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On the Existence of Positive Solutions for
the Time-Scale Dynamic Equations on
Infinite Intervals

Abdulkadir Dogan

Abstract This paper investigates the existence of positive solutions to time-scale
boundary value problems on infinite intervals. By applying the Leggett-Williams
fixed point theorem in a cone, some new results for the existence of at least three
positive solutions of boundary value problems are found. With infinite intervals, the
theorem can be used to prove the existence of solutions of boundary value problems
for nonlinear dynamic equations dependence on the delta derivative explicitly. Our
results are new for the special cases of difference equations and differential equations
as well as in the general time scale setting.

Keywords Fixed point theorems · Time scales · Dynamic equations · Positive
solutions · Infinite intervals
MSC 34B15 · 39A10

1 Introduction

The time-scale boundary value problems (BVPs) on infinite intervals arise in a variety
of different areas of applied mathematics and physics.

We would like to mention some results of Agarwal and O’Regan [2], Liu [15],
Lian and Ge [13], Lian, Pand and Ge [14], Dogan [8].

The book [2] is an excellent source on Infinite Interval Problems for Differential,
Difference and Integral Equations. For examples as well as the text [2] by Agarwal
and O’Regan for a thorough treatment of the problem

y′′ + q(t) f (t, y) = 0, 0 < t < +∞; y(0) = a, lim
t→+∞ y(t) = 0.

A. Dogan (B)
Department of Applied Mathematics, Faculty of Computer Sciences, Abdullah Gul University,
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e-mail: abdulkadir.dogan@agu.edu.tr

© Springer Nature Switzerland AG 2020
S. Pinelas et al. (eds.), Differential and Difference Equations with Applications,
Springer Proceedings in Mathematics & Statistics 333,
https://doi.org/10.1007/978-3-030-56323-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56323-3_1&domain=pdf
mailto:abdulkadir.dogan@agu.edu.tr
https://doi.org/10.1007/978-3-030-56323-3_1


2 A. Dogan

In [15], Liu studied the following BVP on the half-line

x ′′(t) + f (t, x(t)) = 0, t ∈ (0,+∞),

x(0) = 0, x ′(∞) = y∞ ≥ 0,

where f ∈ C[(0,+∞) × (0,+∞), [0,+∞)], the author proved that the existence
of positive solutions to the above BVP by using a fixed point theorem of cone expan-
sion and compression of norm type.

In [13], Lian and Ge studied the existence of second-order three point BVP on
the half line

x ′′(t) + f (t, x(t), x ′(t)) = 0, 0 < t < +∞,

x(0) = αx(η), lim
t→+∞ x ′(t) = 0,

where α ∈ R, α �= 1 and η ∈ (0,+∞). They established some criteria for the exis-
tence of solutions to the system discussed with suitable conditions imposed on f.

In [14], Lian, Pand and Ge studied the existence of positive solutions for the
following BVP with a p-Laplacian operator on a half-line

(ϕp(x
′(t)))′ + φ(t) f (t, x(t), x ′(t)) = 0, 0 < t < +∞,

αx(0) − βx ′(0) = 0, x ′(∞) = 0.

They proved the existence of at least three positive solutions by using a fixed-point
theorem in a cone due to Avery-Peterson.

In [8], Dogan studied the following p-Laplacian BVPs on time scales

(φp(u
�(t)))∇ + a(t) f (t, u(t), u�(t)) = 0, t ∈ [0, T ]T,

u(0) − B0(u
�(0)) = 0, u�(T ) = 0,

where φp(u) = |u|p−1u, p > 1. We proved the existence of triple positive solutions
for the one-dimensional p-Laplacian BVP by using the Leggett-Williams fixed point
theorem.

Motivated by all the works above, we aim to discuss the existence of at least three
positive solution of time-scale BVPs on infinite intervals

(ϕp(x
�(t)))∇ + φ(t) f (x(t), x�(t)) = 0, t ∈ (0,∞)T, (1.1)

x(0) − βx�(0) = γx�(η), lim
t∈T, t→∞

x�(t) = 0, (1.2)

where ϕp(s) = |s|p−1s, p > 1, (ϕp)
−1 = ϕq , 1/p + 1/q = 1, η ∈ T, η > 0, β,

γ ∈ R, β, γ > 0. Some basic definitions on dynamic equations on time scales can
be found in [5, 6, 9].
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Throughout this paper, our results assume the following conditions:

(C1) f ∈ C([0,∞) × [0,∞), [0,∞)) satisfies f (x, v) ≤ ω(max{|x |, |v|}) with
ω ∈ C([0,∞), [0,∞)) nondecreasing;

(C2) φ ∈ C([0,∞), [0,∞)), ϕq

( ∫ ∞

0
φ(τ )∇τ

)
< ∞,

∫ ∞

0
ϕq

( ∫ ∞

s
φ(τ )∇τ

)

�s < ∞;
(C3) ϒ(δ1, δ2) = min

(x,v)∈[δ1,δ2]×[0,δ2]
f (x, v) > 0, for 0 < δ1 < δ2.

Due to the fact that an infinite interval is noncompact, the discussion about BVPs
on the half line is more complicated, in particular, for the time-scale BVPs on infinite
intervals. The main methods used on the infinite interval problems are the extension
of continuous solutions on the corresponding finite intervals.

Recently, BVPs on time scales for second-order dynamic equations in a finite
interval have been extensively studied by many authors [1, 3, 4, 7, 8, 10, 11, 16,
17]. But there is few papers concerned with the existence of positive solutions to
the time-scale BVPs of dynamic equations on infinite intervals [18]. To the best
knowledge of the author, no one has studied the existence of positive solutions to the
time-scale BVP (1.1) and (1.2) by using Leggett-Williams fixed point theorem. Our
results of this paper extend and supplement some results from [8, 18].

2 Preliminaries

In this section we present some definitions and lemmas, which will be needed in the
proof of the main results.

We consider the space X defined by

X =
{
x ∈ C�[0,+∞)T, sup

t∈[0,∞)T

| x(t) |< ∞, lim
t∈T,t→+∞

x�(t) = 0
}

with the norm ‖x‖ = max{‖x‖1, ‖x�‖∞} where ‖x‖1 = supt∈[0,∞)T
|x(t)|,

‖x�‖∞ = supt∈[0,∞)T
|x�(t)|. By using the standard arguments, we can find that

(X, ‖.‖) is a Banach space.
We define the cone K ⊂ X by

K =
{
x ∈ X : x(t) ≥ 0, x is concave and nondecreasing on [0,+∞)T

}
.

Definition 2.1. Let X be a real Banach space.A nonempty closed convex set K ⊂ X
is called a cone if it satisfies the following conditions

(i) r1u + r2v ∈ K for all u, v ∈ K and all r1 ≥ 0, r2 ≥ 0,
(ii) u ∈ K , −u ∈ K imply u = 0.

Every cone K ⊂ X induces an ordering in X given by x ≤ y if and only if y − x ∈ K .
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Definition 2.2. Amap � is said to be a nonnegative continuous concave functional
on a cone K of a real Banach space X if � : K → [0,∞) is continuous and

�(tu + (1 − t)v) ≥ t�(u) + (1 − t)�(v)

for all u, v ∈ K and t ∈ [0, 1]. Let r1, r2, r3 > 0 be constants,

Kr3 = {x ∈ K : ‖x‖ < r3}, K (�, r1, r2) = {x ∈ K : �(x) ≥ r1, ‖x‖ ≤ r2}.

Lemma 2.3. Suppose that (C2) is satisfied.Then the BVP

(ϕp(x
�(t)))∇ + φ(t) f (x(t), x�(t)) = 0, t ∈ (0,∞)T, (2.1)

x(0) − βx�(0) = γx�(η), lim
t∈T,t→∞

x�(t) = 0 (2.2)

has the unique solution

x(t) =
∫ t

0
ϕq

(∫ ∞
s

φ(τ ) f (x(τ ), x�(τ ))∇τ

)
�s (2.3)

+βϕq

(∫ ∞
0

φ(τ ) f (x(τ ), x�(τ ))∇τ

)
+ γϕq

(∫ ∞
η

φ(τ ) f (x(τ ), x�(τ ))∇τ

)
. (2.4)

Proof. Integrating (2.1) from t to ∞ and using the second condition of (2.2), one
gets

x�(t) = ϕq

(∫ ∞

t
φ(τ ) f (x(τ ), x�(τ ))∇τ

)
. (2.5)

Integrating the above equation from 0 to t, we find

x(t) =
∫ t

0
ϕq

(∫ ∞

s
φ(τ ) f (x(τ ), x�(τ ))∇τ

)
�s + x(0). (2.6)

Using the first condition of (2.2), we get

x(0) − βϕq

(∫ ∞
0

φ(τ ) f (x(τ ), x�(τ ))∇τ

)
= γϕq

(∫ ∞
η

φ(τ ) f (x(τ ), x�(τ ))∇τ

)
.

Hence,

x(0) = βϕq

(∫ ∞
0

φ(τ ) f (x(τ ), x�(τ ))∇τ

)
+ γϕq

(∫ ∞
η

φ(τ ) f (x(τ ), x�(τ ))∇τ

)
.

(2.7)
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Substituting (2.7) in (2.6), we find

x(t) =
∫ t

0
ϕq

(∫ ∞
s

φ(τ ) f (x(τ ), x�(τ ))∇τ

)
�s

+βϕq

(∫ ∞
0

φ(τ ) f (x(τ ), x�(τ ))∇τ

)
+ γϕq

(∫ ∞
η

φ(τ ) f (x(τ ), x�(τ ))∇τ

)
.

This completes the proof of the lemma. �
To prove our main results, we need the following theorem [12].

Theorem 2.4 (Leggett-Williams). Let F : Kr3 → Kr3 be a completely continuous
map and � be a nonnegative continuous concave functional on K such that �(u) ≤
‖u‖, ∀u ∈ Kr3 . Assume that there exist r1, r2, r4 with 0 < r1 < r2 < r4 ≤ r3 such
that

(C4) {u ∈ K (�, r2, r4) : �(u) > r2} �= ∅ and �(Fu) > r2, for all u ∈ K (�,

r2, r4);
(C5) ‖Fu‖ < r1, for all u ∈ Kr1;
(C6) �(Fu) > r2, for all u ∈ K (�, r2, r3), with ‖Fu‖ > r4.

Then F has at least three fixed points u1, u2, u3 satisfying

‖u1‖ < r1, r2 < �(u2), ‖u3‖ > r1, �(u3) < r2.

3 Main Results

Let the nonnegative continuous concave functional � : K → [0,∞) be defined by

�(x) = min
t∈[η,l]T

|x(t)|, ∀x ∈ K ,

where l ∈ T be fixed, such that 0 < η < l < ∞. We can easily see that

�(x) = x(η) ≤ sup
t∈[0,∞]T

|x(t)| ≤ ||x ||.

For convenience, we introduce the following notations. Let

λ1 = ϕq

(∫ ∞

0
φ(τ )∇τ

)
, λ2 = (η + β + γ)ϕq

(∫ l

η

φ(τ )∇τ

)
,

λ3 =
∫ ∞

0
ϕq

(∫ ∞

s
φ(τ )∇τ

)
�s + βϕq

(∫ ∞

0
φ(τ )∇τ

)
+ γϕq

(∫ ∞

η

φ(τ )∇τ

)
.

Now, we define an operator A : K → C[0,+∞) by
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(Ax)(t) =
∫ t

0
ϕq

(∫ ∞

s
φ(τ ) f (x(τ ), x�(τ ))∇τ

)
�s

+ βϕq

(∫ ∞

0
φ(τ ) f (x(τ ), x�(τ ))∇τ

)
+ γϕq

(∫ ∞

η
φ(τ ) f (x(τ ), x�(τ ))∇τ

)
.

The Ascoli-Arzela theorem plays a very important role. But, the Ascoli-Arzela
theorem is not suitable for operators on the half line. Therefore, we need a modified
compactness criterion to verify A is compact.

Lemma 3.1. Let (C1) and (C2) hold. Then A : K → K is completely continuous.

Proof. We divide the proof in the following four parts.

(1) We claim that A : K → K . Indeed, for all x ∈ K , one has that

(Ax)(0) = βϕq

(∫ ∞

0
φ(τ ) f (x(τ ), x�(τ ))∇τ

)

+ γϕq

(∫ ∞

η

φ(τ ) f (x(τ ), x�(τ ))∇τ

)
≥ 0,

(Ax)�(t) = ϕq

(∫ ∞

t
φ(τ ) f (x(τ ), x�(τ ))∇τ

)
≥ 0,

(Ax)�(∞) = 0, (ϕp((Ax)
�))∇(t) = −φ(t) f (x(t), x�(t)) ≤ 0.

This implies that A : K → K .

(2) We claim that A : K → K is continuous. Because f : [0,∞) × [0,∞) →
[0,∞) is continuous, A is continuous. We can readily find this conclusion, so it
is omitted here.

(3) We claim that A : K → K is relatively compact. If � is any bounded subset of
K , then there exists M > 0 such that ||x || ≤ M for all x ∈ �.By condition(C2),
we obtain

(Ax)(t) ≤ ω(M)

∫ ∞
0

ϕq

(∫ ∞
s

φ(τ )∇τ

)
�s

+ βω(M)ϕq

(∫ ∞
0

φ(τ )∇τ

)
+ γω(M)ϕq

(∫ ∞
η

φ(τ )∇τ

)
< ∞,

|(Ax)�(t)| ≤ ω(M)ϕq

(∫ ∞
0

φ(τ )∇τ

)
< ∞.

So A� is uniformly bounded.

Now, we claim that (A�)� is locally equicontinuous on [0,∞)T. For any
N > 0, t1, t2 ∈ [0, N ]T and x ∈ �, without loss of generality we can take
that t1 < t2.

For any ε > 0, there is δ > 0 such that if |t1 − t2| < δ, then
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|(ϕp((Ax)
�))(t1) − (ϕp((Ax)

�))(t2)| ≤ ω(M)

∫ t2

t1

φ(τ )∇τ < ε.

Thus (A�)� is equicontinuous on [0, N ]T. Because N is arbitrary, (A�)� is
equicontinuous on [0,∞)T.

(4) We claim that A : K → K is equiconvergent at∞. For ∀x ∈ �, from condition
(C2), we get

lim
t∈T,t→∞ |(Ax)(t) − (Ax)(∞)| ≤ ω(M) lim

t∈T,t→∞

∫ ∞
t

ϕq

(∫ ∞
s

φ(τ )∇τ

)
�s = 0,

lim
t∈T,t→∞ |(ϕp((Ax)

�))(t) − (ϕp((Ax)
�))(∞)| ≤ ω(M) lim

t∈T,t→∞

∫ ∞
t

φ(τ )∇τ = 0.

So A� is equiconvergent at infinity. Hence, A : K → K is completely continu-
ous and this proves the lemma.

�
The main result of this paper is following:

Theorem 3.2. Assume that conditions (C1)–(C3) are satisfied. Suppose that there
exist numbers r1, r2, r4 such that 0 < r1 < r2 ≤ λ2ϒ(r2,r3)

λ3ω(r3)
r4 < r4 ≤ r3 and

(C7) f (x, v) < ϕp(r1/λ3) for all (x, v) ∈ [0, r1] × [0, r1];
(C8) f (x, v) ≤ ϕp(r3/λ3) for all (x, v) ∈ [0, r3] × [0, r3];
(C9) f (x, v) > ϕp(r2/λ2) for all (x, v) ∈ [r2, r4] × [0, r4];

(C10) λ1 ≤ λ3.

Then BVP (1.1) and (1.2) has at least three positive solutions x1, x2 and x3 satisfying

||x1|| < r1, r2 < �(x2), ||x3|| > r1 and �(x3) < r2.

Proof. The proof is divided into some steps.

(1) We verify that condition (C5) of Theorem 2.4 is satisfied. Assume that there
exists a positive numberσ such that f (x, v) ≤ ϕp(σ/λ3) for all (x, v) ∈ [0,σ] ×
[0,σ], then AK σ ⊂ K σ. Since A : K → K is completely continuous, we get
AK σ ⊂ K . Moreover, for all x ∈ K σ, we get 0 ≤ ||x || ≤ σ. Hence we obtain

|(Ax)(t)| =
∣∣∣∣
∫ t

0
ϕq

(∫ ∞

s
φ(τ ) f (x(τ ), x�(τ ))∇τ

)
�s

+βϕq

(∫ ∞

0
φ(τ ) f (x(τ ), x�(τ ))∇τ

)

+ γϕq

(∫ ∞

η

φ(τ ) f (x(τ ), x�(τ ))∇τ

) ∣∣∣∣
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≤
∫ ∞

0
ϕq

(∫ ∞

s
φ(τ ) f (x(τ ), x�(τ ))∇τ

)
�s

+βϕq

(∫ ∞

0
φ(τ ) f (x(τ ), x�(τ ))∇τ

)

+ γϕq

(∫ ∞

η

φ(τ ) f (x(τ ), x�(τ ))∇τ

)

≤ σ

λ3

(∫ ∞

0
ϕq

(∫ ∞

s
φ(τ )∇τ

)
�s + βϕq

(∫ ∞

0
φ(τ )∇τ

)

+ γϕq

(∫ ∞

η

φ(τ )∇τ

) )
= λ3 · σ

λ3
= σ.

In view of assumption (C10), we obtain

|(Ax)�(t)| =
∣∣∣∣ϕq

(∫ ∞

t
φ(τ ) f (x(τ ), x�(τ ))∇τ

) ∣∣∣∣
≤ σ

λ3
ϕq

(∫ ∞

0
φ(τ )∇τ

)
= λ1 · σ

λ3
≤ σ.

Therefore AK σ ⊂ Kσ. Similarly, we can verify that if the conditions (C7) and
(C8) are satisfied, then AKr1 ⊂ Kr1 and AKr3 ⊆ Kr3 .

(2) We verify that condition (C4) of Theorem 2.4 is satisfied. Select x(t) =
r2+r4
2 , 0 ≤ t < +∞. It can be checked that the condition (C4) of Theorem

2.4. We can easily see that x(t) ∈ K , ||x || = r2+r4
2 ≤ r4, �(x) = r2+r4

2 > r2.
We can write

{x ∈ K (�, r2, r4) : �(x) > r2} �= ∅.

In addition, ∀x ∈ K (�, r2, r4), one has r2 ≤ x(t) ≤ r4, for t ∈ [η, l], ||x || ≤
r4. From condition (C9), we find

�(Ax) = (Ax)(η) =
∫ η

0
ϕq

(∫ ∞
s

φ(τ ) f (x(τ ), x�(τ ))∇τ

)
�s

+βϕq

(∫ ∞
0

φ(τ ) f (x(τ ), x�(τ ))∇τ

)

+ γϕq

(∫ ∞
η

φ(τ ) f (x(τ ), x�(τ ))∇τ

)

≥ ηϕq

(∫ l

η
φ(τ ) f (x(τ ), x�(τ ))∇τ

)
+ βϕq

(∫ l

η
φ(τ ) f (x(τ ), x�(τ ))∇τ

)

+ γϕq

(∫ l

η
φ(τ ) f (x(τ ), x�(τ ))∇τ

)

>
r2
λ2

(
η + β + γ

)
ϕq

(∫ l

η
φ(τ )∇τ

)
= r2.
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(3) We verify that condition (C6) of Theorem 2.4 is satisfied. For ∀x ∈ K (�, r2, r4),
and ||Ax || > r4, one has r2 ≤ x(t) ≤ r3, for t ∈ [η, l], ||x || ≤ r3. By condi-
tions (C3) and (C10), we obtain

�(Ax) = (Ax)(η) =
∫ η

0
ϕq

(∫ ∞

s
φ(τ ) f (x(τ ), x�(τ ))∇τ

)
�s

+ βϕq

(∫ ∞

0
φ(τ ) f (x(τ ), x�(τ ))∇τ

)

+ γϕq

(∫ ∞

η
φ(τ ) f (x(τ ), x�(τ ))∇τ

)

≥ ηϕq

(∫ l

η
φ(τ ) f (x(τ ), x�(τ ))∇τ

)
+ βϕq

(∫ l

η
φ(τ ) f (x(τ ), x�(τ ))∇τ

)

+ γϕq

(∫ l

η
φ(τ ) f (x(τ ), x�(τ ))∇τ

)

≥ ϒ(r2, r3)(η + β + γ)ϕq

(∫ l

η
φ(τ )∇τ

)

=
ϒ(r2, r3)(η + β + γ)ϕq

(∫ l
η φ(τ )∇τ

)
ω(r3)

ω(r3)
( ∫ ∞

0 ϕq
(∫ ∞

s φ(τ )∇τ
)
�s + βϕq

(∫ ∞
0 φ(τ )∇τ

) + γϕq

(∫ ∞
η φ(τ )∇τ

) )

×
(∫ ∞

0
ϕq

(∫ ∞

s
φ(τ )∇τ

)
�s + βϕq

(∫ ∞

0
φ(τ )∇τ

)

+ γϕq

(∫ ∞

η
φ(τ )∇τ

))

= λ2ϒ(r2, r3)

λ3ω(r3)
ω(r3) ×

( ∫ ∞

0
ϕq

(∫ ∞

s
φ(τ )∇τ

)
�s

+ βϕq

(∫ ∞

0
φ(τ )∇τ

)
+ γϕq

(∫ ∞

η
φ(τ )∇τ

))

≥ λ2ϒ(r2, r3)

λ3ω(r3)

( ∫ ∞

0
ϕq

(∫ ∞

s
φ(τ ) f (x(τ ), x�(τ ))∇τ

)
�s

+ βϕq

(∫ ∞

0
φ(τ ) f (x(τ ), x�(τ ))∇τ

)

+ γϕq

(∫ ∞

η
φ(τ ) f (x(τ ), x�(τ ))∇τ

))

≥ λ2ϒ(r2, r3)

λ3ω(r3)
||Ax || >

λ2ϒ(r2, r3)

λ3ω(r3)
r4 ≥ r2.

Hence, by Theorem 2.4, we know that BVP (1.1) and (1.2) has at least three positive
solutions x1, x2 and x3 such that

||x1|| < r1, r2 < �(x2), ||x3|| > r1 and �(x3) < r2.

This completes the proof of the theorem. �
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A Randomized Quasi-Monte Carlo
Algorithms for Some Boundary Value
Problems

Alexander S. Sipin

Abstract This work continues the study of stochastic algorithms for solving bound-
ary value problems, which started in our previous papers. The Dirichlet problem for
the Laplace equation are discussed.We compareMonte Carlo and randomized quasi-
Monte Carlo versions of algorithms. We use the Halton random points constructed
by the Cranley-Patterson method.

1 Introduction

For the numerical solution of boundary value problems, various numerical methods
are used, including statistical modeling methods, i.e. Monte Carlo methods (see, for
example, [1, 2]). Effective statistical modeling procedures have been developed to
solve the equations of radiation transfer, gas dynamics equations, a number of prob-
lems in the field of electrostatics, elasticity theory and others. Statistical algorithms
allow solving boundary value problems both inside and outside a bounded domain,
the boundary of which can have a complex structure. For a wide class of problems,
computational work in such algorithms linearly depends on the dimension of the
domain.

When a statistical algorithm is constructing, the solution of a boundary value
problem iswritten in the formof amathematical expectation of some randomvariable
ξ . That is, the random variable ξ is an unbiased estimator of the solution of the
boundary value problem. Usually unbiased estimators for solving boundary value
problems are constructed on the trajectories of randomwalks. We use a randomwalk
on spheres to solve the Dirichlet problem. To simplify the formulas, we consider
only three-dimensional problem for the Laplace equation. Thus, the paper considers
algorithms for calculating the value of a harmonic function u(x) at point x of a three-
dimensional bounded domain from the known values of this function in boundary
currents. Any simulating procedure for the estimator ξ can be written as a function
of a sequence of independent random variables distributed uniformly over a segment
[0, 1]. Therefore, the solution u(x) can be written as a sum of integrals over some
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s-dimensional unit cube [0, 1]s .Dimension s can reach several hundred. To calculate
such integrals, it is recommended to use the quasi- Monte Carlo method, which is
more efficient than the Monte Carlo method with unlimited increase in sample size.
A numerical comparison of Monte Carlo and quasi-Monte Carlo versions of this
algorithm can be found in [3]. It has been shown that the real benefits of the quasi-
Monte Carlo method begin with sample sizes exceeding 107. The comparison was
carried out with known exact solutions of boundary value problems, since for the
quasi Monte Carlo method it is impossible to estimate the error in the course of
calculations. In this paper we compare numerically Monte Carlo and randomized
quasi-Monte Carlo version of random walk on spheres algorithm. We compare the
statistical errors of these algorithms and determine the sample size at which the
randomized quasi Monte Carlo method becomes more profitable.

2 Application of the Mean Value Theorem for a Harmonic
Function to Calculate its Values

Let u(x) be a harmonic function in a bounded domain D ⊂ R3 and let u(x) be
continuous in D . The distance from the point x ∈ D to the boundary � we denote
by d(x). Let ω(1), ω(2), ... be a sequence independent random vectors uniformly
distributed on a sphere of radius 1 centered at zero.

For any point x ∈ D , by the mean value theorem, we obtain

u(x) = Eu(x + d(x)ω(1)), (1)

where E is a symbol of mathematical expectation of a random variable. Let

x(0) = x, x(k + 1) = x(k) + d(x(k))ω(k + 1), k = 0, 1, 2, ..., (2)

then after m iterations of the formula (1) we have

u(x) = Eu(x(m)). (3)

The random process defined by formula (2) is called Random Walk on Spheres.
Assuming the function u(x) is known, we will use ξ = u(x(m)) as an unbi-

ased estimator for u(x). To get the value of ξ , you need to simulate the sequence
ω(1), ω(2), ..., ω(m). We get it using standard formulas for modeling an isotropic
unit vector

ω1(i) = 2α2i−1 − 1,

ω2(i) =
√
1 − ω2

1(i) cos(2πα2i ), (4)

ω3(i) =
√
1 − ω2

1(i) sin(2πα2i ),
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where α = (α1, α2, ..., α2m) is a point uniformly distributed in the 2m-dimensional

unit cube I
2m = [0; 1]2m .

The mathematical expectation any function f (α) coincides with her integral over
the hypercube, therefore we obtain a representation u(x) in the form of an integral

over hypercube I
2m

. We use this integral to compare the efficiency of Monte Carlo,
quasi-Monte Carlo and randomized quasi-Monte Carlo methods. The test is quite
complicated, especially when the dimension m is several hundred.

We calculate this integral by Monte Carlo, using pseudo-random numbers, which
are generated using multiplicative congruential method. In this case, we denote the
points inside the hypercube byα(n) and call thempseudo-randompoints. The integral
is calculated as the average value of u(x (n)(m)) over a large number N trajectories
of Random Walk on Spheres

u(x) ≈ 1

N

N∑
n=1

u(x (n)(m)), (5)

where x (n)(m) is the last point for n−th trajectory of the Random Walk on Spheres
process.

In the case of quasi-Monte Carlo, to simulate the process, we use non-random
Halton points αH (n), which for any integer n ≥ 0 are defined by formulas

αH (n) = (φb1(n), φb2(n), ...φb2m (n)), (6)

where φbi (n) for 1 ≤ i ≤ 2m is the radical-inverse function [5] in base bi and bi is
the element number i in a sequence of primes 2, 3, 5, 7, ... To calculate the integral,
the formula (5) is again used. The performance of the Monte Carlo and Quasi-Monte
Carlo methods in this test is discussed in our previous work [3].

We use Cranley-Patterson’s rotation (see [4]) to construct a randomized quasi-

MonteCarlomethod. So,weuse randomHaltonpointsαH
t (n) ∈ I

2m
, t = 1, 2 . . . , T,

to simulate the process. They are calculate by formula

αH
t (n) = (αH (n) + α(t)) mod 1, (7)

where function x mod 1 is the fractional part of x and α(t) ∈ I
2m

, t = 1, . . . , T
are independent random points (really pseudorandom points). Now we can use the
estimator

μ = 1

T

T∑
t=1

μt = 1

T

T∑
t=1

(
1

N

N∑
n=1

u(x (n)
t (m))

)
, (8)

where x (n)
t (m) is the last point for n−th trajectory of the Random Walk on Spheres

process constructed using random Holton points. The random variables μt andμ are
an unbiased estimators for u(x) and variance of random variable μt is constant σ 2.
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Therefore, we have

Var(μ) = σ 2

T
= E Ŝ2 = E

(
1

T · (T − 1)

T∑
t=1

(μt − μ)2

)
. (9)

We use 3Ŝ as randomized quasi-Monte Carlo accuracy.
Monte Carlo accuracy defined by asymptotic 99,7% confidence interval

∣∣∣∣∣
∫

I
2m
g(α)dα − 1

N

N∑
n=1

g(α(n))

∣∣∣∣∣ ≤ 3S√
N

, (10)

where S2 is sample variance.
Quasy-Monte Carlo accuracy for smooth function defined by Koksma-Hlawka

inequality [5]. For the Halton points it has the form

∣∣∣∣∣
∫

I
2m
g(α)dα − 1

N

N∑
n=1

g(αH (n))

∣∣∣∣∣ ≤ c(2m)
(ln(N ))2m

N
V (g), (11)

where V (g) is the variation of the function g in the sense of Hardy and Krause. The
variation V (g) is harder to compute than integral itself.

2.1 Numerical Results

The results of calculations by formula (8) when T = 10 for two harmonic functions
in a cube [0, 10]3 are given in Tables 1, 2. Table 1 shows the results of the deviation
of the found approximate values of the harmonic function u = 3x1x22 − x31 + 8x3
from its exact value u(x) = 205.472 at the point x = (1.6, 5.4, 8.7). For m = 1,
the randomezed quasi-Monte Carlo method is better than Monte Carlo. It is seen
that starting from the dimension of the integral 20 (m = 10) and the sample size
N <= 106 Monte Carlo method and randomezed quasi-Monte Carlo method gives
similar results.

