysis, Mechanics of
Deformable Solids, Fluid Mechanics and Computer Science. The program
included wo opening lectures, “Recent Developments on Numerical Solutions for
Hyperbolic Systems of Conservation Laws” presented by Rolf Jeltsch
(Switzerland) and “Progress in Mathematical and Numerical Modelling of
Piezoelectric Smart Structures” by Ayech Benjeddou (France). At the conference,
15 plenary lectures, 15 talks, were presented. The Satellite TICMI (Tbilisi
International Center of Mathematics and Informatis) Advanced Courses on
“Mathematical Models of Piezoelectric Solids and Related Problems” was held
parallel to the conference.

This volume includes 14 peer-reviewed papers presented at the conference. The
contributions are related to several important directions of Applied Mathematics,
Integral Equations, Variational Methods, Continuum Mechanics, Numerical
Analysis, Mathematical Modeling in Social Sciences, Financial Mathematics,
Theory of Probability and Statistics, Li algebra, and Mathematical Logic.

We are grateful to the organizations and individuals who helped orchestrate the
conference. The conference was organized by VIAM, Faculty of Exact and Natural
Sciences of TSU, Georgian Mechanical Union, Georgian National Committee of
Theoretical and Applied Mechanics, and Tbilisi International Center of
Mathematics and Informatics. The conference was sponsored by the Shota
Rustaveli National Science Foundation. The scientific organization was entrusted to
the international committee consisting of George Jaiani (chair, Georgia), Gia
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Avalishvili (Georgia), Nikoloz Avazashvili (Georgia), Ayech Benjeddou (France),
Lucian Beznea (Romania), Ramaz Botchorishvili (Georgia), Natalia Chinchaladze
(Georgia), Roland Duduchava (Georgia), Maribel Fernandez (UK), ALice
Fialowski (Hungary), Temur Jangveladze (Georgia), Rolf Jeltsch (Switzerland),
Alexsander Kharazishvili (Georgia), Omar Kikvidze (Georgia), Gela Kipiani
(Georgia), Vakhtang Kokilashvili (Georgia), Vakhtang Kvaratskhelia (Georgia),
Teimuraz Kutsia (Austria), Mircea Marin (Romania), Bernadette Miara (France),
Wolfgang H. Müller (Germany), Elizbar Nadaraya (Georgia), David Natroshvili
(Georgia), Jemal Rogava (Georgia), Tamaz Vashakmadze (Georgia). The local
arrangements of the conference were in the hands of the committee consisting of
Natalia Chinchaladze (Chair) Mariam Beriashvili (Scientific Secretary), Besik
Dundua, Bakur Gulua, Mikheil Rukhaia, and Manana Tevdoradze. We would like
to thank all of them for their hard and efficient work.

In the present book, the contributions of the participants have been ordered
alphabetically by the names of the presenting authors. The responsibility for the
contents of the papers lies solely with each author.

The editors wish to express their thanks to Natalia Chinchaladze for spending
time, patience, and for her valuable help in editing and layouting the book.

The editors are indebted to Springer-Verlag for their courteous and effective
production of these proceedings.

Tbilisi, Georgia George Jaiani
June 2020 David Natroshvili
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On Variational Methods of Investigation
of Mathematical Problems for
Thermoelastic Piezoelectric Solids

Gia Avalishvili and Mariam Avalishvili

Abstract In this paper we present the results of investigation of the boundary and
initial-boundary value problems corresponding to mathematical models of ther-
moelastic piezoelectric solids with regard to magnetic field. We consider three-
dimensional static and dynamic models of general inhomogeneous anisotropic ther-
moelastic piezoelectric solids withmixed boundary conditions, when on certain parts
of the boundary density of surface force, and normal components of the electric dis-
placement, magnetic induction, and heat flux are given, and on the remaining parts
of the boundary mechanical displacement, temperature, electric and magnetic poten-
tials vanish.We obtain variational formulations of the boundary and initial-boundary
value problems in suitable function spaces and present the existence, uniqueness and
continuous dependence results.

Keywords Thermoelastic piezoelectric solids · Boundary and initial-boundary
value problems · Existence and uniqueness of solution · Variational methods
Sobolev spaces · Vector-valued distributions

1 Introduction

The important integral parts of modern engineering constructions are smart struc-
tures, which involve actuators and sensors, and microprocessors that analyze the
responses from the sensors and use actuators to alter construction response. After
discovery of piezoelectric effect by the Curie brothers [14], Jacques and Pierre, the
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applications of piezoelectric materials was gradually increasing, and currently piezo-
electrics are the most popular smart materials. Therefore, it is important to construct
and investigate accurate mathematical models that can predict the coupled response
ofmaterials that exhibit not only thermo-elastic, but also electro-magnetic properties.

Mathematical phenomenological theory relating the phenomena of piezoelectric-
ity and pyroelectricity to crystal symmetry first was constructed by Voigt [34]. He
determined which of crystal classes can be piezoelectric and rigorously defined the
macroscopic relationships among parameters in crystal solids. Later on, Tiersten [31]
obtained variational principle for the equations of linear piezoelectricity (with the
quasielectrostatic field approximation to Maxwells equations) and studied problems
of vibration of piezoelectric plates. The three-dimensional equations of the linear
thermopiezoelectricity were considered by Mindlin [23] and two-dimensional equa-
tions for plates were derived on the basis of integral energy equation and approxima-
tion by polynomials with respect to the variable of plate thickness. Nowacki [26, 27]
obtained uniqueness and reciprocity theorems for thermo-piezoelectricity. Dhaliwal
and Wang [16] proved a uniqueness theorem for linear three-dimensional thermo-
piezoelectricity without restrictions on the coupling constant between temperature
and electric field, and positive definiteness assumption imposed on the elasticity ten-
sor, which were used in [27]. Li [21] considered the coupling effects between elastic,
electric, magnetic and thermal fields, and generalized the uniqueness result obtained
in [16] and reciprocity theorem of Nowacki [26], which further were strengthened by
Aouadi [4] and the results were proved without positive definiteness assumption on
the thermal conductivity tensor,whichwas used in [21].Avariational principle for the
three-dimensional equations of piezoelectromagnetism and the appropriate boundary
conditions for elastic dielectric crystals surrounded by a vacuum or perfect conductor
are obtained by Lee [20]. On the basis of the principle of virtual work and Friedrich’s
transformation variational principles for the discontinuous thermopiezoelectric fields
were obtained by Altay and Dökmeci [3]. By introducing the semi-inverse method
He [17] obtained a generalized variational principle for the linear magneto-electro-
elasticity. On the basis of the Hellinger-Reissner mixed variational principle for
three-dimensional model of elastic solids, the modified Hellinger-Reissner mixed
variational principle for magnetoelectroelastic solids was obtained by Qing et al.
[30]. The analogue of the Reissners mixed variational theorem for thermopiezoelec-
tric multilayered composites was obtained by Benjeddou and Andrianarison [12].
The existence, uniqueness and continuous dependence on given data of a solution
of an initial-boundary value problem with the mixed boundary conditions for the
mechanical displacement, mechanical stress, electric potential and electric displace-
ment corresponding to the three-dimensionalmodel of an anisotropic inhomogeneous
piezoelectric material with quasi-static equations for the electric field were proved
in Sobolev spaces by Akamatsu and Nakamura [1]. The well-posedness results in
specific function spaces for the three-dimensional model of thermo-piezoelectricity
with inhomogeneousmaterial parameters in the cases of homogeneous pureDirichlet
or Neumann type boundary conditions given on the entire boundary were obtained
by Mulholland et al. [24]. The well-posedness of the initial value problem, when
the electric and magnetic fields, and the mechanical displacement are vanished at
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the initial time, for the dynamic equations of magneto-electro-elasticity, wherein the
Maxwells equations are involved, has been investigated byYakhno [36].Applying the
potential method and theory of pseudodifferential equations, Natroshvili [25] stud-
ied static and pseudo-oscillation problems with basic, mixed and crack-type bound-
ary conditions for homogeneous anisotropic thermo-electro-magneto-elastic solids.
The static and dynamic three-dimensional problems for inhomogeneous anisotropic
thermo-electro-magneto-elastic solids with general mixed boundary conditions were
investigated by Avalishvili et al. [8, 9]. The hierarchies of static and dynamic two-
dimensional models for plates with variable thickness and dynamic one-dimensional
models for bars with variable cross-section made of thermo-electro-magneto-elastic
material were constructed and investigated byAvalishvili andAvalishvili [5–7]. Hier-
archical two-dimensional models for cusped prismatic shells were studied by Jaiani
[18], and one-dimensionalmodels for cusped bars consisting of piezoelectricmaterial
were investigated by Jaiani [19], Chinchaladze [13]. Mathematical models of elastic
solids that demonstrate coupling behavior between various physical, in particular,
electric, magnetic and thermal, fields were investigated and methods of solutions of
the corresponding problems were developed by many researchers (see [2, 10, 11,
28, 29, 32, 33] and the references given therein).

In the present paper, we study the well-posedness of the linear dynamic and static
three-dimensional models for piezoelectric thermoelastic body made of anisotropic
inhomogeneous material with mixed boundary conditions applying variational
approach.We present new existence, uniqueness, and continuous dependence results
in suitable Sobolev spaces and the classical spaces of smooth functions.

In Sect. 2, we consider dynamic three-dimensional model for inhomogeneous
anisotropic piezoelectric thermoelastic body and the differential formulation of the
corresponding initial-boundary value problem, with general mixed boundary condi-
tions, where, on certain parts of the boundary, surface force and components of the
electric displacement, magnetic induction, and heat flux along the outward normal
vector are given, and, on the remaining parts, the mechanical displacement, elec-
tric and magnetic potentials, and temperature vanish. We obtain integral relations
that are equivalent to the original differential equations together with the boundary
conditions in the space of twice continuously differentiable functions and, on the
basis of them, we give the variational formulation of the three-dimensional initial-
boundary problem in suitable spaces of vector-valued distributions with respect to
the time variable with values in Sobolev spaces. We formulate theorem regarding the
existence and uniqueness, and continuous dependence of a solution on given data
in suitable function spaces, and energy equality, when the parameters characterizing
thermo-elastic and piezo-magnetic properties are Lipschitz continuous or essentially
bounded, and the given functions on the boundary of spatial domain and at the initial
time satisfy corresponding compatibility conditions.

In Sect. 3, we study static three-dimensional model for inhomogeneous aniso-
tropic piezoelectric thermoelastic body and from the differential formulation of the
corresponding boundary value problem, with general mixed boundary conditions,
on the basis of suitable integral relations, we obtain variational formulation that is
equivalent to the original differential equations together with the boundary condi-
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tions in the space of twice continuously differentiable functions.We formulate results
regarding the existence and uniqueness, and continuous dependence of a solution on
given data in various Sobolev spaces, and applying them we present result regard-
ing the existence and uniqueness of the classical twice continuously differentiable
solution.

2 Dynamic Three-Dimensional Problem

In this paper, for each real s ≥ 0, 0 ≤ š ≤ 1, we denote by Hs(D) and Hš(Γ̌ ) the
Sobolev spaces of real-valued functions based on H 0(D) = L2(D) and H 0(Γ̌ ) =
L2(Γ̌ ), respectively, where D ⊂ R

n , n ∈ N, is a bounded Lipschitz domain and Γ̌ is
an element of a Lipschitz dissection of the boundary ∂D [22]. We denote the corre-
sponding spaces of vector-valued functions byHs(D) = [Hs(D)]3, s ≥ 0,Hš(Γ̌ ) =
[Hš(Γ̌ )]3,0 ≤ š ≤ 1,Ls1(Γ̌ ) = [Ls1(Γ̌ )]3, s1 ≥ 1andby trΓ̌ : H 1(D) → H 1/2(Γ̌ ),
trΓ̌ : H1(D) → H1/2(Γ̌ ) the trace operators. For anymeasurable set D ⊂ R

n ,n ∈ N,
(., .)L2(D) and (., .)L2(D) are the classical scalar products inL2(D) and L2(D), respec-
tively.We denote byCr,1(D), r ∈ N ∪ {0}, the space of function on Dwith Lipschitz-
continuous derivatives up to the order r , where D ⊂ R

n , n ∈ N, is a bounded Lips-
chitz domain.D(D)denotes the set of infinitely differentiable functionswith compact
support in D. Along with Lipschitz domains we use the notion of Cr,l domain [22],
for r ∈ N ∪ {0}, 0 ≤ l ≤ 1, where the boundary of the domain is locally defined by
functions whose derivatives up to the r -th order are Hölder-continuous with expo-
nent l. Note that a Lipschitz domain is a C0,1 domain. For bounded Cs,1, s ≥ 0,
domain D ⊂ R

n , n ∈ N, we use the Sobolev space Hš(Γ̌ ), 0 ≤ š ≤ s + 1 [22],
of real-valued functions based on H 0(Γ̌ ) = L2(Γ̌ ), where Γ̌ is an element of a
Lipschitz dissection of the boundary ∂D. We denote the corresponding space of
vector-valued functions byHš(Γ̌ ) = [Hš(Γ̌ )]3, 0 ≤ š ≤ s + 1. For a Banach space
X , we denote by C([0, T ]; X) the space of continuous vector-functions on [0, T ]
with values in X . Ls1(0, T ; X), 1 ≤ s1 ≤ ∞, is the space of such measurable vector-
functions g : (0, T ) → X so that ‖g‖X ∈ Ls1(0, T ) and the generalized derivative of
g is denoted by g′ = dg/dt ∈ D′(0, T ; X) [15]. If g ∈ L1(0, T ; X) and X is a space
of functions of variable x ∈ D ⊂ R

n , n ∈ N, then we identify g with a function
g(x, t), and g(t) denotes the function g(t) : x → g(x, t), for almost all t ∈ (0, T ).
We identify the distributional derivative dg/dt with the derivative ∂g/∂t of g in the
space D′(D × (0, T )) of distributions on D × (0, T ).

Let us consider a thermoelastic piezoelectric body with initial configuration Ω ,
which consists of a general inhomogeneous anisotropic thermo-electro-magneto-
elastic material and it is charachterized by the following consistently spatially depen-
dent parameters:

• the elasticity tensor ci jpq(x), x ∈ Ω (i, j, p, q = 1, 2, 3), which satisfies the fol-
lowing symmetry and positive definiteness conditions:
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ci jpq(x) = cpqi j (x) = c jipq(x), ∀i, j, p, q = 1, 2, 3, (1)
3∑

i, j,p,q=1

ci jpq(x)ξpqξi j ≥ αc

3∑

i, j=1

(ξi j )
2, αc = const > 0, (2)

for all ξi j ∈ R, ξi j = ξ j i , i, j = 1, 2, 3;
• the piezoelectric and piezomagnetic coefficients εpi j (x) and bpi j (x), x ∈ Ω

(i, j, p = 1, 2, 3), which satisfy the following symmetry conditions:

εpi j (x) = εpji (x), bpi j (x) = bpji (x), i, j, p = 1, 2, 3; (3)

• the stress-temperature tensor λi j (x), x ∈ Ω (i, j = 1, 2, 3), which satisfy the fol-
lowing symmetry conditions:

λi j (x) = λ j i (x), i, j = 1, 2, 3; (4)

• the mass density ρ(x), x ∈ Ω;
• the permittivity and permeability tensors di j (x) and ζi j (x), x ∈ Ω (i, j = 1, 2, 3),
and the coupling coefficients connecting electric andmagnetic fields ai j (x), x ∈ Ω

(i, j = 1, 2, 3), which satisfy the following positive definiteness condition:

3∑

i, j=1

di j (x)ξ jξi +
3∑

i, j=1

ai j (x)ξ jξi +
3∑

i, j=1

ai j (x)ξ jξ i +
3∑

i, j=1

ζi j (x)ξ jξ i

≥ α

3∑

i=1

((ξi )
2 + (ξ i )

2), α = const > 0, ∀ξi , ξ i ∈ R, i = 1, 2, 3; (5)

• the piroelectiric and piromagnetic coefficients μi (x) and mi (x), x ∈ Ω (i =
1, 2, 3);

• the thermal conductivity tensor ηi j (x), x ∈ Ω (i, j = 1, 2, 3), which satisfies the
following positive definiteness condition:

3∑

i, j=1

ηi j (x)ξ jξi ≥ αη

3∑

i=1

(ξi )
2, αη = const > 0, (6)

for all ξi ∈ R (i = 1, 2, 3);
• the thermal capacity κ(x), x ∈ Ω;
• the temperature Θ0 = const > 0 of the thermoelastic piezoelectric body in nat-
ural state of no deformation and electromagnetic fields, which is considered as a
reference temperature.

We considermixed boundary conditions on the boundaryΓ = ∂Ω of the thermoe-
lastic piezoelectric body, such that on certain parts of the boundary the mechanical
displacement, electric and magnetic potentials, and temperature vanish, and on the
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remaining parts the densities of the components of the stress vector, electric displace-
ment and magnetic induction, and heat flux along the unit outward normal vector of
the boundary are given. We assume that the body is clamped along a part Γ0 ⊂ Γ of
the boundary, the electric potential vanishes along Γ

ϕ
0 ⊂ Γ , the magnetic potential

vanishes along Γ
ψ

0 ⊂ Γ , and the temperature θ vanishes along a part Γ θ
0 ⊂ Γ of the

boundary. The body is subjected to:

• the applied body force with density f = ( fi )3i=1 : Ω × (0, T ) → R
3;

• the applied surface force, with density g = (gi )
3
i=1 : Γ1 × (0, T ) → R

3, which is
given along the part Γ1 = Γ \Γ0 of the boundary of Ω , where Γ = Γ0 ∪ Γ1 is a
Lipschitz dissection of Γ ;

• the electric charges with density f ϕ : Ω × (0, T ) → R;
• the component of the electric displacement along the unit outward normal vector of

Γ , with density gϕ : Γ
ϕ
1 × (0, T ) → R, which is given along the partΓ ϕ

1 = Γ \Γ ϕ
0

of the boundary Γ , where Γ = Γ
ϕ
0 ∪ Γ

ϕ
1 is a Lipschitz dissection of Γ ;

• the component of the magnetic induction along the unit outward normal vector
of Γ , with density gψ : Γ

ψ

1 × (0, T ) → R, which is given along the part Γ
ψ

1 =
Γ \Γ ψ

0 of the boundary Γ , where Γ = Γ
ψ

0 ∪ Γ
ψ

1 is a Lipschitz dissection of Γ ;
• the heat source with density f θ : Ω × (0, T ) → R;
• the heat flux along the unit outward normal vector of Γ , with density gθ : Γ θ

1 ×
(0, T ) → R, which is given along the part Γ θ

1 = Γ \Γ θ
0 of the boundary Γ , where

Γ = Γ θ
0 ∪ Γ θ

1 is a Lipschitz dissection of Γ .

The dynamic linear three-dimensional model of the stress-strain state of the ther-
moelastic piezoelectric bodyΩ , with quasi-static equations for electric andmagnetic
fields, where the rate of the magnetic field is small, i.e. the electric field is curl free,
and there is no electric current, i.e. the magnetic field is curl free, is given by the
following initial-boundary value problem in differential form [9, 21, 25]:

ρ
∂2ui
∂t2

−
3∑

j=1

∂

∂x j

⎛

⎝
3∑

p,q=1

ci jpqepq(u) +
3∑

p=1

εpi j

∂ϕ

∂xp

+
3∑

p=1

bpi j

∂ψ

∂xp
− λi jθ

⎞

⎠ = fi in Ω × (0, T ), i = 1, 2, 3, (7)

3∑

i=1

∂

∂xi

⎛

⎝
3∑

p,q=1

εi pqepq(u) −
3∑

j=1

di j
∂ϕ

∂x j

−
3∑

j=1

ai j
∂ψ

∂x j
+ μiθ

⎞

⎠ = f ϕ in Ω × (0, T ), (8)
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3∑

i=1

∂

∂xi

⎛

⎝
3∑

p,q=1

bipqepq(u) −
3∑

j=1

ai j
∂ϕ

∂x j

−
3∑

j=1

ζi j
∂ψ

∂x j
+ miθ

⎞

⎠ = 0 in Ω × (0, T ), (9)

κ
∂θ

∂t
−

3∑

i, j=1

∂

∂xi

(
ηi j

∂θ

∂x j

)
+ Θ0

∂

∂t

3∑

i, j=1

λi j ei j (u)

− Θ0
∂

∂t

3∑

i=1

μi

∂ϕ

∂xi
− Θ0

∂

∂t

3∑

i=1

mi

∂ψ

∂xi
= f θ in Ω × (0, T ), (10)

u = 0 on Γ0 × (0, T ),

3∑

j=1

σi j n j = gi on Γ1 × (0, T ), i = 1, 2, 3,

(11)

ϕ = 0 on Γ
ϕ
0 × (0, T ),

3∑

i=1

Dini = gϕ on Γ
ϕ
1 × (0, T ), (12)

ψ = 0 on Γ
ψ

0 × (0, T ),

3∑

i=1

Bini = gψ on Γ
ψ

1 × (0, T ), (13)

θ = 0 on Γ θ
0 × (0, T ), −

3∑

i, j=1

ηi j
∂θ

∂x j
ni = gθ on Γ θ

1 × (0, T ), (14)

u(x, 0) = u0(x),
∂u
∂t

(x, 0) = u1(x), θ(x, 0) = θ0(x), x ∈ Ω, (15)

where u = (ui )
3
i=1 : Ω × [0, T ] → R

3 is the mechanical displacement vector-
function, ϕ : Ω × [0, T ] → R and ψ : Ω × [0, T ] → R stand for the electric and
magnetic potentials such that the electric andmagnetic fields areE = −(∂ϕ/∂xi )3i=1
and H = −(∂ψ/∂xi )3i=1, θ : Ω × [0, T ] → R is the temperature distribution, u0 =
(u0i )3i=1 and u1 = (u1i )3i=1 are the initial mechanical displacement and velocity
vector-functions, respectively, θ0 is the initial distribution of temperature; (σi j )

3
i, j=1

is the mechanical stress tensor, which is given by the following linear constitutive
equation for a thermo-electro-magneto-elastic solid:

σi j =
3∑

p,q=1

ci jpqepq (u) +
3∑

p=1

εpi j
∂ϕ

∂xp
+

3∑

p=1

bpi j
∂ψ

∂xp
− λi j θ , i, j = 1, 2, 3, (16)

where ei j (v) = 1/2
(
∂vi/∂x j + ∂v j/∂xi

)
, i, j = 1, 2, 3, v = (vi )

3
i=1, is the strain

tensor;D = (Dj )
3
j=1 is the electric displacement vector andB = (Bj )

3
j=1 is the mag-

netic induction vector, which are given by the following linear constitutive equations:
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Di =
3∑

p,q=1

εi pqepq(u) −
3∑

j=1

di j
∂ϕ

∂x j
−

3∑

j=1

ai j
∂ψ

∂x j
+ μiθ , i = 1, 2, 3, (17)

Bi =
3∑

p,q=1

bipqepq(u) −
3∑

j=1

ai j
∂ϕ

∂x j
−

3∑

j=1

ζi j
∂ψ

∂x j
+ miθ , i = 1, 2, 3. (18)

If u = (ui )
3
i=1, ϕ , ψ , and θ are twice continuously differentiable, then by mul-

tiplying Eqs. (7) by arbitrary continuously differentiable functions vi : Ω → R

(i = 1, 2, 3), which vanish on Γ0, Eq. (8) by a continuously differentiable func-
tion ϕ : Ω → R, such that ϕ = 0 on Γ

ϕ
0 , Eq. (9) by a continuously differentiable

function ψ : Ω → R vanishing on Γ
ψ

0 , and Eq. (10) by a continuously differen-
tiable function θ : Ω → R, such that θ = 0 on Γ θ

0 , by integrating onΩ and by using
Green’s formula, and taking into account symmetry condition (1), (3), (4), boundary
conditions (11)–(14), and constitutive equations (16)–(18), we obtain the following
integral relations:

∫

Ω

ρ

3∑

i=1

∂2ui
∂t2

vi dx +
∫

Ω

3∑

i, j,p,q=1

ci jpqepq (u)ei j (v)dx

+
∫

Ω

3∑

i, j,p=1

εpi j
∂ϕ

∂xp
ei j (v)dx +

∫

Ω

3∑

i, j,p=1

bpi j
∂ψ

∂xp
ei j (v)dx

−
∫

Ω

3∑

i, j=1

λi j θ ei j (v)dx =
∫

Ω

3∑

i=1

fivi dx +
∫

Γ1

3∑

i=1

givi dΓ, (19)

−
∫

Ω

3∑

i, j,p=1

εi pqepq (u)
∂ϕ

∂xi
dx +

∫

Ω

3∑

i, j=1

di j
∂ϕ

∂x j

∂ϕ

∂xi
dx

+
∫

Ω

3∑

i, j=1

ai j
∂ψ

∂x j

∂ϕ

∂xi
dx −

∫

Ω

3∑

i=1

μi θ
∂ϕ

∂xi
dx =

∫

Ω

f ϕϕdx −
∫

Γ
ϕ
1

gϕϕdΓ, (20)

−
∫

Ω

3∑

i, j,p=1

bipqepq (u)
∂ψ

∂xi
dx +

∫

Ω

3∑

i, j=1

ai j
∂ϕ

∂x j

∂ψ

∂xi
dx

+
∫

Ω

3∑

i, j=1

ζi j
∂ψ

∂x j

∂ψ

∂xi
dx −

∫

Ω

3∑

i=1

mi θ
∂ψ

∂xi
dx = −

∫

Γ
ψ
1

gψψdΓ, (21)

∫

Ω

κ
∂θ

∂t
θ dx +

∫

Ω

3∑

i, j=1

ηi j
∂θ

∂x j

∂θ

∂xi
dx + Θ0

∫

Ω

3∑

i, j=1

λi j ei j

(
∂u
∂t

)
θ dx
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− Θ0

∫

Ω

3∑

i=1

μi
∂2ϕ

∂t∂xi
θ dx − Θ0

∫

Ω

3∑

i=1

mi
∂2ψ

∂t∂xi
θ dx

=
∫

Ω

f θ θdx −
∫

Γ θ
1

gθ θdΓ. (22)

Therefore, if u = (ui )
3
i=1 : Ω × [0, T ] → R

3, ϕ : Ω × [0, T ] → R, ψ : Ω ×
[0, T ] → R, and θ : Ω × [0, T ] → R are solutions of Eqs. (7)–(10) and satisfy
boundary conditions (11)–(14), then u, ϕ , ψ and θ are solutions of Eqs. (19)–(22 ).
Conversely, if u, ϕ , ψ and θ are twice continuously differentiable solutions of Eqs.
(19)–(22), then by using Green’s formula we obtain:

∫

Ω

ρ

3∑

i=1

∂2ui
∂t2

vi dx +
∫

Γ1

3∑

i, j=1

σi j n jvi dΓ

−
∫

Ω

3∑

i, j=1

∂

∂x j

⎛

⎝
3∑

p,q=1

ci jpqepq(u) +
3∑

p=1

εpi j

∂ϕ

∂xp

+
3∑

p=1

bpi j

∂ψ

∂xp
− λi jθ

⎞

⎠ vi dx =
∫

Ω

3∑

i=1

fivi dx +
∫

Γ1

3∑

i=1

givi dΓ, (23)

−
∫

Γ
ϕ
1

3∑

i=1

DiniϕdΓ +
∫

Ω

3∑

i=1

∂

∂xi

⎛

⎝
3∑

p,q=1

εi pqepq(u)

−
3∑

j=1

di j
∂ϕ

∂x j
−

3∑

j=1

ai j
∂ψ

∂x j
+ μiθ

⎞

⎠ ϕdx =
∫

Ω

f ϕϕdx −
∫

Γ
ϕ
1

gϕϕdΓ, (24)

−
∫

Γ
ψ

1

3∑

i=1

BiniψdΓ +
∫

Ω

3∑

i=1

∂

∂xi

⎛

⎝
3∑

p,q=1

bipqepq(u)

−
3∑

j=1

ai j
∂ϕ

∂x j
−

3∑

j=1

ζi j
∂ψ

∂x j
+ miθ

⎞

⎠ ψdx = −
∫

Γ
ψ

1

gψψdΓ, (25)

∫

Ω

κ
∂θ

∂t
θdx +

∫

Γ θ
1

3∑

i, j=1

ηi j
∂θ

∂x j
niθdΓ −

∫

Ω

3∑

i, j=1

∂

∂xi

(
ηi j

∂θ

∂x j

)
θdx
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+ Θ0

∫

Ω

3∑

i, j=1

λi j ei j

(
∂u
∂t

)
θdx − Θ0

∫

Ω

3∑

i=1

μi

∂2ϕ

∂t∂xi
θdx

− Θ0

∫

Ω

3∑

i=1

mi

∂2ψ

∂t∂xi
θdx =

∫

Ω

f θ θdx −
∫

Γ θ
1

gθ θdΓ, (26)

where v = (vi )
3
i=1, ϕ ,ψ , θ are continuously differentiable functions on Ω, such that

vi = 0 on Γ0 (i = 1, 2, 3), ϕ = 0 on Γ
ϕ
0 , ψ = 0 on Γ

ψ

0 , θ = 0 on Γ θ
0 . By letting

v ∈ (D(Ω))3, ϕ ∈ D(Ω), ψ ∈ D(Ω), θ ∈ D(Ω) and by taking into account the
density of D(Ω) in L2(Ω), we obtain, from (23)–(26), that u, ϕ , ψ and θ satisfy
Eqs. (7)–(10). Furthermore, if functions v, ϕ , ψ and θ are arbitrary continuous
functions on the surfaces Γ1, Γ

ϕ
1 , Γ

ψ

1 and Γ θ
1 and vanish on the remaining parts of

the boundary Γ, then by applying Eqs. (7)–(10) and density of the sets of continuous
functions on Γ1, Γ

ϕ
1 , Γ

ψ

1 and Γ θ
1 vanishing on the boundaries of the corresponding

surfaces in spaces L2(Γ1), L2(Γ
ϕ
1 ), L2(Γ

ψ

1 ) and L2(Γ θ
1 ), we infer, from (23 )–(26),

that u, ϕ , ψ and θ satisfy the boundary conditions (11)–(14).
Hence, the initial-boundary problem (7)–(15) corresponding to the dynamic three-

dimensionalmodel of anisotropic inhomogeneous thermoelastic piezoelectric body is
equivalent to Eqs. (19)–(22) with initial conditions (15) in the space of twice continu-
ously differentiable functions. Therefore, by identifying the unknownvector-function
u and the functions ϕ, ψ , θ with vector-functions defined on [0, T ] with values in
suitable spaces of functions defined onΩ , from Eqs. (19)–(22) we obtain the follow-
ing variational formulation of problem (7)–(15) in the spaces of vector-valued distri-
butions: Find u ∈ C([0, T ];V(Ω)), u′ ∈ L∞(0, T ;V(Ω)), u′′ ∈ L∞(0, T ;L2(Ω)),

ϕ ∈ C([0, T ]; V ϕ(Ω)), ϕ′ ∈ L∞(0, T ; V ϕ(Ω)), ψ ∈ C([0, T ]; V ψ(Ω)), ψ ′ ∈ L∞
(0, T ; V ψ(Ω)), θ ∈ C([0, T ]; V θ (Ω)), θ ′ ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; V θ (Ω)),
which satisfy the following equations in the sense of distributions on (0, T ),

(ρu′′, v)L2(Ω) + c(u, v) + ε(ϕ, v) + b(ψ, v) − λ(θ, v) = Lu(v), ∀v ∈ V(Ω), (27)

− ε(ϕ,u) + d(ϕ, ϕ) + a(ψ, ϕ) − μ(θ, ϕ) = Lϕ(ϕ), ∀ϕ ∈ V ϕ(Ω), (28)

− b(ψ,u) + a(ϕ, ψ) + ζ(ψ,ψ) − m(θ, ψ) = Lψ(ψ), ∀ψ ∈ Vψ(Ω), (29)

(κθ ′, θ)L2(Ω) + η(θ, θ) + Θ0λ(θ,u′)
− Θ0μ(θ, ϕ′) − Θ0m(θ, ψ ′) = Lθ (θ), ∀θ ∈ V θ (Ω), (30)

together with the initial conditions

u(0) = u0, u′(0) = u1, θ(0) = θ0, (31)

where V(Ω) = {v ∈ H1(Ω); trΓ (v) = 0 on Γ0}, V ϕ(Ω)= {ϕ ∈ H 1(Ω); trΓ (ϕ) =
0 on Γ

ϕ
0 }, V

ψ(Ω) = {ψ ∈ H 1(Ω); trΓ (ψ) = 0 on Γ
ψ

0 }, V θ (Ω) = {θ ∈ H 1(Ω);
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trΓ (θ) = 0 on Γ θ
0 }, and

c(u, v) =
∫

Ω

3∑

i, j,p,q=1

ci jpqepq(u)ei j (v)dx, ε(ϕ, v) =
∫

Ω

3∑

i, j,p=1

εpi j
∂ϕ

∂xp
ei j (v)dx,

b(ψ, v) =
∫

Ω

3∑

i, j,p=1

bpi j
∂ψ

∂xp
ei j (v)dx, λ(θ, v) =

∫

Ω

3∑

i, j=1

λi jθei j (v)dx,

d(ϕ, ϕ) =
∫

Ω

3∑

i, j=1

di j
∂ϕ

∂x j

∂ϕ

∂xi
dx, a(ψ, ϕ) =

∫

Ω

3∑

i, j=1

ai j
∂ψ

∂x j

∂ϕ

∂xi
dx,

μ(θ, ϕ) =
∫

Ω

3∑

i=1

μiθ
∂ϕ

∂xi
dx, ζ(ψ,ψ) =

∫

Ω

3∑

i, j=1

ζi j
∂ψ

∂x j

∂ψ

∂xi
dx,

m(θ, ψ) =
∫

Ω

3∑

i=1

miθ
∂ψ

∂xi
dx, η(θ, θ) =

∫

Ω

3∑

i, j=1

ηi j
∂θ

∂x j

∂θ

∂xi
dx,

Lu(v) =
∫

Ω

3∑

i=1

fivi dx +
∫

Γ1

3∑

i=1

gi trΓ1(vi )dΓ, Lψ(ψ) = −
∫

Γ
ψ

1

gψ tr
Γ

ψ

1
(ψ)dΓ,

Lθ (θ) =
∫

Ω

f θ θdx −
∫

Γ θ
1

gθ trΓ θ
1
(θ)dΓ, Lϕ(ϕ) =

∫

Ω

f ϕϕdx −
∫

Γ
ϕ
1

gϕ trΓ ϕ
1
(ϕ)dΓ.

Note that if εpi j , bpi j , di j , ai j , ζi j , μi , mi ∈ C0,1(Ω), then, from Rademacher’s
theorem [35], we have that the functions εpi j , bpi j , di j , ai j , ζi j , μi , mi are dif-
ferentiable almost everywhere in Ω and their derivatives belong to L∞(Ω). If u0 ∈
H2(Ω), f ϕ(0) ∈ L2(Ω), gϕ(0) ∈ H 1/2(Γ

ϕ
1 ), gψ(0) ∈ H 1/2(Γ

ψ

1 ), θ0 ∈ H 1(Ω), then
by applying Green’s formula, Eqs. (28), (29) can be written as follows:

d(ϕ0, ϕ) + a(ψ0, ϕ) =
3∑

i, j,p=1

∫

Γ
ϕ
1

trΓ ϕ
1
(ϕ)trΓ ϕ

1
(εpi j ei j (u0))npdΓ

−
3∑

i, j,p=1

∫

Ω

ϕ
∂(εpi j ei j (u0))

∂xp
dx +

3∑

i=1

∫

Γ
ϕ
1

trΓ ϕ
1
(ϕ)trΓ ϕ

1
(μiθ0)nidΓ

−
3∑

i=1

∫

Ω

ϕ
∂(μiθ0)

∂xi
dx + ( f ϕ(0), ϕ)L2(Ω) − (gϕ(0), trΓ ϕ

1
(ϕ))L2(Γ

ϕ
1 ), (32)
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a(ϕ0, ψ) + ζ(ψ0, ψ) =
3∑

i, j,p=1

∫

Γ
ψ

1

tr
Γ

ψ

1
(ψ)tr

Γ
ψ

1
(bpi j ei j (u0))npdΓ

−
3∑

i, j,p=1

∫

Ω

ψ
∂(bpi j ei j (u0))

∂xp
dx +

3∑

i=1

∫

Γ
ψ

1

tr
Γ

ψ

1
(ψ)tr

Γ
ψ

1
(miθ0)nidΓ

−
3∑

i=1

∫

Ω

ψ
∂(miθ0)

∂xi
dx − (gψ(0), tr

Γ
ψ

1
(ψ))L2(Γ

ψ

1 )
, (33)

where n = (ni )
3
i=1 is the unit outward normal vector of the boundaryΓ , and the given

functions in the right-hand parts of Eqs. (32), (33) have the following properties:

3∑

i, j,p=1

trΓ ϕ
1
(εpi j ei j (u0))np +

3∑

i=1

trΓ ϕ
1
(μiθ0)ni − gϕ(0) ∈ H 1/2(Γ

ϕ
1 ),

−
3∑

i, j,p=1

∂(εpi j ei j (u0))
∂xp

−
3∑

i=1

∂(μiθ0)

∂xi
+ f ϕ(0) ∈ L2(Ω),

3∑

i, j,p=1

tr
Γ

ψ

1
(bpi j ei j (u0))np +

3∑

i=1

tr
Γ

ψ

1
(miθ0)ni − gψ(0) ∈ H 1/2(Γ

ψ

1 ),

−
3∑

i, j,p=1

∂(bpi j ei j (u0))
∂xp

−
3∑

i=1

∂(miθ0)

∂xi
∈ L2(Ω).

It follows from the positive definiteness condition (6) that (32), (33) constitute a
boundary value problem for a strongly elliptic system of the second-order partial
differential equations [22] with respect to ϕ0 ∈ V ϕ(Ω) and ψ0 ∈ V ψ(Ω), which
possesses a unique solution when Γ

ϕ
0 = ∅ and Γ

ψ

0 = ∅, and if Ω is a bounded C1,1

domain andΓ
ϕ
0 ∩ Γ

ϕ
1 = ∅,Γ ψ

0 ∩ Γ
ψ

1 = ∅, then, by applying the regularity theorem
[22], we infer that the solutions ϕ0 and ψ0 of (32), (33) belong to H 2(Ω).

For problem (27)–(31), which is equivalent to the initial-boundary value problem
(7)–(15) in the space of classical twice continuously differentiable functions, the
following existence, uniqueness and continuous dependence theorem is valid.

Theorem 1 Suppose that Ω ⊂ R
3 is a bounded C1,1 domain, Γ

ϕ
0 = ∅, Γ

ψ

0 = ∅

and Γ
ϕ
0 ∩ Γ

ϕ
1 = ∅, Γ ψ

0 ∩ Γ
ψ

1 = ∅, the parameters characterizing thermal, electro-
magnetic and elastic properties of the body ρ, κ ∈ L∞(Ω), ci jpq , εpi j , bpi j , di j ,
ai j , ζi j , λi j , μi , mi , ηi j ∈ C0,1(Ω) (i, j, p, q = 1, 2, 3), for all x ∈ Ω satisfy the
symmetry conditions (1), (3), (4) and

di j (x) = d ji (x), ai j (x) = a ji (x), ζi j (x) = ζ j i (x), i, j = 1, 2, 3,
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and positive definiteness conditions (2), (7), and for almost all x ∈ Ω ,

ρ(x) > αρ = const > 0, κ(x) > ακ = const > 0,

3∑

i, j=1

di j (x)ξ j ξi + 2
3∑

i, j=1

ai j (x)ξ j ξ i +
3∑

i, j=1

ζi j (x)ξ j ξ i + 1

Θ0
κξξ − 2

3∑

i=1

μi (x)ξξi

−2
3∑

i=1

mi (x)ξξ i ≥ α̃

3∑

i=1

(
(ξi )

2 + (ξ i )
2 + ξ2

)
, ∀x ∈ Ω, ξ, ξi , ξ i ∈ R, i = 1, 2, 3,

where α̃ = const > 0. If f, f′ ∈ L2(0, T ;L2(Ω)), g, g′, g′′ ∈ L2(0, T ;L4/3(Γ1)),
f ϕ, ( f ϕ)′, ( f ϕ)′′ ∈ L2(0, T ; L6/5(Ω)), f ϕ(0) ∈ L2(Ω),gϕ, (gϕ)′, (gϕ)′′ ∈ L2(0, T ;
L4/3(Γ

ϕ
1 )), gϕ(0) ∈ H 1/2(Γ

ϕ
1 ), gψ, (gψ)′, (gψ)′′ ∈ L2(0, T ; L4/3(Γ

ψ

1 )), gψ(0) ∈
H 1/2(Γ

ψ

1 ), f θ , ( f θ )′ ∈ L2(0, T ; L2(Ω)), gθ , (gθ )′ ∈ L2(0, T ; L4/3(Γ θ
1 )) and the

initial data u0 ∈ V(Ω) ∩ H2(Ω), u1 ∈ V(Ω), θ0 ∈ V θ (Ω) ∩ H 2(Ω) satisfy the fol-
lowing compatibility conditions:

gθ (0) = −
3∑

i, j=1

trΓ θ
1

(
ηi j

∂θ0

∂x j

)
nθ
i ,

gi (0) =
3∑

j=1

trΓ1

⎛

⎝
3∑

p,q=1

ci jpqepq(u0) +
3∑

p=1

εpi j

∂ϕ0

∂xp
+

3∑

p=1

bpi j

∂ψ0

∂xp
− λi jθ0

⎞

⎠ n j ,

where i = 1, 2, 3, nθ = (nθ
i )

3
i=1 and n = (ni )

3
i=1 are the unit outward normal vectors

toΓ θ
1 andΓ1, respectively, then problem (27)–(31) possesses a unique solution,which

continuously depends on the given data, i.e., the mapping

(u0,u1, θ0, f, g, g′, f ϕ, ( f ϕ)′, gϕ, (gϕ)′, gψ, (gψ)′, f θ , gθ ) → (u,u′, ϕ, ψ, θ)

is linear and continuous from space

V(Ω) × L2(Ω) × L2(Ω) × L2(0, T ;L2(Ω)) × L2(0, T ;L4/3(Γ1)) × L2(0, T ;L4/3(Γ1))

× L2(0, T ; L6/5(Ω)) × L2(0, T ; L6/5(Ω)) × L2(0, T ; L4/3(Γ ϕ
1 )) × L2(0, T ; L4/3(Γ ϕ

1 ))

× L2(0, T ; L4/3(Γ ψ
1 )) × L2(0, T ; L4/3(Γ ψ

1 )) × L2(0, T ; L2(Ω)) × L2(0, T ; L4/3(Γ θ
1 ))

to space

C([0, T ];V(Ω)) × C([0, T ];L2(Ω)) ×C([0, T ]; V ϕ(Ω))

× C([0, T ]; V ψ(Ω)) ×C([0, T ]; L2(Ω)),

and the following energy equality is valid
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E(t) = E(0) + L(t), ∀t ∈ [0, T ],

where

E(t) = (ρu′(t),u′(t))L2(Ω) + c(u(t),u(t)) + 1

Θ0
(κθ(t), θ(t))L2(Ω)

+ 2

Θ0

t∫

0

η(θ, θ)dτ + d(ϕ(t), ϕ(t)) + 2a(ϕ(t), ψ(t))

+ ζ(ψ(t), ψ(t)) − 2μ(θ(t), ϕ(t)) − 2m(θ(t), ψ(t)),

L(t) = 2

t∫

0

(f(τ ),u′(τ ))L2(Ω)dτ + 2(g(t), trΓ1(u(t)))L2(Γ1)

− 2(g(0), trΓ1(u(0)))L2(Γ1) − 2

t∫

0

(g′(τ ), trΓ1(u(τ )))L2(Γ1)dτ

+ 2

t∫

0

(( f ϕ)′(τ ), ϕ(τ ))L2(Ω)dτ − 2

t∫

0

((gϕ)′(τ ), trΓ ϕ
1
(ϕ(τ)))L2(Γ

ϕ
1 )dτ

− 2

t∫

0

((gψ)′(τ ), tr
Γ

ψ

1
(ψ(τ)))L2(Γ

ψ

1 )
dτ + 2

Θ0

t∫

0

( f θ (τ ), θ(τ ))L2(Ω)dτ

− 2

Θ0

t∫

0

(gθ (τ ), trΓ θ
1
(θ(τ )))L2(Γ θ

1 )dτ, ∀t ∈ [0, T ].

3 Static Three-Dimensional Problem

The linear three-dimensional model [8, 25] of the static equilibrium of the thermoe-
lastic piezoelectric body Ω in differential form is given by the partial differential
equations (7)–(10) together with the boundary conditions (11)–(14), where all the
unknown and the given functions do not depend on time variable t , the corresponding
governing equations are given in Ω and the boundary conditions are prescribed on
the corresponding parts of the boundary Γ . Hence, in the static model, instead of
Eqs. (7) and (10) we have:
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−
3∑

j=1

∂

∂x j

⎛

⎝
3∑

p,q=1

ci jpqepq(u) +
3∑

p=1

εpi j

∂ϕ

∂xp

+
3∑

p=1

bpi j

∂ψ

∂xp
− λi jθ

⎞

⎠ = fi in Ω, i = 1, 2, 3, (34)

−
3∑

i, j=1

∂

∂xi

(
ηi j

∂θ

∂x j

)
= f θ in Ω. (35)

Bymultiplying Eqs. (34) by arbitrary continuously differentiable functions vi : Ω →
R (i = 1, 2, 3), which vanish on Γ0 and Eq. (35) by a continuously differentiable
function θ : Ω → R, such that θ = 0 on Γ θ

0 , by integrating on Ω, by using Green’s
formula, and taking into account symmetry conditions (1), ( 4), boundary conditions
(11), (14), and constitutive equations (16), instead of Eqs. (19) and (22), we obtain
the following equations:

∫

Ω

3∑

i, j,p,q=1

ci jpqepq(u)ei j (v)dx +
∫

Ω

3∑

i, j,p=1

εpi j

∂ϕ

∂xp
ei j (v)dx

+
∫

Ω

3∑

i, j,p=1

bpi j

∂ψ

∂xp
ei j (v)dx −

∫

Ω

3∑

i, j=1

λi jθ ei j (v)dx

=
∫

Ω

3∑

i=1

fivi dx +
∫

Γ1

3∑

i=1

givi dΓ, (36)

∫

Ω

3∑

i, j=1

ηi j
∂θ

∂x j

∂θ

∂xi
dx =

∫

Ω

f θ θdx −
∫

Γ θ
1

gθ θdΓ. (37)

Conversely, ifu = (ui )
3
i=1 : Ω → R

3,ϕ : Ω → R,ψ : Ω → R, and θ : Ω → R are
twice continuously differentiable solutions of Eqs. (36), (37), then by using Green’s
formula we infer, as for the dynamic problem, that u, ϕ , ψ and θ are solutions of
Eqs. (34), (35) satisfying the boundary conditions ( 11), (14).

Therefore, the boundary value problem (8), (9), (34), (35), (11)–(14), correspond-
ing to the static three-dimensional model of the thermoelastic piezoelectric body Ω ,
is equivalent to Eqs. (20), (21), (36), (37) in the space of twice continuously differen-
tiable functions, and on the basis of them we obtain the following variational formu-
lation of the boundary value problem (8), (9), (34), (35), (11)–(14): Find u ∈ V(Ω),
ϕ ∈ V ϕ(Ω), ψ ∈ V ψ(Ω), θ ∈ V θ (Ω) such that
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c(u, v) + ε(ϕ, v) + b(ψ, v) − λ(θ, v) = Lu(v), ∀v ∈ V(Ω), (38)

− ε(ϕ,u) + d(ϕ, ϕ) + a(ψ, ϕ) − μ(θ, ϕ) = Lϕ(ϕ), ∀ϕ ∈ V ϕ(Ω), (39)

− b(ψ,u) + a(ϕ, ψ) + ζ(ψ,ψ) − m(θ, ψ) = Lψ(ψ), ∀ψ ∈ V ψ(Ω), (40)

η(θ, θ) = Lθ (θ), ∀θ ∈ V θ (Ω). (41)

For problem (38)–(41) the following theorem regarding the existence, uniqueness,
regularity and continuous dependence on the given data of a solution of the boundary
value problem in suitable function spaces is valid.

Theorem 2 Suppose that Ω ⊂ R
3 is a bounded Lipschitz domain, Γ0 = ∅, Γ ϕ

0 =
∅, Γ

ψ

0 = ∅, Γ θ
0 = ∅, the parameters ci jpq , εpi j , bpi j , di j , ai j , ζi j , λi j , μi , mi ,

ηi j ∈ L∞(Ω), i, j, p, q = 1, 2, 3, for almost all x ∈ Ω satisfy the symmetry con-
ditions (1), (3), (4), and positive definiteness conditions (2), (5), (6) . If f ∈ L6/5(Ω),
g ∈ L4/3(Γ1), f ϕ ∈ L6/5(Ω), gϕ ∈ L4/3(Γ

ϕ
1 ), gψ ∈ L4/3(Γ

ψ

1 ), f θ ∈ L6/5(Ω), gθ ∈
L4/3(Γ θ

1 ), thenproblem (38)–(41)possesses aunique solution (u, ϕ, ψ, θ) ∈ V(Ω) ×
V ϕ(Ω) × V ψ(Ω) × V θ (Ω), which continuously depends on the given data, i.e., the
following estimate is valid:

||u||H1(Ω) + ||ϕ||H 1(Ω) + ||ψ ||H 1(Ω) + ||θ ||H 1(Ω) ≤ α̂
(||f||L6/5(Ω) + ||g||L4/3(Γ1)

+ || f ϕ||L6/5(Ω) + ||gϕ||L4/3(Γ
ϕ
1 ) + ||gψ ||L4/3(Γ

ψ

1 )

+|| f θ ||L6/5(Ω) + ||gθ ||L4/3(Γ θ
1 )

)
, α̂ = const > 0.

Furthermore, if Ω ⊂ R
3 is a Cr+1,1 (r ∈ N ∪ {0}) domain, Γ0 ∩ Γ1 = ∅, Γ

ϕ
0 ∩

Γ
ϕ
1 = ∅, Γ

ψ

0 ∩ Γ
ψ

1 = ∅, Γ θ
0 ∩ Γ θ

1 = ∅, ci jpq , εpi j , bpi j , di j , ai j , ζi j ,λi j , μi , mi ,
ηi j ∈ Cr,1(Ω), i, j, p, q = 1, 2, 3, f ∈ Hr (Ω), g ∈ Hr+1/2(Γ1), f ϕ ∈ Hr (Ω), gϕ ∈
Hr+1/2(Γ

ϕ
1 ), gψ ∈ Hr+1/2(Γ

ψ

1 ), f θ ∈ Hr (Ω), gθ ∈ Hr+1/2(Γ θ
1 ), then solution

(u, ϕ, ψ, θ) of problem (38)–(41) has additional regularity u ∈ V(Ω) ∩ Hr+2(Ω),
ϕ ∈ V ϕ(Ω) ∩ Hr+2(Ω), ψ ∈ V ψ(Ω) ∩ Hr+2(Ω), θ ∈ V θ (Ω) ∩ Hr+2(Ω), and
the mapping

(f, g, f ϕ, gϕ, gψ, f θ , gθ ) → (u, ϕ, ψ, θ)

is linear and continuous from space

Hr (Ω) × Hr+1/2(Γ1) × Hr (Ω) × Hr+1/2(Γ
ϕ
1 ) × Hr+1/2(Γ

ψ
1 ) × Hr (Ω) × Hr+1/2(Γ θ

1 )

to space Hr+2(Ω) × Hr+2(Ω) × Hr+2(Ω) × Hr+2(Ω).

Corollary 1 If Ω ⊂ R
3 is a C3,1 domain, Γ0 = ∅, Γ

ϕ
0 = ∅, Γ

ψ

0 = ∅, Γ θ
0 = ∅,

and Γ0 ∩ Γ1 = ∅, Γ
ϕ
0 ∩ Γ

ϕ
1 = ∅, Γ

ψ

0 ∩ Γ
ψ

1 = ∅, Γ θ
0 ∩ Γ θ

1 = ∅, the parameters
ci jpq , εpi j , bpi j , di j , ai j , ζi j , λi j , μi , mi , ηi j ∈ C2,1(Ω), i, j, p, q = 1, 2, 3, satisfy
the symmetry conditions (1), (3), (4), and positive definiteness conditions (2), (5),
(6), and f ∈ H2(Ω), g ∈ H5/2(Γ1), f ϕ ∈ H 2(Ω), gϕ ∈ H 5/2(Γ

ϕ
1 ), gψ ∈ H 5/2(Γ

ψ

1 ),
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f θ ∈ H 2(Ω) , gθ ∈ H 5/2(Γ θ
1 ), then the boundary value problem (8), (9), (34), (35),

(11)–(14) possesses a unique classical solution (u, ϕ, ψ, θ), which is twice continu-
ously differentiable on Ω , satisfies equations (8), (9), (34), (35) in Ω , and boundary
conditions (11)–(14) on the corresponding parts of the boundary Γ .

4 Conclusions

Westudied initial-boundary and boundary value problemswith generalmixed bound-
ary conditions for mechanical displacement, electric and magnetic potentials, and
temperature corresponding to the linear dynamic and static three-dimensional mod-
els of inhomogeneous anisotropic thermoelastic piezoelectric bodies with regard to
magnetic field. We obtained the variational formulations of the three-dimensional
problems in corresponding spaces of vector-valued distributions with respect to the
time variable or Sobolev spaces that are equivalent to the original differential formu-
lations of the initial-boundary and boundary value problems in the spaces of twice
continuously differentiable functions. We formulated new results regarding the exis-
tence, uniqueness and continuous dependence on the given data of solutions of the
three-dimensional initial-boundary and boundary value problems in suitable function
spaces.

Acknowledgement This work was supported by Shota Rustaveli National Science Foundation
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moelastic piezoelectric structures].
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On Nonparametric Kernel-Type Estimate
of the Bernoulli Regression Function

Petre K. Babilua and Elizbar A. Nadaraya

Abstract In the paper, the limit distribution is established for an integral mean-
square deviation of a nonparametric generalized kernel-type estimate of theBernoulli
regression function. A test criterion is constructed for the hypothesis on the Bernoulli
regression function. The question of consistency is considered, and for some close
alternatives the asymptotics of test power behavior is investigated.

Keywords Bernoulli regression function · Limiting distribution · Consistency ·
Test power

1 Introduction

Let a random value Y have two values 1 and 0 with probabilities p (“success”)
and 1 − p (“failure”). Assume that the success probability p is a function of an
independent variable x ∈ [0, 1], i.e. p = p(x) = P {Y = 1 | x} [2, 3, 9, 10]. Let xi ,
i = 1, . . . , n, be the partition points of the interval [0, 1]:

xi = 2i − 1

2n
, i = 1, . . . , n.

Let, further, Yi j , j = 1, . . . ,mi , mi ≥ 1, i = 1, . . . , n, be mutually independent
Bernoulli random variables with P {Yi j = 1 | xi } = p(xi ), P {Yi j = 0 | xi } = 1 −
p(xi ), j = 1, . . . ,mi , i = 1, . . . , n [9, 10]. The problem consists in estimating the
function p(x), x ∈ [0, 1], by the group sampling Yi j , j = 1, . . . ,mi , i = 1, . . . , n.
Such problems arise, for example, in biology [9, 10], medicine [3], and so on.
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As an estimate for p(x) we consider the following statistic [6, 11]

p̂n(x) = p1n(x)p
−1
2n (x),

pνn(x) = 1

nbn

n
∑

i=1

K
( x − xi

bn

)

Y
2−ν
i , ν = 1, 2, Y i = 1

mi

mi
∑

j=1

Yi j , i = 1, . . . , n,

where K (x) is some distribution density that satisfies the requirements formulated
below, and bn → 0 is a sequence of positive integers.

2 Assumptions and Notation

Assume that the kernel K (x) ≥ 0 is chosen such that it is a function with finite
variation and satisfies the conditions: K (x) = K (−x), K (x) = 0 for |x | ≥ τ > 0,
∫

K (x) dx = 1. The class of such functions is denoted by H(τ ).
Denote by C (i) the set of functions p(x), 0 ≤ p(x) ≤ 1, x ∈ [0, 1], having

bounded derivatives of up to i-th order, i = 1, 2.
Let us also introduce the following notation:

Un = nbn

∫

Ωn(τ )

[

p1n(x) − E p1n(x)
]2
dx, Ωn(τ ) = [τbn, 1 − τbn],

Tn = nbnNn

∫

Ωn(τ )

[

p̂n(x) − p(x)
]2
p22n(x) dx, Nn = max

1≤k≤n
mk,

Qi j = ψn(xi , x j ), ψn(u, v) =
∫

Ωn(τ )

K
( x − u

bn

)

K
( x − v

bn

)

dx,

B2
n = 4(nbn)

−2
n

∑

k=2

pk(1 − pk)

mk

k−1
∑

i=1

pi (1 − pi )

mi
Q2

ik, pi = p(xi ), i = 1, . . . , n,

η
(n)
i j = 2εiε j Qi j

nbn Bn
, εi = Y i − p(xi ),

ξ
(n)
k =

k−1
∑

i=1

η
(n)
ik , k = 2, n, ξ

(n)
1 = 0, ξ

(n)
k = 0, k > n,

F (n)
k = σ(ω : ε1, . . . , εk),

whereF (n)
k is a σ -algebra generated by random variables ε1, . . . , εk ,F

(n)
0 = (∅,Ω)

(in the sequel, for the sake of simplicity, we will write ξk and ηi j ) instead of ξ
(n)
k and

η
(n)
i j .

Lemma 1 A stochastic sequence (ξk,Fk)k≥1 is a martingale difference.
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Lemma 2 Let K (x) ∈ H(τ ) and p(x), 0 ≤ x ≤ 1, be also a function of bounded
variation. If nbn → ∞, then

1

nbn

n
∑

i=1

K ν1

( x − xi
bn

)

K ν2

( y − xi
bn

)

pν3(xi )

= 1

bn

1
∫

0

K ν1

( x − u

bn

)

K ν2

( y − u

bn

)

pν3(u) du + O
( 1

nbn

)

(1)

uniformly with respect to x, y ∈ [0, 1], νi ∈ N ∪ {0}, i = 1, 2, 3.

Proof Relation (1) is proved analogously to Lemma 1 in [8, p. 1643].

Lemma 3 Let K (x) ∈ H(τ ) and p(x) ∈ C (1). If nb2n → ∞, then

b−1
n N 2

n B
2
n ≥ b−1

n σ 2
n and b−1

n σ 2
n → σ 2(p) as n → ∞, (2)

where

σ 2
n = 4(nbn)

−2
n

∑

k=2

pk(1 − pk)
k−1
∑

i=1

pi (1 − pi )Q
2
ik,

σ 2(p) = 2

1
∫

0

p2(x)(1 − p(x))2 dx
∫

|x |≤2τ

K 2
0 (x) dx,

Nn = max
1≤k≤n

mk, pi = p(xi ), i = 1, . . . , n, K0 = K ∗ K .

In particular, if mk = Nn, k = 1, . . . , n, then

lim
n→∞

N 2
n

bn
B2
n = lim

n→∞ b−1
n σ 2

n = σ 2(p).

Proof Clearly, N 2
n b

−1
n B2

n ≥ b−1
n σ 2

n and we have

σ 2
n = 2(nbn)

−2

{ n
∑

k,i=1

pk(1 − pk)pi (1 − pi )Q
2
ik −

n
∑

i=1

p2i (1 − pi )
2Q2

i i

}

= d1(n) + d2(n), pi = p(xi ), i = 1, . . . , n.

It is easy to verify that

b−1
n |d2(n)| = 2n−2b−3

n

n
∑

i=1

p2i (1 − pi )
2

( ∫

Ωn(τ )

K 2
( x − xi

bn

)

dx

)2

≤ c1
1

nbn
. (3)
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Further, using the definition of Qki , we obtain

d1(n)= 2

(nbn)2

∫

Ωn(τ )

∫

Ωn(τ )

( n
∑

i=1

p(xi )(1− p(xi ))K
( x−xi

bn

)

K
( y−xi

bn

)

)2

dx dy.

Hence, by Lemma 2, we have

d1(n) = 2
∫

Ωn(τ )

∫

Ωn(τ )

{

1

bn

1
∫

0

p(u)(1 − p(u))

×K
( x − u

bn

)

K
( y − u

bn

)

du

}2

dx dy + O
( 1

nbn

)

= 2
∫

Ωn(τ )

∫

Ωn(τ )

{

x
bn

∫

x−1
bn

p(x − ubn)(1 − p(x − ubn))

×K (u)K
( y − x

bn
− u

)

du

}2

dx dy + O
( 1

nbn

)

. (4)

Since p(x) ∈ C (1) and
[

x−1
bn

, xn
bn

] ⊇ [−τ, τ ] for all x ∈ Ωn(τ ), we find from (4)
that

d1(n) = 2
∫

Ωn(τ )

∫

Ωn(τ )

p2(x)(1 − p(x))2K 2
0

( x − y

bn

)

dx dy + O(b2n) + O
( 1

nbn

)

.

It can be easily established that

b−1
n d1(n) = 2

1
∫

0

p2(x)(1 − p(x))2
(

x
bn

−τ
∫

x−1
bn

+τn

K 2
0 (u) du

)

dx + O(bn) + O
( 1

nb2n

)

.

Therefore

b−1
n d1(n) −→ 2

1
∫

0

p2(x)(1 − p(x))2
∫

|x |≤2τ

K 2
0 (x) dx . (5)

From (3) and (5) assertion (2) follows.
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3 Asymptotic Normality of Statistics Un and Tn

The following assertion holds true.

Theorem 1 Let K (x) ∈ H(τ ) and p(x) ∈ C (1). If N 4
n

nb2n
→ 0 and N 4

n bn → 0 as n →
∞, then

Un − EUn

Bn

d−→ N (0, 1),

where
d−→ denotes convergence in distribution , and N (0, 1) is a random variable

having a standard normal distribution Φ(x).

Proof We have
Un − EUn

Bn
= H (1)

n + H (2)
n ,

where

H (1)
n =

n
∑

k=1

ξk, H (2)
n =

n
∑

i=1
(ε2i − E ε2i )Qii

nbn Bn
.

Let us show that H (2)
n converges to zero in probability. Indeed,

var H (2)
n ≤ 1

(nbn Bn)2

n
∑

i=1

E ε4i Q
2
i i .

Since Qi j ≤ c2bn and E ε4i ≤ c3m
−2
i and min

1≤i≤n
mi ≥ 1, by Lemma 3 we have

var H (2)
n ≤ c4

N 2
n

nb2n
−→ 0.

Therefore H (2)
n

P−→ 0 (here and below the letter P over the arrow denotes conver-
gence in probability).

Now let us show that H (1)
n

d−→ N (0, 1). For this, we need to verify the validity
of Corollaries 2 and 6 of Theorem 2 in [5]. We have to show the fulfillment of the
conditions contained in these corollaries and guaranteeing the asymptotic normality
of the square integrable martingale difference, which, according to Lemma 1, is

our sequence {ξk,Fk}k≥1. Direct calculations show that
n
∑

k=1
E ξ 2

k = 1. Asymptotic

normality takes place if for n → ∞
n

∑

k=1

E
[

ξ 2
k I

(|ξk | ≥ ε
) | Fk−1

]

P−→ 0 (6)
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and
n

∑

k=1

ξ 2
k

P−→ 1. (7)

In [5], it is proved that if (7) and the condition sup
1≤k≤n

|ξk | P−→ 0 are fulfilled, then

condition (6) is fulfilled too. Since for ε > 0

P
{

sup
1≤k≤n

|ξk | ≥ ε
}

≤ ε−4
n

∑

k=1

E ξ 4
k ,

according to relation (8) given below, to prove H (1)
n

d−→ N (0, 1). It remains only to
verify (7). For this, it suffices to ascertain that

E
(

n
∑

k=1

ξ 2
k − 1

)2 −→ 0 as n → ∞,

i.e. that since
n
∑

k=1
E ξ 2

k = 1,

E
(

n
∑

k=1

ξ 2
k

)2 =
n

∑

k=1

E ξ 4
k + 2

∑

1≤k1<k2≤n

E ξ 2
k1ξ

2
k2 −→ 1.

In thefirst placewe establish that
n
∑

k=1
E ξ 4

k −→ 0 asn → ∞. Taking the definitions

of ξk and ηk into account, we write

n
∑

k=1

E ξ 4
k = I (1)

n + I (2)
n ,

where

I (1)
n = 16

(nbn)4B4
n

n
∑

k=2

E ε4k

k−1
∑

j=1

E ε4j Q
4
jk,

I (2)
n = 48

(nbn)4B4
n

n
∑

k=2

∑

i 
= j

E ε2jE ε2i Q
2
jk Q

2
ik .

Since Qi j ≤ c4bn , E ε4j ≤ c5m
−2
j , E ε2j ≤ m−1

j and b−1
n σ 2

n → σ 2(p), we have
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I (1)
n = O

( N 4
n

(nbn)2

)

, I (2)
n = O

( N 4
n

nb2n

)

.

Therefore
n

∑

k=1

E ξ 4
k −→ 0 as n → ∞. (8)

Now, it will be shown that

2
∑

1≤k1<k2≤n

E ξ 2
k1ξ

2
k2 −→ 1 as n → ∞.

From the definition of ξi it follows that

ξ 2
k1ξ

2
k2 = B(1)

k1k2
+ B(2)

k1k2
+ B(3)

k1k2
+ B(4)

k1k2
,

where

B(1)
k1k2

= σ2(k1)σ2(k2), B(2)
k1k2

= σ2(k1)σ1(k2),

B(3)
k1k2

= σ1(k1)σ2(k2), B(4)
k1k2

= σ1(k1)σ1(k2),

σ1(k) =
k−1
∑

i 
= j

ηikη jk, σ2(k) =
k−1
∑

i=1

η2
ik .

Consequently,

2
∑

1≤k1<k2≤n

E ξ 2
k1ξ

2
k2 =

4
∑

i=1

A(i)
n ,

where
A(i)
n = 2

∑

1≤k1<k2≤n

E B(i)
k1k2

, i = 1, 2, 3, 4.

Let us consider A(3)
n . Using the definition of ηi j , it can be easily shown thatE B(3)

k1k2
=0

and therefore
A(3)
n = 0. (9)

Let us estimate A(2)
n . We have

|E B(2)
k1k2

| = 16

n4b4n B
4
n

∣

∣

∣

k1−1
∑

i=1

E ε3i E ε3k1E ε2k2Q
2
ik1Qik2Qk1k2

∣

∣

∣

= 16

n4b4n B
4
n

∣

∣

∣

∣

k1−1
∑

i=1

(1 − pi )pi (1 − 2pi )(1 − pk1)
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×pk1(1 − 2pk1)(1 − pk2)pk2(1 − 2pk2)Q
2
ik1Qik2Qk1k2

∣

∣

∣

∣

≤ c7(k1 − 1)

(nBn)4
.

Since
∑

1≤k1<k2≤n
(k1 − 1) = O(n3) and b−1

n σ 2
n → σ 2(p) > 0, we obtain

|A(2)
n | ≤ c8n3

n4B4
n

= c8
N 4
n

nb2n(
N 2
n B

2
n

bn
)2

= O
( N 4

n

nb2n

)

. (10)

Now we will establish that A(1)
n → 1 as n → ∞. It is obvious that

A(1)
n = 2

∑

1≤k1<k2≤n

E B(1)
k1k2

= D(1)
n + D(2)

n ,

where

D(1)
n = 2

∑

1≤k1<k2≤n

(
k1−1
∑

i=1

E η2
ik1

)(
k2−1
∑

j=1

E η2
jk2

)

,

D(2)
n = 2

(

∑

k1<k2

E B(1)
k1k2

−
∑

k1<k2

(
k1−1
∑

i=1

E η2
ik1

)(
k2−1
∑

j=1

E η2
jk2

)

)

.

From the definition of B2
n it follows that

D(1)
n = 1 −

n
∑

k=2

(
k−1
∑

i=1

E η2
ik

)2
.

But
n

∑

k=2

(
k−1
∑

i=1

E η2
ik

)2 ≤ c9
b4nn

3

(nbn)4B4
n

= O
( N 4

n

nb2n

)

.

Thus
D(1)

n → 1 as n → ∞. (11)

We will further show that D(2)
n → 0. It is easy to see that

D(2)
n = 2

∑

k1<k2

[ k1−1
∑

i=1

cov (η2
ik1, η

2
ik2) +

k1−1
∑

i=1

cov (η2
ik1 , η

2
k1k2)

]

.

But
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E η2
ik1η

2
ik2 ≤ c10

Q2
ik1

Q2
ik2

(nbn)4B4
n

≤ c11
1

n4B4
n

.

Analogously,

E η2
i j = O

( 1

n2B2
n

)

.

