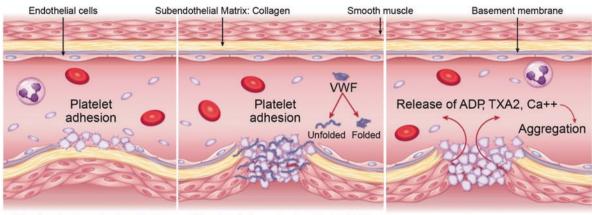
Hemostasis Basics: Figures and Facts

Jun Teruya

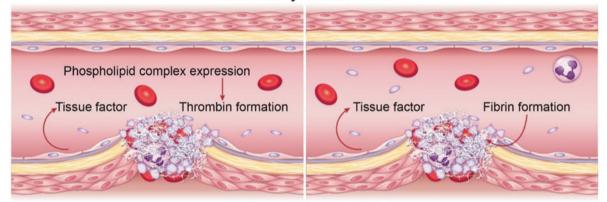
Introduction

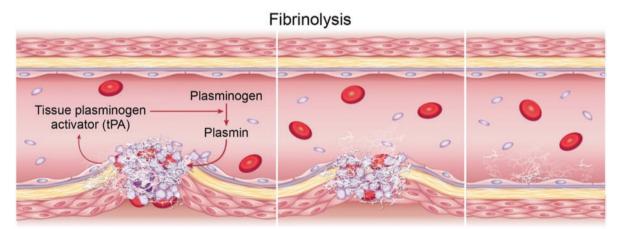
In order to understand hemostatic system easily, visualization is usually more effective than text. While the details of each system are found in other chapters of this textbook, Figs. 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9 give a general overview of the hemostatic system. Explanations for each figure are included in the legend. The tables list characteristics of individual coagulation factors and von Willebrand factor. The half-life of each factor, minimum requirement for hemostasis, and choice of blood components or hemostatic drugs may be clinically useful (Figs. 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9; Tables 1.1, 1.2, and 1.3).


Acknowledgment I am grateful to Lisa Hensch, MD for her review of this chapter.

J. Teruya (🖂)

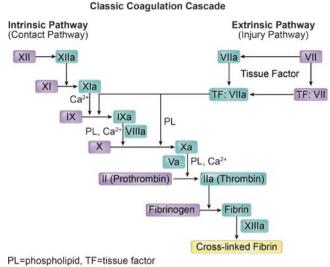
Department of Pathology and Immunology, Division of Transfusion Medicine and Coagulation, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA e-mail: jxteruya@txch.org


Primary Hemostasis


If the flow is slow, platelets bind to collagen via GPIa

If the flow is fast, platelets bind to VWF via GPIb and VWF binds to collagen under shear force.

Secondary Hemostasis



Fibrinogen is converted to fibrin by thrombin.



Fig. 1.1 When there is a defective vessel wall, von Willebrand factor (VWF) binds to the subendothelial matrix (composed of collagen) via the A1 and A3 domains of VWF under shear force. Platelets bind to the A1 domain of VWF via glycoprotein Ib. Platelets bound to the subendothelial matrix are activated. These activated platelets undergo shape change and degranulation, resulting in further platelet activation and the formation of platelet aggregates. This process is called primary hemostasis or platelet hemostasis. The coagulation cascade is activated

by negatively charged surface and tissue factor and ultimately results in the formation of fibrin which is crosslinked via factor XIIIa. Together, crosslinked fibrin and platelet aggregates form a strong clot. This process is known as secondary hemostasis or coagulation hemostasis. Finally, once the defective vessel wall is healed, the clot is removed by the action of plasmin in a process called fibrinolysis. GPIa glycoprotein Ia, GPIb glycoprotein Ib, TXA2 thromboxane A2. © 2019, Texas Children's Hospital. Reproduced/used with permission