The Table 2 shows, that for the value u(x) = 1.714986 of the function u =
1/

√
(x1 + 0.1)2 + x22 + x23 at the point x = (0.2, 0.4, 0.3), both methods gives sim-

ilar results for m ≥ 10 and N ≤ 106.
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Table 1 Deviation of Mean Value Operator iterations for the function u = 3x1x22 − x31 + 8x3 from
the exact value at the point x = (1.6, 5.4, 8.7). Monte Carlo (MC) and randomized quasi-Monte
Carlo (RQM) methods.

m\N 104 MC 104 RQM Err MC Err RQM 106 MC 106 RQM Err MC Err RQM

1 −0.205 −0.005 0.696 0.010 −0.011 0 0.069 8e-5

10 0.643 −0.142 2.110 1.493 0.010 0.002 0.211 0.071

50 0.405 2.036 2.598 2.861 0.373 0.003 0.259 0.176

100 0.178 1.151 2.591 2.183 0.383 0.021 0.260 0.189

150 −0.329 0.552 2.592 1.757 0.363 0.051 0.260 0.115

200 1.122 −0.267 2.605 2.340 0.450 −0.091 0.260 0.247

250 −0.161 0.809 2.580 1.056 0.431 0.026 0.260 0.156

Table 2 Deviation of Mean Value Operator iterations for the function u =
1/

√
(x1 + 0.1)2 + x22 + x23 from the exact value at the point x = (0.2, 0.4, 0.3). Monte Carlo

(MC) and randomized quasi-Monte Carlo (RQM) methods.

m\N 104 MC 104 RQM Err MC Err RQM 106 MC 106 RQM Err MC Err RQM

1 −0.0003 0.0000 0.0033 0.0001 0.0001 0.0000 0.0003 4e-7

10 0.0016 0.0002 0.0062 0.0032 0.0001 0.0000 0.0006 0.0001

50 0.0025 −0.0028 0.0068 0.0047 0.0002 0.0000 0.0007 0.0005

100 0.0014 0.0011 0.0068 0.0075 −0.0001 −0.0001 0.0007 0.0003

150 0.0045 0.0016 0.0067 0.0034 0.0005 −0.0001 0.0007 0.0005

200 0.0019 −0.0023 0.0067 0.0065 0.0006 −0.0004 0.0007 0.0004

250 −0.0011 0.0014 0.0067 0.0043 0.0001 0.0000 0.0007 0.0004

3 The Dirichlet Problem for Harmonic Function

Now, we briefly describe the Random Walk on Spheres algorithm for solving the
Dirichlet problem for the Laplace equation in the domain D . For any ε > 0, �ε

denote an ε− neighborhood of the boundary �. Let τ = min(k : x(k) ∈ �ε) be the
first hitting time of the process x(k) into �ε. The Random Walk on Spheres x(k)
converges to the boundary � with probability 1, hence τ < +∞ with probability 1.
Then τ is a Markov moment for the process x(k) and the equality u(x) = Eu(x(τ ))

is true. Hence, we can use the formula

u(x) ≈ 1

NT

NT∑
n=1

u(x (n)(τ )) (12)

to calculate u(x). Here x (n)(τ ) is the first point lying in �ε for n−th trajectory of the
Random Walk on Spheres.
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Table 3 Random Walk on Spheres. Deviation of Mean Value for the function u =
1/

√
(x1 + 0.1)2 + x22 + x23 from the exact value u(x) = 0.41922 at the point x = (1.1, 0.5, 2).

Monte Carlo (MC) and randomized quasi-Monte Carlo (RQM) methods.

N MC ErrMC RQM ErrRQM L QL Lmax QLmax

103 −0.0023 0.0046 0.0006 0.0046 22 22 154 110

104 −0.0008 0.0015 0.0001 0.0013 22 21 136 138

105 0.00002 0.00048 −0.00003 0.00018 22 22 209 176

106 −0.00007 0.00015 −0.00004 0.00008 22 22 196 197

We use the estimator

u(x) ≈ 1

T

T∑
t=1

μt = 1

T

T∑
t=1

(
1

N

N∑
n=1

u(x (n)
t (τ ))

)
, (13)

where x (n)
t (τ ) is the first point lying in �ε for n−th trajectory of the Random Walk

on Spheres process constructed using randomized Holton points.

3.1 Numerical Results for T = 10

For testing the algorithms, we use the harmonic functions from paper [3] to be able
to compare the results for a randomized quasi-Monte Carlo from this paper with
the results for quasi-Monte Carlo [3]. The results of calculations by formulas (12),
(13) for two harmonic functions in a cube [0, 10]3 are given in Tables 3, 4. In both
examples the parameter ε has been chosen equal to 0.001. In the randomized quasi-
Monte Carlo method, the value τm = min(τ,m) (m = 1500) is used instead of τ.

Variables L and QL denote the average length of the random walk trajectory.
The Lmax and QLmax variables denote the maximum length of the random walk
trajectory. Again, the results of Monte Carlo and randomized quasi-Monte Carlo are
similar when N ≤ 106. We also see that the deviation of the average value from the
exact value does not exceed the statistical error of both Monte Carlo and randomized
quasi-Monte Carlo.

Let’s compare the accuracy of the calculations for quasi-MonteCarlo and random-
ized quasi Monte Carlo, using results [3], presented in Tables 5, 6. Now the column
% shows the relative error of the calculated approximate value of the function. It was
used to compare the accuracy of calculations in the Monte Carlo and Quasi-Monte
Carlo methods (see [3]). Analyzing the data in the corresponding rows of Tables 3
and 5, as well as Tables 4 and 6, we see that the randomization of quasi-Monte Carlo
does not significantly affect the accuracy of the calculations.
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Table 4 Random Walk on Spheres. Deviation of Mean Value for the function u = 3x1x22 − x31 +
8x3 from the exact value u(x) = 478 at the point x = (3, 7, 8). Monte Carlo (MC) and randomized
quasi-Monte Carlo (RQM) methods.

N MC ErrMC RQM ErrRQM L QL Lmax QLmax

103 −3.72 14.57 4.60 14.77 25 24 123 114

104 −0.96 4.59 0,08 4.06 25 25 161 165

105 0,04 1.45 −0,28 0.76 25 25 178 191

106 −0,07 0.46 0,14 0.27 25 25 220 220

Table 5 Random Walk on Spheres. Deviation of Mean Value for the function u =
1/

√
(x1 + 0.1)2 + x22 + x23 from the exact value u(x) = 0.41922 at the point x = (1.1, 0.5, 2).

Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods.

N MC % QMC % L QL Lmax QLmax

104 0.00196 0.47 −0.00376 0.90 22 23 108 105

105 −0.00024 0.06 −0.00120 0.29 22 22 140 194

106 −0.00003 0.01 −0.00021 0.05 22 22 201 210

107 −0.00005 0.01 0.00001 0.002 22 22 201 214

Table 6 Random Walk on Spheres. Deviation of Mean Value for the function u = 3x1x22 − x31 +
8x3 from the exact value u(x) = 478 at the point x = (3, 7, 8).Monte Carlo (MC) and quasi-Monte
Carlo (QMC) methods.

N MC % QMC % L QL Lmax QLmax

104 0,28413 0.06 13,90295 2.91 25 24 122 1257

105 −0.00024 0.29 2,75519 0.58 25 25 160 1257

106 −0,17767 0.04 0,50839 0.11 25 25 178 1257

107 0,09103 0.02 0,12939 0.03 25 25 262 1257

3.2 Numerical Results for T = 100

Now we study the influence of the parameter T on the statistical error in the quasi-
Monte Carlo method. The results of the calculations are in Tables 7 and 8. A com-
parison of the ErrRQM column in Tables 3 and 7 and Tables 4 and 8 shows that
the statistical error of the RQM method increases with increasing T. This is due to
a decrease in N, which leads to an increase in the error of the QMC algorithm. We
also note the practical equality of the values ErrMC and ErrRQM both in Table 7
and in Table 8.



18 A. S. Sipin

Table 7 Random Walk on Spheres. Deviation of Mean Value for the function u =
1/

√
(x1 + 0.1)2 + x22 + x23 from the exact value u(x) = 0.41922 at the point x = (1.1, 0.5, 2).

Monte Carlo (MC) and randomized quasi-Monte Carlo (RQM) methods.

N MC ErrMC RQM ErrRQM L QL Lmax QLmax

102 0.003 0.0048 0.001 0.0049 22 22 116 117

103 −0.00003 0.0015 0.0005 0.0015 22 22 130 135

104 −0.00002 0.00048 −0.00002 0.00042 22 22 215 221

105 −0.00015 0.00015 0.000001 0.00011 22 22 234 217

Table 8 Random Walk on Spheres. Deviation of Mean Value for the function u = 3x1x22 − x31 +
8x3 from the exact value u(x) = 478 at the point x = (3, 7, 8). Monte Carlo (MC) and randomized
quasi-Monte Carlo (RQM) methods.

N MC ErrMC RQM ErrRQM L QL Lmax QLmax

102 2.97 14.53 4.60 13.58 24 25 128 125

103 0.57 4.59 1.60 4.06 25 25 177 145

104 −0,54 1.45 0,23 1.20 25 25 186 172

105 −0,11 0.46 0,04 0.29 25 25 213 259

4 Conclusion

The results of computational experiments allow us to draw the following conclusion:

1. The randomizedquasi-MonteCarlomethod canbe used to solveDirichlet bound-
ary value problem.

2. For a fixed product TN, an increase in the parameter T impairs the accuracy of
the RQM method, when T N ≤ 107.

3. The statistical errors of the Monte Carlo and randomized quasi-Monte Carlo
methods have the same order of smallness,when T N ≤ 107.

4. The statistical error of the randomized quasi-Monte Carlo method can be used
to evaluate the accuracy of the method.

5. When solving a boundary value problem, the randomized quasi-Monte Carlo
method has no advantages over the Monte Carlo method if the sample size is
T N ≤ 107.
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On the Study of Forward Kolmogorov
System and the Corresponding Problems
for Inhomogeneous Continuous-Time
Markov Chains

Alexander Zeifman

Abstract An inhomogeneous continuous-time Markov chain X (t) with finite or
countable state space under some natural additional assumptions is considered. As
a consequence, we study a number of problems for the corresponding forward Kol-
mogorov system, which is the linear system of differential equations with special
structure of the matrix A(t). In the countable situation we have an equation in
the space of sequences l1. The important properties of X (t) (such as weak and
strong ergodicity, perturbation bounds, truncation bounds) are closely connected
with behaviour of the solutions of the forward Kolmogorov system as t → ∞. The
main problems and some approaches for their solution are discussed in the paper.

Keywords Forward Kolmogorov system · Markov chains

1 Introduction

Continuous-time Markov chains are widely used for the study of stochastic models
in the natural and technical sciences, such as queuing theory, biology, chemistry, etc.

Let {X (t), t ≥ 0} be a continuous-time Markov chain with state space X =
{0, 1, 2 . . . }. Denote by pi j (s, t) = P {X (t) = j |X (s) = i }, i, j ≥ 0, 0 ≤ s ≤ t
the transition probabilities of X (t) and by pi (t) = P {X (t) = i} – the probability
that the Markov chain X (t) is in state i at time t . Let p(t) = (p0(t), p1(t), . . . )

T be
the probability distribution vector at instant t . Throughout the paper we assume that
in an element of time h the possible transitions and their associated probabilities are

pi j (t, t + h) =
{

qi j (t)h + αi j (t, h) , if j �= i
1 + qii (t)h + αi (t, h) , if j = i,

i, j ∈ X , (1)
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where all the αi (t, h) are o(h) uniformly in i , i.e. supi |αi (t, h)| = o(h) and

qii (t) = −
∑

k∈X ,k �=i

qik(t).

The matrix Q(t) = (qi j (t))∞i, j=0 is called the intensity (or infinitesimal) matrix of
the chain {X (t), t ≥ 0}.

The Markov chain X (t) is called homogeneous if Q is a constant matrix, and it
is called inhomogeneous in the opposite case.

As a rule, in the inhomogeneous case we will assume that the intensity functions
qi j (t) are locally integrable on the interval [0,∞).

Henceforth it is assumed that the Q(t) is essentially bounded, i.e.

sup
i

|qii (t)| = L(t) ≤ L < ∞, (2)

for almost all t ≥ 0.
In many problems, condition (2) can be weakened and replaced by L(t) < ∞, for

almost all t ≥ 0.
Then the probabilistic dynamics of the process {X (t), t ≥ 0} is given by the

forward Kolmogorov system

d

dt
p(t) = A(t)p(t), (3)

where A(t) = QT (t) is the transposed intensity matrix. All column sums of this
matrix are zeros for any t ≥ 0, and A(t) is essentially nonnegative (i.e. all its off-
diagonal elements are nonnegative for any t ≥ 0).

Throughout the paper by‖ · ‖wedenote the l1-norm, i. e.‖p(t)‖ = ∑
k∈X |pk(t)|,

and ‖Q(t)‖ = sup j∈X
∑

i∈X |qi j |. Let Σ be a set all stochastic vectors, i. e. l1
vectors with non-negative coordinates and unit norm. Hence we have ‖A(t)‖ =
2 supk∈X |qkk(t)| ≤ 2L for almost all t ≥ 0.Hence the operator function A(t) from l1
into itself is bounded for almost all t ≥ 0 and locally integrable on [0;∞). Therefore
we can consider (3) as a differential equation in the space l1 with bounded operator.

It is well known (see [2]) that the Cauchy problem for differential Eq. (3) has a
unique solutions for an arbitrary initial condition, and p(s) ∈ Σ implies p(t) ∈ Σ

for t ≥ s ≥ 0.
Denote by E(t, k) = E(X (t)|X (0) = k) the conditional expected number of ’par-

ticles’ in the system at instant t , provided that initially (at instant t = 0) k ’particles
were present in the system.

In order to obtain perturbation bounds we consider a class of perturbed Markov
chains {X̄(t), t ≥ 0} defined on the same state spaceX as the original Markov chain
{X (t), t ≥ 0}, with the intensity matrix Ā(t) and the same restrictions as imposed on
A(t). It is assumed that ‖ Â(t)‖ = ‖A(t) − Ā(t)‖ ≤ ε, for almost all t ≥ 0, which
means the perturbations are considered to be small.
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Before proceeding to the derivation of the main results of the paper, we recall two
definitions. Recall that a Markov chain {X (t), t ≥ 0} is called weakly ergodic, if
‖p∗(t) − p∗∗(t)‖ → 0 as t → ∞ for any initial conditions p∗(0) and p∗∗(0), where
p∗(t) andp∗∗(t) are the corresponding solutions of (3).AMarkov chain {X (t), t ≥ 0}
has the limiting mean ϕ(t), if limt→∞ (ϕ(t) − E(t, k)) = 0 for any k.

It is clear, therefore, that the study of the qualitative properties and the derivation
of estimates for Markov chains with continuous time is reduced to the study of the
corresponding properties of solutions of the forward Kolmogorov (3) system on Σ .

A general approach to obtaining sharp bounds on the rate of convergence via the
notion of the logarithmic normof an operator functionwas recently discussed in detail
in our papers [34–36]. The first studies in this direction were published since 1980-s
for birth-death models, see [25, 26]. In [34, 35] we have highlighted four fairly broad
classes offinite and countableMarkov chains, forwhich the forwardKolmogorov sys-
tem can be transformed into a system with an essentially nonnegative matrix. More-
over, it turns out that similar results can be obtained for some other models, see,
for example [37]. Computation of the limiting characteristics for such chains using
bounds on the rate of convergence and truncations technique introduced in [30, 33].

The approach is based on studying the norm of the Cauchy operator of the reduced
forward Kolmogorov system by estimation of the so-called logarithmic norm of
an operator function. The method of the complete study of the process X (t) that
describes the number of claims in the system assumes the construction of a) upper
bounds for the rate of convergence of the limit mode, providing that, beginning
from a certain time, say, t∗, the probability characteristics of the process X (t) do
not depend on the initial conditions (up to a given discrepancy); b) analogous lower
bounds which are also very important and provide that the “independence” of the
initial conditions cannot appear before a certain time, say, t∗; c) stability bounds
providing that if the structure of the matrix of intensities of the process is taken into
account in an appropriate way, and the errors in intensities are small, then the basic
characteristics of the process are calculated in an adequate way; d) approximations
to the process by means of truncation by similar processes with a lesser number of
states and construction of the corresponding estimates for the error. Finally, applying
the results of a), c), d) to the system with 1-time-periodic intensities and solving
the forward Kolmogorov system with the simplest initial condition X (0) = 0 for the
truncated process on the interval [t∗, t∗ + 1], as a resultwe obtain all basic probability
characteristics of both the process X (t), and close “perturbed” processes. Note that
the item a) is most important, because after the corresponding bounds are obtained,
the solutions of other problems can be constructed automatically on the base of the
results of [27–34].

Generally speaking, instead of obtaining the solution to the Cauchy problem on
a short time interval by some methods that are approximate anyway, which does not
provide actual information of the real basic properties of the system, we determine
the time interval, on which the Cauchy problem for the forward Kolmogorov system
must really be solved and find this solution.
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It is worth noting that exact estimates of the rate of convergence yield exact esti-
mates of stability (perturbation bounds), see [8, 11, 14, 15, 17, 23, 32] and references
therein. Moreover, such connections and their significance were highlighted in the
recent communication by Mitrophanov, see

http://alexmitr.com/talk_DDE2018_Mitrophanov_FIN_post_sm.pdf.

The approach is based on the special properties of linear systems of differen-
tial equations with essentially nonnegative matrices. Specifically, if the column-wise
sums of the elements of this matrix are identical and equal to, say, −α∗(t), then the
exact upper bound of order exp

{ − ∫ t
0 α∗(u) du

}
can be obtained for the rate of con-

vergence of the solutions of the system in the corresponding metric. Moreover, if the
column-wise sums of the absolute values of the elements of this matrix are identical
and equal to, say, χ∗(t), then the exact lower bound of order exp

{ − ∫ t
0 χ∗(u) du

}
can be obtained for the convergence rate as well. The bounds are obtained in three
steps. At first step one excludes the (0) state from the forward Kolmogorov system
of differential equations and thus obtains the new system with the new intensity
matrix which is, in general, not non-diagonally non-negative. The second step is to
transform the new intensity matrix in such a way that non-diagonally elements are
non-negative and which leads to (loosely speaking) least distance between specifi-
cally defined upper and lower bounds. At third step one uses the logarithmic norm
for the estimation of the convergence rate.

Here the key step is the second one. The transformation is made using a sequence
of positive numbers {di , i ≥ 1}, which does not have any probabilistic meaning and
can be considered as an analogue of Lyapunov functions.

The advantages of this three-step approach is that it allows one to deal with time-
homogeneous and time-inhomogeneous processes and it leads to exact both upper
and lower bounds for the convergence rate. In time-homogeneous case the approach
allows one to obtain the corresponding bounds for the decay parameter and gives an
explicit bounds in total variation norm.

2 General Transformations

Recall that one has introduced A(t) as the transposed intensity matrix Q(t). Thus it
has the form

A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a00(t) a01(t) · · · a0r (t) · · ·
a10(t) a11(t) · · · a1r (t) · · ·
a20(t) a21(t) · · · a2r (t) · · ·
· · ·

ar0(t) ar1(t) · · · arr (t) · · ·
· · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4)

where aii (t) = −∑
k∈X ,k �=i aki (t). Since p0(t) = 1 − ∑∞

i=1 pi (t) due to normaliza-
tion condition, one can rewrite the system (3) as follows:

http://alexmitr.com/talk_DDE2018_Mitrophanov_FIN_post_sm.pdf
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d

dt
z(t) = B(t)z(t) + f(t), (5)

where
f(t) = (a10(t), a20(t), . . . )

T , z(t) = (p1(t), p2(t), . . . )
T ,

B(t)=

⎛
⎜⎜⎜⎝

a11−a10 a12−a10 · · · a1r −a10 · · ·
a21−a20 a22−a20 · · · a2r −a20 · · ·

· · · · · · · · · · · · · · ·
ar1−ar0 ar2−ar0 · · · arr −ar0 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

. . .

⎞
⎟⎟⎟⎠. (6)

Each entry of B depends on t . See detailed discussion of this transformation
in [7, 27].

There is the following simple relationship between pairs, z(i) = z(i)(t), t ≥ 0, i =
1, 2, of solutions of (5) and pairs of solutions of (3), p(i) = p(i)(t), t ≥ 0, i = 1, 2:

∥∥∥p(1) − p(2)
∥∥∥
1

=
∣∣∣p(1)

0 − p(2)
0

∣∣∣ +
∑
i≥1

∣∣∣p(1)
i − p(2)

i

∣∣∣

=
∣∣∣∣∣∣1 −

∑
i≥1

p(1)
i −

⎛
⎝1 −

∑
i≥1

p(2)
i

⎞
⎠

∣∣∣∣∣∣ +
∥∥∥z(1) − z(2)

∥∥∥
1

=
∣∣∣∣∣∣
∑
i≥1

(
p(2)
i − p(1)

i

)∣∣∣∣∣∣ +
∥∥∥z(1) − z(2)

∥∥∥
1

≤
∑
i≥1

∣∣∣p(2)
i − p(1)

i

∣∣∣ +
∥∥∥z(1) − z(2)

∥∥∥
1

= 2
∥∥∥z(1) − z(2)

∥∥∥
1
, t ≥ 0.

Consequently,

∥∥z(1) − z(2)
∥∥
1 ≤ ∥∥p(1) − p(2)

∥∥
1 ≤ 2

∥∥z(1) − z(2)
∥∥
1 , t ≥ 0, (7)

which will be used in the study of stability and ergodicity.

Let {di , i ≥ 1} with d1 = 1 be an increasing sequence of positive numbers. Put

W = inf
i≥1

di
i

. (8)

and denote by D the upper triangular matrix of the following form:

D =

⎛
⎜⎜⎜⎝
d1 d1 d1 · · ·
0 d2 d2 · · ·
0 0 d3 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ . (9)
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Let l1D be the corresponding space of sequences

l1D = {
z(t) = (p1(t), p2(t), · · · )T | ‖z(t)‖1D ≡ ‖Dz(t)‖1 < ∞}

and introduce also the auxiliary norm ‖ · ‖1E defined as ‖z(t)‖1E = ∑∞
k=1 k|pk(t)|.

Then in ‖ · ‖1D norm the following two inequalities hold:

‖z(t)‖1D = d1

∣∣∣∣∣
∞∑
i=1

pi (t)

∣∣∣∣∣ + d2

∣∣∣∣∣
∞∑
i=2

pi (t)

∣∣∣∣∣
+ d3

∣∣∣∣∣
∞∑
i=3

pi (t)

∣∣∣∣∣ + . . .

≥
(∣∣∣∣∣

∞∑
i=1

pi (t)

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
i=2

pi (t)

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
i=3

pi (t)

∣∣∣∣∣ + . . .

)

≥ 1

2

((∣∣∣∣∣
∞∑
i=1

pi (t)

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
i=2

pi (t)

∣∣∣∣∣
)

+
(∣∣∣∣∣

∞∑
i=2

pi (t)

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
i=3

pi (t)

∣∣∣∣∣
)

+ . . .

≥ 1

2

∞∑
i=1

|pi (t)| = 1

2
‖z(t)‖1, (10)

‖z(t)‖1E =
∞∑
k=1

k|pk(t)|

=
∞∑
k=1

k

dk
dk |pk(t)| ≤ W−1

∞∑
k=1

dk |pk(t)|

= W−1
∞∑
k=1

dk

∣∣∣∣∣
∞∑
i=k

pi (t) −
∞∑

i=k−1

pi (t)

∣∣∣∣∣
≤ W−1

∞∑
k=1

dk

(∣∣∣∣∣
∞∑
i=k

pi (t)

∣∣∣∣∣ +
∣∣∣∣∣

∞∑
i=k−1

pi (t)

∣∣∣∣∣
)

≤ 2

W

∞∑
k=1

dk

∣∣∣∣∣
∞∑
i=k

pi (t)

∣∣∣∣∣ ≤ 2

W
‖z(t)‖1D . (11)

3 Logarithmic Norm and Related Bounds

Recall here the definition of logarithmic norm.
The concept of logarithmic norm of a square matrix was developed independently

by Dahlquist [1] and Lozinskiǐ [12] as a tool to derive error bounds in the numerical
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integration of initial-value problems for a system of ordinary differential equations
(see also the survey papers [21] and [20]). For the linear differential equation in a
Banach space with locally integrable operator function this notion was discussed
in [2].

Let B (t) , t ≥ 0 be a one-parameter family of bounded linear operators on a
Banach space B and let I denote the identity operator.
For each t ≥ 0, the number

γ (B (t)) = lim
h→+0

‖I + hB (t)‖ − 1

h
(12)

is called the logarithmic norm of the operator B (t) .

The logarithmic norm of the matrix B(t) = {
bi j (t)

}
, t ≥ 0 corresponding to a

linear operator on the vector space B equipped with �1- norm, is

γ (B (t)) = sup
j

⎛
⎝b j j (t) +

∑
i �= j

∣∣bi j (t)∣∣
⎞
⎠ , t ≥ 0. (13)

Associate now the family of operators B(t), t ≥ 0 with the system of differential
equations

dx
dt

= B (t) x, t ≥ 0, (14)

where the functions bi j (t), 0 ≤ i, j < ∞ are assumed to be locally integrable on
[0,∞), and denote by V (t, s), 0 ≤ s ≤ t the corresponding Cauchy operator (hence
x(t) = V (t, s)x(s) for any 0 ≤ s ≤ t). Then the logarithmic norm of the operator
B(t) is related to V (t, s), 0 ≤ s ≤ t by

γ (B (t)) = lim
h→+0

‖V (t + h, t)‖ − 1

h
, t ≥ 0. (15)

From the latter one can deduce the following bounds on the B-norm of the Cauchy
operator V (t, s), 0 ≤ s ≤ t :

e
−

t∫
s

γ (−B(τ )) dτ ≤ ‖V (t, s)‖ ≤ e

t∫
s

γ (B(τ )) dτ

, 0 ≤ s ≤ t. (16)

Moreover, for any solution x(t) ∈ B, t ≥ 0 of (14) we have

‖x (t)‖ ≥ e
−

t∫
s

γ (−B(τ )) dτ ‖x (s)‖ . (17)

We will also make use of the fact that if B is a vector space with norm �1 and all
diagonal elements of B are non-negative then, by (13)
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γ (B (t)) = sup
j

∑
i

bi j (t) , t ≥ 0,

and, a fortiori, for any solution x (t) , t ≥ 0 of (14), s.t. x (s) ≥ 0, we have

‖x (t)‖ ≥ e

t∫
s
inf
j

∑
i
bi j (τ ) dτ ‖x (s)‖ , 0 ≤ s ≤ t. (18)

Consider the Eq. (5) in the space l1D , where B(t) and f(t) are locally integrable
on [0,+∞). Let one compute the logarithmic norm of operator function B(t).

Then for the logarithmic norm of the operator function B(t) in ‖ · ‖1D norm the
following equality holds:

γ (B(t))1D = γ (DB(t)D−1)1.

Denote by B∗(t) = DB(t)D−1, and the elements of B∗(t) by b∗
i j (t) i.e. B∗(t) =(

b∗
i j (t)

)∞
i, j=1

. Assume that

b∗
i j (t) ≥ 0, i �= j, t ≥ 0. (19)

Remark 1. Note that assumption (19) of essential nonnegativity of the reduced
matrix B∗(t) is key to the possibility of effective use of the method of the loga-
rithmic norm. In particular, this assumption is fulfilled for four important classes of
Markov chains, which we consider in the next section.

Put

αi (t) = −
∞∑
j=0

b∗
j i (t), χi (t) = −

∞∑
j=0

|b∗
j i (t)|, i ≥ 1, (20)

and let α(t) and β(t) denote the least lower and the least upper bound of the sequence
of functions {αi (t), i ≥ 1} and χ(t) denote the least upper bound of {χi (t), i ≥ 1}
i.e.

α (t) = inf
i≥1

αi (t) , β (t) = sup
i≥1

αi (t) , (21)

χ (t) = sup
i≥1

χi (t) . (22)

Then the logarithmic norms of B(t) and (−B(t)) are equal to

γ (B (t))1D = sup
i

αi (t) = −α (t) ,

γ (−B (t))1D = supχi (t) = χ (t) .
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If now one defines v (t) = D (p∗ (t) − p∗∗ (t)), then the following equation holds

d

dt
v(t) = DB (t) D−1v(t), (23)

Notice that due to (19), the inequality v (s) ≥ 0 implies that v (t) ≥ 0 for any t ≥ s.
Hence

d

dt

∞∑
i=1

vi (t) ≥ −β (t)
∞∑
i=1

vi (t), (24)

and one can obtain establish the corresponding bounds on the rate of convergence,
perturbation bounds, and estimates on the error of truncations.

4 Four Classes of Markov Chains

These classes were previously studied in [34, 35]. We use here the terminology from
Markov chain theory and queueing in parallel depending on context.

Class (I). Inhomogeneous birth-death processes (BDP), where all ai j (t) = 0 for
any t ≥ 0 if |i − j | > 1, and ai,i+1(t) = μi+1(t), ai+1,i (t) = λi (t) - birth and death
rates respectively. This process, in particular, is a standard model as queue-length
process for a general Markovian queue Mn(t)/Mn(t)/1.

In this situation we obtain

B∗(t) =

⎛
⎜⎜⎝

− (λ0(t) + μ1(t)) μ1(t) 0 · · · 0 · · · · · ·
λ1(t) − (λ1(t) + μ2(t)) μ2(t) · · · 0 · · · · · ·
. . .

. . .
. . .

. . .
. . . · · ·

0 · · · · · · λr−1(t) − (
λr−1(t) + μr (t)

)
μr (t) · · ·

· · · · · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎠ , (25)

if S = ∞, and

B∗(t) =
⎛
⎜⎝

− (λ0(t) + μ1(t)) μ1(t) 0 · · · 0
λ1(t) − (λ1(t) + μ2(t)) μ2(t) · · · 0

. . .
. . .

. . .
. . .

. . .

0 · · · · · · λS−1(t) − (
λS−1(t) + μS (t)

)

⎞
⎟⎠ , (26)

if S < ∞.

One can see that the transformed matrix B∗(t) is essentially nonnegative for any
t , that is all off-diagonal elements of this matrix are nonnegative for any t .