Therefore

cov (η2
ik1, η

2
ik2) = O

( 1

n4B4
n

)

. (12)

Further, since
∑

1≤k1<k2≤n
(k1 − 1) = O(n3), from (12) we obtain

D(2)
n = O

( 1

nB4
n

)

= O
( N 4

n

nb2n

)

. (13)

Thus, by (11) and (13),

A(1)
n = 1 + O

( N 4
n

nb2n

)

. (14)

Finally, we will prove that A(4)
n → 0 as n → ∞. Using the definition of ηi j and

the relations Qi j ≥ 0 and E (Y i − p(xi ))2 ≤ c12m
−1
i , we have

|E B(4)
n | = 4

∣

∣

∣

k1−1
∑

t<s

E ηsk1ηtk1ηsk2ηtk2

∣

∣

∣

= 4
1

n4b4n B
4
n

∣

∣

∣

k1−1
∑

t<s

E ε2s ε
2
t ε

2
k1ε

2
k2Qsk1Qtk1Qsk2Qtk2

∣

∣

∣

≤ c13
n4b4n B

4
n

k1−1
∑

t<s

Qsk1Qtk1Qsk2Qtk2 .

Therefore
|A(4)

n | ≤ c14
n2b4n B

4
n

∑

k1<k2

Ak1k2 ,

where

Ak1k2 =
k1−1
∑

1≤t<s≤k1−1

Qsk1Qtk1Qsk2Qtk2 .

But
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∑

k1<k2

Ak1k2 ≤ 1

n2

n
∑

k1,k2

n
∑

t=1

n
∑

s=1

Qsk1Qtk1Qtk2Qsk2 =
n

∑

k1,k2

(1

n

n
∑

t=1

Qtk1Qtk2

)2
.

Thus

|A(4)
n | ≤ c15

1

n2b4n B
4
n

n
∑

k1,k2

( 1

n

n
∑

t=1

Qtk1Qtk2

)2

= c15
1

n2b4n B
4
n

n
∑

k1,k2

( n
∑

i=1

∫

Ωn (τ )

K
( x−xi

bn

)

K
( x−xk1

bn

)

dx
∫

Ωn (τ )

K
( y−xi

bn

)

K
( y−xk2

bn

)

dy

)2

= c15
1

n2b4n B
4
n

n
∑

k1,k2

[ ∫∫

Ωn (τ )Ωn (τ )

K
( x − xk1

bn

)

K
( y − xk2

bn

)

dx dy

×
( 1

n

n
∑

i=1

K
( x − xi

bn

)

K
( y − xi

bn

)

dx dy
)

]2

. (15)

Next, applying Lemma 2, from (15) we conclude that

|A(4)
n | ≤ c15

1

n2b4n B
4
n

n
∑

k1,k2

{ ∫∫

Ωn(τ )Ωn(τ )

K
( x − xk1

bn

)

K
( y − xk2

bn

)

dx dy

×
[

1
∫

0

K
( x − u

bn

)

K
( y − u

bn

)

du + O
(1

n

)

]}2

= c15
1

b4n B
4
n

n
∑

k1,k2

{

1

n

1
∫

0

∫∫

Ωn(τ )Ωn(τ )

K
( x − xk1

bn

)

K
( y − xk2

bn

)

×K
( x − u

bn

)

K
( y − u

bn

)

du dx dy

}2

+ O
( N 4

n

nb2n

)

. (16)

Analogously, again applying Lemma 2 in (16), it can be shown that

|A(4)
n | ≤ c15

b4n B
4
n

1
∫

0

1
∫

0

1
∫

0

1
∫

0

ψn(u1, v2)ψn(u1, v1)

×ψn(u2, v1)ψn(u2, v2) du1 du2 dv1 dv2 + O
( N 4

n

nb2n

)

, (17)

where

ψn(x, y) =
∫

Ωn

K
(u − x

bn

)

K
(u − y

bn

)

du.
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Let us now estimate the integral In contained in (17). We have

In =
1

∫

0

1
∫

0

1
∫

0

ψn(u2, v1)ψn(u2, v2) dv1 dv2 du2

1
∫

0

ψn(u1, v2)ψn(u1, v1) du1.

But since
[

x−1
bn

, x
bn

] ⊇ [−τ, τ ] for all x ∈ Ωn(τ ), we have

1
∫

0

ψn(u1, v2)ψn(u1, v1) du1

= bn

∫

Ωn(τ )

∫

Ωn(τ )

K
( t − v2

bn

)

K
( z − v1

bn

)

dt dz

t
bn

∫

t−1
bn

K (ξ)K
( t − z

bn
− ξ

)

dξ

= bn

∫

Ωn(τ )

∫

Ωn(τ )

K
( t − v2

bn

)

K
( z − v1

bn

)

K0

( z − t

bn

)

dt dz

≤ c16b
3
n, K0 = K ∗ K .

Therefore

|A(4)
n | ≤ c17

1

bn B4
n

1
∫

0

1
∫

0

1
∫

0

ψn(u2, v1)ψn(u2, v2) du2 dv1 dv2 + O
( N 4

n

nb2n

)

. (18)

Applying the same operations to (18), we finally obtain

|A(4)
n | ≤ c18

b4n
bn B4

n

+ O
( N 4

n

nb2n

)

= O
( b3nN

4
n

b2n(
N 2
n B

2
n

bn
)2

)

+ O
( N 4

n

nb2n

)

= O(bnN
4
n ) + O

( N 4
n

nb2n

)

. (19)

After combining relations (9), (10), (14) and (19) we establish that

2
∑

1≤k1<k2≤n

E ξ 2
k1ξ

2
k2 −→ 1.

From this and (8) it follows that

E
(

n
∑

k=1

ξ 2
k − 1

)2 −→ 0 as n → ∞.
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Thus
Un − EUn

Bn

d−→ N (0, 1). (20)

The theorem is proved.

Let, further, mi = Nn , i = 1, . . . , n. Then from Lemma 3 we have

lim
n→∞

N 2
n

bn
B2
n = σ 2(p), (21)

Now let us find lim
n→∞EUn . We have

var p1n(x) = 1

Nn(nbn)2

n
∑

i=1

K 2
( x − xi

bn

)

p(xi )(1 − pi (x)).

Hence, by virtue of Lemma 2, we find

var p1n(x)= 1

Nn

(

1

nb2n

1
∫

0

K 2
( x−u

bn

)

p(u)(1− p(u)) du+O
( 1

(nbn)2

)

)

. (22)

Further, taking into account that
[

x−1
bn

, x
bn

] ⊇ [−τ, τ ] for all x ∈ Ωn(τ ), from (22)
we find

var p1n(x) = 1

Nn

(

1

nbn
p(x)(1 − p(x))

∫

|x |≤τ

K 2(u) du + O
(1

n

)

+ O
( 1

(nbn)2

)

)

.

Therefore

NnEUn = Δ + O(bn) + O
( 1

nbn

)

, (23)

Δ =
1

∫

0

p(x)(1 − p(x)) du
∫

|x |≤τ

K 2(u) du.

With (21) and (23) taken into account, from (20), as a corollary, we obtain

b
− 1

2
n

NnUn − Δ

σ(p)
d−→ N (0, 1). (24)

Theorem 2 Let K (x) ∈ H(τ ), p(x) ∈ C (2). Let, further, mk = Nn, k = 1, . . . , n,

and Nn → ∞. If nNnb4n → 0, N 4
n

nb2n
→ 0 and N 4

n bn → 0 as n → ∞, then
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b
− 1

2
n

Tn − Δ

σ(p)
d−→ N (0, 1),

Proof We have
Tn = NnUn + R(1)

n + R(2)
n ,

where

R(1)
n = 2nbnNn

∫

Ωn(τ )

[

p1n(x) − E p1n(x)
] [

E p1n(x) − p2n(x)p(x)
]

dx,

R(2)
n = nbnNn

∫

Ωn(τ )

[

E p1n(x) − p2n(x)p(x)
]2
dx .

It is easy to see that

E p1n(x) = 1

nbn

n
∑

i=1

K
( x − xi

bn

)

p(xi ).

Hence, by virtue of Lemma 2, it follows that

E p1n(x) = 1

bn

1
∫

0

K
( x − u

bn

)

p(u) du + O
( 1

nbn

)

=
x
bn

∫

x−1
bn

K (t)p(x − bnt) dt + O
( 1

nbn

)

. (25)

Since p(x) ∈ C (2) and
[

x−1
bn

, x
bn

] ⊇ [−τ, τ ] for all x ∈ Ωn(τ ), from (25) we find

E p1n(x) = p(x) + O(b2n) + O
( 1

nbn

)

. (26)

Further, according to Lemma 2

p2n(x) = 1

bn

1
∫

0

K
( x − u

bn

)

du + O
( 1

nbn

)

=
τ

∫

−τ

K (u) du + O
( 1

nbn

)

= 1 + O
( 1

nbn

)

. (27)
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From (26) and (27) it follows that

b
− 1

2
n R(2)

n ≤ c18
(

nNnb
9
2
n + Nnb

3
2
n +

√
Nn

nb
3
2
n

)

−→ 0. (28)

Let us now estimate b
− 1

2
n E |R(1)

n |. From (26) and (27) follows the inequality

b
− 1

2
n E |R(1)

n | ≤ c19nNnb
1
2
n

[

b2n + 1

nbn

]

∫

Ωn(τ )

(

E
[

p1n(x) − E p1n(x)
]2

) 1
2
dx . (29)

But, by Lemma 2, we have

E
[

p1n(x) − E p1n(x)
]2

= 1

Nnnbn
p(x)(1 − p(x))

∫

|x |≤τ

K 2(u) du + O
(1

n

)

+ O
( 1

(nbn)2

)

.

From this and (29) we find that

b
− 1

2
n E |R(1)

n | ≤ c20
(
√

nNn b
2
n +

√
Nn√
n bn

)

−→ 0. (30)

The assertion of the theorem directly follows from (24) and relations (28) and (30).

Corollary 1 Let K (x) and p(x) satisfy the conditions of the Theorem 2. Let, further,
mk = N0, k = 1, . . . , n, 1 ≤ N0 < ∞. If nb4n → 0, nb2n → ∞, then

b
− 1

2
n (T n − Δ(p))σ−1(p)

d−→ N (0, 1),

where

T n = nbnN0

∫

Ωn

(

p̂n(x) − p(x)
)2
p22n(x) dx .

4 Application of the Statistic Tn for Hypothesis Testing

The assertion of Theorem2makes it possible to construct a criterion of the asymptotic
level α, 0 < α < 1, for testing the hypothesis H0, according to which p(x) = p0(x),
x ∈ Ωn(τ ). The critical region is established by the inequality

Tn ≥ qn(α), (31)
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where

qn(α) = Δ(p0) + λα

√

bn σ(p0),

Δ(p0) =
1

∫

0

p0(x)(1 − p0(x)) dx
∫

|x |≤τ

K 2(x) dx,

σ 2(p0) = 2

1
∫

0

p20(x)(1 − p20(x)) dx
∫

|u|≤2τ

K 2
0 (u) du,

and λα is defined by the equality Φ(λα) = 1 − α.
Now, let us analyze the asymptotic property of test criterion (31) (i.e. the behavior

of the test power as n → ∞). In the first place, we consider the question whether the
criterion is consistent. The following assertion is valid.

Theorem 3 Let all conditions of Theorem 2 be fulfilled. Then for n → ∞,

Πn(p) = PH1

{

Tn ≥ qn(α)
} −→ 1 as n → ∞,

which means that the criterion defined in (31) is consistent against any alternative
H1 : p(x) 
= p0(x), 0 ≤ x ≤ 1.

Proof Denote

zn(p) = b
− 1

2
n

(

nbnNn

∫

Ωn(τ )

[

p̂n(x) − p(x)
]2
p22n(x) dx − Δ(p)

)

σ−1(p).

It is not difficult to show that

Πn(p) = PH1

{

zn(p) ≥ −nb
1
2
n Nn

(
1

∫

0

(p(x) − p0(x))
2 dx + oP(1)

)}

.

Since zn(p) has an asymptotically normal distribution with the parameters (0, 1) for

the hypothesis H1 and nb
1
2
n Nn → ∞, we have Πn(p) → 1 as n → ∞.

Thus, for any fixed alternative the power of the tes criterion based on Tn tends
to 1. However, if with the change of n the alternative changes and approaches the
basic hepothesis H0, then the test criterion power will not necessarily converge to 1.
As an example, let us consider the sequence of Pitman type alternatives close to the
hypothesis H0:

H1 : p(n)
1 (x) = p0(x) + γnϕ(x) + o(γn), γn → 0.
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Theorem 4 Let p0(x), ϕ(x) ∈ C (2), and K (x) ∈ H(τ ). If bn = n−δ , Nn = nβ and
γn = n− 1+β

2 + δ
4 (β + 1 < 4δ, 4β + 2δ < 1, 4β < δ), then for the alternative H1 the

statistic b
− 1

2
n (Tn − Δ(p0))σ−1(p0) has a normal limit distribution with the parame-

ters
(

1

σ(p0)

1
∫

0

ϕ2(x) dx, 1

)

,

i.e. the limit power of the test criterion is equal to

1 − Φ

(

λα − 1

σ(p0)

1
∫

0

ϕ2(u) du

)

.

Proof Let write Tn in the form

Tn = nbnNn

∫

Ω(τ)

(

p̂(x)− p(n)
1 (x)

)2
p22n(x) dx + nbnNn

∫

Ω(τ)

(

p(n)
1 (x)− p0(x)

)2
p22n(x) dx

+2nbnNn

∫

Ωn(τ )

(

p̂n(x) − p(n)
1 (x)

)(

p(n)
1 (x) − p0(x)

)

p22n(x) dx

= T ∗
n + A1(n) + A2(n).

Since p2n(x) = 1 + O
(

1
nbn

)

uniformly with respect to x ∈ Ωn(τ ), we write

b
− 1

2
n A1(n) =

1
∫

0

ϕ2(u) du + o(1). (32)

Denote

Dn =
∫

Ωn(τ )

(

p1n(x) − E 1 p1n(x)
)

ϕ(x)p2n(x) dx,

where E 1 is the mathemetical expectation for the hypothesis H1. Then

b
− 1

2
n A2(n) = nb

1
2
n γnNnDn + nb

1
2
n γnNn

(

b2n + O
( 1

nbn

))

= nb
1
2
n γnNnDn + O(nb

5
2
n γnNn) + O

(γnNn√
bn

)

. (33)

Now we show that
nb

1
2
n γnNnDn

P−→ 0.
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Indeed,

E |Dn| ≤ (E D2
n)

1
2 =

{

1

nbn

∫

Ωn(τ )

∫

Ωn(τ )

p2n(x)p2n(y) dx dy

× 1

nbn
N−1
n

n
∑

i=1

K
( x − xi

bn

)

K
( y − xi

bn

)

p(n)
1 (xi )(1 − p(n)

1 (xi ))

} 1
2

.

Further, using Lemma 2, we easily ascertain that

E |Dn| ≤
{

1

nbn

∫

Ωn(τ )

∫

Ωn(τ )

p2n(x)p2n(y) dx dy

×
[

1

bnNn

1
∫

0

K
( x−u

bn

)

K
( y−u

bn

)

p(n)
1 (u)(1− p(n)

1 (u)) du+O
( 1

nbn

)

]} 1
2

≤ c21
1√
nNn

(

1 + 1

nb2n

)

.

Therefore
nb

1
2
n γnNnE |Dn| ≤ c22n

− δ
4 .

Thus
nb

1
2
n γnNnDn

P−→ 0. (34)

Further, the random variable b
− 1

2
n (T ∗

n − Δ(p(n)
1 ))σ−1(p(n)

1 ) is asymptotically normal
with the mean 0 and the dispersion 1. From this and (32), (33), (34) the proof of
Theorem 4 follows.

The proof of the next theorem is absolutely analogous to that of Theorem 4.

Theorem 5 Let p0(x), ϕ(x) and K (x) satisfy the conditions of Theorem 4. If
bn = n−δ , γn = n− 1

2 + δ
4 , 14 < δ < 1

2 , then for the alternative H1 : p(n)
1 (x) = p0(x) +

γnϕ(x) the statistic b
− 1

2
n (T n − Δ(p0))σ−1(p0) has a normal limit distribution with

the parameters
(

N0

σ(p0)

1
∫

0

ϕ2(x) dx, 1

)

,

i.e.

PH1 (T n ≥ qn(α)) −→ 1 − Φ

(

λα − N0

σ(p0)

1
∫

0

ϕ2(x) dx

)

.



36 P. K. Babilua and E. A. Nadaraya

Remark 1 It should be emphasized that the behavior of the estimate p̂n(x) near
the boundary of the interval [0, 1] is worse than within the interval [τbn, 1 − τbn]
(see [4]). That is why to avoid difficulties associated with this boundary effect, we
consider the integral mean-square deviation onΩn(τ ). However it can be shown that
under the conditions of Theorems 1 and 2 the results obtained above are valid for the
modified estimate (see [1, 4]) of the function p(x).

Remark 2 In this paper, some results, which were obtained by one of the authors
in [7] and presented there without the proof, are generalized and refined.

Remark 3 Let xi be the partition points of the interval [0, 1] chosen so that

H(x j ) = 2 j−1
2n , j = 1, . . . , n, where H(x) =

x
∫

0
h(u) du, h(u) is some known con-

tinuous distribution density on [0, 1]. In that case, the generalization of the results
of this paper can be obtained by arguments analogous to those used above.

References

1. Absava, R.M., Nadaraya, E.A.: Some problems of theory of non-parametric estimation of
functional characteristics of the distribution law of observations. Izd. Tbiliss. Univ, Tbilisi
(2005) (in Russian)

2. Copas, J.B.: Plotting p against x . Appl. Statist. 32(2), 25–31 (1983)
3. Efromovich, S.: Nonparametric Curve Estimation: Methods, Theory, and Applications.

Springer Series in Statistics. Springer, New York (1999)
4. Hart, J.D., Wehrly, ThE: Kernel regression when the boundary region is large, with an applica-

tion to testing the adequacy of polynomial models. J. Amer. Statist. Assoc. 87(420), 1018–1024
(1992)

5. Lipcer, R.Sh., Shirjaev, A.N.: A functional central limit theorem for semimartingales. Teor.
Veroyatnost. i Primenen. 25(4), 683–703 (1980) (in Russian)

6. Nadaraya, E.A.: On a regression estimate. Teor. Verojatnost. i Primenen. 9, 157–159 (1964).
(in Russian)

7. Nadaraya, E.: Limit distribution of a quadratic deviation of a nonparametric estimate of the
Bernoulli regression. Bull. Georgian National Acad. Sci. 173(2), 221–224 (2006)

8. Nadaraya, E., Babilua, P., Sokhadze, G.: Estimation of a distribution function by an indirect
sample. Ukr. Mat. Zh. 62(12), 1642–1658 (2010); Ukr. Math. J. 62(12), 1906–1924 (2010)

9. Okumura, H., Naito, K.: Weighted kernel estimators in nonparametric binomial regression.
The International Conference on Recent Trends and Directions in Nonparametric Statistics. J.
Nonparametr. Stat. 16(1–2), 39–62 (2004)

10. Staniswalis, J.G., Cooper, V.: Kernel estimates of dose response. Biometrics 44(4), 1103–1119
(1988)

11. Watson, G.S.: Smooth regression analysis. Sankhya Ser. A 26, 359–372 (1964)



Scaling Property for Fragmentation
Processes Related to Avalanches

Lucian Beznea, Madalina Deaconu, and Oana Lupaşcu-Stamate

Abstract We emphasize a scaling property for the continuous time fragmentation
processes related to a stochastic model for the fragmentation phase of an avalanche.
We present numerical results that confirm the validity of the scaling property for our
model, based on the appropriate stochastic differential equation of fragmentation and
on a fractal property of the solution.

Keywords Scaling · Fragmentation stochastic differential equation · Jump
process · Monte Carlo method
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1 Introduction

In the papers [1–3] we studied binary fragmentation processes (and associated non-
local branching processes, cf. [4]) of an infinite particles system, including a numer-
ical approach for the time evolution of the fragmentation phase of an avalanche. A
fractal property was emphasized for the process related to the avalanches.
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In this paper we prove that a scaling property holds for the above mentioned
process and we present numerical results that confirm the validity of this property.

The studyof the scaling property is closely related to the studyof the self-similarity
property. In this direction some results were recently obtained by using deterministic
approaches. In particular in [5] this study is performed by studying the asymptotic
behaviour of the first eigenvalue, as it represents the asymptotic growth of the solu-
tion. In the presence of a transport term it is shown that this behaviour depends on
wether transport dominates fragmentation or not. This equation has some applica-
tions in biology and medicine. Previously in [7] the self-similarity property was used
for the coagulation-fragmentation equation to obtain the existence of a stationary
solution for any given mass. In [10] the fragmentation is used to model cell-division
and the authors prove the existence of a stable steady distribution.

The paper is organised as follows.
In Sect. 2 we present a general result, characterizing (in Theorem1) the scaling

property of Markov process in terms of the transition function, the associated resol-
vent of kernels, and of the generator. It is pointed out also the case of a pure jump
process.

In Sect. 3 it is given the main application, by proving (in Corollary1) that the
weak solution of the stochastic differential equation of fragmentation for avalanches
has a scaling property. As it was already mentioned, it is a second specific property
emphasized for this SDE of fragmentation, the first one being the fractal property
proved in [2], and for the reader convenience we presented it at the end of the section.

Finally, in Sect. 4 we discuss the numerical results, obtained by Monte Carlo
simulation, that confirm the validity of the scaling property we proved.

2 Scaling Property for Jump Processes

Let E be Lusin topological space (i.e., E is homeomorphic to a Borel subset of a
compact metric space) with Borel σ -algebra B(E). We denote by pB(E) (resp.
bB(E)) the set of all positive Borel measurable functions on E (resp. the set of all
bounded real-valued Borel measurable functions on E).

Let X = (Ω,F ,Ft , Xt , θt , P
x , ζ ) be the right Markov process on E having

(Pt )t�0 as transition function, Pt f (x) = E
x ( f (Xt ), t < ζ), t � 0, f ∈ pB(E).

Let further (Uα)α>0 be the associated sub-Markovian resolvent of kernels, Uα f :=∫ ∞
0 e−αt Pt f dt .
We consider the generator (L ,D(L)) of X as follows; cf. [6] pag. 55, and [9]. Let

Bo := { f ∈ bB(E) : lim
t↘0

Pt f = f pointwise on E}

and D(L) be the set of all f ∈ Bo such that
(

Pt f (x)− f (x)
t

)

t,x
is bounded for x ∈ E

and t in a neighbourhood of zero, there exists limt↘0
Pt f − f

t pointwise and the above
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limit is an element of Bo. Define the linear operator L : D(L) −→ bB(E) as

L f (x) := lim
t↘0

Pt f (x) − f (x)

t
, f ∈ D(L), x ∈ E .

The operator (L ,D(L)) is called the weak generator of X . Recall that D(L) =
Uα(Bo) for all α > 0, and if f = Uαg, with g ∈ Bo, then (α − L) f = g.

We present now the classical construction of a jump process (see, e.g., [8], page
163), as we need it for the fragmentations processes related to avalanches.

Let N be a bounded kernel on E and denote by λ(x) the total mass of the measure
Nx , x ∈ E , λ(x) := N1(x) ∈ E . We set

λo := ||N1||∞ and N ′ := 1

λo
N + (1 − λ

λo
)I,

and define the bounded linear operator Ñ on bB(E) as

Ñ f (x) = λo

∫

E
[ f (y) − f (x)]N ′

x (dy) for all f ∈ bB(E) and x ∈ E .

Then Ñ = N − λI = λo(N ′ − I ) and it is the generator of a C0–semigroup (Pt )t�0

on bB(E),
Pt := et Ñ , t � 0.

Each Pt is a Markovian kernel on E , more precisely, Pt f = e−tλo
∑

k�0
(λot)k

k! N ′k f ,
where N ′k := N ′ ◦ . . . ◦ N ′

︸ ︷︷ ︸
k times

. The operator Ñ is the generator of a (continuous time)

pure jump Markov process X = (Xt )t�0 with state space E . Clearly, Ñ is the weak
generator of (Pt )t�0, with D(Ñ ) = bB(E).

The scaling property. Assume that E is a star-convex subset of R
d , d � 1, i.e. there

exists an xo in E such that for all x in E the line segment from xo to x is in E . For
simplicity we suppose that xo = 0. For a real-valued function f on E and s ∈ (0, 1)
we denote be fs the function on E defined as fs(x) := f (sx), x ∈ E .

Let n ∈ Z. A linear operator (L ,D(L)) on bB(E) is called homogeneous of
degree n provided that for every s ∈ (0, 1) and f ∈ D(L) one has fs ∈ D(L) and
(L f )s = snL( fs).

Clearly, the Laplace operator (in a star-convex subset of R
d ) is homogeneous

of degree −2. In the next section we shall give examples of operators related to
fragmentation processes, satisfying such a scaling property.

We can state now the main result of this section.

Theorem 1 Let n ∈ Z, (Pt )t�0 be the transition function of a right (Markov) process
(X, P

x ) with state space E, let (L ,D(L)) be the weak generator of (Pt )t�0, and
(Uα)α>0 the associated resolvent.
(i) The following assertions are equivalent.
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(i.a) The transition function (Pt )t�0 satisfies

(Pt f )s = Ptsn ( fs) for all f ∈ bpB(E), s ∈ (0, 1), and t � 0. (1)

(i.b) The resolvent family (Uα)α>0 satisfies

sn(Uα f )s = U α
sn

( fs) for all f ∈ bpB(E), s ∈ (0, 1), and α > 0 (2)

(i.c) The weak generator (L ,D(L)) is homogeneous of degree n.
(i.d) The process X has the following scaling property:

E
sx (Xt ∈ A) = E

x (Xtsn ∈ 1

s
A) for all A ∈ B(E), x ∈ E, s ∈ (0, 1), and t � 0.

(3)
(i i) Assume that N is a kernel on E which is homogeneous of degree n. Then the
pure jump Markov process having the generator Ñ has the scaling property (3).

Proof We clearly have (i.a) ⇐⇒ (i.d) because (Pt )t�0 is the transition function of
X .

(i.a) =⇒ (i.b). We have (Uα f )s = ∫ ∞
0 e−αt (Pt f )sdt = ∫ ∞

0 e−αt Ptsn ( fs)dt =
1
sn U α

sn
( fs), where we used the hypothesis (i.a) to get the second equality.

(i.b) =⇒ (i.a). With the same computation as before, we get from (i.b) that for
all α > 0 we have

∫ ∞
0 e−αt (Pt f )sdt = ∫ ∞

0 e−αt Ptsn ( fs)dt . Since any bounded β-
level excessive function belongs to Bo, using a monotone class argument, in order
to prove (1) we may assume that f ∈ Bo and therefore the real-valued functions
t 
−→ (Pt f )s(x) and t 
−→ Ptsn ( fs)(x) are both right continuous on [0,∞) for every
x ∈ E . By the uniqueness property of the Laplace transform we conclude now that
(1) holds.

(i.a) =⇒ (i.c). Let f ∈ D(L). Observe first that if g ∈ Bo then for all s ∈
(0, 1) we have gs ∈ Bo because limt↘0 Pt (gs) = limt↘0 Ptsn g = g. Consequently,
if f ∈ D(L) then (L f )s ∈ Bo and we have pointwise (L f )s = limt↘0

(Pt f )s− fs
t =

sn limt↘0
Ptsn ( fs )− fs

tsn = snL( fs). As a consequence fs also belongs to D(L), hence
(L ,D(L)) is homogeneous of degree n.

(i.c) =⇒ (i.b). As before, in order to prove (2), we may suppose that f ∈ Bo

and let g := Uα f ∈ D(L). Because gs also belongs to D(L), there exists h ∈ Bo

such that gs = U α
sn
h. We have (Lg)s = α(Uα f )s − fs = αgs − fs = αU α

sn
h − fs .

We have also L(gs) = L(U α
sn
h) = α

sn U α
sn
h − h. The equality (Lg)s = snL(gs) is

therefore equivalent with αU α
sn
h − fs = αU α

sn
h − snh. Hence fs = snh,U α

sn
( fs) =

snU α
sn
h = sngs = sn(Uα f )s .

(i i) Observe first that the hypothesis on N implies that λ(sx) = (N1)s(x) =
snN1(x) = snλ(x) for all x ∈ E and s ∈ (0, 1]. It follows that the kernel λI is
homogeneous of degree n and we deduce that Ñ = N − λI is also homogeneous
of degree n. The scaling property of X is now a consequence of the equivalence
(i.c) ⇐⇒ (i.d), since Ñ is its generator. �
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Remark 1 By Theorem1 if follows that:
If N is a kernel on E which is homogeneous of degree n, then the induced semigroup
Pt = et Ñ , t � 0, satisfies the scaling property (1).
One can give a direct, alternative proof for this assertion. Indeed, observe first
that the hypothesis on N implies that λ(sx) = (N1)s(x) = snN1(x) = snλ(x)
for all x ∈ E and s ∈ (0, 1]. It results that the kernel λI is homogeneous of
degree n and we deduce that Ñ = N − λI is also homogeneous of degree n.
Therefore (Ñ k f )s = skn Ñ k( fs) for any k ∈ N

∗ and we conclude that (Pt f )s =
∑

k�0
t k

k! (Ñ
k f )s = ∑

k�0
(tsn)k

k! Ñ k( fs) = Ptsn ( fs).

3 Scaling Property for the SDE of Fragmentation

In this section we consider the framework from [2].

Discontinuous fragmentation kernels for avalanches. We describe first a binary
fragmentation model. Consider an infinite system of particles, each particle being
characterized by its mass. As time evolves the particles perform fragmentation, that
is one particle can split into two smaller particles by conserving the total mass. Let
F be a fragmentation kernel, that is, a symmetric function F : (0, 1]2 −→ R+. Here
F(x, y) represents the rate of fragmentation of a particle of size x + y into two
particles of sizes x and y.

The following assumption is suggested by the so called rupture properties, empha-
sized in the deterministic modelling of the snow avalanches:

(H) There exists a function Φ : (0,∞) −→ (0,∞) such that F(x, y) = Φ
(
x
y

)

for all x, y > 0.
Since the fragmentation kernel F is assumed to be a symmetric function, we have

Φ(z) = Φ
(
1
z

)
for all z > 0. An example is as follows. Fix a “ratio” r , 0 < r < 1,

and consider the fragmentation kernel Fr : [0, 1]2 −→ R+, defined as Fr (x, y) :=
1
2 (δr (

x
y ) + δ1/r (

x
y )), if x, y > 0, and Fr (x, y) := 0 if xy = 0.

One can see that the fragmentation kernel Fr satisfies condition (H), more pre-
cisely we have Fr (x, y) = Φr ( xy ) for all x, y > 0, where Φr : (0,∞) −→ (0,∞)

is defined as Φr (z) := 1
2 (δr (z) + δ1/r (z)), z > 0. Clearly, the function Φr is not

continuous. By approximating the function Φr with a convenient sequence of con-
tinuous functions, one can see that the kernel N Fr

associated with Fr is given by the
following linear combination of Dirac measures:

N Fr

x := λo(βxδβx + (1 − β)xδ(1−β)x ), (4)

where λo := β2+(1−β)2

4 with β := r
1+r . In this case the kernel N

Fr
is no more Marko-

vian and has no density with respect to the Lebesgue measure.

The corresponding stochastic differential equation of fragmentation. To empha-
size the stochastic differential equation of fragmentation which is related to our
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stochastic model for the avalanches, we consider the kernel N Fr
on E := [0, 1] and

the associated pure jump process X = (Xt )t�0 with state space E .
We state now the stochastic differential equation of fragmentation for avalanches:

Xt = X0 −
∫ t

0

∫ 1

0

(
(1 − β)Xα−1[ s

βλo
<Xα−�1] + βXα−1[ s

λo
<Xα−� s

βλo
]
)
p(dα, ds),

(5)
where p(dα, ds) is a Poisson measure with intensity q := dαds.

Recall that the solution X of (5) describes the time evolution of the size of a typical
particle as follows. At some exponential random instants of parameter λ0, either,
with probability 1 − X , no fragmentation occurs for the typical particle, or else, it
breaks into two smaller particles: we subtract (1 − β)X from X with probability βX ,
or βX with probability (1 − β)X . The conditions on the particle size are induced by
the specific property of an avalanche, depending on β.

The existence of the weak solution to the Eq. (5) was proved in [2]. The next
corollary shows that this solution satisfies the claimed scaling property.

Corollary 1 The weak solution of the stochastic differential equation of fragmenta-
tion for avalanches (5), with the initial distribution δx , x ∈ E, is equal in distribution
with (X, P

x ) and the following scaling property holds:

E
sx (Xt ∈ A) = E

x (Xts ∈ 1

s
A) for every x ∈ E, t � 0, A ∈ B(E), and s ∈ (0, 1].

Proof We show first that the kernel N Fr
is homogeneous of degree one (n = 1). It

is sufficient to show that a kernel K of the form K f (x) := x f (βx) has this property.
We have indeed K f (sx) = sx f (βsx) = sK ( fs)(x).

The scaling property follows now by assertion (i i) of Theorem1 (see also

Remark1) because we know that the generator of X is Ñ Fr . �

The fractal property. We consider a sequence (dn)n�1 such that d1 < β � 1/2 and
dn+1/dn < β for all n � 1. Let n � 1 be fixed and define

En := [dn, 1], E ′
n := [dn+1, dn), and E ′

0 = E1.

Then clearly En = ⋃n
k=1 E

′
k−1.

The kernel N Fr
given by (4) is used to define the kernel Nr

n on En as

Nr
n f :=

n∑

k=1

1E ′
k−1

N Fr
( f 1E ′

k−1
) for all f ∈ pbB(En).

Further, we consider the first order integral operator F r
n ,

F r
n f (x) := Ñr

n f (x) =
∫

En

[ f (y) − f (x)](Nr
n )x (dy) for all f ∈ pbB(En) and x ∈ En .
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The operator F r
n is the generator of a (continuous time) jump Markov process

Xr,n = (Xr,n
t )t�0. Its transition function is P

r,n
t := eF

r
n t , t � 0.

For every x ∈ E let

Eβ,x := {βi (1 − β) j x : i, j ∈ N} ∪ {0} and Eβ,x,n := Eβ,x ∩ En for n � 1.

We can state now the fractal property of the process Xr,n , proved in [2].

Theorem 2 If n�1 then the following assertions hold for the Markov process Xr,n with state
space En and transition function (Pr,n

t )t�0.

(i) If t � 0 and x ∈ En then Pr,n
t (1(x,1])(x) = 0.

(ii) For every φ ∈ pbB(En) and each probability ν on En, the process
φ(Xr,n

t ) − ∫ t
0 F

r
nφ(Xr,n

s )ds, t�0, is a martingale under P
ν , with respect to the nat-

ural filtration of Xr,n.
(iii) If x ∈ En then P

x -a.s. Xr,n
t ∈ Eβ,x,n for all t � 0.

4 Numerical Results

Let A ⊂ [0, 1] be a fixed set and x ∈ [0, 1]. By Corollary1 for all n ∈ N
∗ and all time t > 0

we have the following scaling property:

E
x (Xt ∈ A) = E

1
n x

(

Xnt ∈ 1

n
A

)

for all t � 0. (6)

The relation (6) indicates that the probability that the process starting from x is in the set
A at time t is exactly the probability that the process starting from x/n, belongs to the smaller
set A/n at time nt . The key point of the equality (6) is that it depends on n only on the right
hand side.

To test numerically the relation (6) we use a Monte Carlo simulation for the stochastic
differential equation of fragmentation given by (5).

We fix a set A ⊂ [0, 1], a point x ∈ [0, 1], a final time T ∈ R
∗+ and n ∈ N

∗. In the first
step, we sample values of XT starting from x as a solution of the corresponding stochastic
differential equation of fragmentationwith the discontinuous kernel Fr , by using the algorithm
developed and implemented in [3]. For the reader’s convenience we recall it below, we can
remark the fractal property of the resulting fragments after the splitting, property which holds
according to assertion (iii) of Theorem2. In the second step we compute the probability that
the samples of XT belong to the set A. Then, we compare it with the probability that the
process XnT , starting from x/n, belongs to 1

n A.

We fix the parameter β < 1
2 and a final time T .

Algorithm
Step 0: Sampling the initial particle X0 ∼ Q0
Step p: Sampling a random variable Sp ∼ Exp(λ0)

Set Tp = Tp−1 + Sp
Set Xt = X p−1 for each t ∈ [Tp−1, Tp)
Set X p = βX p−1 with probability βX p−1,
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Table 1 Monte Carlo estimators for 104 simulations for x = 1, β = 1
6 , T = 20 fixed, and differ-

ent values of n

n E
x (Xt ∈ A) E

1
n x

(
Xt ∈ 1

n A
)

3 1 0.9998

10 1 1

20 1 1

30 1 1

40 1 1

50 1 1

Table 2 Monte Carlo estimators for 104 simulations for x = 1, n = 3, T = 20 fixed, and different
values of β

n E
x (Xt ∈ A) E

1
n x

(
Xt ∈ 1

n A
)

1
6 1 0.9998
1
3 1 1
1
9 1 1

Table 3 Monte Carlo estimators for 104 simulations for x = 1, n = 3, β = 1
6 fixed, and different

values of T

n E
x (Xt ∈ A) E

1
n x

(
Xt ∈ 1

n A
)

20 1 1

30 1 1

X p = (1 − β)X p−1 with probability (1 − β)X p−1,
or X p = X p−1 with probability 1 − X p−1

Stop: When Tp > T .
Outcome: The approximated particle mass at time T , X p−1.

To implement the above Monte Carlo simulation associated to the relation (6), we fix the
set A a union of disjoint intervals, A = [0, 1

4 ] ∪ [ 12 , 3
4 ], the starting point x = 1, that does not

belong to A. We consider the Monte Carlo parameter 104. Notice that the fractal character of
the particles is encoding in the ratio β.

In Table1 we give the Monte Carlo estimator for each one of the terms of relation (6),
for β = 1

6 , T = 20 fixed, and different values of n. In Table2 we illustrate the Monte Carlo
estimator of the each term of relation (6) for n = 3, T = 20 fixed, and different values of
β. In Table3 is written down the Monte Carlo estimator of the each term of relation (6), for
different values of n, with parameter 104.

We represent in Fig. 1 the evolution in time of t 
−→ E
x (Xt ∈ A) the red color and t 
−→

E
1
n x

(
Xnt ∈ 1

n A
)
the blue color in the time interval t ∈ [50, 100] for β, A, x chosen above,

and n = 3. Remark that in large time the red trajectory is very close to the blue one, that
suggest the validity of the relation (6).



Scaling Property for Fragmentation Processes … 45

Fig. 1 The path of Monte
Carlo approximation for
t 
−→ E

x (Xt ∈ A), the red
color, and
t 
−→ E

1
n x

(
Xnt ∈ 1

n A
)
, the

blue color, for β = 1
6 ,

A = [0, 1
4 ] ∪ [ 12 , 3

4 ], n = 3,
the Monte Carlo parameter
104, and the Euler step 10−3 50 55 60 65 70 75 80 85 90 95 100

0.08
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Conflict Resolution Models and Resource
Minimization Problems

Temur Chilachava and George Pochkhua

Abstract Nonlinear mathematical models of economic cooperation between two
politically (non-military confrontation) mutually opposing sides (two countries or
a country and its legal region) are proposed, which consider economic cooperation
between parts of the population of the sides, aimed at rapprochement of the sides and
peaceful settlement of conflicts. Qualitatively different fourmathematical models are
considered: in the first case, the process of economic cooperation is free frompolitical
pressure; in the second case, the governments of both sides interfere with the process
of economic cooperation; in the third case, the governments of both sides encourage
the process of economic cooperation; in the fourth case, the government of first side
interferes, and the government of the second side promotes cooperation. With some
dependencies between constant coefficients of the first model, the first integrals and
exact analytical solutions are found. A theorem has been proven to optimize (mini-
mize) the financial resources by which economic cooperation can peacefully resolve
political conflict. In the case of variable coefficients, computer simulations were per-
formed for all four mathematical models using the MATLAB software environment
to solve numerically the Cauchy problem for nonlinear dynamic systems. Minimum
values of management parameters (optimization of financial resources) are found, at
which conflicts can be resolved.

1 Introduction

Synergetics gave a powerful push using of mathematical models in social sciences:
sociology, history, demography, political science, conflicting science, etc. Creation
of mathematical models is more original in social sphere, because, they are more
difficult to substantiate [1–6].
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In 2005, mathematicians Robert Aumann and Thomas Schelling won the Nobel
Prize in Economics for the scientific work cycle Understanding of the problems of
the conflict and cooperation through the game theory.

Regarding to the conflict, the “repeated game principle presents another important
methodological aspect of mathematical modeling (game theory). According to this
principle: the long-term relationship of subjects in competition can generate coop-
eration between them, for which, there cannot be found a sufficient basis in case
of one time relationship (contact). In other words, long-term relationship generates
common interests and preconditions for cooperation [7–9].

Lee Kuan Yew, author of the Singaporean “Economic Miracle”, noted: “If you
want economic growth, do not break out the war with neighbors, establish trade
relations with them, instead”.

Taking into consideration the existing political conflict regions in the world, we
consider efficient mathematical modeling and the corresponding computer simula-
tions very perspective in determining conditions leading to the solving of conflicts
(cf. [10–12]).

2 Description of Mathematical Models

The nonlinear mathematical model (the dynamic system) of economic cooperation
between two political warring sides offered by us, read as:

⎧
⎨

⎩

dN1(t)
dt = −α1(t) [a(t) − N1(t)] [b(t) − N2(t)] + β1(t)N1(t)N2(t) + F1(t, N1(t))

dN2(t)
dt = −α2(t) [a(t) − N1(t)] [b(t) − N2(t)] + β2(t)N1(t)N2(t) + F2(t, N2(t))

,(1)

N1(0) = N10, N2(0) = N20. (2)

Depending on the functions F1(t, N1(t)), F2(t, N2(t)), we will get four qualita-
tively different social processes, leading respectively to four different mathematical
models:

The first model (the process of economic cooperation is free from political
pressure):

F1(t, N1(t)) ≡ 0, F2(t, N2(t)) ≡ 0. (3)

The second model (the governments of both sides interfere with the process
of economic cooperation, influencing various levels of pressure upon the citizens
inclined to mutual economic cooperation):

F1(t, N1(t)) = −δ1(t)N 1(t), F2(t, N2(t)) = −δ2(t)N2(t). (4)
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The third model (the governments of both sides encourage the process of
economic cooperation):

F1(t, N1(t)) = γ1(t) [a(t) − N 1(t)] , F2(t, N2(t)) = γ2(t) [b(t) − N2(t)] . (5)

The four model (the government of the first side interferes, and the govern-
ment of the second side promote cooperation):

F1(t, N1(t)) = −δ1(t)N 1(t)), F2(t, N2(t)) = γ2(t) [b(t) − N2(t)] . (6)

In mathematical models (1)–(6), the following notation are employed:
N1(t)—number of the citizens of the first side in time-point t , wishing or already

being in economic cooperation and inclined to the subsequent peaceful resolution of
the conflict;

N2(t)—number of the citizens of the second side in time-point t , wishing or
already being in economic cooperation and inclined to the subsequent peaceful res-
olution of the conflict;

α1(t), α2(t)—coefficients of aggression (alienation) of the sides;
β1(t), β2(t)—coefficients of cooperation of the sides;
δ1(t), δ2(t)—coefficients of coercion to aggression (alienation) of the sides (model

2, model 4);
γ1(t), γ2(t)—coefficients of coercion to cooperation of the sides (model 3, model

4);
a(t), b(t)—the population according to the first and second sides in time-point t ;
N1, N 2 ∈ C1[0, T ];
T—time interval for model (conflict) consideration.
We assume that weak condition of conflict resolution are (in the mathematical

model we assume that the conflict is resolved if at the same time more than half
of the population of both sides support the process of economic cooperation, which
promotes political reconciliation; simple majority of the population):

{
a(t)
2 < N1(t) ≤ a(t)

b(t)
2 < N2(t) ≤ b(t)

, t ≥ t1, (7)

and strong condition of conflict resolution are (in the mathematical model we assume
that the conflict is resolved if at the same time more than two thirds of the population
of both sides support the process of economic cooperation, which promotes political
reconciliation; the qualified most of the population):

{
2a(t)
3 < N1(t) ≤ a(t)

2b(t)
3 < N2(t) ≤ b(t)

, t ≥ t1. (8)
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3 First Mathematical Model in the Case of Constant
Coefficients

Let’s consider a special case of constant coefficients of the first mathematical model
(1)–(3):

αi (t) = αi = const > 0, βi (t) = βi = const > 0, i = 1, 2.,
a(t) = a = const, b(t) = b = const.

(9)

Here β1 and β2 are coefficients (factors) of cooperation of the sides, depend-
ing on financial support (investments) of international peacekeeping organizations,
promoting the process of economic cooperation of the sides, i.e. are parameters of
management.

It is natural and interesting to find the minimum value of these factors at which
the conflict can be resolved, i.e. to find the minimum values of external investments
that facilitate the process of cooperation between the sides, in order to resolve the
conflict.

The following theorem specifies conditions formodel coefficient values and initial
data under which a political conflict is resolved.

Theorem 1 If the following conditions hold

β1

α1
= β2

α2
= 1

p
> 1, (10)

β1 > α1

(

1 + a

N10
· b

N20
− a

N10
− b

N20

)

, (11)

then the exact analytical solution to Cauchy’s problem

{
dN1(t)
dt = −α1 [a − N1(t)] [b − N2(t)] + β1N 1(t)N2(t)

dN2(t)
dt = −α2 [a − N1(t)] [b − N2(t)] + β2N 1(t)N2(t)

, (12)

N1(0) = N10, N2(0) = N20,

meets conditions {
a
2 < N1(t1) ≤ a
b
2 < N2(t1) ≤ b

, (13)

when

t1 = max

{
1

√
ε2 + 4δ2(1 − p)β2

ln

[ a
2 − N13
a
2 − N14

N10 − N14

N10 − N13

]

;
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1
√

ε2 + 4δ2(1 − p)β2

ln

[
s − N13

s − N14

N10 − N14

N10 − N13

]}

, s = β1

β2

(
b

2
− N20

)

+ N10,

(14)
δ2 ≡ pa[β2N10 + (b − N20)β1], ε ≡ β1 pb + β2 pa + β1(1 − p)N20 − (1 − p)β2N10,

N13 = − ε

2(1 − p)β2
+

√
ε2 + 4δ2(1 − p)β2
2 (1 − p) β2

> 0,

N14 = − ε

2(1 − p)β2
−

√
ε2 + 4δ2(1 − p)β2
2 (1 − p) β2

< 0.

Proof From (10), (12), it is easy to find the first integral of the system of nonlinear
differential equations (12)

N2(t) = N20 + β2

β1
(N1(t) − N10). (15)

Substituting (15) in the first equation of system (12), we get

dN1(t)
dt = −pa [β1 (b − N20) + β2N10]+

+ [β1 pb + β2 pa + β1 (1 − p) N20 − (1 − p) β2N10] N1+
+ (1 − p) β2N 2

1 ,

(16)

N1(0) = N10.

Introduce the notation:

δ2 ≡ pa[β2N10 + (b − N20)β1],
ε ≡ β1 pb + β2 pa − β1(p − 1)N20 + (p − 1)β2N10 > 0.

(17)

Then Cauchy’s problem (16) can be rewritten in the following form

dN1(t)

dt
= (1 − p) β2

{[

N1 + ε

2 (1 − p) β2

]2

− ε2 + 4δ2 (1 − p) β2

4 (p − 1)2 β2
2

}

. (18)

Further, let

N13 ≡ − ε

2(1 − p)β2
+

√
ε2 + 4δ2(1 − p)β2

2(1 − p)β2
> 0, (19)

N14 ≡ − ε

2(1 − p)β2
−

√
ε2 + 4δ2(1 − p)β2

2(1 − p)β2
< 0. (20)

Then from (18) we get
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dN1(t)

dt
= (1 − p) β2 [N1(t) − N13] [N1(t) − N14] . (21)

Taking into account initial condition (16), one can find the exact solution of
equation (21),

N1(t) = N13(N10 − N14) − N14(N10 − N13) exp{t
√

ε2 + 4δ2(1 − p)β2}
N10 − N14 − (N10 − N13) exp{t

√
ε2 + 4δ2(1 − p)β2}

. (22)

Analysis of the exact solution (15), (22) shows that the following relations hold:

N1(t∗) = a

2
, t∗ = 1

√
ε2 + 4δ2(1 − p)β2

ln

[ a
2 − N13
a
2 − N14

N10 − N14

N10 − N13

]

, (23)

N1(t) >
a

2
, t > t∗,

N2(t∗∗) = b

2
, t∗∗ = 1

√
ε2 + 4δ2(1 − p)β2

ln

[
s − N13

s − N14

N10 − N14

N10 − N13

]

, (24)

s = β1

β2

(
b

2
− N20

)

+ N10, N1(t) >
a

2
, t > t∗∗.

At the same time, in accordance with (21), it is natural to assume that the initial
condition satisfies the inequality

N10 > N13, (25)

which automatically guarantee remove positivity of expressions within logarithms
(23), (24).

Taking into account (17) and (19), inequality (25) leads to the following inequality

p <
N10N20

ab − aN20 − bN10 + N10N20
,

which, in turn, is equivalent to the inequality (11)

β1 > α1

(

1 + a

N10
· b

N20
− a

N10
− b

N20

)

.

Thus, when
t = t1 ≡ max {t∗; t∗∗} ,

t1 = max

{
1

√
ε2 + 4δ2(1 − p)β2

ln

[ a
2 − N13
a
2 − N14

N10 − N14

N10 − N13

]

;
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1
√

ε2 + 4δ2(1 − p)β2

ln

[
s − N13

s − N14

N10 − N14

N10 − N13

]}

,

the system of inequalities (13) holds, which completes the proof.
The above theorem, for the first mathematical model in the case of constant model

coefficients, allows for fixed initial conditions (population of the sides (zero demo-
graphic factors); the initial population of the sides prone to economic cooperation;
factors of aggressiveness of parts of the population of the sides preventing economic
cooperation) to obtain minimum values for parameters of management, in which
political conflict will be resolved

β1 > β1min = α1

(
1 + a

N10
· b
N20

− a
N10

− b
N20

)
,

β2 > β2min = α2

(
1 + a

N10
· b
N20

− a
N10

− b
N20

)
.

(26)

4 Computer Modeling in the Case of Variable Model
Coefficients. Optimization of Management Parameters

Let us consider mathematical models (1)–(6) in the case of variable coefficients
taking into account non-zero demographic factors of population of the sides.

In mathematical models (1)–(6) with variable coefficients, we assume that the
coefficients are exponential functions andwe perform the appropriate computermod-
eling.

The calculations are performed during the mathematical models review period
t ∈ [0, T ].

Computer modeling (simulations), depending on the variable coefficients of the
mathematicalmodels, produces two different results (for example, withweak conflict
resolution):

There exists time t1 : 0 < t1 ≤ T which system (7) is completed (the conflict is
resolved);

The system (7) is not completed for t ∈ [0, T ] (the conflict is not resolved).
Below we use the following exponential functions:

a(t) = a0e
n1

t
T , b(t) = b0e

n2
t
T , α1(t) = α10e

n3
t
T , α2(t) = α20e

n4
t
T ,

β1(t) = β10e
n5

t
T , β2(t) = β20e

n6
t
T , δ1(t) = δ10e

n7
t
T , δ2(t) = δ20e

n8
t
T , (27)

γ1(t) = γ10e
n9

t
T , γ2(t) = γ20e

n10
t
T ,

where
a0 = 2 · 105—the population of the first side (at start point in time, start of pro-

cess),
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b0 = 4 · 106—the population of the second side (at start point in time, start of
process),

N10 = 2 · 104—10% of the population of the first side (at start point in time, start
of process),

N20 = 8 · 105—20% of the population of the second side (at start point in time,
start of process),

n1, n2—the coefficients of demographic factors,
n3, n4—the coefficients of aggression,
n5, n6—the coefficients of cooperation,
n7, n8—coefficients of coercion to aggression (alienation) of the sides,
n9, n10—coefficients of coercion to cooperation of the sides.
For clarity, we assume either T = 120 or T = 240 months.
Below we present some numerical results of computer simulation and manage-

ment parameter optimization for the above described fourmathematicalmodels (con-
sidered weak conditions (7) for conflict resolution).

Model 1
Case 1.1:
For fixed values of the parameters (see (27))

α10 = 4 · 10−11, α20 = 1 · 10−11, β20 = 9 · 10−8,

n1 = 0.1, n2 = 0.2, n3 = 1, n4 = 1, n5 = 1.2, n6 = 1.3,

we have found minimum value β10 = 0.726 · 10−8 for which the conflict is resolved.

Case 1.2:
For fixed values of the parameters (see (27))

α10 = 4 · 10−11, α20 = 1 · 10−11, β10 = 1 · 10−8,

n1 = 0.1, n2 = 0.2, n3 = 1, n4 = 1, n5 = 1.2, n6 = 1.3,
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we have found minimum value β20 = 7.358 · 10−8 for which the conflict is resolved
(T = 114).

Model 2
Case 2.1:
For fixed values of the parameters (see (27))

α10 = 4 · 10−11, α20 = 1 · 10−11, β20 = 8 · 10−8, δ10 = 2 · 10−4, δ20 = 3 · 10−4,

n1 = 0.1, n2 = 0.2, n3 = 1, n4 = 1, n5 = 1.2, n6 = 1.3, n7 = 0.3, n8 = 0.5,

we have found minimum value β10 = 0.858 · 10−8 for which the conflict is resolved.

Case 2.2:
For fixed values of the parameters (see (27))

α10 = 4 · 10−11, α20 = 1 · 10−11, β10 = 1 · 10−8, δ10 = 2 · 10−4, δ20 = 3 · 10−4,

n1 = 0.1, n2 = 0.2, n3 = 1, n4 = 1, n5 = 1.2, n6 = 1.3, n7 = 0.3, n8 = 0.5,
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we have found minimum value β20 = 7.656 · 10−8 for which the conflict is resolved
(T = 115).

Model 3
Case 3.1:
For fixed values of the parameters (see (27))

α10 = 5 · 10−11, α20 = 1 · 10−11, β10 = 1 · 10−8, β20 = 8 · 10−8, γ20 = 4 · 10−5,

n1 = 0.1, n2 = 0.2, n3 = 1, n4 = 1, n5 = 1, n6 = 1, n9 = 1.2, n10 = 1.4,

we have found minimum value γ10 = 6.550 · 10−5 for which the conflict is resolved.

Case 3.2:
For fixed values of the parameters (see (27))

α10 = 5 · 10−11, α20 = 1 · 10−11, β10 = 1 · 10−8, β20 = 8 · 10−8, γ10 = 6 · 10−5,

n1 = 0.1, n2 = 0.2, n3 = 1, n4 = 1, n5 = 1, n6 = 1, n9 = 1.2, n10 = 1.4,
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we have found minimum value γ20 = 4.398 · 10−5 for which the conflict is resolved.

Model 4
Case 4.1:
For fixed values of the parameters (see (27))

α10 = 4 · 10−11, α20 = 2 · 10−11, β10 = 1 · 10−8, β20 = 8 · 10−8, δ10 = 3 · 10−5,

n1 = 0.1, n2 = 0.2, n3 = 1, n4 = 1, n5 = 1, n6 = 1, n7 = 1, n10 = 1.5,

we have found minimum value γ20 = 6.728 · 10−5 for which the conflict is resolved.

Case 4.2:
For fixed values of the parameters (see (27))

α10 = 4 · 10−11, α20 = 2 · 10−11, β10 = 1 · 10−8, β20 = 8 · 10−8, δ10 = 3 · 10−5,

n1 = 0.1, n2 = 0.2, n3 = 1, n4 = 1, n5 = 1, n6 = 1, n7 = 1, n10 = 2,
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we have found minimum value γ20 = 5.288 · 10−5 for which the conflict is resolved.

5 Conclusion

Some dependence between constant coefficients of the first mathematical model (the
process of economic cooperation is free from political pressure), conditions on man-
agement parameters are analytically found to optimize (minimize) financial resources
under which economic cooperation can peacefully resolve political conflict.

In the case of models with variable coefficients, for all four mathematical models
described in the main text, with the help of computer simulations minimum values
of management parameters (optimization of financial resources) have been found for
which the conflicts can be resolved (more than half of the population of both sides
support an economic cooperation process that promotes political reconciliation).
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Modeling of Extreme Events and
Regional Climate Variability on the
Territory of the Caucasus (Georgia)

Teimurazi Davitashvili, Inga Samkharadze, and Meri Sharikadze

Abstract Currently, the problem of climate change is an urgent issue in the South
Caucasus region, as well as in Georgia, where increased trends of average annual
temperaturewith heavy precipitation, hail, floods and drought have becomemore fre-
quent. To prevent the consequences of these events (accidents) in a timelymanner, it is
necessary to take more effective steps in providing scientific information on extreme
events a regional and local scale, the official environmental authorities, society and
the scientific community. In this work, on the one hand, a comparative study of three
cumulus parameterization and five microphysical schemes of the Weather Research
and Forecast (WRF) v.3.6 model, is carried out for four exceptional precipitation
phenomena that have occurred in Georgia (Tbilisi) in the summer of 2015 and 2016.
On the other hand, the Real-time Environmental Applications and Display System
(READY) is used to study these phenomena. Predicted events are evaluated by a
thorough examination of weather radar data. Some results of numerical calculations
based on the WRF and READY systems are presented and analyzed.
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1 Introduction

For the last four decades the number of the extreme weather events and natural haz-
ards (floods, landslides, storms, heavy showers, hails) has significantly increased on
the territory of Georgia [24]. How it seems for prevention of accidents it is neces-
sary to take more efficient steps in provision with scientific information (regional
and local scale extreme weather prediction, climate change tendencies) against the
freaks of nature. The question of studying formation of hazardous precipitations on
the background of modern climate change based on the regional weather forecasting
models such as Weather Research and Forecast (WRF) model and on the modern
sounding technologies is an urgent issue for Georgia. In a numerical model likeWRF,
the Microphysics (MP) and Cumulus Parameterization schemes (CPSs) are mainly
responsible for precipitation generation [13]. The subgrid-scale convective process
and shallow clouds are managed by the cumulus parameterization [25]. Significant
MP and CPSs options are especially highlighted in those studies that deal with the
warm season convective events predictions over the mountains territories [7]. Prob-
lem of the MP and CPSs option for warm season precipitation prediction has been
widely explored in the scientific literature ([8, 11, 13, 15, 17, 22, 31, 32, 37] among
others). Generally the global models are well characterizing the large scale weather
systems above the Caucasus Mountains region, but not enough the fine scale atmo-
sphere processes which associate with local terrain and land cover. To capture these
smaller scale features of atmosphere processes, a simulation with sufficiently high
spatial resolution of the local complex terrain and the heterogeneous land surface of
the complex territory is necessary [5, 6, 6]. A numerical calculations byWRFmodel
the convective cumulus schemes mainly are used in the coarse size grid meshes [27]
and that is why a series of numerical simulations have been conducted without use
of cumulus schemes at high-resolution (less than 10km) grid spacing (Nasrollahi et
al. 2007). However, it has been demonstrated that using a cumulus scheme at a 9-km
grid size had improved the results of simulations of the early rapid intensification of
Hurricane Emily, while the effect of using such parameterization at 3-km grid size
had only a small impact on the results [14]. Besides, some of the previous studies
also showed that application of the cumulus schemes in the numerical simulations
at a horizontal resolution of 9km [9] and even 6km [16] had improved the results
of numerical simulations. Our previous studies also showed that the simulations
of inner-massive cumulus processes over the complex territory of Caucasus were
influenced by choosing physical processes in WRF model [7], by the interactions
among the physical processes and by the model horizontal grid spacing [6]. Fur-
thermore, sounding is a convenient tool for assessing the state of the atmosphere.
Indeed, many countries developed their own radiosonde systems as a matter of pride
[12]. To improve weather forecasts (with an emphasis on weather hazard events), an
Atmospheric Sounding Program (ASP) was developed is a convenient tool for dis-
playing vertical profiles of thermodynamic quantities (temperature, humidity, and
pressure) recorded by a radiosonde and based on vertical atmospheric profiles to
predict the type of precipitation, the evolution of the boundary layer (clouds and
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temperatures) and the type of convection [19]. Fully automated sounding equipment
reduces operating costs and provides greater flexibility in site selection and observa-
tion schedule, provides full coverage of upper-air meteorological observations [34].
Proximity sounding analysis has long been a tool for determining the environmental
conditions associated with different types of weather phenomena and for distinguish-
ing between them [4]. For example, more than 65 derechos (long-lived, widespread
damaging convective windstorms), were identified during the years 1983 to 1993
accompanied by 115 proximity soundings [10]. ASP has been widely used: for com-
parison of radiosonde and COSMIC data [29]; in order to study the circulation of the
upper troposphere and lower stratosphere [3]; for comparisons of convective avail-
able potential energy (CAPE) with standard instability indices and for evaluating the
convective potential of the atmosphere such as the lifted index [1, 2]. In this study,
on the one hand, we intended to determine some acceptable, possible combinations
of MP and CPSs schemes of the WRF v.3.6.1 model for predicting convective phe-
nomena (precipitation, hail) of the warm season over the territory of Georgia. On the
other hand, the data from the sounding system and the meteorological radar were
used to further evaluate the results of the WRF simulation.

2 Problem Formulation

The study of the formation and prediction of strong convection (hazardous precipita-
tion, hail) based on numericalmodels is an urgent problem formountainous countries
and for the territory of Georgia. But it should be noted that in the summer, short-
term forecasts of heavy rainfall using numerical models (WRF, etc.) are challenging,
especially in mountainous areas [7]. Since MP and CPSs schemes result in signifi-
cant variability in precipitation prediction in theWRFmodel, not to a lesser extent, a
choice among of physical schemes in theWRF v.3.6.1 model is very much necessary
for showers, hails and as a consequence floods properly prediction on the territory
of Georgia. Since this study also seeks to support operation works at the Georgian
Environmental Agency (GEA) in short term local scale weather forecasts (where the
WRF model is used too) the first step in this process is to evaluate through analysis
of MP and CPSs schemes option for predicting extreme summer precipitation in the
WRF v.3.6 model. Four sets of high-quality observations were used to evaluate the
accuracy of forecasts of heavy summer precipitation. To this end, the dependence
of forecasts on the resolution of grid points and a comparative study of the MP
and CPS options for predicting precipitation in the complex territory of Tbilisi was
studied. Namely, four cases of convective events (June 13, 2015, June 21, 23 and
August 2, 2016) that took place in Tbilisi and various combinations between the three
CPS schemes Kain–Fritsch, Grell–Devenyi ensemble and Betts–Miller–Janjic) and
five MP (WSM6, Purdue Lin, Thompson, Morrison 2-Moment and Goddard) were
studied.
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2.1 Data and Methodology

For analyzing and assessment of forecasting resultswewere supported by theweather
radar data and by the Global Data Assimilation System (GDAS). Computations were
executed by the computer systemwithworking nodes (16 cores+, 32GbRamon each)
located in the Georgian Research and Educational Networks Association (GRENA)
which in its normal course was connected to the European GRID infrastructure.
Therefore it was a good opportunity for running model on larger number of CPUs
and storing large amount of data on the grid storage elements.

2.1.1 Real-Time Environmental Applications and Display System

Air masses vertical movements are important in the development of ongoing atmo-
spheric processes in the mountainous regions. Indeed, convection of air masses is
intensified under the influence of relief that causes formation of intense convective
clouds on the territories with complex orography. Forecasting dangerous, local con-
vective processes with numeral methods within short timeframes mostly do not have
good results. That is why it is essential to develop different methods together with
the numeral methods of weather forecasting. Namely, in order to estimate possi-
ble quality of convective processes, we have to study the thermodynamic condition
of atmosphere and establish the quality of atmospheric instability with the purpose
of forecasting possible dangerous convective local processes. In order to estimate
quality of atmospheric instability it is essential to study the vertical structure of
atmosphere. The state of the atmosphere by stratification can be unstable, unsustain-
able, and indistinguishable. In the case of stable stratification, the atmosphere has
the ability to maintain or stop vertical movements. The particle method is one of the
most widely used methods to measure the degree of convection in the atmosphere,
assuming that at the beginning the particle and the surrounding atmosphere have the
same temperatures and do not heat up to the environment when the particle ascends,
that is, the process proceeds adiabatically. Since the particle is not initially saturated,
so it moves to the Lifting Condensation Level (LCL) dry, and at the LCL air par-
cel’s temperature and dew point are equal, water begins to condense out, movement
becomes slower and after the LCL the air parcel’s temperature follows the moist
adiabat as it rises. At the Level of Free Convection (LFC), the temperature of the
air equals that of the environment and above the LEC, the air parcel temperature is
higher than that of the environment such that if the air rises above the LFC, it will
continue to rise to the level Zmax where its final maximum updraft strength w will
be at Zmax [21, 35]:

w(Zmax ) = √
2CAPE (1)

where CAPE (Convective Available Potential Energy) is the work of per unit mass
done on the parcel as it rises (J/kg), represents the vertically integrated positive
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buoyancy of a parcel experiencing adiabatic ascent and has the following form [21]:

CAPE =
∫ Zmax

ZLPC

g
Tparcel − Tenv

Tenv
d Z (2)

where Tparcel is the temperature of the parcel and Tenv is the temperature of the
environment, g is gravity acceleration, Zmax is the height of the equilibrium level (an
atmospheric layer, above which the ambient temperature is greater than the particle
temperature and generally during a strong convection it is close to the height of the
tropopause).

Equation (2) is called the “Positive Energy Above LFC” on the Skew-T program,
and is calculated using potential temperature. Equation (2) provides an estimate of
maximum updraft strength in convective storms according to (1). CAPE is a fun-
damental indicator of potential intensity of deep, moist convection, since it is pro-
portional to the energy available for a rising parcel and therefore (2) combines a
significant part of the thermodynamic information contained in the sounding. The
Convective Inhibition energy (CIN) is the amount of work required to lift a parcel
through a layer that is warmer than the parcel and a very similar to CAPE has the
following form:

C I N =
∫ ZLPC

Zmax

g
Tparcel − Tenv

Tenv
d Z (3)

where ZML is the mixed layer depth (the height of the surface) and all other vari-
ables are the same as in the CAPE calculation. Equation (3) is a measure of the
“negative area” on a sounding between the surface and the LFC. CIN is the amount
of work required to raise a parcel upward sufficient to overcome negative buoy-
ancy. This negative area is often referred to as a “lid” or “cap” [21, 35]. Nowadays,
operation of radiosonde relates to some financial expenses and it is not almost in
use in some developing countries (among them even in Georgia). In order to effec-
tively and timely forecast ongoing atmospheric processes, the National Oceanic and
Atmospheric Administration’s (NOAA) Air Resources Laboratory (ARL) has cre-
ated Real-time Environmental Applications and Display System (READY, http://
www.ready.noaa.gov). For the purpose of evaluation thermodynamic condition of
the atmosphere by extreme days discussed in this paper, archive of READY System
[23, 28] have been applied. Calculated results have been compared with real data
obtained fromSighnaghiweather radar (Meteor 735CDP10-DopplerWeatherRadar)
monitored by Military Scientific Technical Center “DELTA” located in the Village
of Chotori, Sighnaghi Municipality, through that on entire Kakheti region clouds are
being observed. So in this study, WRF v.3.6 model’s different microphysics and con-
vective scheme components options with nested grid resolutions in the range from
2.2 to 19.8km with an emphasis on 6.6 and 2.2km mesh sizes simulations against
READY system and radar observation data are studied.

http://www.ready.noaa.gov
http://www.ready.noaa.gov
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2.1.2 WRF Model and Simulation Design

The WRF is a real-time numerical weather forecasting system in which the atmo-
sphere modeling system includes the development and research of data assimila-
tion, research on parameterized physics, regional climate modeling, air quality mod-
eling, atmosphere-ocean coupling and idealized simulations [26]. In WRF there
are two dynamics solvers: the Advanced Research WRF (ARW) solver (Eulerian
mass or “Em” solver) developed primarily at the National Center for Atmospheric
Research’s, and the NMM (Nonhydrostatic Mesoscale Model) solver developed at
National Centers for Environmental Prediction. The ARW dynamics solver is based
on compressible, non-hydrostatic Euler equations, which in the vertical mass coor-
dinate following the terrain (Laprise 1992) in the flux form using variables that have
conservation properties [20] have the following form [26]:

∂U

∂t
+ (∇ · Vu) − ∂

∂x

(
P

∂φ

∂η

)
+ ∂

∂η

(
P

∂φ

∂x

)
= FU , (4)

∂V

∂t
+ (∇ · Vv) − ∂

∂y

(
P

∂φ

∂η

)
+ ∂

∂η

(
P

∂φ

∂y

)
= FV , (5)

∂W

∂t
+ (∇ · Vw) − g

(
∂P

∂η
− η

)
= Fw (6)

∂θ

∂t
+ (∇ · θ) = Fθ , (7)

∂μ

∂t
+ (∇ · V ) = 0, (8)

∂φ

∂t
+ [V · ∇φ − gW ] = 0, (9)

along with the diagnostic relation for the inverse density

∂φ

∂η
= −αμ, (10)

and the equation of state

P = P0(Rdθ/P0α)γ (11)

In (4)–(9) the following notation are employed,

∇ · Va = ∂(Ua)

∂x
+ ∂(Va)

∂y
+ ∂(�a)

∂η

V · ∇a = U
∂a

∂x
+ V

∂a

∂y
+ �

∂a

∂η
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where η is terrain-following hydrostatic-pressure vertical coordinate, defined as
η = (

Ph − Pht /μ
)
, μ = PhS − Pht , and μ(x, y) represents the mass per unit area

within the column in the model domain at (x, y), Ph is the hydrostatic component
of the pressure, and PhS and Pht refer to values along the surface and top bound-
aries, respectively. V = μv = (U, V,W ), � = μη̇, 	 = μθ. v = (u, v,w) are the
covariant velocities in the two horizontal and vertical directions, respectively, while
ω = η̇ is the contravariant ’vertical’ velocity, u, v,w are the axis components of wind
velocity along axis x, y, z, t- is time, θ is the potential temperature, ϕ = gz (geopo-
tential), p (pressure), and α = 1/p (the inverse density). A represents a generic
variable. γ = Cp/Cv = 1.4 is the ratio of the heat capacities for dry air, Rd is the
gas constant for dry air, and P0 is a reference pressure. The right-hand-side terms
FU , FV , FW , and F	 represent forcing terms arising from model physics, turbulent
mixing, spherical projections, and the earth’s rotation.