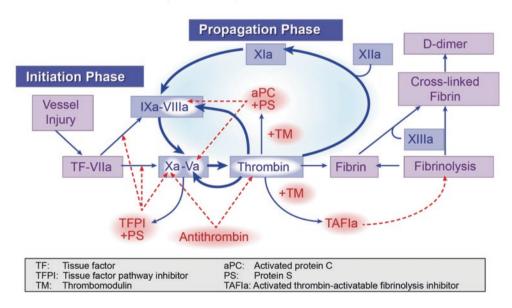
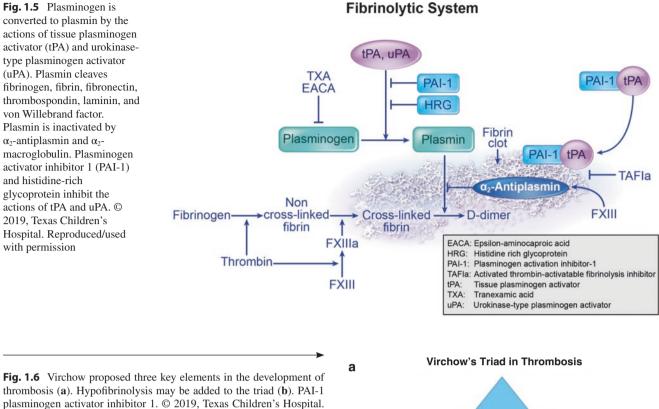
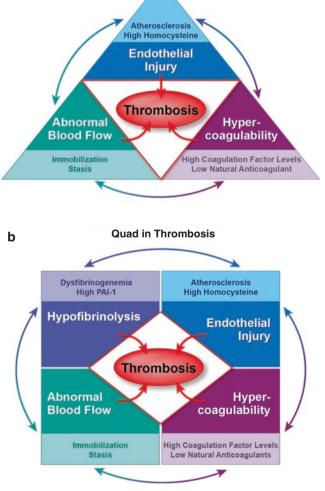
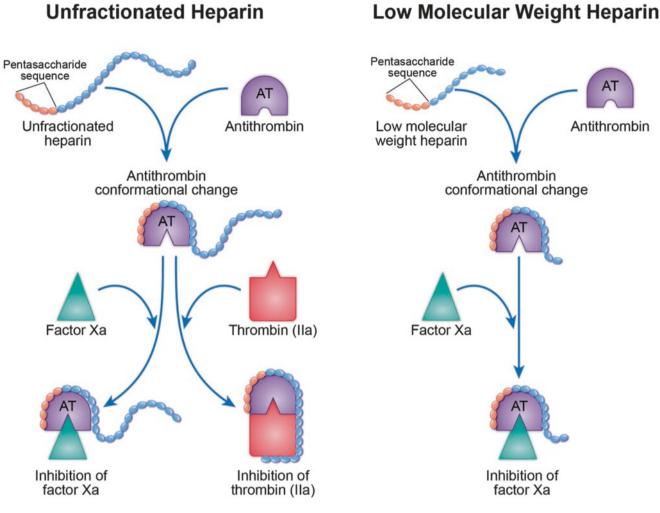


Fig. 1.2 The coagulation process was initially called "waterfall sequence for intrinsic blood clotting" in order to explain fibrin clot formation (Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science. 1964;145:1310–12.). Then, it was called "coagulation cascade." Now it is known that coagulation is not a one-way process. Thrombin provides positive feedback to activate various coagulation factors. See Fig. 1.3. © 2019, Texas Children's Hospital. Reproduced/ used with permission


Fig. 1.4 The interaction of thrombin with fibrinogen results in the release of fibrinopeptide A (FPA) and fibrinopeptide B (FPB). A fibrin monomer is formed after releasing FPA and FPB. The fibrin monomers polymerize spontaneously. Thrombin also activates factor XIII to factor XIIIa, which crosslinks fibrin. Eventually, crosslinked fibrin will be degraded to D-dimer by plasmin. © 2019, Texas Children's Hospital. Reproduced/used with permission


Coagulation Cycle for Hemostasis


Fig. 1.3 When a vessel is injured, the factor VIIa (a small amount of activated form is circulating) and tissue factor complex activates factor IX and factor X to factor IXa and factor Xa, respectively. Tissue factor pathway inhibitor (TFPI) inhibits the activation of factor IX and factor X. Factor Xa together with factor Va, called prothrombinase, activates prothrombin to thrombin. Thrombin activates factor XI, factor VIII, factor V, and factor XIII and converts fibrinogen to fibrin. Thrombin also forms a complex with thrombomodulin on the endothelial cells. This

complex then activates protein C to activated protein C and thrombinactivatable fibrinolysis inhibitor (TAFI) to TAFIa. Thrombin continues activating these factors until the process is completely inhibited by antithrombin and activated protein C. Of note, thrombin formation occurs without involvement of factor XII, which is why hemostasis is maintained in patients with factor XII deficiency. However, when factor XII is activated to factor XIIa, thrombin is formed. © 2019, Texas Children's Hospital. Reproduced/used with permission Reproduced/used with permission

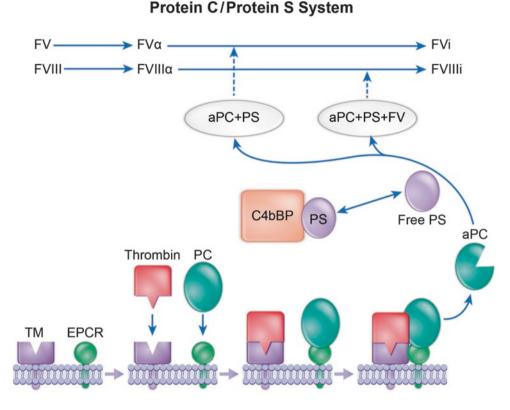


Fig. 1.7 Without heparin or heparinoids, antithrombin (AT) slowly inhibits factor Xa and thrombin. This is the "progressive form" of AT. AT also inhibits factor VIIa, factor IXa, and, to lesser extent, factor XIa. Unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) forms a complex with AT resulting in a confirmational change in AT and accelerating its anticoagulant action. This is called the "immediate form" of AT. The AT and UFH complex

inhibits thrombin and factor Xa immediately. Alternatively, the AT and LMWH complex inhibits primarily factor Xa immediately. Heparin also binds heparin cofactor II which inhibits only thrombin. Heparin additionally functions as an anticoagulant by causing the release of tissue factor pathway inhibitor (TFPI) from endothelial cells. © 2019, Texas Children's Hospital. Reproduced/used with permission

Fig. 1.8 Protein C binds to the endothelial protein C receptor (EPCR), and thrombin makes a complex with thrombomodulin (TM) on the endothelial cell surface. The thrombin thrombomodulin complex activates protein C which is bound to EPCR. Activated protein C (aPC) makes a complex with free protein S and inactivates factor Va. The aPC and protein S complex binds to factor V and inactivates factor VIIIa.