Remark 2. This class is themost studied. It includes, in particular, models of systems
of the theory of queues Mt/Mt/N , and Mt/Mt/N/N , see for instance [3–5, 7, 13,
22, 25–27, 30] and references therein. For the first one, we get the matrix (25) with
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λk(t) = λ(t) and μk(t) = min(k, N ) · μ(t), and for the second one we get (26) with
λk(t) = λ(t) and μk(t) = kμ(t).

Another approach to the study of close models with discrete time was considered
in [9].

Class (II). Inhomogeneous queue-length process for a queue with batch arrivals
and single services, where ai j (t) = 0 for any t ≥ 0 if i < j − 1, all arrival rates do
not depend on the size of a queue, where ai+k,i (t) = ak(t) for k ≥ 1 - the rate of
arrival of a group of k customers, ai,i+1(t) = μi+1(t) - the service rate. Such models
in simplest situations were firstly considered in [16].

In this situation we have

B∗(t) =

⎛
⎜⎜⎜⎝

a11(t) μ1(t) 0 · · · 0
a1(t) a22(t) μ2(t) · · · 0
a2(t) a1(t) a33(t) μ3(t) · · ·
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎠, (27)

if S = ∞, and

B∗(t) =
⎛
⎜⎝

a11(t) − aS (t) μ1(t) 0 · · · 0
a1(t) − aS (t) a22(t) − aS−1(t) μ2(t) · · · 0

. . .
. . .

. . .
. . .

. . .

aS−1(t) − aS (t) · · · · · · a1(t) − a2(t) aSS (t) − a1(t)

⎞
⎟⎠, (28)

if S < ∞.

One can see that the transformedmatrix B∗(t) is certainly essentially nonnegative
for any t if arrival rates ak(t) are decrease in k.

Class (III). Inhomogeneous queue-length process for the queueing model with
batch services and single arrivals, where all ai j (t) = 0 for any t ≥ 0 if i > j + 1, and
all service rates do not depend on the size of a queue, where ai,i+k(t) = bk(t), k ≥ 1
is the rate of service of a group of k customers, and ai+1,i (t) = λi (t) is the arrival
rate, see also [16]. One can find more modern studies of these models in [10].

Here we obtain

B∗(t) =

⎛
⎜⎜⎜⎜⎜⎝

− (λ0(t) + b1(t)) b1(t) − b2(t) b2(t) − b3(t) · · · · · ·
λ1(t) −(

λ1(t) + ∑
i≤2

bi (t)
)
b1(t) − b3(t) · · · · · ·

. . .
. . .

. . .
. . .

. . .

0 · · · · · · λr−1(t) −(
λr−1(t) + ∑

i≤r
bi (t)

) · · ·

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎠

,

(29)
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if S = ∞, and

B∗(t) =

⎛
⎜⎜⎜⎝

− (λ0(t) + b1(t)) b1(t) − b2(t) b2(t) − b3(t) · · · bS−1(t) − bS (t)
λ1(t) −(

λ1(t) + ∑
i≤2

bi (t)
)
b1(t) − b3(t) · · · bS−2(t) − bS (t)

. . .
. . .

. . .
. . .

. . .

0 · · · · · · λS−1(t) −(
λS−1(t) + ∑

i≤S
bi (t)

)

⎞
⎟⎟⎟⎠, (30)

if S < ∞.

One can see that the transformedmatrix B∗(t) is certainly essentially nonnegative
for any t if service rates bk(t) are decrease in k.

Class (IY).Queue-length process for a non-stationary queueingmodel with batch
arrivals and group services, where all rates do not depend on the size of a queue, here
ai+k,i (t) = ak(t), and ai,i+k(t) = bk(t) for k ≥ 1 are the rates of arrival and service
of a group of k customers respectively. Such process were studied in [18, 19, 31].

B∗ =

⎛
⎜⎜⎜⎜⎜⎝

a11(t) b1(t) − b2(t) b2(t) − b3(t) · · · · · ·
a1(t) a22(t) b1(t) − b3(t) · · · · · ·

. . .
. . .

. . .
. . .

. . .

ar−1(t) · · · · · · a1(t) arr (t) · · ·
· · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎠

, (31)

if S = ∞, and

B∗(t) =

⎛
⎜⎜⎝

a11(t) − aS(t) b1(t) − b2(t) b2(t) − b3(t) · · · bS−1(t) − bS(t)
a1(t) − aS(t) a22(t) − aS−1(t) b1(t) − b3(t) · · · bS−2(t) − bS(t)

. . .
. . .

. . .
. . .

. . .

aS−1(t) − aS(t) · · · · · · a1(t) − a2(t) aSS(t) − a1(t)

⎞
⎟⎟⎠,

(32)
if S < ∞.

In this case the transformed matrix B∗(t) is surely essentially nonnegative for any
t if all arrival and service rates ak(t) and bk(t) are decreasing on k.

5 General Bounds for Continuous-Time Markov Chains

Rate of Convergence

Theorem 1. Let there exist an increasing sequence {d j , j ≥ 1} of positive numbers
with d1 = 1, such that (19) holds, and α(t) defined by (21) satisfies
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∫ ∞

0
α(t) dt = +∞. (33)

Then the Markov chain {X (t), t ≥ 0} is weakly ergodic and the following bounds
hold:

e− ∫ t
s χ(u)du‖p∗ (s) − p∗∗ (s) ‖1D

≤ ‖p∗ (t) − p∗∗ (t) ‖1D
≤ e− ∫ t

s α(u)du‖p∗ (s) − p∗∗ (s) ‖1D, (34)

‖p∗(t) − p∗∗(t)‖ ≤ 4e− ∫ t
s α(u)du‖z∗(s) − z∗∗(s)‖1D, (35)

‖p∗(t) − p∗∗(t)‖1E ≤ 2

W
e− ∫ t

s α(u)du‖z∗(s) − z∗∗(s)‖1D, (36)

for any initial conditions s ≥ 0, p∗(s), p∗∗(s) and any t ≥ s.

If in addition D (p∗ (s) − p∗∗ (s)) ≥ 0, then

‖p∗ (t) − p∗∗ (t) ‖1D ≥ e− ∫ t
s β(u)du‖p∗ (s) − p∗∗ (s) ‖1D, (37)

for any 0 ≤ s ≤ t .

If the Markov chain is homogeneous, then all elements b∗
i j (t) of the matrix

DB(t)D−1 do not dependent on t i.e. the quantities in (21) are constants. Thus
instead of general bounds given by Theorem 1, one can specify then and obtain the
following theorem.

Theorem 2. Let there exist an increasing sequence {d j , j ≥ 1} of positive numbers
with d1 = 1, such that (19) holds, and α(t) = α defined by (21) is positive i.e. α > 0.
Then the Markov chain {X (t), t ≥ 0} is strongly ergodic and the following bounds
hold:

e−χ t‖p∗ (0) − p∗∗ (0) ‖1D ≤ ‖p∗ (t) − p∗∗ (t) ‖1D
≤ e−αt‖p∗ (0) − p∗∗ (0) ‖1D, (38)

‖p∗(t) − p∗∗(t)‖ ≤ 4e−αt‖z∗(0) − z∗∗(0)‖1D, (39)

‖p∗(t) − p∗∗(t)‖1E ≤ 2

W
e−αt‖z∗(0) − z∗∗(0)‖1D, (40)

for any initial conditions s ≥ 0, p∗(0), p∗∗(0) and any t ≥ 0.

If in addition D (p∗ (0) − p∗∗ (0)) ≥ 0, then

‖p∗ (t) − p∗∗ (t) ‖1D ≥ e−βt‖p∗ (0) − p∗∗ (0) ‖1D, (41)

for any t ≥ 0.
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For the decay parameter α∗ defined as

lim
t→∞(pi j (t) − π j ) = O(e−α∗t ),

where {π j , j ≥ 0} are the stationary probabilities of the chain, it holds that α∗ ≥ α.

Notice that some additional results related to Theorem 2 can also be found in
[4, 6]. If one assumes that the intensities qi j (t) are 1−periodic in t i.e. qi j (t) are
periodic functions and the length of the period is equal to one, then theMarkov chain
{X (t), t ≥ 0} has the limiting 1−periodic limiting regime. Under the assumptions
of Theorem 1 the Markov chain {X (t), t ≥ 0} is exponentially weakly ergodic. The
detailed discussion of this results is given in [27].

Consider now a bit more detailed analysis of two special cases: homogeneous
case and the case with periodic intensities. Firstly note that in the both cases there
exist positive M and a such that

e− ∫ t
s α(u) du ≤ Me−a(t−s) (42)

for any 0 ≤ s ≤ t . Hence the Markov chain {X (t), t ≥ 0} is exponentially weakly
ergodic. Indeed, if the Markov chain {X (t), t ≥ 0} is homogeneous, then one may
put M = 1, a = α given by (21). If all the intensity functions qi j (t) are 1−periodic
in t , then one may put

a =
∫ 1

0
α(t) dt, M = eK , K = sup

|t−s|≤1

∫ t

s
α(u) du.

By doing so, for any solution of (5) the following bound holds:

‖z(t)‖1D
≤ ‖V (t)‖1D‖z(0)‖1D +

∫ t

0
‖V (t, τ )‖1D‖f(τ )‖1D dτ (43)

≤ Me−at‖z(0)‖1D + FM

a
,

where F is such that ‖f(t)‖1D ≤ F for almost all t ∈ [0, 1]. Hence one has the upper
bound for the limit

lim sup
t→∞

‖z(t)‖1D ≤ FM

a
, (44)

for any initial condition and

‖p(0) − e0‖1D = ‖p(0)‖1D = ‖z(0)‖1D ≤ lim sup
t→∞

‖z(t)‖1D, (45)
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where ei denotes the unit vector of zeros with 1 in the i-th place. If the initial
distribution is p∗∗(0) = e0 then z∗∗(0) = 0, z(t) ≥ 0 for any p∗(0) and any t ≥ 0.
Therefore

‖z(t)‖1D = d1 p1 + (d1 + d2)p2
+ (d1 + d2 + d3)p3 + ...

= d1 p1 + d1 + d2
2

2p2 + d1 + d2 + d3
3

3p3 + ...

≥ inf
k

d1 + ... + dk
k

‖z(t)‖1E ,

and one can use W ∗ = infk
d1+...+dk

k instead of W = infk
dk
k , given by (8) in all the

bounds on the rate of convergence. Finally, for the considered two special cases one
has the following two corollaries.

Corollary 1. Let {X (t), t ≥ 0} be a homogeneous Markov chain and let there exist
an increasing sequence {d j , j ≥ 1} of positive numbers with d1 = 1 such that (19)
holds and in addition α > 0. Then the Markov chain {X (t), t ≥ 0} is exponentially
ergodic and the following bounds hold:

‖π − p(t, 0)‖ ≤ 4F

α
e−αt , (46)

|ϕ − E(t, 0)| ≤ F

αW ∗ e
−αt , (47)

where π = (π0, π1, . . . )
T denotes the vector of stationary probabilities of the chain

and ϕ = ∑∞
j=0 jπ j and p(0, 0) = e0.

Corollary 2. Assume that all the intensity functions of the Markov chain {X (t), t ≥
0} are 1−periodic in t . Let there exist an increasing sequence {d j , j ≥ 1} of positive
numbers with d1 = 1 such that (19) holds and in addition

∫ 1
0 α(t) dt = a > 0. Then

the Markov chain {X (t), t ≥ 0} is exponentially weakly ergodic and the following
bounds hold:

‖π(t) − p(t, 0)‖ ≤ 4FM

a
e−at , (48)

|ϕ(t) − E(t, 0)| ≤ FM

aW ∗ e
−at , (49)

where π(t) = (π0(t), π1(t), . . . )T denotes the vector of limiting probabilities of the
chain and ϕ(t) = ∑∞

j=0 jπ j (t) and p(0, 0) = e0.

If the state space of the Markov chain is finite there exist a number of special results
(see [4, 6, 29]).
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Perturbation Bounds
Let {X̄(t), t ≥ 0} be a perturbedMarkov chain with transposed intensity matrix Ā(t)
and the same restrictions as imposed on A(t). It is assumed that ‖ Â(t)‖ = ‖A(t) −
Ā(t)‖ ≤ ε, for almost all t ≥ 0, which means the perturbations are considered to be
small in l1 norm.

We can obtain the corresponding perturbation bounds. There are two different
approaches.

The first approach in this direction are given in [8, 23] both for the discrete and
continuous time Markov chains respectively. In the considered situation of Markov
chains with continuous time, this approach is based on a comparison of the Cauchy
operators of two linear equations in a Banach space considered in [2]. Consider
Eq. (5) for the perturbed chain:

d

dt
z̄(t) = B̄(t)z̄(t) + f̄(t). (50)

In this case, the weight space l1D is considered as the base one, and the norms
of perturbations are assumed to be small both in l1 and l1D norms. Namely, we
suppose that‖B̂(t)‖1D = ‖B(t) − B̄(t)‖1D ≤ ε, and‖f(t) − f̄(t)‖1D ≤ ε, for almost
all t ≥ 0.

The corresponding general results have been obtained in [32]. A typical statement
of this kind is as follows:

Theorem 3. Let the assumptions of Theorem 1 be fulfilled, and let, an addition,
X (t) be exponentially weakly ergodic in l1D normwith the corresponding parameters
MD, aD in (42). Then the following perturbation bound holds:

lim sup
t→∞

‖p(t) − p̄(t)‖1 ≤ 4MDε (MDF + aD)

aD (aD − MDε)
, (51)

where ‖f̄(t)‖1D ≤ F for almost all t ≥ 0.

The second approach also beganwith [23], namely,Mitrophanov [14] successfully
applied probabilistic considerations and ergodicity in uniform operator topology
which allowed to significantly reduce the constant factor in the stability estimate.
The corresponding bounds for inhomogeneous situation has been obtained in [28].

A typical statement of this kind is as follows:

Theorem 4. Let Markov cain X (t) be exponentially weakly ergodic in l1 norm with
the corresponding parameters M∗, α∗ in (42). Then the following bound holds:

lim sup
t→∞

‖p(t) − p̄(t)‖1 ≤ ε (1 + logM∗)
α∗ . (52)
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Truncation Bounds
Calculation of the limiting characteristics for (inhomogeneous) birth-death pro-
cesses via truncations was firstly mentioned in [24] and was considered in details in
[27]. First results for more general Markovian queueing models have been obtained
recently in [31]. The respective bound of approximation error as a rule depends on
time. Vladimir V. Kalashnikov in the early 1990-s suggested that in some cases one
can obtain uniform (in time) error bounds of truncation. Such bounds for inhomoge-
neous birth-death processes have been obtained in [30], and for more generalMarkov
chains in [33], this statement can be formulated in the following way.

Let XN−1(t) be a truncated processwith the state spaceEN−1 = {0, 1, . . . , N − 1}
and the corresponding transposed infinitesimal matrix

AN−1(t) =

⎛
⎜⎜⎜⎝

b00(t) a01(t) · · · a0,N−1(t)
a10(t) b11(t) · · · a1,N−1(t)
a20(t) a21(t) · · · a2,N−1(t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aN−1,0(t) aN−1,1(t) · · · bN−1,N−1(t)

⎞
⎟⎟⎟⎠ ,

where bii (t) = −∑N−1
k=0,k �=i aki (t).

Then the forward Kolmogorov system for XN−1(t) is

dp∗

dt
= AN−1(t)p∗,

and instead of (5) we have

dz∗

dt
= BN−1(t)z∗(t) + fN−1(t), (53)

where fN−1(t) = (a10(t), a20(t), . . . , aN−1,0(t))�, z∗(t) = (p1, p2, · · · , pN−1)
�,

BN−1 =
⎛
⎜⎝

b11(t) − a10(t) a12(t) − a10(t) · · · a1,N−1(t) − a10(t)
a21(t) − a20(t) b22(t) − a20(t) · · · a2,N−1(t) − a20(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aN−1,1(t) − aN−1,0(t) aN−1,2(t) − aN−1,0(t) · · · bN−1,N−1(t) − aN−1,0(t)

⎞
⎟⎠ .

Below we will identify the finite vector with entries (a1, . . . , aN−1)
� and the

infinite vector with the same first N − 1 coordinates and the others equal to zero.
Moreover we suppose that

ai+k,i (t) = qi,i+k(t) ≤ R · q−k, q > 1, R > 0, (54)

for any k ≥ 1, i ≥ 0 and almost all t ≥ 0. For δ ∈ (1,
√
q)we consider the sequences

dk = δk−1 and d∗
k = δ2k−2, k ≥ 1.
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Denote

W = inf
i≥1

di
i

, gi =
i∑

n=1

dn.

Let D and D∗ be upper triangular matrices:

D =

⎛
⎜⎜⎜⎝
d1 d1 d1 · · ·
0 d2 d2 · · ·
0 0 d3 · · ·

. . .
. . .

. . .

⎞
⎟⎟⎟⎠ , D∗ =

⎛
⎜⎜⎜⎝
d∗
1 d∗

1 d∗
1 · · ·

0 d∗
2 d∗

2 · · ·
0 0 d∗

3 · · ·
. . .

. . .
. . .

⎞
⎟⎟⎟⎠

and l1D , l1D∗ be the corresponding spaces of sequences:

l1D = {z = (p1, p2, . . .)
�| ‖z‖1D ≡ ‖Dz‖1 < ∞},

l1D∗ = {z = (p1, p2, . . .)
�| ‖z‖1D∗ ≡ ‖D∗z‖1 < ∞}.

Wesuppose that there exist positive constantsM , a,M∗, a∗ such that the following
bounds

‖V (t, s)‖1D ≤ Me−a(t−s), (55)

and
‖V (t, s)‖1D∗ ≤ M∗e−a∗(t−s), (56)

hold for Cauchy operator V (t, s) of Eq. (5) for any s, t (0 ≤ s ≤ t). These esti-
mates guarantee exponential convergence to zero as t − s → ∞ of the difference
‖p∗(t) − p∗∗(t)‖ → 0 in l1D and l1D∗ norms respectively for the corresponding ini-
tial conditions.

Theorem 5. Let the assumptions (54), (55), (56) be fulfilled. Then the following
bounds of error of truncations hold:

‖p(t) − pN−1(t)‖ ≤ C1

(δ2

q

)N/3 + C2δ
−N/3 + C3

( δ

q

)N
(57)

and

|E(t, 0) − EN−1(t, 0)| ≤ 1

W

{
C1

(δ2

q

)N/3 + C2δ
−N/3 + C3

( δ

q

)N
}
, (58)

where index N − 1 shows the corresponding characteristics of truncated process
and X (0) = XN−1(0) = 0. Moreover, constants Ci = Ci (δ, q) do not depend on N
and on δ ∈ (1,

√
q).
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Finally we can briefly describe the possible procedure for finding π(t) and ϕ(t)
in case of 1−periodic in t intensities. Firstly we estimate the instant t = t∗ (using
the ergodicity bounds), starting from which the solution of the forward Kolmogorov
system (3) with the initial condition X (0) is within the fixed ε > 0 from the limiting
periodic probabilities. Then we estimate the size n∗ of the state space {0, 1, . . . , n∗},
which guarantees the desired approximation error on the interval [0, t∗ + 1]. Then
we find the solution of the truncated system on the interval [0, t∗ + 1], eventually
the values for π(t) and ϕ(t) on the interval [t∗, t∗ + 1].
Acknowledgements The research has been supported by the Russian Science Foundation under
grant 19-11-00020. The author also would like to thank the organizers of ICDDEA 2019, for their
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Convergence Rate Estimates for Some
Models of Queuing Theory, and Their
Applications

Alexander Zeifman, Yacov Satin, Anastasia Kryukova, Galina Shilova,
and Ksenia Kiseleva

Abstract The forward Kolmogorov system for a general nonstationary Marko-
vian queueing model with possible batch arrivals, possible catastrophes and state-
dependent control at idle time is considered. We obtain upper bounds on the rate
of convergence for corresponding models (nonstationary MX/Mn/1 queue with-
out catastrophes with the special resurrection intensities and general nonstationary
MX/Mn/1 queue with mass arrivals and catastrophes) and apply these estimates
for some specific situations. Examples with given parameters are considered and
corresponding plots are constructed.

1 Introduction

We consider forward Kolmogorov system for general nonstationary Markovian
queueing model with possible batch arrivals, possible catastrophes and state-
dependent control at idle time. The previous investigations in this area deal with
different particular classes of this general model, see, for instance, [1–4, 6, 10].
Detailed discussion and references one can find in [4]. A general description of the
model and basic results are given in [8]. Here we obtain upper bounds on the rate of
convergence and apply them for some specific situations.

Let X (t) be the queue-length process for this model. Denote by p(t) the column
vector of state probabilities, p(t) = (p0(t), p1(t), . . . )

T .
Then the probabilistic dynamics of the process {X (t), t ≥ 0} is given by the

forward Kolmogorov system
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dp(t)

dt
= A(t)p(t), (1)

where

A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q00 (t) β1 (t) + μ1 (t) β2 (t) . . . β j (t) . . .

h1 (t) q11 (t) μ2 (t) 0 . . . . . . . . .

h2 (t) b1 (t) q22 (t) μ3 (t) 0 . . . . . .

... . . . . . . . . . . . . . . . . . .

... . . . . . . b1 (t) q j j (t) μ j+1 (t) . . .

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the transposed intensity matrix, with the following non-zero entries of A(t):

bk(t) are the intensity of arrival of group of k customers to the non-empty queue,
which does not depend on the current size of the length of queue;
μk(t) are the intensity of service of a customer in the queue, if the current size of
the length of queue equals k;
βk(t) are the disaster (catastrophe) intensity, if the current size of the length of
queue equals k;
hk(t) are the intensity of transition from zero to k (resurrection in terms of [4], or
mass arrivals in terms of [1]);
qkk(t) are such that the corresponding column sums of A(t) are zero for any t ≥ 0.

Note that all “intensity” functions bk(t), μk(t), βk(t) and hk(t) are nonnegative
for any t ≥ 0, locally integrable on [0,∞), and bounded on this interval, namely,
that |qkk(t)| ≤ L < ∞ for almost all t ≥ 0.

Then, applying the modified combined approach of [5] and [7] we can obtain
bounds on the rate of convergence of the queue-length process to its limiting charac-
teristics and compute them. We separately consider the important special cases, see
description in [9] and general results in [8].

Throughout the paper by ‖ · ‖ we denote the l1-norm, i. e. ‖p(t)‖ = ∑
k |pk(t)|,

and ‖A(t)‖ = sup j

∑
i |ai j |. Let Ω be a set all stochastic vectors, i.e. l1 vectors with

non-negative coordinates and unit norm. Hence the operator function A(t) from l1
into itself is bounded for almost all t ≥ 0 and locally integrable on [0;∞), moreover
‖A(t)‖ = 2 supk |qkk(t)| ≤ 2L for almost all t ≥ 0. Therefore we can consider (1) as
a differential equation in the space l1 with bounded operator, hence the Cauchy prob-
lem for differential Eq. (1) has a unique solutions for an arbitrary initial condition,
and p(s) ∈ Ω implies p(t) ∈ Ω for t ≥ s ≥ 0.

Denote by E(t, k) = E(X (t)|X (0) = k) the conditional expected number of cus-
tomers in the system at instant t , provided that initially (at instant t = 0) k customers
were present in the system.
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Recall that a Markov chain {X (t), t ≥ 0} is called weakly ergodic, if ‖p∗(t) −
p∗∗(t)‖ → 0 as t → ∞ for any initial conditions p∗(0) and p∗∗(0), where p∗(t) and
p∗∗(t) are the corresponding solutions of (1). A Markov chain {X (t), t ≥ 0} has the
limiting mean ϕ(t), if limt→∞ (ϕ(t) − E(t, k)) = 0 for any k.

2 Nonstationary MX/Mn/1 Queue Without Catastrophes
with the Special Resurrection Intensities

In this section we study as in [4] the queueing model without catastrophes (i.e. all
β j (t) = 0)with the special resurrection rates h j (t) = b j (t), for any j, t . In addition,
we suppose in this section that bk+1(t) ≤ bk(t) for all k.

In accordance with these assumptions, we arrive at the model described in [7] as
queue with state-independent batch arrivals and state-dependent service intensities.

Let {di } be a sequence of positive numbers, and D be an upper triangular matrix,

D =

⎛
⎜⎜⎜⎝

d1 d1 d1 · · ·
0 d2 d2 · · ·
0 0 d3 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ .

Denote by y(t) = Dz(t), where z(t) = (
p∗
1(t) − p∗∗

1 (t), p∗
2(t) − p∗∗

2 (t), . . .
)T

is
the difference of two solutions of the forward Kolmogorov system (1) with the
corresponding initial conditions p∗(0) and p∗∗(0), in which all coordinates except
p0 are taken.

Put

α j (t) = μ j (t) − d j−1

d j
μ j−1 (t) +

∞∑
i=1

(
1 − di+ j

d j

)
bi (t) , (2)

and
α(t) = inf α j (t). (3)

Putting p0 = 1 − ∑
i≥1 pi and applying the logarithmic norm of operator func-

tion, see Theorem 1 in [8] and comparison of norms in [9], we get the following
statement.

Proposition 1. Let there exist an increasing sequence {d j , j ≥ 1} of positive num-
bers with d1 = 1, such that ∫ ∞

0
α(t) dt = +∞. (4)
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Then the Markov chain X (t) is weakly ergodic and the following bound holds:

‖y (t) ‖ ≤ e− ∫ t
0 α(u)du‖y (0) ‖, (5)

and

‖p∗ (t) − p∗∗ (t) ‖ ≤ 4e− ∫ t
0 α(u)du‖y (0) ‖, (6)

for any initial conditions p∗(0), p∗∗(0) and any t ≥ 0.
Moreover, if W = inf i≥1

di
i > 0, then X (t) has the limiting mean and

|ϕ(t) − E(t, k)| ≤ 2

W
e− ∫ t

0 α(u)du‖y(0)‖, (7)

for any t ≥ 0, and any k.

Here we apply all the bounds for nonstationary MX/M/S queue with batch
arrivals and S servers, which is described and firstly studied in [7]. In this model we
have the following intensities: bk(t) = 1

kλ(t) if 1 ≤ k ≤ S, and bk(t) = 0 if k > S
are rates of arrival of a group of k customers; and μk(t) = min (k, S)μ(t) is the
corresponding service rate.

Put d1 = 1 and dk+1 = δdk . Then

αk(t) = kμ (t) − k − 1

δ
μ (t) +

S∑
i=1

(
1 − δi

)
λ (t) , (8)

if k ≤ S, and

αk(t) = Sμ (t)

(
1 − 1

δ

)
+

S∑
i=1

(
1 − δi

)
λ (t) , (9)

if k > S.
Denote Δ = (

1 + (δ + 1) /2 + · · · + (
δS−1 + · · · + δ2 + δ + 1

)
/S

)
, then we

obtain

α(t) = min (α1(t), αS+1(t)) = μ(t)min

(
1, S − S

δ

)
− Δ(δ − 1) λ(t). (10)

Let now δ ∈ (
1, S

S−1

)
. Then 1 − 1

δ
< 1

S and hence

α(t) = (
1 − δ−1) (Sμ(t) − Δδλ(t)) . (11)

Then all assumptions of Proposition 1 for queue-length process of MX/M/S
queue are fulfilled if
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∫ ∞

0
(Sμ(t) − Δδλ(t)) dt = +∞. (12)

Let now arrival and service rates be 1-periodic in time.
Denote by λ∗ = ∫ 1

0 λ(t) dt and by μ∗ = ∫ 1
0 μ(t) dt .

If δ = 1 then Δ = S and Sμ(t) − Δδλ(t) = S (μ(t) − λ(t)).
Therefore, if μ∗ > λ∗ then Sμ∗ − Δδλ∗ > 0, if δ − 1 > 0 is small enough.
Finally, in 1-periodic situation the assumptions of Proposition 1 hold if μ∗ > λ∗.

Example 1. Consider theMX/M/S queuewith S = 10,μ(t) = μ = 3, λ(t) = 1 +
M sin 2πωt and different values of amplitude M , frequency ω.

One can put δ = 1.1, then e− ∫ t
0 α(u)du ≤ 2e−t andW > 0.23. Here all assumptions

of Proposition 1 hold and one can obtain the corresponding bounds on the rate of
convergence to the limiting characteristics. One of the most important of them is the
mean number of customers in the queue (the mathematical expectation).

The limiting mathematical expectation of the process and its dependence on the
amplitude and frequency of the intensity of the arrival of requirements is shown
(Figs. 1, 2, 3, 4, 5 and 6).

Fig. 1 Example 1. The
mean E(t, 0) for t ∈ [0, 10]
with M = 1, ω = 1 (blue)
and M = 1, ω = 4 (green)
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Fig. 2 Example 1. The mean
E(t, 0) for t ∈ [0, 10] with
M = 1, ω = 1 (blue) and
M = 0.25, ω = 1 (green)
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3 General Nonstationary MX/Mn/1 Queue with Mass
Arrivals and Catastrophes

Consider here more general situation. Let resurrection intensities h j (t) be arbitrary
locally integrable functions such that h0(t) = ∑

i≥1 hi (t) ≤ L in accordance with
our general assumptions.

Rewrite the forward Kolmogorov system (1) as

dp
dt

= A∗ (t)p + g (t) , t ≥ 0, (13)

where g (t) = (β∗ (t) , 0, 0, . . . )T , and β∗ (t) = inf i βi (t). Then, applying the loga-
rithmic norm of operator function, see Theorems 2 and 3 in [8], we get the following
statements.

Proposition 2. Let catastrophe rates be essential, i.e.

∫ ∞

0
β∗ (t) dt = +∞. (14)

Then the queue-length process X (t) is weakly ergodic in the uniform operator topol-
ogy and the following bound holds

Fig. 3 Example 1. The mean
E(t, 0) for t ∈ [0, 10] with
M = 1, ω = 4 (blue) and
M = 0.25, ω = 4 (green)
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Fig. 4 Example 1. The mean
E(t, 0) for t ∈ [0, 10] with
M = 0.25, ω = 1 (blue) and
M = 0.25, ω = 4 (green)
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Fig. 5 Example 1. The
mean E(t, 0) for t ∈ [10, 11]
for all four cases
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Fig. 6 Example 1. For
comparison, the behaviour of
the mean E(t, 0) for the
process with constant service
rate (M = 0) is shown here
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∥∥p∗ (t) − p∗∗ (t)
∥∥ ≤ e

−
t∫
0

β∗(τ ) dτ ∥∥p∗ (0) − p∗∗ (0)
∥∥ ≤ 2e

−
t∫
0

β∗(τ ) dτ

, (15)

for any initial conditions p∗ (0) ,p∗∗ (0) and any t ≥ 0.