System of equations (4)–(11) is solved by the following boundary conditions
(BC): open lateral BC, free-slip bottom BC and gravity wave diffusion absorbing
BC at upper level. All the WRF3.6.1 model simulations were initialized at 00:00
UTC on 13th of June 2015, 21th, 23nd of June and 2nd of August 2016 with 0.5◦
GFS data and then run for 48h on a coarse 90 × 100 grid point domain with 19.8-
km horizontal grid spacing and 54 vertical levels. It should be noted that no cloud
information was contained within the WRF initial conditions (i.e. the simulations
were run in cold-start mode). The geographical region covered by the nested WRF
model and the nested domains configurations are shown in Fig. 1. Prediction of the
deep, moist convection processes on the small areas became more vulnerable for

Fig. 1 Model domain used in WRF simulations
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Table 1 Five set of the WRF parameterization schemes used in this study
WRF Physics Set 1 Set 2 Set 3 Set 4 Set 5

Micro physics WSM6 Thompson Purdue Lin Morrison
2-Moment

Goddard

Cumulus
parameterization

Kain–Fritsch Betts–Miller
Janjic

Kain–Fritsch Grell–Devenyi
ensemble

Kain–Fritsch

Surface layer MM5 Simil. MM5 Simil. MM5 Simil (PX) Similarity MM5 Similarit

Planet. boundary
layer

YSU PBL YSU PBL YSU PBL ACM2 PBL YSU PBL

Land-surface Noah LSM Noah LSM Noah LSM Noah LSM Noah LSM

Atmospheric
Radiat.

RRTM/Dudhia RRTM/Dudhia RRTM/Dudhia RRTM/Dudhia RRTM/Dudhia

some regions of Georgia having complex topography [5] and predominantly in the
capital city of Georgia, Tbilisi.

In our study we have used one-way nesting of WRF model domains, where an
inner nested domain (grid size of 70× 70 points, with resolutions 2.2km) has fully
covered the territory of Georgia and it was centered on to the capital city of Georgia,
Tbilisi (with the GPS coordinates of 41◦43′0.0012′′ N and 44◦46′59.9988′′E). The
next outer nested domain (a grid of 94 × 102 points with resolutions of 6.6km)
has fully covered the South Caucasus region. Both of them have used 54 vertical
levels including 8 levels below 2km. A time step of 10s was used for fulfillment of
calculations in the fine mesh resolution grids (see Fig. 1). As known, the WRF 3.6
model contains several physics (micro physics, cumulus parameterization physics,
radiation physics, surface layer physics, land surface physics, and planetary boundary
layer physics) with a number of different modules and schemes options. In this study,
we selected the parameterization schemes have been selected, listed in Table 1.

3 Results and Discussion

In this study all kinds of combinations from five MP and three CPSs have been
tested to examine the impact of high-resolution (6.6 and even 2.2km) MP and CPSs
schemes on the results of local cumulus processes prediction, but only the results of
calculations executed in the frame of Table 1 are presented here.

Convective event on 13 June 2015. According to the weather radar’s data of
the atmosphere reflecting state on 13 June 2015 from 10:00 during 1.5–2h there was
heavy shower in Tbilisi (see Fig. 2). Due to the heavy rainfall, a bigwave (constructed
by mass of slush, rocks and trees) run across the Vere river canyon and washed
everything away to the square of Heroes in Tbilisi. Unfortunately, at least 20 people
(including three zoo workers) and half of the animals from the Tbilisi zoo were killed
in this event.



Modeling of Extreme Events and Regional Climate Variability … 69

Fig. 2 Weather radar’s data of the atmosphere reflecting state (clouds max-intensity dbz) above
the territory of eastern Georgia a at 22:03, b at 23:02 on 13 of June 2015, and values of ATP c at
23:02 on 13 of June, d at 01:01 on 14 of June

It has been shown that none of the combinations of schemes, listed in Table 1
were able to reproduce occurred deep convection of the 13th of June 2015 in Tbilisi
and in its vicinity, accurately. For example on Fig. 3a and b predicted fields of the
relative humidity on the 850 hPa for 13 June (21UTC) and 14June (00UTC) 2015
are presented, respectively, which were simulated by WRF Physics Options set1 (it
gave a better result than others). The calculated amounts of water vapour depicted on
Fig. 3a and b (nested domain with 6.6km resolution), presenting the moments when
atmospheric event was in full swing, are not in agreement with the real situation (see
Fig. 2) which took place in Tbilisi and surroundings on 13 June 2015.

Figure 4 showsAerologicalDiagrams (AD)of June13, 2015 (byTbilisi time10:00
a.m.) are shown on the territory of Tbilisi Zoo (with its geographic coordinates 41◦71′
N , 44◦77′ E) by various instants of time (as of June 13, 4a - 06 UTC, 4b - 12 UTC,
4c - 18 UTC, 4d - 14 June 00 UTC). To evaluate the thermal state of the atmosphere,
in the diagrams we constructed particle state curves (blue continuous lines). As it is
clearly shown on the diagram obtained at 06 UTC (Fig. 4a), instability energy CAPE
is at a low level from Level of Free Convection (LFC) to Equilibrium Level (EL).
Numerical value of instability energy counted in accordance with READY System
of ARL is at a low level, CAPE = 55.6 j/kg that corresponds with weak instability
condition (Table 2). As it is shown in this figure, in upper atmospheric layers to the
height of 100 mb, curve of particle condition almost follows the stratification curve
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Fig. 3 Maps of the relative humidity (a at the 850 hPa at 21:00 13 June 2015 and b at 00:00 14June
2015) obtained by set.1 and simulated with 6.6km resolution

showing that atmospheric condition is partly indistinguishable, but in the lower layers
a stable state is observed, which is indicated by the value of convective inhibition
CINH = −9.4J / kg. Figure 4b shows AD of June 13, at 12:00 UTC (By Tbilisi
time at 16:00 p.m.) for the same geographic coordinates. As it is shown in this
figure, the curve of condition slightly moved to the right side of stratification curve
to certain height above condensation level shown by the increase of instability power
CAPE= 109.6 j/kg and decrease of inhibition power CIN= –7.9 j/kg. At 10 o’clock
(18 UTC) local time the value of inhibition energy was significantly decreased, by
this time CAPE = 48 j/kg (Fig. 4c). If we compare this data with the data as of June
14, in the morning at 4 o’clock (00 UTC) (Fig. 4d), we see that on all levels the curve
of condition is located on the left side of stratification curve, meaning that by this
time atmospheric condition is absolutely stable. Indeed, by this time, the numerical
values of power (calculated by the READYARL system with a horizontal resolution
of 10 latitude (111km)) CAPE=CINH= 0, which quite well coincides with the data
shown in Fig. 4d. Thus, by 12:00 UTC (Tbilisi time 4:00 p.m.), the value of CAPE
was maximum, and the value of CINH was minimal (compared with the aerological
data calculated at other times of the day). In fact, according to the radar data, later at
22:00 it was found that the clouds were maximally developed and accordingly, we
may consider that pursuant to the analysis of AD carried out by morning hours, there
maybemadepreventive forecast on possible complexmeteorological processes taken
place in atmosphere and in the second half of day about possible heavy atmospheric
precipitates.

The another case of local strong convective events was observed on June and
August of 2016 in Tbilisi.

Convective event on 21 June 2016. The fair weather suddenly changed by rough
weather with a strong wind (wind’s velocity reached about 35m/s) at 16:00 on 21
June 2016 in Tbilisi. The cloudy systems gradually grew above the different districts
of Tbilisi from 16:15 to 16:25 and after 5min began heavy unexpected shower, which
was accompanied with 2–3 mm diameter hail. Hailing stopped after 8min and later
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Fig. 4 AD of June 13, 2015 (by Tbilisi time 10:00 a.m.) on the territory of Tbilisi zoo (with its
geographic coordinates 41◦71′ N , 44◦77′ E) by various instants of time (a 06 UTC, b 12 UTC, c
18 UTC, d 14 June 00 UTC)

the shower was accompanied with thunderstorm. At 16:50 the pouring stopped and
after 10min the raining stopped too. Shower, thunderstorm and hails have a very local
character and did not extend outside of Tbilisi. This convective event, accompanied
by a flood, left Tbilisi with dirty streets, squares and public gardens at 17:00 on June
21, 2016.

The results of calculations executed under WRF model by Set 1 have shown that
though the background synoptic processes taken place in Georgia were modelled
fairly good, while convective processes that took place above Tbilisi was not mod-
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Fig. 5 Maps of ATP. Forecasted a at 18:00 21 June 2016 by set. 1,b by set. 2, c by set. 3 and d by
set. 5 for the domain with 19.8. km resolution

elled satisfactorily (Fig. 5a). The results of calculations performed by the schemes
combination of Set 2 have shown that the cloudy system has invaded on the ter-
ritory of Georgia from south–west to the north–east direction but from 15 to 18
o’clock there was not raining over the surrounding territory of Tbilisi (Fig. 5b). The
results of calculations by the Set 3 have shown that the synoptic processes mentioned
above were modelled rather not satisfactorily. Namely, the atmosphere masses were
intruded into the territory of Georgia from south–west not to the east direction but
rather to the north, north–east direction and taking into consideration placement of
Tbilisi it is evident that the Set 3 was not able to model precipitation accumulation
surrounding of Tbilisi (Fig. 5c). The results of calculations executed by the schemes
combination of Set 4 had evidently showed dry weather surrounding of Tbilisi. The
results of calculations performed by the Set 5 have shown that though the back-
ground synoptic processes were modelled satisfactorily enough but there was not
raining over the surrounding territory of Tbilisi (Fig. 5d).
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Fig. 6 Aeorological diagrams of June 21, 2016 for 41◦70′ N , 44◦80′ E geographic coordinates
(a 00 UTC, b 06 UTC, c 12 UTC, d 18 UTC)

In June 21, 2016 in accordance with the AD, only by 12 UTC was found atmo-
spheric instability, but in other cases atmospheric condition was absolutely stable
(Fig. 6). As it is found in Fig. 6a, b, d.) by 00 UTC, 06 UTC, 18 UTC atmospheric
condition was absolutely stable and by this time numerical value of energy was
CAPE = CINH = 0 j/kg, but by 12 UTC instability power was CAPE = 349 j/kg,
but convective inhibition energy was CINH = 32 j/kg. Alike above mentioned cases
by June 21, 2016 thermodynamic instability in atmosphere was found by 12 UTC
and accordingly, numerical value of instability power was found out to be maximal.
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Fig. 7 Maps of ATP forecasted a at 18:00 and b 21:00 on 23 June 2016 by set. 5 for the domain
with 6.6km resolution

Convective event on 23 June 2016.Observations ofmeteorological radar showed
that the weather gradually changed from 18:30 to 18: 40 on June 23, 2016 in Tbilisi.
Namely, at this time cloudy system accumulated aboveTbilisi and after 5min it began
raining which was accompanied by 3–4 mm diameter hail. The hailing stopped after
5min but the continual shower was accompanied with thunderstorm. At 1910 the
down pouring stopped and very soon the raining had stopped too. This event like
the severe convective event occurred on the 21 June, 2016 and it had a very local
character and did not extend outside of Tbilisi excepting the Kakheti region, where
analogous local character convective event had been observed from 1615 to 1747. The
results of calculations executed by the schemes combination Set 1-Set 5 were not
able to predict showers over the territory of Tbilisi. Rather better results have been
obtained by the Set 5 but once again it was not raining from 15:00 to 18:00 o’clock
on the surrounding territory of Tbilisi (Fig. 7).

Thermodynamic condition of about the same atmosphere was repeated in June
23, 2016. Indeed, in accordance with the AD by 00 UTC atmospheric condition was
absolutely stable (Fig. 8a), numerical values of instability energy and convective inhi-
bition energy CAPE = CIN = 0 j/kg that also corresponds to the stable atmospheric
condition. By 06:00 UTC instability energy was increased in the atmosphere (Fig.
8b), its numerical value CAPE = 60 j/kg, but CINH =–28 j/kg. During the daytime
atmospheric instability was increasing and reached its maximum by 12 UTC, Fig.
8c, accordingly, by this time numerical value of instability energy was also maximal
CAPE = 330 j/kg, but CINH =–28 j/kg. By 18 UTC atmospheric condition was
absolutely stable CAPE = 0 (Table 2).

Convective events occurred on 2 August 2016 and results of numerical calcu-
lations.According to the weather radar’s data there was clear (cloudless, unclouded)
sky above Tbilisi at 20:49 on 2 August 2016 (Fig. 9a) and due to local inner massive
atmosphere processes, during 12min, there formed deep convective cloudy system
(with a height of 15km and reflecting state 45 db) nearby to Tbilisi (Fig. 9b). Later,
strengthened cloudy system (the top level and reflecting state of the cloudy system
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Fig. 8 Aeorological diagrams of June 23, 2016 for 41◦70′N , 44◦80′E geographic coordinates
(a 00 UTC, b 06 UTC, c 12 UTC, d 18 UTC)

raised to 17km, and to 60 db, respectively) has invaded on the territory of Tbilisi
during 22min (Fig. 9c). At 21:38 the intensity of precipitations attained to 100mm/h,
an area of the cloudy system increased above Tbilisi, but decreased intensity of rain-
ing, as in reality until this moment of time it was continually raining (100mm/h) and
hailing on the territory of Tbilisi (Fig. 9d). Then due to gusty wind (the value of wind
velocity reached 25m/s at 2m above the surface) the cloudy system was shifted to
the north–east direction and the cloudy system disappeared at 21:44.
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Fig. 9 Weather radar’s map of the atmosphere reflecting state (clouds max-intensity dbz) above the
territory of eastern Georgia at 20:49 (a), at 21:01 (b), at 21:23 (c), accumulated total precipitation
at 22:00 (d) on 2nd of August 2016

Results of numerical calculations have shown that 24h predictions executed by all
combinations of schemes presented in Table 1, were not able to predict in a satisfac-
tory quality local scale, short term, severe, weather convective event that took place
on the 2nd of August, 2016 in Tbilisi. For example in Fig. 10 are presented predicted
fields of the accumulated total precipitation (ATP) executed by set1 (calculations per-
formed by other combinations of schemes gave almost similar results) on the nested
domains with 6.6km and 2.2km resolutions, respectively. The results of calculations,
executed on the nested domains had shown that there was not any ATP and there
was cloudless weather as at 21:00 on 02 August (Fig. 10a, b) as well at 00:00 on 03
August (Fig. 10c, d) in Tbilisi. Almost the same development atmospheric processes
were predicted by the other physical combination sets listed in Table 1. All other
predicted maps of ATP demonstrated 24h WRF-ARW model forecast failure and
especially in the investigated region where the both nested domains have predicted
absolute dry conditions on the territory of Tbilisi.

In Fig. 11, there is shownADof Tbilisi are shown (with its geographic coordinates
41 ◦7 0′N , 44 ◦ 80′E) as of August 2, 2016 by various instants of time (a - 00 UTC,
b - 06 UTC, c - 12 UTC, d - 18 UTC). As it is clearly seen on Fig. 11, since 00 UTC
instability energy CAPE during the whole day is quickly increasing and reaches
its maximum value by 12 UTC (CAPE = 378 j/kg). But during the daytime CINH
power changed slowly and minimal value amounts reached at 18 UTC (By Tbilisi
time at 22:00 p. m) (Fig. 11). AD as of August 2 at 06 UTC is provided on Fig. 11
b for the same geographic coordinates. As it is found from Fig. 11 there is a stable
condition in lower atmospheric layers, but in upper layers we have indistinguishable
condition. By this time CAPE = 93 j/kg, CINH = –45 j/kg. AD as of August 2
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Fig. 10 Map of the ATP simulated by set 1 on the nested domains with 6.6km resolution a with
2.2km resolution b on 02 August 2016 (21:00 local time) and with 6.6km resolution c with 2.2km
resolution d on 03 August 2016 (00:00 local time)

by 12:00 UTC (By Tbilisi time at 16:00 p. m) is provided on Fig. 11c for the same
geographic coordinates. As it is shown on this figure, curve of conditionmoved to the
right side of stratification curve to certain height above condensation level, meaning
that instability energy is increased CAPE = 378 j/kg, but energy CIN = 43 j/kg is
decreased. On Fig. 11c by 10 o’clock local time (18 UTC) was decreased the value of
instability energy, by this time CAPE= 75 j/kg, at the same time negative energy was
even decreased in lower atmospheric layersCINH= 26 j/kg. Pursuant to the aforesaid
even in this case by 12 UTC (By Tbilisi time at 16:00 p. m) instability energy CAPE
of atmosphere is at maximal level than at other times and accordingly, by 12 UTC
instability of atmosphere is at the highest level. In accordance with the data of radar,
later by 21:00 UTC was found maximal force of cloud and accordingly, we may
consider that pursuant to the analysis of AD carried out by morning hours, there may
be made preventive forecast on possible complex meteorological processes taken
place in atmosphere and in the second half of day about possible heavy atmospheric
precipitates.

In Table 2 numerical values of CAPE, CINH and Updraft velocity by 00, 06, 12,
18 UTC are presented. As it is clearly shown in Table 2, in the cases of convective
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Fig. 11 Aeorological diagrams of August 2, 2016 for 41◦70′N , 44◦80′E geographic coordinates
(a- 00 UTC, b - 06 UTC, c- 12 UTC, d- 18 UTC)

local processes on local territory (August 2, June 21, 23, 2016, June 13, 2015) numer-
ical value of instability energy does not reach its maximal level, (maximal value of
power CAPE = 378 j/kg). According to the data provided by meteorological radar,
despite of having short term and local processes, they were still very dangerous
and too intensive. That is why even little numerical value of instability power is
noteworthy for the purpose of forecasting local atmospheric processes. Herein is to
be noted that the best indicator of instability energy (CAPE) for above mentioned
local meteorological processes is by 12 UTC (by Tbilisi time 16:00 p. m. when the
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Table 2 Numerical values of instability power (CAPE), convective inhibition power (CINH) and
Updraft velocity at the time of dangerous meteorological processes developed in some regions of
eastern Georgia in 2015–2017

N Day Geograf
coordinate

Time UTC CAPE value
(j/kg)

CINH value
(j/kg)

Updraft
velocity
(m/s)

1 13.06.15 00 42.9 –9.4 9.3

41.71
44.77

0.6 55.6 0 10.5

12 109.6 –7.9 15

18 48 –48 9.7

2 21.06.16 00 0 0 0

41.70
44.80

06 0 0 0

12 349.6 32 26

18 0 0 0

3 23.06.16 00 0 0 0

41.70
44.80

06 60 –28 11

12 330 –55 26

18 0 –7 0

4 02.08.16 00 50 –47 10

41.70
44.80

06 93 –45 14

12 378 –43 27

18 75 –26 12

value of instability energy reaches its maximal level). in the afternoon temperature
of earth surface reaches its maximal level and it is the most advantageous time for the
development of convective local processes. So, when we forecast convective local
processes under the basis of AD of READY System’s ARL, thermodynamic condi-
tion is to be studied in accordance with the analysis of forecast AD in the afternoon
and accordingly, under the basis of numerical value of forecast instability power
calculated during this time. Thus, when it is impossible to forecast dangerous mete-
orological convective local processes under WRF Model, it is possible to forecast
the level of probable dangerous meteorological convective local process on local
territory though analyzing numerical value CAPE by READY System of ARL under
the basis of forecast aeorological data by the mentioned day in the afternoon.
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4 Conclusions

Heavy rainfall, hail and sometimes with subsequently floods not infrequently lead to
severe damage, losses for both life and infrastructure. Thus, timely forecast of heavy
rainfall and hail is essential issue in meteorology for providing an early warning to
the population or minimization aftermath of the disaster (especially in the moun-
tainous regions). Forecasting of local, short term, heavy rainfall based on regional
numerical models is considered a difficult task, particularly for the mountainous
regions (alike Georgia), as in the majority of cases the stipulating factors of local,
short term, heavy rainfalls is not clear. The WRF model is fit out with a wide choice
of physical schemes for refinement of mesoscale atmospheric processes prediction.
Therefore, in this article we have studied the regional WRF v.3.6.1 model’s and
READY systems abilities on summer heavy showers prediction in the capital city
of Georgia, Tbilisi, characterizing with complex topography. This study also sought
after to support the Georgian National Environmental Agency in the performance of
everyday operations in the short term weather forecasts. The first step in this process
was evaluation numerical predictions’ quality obtained by different MP and CPSs
schemes of the WRF v.3.6.1 model against the results obtained by READY system
and weather radar observations. Analyses of the results of calculations have shown
that none of the combinations ofMP andCPSs schemes in theWRF v.3.6model were
able to predict those real deep, moist convective atmospheric events which took place
on 13 June 2015, 2nd of August, 21 of June and 23 of June 2016 in Tbilisi. While
aeorological diagrams of READY system precisely showed instability of atmosphere
for discussed cases on local territories of Tbilisi. Despite the fact that in all four cases
we had different levels of instability, the aeorological diagrams of READY system
precisely showed these differences which exactly corresponded to real meteorologi-
cal condition of the specified day (according to the data of weather radar). Based on
the obtained results, it can be argued that the analysis of aeorological data, obtained
for specific regions using the READY system of ARL of NOAA, together with the
methods of short-termweather prediction used in operational departments of weather
forecasting (alike Georgia), improves a forecast of the thermodynamic state of the
atmosphere and an assessment of the level of evolving convective processes over the
forecasted local territories. It should be noted that the best instability power indica-
tor (CAPE) for the local meteorological processes, discussed in this article, comes
when the power coefficient of instability reaches its maximum. In connection with
our specific study (four events in Tbilisi), the calculation results showed that of the
four events that took place in Tbilisi, three times themost favorable time for the devel-
opment of local convective processes was 12 UTC (Tbilisi time is 16:00, when the
ratio of the surface temperature of the earth reached its maximum). Accordingly, for
predicting local, short-term, convective processes in region with complex orography
using the WRF model, it is additionally advisable to study the thermodynamic state
of the atmosphere by analyzing upper-air diagrams based on the upper-air diagrams
of the READY ARL system.
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Extending the ρLog Calculus with
Proximity Relations

Besik Dundua, Temur Kutsia, Mircea Marin, and Cleo Pau

Abstract ρLog-prox is a calculus for rule-based programming with strategies,
which supports both exact and approximate computations. Rules are represented
as conditional transformations of sequences of expressions, which are built from
variadic function symbols and four kinds of variables: for terms, hedges, function
symbols, and contexts. ρLog-prox extends ρLog by permitting in its programs fuzzy
proximity relations, which are reflexive and symmetric, but not transitive. We intro-
duce syntax and operational semantics of ρLog-prox, illustrate its work by examples,
and present a terminating, sound, and complete algorithm for the ρLog-prox expres-
sion matching problem.

Keywords Rule-based programming · ρLog · fuzzy proximity relations

1 Introduction

ρLog [18] is a calculus for conditional transformation of sequences of expressions,
controlled by strategies. It originated from experiments with extending the language
of Mathematica [26] by a rule-based programming package [17, 19]. Meanwhile
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there are some tools based on or influenced by ρLog, such as its implementation
in Mathematica [16], an extension of Prolog, called PρLog [7], or an extension of
Maple, called symbtrans [3].

ρLog objects are logic terms that are built from function symbols without fixed
arity and four different kinds of variables: for individual terms, for finite sequences
of terms (hedges), for function symbols, and for contexts (special unary higher-order
functions). Rules transform finite sequences of terms, when the given conditions are
satisfied. They are labeled by strategies, providing a flexible mechanism for combin-
ing and controlling their behavior. ρLog programs are sets of rules. The inference
system is based on SLDNF-resolution [15]. Program meaning is characterized by
logic programming semantics. Rules and strategies are formulated as clauses.

ρLog-based/inspired tools have been used in extraction of frequent patterns from
data mining workflows [22], for automatic derivation of multiscale models of arrays
of micro- and nanosystems [27], modeling rewriting strategies [6], etc.

The core of ρLog is a powerful pattern matching algorithm [13]. Matching with
hedge and context variables is finitary: problems might have finitely many different
solutions. In many situations, it can replace recursion, leading to pretty compact and
intuitive code. Nondeterministic computations are modeled naturally by backtrack-
ing.

The computational mechanism of ρLog is based on the assumption that the pro-
vided information is precise and the problems can be solved exactly. However, in
many cases, especially in the areas related to applications of artificial intelligence,
one has to deal with vague information, which increases demand for the correspond-
ing reasoning and computing techniques. Several approaches to this problem propose
methods and tools that integrate fuzzy logic or probabilistic reasoning with declara-
tive programming, see, e.g., [8–11, 14, 20, 21, 23, 24].

ρLog-prox, described in this paper, is an attempt to address this problem by com-
bining approximate reasoning and strategic rule-basedprogramming. It extendsρLog
with the capabilities to process imprecise information represented by proximity rela-
tions. The latter are binary fuzzy relations, satisfying the properties of reflexivity and
symmetry. We develop a matching algorithm that solves the problem of approximate
equality between terms that may contain variables for terms, hedges, function sym-
bols and contexts. A particular difficulty is related to the fact that proximity relations
are not transitive. We prove that our matching algorithm is terminating, sound, and
complete, and integrate it in the ρLog-prox calculus. The integration is transparent:
approximate equality is expressed explicitly, no hidden fuzziness is assumed. Multi-
ple solutions to matching problems are explored by nondeterministic computations
in the inference mechanism.

The rest of the paper is organized as follows: In Sect. 2 we introduce the termi-
nology, define our language, and discuss proximity relations. Section 3 is about the
basics of ρLog-prox: its syntax, semantics, and an illustrative example are presented.
In Sect. 4, we develop an algorithm for solving proximity matching problems and
prove its properties. Section 5 is the conclusion.
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2 Preliminaries

In this section, we introduce the basic notions needed in the rest of the paper.

2.1 Terms, Hedges, Contexts, Substitutions

The alphabet A consists of the following pairwise disjoint sets of symbols:

• VT: term variables, denoted by x, y, z, . . .,
• VS: hedge variables, denoted by x, y, z, . . .,
• VF: function variables, denoted by X,Y, Z , . . .,
• VC: context variables, denoted by X ,Y ,Y , . . .,
• F : unranked function symbols, denoted by f, g, h, . . ..

Besides, A contains also auxiliary symbols such as parenthesis and comma, and a
special constant ◦, called hole. A variable is an element of the set V = VT ∪ VS ∪
VF ∪ VC. A functor, denoted by F , is a common name for a function symbol or a
function variable.

We define terms, hedges, contexts, and other syntactic categories over A as fol-
lows:

t :: = x | f (s̃) | X (s̃) | X(t) Term
t̃ :: = t1, . . . , tn (n ≥ 0) Term sequence
s :: = t | x Hedge element
s̃ :: = s1, . . . , sn (n ≥ 0) Hedge
C :: = ◦ | f (s̃1,C, s̃2) | X (s̃1,C, s̃2) | X(C) Context

Hence, hedges are sequences of hedge elements, hedge variables are not terms,
term sequences do not contain hedge variables, contexts (which are not terms either)
contain a single occurrence of the hole. We do not distinguish between a singleton
hedge and its sole element.

We denote the set of terms by T (F ,V ), hedges byH (F ,V ), and contexts by
C (F ,V ). Ground (i.e., variable-free) subsets of these sets are denoted by T (F ),
H (F ), and C (F ), respectively.

We make a couple of conventions to improve readability. We put parentheses
around hedges, writing, e.g., ( f (a), x, b) instead of f (a), x, b. The empty hedge
is written as (). The terms of the form a() and X () are abbreviated as a and X ,
respectively, when it is guaranteed that terms and symbols are not confused. For
hedges s̃ = (s1, . . . , sn) and s̃ ′ = (s ′

1, . . . , s
′
m), the notation (s̃, s̃ ′) stands for the

hedge (s1, . . . , sn, s ′
1, . . . , s

′
m).We use s̃ and r̃ for arbitrary hedges, while t̃ is reserved

for term sequences.
Belowwewill also need anonymous variables for each variable category. They are

variables without name, well-known in declarative programming.Wewrite the single
underscore _ for anonymous term and function variables, and the double underscore
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__ for anonymous hedge and context variables. The set of anonymous variables is
denoted by VAn.

A syntactic expression (or, just an expression) is an element of the set F ∪ V ∪
T (F ,V ) ∪ H (F ,V ) ∪ C (F ,V ). We denote expressions by E .

We also introduce two notations: V (E) denotes the set of variables occurring
in expression E , and V (E, {p1, ..., pn}), where pi ’s are positions in E , is defined
as V (E, {p1, ..., pn}) = ∪n

i=1V (E |pi ), where E |pi is the standard notation for a
subexpression of E at position pi .

Contexts can apply to contexts or terms. Thismeta-operation is denoted byC1[C2]
or C1[t] and is obtained from C1 by replacing the hole in it by C2 or t , respectively.
Thus, C1[C2] is a context and C1[t] is a term.

Substitution is a mapping σ from V to T (F ,V ) ∪ H (F ,V ) ∪ C (F ,V ) ∪
F ∪ VF, defined as

σ(x) ∈ T (F ,V ), σ (x) ∈ H (F ,V ),

σ (X) ∈ F ∪ VF, σ (X) ∈ C (F ,V ),

such that σ(v) = v for all but finitely many term, hedge, and function variables v,
and X = X(◦) for all but finitely many context variables X .

Substitutions are denoted by Greek letters σ , ϑ , ϕ. The identity substitution is
denoted by Id.

A substitution σ may apply to elements of the set T (F ,V ) ∪ H (F ,V ) ∪
C (F ,V ) ∪ F ∪ VF in the following way:

xσ = σ(x), F(s̃)σ = (Fσ)(s̃σ), X(t)σ = σ(X)[tσ ],
xσ = σ(x), (s1, . . . , sn)σ = (s1σ, . . . , snσ), Xσ = σ(X), f σ = f,

◦ σ = ◦, F(s̃1,C, s̃2)σ = (Fσ)(s̃1σ,Cσ, s̃2σ), X(C)σ = σ(X)[Cσ ].

2.2 Proximity Relations

Basic notions about proximity relations are defined following [11].
A binary fuzzy relation on a set S is a mapping from S × S to the real interval

[0, 1]. If R is a fuzzy relation on S and λ is a number 0 ≤ λ ≤ 1, then the λ-cut of
R on S, denotedRλ, is an ordinary (crisp) relation on S defined asRλ := {(s1, s2) |
R(s1, s2) ≥ λ}.

A fuzzy relation R on a set S is called a proximity relation, if it reflexive and
symmetric:

Reflexivity: R(s, s) = 1 for all s ∈ S;
Symmetry: R(s1, s2) = R(s2, s1) for all s1, s2 ∈ S.

In this paper we consider only strict proximity relations:
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Strictness: For all s1, s2 ∈ S, ifR(s1, s2) = 1 then s1 = s2.

A proximity relation is characterized by a set Λ = {λ1, . . . , λn | 0 < λi ≤ 1} of
approximation levels. They express the degree of relationship of the related elements.
We say that a value λ ∈ Λ is a cut value. The λ-cut ofR, defined asRλ = {(s1, s2) |
R(s1, s2) ≥ λ} is a usual two-valued tolerance (i.e., reflexive and symmetric) relation.

A T-norm ∧ is an associative, commutative, non-decreasing binary operation on
[0, 1] with 1 as the unit element. In the rest of the paper, we take minimum in the
role of T-norm.

The proximity class of level λ > 0 of s ∈ S in a relation R (a λ-class of s in R)
is a set pc(s,R, λ) = {s ′ | R(s, s ′) ≥ λ}.

Our proximity relations are defined on the set of function symbolsF . We require
them to be defined in such a way that the proximity class for each symbol is finite.
Given a proximity relationR defined onF , we extend it toF ∪ V ∪ T (F ,V ) ∪
H (F ,V ) ∪ C (F ,V ):

• For variables, V ∈ V :

– R(V, V ) = 1.

• For terms, t, t ′ ∈ T (F ,V ):

– If t and t ′ have the same number of arguments, e.g., t = F(s1, . . . , sn) and
t ′ = F ′(s ′

1, . . . , s
′
n), then R(t, t ′) = R(F, F ′) ∧ R(s1, s ′

1) ∧ · · · ∧ R(sn, s ′
n).

• For hedges, s, s ′ ∈ H (F ,V ):

– If s̃ and s̃ ′ have the same number of elements, e.g., s̃ = (s1, . . . , sn) and s̃ ′ =
(s ′

1, . . . , s
′
n), then R(s̃, s̃ ′) = R(s1, s ′

1) ∧ · · · ∧ R(sn, s ′
n).

• For contexts, C,C ′ ∈ C (F ,V ):

– R(◦, ◦) = 1.
– If C and C ′ have the same number of arguments and their context arguments
appear in the same position, e.g., C = F(s1, . . . , si−1,C1, si+1, . . . , sn) and
C ′ = F ′(s ′

1, . . . , s
′
i−1,C

′
1, s

′
i+1 . . . , s ′

n), then R(C,C ′) = R(F, F ′)
∧ R(s1, s ′

1) ∧ · · ·R(si−1, s ′
i−1) ∧ R(C1,C ′

1) ∧ R(si+1, s ′
i+1) ∧ R(sn, s ′

n).

• In all other cases, R(E, E ′) = 0 for two syntactic expressions E, E ′ ∈ V ∪
T (F ,V ) ∪ H (F ,V ) ∪ C (F ,V ).

When R is strict on F , its extension to F ∪ V ∪ T (F ,V ) ∪ H (F ,V ) ∪
C (F ,V ) is also strict.

The notion of proximity class extends to elements of F ∪ V ∪ T (F ,V ) ∪
H (F ,V ) ∪ C (F , V ). It is easy to see that each proximity class in this set is
also finite.
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3 ρLog-prox: ρLog with Proximity Relations

3.1 Syntactic Matching and Proximity Matching Problems

A syntactic matching atom is a formula of the form E1 	 E2. It is solved if the
expressions E1 and E2 are identical, i.e., if E1 = E2. A substitution σ is a solution
(or a matcher) of a matching atom E1 	 E2 iff E1σ = E2.

Example 1 The syntactic matching atom

(X (a), x,Y (X (x, y)), z) 	 ( f (a), g(b, f (b), f (a, f (b))), b, c)

has two solutions:

σ1 = {X 
→ f, x 
→ (), Y 
→ g(b, ◦, f (a, f (b))), y 
→ b, z 
→ (b, c)}
σ2 = {X 
→ f, x 
→ (), Y 
→ g(b, f (b), f (a, ◦)), y 
→ b, z 
→ (b, c)}

A syntactic matching problem is a finite set of syntactic matching atoms. Its solu-
tion is a substitution which solves each of the atoms in the problem.

Given a proximity relation R and a cut value λ, an (R, λ)-proximity atom is a
formula E1 	R ,λ E2 for the expressions E1 and E2. Its solution is a substitution σ

such that R(E1σ, E2) ≥ λ. A solution with the proximity degree α is a substitution
σ such that R(E1σ, E2) = α ≥ λ.

Example 2 Let the proximity relationR be given by the following:

R(g1, h1) = R(g2, h1) = 0.4

R(g1, h2) = R(g2, h2) = 0.5

R(g2, h3) = R(g3, h3) = 0.6

R(a, b) = 0.7

Let the proximity atom be

P = f (x, x,Y (x), z) 	R ,λ f (g1(a), g2(b), f (g3(a))).

Consider the approximation levels Λ = {0.4, 0.5, 0.6, 0.7}. We get the following
solutions to P: (In all cases, the proximity degrees of solutions coincide with λ.)

λ = 0.4 :
σ1 = {x 
→ (), x 
→ h1(a),Y 
→ ◦, z 
→ f (g3(a))}
σ2 = {x 
→ (), x 
→ h2(a),Y 
→ ◦, z 
→ f (g3(a))}
σ3 = {x 
→ (), x 
→ h1(b), Y 
→ ◦, z 
→ f (g3(a))}
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σ4 = {x 
→ (), x 
→ h2(b), Y 
→ ◦, z 
→ f (g3(a))}
σ5 = {x 
→ (), x 
→ h1(a),Y 
→ ◦, z 
→ f (g3(b))}
σ6 = {x 
→ (), x 
→ h2(a),Y 
→ ◦, z 
→ f (g3(b))}
σ7 = {x 
→ (), x 
→ h1(b), Y 
→ ◦, z 
→ f (g3(b))}
σ8 = {x 
→ (), x 
→ h2(b), Y 
→ ◦, z 
→ f (g3(b))}
σ9 = {x 
→ (), x 
→ h1(a),Y 
→ ◦, z 
→ f (h3(a))}

σ10 = {x 
→ (), x 
→ h2(a),Y 
→ ◦, z 
→ f (h3(a))}
σ11 = {x 
→ (), x 
→ h1(b), Y 
→ ◦, z 
→ f (h3(a))}
σ12 = {x 
→ (), x 
→ h2(b), Y 
→ ◦, z 
→ f (h3(a))}
σ13 = {x 
→ (), x 
→ h1(a),Y 
→ ◦, z 
→ f (h3(b))}
σ14 = {x 
→ (), x 
→ h2(a),Y 
→ ◦, z 
→ f (h3(b))}
σ15 = {x 
→ (), x 
→ h1(b), Y 
→ ◦, z 
→ f (h3(b))}
σ16 = {x 
→ (), x 
→ h2(b), Y 
→ ◦, z 
→ f (h3(b))}
σ17 = {x 
→ g1(a), x 
→ h3(a),Y 
→ f (◦), z 
→ ()}
σ18 = {x 
→ g1(a), x 
→ h3(b), Y 
→ f (◦), z 
→ ()}
σ19 = {x 
→ g1(b), x 
→ h3(a),Y 
→ f (◦), z 
→ ()}
σ20 = {x 
→ g1(b), x 
→ h3(b), Y 
→ f (◦), z 
→ ()}
σ21 = {x 
→ h1(a), x 
→ h3(a),Y 
→ f (◦), z 
→ ()}
σ22 = {x 
→ h1(a), x 
→ h3(b), Y 
→ f (◦), z 
→ ()}
σ23 = {x 
→ h1(b), x 
→ h3(a),Y 
→ f (◦), z 
→ ()}
σ24 = {x 
→ h1(b), x 
→ h3(b), Y 
→ f (◦), z 
→ ()}
σ25 = {x 
→ h2(a), x 
→ h3(a),Y 
→ f (◦), z 
→ ()}
σ26 = {x 
→ h2(a), x 
→ h3(b), Y 
→ f (◦), z 
→ ()}
σ27 = {x 
→ h2(b), x 
→ h3(a),Y 
→ f (◦), z 
→ ()}
σ28 = {x 
→ h2(b), x 
→ h3(b), Y 
→ f (◦), z 
→ ()}

λ = 0.5 :
σ1 = {x 
→ (), x 
→ h2(a),Y 
→ ◦, z 
→ f (g3(a))}
σ2 = {x 
→ (), x 
→ h2(b), Y 
→ ◦, z 
→ f (g3(a))}
σ3 = {x 
→ (), x 
→ h2(a),Y 
→ ◦, z 
→ f (g3(b))}
σ4 = {x 
→ (), x 
→ h2(b), Y 
→ ◦, z 
→ f (g3(b))}
σ5 = {x 
→ (), x 
→ h2(a),Y 
→ ◦, z 
→ f (h3(a))}
σ6 = {x 
→ (), x 
→ h2(b), Y 
→ ◦, z 
→ f (h3(a))}
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σ7 = {x 
→ (), x 
→ h2(a),Y 
→ ◦, z 
→ f (h3(b))}
σ8 = {x 
→ (), x 
→ h2(b), Y 
→ ◦, z 
→ f (h3(b))}
σ9 = {x 
→ g1(a), x 
→ h3(a),Y 
→ f (◦), z 
→ ()}

σ10 = {x 
→ g1(a), x 
→ h3(b), Y 
→ f (◦), z 
→ ()}
σ11 = {x 
→ g1(b), x 
→ h3(a),Y 
→ f (◦), z 
→ ()}
σ12 = {x 
→ g1(b), x 
→ h3(b), Y 
→ f (◦), z 
→ ()}
σ13 = {x 
→ h2(a), x 
→ h3(a),Y 
→ f (◦), z 
→ ()}
σ14 = {x 
→ h2(a), x 
→ h3(b), Y 
→ f (◦), z 
→ ()}
σ15 = {x 
→ h2(b), x 
→ h3(a),Y 
→ f (◦), z 
→ ()}
σ16 = {x 
→ h2(b), x 
→ h3(b), Y 
→ f (◦), z 
→ ()}

λ = 0.6 :
σ1 = {x 
→ g1(a), x 
→ h3(a),Y 
→ f (◦), z 
→ ()}
σ2 = {x 
→ g1(a), x 
→ h3(b), Y 
→ f (◦), z 
→ ()}
σ3 = {x 
→ g1(b), x 
→ h3(a),Y 
→ f (◦), z 
→ ()}
σ4 = {x 
→ g1(b), x 
→ h3(b), Y 
→ f (◦), z 
→ ()}

λ = 0.7 : No solutions.

A proximity matching problem is a set of proximity atoms. A substitution σ is a
solution of a proximity matching problem {A1, . . . , An} (with proximity degree α),
if σ is a solution of each atom Ai (with proximity degree αi and α = α1 ∧ · · · ∧ αn).

Note that because of strictness, syntacticmatching canbe seen as special proximity
matching for an arbitraryR with the lambda-cut equal to 1. Therefore, for simplicity,
below we will talk only about proximity matching problems and refer to them briefly
as proximity problems.

3.2 ρLog-prox Programs and Proximity Relations

ρLog-prox programs consist of conditional rules for hedge transformations. A trans-
formation is an atomic formula (an atom) of the form =⇒ (t, 〈s̃1〉, 〈s̃2〉), where =⇒
is a ternary predicate symbol and 〈·〉 is a function symbol (which appears neither
in t nor in s̃1 and s̃2). Such an atom is usually written as t ::s̃1 =⇒ s̃2. Intuitively, it
means that the hedge s̃1 is transformed into the hedge s̃2 by the strategy t . Atoms are
denoted by A and B.

A ρLog-prox query is a conjunction of atoms, written as B1, . . . , Bn . A ρLog-
prox clause has a form A ← Q, where ← is the inverse implication sign, A is an
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atom, called the head of the clause, and Q is a query, called the body of the clause.
ρLog-prox programs are finite sets of ρLog-prox clauses.

We assume that for each program there is an associated proximity relation defined
on the set of function symbols. For such a relation R, the set of ( f, g) pairs with
R( f, g) > 0 is finite.

A special predefined strategy is prox, which takes a single argument, a number
from the real interval (0, 1]. The atom prox(λ)::s̃1 =⇒ s̃2 is true iff the proximity
problem s̃2 	R ,λ s̃1 is solvable for the givenR.Whenλ = 1,prox coincideswith the
identity strategy id of the original ρLog [18] (the strictness assumption is important
here).

For the original version of ρLog, semantics of programs can be defined in the
same way as it is done for logic programming [1, 15]. Having defined proximity
strategies as ρLog-prox atoms, we can do the same for our version of ρLog-prox
programs.

Note that the same strategy can be defined by several clauses, which are treated
as alternatives.

Now we introduce the inference system of ρLog-prox calculus with proximity
relations. It has two rules: resolution and proximity factoring. A program and a
proximity relation R are given.

Resolution takes a querywith an atom selected in it and a renamed copy of a program
clause and performs the inference step, producing a new query as follows:

strq::lhsq =⇒ rhsq,Q strp::lhsp =⇒ rhsp ← Body

(Body, prox(1)::rhsp =⇒ rhsq, Q)σ
,

where σ is a solution of the proximity problem {strp 	R ,1 strq, lhsp 	R ,1 lhsq}.
The strategy strq does not have the form prox(λ).

Proximity factoring takes a query, in which an atom with the proximity strategy is
selected, and produces a new query:

prox(λ)::lhsq =⇒ rhsq, Q

Qσ
,

where σ is a solution of the proximity problem {rhsq 	R ,λ lhsq}.
A derivation of a query Q from a program P (with respect to a proximity relation

R) is a sequence of queries Q0, Q1, . . ., where Q0 = Q and Qi is obtained from
Qi−1 by resolution or proximity factoring. A derivation is successful if it ends with
the empty query. In this case, the union of substitutions computed along the deriva-
tion, restricted to variables from Q, is called the answer computed for Q via P . A
derivation is failed, if none of the inference rules can apply to the last query, which is
nonempty. Like for the original ρLog, the inference system is sound: the computed
answers are also correct with respect to the declarative semantics. It is not complete
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in general due to the leftmost query selection strategy. Completeness is ensured for
queries with terminating derivations.

We can allow negations of atoms in queries and clause bodies, as in normal logic
programs [1, 2, 15]. Literal is a common name for an atom and its negation. We use
the letter L to denote them. To deal with negative literals, the inference system can
be extended by the well-known negation-as-failure rule.

In order to guarantee that inference in ρLog-prox is performed by matching and
not unification (because the latter problems may have infinitely many solutions [5,
12]), we work with well-moded programs and queries.

Definition 1 (Well-moded clauses, programs, queries) Let C be a (normal) clause

str0::r̃0 =⇒ s̃n+1 ← L1, . . . , Ln,

where for each 1 ≤ i ≤ n, the literal Li is either an atom stri ::s̃i =⇒ r̃i or a negation
of an atom stri ::s̃i \=⇒r̃i . C is well-moded if for all 1 ≤ i ≤ n + 1, we have

• V (stri ) ∪ V (s̃i ) ⊆ V (str0) ∪ ⋃i−1
j=0 V (r̃) \ VAn, and

• if Li is a negative literal, then V (r̃i ) ⊆ V (str0) ∪ ⋃i−1
j=0 V (r̃) ∪ VAn.

A (normal) ρLog-prox program is well-moded if all clauses in it all well-moded.
A (normal) query L1, . . . , Ln is well-moded if the clause A ← L1, . . . , Ln is

well-moded, where A is a dummy ground atom.

Example 3 In this rather extended example we illustrate ρLog-prox clauses, strate-
gies, and evaluation mechanism. We borrow the material from [7] and adapt it to
ρLog-prox.

An instance of a transformation is finding duplicated elements in a hedge and
removing one of them. Let us call this process the merging of duplicates. The fol-
lowing strategy implements the idea:

merge_duplicates::(x, x, y, x, z) =⇒ (x, x, y, z).

merge_duplicates is the strategy name. The clause is obviously well-moded. It
says that if the hedge in lhs contains duplicates (expressed by two copies of the
variable x) somewhere, then from these two copies only the first one should be kept
in rhs. That “somewhere” is expressed by three hedge variables, where x stands
for the subhedge before the first occurrence of x , y takes the subhedge between
two occurrences of x , and z matches the remaining part. These subhedges remain
unchanged in the rhs.

One does not need to code the actual search process of duplicates explicitly. The
matching algorithm is supposed to do the job instead, looking for an appropriate
instantiation of the variables. There can be several such instantiations.

Now one can ask, e.g., to merge duplicates in a hedge (a, b, c, b, a):

merge_duplicates::(a, b, c, b, a) =⇒ x .
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To this query, ρLog-prox returns two answer substitutions: {x 
→ (a, b, c, b)}
and {x 
→ (a, b, c, a)}. Both are obtained from (a, b, c, b, a) by merging one pair
of duplicates.

Nowwegeneralizemerge_duplicates allowingmerging of approximate duplicates
(we use l as a term variable):

merge_duplicates(l)::(x, x, y, y, z) =⇒ (x, x, y, z) ← prox(l)::x =⇒ y.

This clause (which is well-moded) removes y from the given hedge, if the hedge
contains an x such that x and y are close to each other with respect to the given
proximity relation with the proximity degree l. The merge_duplicates strategy above
is just a special case of merge_duplicates(l) with l = 1.

Assume now that in the proximity relation R, we have R(a, e) = 0.6 and
R(b, d) = 0.7. Then the query

merge_duplicates(0.8)::(a, b, c, d, e) =⇒ x

fails, because (a, b, c, d, e) does not contain elements which are close to each other
with the proximity degree at least 0.8. If we take l = 0.7, i.e., the query

merge_duplicates(0.7)::(a, b, c, d, e) =⇒ x,

we get a single answer: {x 
→ (a, b, c, e)}. Decreasing l further and taking the query

merge_duplicates(0.6)::(a, b, c, d, e) =⇒ x,

we get two answers (via backtracking): {x 
→ (a, b, c, d)} and {x 
→ (a, b, c, e)}.
A hedge without duplicates is a normal form with respect to this single-step

merge_duplicates(l) transformation. ρLog-prox has a predefined strategy for com-
puting normal forms, denoted by nf , and we can use it to define a new strategy
merge_all_duplicates(l) in the following clause:

merge_all_duplicates(l)::x =⇒ y ← nf(merge_duplicates(l))::x =⇒ y.

The effect of nf is that it applies merge_duplicates to x , repeating this process
iteratively as long as it is possible, i.e., as long as duplicates can be merged in the
obtained hedges. When merge_duplicates is no more applicable, it means that the
normal form of the transformation is reached. It is returned in y.

Now, for the query

merge_all_duplicates(0.6)::(a, b, c, d, e) =⇒ x .

we get a single answer x 
→ (a, b, c). However, procedurally, this answer can be
computed multiple times (via backtracking). To avoid such multiple computations,
we can use another predefined strategy first_one:
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merge_all_duplicates(l)::x =⇒ y ←
first_one(nf(merge_duplicates(l)))::x =⇒ y.

first_one applies to a sequence of strategies, finds the first one among them,
which successfully transforms the input hedge, and gives back just one result of the
transformation. Here it has a single argument strategy nf(merge_duplicates(l)) and
returns (by instantiating y) only one result of its application to x .

ρLog-prox is good not only in selecting arbitrarily many subexpressions in “hor-
izontal direction” (by hedge variables), but also in working in “vertical direction”,
selecting subterms at arbitrary depth. Context variables provide this flexibility, by
matching the context above the subterm to be selected. With the help of context and
function variables, from the merge_duplicates(l) strategy it is pretty easy to define a
transformation that merges neighboring branches in a tree, which are approximately
the same:

merge_duplicate_branches(l)::X(Y (x)) =⇒ X(Y (y)) ←
merge_duplicates(l)::x =⇒ y.

Now, we can ask to merge neighboring branches in a given tree, which are 0.6-
approximate of each other (for the sameR as above):

merge_duplicate_branches(0.6)::
f (g(a, b, e, h(c, c)), h(c), g(a, e, b, h(c))) =⇒ x .

ρLog-prox computes three answers:

{x 
→ f (g(a, b, h(c, c)), h(c), g(a, e, b, h(c)))},
{x 
→ f (g(a, b, e, h(c)), h(c), g(a, e, b, h(c)))},
{x 
→ f (g(a, b, e, h(c, c)), h(c), g(a, b, h(c)))}.

To obtain the first one, ρLog-prox matched the context variable X to the context
f (◦, h(c), g(a, a, b, h(c))), the function variableY to the function symbol g, and the
hedge variable x to the hedge (a, b, e, h(c, c)). merge_duplicates(0.6) transformed
(a, b, e, h(c, c)) to (a, b, h(c, c)). The other results have been obtained by taking
different contexts and respective subbranches.

The right hand side of transformations in the queries need not be variables. One
can have an arbitrary hedge there. For instance, we may be interested in trees that
contain h(c, c):

merge_duplicate_branches(0.6)::
f (g(a, b, e, h(c, c)), h(c), g(a, e, b, h(c))) =⇒ X(h(c, c)).

We get here two answers, which show instantiations of X by the relevant contexts:
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{X 
→ f (g(a, b, ◦), h(c), g(a, e, b, h(c)))},
{X 
→ f (g(a, b, e, ◦), h(c), g(a, b, h(c)))}.

Similar to merging all duplicates in a hedge above, we can also define a strategy
that merges all approximately duplicate branches in a tree repeatedly. Naturally, the
built-in strategy for normal forms plays a role also here:

merge_all_duplicate_branches(l)::x =⇒ y ←
first_one(nf(merge_duplicate_branches(l)))::x =⇒ y.

For the query

merge_all_duplicate_branches(0.6)::
f (g(a, b, e, h(c, c)), h(c), g(a, e, b, h(c))) =⇒ x .

we get a single answer {x 
→ f (g(a, b, h(c)), h(c))}.

4 Solving Proximity Problems

As one could see in the previous section, the inference rules of ρLog-prox heavily
rely on solving proximity problems.Well-modedness guarantees that only proximity
problems with ground right hand side arise during derivations of queries from ρLog-
prox programs. Resolving negative literals reduces to the problem of testing whether
two ground expressions are in the given proximity relation with respect to the given
cut value.

Here we describe an algorithm, which computes not only solutions to proximity
problems, but also the degree of proximity for the solutions. They can be used to
report the proximity degree of a query instance that is proved from the program.

We say that a set of equations {V1 ≈ E1, . . . , Vn ≈ En} is in
• matching pre-solved form, if the E’s are ground,
• matching solved form, if it is in matching pre-solved form and each variable Vi

appears in the set only once.

If S is a solved form, we define an associated substitution σS := {Vi 
→ Ei | Vi ≈
Ei ∈ S}.

The proximity matching algorithm P is formulated in a rule-based way. Rules
work on configurations, which are either a special symbol ⊥ or triples of the form
M; S; α, where M is the proximity matching problem to be solved, S is a set of
equations in matching pre-solved form (the candidate set for a solution computed so
far), and α is the proximity degree of a solution computed so far. A rule that produces
⊥ is called a failure rule. We have six success and four failure rules:
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RFS: Removing function symbols
{ f (s̃) 	R ,λ g(t̃)} � M; S; α � M ∪ {s̃ 	R ,λ t̃}; S; α ∧ β,

where R( f, g) = β ≥ λ.
Dec: Decomposition

{(t, s̃) 	R ,λ (t ′, t̃)} � M; S; α � M ∪ {t 	R ,λ t ′, s̃ 	R ,λ t̃}; S; α,

where s̃ �= () and t̃ �= ().
FVE: Function variable elimination

{X (s̃) 	R ,λ g(t̃)} � M; S; α � M ∪ {s̃ 	R ,λ t̃}; S ∪ {X ≈ g′}; α ∧ β,

where R(g′, g) = β ≥ λ.
CVE: Context variable elimination

{X(t1) 	R ,λ C(t2)} � M; S; α � M ∪ {t1 	R ,λ t2}; S ∪ {X ≈ C ′}; α ∧ β,

where R(C ′,C) = β ≥ λ.
TVE: Term variable elimination

{x 	R ,λ t} � M; S; α � M; S ∪ {x ≈ t ′}; α ∧ β,

where R(t ′, t) = β ≥ λ.
HVE: Hedge variable elimination

{(x, s̃) 	R ,λ (t̃1, t̃2)} � M; S; α � M ∪ {s̃ 	R ,λ t̃2}; S ∪ {x ≈ t̃ ′1}; α ∧ β,

where R(t̃ ′1, t̃1) = β ≥ λ.
Cla1: Clash 1

{ f (s̃) 	R ,λ g(t̃)} � M; S; α � ⊥, ifR( f, g) < λ.
Cla2: Clash 2

{(t, s̃) 	R ,λ ()} � M; S; α � ⊥.

Cla3: Clash 3
{() 	R ,λ (t, t̃)} � M; S; α � ⊥.

Inc: Inconsistency
M; S; α � ⊥, if S contains two equations with the same variable in the left hand
side.

To solve a proximity matching problem M , we create the initial configuration
M; ∅; 1 and start applying the rules exhaustively. If the same configuration can be
transformed by multiple rules, they are applied concurrently except one of the rules
is Inc: in this case only Inc applies. Each elimination rule instantiates a variable
not exactly with the corresponding expression in the right hand side, but with its
approximate expression. Since proximity classes of objects are finite, these choices
cause only finite branching. The other source of branching is the choice of a hedge
and a context from the right hand side in CVE and HVE rules. Also here, there are
finitely many ways to branch. The described process defines the algorithm P.

Theorem 1 (Termination) The proximity matching algorithm P terminates. Each
final configuration has the form either ⊥ or ∅; S; α, where S is in matching solved
form.

Proof Let size(E) be the number of symbols in E . By Msize(M) we denote the
multiset {size(E2) | E1 	R ,λ E2 ∈ M}. To each configuration M; S; αwe associate
the complexity measure, the pair 〈Msize(M), varocc(M)〉, where varocc(M) is the
number of variable occurrences in M . The measures are compared lexicographi-
cally, where the used orderings for the components are multiset ordering [4] and the
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standard ordering on natural numbers. The RFC and Dec rules decrease the first
component of the measure. (Note that for Dec it is ensured by the requirement that
s̃ and t̃ are not empty hedges.) The elimination rules do not increase the first com-
ponent and decrease the second one. The failure rules stop immediately, since ⊥ is
not transformed further. Hence, the algorithm terminates.

Since for each possible shape of a proximity problem there is the corresponding
rule, the process stops either with ⊥ or with a configuration of the form ∅; S; α.
In the latter case, S should be in solved form, otherwise Inc would transform it
into ⊥. �

From each final configuration ∅; S; α, we can extract the corresponding substitu-
tion σS . These substitutions are called computed answers.

We say that σ is a solution of a (pre-solved) set of equations {V1 ≈ E1, . . . , Vn ≈
En} iff Viσ = Ei for each 1 ≤ i ≤ n. A solution of a pair M; S of a proximity
matching problem M and a set of equations in pre-solved form S is a substitution σ

that solves both M and S. The configuration ⊥ has not solutions.

Theorem 2 (Soundness) Let M be a proximity problem and σ be its computed
answer with the proximity degree α. Then σ is a solution of M with the proximity
degree α.

Proof Let M1; S1; α1 �R M2; S2; α2 be the step made by R, where R is one of the
rules above. We show that if σ is a solution of M2 (with the degree α2) and S2, then
σ is a solution of M1 (with the same degree α2) and S1.

R is RFS. Then α2 = α1 ∧ β, whereR( f, g) = β ≥ λ. Obviously, ifR(s̃σ, t̃) ≥
α1 ∧ β, thenR( f (s̃)σ, g(t̃)) ≥ α1 ∧ β. Hence, in this case σ is a solution of M1 with
the degree α2 and S1 (which is the same as S2).

R isFVE. Thenα2 = α1 ∧ βwhereR(g′, g) = β. Besides, g′ = Xσ . Therefore, if
R(s̃σ, t̃) ≥ α1 ∧ β, thenR(X (s̃)σ, g(t̃)) ≥ α1 ∧ β, and if σ solves S2, then it solves
also S1. Hence, also in this case σ is a solution of M1 with the degree α2 and S1.

For the other success rules the proof is similar or easier.
To prove the soundness theorem, we just need to proceed by induction on the

length of a successful derivation, using the single-step soundness result we just
established. �
Lemma 1 If M; S; α � ⊥, then M; S has no solution.

Proof Assume M is a (R, λ)-matching problem and analyze the rules that lead to⊥.
For theCla1 rule, M is unsolvable, becauseR(( f (s̃))σ, g(t̃)) = R( f (s̃σ), g(t̃)) =
R( f, g) ∧ R(s̃σ, t̃) ≤ R( f, g) < λ. In Cla2 and Cla3 rules, unsolvability of M
follows from the fact that a nonempty hedge can not be approximated by the empty
hedge. In the Inc rule, if we have two equations with the same variable in the left
hand side, it means that their right hand sides are different. Since equations in S are
solved syntactically, it implies that S has no solution. �
Theorem 3 rm (Completeness) Let M be a proximity problem and σ be its solution
with the proximity degree α. Then there exists a derivation in P ending with a
configuration M; ∅; 1 �∗ ∅; S; α, such that σ = σS.
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Proof We construct the desired derivation under the guidance of σ . At each variable
elimination step,we choose the proximal object of the variable exactly asσ does. This
will guarantee that proximity degrees at each such stepwill be also in accordance toσ .
MakingRFS andDec stepswill notmake the proximity degree differ fromα, because
σ is a solution. No clashing and inconsistency step will be performed, because by
Lemma 1 it would contradict the solvability of M . Hence, if β1, . . . , βn are all β’s
in the derivation, then β1 ∧ · · · ∧ βn = α. Since we start from the proximity degree
1, the computed proximity degree will be 1 ∧ β1 ∧ · · · ∧ βn = α. By construction,
σS = σ . �

Example 4 Weuse the proximity relation and problem fromExample 2. The relation
R is

R(g1, h1) = R(g2, h1) = 0.4, R(g1, h2) = R(g2, h2) = 0.5,

R(g2, h3) = R(g3, h3) = 0.6, R(a, b) = 0.7.

The proximity problem is

f (x, x,Y (x), z) 	R ,λ f (g1(a), g2(b), f (g3(a))).

We take the cut λ = 0.6 and show how P computes one of the solutions of this
problem, the substitution σ3 = {x 
→ g1(b), x 
→ h3(b), Y 
→ f (◦), z 
→ ()}:

{ f (x, x,Y (x), z) 	R ,0.6 f (g1(a), g2(b), f (g3(a)))}; ∅; 1 �RFS

{(x, x,Y (x), z) 	R ,0.6 (g1(a), g2(b), f (g3(a)))}; ∅; 1 �HVE

{(x,Y (x), z) 	R ,0.6 (g2(b), f (g3(a)))}; {x ≈ g1(b)}; 0.7 �TVE

{(Y (x), z) 	R ,0.6 ( f (g3(a)))}; {x ≈ g1(b), x ≈ h3(b)}; 0.6 �CVE

{(x, z) 	R ,0.6 (g3(a))}; {x ≈ g1(b), x ≈ h3(b), Y ≈ f (◦)}; 0.6 �TVE

{z 	R ,0.6 ()}; {x ≈ g1(b), x ≈ h3(b), Y ≈ f (◦)}; 0.6 �HVE

∅; {x ≈ g1(b), x ≈ h3(b), Y ≈ f (◦), z ≈ ()}; 0.6.

5 Conclusion

We extended the ρLog calculus with the capabilities to work with strict proximity
relations. This extension, called ρLog-prox, can process both crisp and fuzzy data.
With the help of the corresponding strategies, the user has full control on how fuzzy
(proximity) relations are used. There are no hidden assumptions about fuzziness.

We showed that matching modulo proximity can be naturally embedded in the
strategy-based transformation rule framework of ρLog-prox. We developed a prox-
imity matching algorithm for expressions involving four different kinds of variables
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(for terms, for hedges, for function symbols, and for contexts), and proved its termi-
nation, soundness, and completeness.
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Specification and Analysis of ABAC
Policies in a Rule-Based Framework

Besik Dundua, Temur Kutsia, Mircea Marin, and Mikheil Rukhaia

Abstract Attribute-based access control (ABAC) is an access control paradigm
whereby access rights to system resources are granted through the use of policies
that are evaluated against the attributes of entities (user, subject, and object), opera-
tions, and the environment relevant to a request. Many ABACmodels, with different
variations, have been proposed and formalized. Since the access control policies that
can be implemented in ABAC have inherent rule-based specifications, it is natural to
adopt a rule-based framework to specify and analyse their properties.We describe the
design and implementation of a software tool implemented inMathematica. Our tool
makes use of the rule-based capabilities of a rule-based package developed by us,
can be used to specify configurations for the foundational model ABACα of ABAC,
and to check safety properties.
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1 Introduction

Access (authorization) control is a fundamental security technique concerned with
determining the allowed activities of legitimate users, andmediating every attempt by
a user to access a resource in a computing environment. Over the years, many access
control models have been developed to address various aspects of computer security,
including: Mandatory Access Control (MAC) [12], Discretionary Access Control
(DAC) [13], and Role-based Access Control (RBAC) [4]. Attribute-Based Access
Control (ABAC) has received significant attention recently, although the concept has
existed for more than twenty years. According to NIST [5]

ABAC is an access control method where subject requests to perform operations on objects
are granted or denied based on assigned attributes of the subject, assigned attributes of the
object, environment conditions, and a set of policies that are specified in terms of those
attributes and conditions.

ABAC is considered a next generation authorization paradigm which eliminates
many limitations of the previous access control paradigms. It is dynamic: access
control permissions are determined when the access control request is made; it is
fine-grained: attributes canbe added, to formdetailed rules for access control policies;
it has support for contextual/environmental conditions; and last but not least: it is
flexible, and scalable. In fact, the access control policies that can be implemented
in ABAC are limited only by the computational language and the richness of the
available attributes. In particular, ABAC policies can be easily configured to simulate
DAC, MAC and RBAC.

Until recently, there were no widely accepted formal models for ABAC. The
foundational operational models ABACα and ABACβ , and the administrative model
GURA were proposed recently [6] as models with “just sufficient” features that can
be used to easily and naturally configure the traditional access control models and
some advanced features and extensions of RBAC.

The (efficient) implementation and analysis of these formal operational models of
ABAC is of great importance. We argue that a rule-based framework is adequate to
achieve these goals. For this purpose, we designed and implemented a software tool
that allows to specify configurations of ABACα policies, and to analyse them. The
tool is implemented in Mathematica [15] and is based on the capabilities of ρLog [8,
9], a rule-based system implemented by us on top of the rule-based capabilities
of Mathematica. We highlight the main features that make our rule-based system
adequate to specify and analyze the configurations of the access control policies of
ABACα .

The rest of this chapter is structured as follows. Section 2 contains a brief descrip-
tion of ρLog and the foundational model ABACα . In Sect. 3 we describe the rule-
based tool designed by us for the specification and analysis of ABACα . In Sect. 4 we
draw some conclusions and directions for future work.
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2 Preliminaries

2.1 The ρLog System

ρLog is a system for rule-based programming with strategies and built-in support
for constraint logic programming (CLP). This is a programming style similar to
Constraint Logic Programming, where programs consist of rules which are used
to answer queries using a calculus based on a variation of SLDNF-resolution [2]
combined with constraint solving. There are, however, some significant differences.

The specification language has an alphabetA consisting of the following pairwise
disjoint sets of symbols:

• VT: term variables, denoted by x, y, z, . . .,
• VS: hedge variables, denoted by x, y, z, . . .,
• VF: function variables, denoted by X,Y, Z , . . .,
• VC: context variables, denoted by X ,Y ,Y , . . .,
• F : unranked function symbols, denoted by f, g, h, . . ..

and distinguishes the following syntactic categories:

t :: = x | f (s̃) | X (s̃) | X(t) Term

t̃ :: = t1, . . . , tn (n ≥ 0) Sequence of terms

s:: = t | x Hedge element

s̃:: = s1, . . . , sn (n ≥ 0) Hedge

C :: = ◦ | f (s̃1,C, s̃2) | X (s̃1,C, s̃2) | X(C) Context

Hence, hedges are sequences of hedge elements, hedge variables are not terms,
term sequences do not contain hedge variables, contexts (which are not terms either)
contain a single occurrence of the hole. We do not distinguish between a singleton
hedge and its sole element.

We denote the set of terms by T (F ,V ), hedges byH (F ,V ), and contexts by
C (F ,V ). Ground (i.e., variable-free) subsets of these sets are denoted by T (F ),
H (F ), and C (F ), respectively.

We make a couple of conventions to improve readability. We put parentheses
around hedges, writing, e.g., ( f (a), x, b) instead of f (a), x, b. The empty hedge is
written as (). The termsa() and X () are abbreviated asa and X , respectively,when it is
guaranteed that terms and symbols are not confused. For hedges s̃ = (s1, . . . , sn) and
s̃ ′ = (s ′

1, . . . , s
′
m), the notation (s̃, s̃ ′) stands for the hedge (s1, . . . , sn, s ′

1, . . . , s
′
m).

We use s̃ and r̃ for arbitrary hedges, and t̃ for sequences of terms.
We will also need anonymous variables for each variable category. They are

variables without name, well-known in declarative programming. We write just _ for
an anonymous term or function variable, and __ for an anonymous hedge or context
variable. The set of anonymous variables is denoted by VAn.
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A syntactic expression (or, just an expression) is an element of the set F ∪
V ∪ T (F ,V ) ∪ H (F ,V ) ∪ C (F ,V ). We denote expressions by E . Atoms are
reducibility formulas t ::t1 =⇒ t2 with the intended reading “t1 reduces to t2 with
strategy t .” The negation of this atom is written as t ::t1 \=⇒t2.

The rules of ρLog are of the form

f (s̃)::t ′ =⇒ t ′′ ← cond1, . . . , condn . (1)

with the intended reading “ f (s̃)::t ′ =⇒ t ′′ holds whenever cond1 and … and condn
hold”, and provide declarative semantics for reducibility formulas. f is the identifier
of the strategy and s̃ is its argument: If s̃ is (), the strategy is atomic, otherwise it is
parametric. We view (1) as a partial definition of f .

