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Abstract This paper is devoted to study of existence of at least two positive solutions
for a nonlinearNeumannboundary value problem involving the discrete p-Laplacian.
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1 Introduction

In this paper, we investigate the existence of two positive solutions for the following
nonlinear discrete Neumann boundary value problem

{−Δ(φp(Δu(k − 1))) + q(k)φp(u(k)) = λ f (k, u(k)), k ∈ [1, N ],
Δu(0) = Δu(N ) = 0,

Nλ, f

where λ is a positive parameter, N is a fixed positive integer, [0, N + 1] is the discrete
interval {0, ..., N + 1}, φp(s) := |s|p−2s, 1 < p < +∞ and for all k ∈ [0, N + 1],
q(k) > 0, Δu(k) := u(k + 1) − u(k) denotes the forward difference operator and
f : [0, N + 1] × lR → lR is a continuous function.
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The theory of difference equations employs numerical analysis, fixed point meth-
ods, upper an lower solutionsmethods (see, for instance, [3, 5, 7, 23]). The variational
approach represents an important advance as it allows to prove multiplicity results,
usually, under a suitable condition on the nonlinearities, see [1, 2, 7–11, 14–22, 24,
25].

In the present paper,we study the problem (Nλ, f ) following a variational approach,
based on a recent result of Bonanno and D’Aguì (see [6]), that assures the existence
of at least two non trivial critical points for a certain class of functionals defined on
infinite-dimensional Banach space. This theorem is obtained by combining a local
minimum result given in [13], together with the Ambrosetti-Rabinowitz theorem
(see [4]). In the application of the mountain pass theorem, to prove the Palais-Smale
condition of the energy functional associated to the nonlinear differential problems,
theAmbrosetti-Rabinowitz condition is requested on the nonlinear term, in particular
this means that the nonlinear term has to be more than p-superlinear at infinity.

In this paper, exploiting that the variational framework of the problem (Nλ, f ) is
defined in a finite-dimensional space, we prove that the p-superlinearity at infinity
of the primitive on the nonlinearity is enough to prove the Palais-Smale condition.
For a complete overview on variational methods on finite Banach spaces and discrete
problems, see [12]. We obtain, here, Theorem2, which gived the existence of two
positive solutions, by requiring an algebraic condition on the nonlinearity (we mean
(6) in 2).

The paper is so organized: Sect. 2, contains basic definitions and main results on
difference equations and some critical point tools, in addition, Lemma2 is given in
order to prove the Palais-Smale condition of the functional associated to problem
(Nλ, f ). Section3 is devoted to our main result. In particular, our main theorem allows
us to obtain two positive solutions with only one hypothesis on the primitive of the
nonlinear term f without any asymptotic behaviour at zero.Moreover, a consequence
(Corollary1) (requiring the p-superlinearity at infinity and the p-sublinearity at zero
on the primitive of f ) of ourmain result is presented in order to show the applicability
of our results.

2 Mathematical Background

In the N + 2-dimensional Banach space

X = {u : [0, N + 1] → lR : Δu(0) = Δu(N ) = 0},

we consider the norm

‖u‖ :=
(

N+1∑
k=1

|Δu(k − 1)|p +
N∑

k=1

q(k)|u(k)|p
)1/p

∀u ∈ X.
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Moreover, we will use also the equivalent norm

‖u‖∞ := max
k∈[0,N+1] |u(k)|, ∀u ∈ X.

For our purpose, it will be useful the following inequality

‖u‖∞ ≤ ‖u‖q−1/p, ∀u ∈ X, where q := min
k∈[1,N ] qk . (1)

Moreover, we mention the classical Hölder norm on X .

‖u‖p =
(

N+1∑
k=0

|u(k)|p
) 1

p

.

We observe that being X a finite dimensional Banach space, all norms defined on it
are equivalent and in particular, there exist two positive constants L1 and L2 such
that

L1‖u‖p ≤ ‖u‖ ≤ L2‖u‖p. (2)

To describe the variational framework of problem (Nλ, f ), we introduce the fol-
lowing two functions

Φ(u) := ‖u‖p

p
and Ψ (u) :=

N∑
k=1

F(k, u(k)), ∀u ∈ X, (3)

where F(k, t) := ∫ t
0 f (k, ξ)dξ for every (k, t) ∈ [1, N ] × lR. Clearly, Φ and Ψ are

two functionals of class C1(X, lR) whose Gâteaux derivatives at the point u ∈ X are
given by

Φ ′(u)(v) =
N+1∑
k=1

φp (Δu (k − 1)) Δv (k − 1) + q(k) |u (k)|p−2 u (k) v (k) ,

and

Ψ ′(u)(v) =
N∑

k=1

f (k, u (k)) v(k),

for all u, v ∈ X . Taking into account that
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−
N∑

k=1

Δ(φp(Δu(k − 1)))v(k) =
N+1∑
k=1

φp(Δu(k − 1))Δv(k − 1), ∀ u v,∈ X,

it is easy to verify, see also [25], that

Lemma 1. A vector u ∈ X is a solution of problem (Nλ, f ) if and only if u is a critical
point of the function Iλ = Φ − λΨ .