Proposition 3. Let {di }, 1 = d0 ≤ d1 ≤ . . . be a non-decreasing sequence such that
W = inf i≥1

di
i > 0, and ∫ ∞

0
β∗∗(t) dt = +∞, (16)

where

β∗∗(t) = inf
i

⎛
⎝|a∗

i i (t)| −
∑
j 	=i

d j

di
a∗
j i (t)

⎞
⎠ , (17)

and

a∗
i j (t) =

{
a0 j (t) − β∗ (t) , if i = 0,

ai j (t) , otherwise .
(18)
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Then X (t) has the limiting mean, say φ(t) = E(t, 0), and the following bound holds:

|E(t, j) − E(t, 0)| ≤ 1 + d j

W
e
−

t∫
0

β∗∗(τ ) dτ

, (19)

for any j and any t ≥ 0.

Now we apply this approach for nonstationary MX/M/S queue with batch
arrivals, S servers, possible resurrections and catastrophes. The corresponding results
for these models for some situations were firstly obtained in [5, 6].

Consider the model with the following intensities: bk(t) = 1
kλ(t) if 1 ≤ k ≤

S, bk(t) = 0 if k > S are rates of arrival of a group of k customers; μk(t) =
min (k, S)μ(t) is the corresponding service rate. In addition, we consider only gen-
eral restrictions on the intensity of resurrection and catastrophe, namely we suppose
that resurrection rates are decreasing exponentially: hk(t) ≤ cr−k for some r > 1,
β∗ (t) = inf i βi (t).

Then the assumption of Proposition 2 is fulfilled if (14) hold.
Consider now the assumptions of Proposition 3. Put d0 = 1 and dk = δk , where

δ ∈ (
1, S

S−1

)
. Then we have |a∗

i i (t)| − ∑
j 	=i

d j

di
a∗
j i (t) ≥ β∗(t) + α(t), for i ≥ 1, as

in the previous Section. Let now i = 0. Then

|a∗
00(t)| −

∑
j 	=0

d ja
∗
j0(t) ≥ β∗(t) −

∑
k≥1

hk(t)
(
δk − 1

) ≥ (20)

β∗(t) − c
∑
k≥1

r−k
(
δk − 1

) = β∗(t) − cr(δ − 1)

(r − δ)(r − 1)
, (21)

hence

β∗∗(t) ≥ β∗(t) − cr(δ − 1)

(r − δ)(r − 1)
, (22)

and (16) implies the validity of all the assumptions of Proposition 3.
Let now intensities be 1-periodic in time. Denote λ∗ = ∫ 1

0 λ(t) dt , μ∗ =∫ 1
0 μ(t) dt , β∗∗ = ∫ 1

0 β∗(t) dt .
In this situation assumption of Proposition 2 hold if β∗∗ > 0, and if, in addition,

μ∗ > λ∗ then Proposition 3 is also true.

Example 2. Consider the MX/M/S queue with batch arrivals, S servers, resurrec-
tions and catastrophes with the following parameters: S = 10,μ(t) = μ = 2, λ(t) =
1 + M sin 2πωt , βk (t) = 1

2 + 1
k+1 (1 + sin 2π t); hk (t) = 21−k(1 + cos 2π t).

One can put here δ = 1.02, then β∗(t) ≥ 0.5,

β∗∗(t) ≥ β∗(t) − cr(δ − 1)

(r − δ)(r − 1)
≥ 0.5 − 8 · 1.02

0.98
≥ 0.3,
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Fig. 7 Example 2. The
mean E(t, 0) for t ∈ [0, 10]
with M = 1, ω = 1 (blue)
and M = 1, ω = 4 (green)
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Fig. 8 Example 2. The mean
E(t, 0) for t ∈ [0, 10] with
M = 1, ω = 1 (blue) and
M = 0.25, ω = 1 (green).
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Fig. 9 Example 2. The mean
E(t, 0) for t ∈ [0, 10] with
M = 1, ω = 4 (blue) and
M = 0.25, ω = 4 (green)
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and W ≥ 0.05. Hence all assumptions of Propositions 2, 3 hold and one can obtain
the corresponding bounds on the rate of convergence to the limiting characteristics.
One of the most important of them is the mean number of customers in the queue
(the mathematical expectation).

The limiting mathematical expectation of the process and its dependence on the
amplitude and frequency of the intensity of the arrival of requirements is shown
(Figs. 7, 8, 9, 10, 11 and 12).
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Fig. 10 Example 2. The
mean E(t, 0) for t ∈ [0, 10]
with M = 0.25, ω = 1
(blue) and M = 0.25, ω = 4
(green)
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Fig. 11 Example 2. The
mean E(t, 0) for t ∈ [10, 11]
for all four cases
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Fig. 12 Example 2. For
comparison, the behaviour of
the mean E(t, 0) for the
process with constant service
rate (M = 0) is shown here
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On Enlarged Sufficient Conditions for
L2-Dissipativity of Linearized Explicit
Schemes with Regularization for 1D Gas
Dynamics Systems of Equations

Alexander Zlotnik

Abstract We study an explicit two-level in time and three-point symmetric in space
finite-difference scheme for 1D barotropic and full gas dynamics systems of equa-
tions. The scheme is a linearization at a constant background solution (with an arbi-
trary velocity) of finite-difference schemes with general viscous regularization. We
enlarge recently proved sufficient conditions (on the Courant-like number) for L2-
dissipativity in the Cauchy problem for the schemes by deriving new bounds for
the commutator of matrices of viscous and convective terms. We deal with the case
of a kinetic regularization in more detail and specify sufficient conditions in this
case where the mentioned matrices are closely connected. Importantly, these new
sufficient conditions rapidly tend to the known necessary ones as the Mach number
grows. Also several forms of setting a regularization parameter are considered.

Keywords 1D gas dynamics equations · Viscous regularization · Explicit
finite-difference scheme · L2-dissipativity · Commutator of matrices of viscous
and convective terms · Mach number

1 Introduction

Vast literature is devoted to numerical methods for solving gas dynamics systems
of equations, e.g., see [1, 6, 7, 12]. Among them, a class of finite-difference and
finite volume methods based on regularizations of such systems exist. For high-
performance computing, explicit in time methods are especially convenient. An
important practical question concerns stability conditions for explicit methods.

In the linearized at constant solution statement, explicit finite-difference methods
based on regularizations contain matrices A of viscous terms and B of convective
ones. A criterion as well as necessary and sufficient conditions for L2-dissipativity
in the Cauchy problem for explicit two-level in time and three-point symmetric in
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space finite-difference schemes have recently been given for 1D gas dynamics sys-
tems of equations in [16, 17] by the spectral method [3, 8]. The criterion contains the
commutator of A and B, and its treating leads to the necessary and sufficient condi-
tions. Both full and simpler barotropic gas dynamics systems have been considered;
recall that the barotropic system also finds various practical applications. The case
of a kinetic, or quasi-gasdynamic (QGD), regularization [2, 5, 9] has been studied in
more detail. The practical relevance of the found conditions in the nonlinear statement
has been analyzed in [17, 18]. Some more rough sufficient conditions in particular
cases were given previously in [9, 10]. Recall that the Petrovskii parabolicity of the
QGD systems, stability of small perturbations and energy relations for them were
studied in [13, 14] confirming the regularization properties of these systems. Note
that other recent regularizations were suggested in [4, 11].

In this paper, enlarged sufficient Courant-type stability conditions are derived for
the same linearized schemes once again. This is achieved by means of applying
the new improved bound for the commutator of A and B in the L2-dissipativity
criterion. The case of the QGD-regularization is considered in more detail both for
the barotropic and full 1D gas dynamics systemswhere the specific relations between
A and B (in particular, the independence of their commutator from theMach number)
is essentially used. Importantly, the new sufficient stability conditions rapidly tend
to the known sufficient conditions as the Mach number grows. This is essential in
view of computing super- and hypersonic flows.

In addition, several forms of choosing a regularization parameter τ are considered
including its dependence on the spatial step and the sound velocity, without or with
the dependence on the gas velocity (or the Mach number), and dependence on the
time step only.

The paper is organized as follows. In Sect. 2, the criterion and necessary and
sufficient conditions for L2-dissipativity of an abstract (using general matrices A and
B) explicit two-level in time and three-point symmetric in space 1D scheme with
a regularization from [16, 17] are recalled, and a new enlarged sufficient condition
together with bounds for some particular commutator-like matrices are proved. In
Sects. 3 and 4, similar results are specified in the case of the QGD regularization
for the 1D barotropic and full gas dynamics systems, respectively. Several forms of
choosing the regularization parameter τ are covered as well.

2 Conditions for L2-Dissipativity of an Abstract Explicit
Scheme with a Regularization

The linearized at the constant solution 1D regularized gas dynamics systems of
equations can be written in the vector form

∂tz + B∂xz − τ∗c2∗A∂2
x z = 0, (1)
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where z = z(x, t) is a C
n-valued function defined for x ∈ R and t � 0, A = A∗

and B = B∗ are Hermitian matrices (of viscous and convective terms) of order n,
c∗ > 0 is a scaling factor (the characteristic velocity) and τ∗ > 0 is the regularization
parameter. Hereafter ∂t and ∂x are the partial derivatives in time t � 0 and x ∈ R.
For the kinetic regularization, see more details in Sects. 3 and 4 below and [14].

It is not difficult to see that, in the case A � 0, i.e. (Aξ, ξ)Cn � 0 for any ξ ∈ C
n ,

the solution to Eq. (1) supplemented with the initial condition z|t=0 = z0 (i.e., of the
Cauchy problem) satisfies the bounds

sup
t�0

‖|z(·, t)|‖L2(R) � ‖|z0|‖L2(R) (2)

and
√

τ∗c∗‖(A∂xz, ∂xz)Cn‖L2(R×(0,+∞)) �
√
2‖|z0|‖L2(R).

We define the uniform mesh ωh on R with the nodes xk = kh, k ∈ Z, and the step
h > 0. Let ω̄Δt be the uniform mesh in t with the nodes tm = mΔt , m � 0, and the
step Δt > 0. We set vm

k = v(xk, tm) and define the finite-difference mesh operators
in x and t

δ̊vk = vk+1 − vk−1

2h
, δ∗δvk = vk+1 − 2vk + vk−1

h2
, δtv

m = vm+1 − vm

Δt
, v+,m = vm+1.

Let H be the Hilbert space of C
n-valued vector functions defined and square

summable on ωh and endowed with the inner product (v, y)H = h
+∞∑

k=−∞
(vk, yk)Cn .

In this section, we consider an abstract explicit linear finite-difference scheme
that is two-level in time and symmetric three-point in space for the linearized system
of Eq. (1)

δty + c∗Bδ̊y − τ∗c2∗Aδ∗δy = 0 on ωh × ω̄Δt , (3)

where ym ∈ H form � 0. Notice that in the particular case A = B2 and τ∗ = Δt
2 the

stability analysis of the similar linearized Lax-Wendroff scheme is given in [8].
We are interested in the conditions for validity of the uniform in time bound

sup
m�0

‖ym‖H � ‖y0‖H ∀ y0 ∈ H (4)

which is the finite-difference counterpart of bound (2). Scheme (3) can be rewritten
in the explicit form

y+ = A y ≡ y − Δtc0Bδ̊y + Δtτ∗c2∗Aδ∗δy,

where A : H → H . Recall that bound (4) is equivalent to bound ‖A ‖ � 1 or the
H -dissipativity property

‖ym‖H � ‖ym−1‖H � . . . � ‖y0‖H ∀ y0 ∈ H, ∀m � 1.
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Let first Δt and τ∗ be given by the formulas [2, 5]

Δt = β̃
h

c∗
, τ∗ = α

h

c∗
(5)

with the parameters β̃ > 0 (the Courant-like number) and α > 0. We are interested
in conditions on β̃ depending on α such that bound (4) holds.

We first recall the matrix criterion together with necessary and sufficient condi-
tions for that proved by the spectral method [16, 17]. Let [A, B] = AB − BA be the
commutator of the matrices A and B. Recall that, for Hermitian matrices A and B,
i[A, B] is a Hermitian matrix too, where i is the imaginary unit.

Theorem 1. 1. Bound (4) is valid if and only if the matrix inequality holds

β̃
(
2σαA2 + 1 − σ

2α
B2 ±√σ(1 − σ)i[A, B]

)
� A ∀ 0 < σ � 1. (6)

2. The matrix inequalities

2αβ̃A � I,
β̃

2α
B2 � A (7)

are necessary and the matrix inequality

β̃
(
2αA2 + 1

2α
B2
)

� A (8)

is sufficient for the validity of bound (4).

The second inequality (7) implies that A � 0. Recall that the derivation of the
sufficient condition (8) is based on the rather rough bound

±i[A, B] � εA2 + ε−1B2 ∀ε > 0.

Now we present a new general sufficient condition for the validity of bound
(4) provided that another bound for ±i[A, B] is available. Denote by λmax(A) the
maximal eigenvalue of a Hermitian matrix A.

Theorem 2. Let A � 0 and the matrix inequalities B2 � cB A and±i[A, B] � cA A
be valid with some cB � 0 and cA � 0. Then bound (4) holds under the condition

β̃
{
αλmax(A) + cB

4α
+
[(

αλmax(A) − cB
4α

)2 + c2A
4

]1/2}
� 1. (9)

Proof. The inequality A2 � λmax(A)A and those from the hypotheses imply that
criterion (6) holds under the condition

β̃ϕ(σ ) � 1 ∀ 0 < σ � 1, with ϕ(σ) := aσ + b(1 − σ) + cA
√

σ(1 − σ) on [0, 1],
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where a := 2αλmax(A) � 0 and b := cB
2α � 0. Obviously we have

ϕ′(σ ) = a − b + cA
1 − 2σ

2
√

σ(1 − σ)
on (0, 1),

and then

ϕ′(σ0) = 0 for σ0 = 1

2
+ a − b

2
√

(a − b)2 + c2A

∈ (0, 1) for cA > 0.

Then it is straightforward to check that

max
0�σ�1

ϕ(σ) = ϕ(σ0) = 1

2
(a + b) + 1

2

√
(a − b)2 + c2A

for cA � 0 and

max{a, b} � ϕ(σ0) � max{a, b} + cA
2

.

Also ϕ(σ0) < a + b (or ϕ(σ0) = a + b) is equivalent to c2A < 4ab (or c2A = 4ab).
These relations lead to (9) and Remark 1.

Remark 1. The following two-sided bound for the term in the curly brackets in (9)
holds

max
{
2αλmax(A),

cB
2α

}
� αλmax(A) + cB

4α
+
[(

αλmax(A) − cB
4α

)2 + c2A
4

]1/2

� max
{
2αλmax(A),

cB
2α

}
+ cA

2
. (10)

The relation

αλmax(A) + cB
4α

+
[(

αλmax(A) − cB
4α

)2 + c2A
4

]1/2

< 2λmax(A) + cB
2α

(
or = 2λmax(A) + cB

2α

)

is equivalent to cA < 4cBλmax(A) (or cA = 4cBλmax(A)) for any α > 0.

Remark 2. The optimal value α = αopt in (9) is such that the expression in the curly
brackets is minimal. Calculating the derivative of the expression, one can see that

it is zero only for α = αopt = 1
2

√
cB

λmax(A)
, and the mentioned minimal value equals√

cBλmax(A) + 1
2cA.

On the other hand, in the nonlinear statement, this value is not always the best
one so that an analysis involving other values of α is also of interest.

The next algebraic lemma is crucial below when applying Theorem 2.
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Lemma 1. Let A = AT > 0 be a real matrix of order n = 2, 3 and a, b ∈ R. The
following matrix inequalities hold:

±i
(

0 a
−a 0

)

� cA A with cA := |a|√|A| (11)

for n = 2 and

±i

⎛

⎝
0 a 0

−a 0 b
0 −b 0

⎞

⎠ � cA A with cA := max

⎧
⎨

⎩

|a|√|A12| ,
|b|√|A23| ,

√
bT A13b

|A|

⎫
⎬

⎭
,

(12)

where

Akl =
(
akk akl
akl all

)

for k < l, b =
(
b
a

)

, (13)

for n = 3. Here, for example, |A| is the determinant of A.
Proof. Denote by C the matrices on the left in inequalities (11) and (12) (without
±). Then

tC + A =
(

a11 a12 + ita
a12 − ita a22

)

for n = 2,

tC + A =
⎛

⎝
a11 a12 + ita a13

a12 − ita a22 a23 + itb
a13 a23 − itb a33

⎞

⎠ for n = 3,

where t is a real parameter, and these inequalities are equivalent to the property
tC + A � 0 for t = ± 1

cA
and cA > 0 (for cA = 0, the inequalities become trivial).

According to the Sylvester-type criterion, this property is valid if and only if all
the principal minors of tC + A are non-negative. Since A > 0, this means validity
of a unique condition

|tC + A| = a11a22 − (a212 + t2a2) = |A| − t2a2 � 0 for n = 2

or three conditions

|(tC + A)12| = |A12| − t2a2 � 0, |(tC + A)23| = |A23| − t2b2 � 0,

|(tC + A)| = a11a22a33 + 2a13 Re
[
(a12 + ita)(a23 + itb)

]− a213a22

−(a212 + t2a2)a33 − a11(a
2
23 + t2b2) = |A| − t2bT A13b � 0 for n = 3. (14)

Clearly these inequalities lead to the result, and the indicated value of cA is the
minimal possible.
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Remark 3. For n = 3, Lemma 1 remains valid in the case A � 0, |A| = 0 together
with |A12| > 0, |A23| > 0, bT A13b = 0 and cA with the omitted third term in (12).
Here inequality (14) is valid automatically.

3 An Enlarged Sufficient Condition for L2-Dissipativity in
the 1D Barotropic Case

The barotropic quasi-gasdynamic (QGD) system of equations [13, 14] in the 1D case
consists of the regularized mass and momentum balance equations

∂tρ + ∂x j = 0, ∂t (ρu) + ∂x
(
ju + p(ρ) − Π

) = 0. (15)

The sought functions ρ > 0 and u are the gas density and velocity, as well as p =
p(ρ) is the pressure with p′(ρ) > 0. Also j and Π are the regularized mass flux and
viscous stress given by

j = ρ(u − w), w = τ

ρ
u∂x (ρu) + ŵ, ŵ = τ

ρ

(
ρu∂xu + ∂x p(ρ)

)
, (16)

Π = ΠNS + ρuŵ + τp′(ρ)∂x (ρu), ΠNS = μ∂xu, (17)

where w and ŵ are the regularizing velocities, τ = τ(ρ, u) > 0 is a regularization
parameter and ΠNS is the Navier-Stokes-type viscous stress with the viscosity coef-
ficient μ � 0. The artificial viscosity coefficient μ is given by the standard QGD-
formula μ = αSτρp′(ρ) with the parameter αS � 0 (the Schmidt number).

The barotropic QGD system is simplified to the barotropic compressible Navier-
Stokes system, or the barotropic Euler one, for respectively τ = 0 and μ > 0, or
τ = μ = 0.

System (15)–(17) can be linearized [14] at a constant background solution ρ∗ >

0 and u∗ by setting ρ = ρ∗ + ρ∗ρ̃ and u = u∗ + c∗ũ, where c∗ = √
p′(ρ∗) is the

sound velocity, and taking τ∗ = τ(ρ∗, u∗). The linearized system for the scaled small
perturbations z = (ρ̃, ũ)T can be written in the vector form (1) with the matrices

B =
(
M 1
1 M

)

, A =
(
M2 + 1 2M
2M αS + M2 + 1

)

. (18)

Hereafter M := u∗
c∗ , and |M | is the Mach number. The result of the linearization of

some schemes for the barotropic QGD system coincides with (3) with matrices (18),
see [17].

Recall the result on the necessary and sufficient conditions for L2-dissipativity
from [17] (in the modified form).
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Theorem 3. For scheme (3) with matrices (18) (n = 2), the necessary condition (7)
takes the form

β̃ max
{
2αλmax(A),

1

2α

}
� 1, (19)

and the sufficient condition (8) is valid for

β̃
(
2αλmax(A) + 1

2α

)
� 1. (20)

Here λmax(A) = αS
2 + M2 + 1 +

√(
αS
2

)2 + 4M2.

Let us give a new enlarged sufficient condition for the validity of bound (4).

Theorem 4. For scheme (3) with matrices (18) (n = 2), bound (4) is valid under
the condition

β̃
{
αλmax(A) + 1

4α
+
[(

αλmax(A) − 1

4α

)2 + c2A
4

]1/2}
� 1 (21)

where c2A = α2
S

|A| in the caseαS > 0 or |M | �= 1; otherwise cA = 0. Here |A| = (M2 −
1)2 + αS(M2 + 1).

Proof. It is known [17] and easy to check that

A = B2 + D, D = diag
{
0, αS

}
� 0;

hereafter diag{...} is a diagonal matrix with the listed diagonal elements. Thus A � 0
and B2 � A (i.e., cB = 1). Note that |A| = 0 if and only if αS = 0 and |M | = 1;
otherwise A > 0. Therefore it is straightforward to check that

[A, B] = [D, B] =
(

0 −αS

αS 0

)

,

and owing to inequality (11) we have±i[A, B] � cA Awith cA = αS
|A|1/2 for αS > 0 or

|M | �= 1. For αS = 0, simply [A, B] = 0 and thus cA = 0. Now Theorem 2 implies
the result.

We have λmax(A) � αS + 1 and |A| � αS , therefore cA < λmax(A) and according
to Remark 1, the sufficient condition (21) is broader than (20) for any αS � 0 (for
αS = 0 this is obvious). For cA = 0, the sufficient condition (21) coincides with the
necessary one (19) and becomes a criterion.

In addition, cA = O
(

1
M2

)
as M → ∞ and, moreover, the sufficient condition (21)

rapidly tends to the necessary one (19) as |M | grows.
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For significant Mach numbers, another form of formulas (5) is preferable

Δt = β
h

|u∗| + c∗
, τ∗ = α̂

h

|u∗| + c∗
(22)

with β = β̃(|M | + 1) and α̂ = α(|M | + 1), see [16, 17]. In terms of β and α̂, con-
dition (21) can be rewritten in the form

β
{
α̂

λmax(A)

(|M | + 1)2
+ 1

4α̂
+
[(

α̂
λmax(A)

(|M | + 1)2
− 1

4α̂

)2 + c2A
4(|M | + 1)2

]1/2}
� 1.

(23)
Its advantage is that the optimal value α̂ = α̂opt ≡ |M |+1

2
√

λmax(A)
(as well as the corre-

sponding minimal value
√

λmax(A)+ 1
2 cA

|M |+1 of the expression in the curly brackets, see
Remark 2) varies weakly with respect to the Mach number. And this result is an
advantage of the kinetic regularization itself.

One can rewrite the new enlarged sufficient condition (23) in the form β �
βsuf (̂α, M) where βsuf (̂α, M) is the inverse of the expression in the curly brackets.
Let us also rewrite the necessary condition (19) and the previous sufficient con-
dition (20) in the similar forms β � βnec(̂α, M) and β � β

(0)
suf (̂α, M), respectively.

In Fig. 1, we present graphs of functions βnec(̂α, M) (solid line), βsuf (̂α, M) (dot
line) and β

(0)
suf (̂α, M) (dotted line) for M = 0, 1, 1.5 and 2 in the typical case αS = 1.

Clearly βsuf (̂α, M) is much closer to βnec(̂α, M) than β
(0)
suf (̂α, M) for all these M and,

moreover, βsuf (̂α, M) rapidly tends to βnec(̂α, M) as the Mach number M grows; in
particular, for M = 2, they are already practically identical (though actually they
very slightly differ near their maximums).

Let us also discuss an alternative choice τ∗ = a0
2 Δt independent of h. In this case,

the above formulas for Δt are not required any more. We can cover this case simply
by the formal change α = a0c∗Δt

2h (that is possible since above α > 0 was arbitrary)
and setting β̃ = c∗Δt

h . Then the necessary condition (19) takes the form

c∗Δt

h
max

{a0c∗Δt

2h
λmax(A),

h

a0c∗Δt

}
� 1,

or, equivalently, the Courant-like form

√
a0λmax(A)

c∗Δt

h
� 1, a0 � 1. (24)

The sufficient condition (20) is converted into the conditions

a0√
a0 − 1

√
λmax(A)

c∗Δt

h
� 1, a0 > 1. (25)
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a) M = 0 b) M = 1

c) M = 1.5 d) M = 2

Fig. 1 Graphs of functions βnec (̂α, M) (solid line), βsuf (̂α, M) (dot line) and β � β
(0)
suf (̂α, M)

(dotted line) for M = 0, 1, 1.5 and 2 in the case αS = 1

Concerning the new sufficient condition (21), it first can be rewritten as

1

2
a0λmax(A)β̃2 + 1

2a0
+
[(1

2
a0λmax(A)β̃2 − 1

2a0

)2 + c2Aβ̃
2

4

]1/2
� 1

since α = 1
2a0β̃. Similarly to (10), we get 1

a0
� 1. If the condition 1

2a0λmax(A)β̃2 +
1
2a0

� 1 is valid, we can transfer the first and second terms on the left to the right,
square the both sides and, after reducing similar terms, derive

(
(a0 − 1)λmax(A) + c2A

4

)
β̃2 � 1 − 1

a0
.

Note that this inequality implies the last mentioned condition. Therefore finally we
transform (21) into the form

√

a0λmax(A) + a0
a0 − 1

c2A
4

c∗Δt

h
� 1, a0 > 1. (26)
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4 An Enlarged Sufficient Condition for L2-Dissipativity in
the Case of the Full System

The full QGD system of equations [2, 5] in the 1D case consists of the following
mass, momentum and total energy balance equations

∂tρ + ∂x j = 0, ∂t (ρu) + ∂x ( ju + p − Π) = 0, (27)

∂t E + ∂x [(E + p)(u − w)] = ∂x (−q + Πu). (28)

The function E = 0.5ρu2 + ρε is the total energy, and ε > 0 is the specific internal
energy. We consider the perfect polytropic gas state equation p = (γ − 1)ρε with
the adiabatic index γ = const > 1.

The functions j , w and ŵ are given by the same formulas (16) but with new p
whereas the regularized viscous stress Π and heat flux q are as follows:

j = ρ(u − w), w = τ

ρ
∂x (ρu

2 + p), ŵ = τ

ρ
(ρu∂xu + ∂x p), (29)

Π = μ∂xu + ρuŵ + τ(u∂x p + γ p∂xu), (30)

−q = κ̃∂xε + τρ
(
∂xε − p

ρ2
∂xρ
)
u2, (31)

with the regularization parameter τ = τ(ρ, u, ε) > 0. The coefficients of artificial
viscosityμ and (scaled) heat conductivity κ̃ are given by the standardQGD-formulas
μ = αSτp and κ̃ = α̂Pγ τp, where α̂P = 1

αP
and αP > 0 is the Prandtl number.

Below the case α̂P = 0 is not excluded too.
The full QGD system is simplified to the compressible Navier-Stokes system, or

the Euler one, for respectively τ = 0 and μ > 0, or τ = μ = 0.
The QGD system (27)–(31) can be linearized [14] at a constant solution ρ∗ > 0,

u∗ and ε∗ > 0 by setting ρ = ρ∗ + ρ∗ρ̃, u = u∗ + c∗√
γ
ũ and ε = ε∗ + √

γ − 1ε̃ > 0,

where c∗ = √
γ (γ − 1)ε∗ is the sound velocity, and taking τ∗ = τ(ρ∗, u∗, ε∗). The

linearized system for the scaled small perturbations z = (ρ̃, ũ, ε̃)T can be written in
the vector form (1) with the matrices

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M
1√
γ

0

1√
γ

M

√
γ − 1

γ

0

√
γ − 1

γ
M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

M2 + 1

γ
2
M√
γ

√
γ − 1

γ

2
M√
γ

M2 + α̂S + 1 2

√
γ − 1

γ
M

√
γ − 1

γ
2

√
γ − 1

γ
M M2 + α̂P + γ − 1

γ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (32)

where α̂S := αS
γ
. The result of the linearization of some schemes for the QGD system

coincides with (3) with matrices (32), see [16, 18].
Recall the results on the necessary and sufficient conditions for L2-dissipativity

from [16] (in the modified form).
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Theorem 5. For scheme (3) with matrices (32) (n = 3), the necessary condition (7)
takes the form

β̃ max
{
2αλmax,

1

2α

}
� 1, (33)

and the sufficient condition (8) is valid under the condition

β̃
(
2αλmax + 1

2α

)
� 1, (34)

for any 0 < λmax � λmax(A) � λmax.
Here, in the particular case u∗ = 0 (i.e., M = 0), one can take λmax = λmax(A) =

max
{
α̂S + 1, λ(̂αP , γ )

} = λmax with

λ(̂αP , γ ) := α̂P + 1

2
+
√
( α̂P − 1

2

)2 + γ − 1

γ
α̂P .

In general, one can take

λmax = M2 + max

{

λ(̂αP , γ ),
1

2

(
α̂S + 1 + 1

γ

)
+
√
1

4

(
α̂S + 1 − 1

γ

)2 + 4

γ
M2,

1

2

(
α̂S − 1

γ
+ α̂P

)
+ 1 +

√
1

4

(
α̂S + 1

γ
− α̂P

)2 + 4
γ − 1

γ
M2

}

and

λmax = M2 + max

{

α̂S + 1 + 2

(
1√
γ

+
√

γ − 1√
γ

)

|M |, α̂P + 1 + 2

√
γ − 1

γ
|M |
}

.

Now we present a new enlarged sufficient condition for the validity of bound (4).