Some strategies with frequent applications are predefined:

• id::s =⇒ t holds if s = t .
• elem::l =⇒ e holds if e is an element of list l.
• subset::l =⇒ s holds if s is subset of set l.
• fmap(t):: f (s1, . . . , sn) =⇒ f (t1, . . . , tn) holds if t ::si =⇒ ti for 1 ≤ i ≤ n.

Another way to specify strategies is by using the predefined combinators:

• t1 ◦ t2::t ′ =⇒ t ′′ holds if t1::t ′ =⇒ u and t2::u =⇒ t ′′ hold for some u.
• t1|t2::t ′ =⇒ t ′′ holds if either t1::t ′ =⇒ t ′′ or t2::t ′ =⇒ t ′′ holds.
• t∗::t ′ =⇒ t ′′ holds if either t ′ = t ′′ or there exist u1, . . . , un such that u1 = t ′,
un = t ′′ and t ::ui =⇒ ui+1 for all 1 ≤ i < n.

• first_one(t1, . . . , tn)::t ′ =⇒ t ′′ holds if there exists 1 ≤ i ≤ n such that
ti ::t ′ =⇒ t ′′ and t j ::t ′ \=⇒t ′′ hold for 1 ≤ j < i .

• nf(t)::t ′ =⇒ t ′′ holds if both t∗::t ′ =⇒ t ′′ and t ::t ′′ \=⇒_ hold.

ρLog can answer queries of the form cond1 ∧ . . . ∧ condm where the variables are
(implicitly) existentially quantified. The constraints condi in queries and programs
are of three kinds: reducibility atoms t ::t ′ =⇒ t ′′, irreducibility literals t ::t ′ \=⇒t ′′;
and (3) boolean formulas that can be properly interpreted by the constraint solving
component of ρLog. To instruct our system to compute one (resp. all) substitution(s)
for the variables in the query cond1 ∧ . . . ∧ condn for which it holds, we can submit
requests of the form

Request(cond1 ∧ . . . ∧ condn) or RequestAll(cond1 ∧ . . . ∧ condn)

Another use of ρLog is to compute one or all reducts of a term with respect to a
strategy. The request

ApplyRule(t, t ′)

instructs ρLog to compute one (if any) reduct of t ′ with respect to strategy t , that
is, a term t ′′ such that formula t ::t ′ =⇒ t ′′ holds. ρLog reports “no solution
found.” if there is no reduct of t ′ with t . ρLog can also be instructed to find all
reducts of a term with respect to a strategy, with
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ApplyRuleList(t, t ′)

To illustrate, consider the rule-based solutions to the following problems:

1. To eliminate all duplicates of elements in a list L, we submit the request
ApplyRule(nf(elim2),L) where strategy elim2 is defined by the rule

elim2::{x, x, y, x, z} =⇒ {x, x, y, z} ← .

For example, ApplyRule(nf(elim2),{1, 2, 7, 2, 3, 1}) yields answer {1, 2,
7, 3}.

2. To find out if (or which) e is an element of a list L , we can submit the request
Request(elem::L =⇒ x) where strategy elim is defined by the rule

elem::{__, x,__} =⇒ x ← .

For example, Request(elem::{1, 2, 3} =⇒ x) can return the answer {x �→ 1},
and RequestAll(elem::{1, 2, 3} =⇒ x) returns {{x �→ 1}, {x �→ 2}, {x �→ 3}}.

3. To find all function symbols from a list L that occur in an expression E , we can
submit the request ApplyRuleList(getF(L), E), where the parametric strategy
getF is defined by the rule

getF(y)::__(F(__)) =⇒ F ← (elem::y =⇒ F).

For example, {f,g} is the answer to the query

ApplyRuleList(getF({f,g,u,v,w}),f(g(a(),h(),b())))

Sequence and context variables permit matching to descend to arbitrary depth and
width in a tree-like term. The downside of using these kinds of variables in full
generality is infinitary unification, and thus the impossibility to find a sound and
complete calculus for ρLog. To avoid this problem, we adopted a natural syntactic
restriction, called determinism [8], that ensures that all inference steps of our calculus
can be performed by computing matchers instead of most general unifiers. The good
news is that matching with sequence and context variables is finitary [3].

2.2 The Operational Model of ABACα

ABACα is a formal model of ABAC proposed by X. Jin in his Ph.D. thesis [6] with
a minimal set of features to configure the well-known access control models DAC,
MAC, and RBAC. The core components of this operational model are: : users (U),
subjects (S), objects (O), user attributes (UA), subject attributes (SA), object attributes
(OA), permissions (P), authorization policy, creation and modification policy, and
policy languages (Fig. 1).

Users represent human beings who create and modify subjects, and access
resources through subjects. Subjects represent processes created by users to per-
form some actions in the system. Objects represent system entities that should be
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user attrs. subject attrs. object attrs.

U S OAuthorization

P

1. Authorization policy

3.1. Constraint on object attrs.
at creation time

3.2. Constraint on object attrs.
at modification time

2.1. Constraint on subject attrs.
at creation time

2.2. Constraint on subject attrs.
at modification time

Fig. 1 The structure of ABACα model (adapted from [7])

protected. Users, subjects and objects are mutually disjoint in ABACα , and are col-
lectively called entities. Each user, subject, object is associated with a finite set
of user attributes (UA), subject attributes (SA) and object attributes (OA) respec-
tively. Every attribute att has a type, scope, and range of possible values. The sets
of attributes specific to each kind of entity, together with their corresponding type,
scope, and range, are specified in a configuration type of ABACα: there will be one
configuration type for DAC, and others for MAC, RBAC, etc.

In ABACα , the type of an attribute is either atomic or set. The scope of each
attribute is a finite set of values SCOPE(at). If at is of atomic type, then at can
assume any value from SCOPE(at), otherwise it can assume any subset of values
from SCOPE(at). Formally, this means that the range Range(at) of possible values
of an attribute at is either SCOPE(at) if at is atomic or 2SCOPE(at) if at is set, where
each SCOPE(at) is either an unordered, a totally ordered, or a partially ordered finite
set. There are six policies that control the operational behaviour of an ABACα-based
system, and each of them involves the interaction of two entities:

• authorization policies,which control the permissions that a user can hold on objects
and exercise through subjects. Every configuration specifies a finite set P of per-
missions, and an authorization policy for every p ∈ P ,

• policies to control the creation of a subject by a user, or of an object by a subject,
• policies for attribute value assignment: to a subject by the user who created it; or
to an object by a subject,

• policies to control subject deletion by its creator.

All these policies grant/deny the corresponding operation based on the result of a
boolean function which depends on the old and new attribute values of the interacting
entities. According to [1, 6], each of these six boolean functions can be specified
as a boolean formula in an instance of a language scheme called Common Policy
Language (CPL). In CPL, the syntax of any formula φ is of the form
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φ ::= φ ∧ φ | φ ∨ φ | (φ) | ¬φ

| ∃x ∈ set.φ | ∀x ∈ set.φ | set setcompare set
| atomic ∈ set | atomic atomiccompare atomic

setcompare ::= ⊂|⊆|�
atomiccompare ::= <|=|≤

where set is a finite set of values, and atomic are concrete values.

3 A Rule-Based Framework for ABACα

Our rule-based tool for the specification and analysis of ABACα is built on top of the
rule-based programming capabilities of ρLog. The user can specify (1) any particular
ABACα configuration via the commandsDeclareCfgType andDeclareConfiguration,
and (2) any specific policies compatible with the operational model of ABACα by
declaring in ρLog defining rules for the parametric strategies

ConstrS(typeId) ConstrO(typeId)

ConstrModS(typeId) ConstrModO(typeId) Auth(typeId, p)

createS(cId) createO(cId) modSA(cId) modOA(cId)

Afterwards, we can check whether it is safe to assume that a subject s can never
obtain permission p on an object o in anABACα-configuration cIdwith the command
CheckSafety[cId, s, o, p].

The meaning of these commands and parametric strategies is described in the
remainder of this section.

Every entity (user, subject, or object) is completely described by its attribute val-
ues. Therefore, we chose to represent every entity as a term K (at1(v1), . . . , atm(vm))

where K ∈ {U,S,O} indicates the kind of entity, and every subterm ati (vi ) indicates
that attribute ati has value vi . Every user has a unique identifier given by the value of
its attribute id. Subjects are created by users and retain the identifier of their creator
in the value of subject attribute id. From now on, we will assume the existence of a
function UId(e) which returns the value of attribute id for every entity e ∈ U ∪ S.

Apart from this, the attribute names, their types and scope are characteristic to a
particular configuration of ABACα .

With our tool we can specify a configuration type for every configuration of
interest, with the command

DeclareCfgType(typeId,
{UA→ {uAt1, . . . , uAtm},SA→ {s At1, . . . , s Atn},OA→ {oAt1, . . . , oAtp},
Scope→ {at1 → {s I d1, τ1}, . . . , atr → {s I dr , τr }}})

This declaration specifies a configuration type with identifier typeId, where
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• {uAt1, . . . , uAtm} is the set of user attributes; {s At1, …, s Atn} is the set of subject
attributes, and {oAt1, …, oAtp} is the set of object attributes;

• the scope of every attribute ati is the set bound to identifier s I di in a particular
configuration (see below), and its type is τi ∈ {elem,subset}, where elem
stands for atomic and subset for set.

A configuration is an instance of a configuration type, which specifies (1) the config-
uration type which it instantiates; (2) the sets of values for the identifiers s I di from
the specification of the configuration type, and (3) the initial sets U , S, and O of
entities (users, subjects, objects) in the configuration. In our system, the declaration
of a concrete configuration of ABACα has the syntax

DeclareConfiguration(cId,
{CfgType→typeId,Users→{uId1→u1, . . . , uIdm→um},
Range→{UId→{uId1, . . . , uIdm},

s I d2 → SCOPE(at2), . . . , s I dr → SCOPE(atr )},
Subjects→{s1, . . . , sn},Objects→{o1, . . . , oq}})

Its side effect is to instantiate some globally visible entries:
CfgType(cId) with typeId,
Users(cId) with the set {u1, …, um} of terms for users,
every User(cId,uIdi ) with the term ui ,
Subjects(cId) with the set {s1, . . . , sn} of terms for subjects, and
Objects(cId) with the set {o1, . . . , oq} of terms for objects.

To illustrate, consider the mandatory access control model (MAC). Users and
subjects have a clearance attribute of type elem, whose value is a number from
a finite set of integers L = {1, 2, . . . , N }, which indicates the security level of the
corresponding entity. Objects have a sensitivity attribute of type elem whose
value is also from L , and represents the sensitivity degree of the information in that
object. When read and write are the only permissions on objects, we can assume the
set of permissions P to be {read,write}.

A configuration type for MAC can be defined as follows:

DeclareCfgType(MAC,
{UA→ {id,clearance},SA→ {id,clearance},OA→ {sensitivity},
Scope→{id →{uId,elem},clearance →{level,elem},

sensitivity →{level,elem}}})

A particular MAC configuration can be defined by

DeclareConfiguration(MAC-Cfg01,
{CfgType→MAC,
Users→ {u1 → U(id(u),clearance(3)),

u2 → U(id(u2),clearance(4))},
Range→{uId→ {u1,u2},level→ {1, 2, 3, 4, 5}},
Subjects→ {S(id(u1),clearance(3)),

S(id(u2),clearance(2))},
Objects→ {O(sensitivity(1)),O(sensitivity(4))}})
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3.1 Rules for the Policies of the Configuration Points

The constraint solving component ofρLog allows to specify and interpret correctly all
formulas written in instances of the CPL scheme. Therefore, for every configuration
type typeId, we can use ρLog to define parametric strategies for the policies of
interaction between system entities:

• Auser u can create a subject s if ConstrS(typeId)::{u, s} =⇒ true holds,
where the defining rule of strategy ConstrS is of the form

ConstrS(typeId)::{U(s̃1),S(s̃2)}=⇒ true ← φ1.

• A subject s can create an object o if ConstrO(typeId)::{s, o} =⇒ true
holds, where the defining rule of strategy ConstrO is of the form

ConstrO(typeId)::{S(s̃1),O(s̃2)}=⇒ true ← φ2.

• A user u can modify a subject s to become a subject s ′ if the reducibility formula
ConstrModS(typeId)::{u, s, s ′} =⇒ true holds, where the defining rule
of strategy ConstrModS is of the form

ConstrModS(typeId)::{U(s̃1),S(s̃2),S(s̃3)}=⇒ true ← φ3.

• Asubject s canmodify an object o to become an object o′ if the reducibility formula
ConstrModO(typeId)::{s, o, o′} =⇒ true holds, where the defining rule
of strategy ConstrModO is of the form

ConstrModO(typeId)::{S(s̃1),O(s̃2),O(s̃3)}=⇒ true ← φ4.

• A subject s is authorized to hold permissionp ∈ P on an object o if the reducibility
formula Auth(typeId,p)::{s, o} =⇒ true holds, where the defining rule
of strategy Auth is of the form

Auth(x, z)::{S(s̃1),O(s̃2)}=⇒ true ← φ5,p.

In these rule-based specifications, φi and φ5,p are formulas written in the instance of
the CPL scheme for the values of the attributes of the interacting entities mentioned
in the left-hand side of the corresponding rule.

For example, the mandatory access control (MAC) configuration type with read
and write permissions can have the following rule-based specifications

ConstrS(MAC)::{U(x,clearance(y)),S(x,clearance(z))}
=⇒ true ← (z ≤ y).

ConstrO(MAC)::{S(_,clearance(x)),O(sensitivity(y))}
=⇒ true ← (x ≤ y).

ConstrModS(MAC)::{_,_,_}=⇒ false ←.
ConstrModO(MAC)::{_,_,_}=⇒ false ←.
Auth(MAC,read)::{S(_,clearance(x)),O(sensitivity(y))}

=⇒ true ← (y ≤ x).
Auth(MAC,write)::{S(_,clearance(x)),O(sensitivity(y))}

=⇒ true ← (x ≤ y).

These policies do not allow to modify the attribute values of subjects and objects.
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3.2 Rules for the Operational Model

3.2.1 Subject and Object Creation

These are nondeterministic operations: at any time, a user can create any subject
whose attribute values satisfy the CPL-formula for the subject creation policy; simi-
larly, a subject can create any object whose attribute values satisfy the CPL-formula
for the object creation policy. These operations are implemented in two steps:

1. We use the auxiliary functions sSeed(cId) to compute the term
S(s At1(SCOPE(s At1), τ1), . . . , s Atn(SCOPE(s Atn), τn))
and oSeed(cId) which computes the term
O(oAt1(SCOPE(oAt1), τ1), . . . , oAtp(SCOPE(oAtp), τp)),
where τi is the corresponding attribute type.
For example, for the MAC configuration MAC-Cfg01 illustrated before, the
terms computed by sSeed(MAC-Cfg01) and oSeed(MAC-Cfg01) are
S(id({u1,u2},elem),clearance({1,2,3,4,5},elem)) and
O(sensitivity({1,2,3,4,5},elem)).

2. We use the terms computed by sSeed(cId) and oSeed(cId) as “seeds” to create
any entity allowed by the creation policies. In rule-based thinking, an entity
(subject or object) K (att1(v1), . . . , attk(vk)) can be generated from the “seed”
term K (att1(scope1, τ1), . . . , attk(scopek, τk)) if and only if the reducibility
formulas scopei →τi vi hold. If we define the auxiliary strategy

setAt::Fat (yscope, xtype) =⇒ Fat (x) ← (xtype::yscope =⇒ x).

then the set of entities that can be generated from a seed term st is the set of all e
for which the reducibility formula fmap(setAt)::st =⇒ e holds. Therefore,
for a given ABACα configuration cId:

(1) a user u can create a subject s if createS(cId)::u =⇒ s holds, where
the defining rule of the parametric strategy createS is

createS(xcId)::xu =⇒ xs ←(fmap(setAt)::sSeed(xcId) =⇒ xs),
(id::UId(xu) =⇒ UId(xs)),
(ConstrS(CfgType(xcId))::{xu, xs} =⇒true).

(2) a subject s can create an object o if createO(cId)::s =⇒ o holds, where
the defining rule of the parametric strategy createO is

createO(xcId)::xs =⇒ xo ←(fmap(setAt)::oSeed(xcId) =⇒ xo),
(id::UId(xu) =⇒ UId(xs)),
(ConstrO(CfgType(xcId))::{xs, xo} =⇒true).
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3.2.2 Modification of Entity Attributes

Users can try to modify the attributes of subjects created by them, and subjects can
try to modify the attributes of objects. A simple way to model these operations for
an ABACα configuration cId of type typeId is as follows:

(1) Modification of the attribute values of a subject s by a useru can be viewed as gen-
erating a subject s ′ for which ConstrModS(typeId)::{u, s, s ′} =⇒true
holds. The outcome of changing the attribute values of s is s ′. We define

modSA(xcId)::{xu, xs} =⇒ x ′
s ← (fmap(setAt::sSeed(xcId) =⇒ x ′

s),
(id::UId(xu) =⇒ UId(xs)),(id::UId(xs) =⇒ UId(x ′

s)),
(ConstrModS(CfgType(xcId)::{xu, xs, x ′

s} =⇒true).

and note that modSA(cId)::s =⇒ s ′ holds if and only if the user u who created
subject s is allowed to modify the attribute values of s to become s ′.

(2) Modification of the attribute values of an object o by a subject s can be viewed
as generating an object o′ for which ConstrModO(typeId)::{s, o, o′} =⇒
true holds. The outcome of changing the attribute values of o is o′. We define

modOA(xcId)::{xs, xo} =⇒ x ′
o ← (fmap(setAt::oSeed(xcId) =⇒ x ′

o),
(ConstrModO(CfgType(xcId)::{xs, xo, x ′

o} =⇒true).

3.2.3 State Transitions

A system with an ABACα access control model can be viewed as a state transition
systemwhose states are triples {U, S, O} consisting of the existing users (U ), subjects
(S), andobjects (O), andwhose transitions correspond to the six operations controlled
by the policies of ABACα .

Except for authorized access, the other five operations from the functional spec-
ification of ABACα determine state transitions. Their rule-based specifications are:

createSubj(xcId)::{{x, xu, y}, xS, xO} =⇒
{{x, xu, y}, xS ∪ {xs}, xO} ← (createS(xcId)::xu =⇒ xs), xs /∈ xS.

deleteSubj(_)::{{x1, xu, x2}, {y1, xs, y2}, xO} =⇒
{{x1, xu, x2}, {y1, y2}, xO} ← (id::UId(xu) =⇒ UId(xs)).

createObj(xcId)::{xU , {x, xs, y}, xO} =⇒
{xU , {x, xs, y}, xO ∪ {xo}} ← (createO(xcId)::xs =⇒ xo), xo /∈ xO .

modifySubj(xcId)::{xU , {x, xs, y}, xO} =⇒
{xU , {x, x ′

s, y}, xO} ← (modSA(xcId)::{xU , xs} =⇒ x ′
s).

modifyObj(xcId)::{xU , {x1, xs, x2}, {y1, xo, y2}} =⇒
{xU , {x1, xs, x2}, {y1, x ′

o, y2}} ← (modOA(xcId)::{xs, xo} =⇒ x ′
o).

In the state transitions defined by these rules, the entities matched by xu, xs, xo are
those who interact during rule application.
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3.3 Safety Analysis

Safety is a fundamental problem for any protection system. The safety problem for
ABACα asks whether a subject s can obtain permission p for an object o. Recently,
it has been shown that this problem is decidable [1], by identifying a state-matching
reduction from ABACα to the pre-authorization usage control model with finite
attribute domains (UCONfinite

preA). The result follows from the facts that (1) the safety
problem of UCONfinite

preA is decidable [11], and (2) state-matching reductions, like the
one defined in [1], preserve security properties including safety. It provides an indirect
way to implement an algorithm to decide the safety problem of ABACα . In [10] we
noticed that this indirection can be avoided: a direct analysis of the operational model
of ABACα revealed the main reasons when a configuration is unsafe. In this section
we recall the theoretical results reported in [10], and illustrate how to use ρLog to turn
our theoretical findings into rule-based specifications that can be directly executed.
We claim that our approach is a natural and effective way to solve the safety problem
for any configuration of ABACα .

3.3.1 Properties of ABACα Derivations

We start from the state transition view of the operational model described in Sect.
3.2.3. If e ∈ S ∪ O then a derivation Π : St = {U, S, O} =⇒ . . . =⇒ {U, S′, O ′}
whose transition steps do not delete e may modify the attributes values of e. To
analyze the possible changes of the attribute values of e in ABACα , we introduce the
auxiliary notion of descendant of e in Π : descΠ(e) is the entity e′ ∈ S′ ∪ O ′ which
represents e after performing the operations op1, . . . , opn in this order. Another
useful auxiliary notion is DescSt (e) = {descΠ(e) | Π : St =⇒∗ {U, S′, O ′}}.

With these preparations, the safety problem for ABACα is

Given an ABACα configuration cId with initial state St = {U, S, O}, a subject
s ∈ S, an object o ∈ O , and a permission p ∈ P ,

Decide if there is a derivation Π : St =⇒ . . . =⇒ {U, S′, O ′} whose transitions
steps do not delete the descendants of s, such that subject descΠ(s) can
be authorized to obtain permission p on object descΠ(o). Formally, this
means that the formula Auth(typeId, p)::{descΠ(s), descΠ(o)} =⇒
true holds, where typeId is the configuration type of cId.

In this state transition system, objects can only participate at changing their own
attributes. Therefore, objects from O − {o} do not affect the truth value of the for-
mula Auth(typeId, p)::{descΠ(s), descΠ(o)} =⇒ true. Hence it is harmless
to assume that the initial state is {U, S, {o}) and Π has no object creation steps.
Also, if {U, S, O} =⇒ {U, S′, O ′} then {U, S ∪ S′′, O ′} =⇒ {U, S ∪ S′′, O ′} holds
too, because we can choose the same participating entities to perform the transition.
Therefore, we can assume that Π has no subject deletion steps.

Thus, we can assume without loss of generality that the safety problem is



Specification and Analysis of ABAC Policies in a Rule-Based Framework 113

Given anABACα configurationcIdwith initial state St0 = {U, S, {o}}with s ∈ S,
and a permission p ∈ P ,

Decide UNSAFE if there is a derivation Π : St →∗ (U, S′, {o′}) without subject
deletion and object creation steps, such that the reducibility formula

Auth(CfgType(cId), p)::{descΠ(s), o′} =⇒ true

holds, and SAFE otherwise.

By [10, Theorem 1], the answer is UNSAFE if and only if there exist s ′ ∈
DescSt (s) and o′ ∈ DescSt (o) such that Auth(typeId, p)::{s ′, o′} =⇒ true
holds. In ABACα , all attributes assume values from finite sets specified for cId,
therefore DescSt (s) and DescSt (o) are finite sets that can be computed. Based on
this observation, we designed a safety decision algorithm that computes incremen-
tally the finite sets DescSt (s) and DescSt (o), and interleaves their computation with
testing if Auth(typeId, p)::{s ′, o′} =⇒ true holds for some s ′ ∈ DescSt (s) and
o′ ∈ DescSt (o).

3.3.2 A Rule-Based Safety Decision Algorithm

Suppose u is the creator of s. If u /∈ U then DescSt (s) = {s}, otherwise DescSt (s) =⋃∞
k=1 Sk where S1 = {s} and

Sn+1 =
{

s ′′ /∈
n⋃

k=1

Sk | ∃s ′ ∈
n⋃

k=1

Sk .(ModSA(cId)::{u, s ′} =⇒ s ′′)

}

if n ≥ 1.

Because DescSt (s) is finite, DescSt (s) = ⋃n0
k=1 Sk where n0 = min{n ∈ N | Sn =

∅}. The partition {Sk | 1 ≤ k ≤ n0} of DescSt (s) can be computed iteratively:
S1 = {s}, and Sk+1 = ApplyRuleList(nextS(cId,

⋃k
i=1 Si ), {U, Sk}) where the

parametric strategy nextS is defined by the rule

nextS(xcId , xS)::{{__, xu,__}, {__, xs,__}} =⇒
x ′
s ← (modSA(xcId)::{xu, xs} =⇒ x ′

s), x
′
s /∈ xS .

We can speed up the safety decision algorithm by interleaving the computation of
every Sk with testing if Auth(CfgType(cId), p)::{s ′, o} =⇒ true holds for some
s ′ ∈ Sk . We can do this test by checking if ApplyRule(auth?(p,cId), {Sk, {o}})
yields true, where the parametric strategy auth? is defined by the rule

auth?(xp, xcId)::{{__, xs,__}, {__, xo,__}} =⇒ true ←
Auth(CfgType(xcId , xp))::{xs, xo} =⇒true).

As soon as any of these tests yields true, the decision algorithm stops by return-
ing UNSAFE. Otherwise, we end up computing the set DescSt (s) and will start
computing DescSt (o). The computation of this set can proceed in two steps:
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1. First, we compute the set Sall of all subjects that can show up in the system:
Sall = ⋃∞

k=1 Sk where S1 = S, S2 is the set of all subjects that can be created by
users in U , and

Sn+1 =
{

s ′′ /∈
n⋃

k=1

Sk | ∃u ∈ U.∃s ′ ∈
n⋃

k=1

Sk .(ModSA(cId)::{u, s ′} =⇒ s ′′)

}

If n ≥ 2. Because Sall is finite, Sall = ⋃n1
k=1 Sk where n1 = min{n ≥ 2 | ∧Sn =

∅}. The partition {Sk | 1 ≤ k ≤ n1} of Sall can be computed incrementally:

S2 =
⋃

u∈U
ApplyRuleList(createS(cId), u)

Sn+1 = ApplyRuleList(nextS(cId,

n⋃

k=1

Sk), {U, Sk}) if n ≥ 2.

2. Descst (o) = ⋃∞
k=1 Ok where O1 = {o} and

On+1 =
⎧
⎨

⎩
o′′ /∈

n⋃

k=1

ok | ∃s′ ∈ Sall .∃o′ ∈
n⋃

k=1

Ok .(ModOA(cId)::{s′, o′} =⇒ o′′)

⎫
⎬

⎭

if n ≥ 1. Since Descst (o) is finite, Descst (o) = ⋃n2
k=1 Ok where n2 = min{n ∈

N | On = ∅}.
With ρLog, it is easy to compute incrementally the partition {Ok | 1 ≤ k ≤ n2} of
Descst (o): for every k ≥ 1 we have

Ok+1 = ApplyRuleList(nextO(cId),

k⋃

i=1

Oi ), {Sall , Ok})

where the parametric strategy nextO is defined by the rule

nextS(xcId , xO)::{{__, xs,__}, {__, xo,__}} =⇒
x ′
o ← (modOA(xcId)::{xs, xo} =⇒ x ′

o), x
′
o /∈ xO .

Here, again, we can speed up the safety decision algorithm by interleaving the com-
putation of every Ok with testing if Auth(CfgType(cId), p)::{s ′, o′} =⇒ true
holds for some s ′ ∈ Sall and o′ ∈ Ok . We can do this test by checking if the request
ApplyRule(auth?(p,cId), Sall , Ok) yields true. As soon as this happens, the
algorithm stops by returning UNSAFE. Otherwise, we stop and return SAFE.

This decision algorithm is implemented in the method CheckSafety
[cId, s, o, p], which returns SAFE if, in configuration cIt, subject s can not get per-
mission p on object o, and UNSAFE otherwise.

For example, the command
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CheckSafety(MAC-Cfg01,S(id(u1),clearance(3)),

O(sensitivity(1)),write)

returns SAFE because the clearance of subject S(id(u1),clearance(3)) is
too high to grant write permission to object O(sensitivity(1)).

4 Conclusion

State-matching reduction [14] is a powerful technique to prove security properties
(including safety) of state transition systems. This indirect way to define an algorithm
for the safety problem of ABACα configurations makes hard to observe some impor-
tant properties that can be used to improve its performance. The direct rule-based
analysis performed by us has the following advantages:

1. It provides a unified framework to specify policies for ABACα configurations, the
operational model, execute them, and verify some security properties, including
safety.

2. It allowed us to detect some useful properties of the transition model, that sim-
plified significantly the design of our decision algorithm for safety. In partic-
ular, it allowed us to reduce the safety problem of to a simpler one: check
if Auth(CfgType(cId), p)::{s ′, o′} =⇒ true holds for some s ′ ∈ DescSt (s)
and o′ ∈ DescSt (o). We solved it by identifying rule-based algorithms that inter-
leave detection of unsafety with the incremental computation of DescSt (s) and
DescSt (o).

3. With ρLog, we turned such a rule-based specification into executable code and
obtained a practical tool to check the safety of any configuration of interest. The
rule-based specification is parametric with respect to the configuration types of
ABACα . Therefore, whenever we want to check that, for a given configuration, a
subject s never gets permission p on an object o, it is enough to do the following:

a. specify the configuration and its type, as indicated in Sect. 3.
b. call the method CheckSafety(cfgId, s, o, p) which runs our safety-check

algorithm. It returns SAFE if s never gets permission p on o, and UNSAFE
otherwise.

There are many other rule-based systems with support for strategic programming,
that can be used to formalize state transition systems and study their properties. But
ρLog has some outstanding capabilities for this purpose:

1. It has four kinds of variables which give the user flexible control to select the
components of the term which is transformed. The code is usually quite short and
declaratively clear, as witnessed by the rule-based specification of ABACα .

2. It inherits from theWolfram language ofMathematica a rich variety of constraints
that can be used in requests and the conditional parts of rules. In particular, the
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boolean formulas that constrain the operations of ABACα have direct translations
as constraints in the CLP component of ρLog.

3. It can generate human-readable traces of the reductions that yield an answer. For
the safety problems of ABACα , this capability could be used to produce scenarios
that indicate the sequence of transitions that yield a state where a subject s can
exercise a permission p on an object o. This capability could become a useful
tool to detect security holes of ABACα configurations, and to fix them. We leave
the extension of our a tool with this capability as a direction of future work.
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A Strategic Graph Rewriting Model of
Rational Negligence in Financial Markets

Nneka Ene, Maribel Fernández, and Bruno Pinaud

Abstract We propose to use strategic port graph rewriting as a visual modelling
tool to analyse financial market processes. We illustrate the approach by specifying a
basic “rational negligence” model in which investors may choose to trade securities
without performing independent evaluations of the underlying assets. We show that
our model is correct with respect to the equational model and can be used to simulate
simplemarket behaviours. Themodel has been implementedwithinPORGY, a graph-
based specification and simulation environment.

Keywords Graph rewriting · Strategies · PORGY · Rational negligence ·
Financial modelling

1 Introduction

Rational negligence [1] has been identified as a behavioural pattern in financial trad-
ings, where transactions are performed without proper checks in order to maximise
benefits and reduce operational costs. For example, in 2008 ratings from credit agen-
cies (later found to be inaccurate) were used to replace costly checks, leading to
a financial crisis that the DSGE (Dynamic Stochastic General Equilibrium) mod-
els [23] were unable to anticipate. This motivated a quest for more effective and
transparent tools in the modelling of capital markets [26].

As an alternative to traditional top-downmacro equilibriummodels, Agent-Based
Models (ABM) have been proposed, which examine behaviour at a micro-level [13].
In this paper we explore an alternative approach: we seek to formalise the rational
negligence theory using graph rewriting. We provide an example to illustrate the
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ideas, as a step towards the development of alternative tools for the analysis of
markets to complement the current agent-based implementations.

Rewrite rules are an intuitive and natural way of expressing dynamic, struc-
tural changes which are generally more difficult to model in traditional simulation
approaches where the structure of the model is usually fixed [8]. Graph rewriting lan-
guages are well-suited to the study of the dynamic behaviour of complex systems:
their declarative nature and visual aspects facilitate the analysis of the processes of
interest producing a shorter distance between mental picture and implementation;
they can be used for rapid prototyping, to run system simulations, and, thanks to their
formal semantics, also to reason about system properties.

We use attributed port graphs, that is, graphs where edges are connected to nodes
at specific points called ports, and where attributes are attached to ports, nodes and
edges. Attributed port graphs are useful in the development of graph models, due
to their support of both topology (via ports and edges) and data (via attributes). To
control the rewriting process, we use strategies that permit to select which rules to
apply and where, including probabilistic rule applications. We present first a basic
model of asset trading following a discretised equational model presented in [1],
where the probability of asset toxicity, due diligence analysis cost and asset cost are
fixed.We then briefly discuss amore general version of themodel where stochasticity
is introduced by using a probabilistic choice model of logit type [13].

Summary of Contributions

We provide port graph rewrite rules and strategies that specify basic asset-trading
transactions, starting with an auction to select a potential buyer. These rules and
strategies model the rational negligence phenomenon [1, 20], whereby investors may
choose to trade securities without performing independent evaluations of the under-
lying assets. The model has been implemented in Porgy,1 an interactive, visual port
graph rewriting tool. The graph rewriting approach we advocate produces flexible
models that are easy to validate, experiment with and reason about.We illustrate it by
showing the correctness of our graph rewrite rules and strategies with respect to the
equations defining the rational negligence phenomenon, and using the implemented
model to analyse simple market behaviours.

Related Work

Graph Transformation Systems (GTSs) have been used as a modelling framework
in many areas: for example, RuleBENDER2 is a simulation tool that supports rule-
based modelling of biochemical systems [30], Kappa [22] is a rule-based language
for modelling protein interaction networks, graph transformation has also been used
to outline the semantics of domain specific modelling languages [8].

A basic set of port graph rewrite rules to model rational negligence was presented
by Ene [11], focusing on implementation aspects. Here we extend the rules to include
an abstract representation of an auction process and we analyse the properties of the

1http://porgy.labri.fr.
2http://www.rulebender.org.

http://porgy.labri.fr
http://www.rulebender.org
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model:we prove that the rewrite rules and the strategieswe provide correctly simulate
the equational model of rational negligence [1].

Previous rational negligence models followed an agent-based approach (see, for
example [1, 26]). Test results for our model line up with results form traditional
agent-based models (see Sect. 4 and [11] for a discussion of experimental results).
General purpose agent-based simulation tools (see [21] for a survey) support an
imperative object-oriented approach to model development. The graph rewriting
approach used in this paper is declarative: the program consists of graph transfor-
mation rules and a strategy. Languages like Stratego [6, 36], Maude [10, 27] and
ELAN [5] support a term rewriting approach with user-defined strategies to control
the application of rules. Rascal [32] (and its predecessor ASF+DSF [33]) are closely
related, using algebraic specifications as a basis to define programs, with traversal
functions to control the application of rules. Tom [3] is an extension of Java with
algebraic terms, rule definitions and a strategy language, thus allowing programmers
to combine imperative object-oriented programming and strategic term rewriting.
The symbolic transformation language symbtrans designed in the context of MEM-
SALab [4] (where models are defined using partial differential equations) extends
MapleTM with conditional rewriting, strategies and pattern-matching modulo asso-
ciativity and commutativity.

An alternative rule-based approach uses rules to define predicates, as in the logic
programming language Prolog and its variants, including in some cases domain-
specific constraint solvers or special-purpose languages to handle constraints [17].
The multi-paradigm language Claire [7] combines the imperative, functional and
object-oriented styles with rule processing capabilities, including constructs to cre-
ate new branches in the search-tree and to backtrack if the current branch fails. The
language Prholog [9] extends logic programming with strategic conditional trans-
formation rules, combining Prolog with the ρLog calculus [25] to enable strategic
programming.

We have chosen to develop our models using port graph rewriting in Porgy [15],
since it provides a visual rule-based programming-style, including user-defined
strategies. The visual, declarative nature of GTS tools such as Porgy is welcome in
the cases where users seek to primarily focus on describing what the system should
accomplish, and is especially useful for the analysis of complex systems in interactive
environments.

A benchmark analysing the differences between several GTS tools has been devel-
oped by Varró et al. [35]. A variety of GTS tools are available: among others we can
cite GROOVE [19], a graph-based model checker for object oriented systems; AGG
(the Attributed Graph Grammar System) [31], a graph-based language for the trans-
formation of attributed graphs that comes with a visual programming environment;
PROGRES (Programmed Graph Rewriting Systems) [29] that offers backtracking
and nondeterministic constructs; GrGen (Graph Rewrite Generator) [18] that uses
attributed typed multigraphs and includes features such as Java/C code generation,
and GP [28], a graph programming language, where users can define rules and strat-
egy expressions, with support for conditional rewriting. Porgy [15] has been used
to model social networks [14] and database design [16, 34], as well as biochemi-
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cal processes [2], where non-determinism, backtracking, positioning constructs, and
probabilistic rule application are key features. A distinctive feature of PORGY is
that rewriting derivations are directly available to users via the so-called derivation
tree, which provides a visual representation of the dynamics of the system modelled
and can be used to plot parameters and generate charts as illustrated in Sect. 4.
Overview
We first recall key notions on securitisation and graph rewriting in Sect. 2. Section 3
describes the proposed approach to the modelling of securitisation, including a short
description of rules and associated strategies. Section 4 examines key properties of
the model. We finally conclude and briefly outline future plans in Sect. 5.

2 Background

In this section we recall the main notions of asset trading and port graph rewriting
that are needed in the rest of the paper.

2.1 Asset-Backed Securities

Assets [20] represent loans to clients or obligors who make regular installment pay-
ments to the originator to clear their debts. In a securitisation, assets are selected,
pooled and transferred to a special purpose vehicle (SPV), who funds them by issuing
securities. In general, an ABS (asset-backed security), or simply asset if there is no
ambiguity, is any securitisation issue backed by consumer loans, car loans, etc.

In the core rational negligence model [1], the profit Uw expected by an agent
(e.g., a bank) w from trading an asset depends on whether or not w follows the
negligence rule, i.e., the rule of not performing independent risk assessment. Let z
be a binary variable indicating whether or not the agent is following the negligence
rule, thenUw is a function of z. According to [1],Uw(z) can be characterised by the
following equations, where p is the probability of asset toxicity, Z is the average of
all z’s in the domain, c is the cost of purchasing an asset (note that the payoff from
successfully reselling the asset is normalised to unity), xw is the cost of performing
a complete risk analysis, k is the number of trading partners of the seller bank and
Ni is the set of agents.

• Expected profit for w when following the negligence rule, i.e., when z(w) = 1, if
w buys an asset and then tries to sell it to w′:

Uw(1) =def −p(1 − z(w′))c + [1 − p(1 − z(w′))](1 − c) ≈ 1 − p(1 − Z) − c

This is because if the asset is toxic then w will loose c if w′ checks, and will have
a profit of 1 − c if w′ does not check. Of course w does not know a priori whether
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w′ will or not follow the rule, but it can estimate z(w′) as the average of all the
values of z in the system, Z . Note that when p = 0 the profit is 1 − c as expected.

• Similarly, the expected profit for w when the rule is not followed, i.e., z(w) = 0,
is defined by:

Uw(0) =def (1 − p)(1 − c) − xw

This is because if the asset is toxic, then w will not buy it (losing only xw), but if it
is not toxic then it will resell it with a profit of 1 − c − xw. Note that when p = 1
the loss is xw as expected.

So the best response of agent w to a buying request is determined by the value of
U (1) − U (0). If it is positive, then negligence is better, otherwise diligence is better.
Note that

U (1) − U (0) = p(Z − c) + xw = p

⎛
⎝1

k

∑
j∈N i

z j − c

⎞
⎠ + xw

Following [1], in this paper we study the behaviour produced by the trading of one
asset since this is sufficient to perform validations against equivalent DSGE analyses.
The goal is to study the evolution of the system till fixed point (that is, a stable state)
is reached i.e., in this case, a state such that all potential buyers in the universe
of discourse no longer alternate between diligent and negligent behaviour in their
handling of the purchase of a particular asset.

2.2 Port Graph Rewriting

Aport graph is a graphwhere nodes have explicit connection points, called ports, and
edges are attached to ports. Nodes, ports and edges are labelled by a set of attributes,
including a mandatory attribute Name that characterises the type of the node, port or
edge. Attributes describe properties such as colour, size, etc. In Porgy [15] labels
are records, i.e., lists of attribute-value pairs. The values can be concrete (numbers,
Booleans, etc.) or abstract (expressions in a term algebra, which may contain vari-
ables). For example, the port graph in Fig. 1 depicts a toy ABS market universe
represented by a community of banks (B nodes), one of which owns a tradeable
asset (A), together with a global environment represented by the nodes Z , Change
and Auction. The edge between A and B represents ownership.

Transactions between banks are specified by means of rewrite rules. A
port graph rewrite rule L ⇒C R is itself a port graph consisting of two port graphs
L and R together with an “arrow” node. Intuitively, the pattern, L , is used to identify
subgraphs (redexes) in a given graph which should be replaced by an instance of the
right-hand side, R, provided the condition C holds. The arrow node may have ports
and edges that connect it to L and R; these edges specify a partial morphism between
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Fig. 1 Sample port-graph:
model’s starting graph

the ports in L and R, following the single push-out approach [24] to graph rewrit-
ing (see [15] for more details). Operationally, the arrow-node edges are used during
rewriting to redirect edges that arrive to ports in the redex from outside, ensuring that
no edges are left dangling. Table 3 shows the rules used in our model (these will be
discussed in the next sections). The arrow-node edges can be optionally displayed
in Porgy; when displayed, they are shown in red. In Porgy attribute values can be
updated in the right-hand side of a rule by means of an “algorithm tab” (see Table 3).

For a given graph, several different rewriting steps may be possible (due to the
intrinsic non-determinism of rewriting). Strategies in rewriting systems are a means
of controlling the creation of rewriting steps. A sequence of rewriting steps is called
a derivation. A derivation tree is a collection of derivations with a common root.
Intuitively, the derivation tree is a representation of the possible evolutions of the
system starting from a given initial state (each derivation provides a trace, which can
be used to analyse and reason about the behaviour of system).

Porgy’s strategy language allows us to specify not only the rule to be used
in a rewriting step, but also the position where the rule should (or should not)
be applied. Formally, the rewriting relation is defined on located graphs, which
are port-graphs with two distinguished subgraphs P (Position subgraph, the focus
of rewriting) and Q (Banned subgraph, where rewriting steps are forbidden). The
keywords crtGraph, crtPos, crtBan in the strategy language denote, respec-
tively the current graph being rewritten and its Position and Banned subgraphs. For
example, the strategy expression setPos(crtGraph) sets the position graph as
the full current graph. If T is a rule, then the strategy one(T ) randomly selects
one possible occurrence of a match of rule T in the current graph G, which
should superpose the position subgraph P but not superpose the banned subgraph Q.
This strategy fails if the rule cannot be applied. I d and Fail denote success and
failure, respectively. The strategy expression match(T ) is used to check if the rule
T can be applied but does not apply the rule. (S)orelse(S′) tries strategy S and if it
fails then tries to apply S′. If both strategies fail then the whole statement fails. The
strategy ppick(T1, . . . , Tn,Π) selects one of the transformations T1,…Tn according
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Fig. 2 A portion of the derivation tree in PORGY. The square boxes are nodes in the derivation
tree: they contain graphs, and the black arrow represents the application of a rewrite rule

to the given probability distribution Π . The strategy while(S)[(n)]do(S′) executes
strategy S′ (not exceeding n iterations if the optional parameter n is specified) while
S succeeds. repeat (S)[max n] repeatedly executes a strategy S, not exceeding n
times; it can never fail (when S fails, it returns I d). We refer the reader to [15] for
the full definition of Porgy’s strategy language.

Porgy [15] offers an in-built strategy editor, a navigable derivation tree widget,
and widgets for the creation of rules and graphs. By navigating on the derivation tree
and zooming on different nodes, we can see the various stages in the simulation (see
Fig. 2); if we click on the black arrows in the derivation tree we can see which rule
has been applied and identify the cause of the change in the model state.

3 The ABS-GTS Model

In this sectionwe provide a graph-basedmodel of theABS process as specified by the
equations given in Sect. 2.1. TheABS trading process is modelled hierarchically. The
asset trading model sits at the top level of the model hierarchy. It is non-deterministic
in nature.Below this system lie several subsystems thatmodel origination, structuring
of the deal, SPV transfers and profitability of the sale. In the rest of the paper we
focus on the top tier level, which is where the ‘rational negligence’ phenomenon can
be observed.

Asset-transfer transactions are modelled using a combination of global and local
data: the global state includes Z (an indicator of market behaviour obtained as the
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Table 1 Nodes and attributes

Entity name Attribute Description

Bank/Bidder/Potential
Buyer (B/BD/PB)

Payoff (payoff) Returns from re-selling an
asset

z Indicates whether or not, as a
rule, the bank performs
independent risk analyses

Bank ID (b_id) Bank identifier

Asset (A) Current value (c_val) Cost of purchasing an asset

Probability of toxicity (p_tox) An asset is toxic if the
borrowers of the underlying
loans are likely to default or
are in default

Actualised toxicity (a_tox) Current toxicity level

Perception (pe) External rating of the asset by
rating agencies

Due diligence cost (ddcost) Full cost of an independent
risk assessment

Change Change Change in bank approach

Sum of change
(sumofchange)

Sums all changes in a current
cycle

Z z Represents the global average
z

Number of iterations
(numofiterations)

Counter that keeps track of
AllTrade iterations

Number of agents
(numofagents)

Variable that keeps track of
number of banks

Theta U1 Profitability of being negligent

U0 Profitability of being diligent

DeltaU1U0 Difference between U1 and U0

Auction Kind Abstract single-sided auction

average value of each individual bank’s approach, represented by the bank’s attribute
z) and a Change indicator, to detect whether the market has reached a stable state.
See Tables 1 and 2 for a description of the nodes used. Similar nodes were used in the
model implemented in [11]; here we have additional nodes to represent the Auction
and Bidders.

Model execution begins with a parameterised initialisation phase that produces a
sample universewith one asset, linked to the owner bank (seeFig. 1).Colour attributes
in nodes and ports are used to distinguish between classes of objects and to aid in the
identification of states of interest (such as negligent behaviour, as explained below).

Tables 3 and 4 describe the rewrite rules handling asset transfer in ourmodel. As in
the foundational paper [1], our current implementation has been limited to the trading
of one asset among k banks. The starting state of themodel is the graph shown inFig. 1
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Table 2 Ports in each kind of node

Entity Ports Description

Bank, bidder O (Owns) Edges attached to this port link
to assets owned by the bank

C (Contacts) Communication channel with
another bank

Asset OB (Owned_by) Connects the asset to its
current owner

Z E (Environment) Global entity that tracks
current average sentiment

PotentialBuyer O (Owns) Links to assets owned by the
bank

C (Contacts) Communication channel with
another bank

GE (Generates) Declares a relationship with an
analysis node

Change CH (change) Keeps track of behaviour
changes

Theta PB (Produced_by) Links to entity that produces
this node

Auction B (Buyers) Links to bidders

S (Seller) Links to seller

and it is from this point that the derivation tree begins to undergo construction as the
execution strategy calls on rules that create step-wise transformations. Specifically,
the asset transfer processes are governed by the strategies Auction, AllTrade and
FixedPointSearch (see Strategies 1, 2 and 3 below).

Auction (Strategy 1) starts by specifying that rules will apply anywhere in the
current graph (line 1). Line 2 applies rule sellorder, to represent a sell request from
the asset owner. After a number of buy orders are received (specified in line 3 by
repeated applications of the rule buyorder), an auction takes place and one of the
bidders is selected (line 4, rule matchorders). The auction is then closed (line 5).

A basic description of the strategy AllTrade (Strategy 2) is as follows: Line 1
starts a trading cycle (the number of iterations is bound by the number of banks,
k). Each iteration corresponds to one transaction: First an auction takes place (the
Strategy Auction is called in line 1). After the auction, the potential buyer then
begins the analysis in line 2 to decide whether or not to follow the negligence rule. It
does this by computing the profitability of choices as described in Sect. 2.1 using rule
beginanalysis. If diligence is more profitable the deviation rules will apply, otherwise
the bank follows the negligence rule (see the orelse in lines 3 and 4). The rule
updatez used in line 5 updates the global Z . We repeat k times in order to give all
banks an opportunity to trade.

Strategy 3 controls the full execution: AllTrade is iterated until there are no
changes in the agent behaviours (i.e., as long as the change rule can be applied).
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Table 3 Rewrite rules

Name of rule Description

sellorder Initiates sell-order communication with Auction

buyorder Initiates buy-order communication with Auction

matchorders Handles the match of sell-buy orders

close Closes the auction

beginanalysis Computes profitability U (1), U (0) of PB, generating a node Theta with
attribute DeltaU1U0 = U (1) − U (0)

Algorithm tab
Theta.U1 = 1 − A.p_tox(1 − Z .z) − A.c_val
T heta.U0 = (1 − A.p_tox)(1 − A.c_val) − A.ddcost
T heta.DeltaU1U0 = Theta.U1 − Theta.U0

updatez Updates the attribute z in node Z

Algorithm tab: Z .z = ((Z .z ∗ (Z .numofagents − 1)) + B.z)/Z .numofagents
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Table 4 Rewrite rules

Name of rule Description

followresult Applies if DeltaU1U0 ≥ 0. It generates a follow node if more profitable to not
do a full risk analysis

Arrow-node condition
If Theta.DeltaU1U0 ≥ 0

deviationresult Applies if DeltaU1U0 < 0. It generates a deviation node if more profitable to
do a full risk analysis (Similar to followresult)

followdecision Transfers asset and prepares for a new transaction (i.e. cleans up after the
decision negligence rule), updating bank’s attribute z, updating the Change
counter if necessary

deviationdecision Transfers asset and prepares for a new transaction (i.e. cleans up after the
decision to deviate from the negligence rule), updating bank’s attribute z,
updating the Change counter if necessary (Similar to followdecision)

change Sets the Change counter back to 0 if greater than 0

Algorithm tab
Change.change = 0
Change.sumofchange = 0

A variant of strategy AllTrade replaces the orelse operator (lines 3 and 4) by
a ppick operator, to model probabilistic choice of logit type between following
or deviating from the negligence rule. The probability distribution used in this case
implements the stochastic “trembles” described in [13] and can be written within our
strategy environment as follows:

ppick((one(followresult);one(followdecision)),
(one(deviationresult);one(deviationdecision)),
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1 setPos(crtGraph);
2 one(sellorder);
3 repeat(one(buyorder))(n);
4 one(matchorders);
5 repeat(one(close))

Strategy 1: Auction

1 repeat(#Auction#;
2 one(beginanalysis);
3 (one(deviationresult);one(deviationdecision)) orelse
4 (one(followresult);one(followdecision));
5 one(updatez))(k)

Strategy 2: AllTrade

1 #AllTrade#;
2 while(match(change))do(
3 one(change);
4 #AllTrade#)

Strategy 3: FixedPointSearch

udfLogitModel)
where udfLogitModel is a function that reads the profitability of being negligent
or diligent (attributes U1 and U0 in the node Theta of the graph produced by the rule
beginanalysis) and returns the following values as a list:

expBUi (z=1)

expBUi (z=1) + expBUi (z=0)
and 1 − (

expBUi (z=1)

expBUi (z=1) + expBUi (z=0)
)

where i is the current agent number and B is the intensity of choice parameter that
controls the ease at which fixed point is reached (as specified in [13]).

Levels of toxicity, asset value and due diligence cost are parameters of the sim-
ulation, which can be changed in our model by updating values of bank and asset
node attributes.

4 Model Properties

First, we show that our model specification is correct with respect to the equational
semantics (Sect. 2.1). This ensures that our model captures the ABS process of inter-
est, and predictions from the ABS models under the same conditions coincide with
the predictions produced by our system.
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Lemma 1 Starting from an initial graph that contains at least two bank nodes, one
of which owns an asset, and an Auction node, Strategies 1 (Auction), 2 (AllTrade),
and 3 (FixedPointSearch) never fail.3

Proof Strategy 1 startswith a set Pos command,which cannot fail, and then executes
a sell order (which cannot fail if the graph has at least two banks, one of which owns
an asset, and an auction node), followed by a repeat command, which according to
PORGY’s semantics [15] can never fail, then matches the buying and selling orders
(this rule cannot fail since the previous repeat command generates a redex) and
finally the strategy executes another repeat command which cannot fail. Strategy 2
(AllTrade) executes a commandof the form repeat (S)(k),which cannever fail. Since
AllTrade cannot fail, strategy FixedPointSearch can only fail if the rule change in
the body of the while loop fails, which is impossible due to the condition in the
“while” (there is at least one match for change).

Theorem 1 (Correctness)Thegraph-basedmodel definedby the initial state, rewrite
rules and strategies defined above is correct with respect to the equationally defined
ABS process (see Sect.2.1). More precisely, the graphs generated by the application
of the rewrite rules with the given strategy represent states reached by the system
governed by the equational ABS model.

Proof We show that one trading transaction in our system corresponds to one trading
transaction in the equational model. Let w be the bank that owns the asset (i.e., the
bank linked by an edge to the asset), and let w′ be the potential buyer (selected by
auction). Rule beginanalysis computes the value of the projected profitability made
by w′ following and not following the negligence rule using the attributes p-tox,
c-val and dd-cost (i.e., probability of toxicity, current value and due diligence cost)
in the asset, which correspond to the values of p, c and x in the equational model.
It computes the difference between Uw(1) and Uw(0) using the equations given in
Sect. 2.1 and stores it in the attribute DeltaU1U0, as indicated in its algorithm tab.
The result of this computation is the value specified by the equational model. The
strategy ensures that the potential buyer selects the most profitable choice (lines 3–4
of Strategy 2), and the rule updatez recomputes the global Z value as outlined in
Table 3, as follows:

Zi+1 = Zi ∗ (k − 1) + z(w′)
k

which gives the average value specified in the equational model.

Theorem 2 (Completeness) The graph-based model defined by the initial state,
rewrite rules and strategies defined above is complete with respect to stability as
specifiedby the equationalABSmodel (see Sect.2.1).More precisely, if the equational
model reaches a stable state, so does our model.

3A strategy fails if it attempts to apply a rule that is not applicable.
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Proof (Sketch) The transactions of the equational ABS model are mimicked by the
iterations in our strategy. A stable state in the equational model is reached when
banks do not change their approach to negligence, which corresponds to absence
of “Change” in our model: the Change flag is updated as required when rules
f ollowdecision and deviationdecision are applied (see Table 4).

Theorems 1 and 2 ensure that our model reaches a stable state if and only if the
ABS equational model (see Sect. 2.1 and [1]) reaches the same stable state.

Theorem 3 (Termination)Thegraphprogramconsisting of the initial graph, rewrite
rules and strategy described above terminates.

More generally, if the rule updatez also changes the values of the asset attributes
(reflecting external changes in risk analysis cost, toxicity and asset value) then the
graph program terminates if and only if stable state is reached.

Proof A state is stable if no bank has changed its mind regarding its negligence
choice when given an opportunity to trade. If stable state has been reached, there is
no change after executing AllTrade hence the while loop found in line 2 of Strategy 3
stops. Conversely if our strategy terminates then the change rule does not apply since
this is the condition to exit the while, hence no bank has changed its behaviour in
AllTrade (stability has been reached). Thus, the graph program terminates if and
only if the initial graph reaches a stable state.

Moreover, if the parameters of the asset do not change during the simulation then
the program is guaranteed to terminate, because in this case Z is monotonic (once
a bank decides towards diligence or negligence, the rest follow the trend). Thus, in
this simple case, the program terminates.

Experiments and Analysis
A base case validation of the model is described in [11], in which test results line
up with results from a traditional ABM simulation given in [1]. In Fig. 3 we recall
some experimental results, where average Z value is plotted versus depth of the
simulation. A natural question arises: What events could have mitigated or further
instigated a negligent behaviour? By increasing toxicity values for example we can
take into account the increase in interest rates that led to increased default rates and
the 2008 crisis. Our experiments show that when toxicity is increased (attribute p
in node A) the system reaches a stable state where all banks perform independent
risk analysis, as expected. In particular, for high values of p (that is, high probability
of toxicity), we observe the expected result when the initial state contains a mixture
of negligent and diligent agents: a sharp drop in Z , corresponding to a sharp switch
towards diligence which in turn will generate stability. An illustration of this can be
seen in Fig. 3c and notice that given high due diligence costs Fig. 3b, d highlight a
negligent approach whereas Fig. 3c, e reflect the favouring of a diligent approach.
However, even for high toxicity, if the initial state is a set of negligent agents, the
model reaches equilibrium without switching approach as seen in Fig. 3f.

We observe the following behaviours:
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(a) Low Toxicity, High Due
Diligence Cost, Mixture of
Diligent and Negligent Banks

(b) High Toxicity, High Due
Diligence Cost, Mixture of
Diligent and Negligent Banks

(c) High Toxicity, Low Due
Diligence Cost, Mixture of
Diligent and Negligent Banks

(d) High Toxicity, High Due
Diligence Cost, Diligent
Banks

(e) High Toxicity, Low Due
Diligence Cost, Diligent
Banks

(f) High Toxicity, Low Due
Diligence Cost, Negligent
Banks

Fig. 3 Experiment results. y-axis: count of the number of negligent banks. The intersection of
x and y axes in the case of a starting universe of purely diligent banks corresponds to the co-
ordinates (0, 0) as opposed to (11, 0) in the case where we begin with negligent banks. Curves
tending upwards reflect a negligent equilibrium result

1. Negligent equilibrium: If in the initial graph Z ≈ 1, then the system arrives at
negligent equilibrium (i.e., a result that reflects a community decision to no longer
perform due diligence on a particular asset) even when the asset has high proba-
bility of toxicity.
Explanation: For Z ≈ 1 the profitability equation outlined in Sect. 2.1 reduces
to: U (1) − U (0) ≈ 1 − c + xw given that the difference between U (1) and
expected profit when the rule is not followed (i.e. U (0)) is p(Z − c) + xw. This
linear equation is computed at each iteration of the repeat loop. The result is pos-
itive given that c and xw are both positive constants smaller than 1.
Similarly, we observe that if p is high but in the initial graph the majority of banks
are deviating from the negligence rule, then the system reaches a due diligence
stable state.

2. Indefinite propagation: A continuous increase in the number of negligent bank
agents means that a market crash can be postponed. This condition, although not
feasible in a real market, is valid in equational models.
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Explanation: A continuous increase in the number of agents used in calculating
the average current sentiment, Z , as outlined in Sect. 2.1 and as computed by
Porgy, means that the value of Z used in deciding whether or not to perform an
independent risk analysis can remain unchanged.

3. Dangerous Equilibrium: A negligent stable state can be reached despite high
toxicity under certain circumstances (high due diligence costs).
Explanation: A sensitivity analysis shows that for a certain range of high due
diligence cost values, negligent equilibrium can be obtained despite high toxicity
values, even if initially negligence is not the norm, see Fig. 3b, d.

The results obtained with the basic experiments performed so far suggest that the
graph rewriting approach, and in particular the derivation tree provided by Porgy,
could be used to get insights beyond simulation runs. For example, the derivation
tree could be used to search for states with specific properties, or to identify the
occurrence of specific events (e.g., the first application of a specific rule). More
meaningful analyses could be carried out, such as calculating propagation speeds
(i.e., number of steps it takes for rule sentiment to be adopted by all agents relative
to the size of network or the rate of change of average sentiment within different
environments), taking into the account the pay-down factor of the loans supporting
the asset and the expected contractual degradation of the asset itself, etc.

5 Conclusions

We have shown that strategic port-graph rewriting provides a basis for the design
and implementation of graph models of the rational negligence phenomenon. Whilst
ABMs rely on the internal processing of its agents, GTSs provide at each point in time
a holistic view of the system state and a visual trace of the specific rules that trigger
specific behaviours. In future, we will further develop the model using hierarchical
graphs [12] to capture all tiers of the model, and also generalise the rules to permit
dynamic changes in key attributes such as asset toxicity and costs.
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On Lie Algebras with an Invariant Inner
Product

Alice Fialowski

Abstract In this note we consider low dimensional metric Lie algebras with an
invariant inner product over the complex and real numbers up to dimension 5. We
study their metric deformations with the help of cyclic cohomology, and give explicit
formulas for the cocycles and deformations.

Keywords Lie algebra · Invariant bilinear form · Cohomology · Deformation

1 Introduction

Lie algebras with an invariant inner product became a current topic of research in Lie
theory. Any reductive Lie algebra has such an invariant inner product, and they are
related to the Killing form, which is an invariant inner product on a semisimple Lie
algebra. Usually, one considers such algebras over the real numbers, but complex
forms also play a role. One advantage in considering the complex case is that in that
case, all inner products are equivalent, whereas over the real numbers, the signature
of the form also plays a role.

Lie algebras with an invariant inner product are also referred to as
metric Lie algebras or quadratic Lie algebras in the literature (see [3, 8, 14]), and
include the diamond and oscillator algebras as examples of solvable algebras with
an invariant inner product.

These Lie algebras are interesting by several reasons. Let G be the corresponding
connected and simply connected Lie group of the Lie algebra g. The inner product
on g induces a left-invariant Riemannian metric on G in a natural way [10]. Such
Lie algebras correspond to special pseudo-Riemannian symmetric spaces, see [16].
They also show up also in the formulation of some physical problems, like in the
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Adler–Kostant–Symes scheme [16] or in conformal field theory, as precisely the Lie
algebras for which a Sugawara construction exists [5].

Not much is known about these Lie algebras. The classification is known up to
dimension 7, see [2, 9, 11], but in higher dimension it is a hard unsolved problem.
Representations of the diamond Lie algebra have been studied [4, 13, 14] but in
general, the invariants of metric Lie algebras and the cohomology and deformation
theory of such algebras has not been studied. A good survey about the known facts
see in [15].

There is a notion of cyclic cohomology, which plays a role in the study of defor-
mations preserving an invariant inner product. We examine this notion in some depth
in this paper, and apply a variant of this type of cyclic cohomology to study metric
deformations of Lie algebras preserving an invariant inner product.

2 Cohomology and Cyclic Cohomology

Let us consider theLie algebra g on a vector space V . Recall that the space of cochains
C(g, M) of a Lie algebra g with coefficients in a module M is given by C(g, M) =
Hom(

∧
, M). If Cn(g, M) = Hom(

∧n g, M), then C(g, M) = Π∞
n=0C

n(g, M) or
write C(g, M) = ⊕∞

n=0 C
n(g, M).

Consider the coboundary operator D : C(g, M) → C(g, M), which is deter-
mined by the maps D : Cn(g, M) → Cn+1(g, M),

D(ϕ)(v1, · · · , vn+1) =
∑

σ∈Sh(1,n)

(−1)σ vσ(1).ϕ(vσ(2), · · · , vσ(n+1))

+
∑

σ∈Sh(2,n−1)

(−1)σ ϕ([vσ(1), vσ(2)], vσ(3), , · · · , vσn+1),

Here Sh(k, �) is the set of (un)shuffles of type (k, �), that is those permutations of
k + � which are increasing on 1 · · · k and k + 1 · · · k + �, (−1)σ is the sign of the
permutation σ and [·, ·] represents the Lie bracket on V .

A standard fact from Lie theory is that the map D satisfies D2 = 0 and so we can
define the (Eilenberg–Chevalley) cohomology

Hn(g, M) = ker(D : Cn(g, M) → Cn+1(g, M))/ Im(D : Cn−1(g, M) → Cn(g, M)).

Denote the cochains C(g, g) with coefficients in the adjoint representation by
C(g), so that Cn(g) = Cn(g, g) are the n-cochains of the Lie algebra, and Hn(g) =
Hn(g, g) is called the cohomology of g.

An inner product 〈·, ·〉 on V is invariant with respect to a Lie algebra structure if

〈[u, v], w〉 = 〈u, [v,w]〉.
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Given any inner product, define a cochain ϕ ∈ Cn(V ) to be cyclic if the associated
element :̃ ∧ V ⊗ V → K, given by

ϕ̃(v1, · · · , vn+1) = 〈(ϕ(v1, · · · , vn), vn+1)〉,

satisfies
ϕ̃(vn+1, v1, · · · , vn) = (−1)nϕ̃(v1, · · · , vn+1).

Denote a Lie algebra structure on the vector space V by d ∈ C2(V ). An inner product
is invariant with respect to a Lie algebra structure d ∈ C2(V ) precisely when d̃
is cyclic with respect to the inner product. Also, ϕ is cyclic precisely when ϕ̃ is
antisymmetric, that is ϕ̃ ∈ Cn+1(V, K), where K is the trivial module structure.

If ϕ and ψ are cyclic cocycles, then [ϕ,ψ] is also cyclic. This allows us to extend
the bracket to C(V, K) by defining

[ϕ̃, ψ̃] = [̃ϕ,ψ],

which equips Ck(V, K) with a graded Lie algebra structure. In fact, we can compute
that if ϕ ∈ Ck(V ), ψ ∈ C�(V ), then

[ϕ̃, ψ̃] =
∑

σ∈Sh(l,k)
ϕ̃(ψ(vσ(1), · · · , vσ(�)), vσ(�+1), · · · , vσ(k+�)).

It is not obvious why this formula is correct, since it seems unbalanced in terms of
ϕ and ψ , but it can be checked that under this bracket

[ψ̃, ϕ̃] = (−1)(k+1)(�+1)+1[ϕ̃, ψ̃],

which is the graded antisymmetry corresponding to the antisymmetry of the bracket
of ϕ and ψ . Note that the coboundary operator on an element ϕ̃ ∈ Cn(V, K) is just
given by

(Dϕ)(v1, · · · , vn+2) =
∑

σ∈Sh(2,n)

(−1)σ ϕ̃([vσ(1), vσ(2)], vσ(3), · · · , vσ(n+2))

= [ϕ̃, d̃](v1, · · · , vn+2),

which means that if we define the coboundary operator D on CCn(g) by D(ϕ̃) =
[ϕ̃, d̃], then the associated cohomology HC(g), called the cyclic cohomology of g,
coincides with the shifted cohomology H(g, K) of g with coefficients in K. That is,
we have HCn(g) = Hn+1(g, K).

When there is no invariant inner product, the cohomology H(g, K) is still well
defined, and it is customary to define the cyclic cohomology of g by HCn(g) =
Hn+1(g, K), so that the definition of cyclic cohomology can be given independently
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of any invariant inner product, but the bracket of cyclic cochains makes sense only
in the presence of an invariant inner product.

In the presence of an invariant inner product, there is a connection between cyclic
cohomology and deformations of such an algebra. However, the connection is not as
straightforward as one might think.

Example Let us consider g = sl(2, C) with the invariant inner product I d. Then
H 1(g, C) and H 2(g, C) both vanish and H 3(g, C) is 1-dimensional. But then
HC2(g) = 〈d〉 is generated by the cochain represented by the algebra itself, so this
cochain is nontrivial. As it turnes out, d is not the coboundary of a cyclic 1-cochain,
which means that it really is true that the cyclic cohomology HC2(g) has an extra
basis element.

This means that in some sense, the algebra deforms along itself, which would
not make any sense in the usual notion of deformation of an algebra. In fact, we
will explain later that the two algebras d and (1 + t)d, while isomorphic, are not
formally isomorphic in the metric sense, and that is the source of the problem,
because deformation theory considers a deformation to be trivial only when it is
generated by a formal isomorphism. The problem turns out to be related to the fact
that the identity matrix is never a cyclic 1-cochain, and for reductive algebras, a
multiple of the identity matrix determines the only trivial deformation taking d to
(1 + t)d.

The problem can be expressed as follows:

ker(D : CCn → CCn+1) = ker(D : Cn → Cn+1)
⋂

CCn

Im(D : CCn−1 → CCn) ⊆ Im(D : Cn−1 → Cn)
⋂

CCn

The problem is that the inclusion on the bottom may be strict. One idea is to replace
the left hand side with the right hand side, and define a new type of cohomology,
which we call reduced cyclic cohomology

HRCn = ker(D : Cn → Cn+1)
⋂

CCn/(Im(D : Cn−1 → Cn)
⋂

CCn).

If we do this, then we obtain that HRC2(g) vanishes, since d is a coboundary of an
ordinary 1-cochain. In fact, it is always true that d = [d, I ], where I ∈ Hom(V, V )

is the identity map, but the identity map is never a cyclic 1-cochain. Note that the
invariant inner product was used in the definition of reduced cyclic cohomology. In
fact, if the algebra is reductive (ormore generally, contains a simple direct summand),
then HC2 does not vanish. However, for the solvable algebras that we have studied,
we have noticed that the reduced and ordinary cyclic cohomology coincide, which
is a function of the type of invariant inner products that arise in those cases.

Let me explain the relation between cyclic and reduced cyclic cohomology in
words. In his paper [17], Michael Penkava explained that, for a Lie algebra g with



On Lie Algebras with an Invariant Inner Product 139

invariant inner product, the secondLie algebra cyclic cohomology classifies infinites-
imal deformations of g preserving the inner product. One can distinguish between
two types of deformations. The first type deforms the metric Lie algebra, but does
not change the isomorphism class of the underlying Lie algebra. The second type
deforms also the underlying Lie algebra structure. Since cyclic cohomology does not
distinguish between the two types, the author introduced the reduced cyclic cohomol-
ogy HRC∗. The reduced cyclic cohomology describes deformations of the second
type.

I should mention that even though the reduced cyclic cocycles give nontrivial
metric deformations of the metric Lie algebra, but some of the deformations may
lead to isomorphic objects (see in the case of the Lie algebra W3).

The reduced cyclic cohomology expresses deformations of metric Lie algebras if
we allow formal deformations to be induced by any 1-cochain, instead of restricting
to only cyclic cochains. This arises because we allow cyclic coboundaries of non-
cyclic cochains in the reduced cyclic cohomology, so we allow formal deformations
which take a metric algebra to another metric formal algebra, rather then just metric
formal deformations.