Let (X, ‖ · ‖) be a Banach space and let I ∈ C1(X, lR). We say that I satisfies the
Palais-Smale condition (in short (PS)-condition), if any sequence {un}n∈lN ⊆ X such
that

1. {I (un)}n∈lN is bounded,
2. {I ′(un)}n∈lN converges to 0 in X∗,

admits a subsequence which is convergent in X .
Here, we recall the abstract result established in [6], on the existence of two

non-zero critical points.

Theorem 1. Let X be a real Banach space and letΦ,Ψ : X → lR be two functionals
of class C1 such that inf

X
Φ = Φ(0) = Ψ (0) = 0. Assume that there are r ∈ lR and

ũ ∈ X, with 0 < Φ(ũ) < r , such that

sup
u∈Φ−1(]−∞,r ])

Ψ (u)

r
<

Ψ (ũ)

Φ(ũ)
, (4)

and, for each

λ ∈ Λ =
⎤
⎥⎦Φ(ũ)

Ψ (ũ)
,

r

sup
u∈Φ−1(]−∞,r ])

Ψ (u)

⎡
⎢⎣ ,

the functional Iλ = Φ − λΨ satisfies the (PS)-condition and it is unbounded from
below.

Then, for each λ ∈ Λ, the functional Iλ admits at least two non-zero critical points
uλ,1, uλ,2 such that I (uλ,1) < 0 < I (uλ,2).

Here and in the sequel we suppose f (k, 0) ≥ 0 for all k ∈ [1, N ]. We assume that
f (k, x) = f (k, 0) for all x < 0 and for all k ∈ [1, N ]. Put

L∞(k) := lim inf
s→+∞

F(k, s)

s p
, L∞ := min

k∈[1,N ] L∞(k).

We give the following lemma.
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Lemma 2. If L∞ > 0 then Iλ satisfies (PS)-condition and it is unbounded from

below for all λ ∈
]

L p
2

pL∞
,+∞

[
, where L2 is given in (2).

Proof. Since L∞ > 0 we put λ >
L p
2

pL∞
and l such that L∞ > l >

L p
2

pλ
. Let {un} be

a sequence such that lim
n→+∞ Iλ(un) = c and lim

n→+∞ I ′
λ(un) = 0. Put u+

n = max{un, 0}
and u−

n = max{−un, 0} for all n ∈ lN. We have that {u−
n } is bounded. In fact, one has

∣∣Δu−
n (k − 1)

∣∣p ≤ −φp (Δun(k − 1)) Δu−
n (k − 1),

for all k ∈ [1, N + 1], and

q(k)
∣∣u−

n (k)
∣∣p = −q(k) |un(k)|p−2 un(k)u

−
n (k),

for all k ∈ [1, N + 1].
So we have,

N+1∑
k=1

(∣∣Δu−
n (k − 1)

∣∣p + q(k)
∣∣u−

n (k)
∣∣p)

≤ −
N+1∑
k=1

(
φp (Δun(k − 1)) Δu−

n (k − 1) + q(k) |un(k)|p−2 un(k)u
−
n (k)

)
.

So,

‖u−
n ‖p =

N+1∑
k=1

(∣∣Δu−
n (k − 1)

∣∣p + q(k)
∣∣u−

n (k)
∣∣p)

≤ −
N+1∑
k=1

(
φp (Δun(k − 1)) Δu−

n (k − 1) + q(k) |un(k)|p−2 un(k)u
−
n (k)

)

= −Φ ′(un)(u−
n ).

By definition of u−
n and taking into account that f (k, x) = f (k, 0) for all x < 0 and

for all k ∈ [1, N ], we have

Ψ ′(un)(u−
n ) =

N∑
k=1

f (k, un(k)) u
−
n (k) ≥ 0.