Theorem 6. For scheme (3) with matrices (32) (n = 3), bound (4) is valid under
the condition

β̃
{
αλmax + 1

4α
+
[(

αλmax − 1

4α

)2 + c2A
4

]1/2}
� 1 (35)

for any λmax(A) � λmax. Here we have cA > 0 and

c2A = max

{
a2

|A12| ,
b2

|A23| ,
bT A13b

|A|
}

, (36)
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for α̂P > 0 or M �= 0, with the terms

a = − α̂S√
γ
, b = (α̂S − α̂P

)√ γ−1
γ

,

bT A13b =
(
α̂S − α̂P

√
γ−1
γ

)2
M2 +

(
α̂2
S + γ−1

γ
α̂P

)
α̂P
γ

� 0,

|A12| = M4 +
(
α̂S + 1 − 3

γ

)
M2 + 1

γ
(̂αS + 1) > 0,

|A23| = M4 +
(
α̂S + α̂P + 1 − 3 γ−1

γ

)
M2 + (̂αS + 1)

(
α̂P + γ−1

γ

)
> 0,

|A| = M6 + (̂αS + α̂P − 2)M4 +
[(

α̂S + 1 − 3
γ

)
α̂P + α̂S + 1

]
M2 + (̂αS + 1) α̂P

γ
� 0,

(37)

moreover, |A| > 0 for α̂P > 0 or M �= 0.
For α̂P = M = 0, one has bT A13b = |A| = 0 and the third term in the definition

(36) of c2A should be omitted.

Proof. It is known [16] and straightforward to check that

A = B2 + D, D = diag
{
0, α̂S, α̂P

}
� 0.

Moreover, A > 0 for α̂P > 0 or M �= 0 (otherwise A � 0 and |A| = 0). Therefore
it easy to calculate that

[A, B] = [D, B] =
⎛

⎝
0 a 0

−a 0 b
0 −b 0

⎞

⎠

with a and b given in (37).
Owing to inequality (12) and formulas (13) (see also Remark 3 for α̂P = M = 0

when |A| = 0), we have ±i[A, B] � cA A with cA � 0 presented in the statement
of the theorem (note that bT A13b is given in the reduced form). Then Theorem 2
together with non-decreasing of the function λ + a0 +√(λ − a0)2 + c2 in λ imply
the result.

Corollary 1. The sufficient condition (35) is wider than (34).

Proof. It is not difficult to check the lower bounds

|A12| >
α̂S

γ
, |A23| > (̂αS + α̂P)

γ − 1

γ
,

λmax � M2 + max
{
α̂S + 1, α̂P + γ − 1

γ

}
> max

{
α̂S, α̂P

}
.

Thus
a2 < |A12|λmax, b2 < |A23|λmax.
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Moreover, we have

bT A13b � max
{
α̂2
S,

γ − 1

γ
α̂2
P

}
M2 + max

{
α̂S, α̂P

}(
α̂S + γ − 1

γ

) α̂P

γ
. (38)

Next using the inequality M4 + 1
γ 2 � 2

γ
M2, we get one more lower bound

|A| � M2(M2 − 1)2 + α̂S (̂αP + 1)M2 + α̂P

[
M4 +

(
1 − 3

γ

)
M2 + 1

γ

]
+ α̂S

α̂P

γ

�
[
α̂S (̂αP + 1) + α̂P

γ − 1

γ

]
M2 +

(
α̂S + γ − 1

γ

) α̂P

γ
.

Consequently for α̂P > 0 or M �= 0

|A|λmax �
[
α̂2
S (̂αP + 1) + α̂2

P

γ − 1

γ

]
M2 + max

{
α̂S, α̂P

}(
α̂S + γ − 1

γ

) α̂P

γ
,

and from (38) we see that
bT A13b � |A|λmax.

One can check that the inequality is strict for α̂P > 0 or M �= 0.
Thus cA < λmax and owing to Remark 1 the sufficient condition (35) is broader

than (34).

Notice also that once again cA = O
(

1
M2

)
asM → ∞ and, moreover, the sufficient

condition (35) rapidly tends to the necessary condition (33) (provided that λmax =
λmax(A) = λmax are taken) as |M | grows.

In terms of β and α̂, see formulas (22), the sufficient condition (21) is rewritten
in the form

β
{
α̂

λmax

(|M | + 1)2
+ 1

4α̂
+
[(

α̂
λmax

(|M | + 1)2
− 1

4α̂

)2 + c2A
4(|M | + 1)2

]1/2}
� 1.

The optimal value α̂ = α̂opt ≡ |M |+1

2
√

λmax(A)
leads to the minimal value

√
λmax(A)+ 1

2 cA
|M |+1 of

the expression in the curly brackets.
For the above alternative choice τ∗ = a0

2 Δt (independent of h), the necessary
condition (33) is transformed into (24) with substituting λmax for λmax(A), and the
sufficient conditions (34) and (35) are transformed into (25) and (26), respectively,
with substituting λmax for λmax(A).
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Equilibrium of a Linearly Elastic Body
Under Generalized Boundary Data

Giulio Starita and Alfonsina Tartaglione

Abstract We consider the interior Dirichlet, Neumann and Robin problems associ-
ated to the differential system of linear elastostatics with singular data. We prove that
if the assigned displacement field a on theC2 boundary S of the reference configura-
tion of the elastic body belongs to W−1/2,2(S), then there exists a unique solution to
the equilibrium problem which takes the boundary datum a in a well–defined sense;
similar results hold if we assign the traction or a linear combination of displacement
and traction on the boundary. Moreover, natural estimates controlling the norms of
the solutions with the norms of the data hold and analogous results are obtained for
the exterior problems requiring the displacement vanishes at infinity.

Keywords Linear elastostatics · Boundary value problems · Singular data · Layer
potentials

1 Introduction

Let S be a closed C2–surface in R
3. It splits the space into an interior domain Ωi ,

which is bounded, and an unbounded exterior domain Ωe. Let Ωi or Ωe represent
the reference configuration of a linearly elastic body whose material properties are
collected in the (constant) components Ci jhk of the elasticity tensor C associated to
the body. We will refer to Ω when we are considering Ωi or Ωe, indifferently.

The equilibrium configurations of the body are represented by the domains {x +
u(x), x ∈ Ω} with u solutions to the system of partial differential equations [4]

div C(∇u) = 0, in Ω, (1)
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which in components writes

∂ j (Ci jhk∂kuh) = 0, i = 1, 2, 3, (2)

where summation over repeated indexes is understood. Observe that, for simplicity,
we are supposing that no body forces act on Ω .

The elasticity tensor C is positive definite if1

E · C(E) ≥ |symE |2, ∀ E ∈ Lin, (3)

and strongly elliptic if

(a ⊗ b) · C(a ⊗ b) > 0, ∀ a, b �= 0. (4)

Unless otherwise specified we suppose that C is strongly elliptic.
To determine the solutions of system (1) we have to associate to (1) appropriate

boundary conditions, we consider of the following classical type:

u = a on S, (5)

or
C(∇u)n = s on S, (6)

where n is the unit vector, normal to S and pointing out ofΩi (so that, n is the exterior
normal for Ω = Ωi and the interior normal for Ω = Ωe). If Ω = Ωe, besides a
boundary condition, we have to require a suitable condition at infinity. We suppose

lim|x |→+∞ u(x) = 0. (7)

Problem (1)–(5) is knownasDirichlet problem (ordisplacement problem) of linear
elastostatics; problem (1)–(6) is known as Neumann problem (or traction problem)
of linear elastostatics. We talk about an interior problem when Ω = Ωi and exterior
problem when Ω = Ωe. In this last case we always require that (7) is met (cf. [9]
and [10]).

When the boundary data belong to the trace spaces associated to the Sobolev
spaces where we are looking for the solutions, the existence and uniqueness results
for the interior and the exterior Dirichlet or Neumann boundary value problems are
well–established.

1Wewill use standard notation as in [4].Moreover,Wk,q (Ω) is the Sobolev space of allϕ ∈ L1
loc(Ω)

such that ‖ϕ‖Wk,q (Ω) = ‖ϕ‖Lq (Ω) + ‖∇kϕ‖Lq (Ω) < +∞; Wk,q
0 (Ω) is the completion of C∞

0 (Ω)

with respect to ‖ϕ‖Wk,q (Ω) and W−k,q ′
(Ω), with 1/q + 1/q ′ = 1, is its dual space. Wk−1/q,q (S)

is the trace space of Wk,q (Ω) and W 1−k−1/q ′,q ′
(S) is its dual space.
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In particular, referring to a solution to (1) as a weak solution to (1), i.e. a field
u ∈ W 1,2

loc (Ω) satisfying

∫
Ω

∇u · C(∇ϕ) = 0, ∀ϕ ∈ C∞
0 (Ω), (8)

the variational theory leads to the following theorems for the interior problems with
regular data (see [1–3, 7, 8, 11]).

Theorem 1. If a ∈ W 3/2,2(S), then the displacement problem

div C[∇u] = 0 in Ωi ,

u = a on S,
(9)

has a unique solution u ∈ W 2,2(Ωi ) and

‖u‖W 2,2(Ωi ) ≤ c‖a‖W 3/2,2(S). (10)

Theorem 2. If C is positive definite and s ∈ W 1/2,2(S) satisfies

∫
S
ρ · s = 0 (11)

for all ρ infinitesimal rigid displacements, then the traction problem

div C[∇u] = 0 in Ωi ,

C(∇u)n = s on S,
(12)

has a unique solution2 u ∈ W 2,2(Ωi ) and

‖u‖W 2,2(Ωi ) ≤ c‖s‖W 1/2,2(S) (13)

In many situations, surely more interesting in the applications, the boundary data
are nevertheless represented by non–regular fields, as, for example, in the case of
concentrated loads. The aim of the present paper is just to illustrate how the various
problems can be treated in the presence of singular data. In particular, we will present
existence and uniqueness results via the methods of the potential theory. These ones
will be applied to layer potentials suitably defined on singular densities and will be
mixed to the existence and uniqueness theorems for regular data mentioned above
in order to obtain our results for generalized data.

2Observe that for solutions to the traction problem we mean “normalized” displacements (see [4]).
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2 Preliminaries

In this section we recall the definitions of the elastic layer potentials and some
properties we will need in the sequel.

Since the elasticities are supposed to be constant, system (1) admits a fundamental
solution [5] U (x − y), which is a regular solution for x �= y to

div C(∇U (x − y)) = δ(x − y)

with δ theDirac function. The asymptotic behaviour ofU is clarified by its expression
for isotropic bodies.3 Indeed, in this case,

U (x − y) = 1

16π(1 − ν)|x − y|
{
(3 − 4ν)1 + (x − y) ⊗ (x − y)

|x − y|2
}

, (14)

where ν = λ/2(λ + μ) is the Poisson ratio.
The single layer potential of density ψ ∈ L1(S) is defined as the field

v[ψ](x) =
∫
S
U (x − ζ )ψ(ζ )dσζ , (15)

and the double layer potential of density ϕ ∈ L1(S) as

w[ϕ](x) =
∫
S
C(∇U (x − ζ ))(ϕ ⊗ n)(ζ )dσζ , (16)

The single layer potential is an analytical solution of (1) in R3\S and its “interior
limit” is equal to the “exterior limit”:

lim
ε→0+

v[ψ](ξ − εl(ξ)) = lim
ε→0+

v[ψ](ξ + εl(ξ)) = S [ψ](ξ), a.e. on S (17)

where l is a generic axis in a ball tangent (on the side of the normal vector n) to S
at ξ .

Relation (17) shows that v[ψ] is continuous in R3 and, since

‖v[ψ]‖W 2,2(Ωi ) ≤ c‖ψ‖W 1/2,2(S), (18)

for some constants c depending only on Ω , the map

S : W 1/2,2(S) → W 3/2,2(S) (19)

3For isotropic bodies, C(E) = 2μ symE + λ(trE)1, ∀ E ∈ Lin. λ and μ are called the Lamé
moduli.
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withS [ψ](ξ) equal to the limit (17) is awell–defined linear and continuous operator.
Thinking of its meaning, we refer to S as the trace operator associated with the
single layer potential.

Analogously, the double layer potential is an analytical solution of (1) in R
3\S

and the “interior limit” of the associated traction is equal to the “exterior limit”:

lim
ε→0+

C(∇w)(ξ − εl(ξ))n(ξ) = lim
ε→0+

C(∇w)(ξ + εl(ξ))n(ξ) = Z [ϕ](ξ), (20)

a.e. on S, so that the traction of the double layer potential is continuous in R
3 and,

since
‖w[ϕ]‖W 2,2(Ω) ≤ c‖ϕ‖W 1/2,2(∂Ω), (21)

for some constants c depending only on Ω , the map

Z : W 1/2,2(S) → W 1/2,2(S) (22)

withZ [ϕ](ξ) equal to the limit (20) is a well–defined linear and continuous operator
we refer to as the trace operator associated with the traction of the double layer
potential.

In contrast, the double layer potential and the traction of the single layer potential
present jumps across the surface S. Precisely, the following limits exist

lim
ε→0+

w[ϕ](ξ ∓ εl(ξ)) = W ±[ψ](ξ), (23)

lim
ε→0+

C(∇v[ψ])(ξ ∓ εl(ξ))n(ξ) = T ±[ψ](ξ) (24)

a.e. on S, define the linear and continuous operators

W ± : W 3/2,2(S) → W 3/2,2(S) (25)

T ± : W 1/2,2(S) → W 1/2,2(S) (26)

and the following jump conditions hold

ψ = T +[ψ] − T −[ψ], (27)

ϕ = W +[ϕ] − W −[ϕ]. (28)

By applying the methods of the potential theory in place of those ones of the
variational theory leading to Theorems 1 and 2, we can look at these theorems as
representation results for the solutions to the boundary value problems when the
data are regular. Indeed, we can look for the solutions to the Dirichlet problem or
to the Neumann problem in terms of single or double layer potentials. Observe that
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the requirement (11) in order to obtain existence and uniqueness for the interior
Neumann problem corresponds to the orthogonality condition with the elements of
the kernel of Z imposed to the boundary datum.4 This observation suggests us to
consider the extensions of the mapsS andZ to spaces of singular densities and to
verify the possibility to apply the methods of the potential theory (in particular, the
Fredholm alternative) to get existence and uniqueness of solutions to the boundary
value problems in the case of generalized boundary data.

3 The Dirichlet Problem

In virtue of the continuity of S ,

‖S [ψ]‖W 3/2,2(S) ≤ c‖ψ‖W 1/2,2(S) (29)

with c = c(Ω). Let ψ ∈ W−3/2,2(S) and ψk a regular sequence which converges to
ψ strongly in W−3/2,2(S). By (29)

∣∣∣∣
∫
S
φ · S [ψk]

∣∣∣∣ =
∣∣∣∣
∫
S
ψk · S [φ]

∣∣∣∣ ≤ c‖ψk‖W−3/2,2(S)‖φ‖W 1/2,2,(S).

Therefore, S can be extended to a linear and continuous operator

S ∗ : W−3/2,2(S) → W−1/2,2(S),

which coincides with the adjoint of S . We can think of S ∗ as the trace operator
associated with the extended single layer potential with density ψ ∈ W−3/2,2(S):

v∗[ψ](x) =< U (x, ·), ψ > (30)

where <,> denotes the duality pairing between W 3/2,2(S) and its dual space
W−3/2,2(S). Observe that by (18) it follows that

‖v[ψ]‖L2(Ω) ≤ c‖ψ‖W−3/2,2(S). (31)

If we are able to prove that S ∗ is Fredholmian5 we can then obtain an existence
and uniqueness result for the Dirichlet problem with datum in the range of S ∗ by
looking for a solution of the form (30), then translating the problem into the functional
equation

S ∗[ψ] = a (32)

4The boundary datum a for the interior Dirichlet problem is not required to satisfy any compatibility
conditions since the kernel of S is reduced to the null vector field.
5This means that it has closed range and zero index.
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and finally applying to (32) the Fredholm alternative. So that our result will be a
consequence of the following key lemma (see [12]).

Lemma 1. The operator S is Fredholmian and kerS = kerS ∗ = {0}.
With the results of Lemma 1 at hand, we obtain the following existence and unique-
ness result [15] (see also [14, 16]).

Theorem 3. If a ∈ W−1/2,2(S) then the Dirichlet problem (1)–(5) has a solution
u expressed by a simple layer potential with density ψ ∈ W−3/2,2(S), attaining the
boundary datum in the sense of (32). It satisfies the estimate

‖u‖L2(Ω) ≤ c‖a‖W−1/2,2(S) (33)

and is unique in the class of all u ∈ L2(Ω) such that6

∫
Ω

u · φ = ±<a,C[∇z]n >, (34)

for all φ ∈ C∞
0 (Ω), with z solution of

divC[∇z] = φ in Ω,

z = 0 on ∂Ω,
(35)

and z = o(1) if Ω = Ωe.

By observing that the adjoint operators of T ± in (26) are the operators

W ∗∓ : W−1/2,2(S) → W−1/2,2(S),

which represent the traces of the double layer potential with density in W−1/2,2(S),
we can also look for the solution of the Dirichlet problem in term of a double layer
potential. In this case we prove the existence and uniqueness by analysing the func-
tional equations

W ∗+[ψ] = a

for Ω = Ωi and
W ∗−[ψ] = a

for Ω = Ωe (see [12]).

6In (34) + is for Ω = Ωi and − for Ω = Ωe.
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4 The Neumann Problem

Reasoning as we did in Sect. 3, we obtain an existence and uniqueness result with
singular datum also for the Neumann problem (1)–(6).

First of all we consider the extension of the operator Z

Z ∗ : W−1/2,2(S) → W−1/2,2(S)

which coincides with its adjoint operator. It defines the trace of the traction field of
the extended double layer potential with density ϕ ∈ W−1/2,2(S):

w∗[ϕ](x) =< C(∇U (x, ·))n, ϕ > (36)

with <,> the duality pairing between W 1/2,2(S) and W−1/2,2(S). Then we prove
that Z ∗ is Fredholmian. Precisely, the following lemma holds (see [12]).

Lemma 2. The operator Z ∗ is Fredholmian and

kerZ = kerZ ∗ = R. (37)

where R is the set of the infinitesimal rigid displacements.

In virtue of Lemma 2we can look for a solution in form of a double layer potential
u = w∗[ϕ] and apply the Fredholm alternative to the functional equation

Z ∗[ϕ] = s. (38)

We obtain the following existence and uniqueness result [13].

Theorem 4. Let C be positive definite. If s ∈ W−1/2,2(S) and

< s, ρ >= 0, ∀ ρ ∈ R, (39)

for Ω = Ωi , then (1)–(6) has a solution expressed by a double layer potential with
densityψ ∈ W−1/2,2(S), attaining the boundary datum in the sense of (38) . It satisfies
the estimate

‖u‖L2(Ω) ≤ c‖s‖W−1/2,2(S) (40)

and is unique in the class of all u ∈ L2
loc(Ω) such that7

∫
Ω

u · φ = ∓<s, z >, (41)

7In (45) − is for Ω = Ωi and + for Ω = Ωe.
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for all φ ∈ C∞
0 (Ω), with z solution of

div C(∇z) = φ in Ω,

C(∇z)n = 0 on S
(42)

and z = o(1) if Ω = Ωe.

Observe that we can also look for the solution in form of a single layer potential.
In this case we take into account that the adjoint operators of W ± in (25) are the
operators

T ∗∓ : W−3/2,2(S) → W−3/2,2(S),

which represent the traces of the traction of the simple layer potential with density
in W−3/2,2(S). The existence result then follows from the analysis of the functional
equation

T ∗+[ψ] = s

for Ω = Ωi and
T ∗−[ψ] = s

for Ω = Ωe (see [12]).

5 The Robin Problem

Boundary conditions other than the classical (5) and (6) can be considered. For
instance, we can analyse the Robin problem, which consists in finding a solution to
(1) such that a linear combination of displacement and traction is assigned on the
boundary:

αu + C(∇u)n = t on S (43)

with α > 0. To prove the existence and uniqueness in the case, say, t ∈ W−3/2,2(S),
we look for a solution in form of a single layer potential u = v∗[ψ]. Condition (43)
then writes

(αS ∗ + T ∗+)[ψ]

for Ω = Ωi . Since S ∗ is compact from W−3/2,2(S) into itself, αS ∗ + T ∗+ is
a compact perturbation of a Fredholmian operator. So it is Fredholmian and the
existence then follows from the analysis of the kernel of the adjoint operator αS −
W −. Precisely, the following theorem holds (see [13]).

Theorem 5. Let C be positive definite. If t ∈ W−3/2,2(S), then (1)–(43) has a solu-
tion expressed by a double layer potential with density ψ ∈ W−3/2,2(S). It satisfies
the estimate

‖u‖L2(Ω) ≤ c‖t‖W−3/2,2(S) (44)
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and is unique in the class of all u ∈ L2
loc(Ω) such that8

∫
Ω

u · φ = ∓<t, z >, (45)

for all φ ∈ C∞
0 (Ω), with z solution of

div C(∇z) = φ in Ω,

αz + C(∇z)n = 0 on S
(46)

and z = o(1) if Ω = Ωe.

Remark 1. If the boundary of the elastic body is more regular, that is if S is a
Ck–surface with k > 2, then with the methods used in Theorems 3, 4, 5, existence
and uniqueness is achieved for boundary data with more severe singularities, i.e.
belonging to the general spaces W 1−k−1/q,q(S), q ∈ (1,+∞) [13].

Remark 2. If the boundary of the elastic body is less regular, thenwe obtain existence
and uniqueness results in the case of isotropic bodies. In particular, if S is a C1,α–
surface, then by applying classical results by Kupradze and Mikhlin [6], we can
prove that there exist unique solutions to the boundary value problems with data in
Lq(S). For the Neumann problem we can assume s ∈ W−1,q(S) [13].

Remark 3. If the body is isotropic and the boundary S is aC1–surface, we can prove
the existence of a solution to the displacement problem in form of a double layer
potential defined through the pseudostress field [13].

6 Conclusions

In this paper we presented existence and uniqueness results on the solutions to the
Dirichlet, the Neumann and the Robin boundary value problems associated to the
differential system of elastostatics. The novelty is that the theorems are obtained in
the presence of generalized data, which better represent the data deriving from the
applications related to the equilibrium of an elastic body. The analysis of the bound-
ary value problems is done by investigating the functional equations representing
the attainability of the boundary data and examinating the kernels of the involved
operators.

8In (45) − is for Ω = Ωi and + for Ω = Ωe.
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Nonlocal Problems for the Fourth Order
Impulsive Partial Differential Equations

Anar T. Assanova, Aziza D. Abildayeva, and Agila B. Tleulessova

Abstract Nonlocal problems for an impulsive system of fourth-order partial dif-
ferential equations are investigated. By the method of introducing additional func-
tions, the problems under study are reduced to an equivalent problem consisting of
the impulsive system of second-order hyperbolic equations and integral relations.
Algorithm for finding the approximate solutions to the equivalent problem is con-
structed and its convergence is proved. Sufficient conditions are obtained for the
unique solvability of a nonlocal problem for the impulsive system of fourth-order
partial differential equations. As an example, the conditions for the unique solvabil-
ity of a periodic problem for the impulsive system of fourth-order partial differential
equations are established.

Keywords Impulsive partial differential equations · Nonlocal problems · Periodic
problem

1 Introduction

As is well-known, various problems of the dynamics and kinetics of gas sorption,
drying processes by air stream, the movement of adsorbed mixtures, and etc., lead to
boundary value problems for impulsive systems of differential equations. Periodic
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and some types of boundary value problems for impulsive differential equations were
studied (see and their references) in [1–6, 13, 18, 27]. Periodic and nonlocal problems
for the impulsive system of partial differential equations arise from mathematical
modeling of numerous processes in biology, physics, chemistry, mechanics. Periodic
and some other types of nonlocal boundary value problems for impulsive hyperbolic
equations were studied in [12, 14, 19, 23, 26, 28]. To study the solvability of these
classes of problems there have been applied the methods of the qualitative theory
of differential equations and oscillations theory, Riemann’s method, the numerical-
analytical method, the monotone iteration method, asymptotic methods, the upper
and lower solutionsmethod, andothers.Nevertheless, the problemoffinding effective
features for the unique solvability of nonlocal problems for the impulsive system of
higher order partial differential equations is still actual today.

The aimof this paper is to establish the conditions for the existence and uniqueness
of the solution to the impulsive system of fourth order partial differential equations.

In this Section,wegive the statement of the problemand the assumptions regarding
the initial data.

On the domain Ω = [0, T ] × [0, ω], consider the following problem:

∂3
x ∂t u = A1(t, x)∂

3
x u + B1(t, x)∂

2
x ∂t u + A2(t, x)∂

2
x u

+ B2(t, x)∂
2
x ∂t u + A3(t, x)∂xu + B3(t, x)∂t u + C(t, x)u + f (t, x), (1)

P(x)∂2
x ∂t u(t, x)

∣
∣
t=0+S(x)∂2

x ∂t u(t, x)
∣
∣
t=T = ϕ0(x), x ∈ [0, ω], (2)

lim
t→tr+0

∂2
x ∂t u(t, x) − lim

t→tr−0
∂2
x ∂t u(t, x) = ϕr (x), r = 1, 2, ..., k, x ∈ [0, ω],

(3)
u(t, 0) = ψ0(t), ∂xu(t, x)

∣
∣
x=0 = ψ1(t), ∂2

x u(t, x)
∣
∣
x=0 = ψ2(t), t ∈ [0, T ],

(4)
where u(t, x) = col(u1(t, x), u2(t, x), ..., un(t, x)) is an unknown function,
∂t u(t, x) = ∂u(t,x)

∂t , ∂ i
xu(t, x) = ∂ i u(t,x)

∂xi , ∂ i
x∂t u(t, x) = ∂ i+1u(t,x)

∂xi ∂t , i = 1, 2, 3,
0 < t1 < t2 < ... < tk < T ; the n × n matrices Ai (t, x), Bi (t, x), i = 1, 2, 3,

C(t, x), and n vector function f (t, x) are piecewise continuous on Ω with possible
discontinuities at the lines t = tr , r = 1, 2, ..., k; then × nmatrices P(x), S(x), andn
vector functionϕ0(x) are continuously differentiable on [0, ω]; the n vector-functions
ψi (t), i = 0, 1, 2, are continuous on [0, T ] and piecewise continuously differentiable
on [0, T ]with possible discontinuities at the lines t = tr , r = 1, 2, ..., k; the n vector
functions ϕr (x), r = 1, 2, ..., k, are continuously differentiable on [0, ω].

The following compatibility conditions regarding initial data hold:

P(0)ψ̇2(0) + S(0)ψ̇2(T ) = ϕ0(0), (5)

lim
t→tr+0

ψ̇2(t) − lim
t→tr−0

ψ̇2(t) = ϕr (0), r = 1, 2, ..., k. (6)
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Introduce notation
t0 = 0, tk+1 = T ,Ωr = [tr−1, tr ) × [0, ω], r = 1, 2, ..., k + 1, i.e.Ω = ⋃k+1

r=1 Ωr .
Let PC(Ω, {tr }kr=1,R

n) be the space of vector functions u : Ω → Rn continuous
on Ω with possible discontinuities at lines t = tr , with the norm

||u||1 = max
r=1,2,...,k+1

sup
(t,x)∈Ωr

||u(t, x)||.

Note, for all x ∈ [0, ω], there exist the left-handed limits lim
t→tr−0

u(t, x) and continuous

right-handed limits lim
t→tr+0

u(t, x) at t = tr , r = 1, 2, ..., k.

A function u(t, x) ∈ PC(Ω, {tr }kr=1,R
n) with partial derivatives

∂ i
x∂

j
t u(t, x) ∈ PC(Ω, {tr }kr=1,R

n), i = 1, 2, 3, j = 0, 1,

is said to be a solution to problem (1)–(4) if it satisfies system (1) for all (t, x) ∈ Ω ,
except the lines t = tr , r = 1, 2, ..., k, and the boundary conditions (2), the conditions
of impulse effects at fixed times (3) and conditions (4).

Various problems for different classes of fourth order partial differential equations
are studied in [15–17, 20–22, 24, 25].

We investigate the existence and uniqueness of solution to problem (1)–(4) by the
method of introducing additional parameters [7–11].

2 Scheme of the Method

In this Section, bymethod of introducing additional parameters [7–11] we reduce the
original problem (1)–(4) to an equivalent nonlocal problem for an impulsive system
of second order hyperbolic equations and integral relations.

Introduce new unknown functions
v1(t, x) = ∂2

x u(t, x), v2(t, x) = ∂xu(t, x), v3(t, x) = u(t, x).
Taking into account first and second conditions of (4), we have:

v2(t, x) = ψ1(t) +
∫ x

0
v1(t, ξ)dξ,

v3(t, x) = ψ0(t) + ψ1(t)x +
∫ x

0
(x − ξ)v1(t, ξ)dξ.

Then reduce problem (1)–(4) to the following problem:

∂x∂tv1 = A1(t, x)∂xv1 + B1(t, x)∂tv1 + A2(t, x)v1 + f (t, x) + F(t, x, v2, v3),
(7)
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P(x)∂tv1(t, x)
∣
∣
t=0+S(x)∂tv1(t, x)

∣
∣
t=T= ϕ0(x), (8)

lim
t→tr+0

∂tv1(t, x) − lim
t→tr−0

∂tv1(t, x) = ϕr (x), x ∈ [0, ω], r = 1, 2, ..., k,

(9)
v1(t, 0) = ψ2(t), t ∈ [0, T ], (10)

v2(t, x) = ψ1(t) +
∫ x

0
v1(t, ξ)dξ, (11)

v3(t, x) = ψ0(t) + ψ1(t)x +
∫ x

0
(x − ξ)v1(t, ξ)dξ, (12)

where
F(t, x, v2, v3) = A3(t, x)v2(t, x) + B2(t, x)∂tv2(t, x) + B3(t, x)∂tv3(t, x) +
C(t, x)v3(t, x).

Differentiating relations (11), (12) by t, we obtain the following equalities for
partial derivatives ∂tvs(t, x) :

∂tv2(t, x) = ψ̇1(t) +
∫ x

0
∂tv1(t, ξ)dξ, (13)

∂tv3(t, x) = ψ̇0(t) + ψ̇1(t)x +
∫ x

0
(x − ξ)∂tv1(t, ξ)dξ. (14)

A system of 3 vector functions (v1(t, x), v2(t, x), v3(t, x)), where
v1(t, x) ∈ PC(Ω, {tr }kr=1,R

n), ∂xv1(t, x), ∂tv1(t, x), ∂x∂tv1(t, x) ∈ PC(Ω,

{tr }kr=1,R
n), and vs(t, x), ∂tvs(t, x) ∈ PC(Ω, {tr }kr=1,R

n), s = 2, 3,
is said to be a solution to problem (7)–(12), if it satisfies the impulsive system of
second order hyperbolic equations (7) for all (t, x) ∈ Ω , except the lines t = tr ,
r = 1, 2, ..., k, the boundary conditions (8), (10), conditions of impulse effects at
fixed times (9), and integral relations (11), (12). Here the functions v2(t, x) and
v3(t, x) are connected with function v1(t, x) by integral conditions (11) and (12),
respectively.