This pathway inhibits procoagulant activity resulting in the prevention of excessive clot formation. C4bBP C4b binding protein, PS protein S, FV factor V, FVa activated factor V, FVi inactivated factor V, FVIII factor VIII, FVIIIa activated factor VIII, FVIIIi inactivated factor VIII, APC activated protein C, PC protein C. © 2019, Texas Children's Hospital. Reproduced/used with permission

Fig. 1.9 In a normal state, procoagulants and anticoagulants are well balanced. AT antithrombin, PC protein C, PS protein S, TFPI tissue factor pathway inhibitor, $\alpha_2 M \alpha_2$ -macroglobulin. © 2019, Texas Children's Hospital. Reproduced/used with permission

Procoagulants Anticoagulants Coagulation factors Normal Natural anticoagulants (AT, PC, PS, TFPI, α₂M and others)

Balance of Hemostasis

Factor	Common name	Molecular weight (Daltons) (activated form)	Concentration in 1 mL plasma	Concentration required for norma hemostasis
Ι	Fibrinogen	340,000 (330,000)	3 mg	100 mg/dL
II	Prothrombin	72,000 (38,000)	100 µg	20–40%
III	Tissue factor	45,000	0.02 µg	
IV	Calcium ions			
V	Proaccelerin	330,000	10 µg	>25%
VII	Proconvertin	50,000 (50,000)	0.5 µg	10–20%
VIII	Antihemophilic factor	280,000	0.1 µg	Minimum of 30% for major surgery; less for minor procedures
IX	Christmas factor	56,000 (46,000)	3–4 µg	25–30%
Х	Stuart factor	55,000 (40,000)	6–8 µg	10–20%
XI	Plasma thromboplastin antecedent	160,000 (160,000)	7 µg	15–25%
XII	Hageman factor	80,000 (80,000)	30 µg	None required
XIII	Fibrin stabilizing factor	320,000 (320,000)	60 µg	>5%
	von Willebrand factor	1.2–5 million	7 μg	50%
	Prekallikrein	100,000	35–45 µg	None required
	High-molecular-weight kininogen	120,000	80 µg	None required

 Table 1.1
 Characteristics of coagulation factors, contact factors, and von Willebrand factor

 Table 1.2
 Characteristics of coagulation factors and von Willebrand factor

Factor	In vivo half-life	Storage characteristics	Choice of components or hemostatic drug for replacement	
Ia	3–5 days	Stable in plasma at 4 °C	Cryoprecipitate, fibrinogen concentrate (RiaSTAP ^{тм} , Fibryga ^{тм})	
II	2-3 days	Stable in plasma at 4 °C	FFP, prothrombin complex concentrate (Kcentra TM)	
V	12 hours	Labile except when frozen	FFP	
VII	3–6 hours	Stable in plasma at 4 °C	Recombinant activated factor VII (NovoSeven TM), FFP, prothrombin complex concentrate (Kcentra TM)	
VIII ^a	8–12 hours	Labile except when frozen	Factor VIII concentrate, recombinant factor VIII	
IX	18-24 hours	Stable in plasma at 4 °C	Factor IX concentrate, recombinant factor IX	
Х	30-40 hours	Stable in plasma at 4 °C	Prothrombin complex concentrate (Kcentra TM , Coagadex TM)	
XI	52 hours	Stable in plasma at 4 °C	FFP, factor XI concentrate (not available in US)	
XII	60 hours	Stable in plasma at 4 °C	Not necessary	
XIII	9–10 days	Stable in plasma	Cryoprecipitate, factor XIII concentrate, recombinant factor XIII	
VWF ^a	9–15 hours	Labile except when frozen	Humate-P TM , Wilate TM , Alphanate TM , Vonvendi TM Cryoprecipitate ^b	

FFP fresh frozen plasma, VWF von Willebrand factor

^aAcute phase reactant ^bIf VWF concentrate or recombinant VWF is not available

 Table 1.3
 Natural anticoagulants

	Activation/mechanism of action	Inhibiting factors
Antithrombin	To immediate form by heparin and heparan sulfate	Thrombin, factor Xa
Protein C	Thrombin- thrombomodulin complex	Factor Va, factor VIIIa
Protein S	Cofactor of activated protein C	Factor Va, factor VIIIa
Tissue factor pathway inhibitor (TFPI)		Factor Xa, tissue factor, and factor VIIa complex
Heparin cofactor II	To immediate form by heparin and dermatan sulfate	Thrombin
α2-macroglobulin		Thrombin, factor Xa