It is well known that the Killing form gives an invariant inner product for a
semisimple Lie algebra, and thus reductive Lie algebras have an invariant inner
product. However, these are not the only types of Lie algebras with invariant inner
product. Examples of real 4 dimensional solvable Lie algebras with an invariant
inner product are the diamond and oscillator algebras, while in dimension 5, the
nilpotent Lie algebra W3 also has an invariant inner product. These cases have been
well studied [1, 3, 11, 12]. We will study low dimensional examples of real and
complex metric Lie algebras and their deformations preserving the invariant inner
product.

3 Deformations

Recall that a 1-parameter deformation of a Lie algebra structure d on a vector space
V is a formal power series of the form

dt = d + tψ1 + t2ψ2 + ...

whereψk ∈ Ck(V ) = Hom(∧kV, V ) are 2-cochains. The connection with cohomol-
ogy is given by the fact that ψ1 is a 2-cocycle, and we have

D(ψn) = −1/2
∑

k+l=n

[ψk, ψl ],

where [ψk, ψl ] is the bracket of the cochains ψk and ψl . If dt is isomorphic to some
algebra structure d ′, then we say that dt and d ′ are equivalent and we write dt ∼ d ′.
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If dt ∼ d ′ for all t in some neighborhood of the origin, then the deformation
is called a jump deformation from d to d ′. If, on the other hand, dt � dt ′ for t ′ =
t in some neightborhood of the origin, then the deformation is called a smooth
deformation. In this case, the set of algebras dt form a family of nonisomorphic
algebras.

Multiparameter deformations are also possible, and there is a special type of such
deformation, the so called versal deformation, which is of the form

d∞ = d + tiδ
i + higher order terms,

where the expression tiδi represents the Einstein summation notation for the sum of
basis elements for the cohomology H 2. There are also relations of the form

ri = tk tlr
kl
i + higher order terms,

which are formal power series of order at least 2, with the number of relations being
equal to the dimension of H 3. The base A of the deformation is the formal algebra
A = K[[t1, t2, ..., tn]]/(ri ), that is, the quotient of the ring of formal power series
over the field K by the ideal generated by the relations. (See more about versal
deformations of Lie algebras in [6, 7].)

For cyclic cohomology, we obtain a similar picture for deformations, including
versal deformation, where this time the δi -s come from a basis of the cyclic cohomol-
ogy HC2 (or HRC2), and the relations are determined by the dimension of HC3.
The source of the problem with deformations arises because of the notion of formal
(or infinitesimal) equivalence of algebras. Two infinitesimal (or first order) deforma-
tions d and d ′ are formally equivalent if there is a linear map β : g → g such that if
g = exp(tβ) then

d ′ = g∗(d) = d + t[d, β].

We want d ′ to be a metric algebra, so there are two ways to guarantee this. We
can require β to be cyclic with respect to d, in which case [d, β] is automatically
cyclic, since the bracket of two cyclic cochains is cyclic; or we can just require that
[d, β] be cyclic. The latter case is potentially problematic for formal deformations,
because in that case, higher order terms arise, which may not be cyclic. Thus, the
restriction thatβ is cyclic is natural, and gives rise to a consistent deformation picture.
However, this is precisely what we obtain from the cyclic, rather than the reduced
cyclic, cohomology. This means that the algebra d and (1 + t)d may not be formally
equivalent, and this is exactly what happens for any simple algebra, because the
identity map is a never a cyclic cochain.



On Lie Algebras with an Invariant Inner Product 141

4 Dimension 3

We have already studied the complex 3-dimensional Lie algebra sl(2, C). This is the
only nontrivial 3-dimensional complex Lie algebra with an invariant inner product.

There are two real forms for this complex algebra, sl(2, R) and so(3, R). The first
can be given by sl(2, C). It has an invariant inner product given by the matrix

⎡

⎣
0 1 0
1 0 0
0 0 2

⎤

⎦ .

The signature of this matrix is (2, 1), but the signature of a metric form is only
determined up to the transposition of the signature, so that there is an invariant inner
product with signature (1, 2) as well. However, we can give it uniquely by requiring
the first number to be greater that or equal to the second. In fact, the signature of a
metric bilinar form of a metric Lie algebra is not always determinate. For example,
for the 2-dimensional trivial algebra, any invertible symmetric matrix will serve as
a metric, so the signature is not well defined by the algebra.

As this is a real form for the complex simple Lie algebra, it has vanishing reduced
cyclic cohomology.

The second real Lie algebra is so(3, R), which can be given by the nontrivial brack-
ets [e1, e2] = e3, [e1, e2] = −e2, [e2, e3] = e1,with invariant inner product given by
the identity matrix, so its signature is (3, 0).

Note that is it not surprising that the invariant form is not the same as for sl(2, R),
because the form of the matrix depends on the choice of basis. However, here, since
we are over R, the signature of the form comes into play, so in fact, the two invariant
inner products are not of the same type, since they have different signatures.

In the Table below, we give the dimensions of the cohomology for the simple 3-
dimensional Lie algebras for HCn , HRCn , and the standard cohomology Hn , with
coefficients in the adjoint representation (Table1).

This Table applies for the complex simple Lie algebra and both of its real forms.
The only variations will be for the basis elements of the cohomology.

While there are no deformations of sl(2, C), or any of its real forms, because
the cohomology H 2 vanishes, something interesting occurs with cyclic cohomology.
With respect to HC2, we have a nontrivial cocycle given by d itself, and therefore, the

Table 1 Cohomology of the 3-dimensional simple algebra

n HCn H RCn Hn

0 0 0 0

1 0 0 0

2 1 0 0

3 0 0 0
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1-parameter deformation dt = (1 + t)d is not a trivial deformation. This is unusual,
since this type of deformation would be trivial with respect to the usual notion of
deformation. Note that this deformation preserves the metric.

5 4-Dimensional Lie Algebras with Invariant Inner Product

5.1 The Direct Sum sl(2,C) ⊕ C and Its Real Forms

This algebra can be given by the nontrivial brackets [e1, e2] = e3, [e2, e3] = 2e2,
[e1, e3] = −2e1. In this form, an invariant inner product is given by the matrix

B =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 2 0
0 0 0 1

⎤

⎥
⎥
⎦ .

Its signature is (3, 1).

Theorem 1 sl(2, C) ⊕ C does not have (metric) deformations, neither do its real
forms.

Proof We could calculate the cyclic cochains, coboundaries and cocycles by our
computer technology, but here we think it is interesting and technically easier to use
standard results on the computation of cohomology of Lie algebras. First, we recall
that

Hn(g, M ⊕ N ) = Hn(g, M) ⊕ Hn(g, N )

if g is a Lie algebra and M and N are g-modules. Secondly, we recall the Künneth
formula:

Hn(g ⊕ 〈,, M〉) =
⊕

k+�=n

Hk(g, M) ⊗ H �(〈,, M〉),

Finally, we use the fact that if g is simple (or semisimple), then Hn(g, g) = 0 for
all n. Let let g = s be sl(2, C) and 〈=, C〉 in the above. We obtain that

Hn(s ⊕ C, s ⊕ C) = Hn(s ⊕ C, s) ⊕ Hn(s ⊕ C, C)

=
⊕

k+�=n

Hk(s, s) ⊗ H �(C, s) ⊕ Hk(s, C) ⊗ H �(C, C)

=
⊕

k+�=n

Hk(s, C) ⊗ H �(C, C).

We need some elementary facts about the dimensions of Hk(s, C) and H �(C, C).
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h0(s, C) = 1, h1(s, C) = 0, h2(s, C) = 0, h3(s, C) = 1

h0(C, C) = 1, h1(C, C) = 1, h2(C, C) = 0, h3(C,C) = 0.

where hk = dim(Hk). Thus we obtain that

h0(s ⊕ C, s ⊕ C) =h0(s, C) · h0(C, C) = 1 · 1 = 1

h1(s ⊕ C, s ⊕ C) =h1(s, C) · h0(C, C) + h0(s, C) · h1(C, C) = 0 · 1 + 1 · 1 = 1

h2(s ⊕ C, s ⊕ C) =h2(s, C) · h0(C,C) + h1(s, C) · h1(C, C) + h0(g, C) · h2(C, C)

=0 · 1 + 0 · 1 + 1 · 0 = 0

h3(s ⊕ C, s ⊕ C) = h3(s, C) · h0(C, C) + h2(s, C) · h1(C, C)

+h1(s, C) · h2(C, C) + h0(s, C) · h3(C, C) = 1 · 1 + 0 · 1 + 0 · 0 + 1 · 1 = 1

To compute hcn , we obtain

hc0 = z1(s ⊕ C, C) = 1, hc1 = h2(s ⊕ C, C) = 0

hc2 = h3(s ⊕ C, C) = 1, hc3 = h4(g ⊕ C, C) = 1.

Let us summarize these results in the following Table (Table2).
The real form sl(2, R) ⊕ R has an invariant inner product which can be given by

the same matrix as for the complex case, which has signature (3, 1). However, there
is another real form with signature (2, 2). For so(3, R) ⊕ R with nonzero brackets
[e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e1, we have an invariant inner product given
by the matrix

B =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

whose signature is (4, 0). On the other hand, there is also a real form with signature
(3, 1).

Table 2 Cohomology of the 4-dimensional Lie algebra sl(2, C) ⊕ C

n HCn H RCn Hn

0 1 0 1

1 0 0 1

2 1 0 0

3 1 0 1
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The reason that there are real forms with multiple signatures is that these algebras
are direct sums of a simple and trivial algebra, and when combining the signatures,
there are some variants possible. For example, with sl(2, R), the forms of signature
(2, 1) can combine with either the form of signature (1, 0) on R to give a form of
signature (3, 1), or it can combine with the form of signature (0, 1) on R to give a
form of signature (2, 2).

The fact that there is an overlap in the possible signatures of these two real forms
turns out to be important when we study deformations of the diamond and oscillator
algebra.

The bases of the cohomology change for the sl(2, R) ⊕ R case, but the dimensions
of the cohomology are the same, so are also given by the table above.

5.2 The Complex Diamond Algebra and Its Two Real Forms

The complex diamond algebra can be given by [e1, e2] = e3, [e1, e3] = −e2, [e2, e3]
= e4. It has an invariant inner product given by the matrix

B =

⎡

⎢
⎢
⎣

1 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤

⎥
⎥
⎦

with signature (2, 2).
This is the first algebra we have encountered which has deformations, thus H 2(g)

does not vanish. The computation of the cohomology of the diamond algebra is not
too difficult, and for brevity, we omit it. Just summarize the results in the Table below
(Table3).

Theorem 2 The complex diamond algebra has a metric deformation to
sl(2, C) ⊕ C.

Proof Notice that since the dimension of HC2 is 1, we expect to have the diamond
algebra deform to exactly one other metric algebra.

Table 3 Cohomology of the 4-dimensional complex diamond Lie algebra

n HCn H RCn Hn

0 1 1 1

1 0 0 2

2 1 1 2

3 1 1 2
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Aminiversal deformation of the complex diamond algebra depends on two param-
eters, say t1 and t2. It turns out that there are only first order terms of t1 and t2, which
means that the versal deformation is infinitesimal. From the relations on the param-
eters that must be satisfied, called relations on the base, one of the parameters must
vanish, and we get two different 1-parameter infinitesimal deformations:

[e1, e2]t1 = (1 + t1)e2, [e1, e3]t1 = e3, [e2, e3]t1 = e4, [e1, e3]t1 = t1e4,

[e1, e2]t2 = e2, [e1, e3]t2 = −e3, [e2, e3]t2 = e4 + t2e1.

The first deformation, dt1 , is a smooth deformation along a family of algebras to
which the diamond algebra belongs, and the algebras to which it deforms do not have
an invariant inner product.

The second deformation dt2 is a jump deformation to the complex algebra
sl(2, C) ⊕ C, and a matrix of an invariant inner product which is well defined for
small values of t2 is

B =

⎡

⎢
⎢
⎣

1 0 0 1
0 t2 + 1 0 0
0 0 t2 + 1 0
1 0 0 −t2

⎤

⎥
⎥
⎦ ,

which has determinant −(1 + t2)3, which does not vanish for t2 = −1.
For the complex case, this just means it deforms to sl(2, C) ⊕ C. The versal (and

infinitesimal) cyclic deformation, given by dt2 is isomorphic with sl(2, C) ⊕ C, with
the same metric as for the diamond algebra. It turns out that d ∼ d ′ = sl(2, C) ⊕ C

with the same metric as for the diamond algebra. In fact, the matrix

G =

⎡

⎢
⎢
⎣

0 0 1 1/2
1 0 0 0
0 t−1 0 0
0 0 t−1 −1/2 t−1

⎤

⎥
⎥
⎦

satisfies the property that G(dt (ei , e j )) = d ′(G(ei ),G(e j )), which shows that G
gives an isomorphism between the algebras dt and d ′.

5.3 The Real Diamond Algebra

The structure we gave for the complex diamond Lie algebra coincides with the
structure for the real diamond Lie algebra, so all of the above information on the
cohomology and cyclic cohomology is the same. However, there is an important
difference related to the fact that there are two real forms for the complex algebra.

In this case, we see that the signature of the bilinear form of the real diamond
algebra with the metric above is (2, 2), which is one of the possible signatures of



146 A. Fialowski

sl(2, R) ⊕ R, but does not coincide with a possible signature for so(3, R) ⊕ R, so it
could not possibly deform to that algebra. A simple computation shows that the real
diamond algebra does deform to sl(2, R) ⊕ R.

The real diamond algebra is given as a semidirect product of the Heisenberg
algebra by R, and this fact plays a role in the applications of this algebra.

5.4 The Real Oscillator Algebra

The oscillator algebra is the other real form of the complex diamond algebra. The
structure of this real Lie algebra can be given by the nontrivial brackets [e1, e2] =
e3, [e1, e3] = −e2, [e2, e3] = −e4. An invariant inner product is given by

⎡

⎢
⎢
⎣

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤

⎥
⎥
⎦ .

The signature of this form is (3, 1), and the importance of this fact will become clear
shortly.

Theorem 3 The real oscillator algebra has metric deformation to so(3) ⊕ R and
sl(2, R) ⊕ R.

Proof The dimension of HC2 is 1, and the versal defomation is infinitesimal. It can
be given by dt=

[e1, e2]t = e3, [e1, e3]t = −e2, [e2, e3]t = −e4 + te1, [e3, e4] = te2, [e2, e4] = −te3.

It can be shown that this deformation is isomorphic to so(3, R) ⊕ R when t > 0 and
to sl(2, R) ⊕ R when t < 0. It is important to note that both of these algebras have
invariant inner products of signature (3, 1), and this explains why it is possible to
have this deformation into two algebras, when we didn’t have the same pattern for
the diamond algebra.

A matrix of an isomorphism between the dt and so(3, R) ⊕ R is given by

G =

⎡

⎢
⎢
⎣

0 0 1/2 1/2
1/

√
2t 0 0

−1/
√
2t 0 0 0

0 0 1/(2t) −1/(2t)

⎤

⎥
⎥
⎦ .

Note that t must be positive for this matrix to be real. We omit the transformation
that gives the isomorphism between dt and sl(2, R) ⊕ R.



On Lie Algebras with an Invariant Inner Product 147

6 5-Dimensional Metric Lie Algebras

6.1 The Direct Sum sl(2,C) ⊕ C
2 and Its Real Forms

This algebra can be given by the nontrivial brackets [e1, e2] = e3, [e2, e3] = 2e2,
[e1, e3] = −2e1. In this form, an invariant inner product is given by the matrix

B =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
1 0 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

.

In the Table below, we summararize the cohomology information. We omit any
of the calculations used to obtain this information (Table4).

Theorem 4 sl(2, C) ⊕ C
2 and its real forms have no metric deformation.

Proof As usual for the algebras with a simple part, there is a metric deformation
along the algebra itself, and the nontrivial cyclic 2-cocycle is just sl(2, C) ⊕ C

2.
The real forms corresponding to this complex algebra are sl(2, R) ⊕ R

2 and
so(3, R) ⊕ R

2. The cohomology dimensions remain the same, although the cocycles
representing the cohomology and deformations change for the different algebras.

Since sl(2, R) has an invariant metric of signature (2, 1), and the signature of
an invariant metric on R

2 can be (2, 0), (1, 1) or (0, 2), this means we can obtain
invariant metrics on sl(2, R) ⊕ R

2 of signature (4, 1), or (3, 2).
Since sl(2, R) also has an invariant metric of signature (2, 1), and the signature

of an invariant metric on R
2 can be (2, 0), (1, 1) or (0, 2), this means we can obtain

invariant metrics on sl(2, R) ⊕ R
2 of signature (4, 1), or (3, 2).

6.2 The Complex Diamond Algebra Plus C

The direct sum of the complex diamond algebra and C can be given by the bracket
structure

Table 4 Cohomology of the 5-dimensional Lie algebra sl(2, C) ⊕ C
2

n HCn H RCn Hn

0 2 2 2

1 1 1 4

2 1 0 2

3 2 2 2
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Table 5 Cohomology of the 4-dimensional complex diamond Lie algebra plus C

n HCn H RCn Hn

0 2 1 2

1 1 1 5

2 1 1 5

3 2 2 5

[e1, e2] = e2, [e1, e3] = −e3, [e2, e3] = e4.

It has an invariant inner product given by the matrix

B =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

.

We summarize the cohomology information in the Table below (Table5).

Theorem 5 The complex diamond algebra plus C only has metric deformation to
sl(2, C) ⊕ C

2.

Proof The versal cyclic deformation of this algebra is again infinitesimal, and can
be given by dt=

[e1, e2]t = e2, [e1, e3]t = −e3, [e2, e3]t = e4 + te1, [e2, e4] = −tee, [e3, e4] = te3.

This deformation is isomorphic to sl(2, C) ⊕ C
2.

6.3 The Real Diamond Algebra Plus R

The deformation we gave for the complex diamond algebra plus C has real coeffi-
cients, so the structure also represents the cyclic versal deformation to sl(2, R) ⊕ R

with respect to the inner product given by the matrix above, which has signature
(3, 2). Both sl(2, R) ⊕ R

2 and so(3, R) ⊕ R
2 have metrics of this signature, but the

deformation is only isomorphic to sl(2, R) ⊕ R
2 because thematrices of the transfor-

mations which give isomorphisms with so(3, R) ⊕ R
2 all have unavoidable complex

coefficients.
What happens if we choose the metric given by the matrix
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B =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦
?

This matrix has signature (2, 3) which is related to a matrix of signature (3, 2)
in the way we described before, because multiplying the matrix by −1 reverses the
signature, but doesn’t affect the deformations. Itmight seem that still, the cyclic versal
deformation with this matrix might be different, but it turns out that the generator of
HC2 is the same for both matrices, so their versal deformations can coincide.

6.4 The Oscillator Algebra Plus R

We can use the same structure [e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = −e4 for the
oscillator algebra plusR aswe used for the oscillator algebra. Amatrix of an invariant
inner product of signature (4, 1) is

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

We can give the versal cyclic deformation of d by the structure dt=

[e1, e2]t = e3, [e1, e3]t = −e2, [e2, e3]t = −e4 + te1, [e3, e4] = te2, e2, e4] = te3.

We compute that dt ∼ sl(2, R) ⊕ R
2 when t < 0 and dt ∼ so(3, R) ⊕ R

2 when t >

0. This pattern corresponds to the pattern we observed for the deformations of the
oscillator algebra.

As in the case of the oscillator algebra, if we use a metric of signature (3, 2) we
obtain the same versal deformation as for the one of signature (4, 1), so there is no
difference in the deformation pattern depending on the choice of metric.

6.5 The Nilpotent Lie Algebra W3

The algebra W3 can be given by the nontrivial brackets

[e3, e4] = e2, [e3, e5] = e1, [e4, e5] = e3



150 A. Fialowski

Table 6 Cohomology of the 5-dimensional complex algebra W3

n HCn H RCn

0 2 2

1 3 3

2 3 3

3 2 2

This is the first nilpotent metric Lie algebra we have encoutered.
It has an invariant inner product given by the matrix

B =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 −1 0
0 0 0 0 1
0 0 1 0 0

−1 0 0 1 0
0 1 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

The cohomology of the algebra W3 is summarized in the Table below (Table6).

Theorem 6 W3 has two metric deformations, to the complex Lie algebra diamond
⊕C, and sl(2, C) ⊕ C

2.

Proof This is the first algebra for which HC2 is larger than 1-dimensional, and
moreover, the versal deformation given by the basis above for cohomology has higher
order terms. However, we can construct 1-parameter deformations corresponding to
the three basis elements, and they give first order deformations, so it is easy to check
what these 1-parameter deformations are equivalent to.

First consider d1
t =

[e3, e4]t = e2, [e3, e5]t = e1, [e4, e5]t = e3,

[e2, e3]t = te2, [e3, e5]t = −te4, [e2, e5]t = −te3, [e3, e5]t = te5.

This deformation is isomorphic to sl(2, C) ⊕ C
2.

The second deformation, d2
t =

[e3, e4]t = e2, [e3, e5]t = e1 − te4, [e4, e5]t = e3,

[e1, e3]t = te2, [e1, e5]t = −te3,

the third, d3
t =

[e3, e4]t = e2 + te5, [e3, e5]t = (1 + t)e1, [e4, e5]t = (1 + t)e3,
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[e2, e3]t = −te1, [e2, e4]t = −te3.

The deformations d2
t and d3

t are both isomorphic to the diamond algebra ⊕C.

The real form of W3 is given by the same structure, and the matrix of the metric
abovehas signature (3, 2).Using the 1-parameter deformations above,wedetermined
that d1

t is equivalent to sl(2, R) ⊕ R
2, but not to so(3, R) ⊕ R

2. The deformation d2
t

is equivalent to the real diamond ⊕R when t < 0 and to the oscillator algebra ⊕R

when t > 0. The deformation d3
t is isomorphic to the diamond⊕Rwhen−2 < t < 0

and to the oscillator algebra ⊕R otherwise.
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Study of Three-Layer Semi-Discrete
Schemes for Second Order Evolution
Equations by Chebyshev Polynomials

Romeo Galdava, David Gulua, and Jemal Rogava

Abstract Three-layer semi-discrete schemes for second order evolution equations
are studied in the Hilbert space using Chebyshev polynomials. A priori estimates
are proved for approximate solutions, as well as for difference analogues of first
and second order derivatives. Using these a priori estimates we obtain estimates of
the approximate solution error and, taking into account the smoothness of the solu-
tion of the continuous problem, the rate of convergence of an approximate solution
with respect to step is estimated. The paper also discusses three-layer semi-discrete
schemes for a second order complete equation and for an equation with a variable
operator.

Keywords Second order evolution equation · Semi-discrete scheme · A priori
estimates

1 Introduction

The method that we use to study a three-layer semi-discrete scheme can be called
the method of associated polynomials. The idea is as follows. To each semi-discrete
scheme (for an evolution equation) there corresponds a specific class of polynomi-
als which we call associated polynomials. In the case of a second order evolution
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equation, the corresponding semi-discrete scheme gives Chebyshev polynomials of
secondkind.Using them,weconstruct an exact representation for the solutionof a dif-
ference problem. Based on the properties of this representation and classical Cheby-
shev polynomials, we study the stability of the considered semi-discrete scheme and
prove a priori estimates.

We should note that the following works are devoted to use of orthogonal poly-
nomials in approximate solution schemes for differential equations: Makarov [13],
Morris and Horner [16], Novikov and Demidov [17], Rastrenin [19]. In the work
[13] many aspects of using orthogonal polynomials in difference problems is widely
covered.

Interesting results concerning the approximate solution of the Cauchy problem for
a second order evolution equation can be found in Baker [2], Baker and Bramble [3],
Baker et al. [4], Bales [5], Kacur [9], Ladyzhenskaya [12], Pultar [18], Sobolevskii
and Chebotareva [25].

Thewell knownmonographsGodunovandRyaben’kii [7],Marchuk [14],Mikhlin
[15], Richtmyer and Morton [20], Samarskii [24], Yanenko [27] cover many impor-
tant topics related to the construction and study of algorithms for an approximate
solution of evolution problems.

Our present study provides novel results in addition to those obtained in [22, 23].

2 Abstract Hyperbolic Equation with a Constant
Self-Adjoint Operator

2.1 Weighted Second-Order Scheme. A Priori Estimates of
Solution to Difference Problems

Let us consider the Cauchy problem for an abstract hyperbolic equation in the Hilbert
space H :

d2u(t)

dt2
+ Au (t) = f (t) , t ∈]0, T ], (1)

u (0) = ϕ0,
du (0)

dt
= ϕ1, (2)

where A is a self-adjoint (not depending on t), positive definite (generally unbounded)
operator with the definition domain D (A) , which is everywhere dense in H , i.e.
D (A) = H, A = A∗ and

(Au, u) ≥ α ‖u‖2 , ∀u ∈ D (A) , α = const > 0,

where the norm and scalar product in H are respectively defined by ‖·‖ and (·, ·); ϕ0

and ϕ1 are given vectors from H ; u (t) is a sought continuous, twice continuously
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differentiable function with values in H , and f (t) is a given continuous function
with values in H .

The vector function u(t)with values in H , defined on the interval [0, T ], is called
a solution of problem (1), (2) if it satisfies the following conditions: (a) u (t) is
twice continuously differentiable on the interval [0, T ]; (b) u (t) ∈ D (A) for any
t from [0, T ], the function Au (t) is continuous; (c) u (t) satisfies Eq. (1) on the
interval [0, T ] and the initial condition (2). Here the continuity and differentiability
are obtained by means of the metric H . The existence and uniqueness of the solution
of problem (1), (2) are proved in [11].

Remark 1 If f (t) is continuously differentiable on [0, T ] (or f (t) ∈ D(A1/2) for
any t from [0, T ] and the function A1/2 f (t) is continuous), ϕ0 ∈ D(A) and ϕ1 ∈
D(A1/2), then there exists a unique solution u (t) of problem (1), (2) that satisfies
the condition: the function u′ (t) gets its values from D(A1/2), and A1/2u′ (t) is
continuous on [0, T ] (see [11], Theorem 1.5, p. 301).

To solve problem (1), (2) we use the semidiscrete scheme

uk+1 − 2uk + uk−1

τ 2
+ A

uk+1 + νuk + uk−1

2 + ν
= fk, k = 1, . . . , n − 1, (3)

where τ = T
n (n > 1 is a natural number), fk = f (tk), tk = kτ , ν �= −2; uk is an

approximate value of the exact solution u(t) at the point t = tk , u(tk) ≈ uk .
The following statement is true.

Theorem 1 Let u0, u1 ∈ D(A), fk ∈ H, k = 1, . . . , n − 1, ν ∈] − 2, 2[, then for
scheme (3) the following estimates are valid:

‖Asuk+1‖ ≤ c0

(
‖Asu0‖ +

∥∥∥B1/2
τ As−1/2 Δu0

τ

∥∥∥

+ τ

k∑
i=1

∥∥As−1/2B−1/2
τ fi

∥∥)
, 0 ≤ s ≤ 1, (4)

‖Asuk+1‖ ≤ c0
(
‖Asu0‖ +

∥∥∥B1/2
τ As−1/2 Δu0

τ

∥∥∥)

+ τ

k∑
i=1

‖As−1/2 fi‖, 0 ≤ s ≤ 1, (5)

‖Asuk+1‖ ≤ c0

(
‖Asu0‖ +

∥∥∥As−1/2 Δu0
τ

∥∥∥ + ν0‖As(Δu0)‖
)

+ τ

k∑
i=1

‖As−1/2 fi‖, 0 ≤ s ≤ 1, (6)
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‖Asuk+1‖ ≤ c0

(
‖Asu0‖ +

∥∥∥As−1/2 Δu0
τ

∥∥∥ + ν0‖As(Δu0)‖
)

+ c̃(1 − s) · τ 2(1−s)
k∑

i=1

‖ fi‖, 1

2
≤ s ≤ 1, (7)

‖uk+1‖ ≤ c0‖u0‖ + c1
∥∥∥Δu0

τ

∥∥∥ + τ

k∑
i=1

‖A−1/2 fi‖, 0 ≤ s ≤ 1, (8)

where Δu0 = u1 − u0,

c0 = 2√
2 − ν

, c1(τ ) = 2

(
2 + ν + ατ 2

(4 − ν2)α

)1/2

,

c̃(s) = 21−2s

(
2 + ν

2 − ν

)1/2−s

, ν0 = 1√
2 + ν

, Bτ = I + τ 2

2 + ν
A.

2.2 Estimation for Two-Variable Chebyshev Polynomials

To obtain a priori estimates for the difference Eq. (3), we need to estimate a specific
class of so-called two-variable Chebyshev polynomials which are defined by the
recurrent relation (see [22])

Uk+1(x, y) = xUk(x, y) − yUk−1(x, y), k = 1, 2, ... , (9)

U1(x, y) = x, U0(x, y) = 1.

We call Uk(x, y) a two-variable Chebyshev polynomial because Uk (2x, 1) is a
Chebyshev polynomial of second kind (see, e.g., [26]).

In the sequel, we need estimates for the polynomial Uk(x, 1) on the interval
] − 2, 2[. The formula (see, e.g., [26])

Uk(2x, 1) = sin((k + 1) arccos)

sin(arccos x)
, |x | ≤ 1 ,

clearly implies

|Uk(x, 1)| ≤ 4√
4 − x2

, x ∈] − 2, 2[ , (10)

which is a well-known estimate of a Chebyshev polynomial of second kind (see, e.g.,
[26]).
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The following inequality is simply obtained from representation Uk(2x, 1):

|Uk(x, 1) −Uk−1(x, 1)| ≤ 2√
2 + x

, x ∈] − 2, 2]. (11)

From the recurrent relation (9), we will get by induction

Uk(x, y) =
√
ykUk(ξ, 1), ξ = x√

y
, y > 0. (12)

Formula (12) is an important one as it relates polynomials Uk(x, y) with the
classical Chebyshev polynomials, in which replace the variable x to x/2.

Let us introduce the following domains:

Δ = {(x, y) : (|y| < 1) & (|x | < y + 1)} .

Ω+ = {
(x, y) : 4y − x2 > 0

}
, Ω− = {

(x, y) : 4y − x2 < 0
}
,

Δ+ = {(x, y) ∈ Δ : x ≥ 0} , Ω1 = Ω+ ∩ Δ+, Ω2 = Ω− ∩ Δ+.

As is known, the roots of a classical Chebyshev polynomial lie on ] − 1, 1[ (see,
e.g., [26]). Hence, according to formula (12), it follows that, for any fixed positive y
the roots of the polynomial Uk(x, y) will lie within ] − 2

√
y, 2

√
y[ . Moreover, if

we take into consideration that Uk(±2, 1) = (−1)k(k + 1) and |Uk(2ξ, 1)| reaches
its maximum on the boundary (see, e.g., [26]), then from formula (12) we get the
estimate

|Uk(x, y)| ≤ Uk(2
√
y, y) = (k + 1)

√
yk, (x, y) ∈ Ω+. (13)

By virtue of the above reasoning we conclude that for any positive y, Uk(x, y) is
an increasing function with respect to the variable x when x ≥ 2

√
y. Moreover, the

recurrent relation (9) implies that, for any fixed y ≤ 0, Uk(x, y) is an increasing
function with respect to the variable x when x ≥ 0. Hence we have

|Uk(x, y)| ≤ Uk(1 + y, y) = 1 + y + . . . + yk, (14)

where y ≥ −1 and |x | ≤ 1 + y.
From (14) obtain the estimate

|Uk(x, y)(1 − y)| ≤ 1, (x, y) ∈ Δ. (15)

We also want to estimate the polynomial Uk(x, y) − ymUk−1(x, y), m = 0, 1,
where (x, y) ∈ Δ+.

By formula (12) and inequality (11), the following estimate is valid:

∣∣Uk(x, y) − √
yUk−1(x, y)

∣∣ =
√
yk |Uk(ξ, 1) −Uk−1(ξ, 1)| ≤

√
2yk , (16)
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where ξ = x/
√
y , (x, y) ∈ Ω1.

Let us estimate the difference Uk(x, y) − yUk−1(x, y), when (x, y) ∈ Ω1. By
inequalities (16) and (13), we have

|Uk(x, y) − yUk−1(x, y)| ≤ √
2, (x, y) ∈ Ω1. (17)

Let us now estimate the differenceUk(x, y) − yUk−1(x, y)when (x, y) ∈ Ω2 and
y > 0. For this estimation we use the following formulas:

Uk(x, y) =
√
yk

k∑
i=0

C2i+1
k+i+1(ξ − 2)i , (18)

Uk(x, y) − √
yUk−1(x, y) =

√
yk

k∑
i=0

C2i
k+i (ξ − 2)i , (19)

where ξ = x/
√
y , Ci

k are the binomial coefficients (C0
k = 1).

By some simple transformations, from (18) we obtain formula (19).
Formula (18) can be obtained using the Taylor expansion of Uk(ξ, 1) at ξ = 2,

and also taking into account that U (i)
k (2, 1) = i !C2i+1

k+i+1.
Due to (18) and (19), from the equality

Uk(x, y) − yUk−1(x, y) = (
Uk(x, y) − √

yUk−1(x, y)
) + (

1 − √
y
)√

yUk−1(x, y),

it follows that, for any fixed y on the interval ]0, 1], Uk(x, y) − yUk−1(x, y) is an
increasing function with respect to x when x ≥ 2

√
y. Hence we have

Uk
(
2
√
y, y

) − yUk−1
(
2
√
y, y

) ≤ Uk − yUk−1 ≤ Uk(1 + y, y) − yUk−1(1 + y, y) ,

(20)
where y > 0 and (x, y) ∈ Ω2.

SubstitutingUk(2
√
y, y) = (k + 1)

√
yk and (14) into relation (20), we obtain the

estimate

√
yk

(
(k + 1)

(
1 − √

y
) + √

y
) ≤ Uk(x, y) − yUk−1(x, y) ≤ 1, (21)

where y > 0 and (x, y) ∈ Ω2.
We easily obtain the inequality

0 ≤ Uk(x, y) − yUk−1(x, y) ≤ 1, (22)

where y ≤ 0 and (x, y) ∈ Ω2.
From estimates (17), (21) and (22) we have

|Uk(x, y) − yUk−1(x, y)| ≤ √
2, (x, y) ∈ Δ+. (23)
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Analogously to (23) we get

|Uk(x, y) −Uk−1(x, y)| ≤ √
2, (x, y) ∈ Δ+. (24)

It is obvious that from (14) there follows the estimate

|Uk(x, y)| ≤ k + 1, (25)

where |y| ≤ 1 and |x | ≤ 1 + y.
We also need the estimate

|(x − y − 1)Uk(x, y)| ≤ 2, (x, y) ∈ Δ+. (26)

Let us prove inequality (26). Consider the cases with (x, y) ∈ Δ+ and y > 0. On
the interval 2

√
y ≤ x ≤ y + 1,Uk(x, y) is an increasing function (for fixed y). This

follows from formula (12). Thus we have

|(x − y − 1)Uk(x, y)| ≤ ∣∣(2√y − y − 1)Uk(y + 1, y)
∣∣

= (1 − √
y)2(1 + y + · · · + yk) ≤ 1. (27)

Let us show that (26) holds when (x, y) ∈ Δ+, y > 0 and 0 ≤ x ≤ 2
√
y. Using

(10) and (12) we obtain

|Uk(x, y)| ≤ 2

√
yk+1

4y − x2
, (28)

where 4y − x2 > 0.
By inequalities (14) and (28) we have

|(x − y − 1)Uk(x, y)| ≤ ∣∣(2√y − x)Uk(x, y)
∣∣ + ∣∣(1 − √

y)2Uk(x, y)
∣∣

≤ 2

√
yk+1(2

√
y − x)

2
√
y + x

+ 1 − √
y

1 + √
y

≤ 2
√
y + 1 − √

y

1 + √
y

≤ 2 . (29)

From (27) and (29) it follows that inequality (26) holdswhen (x, y) ∈ Δ+ and y >

0. Let us now that show (26) holds when (x, y) ∈ Δ+ and y ≤ 0. By the recurrence
relation (9) we have that Uk(x, y) is an increasing function when x ∈]0, +∞[, for
each fixed y ≤ 0. Therefore if (x, y) ∈ Δ+ and y ≤ 0, then

|Uk(x, y)| ≤ |Uk(y + 1, y)| ≤ 1. (30)

It is obvious that (30) gives (26)when (x, y) ∈ Δ+ and y ≤ 0.This proves estimate
(26).
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2.3 Proof of Theorem 1

Let us return to the proof of Theorem 1.
From (3) we obtain

uk+1 = Lτuk − uk−1 + τ 2B−1
τ fk, k = 1, . . . , n − 1, (31)

where

Bτ = I + τ 2

2 + ν
A, Lτ = (2 + ν)B−1

τ − ν I.

From the recurrence relation (31) we obtain by induction

uk+1 = Uk(Lτ , I )u1 −Uk−1(Lτ , I )u0 + τ 2
k∑

i=1

Uk−i (Lτ , I )B
−1
τ fi . (32)

which, after some simple transformations, gives (for simplicity, instead of Uk(tτ , I )
we write Uk)

uk+1 = τUk
Δu0
τ

+ (Uk −Uk−1)u0 + τ 2
k∑

i=1

Uk−i B
−1
τ fi . (33)

If to both sides of equality (33) we apply the operator As (0 ≤ s ≤ 1) and pass over
to the norms, then we obtain

‖Asuk+1‖ ≤ τ

∥∥∥AsUk
Δu0
τ

∥∥∥ − ‖Uk −Uk−1‖ · ‖Asu0‖ + τ 2
k∑

i=1

∥∥AsUk−i B
−1
τ fi

∥∥.

(34)
For the first summand on the right-hand side of this inequality we have

τ

∥∥∥AsUk
Δu0
τ

∥∥∥ ≤ τ
∥∥A1/2B−1/2

τ Uk

∥∥ ·
∥∥∥B1/2

τ As−1/2 Δu0
τ

∥∥∥. (35)

The following representation is obvious:

2I − Lτ = τ 2AB−1
τ .

By the Heinz theorem (see, e.g., [11], p.117) the equality

(2I − Lτ )
s = (τ 2AB−1

τ )s = τ 2s As B−s
τ , 0 ≤ s ≤ 1 (36)

is valid. Hence we obtain
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τ
∥∥A1/2B−1/2

τ Uk

∥∥ = ∥∥(2I − Lτ )
1/2Uk(Lτ , I )

∥∥.

As is known,when the argument is a self-adjoint bounded operator, the normof the
operator polynomial is equal to the C-norm of the corresponding scalar polynomial
on the spectrum (see, e.g., [10, 21]). By virtue of this result we have

τ
∥∥A1/2B−1/2

τ Uk

∥∥ = ∥∥(2I − Lτ )
1/2Uk(Lτ , I )

∥∥ = max
x∈σ(Lτ )

∣∣(2 − x)1/2Uk(x, 1)
∣∣.
(37)

Let us estimate the spectrum of the operator Lτ . For this, it suffices to estimate
the spectrum of the operator B−1

τ . Since (Au, u) ≥ α ‖u‖2, we have

(Bτu, u) ≥
(
1 + τ 2α

2 + ν

)
‖u‖2, ∀ u ∈ D(A),

thence it follows that

0 ≤ (B−1
τ u, u) ≤

(
1 + τ 2α

2 + ν

)−1
(u, u).

This relation implies that

σ(B−1
τ ) ⊂

[
0,

(
1 + τ 2α

2 + ν

)−1]
.

From the latter relation and the representation

Lτ = (2 + ν)B−1
τ − ν I

we obtain
σ(Lτ ) ⊂ [−ν, ντ ], (38)

where

ντ = 4 + 2ν − νατ 2

2 + ν + ατ 2
, ν ∈ ] − 2, 2[ .

Using relation (38) and estimate (10) we obtain

max
x∈σ(Lτ )

∣∣(2 − x)1/2Uk(x, 1)
∣∣ ≤ max

x∈σ(Lτ )

(√
2 − x · 2√

4 − x2

)

≤ max
x∈[−ν,ντ ]

2√
2 + x

= 2√
2 − ν

. (39)

From (37) and (39) there follows
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τ
∥∥A1/2B−1/2

τ Uk(Lτ , I )
∥∥ ≤ 2√

2 − ν
. (40)

(35) and (40) imply

τ

∥∥∥AsUk(Lτ , I )
Δu0
τ

∥∥∥ ≤ c0
∥∥∥B1/2

τ As−1/2 Δu0
τ

∥∥∥. (41)

Taking into account inequality (41) we obtain

∥∥AsUk−i B
−1
τ ϕi

∥∥ ≤ ∥∥A1/2B−1/2
τ Uk−i

∥∥ · ∥∥As−1/2B−1/2
τ ϕi

∥∥
≤ c0

∥∥As−1/2B−1/2
τ ϕ

∥∥, ∀ϕ ∈ H. (42)

Let us estimate the norm of the operator polynomialUk −Uk−1 in inequality (34).
Taking into account estimate (11), we obtain

∥∥Uk(Lτ , I ) −Uk−1(Lτ , I )
∥∥ = max

x∈σ(Lτ )

∣∣Uk(x, 1) −Uk−1(x, 1)
∣∣

≤ max
x∈σ(Lτ )

2√
2 + x

≤ max
x∈[−ν,ντ ]

2√
2 + x

= c0. (43)

If we now take into account estimates (41), (42) and (43), then from (34) we obtain
inequality (6).

Let us prove inequality (7).
It is obvious that the following inequality is valid:

∥∥AsUk B
−1
τ ϕ

∥∥ ≤ ∥∥A1/2B−1
τ Uk

∥∥ · ‖As−1/2ϕ‖, ∀ϕ ∈ D(As−1/2). (44)

Taking into account equality (36) and the representation

B−1
τ = (2 + ν)−1(ν I + Lτ ) (45)

we obtain

τ A1/2B−1
τ Uk = τ(A1/2B−1/2

τ )B−1/2
τ Uk = (τ AB−1

τ )1/2B−1/2
τ Uk

= (2 + ν)−1/2(2I − Lτ )
1/2(ν I + Lτ )

1/2Uk(Lτ , I ). (46)

Since Lτ is a self-adjoint bounded operator, (46) implies the estimate

τ
∥∥A1/2B−1

τ Uk(Lτ , I )
∥∥ =

= (2 + ν)−1/2 max
x∈σ(Lτ )

∣∣(2 − x)1/2(ν + x)1/2Uk(x, 1)
∣∣,
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whence, using estimate (10) and relation (38), we obtain

τ
∥∥A1/2B−1

τ Uk(Lτ , I )
∥∥

≤ 1√
2 + ν

max
x∈[−ν,ντ ]

[
(2 − x)1/2(ν + x)1/2 · 2√

4 − x2

]

= 2√
2 + ν

max
x∈[−ν,ντ ]

(ν + x

2 + x

)1/2 = 2√
2 + ν

(ν + ντ

2 + ντ

)1/2

= 2√
2 + ν

2 + ν√
2 + ν + ατ 2

√
2 + ν + ατ 2

4(2 + ν) + (2 − ν)ατ 2
≤ 1. (47)

From (44) and (47) there follows

∥∥AsUk B
−1
τ ϕ

∥∥ ≤ 1

τ
‖As−1/2ϕ‖, ∀ϕ ∈ D(As−1/2). (48)

Using estimates (41), (43) and (48), from (34) we obtain (7).
Let us prove estimate (8).
By the definition of a fractional degree of the operator and Heinz’ theorem (see

e.g., [11], p.117) we have

‖B1/2
τ R−1

τ ‖ = ∥∥B1/2
τ (R−2

τ )1/2
∥∥ = ∥∥(Bτ (R

−2
τ )1/2

∥∥, (49)

where
Rτ = I + τν0A

1/2.

Since R2
τ ≥ Bτ ≥ 0, the following inequality is valid:

∥∥Bτ (R
2
τ )

−1
∥∥ = ‖Bτ R

−2
τ ‖ ≤ 1.

This inequality and (49) imply

∥∥B1/2
τ (R−1

τ )
∥∥ ≤ 1.

By the latter inequality we have

∥∥B1/2
τ As−1/2ϕ

∥∥ ≤ ‖B1/2
τ R−1

τ ‖ · ∥∥Rτ A
s−1/2ϕ

∥∥ ≤ ∥∥(I + τν0A
1/2)As−1/2ϕ

∥∥
≤ ‖As−1/2ϕ‖ + τν0‖Asϕ‖, ∀ϕ ∈ D(As). (50)

Substituting this inequality into (7), we obtain estimate (8).
Let us prove estimate (9).
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We have the estimate (for its proof see Sect. 2.4)

∥∥(2I − Lτ )Uk(Lτ , I )ϕ
∥∥ ≤ c̃(s)τ 2s‖Asϕ‖, 0 ≤ s ≤ 1

2
, ϕ ∈ D(As),

by virtue of which we obtain

∥∥τ 2As B−1
τ Uk(Lτ , I )

∥∥ = ∥∥(τ 2AB−1
τ )A−(1−s)Uk(Lτ , I )

∥∥

= ∥∥(2I − Lτ )Uk(Lτ , I )A
−(1−s)

∥∥ ≤ c̃(1 − s)τ 2(1−s),
1

2
≤ s ≤ 1. (51)

Inequalities (41) and (50) clearly imply

τ
∥∥AsUk(Lτ , I )ϕ

∥∥
≤ c0

(‖As−1/2ϕ‖ + τν0‖Asϕ‖), 0 ≤ s ≤ 1, ϕ ∈ D(As). (52)

Taking into account inequalities (43), (51) and (52) from (34) we obtain estimate
(9).

Let us prove estimate (10).
Taking into account estimate (10) we have

τ‖Uk(Lτ , I )‖ = τ max
x∈σ(Lτ )

|Uk(x, 1)| ≤ τ max
x∈[−ν,ντ ]

2√
4 − x2

≤ 2τ√
(2 − ν)(2 − ντ )

= 2
(2 + ν + ατ 2

(4 − ν2)α

)1/2
. (53)

Taking into account inequality (47) we have

τ‖UkB
−1
τ ϕ‖ ≤ τ

∥∥A1/2B−1
τ Uk

∥∥ · ‖A−1/2ϕ‖ ≤ ‖A−1/2ϕ‖, ∀ϕ ∈ H. (54)

Taking into account estimates (43), (53) and (54), from (33) we obtain (10).
The inequalities obtained from (6) for s = 0, s = 1

2 and s = 1 are proved in [23]
for an abstract hyperbolic equation with a self-adjoint positive definite operator.

Themethod of obtaining a priori estimates for the difference problem investigated
in this paper is considered in [23]. We call it the method of associated polynomials.
In our opinion, this name is natural because the investigation of the stability of a
many-layer scheme and the derivation of a priori estimates lead to the study of the
properties of a certain class of polynomials obtained by this scheme.
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2.4 Estimates for Chebyshev’s Operator Polynomials

In the preceding subsection we have derived a priori estimates for the solution
obtained by means of the semi-discrete scheme (3). To obtain complete informa-
tion on a dynamic problem, it is necessary to know how the velocity (and, which is
better, also the acceleration) changes. The next step is to obtain a priori estimates
for difference analogues of first and second order derivatives. For this, we need
to estimate the operator polynomials Uk(Lτ , I ) (some estimates of Uk(Lτ , I ) have
already been obtained in the preceding subsection). It is obvious that the operator
polynomials Uk(Lτ , I ) satisfy the recurrence relation

Uk+1(Lτ , I ) = LτUk(Lτ , I ) −Uk−1(Lτ , I ), k = 1, 2, . . . ,

U0(Lτ , I ) = I, U1(Lτ , I ) = Lτ . (55)

In our opinion, it is quite natural to call the operatorsUk(Lτ , I ) Chebyshev oper-
ator polynomials because the scalar polynomials Uk(2x, 1) are classical Chebyshev
polynomials of second kind.

Lemma 1 Let ν ∈ ] − 2, 2[ . Then the following estimates are valid:

∥∥(2I − Lτ )Uk(Lτ , I )ϕ
∥∥ ≤ α1/2−sτ‖Asϕ‖, 1

2
≤ s ≤ 1, ϕ ∈ D(As), (56)

∥∥(2I − Lτ )Uk(Lτ , I )ϕ
∥∥ ≤ c̃(s)τ 2s‖Asϕ‖, 0 ≤ s ≤ 1

2
, ϕ ∈ D(As), (57)

∥∥(2I − Lτ )Uk(Lτ , I )B
−1
τ

∥∥ ≤ 1, (58)

τ 2s
∥∥∥(
Uk(Lτ , I ) −Uk−1(Lτ , I )

)
As B−1

τ

∥∥∥ ≤ (2 + ν)s, 0 < s ≤ 1

2
, (59)

∥∥∥(
Uk(Lτ , I ) −Uk−1(Lτ , I )

)
B−1

τ

∥∥∥ ≤ 1, (60)

where

c̃(s) = 21−2s
(2 + ν

2 − ν

)1/2−s
.

Proof The proof of the above estimates (like the proof of analogous estimates in the
preceding subsection) rests on the properties of the scalar polynomial corresponding
to an operator polynomial and also on the fact that when the argument is a self-adjoint
bounded operator, the norm of the operator function is equal to the C-norm of the
corresponding scalar function on the spectrum.

Let us prove estimate (56). By formulas (36) and (25) we have
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(2I − Lτ )Ukϕ = τ 2AB−1
τ Ukϕ = (

τ 2A1−s B−(1−s)
τ

)(
B−s

τ Uk A
sϕ

)

= τ 2s(τ 2AB−1
τ )1−s B−s

τ Uk A
sϕ

= τ 2s(2 + ν)−s(2I − Lτ )
1−s(ν I + Lτ )

sUk A
sϕ, ∀ϕ ∈ D(As). (61)

Analogously to the estimates obtained for operator functions in Sect. 2.3, we
obtain ∥∥(2I − Lτ )

1−s(ν I + Lτ )
sUk

∥∥
= max

x∈σ(Lτ )

∣∣(2 − x)1−s(ν + x)sUk(x, 1)
∣∣

≤ max
x∈[−ν,ντ ]

[
(2 − x)1−s(ν + x)s

2√
4 − x2

]

= 2 max
x∈[−ν,ντ ]

ψs(x, ν), (62)

where
ψs(x, ν) = (ν + x)s(2 − x)1/2−s(2 + x)−1/2.

Let us show that the function ψs(x, ν) is increasing when 1
2 ≤ s ≤ 1 and ν ∈

] − 2, 2[. Indeed, we have

ψ ′
s(x, ν) = s(ν + x)s−1(2 − x)1/2−s(2 + x)−1/2

−
(1
2

− s
)
(ν + x)s(2 − x)−(1/2+s)(2 + x)−1/2

−1

2
(ν + x)s(2 − x)1/2−s(2 + x)−3/2

= (ν + x)s−1(2 − x)−(1/2+s)(2 + x)−3/2
[
s(2 − x)(2 + x)

−
(1
2

− s
)
(ν + x)(2 + x) − 1

2
(ν + x)(2 − x)

]
. (63)

Let us simplify the expression enclosed in the square brackets in the latter formula:

s(2 − x)(2 + x) −
(1
2

− s
)
(ν + x)(2 + x) − 1

2
(ν + x)(2 − x)

=
(
s − 1

2

)[
(2 − x)(2 + x) + (ν + x)(2 + x)

]
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+1

2

[
(2 − x)(2 + x) − (ν + x)(2 − x)

]

=
(
s − 1

2

)
(2 + x)(2 + ν) + 1

2
(2 − x)(2 − ν) > 0. (64)

From (63) and (64) it follows that the function ψs(x, ν) is increasing. Therefore

max
x∈[−ν,ντ ]

ψs(x, ν) = ψs(ντ , ν)

= (ν + ντ )
s(2 − ντ )

1/2−s(2 + ντ )
−1/2

= (2 + ν)2s

(2 + ν + ατ 2)s
·
( (2 + ν)ατ 2

(2 + ν + ατ 2)

)1/2−s

×
(4(2 + ν) + (2 − ν)ατ 2

2 + ν + ατ 2

)−1/2

= (ατ 2)1/2−s · (2 + ν)2+1/2√
4(2 + ν) + (2 − ν)ατ 2

≤ 1

2
(ατ 2)1/2−s(2 + ν)s . (65)

From (62) and (65) we obtain estimate (56).
Let us prove estimate (57). For this, it suffices to estimate ψs(x, ν) on the interval

[−ν, 2] ⊃ [−ν, ντ ]when0 < s < 1
2 .Wehave tofind the critical points of the function

ψs(x, ν) on this interval. After performing some transformations of (64), from (63)
we obtain

(2s − 1)(2 + x)(2 + ν) + (2 − x)(2 − ν) = 0,

from which we have a solution

x0 = 2[(2 − ν) − (1 − 2s)(2 + ν)]
(2 − ν) + (1 − 2s)(2 + ν)

< 2.

Clearly, the following estimate is valid:

max
x∈[−ν,2] ψs(x, ν) = ψs(x0, ν), 0 < s <

1

2
. (66)

Let us estimate ψs(x0, ν). It is obvious that

ψs(x0, ν) =
(2s(4 − ν)

λ

)s(4(1 − 2s)(2 + ν)

λ

)1/2−s(4(2 − ν)

λ

)−1/2



168 R. Galdava et al.

< (4 − ν2)s(4(2 + ν))1/2−s(4(2 − ν))−1/2 = (2 + ν)s

22s

(2 + ν

2 − ν

)1/2−s
, (67)

where
λ = (2 − ν) + (1 − 2s)(2 + ν).

(61), (62), (64) and (67) imply estimate (57).
Let us prove estimate (58). By analogy with (62) we have

∥∥(2I − Lτ )Uk(Lτ , I )B
−1
τ

∥∥

= 1

2 + ν

∥∥(2I − Lτ )(ν I + Lτ )Uk(Lτ , I )
∥∥

= 1

2 + ν
max

x∈σ(Lτ )

∣∣(2 − x)(ν + x)Uk(x, 1)
∣∣

≤ 1

2 + ν
max

x∈[−ν,ντ ]

[
(2 − x)(ν + x)

2√
4 − x2

]

≤ 2

2 + ν
max

x∈[−ν,ντ ]
ν + x√
2 + x

= 2

2 + ν
· ν + ντ√

2 + ντ

= 2

2 + ν
· (2 + ν)2

2 + ν + ατ 2
·
√

2 + ν + ατ 2

4(2 + ν) + (2 − ν)ατ 2
≤ 1. (68)

Let us prove estimate (59). By analogy with (61) we have

τ 2s(Uk −Uk−1)A
s B−1

τ = (τ 2s As B−s)B−(1−s)(Uk −Uk−1) =

= (τ 2AB−1)s B−(1−s)
τ (Uk −Uk−1) =

= (2 + ν)−(1−s)(2I − Lτ )
s(ν I + Lτ )

1−s(Uk −Uk−1).

Hence, in view of estimate (11), we obtain

τ 2s
∥∥(Uk −Uk−1)A

s B−1
τ

∥∥
= (2 + ν)−(1−s)

∥∥(2I − Lτ )
s(ν I + Lτ )

1−s(Uk −Uk−1)
∥∥

= (2 + ν)−(1−s) max
x∈σ(Lτ )

∣∣∣(2 − x)s(ν + x)1−s
(
Uk(x, 1) −Uk−1(x, 1)

)∣∣∣

≤ (2 + ν)−(1−s) max
x∈[−ν,ντ ]

[
(2 − x)s(ν + x)1−s 2√

2 + x

]
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= 2(2 + ν)−(1−s) max
x∈[−ν,ντ ]

ϕ̃s(x, ν), (69)

where

ϕ̃s(x, ν) = (ν + x)1−s(2 − x)s(2 + x)−1/2, 0 ≤ s ≤ 1

2
.

The function ϕ̃s(x, ν) is estimated in a standard manner. We define its derivative.
Clearly, we have

ϕ̃′
s(x, ν) = (ν + x)−s(2 − x)s−1(2 + x)−3/2

×
[
(1 − s)(2 − s)(2 + s) − s(ν + x)(2 + x) − 1

2
(ν + x)(2 − x)

]
.

The expression enclosed in the square brackets is denoted by

ϕs(x, ν) = (1 − s)(2 − x)(2 + x) − s(ν + x)(2 + x) − 1

2
(ν + x)(2 − x).

Since 0 < s ≤ 1
2 and ν ∈ ] − 2, 2[, we have

ϕs(2, ν) = −4s(2 + ν) < 0,

ϕs(−ν, ν) = (1 − s)(4 − ν2) > 0.

Thus ϕ̃s(x, ν) has a unique critical point on the interval ] − ν, 2[. Let us assume
that the square function ϕs(x, ν) is equal to zero and find its roots. By some simple
transformations we obtain (t = 2s)

x2 + [
(1 − t)(2 − ν) + 4t

]
x − 2

[
(1 + t)(2 − ν) + 2(1 − 2t)

] = 0.

Then we have

x = −1

2

[(
(1 − t)(2 − ν) + 4t

) ±
√

(1 − t)2(2 + ν)2 + 16(2 − ν)
]
.

The root contained in the interval ] − ν, 2[ is

x1 = −1

2

[
− (

(1−t)(2−ν)+4t
)+√

(1−t)2(2+ν)2+16(2−ν)
]
.

We easily obtain

2 + x1 = 1

2

[
(1 − t)(2 + ν) +

√
(1 − t)2(2 + ν)2 + 16(2 − ν)

]
, (70)
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ν + x1 = 1

2

[
(1−t)(2+ν)−2(2−ν)+

√
(1−t)2(2+ν)2+16(2−ν)

]
, (71)

2 − x1 = 1

2

[
(1+t)(2+ν)+2(2−ν)−

√
(1−t)2(2+ν)2+16(2−ν)

]
. (72)

(70) and (71) imply

ν + x1
2 + x1

= (1 − t)(2 + ν) − 2(2 − ν) + √
(1 − t)2(2 + ν)2 + 16(2 − ν)

(1 − t)(2 + ν) + √
(1 − t)2(2 + ν)2 + 16(2 − ν)

= 1 − 2(2 − ν)

(1 + t)(2 + ν) + √
(1 − t)2(2 + ν)2 + 16(2 − ν)

= 1 + 2(2 − ν)
[
(1 − t)(2 + ν) − √

(1 − t)2(2 + ν)2 + 16(2 − ν)
]

16(2 − ν)

= 1

8

[
4(2 − √

2 − ν) + (
(a + b) −

√
a2 + b2

)]
, (73)

where
a = (1 − t)(2 + ν), b = 4

√
2 − ν.

Let us estimate the expression enclosed in the square brackets. By some simple
transformations we have

4(2 − √
2 − ν) + (

a + b −
√
a2 + b2

)

= 4(2 + ν)

2 + √
2 − ν

+ 8(1 − t)(2 + ν)
√
2 − ν

a + b + √
a2 + b2

= 2(2 + ν)
[ 2

2 + √
2 − ν

+ 4(1 − t)
√
2 − ν

a + b + √
a2 + b2

]
. (74)

Since the second summand enclosed in the square brackets is decreasing for
t ∈ [0, 1], we have

4(1 − t)
√
2 − ν

a + b + √
a2 + b2

≤ 4
√
2 − ν

(2 + ν) + 4
√
2 − ν + √

(2 + ν)2 + 16(2 − ν)

= 4
√
2 − ν

(2 + ν) + 4
√
2 − ν + (6 − ν)

=
√
2 − ν

2 + √
2 + ν

. (75)



Study of Three-Layer Semi-Discrete Schemes for Second Order Evolution … 171

(73), (74) and (75) imply
ν + x1
2 + x1

≤ 1

4
(2 + ν). (76)

from which it follows that

ν + x1 ≤ 1

4
(2 + ν)(2 + x1) ≤ 1

4
(2 + ν) · 4 = 2 + ν. (77)

From (72), clearly,

2 − x1 ≤ 1

2

[
2(2 + ν) + 2(2 − ν) − 4

√
2 − ν

]

= 2
(
2 − √

2 − ν
) = 2(2 + ν)

2 + √
2 − ν

≤ 2 + ν. (78)

Taking into account estimates (76)–(78), we obtain

max
x∈[−ν,2] ϕ̃s(x, ν) = ϕ̃s(x1, ν) = (ν + x1)

1−s(2 − x1)
s(2 + x1)

1/2

= (ν + x1)
1/2−s(2 − x1)

s
(ν + x1
2 + x1

)1/2

≤ (2 + ν)1/2−s(2 + ν)s · 1
2

(2 + ν)1/2 = 1

2
(2 + ν). (79)

From (69) and (78) we have

τ 2s
∥∥(Uk −Uk−1)A

s B−1
τ

∥∥ ≤ (2 + ν)s, 0 < s ≤ 1

2
.

Let us estimate (60). Clearly, the following representation is true:

(Uk −Uk−1)B
−1
τ = (2 + ν)−1(ν I + L)(Uk −Uk−1).

Analogously to (68), the latter equality implies with estimate (11), taken into account
that ∥∥(Uk −Uk−1)B

−1
τ

∥∥ = (2 + ν)−1
∥∥(ν I + L)(Uk −Uk−1)

∥∥ ≤

≤ (2 + ν)−1 max
x∈[−ν,ντ ]

∣∣∣(ν + x) · 2√
2 + x

∣∣∣ = 2

2 + ν
· ν + ντ√

2 + ντ

≤ 1.
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2.5 A Priori Estimates for Difference Analogues of First and
Second Order Derivatives

Theorem 2 Let the conditions of Theorem 1 be fulfilled. Then for scheme (3) the
following estimates are true:

∥∥∥Δuk
τ

∥∥∥ ≤ c̃(s)τ 2s−1‖Asu0‖ + c0
∥∥∥Δu0

τ

∥∥∥ + τ

k∑
i=1

‖ fi‖, (80)

∥∥∥As Δuk
τ

∥∥∥ ≤ ∥∥As+1/2u0
∥∥ + c0

∥∥∥As Δu0
τ

∥∥∥ + c̃0(s)τ
1−2s

k∑
i=1

‖ fi‖, (81)

∥∥∥As Δuk
τ

∥∥∥ ≤ ∥∥As+1/2u0
∥∥ + c0

∥∥∥As Δu0
τ

∥∥∥ + τ

k∑
i=1

‖As fi‖, (82)

∥∥∥As Δuk
τ

∥∥∥ ≤ ∥∥As+1/2u0
∥∥+c0

∥∥∥As Δu0
τ

∥∥∥+τ

k∑
i=1

∥∥∥As−1/2 Δ fi−1

τ

∥∥∥, (83)

where k = 1, . . . , n − 1, Δuk = uk+1 − uk, 0 ≤ s ≤ 1
2 ,

c̃0(s) = 1

(2 + ν)s
, c̃(s) = 21−2s

(2 + ν

2 − ν

)1/2−s
, f0 = 0.

Proof Let us rewrite formula (32) as

uk+1 = (Uk −Uk−1)u0 +Uk(u1 − u0) + τ 2
k∑

i=1

Uk−i B
−1
τ fi . (84)

By virtue of the latter formula it is obvious that

uk = (Uk−1 −Uk−2)u0 +Uk−1(u1 − u0) + τ 2
k∑

i=1

Uk−i−1B
−1
τ fi . (85)

Subtracting (85) from equality (84) and assuming that U−1 = 0, we obtain

Δuk = (
Uk +Uk−2 − 2Uk−1

)
u0 + (Uk −Uk−1)(u1 − u0)

+ τ 2
k∑

i=1

(Uk−i −Uk−i−1)B
−1
τ fi . (86)
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The recurrence relation (55) implies

Uk(Lτ , I ) +Uk−2(Lτ , I ) − 2Uk−1(Lτ , I )

= LτUk−1 − 2Uk−1 = (Lτ − 2I )Uk−1. (87)

Using (87) in (86) and dividing both sides of the equality by τ we obtain

Δuk
τ

= τ−1(Lτ − 2I )Uk−1(Lτ , I )u0 + (Uk −Uk−1)
Δu0
τ

+ τ

k∑
i=1

(Uk−i −Uk−i−1)B
−1
τ fi , (88)

from which it obviously follows that

∥∥∥Δuk
τ

∥∥∥ ≤ τ−1
∥∥(2I − Lτ )Uk−1u0

∥∥ + ‖Uk −Uk−1‖ ·
∥∥∥Δu0

τ

∥∥∥+

τ

k∑
i=1

∥∥(Uk−i −Uk−i−1)B
−1
τ fi

∥∥.

Taking into account estimates (57), (60) and (43), the above formula implies inequal-
ity (80).

Let us prove inequality (81). If to both sides of equality (88) we apply the operator
As (0 ≤ s ≤ 1

2 ) and pass over to the norms, then we have

∥∥∥As Δuk
τ

∥∥∥ ≤ τ−1
∥∥(2I − Lτ )Uk−1(Lτ , I )(A

su0)
∥∥

+ ‖Uk −Uk−1‖ ·
∥∥∥As Δu0

τ

∥∥∥ + τ

k∑
i=1

∥∥(Uk−i −Uk−i−1)A
s B−1

τ

∥∥ · ‖ fi‖ (89)

which, in view of estimates (43), (56) and (59), implies inequality (81).
Let us prove inequality (82). If the expression (88) under the summation sign

is replaced by ‖(Uk−i −Uk−i−1)B−1
τ ‖ · ‖As fi‖, then the resulting inequality will

obviously be valid. The latter inequality, in view of estimates (43), (56) and (60),
implies inequality (82).

Let us prove inequality (83). Subtracting (85) from equality (84) and taking into
account (87), we obtain

Δuk = (Lτ − 2I )Uk−1u0 + (Uk −Uk−1)Δu0 + τ 2
k∑

i=1

Uk−1B
−1
τ Δ fi−1, (90)
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where f0 = 0.
If we divide both sides of equality (90) by τ , apply the operator As (0 ≤ s ≤ 1

2 )

and pass over to the norms, then we have

∥∥∥As Δuk
τ

∥∥∥ ≤ τ−1
∥∥(2I − Lτ )Uk−1(Lτ , I )A

su0
∥∥

+‖Uk −Uk−1‖ ·
∥∥∥As Δu0

τ

∥∥∥ + τ 2
k∑

i=1

∥∥Uk−i A
1/2B−1

τ

∥∥ ·
∥∥∥As−1/2 Δ fi−1

τ

∥∥∥

which, in view of estimates (43), (47) and (56), implies inequality (83).

Now, we will derive estimates which take place for the corresponding difference
analogue of a second order derivative.

Theorem 3 Let the conditions of Theorem 1 be fulfilled. Then for scheme (3) the
following estimates are true:

∥∥∥Δ2uk
τ 2

∥∥∥ ≤ τ 2s−1
[∥∥A1/2+su0

∥∥ + c̃(s)
∥∥∥As Δu0

τ

∥∥∥]
+ τ

k+1∑
i=2

∥∥∥Δ fi−1

τ

∥∥∥ + ‖ f1‖, (91)

∥∥∥Δ2uk
τ 2

∥∥∥ ≤ τ 2s−1
[∥∥A1/2+su0

∥∥ + c̃(s)
∥∥∥As Δu0

τ

∥∥∥]

+ c̃(s)τ 2s
k∑

i=1

∥∥As B−1
τ fi

∥∥ + ‖B−1
τ fk+1‖, (92)

∥∥∥Δ2uk
τ 2

∥∥∥ ≤ ‖Au0‖ +
∥∥∥A1/2 Δu0

τ

∥∥∥ +
k+1∑
i=1

‖ fi‖, (93)

where k = 1, . . . , n − 2, 0 ≤ s ≤ 1
2 .

Proof Taking into account (87), from (86) we have

Δuk = (Lτ − 2I )Uk−1(Lτ , I )u0 + (Uk −Uk−1)Δu0

+ τ 2
k∑

i=1

(Uk−i −Uk−i−1)B
−1
τ fi . (94)

If k in (94) is replaced by k + 1, then we obtain

Δuk+1 = (Lτ − 2I )Uku0 + (Uk+1 −Uk)Δu0
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+ τ 2
k+1∑
i=1

(Uk−i+1 −Uk−i )B
−1
τ fi . (95)

With (87) taken into account, (94) and (95) imply the formulas:

Δ2uk = (Lτ − 2I )
[
(Uk −Uk−1)u0 +UkΔu0

]

+ τ 2
k+1∑
i=1

(Uk−i+1 −Uk−i )B
−1
τ ( fi − fi−1), (96)

Δ2uk = (Lτ − 2I )
[
(Uk −Uk−1)u0 +UkΔu0 + τ 2

k∑
i=1

Uk−i B
−1
τ fi

]
+ τ 2B−1

τ fk+1,

(97)
where k = 1, . . . , n − 2, f0 = 0, U−1 = 0, Δuk = uk+1 − uk , Δ2uk = Δ(Δuk).

It is obvious that the following representation is true:

(Lτ − 2I )(Uk −Uk−1)u0 = −τ 2AB−1
τ (Uk −Uk−1)u0 =

= −τ 1+2s
[
τ 1−2s(Uk −Uk−1)A

1/2−s B−1
τ

]
(A1/2+su0).

By (59) the latter formula yields the estimate

∥∥(Lτ − 2I )(Uk −Uk−1)u0
∥∥

≤ τ 1+2s
∥∥A1/2+su0

∥∥, u0 ∈ D(A1/2+s), 0 ≤ s ≤ 1

2
. (98)

Dividing both sides of equality (96) by τ 2 and passing over to the norms, we
obtain

∥∥∥Δ2uk
τ 2

∥∥∥ ≤≤ ∥∥(Lτ − 2I )(Uk −Uk−1)u0
∥∥ + τ−1

∥∥∥(Lτ − 2I )Uk
Δu0
τ

∥∥∥

+τ

k+1∑
i=1

∥∥(Uk−i+1 −Uk−i )B
−1
τ

∥∥ ·
∥∥∥Δ fi−1

τ

∥∥∥.