Problem (1)–(4) is equivalent to problem (7)–(12).
Let u∗(t, x) be a solution to nonlocal problem (1)–(4). Then the system of 3 vector

functions (v∗
1(t, x), v

∗
2(t, x), v

∗
3(t, x)), where

v∗
1(t, x) = ∂2

x u
∗(t, x), v∗

2(t, x) = ∂xu∗(t, x), v∗
3(t, x) = u∗(t, x),

is a solution to problem (7)–(12). Conversely, if a system of 3 vector functions
(̃v1(t, x), ṽ2(t, x), ṽ3(t, x)) is the solution to problem (7)–(12), then ũ(t, x) defined
by equality

ũ(t, x) = ψ0(t) + ψ1(t)x +
∫ x

0
(x − ξ )̃v1(t, ξ)dξ

is a solution to nonlocal problem (1)–(4).
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At fixed v2(t, x) and v3(t, x), problem (7)–(12) is a nonlocal problem for impul-
sive system of second order hyperbolic equations with respect to v1(t, x) on Ω .
The integral relations (11) and (12) allow us to determine the unknown functions
v2(t, x) and v3(t, x), respectively. From (13) and (14) we define the partial deriva-
tives ∂tvs(t, x), s = 2, 3.

The problem (7)–(12) can be interpreted as:

• a nonlocal problem for the impulsive system of second order hyperbolic equations
with distributed parameters vs(t, x), s = 2, 3.

• an inverse problem for impulsive system of second order hyperbolic equations,
where the unknown functions vs(t, x), s = 2, 3, are determined from integral
relations (11), (12).

• a control problem for the impulsive system of second order hyperbolic equations,
where the control functions vs(t, x), s = 2, 3, satisfy integral constraints (11), (12).

Hereby, problem (1)–(4) is reduced to an equivalent nonlocal problem for impul-
sive system of second order hyperbolic equations with parameters and integral con-
ditions.

3 Algorithm for Finding a Solution to Problem (7)–(12)

In this Section, we propose an algorithm for finding the approximate solution to
problem (7)–(12).

If we know v1(t, x) and its derivatives ∂xv1(t, x), ∂tv1(t, x), then from (11)–(14)
we find v2(t, x), v3(t, x) and their partial derivatives ∂tv2(t, x), ∂tv3(t, x), respec-
tively. Conversely, if we know v2(t, x), ∂tv2(t, x), v3(t, x), ∂tv3(t, x), then from
(7)–(10) we can find v1(t, x) and its partial derivatives ∂xv1(t, x), ∂tv1(t, x).

Since the function v1(t, x) and the functions v2(t, x), v3(t, x) are unknown, to
find a solution to problem (7)–(12) we use an iterative method.

We determine a system of 3 vector functions (v∗
1 (t, x), v

∗
2(t, x), v

∗
3(t, x)) as a limit

of system of 3 vector functions (v
(m)
1 (t, x), v(m)

2 (t, x), v(m)
3 (t, x)),m = 0, 1, 2, ..., by

the following algorithm:
Step - 0. 1) In right-hand side of system (7), set v2(t, x) = ψ1(t), v3(t, x) =

ψ0(t) + ψ1(t)x , ∂tv2(t, x) = ψ̇1(t), ∂tv3(t, x) = ψ̇0(t) + ψ̇1(t)x .
Then from nonlocal problem for the impulsive system of hyperbolic equations

(7)–(10) we find v
(0)
1 (t, x) for all (t, x) ∈ Ω . We also find its partial derivatives

∂xv
(0)
1 (t, x), ∂tv

(0)
1 (t, x) and ∂x∂tv

(0)
1 (t, x) for all (t, x) ∈ Ω .

2) From integral relations (11)–(14) we determine v(0)
s (t, x) and ∂tv

(0)
s (t, x), s =

2, 3, for all (t, x) ∈ Ω:

v
(0)
2 (t, x) = ψ1(t) +

∫ x

0
v

(0)
1 (t, ξ)dξ,
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v
(0)
3 (t, x) = ψ0(t) + ψ1(t)x +

∫ x

0
(x − ξ)v

(0)
1 (t, ξ)dξ,

∂tv
(0)
2 (t, x) = ψ̇1(t) +

∫ x

0
∂tv

(0)
1 (t, ξ)dξ,

∂tv
(0)
3 (t, x) = ψ̇0(t) + ψ̇1(t)x +

∫ x

0
(x − ξ)∂tv

(0)
1 (t, ξ)dξ.

Step - 1. 1) In right-hand side of system (7), suppose that v2(t, x) = v
(0)
2 (t, x),

v3(t, x) = v
(0)
3 (t, x), ∂tv2(t, x) = ∂tv

(0)
2 (t, x), ∂tv3(t, x) = ∂tv

(0)
3 (t, x), .

Then from nonlocal problem for impulsive system of hyperbolic equations (7)–
(10) we find v

(1)
1 (t, x) for all (t, x) ∈ Ω . We find its partial derivatives ∂xv

(1)
1 (t, x),

∂tv
(1)
1 (t, x) and ∂x∂tv

(1)
1 (t, x) as well for all (t, x) ∈ Ω .

2) From integral relations (11)–(14) we determine v(1)
s (t, x) and ∂tv

(1)
s (t, x),

s = 2, 3, for all (t, x) ∈ Ω:

v
(1)
2 (t, x) = ψ1(t) +

∫ x

0
v

(1)
1 (t, ξ)dξ,

v
(1)
3 (t, x) = ψ0(t) + ψ1(t)x +

∫ x

0
(x − ξ)v

(1)
1 (t, ξ)dξ,

∂tv
(1)
2 (t, x) = ψ̇1(t) +

∫ x

0
∂tv

(1)
1 (t, ξ)dξ,

∂tv
(1)
3 (t, x) = ψ̇0(t) + ψ̇1(t)x +

∫ x

0
(x − ξ)∂tv

(1)
1 (t, ξ)dξ.

And so on.
Step -m. 1) In right-hand side of system (7), suppose that v2(t, x) = v

(m−1)
2 (t, x),

v3(t, x) = v
(m−1)
2 (t, x), ∂tv2(t, x) = ∂tv

(m−1)
2 (t, x), ∂tv3(t, x) = ∂tv

(m−1)
3 (t, x).

Then from nonlocal problem for impulsive system of hyperbolic equations (7)–
(10) we find v

(m)
1 (t, x) for all (t, x) ∈ Ω . We find its partial derivatives ∂xv

(m)
1 (t, x),

∂tv
(m)
1 (t, x) and ∂x∂tv

(m)
1 (t, x) as well for all (t, x) ∈ Ω .

2) From integral relations (11)–(14) we determine v(m)
s (t, x) and ∂tv

(m)
s (t, x),

s = 2, 3, for all (t, x) ∈ Ω:

v
(m)
2 (t, x) = ψ1(t) +

∫ x

0
v

(m)
1 (t, ξ)dξ,

v
(m)
3 (t, x) = ψ0(t) + ψ1(t)x +

∫ x

0
(x − ξ)v

(m)
1 (t, ξ)dξ,

∂tv
(m)
2 (t, x) = ψ̇1(t) +

∫ x

0
∂tv

(m)
1 (t, ξ)dξ,

∂tv
(m)
3 (t, x) = ψ̇0(t) + ψ̇1(t)x +

∫ x

0
(x − ξ)∂tv

(m)
1 (t, ξ)dξ.

m = 2, 3, ....
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4 Unique Solvability of the Nonlocal Problem for Impulsive
System of Fourth Order Partial Differential Equations

Consider an auxiliary nonlocal problem for impulsive system of second order hyper-
bolic equations

∂x∂tv1 = A1(t, x)∂xv1 + B1(t, x)∂tv1 + A2(t, x)v1 + F(t, x), (15)

P(x)∂tv1(t, x)
∣
∣
t=0+S(x)∂tv1(t, x)

∣
∣
t=T = ϕ0(x), (16)

lim
t→tr+0

∂tv1(t, x) − lim
t→tr−0

∂tv1(t, x) = ϕr (x), x ∈ [0, ω], r = 1, 2, ..., k;
(17)

v1(t, 0) = ψ2(t), t ∈ [0, T ]. (18)

Here the function F(t, x) belongs to PC(Ω, {tr }kr=1,R
n).

A vector function v1(t, x) ∈ PC(Ω, {tr }kr=1,R
n), having partial derivatives

∂xv1(t, x) ∈ PC(Ω, {tr }kr=1,R
n), ∂tv1(t, x) ∈ PC(Ω, {tr }kr=1,R

n),
∂x∂tv1(t, x) ∈ PC(Ω, {tr }kr=1,R

n) is said to be a solution to problem (15)–(18) if
it satisfies system (15) for all (t, x) ∈ Ω , except the lines t = tr , r = 1, 2, ..., k and
meets the conditions (16), (18) and conditions of impulse effects at fixed times (17).

Conditions (16) and (17) include the values of partial derivatives of desired func-
tion by time variable t .

The impulsive system (15) with boundary conditions (16), (18) and conditions of
impulse effects at fixed times (17) is considered for the first time.

The impulsive system (15) with various type conditions (including the values of
desired function or the values of partial derivatives of desired function by spatial vari-
able x) are studied in [7–11]. Sufficient conditions for the unique solvability of the
considered problem are established in the terms of hyperbolic system coefficients,
boundary and impulsive matrices. For example, in [10], we establish the condi-
tions for unique solvability of system (15) with condition (18) and the following
conditions:

P(x)∂xv1(t, x)
∣
∣
t=0+S(x)∂xv1(t, x)

∣
∣
t=T = ϕ0(x),

lim
t→tr+0

∂xv1(t, x) − lim
t→tr−0

∂xv1(t, x) = ϕr (x), r = 1, 2, ..., k.

Next assertion provides us the feasibility and convergence of the proposed
algorithm.
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Theorem 1. Suppose

(i) the n × n matrices Ai (t, x), Bi (t, x), i = 1, 2, 3, C(t, x), and n vector function
f (t, x) are piecewise continuous on Ω with possible discontinuities at lines
t = tr , r = 1, 2, ..., k;

(ii) the n × n matrices P(x), S(x), n vector functions ϕr (x), r = 0, 1, 2, ..., k are
continuously differentiable on [0, ω];

(iii) the n vector-functionsψi (t), i = 0, 1, 2 are continuous on [0, T ] and piecewise
continuously differentiable on [0, T ] with possible discontinuities at lines t =
tr , r = 1, 2, ..., k and satisfy compatibility conditions (5)–(6).

(iv) nonlocal problem (15)–(18) is uniquely solvable for any
F(t, x) ∈ PC(Ω, {tr }kr=1,R

n), ϕi (x) ∈ C1([0, ω],Rn), i = 0, 1, 2, ..., k, and
ψ2(t) ∈ PC1([0, T ], {tr }kr=1,R

n).
Then problem (7)–(12) has a unique solution.

Proof. Let conditions (i)–(iv) of Theorem be valid. Then nonlocal problem (15)–(18)
has a unique solution. Applying the algorithm, we will find a solution to problem
(7)–(12). From step zero step of the algorithm we find a solution to the problem

∂x∂tv1 = A1(t, x)∂xv1 + B1(t, x)∂tv1 + A2(t, x)v1 + f (t, x) + F (0)(t, x, v2, v3),
(19)

P(x)∂tv1(t, x)
∣
∣
t=0+S(x)∂tv1(t, x)

∣
∣
t=T= ϕ0(x), (20)

lim
t→tr+0

∂tv1(t, x) − lim
t→tr−0

∂tv1(t, x) = ϕr (x), x ∈ [0, ω], r = 1, 2, ..., k;
(21)

v1(t, 0) = ψ2(t), t ∈ [0, T ], (22)

where

F (0)(t, x, v2, v3) = A3(t, x)ψ1(t) + B2(t, x)ψ̇1(t)

+B3(t, x)[ψ̇0(t) + ψ̇1(t)x] + C(t, x)[ψ0(t) + ψ1(t)x].

Assume

||v1(·, x)||1 = max
r=1,2,...,k+1

sup
t∈[tr−1,tr )

||v1(t, x)||,

Φr (x) = max
(

||ϕr (x)||, ||ϕ̇r (x)||
)

, r = 1, 2, ..., k;

Ψl = max
(

max
t∈[0,T ] ||ψl(t)||, max

r=1,2,...,k+1
sup

t∈[tr−1,tr )
||ψ̇l(t)||

)

, l = 0, 1, 2.
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By assumption, problem (19)–(22) has a unique solution v
(0)
1 (t, x) satisfying the

following estimate:

max
(

||v(0)
1 (·, x)||1, ||∂xv(0)

1 (·, x)||1, ||∂tv(0)
1 (·, x)||1

)

≤ K (1 + K1)max
(

|| f (·, x)||1, ||ϕ0(x)||, max
r=1,2,...,k

Φr (x), max
l=0,1,2

Ψl

)

, (23)

where K is a constant defined via α1(x) = max
r=1,k+1

sup
t∈[tr−1,tr )

||A1(t, x)||,
h = max

r=1,2,...,k+1
(tr − tr−1), and P(x), S(x) [8],

K1 = max
[ 3∑

s=2

{||As ||1 + ||Bs ||1
} + ||C ||1, max

x∈[0,ω]
{||P(x)|| + ||S(x)||}

]

.

Then from integral relations (11)–(14), we have:

v
(0)
2 (t, x) = ψ1(t) +

∫ x

0
v

(0)
1 (t, ξ)dξ, (24)

v
(0)
3 (t, x) = ψ0(t) + ψ1(t)x +

∫ x

0
(x − ξ)v

(0)
1 (t, ξ)dξ. (25)

∂tv
(0)
2 (t, x) = ψ̇1(t) +

∫ x

0
∂tv

(0)
1 (t, ξ)dξ, (26)

∂tv
(0)
3 (t, x) = ψ̇0(t) + ψ̇1(t)x +

∫ x

0
(x − ξ)∂tv

(0)
1 (t, ξ)dξ. (27)

Let v(m−1)
s (t, x), s = 2, 3, be given.

Then solving problem (7)–(10) for vs(t, x) = v(m−1)
s (t, x), s = 2, 3,wefind func-

tion v
(m)
1 (t, x), m = 1, 2, ....

For founded v
(m
1 (t, x), we determine next approximations vs(t, x), s = 2, 3, from

relations (11)–(14):

v
(m)
2 (t, x) = ψ1(t) +

∫ x

0
v

(m)
1 (t, ξ)dξ, (28)

v
(m)
3 (t, x) = ψ0(t) + ψ1(t)x +

∫ x

0
(x − ξ)v

(m)
1 (t, ξ)dξ. (29)

∂tv
(m)
2 (t, x) = ψ̇1(t) +

∫ x

0
∂tv

(m)
1 (t, ξ)dξ, (30)
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∂tv
(m)
3 (t, x) = ψ̇0(t) + ψ̇1(t)x +

∫ x

0
(x − ξ)∂tv

(m)
1 (t, ξ)dξ. (31)

Compose the differences Δv
(m)
1 (t, x) = v

(m)
1 (t, x) − v

(m−1)
1 (t, x),

Δv
(m)
2 (t, x) = v

(m)
2 (t, x) − v

(m−1)
2 (t, x), and Δv

(m)
3 (t, x) = v

(m)
3 (t, x) −

v
(m−1)
3 (t, x).
Using the unique solvability of problem (15)–(18), we establish the following
estimates:

max
(

||Δv
(m+1)
1 (·, x)||1, ||∂xΔv

(m+1)
1 (·, x)||1, ||∂tΔv

(m+1)
1 (·, x)||1

)

≤ K · (1 + K1)max
(

max
s=2,3

||Δv(m)
s (·, x)||1,max

s=2,3
||∂tΔv(m)

s (·, x)||1
)

, (32)

max
(

||Δv
(m)
2 (·, x)||1, ||∂tΔv

(m)
2 (·, x)||1

)

≤
∫ x

0
max

(

||Δv
(m)
1 (·, ξ)||1, ||∂xΔv

(m)
1 (·, ξ)||1, ||∂tΔv

(m)
1 (·, ξ)||1

)

dξ, (33)

max
(

||Δv
(m)
3 (·, x)||1, ||∂tΔv

(m)
3 (·, x)||1

)

≤
∫ x

0
(x − ξ)max

(

||Δv
(m)
1 (·, ξ)||1, ||∂xΔv

(m)
1 (·, ξ)||1, ||∂tΔv

(m)
1 (·, ξ)||1

)

dξ,

(34)
m = 1, 2, ....

Inequality (34) yields the main inequality:

max
(

||Δv
(m+1)
1 (·, x)||1, ||∂xΔv

(m+1)
1 (·, x)||1, ||∂tΔv

(m+1)
1 (·, x)||1

)

≤ K · (1 + K1)

∫ x

0
max[1, (x − ξ)]

× max
(

||Δv
(m)
1 (·, ξ)||1, ||∂xΔv

(m)
1 (·, ξ)||1, ||∂tΔv

(m)
1 (·, ξ)||1

)

dξ, (35)

where x ∈ [0, ω].
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Inequality (35) provides the uniform convergence of sequences {v(m)
1 (t, x)} and

{

∂tv
(m)
1 (t, x)

}

in PC(Ω, {tr }kr=1,R
n) asm → ∞. Then the uniform convergence of

sequences {v(m)
s (t, x)} and {

∂tv
(m)
s (t, x)

}

, s = 2, 3 on Ω as m → ∞ follows from
(33) and (34). The limit functions v∗

1(t, x), ∂tv
∗
1(t, x), v

∗
s (t, x), and ∂tv

∗
s (t, x), s =

2, 3, belong to PC(Ω, {tr }kr=1,R
n). The system of 3 functions {v∗

1(t, x), v∗
2(t, x),

v∗
3(t, x)} is a solution to problem (7)–(12). Theorem 1 is proved. ��
Therefore, Theorem 1 provides the unique solvability of problem (7)–(12) in the

terms of initial data at unique solvability of auxiliary nonlocal problem (15)–(18).
The equivalence of problems (7)–(12) and (1)–(4) yields the following assertion.

Theorem 2. Under conditions (i)–(iv) of Theorem 1, the original nonlocal problem
for the impulsive system of fourth order partial differential equations (1)–(4) has a
unique solution.

So, the unique solvability of the auxiliary nonlocal problem for the impulsive
system of second order hyperbolic equations (15)–(18) is the main condition for
unique solvability of problem (1)–(4).

5 The Periodic Problem for an Impulsive System of Fourth
Order Partial Differential Equations

In this Section, as an example, we consider the periodic problem for the impulsive
system of the fourth order partial differential equations. We formulate the results of
Sect. 4 for a periodical case of problem (1)–(4):
P(x) = I , S(x) = −I ,where I is the identitymatrixondimension n, andϕ0(x) = 0.
On the domain Ω = [0, T ] × [0, ω], we consider a periodic problem for the

impulsive system of fourth order partial differential equations

∂3
x ∂t u = A1(t, x)∂

3
x u + B1(t, x)∂

2
x ∂t u + A2(t, x)∂

2
x u

+ B2(t, x)∂x∂t u + A3(t, x)∂xu + B3(t, x)∂t u + C(t, x)u + f (t, x), (36)

∂2
x ∂t u

∣
∣
t=0= ∂2

x ∂t u
∣
∣
t=T , x ∈ [0, ω], (37)

lim
t→tr+0

∂2
x ∂t u − lim

t→tr−0
∂2
x ∂t u = ϕr (x), r = 1, 2, ..., k; (38)

u(t, 0) = ψ0(t), ∂xu(t, x)
∣
∣
x=0= ψ1(t), ∂2

x u(t, x)
∣
∣
x=0= ψ2(t), t ∈ [0, T ].

(39)
A function u(t, x) ∈ PC(Ω, {tr }kr=1,R

n) with partial derivatives

∂ i
x∂

j
t u(t, x) ∈ PC(Ω, {tr }kr=1,R

n), i = 1, 2, 3, j = 0, 1,
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is said to be a solution to problem (36)–(39) if it satisfies system (36) for all
(t, x) ∈ Ω , except the lines t = tr , r = 1, 2, ..., k, and the periodic condition (37),
the conditions of impulse effects at fixed times (38) and conditions (39).

Introduce new unknown functions:
v1(t, x) = ∂2

x u(t, x), v2(t, x) = ∂xu(t, x), v3(t, x) = u(t, x).
Then reduce periodic problem (36)–(39) to an equivalent problem:

∂x∂tv1 = A1(t, x)∂xv1 + B1(t, x)∂tv1 + A2(t, x)v1 + f (t, x) + F(t, x, v2, v3),
(40)

∂tv1(t, x)
∣
∣
t=0= ∂tv1(t, x)

∣
∣
t=T

, x ∈ [0, ω], (41)

lim
t→tr+0

∂tv1(t, x) − lim
t→tr−0

∂tv1(t, x) = ϕr (x), r = 1, 2, ..., k; (42)

v1(t, 0) = ψ2(t), t ∈ [0, T ], (43)

v2(t, x) = ψ1(t) +
∫ x

0
v1(t, ξ)dξ, (44)

v3(t, x) = ψ0(t) + ψ1(t)x +
∫ x

0
(x − ξ)v1(t, ξ)dξ, (45)

where F(t, x, v2, v3) = A3(t, x)v2(t, x) +
3∑

s=2
Bs(t, x)∂tvs(t, x) + C(t, x)v3(t, x).

Asystemof 3 vector functions (v1(t, x), v2(t, x), v3(t, x))with vs(t, x),
∂vs (t,x)

∂t ∈
PC(Ω, {tr }kr=1,R

n), s = 1, 3, and ∂v1(t,x)
∂x , ∂2v1(t,x)

∂x∂t ∈ PC(Ω, {tr }kr=1,R
n), is said

to be a solution to periodic problem (40)–(45), if it satisfies the impulsive system
of second order hyperbolic equations (40) for all (t, x) ∈ Ω , except the lines t = tr ,
r = 1, 2, ..., k, the periodic condition (41), and conditions of impulse effects at fixed
times (42), condition (43) and integral relations (44), (45). Functions v2(t, x) and
v3(t, x) are connected with function v1(t, x) by integral conditions (44) and (45),
respectively.

Theorem 3. Suppose

(i) the n × n matrices A j (t, x), B j (t, x), j = 1, 2, 3, C(t, x), andn vector function
f (t, x) are piecewise continuous on Ω with possible discontinuities at lines
t = tr , r = 1, 2, ..., k;

(ii) the n vector functions ϕr (x), r = 1, 2, ..., k are continuously differentiable on
[0, ω]; the n vector-functions ψs(t), s = 0, 1, 2 are continuous on [0, T ] and
piecewise continuously differentiable on [0, T ] with possible discontinuities at
lines t = tr , r = 1, 2, ..., k, and satisfy the following compatibility conditions:

ψ̇2(0) = ψ̇2(T ), lim
t→tr+0

ψ̇2(t) − lim
t→tr−0

ψ̇2(t) = ϕr (0), r = 1, 2, ..., k;
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(iii) the periodic problem (15), (17), (18) with condition (41) is uniquely solvable
for any F(t, x) ∈ PC(Ω, {tr }kr=1,R

n),ϕr (x) ∈ C([0, ω],Rn), r = 1, 2, ..., k,
and ψ2(t) ∈ PC1([0, T ],Rn).

Then periodic problem (36)–(39) has a unique solution.

The proof of Theorem 3 is similar to the proof of Theorem 1.
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Application of Method of Differential
Inequalities to Bounding the Rate of
Convergence for a Class of Markov
Chains

Anastasia Kryukova, Victoria Oshushkova, Alexander Zeifman,
and Yacov Satin

Abstract Weconsider the linear systemof differential equations dp
dt = A(t)p, which

is the forward Kolmogorov system, for a class of Markov chains with ‘batch’ births
and single deaths. We apply the method of differential inequalities for obtaining
bounds on the rate of convergence for the system. A specific queueing model is
considered and the corresponding limiting characteristics are computing.

Keywords Forward Kolmogorov system · Markov chains

1 Introduction and General Bounds

Let {X (t), t ≥ 0} be a continuous-time Markov chain with finite state space X =
{0, 1, . . . , N }. Denote by pi j (s, t) = P {X (t) = j |X (s) = i }, i, j ≥ 0, 0 ≤ s ≤ t
the transition probabilities of X (t) and by pi (t) = P {X (t) = i} – the probability
that the Markov chain X (t) is in state i at time t . Let p(t) = (p0(t), p1(t), . . . )

T be
the vector of state probabilities at the moment t .

Then the probabilistic dynamics of the process {X (t), t ≥ 0} is described by the
forward Kolmogorov system

dp
dt

= A(t)p, (1)

where A(t) = QT (t) is the transposed intensity matrix. All column sums of this
matrix are zeros for any t ≥ 0, and A(t) is essentially nonnegative (i.e. all its off-
diagonal elements are nonnegative for any t ≥ 0).

We suppose that all ‘intensity functions’ ai j (t) are analytic in t for t ≥ 0.

Consider a queueing model for a queue with batch arrivals and single services,
see the first motivation in [2] and more recent studies in [1, 5, 6].
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Then we have ai j (t) = 0 for i < j − 1, all arrival rates do not depend on the size
of a queue, i.e. ai+k,i (t) = ak(t) for k ≥ 1, service rates ai,i+1(t) = μi+1(t), and the
matrix A(t) has the following structure:

A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a00(t) μ1(t) 0 0 · · · 0 0
a1(t) a11(t) μ2(t) 0 · · · 0 0
a2(t) a1(t) a22(t) μ3(t) · · · 0 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

aN−1(t) aN−2(t) aN−3(t) aN−4(t) · · · aN−1,N−1(t) μN (t)
aN (t) aN−1(t) aN−2(t) aN−3(t) · · · a1(t) aNN (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

Here we deal with a model of this class under additional suppositions ai (t) =
0, 1 ≤ i ≤ N − 1, aN (t) = a(t) (only arrival of all customers simultaneously is
possible) and μi (t) ≤ μi+1(t) for any i , t ≥ 0.

The difficulty of studying this model is due to the fact that it is not possible to
apply the most convenient method of the logarithmic norm for it, see [5].

Now we get the following expression for the transposed intensity matrix:

A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−a(t) μ1(t) 0 0 · · · 0 0
0 −μ1(t) μ2(t) 0 · · · 0 0
0 0 −μ2(t) μ3(t) · · · 0 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 0 0 0 · · · −μN−1(t) μN (t)
a(t) 0 0 0 · · · 0 −μN (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

Put p0 (t) = 1 − ∑
i≥1

pi (t), then from (1) we obtain

dz
dt

= B (t) z + f (t) , (4)

where f (t) = (0, . . . , 0, a (t))T , z = (p1(t), p2(t), . . . , pN (t))T ,

B(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−μ1(t) μ2(t) 0 · · · 0 0
0 −μ2(t) μ3(t) · · · 0 0
0 0 −μ3(t) · · · 0 0
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0 · · · −μN−1(t) μN (t)
−a(t) −a(t) −a(t) · · · −a(t) −μN (t) − a(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

All bounds on the rate of convergence to the limiting regime for X (t) correspond
to the same bounds of the solutions of system

dx
dt

= B(t)x(t). (6)
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Denote by T upper triangular matrix

T =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

, (7)

hence

T−1 =

⎛
⎜⎜⎜⎜⎜⎝

1 −1 0 . . . 0
0 1 −1 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

.

Let u(t) = T x(t), then
du
dt

= B∗(t)u(t), (8)

where B∗(t) = T B(t)T−1, and

B∗(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−μ1(t) − a(t) μ1(t) 0 0 · · · 0 0
−a(t) −μ2(t) μ2(t) 0 · · · 0 0
−a(t) 0 −μ3(t) μ3(t) · · · 0 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .

−a(t) 0 0 0 · · · −μN−1(t) μN−1(t)
−a(t) 0 0 0 · · · 0 −μN (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

Once again, we note that the matrix B∗(t) in is not essentially non-negative, and
in such a situation the method of the logarithmic norm is inconvenient to apply (it
gives poor results).

For the study of this system, we use the differential inequalities method, which
was described in [3, 7].

Let di , i = 1, . . . , N be nonzero numbers, and D = diag (d1, d2, . . . dN ) be a
diagonal matrix:

D =

⎛
⎜⎜⎜⎜⎜⎝

d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
...

. . .
...

0 0 0 · · · dN

⎞
⎟⎟⎟⎟⎟⎠

. (10)



98 A. Kryukova et al.

Put w(t) = Du(t), then we obtain from (8) the following system:

dw
dt

= B∗∗(t)w(t), (11)

where B∗∗(t) = DB∗(t)D−1 =

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μ1(t) − a(t) μ2(t) · d1
d2

0 0 · · · 0 0
−a(t) · d2

d1
−μ2(t) μ3(t) · d2

d3
0 · · · 0 0

−a(t) · d3
d1

0 −μ3(t) μ4(t) · d3
d4

· · · 0 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

−a(t) · dN−2

d1
0 0 0 · · · −μN−1(t) μN (t) · dN−1

dN
−a(t) · dN−1

d1
0 0 0 · · · 0 −μN (t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let u(t) be an arbitrary solution of system (8).
Since the function uk(t) (the k−th coordinate of u(t)) is analytic, it has a finite

number of zeros on each interval. Consider an interval in which the signs of all the
functionsuk(t)donot change, say, (t1, t2). Choose the elements of the diagonalmatrix
such that signs of the entries di are equal with signs of corresponding coordinates
ui (t) of the solution of system (8).

Since any dkuk(t) > 0 on the corresponding time interval, the sum
∑N

k=1 dkuk =
‖w‖ can be considered as the corresponding norm.