So, we get

‖u−
n ‖p ≤ −Φ ′(un)(u−

n ) ≤ −Φ ′(un)(u−
n ) + λΨ ′(un)(u−

n ),
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that is
‖u−

n ‖p ≤ −I ′
λ(un)(u

−
n ), (5)

for all n ∈ lN. Now, from lim
n→+∞ I ′

λ(un) = 0, one has lim
n→+∞

I ′
λ(un)(u

−
n )

‖u−
n ‖ = 0, for

which, taking (5) into account, gives lim
n→+∞ ‖u−

n ‖ = 0. So, we obtain the claim.

And, there is M > 0 such that ‖u−
n ‖ ≤ M , ‖u−

n ‖p ≤ M

L1
= L , 0 ≤ u−

n (k) ≤ L for

all k ∈ [1, N ] for all n ∈ lN.
At this point, by contradiction argument, assume that {un} is unbounded (that is,

{u+
n } is unbounded).

From lim inf
s→+∞

F(k, s)

s p
= L∞(k) ≥ L∞ > l there is δk > 0 such that F(k, s) > ls p

for all s > δk . Moreover,

F(k, s) ≥ min
s∈[−L ,δk ]

F(k, s) ≥ ls p − l (max{δk, L})p + min
s∈[−L ,δk ]

F(k, s)

≥ ls p − max{l (max δk, L)p − min
s∈[−L ,δk ]

F(k, s), 0} = ls p − Q(k)

for all s ∈ [−L , δk]. Hence, F(k, s) ≥ ls p − Q(k) for all s ≥ −L . It follows that

F (k, un(k)) ≥ l (un(k))
p − Q(k) for all n ∈ lN and for all k ∈ [1, N ],

N∑
k=1

F(k,

un(k)) ≥
N∑

k=1

[
l (un(k))

p − Q(k)
] = l‖un‖p

p −
N∑

k=1

Q(k) = l‖un‖p
p − Q, that is,

Ψ (un) ≥ l‖un‖p
p − Q,

for all n ∈ lN. Therefore, one has

Iλ(un) = Φ(un) − λΨ (un) = 1

p
‖un‖p − λΨ (un) ≤ L p

2

p
‖un‖p

p − λl‖un‖p
p + λQ,

that is

Iλ(un) ≤
(
L p
2

p
− λl

)
‖un‖p

p + λQ,

for all n ∈ lN. Since ‖un‖p → +∞ and
L p
2

p
− λl < 0, one has lim

n→+∞ Iλ(un) = −∞
and this is absurd. Hence, Iλ satisfies (PS)-condition.

Finally, we get that Iλ is unbounded from below. Let {un} be such that {u−
n } is

bounded and {u+
n } is unbounded. As before, we obtain Ψ (un) ≥ l‖un‖p

p − Q, for all
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n ∈ lN and, consequently, Iλ(un) ≤
(
L p
2

p
− λl

)
‖un‖p

p + λQ, for all n ∈ lN. Hence,

lim
n→+∞ Iλ(un) = −∞ and the proof is complete.

3 Main Results

In this section, we present the main existence result of our paper. We start putting

Q =
N∑

k=1

q(k).

Theorem 2. Let f : [1, N ] × lR → lR be a continuous function such that f (k, 0) ≥
0 for all k ∈ [1, N ], and f (k, 0) �= 0 for some k ∈ [1, N ]. Assume also that there
exist two positive constants c and d with d < c such that

N∑
k=1

max|ξ |≤c
F(k, ξ)

cp
< q min

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

Q

N∑
k=1

F(k, d)

d p
,
L∞
L p
2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (6)

Then, for each λ ∈ Λ̄ with

Λ̄ =

⎤
⎥⎥⎥⎥⎥⎦
max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
Q

p

d p

N∑
k=1

F(k, d)

,
L p
2

pL∞

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,
q

p

cp

N∑
k=1

max|ξ |≤c
F(k, ξ)

⎡
⎢⎢⎢⎢⎢⎣

,

the problem (Nλ, f ) admits at least two positive solutions.

Proof. We consider the functionals Φ and Ψ given in (3). Φ and Ψ satisfy all
regularity assumptions requested in Theorem1, moreover we have that any critical
point in X of the functional Iλ is exactly a solution of problem (Nλ, f ). Furthermore,
inf
S

Φ = Φ(0) = Ψ (0) = 0. In order to prove our result, we need to verify condition

(4) of Theorem1. Fix λ ∈ Λ̄, from (6) one has that L∞ > 0 and Λ̄ is non-degenerate.

From Lemma2, the functional Iλ satisfies the (PS)-condition for each λ >
L p
2

pL∞
,
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and it is unbounded from below. Now, put r = qcp

p
, an condier u ∈ Φ−1 (]−∞, r ]);

so such a u satisfies

1

p
‖u‖p ≤ r,

so

‖u‖ ≤ (pr)
1
p .