Hence, taking into account estimates (57), (60), and (98), we obtain estimate (91).
Analogously, taking into account estimates (98) and (57), from (97) we obtain

estimate (91).
Estimate (93) follows from (97) with equalities (98), (56), (58) and ‖B−1

τ ‖ ≤ 1
taken into account.
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2.6 Theorems on the Convergence of a Semi-Discrete Scheme

Let us introduce the following spaces. Ifwe define theHermite norm ‖u‖1 = ‖A1/2u‖
in D(A1/2), then we obtain the Hilbert space which is denoted by W 1. Analogously,
by defining the Hermite norm ‖u‖2 = ‖Au‖ in D(A) we obtain the Hilbert space
which is denoted byW 2. We denote by C([0, T ]; H) the set of vector functions u(t)
continuous on [0, T ] and taking their values from H . We denote by Cm([0, T ]; H)

(m ≥ 1) the set of differentiable vector functions, continuous on [0, T ] up to orderm
from C([0, T ]; H). C([0, T ];Wi ) and Cm([0, T ];Wi ), i = 1, 2, are defined analo-
gously.

Depending on the smoothness of a solution of a continuous problem, we will next
establish the order of convergence in τ for an approximate solution obtained by the
semidiscrete scheme (3).

Rewrite Eq. (1) at the point t = tk as follows:

Δ2u(tk−1)

τ 2
+ A

u(tk+1) + νu(tk) + u(tk−1)

2 + ν

= f (tk) +
(Δ2u(tk−1)

τ 2
− u′′(tk)

)
+ (2 + ν)−1A

(
Δ2u(tk−1)). (99)

Equation (1) clearly implies

A
(
Δ2u(tk−1)

) = Δ2 f (tk−1) − Δ2u′′(tk−1). (100)

If we subtract equality (99) from (3) and take into account (100), then for the error
zk = u(tk) − uk we obtain the equation

zk+1 − 2zk + zk+1

τ 2
+ A

zk+1 + νzk + zk−1

2 + ν
= rτ (tk), (101)

where k = 1, . . . , n − 1,

rτ (tk) = r0,τ (tk) + (2 + ν)−1
(
r2,τ (tk) − r1,τ (tk)

)
,

r0,τ (t) = Δ2u(t − τ)

τ 2
− u′′(t),

r1,τ (t) = Δ2u′′(t − τ), r2,τ (t) = Δ2 f (t − τ),

Δ2u(t − τ) = Δ
(
Δu(t − τ)

)
, t, t − τ, t + τ ∈ [0, T ].

We have the following statement.



Study of Three-Layer Semi-Discrete Schemes for Second Order Evolution … 177

Theorem 4 Let problem (1), (2) have a solution u(t) ∈ C2([0, T ]; H) ∩ C([0, T ];
W 2), f (t) ∈ C([0, T ]; H), u0, u1 ∈ W 2 and ν ∈] − 2, 2[ . Then for the errors zk =
u(tk) − uk the following estimates are valid:

‖zk+1‖ ≤ c0‖z0‖ + c1(τ )

∥∥∥Δz0
τ

∥∥∥ + τ0

k∑
i=1

∥∥A−1/2rτ (ti )
∥∥, (102)

‖A1/2zk+1‖ ≤ c0
(
‖A1/2z0‖ +

∥∥∥Δz0
τ

∥∥∥ + ν0
∥∥A1/2(Δz0)

∥∥)
+ τ

k∑
i=1

‖rτ (ti )‖, (103)

‖Azk+1‖ ≤ c0
(
‖Az0‖ +

∥∥∥A1/2 Δz0
τ

∥∥∥ + ν0
∥∥A(Δz0)

∥∥)
+ c2

k∑
i=1

‖rτ (ti )‖, (104)

∥∥∥Δzk
τ

∥∥∥ ≤ c2τ
−1‖z0‖ + c0

∥∥∥Δz0
τ

∥∥∥ + τ

k∑
i=1

‖rτ (ti )‖, (105)

∥∥∥Δzk
τ

∥∥∥ ≤ ∥∥A1/2z0
∥∥ + c0

∥∥∥Δz0
τ

∥∥∥ + τ

k∑
i=1

‖rτ (ti )‖, (106)

∥∥∥A1/2 Δzk
τ

∥∥∥ ≤ ‖Az0‖ + c0
∥∥∥A1/2 Δz0

τ

∥∥∥ + ν0

k∑
i=1

‖rτ (ti )‖, (107)

∥∥∥A1/2 Δzk
τ

∥∥∥ ≤ ‖Az0‖ + c0
∥∥∥A1/2 Δz0

τ

∥∥∥

+
(
‖rτ (t1)‖ +

k∑
i=2

∥∥rτ (ti ) − rτ (ti−1)
∥∥)

, (108)

∥∥∥Δ2zk
τ 2

∥∥∥ ≤ ‖Az0‖ +
∥∥∥A1/2 Δz0

τ

∥∥∥ +
k+1∑
i=1

‖rτ (ti )‖, (109)

∥∥∥Δ2zk
τ 2

∥∥∥ ≤ ‖Az0‖ +
∥∥∥A1/2 Δz0

τ

∥∥∥

+
k+1∑
i=2

∥∥rτ (ti ) − rτ (ti−1)
∥∥ + ‖rτ (t1)‖, (110)
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where k = 1, . . . , n − 1 (in (109) and (110) k = 1, . . . , n − 2); c0, c1 and ν0 are the
same constants as in the preceding section,

c2 = 2
(2 + ν

2 − ν

)1/2
.

It is obvious that the a priori estimates obtained in Sects. 2.1 and 2.5 hold auto-
matically and for system (101) as well if uk is replaced by zk , and fi by rτ (ti )).

Now, if we insert s = 1/2 into estimates (10), (8), (9), (80)–(83), (93) and (91),
we will respectively obtain estimates (102)–(104), (106)–(110). The substitution of
s = 0 into the estimate corresponding to (91) gives (105).

Theorem 4 is a basis for proving theorems on the convergence of an approximate
solution obtained by means of the semi-discrete scheme (3).

The following theorem is true (in the sequel c denotes a positive constant).

Theorem 5 Let u0 = ϕ0, u1 = ϕ0 + τϕ1, ϕ0, ϕ1 ∈ W 2 and ν ∈ ] − 2, 2[ . Then
(a) if u(t) ∈ C2([0, T ]; H) ∩ C([0, T ];W 2) and f (t) ∈ C([0, T ]; H), then

max
1≤k≤n−1

(
‖zk+1‖ +

∥∥∥Δzk
τ

∥∥∥ + ‖A1/2zk+1‖
)

→ 0, τ → 0;

(b) if the conditions of the item (a) are fulfilled and the functions f (t) and u′′(t)
satisfy the Hölder condition with index λ (0 < λ ≤ 1), then

(
‖zk+1‖ +

∥∥∥Δzk
τ

∥∥∥ + ‖A1/2zk+1‖
)

≤ cτλ, k = 1, . . . , n − 1;

(c) if u(t) ∈ C3([0, T ]; H) ∩ C([0, T ];W 2) and f (t) ∈ C1([0, T ]; H), then

max
1≤k≤n−1

(∥∥∥A1/2 Δzk
τ

∥∥∥ +
∥∥∥Δ2zk

τ 2

∥∥∥ + ‖Azk+1‖
)

→ 0, τ → 0;

(d) if the conditions of the item (c) are fulfilled and the functions f ′(t) and u′′′(t)
satisfy the Hölder condition with index λ (0 < λ ≤ 1), then

(∥∥∥A1/2 Δzk
τ

∥∥∥ +
∥∥∥Δ2zk

τ 2

∥∥∥ + ‖Azk+1‖
)

≤ cτλ, k = 1, . . . , n − 1.

Proof The validity of the following formulas depends on how smooth the functions
u(t) and f (t) are:

Δ2u(tk−1)

τ 2
− u′′(tk) = 1

τ 2

tk+1∫
tk

t∫
tk

(
u′′(s) − u′′(tk)

)
ds dt
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+ 1

τ 2

tk∫
tk−1

t∫
tk−1

(
u′′(s) − u′′(tk)

)
ds dt, (111)

Δ2u(tk−1)

τ 2
− u′′(tk) = 1

τ 2

tk+1∫
tk

t∫
tk

s∫
tk

(
u′′′(ξ) − u′′′(tk)

)
dξ ds dt

+ 1

τ 2

tk∫
tk−1

t∫
tk−1

s∫
tk−1

(
u′′′(tk) − u′′′(ξ)

)
dξ ds dt, (112)

Δ2 f (tk−1) =
tk+1∫
tk

(
f ′(t) − f ′(tk)

)
dt +

tk∫
tk−1

(
f ′(tk) − f ′(t)

)
dt, (113)

Δu(0)

τ
= u′(0) + 1

τ

τ∫
0

(
u′(t) − u′(0)

)
dt = u′(0) + 1

τ

τ∫
0

t∫
0

u′′(s) ds dt, (114)

Δu(0)

τ
= u′(0) + τ

2
u′′(0) + 1

τ

τ∫
0

t∫
0

(
u′′(s) − u′′(0)

)
ds dt. (115)

From (111) we obtain

max
1≤k≤n−1

∥∥∥Δ2u(tk−1)

τ 2
− u′′(tk)

∥∥∥ → 0, τ → 0 (116)

if u(t) ∈ C2([0, T ]; H);

∥∥∥Δ2u(tk−1)

τ 2
− u′′(tk)

∥∥∥ ≤ cτλ, k = 1, . . . , n − 1, (117)

if u(t) ∈ C2([0, T ]; H) and u′′(t) satisfies the Hölder condition with index λ (0 <

λ ≤ 1).
From (112) we obtain

1

τ
max

1≤k≤n−1

∥∥∥Δ2u(tk−1)

τ 2
− u′′(tk)

∥∥∥ → 0, τ → 0 (118)

if u(t) ∈ C3([0, T ]; H);
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∥∥∥Δ2u(tk−1)

τ 2
− u′′(tk)

∥∥∥ ≤ cτ 1+λ, k = 1, . . . , n − 1, (119)

if u(t) ∈ C3([0, T ]; H) and u′′′(t) satisfies the Hölder condition with index λ (0 <

λ ≤ 1).
From (113) we obtain

1

τ
max

1≤k≤n−1

∥∥Δ2 f (tk−1)
∥∥ → 0, τ → 0 (120)

if f (t) ∈ C1([0, T ]; H);

‖Δ2u(tk−1)‖ ≤ cτ 1+λ, k = 1, . . . , n − 1, (121)

if f (t) ∈ C1([0, T ]; H) and f ′(t) satisfies the Hölder condition with index λ (0 <

λ ≤ 1).
From (114) we obtain ∥∥∥Δz0

τ

∥∥∥ ≤ cτ (122)

if u(t) ∈ C2([0, T ]; H); ∥∥∥A1/2 Δz0
τ

∥∥∥ → 0, τ → 0 (123)

if u(t) ∈ C1([0, T ];W 1); ∥∥∥A1/2 Δz0
τ

∥∥∥ ≤ cτλ (124)

if u(t) ∈ C1([0, T ];W 1) and A1/2u′(t) satisfies the Hölder condition with index λ

(0 < λ ≤ 1).
In connection with relations (123) and (124) note that if the conditions of the

item (c) are fulfilled, then Eq. (1) implies that Au(t) ∈ C1([0, T ]; H). Hence, since
A is a self-adjoint positive definite operator, we obtain u′(t) ∈ C([0, T ];W 2) and
(Au(t))′ = Au′(t).

It is obvious that the following estimates are valid:

‖A(Δz0)‖ = ∥∥A(
u(τ ) − u(0)

) − τ Aϕ1

∥∥ → 0, τ → 0 (125)

if u(t) ∈ C([0, T ];W 2);
‖A(Δz0)‖ ≤ cτλ (126)

if u(t) ∈ C([0, T ];W 2) and Au(t) satisfies the Hölder condition with index λ (0 <

λ ≤ 1)
max

1≤k≤n−1
|Δ2 f (tk−1)‖ → 0, τ → 0 (127)
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if f (t) ∈ C([0, T ]; H);

‖Δ2 f (tk−1)‖ ≤ cτλ, k = 1, . . . , n − 1, (128)

if on [0, T ] the function f (t) satisfies theHölder conditionwith index λ (0 < λ ≤ 1).
By virtue of the above estimates, inequalities (102)–(110) imply the estimates for

the error zk = u(tk) − uk .
The conclusion of the item (a) follows from inequalities (102), (103) and (106)

with estimates (116), (122), (125) and (127) taken into account.
The conclusion of the item (b) follows from inequalities (102), (103) and (106)

with estimates (117), (122), (126) and (128) taken into account.
The conclusion of the item (c) follows from inequalities (104), (107) and (109)

with estimates (118), (120), (123) and (125) taken into account.
The conclusion of the item (d) follows from inequalities (104), (107) and (109)

with estimates (119), (121), (124) and (126) taken into account.

The following theorem is valid in a smoother class of solutions.

Theorem 6 Let u0 = ϕ0, ϕ0 ∈ W 2, u1 = ϕ0 + τϕ1 + τ 2

2 ϕ2, ϕ2 = f (0) − Aϕ0, ϕ1,

Aϕ0, f (0) ∈ W 2 and ν ∈ ] − 2, 2[ . Then
(a) if u(t) ∈ C3([0, T ]; H) ∩ C([0, T ];W 2), f (t) ∈ C1([0, T ]; H), and the func-

tions u′′′(t) and f ′(t) satisfy the Hölder conditions with index λ (0 < λ ≤ 1), then

‖zk+1‖ +
∥∥∥Δzk

τ

∥∥∥ + ‖A1/2zk+1‖ ≤ cτ 1+λ, k = 1, . . . , n − 1;

(b) if u(t) ∈ C4([0, T ]; H) ∩ C([0, T ];W 2), f (t) ∈ C2([0, T ]; H), and the func-
tions uIV (t) and f ′′(t) satisfy the Hölder condition with index λ (0 < λ ≤ 1), then

∥∥∥A1/2 Δzk
τ

∥∥∥ +
∥∥∥Δ2zk

τ 2

∥∥∥ ≤ cτ 1+λ, k = 1, . . . , n − 2.

Proof From (115) we have ∥∥∥Δz0
τ

∥∥∥ ≤ cτ 2 (129)

if u(t) ∈ C3([0, T ]; H); ∥∥∥A1/2 Δz0
τ

∥∥∥ ≤ cτ 1+λ (130)

if u(t)∈C2([0, T ];W 1) and A1/2u′′(t) satisfies the Hölder condition with index λ

(0<λ≤ 1).
From (114) it follows that

∥∥A1/2(Δz0)
∥∥ ≤

τ∫
0

∥∥A1/2
(
u′(t) − u′(0)

)∥∥dt + τ 2

2
‖A1/2ϕ2‖ ≤ cτ 1+λ, (131)
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if u(t)∈C1([0, T ];W 1) and A1/2u′(t) satisfies the Hölder condition with index λ

(0<λ≤ 1).
Let the conditions of the item (a) of the theorem be fulfilled. Then Eq. (1) implies

that Au(t) ∈ C1([0, T ]; H) and (Au(t))′ satisfies the Hölder condition. Since A is
a self-adjoint and positive definite operator, the condition Au(t) ∈ C1([0, T ]; H)

implies that u′(t) ∈ C([0, T ];W 2) and (Au(t))′ = Au′(t). Therefore if the condi-
tions of the item (a) are fulfilled, then inequality (131) is valid. If the conditions of
the item (b) are fulfilled, then analogously we establish that Au(t) ∈ C2([0, T ]; H)

and (Au(t))′′ satisfies the Hölder condition. From this fact there follows inequality
(130).

If the functions u(tk+1) = u(tk + τ) and u(tk−1) = u(tk − τ) are expanded using
the Taylor formula and the remainder term is written in the integral form, then we
have

r0,τ (tk) = Δ2u(tk−1)

τ 2
− u′′(tk)

= 1

τ 2

(
1

4!

tk+1∫
tk

(tk+1 − t)3uIV (t) dt + 1

4!
tk∫

tk−1

(t − tk−1)
3uIV (t)dt

)

which clearly implies

r0,τ (tk) − r0,τ (tk−1) = 1

τ 2

(
1

4!

tk+1∫
tk

(tk+1 − t)3
(
uIV (t) − uIV (tk)

)
dt

+ 1

4!
tk∫

tk−1

(tk − t)3
(
uIV (tk) − uIV (t)

)
dt

+ 1

4!
tk∫

tk−1

(t − tk−1)
3
(
uIV (t) − uIV (tk−1)

)
dt

+ 1

4!

tk−1∫
tk−2

(t − tk−2)
3(uIV (tk−1) − uIV (t)

)
dt

)
. (132)

If in equality (132) we pass over to the norms and take into account that uIV (t)
satisfies the Höder condition with index λ (0 < λ ≤ 1), then we obtain

∥∥r0,τ (tk) − r0,τ (tk−1)
∥∥ ≤ cτ 2+λ, k = 2, . . . , n − 1. (133)

It is obvious that the following formula is true:
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Δ2 f (tk−1) =
tk+1∫
tk

t∫
tk

f ′′(s) ds dt +
tk∫

tk−1

tk∫
t

f ′′(s) ds dt.

Analogously to (133), the latter formula yields

∥∥Δ2 f (tk) − Δ2 f (tk−1)
∥∥ ≤ cτ 2+λ, k = 1, . . . , n − 1. (134)

We have already obtained all those estimates the use of which in inequalities
(102), (103), (106), (108) and (110) gives the estimates obtained in the items (a) and
(b).

The estimate of the item (a) follows from inequalities (102), (103) and (106) with
estimates (119), (121), (129) and (131) taken into account.

The estimate of the item (b) follows from inequalities (108) and (110) with esti-
mates (130), (133) and (134) taken into account.

2.7 Approximation with Splines

In this subsection we study the convergence of the abstract cubic spline S̃τ (t), satis-
fying the conditions

S̃(ti ) = ui , S̃′(ti ) = δui = ui+1 − ui
τ

,

where i = 0, 1, . . . , n − 1, τ = T/n, ti = iτ, δun = 0, to solution u(t) of
problem (1), (2). At the same time depending on the smoothness of the solution
u(t), the order of convergence will be set with respect to τ.

Belowwe formulate some auxiliary lemmas, which are the extension of the results
from [1].

Lemma 2 Let ‖ui‖ ≤ a and ‖δui‖ ≤ b, i = 0, 1, . . . , n. Then the following esti-
mates are true:

‖S̃τ (t)‖ ≤ a + τ

4
b, ‖S̃′

τ (t)‖ ≤ 2b, t ∈ [0, T ].

The estimate for S̃τ (t) is implied by the representation

S̃τ (t) = δui−1(1 − σi )
2σi − δuiτσ 2

i (1 − σi )+

ui−1(1 − σi )
2(2σi + 1) + uiσ

2
i (2(1 − σi ) + 1),

and for the derivative, by the representation
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S̃′
τ (t) = δui−1(1 − σi )(1 + 3σi ) − δui (2 − 3σi )σi ,

where
σi = σi (t) = t

τ
− i + 1, t ∈ [ti−1, ti ], i = 1, . . . , n.

Lemma 3 Let u(t) ∈ C2(H) and Ŝτ (t) be the cubic spline satisfying the conditions

Ŝτ (ti ) = u(ti ), Ŝ′
τ (ti ) = u′(ti ), ti = iτ, i = 0, 1, . . . , n.

Then the following estimates are true:

‖u(t) − Ŝτ (t)‖ ≤ sup
t

‖u′′(t)‖τ 2, (135)

‖u′(t) − Ŝ′
τ (t)‖ ≤ 2 sup

t
‖u′′(t)‖τ, t ∈ [0, T ]. (136)

Proof First, we will prove estimate (136). It is obvious that

u′(t) − Ŝ′
τ (t) =

∫ t

ti−1

[u′′(t) − Ŝ′′
τ (t)]dt, (137)

where
t ∈ [ti−1, ti−1 + τ

2
].

Since
Ŝ′′

τ (t) = δu′(ti−1)(6σi (t) − 2),

δu′(ti−1) = u′(ti ) − u′(ti−1)

τ
,

we have
u′′(t) − Ŝ′′

τ (t) = [u′′(t) − δu′(ti−1)] + 3δu′(ti−1)(1 − 2δi ).

After substitution into (137) we get

‖u′(t) − Ŝ′
τ (t)‖ ≤

∫ t

ti−1

(‖u′′(t)‖ + ‖δu′(ti−1)‖)dt + 3‖δu′(ti−1)‖
∫ t

ti−1

(1 − 2σi (t))dt.

From here, taking into account the estimate

∫ t

ti−1

(1 − 2σi (t))dt ≤ τ

4
,
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‖δu′(ti−1)‖ = ‖τ−1
∫ ti

ti−1

u′′(t)dt‖ ≤ sup
0≤t≤T

‖u′′(t)‖,

follows (136) when t ∈ [ti−1, ti−1 + τ
2 ]. Estimate (136) is proved similarly, when

t ∈ [ti−1 + τ
2 , ti ].

Estimate (135) follows from the identity

u(t) − Ŝτ (t) =
∫ t

ti−1

(u′(t) − Ŝ′
τ (t))dt.

Lemma 4 Let u(t) ∈ C2(H) and Sτ (t) be the cubic spline satisfying the conditions:

Sτ (ti ) = u(ti ), S′
τ (ti ) = δu(ti ) = u(ti+1) − u(ti )

τ
.

where i = 0, 1, . . . , n − 1, ti = iτ, δu(tn) = 0. Then the following estimates are
true:

‖Ŝτ (t) − Sτ (t)‖ ≤ cτ 2, (138)

‖Ŝ′
τ (t) − S′

τ (t)‖ ≤ 2cτ, (139)

c = sup
t

‖u′′(t)‖, t ∈ [0, T ].

Proof First, we prove the estimate (139). It is obvious that

Ŝ′
τ (t) − S′

τ (t) = (u′(ti−1) − δu(ti−1))(1 − σi )(1 + 3σi )−

(u′(ti ) − δu(ti ))σi (2(1 − σi ) − σi ), 0 ≤ σi (t) ≤ 1, t ∈ [ti−1, ti ].

Hence
‖Ŝ′

τ (t) − S′
τ (t)‖ ≤ ‖u′(ti−1) − δu(ti−1)‖(1 − σi )(1 + 3σi )

+ ‖u′(ti ) − δu(ti )‖σi (2 − σi ). (140)

Next, by the inclusion u(t) ∈ C2(H), it follows that

‖u′(ti ) − u′(t)‖ ≤ cτ, c = sup
t

‖u′′(t)‖, t ∈ [ti−1, ti ].

Then the following estimate is true

‖u′(ti ) − δu(ti )‖ = ‖u′(ti ) − ‖u(ti+1) − u(ti )

τ
‖



186 R. Galdava et al.

≤ 1

τ

∫ ti+1

ti

‖u′
i (t) − u′(t)‖dt ≤ cτ.

If we now substitute this estimate into (140) and take into account that

(1 − σi )(1 + 3σi ) + σi (2 − σi ) = 1 + 4σi − 4σ 2
i ≤ 2,

then we get estimate(139).
Estimate (138) follows from the identity

Ŝτ (t) − Sτ (t) =
∫ t

i−1
[Ŝ′

τ (t) − S′
τ (t)]dt, t ∈ [ti−1, ti−1 + τ

2
].

The following convergence theorem holds.

Theorem 7 Let the conditions of Theorem 6 be fulfilled and u(t) ∈ C4(H) ∩
C(W 2). Then the following estimates are true:

‖u(t) − S̃τ (t)‖ ≤ cτ 2, (141)

‖u′(t) − S̃′
τ (t)‖ ≤ cτ. (142)

Proof By virtue of the conclusion (a) of Theorem 6 the following estimates are true

‖zk+1‖ + ∥∥�zk
τ

∥∥ ≤ cτ 2, k = 1, . . . , n − 1. (143)

By Lemma 2 from (143) it follows that

‖Sτ (t) − S̃τ (t)‖ ≤ (1 + τ

4
)cτ 2, (144)

‖S′
τ (t) − S̃′

τ (t)‖ ≤ 2cτ 2. (145)

Now, taking into account (135), (138), and (144), the identity

u(t) − S̃τ (t) = [u(t) − Ŝτ (t)] + [Ŝτ (t) − Sτ (t)] + [Sτ (t) − S̃τ (t)],

implies estimate (141).
The estimate (142) it follows from identity

u′(t) − S̃′
τ (t) = [u′(t) − Ŝ′

τ (t)] + [Ŝ′
τ (t) − S′

τ (t)] + [S′
τ (t) − S̃′

τ (t)],

taking into account (136), (139) and (145).

The next theorem is proved similarly.
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Theorem 8 Let the conditions of Theorem 5 be fulfilled Then:
(a) if f (t) ∈ C1(H) (or f (t) ∈ C(W 2)), then

‖u(t) − S̃τ (t)‖ + ‖u′(t) − S̃′
τ (t)‖ → 0;

(b) if f (t) ∈ C1(H) and u(t) ∈ C3(H) ∩ C(W 2), then

‖u(t) − S̃τ (t)‖ + ‖u′(t) − S̃′
τ (t)‖ ≤ cτ.

3 Second Order Complete Equation

Let us consider the Cauchy problem for an abstract hyperbolic equation in the Hilbert
space H :

d2u(t)

dt2
+ B

du

dt
+ Au (t) = f (t) , t ∈]0, T ], (146)

u (0) = ϕ0, u′ (t) |t=0 = ϕ1. (147)

where A and B are self-adjoint, positively defined (generally unbounded) operators
with the definition domains D (A) and D (B) which are everywhere dense in H ;
moreover, D (A) ⊂ D (B); ϕ0 and ϕ1 are given vectors from H ; u (t) is a sought
continuous, twice continuously differentiable function with values in H and f (t) is
a given continuous function with values in H .

We seek a searching solution of the problem (146), (147) by the following semi-
discrete scheme:

uk+1 − 2uk + uk−1

τ 2
+ B

uk+1 − uk−1

2τ
+ A

uk+1 + uk−1

2
= fk, (148)

where fk = f (tk), k = 1, ..., n − 1, tk = kτ , τ = T/n (n > 1).
The following theorem holds.

Theorem 9 Let A and B be self-adjoint, positive-defnite (generally unbounded)
operators with the definition domains D (A) and D (B) which are everywhere dense
in H; besides, D (A) ⊂ D (B) and BA−1ϕ = A−1Bϕ, ∀ϕ ∈ D(A). Then for scheme
(148) the following a priori estimates are valid:

‖uk+1‖ ≤ tk+1

∥∥∥∥Δu0
τ

∥∥∥∥ + √
2 ‖u0‖ + tkτ

k∑
i=1

‖ fi‖ , (149)

∥∥∥∥Δuk
τ

∥∥∥∥ ≤ √
2

∥∥∥∥Δu0
τ

∥∥∥∥ + 2

τ
‖u0‖ + √

2τ
k∑

i=1

‖ fi‖ , (150)
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where k = 1, . . . , n − 1, Δuk = uk+1 − uk .

Proof From (148) we have

uk+1 = Luk − Suk−1 + τ 2

2
L fk, (151)

where

L = 2

(
I + τ

2
B + τ 2

2
A

)−1

,

S =
(
I − τ

2
B + τ 2

2
A

) (
I + τ

2
B + τ 2

2
A

)−1

.

From the recurrence relation (151), we obtain by induction

uk+1 = Uk(L , S)u1 − SUk−1(L , S)u0 + τ 2

2

k∑
i=1

Uk−i (L , S)L fi , (152)

inwhich the operator polynomialsUk(L , S) satisfy the following recurrence relation:

Uk(L , S) = LUk−1(L , S) − SUk−2(L , S), k = 1, 2, ...,

U0(L , S) = I, U−1(L , S) = 0. (153)

Let us rewrite (152) as

uk+1 = τUk(L , S)
Δu0
τ

+ (Uk(L , S) − SUk−1(L , S)) u0

+ τ 2

2

k∑
i=1

Uk−i (L , S)L fi . (154)

If we consider the norms in equality (154), then we obtain

‖uk+1‖ ≤ τ

∥∥∥∥Uk(L , S)
Δu0
τ

∥∥∥∥ + ‖Uk(L , S) − SUk−1(L , S)‖ ‖u0‖

+ τ 2

2

k∑
i=1

‖Uk−i (L , S)L fi‖ . (155)

We can write the operator S as
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S = BA−1
(
BA−1 + τ I

)−1
L − (

BA−1 − τ I
) (

BA−1 + τ I
)−1

=
(
I − τ

(
BA−1 + τ I

)−1
)
L −

(
I − 2τ

(
BA−1 + τ I

)−1
)

= (I − M) L − (I − 2M) , (156)

where M = τ
(
BA−1 + τ I

)−1
.

Indeed,

S = BA−1
(
BA−1 + τ I

)−1
L − (

BA−1 − τ I
) (

BA−1 + τ I
)−1

= 2BA−1 (
BA−1 + τ I

)−1
(
I + τ

2
B + τ 2

2
A

)−1

− (
BA−1 − τ I

) (
BA−1 + τ I

)−1

=
(
2BA−1

(
BA−1 + τ I

)−1 − (
BA−1 − τ I

) (
BA−1 + τ I

)−1
(
I + τ

2
B + τ 2

2
A

))

×
(
I + τ

2
B + τ 2

2
A

)−1

=
(
2BA−1

(
BA−1 + τ I

)−1 −
(
BA−1 − τ I

) (
BA−1 + τ I

)−1 (
I + τ

2

(
BA−1 + τ I

)
A
))

×
(
I + τ

2
B + τ 2

2
A

)−1

=
(
2BA−1

(
BA−1 + τ I

)−1 −
((

BA−1 − τ I
) (

BA−1 + τ I
)−1 + τ

2

(
BA−1 − τ I

)
A

))

×
(
I + τ

2
B + τ 2

2
A

)−1

=
((

BA−1 + τ I
) (

BA−1 + τ I
)−1 − τ

2

(
BA−1 − τ I

)
A
)

×
(
I + τ

2
B + τ 2

2
A

)

=
(
I − τ

2
B + τ 2

2
A

) (
I + τ

2
B + τ 2

2
A

)−1

.

When L and S are commutative, self-adjoint, bounded operators (in our case
these conditions are satisfied, since B and A−1 are commutative on D(A)), the
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operator-polynomial normUk(L , S) is less than or equal to the corresponding scalar
polynomial’sUk(x, y), the C-norm on σ(L) × σ(S), where σ(L) is the spectrum of
the operator L , while σ(S) is the spectrum of S (this result is a concrete case of a
more general theorem (see Garnir [6])). This fact and representation (156) give

‖Uk(L , S)‖ ≤ max
(x,y)

|Uk(x, y)| , (x, y) ∈ G, (157)

where

G = {(x, y) : x ∈ σ(L), y = (1 − λ)x − (1 − 2λ), λ ∈ σ(M)} .

Let us estimate the spectrum of the operator L . Since, according to the hypothesis,
the operators A and B are self-adjoint and positive-definite, we have:

σ(L) ⊂ [0, 2] . (158)

Because B and A−1 are commutative on D(A), we have M = M∗ ≥ 0 (this can
be proved easily). This yields

σ(M) ⊂ [0, 1]. (159)

If we consider relations (158) and (159) then we get

G ⊂ Δ+. (160)

Together with (160), inequalities (157) and (25) give

‖Uk(L , S)‖ ≤ k + 1. (161)

In a similar manner, (23) yields

‖Uk(L , S) − SUk−1(L , S)‖ ≤ √
2. (162)

If we substitute estimates: (161), (162) and ‖L‖ ≤ 2 into inequality (155), we get
(149).

Let us prove a priori estimate (150). From (154) we have:

uk = τUk−1(L , S)
Δu0
τ

+ (Uk−1(L , S) − SUk−2(L , S)) u0

+ τ 2

2

k∑
i=1

Uk−i−1(L , S)L fi . (163)

If we subtract (163), where U−1 = 0, from inequality (154), we will get
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Δuk = (Uk(L , S) + SUk−2(L , S) − (S + I )Uk−1(L , S)) u0

+τ (Uk(L , S) −Uk−1(L , S))
Δu0
τ

+ τ 2

2

k∑
i=1

(Uk−i (L , S) −Uk−i−1(L , S)) L fi . (164)

Using the recurrence relation (153) we have

Uk(L , S) + SUk−2(L , S) − (S + I )Uk−1(L , S) = (L − S − I )Uk−1(L , S).

(165)
If in (164) we consider (165) and then divide both sides of the resulting equality

by τ , we obtain

Δuk
τ

= τ−1(L − S − I )Uk−1(L , S)u0 + (Uk(L , S) −Uk−1(L , S))
Δu0
τ

+τ

2

k∑
i=1

(Uk−i (L , S) −Uk−i−1(L , S)) L fi .

Continuing our discussion in a manner similar to (149), estimates (24) and (26)
give (150).

4 Remark Concerning Equations with a Variable Operator

Let us consider the Cauchy problem for an abstract hyperbolic equation in the Hilbert
space H :

d2u(t)

dt2
+ A(t)u (t) = f (t) , t ∈]0, T ], (166)

u (0) = ϕ0, u′ (t) |t=0 = ϕ1. (167)

where A(t) is a self-adjoint, positive-definite (generally unbounded) operator with
the definition domain D (A) (D(A) does not depend on t), which is everywhere
dense in H ( D (A) = H ); ϕ0 and ϕ1 are given vectors from H ; u (t) is a sought
continuous, twice continuously differentiable function with values in H and f (t) is
given continuous function with values in H.

We seek a solution of problem (166), (167) by the following semi-discrete scheme

uk+1 − 2uk + uk−1

τ 2
+ Ak

uk+1 + uk−1

2
= fk, (168)
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where k = 1, ..., n − 1, τ = T/n (n > 1), Ak = A(tk), fk = f (tk), tk = kτ , u0 =
ϕ0.

As an approximate solution u (t) of problem (166), (167) at the point tk = kτ we
assume uk , u (tk) ≈ uk .

The following theorem is true (everywhere below c denotes a positive constant).

Theorem 10 Let A be a self-adjoint, positive-definite (generally unbounded) opera-
tor with the definition domains D (A), which is everywhere dense in H, and, besides,
the following conditions be fulfilled

∥∥(A(t) − A(s)) A−1(s)
∥∥ ≤ c |t − s| , ∀s, t ∈ [0, T ] .

Then for scheme (168) the following a priori estimates are valid

∥∥∥∥Δuk
τ

∥∥∥∥ +
∥∥∥A1/2

k uk+1

∥∥∥

≤ c

(∥∥∥∥Δu0
τ

∥∥∥∥ + τ

∥∥∥∥A1/2
0

Δu0
τ

∥∥∥∥ +
∥∥∥A1/2

1 u0
∥∥∥ + τ

k∑
i=1

‖ fi‖
)

, (169)

where k = 1, . . . , n − 1, Δuk = uk+1 − uk .

Lemma 5 Let the operator A(t) satisfy the conditions of Theorem 10 , then the
following inequality is valid:

|(A(t)u, u) − (A(s)u, u)| ≤ c |t − s| (A(s)u, u), u ∈ D(A). (170)

Proof Let us introduce the operators:

An(t) = A(t)

(
I + 1

n
A(t)

)−1

,

Bn = (An(t) − An(s))

(
I + 1

n
A(s)

)
A−1(s),

where n is a natural number.
Clearly, we have

Bn =
[
A(t)

(
I + 1

n
A(t)

)−1

− A(s)

(
I + 1

n
A(s)

)−1
] (

I + 1

n
A(s)

)
A−1(s)

= A(t)

[(
I + 1

n
A(t)

)−1

−
(
I + 1

n
A(s)

)−1
] (

I + 1

n
A(s)

)
A−1(s)
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+ (A(t) − A(s)) A−1(s) = A(t)

(
I + 1

n
A(t)

)−1

×
[(

I + 1

n
A(s)

)
−

(
I + 1

n
A(t)

)]
A−1(s) + (A(t) − A(s)) A−1(s)

= 1

n
A(t)

(
I + 1

n
A(t)

)−1

(A(t) − A(s)) A−1(s) + (A(t) − A(s)) A−1(s). (171)

The following representation

An(t) = A(t)

(
I + 1

n
A(t)

)−1

= n

[
I −

(
I + 1

n
A(t)

)−1
]

implies that An(t) is a self-adjoint, nonnegative, bounded operator, which in turn
implies that Bn An(s) = An(t) − An(s) is a self-adjoint, bounded operator, i.e.
(Bn An(s))

∗ = Bn An(s). On the other hand, we have (Bn An(s))
∗ = An(s)B∗

n . Thus,
we get Bn An(s) = An(s)B∗

n . Therefore, according to the famous Reid inequality, we
have (see [8], Problem 82):

|(Bn An(s)u, u)| = ∣∣(An(s)B
∗
n u, u

)∣∣ ≤ ∥∥B∗
n

∥∥ (An(s)u, u) = ‖Bn‖ (An(s)u, u)

or , equivalently

|((An(t) − An(s)) u, u)| ≤ ‖Bn‖ (An(s)u, u). (172)

In accordance with the hypothesis of Theorem 10, (171) yields the estimate

‖Bn‖ ≤
[∥∥∥∥∥

1

n
A(t)

(
I + 1

n
A(t)

)−1
∥∥∥∥∥ + 1

] ∥∥(A(t) − A(s)) A−1(s)
∥∥ ≤ c |t − s| .

By this inequality, (172) implies

|((An(t) − An(s)) u, u)| ≤ c |t − s| (An(s)u, u). (173)

It is an easy exercise to prove that

lim
n→∞ In(t)u = lim

n→∞

(
I + 1

n
A(t)

)−1

u = u, u ∈ D(A).

Applying this relation, we arrive at

lim
n→∞(An(s)u, u) = lim

n→∞(A(s)In(s)u, u) = lim
n→∞(In(s)u, A(s)u)
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= (u, A(s)u) = (A(s)u, u), u ∈ D(A). (174)

It is obvious that with (174) taken into account, (170) can be derived from (173).

Let us return to the proof of Theorem 10.

Proof If both sides of equality (168) multiply scalarly on the vector uk+1 − uk−1 =
(uk+1 − uk) + (uk − uk−1), we obtain:

∥∥∥∥uk+1 − uk
τ

∥∥∥∥
2

+ 1

2

∥∥∥A1/2
k uk+1

∥∥∥2 =
∥∥∥∥uk − uk−1

τ

∥∥∥∥
2

+ 1

2

∥∥∥A1/2
k uk−1

∥∥∥2

+ ( fk, (uk+1 − uk)) + ( fk, (uk − uk−1)) . (175)

Let us introduce the notations

αk =
∥∥∥∥uk − uk−1

τ

∥∥∥∥
2

, γ +
k =

∥∥∥A1/2
k uk+1

∥∥∥2
, γ −

k =
∥∥∥A1/2

k uk−1

∥∥∥2
.

Then, according to the Schwartz inequality, from (175) it follows that

αk+1 + 1

2
(γ +

k + γ −
k+1) ≤ αk + 1

2
(γ +

k−1 + γ −
k )

+
[
1

2

(
γ −
k+1 − γ +

k−1

) + τ
(√

αk+1 + √
αk

) ‖ fk‖
]

. (176)

The following inequality is valid:

∣∣γ −
k+1 − γ +

k−1

∣∣ =
∣∣∣∣
∥∥∥A1/2

k+1uk
∥∥∥2 −

∥∥∥A1/2
k−1uk

∥∥∥2
∣∣∣∣

= |(Ak+1uk, uk) − (Ak−1uk, uk)| ≤ cτ
∥∥∥A1/2

k−1uk
∥∥∥2 = cτγ +

k−1.

Taking into account this inequality, from (176) it follows that

λk+1 ≤ λk + εk, (177)

where

λk = αk + 1

2
(γ +

k−1 + γ −
k ), εk = τ

[
cγ +

k−1 + (√
αk+1 + √

αk
) ‖ fk‖

]
.

From (177) we obtain
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λk+1 ≤ λ1 + (ε1 + ε2 + ... + εk) = λ1 + cτ
k∑

i=1

γ +
i−1 + τ

k∑
i=1

(√
αi + √

αi+1
) ‖ fi‖ .

Hence, we obvuously obtain

δ2k+1 ≤ δ21 + cτ
k∑

i=1

δ2i + τ

k∑
i=1

(δi + δi+1) ‖ fi‖ , δk = √
λk .

From here follows following inequality

δk+1 ≤ δ1 + cτ
k∑

i=1

δi + 2τ
k∑

i=1

‖ fi‖ .

Using this, the discrete analogue of Gronwall’s lemma yields

δk+1 ≤ ectk−1

(
(1 + cτ) δ1 + 2τ

k∑
i=1

‖ fi‖
)

. (178)

Simple transformations of (178) result in (169).
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Notes on Sub-Gaussian Random
Elements

George Giorgobiani, Vakhtang Kvaratskhelia, and Vaja Tarieladze

Abstract We give a short survey concerning sub-Gaussian random elements in a
Banach space and prove a statement about the induced operator of a bounded random
element in a Hilbert space.

1 Sub-Gaussian and Related Random Variables

The sub-Gaussian random variables were explicitly defined by Kahane in [1] (see
also [2]). They were further studied by Buldygin and Kozachenko in [3, 4] (see also
[5, Chap. 3] and [6]).

A real valued random variable ξ given on a probability space (Ω,A,P) is called
sub-Gaussian if there exists a ≥ 0 such that

E etξ ≤ e
1
2 t2a2

, for every t ∈ R .

To a random variable ξ let us associate a quantity τ(ξ) ∈ [0,+∞] defined by the
equality:

τ(ξ) = inf{a ≥ 0 : E etξ ≤ e
1
2 t2a2

for every t ∈ R },

and call it the Gaussian standard of ξ [3] (it is called the Gaussian deviation (“écart
de Gauss”) of ξ in [1]).
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Lemma 1 ([1, 4]; see also, [6, Proposition 2.1 and Corollary 2.1]) For a real valued
random variable ξ the following statements are equivalent:

(i) ξ is sub-Gaussian.
(i i) τ (ξ) < +∞ and E ξ = 0 .

(i i i) There is λ > 0 such that E exp(λξ 2) < +∞ and E ξ = 0.
Moreover, if (i) holds, then

E eλξ 2 ≤ 1
√
1 − 2λτ 2(ξ)

< ∞ f orevery λ ∈
[
0,

1

2τ 2(ξ)

[
,

and

(E |ξ |p)
1
p ≤ βpτ(ξ) f orevery p ∈]0,∞[ ,

where βp = 1 if p ∈]0, 2] and βp = 2
1
p (

p
e )

1
2 if p ∈]2,∞[.

In particular we have

E ξ = 0 and E ξ 2 ≤ τ 2(ξ) .

Remark 1 An interesting application of implication (i) =⇒ (i i i) of Lemma 1 is the
following observation: if ξ is sub-Gaussian random variable with infinitely divisible
distribution, then ξ is (possibly degenerate) Gaussian. This can be derived e.g. from
[7, Theorem 2], or from [8, Theorem 1(a)] or (more directly) from [9, Theorem 2]
which asserts in particular that if for a random variable ξ with infinitely divisible
distribution we have

E exp(α|ξ | ln(|ξ | + 1)) < ∞ for every α > 0 ,

then it is Gaussian.

A sub-Gaussian random variable ξ with τ(ξ) ≤ 1 is called in [2, p. 67] subnormal.
For a centered Gaussian random variable ξ clearly τ 2(ξ) = E ξ 2.

A random variable ξ is called strictly sub-Gaussian if it is sub-Gaussian and
τ 2(ξ) = E ξ 2.

Let SG(Ω) be the set of all sub-Gaussian random variables ξ : Ω → R. It is
known that SG(Ω) is a vector space with respect to the natural point-wise opera-
tions, the functional τ(·) is a norm on SG(Ω) (provided the random variables which
coincide a.s. are identified) and, moreover, (SG(Ω), τ (·)) is a Banach space [3, 4].
It follows, that if ξ1 and ξ2 are centered Gaussian random variables (not necessarily
jointly Gaussian) then the random variable ξ1 + ξ2 is sub-Gaussian, but in general
ξ1 + ξ2 may not be strictly sub-Gaussian (even if E ξ1ξ2 = 0) [6, Example 3.7 (d)].

From Lemma 1 we can conclude that for every p ∈]0,+∞[ we have

SG(Ω) ⊂ L p(Ω)

and the norm of the inclusion mapping ≤ βp.
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2 Sub-Gaussian Random Elements

Below X will be a real normed space with the dual space X∗.
We recall that a mapping η : Ω → X is a random element (in X ) if

〈x∗, η〉 := x∗ ◦ η

is a random variable for every x∗ ∈ X∗.
A random element η : Ω → X is calledGaussian if for every x∗ ∈ X∗ the random

variable 〈x∗, η〉 is Gaussian.
Such a definition of a Gaussian random element goes back to Kolmogorov [10]

and Fréchet [11]. For a Gaussian random element we have the following important
integrability result (Vakhania [12] for X = lp, 1 ≤ p < +∞; Fernique [13], Landau-
Shepp [14], Skorokhod [15] in general; see [16, Corollary 2 of Proposition V.5.5, p.
329–330] for a proof):

Theorem 1 Let η be a separably valued Gaussian random element in a normed
space X. Then there is λ > 0 such that E exp(λ‖η‖2) < +∞.

A randomelement η : Ω → X is calledweakly sub-Gaussian if for every x∗ ∈ X∗
the random variable 〈x∗, η〉 is sub-Gaussian (cf. [6, 17]).

In [17] it was shown that an analogue of Theorem 1 may fail for weakly sub-
Gaussian random elements (see also [6, Theorem 4.2 and Remark 4.1]).

Let us call a random element η : Ω → X strictly sub-Gaussian if for every x∗ ∈
X∗ the random variable 〈x∗, η〉 is strictly sub-Gaussian.
Definition 1 ([18]) A random element η : Ω → X is called sub-Gaussian, if there
is a finite constant Cη ≥ 0 such that

τ(〈x∗, η〉) ≤ Cη

(
E |〈x∗, η〉|2) 1

2 < +∞ for every x∗ ∈ X∗ .

We call a random element η : Ω → X satisfying conditions of Definition 1 sub-
Gaussian in Fukuda’s sense, or F-sub-Gaussian.

An analogue of Theorem 1 remains true for F-sub-Gaussian random elements
with values in X = L p with 1 ≤ p < +∞ [18, Theorem 4.3]; however, it may fail
for X = c0 (S. Kwapien, personal communication).

In [18] (motivating by [19, Theorem 15 (p. 120)], where a similar concept is
implicitly used) a random element η : Ω → X is called γ -sub-Gaussian if there
exists a centered Gaussian random element ζ in X such that

E e〈x∗, η〉 ≤ E e〈x∗, ζ 〉 for every x∗ ∈ X∗ .

We call a γ -sub-Gaussian random element sub-Gaussian in Talagrand’s sense
or T -sub-Gaussian. In [20, Remark 4] the definition of a γ -sub-Gaussian random
element in a Hilbert space is attributed to [19].
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An analogue of Theorem 1 remains true for γ -sub-Gaussian random elements in
a Banach space [18, Theorem 3.4].

If X = R then the notion of a T -sub-Gaussian, as well as the notion of a F-
sub-Gaussian random element coincides with the notion of a sub-Gaussian random
variable and the notion of a F-sub-Gaussian random variable ξ with the constant
Cξ = 1 coincides with the notion of a strictly sub-Gaussian random variable.

If X is a finite-dimensional Banach space then weakly sub-Gaussian random
elements are γ -sub-Gaussian (see [6, Proposition 4.4]). In every infinite-dimensional
Banach space there exists a weakly sub-Gaussian random element, which is not γ -
sub-Gaussian (see [6, Theorem 4.4]).

In what follows H will denote an infinite-dimensional separable Hilbert space
with the inner product 〈·, ·〉.
Definition 2 ([20, Definition 2.1]) Let e := {en, n ∈ N} be an orthonormal basis of
H . A random element η with values in H is subgaussian with respect to e if the
following conditions are satisfied:

(1) For every x ∈ H the real valued random variable 〈x, η〉 is sub-Gaussian (i.e.
η is weakly sub-Gaussian),

(2)
∑∞

n=1 τ 2(〈en, η〉) < ∞.

Using the terminology of the definition we have obtained (see [21, Theorem
1.6]) the following characterization of weakly sub-Gaussian random elements in a
separable Hilbert space which are γ -sub-Gaussian.

Theorem 2 For a random element η with values in H the following statements are
equivalent:

(i) η is γ -sub-Gaussian.
(i i) For every orthonormal basis e := {en, n ∈ N} of H the random element η is

subgaussian with respect to e.

For a weakly sub-Gaussian random element η in a Banach space X let

Tη : X∗ → SG(Ω)

be the induced operator, which sends each x∗ ∈ X∗ to the element 〈x∗, η〉 ∈ SG(Ω)

(the continuity and other related properties of induced operators can be seen in [6,
Proposition 4.2]).

Theorem 2 in [21] is derived from the following general result (the definitions of
a 2-summing operator and a type 2 space can be seen e.g.. in [16]):

Theorem 3 For a weakly sub-Gaussian random element η with values in a Banach
space X consider the assertions:

(i) η is γ -sub-Gaussian;
(i i) Tη : X∗ → SG(Ω) is a 2-summing operator.
Then (i) ⇒ (i i). The implication (i i) ⇒ (i) is true when X is a reflexive type 2

space.
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The following statement, which is a refinement of a similar assertion contained
in [5, Chap. 3], shows in particular that the implication (i) =⇒ (i i) of Theorem 2
may fail for a bounded symmetrically distributed elementary random element η.

Proposition 1 Let e := {en, n ∈ N} be an orthonormal basis of H. Then there exists
a symmetric bounded random element η : Ω → H with a countable range, such that

(a)
∑∞

i=1 ‖〈η, ei 〉‖2L p
< ∞ for every p ∈]0,∞[;

(b)
∑∞

i=1 (τ (〈η, ei 〉))2 = ∞ and hence η is not subgaussian with respect to e.

Proof (a). Denote

In = {2n − 1, . . . , 2n+1 − 2}, n = 1, 2, . . .

and
bn = 2−n

∑

k∈In

ek, n = 1, 2, . . . .

Observe that ∞∑

k=1

‖bk‖2 =
∞∑

n=1

∑

k∈In

‖bk‖2 =
∞∑

n=1

2−2n · 2n = 1 .

Thus we can define a probability measure P on Ω := N and a random element
η : Ω → H by setting:

P({2n − 1}) = P({2n}) = 1

2
‖bn‖2, n = 1, 2, . . .

and

η(2n − 1) = − bn

‖bn‖ , η(2n) = bn

‖bn‖ , n = 1, 2, . . . .

Fix now p ∈]0,∞[ and i ∈ N. Clearly,

E|〈η, ei 〉|p =
∞∑

n=1

⎛

⎝
∑

k∈In

〈ek, ei 〉
⎞

⎠ 1

2n(1+p/2)
.

Hence

E|〈η, ei 〉|p = 1

2n(1+p/2)
for every i ∈ In, n = 1, 2, . . .

and so ∞∑

i=1

‖Tηei‖2L p
= (

E|〈η, ei 〉|p
)2/p =

∞∑

n=1

∑

k∈In

1

2n(1+2/p)
=
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∞∑

n=1

2n

2n(1+2/p)
=

∞∑

n=1

1

22n/p
< ∞ .

(b). To a (real-valued) random variable ξ let us associate a quantity ϑ2(ξ) ∈
[0,+∞] defined by the equality:

ϑ2(ξ) = sup
m∈N

(
E |ξ |2m

)1/2m

√
m

.

According to [6, Proposition 2.9(b)] we have:

ϑ2(ξ) ≤ 2√
e
τ(ξ) for every ξ ∈ SG(Ω).

So, it is sufficient to show that

∞∑

i=1

(
ϑ2(Tηei )

)2 = ∞ . (2.1)

We have for every n ∈ N and i ∈ In:

ϑ2(〈η, ei 〉) = sup
m

(
E |〈η, ei 〉|2m

)1/2m

√
m

= sup
m

1

2n(1/2+1/2m)
√

m
≥

1

2n(1/2+1/2n)
√

n
.

Hence

∞∑

i=1

ϑ2
2 (〈η, ei 〉) =

∞∑

n=1

∑

i∈In

ϑ2
2 (〈η, ei 〉) ≥

∞∑

n=1

2n

(
1

2n(1/2+1/2n)
√

n

)2

=

1

2

∞∑

n=1

1

n
= ∞

and (2.1) is proved.

The authors do not know whether the following conjecture related with Proposi-
tion 1 is true.

Conjecture 1 There exists a symmetric bounded random element η : Ω → H such
that

(a)
∑∞

i=1 ‖〈η, ei 〉‖2L p
< ∞ for every p ∈]0,∞[ and for every orthonormal basis

e := {en, n ∈ N} of H ;
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(b)
∑∞

i=1 (τ (〈η, ei 〉))2 = ∞ for some orthonormal basis e := {en, n ∈ N} of H .
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Localized Boundary-Domain
Integro-Differential Equations Approach
for Stationary Heat Transfer Equation

Sveta Gorgisheli, Maia Mrevlishvili, and David Natroshvili

Abstract Localized boundary-domain integro-differential equations (LBDIDE)
systems associated with the Dirichlet and Robin boundary value problems (BVP)
for the stationary heat transfer partial differential equation (PDE) with a variable
coefficient are obtained and analysed. Localization is performed by a non-smooth
parametrix represented as the product of a global parametrix and the characteristic
function of a ball centered at a reference point. The equivalence of the LBDIDE sys-
tems to the original variable-coefficient BVPs and unique solvability of the LBDIDE
systems in appropriate Sobolev spaces are the main results of the present paper.

Keywords Elliptic problems with variable coefficients · Localized parametrix ·
Localized Boundary-Domain Integral Equations

1 Introduction

Partial Differential Equations (PDEs) with variable coefficients arise naturally in
mathematical modelling of inhomogeneous media in solid mechanics, electromag-
netics, thermo-conductivity, fluid flows through porous media, and other areas of
physics and engineering. The Boundary Integral Equation Method/Boundary Ele-
ment Method (BIEM/BEM) is a well established tool for Boundary Value Problems
(BVPs) with constant coefficients. The main ingredient for reducing a BVP to a BIE
is a fundamental solution to the original PDE. But for PDEswith variable coefficients
a fundamental solution is generally not available in an analytical form. However, in
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this case, one can use a global or a localized parametrix (Levi function) as a substi-
tute for the fundamental solution. This approach reduces the BVP not to a boundary
integral equation but to a system of Boundary-Domain Integral Equations (BDIE)
or to a system of Localized Boundary-Domain Integral Equations (LBDIE), see e.g.
[1–3, 13, 14]. A discretization of the BDIE constructed by a global parametrix leads
then to a system of algebraic equations of the similar size as in the Finite Element
Method (FEM), however the matrix of the system is not sparse as in the FEM but
dense and thus less efficient for numerical solution.

If instead of a global parametrix, we will use specially constructed localized
parametrix then BVPs with variable coefficients are reduced to Localized Boundary-
Domain Integral or Integro-Differential Equations. After a locally-supported mesh-
based or mesh-less discretization this approach leads to systems of algebraic equa-
tions with sparse matrices. For smooth localizing cut-off functions this method is
theoretically studied and substantiated in [2, 4], where the BVPs are reduced to
systems of Localized boundary-domain integral equations.

In the present paper, we consider the Dirichlet and Robin BVPs for a divergence
type elliptic differential equation with one variable coefficient (arising in the the-
ory of heat transfer in isotropic inhomogeneous medium). We employ a parametrix
which is localized by the characteristic function of a ball with an arbitrary radius
centered at a reference point. Such a localized parametrix has a simple structure,
but it is discontinuous in the whole space, which leads to essential difficulties in our
analysis. With the help of the localized parametrix, the BVPs are reduced to systems
of Localized boundary-domain integro-differential equations (LBDIDEs). We prove
equivalence of the LBDIDEs to the original BVPs and establish unique solvability
of the systems of LBDIDEs in appropriate Sobolev spaces.

2 Localised Green’s Formula and Boundary-Domain
Integro-Differential Relations

LetΩ be a bounded region ofR
3 surrounded by a simply connected Lipschitz surface

S = ∂Ω . Let B(y, ε) := {x ∈ R
3 : |x − y| � ε} be a ball centered at y and radius

ε, where ε is a fixed positive number, and Σ(y, ε) := ∂B(y, ε). Further, let

Ω(y, ε) := Ω ∩ B(y, ε), S(y, ε) := S ∩ B(y, ε),
Σ1(y, ε) := Σ(y, ε) ∩ Ω, �(y, ε) := ∂Σ1(y, ε) = ∂S(y, ε).

(1)

It is evident that if the distance from the point y to the boundary S = ∂Ω is grater
than ε, dist(y; S) > ε, then S(y, ε) = ∅ and Σ1(y, ε) = Σ(y, ε). Note also that for
y ∈ Ω the part of the spherical surfaceΣ1(y, ε) always possesses a positivemeasure.

We assume that for a given domainΩ there is ε0 > 0, such that for arbitrary y ∈ Ω

and 0 < ε < ε0 the corresponding domain Ω(y, ε) is a piecewise smooth Lipschitz
domain. Notice that this condition is satisfied for a convex domain and for a domain



Localized Boundary-Domain Integro-Differential Equations … 207

with a smooth Lyapunov boundary S = ∂Ω ∈ C2,α , α > 0. We need this condition
to write the corresponding Green identities in the domain Ω(y, ε), y ∈ Ω , and also
to establish mapping properties of potential type integral operators involved in our
analysis.

By Hs(Ω) = Hs
2 (Ω) and Hs(S) = Hs

2 (S), s ∈ R, we denote the L2-basedBessel
potential spaces of functions on an open domain Ω ⊂ R

3 and on a closed manifold
S = ∂Ω . Recall that H 0(Ω) = L2(Ω) is a space of square integrable functions on
Ω and Hr (Ω) = Wr

2 (Ω) for r � 0, where Wr
2 (Ω) is the Sobolev space.

We consider the following stationary heat transfer elliptic differential equation
with variable coefficient

A(x, ∂x )u(x) :=
3∑

k=1

∂

∂xk

(
a(x)

∂u(x)

∂xk

)
= f (x), x ∈ Ω, (2)

where f ∈ H 0(Ω) and

a ∈ C2(Ω), 0 < a0 � a(x) � a1, ∀ x ∈ Ω, (3)

with some constants a0 and a1. We employ the notation ∂x = (∂x1 , ∂x2 , ∂x3) with
∂xk = ∂/∂xk , k = 1, 2, 3.

A solution function u is sought in the space

H 1,0(Ω, A) = {v ∈ H 1(Ω) : Av ∈ H 0(Ω)}.

Due to the interior regularity property of solutions to elliptic equations, any solution
toEq. (2)with f ∈ H 0(Ω) belongs to H 2(Ω∗) for any open regionΩ∗ withΩ∗ ⊂ Ω .

For an arbitrary domain Ω1 ⊂ R
3 with Lipschitz boundary and a function u ∈

Hs(Ω1) with s > 3
2 the conormal derivative can be calculated in the conventional

Sobolev trace sense,

T+(x, ∂x )u(x) = a(x) γ +
(

∂u(x)

∂n(x)

)
=

3∑

k=1

a(x) nk(x) γ +
(∂u(x)

∂xk

)
, x ∈ ∂Ω1,

(4)

where γ + = γ +
∂Ω1

is the trace operator on ∂Ω1, n(x) is the unit normal vector
at the point x ∈ ∂Ω1 directed outward Ω1, and ∂

∂n(x) denotes the usual direc-
tional normal derivative. Due to the Lipschitz character of the boundary ∂Ω1, the
components of the normal vector are essentially bounded measurable functions,
nk ∈ L∞(∂Ω1). Moreover, for u ∈ Hs(Ω1), s > 3

2 , we have γ +
∂Ω1

(∂ku) ∈ Hλ(∂Ω1)

with λ = min{1, s − 3
2 } for s �= 5

2 , while for s = 5
2 in the role of the parameter λ

can be taken any number less than 1. Consequently, in this case, T+u ∈ L2(∂Ω1).
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With the help of Green’s first identity for an arbitrary Lipschitz domain Ω1 ⊆ Ω

and an arbitrary function u ∈ H 1,0(Ω1, A) we can define on ∂Ω1 the canonical
conormal derivative T+u ≡ T+

∂Ω1
u ∈ H− 1

2 (∂Ω1) by the relation

〈
T+u , g

〉
∂Ω1

≡ 〈
T+
∂Ω1

u , g
〉
∂Ω1

:=
∫

Ω1

3∑

k=1

a
∂u

∂xk

∂v

∂xk
dx

+
∫

Ω1

v Au dx ∀ g ∈ H
1
2 (∂Ω1), (5)

where v ∈ H 1(Ω1)with γ +
∂Ω1

v = g (for details see [5], [11, Chap. 4], [2, 12]). Below
we drop the subscript ∂Ω1 in the notation of trace operator and conormal derivative
operator when it does not lead to misunderstanding.

For arbitrary functions u, v ∈ H 1,0(Ω1, A) we have the following Green first and
second identities (cf. [11, Chap. 4])

∫

Ω1

v Au dx +
∫

Ω1

3∑

k=1

a
∂u

∂xk

∂v

∂xk
dx = 〈

T+u , γ +v
〉
∂Ω1

, (6)

∫

Ω1

(
v Au − u Av

)
dx = 〈

T+u , γ +v
〉
∂Ω1

− 〈
T+v , γ +u

〉
∂Ω1

. (7)

Remark 1 Here and in what follows the angled brackets should be understood
as duality pairing of H− 1

2 (∂Ω1) with H
1
2 (∂Ω1). In the case of a proper sub-

manifold S1 ⊂ ∂Ω1 with Lipschitz boundary curve ∂S1 �= ∅ (e.g., S1 = S(y, ε) or
S1 = Σ1(y, ε) for dist(y, S) < ε) the angled brackets denote duality pairing of either
H− 1

2 (S1) with H̃
1
2 (S1) or H̃− 1

2 (S1) with H
1
2 (S1), where

H̃ s(S1) := {
g ∈ Hs(∂Ω1) : suppg ⊆ S1

}
,

Hs(S1) := {
rS1 g : g ∈ Hs(∂Ω1)

}
.

Here rS1 is the restriction operator onto S1. Note that H̃ s(S1) and H−s(S1) are
mutually adjoint spaces (see, e.g., [11]): H̃ s(S1) := [H−s(S1)]∗ and Hs(S1) :=
[H̃−s(S1)]∗.

Throughout the paper, all surface integrals, which do not exist in the usual classical
sense, should be understood in the duality pairing sense.

Introduce a harmonic localized parametrix

Pχ (x) := − χ(x)

4π |x | , (8)

where χ is the characteristic function of the ball B(O, ε),
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χ(x) :=
{
1 for |x | < ε,

0 for |x | > ε.
(9)

Using Green’s second formula (7) for the domain Ω1 = Ω(y, ε) \ B(y, δ) with
δ ∈ (0, ε) and for functions u ∈ H 1,0(Ω, A) and Pχ (y − ·) ∈ H 1,0(Ω \ B(y, δ), A),
and passing to the limit as δ → 0, by standard arguments one can derive Green’s third
formula (cf, e.g., [2])

a(y) u(y) + Rε u(y) − Vε(T
+u)(y) + Wε(γ

+u)(y) = Pε(Au)(y) ∀ y ∈ Ω, (10)

where γ +u and T+u are respectively the trace of u and the canonical conormal
derivative of u on the boundary ∂Ω(y, ε) = S(y, ε) ∪ Σ1(y, ε) ∪ �(y, ε),

γ +u ∈ H
1
2 (∂Ω(y, ε)), T+u ∈ H− 1

2 (∂Ω(y, ε)), (11)

Rε is a localized weakly singular integral operator

Rε u(y) := lim
δ→0

∫

Ω(y,ε)\B(y,δ)

[A(x, ∂x )Pχ (x − y)]u(x) dx =
∫

Ω(y,ε)

R(x, y) u(x) dx,

(12)

R(x, y) := − 1

4π

3∑

k=1

∂a(x)

∂xk

∂

∂xk

1

|x − y| = O(|x − y|−2) for x ∈ Ω(y, ε);
(13)

Vε, Wε, and Pε are the localized single layer, double layer, and Newtonian volume
type potentials respectively,

Vε (T+u)(y) := −
∫

∂Ω(y,ε)

Pχ (x − y) T+u(x) dSx

= 1

4π

∫

S(y,ε)∪Σ1(y,ε)

1

|x − y| T
+u(x) dSx , (14)

Wε (γ +u)(y) := −
∫

∂Ω(y,ε)

[
T (x, ∂x ) Pχ (x − y)

]
γ +u(x) dSx

= 1

4π

∫

S(y,ε)∪Σ1(y,ε)

[
T (x, ∂x )

1

|x − y|
]
γ +u(x) dSx , (15)

Pε (Au)(y) :=
∫

Ω(y,ε)

Pχ (x − y) Au(x) dx = − 1

4π

∫

Ω(y,ε)

1

|x − y| Au(x) dx .

(16)
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Note that the above layer type potentials are not standard classical potentials, since
the surfaces of integration depend on the variable y and contain a spherical subsurface
Σ1(y, ε) located in the interior part of the domain Ω . Therefore the corresponding
densities in the layer potentials (14) and (15) must be well-defined for all possi-
ble integration surfaces ∂Ω(y, ε) = S(y, ε) ∪ Σ1(y, ε) ∪ �(y, ε) with y ∈ Ω . Evi-
dently, the potentials (14)–(16) are well defined due to the inclusion u ∈ H 1,0(Ω, A)

implying (11).
Keeping in mind the agreement about the direction of the normal vector, it is easy

to see that formulas (14)–(16) can be rewritten in the following form

Vε(T
+u)(y) = 1

4π

∫

S

1

|x − y| T
+u(x) dSx − 1

4π

∫

∂[Ω\B(y,ε)]

1

|x − y| T
+u(x) dSx

(17)

Wε(γ
+u)(y) = 1

4π

∫

S

[
T (x, ∂x )

1

|x − y|
]
γ +u(x) dSx

− 1

4π

∫

∂[Ω\B(y,ε)]

[
T (x, ∂x )

1

|x − y|
]

γ +u(x) dSx , (18)

Pε h(y) = − 1

4π

∫

Ω

1

|x − y| Au(x) dx + 1

4π

∫

Ω\Ω(y,ε)

1

|x − y| Au(x) dx .

(19)

In these relations the normal vector to the surface ∂[Ω \ B(y, ε)] is directed outward
the domain Ω \ B(y, ε).

The first summands in (17)–(18) are the classical harmonic single and double
layer potentials,

VΔ ψ(y) := 1

4π

∫

S

1

|x − y| ψ(x) dSx , (20)

WΔ ϕ(y) := 1

4π

∫

S

[
T (x, ∂x )

1

|x − y|
]
ϕ(x) dSx , (21)

possessing the mapping properties (see, e.g., [5])

VΔ : H− 1
2 (S) → H 1(R3), WΔ : H

1
2 (S) → H 1(Ω). (22)

The first term in (19) is the classical Newtonian volume potential associated with the
Laplace operator

PΔ h(y) := − 1

4π

∫

Ω

1

|x − y| h(x) dx (23)
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with the mapping property (see e.g. [11, Chaps. 4, 6])

PΔ : H 0(Ω) → H 2
loc(R

3). (24)

The kernels in the last summands in (17)–(19) are continuous functions with
respect to x for arbitrary y. Therefore the corresponding potential type operators
with integration regions depending on y are continuous with respect to y ∈ Ω and
the traces of functions (17)–(19) on S exist in the classical sense.

Note that relation (16) can be also rewritten as

Pε h(y) =
∫

Ω(y,ε)

Pχ (x − y) h(x) dx =
∫

R3

Pχ (x − y) h̃(x) dx, y ∈ R
3, (25)

where h̃ ∈ H̃ 0(Ω) is the extension by zero of the function h ∈ H 0(Ω) from Ω to
R

3 \ Ω . Evidently supp h̃ ∩ suppχ(· − y) ⊂ Ω(y, ε).
Thus Pε h is a convolution type pseudodifferential operator and applying the

same arguments as in [2] we find the corresponding symbol

P̂χ (ξ) :=Fx→ξ

[
− 1

4 π

χ(x)

|x |
]

= − 1

4 π

∫

R3

χ(x)

|x | ei x ·ξ dx

= − 1

4 π

ε∫

0

π∫

0

2π∫

0

ei ρ |ξ | cos θρ sin θ dϕ dθ dρ

= − 1

|ξ |
ε∫

0

sin(ρ |ξ |) dρ = −1 − cos(ε|ξ |)
|ξ |2

= − ε2

2

(
sin ε|ξ |

2
ε|ξ |
2

)2

, (26)

where Fx→ξ denotes the distributional Fourier transform operator which for a
Lebesgue integrable function f reads as

Fx→ξ [ f ] =
∫

R3

ei x ·ξ f (x) dx .