Moreover, we have the following inequalities:

‖u‖ ≤ N‖x‖, ‖x‖ ≤ 2‖u‖, ‖w‖ ≤ max
k

dk‖u‖, ‖u‖ ≤
(
min
k

dk

)−1

‖w‖. (12)

Let B∗∗(t) =
(
b∗∗
i j (t)

)N

i, j=1
. Now, if the function αD(t) is such that

∑N
i=1 b

∗∗
i j (t) ≤

−αD(t), j = 1, ..., N , then the following bound holds:

d ‖w‖
dt

=
d

(∑N
i=1wi

)

dt
=

N∑
j=1

N∑
i=1

b∗∗
i j (t)w j ≤ −αD(t) ‖w‖ ,

and hence
‖w(t)‖ ≤ e− ∫ t

s αD(τ )dτ‖w(s)‖.

Therefore, in the original norm we get the following inequality

‖x(t)‖ ≤ 2N maxk dk
mink dk

e− ∫ t
s αD(τ )dτ‖x(s)‖, (13)
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for any t1 < s ≤ t < t2, and by continuity we get this inequality for s = t1, t = t2.
Now we consider all such intervals (there is only a finite number 2N of intervals

with different sign combinations) and put α∗(t) = min {αD(t)}, C = max
(
maxk dk
mink dk

)

where the minimum of αD(t) and the maximum of maxk dk
mink dk

is taken over all intervals
with different sign combinations of coordinates of the solution. Finally, we obtain
the following bound

‖x(t)‖ ≤ 2NCe− ∫ t
0 α∗(τ )dτ‖x(0)‖. (14)

In our case (in general, all intensities depend on the time t)

N∑
i=1

w′
i =

(
−μ1 − a ·

(
1 + d2

d1
+ d3

d1
+ · · · + dN

d1

))
· w1 − μ2 ·

(
1 − d1

d2

)
· w2

−μ3 ·
(
1 − d2

d3

)
· w3 − · · · − μN ·

(
1 − dN−1

dN

)
· wN

(1) Let all u1, ..., uN be positive. Since
(
1 − di

di+1

)
must be positive, we have di+1 >

di . Suppose d1 := εN , d2 := εN−1, ..., dN := ε, then

N∑
i=1

w′
i =

(
−μ1 − a ·

(
1 + d2

d1
+ d3

d1
+ · · · + dN

d1

))
· w1 − μ2 ·

(
1 − d1

d2

)
· w2

−μ3 ·
(
1 − d2

d3

)
· w3 − · · · − μN ·

(
1 − dN−1

dN

)
· wN

=
(

−μ1 − a ·
(
1 + 1

ε
+ 1

ε2
+ · · · + 1

εN−1

))
· w1 − μ2 · (1 − ε) · w2

−μ3 · (1 − ε) · w3 − · · · − μN · (1 − ε) · wN ,

and we have for the corresponding interval αD = min {μi · (1 − ε)} = μ1 ·
(1 − ε).

(2) Let all u1, ..., uk be positive, and all uk+1, ..., uN negative. Similarly |di+1| > |di |.
Suppose d1 := εk , d2 := εk−1, ..., dk := ε, dk+1 := −εN , dk+2 := −εN−1, ... ,
dN := −εk+1, then
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N∑
i=1

w′
i =

(
−μ1 − a ·

(
1 + d2

d1
+ d3

d1
+ · · · + dN

d1

))
· w1 − μ2 ·

(
1 − d1

d2

)
· w2

−μ3 ·
(
1 − d2

d3

)
· w3 − · · · − μN ·

(
1 − dN−1

dN

)
· wN

=
(

−μ1 − a ·
(
1 + 1

ε
+ 1

ε2
+ · · · + 1

εk−1
− εN−k − εN−k−1 − ... − ε

))
· w1

−μ2 · (1 − ε) · w2 − μ3 · (1 − ε) · w3 − · · · − μk · (1 − ε) · wk − μk+1 ·
(
1 + 1

εN−1

)
· wk+1

−μk+2 · (1 − ε) · wk+2 − ... − μN · (1 − ε) · wN .

In this case we also have the corresponding interval αD = min {μi · (1 − ε)} = μ1 ·
(1 − ε) .

Every time we changing sign on going from us to us+1 we suppose |ds+1| be equal
εm , where m is the number of the last element period of consistency.

Then we have C = ε1−N , and the following bounds hold:

‖x(t)‖ ≤ 2Nε1−Ne−μ1·(1−ε)t‖x(0)‖, (15)

for the homogeneous Markov chain (constant intensities);
and

‖x(t)‖ ≤ 2Nε1−Ne−(1−ε)
∫ t
0 μ1(τ )dτ‖x(0)‖, (16)

in general situation.

2 Example

Consider here a specific queueing model with 1−periodic intensities. Let a(t) =
λ(t) = 2 + sin(2π t) and μk(t) = k (2 + cos(2π t)). Then A(t) =

=
⎛
⎜⎝

−(2 + sin(2π t)) 2 + cos(2π t) 0 · · · 0 0
0 −(2 + cos(2π t)) 2 · (2 + cos(2π t)) · · · 0 0
0 0 −2 · (2 + cos(2π t)) · · · 0 0

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

0 0 0 · · · −(N − 1)(2 + cos(2π t)) N · (2 + cos(2π t))
2 + sin(2π t) 0 0 · · · 0 −N · (2 + cos(2π t))

⎞
⎟⎠,
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B∗∗(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−(2 + cos(2π t)) − (2 + sin(2π t)) 2 · (2 + cos(2π t)) · d1d2 0 · · · 0

−(2 + sin(2π t)) · d2d1 −2 · (2 + cos(2π t)) 3 · (2 + cos(2π t)) · d2d3 · · · 0

−(2 + sin(2π t)) · d3d1 0 −3 · (2 + cos(2π t)) · · · 0

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

−(2 + sin(2π t)) · dN−1
d1

0 0 · · · N · (2 + cos(2π t)) · dN−1
dN

−(2 + sin(2π t)) · dNd1 0 0 · · · −N · (2 + cos(2π t))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and we have

N∑
i=1

w′
i = (−(2 + cos(2π t)) − (2 + sin(2π t)) · (1 + d2

d1
+ d3

d1
+ · · · + dN

d1
)) · w1

−2 · (2 + cos(2π t)) · (1 − d1
d2

) · w2 − 3 · (2 + cos(2π t)) · (1 − d2
d3

) · w3

− · · · − N · (2 + cos(2π t)) · (1 − dN−1

dN
) · wN .

Then we have the following bound on the rate of convergence

‖x(t)‖ ≤ 2Nε1−Ne−(1−ε)t‖x(0)‖. (17)

Let N = 200. Then for any ε ∈ (0, 1), we obtain the corresponding bound on the
rate of convergence.

Denote by E(t, k) = E(X (t)|X (0) = k) the conditional expected number of cus-
tomers in the queue at instant t , provided that initially (at instant t = 0) k customers
were present in the queue.

We compute here the probability of the empty queue p0(t) and the mathematical
expectation of the number of customers in the queue E(t, k), as it is shown on the
Figs. 1, 2, 3 and 4.

These graphs are obtained using our standard approach (see detailed description
in [4]) for solving numerically the forward Kolmogorov system on the corresponding
interval and find approximately the limiting characteristics of this queueing model.

Note, that the bound (17) guarantees the coincidence of the probability character-
istics for the queue-length process with different initial conditions with a predeter-
mined accuracy for the corresponding (sufficiently large) values of t . In fact, as the
graphs show, the difference is already quite small at t ≥ 17.
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Fig. 1 Example. Probability
of the empty queue for
t ∈ [0, 18] with initial
conditions X (0) = 0 (red)
and X (0) = 200 (blue)

Fig. 2 Example. Probability
of the empty queue for
t ∈ [17, 18] with initial
conditions X (0) = 0 and
X (0) = 200

Fig. 3 Example. The mean
E(t, k) for t ∈ [0, 18] with
initial conditions X (0) = 0
(red) and X (0) = 200 (blue)

Fig. 4 Example. The mean
E(t, k) for t ∈ [17, 18] with
initial conditions X (0) = 0
and X (0) = 200
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The Method of Fractional Steps for the
Numerical Solution of a
Multidimensional Heat Conduction
Equation with Delay for the Case of
Variable Coefficient of Heat Conductivity

Andrei Lekomtsev

Abstract Multidimensional parabolic equations with delay effects in the time com-
ponent for the case of variable coefficient of heat conductivity depending on spatial
and temporal variables are considered. The method of fractional steps is constructed
for the numerical solution of these equations. The order of approximation error for
the constructed method, stability, and order of convergence are investigated. A theo-
rem is obtained on the order of convergence of the method of fractional steps, which
uses the methods from the general theory of difference schemes and the technique of
the investigation of difference schemes for solving functional differential equations.
Results of calculating test example with variable concentrated and distributed time
delay are presented.

Keywords Numerical solution · Multidimensional heat conduction equation ·
Heat conductivity · Stability · Order of convergence

1 Introduction

The work is devoted to the development and study of the convergence of numerical
algorithms for solvingmultidimensional parabolic equationswith a delay effect, con-
stant, variable, or distributed. Such effects are found in many mathematical models
[13, 14] and numerical methods for solving themwere studied in a number of works,
see for example [1–3, 11, 12, 15].

A number of papers [12, 15] are devoted to the application of the method of lines,
at which discretization is performed only in spatial variable. However, with such
discretization, the problem of stiffness arises. In addition, this method is difficult to
apply for multidimensional in space equations.

In some works, see [3] and the bibliography in this work, grid methods were
investigated from a general point of view. The main idea in this approach consists
in the introduction of the intermediate interpolation space. This raises the problem
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of solving systems of large dimension, as well as the investigation of the stability of
these algorithms.

In the paper [7] this approach was complemented by the idea of separating the
finite-dimensional current state of the system and the infinite-dimensional (func-
tional) prehistory. The finite-dimensional component is used to construct complete
analogs of numerical methods known for equations without delay, and simple meth-
ods of interpolation of discrete prehistory with given properties are used to take into
account functional delay. To implement implicit methods, extrapolation of discrete
prehistory is used. This approach allows us to develop effective algorithms that can
serve as the basis for creating application packages for solving such problems.

In the framework of this approach, in this paper, we consider the multidimen-
sional parabolic equation with variable coefficients of heat conductivity and with a
delay effect included only in the inhomogeneous term. Used algorithms linear part,
known for parabolic equations (fractional step method). Earlier in the work [4] was
considered two-dimensional version of this method for the equation with constant
coefficients of heat conductivity. In the work [5] was considered one-dimensional
version with variable coefficient of heat conductivity.

We briefly review the content of the work.
After the statement of the problem, the main assumptions about the equation are

made, which are needed later for proof of the theorem of convergence. Discretization
of the problem is carried out. With the help of the interpolation constructs the analog
of the fractional steps method is constructed. The algorithm is reduced to solving lin-
ear algebraic systems of a tridiagonal structure. The order of the local error (residual)
of the algorithm is investigated.

The main result of the work is to prove the convergence of this algorithm. The
convergence of these algorithms is justified by applying the general theory of differ-
ence schemes [8], and the general methodology of research of difference schemes
for solving equations with heredity [6]. The latter method uses the ideas of the
work [10], developed for ordinary differential equations without delay. However, the
presence of variable coefficients of heat conductivity required modification of the
general difference scheme. As part of this modification, the basic concepts of tem-
porary grid are introduced; discrete model at each moment of time as an element of
finite-dimensional normed space, prehistory of discrete model, interpolation space,
explicit step-by-step formula, initial values, function of exact values. In the step-by-
step formula, the operator of transition is highlighted, its properties determine the
stability of the scheme. The main statement is given - the theorem on the order of
convergence of the scheme, which depends on the residual order with interpolation.

Next, the constructed algorithm is embedded in this scheme. The relation between
the residual order without interpolation, the order of interpolation, and the residual
order with interpolation is established. The condition that guarantees the stability of
the developed scheme is investigated in detail. Using the embedding of the algorithm
in the general scheme, we obtain the theorem on the orders of convergence, the order
of convergence of the methods is linear in time step and quadratic in spatial steps.

The paper finishes with a presentation of the results of numerical experiments. A
test example with variable concentrated and distributed delays for the case of variable
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coefficient of heat conductivity in the case of dependence on spatial and temporal
variables is given.

2 Problem Statement and Main Assumptions

Consider the following p-dimensional heat conduction equation with after effect:

∂u

∂t
=

p∑

β=1

∂

∂xβ

(Kβ(x, t)
∂u

∂xβ

) + f (x, t, u(x, t), ut (x, ·)), (1)

where x = (x1, . . . , xp) ∈ G = {0 ≤ xβ ≤ Xβ, β = 1, p}—space variable and
t ∈ [t0, θ ] ⊂ R

1—time variable; u(x, t) ∈ R
1 is the required function; ut (x, ·) =

{u(x, t + s), − τ ≤ s < 0} is the prehistory of the required function by the time t ;
and τ is the value of delay. Let the initial and boundary conditions be given.

u(x, t) = ϕ(x, t), x ∈ G, t ∈ [t0 − τ, t0], (2)

u|� = 0, � − boundary of G. (3)

We assume that coefficients Kβ(x, t) satisfies the following conditions:

0 < c1 ≤ Kβ(x, t) ≤ c2, x ∈ G, t ∈ [t0, θ ], (4)

|Kβ(x, t) − Kβ(x, t − Δ)|
Δ

≤ c3Kβ(x, t − Δ), x ∈ G, t > t0. [8] (5)

We will also assume that the functions Kβ(x, t), ϕ(x, t) and functional f have the
required properties for the existence of a unique solution u(x, t) of the problem (1)–
(3), and the solution u(x, t) is understood in the classical sense. We assume that the
function u(x, t) has a certain degree of smoothness, which will be indicated in the
further reasonings.

We denote by Q = Q[−τ, 0] the set of functions q(s) that are piecewise contin-
uous on the interval [−τ, 0] with a finite number of points of discontinuity of the
first kind and right continuous at the points of discontinuity. We define the norm of
a function on Q[−τ, 0] by the relation ‖q(·)‖Q[−τ,0] = max−τ≤s≤0

|q(s)|.
Q[−τ, 0) is the reduction of the space Q[−τ, 0] on the half-open interval [−τ, 0),

such that the functions q(s) ∈ Q[−τ, 0) have a finite left-hand limit at zero.
Suppose that the functional f (x, t, u, u(·)) is Lipschitz [5] with constant L f with

respect to the last two arguments.
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3 The Method of Fractional Steps

Without loss of generality, we assume that p = 3.
We divide the intervals [0, X1], [0, X2], [0, X3] into parts with steps h1 = X1/N1,

h2 = X2/N2, h3 = X3/N3 respectively. Let us introduce a grid ωh . ωh is the set of
points (nodes) xi1i2i3 = (xi11 , xi22 , xi33 ), where xi11 = i1h1, i1 = 0, N1; x

i2
2 = i2h2, i2 =

0, N2; x
i3
3 = i3h3, i3 = 0, N3. That is

ωh = {xi1i2i3 , i1 = 0, N1, i2 = 0, N2, i3 = 0, N3},

ωh = {xi1i2i3 , i1 = 1, N1 − 1, i2 = 1, N2 − 1, i3 = 1, N3 − 1}, γh = ωh\ωh .

We divide the interval [t0, θ ] into parts with step Δ > 0, introducing the points
tk = t0 + kΔ, k = 0, M .We denote by tk+ 1

2
= t0 + (k + 1/2)Δ, k = 0, M − 1.We

assume that the value τ/Δ = m is an integer. We denote by ui1i2i3k approximations
of the exact solution u(xi1i2i3 , tk) at the node (xi1i2i3 , tk). For every fixed i1 = 0, N1,
i2 = 0, N2, i3 = 0, N3 we introduce the discrete prehistory by the time tk , k = 0, M :
{ui1i2i3l }k = {ui1i2i3l , k − m ≤ l ≤ k}.
Definition 1. The operator of interpolation-extrapolation of the discrete prehistory
is the mapping I : {ui1i2i3l }k → vi1i2i3k (·) ∈ Q[−τ,Δ].
Definition 2. The operator of interpolation-extrapolation I has order of error Δp0

on the exact solution if there exist constants C1 and C2 such that, for all i1, i2, i3, k
and t ∈ [tk − τ, tk+1] the following inequality holds:

‖vi1i2i3k (t) − u(xi1i2i3 , t)‖Q[−τ,Δ] ≤ C1 max
k−m≤l≤k

|ui1i2i3l − u(xi1i2i3 , tl)| + C2Δ
p0 .

Then, for example, the piecewise constant interpolation with extrapolation by exten-
sion has order of error Δ.

vi1i2i3k (t) =
⎧
⎨

⎩

ϕ(xi1i2i3 , t), t ∈ [t0 − τ, t0],
ui1i2i3l−1 , t ∈ [tl−1, tl], 1 ≤ l ≤ k,
ui1i2i3k , t ∈ [tk, tk+1].

We use the notations


1(t)u
i1i2i3
k = 1

h1
[K1(x

i1+ 1
2 i2i3 , t)

ui1+1i2i3
k − ui1i2i3k

h1
− K1(x

i1− 1
2 i2i3 , t)

ui1i2i3k − ui1−1i2i3
k

h1
],


2(t)u
i1i2i3
k = 1

h2
[K2(x

i1i2+ 1
2 i3 , t)

ui1i2+1i3
k − ui1i2i3k

h2
− K2(x

i1i2− 1
2 i3 , t)

ui1i2i3k − ui1i2−1i3
k

h2
],
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3(t)u
i1i2i3
k = 1

h3
[K3(x

i1i2i3+ 1
2 , t)

ui1i2i3+1
k − ui1i2i3k

h3
− K3(x

i1i2i3− 1
2 , t)

ui1i2i3k − ui1i2i3−1
k

h3
],

where xi1± 1
2 i2i3 = (xi11 ± h1

2 , xi22 , xi33 ), xi1i2± 1
2 i3 = (xi11 , xi22 ± h2

2 , xi33 ), xi1i2i3± 1
2 =

(xi11 , xi22 , xi33 ± h3
2 ). For the transition from layer k to layer k + 1 introduce auxiliary

layers k + 1/3 and k + 2/3. Then for 0 ≤ s ≤ 1 we consider a family of methods

u
i1 i2 i3
k+ 1

3
−u

i1 i2 i3
k

Δ
= s
1(tk+ 1

2
)ui1i2i3

k+ 1
3

+ (1 − s)
1(tk+ 1
2
)ui1i2i3k + Fi1i2i3

k

(
vi1i2i3k (·)), (6)

u
i1 i2 i3
k+ 2

3
−u

i1 i2 i3
k+ 1

3
Δ

= s
2(tk+ 1
2
)ui1i2i3

k+ 2
3

+ (1 − s)
2(tk+ 1
2
)ui1i2i3

k+ 1
3

+ Fi1i2i3
k

(
vi1i2i3k (·)), (7)

u
i1 i2 i3
k+1 −u

i1 i2 i3
k+ 2

3
Δ

= s
3(tk+ 1
2
)ui1i2i3k+1 + (1 − s)
3(tk+ 1

2
)ui1i2i3

k+ 2
3

+ Fi1i2i3
k

(
vi1i2i3k (·)), (8)

where i1 = 1, N1 − 1, i2 = 1, N2 − 1, i3 = 1, N3 − 1, k = 0, M − 1, with the ini-
tial and boundary conditions

ui1i2i30 = ϕ(xi1i2i3 , t0), i1 = 0, N1, i2 = 0, N2, i3 = 0, N3, (9)

vi1i2i30 (t) = ϕ(xi1i2i3 , t), t < t0, i1 = 0, N1, i2 = 0, N2, i3 = 0, N3, (10)

ui1i2i3k |� = 0, ui1i2i3
k+ 1

3
|� = 0, ui1i2i3

k+ 2
3
|� = 0, ui1i2i3k+1 |� = 0, k = 0, M − 1. (11)

As a functional Fi1i2i3
k

(
vi1i2i3k (·)), we will consider 1

3
f (xi1i2i3 , tk+ 1

2
, ui1i2i3

k+ 1
2
, vi1i2i3

k+ 1
2
(·)).

Note that due to interpolation and extrapolation, the value of the functional
Fi1i2i3
k

(
vi1i2i3k (·)) is explicitly calculated. If s = 0, then we get an explicit scheme.

If 0 < s ≤ 1, then system (6)–(8) for any fixed k is a chain from three linear tridi-
agonal systems of the equations with respect to ui1i2i3

k+ 1
3
, ui1i2i3

k+ 2
3
and ui1i2i3k+1 respectively

with diagonal dominances, which are effectively solved by the sweep method.

We introduce the space H = ◦
Ωh as the set of grid functions defined on ωh and

equal to zero on γh . The scalar product and norm in
◦
Ωh is defined as follows [8]:

(y, z) =
∑

x∈ωh

y(x)z(x)h1h2h3, ‖y‖ = √
(y, y). (12)

We use the notations

Bβ(t) = E − sΔ
β(t), β = 1, 2, 3. (13)

By virtue the condition (4) the operators—
β(t) are positive and self-adjoint [8] for
all t in the sense of the scalar product (12). Hence it is clear that the operators Bβ(t)
are also positive, self-adjoint, and inverse operators B−1

β (t) exists by virtue of their
positivity. We denote
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Sβ(t) = E + ΔB−1
β (t)
β(t), β = 1, 2, 3. (14)

Then the system (6)–(8) is converted to the following form

ui1i2i3
k+ 1

3
= S1(tk+ 1

2
)ui1i2i3k + ΔB−1

1 (tk+ 1
2
)Fi1i2i3

k

(
vi1i2i3k (·)),

ui1i2i3
k+ 2

3
= S2(tk+ 1

2
)ui1i2i3

k+ 1
3

+ ΔB−1
2 (tk+ 1

2
Fi1i2i3
k

(
vi1i2i3k (·)),

ui1i2i3k+1 = S3(tk+ 1
2
)ui1i2i3

k+ 2
3

+ ΔB−1
3 (tk+ 1

2
)Fi1i2i3

k

(
vi1i2i3k (·)).

We use the notation t = tk+ 1
2
. Hence

ui1i2i3k+1 = S3(t)S2(t)S1(t)u
i1i2i3
k + Δ[S3(t)S2(t)B−1

1 (t) + S3(t)B
−1
2 (t)

+B−1
3 (t)]Fi1i2i3

k

(
vi1i2i3k (·)),

where i1 = 1, N1 − 1, i2 = 1, N2 − 1, i3 = 1, N3 − 1, k = 0, M − 1. It is known
[8] that for all t the following inequality holds

‖ − 
β(t)‖ ≥ 8c1
X2

β

> 0, β = 1, 2, 3. (15)

In view of (13), (15) for all t we obtain the estimates

‖B−1
β (t)‖ ≤ 1

1 + 8sΔC1

X2
β

< 1, β = 1, 2, 3. (16)

In Sect. 5 we will show that for all t the following inequality holds

‖Sβ(t)‖ ≤ 1, β = 1, 2, 3.

Definition 3. The residual of the method of fractional steps (6)–(11) is called

�
i1i2i3
k = u(xi1i2i3 , tk+1) − S3(t)S2(t)S1(t)u(xi1i2i3 , tk)

Δ
− [S3(t)S2(t)B−1

1 (t)

+S3(t)B
−1
2 (t) + B−1

3 (t)]Fi1i2i3
k

(
utk (x

i1i2i3 , ·)). (17)

Determining the order of the residual of the method (6)–(11) is performed using
the Taylor expansion of the function u(x, t) (under conditions of corresponding
smoothness).

Theorem 1. We will assume that the coefficients of heat conductivity K1(x, t),
K2(x, t), K3(x, t) are three times continuously differentiable in x. We will also
assume that the exact solution u(x, t) of problem (1)–(3) is four times continuously
differentiable in x and three times continuously differentiable in t , and the second
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derivatives of the solution u(x, t) with respect to x are continuously differentiable in
t . Then, the residual of the method (6)–(11) has order Δ + h21 + h22 + h23 for any s.

Proof. In a neighborhood of the point (xi1i2i3 , t)we expand the exact solution u(x, t)
of problem (1)–(3) in Taylor’s series. In view of condition (4) and under the assump-
tions of the theorem the following equality holds [8]

3∑

β=1

∂

∂xβ

(Kβ(x, t)
∂u

∂xβ

)(xi1i2i3 , t)

= (
1(t) + 
2(t) + 
3(t))u(xi1i2i3 , t) + O(h21 + h22 + h23). (18)

We transform the operator S3(t)S2(t)S1(t) in the definition of the residual (17)
according to the notations (14)

S3(t)S2(t)S1(t) = (E + ΔB−1
3 (t)
3(t))(E + ΔB−1

2 (t)
2(t))(E + ΔB−1
1 (t)
1(t))

= E + Δ[B−1
1 (t)
1(t) + B−1

2 (t)
2(t) + B−1
3 (t)
3(t)]

+Δ2[B−1
3 (t)
3(t)B

−1
2 (t)
2(t) + B−1

3 (t)
3(t)B
−1
1 (t)
1(t)

+B−1
2 (t)
2(t)B

−1
1 (t)
1(t)] + Δ3B−1

3 (t)
3(t)B
−1
2 (t)
2(t)B

−1
1 (t)
1(t). (19)

We transform the operators S3(t)S2(t)B
−1
1 (t), S3(t)B

−1
2 (t) in the definition (17)

S3(t)S2(t)B
−1
1 (t) = (E + ΔB−1

3 (t)
3(t))(E + ΔB−1
2 (t)
2(t))B

−1
1

= (E + Δ(B−1
3 (t)
3(t) + B−1

2 (t)
2(t)) + Δ2B−1
3 (t)
3(t)B

−1
2 (t)
2(t))B

−1
1 . (20)

S3(t)B
−1
2 (t) = (E + ΔB−1

3 (t)
3(t))B
−1
2 (t). (21)

From (17), (18)–(21), positive and boundedness of operators B−1
β (t) we have

�
i1i2i3
k = u(xi1i2i3 , tk+1) − u(xi1i2i3 , tk)

Δ
− (
1(t) + 
2(t) + 
3(t))u(xi1i2i3 , tk)

−3Fi1i2i3
k

(
utk (x

i1i2i3 , ·)) + O(Δ + h21 + h22 + h23) = ∂u

∂t
(xi1i2i3 , t) + O(Δ2)

−(
1(t) + 
2(t) + 
3(t))u(xi1i2i3 , t) + O(Δ) − 3Fi1i2i3
k

(
utk (x

i1i2i3 , ·))

+O(Δ + h21 + h22 + h23) = ∂u

∂t
(xi1i2i3 , t) −

3∑

β=1

∂

∂xβ

(Kβ(x, t)
∂u

∂xβ

)(xi1i2i3 , t)

− f (xi1i2i3 , t, u(xi1i2i3 , t, ut (x
i1i2i3 , ·))) + O(Δ + h21 + h22 + h23).

From the fact that u(x, t) is the solution of the equation (1), it follows

|� i1i2i3
k | ≤ C�(Δ + h21 + h22 + h23).

The conclusion of the theorem follows from this relation. 	
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4 General Difference Scheme with Aftereffect and Its
Order of Convergence

We have a segment [t0, θ ] and a number τ > 0—the value of the delay. A step of a
grid is defined as a number Δ > 0, such that τ/Δ = m is an integer. {Δ}—the set of
steps. A uniform grid is defined as a finite set of numbers

Δ = {tk = t0 + kΔ ∈ [t0 − τ, θ ], k = −m, . . . , M}.

We denote −
Δ = {tk ∈ Δ, k ≤ 0}, +

Δ = {tk ∈ Δ, k ≥ 0}. A discrete model is,
by definition, a grid function tk ∈ Δ → y(tk) = yk ∈ Y, k = −m, . . . , M , where
Y is a q - dimensional normed space with norm ‖ · ‖Y . We assume that the dimension
q depends on a number h > 0.

For k ≥ 0 the prehistory of the discrete model by the time tk is, by definition, the
set {yl}k = {yl ∈ Y, l = k − m, . . . , k}. Let V (an interpolation space) be a linear
normed space with norm ‖ · ‖V . A mapping I : I ({yl}k) = v ∈ V—operator of the
interpolation of the discrete prehistory of the model.

We assume that the interpolation operator satisfies the Lipschitz condition [5]
with constant L I . Starting values of the model are, by definition, the function
−

Δ → Y :
y(tk) = yk, k = −m, . . . , 0. (22)

The formula of the advance of the model by a step is defined by the algorithm

yk+1 = Sk yk + Δ�(tk, I ({yl}k),Δ), (23)

here � : +
Δ × V × {Δ} → Y—the function of advance by a step; Sk : Y → Y is a

linear transition operator.
Thus, a discrete model is defined by starting values (22), an interpolation operator

and formula of advance by a step (23). We will suppose that the function �(tk, v,Δ)

in (23) is Lipschitz [5] with constant L� with respect to the second argument. The
function of exact values is defined by the mapping

Z(tk,Δ) = zk ∈ Y, k = −m, . . . , M.

We assume that the specification of the function of exact values is a consequence of
the specification of an exact solution to the problem (1)–(3). We will say that starting
values of the model have order Δp1 + h p2 if there exists a constant C such that

‖zk − yk‖Y ≤ C(Δp1 + h p2), k = −m, . . . , 0.

We will say that the method (23) converges with order Δp1 + h p2 if there exists a
constant C such that
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‖zk − yk‖Y ≤ C(Δp1 + h p2), k = −m, . . . , M.

Method (23) is called stable if for all k = 0, . . . , M − 1 is satisfied the inequality
‖Sk‖Y ≤ 1, where

‖Sk‖Y = sup
y �=0

‖Sk y‖Y
‖y‖Y , k = 0, . . . , M − 1. (24)

An approximation error with interpolation (residual) is called the following grid
function

dk = (zk+1 − Skzk)/Δ − �(tk, I ({zl}k),Δ), k = 0, . . . , M − 1. (25)

We will say that method (23) has the order of approximation error with interpolation
Δp1 + h p2 if there exists a constant C such that

‖dk‖Y ≤ C(Δp1 + h p2), k = 1, . . . , M.

Theorem 2. Suppose that the interpolation operator I satisfies the Lipschitz con-
dition and the function � satisfies the Lipschitz condition with respect to the second
argument. Suppose also that the starting values have orderΔp1 + h p2 , where p1 > 0
and p2 > 0. Let the error of approximation with interpolation has order Δp3 + h p4 ,
where p3 > 0 and p4 > 0. Suppose also that the method (23) is stable. Then, the
method (23) converges. Also, the order of the convergence of the method (23) is at
least Δmin{p1,p3} + hmin{p2,p4}.