One has

|u| ≤ 1

q
1
p

‖u‖ ≤
(
pr

q

) 1
p

= c.

So,

Ψ (u) =
N∑

k=1

F(k, u(k)) ≤
N∑

k=1

max|ξ |≤c
F(k, ξ),

for all u ∈ X such that u ∈ Φ−1 (]−∞, r ]).
Hence,

sup
u∈Φ−1(]−∞,r ])

Ψ (u)

r
≤ p

q

N∑
k=1

max|ξ |≤c
F(k, ξ)

cp
. (7)

Now, let be ũ ∈ lRN+2 be such that ũ(k) = d for all k ∈ [0, N + 1]. Clearly, ũ ∈ X
and it holds

Φ(ũ) = Qd p

p
, (8)

and so, we have

Ψ (ũ)

Φ(ũ)
= p

Q

N∑
k=1

F(k, d)

d p
. (9)

Therefore, from (7), (9) and assumption (6) one has

sup
u∈Φ−1(]−∞,r ])

Ψ (u)

r
<

Ψ (ũ)

Φ(ũ)
.
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Moreover, taking into account that 0 < d < c and again by (6), we have that

0 < d <

(
q

Q

) 1
p

c. (10)

Indeed, by contradiction, if we suppose that d ≥
(
q

Q

) 1
p

c, we have

N∑
k=1

max|ξ |≤c
F(k, ξ)

cp
≥

N∑
k=1

F(k, d)

cp
≥ q

Q

N∑
k=1

F(k, d)

d p
,

which contradicts (6). Hence by (8) and (10) we get 0 < Φ(ũ) < r .
So, finally we obtain that Iλ admits at least two non-zero critical points and then,

for all λ ∈ Λ̄ ⊂ Λ, these are non zero solutions of (Nλ, f ).

Since we are interested to obtain a positive solution for problem (Nλ, f ), we adopt
the following truncation on the functions f (k, s),

f +(k, s) =
{
f (k, s), if s ≥ 0;
f (k, 0), if s < 0.

Fixedλ ∈ Λ+
c .Workingwith the truncations f +(k, s), sincewehave that f (k(0, s) �=

0 for some k ∈ [1, N ], let u a non trivial solution guaranteed in the first part of the
proof, now, to prove the u is nonnegative, we exploit the u is a critical point of the
energy functional Iλ = Φ − λΨ associated to problem (Nλ, f +). In other words, we
have that u ∈ X satisfies the following condition

N+1∑
k=1

φp(Δu(k − 1))Δv(k − 1) +
N∑

k=1

q(k)φp(u(k))v(k) =
N∑

k=1

f +(k, u(k))v(k), ∀u, v ∈ X.

(11)
From this, taking as test function v = −u−, it is a simple computation to prove that
‖u−‖ = 0, that is u is nonnegative. Moreover, arguing by contradiction, we show
that u is also a positive solution of problem (Nλ, f ). Suppose that u(k) = 0 for some
k ∈ [1, N ]. Being u a solution of problem (Nλ, f ) we have

φp(Δu(k − 1)) − φp(Δu(k)) = f (k, 0) ≥ 0,

which implies that

0 ≥ −|u(k − 1)|p−2u(k − 1) − |u(k + 1)|p−2u(k + 1) ≥ 0.
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So, we have that u(k − 1) = u(k + 1) = 0. Hence, iterating this process, we get
that u(k) = 0 for every k ∈ [1, N ], which contradicts that u is nontrivial and this
completes the proof.

Now, we present a particular case of Theorem2.

Corollary 1. Assume that f is a continuous function such that f (k, 0) > 0 for all
k ∈ [0, N ] and

lim sup
t→0+

F(k, t)

t p
= +∞, (12)

and

lim
t→+∞

F(k, t)

t p
= +∞,

for all k ∈ [0, N ], and put λ∗ = q

p
sup
c>0

cp

N∑
k=1

max|ξ |≤c
F(k, ξ)

.

Then, for each λ ∈ ]0, λ∗[, the problem (Nλ, f ) admits at least two positive
solutions.

Proof. First, note that L∞ = +∞. Then, fix λ ∈ ]0, λ∗[ and c > 0 such that

λ <
q

p

cp

N∑
k=1

max|ξ |≤c
F(k, ξ)

.

From (12) we have

lim sup
t→0+

N∑
k=1

F(k, t)

t p
= +∞,

then there is d > 0 with d < c such that
p

Q

N∑
k=1

F(k, d)

d p
>

1

λ
. Hence, Theorem2

ensures the conclusion.
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