In view of (26), it is evident that |P̂χ (ξ)| � ε2

2 and |ξ |2|P̂χ (ξ)| � 2 for arbitrary
ξ ∈ R

3. Consequently we have the estimate

|P̂χ (ξ)| ≤ C

1 + |ξ |2 , C = 2 + ε2

2
, ∀ ξ ∈ R

3, (27)
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implying (see, e.g., [8, Lemma 4.4])

Pε : Ht (R3) → Ht+2(R3) ∀ t ∈ R. (28)

In particular, Pε h̃ ∈ H 2(R3) holds for arbitrary h̃ ∈ H 0(Ω) and therefore for an
arbitrary Lipschitz domain Ω1 ⊆ Ω we have the inclusions (see, e.g., [5, 7, 9])

γ ±
∂Ω1

Pε h̃ ∈ H 1(∂Ω1), γ ±
∂Ω1

[∂Pε h̃

∂yk

]
∈ H

1
2 (∂Ω1), k = 1, 2, 3, (29)

where γ ±
∂Ω1

denotes one-sided trace operators on ∂Ω1.
Further, from (14)–(15), using the representations of type (17)–(18) and the jump

properties of layer potentials on smooth and piecewise smooth Lipschitz manifolds,
we deduce (see, e.g., [5], [11, Chap. 6], [2])

γ ±
S Vε (T+u)(y) = Vε (T+u)(y), y ∈ S, (30)

γ ±
S Wε (γ +u)(y) = ∓1

2
a(y)γ +

S u(y) + Wε (γ +u)(y), y ∈ S, (31)

where

Vε (T+u)(y) := −
∫

∂Ω(y,ε)

Pχ (x − y) T+u(x) dSx

= 1

4π

∫

S(y,ε)∪Σ1(y,ε)

1

|x − y| T
+u(x) dSx , y ∈ S, (32)

Wε (γ +u)(y) := −
∫

∂Ω(y,ε)

[
T (x, ∂x ) Pχ (x − y)

]
γ +u(x) dSx

= 1

4π

∫

S(y,ε)∪Σ1(y,ε)

[
T (x, ∂x )

1

|x − y|
]

γ +u(x) dSx , y ∈ S, (33)

From the above arguments, it follows that the trace on S of Green’s third formula
(10) exists and reads as

γ +
S Rε u(y) − Vε(T

+u)(y) + 1

2
a(y) γ +

S u(y) + Wε(γ
+u)(y) = γ +

S Pε(Au)(y) on S.

(34)

Now let us prove the following auxiliary lemma which plays a crucial role in our
further analysis.

Lemma 1 Let ε be a fixed positive number and Ω(y, ε) be the domain defined in
(1). Let g ∈ H̃ 0(Ω) and
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∫

Ω(y,ε)

1

|x − y| g(x) dx = 0 ∀y ∈ Ω. (35)

Then g = 0 in Ω .

Proof Let us put

Φ(y) :=
∫

R3

χ(x − y)

|x − y| g(x) dx ∀y ∈ R
3, (36)

where the cut-off functionχ is given by (9). Since suppχ(· − y) ∩ suppg ⊂ Ω(y, ε),
in view of (35) we have

Φ(y) =
∫

Ω(y,ε)

1

|x − y| g(x) dx = 0 for y ∈ Ω. (37)

Evidently, if y ∈ R
3 \ Ω and dist(y, ∂Ω) > ε, then suppχ(· − y) ∩ suppg = ∅ and

Φ(y) = 0. Therefore suppΦ is located in the closure of the one-side exterior ε-
neighbourhood of the boundary ∂Ω ,

suppΦ ⊂ Ω−
ε := {x ∈ R

3 \ Ω : dist(x, ∂Ω) � ε}

and evidently Φ ∈ H̃ 0(Ω−
ε ).

Since both functions Φ and g belong to the space L2(R
3) and the intersection

supp g ∩ suppΦ does not contain interior points in R
3, by the Plancherel theorem

we deduce ∫

R3

Φ(x) g(x) dx =
∫

R3

Φ̂(ξ) ĝ(ξ) dξ = 0 (38)

where Φ̂(ξ) = Fx→ξ [Φ] and ĝ(ξ) = Fx→ξ [g] stand for the Fourier transform of the
square integrable functions Φ and g, respectively, and the over bar denotes complex
conjugation.

Since Φ, defined in (36), is a convolution, we have

Φ̂(ξ) = Fx→ξ

[χ(x)

|x |
]
Fx→ξ [g]. (39)

In view of (26) we find

Φ̂(ξ) = 2πε2

(
sin ε|ξ |

2
ε|ξ |
2

)2

ĝ(ξ) . (40)

Therefore from (38) and (40) we get
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2πε2
∫

R3

(
sin ε|ξ |

2
ε|ξ |
2

)2

|̂g(ξ)|2 dξ = 0. (41)

Due to non-negativity of the integrand we conclude

(
sin ε|ξ |

2
ε|ξ |
2

)2

|̂g(ξ)|2 = 0 almost everywhere in R
3. (42)

The first multiplier in the last equation is a real analytic function in |ξ |which vanishes
on the two-dimensional spheres of radius |ξ | = 2kπ

ε
, k = 0, 1, 2, · · · Consequently,

since ĝ ∈ L2(R
3), we have ĝ(ξ) = 0 almost everywhere in R

3, implying g(x) = 0
almost everywhere in R

3, which completes the proof.

3 Reduction to Systems of Boundary Domain
Integro-Differential Equations

Here we reformulate the basic boundary value problems for Eq. (2) in the form of
equivalent boundary domain integro-differential equations, in particular, we consider
in detail the Dirichlet and Robin boundary value problems.

3.1 The Dirichlet Problem

Let us consider the Dirichlet problem for the operator A(x, ∂) defined in (2):
Find a function u ∈ H 1,0(Ω, A) such that

A(x, ∂x )u = f in Ω, f ∈ H 0(Ω), (43)

γ +u = ϕ0 on S, ϕ0 ∈ H
1
2 (S). (44)

It is a well known classical result that the Dirichlet problem (43)–(44) is uniquely
solvable (see, e.g., [6, 10, 11]).

Now we reformulate the problem with the help of localizing approach based on
the localized piecewise smooth parametrix Pχ introduced by (8).

Substituting the data of the problemunder consideration intoGreen’s third formula
(10) and into its trace formula (34) on S, we obtain the following system of localized
boundary-domain integro-differential equations with respect to unknown function u,
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a u + Rε u − Vε(T
+u) + Wε(γ

+u) = Pε f in Ω, (45)

γ +
S Rε u − Vε(T

+u) + 1

2
a(y) ϕ0 + Wε(γ

+u) = γ +
S Pε( f ) on S, (46)

where the densities of the layer potentials are the corresponding one-sided traces on
the integration surface ∂Ω(y, ε) = S(y, ε) ∪ Σ1(y, ε) ∪ �(y, ε). In more extended
and detailed form these relations can be rewritten as follows,

a(y) u(y) +
∫

Ω(y,ε)

R(x, y) u(x) dx − 1

4π

∫

∂Ω(y,ε)

1

|x − y| T
+
∂Ω(y,ε)(x, ∂x)u(x) dSx

+ 1

4π

∫

Σ1(y,ε)

[
T (x, ∂x )

1

|x − y|
]

γ +
Σ1(y,ε)

u(x) dSx = − 1

4π

∫

Ω(y,ε)

1

|x − y| f (x) dx

− 1

4π

∫

S(y,ε)

[
T (x, ∂x )

1

|x − y|
]
ϕ0(x) dSx , y ∈ Ω, (47)

∫

Ω(y,ε)

R(x, y) u(x) dx − 1

4π

∫

∂Ω(y,ε)

1

|x − y| T
+
∂Ω(y,ε)(x, ∂x)u(x) dSx

+ 1

4π

∫

Σ1(y,ε)

[
T (x, ∂x )

1

|x − y|
]

γ +
Σ1(y,ε)

u(x) dSx = − 1

4π

∫

Ω(y,ε)

1

|x − y| f (x) dx

− 1

2
a(y) ϕ0(y) − 1

4π

∫

S(y,ε)

[
T (x, ∂x )

1

|x − y|
]
ϕ0(x) dSx , y ∈ S. (48)

Note that the trace of the conormal derivative function T±
Σ∗

1
u on an arbitrary compact

part Σ∗
1 of the surface Σ1(y, ε) exists in the usual Sobolev trace sense in view of the

interior regularity property of solutions of elliptic equations. Indeed, for an arbitrary
compact sub-domainΩ∗ of the domainΩ the solution u of Eq. (43) with f ∈ H 0(Ω)

belongs to the space H 2(Ω∗). In particular, this implies that T±
Σ∗

1
u ∈ H

1
2 (Σ∗

1 ).
Now we prove the following equivalence theorem.

Theorem 1 Let f ∈ H 0(Ω) and ϕ0 ∈ H
1
2 (∂Ω). The Dirichlet problem (43)–(44)

and the system of localized boundary-domain integro-differential equations (47)–
(48) are equivalent in the following sense:

(i) If u ∈ H 1, 0(Ω, A) solves the Dirichlet problem (43)–(44), then u is a solution
to the system of localized boundary-domain integro-differential equations (47)–
(48), and vice versa,

(ii) If u ∈ H 1, 0(Ω, A) solves the system of localized boundary domain integro-
differential equations (47)–(48), then u is a solution to the Dirichlet problem
(43)–(44).

Proof The proof of item (i) directly follows from the derivation of system (47)–(48).
To prove the reverse item we proceed as follows. Let u ∈ H 1, 0(Ω, A) be a solution
of the system of localized boundary-domain integro-differential equations (47)–(48).
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As it has been shown above, the trace on the boundary S of the summands involved
in Eq. (47) exist. Using jump relations (30)–(31) and comparing the trace on S of
Eq. (47) with Eq. (48), we find

a γ +
S u = a ϕ0 on S,

implying the Dirichlet condition on S,

γ +
S u = ϕ0 on S. (49)

Now, let us write Green’s third formula (10) for the function u taking into account
condition (49)

a(y) u(y) +
∫

Ω(y,ε)

R(x, y) u(x) dx − 1

4π

∫

∂Ω(y,ε)

1

|x − y| T
+
∂Ω(y,ε)(x, ∂x )u(x) dSx

+ 1

4π

∫

Σ1(y,ε)

[
T (x, ∂x )

1

|x − y|
]

γ +
Σ1(y,ε)

u(x) dSx = − 1

4π

∫

Ω(y,ε)

1

|x − y| A(x, ∂x )u(x) dx

− 1

4π

∫

S(y,ε)

[
T (x, ∂x )

1

|x − y|
]
ϕ0(x) dSx y ∈ Ω. (50)

Subtracting Eq. (47) from Eq. (50) we arrive at the relation

− 1

4π

∫

Ω(y,ε)

1

|x − y| [A(x, ∂x )u(x) − f (x)] dx = 0 ∀y ∈ Ω. (51)

Since Au − f ∈ H 0(Ω), from (51) by Lemma 1 we conclude Au − f = 0 almost
everywhere in Ω which completes the proof.

Corollary 1 Let f ∈ H 0(Ω) and ϕ0 ∈ H
1
2 (∂Ω). Then the system of localized

boundary-domain integro-differential equations (47)–(48) is uniquely solvable in
the space H 1,0(Ω, A).

Proof First we show that if the right hand side functions of system (47)–(48) vanish,
then f = 0 in Ω and ϕ0 = 0 on S. Indeed, let

− 1

4π

∫

Ω(y,ε)

1

|x − y| f (x) dx − 1

4π

∫

S(y,ε)

[
T (x, ∂x )

1

|x − y|
]
ϕ0(x) dSx = 0, y ∈ Ω,

(52)

− 1

4π

∫

Ω(y,ε)

1

|x − y| f (x) dx− 1

2
a ϕ0− 1

4π

∫

S(y,ε)

[
T (x, ∂x )

1

|x − y|
]
ϕ0(x) dSx = 0, y ∈ S.

(53)
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Keeping in mind formula (31) and comparing (53) with the trace on S of Eq. (52),
we get aϕ0 = 0 on S implying ϕ0 = 0 on S since a > 0 on Ω . Relation (52) takes
then the form

− 1

4π

∫

Ω(y,ε)

1

|x − y| f (x) dx = 0, y ∈ Ω, (54)

and by Lemma 1 we conclude f = 0 in Ω .
Now the proof of the theorem follows form equivalence Theorem 1 and unique

solvability of the Dirichlet problem (43)–(44) in the space H 1, 0(Ω, A).

We can rewrite equivalently system (47)–(48) in more convenient form. Indeed,
if u ∈ H 1, 0(Ω, A) solves system (47)–(48), by the equivalence Theorem 1, then u
solves the Dirichlet problem and using the integration by parts formula we have

∫

Ω(y,ε)

A(x, ∂x )u(x) dx =
∫

∂Ω(y,ε)

T+
∂Ω(y,ε)(x, ∂x )u(x) dSx , (55)

implying the identity

∫

∂Ω(y,ε)

1

|x − y| T
+
∂Ω(y,ε)(x, ∂x )u(x) dSx +

∫

∂Ω(y,ε)

1

ε
T+

∂Ω(y,ε)(x, ∂x )u(x) dSx

=
∫

∂Ω(y,ε)

1

|x − y| T
+
∂Ω(y,ε)(x, ∂x )u(x) dSx +

∫

Ω(y,ε)

1

ε
A(x, ∂x )u(x) dx

(56)
Since Au = f in Ω and |x − y| = ε for x ∈ Σ1(y, ε), we finally get

∫

∂Ω(y,ε)

1

|x − y| T
+
∂Ω(y,ε)(x, ∂x )u(x) dSx

=
∫

∂Ω(y,ε)

[ 1

|x − y| − 1

ε

]
T+

∂Ω(y,ε)(x, ∂x )u(x) dSx +
∫

Ω(y,ε)

1

ε
f (x) dx

=
∫

S(y,ε)

[ 1

|x − y| − 1

ε

]
T+
S(y,ε)(x, ∂x )u(x) dSx +

∫

Ω(y,ε)

1

ε
f (x) dx .

(57)

Further, if we replace the third summand in Eq. (47) and the second summand in
Eqs. (48) by relation (57) and take into consideration that

T (x, ∂x )
1

|x − y| = −a(x)

ε2
for x ∈ Σ1(y, ε), (58)
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we arrive at the following system

a(y) u(y) +
∫

Ω(y,ε)

R(x, y) u(x) dx − 1

4π

∫

S(y,ε)

[ 1

|x − y| − 1

ε

]
T+
S(y,ε)(x, ∂x )u(x) dSx

− 1

4πε2

∫

Σ1(y,ε)

a(x) γ +
Σ1(y,ε)

u(x) dSx = − 1

4π

∫

Ω(y,ε)

[ 1

|x − y| − 1

ε

]
f (x) dx

− 1

4π

∫

S(y,ε)

[
T (x, ∂x )

1

|x − y|
]
ϕ0(x) dSx y ∈ Ω, (59)

∫

Ω(y,ε)

R(x, y) u(x) dx − 1

4π

∫

S(y,ε)

[ 1

|x − y| − 1

ε

]
T+
S(y,ε)(x, ∂x )u(x) dSx

− 1

4πε2

∫

Σ1(y,ε)

a(x) γ +
Σ1(y,ε)

u(x) dSx = − 1

4π

∫

Ω(y,ε)

[ 1

|x − y| − 1

ε

]
f (x) dx

− 1

2
a(y) ϕ0(y) − 1

4π

∫

S(y,ε)

[
T (x, ∂x )

1

|x − y|
]
ϕ0(x) dSx , y ∈ S. (60)

Let us show that this system is also equivalent to the Dirichlet problem.
Let u ∈ H 1, 0(Ω, A) solve system (59)–(60). Taking the difference of the trace

on S of Eqs. (59) and (60) we find γ +
S u = ϕ0 on S. Consequently, Green’s formula

(50) holds and with the help of (55) and (56) it can be rewritten as

a(y) u(y) +
∫

Ω(y,ε)

R(x, y) u(x) dx − 1

4π

∫

S(y,ε)

[ 1

|x − y| − 1

ε

]
T+
S(y,ε)(x, ∂x )u(x) dSx

− 1

4πε2

∫

Σ1(y,ε)

a(x) γ +
Σ1(y,ε)

u(x) dSx = − 1

4π

∫

Ω(y,ε)

[ 1

|x − y| − 1

ε

]
A(x, ∂x )u dx

− 1

4π

∫

S(y,ε)

[
T (x, ∂x )

1

|x − y|
]
ϕ0(x) dSx y ∈ Ω, (61)

Comparing relations (59) and (61) leads to the equality

− 1

4π

∫

Ω(y,ε)

[ 1

|x − y| − 1

ε

]
[A(x, ∂x )u(x) − f (x)] dx = 0, y ∈ Ω, (62)

which can be rewritten as

P̃χ̃

(
A(x, ∂x )u − f

)
(y) :=

∫

Ω

P̃χ̃ (x − y) [Au(x) − f (x)] dSx = 0, y ∈ Ω,

(63)
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where

P̃χ̃ (x) := − 1

4π

χ̃(x)

|x | with χ̃ (x) :=

⎧
⎪⎨

⎪⎩

(
1 − |x |

ε

)
for |x | < ε,

0 for |x | ≥ ε.

(64)

It is easy to see that χ̃ belongs to the class of cut-off functions X1+ introduced in [2].
By Lemma 6.3 in [2] we then conclude that the density function Au − f = 0 in Ω .

Corollary 2 Let f ∈ H 0(Ω) and ϕ0 ∈ H
1
2 (∂Ω). Then the system of localized

boundary-domain integro-differential equations (59)–(60) is equivalent to system
(47)–(48) and to the Dirichlet problem (43)–(44) and is uniquely solvable in the
space H 1,0(Ω, A).

3.2 The Robin Problem

Let us now consider the Robin problem for the operator A(x, ∂):
Find a function u ∈ H 1,0(Ω, A) such that

A(x, ∂x )u = f in Ω, f ∈ H 0(Ω), (65)

T+
S u + κ γ +u = ψ0 on S, ψ0 ∈ H− 1

2 (S), κ ∈ C0, 1(S). (66)

It is a classical result that the Robin problem (65)–(66) is uniquely solvable if κ ≤ 0
and κ �≡ 0 (see, e.g., [6, 10, 11]). If κ ≡ 0, then we have the Neumann problem
which is solvable if and only if

∫

∂Ω

ψ0 dS =
∫

Ω

f (x) dx (67)

and a solution is defined modulo a constant summand.
Rewrite Green’s third formula (10) and its trace (34) on S in the extended form,

a(y) u(y) +
∫

Ω(y,ε)

R(x, y) u(x) dx − 1

4π

∫

∂Ω(y,ε)

1

|x − y| T
+
∂Ω(y,ε)(x, ∂x )u(x) dSx

+ 1

4π

∫

∂Ω(y,ε)

[
T (x, ∂x )

1

|x − y|
]
γ +

∂Ω(y,ε)u(x) dSx

= − 1

4π

∫

Ω(y,ε)

1

|x − y| A(x, ∂x )u(x) dx, y ∈ Ω, (68)
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∫

Ω(y,ε)

R(x, y) u(x) dx − 1

4π

∫

∂Ω(y,ε)

1

|x − y| T
+
∂Ω(y,ε)(x, ∂x )u(x) dSx

+ 1

2
a(y) γ +

S u(x) + 1

4π

∫

∂Ω(y,ε)

[
T (x, ∂x )

1

|x − y|
]
γ +

∂Ω(y,ε)u(x) dSx

= − 1

4π

∫

Ω(y,ε)

1

|x − y| A(x, ∂x )u(x) dx, y ∈ S. (69)

We need to represent the third term in the left hand side of (68), which is to be treated
as the duality relation between the spaces H− 1

2 (∂Ω(y, ε)) and H
1
2
(
∂Ω(y, ε)

)
, as

the sum of two well defined dualities over the submanifolds S(y, ε) and Σ1(y, ε).
To this end, we use formula (55) which leads to the following identity for arbitrary

u ∈ H 1,0(Ω, A) and y ∈ Ω (cf. (56))

− 1

4π

∫

∂Ω(y,ε)

1

|x − y| T
+
∂Ω(y,ε)(x, ∂x )u(x)dSx = − 1

4πε

∫

Ω(y,ε)

A(x, ∂x )u(x) dx

− 1

4π

∫

∂Ω(y,ε)

( 1

|x − y| − 1

ε

)
T+

∂Ω(y,ε)(x, ∂x )u(x)dSx . (70)

Introduce the function

Kε(x, y) :=
( 1

|x − y| − 1

ε

)
χ(x − y), x ∈ R

3, y ∈ Ω, (71)

with χ defined in (9). It is easy to see that Kε( · , y) belongs to the space H 1
comp(R

3 \
B(y, δ)) for arbitrarily small δ > 0 and vanishes on the spherical surface Σ(y, ε).
Therefore

Kε(x, y) = 1

|x − y| − 1

ε
for x ∈ S(y, ε), y ∈ Ω,

and evidently
rS(y,ε)Kε( · , y) ∈ H̃

1
2
(
S(y, ε)

)
for y ∈ Ω.

Consequently we can rewrite (70) as

− 1

4π

∫

∂Ω(y,ε)

1

|x − y| T
+
∂Ω(y,ε)(x, ∂x )u(x) dSx =

= − 1

4π

〈
T+
S(y,ε)u , Kε( · , y)〉S(y,ε) − 1

4πε

∫

Ω(y,ε)

A(x, ∂x )u(x) dx,

(72)
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where the first term in the right hand side of (72) is well defined duality pairing
between T+

S(y,ε)u ∈ H− 1
2 (S(y, ε)) and Kε( · , y) ∈ H̃

1
2 (S(y, ε)).

Using (72) and the data of the Robin problem in relations (68)–(69) we arrive at
the following system of boundary-domain integral equations with respect to u,

a(y) u(y) +
∫

Ω(y,ε)

R(x, y) u(x) dx + 1

4π

∫

S(y,ε)

( 1

|x − y| − 1

ε

)
κ γ +

S(y,ε)u(x) dSx

+ 1

4π

∫

∂Ω(y,ε)

[
T (x, ∂x )

1

|x − y|
]

γ +
∂Ω(y,ε)u(x) dSx = − 1

4π

∫

Ω(y,ε)

( 1

|x − y| − 1

ε

)
f (x) dx

+ 1

4π

∫

S(y,ε)

( 1

|x − y| − 1

ε

)
ψ0(x) dSx y ∈ Ω, (73)

∫

Ω(y,ε)

R(x, y) u(x) dx + 1

4π

∫

S(y,ε)

( 1

|x − y| − 1

ε

)
κ γ +

S(y,ε)u(x) dSx

+ 1

2
a(y) γ +

S u(y) + 1

4π

∫

∂Ω(y,ε)

[
T (x, ∂x )

1

|x − y|
]
γ +
∂Ω(y,ε)u(x) dSx

= − 1

4π

∫

Ω(y,ε)

( 1

|x − y| − 1

ε

)
f (x) dx + 1

4π

∫

S(y,ε)

( 1

|x − y| − 1

ε

)
ψ0(x) dSx , y ∈ S.

(74)

Let us now prove the equivalence theorem.

Theorem 2 Let f ∈ H 0(Ω), ψ0 ∈ H− 1
2 (∂Ω), and κ ∈ C0, 1(S). The Robin prob-

lem (65)–(66) and the system of localized boundary-domain integral equations (73)–
(74) are equivalent in the following sense:

(i) If u ∈ H 1, 0(Ω, A) solves the Robin problem (65)–(66), then u is a solution to
the system of localized boundary-domain integral equations (73)–(74), and vice
versa,

(ii) If u ∈ H 1, 0(Ω, A) solves the system of localized boundary domain integral
equations (73)–(74), then u is a solution to the Robin problem (65)–(66).

Proof The proof of item (i) directly follows from the derivation of system (73)–
(74). To prove the reverse item, let us assume that u ∈ H 1, 0(Ω, A) is a solution
to the system of localized boundary-domain integral equations (73)–(74). We can
write Green’s third formula (68) for u which, with the help of relation (70), can be
rewritten as
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a(y) u(y) +
∫

Ω(y,ε)

R(x, y) u(x) dx − 1

4π

∫

S(y,ε)

( 1

|x − y| − 1

ε

)
T+
S(y,ε)(x, ∂x )u(x) dSx

+ 1

4π

∫

∂Ω(y,ε)

[
T (x, ∂x )

1

|x − y|
]

γ +
∂Ω(y,ε)u dSx

= − 1

4π

∫

Ω(y,ε)

( 1

|x − y| − 1

ε

)
A(x, ∂x )u(x) dx . (75)

Subtracting (75) from (73) we arrive at the relation

1

4π

∫

S(y,ε)

( 1

|x − y| − 1

ε

) [
T+
S(y,ε)(x, ∂x )u(x) + κ γ +

S(y,ε)u(x) − ψ0(x)
]
dSx

− 1

4π

∫

Ω(y,ε)

( 1

|x − y| − 1

ε

) [
A(x, ∂x )u(x) − f (x)

]
dx = 0, y ∈ Ω.

(76)
Let us set

Ṽχ̃ ψ(y) := −
∫

S

P̃χ̃ (x − y)ψ(x) dSx , ψ ∈ H− 1
2 (∂Ω), y ∈ R

3, (77)

P̃χ̃ h(y) :=
∫

Ω

P̃χ̃ (x − y) h(x) dSx , h ∈ H 0(Ω), y ∈ R
3, (78)

where P̃χ̃ is defined by (64).
The Eq. (76) can be rewritten then as

Ṽχ̃

(
T+
S u + κ γ +

S u − ψ0
)
(y) + P̃χ̃

(
Au − f

)
(y) = 0, y ∈ Ω, (79)

where T+
S u + κ γ +

S u − ψ0 ∈ H− 1
2 (∂Ω) and Au − f ∈ H 0(∂Ω).

By Lemma 6.3 in [2] then we conclude that the densities of both potentials vanish,
i.e., Au − f = 0 inΩ and T+

S u + κ γ +
S u − ψ0 = 0 on S, which completes the proof.

Corollary 3 Let f ∈ H 0(Ω), ψ0 ∈ H− 1
2 (∂Ω), and κ ∈ C0,1(S) with κ ≤ 0 and

κ �≡ 0. Then the system of localized boundary-domain integral equations (73)–(74)
is uniquely solvable in the space H 1,0(Ω, A).

Proof It is easy to show that the right hand side of system (73)–(74) vanishes if and
only if f = 0 inΩ andψ0 = 0 on S. This can be proved by the arguments employed
in the final part of the proof of Theorem 2. Indeed, the equality
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− 1

4π

∫

Ω(y,ε)

( 1

|x − y| − 1

ε

)
f (x) dx + 1

4π

∫

S(y,ε)

( 1

|x − y| − 1

ε

)
ψ0(x) dSx = 0, y ∈ Ω

(80)
is equivalent to the relation

Ṽχ̃ψ0(y) + P̃χ̃ f (y) = 0, y ∈ Ω, (81)

which implies ψ0 = 0 on S and f = 0 in Ω due to the above mentioned Lemma 6.3
in [2].

Therefore the proof of the corollary follows form equivalence Theorem 2 and
unique solvability of the Robin problem (65)–(66).

Remark 2 If κ ≡ 0, then the system of localized boundary-domain integro-diffe-
rential equations corresponds to the Neumann problem and in view of equivalence
Theorem 2 it is solvable in the space H 1,0(Ω, A) if the necessary and sufficient
condition (67) holds. The general solution of the homogeneous system is a constant
function.

4 Reduction to Segregated Systems of Boundary Domain
Integral Equations for the Dirichlet Problem

We can rewrite system (59)–(60) as a segregated system with respect to u ∈
H 1,0(Ω, A) and ψ = T+

S u. Indeed, let us consider the system of equations

a(y) u(y) +
∫

Ω(y,ε)

R(x, y) u(x) dx − 1

4π

∫

S(y,ε)

[ 1

|x − y| − 1

ε

]
ψ(x) dSx

− 1

4πε2

∫

Σ1(y,ε)

a(x) γ +
Σ1(y,ε)

u(x) dSx = − 1

4π

∫

Ω(y,ε)

[ 1

|x − y| − 1

ε

]
f (x) dx

− 1

4π

∫

S(y,ε)

[
T (x, ∂x )

1

|x − y|
]
ϕ0(x) dSx , y ∈ Ω, (82)

∫

Ω(y,ε)

R(x, y) u(x) dx − 1

4π

∫

S(y,ε)

[ 1

|x − y| − 1

ε

]
ψ(x) dSx

− 1

4πε2

∫

Σ1(y,ε)

a(x) γ +
Σ1(y,ε)

u(x) dSx = − 1

4π

∫

Ω(y,ε)

[ 1

|x − y| − 1

ε

]
f (x) dx

− 1

2
a(y) ϕ0(y) − 1

4π

∫

S(y,ε)

[
T (x, ∂x )

1

|x − y|
]
ϕ0(x) dSx , y ∈ S, (83)
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where f and ϕ0 are as in (43)–(44).
Let us prove the following equivalence theorem.

Theorem 3 The Dirichlet problem (43)–(44) and system (82)–(83) are equivalent
in the following sense:

(i) If u ∈ H 1, 0(Ω) solves the Dirichlet problem (43)–(44), then the pair (u, ψ) ∈
H 1, 0(Ω) × H− 1

2 (S) with
ψ = T+

S u on S (84)

solves system (82)–(83) and, vice versa,
(ii) If a pair (u, ψ) ∈ H 1, 0(Ω) × H− 1

2 (S) solves system (82)–(83), then it is unique,
u is a solution of the Dirichlet problem (43)–(44), and relation (84) holds true.

Proof The item (i) directly follows from the derivation of the system of localized
boundary-domain integro-differential equations (47)–(48) and Corollary 2. To prove
the item (ii) we proceed as follows. Let (u, ψ) ∈ H 1, 0(Ω) × H− 1

2 (S) be a solution
of system (82)–(83). Take the trace of Eq. (82) on S and subtract it from Eq. (83) to
obtain

γ +u = ϕ0 on S. (85)

By the same arguments as in Sect. 3.1 for the function u ∈ H 1, 0(Ω) satisfying (85)
we obtain formula (61), and subtracting this formula from (82) we find (cf. (76))

1

4π

∫

S(y,ε)

[ 1

|x − y| − 1

ε

] [
T+
S (x, ∂x )u(x) − ψ(x)

]
dSx−

− 1

4π

∫

Ω(y,ε)

[ 1

|x − y| − 1

ε

] [
A(x, ∂x )u(x) − f (x)

]
dx = 0 in Ω.

(86)
As we have shown in the roof of Theorem 2, this relation can be rewritten in the form

Ṽχ̃

(
T+
S u − ψ0

)
(y) + P̃χ̃

(
Au − f

)
(y) = 0, y ∈ Ω, (87)

where Ṽχ̃ and P̃χ̃ are defined by (77) and (78) respectively. Therefore, by Lemma
6.3 in [2] we conclude that Au − f = 0 in Ω and T+

S u − ψ0 = 0 on S. Thus, u is a
solution to the Dirichlet problems and relation (84) holds.

Further, let us show that the right hand side expressions of the system (82)–(83)
vanish if and only if f = 0 in Ω and ϕ0 = 0 on S. Indeed, let
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1

4π

∫

Ω(y,ε)

[ 1

|x − y| − 1

ε

]
f (x) dx + 1

4π

∫

S(y,ε)

[
T (x, ∂x )

1

|x − y|
]
ϕ0(x) dSx = 0, y ∈ Ω,

(88)
1

4π

∫

Ω(y,ε)

[ 1

|x − y| − 1

ε

]
f (x) dx + 1

2
a(y) ϕ0(y)

− 1

4π

∫

S(y,ε)

[
T (x, ∂x )

1

|x − y|
]
ϕ0(x) dSx = 0, y ∈ S.

(89)

By comparison of (89) and the trace on S of (88) we deduce ϕ0 = 0 on S. Conse-
quently,

1

4π

∫

Ω(y,ε)

[ 1

|x − y| − 1

ε

]
f (x) dx = 0, y ∈ Ω

that is, P̃χ̃ f = 0 in Ω , and by Lemma 6.3 in [2] we deduce f = 0 in Ω .
Therefore the homogeneous system (82)–(83) possesses only the trivial solution

since it is equivalent to the homogeneous Dirichlet problem due to the equivalence
theorem which has been just proved. This completes the proof.
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Boundary Value Problems of the Plane
Theory of Elasticity for Materials with
Voids

Bakur Gulua and Roman Janjgava

Abstract The present paper deals with plane strain problem for linear elastic mate-
rials with voids. In the spirit of N.I.Muskhelishvili the governing system of equations
of the plane strain is rewritten in the complex form and its general solution is rep-
resented by means of two analytic functions of the complex variable and a solution
of the Helmholtz equation. The constructed general solution enables us to solve
analytically a problem for a circle and a problem for the plane with a circular hole.

Keywords Materials with voids · The plane strain · Kolosov-Muskhelishvili
formulas

1 Introduction

The present paper deals with plane strain problem for linear elastic materials with
voids. The theory for granular materials with interstitial voids was presented by
Goodman andCowin [10]. The nonlinear [19] and linear [9] theories for the behaviour
of porous solids, in which the skeletal or matrix material is elastic and the interstices
are voids of thematerial, was develop by Nunziato and Cowin.Within the framework
of the theory of isotropic materials we using the different methods the plane strain
problem with voids of stresses around a circular hole has been studied by Cowin
[7] and by Ieşan [15, 16]. The aim of this paper is to solve this problem and a
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problem for a circle in the spirit ofMuskhelishvili [18]. Ieşan [14] describes the linear
theory of thermoelastic bodieswith voids, with some principal theorems (uniqueness,
reciprocal and variation). The linear theory of thermoelasticity of porous bodies is
presented, the uniqueness and existence theorems are proved, and Galerkin-type
solutions are constructed by Ciarletta and Scalia [3, 4]. In Puri and Cowin [20] the
behavior of plane harmonics waves and their properties are studied.

In [1, 2, 5, 6, 21, 22] (see also references therein), some results of the 2D and
3D theories of elasticity for materials with voids are given.

The paper is organized as follows. In Sects. 2 and 3, for readers convenience we
remind basic equations in 3D and plane strain cases, respectively. In Sects. 4, 5 and
6 we state and prove our main results.

2 Basic Equations for Materials with Voids of the 3D Model

Let x = (x1; x2; x3) be a point of the Euclidean three dimensional space R3. We
assume that the subscripts preceded by a comma denote partial differentiation with
respect to the corresponding Cartesian coordinate, repeated indices are summed over
the range (1; 2; 3).

In what follows we consider an isotropic and homogeneous elastic solid with
voids occupying a region of Ω ∈ R3. The governing equations of the theory of
elastic materials with voids can be expressed in the following form [9, 17]:

• Equations of equilibrium

Ti j, j + Φi = 0, j = 1, 2, 3, (1)

hi,i + g + Ψ = 0, (2)

where Ti j is the symmetric stress tensor, Φi are the volume force components, hi is
the equilibrated stress vector, g is the intrinsic equilibrated body force and Ψ is the
extrinsic equilibrated body force. Equation (2) was first suggested by Goodman and
Cowin [10]; it was derived from a variational arguments by Cowin and Goodman [8],
and specific interpretations were given by Nunziato and Cowin [19] and by Jenkins
[4].

• Constitutive equations

Ti j = λekkδi j + 2μei j + βφδi j , i, j = 1, 2, 3,
hi = αφ,i , i = 1, 2, 3,
g = −ξφ − βekk,

(3)

where λ andμ are the Lamé constants; α, β and ξ are the constants characterizing the
body porosity; δi j is the Kronecker delta; φ := ν − ν0 is the change of the volume
fraction from the matrix reference volume fraction ν0 (clearly, the bulk density ρ =
νγ , 0 < ν ≤ 1, here γ is the matrix density and ρ is the mass density); ei j is the



Boundary Value Problems of the Plane Theory … 229

strain tensor and
ei j = 1

2

(
ui, j + u j,i

)
, (4)

where ui , i = 1, 2, 3 are the components of the displacement vector.
The constitutive equations also meet some other conditions, following from phys-

ical considerations

μ > 0, α > 0, ξ > 0,
3λ + 2μ > 0, (3λ + 2μ)ξ > 3β2.

(5)

Substituting (3) into (1) and (2), we obtain equations with respect to the compo-
nents of the displacement and the function φ

μΔu j + (λ + μ)∂ jΘ + β∂ jφ + Φi = 0, j = 1, 2, 3
(αΔ − ξ)φ − βΘ + Ψ = 0,

where ∂i ≡ ∂
∂xi

, Θ = ∂kuk , Δ ≡ ∂11 + ∂22 + ∂33 is the three-dimensional Laplace
operator.

3 Basic (Governing) Equations of the Plane Strain

From the basic three-dimensional equations we obtain the basic equations for the
case of plane strain. Let Ω be a sufficiently long cylindrical body with generatrix
parallel to the Ox3-axis. Denote by V the cross section of this cylindrical body, thus
V ⊂ R2. In the case of plane deformation u3 = 0 while the functions u1, u2 and φ

do not depend on the coordinate x3 [14, 18].
As it follows from formulas (3) and (4), in the case of plane strain

Tk3 = T3k = 0, h3 = 0, k = 1, 2.

Therefore, assumingΦi ≡ 0 and Ψ ≡ 0, the system of equilibrium equations (1),
(2) takes the form

∂1T11 + ∂2T21 = 0,
∂1T12 + ∂2T22 = 0,
∂khk + g = 0.

(6)

Note thatΔ2 ≡ ∂11 + ∂22 is the two-dimensional Laplace operator, θ = ∂1u1 + ∂2u2.
Now, Relations (3) are rewritten as
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T11 = λθ + 2μ∂1u1 + βφ,

T22 = λθ + 2μ∂2u2 + βφ,

T12 = T21 = μ(∂1u2 + ∂2u1),
T33 = σ(T11 + T22),
hk = α∂kφ, k = 1, 2,
g = −ξφ − βθ,

(7)

where σ is the Poisson ratio.
If relations (7) are substituted into system (6) then we obtain the following system

of governing equations of statics with respect to the functions u1, u2 and φ

μΔuk + (λ + μ)∂kθ + β∂kφ = 0, k = 1, 2
(αΔ − ξ)Δφ − βθ = 0.

(8)

On the plane Ox1x2, we introduce the complex variable z = x1 + i x2 = reiϑ ,

(2= −1) and the operators ∂z = 0.5(∂1 − i∂2), ∂z̄ = 0.5(∂1 + i∂2), z̄ = x1 − i x2,
and Δ2 = 4∂z∂z̄ .

To write system (6) in the complex form, the second equation of this system we
multiplied by i and sum up with the first equation

∂z(T11 − T22 + 2iT12) + ∂z̄(T11 + T22) = 0,
∂zh+ + ∂z̄ h̄+ + g = 0,

(9)

where h+ = h1 + ih2 and formulas (7) we rewrite as follows

T11 − T22 + 2iT12 = 4μ∂z̄u+,

T11 + T22 = 2(λ + μ)θ + 2βφ,

h+ = 2α∂z̄φ,

g = −ξφ − βθ,

(10)

θ = ∂zu+ + ∂z̄ ū+, u+ = u1 + iu2.

Substituting relations (10) into system (9), we rewrite system (8) in the complex
form

2μ∂z̄∂zu+ + (λ + μ)∂z̄θ + β∂z̄φ = 0,
(αΔ − ξ)φ − βθ = 0.

(11)

4 Kolosov–Muskhelishvili Formulas for (11) System

In this section, we construct the analogues to the Kolosov–Muskhelishvili formulas
[18] (see also [11–13]) for system (11).

We take the operator ∂z̄ out of the brackets in the left-hand part of the first equation
of system (11)



Boundary Value Problems of the Plane Theory … 231

∂z̄(2μ∂zu+ + (λ + μ)θ + βφ) = 0. (12)

Since (12) is a system of Cauchy–Riemann equations, we have

2μ∂zu+ + (λ + μ)θ + βφ = Aϕ′(z), (13)

where ϕ(z) is an arbitrary analytic function of z and A an arbitrary constant.
A conjugate equation to (13) has the form

2μ∂z̄ ū+ + (λ + μ)θ + βφ = Aϕ′(z), (14)

Summing up Eqs. (13) and (14) and taking into account that

θ = ∂zu+ + ∂z̄ ū+

we obtain

θ = A

2(λ + μ)
(ϕ′(z) + ϕ′(z)) − β

λ + 2μ
φ. (15)

Substituting formula (15) into the second equation of system (11), we have

Δφ − ξ(λ + 2μ) − β2

α(λ + 2μ)
φ = βA

2α(λ + 2μ)
(ϕ′(z) + ϕ′(z)). (16)

The general solution of Eq. (16) we may write in the form

φ = χ(z, z̄) − βA

2(ξ(λ + 2μ) − β2)
(ϕ′(z) + ϕ′(z)), (17)

where χ(z, z̄) is a general solution of the Helmholtz equation

Δχ(z, z̄) − γ 2χ(z, z̄) = 0,

where γ 2 = ξ(λ+2μ)−β2

α(λ+2μ)
and from (5) γ > 0.

Substituting formulas (15) and (17) into Eq. (13), we obtain

2μ∂zu+ = ξ(λ + 3μ) − β2

2(ξ(λ + 2μ) − β2)
Aϕ′(z) − ξ(λ + μ) − β2

2(ξ(λ + 2μ) − β2)
Aϕ′(z) − βμ

λ + 2μ
χ(z, z̄).

Now, let A := 2(ξ(λ+2μ)−β2)

ξ(λ+μ)−β2 then we get

2μu+ = κϕ(z) − zϕ′(z) − ψ(z) − 4αβμ

ξ(λ + 2μ) − β2 ∂z̄χ(z, z̄),
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where κ = ξ(λ+3μ)−β2

ξ(λ+μ)−β2 , ψ(z) is an arbitrary analytic function of z.

Thus, we have proved

Theorem 1 The general solution of the system (11) is represented as follows:

2μu+ = κϕ(z) − zϕ′(z) − ψ(z) − 4αβμ

ξ(λ + 2μ) − β2 ∂z̄χ(z, z̄),

φ = χ(z, z̄) − β

ξ(λ + μ) − β2 (ϕ′(z) + ϕ′(z)),

where κ = ξ(λ+3μ)−β2

ξ(λ+μ)−β2 , ϕ(z) andψ(z) are arbitrary analytic functions of a complex variable

z in the domain V , χ(z, z̄) is an arbitrary solution of the Helmholtz equation

Δχ(z, z̄) − γ 2χ(z, z̄) = 0.

From (10) we have

T11 − T22 + 2iT12 = −2zϕ′′(z) − 2ψ ′(z) − 8αβμ

ξ(λ + 2μ) − β2 ∂z̄∂z̄χ(z, z̄),

T11 + T22 = 2ξ(λ + 2μ)2 − 2(λ + 3μ)β2

(λ + 2μ)(ξ(λ + 2μ) − β2)

(
ϕ′(z) + ϕ′(z)

)
+ 2μβ

λ + 2μ
χ(z, z̄),

h+ = 2α∂z̄χ(z, z̄) − 2αβ

ξ(λ + μ) − β2 ϕ′′(z),

g =
(

β2

λ + 2μ
− ξ

)

χ(z, z̄) − βμ(ξ(λ + 2μ) − β2)

(λ + μ)(λ + 2μ)(ξ(λ + μ) − β2)

(
ϕ′(z) + ϕ′(z)

)
.

5 A Problem for a Circle

Let the origin of coordinates be at the centre of the circle with radius R. On the boundary of
the considered domain the values of φ and the displacement vector are given.

We consider the following problem

2μu+|r=R = 2μ(G1 + iG2) =
+∞∑

−∞
Ane

inϑ ,

φ|r=R = G3 =
+∞∑
−∞

Bneinϑ .

(18)

The analytic functions ϕ(z), ψ(z) and the metaharmonic function χ(z, z̄) are represented
as the series [18]
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ϕ(z) =
∞∑

n=1

anz
n, ψ(z) =

∞∑

n=0

bnz
n, χ(z, z̄) =

+∞∑

−∞
αn In(γ r)e

inϑ ,

where In(γ r) is the modified Bessel function of the n-th order, after substituting into the
boundary conditions (18) we have

κ

∞∑

n=1

an R
neinϑ − ā1Re

iϑ −
∞∑

n=0

(n + 2)ān+2R
n+2e−inϑ −

∞∑

n=0

b̄n R
ne−inϑ

− δa

2

+∞∑

−∞
αn In+1(γ R)ei(n+1)ϑ =

+∞∑

−∞
Ane

inϑ ,

+∞∑

−∞
αn In(γ R)einϑ − η

∞∑

n=1

(
nan R

n−1ei(n−1)ϑ + nān R
n−1e−i(n−1)ϑ

)
=

+∞∑

−∞
Bne

inϑ ,

where δ = 4αβμ

ξ(λ+2μ)−β2 , η = β

ξ(λ+μ)−β2 .

Comparing the coefficients ofmembers with equal degrees, we obtain the following system

κRa1 − Rā1 − δa

2
I1(γ R)α0 = A1,

κRnan − δa

2
In(γ R)αn−1 = An, n > 1,

−(n + 2)Rn+2ān+2 − Rnb̄n − δa

2
In(aR)α−n−1 = A−n, n ≥ 0,

I0(γ R)α0 − η(a1 + ā1) = B0,
In(γ R)αn − η(n + 1)Rnan+1 = Bn, n > 0.

All coefficients are determined by these formulas.
It is easily seen the absolute and uniform convergence of the series obtained in the circle

(including the contours)when the functions prescribedon the boundary are sufficiently smooth.

6 A Problem for the Plane with a Circular Hole

Let the origin of coordinates be at the centre of the hole of radius R.
We consider the following problem

2μu+|r=R = 2μ(H1 + i H2) =
+∞∑

−∞
Cne

inϑ , φ|r=R = H3 =
+∞∑

−∞
Dne

inϑ . (19)

The analytic function ϕ(z), ψ(z) and the metaharmonic function χ(z, z̄) we represent as
series
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ϕ′(z) =
+∞∑

n=0

cnz
−n, ψ ′(z) =

+∞∑

n=0

dnz
−n, χ(z, z̄) =

+∞∑

−∞
βnKn(ar)e

inϑ ,

where Kn(ar) is the modified Bessel function of the n-th order, and are substituted in the
boundary conditions (19) we have

κ

(

Rc0e
iϑ + ln Rc1 + c1ϑ i −

+∞∑

n=2

cnei(n−1)ϑ

(n − 1)Rn−1

)

−
+∞∑

n=0

c̄n
Rn−1 e

i(n+1)ϑ − Rd̄0e
−iϑ

− ln Rd̄1 + d̄1ϑ i +
+∞∑

n=2

d̄nei(n−1)ϑ

(n − 1)Rn−1 − δγ

2

+∞∑

−∞
βnKn+1(aR)ei(n+1)ϑ =

+∞∑

−∞
Cne

inϑ ,

+∞∑

−∞
βnKn(γ R)einϑ − η

+∞∑

n=0

(
bn
Rn e

−inϑ + b̄n
Rn e

inϑ

)
=

+∞∑

−∞
Dne

inϑ .

Comparing the coefficients of members with equal degrees, we obtain from the constant
term and from those involving eiϑ , e−iϑ , and e2iϑ , respectively,

⎧
⎪⎨

⎪⎩

κ ln Rc̄1 − ln Rd1 − δγ

2
K0(γ R)β1 = C0,

K1(γ R)β1 − 1

R
c̄1 = D1,

(20)

{
κRc̄0 − Rc̄0 + 1

R
d̄2 − δγ

2
K1(γ R)β0 = C1,

K0(γ R)β0 − η(c0 + c̄0) = D0,
(21)

⎧
⎨

⎩

− κ

R
c2 − Rd̄0 − δγ

2
K−1(γ R)β−2 = C−1,

K2(γ R)β2 − η

R2 c̄2 = D2.
(22)

For einϑ (n = ±2, ±3, ...) gives

− κ

(n − 1)Rn−1 c̄n − δγ

2
Kn−1(γ R)βn = C̄−n+1, n ≥ 3,

Kn(γ R)βn − η
Rn c̄n = Dn, n ≥ 3,

1
(n−1)Rn−1 d̄n − 1

Rn−3 c̄n−2 − δγ
2 Kn−1(γ R)βn−2 = Cn−1.

(23)

It is known that
c0 = Γ, d0 = Γ ′, (24)

where Γ, Γ ′ are known quantities, specifying the stress distribution at infinity (It is also
assumed that b0 has a real value).
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In order to find expressions for b1 and c1, it is necessary to refer to the condition of
single-valuedness of the displacements

κc1 + d1 = 0. (25)

From (20)–(25) we may find coefficients cn, dc, βn .
It is easily seen the absolute and uniform convergence of the series obtained in the circle

(including the contours)when the functions prescribedon the boundary are sufficiently smooth.

7 Conclusion

We consider plane strain of elastic materials with voids, a general solution of the governing
system of differential equations is constructed bymeans of two analytic functions of a complex
variable and a solution of the Helmholtz equation. Applying the constructed solutions we have
obtained explicit solutions for the boundary value problems for a circle and the plane with a
circular hole.
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Objective and Subjective Consistent
Criteria for Hypotheses Testing

Omar Purtukhia and Zurab Zerakidze

Abstract In this work, we define objective and subjective consistent criteria for
hypotheses testing. Sufficient conditions for the existence of such criteria are given in
the case of Borel probability measures. At the same time, we construct the subjective
consistent criterion for hypotheses testing, as well as the statistical structure, which
admits the objective consistent criterion for hypotheses testing.

Keywords Statistical structure · Hypothesis testing · Consistent criterion ·
Objective criterion · Subjective criterion

1 Auxiliary Notions and Results

At first, we give some definitions (see [1–6]). Let V be a complete metric linear
space, and let B(V ) be the σ -algebra of Borel sets. The symbol S+v denotes the set
obtained by displacing the set S ⊆ V by the vector v ∈ V .

Definition 1 A mesure μ is called to be transverse to a Borel set S ⊂ V if the
following two conditions hold:

(1) there is a compact U ⊂ V for which 0 < μ(U ) < 1;
(2) μ(S+v) = 0, ∀v ∈ V .

Definition 2 A Borel set S ⊂ V is called shy if there exists a measure transverse to
S. A subset of V is also called a shy-set if it is a subset of a Borel shy-set.
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Definition 3 The complement of a shy set is called a prevalent set.

Definition 4 A set that is neither a shy-set nor a prevalent one is called ambivalent.

Definition 5 We will say that “almost all” elements of the set V satisfy some con-
dition P(V ) if the set of elements for which P(V ) is true is prevalent.

Definition 6 A sequence of real numbers (xk)k∈N is called uniformly distributed
over the interval (a, b) if for any subinterval [c, d ] in (a, b) the following equality
holds:

lim
n→∞

1

n
#({x1, x2, ..., xn} ∩ [c, d ]) = d − c

b − a
,

where # denotes a measure of counting.

Let X ⊂ V be a compact from the Polish space, and let μ be a Borel probability
measure on X . Let Cb(X ) be the space of all continuous bounded functions on X .

Definition 7 Wewill say that the sequence (xk)k∈N of elements of X isμ-uniformly
distributed on X , if ∀f ∈ Cb(X ) the following equality holds:

lim
n→∞

1

n

n∑

k=1

f (xk) =
∫

X
f (x)μ(dx).

Definition 8 LetF be the distribution function of theBorel probabilitymeasureμ on
R. We will say that the sequence of real numbers (xk)k∈N is μ-uniformly distributed
on R if for any interval [a, b] (−∞ ≤ a < b ≤ +∞) the following equality holds:

lim
n→∞

1

n
#({x1, x2, ..., xn} ∩ [a, b]) = F(b) − F(a).

Theorem 1 (see Corollary 2.4 from [3]) Let F be a strictly increasing continuous
distribution function on R, and let μF be a Borel probability measure on R, defined
by F. If we denote by DF the set of all μF-uniformly distributed Borel probability
measures on R, then the following statements are true:

(1) DF = {(F−1(xk))k∈N : (xk)k∈N ∈ D},
where D is the set of all equidistributed sequences on (0, 1) under the Lebesgue
measure;

(2) μN
F (DF) = 1,

where μN
F is an infinite (countable) product of the measureμF on itself: μN

F = μF ×
μF × · · ·.

Let {μh, h ∈ H } be a family of probability measures, defined on the measurable
space (X ,B(X )). Let the class S(X ) be defined as follows:

S(X ) = ∩h∈Hdom(μh),
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where μh denotes the completion of the measure μh, and dom(μh) is the σ -algebra
of all μh-measurable subsets, h ∈ H .

Definition 9 (see [1]) A statistical structure {X ,B(X ), μh, h ∈ H } is called strongly
separable if there exists a partition {Ch, h ∈ H } of the set X by elements of σ -algebra
S(X ) such that

μh(Ch) = 1, ∀h ∈ H .

Let H be a set of hypotheses, and let B(H ) be the minimal σ -algebra, generated
by all subsets with finitely many elements in H .

Definition 10 Wewill say that the statistical structure {X , S(X ), μh, h ∈ H } admits
a consistent criterion for hypotheses testing if there exists at least one measurable
mapping T : (X , S(X )) −→ (H ,B(H )), such that

μh({x : T (x) = h}) = 1, ∀ h ∈ H .

Theorem 2 (see Theorem 2.2 from [1]) Let {X , S(X ), μh, h ∈ H } be a statistical
structure. Then the following two statement are equivalent:

(1) the statistical structure {X , S(X ), μh, h ∈ H } is strongly separable;
(2) the statistical structure {X , S(X ), μh, h ∈ H } admits a consistent criterion for

hypotheses testing.

2 Subjective Consistent Criterion for Hypotheses Testing

LetX1,X2, ... be an infinite sample, obtained by observing a sequence of independent
random variables with an unknown distribution function F . We only know that F
belongs to the family of distribution functions {Fh, h ∈ H }, whereH is not an empty
set. Using this infinite sample, we want to estimate the unknown distribution func-
tion F . Let μh denote the Borel probability measure on R, defined by the distribution
function F , ∀h ∈ H , and let μN

h be an infinite (countable) product of the measureμh

on itself. i.e. μN
h = μh × μh × · · ·. Therefore, we have the statistical structure

{RN ,B(RN ), μN
h , h ∈ H }. It admits a consistent criterion for hypotheses testing if

there exists at least one measurable mapping T : (RN ,B(RN )) −→ (H ,B(H )),

such that

μN
h ({(xk)k∈N : (xk)k∈N ∈ RN & T ((xk)k∈N ) = h}) = 1, ∀ h ∈ H .

Definition 11 A consistent criterion for hypotheses testing T is called objective if
T−1(h) is the Haar ambivalent ∀h ∈ H . Otherwise, a consistent criterion for hypothe-
ses testing T is called subjective.

Definition 12 Let H be a nonempty set, and let B(H ) be the minimal σ -algebra on
H generated by singleton sets. Let the statistical structure {RN ,B(RN ), μN

h , h ∈ H }
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admit a consistent criterion for hypotheses testing T : RN −→ H .Wewill say that
the statistical structure {RN ,B(RN ), μN

h , h ∈ H } admits a strong objective consistent
criterion for hypotheses testing if the following two conditions are true:

(1) ∀h ∈ H : T−1(h) is the Haar ambivalent;
(2) ∀h1, h2 ∈ H : there exists an isometrical transform Ah1,h2 : Rn −→ RN such

that Ah1,h2(T
−1(h1) Δ T−1(h2)) is a shy-set.

Theorem 3 Let μh be a probability measure on R generated by a random variable
with zero mathematical expectation and standard square deviation h (h > 0). For
(xk)k∈N ∈ RN we denote

T1((xk)k∈N ) = lim sup
n−→∞

| ∑n
k=1 xk |√

2nloglogn
,

if

lim sup
n−→∞

| ∑n
k=1 xk |√

2nloglogn
exists and finite

and
T1((xk)k∈N ) = 1, otherwise.

Then T1 is the subjective consistent criterion for hypotheses testing h ∈ (0,∞).

Proof Since (xk)k∈N is a sequence of independent identically distributed random
variables with zero mathematical expectation and a variation h2, it is easy to prove
that with probability 1 we have:

lim sup
n−→∞

| ∑n
k=1 xk |√

2h2nloglogn
= h, i. e.

μN
h ({(xk )k∈N : (xk )k∈N ∈ RN & lim sup

n−→∞
| ∑n

k=1 xk |√
2h2nloglogn

= h}) = 1, h ∈ (0, ∞).

Therefore, the following also holds:

μN
h ({(xk)k∈N : (xk)k∈N ∈ RN & T1((xk)k∈N ) = h}) = 1, h ∈ (0,∞).

Thus, T1 is a consistent criterion. Now we prove now that in fact it is a subjective
consistent criterion.

Let’s define S as follows:

S = {(xk)k∈N : (xk)k∈N ∈ RN & lim sup
n−→∞

| ∑n
k=1 xk |√

2nloglogn
< ∞}

and prove that it is a Borel shy set in RN .
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First, we verify that S is a vector space. Indeed, if (xk)k∈N and (yk)k∈N are alements
of S and α, β ∈ R, we can easily see that

lim sup
n−→∞

| ∑n
k=1(αxk + βyk)|√
2nloglogn

≤ lim sup
n−→∞

| ∑n
k=1 αxk |√

2nloglogn
+

+ lim sup
n−→∞

| ∑n
k=1 βyk |√

2nloglogn
= |α| lim sup

n−→∞
| ∑n

k=1 xk |√
2nloglogn

+

+|β| lim sup
n−→∞

| ∑n
k=1 yk |√

2nloglogn
< ∞.

Hence, S is a vector subspace of RN . Next we verify that S is a Borel set in RN .
For any i ∈ N we consider the projections Pri into R

N , defined as follows

Pri ((xk)k∈N ) = xi, (xk)k∈N ∈ RN .

Since

{(xk)k∈N : (xk)k∈N ∈ RN & lim sup
n−→∞

| ∑n
k=1 xk |√

2nloglogn
< ∞} =

= ∪∞
r=1{(xk)k∈N : (xk)k∈N ∈ RN & lim sup

n−→∞
| ∑n

k=1 xk |√
2nloglogn

< r}

it is evident that Tn = | ∑n
i=1 Pri |√

2nloglogn
(n ∈ N ) is a Borel measurable function in RN .

Therefore, we conclude that S is a Borel measurable subset of RN .
Let us prove now that S is a Borel shy set. For this purpose, we define the vector

v = (vn)n∈N as follows:
vn = 0, if 1 ≤ n ≤ 10;

vn = 11
√
22loglog11, if n = 11;

vn = n
√
2nloglogn − (n − 1)

√
2(n − 1)loglog(n − 1), if n > 11

and show that it defines a line L, all displacing of which can have atmost one common
point with the set S. This will prove that the line Lwill be a probe 1 of the complement
of S.

Assume the opposite, then for (zk)k∈N ∈ RN there are two different parameter
t1, t2 ∈ R such that (zk)k∈N + t1v ∈ S and (zk)k∈N + t2v ∈ S. Since S is a vector

1We call a finite-dimensional subspace P ⊂ V a probe for a set T ⊂ V if Lebesgue measure sup-
ported on P is transverse to a Borel set which contains the complement of T (see Definition 6 from
[4]).
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space, we have (t2 − t1)v ∈ S, and because t2 − t1 �= 0S we conclude that v ∈ S.
But this leads to a contradiction:

lim sup
n−→∞

| ∑n
k=1 vk |√

2nloglogn
≥

≥ lim sup
n−→∞

| ∑n
k=12(k

√
2kloglogk − (k − 1)

√
2(k − 1)loglog(k − 1))|√

2nloglogn
≥

≥ lim sup
n−→∞

|n√2nloglogn|√
2nloglogn

= lim sup
n−→∞

n = +∞.

Hence, S is a Borel shyset. We now note that T1 is a subjective consistent criterion
for hypotheses testing, since the set

{(xk)k∈N : (xk)k∈N ∈ RN & T1((xk)k∈N ) = 1}

is a completion of the shy set S \ S1, where

S1 = {(xk)k∈N : (xk)k∈N ∈ RN & lim sup
n−→∞

| ∑n
k=1 xk |√

2nloglogn
= 1}.

Thus, the theorem is proved. �

3 Objective Consistent Criterion for Hypotheses Testing

Let J be a subset of N , and denote by AJ the following Borel subset of RN :

AJ = {(xi)i∈N : xi ≥ 0, if i ∈ J & xI < 0, if i ∈ N \ J }.

It is clear that the AJ is Haar’s ambivalent.
Let P(N ) be a Boolean of natural numbers, denote by Φ a one-to-one mapping

from R+ = (0,+∞) to P(N ), and suppose that

Sh = {(xk)k∈N : (xk)k∈N ∈ RN & lim sup
n−→∞

| ∑n
k=1 xk |√

2nloglogn
= h}, h ∈ R+.

Since S = ∪h∈R+Sh and Sh1 ∩ Sh2 = ∅, if h1 �= h2, therefore, it is clear that Sh
(∀h ∈ R+) is a shy set.

Let’s denote
Dh = (AΦ(h) \ S) ∪ Sh, h ∈ R+.
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It is easy to see that (Dh)h∈R+ is a partition of RN , where eachDh is a Borel subset
and Haar’s ambivalent. Moreover, for any pair of hypotheses h1, h2 ∈ R+ there exists
an isometric (according to Tychonoff metric) transformation A(h1,h2) of the space R

N

such that A(h1,h2)(Dh1)Δ(DH2) is a shy set.
Indeed, as the transformation A(h1,h2) we consider the transformation, defined for

all (xk)k∈N ∈ RN as follows:

A(h1,h2)(xk)k∈N = (xk)k∈N , if k ∈ Φ(h1) ∩ Φ(h2) or k ∈ N \ Φ(h1) ∪ Φ(h2)

and
A(h1,h2)(xk)k∈N = (−xk)k∈N , otherwise.

If we denote now

T 0((xk)k∈N ) = h, if (xk)k∈N ∈ Dh,

then, is is not difficult to conclude that the statistical structure {RN ,B(RN ), μN
h , h ∈

R+} admits the objective consistent criterion T 0 for hypotheses testing.
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Review of Rational Electrodynamics:
Deformation and Force Models for
Polarizable and Magnetizable Matter

Wilhelm Rickert and Wolfgang H. Müller

Abstract In this paper a rational derivation of Maxwell’s equations is presented
in a purely spatial description. On a macroscopic scale this can be done by means
of localization of global balance laws. The mathematical tools for the localization
in a spatial description are presented. Subsequently the balance laws of electric
charge and magnetic flux are discussed and localized in order to obtainMaxwell’s
equations. Furthermore, short historical remarks on the origin of the governing laws
in mechanics are presented. In order to illustrate the coupling of electrodynamics in
matter to mechanics, two exemplary problems are analyzed. The procedure and the
arising difficulties are discussed.

Keywords Rational electrodynamics · Electromechanical coupling · Force model
analysis · spatial description

1 Introduction

The governing equations of electromagnetism areMaxwell’s equations. They come
in different forms depending on the scale of the considered system. On a continuous
macroscopic level they can be derived frombalance laws.As customary in continuum
mechanics, material balances are often considered. However, electromagnetic fields
are not always bound to matter and it is thus reasonable to consider non-material
balances for open systems. Surprisingly this is rarely seen in the pertinent literature.

Classical continuummechanics relies on balance equations of additive quantities,
which represent global formulations of physical laws. Because integral equations are
difficult to deal withmathematically one usually localizes these global balances laws.
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This is done in classical textbooks on continuum mechanics and thermodynamics,
e.g., [17, Chap.2], [21, Chap.3], [11, Chap. 2]. In most references, the balance laws
and their mathematical treatment are based on material representations. However,
for electromagnetismwe consider electromagnetic fields that are not bound to matter
and thus a material description should be replaced by a spatial one. By considering
a spatial description one also has to deal with open systems, which renders the
formulation of balance laws as well as their localization more complicated. Finally
note that in literature the (material) Eulerean description if often confused with the
spatial one, see the discussion in [13]. On the other hand, more general formulations
as in [26] are often not appropriate for engineers. Therefore, the mathematical tools
necessary for the localization of balance laws for open systems in a spatial description
are presented in this section.

First, deformation geometry is introduced in material and spatial description in
order to point out the differences. Then, some integral theorems are presented, which
are partly derived in Appendix 8. Finally, the local forms of special balance laws used
in this article are derived.

In continuum mechanics the two different descriptions commonly introduced are
the material and spatial ones. The corresponding variables are labeled as

xm = χm(Xm, t) and xs = χ s(X s, t) , (1)

Both position vectors xm and xs are obtained by one-to-one (bijective) mappings χm
and χ s, respectively, which are referring to their reference systems. These reference
systems are actual material points Xm of the body at some reference time or the
reference position of the non-material control point, X s. A material representation
using the current particle position xm is called Eulerean whereas a description
relying on Xm is called Lagrangeian.

From these, different velocities may be considered. First, the material velocity
vm = vm(Xm, t) as a function of the considered particle, which is identified by its
original position, Xm. Second, the mapping velocity, w(X s, t), which describes the
movement of non-material points, which originally have been at the position X s. In
addition, the material velocity may also be expressed in terms of a spatial position
such that Vm(xs, t). In contrast to the first two velocities vm and w, which arise from
time derivatives of the functions of motion in Eq. (1), i.e.,

vm = ∂χm

∂t
, w = ∂χ s

∂t
, (2)

the material velocity Vm(xs, t) cannot be represented as a time derivative, but can
be expressed in terms of the material velocity if the particle currently at the position
xs is considered

Vm = Vm(xs, t)
!= vm

(
χ−1
m (xs, t), t

)
. (3)
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Note that this identification is only valid for spatial points xs which are currently
occupied by the material body. In the following, the material velocity in a spatial
description is denoted as v = Vm.

With the material and spatial variables, different control volumes may be consid-
ered, namely material and spatial ones. Theorems such as Nanson’s formula look
similar for both surface elements, i.e.,

n dA = JmF−T
m · n0 dA0 , n dA = JsF−T

s · n0 dA0 , (4)

with the deformation gradients

Fm = ∂χm

∂Xm
, Fs = ∂χ s

∂X s
, Jm = det(Fm) , Js = det(Fs) . (5)

If time derivatives of vectorial surface elements are considered, different velocities
are involved, because a material surface moves with the particle velocity, v, and a
non-material surface with w. As a result, the time derivatives are given by:

d

dt

(
n dA

) = (∇m · vm)n dA − (∇m ⊗ vm) · n dA ,

d

dt

(
n dA

) = (∇s · w)n dA − (∇s ⊗ w) · n dA , (6)

with

∇m = ∂

∂xm
, ∇s = ∂

∂xs
. (7)

One should note, that the choice of the variables, xm or xs, affects the type of nabla
operator that is considered. The same applies to the time derivatives of the volume
elements in a material and a spatial description, respectively:

d

dt
( dV ) = (∇m · vm) dV ,

d

dt
( dV ) = (∇s · w) dV . (8)

Following this argument, two functions corresponding to a field quantity ψ should
be distinguished:

ψ = ψm(xm, t) , ψ = ψ s(xs, t) , (9)

where ψm and ψ s are different functions and the same identification problem arises
as in Eq. (3). However, for fields other than the velocity, the distinction between the
two functions will not be denoted explicitly, because we are interested in a purely
spatial description. Therefore, all fields are considered in spatial description if not
stated otherwise.
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2 Balance Laws and Integral Theorems

Consider an open control surface as in Fig. 1. The non-material surface S is cut into
two parts, S− and S+, by a singular line �I . While the surface itself moves with w,
the singular line is allowed to move separately with wI . Integral theorems such as
Gauss’ theorem and the Reynolds transport theorem require the integrands to be
continuous in the domain of integration. At a singular surface however, continuum
field quantities are allowed to be discontinuous and hence the integral theorems need
to be modified.

Consider the differentiable field quantity f that is continuous everywhere in S
except for S \ �I . The limits f + and f − from the respective domains S+ and S− at
the singular surface are allowed to be different. This difference is captured by the
jump evaluated at the interface xs = x I

[[ f ]] = f + − f − f ±(x I , t) = lim
xs→x I

f (xs, t) , xs ∈ Ω± , x I ∈ I . (10)

We are free to choose material or non-material control volumes and in the end the
localized equations look essentially the same except for different functional depen-
dencies, i.e., xm or xs, and different velocities. It turns out that the non-material
description is more general and the material one can be deduced as a special case.
Therefore, in this section the domain of integration will be non-material and in a
spatial description with ∇ = ∇s.

One is now interested in a general surface flux balance for the domain depicted in
Fig. 1. The temporal change of the total flux due a flux density f through the surface
S is given by

d

dt

∫

S

e · f dA = −
∫

�−∪�+

τ · (
φ + f × (v − w)

)
d� +

∫

S−∪S+

e · s dA +
∫

�I

ν I · s I d� .

(11)

Fig. 1 Depiction of a
surface S cut by a singular
line �I such that its boundary
is given by
∂S = �+ ∪ �− ∪ ∂�I . Also
the binormal vector to the
singular line is given by
ν I = eI × τ I
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Therein, φ is the conductive (or non-convective) flux (of the flux f ) and f × (v − w)

is the convective flux of the flux. Furthermore, s and s I are regular and singular supply
terms. Note that both, s and s I , may contain conductive as well as convective supply
since the domain S is open. For the convective flux f × (v − w) it is assumed that
f is transported with mass and hence with the material velocity v. If this is not the
case, i.e., f is a matter independent field, then v ≡ 0 in the above equation.

In order to localize this balance law in regular and singular points, several inte-
gral theorems for domains with singular lines are required. They are derived in the
Appendix 8 and the process of localization in regular and singular points is shown in
Appendix 9. By means of these methods the following local variants of the balance
law in regular and singular points, respectively, are found:

∂ f
∂t

+ (∇ · f )w + ∇ × (
φ − v × f

) = s ,

eI × [[φ − (v − wI ) × f ]] = s I . (12)

If f is a field that is not convected with matter and has no supply s or s I , one simply
has

∂ f
∂t

+ (∇ · f )w + ∇ × φ = 0 ,

eI × [[φ]] + eI · [[ f ⊗ wI − wI ⊗ f ]] = 0 . (13)

3 Rational Electrodynamics

There are several approaches to electrodynamics and, consequently, to theMaxwell
equations in literature. The rational derivation ofMaxwell’s equations relies on four
basic axioms:

• the conservation of charge,
• the decomposition of charges and currents into bound and free parts,
• the conservation of magnetic flux and
• the Maxwell-Lorentz-aether relations,

which are also considered in the derivations of [12, 14] or [16], to name a few. How-
ever, all of these authors restrict their presentation to material, i.e., closed systems.
In [26] a more general approach is pursued. However, the mathematics involved are
quite complicated. Before we start with a rational derivation of Maxwell’s equa-
tions in spatial formulation, a word of caution regarding the term “rational” is in
order. In [26, p. 669] the truth about the rationality of modern electrodynamics is
phrased as follows “[…] the integral equations (270.5) and (270.9) were deduced
by Bateman1, who took as a starting point the differential equations commonly
referred to asMaxwell’s equations.” Nonetheless, this approach is still more ratio-
nal than a purely phenomenological one. The presentation in this paper is restricted
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to classical equations, i.e., no theory of relativity is considered. The interested reader
is referred to [16, 26], where the conservation of charge is analyzed relativistically.
Furthermore we adapt the notation of [26, p. 689].

3.1 Electromagnetic Fields

The electric and magnetic fields E and B are originally defined via the Lorentz
force,

F = QE + J × B , (14)

that acts on a point-like particle carrying the charge Q moving at a velocity v through
an electric field and appears as an electric current J = Qv to a magnetic field. From
this it can be seen that there is an intimate connection between electrodynamics and
mechanics. The Lorentz force expression contains two contributions experimen-
tally found by Coulomb and Ampére. While Coulomb performed experiments
with localized non-moving distributions of charge to find a force per unit charge, E,
Ampére investigated the force per unit current in a conducting wire, B.

Later, in 1830, Faraday found that there is a close relation between the electric
field and the magnetic flux. It was thought that the voltage V due an electric field E
around a closed material loop C is zero, i.e.,

V =
∮

C

τ · E d� = 0 . (15)

where τ is the tangent vector of C . In view of the Lorentz force expression, this
voltage is sometimes called electromotive force. However, Faraday found that this
is not the case if a varying magnetic field is present, see [8],

∮

C

τ · E d� = − d

dt

∫

S

n · B dA , C = ∂S . (16)

This is to be interpreted as the flow of an electric current due to a magnetic field and
therefore this is also known as Faraday’s law of induction. Note that in this context
the surface S spanned by the material loop of a conducting wire is arbitrary and
thus non-material. Additionally, one assumes that this law is equally valid, i.e., the
same electromotive force is produced, even if the loop C is non-material as well.
Then, of course, there would be no resulting current. This motivates the last section
where all presentations are given with respect to non-material control domains.

With this notion of the fields E and B one can start to derive the differential
equations they are governed by, Maxwell’s equations. However, one should note
that the transition from some free charges Q in space or in a conducting wire to a
continuum description of matter is not trivial. Even the force expression in Eq. (14)
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cannot simply be translated into a continuum force density in the presence of (magne-
tizable or polarizable) matter. This conundrum is part of theAbraham–Minkowski
controversy and will be discussed in Sect. 4.

3.2 Derivation of MAXWELL’s Equations in Matter

A rational approach toMaxwell’s equations becomes possible through the balance
laws for the total charge and the magnetic flux. Note that the latter is referred to as
Faraday’s law.

Consider a volumetric region Ω cut by a singular surface I as depicted in Fig. 2.
Then, the balance of charge reads,

d

dt

∫

Ω−∪Ω+

q dV + d

dt

∫

I

qI dA = −
∫

Γ −∪Γ +

n · (
j + q(v − w)

)
dA

−
∮

∂ I

ν · (
j I + qI (v − wI )

)
d� , (17)

If one considers the definitions of the total currents, cf. [21],

J = j + qv , J I = j I + qIv , (18)

the charge balance is denoted more compactly by

d

dt

∫

Ω−∪Ω+

q dV + d

dt

∫

I

qI dA = −
∫

Γ −∪Γ +

n · (
J − qw

)
dA −

∮

∂ I

ν · (
J I − qIwI

)
d� .

(19a)

Fig. 2 Depiction of a
volumetric domain Ω . The
domain Ω is cut by a
singular surface I such that
the surface is given by
∂Ω = Γ − ∪ Γ + ∪ ∂ I ,
where Γ ± = ∂Ω± \ I are
non-closed surfaces
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Furthermore, for some other non-material surface S the balance of magnetic flux is
given by

d

dt

∫

S

e · B dA = −
∮

∂S

τ · (
E + w × B

)
d� . (19b)

Therein, q is the total charge density, j is the conductive electric current density,
B is the magnetic flux density, E is the electric field, v is the material velocity in
spatial description and w as well as wI are the mapping velocities of the volume and
the singular surface, respectively. The additional quantities qI and j I are the (sin-
gular) surface charge density and the (singular) surface conductive current density,
respectively.

Note that the balance of themagnetic flux as presented here appears as a postulate.
However, originally it was supposed to summarize the experimental observations
due to Faraday, see the discussion in Sect. 3.1. As a generalization to non-material
control surfaces, a convective flux is w × B is added without a dependence upon the
material velocity. Note that most authors restrict themselves to material domains and
thus are required to introduce the material velocity, v × B.

First, let us consider the charge balance. It can be derived from the mass balances
utilizing amixture theory, see [24].Therefore,most authors tend to restrict themselves
to material domains Ω = Ωm. However, we refrain from doing so. Since Ω is a
volumetric region, its surface ∂Ω is closed and the boundary of the surface is empty,
i.e., ∂∂Ω = ∅. Hence, we are free to add an arbitrary zero to the charge balance and
write

d

dt

∫

Ω−∪Ω+

q dV + d

dt

∫

I

qI dA = −
∫

Γ −∪Γ +

n · (
J − qw

)
dA

−
∮

∂ I

ν · (
J I − qIwI

)
d� +

∮

∂∂Ω

a · τ d� , (20)

where a is an additional auxiliary field, which does not contribute to the balance of
charge (19a). In order to apply the localization theorem, all integrals must agree in
their type. Therefore, the so-called total charge potential, D, is introduced and the
generalized version of Gauss’ theorem from Eq. (117) is applied

∫

Ω−∪Ω+

q dV +
∫

I

qI dA ≡
∮

∂Ω

D · n dA =
∫

Ω−∪Ω+

∇ · D dV +
∫

I

e · D dA . (21)

Note that this definition is a purely formal step. By comparing both sides of the
equation one obtains the following local relations:

∇ · D = q , e · [[D]] = qI . (22)
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Due to the definition of this potential, the total charge balance reduces to a surface
balance with S = ∂Ω , S± = Γ ± and �I = ∂ I

d

dt

∮

S

D · n dA = −
∫

S+∪S−

n · (
J − qw

)
dA −

∮

�I

ν · (
J I − qIwI

)
d� +

∫

�−∪�+

a · τ d� .

(23)
In view of a general surface balance for open control volumes in Eq. (11) it seems
natural to introduce the auxiliary field as a conductive term plus a convective one

a = H + D × w , (24)

where H is another “auxiliary field.” Sincewe do not know anything about the charge
potential D, it is assumed that it is not convective with respect tomatter. However, the
definition of a is completely arbitrary. Now the localization theorem of a generalized
surface balance can be applied. With the given quantities

f = D , s = −J + qw , s I = −J I + qIwI , (25)

one has from the localization theorem that

−∂D
∂t

+ ∇ × H = J = j + qv ,

e × [[H + D × wI ]] = J I − qIwI . (26)

This is also called Ørsted’s law. From this equation the name current potential for
the field H can be motivated. However, we will later discuss this auxiliary field in
more detail. It should be noted that in [16, Chap.3] the current potential is introduced
via the components of a so-called charge current potential in a Euclidean space-time
formulation of the charge conservation. Furthermore note that by observing

e × [[D × wI ]] = (e · wI )[[D]] − (e · [[D]])wI = (e · wI )[[D]] − qIwI (27)

the balance in singular points can be simplified to read

(e · wI )[[D]] + e × [[H]] = J I = j I + qIv . (28)

Now we turn to Faraday’s law. From the localization theorem in Eq. (13) one
obtains

∂B
∂t

+ ∇ × E + (∇ · B)w = 0 ,

e × [[E]] + e · [[B ⊗ wI − wI ⊗ B]] = 0 . (29)

Therein, the electric field E is also called Minkowskian electric field strength, cf.
[12, p. 14]. It is now very surprising that the local equation contains a dependence
upon the mapping velocity w. It turns out that this is an artifact from the arbitrary
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surface spanned by the line C in Sect. 3.1. In fact, there is an additional way of
localizing the global form. Consider a surface of some volumetric region S = ∂Ωs,
that may be cut by a singular surface I . Then the line integral vanishes and from
Faraday’s law in global form it follows that

d

dt

∫

∂Ωs

B · e dA = 0 ⇒ 0 =
∫

∂Ωs

B · e dA =
∫

Ω−
s ∪Ω+

s

∇ · B dV +
∫

I

e · [[B]] dA .

(30)
Via localization one obtains Gauss’ law

∇ · B = 0 , e · [[B]] = 0 . (31)

Note that the constant due to the time integration is neglected here. Furthermore, with
this result, Eq. (29) simplifies, which shows that Faraday’s law in regular points
does actually not depend upon the mapping velocity,

∂B
∂t

+ ∇ × E = 0 ,

e × [[E]] − (e · wI )[[B]] = 0 . (32)

So far, the following set of equations in regular points is obtained from the con-
servation of charge

− ∂D
∂t

+ ∇ × H = j + qv , ∇ · D = q (33a)

and from the conservation of magnetic flux

∂B
∂t

+ ∇ × E = 0 , ∇ · B = 0 . (33b)

Note that the (total) charge potential as well as the (total) current potential are not
exclusively due to matter, rather matter contributes to the fields D and H , as will be
seen in the next section.

3.3 Charges in Materials

The equations up to now are valid for every material, but not very convenient if
dielectrics or magnets are considered. Therefore, it is assumed that the charge den-
sities as well as the current densities are additively decomposed into free and bound
parts:
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q = q f + qb , qI = q f
I + qb

I , J = J f + Jb , J I = J f
I + Jb

I , (34)

where the free currents are decomposed into conductive and convective parts

J f = j f + q fv , J f
I = j fI + q f

I v . (35)

The bound charges account for pseudo charges due to electric dipoles. The free
charges and currents are properly defined as they can be obtained from particle den-
sities and partial mass flows in a mixture theory, see [24] for an extensive discussion
of this topic. Hence, in the following a closed material domain Ωm is considered. It
can then be shown, that with w = v the balance of free charges is given by

d

dt

∫

Ω+
m∪Ω−

m

q f dV + d

dt

∫

I

q f
I dA = −

∫

Γ −∪Γ +

j f · n dA −
∮

I

j fI · ν d� (36)

and by combining this with Eq. (19a) one obtains the balance of bound charges

d

dt

∫

Ω+
m∪Ω−

m

qb dV + d

dt

∫

I

qb
I dA = −

∫

Γ −∪Γ +

jb · n dA −
∮

I

jbI · ν d� . (37)

Both balances look identical and it is thus natural to decompose the charge and
current potentials as well into free and bound parts:

D = D − P , H = H + M , (38)

where D and H are the free charge and current potentials. The fields P (the minus
sign in Eq. (38) is based on convention) and M are analogously referred to as bound
charge and bound current potentials. However, they allow for an intuitive interpre-
tation, see [18, 21], which in turn lead to the names polarization and magnetization.
Electric dipoles around a body introduce a current as they change their direction over
time. This is what is considered as a bound current since there is no net movement.
Similarly, with magnetic dipoles a magnetization current is introduced at the surface
of a body. Of course one could add higher multipole moments to the consideration,
which is usually done in microscopic theories, [14, p. 232]. However, the dipole
moments are dominant and higher moments can be neglected on a continuum scale.
Note that the magnetization vector M as introduced above is also calledMinkowski
magnetization. It is also common to introduce the so-called Lorentzmagnetization
M , see [16], which is related to M via:

M = M − v × P . (39)

The Lorentz magnetization emphasizes the fact, that for a medium in motion the
effective magnetization is altered by the polarization, see [14, p. 234]
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Then, by the same arguments as before, from Eqs. (36) and (37) the following
localized versions arise:

−∂D

∂t
+ ∇ × H = J f = j f + q fv , ∇ · D = q f ,

∂ P
∂t

+ ∇ × M = Jb , −∇ · P = qb . (40)

and in singular points:

(e · wI )[[D]] + e × [[H]] = j fI + q f
I v , e · [[D]] = q f

I ,

−(e · wI )[[P]] + e × [[M]] = Jb
I , −e · [[P]] = qb

I . (41)

3.4 Universal Connections: The
MAXWELL-LORENTZ-æther Relations

An illuminating discussion of the æther relations is given in [16, Chap.5], and there
is nothing to add. Hence, we may just denote the relations in SI-units and briefly
comment on them:

B = μ0H , ε0E = D , (42)

with the vacuum permeability μ0 and the vacuum permittivity ε0. Together they
define the speed of light viz., c−1 = μ0ε0. It is very interesting to note that these
equations relate the physical fields B and E and the potentials H and D. Therefore,
the potentials, as such not uniquely defined, become unique quantities.

It is clear that these relations cannot hold for every frame of reference. However,
those frames for which the æther relations do hold are called Lorentz rest frames,
see [14, 26].

Note that from the æther relations it follows that

1

μ0
B = H + M , ε0E = D − P , (43)

where the use of the Minkowski magnetization is rather convenient.

4 Coupling of Electromagnetism and Mechanics

In the last section the governing equations of electromagnetism were derived. As it
was pointed out, electromagnetism is originally strongly connected to mechanics.
In continuum mechanics, additive quantities are balanced. In balances of conserved
quantities, there may be supply terms (that can be deactivated, at least in principle)
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but no so-called production terms. A production term models some kind of reaction
that cannot be controlled directly. Let us consider the balance of linear momentum
with electromagnetic influences in regular and singular points, respectively,

∂ρv
∂t

+ ∇ · (ρv ⊗ v − σ ) = ρ f + f (EM) ,

n · [[σ + ρ(wI − v) ⊗ v]] = − f (EM)
I . (44)

Therein, ρ denotes the mass density, σ is the mechanical stress tensor, f is the
mechanical volume force density and f (EM) is the volumetric force density due to
electromagnetic fields. Furthermore,wI is the surface velocity and f (EM)

I is the electro-
magnetic surface force density. The volumetric force density due to electromagnetic
fields cannot be controlled directly and, hence, must be considered as a production
of linear momentum. Therefore, the (mechanical) linear momentum is not conserved
and the following electromagnetic momentum balance is postulated

∂ g(EM)

∂t
− ∇ · σ (EM) = − f (EM) , (45)

such that the total momentum is conserved

∂

∂t
(ρv + g(EM)) + ∇ · (ρv ⊗ v − σ − ∇ · σ (EM)) = ρ f . (46)

Therein, σ (EM) is called electromagnetic stress tensor and g(EM) is regarded as the
electromagnetic momentum. Note that from Eq. (45) it follows that the surface force
density is given by, see [23],

f (EM)
I = e · [[wI ⊗ g(EM) + σ (EM)]] . (47)

Unfortunately, both of the newly introduced additional quantities g(EM) and σ (EM) are,
in general, unknown. Which concrete form they have differs in the literature and
this conundrum is referred to as the Abraham–Minkowski controversy and is still
subject to discussion, see e.g., [2, 3].

In their famous publications on electromagntism of ponderable media,Abraham
[1] and Minkowski [20] proposed the following different momentum densities,
respectively:

gA = D × μ0H = (D − P) × μ0H , gM = D × B . (48)

Furthermore, in [26, p. 689] another momentum density is introduced

gL = D × B , (49)
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which we shall refer to as generalized Lorentz momentum density. However, even
if one of these is accepted, the expression for f (EM) is not uniquely defined as σ (EM) is
not determined yet.

The usual procedure for the determination of a force model starts from accepting
a momentum density. Then Maxwell’s equations are used to find an identity of
the form as in Eq. (45). However, there are infinitely many possibilities to find a
combination of a momentum density and an electromagnetic stress tensor such that
the electromagnetic momentum balance in Eq. (45) is fulfilled. Furthermore, the
problem of ambiguity extends to the unknown expression for the electromagnetic
energy in the presence of matter, see [15, 23]. The so-called Poynting’s theorem is
the balance of electromagnetic energy u

∂u

∂t
= −∇ · S + r , (50)

in which S is the Poynting vector and r is the electromagnetic power. This equation
looks similar to the electromagnetic momentum balance and shares the fact that the
quantities it contains are unknown in general. In particular, Feynman, [6], wrote:
“Before we take up some applications of the Poynting formulas […], we would like
to say that we have not really “proved” them. All we did was to find a possible “u”
and a possible “S.” How do we know that by juggling the terms around some more
we couldn’t find another formula … It can be done, but the forms that have been
found always involve various derivatives of the field (and always with second-order
terms like a second derivative or the square of a first derivative). There are, in fact,
an infinite number of different possibilities … and so far no one has thought of an
experimental way to tell which one is right! People have guessed that the simplest
one is probably the correct one, but we must say that we do not know for certain
what is the actual location in space of the electromagnetic field energy.”

In literature, several approaches to the Abraham–Minkowski controversy are
proposed. In [19], for example, gedankenexperiments with light waves are inves-
tigated. Another approach relies on the solution of boundary value problems for
different force models, because these can be compared with real experiments, see [5,
23].

Therefore, we need to first solve some boundary value problems, that can be
compared to actual experiments. In the following sections two different problems
will be considered. In order to analyze the effects of particular force models, we take
some models derived in [23] and investigate their impact on mechanical responses.
The following force models are considered:
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f L = qE + J × B ,

f A = qE + J × μ0H − ∇ · (M ⊗ B) + μ0D × ∂M
∂t

,

fM = q f E + J f × B − (∇ ⊗ M) · B + (∇ ⊗ E) · P ,

f EL = q f E + J f × μ0H + P · (∇ ⊗ E) +
+ ∂ P

∂t
× μ0H + μ0M · (∇ ⊗ H) − μ0

∂M
∂t

× D , (51)

with the corresponding surface forces

f LI = qI 〈E〉 + J I × 〈B〉 ,

f AI = qI 〈E〉 + J I × μ0〈H〉 − μ0w⊥〈D〉 × [[M]] +
+ (n × [[B]]) × 〈M〉 − n · [〈M〉 ⊗ [[B]] + [[M]] ⊗ 〈B〉] ,

fMI = q f
I 〈E〉 + J f

I × 〈B〉 + n(〈P〉 · [[E]] − 〈B〉 · [[M]]) ,

f ELI = fM2
I + n[[B · M − μ0

2 M · M]] − w⊥[[D × μ0M + P × μ0H]] . (52)

5 Dielectrics

A dielectric is an electrical insulator with low conductivity that can be polarized by
an external field E0 such that

P = P̂(E) with P̂(E = 0) = 0 , (53)

where E is the resulting electric field,which is a compositionof the external excitation
E0 and the material response P . For the special case of a linear (and isotropic)
dielectric the polarization is a linear function of the electric field, P = χε0E, with the
electric susceptibilityχ . Some special dielectrics can possess a remanent polarization
and are called electrets in analogy to a magnet, P0 = P(E = 0). Additionally, a
dielectricmay retain excess surface charges, e.g., a homogeneously distributed charge
Q on the surface of the body with surface area A such that q f

I = Q/A. From these
properties five different spherical dielectrics are analyzed in this paper:

(I) A linear dielectric, without any surface charge, in an external field E0:

q f
I = 0 , P = χ D , E0 = E0ez . (54)

Using the æther relations in Eq. (42) the polarization and the free charge poten-
tial can be rewritten as

P = ε0χE ⇔ D = ε0εrE . (55)
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(II) A real-charge electret possesses a constant surface charge q f
I = Q/Asph with

the surface of the sphere Asph = 4πR2, see [4, p. 510]. It is assumed that the
polarization vanishes, P = 0 and that no external field is applied, E0 = 0.

(III) For the oriented dipole model no surface charge and no external field are con-
sidered, i.e., q f

I = 0 and E0 = 0, but a constant and homogeneous polarization
is used P = P0ez .

In addition, combinations of these three material models are possible, from which
the following two are analyzed:

(IV) Real-charge electrets made of linear dielectric material are more complicated
as they posses not only a surface charge but can also be excited by an external
field E0:

q f
I = Q/Asph , D = ε0εrE . (56)

(V) A mix of all of the previous models is a real-charge electret with affine linear
polarization that is placed in an external field:

q f
I = Q/AsphP = P0ez + ε0χE ⇔ D = P0ez + ε0εrEE0 = E0ez . (57)

5.1 Electric Fields

In stationary problems, the curl of the electric field vanishes, i.e.,∇ × E = 0. There-
fore it is possible to replace the field with an electric potential. However, in some
of the discussed problems there is an external field E0 that acts as a source. It is
therefore convenient to decompose the total electric field E into the external field
E0 and the (local) stray field Ê, i.e., E = E0 + Ê. For simplification, a potential
is introduced for the stray field by putting Ê = −∇V . In order to obtain a differen-
tial equation for this potential, the Maxwell equation for the free charge potential,
∇ · D = q f , is used. In all considered problems, the volumetric free electric charge
density vanishes. Hence, the problems simplify to ∇ · D = 0. In order to solve the
considered problems generically, the free charge potential is connected to the electric
field with the generalized relation

D = ε0εrE + P0 , with ∇ ⊗ P0 = 0 . (58)

To see that this relation is applicable, one can choose, e.g., εr = 1 and P0 = 0
to obtain the scenario (II) of a real-charge electret. As the free charge potential is
solenoidal and any P0 is assumed constant and homogeneous, one obtains a Laplace
equation for the stray potential,	V = 0. This equation is also obtained outside of the
spheres, as the relation D = D = ε0E holds for vacuum. Every problem possesses
(at least) azimuthal symmetry, hence, the solution can be written, w.r.t. spherical
coordinates, as
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V (r̃ , x) =
∞∑

n=0

(
anr̃

n + bnr̃
−(n+1)

)
Pn(x) , r̃ := r/R , x := cosϑ . (59)

This solution containsLegendrepolynomialsPn . Note that the adapted structure
of this solution must be different inside and outside of a considered sphere. Since
the potential must be regular, it cannot be proportional to r̃−n(n+1) inside of a sphere
for n > 0. Outside of it, the potential cannot be proportional to r̃ n as the stray field
must vanish as r̃ → ∞. At the interface, the total electric field must be continuous in
tangential direction, i.e., n × [[E]] = 0. Because every external field E0 is constant,
the relation must also hold for the stray field. Hence, the potential must satisfy
n × [[∇V ]] = 0. By exploiting the gauge freedom, it can be seen that this relation is
satisfied by choosing a continuous potential, i.e., [[V ]] = 0. Therefore, the inner and
exterior solution can be denoted as

V (I)(r̃ , ϑ) =
∞∑

n=0

anr̃
nPn(x) , r̃ < 1 ,

V (O)(r̃ , ϑ) =
∞∑

n=0

anr̃
−(n+1)Pn(x) , r̃ > 1 . (60)

The coefficients an are determined by the remaining jump condition at r̃ = 1, viz.,

n · [[D]] = q f
I ⇔ n · (ε0E(O) − ε0εrE(I) − P0) = q f

I , (61)

which results in the transmission problem for the potential

n · (εr∇V (I) − ∇V (O)) = 1
ε0
q f
I + 1

ε0
n · P0 + (εr − 1)n · E0 . (62)

To solve this, the right-hand side is rewritten by noting that n = er , and that er · ez =
cosϑ ; one obtains

∞∑

n=0

an[n(εr + 1) + εr]Pn(x) = q f
I

ε0
P0(x) +

[
P0
ε0

+ (εr − 1)E0

]
P1(x) . (63)

Due to the orthogonality relations of the Legendre polynomials, an uncoupled
algebraic system for the coefficients an is obtained. Its solution reads

a0 = q f
I

ε0εr
, a1 = 1

2εr + 1

P0
ε0

+ εr − 1

2εr + 1
E0 , an = 0 ∀ n ∈ N\{0, 1} . (64)

In the specialization of this general solution, the values of q f
I , εr, P0, and E0, are

respectively inserted in a0 and a1. To reduce complexity, a reference field E is
introduced, paired with the scaling factors α, β, and γ , such that
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q f
I

ε0
= αE ,

P0
ε0

= βE , E0 = γE ⇒ a0 = α

εr
E , a1 = β + (εr − 1)γ

2εr + 1
E .

(65)
In the following, the relations a0 = ã0E , and a1 = ã1E , are also used. For the con-
sidered cases, the involved scales and factors can be chosen as

(I) E = E0 , α = 0 , β = 0 , γ = 1 , (εr �= 1)

(II) E = q f
I

ε0
, α = 1 , β = 0 , γ = 0 , (εr = 1)

(III) E = P0
ε0

, α = 0 , β = 1 , γ = 0 , (εr = 1)

(IV) E = q f
I

ε0
, α = 1 , β = 0 , γ = 0 , (εr �= 1)

(V) E = E0 , α = q f
I

ε0E0
, β = P0

ε0E0
, γ = 1 . (εr �= 1) (66)

From Eq. (65) it can be seen that γ can only affect the solution if εr �= 1. With these
(potentially) non-vanishing coefficients, the electric stray fields read:

Ê
(I) = −a1[cosϑer − sin ϑeϑ ] = −a1ez = const. ,

Ê
(O) = r̃−3[(a0r̃ + 2a1 cosϑ)er + a1 sin ϑeϑ ] . (67)

The total electric field, in which Ê may be superposed by an external field E0, reads

E(I) = (γ − ã1)E [cosϑer − sin ϑeϑ ] = (γ − ã1)E ez = const. ,

E(O) = {[ã0r̃−2 + (2ã1r̃
−3 + γ ) cosϑ]er + (ã1r̃

−3 − γ ) sin ϑeϑ }E . (68)

For the computation of the electrostatic forces that act in the individual problems,
the polarization must also be denoted in an explicit manner. By using Eq. (58), one
finds for the general case

P (I) = D(I) − ε0E(I) = ε0(εr − 1)E(I) + P0 , P (O) = 0 . (69)

With Eq. (5.1)1 and the definition

κ := β + (γ − ã1)(εr − 1) = εr + 2

2εr + 1

[
β + (εr − 1)γ

]
, (70)

the polarization within the sphere is obtained as

P (I) = κε0E [cosϑer − sin ϑeϑ ] = κε0E ez = const. (71)
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It can be seen that both E(I) and P (I) are constant and homogeneous fields within any
considered sphere. Hence, there are no electrostatic volume force densities resulting
from Eq. (51). However, due to the discontinues at the interface, surface force den-
sities arise. To compute them for a specific electromagnetic force model, the jump
and mean value fields of E and P are required. These read at r̃ = 1:

[[E]] = E(O) − E(I) = (ã0 + 3ã1 cosϑ)E er ,

〈E〉 = 1
2 (E

(O) + E(I)) = { 12 (ã0 + [ã1 + 2γ ] cosϑ)er + (ã1 − γ ) sin ϑeϑ }E ,

[[P]] = 0 − P (I) = −κε0E [cosϑer − sin ϑeϑ ] ,

〈P〉 = 1
2 P

(I) = 1
2κε0E [cosϑer − sin ϑeϑ ] . (72)

Also needed are the total densities of the surface charge and of the surface current.
These follow as

qI = q f
I + qb

I = ε0

(q f
I

ε0
− n · [[P]]

ε0

)
= ε0E [α + κ cosϑ] ,

J I = J f
I + Jb

I = Jb
I = −[[P]]w⊥ + n × [[M]] = 0 , (73)

due to the fact that there is no surface normal velocity w⊥, and there is also no
magnetization, M = 0.

5.2 Electrostriction

Since the electric field as well as the polarization are constant in the interior, no
electrostatic volume force densities results from the force models given in Eq. (51),
i.e., f (EM) = 0. Hence, only surface forces f (EM)

I need to be considered. In the given
spherical setting and with the solution of the electric field, the simplification of the
surface force densities in Eq. (52) reveals that only two distinct surface force densities
(electrostatics) are to be considered:

f (1)
I := f LI = f AI = qI 〈E〉 , f (2)

I := fMI = f ELI = q f
I 〈E〉 + n

(〈P〉 · [[E]]) .

(74)
Similar to the analysis in [23], the solution of the elastic problem found by Hira-
matsu–Oka, see [10], is used. In this setup, gravitational effects are ignored. The
balance of linear momentum in regular points is therefore homogeneous and reads
∇ · σ = 0. It is assumed that the material response is simple (“non-piezo”), such that
the mechanical stress tensor σ is solely determined by mechanical strain. Potential
stresses due to electromagnetic fields are neglected. For the isotropic linear-elastic
material and the assumption of small strains, Hooke’s law

σ = λ(∇ · u)1 + μ(∇ ⊗ u + u ⊗ ∇) (75)
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is employed. In this law, u is the displacement field and λ, μ denote Lamé’s param-
eters. As mentioned before, this form of the elastic law assumes that the mechanical
stress has no direct dependency on the electromagnetic field. In classical piezoelec-
tricity the stress tensor is directly influenced by the electric field. However, in our
case, the stresses may be influenced indirectly due to the electromagnetic forces.
It can be noted that if a material possesses a direct dependency upon the electro-
magnetic fields, then there would be too many unknowns and experiments could
not shed insight as to the validity of an electromagnetic force model. By inserting
Hooke’s law into the homogeneous balance of linear momentum, the homogeneous
Lamé–Navier equations are obtained,

(λ + μ)∇(∇ · u) + μ	u = 0 . (76)

Since the setup of the problem bears azimuthal symmetry and a spherical body is
considered, the generic solution of Hiramatsu and Oka can be used, cf. [10]. They
found a series solution for the displacement field that contains powers of the spherical
radial coordinate and Legendre polynomials,

ur (r̃ , ϑ) = R
∞∑

n=0

[

−n λ
μ

+ n − 2

2(2n + 3)
Anr̃

n+1 + nBnr̃
n−1

]

Pn(x) , (77a)

uϑ(r̃ , ϑ) = R
∞∑

n=1

[

− (n + 3) λ
μ

+ n + 5

2(n + 1)(2n + 3)
Anr̃

n+1 + Bnr̃
n−1

]
dPn(x)

dϑ
. (77b)

Note that B1 = 0 in order to ensure that the center of the sphere is not shifted. The
stresses follow as

σrr (r̃ , ϑ) = μ

∞∑

n=0

[
− (n2 − n − 3) λ

μ
+ (n + 1)(n − 2)

2n + 3
Anr̃

n

+ 2n(n − 1)Bnr̃
n−2

]
Pn(x) , (77c)

σϑϑ(r̃ , ϑ) = μ

∞∑

n=0

[
(n + 3) λ

μ
− n + 2

2n + 3
Anr̃

n + 2nBnr̃
n−2

]
Pn(x) +

+ μ

∞∑

n=2

[
− (n + 3) λ

μ
+ n + 5

(n + 1)(2n + 3)
Anr̃

n + 2Bnr̃
n−2

]
d2Pn(x)

dϑ2
, (77d)

σϕϕ(r̃ , ϑ) = μ

∞∑

n=0

[
(n + 3) λ

μ
− n + 2

2n + 3
Anr̃

n + 2nBnr̃
n−2

]
Pn(x) +

+ μ

∞∑

n=1

[
− (n + 3) λ

μ
+ n + 5

(n + 1)(2n + 3)
Anr̃

n + 2Bnr̃
n−2

]
dPn(x)

dϑ
cot(ϑ) ,

(77e)



Review of Rational Electrodynamics: Deformation and Force Models … 265

σrϑ(r̃ , ϑ) = μ

∞∑

n=1

[
− n(n + 2) λ

μ
+ n2 + 2n − 1

(n + 1)(2n + 3)
Anr̃

n

+ 2(n − 1)Bnr̃
n−2

]
dPn(x)

dϑ
, (77f)

σrϕ(r̃ , ϑ) = σϑϕ(r̃ , ϑ) = 0 . (77g)

Themathematical stress dependencies on the polar angle motivate the chosen expan-
sion of the forces in Eq. (80). The usefulness can be seen by regarding the jump
condition of linear momentum and neglecting any mechanical pressure outside of
the sphere. One obtains

n · [[σ ]] = − f (EM)
I ⇒ n · σ (r̃ = 1) = f (EM)

I . (78)

Because the obtained surface forces have radial and polar components, the jump
equation yields two non-trivial relations. With σrr = er · σ · er and σrϑ = er · σ · eϑ

they read:

σrr (r̃ = 1, ϑ) = f (EM)
r (ϑ) , σrϑ(r̃ = 1, ϑ) = f (EM)

ϑ (ϑ) . (79)

Hence it is reasonable to expand the radial force component in terms of Legen-
dre polynomials and analogously the polar component in terms of derivatives of
Legendre polynomials. For the given force expressions the following expansion is
sufficient

f (i)
I = ε0E

2
2∑

k=0

c(i)
k Pk(x)er + ε0E

2
2∑

k=1

d(i)
k

dPk(x)

dϑ
eϑ (80a)

Therein, d(2)
1 = 0 and the other coefficients are given by:

c(1)0 = 1
2αã0 + 1

6κ(ã1 + 2γ ), c(1)1 = 1
2α(ã1 + 2γ ) + 1

2κ ã0, c(1)2 = 1
3κ(ã1 + 2γ ),

d(1)
1 = α(γ − ã1), d(1)

2 = 1
3κ(γ − ã1), d(2)

1 = α(γ − ã1),

c(2)0 = 1
2αã0 + 1

2κ ã1 , c(2)1 = 1
2α(ã1 + 2γ ) + 1

2κ ã0 , c(2)2 = κ ã1 . (81)

The boundary conditions in Eq. (79) are used to find the unknown coefficients An ,
and Bn . As the expansions of the force components in Eq. (81) are finite, only few
of these differ from zero. The last two relations read explicitly:
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μ

∞∑

n=0

[
− (n2 − n − 3) λ

μ
+ (n + 1)(n − 2)

2n + 3
A(i)
n + 2n(n − 1)B(i)

n

]
Pn(x) =

= ε0E
2
[
c(i)
0 P0(x) + c(i)

1 P1(x) + c(i)
2 P2(x)

]
,

(82)

and

μ

∞∑

n=1

[
− n(n + 2) λ

μ
+ n2 + 2n − 1

(n + 1)(2n + 3)
A(i)
n + 2(n − 1)B(i)

n

]
dPn(x)

dϑ
=

= ε0E
2
[
d(i)
1

dP1(x)

dϑ
+ d(i)

2

dP2(x)

dϑ

]
. (83)

It can be seen that it is convenient to introduce the rescaled coefficients:

Ã(i)
n = μ

ε0E 2
A(i)
n , B̃(i)

n = μ

ε0E 2
B(i)
n . (84)

For these, one obtains the following non-homogeneous system of equations:

1
3 (3

λ
μ

+ 2) Ã(i)
0 = c(i)

0 , 1
5 (3

λ
μ

+ 2) Ã(i)
1 = c(i)

1 , 1
7

λ
μ
Ã(i)
2 + 4B̃(i)

2 = c(i)
2 ,

− 1
10 (3

λ
μ

+ 2) Ã(i)
1 = d(i)

1 ,− 1
21 (8

λ
μ

+ 7) Ã(i)
2 + 2B̃(i)

2 = d(i)
2 .

(85)

Since there is no index shift in these equations, it follows that all coefficients Ã(i)
n ,

and B̃(i)
n , are zero for n ∈ N\{0, 1, 2}. This algebraic system of equations has no

solution because Eqs. (85)2 and (85)4 are inconsistent. In order for the system to be
solvable the first coefficients in the force expansion need to satisfy

c1 = −2d1 . (86)

It turns out that this condition is necessary for the boundary value problem to be
well posed, see the discussion in the next section. Note that in the cases (I)–(IV)
condition (86) is fulfilled. Then, the linear system can be solved and the solution
reads

Ã(i)
0 = 3c(i)

0

3 λ
μ

+ 2
, Ã(i)

1 = 5c(i)
1

3 λ
μ

+ 2
,

Ã(i)
2 = 21(c(i)

2 − 2d(i)
2 )

19 λ
μ

+ 14
, B̃(i)

2 = (7 + 8 λ
μ
)c(i)

2 + 3 λ
μ
d(i)
2

38 λ
μ

+ 28
. (87)

The question as to why the system cannot be solved in the mixed case (V) and how
to address this problem is discussed in the next section.
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5.3 Total Force Analysis

The total force on the spheres is solely given due to surface force densities. For the
sake of the following argument, consider an expansion of the surface force density
similar to that of Eq. (80):

f (EM)
I =

∞∑

k=0

ckPk(x)er +
∞∑

k=1

dk
dPk(x)

dϑ
eϑ . (88)

Then, since the radial and polar base vector are given by

er = sin(ϑ)
(
cos(ϕ)ex + sin(ϕ)ey

) + cos(ϑ)ez ,

eϑ = cos(ϑ)
(
cos(ϕ)ex + sin(ϕ)ey

) − sin(ϑ)ez , (89)

it follows that the total force is given by

F (EM) =
∫

A

f (EM)
I dA = R2

2π∫

ϕ=0

π∫

ϑ=0

f (EM)
I sin ϑ dϑ dϕ = 4

3πR2(c1 + 2d1)ez . (90)

This is due to the fact that the only ϕ-dependence in the x and y-component is given
by the cosine and sine function, respectively. However, it is very surprising that
also for the z-component from a general expansion as in Eq. (88) only two terms,
namely c1P1(x)er and d1

dP 1(x)
dϑ eϑ , survive the integration. For static equilibrium

one requires the total force on a body to vanish. Hence, one recovers the solvability
condition in Eq. (86). Another possibility would be to introduce a more realistic
bearing of the sphere in order to obtain a well-posed problem. The simplest way was
to introduce a bearing in the center of the sphere. From the free body diagram one
would then find the bearing force to be equal but opposite in sing to the force in
Eq. (90). However, a point force on an elastic continuum body introduces singular
stresses,whichwere neglected in the elastic solution inEq. (77). Therefore,we refrain
from investigating the mixed case (V) and proceed to analyze the solution for the
cases (I)–(IV).

5.4 Displacement Solutions

By inserting the coefficients fromEq. (87) into the solution inEqs. (77a) and (77b) one
obtains the displacement field for the different materials. In Fig. 3 the displacement
solutions are visualized by plotting the original spherical shape, the surface displace-
ment and the deformed shaped. It turns out that the fourth mixed case (IV) looks
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Fig. 3 Displacement figures for different dielectrics in a, b and a as well as different force models
(1) and (2) in every plot. aLinear dielectric P = ε0χE;bReal charge electret qfI = Q

Asph
; cOriented

dipole P = P0ez

similar to the second case in Fig. 3b and is therefore suppressed. Due to azimuthal
symmetry only one half of a slice through the sphere is shown. Furthermore, for each
of the three cases two the displacement solutions u(1) and u(2), corresponding to the
two different force expression f (1) and f (2) from Eq. (74), are shown.

From the figure it can be seen that the two different force expressions yield similar
deformation figures for a linear dielectric, Fig. 3a, but the displacements have dif-
ferent magnitudes. Note that in both plots the same scaling was applied. In contrast
to that the displacement predictions are identical for the real charge electret in Fig.
3b. The most significant difference arises for the oriented dipole model in Fig. 3c, in
which not only the quantitative behavior is different but also the qualitative shape.
The deformation due to the force expression f (1) results in a mildly oblate spheroid
whereas the f (2) yields a more distinct prolate shape.

Note that in general, the mechanical response i.e., the deformation of the sphere
influences the electric field as well. The boundary conditions change as the shape
deforms. However, for the current situation the deformations are considered to be
small and therefore this effect is neglected.

This analysis shows that the choice of a particular forcemodel can have significant
influence on the mechanical behavior of deformable bodies. However, a difference
in the mechanical response may also arise for rigid bodies, as will be shown in the
next section.

6 Total Forces and Moments Between Spherical Magnets

We consider the interaction between two spherical rigid permanent magnets, homo-
geneously magnetized by M (I)

0 and M (II)

0 of radii R(I) and R(II), respectively: Fig. 4. The
magnetic field of the i-th magnet is given by, see [7, 14],
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Fig. 4 Interacting spherical magnets with magnetizations M (I) = M (I)
0 ez and M (II) = M (II)

0 e′
z . The

bar coordinate system is rotated about the x-axis by an angle of α, which represents the orientation
angle

Bi = 2
3

μ0Mi
0R

3
i

r3i

(
cos(ϑi )eir + 1

2 sin(ϑi )eiϑ
)
. (91)

The total magnetic field is then a superposition of these. The mechanical interaction
due to these magnetic fields is given by the total force and total moment, which are
defined as

F(EM) =
∫

f (EM) dV +
∫

f (EM)
I dA ,

M (EM) =
∫

x × f (EM) dV +
∫

x × f (EM)
I dA . (92)

Note that the electromagnetic moment is only due to force densities, i.e., possible
origin-independent moments are neglected. This of course weakens the significance
of the following analysis. In order to perform a complete investigation, one needs to
introduce another balance, namely the balance of electromagnetic angular momen-
tum, s,

∂s
∂t

− ∇ · π = −m(EM) , (93)

where π are couple stresses and m(EM) is the electromagnetic moment density. How-
ever, asπ andm(EM) are additional unknowns, we neglect them in order to simplify the
analysis. Furthermore note that the existence of a moment density m(EM) independent
of f (EM) implies that matter that interacts with electromagnetic fields is always polar
from a mechanical point of view.
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In a magnetostatic setting with constant magnetization the force expressions in
Eq. (51) reduce to

f L = fM = 0 , f A = −∇ · (M ⊗ B) , f EL = μ0M · (∇ ⊗ H) , (94)

with the corresponding surface forces

f LI = (n × [[M]]) × 〈B〉 , fMI = −n(〈B〉 · [[M]]) ,

fAI = (n × [[M]]) × μ0〈H〉 + (n × [[B]]) × 〈M〉 − n · [〈M〉 ⊗ [[B]] + [[M]] ⊗ 〈B〉] ,

f ELI = n([[B]] · 〈M〉) − n[[μ0
2 M · M]] . (95)

In order to obtain the total force and total moment acting on the second magnet (II)
due to the first one, the force expression are best represented in the coordinates of
the second magnet. Note that since a magnet cannot be self-accelerated without any
external influences. Therefore, only products of M (II) and B(I) survive the integration.
For example, for the Lorentz force density and x ∈ Ω(II)

f LI = (n × [[M]]) × 〈B〉 = (n × [[M (II)]]) × (
B(I) + 〈B(II)〉

)
(96)

where B(I) is continuous, and the total force is given by

FL =
∫

∂Ω(II)

(n × [[M (II)]]) × B(I) dA . (97)

Therefore, the force densities are replaced by effective ones, neglecting products
of M (II) and B(II). For the coordinate systems in Fig. 4 the (effective) dimensionless
surface force densities f̃ (EM)

I = f (EM)
I / f̂ are given by:

f̃ LI = sin ϑ ′e′
ϕ × B̃(I) , f̃MI = n(B̃(I) · e′

z) , f̃ ELI = 0 ,

f̃ AI = sin ϑ ′e′
ϕ × B̃(I) + cosϑ ′ B̃(I) , (98)

where f̂ = μ0M
(I)

0 M
(II)

0 and B(I) = μ0M
(I)

0 B̃(I). The volumetric force densities normal-
ized with f̂ R−1

(II) read:

f̃ L = f̃M = 0 , f̃ A = − f̃ EL = −e′
z · (∇̃ ⊗ B̃(I)) . (99)

In order to obtain the total force on the second magnet, the surface force densities
are integrated across the surface of the second magnet and the volumetric forces
across its volume. There the magnetic field B̃(I) is expressed in terms of the {x̄, ȳ, z̄}-
coordinates. This is done by noting that with

x′ = x − xM , d = ||xM|| , (100)
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it follows that:

r̄ sin(ϑ̄) cos(ϕ̄) = r sin(ϑ) cos(ϕ) ,

r̄ sin(ϑ̄) sin(ϕ̄) = r sin(ϑ) sin(ϕ) − d cos(β) ,

r̄ cos(ϑ̄) = r cos(ϑ) − d sin(β) . (101)

Furthermore, the bar system is connected to the dashed one via

e′
y = cos(α)ēy + sin(α)ēz , e′

z = − sin(α)ēy + cos(α)ēz , (102)

Moreover, it can be shown with some effort that the resulting forces are all equal
independently of the model:

FL = FM = FA = FEL . (103)

It is suspected in [23] that all force models yield the same total force and later on
proved in [22]. From the experimental point of view this is bad news because a
measurement of the force would not allow us to identify the most realistic force
density model. However, for the moments the situation is different. If two different
functions yield the same value after integration, theirweighted integrals are in general
not equal. We find for the moments:

ML = f̂ R3
(II)

∫

∂Ω(II)

sin ϑ ′e′
ϕ(e′

r · B̃(I)) d Ã ,

MA = − f̂ R3
(II)

∫

Ω(II)

e′
r ×

[
e′
z · (∇̃ ⊗ B̃(I))

]
dṼ +

+ f̂ R3
(II)

∫

∂Ω(II)

e′
r ×

[
(sin ϑ ′e′

ϕ × B̃(I) + cosϑ ′ B̃(I))
]
d Ã ,

MM = f̂ R3
(II)

∫

∂Ω(II)

e′
r ×

[
e′
r (B̃(I) · e′

z)
]
d Ã = 0 ,

MEL = f̂ R3
(II)

∫

Ω(II)

e′
r ×

[
e′
z · (∇̃ ⊗ B̃(I))

]
dṼ . (104)

Most interestingly, the version of the Minkowski model yields no moment in any
configuration of the twomagnets. Therefore, wemay conclude that this version of the
model is unrealistic. The other integrals, unfortunately, need to be calculated numeri-
cally, because the coordinate transformations in Eq. (101) yield complicated expres-
sions for B̃(I). As to be expected, all non-vanishing moments point in x-direction
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Fig. 5 The x-components of the moments exerted on the magnet (II) due to the magnetic field
of the first magnet (I) for different models and for different orientation angles α. Additionally the
position angle β is varied

perpendicular to the plane depicted in Fig. 4. The x-components of the resulting
moments are shown in Fig. 5.

From the figure it is clear, that the total moment on the second magnet is different
for the distinct models. All three models show completely different characteristics.
Not only do they predict different scales of the dimensionless moments, but they
also predict different qualitative behavior. Hence, by measurements the correct force
model for this situation can be found in principle. Of course, performing measure-
ments with spherical magnets is difficult. Therefore, one should analyze cylindrical
magnets as in [23]. However, cylindrical magnets render the mathematical analysis
more complicated.

7 Summary

In this paper the mathematical tools required for the analysis of open systems for
electromagnetic phenomena were presented. Based on these and starting from basic
principlesMaxwell’s equations were derived for open systems in a spatial descrip-
tion in a rational manner. Since electromagnetism is deeply connected with mechan-
ics, the coupling of these two branches of continuum physics was considered. While
in pure electromagnetism there is a consensus on the theory, the situation is dif-
ferent for the coupling of mechanics and electromagnetism, because the forces and
energies are not known for ponderable matter. This conundrum is called Abraham–
Minkowksi controversy and was discussed in detail. Furthermore, one electrostatic
and one magnetostatic exemplary problem were analyzed, namely the deformation
of a dielectric sphere and the forces andmoments between spherical permanent mag-
nets. For both problems it was shown that the prediction of the mechanical behavior
strongly depends on the force model used. This in turn has influences on the electro-
magnetic fields and, in principle, allows by experiment to decide which force model
is correct. The answer might depend on the specific material that is used.
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Fig. 6 Depiction of a regular V and a regular surface A

8 Derivation of Integral Theorems with Singular Surfaces

The derivation of generalized integral theorems relies on the classical integral theo-
rems. Consider a regular volume V and a regular surface A as in Fig. 6.

Then, for a smooth field ψ and the domain V in Fig. 6a one has the theorem of
Gauss, ∫

V

∇ ⊕ ψ dV =
∮

∂V

n ⊕ ψ dA , (105)

with arbitrary product ⊕ ∈ {·,×,⊗}, and the Reynolds transport theorem

d

dt

∫

V

ψ dV =
∫

V

dψ

dt
dV +

∫

V

(∇ · w)ψ dV =
∫

V

∂ψ

∂t
dV +

∫

∂V

(n · w)ψ dA ,

(106)
where the total time derivative in spatial coordinates is given by

dψ(xs, t)
dt

= ∂ψ

∂t
+ w · (∇ ⊗ ψ) . (107)

For a smooth field f and the surface A in Fig. 6b the theorem of Kelvin–Stokes
holds, ∫

A

e · (∇ × f ) dA =
∮

∂A

τ · f d� . (108)

By noting that ν = τ × e the so-called surface divergence theorem can be derived:
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∮

∂A

ν · f d� =
∮

∂A

τ · (e × f ) d� =
∫

A

e · (∇ × [e × f ]) dA

=
∫

A

[∇I · f − (e · f )(∇ · e)] dA , (109)

where the surface nabla operator is defined as

∇I · f = (1 − e ⊗ e) ·· (∇ ⊗ f ) . (110)

In there 1 denotes the unit tensor and the double contraction is defined as:

(a ⊗ b) ·· (c⊗ d) = (a · c)(b · d) . (111)

Note that H = − 1
2∇ · e the curvature of the surface.

A similar theorem as the Reynolds transport theorem can be derived for the
temporal change of a flux through a surface A. First, by use of Nanson’s formula
one has

d

dt

∫

A

e · f dA =
∫

A

e ·
[
d f
dt

+ (∇ · w) f − f · (∇ ⊗ vs)
]
dA

=
∫

A

e ·
[
∂ f
∂t

+ w · (∇ ⊗ f ) + (∇ · w) f − f · (∇ ⊗ w)

]
dA .

(112)

Noting that

∇ × ( f × w) = (∇ · w) f + w · (∇ ⊗ f ) − (∇ · f )w − f · (∇ ⊗ w) (113)

the surface transport theorem is compactly written as

d

dt

∫

A

e · f dA =
∫

A

e ·
[
∂ f
∂t

+ (∇ · f )w + ∇ × ( f × w)

]
dA . (114)

If the theorem of Kelvin–Stokes is applied, another convenient representation is
obtained

d

dt

∫

A

e · f dA =
∫

A

e ·
[
∂ f
∂t

+ (∇ · f )w
]
dA +

∮

∂S

τ · ( f × w) d� . (115)

In order to generalize these theorems to domains of integration cut by singular
surfaces or singular lines, the classical theorems are applied to the regular subregions.
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When the results are summed up the jump at the singular surface appears. All of the
following theorems can be found in [25] or [21], but they are presented here again
for the sake of convenience.

8.1 Generalized GAUSS Theorem

Consider a volumetric region Ω cut by a singular surface I as in Fig. 2. Then Eq.
(105) can be applied to both regular regions Ω± with boundaries ∂Ω± = Γ ± ∪ I

∫

Ω±

∇ ⊕ ψ dV =
∮

∂Ω±

n ⊕ ψ dA =
∫

Γ ±

n ⊕ ψ dA +
∫

I

(∓e) ⊕ ψ dA . (116)

The sum of these equations yields the generalized Gauss theorem:

∫

Ω−∪Ω+

∇ ⊕ ψ dV =
∫

Γ −∪Γ +

n ⊕ ψ dA −
∫

I

e ⊕ [[ψ]] dA , (117)

where the jump is defined as [[ψ]] = ψ+ − ψ− and ψ± are the limits from the
respective side.

8.2 Generalized STOKES Theorem

Analogously to the generalized Gauss theorem, the regular version in Eq. (108) can
be applied to the regional subdomains Γ ± in order to obtain the generalized Stokes
theorem ∫

Γ −∪Γ +

e · (∇ × ψ) dA =
∫

�−∪�+

τ · ψ d� −
∫

�I

τ · [[ψ]] d� . (118)

8.3 Generalized Volumetric Transport Theorem

Now consider Reynolds’ transport theorem for volumetric regions. Again, the clas-
sical theorem from Eq. (106) can be applied to the regular subsets Ω±:

d

dt

∫

Ω±

ψ dV =
∫

Ω±

∂ψ

∂t
dV +

∫

Γ ±

(w · n)ψ dA +
∫

I

(∓wI · e)ψ dA (119)

and hence for the total region
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d

dt

∫

Ω−∪Ω+

ψ dV =
∫

Ω−∪Ω+

∂ψ

∂t
dV +

∫

Γ −∪Γ +

(w · n)ψ dA −
∫

I

(wI · e)[[ψ]] dA . (120)

Furthermore, by means of the generalized Gauss theorem one has

∫

Γ −∪Γ +

(w · n)ψ dA =
∫

Ω−∪Ω+

∇ · (w ⊗ ψ) dV +
∫

I

e · [[w ⊗ ψ]] dA (121)

and therefore

d

dt

∫

Ω−∪Ω+

ψ dV =
∫

Ω−∪Ω+

∂ψ

∂t
dV +

∫

Ω−∪Ω+

∇ · (w ⊗ ψ) dV +
∫

I

e · [[(w − wI ) ⊗ ψ]] dA .

(122)

8.4 Generalized Surface Transport Theorem

Analogously to the volumetric version one obtains the generalized surface transport
theorem. For a singular surface I moving at the velocity wI and a scalar density ψI

the theorem follows as

d

dt

∫

I

ψI dA =
∫

I

(
dIψI

dt
+ (∇I · wI )ψI

)
dA , (123)

where dI/t is the total surface derivative. It is important to note that ψI lives on the
possibly moving surface, see for example [9]. The total surface derivatives need to be
treated with care if material surfaces are considered and additionally material points
are allowed to move relatively on the surface. If, however, a general non-material
surface is considered or a material one without relative motion of the particles on the
surface, then the surface total time derivative is given by

dIψI

dt
= ∂ψI

∂t
+ wI · (∇IψI ) . (124)

This is to say that the surface has no intrinsic particles that are allowed to move
freely.
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8.5 Generalized Surface Flux Theorem

Consider the surface S is cut by a singular line �I from Fig. 1. Then, the surface flux
theorem from Eq. (115) can be applied to both regular subsets S±

d

dt

∫

S±

ψ · e dA =
∫

S±

e ·
[
∂ψ

∂t
+ (∇ · ψ)w

]
dA+

+
∫

�±

τ · (ψ × w) d� +
∫

�I

(∓τ I ) · (ψ × wI ) d� . (125)

Thus the surface flux transport theorem incorporating singular surfaces reads

d

dt

∫

S−∪S+

e · ψ dA =
∫

S−∪S+

e ·
[
∂ψ

∂t
+ (∇ · ψ)w

]
dA +

+
∫

�−∪�+

τ · (ψ × w) d� −
∫

�I

τ I · ([[ψ]] × wI ) d� . (126)

9 Localization Theorem

In oder to find the localized balance law in regular points, the global balance is
considered of a regular surface region in which all singular contributions vanish.
Then, the total domain is given by S = S− ∪ S+ and ∂S = �− ∪ �+. Hence, the
surface transport theorem together with Stokes’s theorem reduce to

d

dt

∫

S

e · f dA =
∫

S

e ·
[
∂ f
∂t

+ (∇ · f )w − ∇ × (w × f )
]
dA . (127)

Furthermore, the right hand side of the balance follows as

d

dt

∫

S

e · f dA =
∫

S

e ·
[
s − ∇ × (

φ − (v − w) × f
)]

dA . (128)

By combining both equations one has

0 =
∫

S

e ·
[
∂ f
∂t

+ (∇ · f )w + ∇ × (
φ − v × f

) − s
]
dA . (129)



278 W. Rickert and W. H. Müller

Fig. 7 Special control
domain constructed for the
localization in singular
points on a line

Since the integration domain is arbitrary and the integrand is continuous, the local
equation follows as

∂ f
∂t

+ (∇ · f )w + ∇ × (
φ − v × f

) = s . (130)

It is interesting to note, that this equation contains both the mapping velocity, w, as
well as the material velocity v. For fields f that are not transported by matter and
have no supply s one simply has

∂ f
∂t

+ (∇ · f )w + ∇ × φ = 0 . (131)

For singular points the situation is more complicated. Consider a tight noose on
S around a section of �I with the area ϒ = ϒ− ∪ ϒ+ and the closed boundary line
∂ϒ = L− ∪ L+, which is depicted in Fig. 7.

For this control surface the application of the transport theorem reads

d

dt

∫

ϒ−∪ϒ+

e · f dA =
∫

ϒ−∪ϒ+

e ·
[
∂ f
∂t

+ (∇ · f )w
]
dA

−
∫

L−∪L+

τ · (w × f ) d� +
∫

�I

τ I · (wI × [[ f ]]) d� . (132)

Furthermore, if the generalized version of Stokes’ theorem is applied to the right
hand side of the balance one has
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d

dt

∫

ϒ−∪ϒ+

e · f dA =
∫

ϒ−∪ϒ+

e · s dA −
∫

L−∪L+

τ · (
φ − (v − w) × f

)
d� +

∫

�I

ν I · s I d� .

(133)
The combination of Eq. (132) and (133) gives

0 =
∫

ϒ−∪ϒ+

e ·
[
∂ f
∂t

+ (∇ · f )w − s
]
dA +

∫

L−∪L+

τ · (
φ − v × f

)
d�

+
∫

�I

[
τ I · (wI × [[ f ]]) − ν I · s I

]
d� . (134)

In the limit, the tight noose contains no area, i.e., ϒ± → 0, the boundary parts L±
reduce to I and the tangent is given by τ = ±τ I

∫

L−∪L+

τ · (w × f ) d� →
∫

�I

τ I · [[w × f ]] d� . (135)

Therefore, one has

0 =
∫

�I

[
τ I · ([[φ + f × (v − wI )]]) − ν I · s I

]
d� . (136)

Since the integration domain is arbitrary the following local form is obtained

τ I · [[φ + f × (v − wI )]] = ν I · s I . (137)

By noting that ν I = eI × τ I this equation can be rewritten

τ I · ([[φ + f × (v − wI )]] − s I × eI ) = 0 . (138)

Since the bracket is parallel to the normal eI one may multiply the bracket with eI×
to find

eI × [[φ + f × (v − wI )]] = s I , (139)

where eI · s I is assumed.

References

1. Abraham, M.: Zur Elektrodynamik bewegter Körper. In: Rendiconti del Circolo Matematico
di Palermo (1884-1940), 28(1), 1–28 (1909)



280 W. Rickert and W. H. Müller

2. Barnett, S.M., Loudon, R.: On the electromagnetic force on a dielectric medium. J. Phys. B:
At. Mol. Opt. Phys. 39(15), 671–684 (2006)

3. Bethune-Waddell, M., Chau, K.J.: Simulations of radiation pressure experiments narrow down
the energy and momentum of light in matter. Rep. Prog. Phys. 78(12) (2015)

4. Chang, J.S., Kelly, A.J., Crowley, J.M.: Handbook of Electrostatic Processes. Taylor & Francis
(1995). ISBN: 9781420066166

5. Datsyuk, V.V., Pavlyniuk, O.R.: Maxwell stress on a small dielectric sphere in a dielectric.
Phys. Rev. A 91(2) (2015)

6. Feynman, R.P., Leighton, R.B., Sands, M.L.: The Feynman Lectures on Physics. 2. The Elec-
tromagnetic Field. Addison-Wesley (1965)

7. Fitzpatrick, R.: Classical Electromagnetism (2006)
8. Fitzpatrick, R.: Maxwell’s Equations and the Principles of Electromagnetism. Infinity Science

Press (2008)
9. Fosdick, R., Tang, H.: Surface transport in continuum mechanics. Math. Mech. Solids 14(6),

587–598 (2008)
10. Hiramatsu, Y., Oka, Y.: Determination of the tensile strength of rock by a compression test of

an irregular test piece. Int. J. Rock Mech. Min. Sci. Geomech. Abst. 3(2), 89–90 (1966). ISSN:
0148-9062

11. Hutter, K., Jöhnk, K.: Continuum Methods of Physical Modeling. Springer, Berlin (2004)
12. Hutter, K., Ven, A.A.F., Ursescu, A.: Electromagnetic Field Matter Interactions in Thermoe-

lastic Solids and Viscous Fluids. Springer (2006)
13. Ivanova, E.,Vilchevskaya, E. andMüller,W.H.:AStudy ofObjectiveTimeDerivatives inMate-

rial and Spatial Description. In: Altenbach, H., Goldstein, R., Murashkin, E. (eds.) Mechanics
forMaterials andTechnologies. Advanced StructuredMaterials, vol. 46, pp. 195–229. Springer,
Cham (2017)

14. Jackson, J.D.: Classical electrodynamics, 3rd edn. Wiley (1999)
15. Kinsler, P., Favaro, A., McCall, M.W.: Four poynting theorems. Eur. J. Phys. 30(5), 983–993

(2009)
16. Kovetz, A.: Electromagnetic Theory. Oxford University Press, Oxford (2000)
17. Liu, I.: Continuum Mechanics. Springer, Berlin (2002)
18. Lüders, K., Pohl, R.O. (eds.): Pohl’s Introduction to Physics. Springer International Publishing

(2018)
19. Mansuripur, M.: Resolution of the Abraham-Minkowski controversy. Opt. Commun. 283(10),

1997–2005 (2010)
20. Minkowski, H.: Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten

Körpern. Math. Ann. 68(4), 472–525 (1910)
21. Müller, I.: Thermodynamics. Interaction ofMechanics andMathematics Series. Pitman (1985).

ISBN: 9780273085775
22. Reich, F.A.: Coupling of continuum mechanics and electrodynamics: an investigation of elec-

tromagnetic force models by means of experiments and selected problems. Doctoral Thesis.
Berlin: Technische Universität Berlin (2017)

23. Reich, F.A. and x Müller, F.A.: Examination of electromagnetic powers with the example of a
Faraday disc dynamo. Contin. Mech. Thermody. 30(4), 861–877 (2018)

24. Reich, F.A., Stahn, O. and Müller, W.H.: A review of electrodynamics and its coupling with
classical balance equations. In: APM–Proceedings of XLIII International Summer School, pp.
367–376 (2015)

25. Slattery, J.C., Sagis, L., Oh, E.S.: Interfacial Transport Phenomena. Springer, US (2007)
26. Truesdell, C.A. and Toupin, R.: The classical field theories. In: Handbuch der Physik, Bd. III/1.

Berlin: Springer, 226–793; appendix, 794–858 (1960)


	Editorial Preface
	Contents
	 On Variational Methods of Investigation of Mathematical Problems for Thermoelastic Piezoelectric Solids
	1 Introduction
	2 Dynamic Three-Dimensional Problem
	3 Static Three-Dimensional Problem
	4 Conclusions
	References

	 On Nonparametric Kernel-Type Estimate of the Bernoulli Regression Function
	1 Introduction
	2 Assumptions and Notation
	3 Asymptotic Normality of Statistics Un and Tn
	4 Application of the Statistic Tn for Hypothesis Testing 
	References

	 Scaling Property for Fragmentation Processes Related to Avalanches
	1 Introduction
	2 Scaling Property for Jump Processes
	3 Scaling Property for the SDE of Fragmentation
	4 Numerical Results
	References

	 Conflict Resolution Models and Resource Minimization Problems
	1 Introduction
	2 Description of Mathematical Models
	3 First Mathematical Model in the Case of Constant Coefficients
	4 Computer Modeling in the Case of Variable Model Coefficients. Optimization of Management Parameters
	5 Conclusion
	References

	 Modeling of Extreme Events and Regional Climate Variability on the Territory of the Caucasus (Georgia)
	1 Introduction
	2 Problem Formulation
	2.1 Data and Methodology

	3 Results and Discussion
	4 Conclusions
	References

	 Extending the ρLog Calculus with Proximity Relations
	1 Introduction
	2 Preliminaries
	2.1 Terms, Hedges, Contexts, Substitutions
	2.2 Proximity Relations

	3 ρLog-prox: ρLog with Proximity Relations
	3.1 Syntactic Matching and Proximity Matching Problems
	3.2 ρLog-prox Programs and Proximity Relations

	4 Solving Proximity Problems
	5 Conclusion
	References

	 Specification and Analysis of ABAC Policies in a Rule-Based Framework
	1 Introduction
	2 Preliminaries
	2.1 The ρLog System
	2.2 The Operational Model of ABACα

	3 A Rule-Based Framework for ABACα
	3.1 Rules for the Policies of the Configuration Points
	3.2 Rules for the Operational Model
	3.3 Safety Analysis

	4 Conclusion
	References

	 A Strategic Graph Rewriting Model of Rational Negligence in Financial Markets
	1 Introduction
	2 Background
	2.1 Asset-Backed Securities
	2.2 Port Graph Rewriting

	3 The ABS-GTS Model
	4 Model Properties
	5 Conclusions
	References

	 On Lie Algebras with an Invariant Inner Product
	1 Introduction
	2 Cohomology and Cyclic Cohomology
	3 Deformations
	4 Dimension 3
	5 4-Dimensional Lie Algebras with Invariant Inner Product
	5.1 The Direct Sum mathfraksl(2,mathbbC)oplusmathbbC and Its Real Forms
	5.2 The Complex Diamond Algebra and Its Two Real Forms
	5.3 The Real Diamond Algebra
	5.4 The Real Oscillator Algebra

	6 5-Dimensional Metric Lie Algebras
	6.1 The Direct Sum mathfraksl(2,mathbbC)oplusmathbbC2 and Its Real Forms
	6.2 The Complex Diamond Algebra Plus mathbbC
	6.3 The Real Diamond Algebra Plus mathbbR
	6.4 The Oscillator Algebra Plus mathbbR
	6.5 The Nilpotent Lie Algebra W3

	References

	 Study of Three-Layer Semi-Discrete Schemes for Second Order Evolution Equations by Chebyshev Polynomials
	1 Introduction
	2 Abstract Hyperbolic Equation with a Constant Self-Adjoint Operator
	2.1 Weighted Second-Order Scheme. A Priori Estimates of Solution to Difference Problems
	2.2 Estimation for Two-Variable Chebyshev Polynomials
	2.3 Proof of Theorem 1
	2.4 Estimates for Chebyshev's Operator Polynomials
	2.5 A Priori Estimates for Difference Analogues of First and Second Order Derivatives
	2.6 Theorems on the Convergence of a Semi-Discrete Scheme
	2.7 Approximation with Splines

	3 Second Order Complete Equation
	4 Remark Concerning Equations with a Variable Operator
	References

	 Notes on Sub-Gaussian Random Elements
	1 Sub-Gaussian and Related Random Variables
	2 Sub-Gaussian Random Elements
	References

	 Localized Boundary-Domain Integro-Differential Equations Approach for Stationary Heat Transfer Equation
	1 Introduction
	2 Localised Green's Formula and Boundary-Domain Integro-Differential Relations
	3 Reduction to Systems of Boundary Domain Integro-Differential Equations
	3.1 The Dirichlet Problem
	3.2 The Robin Problem

	4 Reduction to Segregated Systems of Boundary Domain Integral Equations for the Dirichlet Problem
	References

	 Boundary Value Problems of the Plane Theory of Elasticity for Materials with Voids
	1 Introduction
	2 Basic Equations for Materials with Voids of the 3D Model
	3 Basic (Governing) Equations of the Plane Strain
	4 Kolosov–Muskhelishvili Formulas for (11) System
	5 A Problem for a Circle
	6 A Problem for the Plane with a Circular Hole
	7 Conclusion
	References

	 Objective and Subjective Consistent Criteria for Hypotheses Testing
	1 Auxiliary Notions and Results
	2 Subjective Consistent Criterion for Hypotheses Testing
	3 Objective Consistent Criterion for Hypotheses Testing
	References

	 Review of Rational Electrodynamics: Deformation and Force Models for Polarizable and Magnetizable Matter
	1 Introduction
	2 Balance Laws and Integral Theorems
	3 Rational Electrodynamics
	3.1 Electromagnetic Fields
	3.2 Derivation of Maxwell's Equations in Matter
	3.3 Charges in Materials
	3.4 Universal Connections: The Maxwell-Lorentz-æther Relations

	4 Coupling of Electromagnetism and Mechanics
	5 Dielectrics
	5.1 Electric Fields
	5.2 Electrostriction
	5.3 Total Force Analysis
	5.4 Displacement Solutions

	6 Total Forces and Moments Between Spherical Magnets
	7 Summary
	8 Derivation of Integral Theorems with Singular Surfaces
	8.1 Generalized Gauss Theorem
	8.2 Generalized Stokes Theorem
	8.3 Generalized Volumetric Transport Theorem
	8.4 Generalized Surface Transport Theorem
	8.5 Generalized Surface Flux Theorem

	9 Localization Theorem
	References