Proof. We use the notation δk = zk − yk, k = −m, . . . , M . Then we have

δk+1 = Skδk + Δ̂δk + Δdk, k = 0, . . . , M − 1, where (26)

δ̂k = �(tk, I ({zl}k),Δ) − �(tk, I ({yl}k),Δ).

The assumptions that the mappings � and I are Lipschitz imply that

‖̂δk‖Y ≤ K max
k−m≤l≤k

{‖δl‖Y }, K = L�L I . (27)

We use the notation Sk,l = Sk · Sk−1 · . . . · Sl for k ≥ 0 and 0 ≤ l ≤ k. If l > k, then
Sk,l = E is identity operator. Then from (26) follows

δk+1 = Sk,0δ0 + Δ

k∑

j=0

Sk, j+1̂δ j + Δ

k∑

j=0

Sk, j+1d j . (28)

From (27), (28) and the definition of the stability of the method (23) follows
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‖δk+1‖Y ≤ KΔ

k∑

j=0

max
j−m≤l≤ j

{‖δl‖Y } + ‖δ0‖Y + (θ − t0) max
0≤l≤M−1

{‖dl‖Y }. (29)

We denote

R0 = max−m≤l≤0
{‖δl‖Y }, R = max

0≤l≤M−1
{‖dl‖Y }, D = R0 + (θ − t0)R, (30)

Then we transform estimate (29) as follows:

‖δk+1‖Y ≤ KΔ

n∑

j=0

max
j−m≤l≤ j

{‖δl‖Y } + D. (31)

Let us prove the following estimate by induction on k = 1, . . . , M .

‖δk‖Y ≤ D(1 + KΔ)n. (32)

Induction base. If we set k = 0 in (31), then

‖δ1‖Y ≤ KΔR0 + D ≤ KΔD + D = D(1 + KΔ).

Induction step. Suppose that the estimate (32) is true for all indices from 1 to k. We
show that the estimate is also true for k + 1. Let us fix j ≤ k. Let l0 = l0( j) be the
index for which max

j−m≤l≤ j
{‖δl‖Y } is achieved. There are two possible situations:

1. l0 ≤ 0; then, max
j−m≤l≤ j

{‖δl‖Y } = ‖δl0‖Y ≤ R0 ≤ D(1 + KΔ) j .

2. 1 ≤ l0 ≤ j ; then, by the induction assumption

max
j−m≤l≤ j

{‖δl‖Y } = ‖δl0‖Y ≤ D(1 + KΔ)l0 ≤ D(1 + KΔ) j .

We get that in any case the following estimate is performed:

max
j−m≤l≤ j

{‖δl‖Y } ≤ D(1 + KΔ) j .

From the received estimate and (31) it follows

‖δk+1‖Y ≤ KΔ

k∑

j=0

D(1 + KΔ) j + D = D + KΔD + KΔ

k∑

j=1

D(1 + KΔ) j

= D(1 + KΔ) + KΔD(1 + KΔ)
(1 + KΔ)k − 1

1 + KΔ − 1
= D(1 + KΔ) + D(1 + KΔ)((1 + KΔ)k − 1) = D(1 + KΔ)k+1.
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Therefore, the estimate (32) is proved, and from it we obtain the following inequality

‖δk‖Y ≤ DeK (θ−t0). (33)

By definition (30) of the value D, the following inequality holds

D ≤ C(Δmin{p1,p3} + hmin{p2,p4}). (34)

Then the conclusion of the theorem follows from (33), (34). 	


5 The Embedding into the General Difference Scheme with
Aftereffect

We embed scheme (6)–(8) into the general scheme. We define the values of the
discrete model by the vector yk = (u000k , u001k , . . . , uN1N2N3

k )T ∈ Y for every tk ∈ Δ,
where Y—vector space of dimension q = (N1 + 1)(N2 + 1)(N3 + 1), and T—the
transposition symbol. We introduce in the space Y the operators Aβ(t), A(t) using
the notations from Sect. 3:

◦

β (t)ui1i2i3k =

{
0, xi1i2i3 ∈ γh,


β(t)ui1i2i3k , xi1i2i3 ∈ ωh,
β = 1, 2, 3.

Aβ(t)yk = (− ◦

β (t)u000k , . . . ,− ◦


β (t)uN1N2N3
k )T , β = 1, 2, 3.

A(t) = A1(t) + A2(t) + A3(t).

Using identities yk+ 1
3

= yk + Δ
yk+ 1

3
− yk

Δ
, yk+ 2

3
= yk+ 1

3
+ Δ

yk+ 2
3
− yk+ 1

3

Δ
, yk+1 =

yk+ 2
3
+ Δ

yk+1 − yk+ 2
3

Δ
and introducing the operators

Bβ(t) = E + Δs Aβ(t), β = 1, 2, 3,

we bring the system (6)–(8) to the canonical form [8]:

B1(t)
yk+ 1

3
− yk

Δ
+ A1(t)yk = Fk(v(·)), k = 0, . . . , M − 1, (35)

B2(t)
yk+ 2

3
− yk+ 1

3

Δ
+ A2(t)yk = Fk(v(·)), k = 0, . . . , M − 1, (36)
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B3(t)
yk+1 − yk+ 2

3

Δ
+ A3(t)yk = Fk(v(·)). k = 0, . . . , M − 1,where (37)

Fk(v(·)) = (F000
k

(
v000k (·)), . . . , FN1N2N3

k

(
vN1N2N3
k (·)))T , v(·) = I ({yl }k) ∈ Qq [−τ, Δ].

Here, the interpolation space V = Qq [−τ,Δ] is the space of q-dimensional vector
functions every component of which belongs to the space Q[−τ,Δ]. Since condition
(4) holds, then for all t the operators A(t), Aβ(t) is positive and self-adjoint [8] in
the sense of the scalar product (12). The norm in the space Y is defined as ‖y‖Y =√

(y, y).
E (identity operator) is positive and self-adjoint in the sense of the scalar product

(12). Thus, for all t the operators Bβ(t) are positive and self-adjoint in the sense of
the scalar product (12). The operators A1(t) and B1(t), A2(t) and B2(t), A3(t) and
B3(t) are commutative respectively for all t in the sense of the scalar product (12).
Let us obtain the stability conditions. For this we use the fact that for all t following

inequality holds ‖Aβ(t)‖ ≤ 4c2
h2β

. Let us consider

Bβ(t) − Δ

2
Aβ(t) = E + sΔAβ(t) − Δ

2
Aβ(t)

= E + (s − 1

2
)ΔAβ(t) ≥ 0 under s ≥ 1

2
− h2β

4c2Δ
, β = 1, 2, 3. (38)

We will consider s ≥ 1

2
− min(h21, h

2
2, h

2
3)

4c2Δ
to fulfill the condition (38) for all β.

Since Bβ(t) is a positive operator in a finite-dimensional Hilbert space for all t , then
there exists B−1

β (t) for all t [8]. Therefore, we can transform the system (35)–(37)
to explicit form

yk+ 1
3

= S1(t)yk + Δ�1(t, I ({yl}k),Δ), k = 0, . . . , M − 1, (39)

yk+ 2
3

= S2(t)yk+ 1
3
+ Δ�2(t, I ({yl}k),Δ), k = 0, . . . , M − 1, (40)

yk+1 = S3(t)yk+ 2
3
+ Δ�3(t, I ({yl}k),Δ), k = 0, . . . , M − 1, (41)

where the transition operators Sβ(t) and the function of advance by a step are defined
by the formulas

Sβ(t) = E − ΔB−1
β (t)Aβ(t), �β(t, v,Δ) = B−1

β (t)Fk(v(·)), β = 1, 2, 3.

We exclude yk+ 1
3
and yk+ 2

3
from the system (39)–(41). Obtain
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yk+1 = S3(t)S2(t)S1(t)yk + Δ[S3(t)S2(t)�1(t, I ({yl}k,Δ) +
+S3(t)�2(t, I ({yl}k),Δ) + �3(t, I ({yl}k),Δ)], k = 0, M − 1. (42)

Let us investigate the stability of the resulting scheme. To this end, along with equa-
tion (42), consider the homogeneous difference scheme in the explicit form

yk+1 = S3(t)S2(t)S1(t)yk, k = 0, M − 1, (43)

In view of positive and self-adjoint operators Aβ(t) and Bβ(t), and conditions (5),
(38) we can apply stability criterion for two-layer difference schemes for the case of
variable coefficient of heat conductivity [9]. We obtain

‖yk+ 1
3
‖Y ≤ ‖yk‖Y , ‖yk+ 2

3
‖Y ≤ ‖yk+ 1

3
‖Y , ‖yk+1‖Y ≤ ‖yk+ 2

3
‖Y , k = 0, M − 1.

(44)
Therefore, for the equivalent homogeneous equation (43) we have that

‖S3(t)S2(t)S1(t)yk‖Y ≤ ‖yk‖Y , k = 0, . . . , M − 1. (45)

We will consider S3(t)S2(t)S1(t) as the operator Sk from Sect. 4. Then from (45) we
obtain

‖Sk yk‖Y = ‖S3(t)S2(t)S1(t)yk‖Y ≤ ‖yk‖Y .

Consequently, we obtain for k = 0, . . . , M − 1

‖Sk‖Y = sup
yk �=0

‖Sk yk‖Y
‖yk‖Y ≤ 1, under condition s >

1

2
− min(h21, h

2
2, h

2
3)

4c2Δ
. (46)

Thus, under condition s ≥ 1

2
− min(h21, h

2
2, h

2
3)

4c2Δ
the scheme (42) is stable. Note that

from (44) for β = 1, 2, 3 and all t we obtain the following inequality

‖Sβ(t)‖Y ≤ 1.

The function of exact values is defined as follows

zk = (u(x000, tk), u(x001, tk), . . . , u(xN1N2N3 , tk))
T ∈ Y, k = 0, . . . , M.

We take the starting values of the model equal to the function of exact values:

y j = z j = (ϕ(x000, t j ), ϕ(x001, t j ), . . . , ϕ(xN1N2N3 , t j ))
T , j = −m, . . . , 0.
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The following theorem connects the definition of the residual without interpolation
(17) in the method of fractional steps and the definition of the residual with interpo-
lation (25) in the general scheme.

Theorem 3. Suppose that the functions Fi1i2i3
k are Lipschitz, in addition, the inter-

polation-extrapolation operator I is Lipschitz and has order of error Δp0 on the
exact solution. Suppose also that the residual in the sense of (17) has order Δp1 +
h p2
1 + h p3

2 + h p4
3 . Then, the residual with interpolation has orderΔmin{p1,p0} + h p2

1 +
h p3
2 + h p4

3 .

Proof. We write the definitions of the residual in the sense of (17) and (25)

�
i1i2i3
k = u(xi1i2i3 , tk+1) − S3(t)S2(t)S1(t)u(xi1i2i3 , tk)

Δ
− 1

3
[S3(t)S2(t)B−1

1 (t)

+S3(t)B
−1
2 (t) + B−1

3 (t)] f (xi1i2i3 , t, u(xi1i2i3 , t), ut (x
i1i2i3 , ·)).

dk = zk+1 − S3(t)S2(t)S1(t)zk
Δ

− [S3(t)S2(t)B−1
1 (t)

+S3(t)B
−1
2 (t) + B−1

3 (t)]F(I ({zl}k)), k = 0, . . . , M − 1.

For every component of the vector z we have

|di1i2i3
k | = |u(xi1i2i3 , tk+1) − Si1i2i33 (t)Si1i2i32 (t)Si1i2i31 (t)u(xi1i2i3 , tk)

Δ
− [B−1

3 (t)

+S3(t)S2(t)B
−1
1 (t) + S3(t)B

−1
2 (t)]Fi1i2i3(I ({u(xi1i2i3 , tl)}k)), k = 0, M − 1.

We add and subtract f (xi1i2i3 , t, u(xi1i2i3 , t), ut (xi1i2i3 , ·)). Then

|di1i2i3k | = |u(xi1i2i3 , tk+1) − Si1i2i33 (t)Si1i2i32 (t)Si1i2i31 (t)u(xi1i2i3 , tk)

Δ
− 1

3
[S3(t)B−1

2 (t)

+S3(t)S2(t)B
−1
1 (t) + B−1

3 (t)][ f (xi1i2i3 , t, u(xi1i2i3 , t), I ({u(xi1i2i3 , tl )}k+ 1
2
))

− f (xi1i2i3 , t, u(xi1i2i3 , t), ut (x
i1i2i3 , ·)) + f (xi1i2i3 , t, u(xi1i2i3 , t), ut (x

i1i2i3 , ·))].

It is easy to prove that (24) implies the following componentwise inequalities

|Si1i2i3β (t)yi1i2i3k | ≤ ‖S‖Y |yi1i2i3k |, β = 1, 2, 3, yk = (y000k , . . . , yN1N2N3
k ). (47)

We obtain following inequalities from conditions (16), (46) and (47), and the facts
that F is Lipschitz with respect to u(·), and the definition of the order of the residual
in the sense of (17), and the definition of the order of an interpolation-extrapolation
operator

|di1i2i3
k | ≤ C�(Δp1 + h p2

1 + h p3
2 + h p4

3 ) + L f C2Δ
p0

≤ (C� + L f C2)(Δ
min{p1,p0} + h p2

1 + h p3
2 + h p4

3 ), k = 0, M − 1.
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Therefore, the norm of the vector dk satisfies the inequality

‖dk‖Y = √
(dk, dk) = (

N1∑

i1=0

N2∑

i2=0

N3∑

i3=0

(di1i2i3
k )2h1h2h3)

1
2

≤ (C� + L f C2)(Δ
min{p1,p0} + h p2

1 + h p3
2 + h p4

3 )(

N1∑

i1=0

N2∑

i2=0

N3∑

i3=0

h1h2h3)
1
2

≤ √
2X1X2X3(C� + L f C2)(Δ

min{p1,p0} + h p2
1 + h p3

2 + h p4
3 ).

The conclusion of the theorem follows from this relation. 	

Thus, the embedding of the method of fractional steps for the multidimensional heat
conduction equation into the general scheme is complete. Based on theorem 2 we
obtain the following theorem.

Theorem 4. Suppose that condition s ≥ 1

2
− min(h21, h

2
2, h

2
3)

4c2Δ
holds. Suppose also

that the residual in the sense of (17) has order Δp1 + h p2
1 + h p3

2 + h p4
3 . Also, the

functions Fi
k are Lipschitz, and the interpolation-extrapolation operator I is Lipschitz

and has order of error Δp0 on the exact solution. Then, the method converges with
order Δmin{p1,p0}+h

p2
1 +h

p3
2 +h

p4
3 .

Using this theorem, we conclude that the method of fractional steps with a piecewise
constant interpolation and extrapolation by expansion has order Δ + h21 + h22 + h23.

6 Numerical Example

Wewill solve test example by means the method of fractional steps for the parameter
s = 1/2. To more clearly demonstrate the operation of the method, we will consider
two-dimensional heat conduction equation with aftereffect. However, one can con-
sider examples of equations with a large number of spatial variables. Let us consider
the following test equation with variable concentrated and distributed delays:

∂u(x, y, t)

∂t
= ∂

∂x
(K1(x, y, t)

∂u(x, y, t)

∂x
) + ∂

∂y
(K2(x, y, t)

∂u(x, y, t)

∂y
)

+(y − xt2)(2 + sin(x)) − t2y2(cos(x) − xsin(x)) −
√

t

2
(2 + sin(x))y

+√
u(x, y, t − τ(t)) +

∫ 0

−τ(t)
(x + y)u(x, y, t + s)ds − 3

8
(x + y)(2 + sin(x))yt2, (48)
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Table 1 The maximum in time of the norm of difference between the approximate and exact
solutions

M=20 M=200 M=2000

N1 = 10, N2 = 10 0.2913 0.0357 0.0106

N1 = 20, N2 = 20 0.3068 0.0325 0.0049

N1 = 40, N2 = 40 0.3155 0.0323 0.0036

Fig. 1 The approximate
solution for t = 1. The
number of grid points in t:
M = 200, in x: N1 = 20, in
y: N2 = 20

where x ∈ [0.1, 3], y ∈ [0.1, 3], t ∈ [0.1, 1], τ(t) = t/2. Coefficients of heat con-
ductivity are taken as follows: K1(x, y, t) = K2(x, y, t) = xyt . The following initial
conditions are given:

u(x, y, t) = (2 + sin(x))yt, x ∈ [0.1, 3], y ∈ [0.1, 3], t ∈ [0.05, 0.1].

The following boundary conditions are also given:

u(0.1, y, t) = (2 + sin(0.1))yt, y ∈ [0.1, 3], t ∈ [0.1, 1],
u(3, y, t) = (2 + sin(3))yt, y ∈ [0.1, 3], t ∈ [0.1, 1],

u(x, 0.1, t) = 0.1(2 + sin(x))t, x ∈ [0.1, 3], t ∈ [0.1, 1],
u(x, 3, t) = 3(2 + sin(x))t, x ∈ [0.1, 3], t ∈ [0.1, 1].

The exact solution is the function u(x, y, t) = (2 + sin(x))yt . The following are
the results of the numerical experiment. The Table1 contains the comparison of
the maximum in time of the norm of difference between the approximate and exact
solutions of the equation (48) for different steps h1, h2, Δ. The approximate solution
of the equation (48) is shown in Figure1 for t = 1.

Acknowledgements This work was supported by RFBR Grant 19-01-00019 and Act 211 Govern-
ment of the Russian Federation, contract 02.A03.21.0006.



The Method of Fractional Steps for a Multidimensional Heat Conduction Equation 121

References

1. Castro, M.A., Rodriguez, F., Cabrera, J., Martin, J.A.: Difference schemes for time-dependent
heat conduction models with delay. Int. J. Comput. Math. 91(1), 53–61 (2014)

2. Garcia, P., Castro, M.A., Martin, J.A., Sirvent, A.: Numerical solutions of diffusion mathemat-
ical models with delay. Math. Comput. Model. 50(5–6), 860–868 (2013)

3. Kropielnicka, K.: Convergence of implicit difference methods for parabolic functional differ-
ential equations. Int. J. Mat. Anal. 1(6), 257–277 (2007)

4. Lekomtsev, A.V., Pimenov, V.G.: Convergence of the alternating direction methods for the
numerical solution of a heat conduction equation with delay. Proc. Steklov Inst. Math. 272(1),
101–118 (2011)

5. Lekomtsev, A.V., Pimenov, V.G.: Convergence of the scheme with weights for the numeri-
calsolution of a heat conduction equation with delay for the case of variable coefficient of
heatconductivity. Appl. Math. Comput. 256, 83–93 (2015)

6. Pimenov, V.G.: General linear methods for numerical solving functional-differential equations.
Differ. Equ. 37(1), 116–127 (2001)

7. Pimenov, V.G., Lozhnikov, A.B.: Difference schemes for the numerical solution of the heat
conduction equation with aftereffect. Proc. Steklov Inst. Math. 275(S1), 137–148 (2011)

8. Samarskii, A.A.: The Theory of Difference Schemes. Marcel Dekker, New York (2001)
9. Samarskii, A.A., Gulin, A.V.: Stability of Difference Schemes. URSS, Moscow (2009). [in

Russian]
10. Skeel, R.D.: Analysis of fixed-stepsize methods. SIAM J. Numer. Anal. 13(5), 664–685 (1976)
11. Tavernini, L.: Finite difference approximations for a class of semilinear volterra evolution

problems. SIAM J. Numer. Anal. 14(5), 931–949 (1977)
12. Van der Houwen, P.J., Sommeijer, B.P., Baker, C.T.H.: On the stability of predictor-corrector

methods for parabolic equations with delay. IMA J. Numer. Anal. 6(1), 1–23 (1986)
13. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New

York (1996)
14. Zhang, B., Zhou, Y.: Qualitative Analysis of Delay Partial Difference Equations. Hindawi

Publishing Corporation, New York (2007)
15. Zubik-Kowal, B.: The method of lines for parabolic differential-functional equations. IMA J.

Numer. Anal. 17(1), 103–123 (1997)



Hyers-Ulam Stability of a Nonlinear
Volterra Integral Equation on Time
Scales

Andrejs Reinfelds and Shraddha Christian

Abstract We study Hyers-Ulam stability of a nonlinear Volterra integral equation
on unbounded time scales. Sufficient conditions are obtained based on the Banach
fixed point theorem and Bielecki type norm.

Keywords Hyers-Ulam stability · Nonlinear Volterra integral equation ·
Unbounded time scales

1 Introduction

In 1940 S.M. Ulam [23] at the University of Wisconsin raised the question when
a solution of an equation, differing slightly from a given one, must be somehow
near to the exact solution of the given equation. In the following year, D.H. Hyers
[10] gave an affirmative answer to the question of S.M. Ulam for additive Cauchy
equation in a Banach space. So the stability concept proposed by S.M. Ulam and
D.H. Hyers, was named as Hyers-Ulam stability. Afterwards Th.M. Rassias [15]
introduced new ideas of Hyers-Ulam stability using unbounded right-hand sides in
the involved inequalities, depending on certain functions, introducing therefore the
so-called Hyers-Ulam-Rassias stability.

In 2007, S.M. Jung [13] proved, using a fixed point approach, that the Volterra
nonlinear integral equation is Hyers-Ulam-Russias stable, on a compact interval
under certain conditions. Then several authors [5, 11, 12] generalized the previous
result on the Volterra integral equations to infinite interval in the case when the
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29 Raiņa bulvāris, Rı̄ga 1459, Latvia
e-mail: reinf@latnet.lv

A. Reinfelds · S. Christian
Department of Mathematics, University of Latvia,
3 Jelgavas iela, Rı̄ga 1004, Latvia
e-mail: sc16024@lu.lv

© Springer Nature Switzerland AG 2020
S. Pinelas et al. (eds.), Differential and Difference Equations with Applications,
Springer Proceedings in Mathematics & Statistics 333,
https://doi.org/10.1007/978-3-030-56323-3_10

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56323-3_10&domain=pdf
mailto:reinf@latnet.lv
mailto:sc16024@lu.lv
https://doi.org/10.1007/978-3-030-56323-3_10


124 A. Reinfelds and S. Christian

integrand is Lipschitz with a fixed Lipschitz constant. In the near past many research
papers have been published about Ulam-Hyers stability of Voltera integral equations
of different type including nonlinear Volterra integro-differential equations, mixed
integral dynamic system with impulses etc. [6, 7, 18, 21].

The theory of time scales analysis has been rising fast and has acknowledged
a lot of interest. The pioneer of this theory was S. Hilger [8]. He introduced this
theory in 1988 with the inspiration to unify continuous and discrete calculus. For the
introduction to the calculus on time scales and to the theory of dynamic equations
on time scales, we recommend the books [3] and [4] by M. Bohner and A. Peterson.

T. Kulik and C.C. Tisdell [14, 22] gave the basic qualitative and quantitative
results to Volterra integral equations on time scales in the case when the integrand
is Lipschitz with a fixed Lipschitz constant. A. Reinfelds and S. Christian [16, 17]
generalized previous results using Lipschitz functions, whose Lipschitz coefficients
can be unbounded.

To the best of our knowledge, the first ones who pay attention to Hyers-Ulam
stability for Volterra integral equations on time scales are S. Andras, A.R. Meszaros
[1] and L. Hua, Y. Li, J. Feng [9]. However they restricted their research to the
case when integrand satisfies Lipschitz conditions with some Lipschitz constant. We
generalize the results of [1, 9] using Lipschitz functions, whose Lipschitz coefficients
can be an unbounded, and the Banach’s fixed point theorem at appropriate functional
space with Bielecki type norm. There are also papers on impulsive integral equations
on time scales [19, 20].

2 Notations and Preliminaries

A time scale T is an arbitrary non empty closed subset of the real numbers R. Since
a time scale may or may not be connected, the concept of jump operator is useful
for describing the structure of the time scale under consideration and is also used
in defining the delta derivative. The forward jump operator σ : T → T is defined by
the equality

σ(t) = inf{s ∈ T | s > t}

while the backward jump operator ρ : T → T is defined by the equality

ρ(t) = sup{s ∈ T | s < t}.

We define the graininess function μ : T → [0,+∞) by the relation

μ(t) = σ(t) − t.

The jump operators allow the classification of points in a time scale T. If σ(t) > t ,
then the point t ∈ T is called right scattered while if ρ(t) < t , then the point t ∈ T

is called left scattered. If σ(t) = t then t ∈ T is called right dense while if ρ(t) = t
then t ∈ T is called left dense.
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The function g : T → R is called rd-continuous provided it is continuous at every
right dense points in T and its left sided limits exist at every left dense points in T.
The function g : T → R is regressive if

1 + μ(t)g(t) �= 0 for all t ∈ T.

Assume g : T → R is a function and fix t ∈ T
κ . The delta derivative (also Hilger

derivative) gΔ(t) exists if for every ε > 0 there exists a neighbourhood U = (t −
δ, t + δ)

⋂
T for some δ > 0 such that

∣
∣(g(σ (t)) − g(s)) − gΔ(t)(σ (t) − s)

∣
∣ ≤ ε |σ(t) − s| , for all s ∈ U.

TakeT = R and g is differentiable in the ordinary sense at t ∈ T. Then gΔ(t) = g′(t)
is the derivative used in standard calculus. Take T = Z. Then gΔ(t) = Δg(t) is the
forward difference operator used in difference equation.

If FΔ(t) = g(t) then define the (Cauchy) delta integral by

∫ s

r
g(t)Δt = F(s) − F(r), for all r, s ∈ T.

If T = R, then

∫ s

r
g(t)Δt =

∫ s

r
g(t) dt

while T = Z, then

∫ s

r
g(t)Δt =

s−1∑

t=r

g(t), if r, s ∈ Z and r < s.

Let β : T → R be a nonnegative (and therefore regressive) and rd-continuous
scalar function. The Cauchy initial value problem for scalar linear equation

xΔ = β(t)x, x(a) = 1, a ∈ T

has the unique solution eβ(·, a) : T → R [3]. More explicitly, using the cylinder
transformation the exponential function eβ(·, a) is given by

eβ(t, a) = exp

(∫ t

a
ξμ(s)(β(s))Δs

)

,

where

ξh(z) =
{
z, h = 0
1
h log(1 + hz), h > 0.
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Observe that we also have Bernoulli’s type estimate [2]

1 +
∫ t

a
β(s)Δs ≤ eβ(t, a) ≤ exp

(∫ t

a
β(s)Δs

)

(1)

for all t ∈ IT = [a,+∞) ∩ T.
Let | · | denote the Euclidean norm on R

n . We will consider the linear space of
continuous functions C(IT;Rn) such that,

sup
t∈IT

|x(t)|
eβ(t, a)

< ∞

and denote this special space by Cβ(IT;Rn). The space Cβ(IT;Rn) endowed with
Bielecki type norm

‖x‖β = sup
t∈IT

|x(t)|
eβ(t, a)

is a Banach space.

3 Hyers-Ulam Stability of Nonlinear Volterra Integral
Equation on Unbounded Time Scales

Consider the nonlinear Volterra integral equation

x(t) = f (t) +
∫ t

a
K (t, s, x(s))Δs, a, t ∈ IT = [a,+∞) ∩ T. (2)

In paper [16], we proved the existence and uniqueness of solution of (2) using
Lipschitz functions, whose Lipschitz coefficients can be unbounded.

Theorem 1. Let K : IT × IT × R
n → R

n be jointly continuous in its first and third
variables and rd-continuous in its second variable, f : IT → R

n be continuous,
L : IT → R be rd-continuous, γ > 1 and β(s) = L(s)γ . If

|K (t, s, x) − K (t, s, x ′)| ≤ L(s)|x − x ′|, x, x ′ ∈ R
n, s < t, (3)

m = sup
t∈IT

1

eβ(t, a)

∣
∣
∣
∣ f (t) +

∫ t

a
K (t, s, 0)Δs

∣
∣
∣
∣ < ∞,

then the nolinear Volterra integral Eq. (2) has a unique solution x ∈ Cβ(IT;Rn).
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Consider the Banach space Cβ(IT;Rn). To prove the Theorem 1 we define an
operator F : Cβ(IT;Rn) → Cβ(IT;Rn) by expression

[Fx](t) =
∫ t

a
(K (t, s, x(s)) − K (t, s, 0))Δs.

Here L : IT → R is the Lipschitz type function defined by (3) and β(s) = L(s)γ ,
where γ > 1. Analogously to the Theorem 1 [16] we can verify that for any x, x ′ ∈
Cβ(IT;Rn)

‖[Fx](t) − [Fx ′](t)‖β = sup
t∈IT

|[Fx](t) − [Fx ′](t)|
eβ(t, a)

≤ sup
t∈IT

1

eβ(t, a)

∫ t

a
|K (t, s, x(s)) − K (t, s, x ′(s))| Δs

≤ sup
t∈IT

1

eβ(t, a)

∫ t

a
L(s)|x(s) − x ′(s)| Δs

= sup
t∈IT

1

eβ(t, a)

∫ t

a
L(s)eβ(s, a)

|x(s) − x ′(s)|
eβ(s, a)

Δs

≤ ‖x − x ′‖β sup
t∈IT

1

eβ(t, a)

∫ t

a
L(s)eβ(s, a) Δs

= ‖x − x ′‖β

γ
sup
t∈IT

1

eβ(t, a)

∫ t

a
γ L(s)eβ(s, a) Δs

= ‖x − x ′‖β

γ
sup
t∈IT

1

eβ(t, a)

∫ t

a
eΔ
β (s, a) Δs

= ‖x − x ′‖β

γ
sup
t∈IT

[

1 − 1

eβ(t, a)

]

≤ ‖x − x ′‖β

γ
.

So we get

∥
∥
∥
∥

∫ t

a
K (t, s, x(s))Δs −

∫ t

a
K (t, s, x ′(s))Δs

∥
∥
∥
∥

β

≤ ‖x(t) − x ′(t)‖β

γ
.

Definition 1. We say that integral Eq. (2) is Hyers-Ulam stable if there exists a
constant C > 0 such that for each real number ε > 0 and for each solution x ∈
Cβ(IT;Rn) of the inequality

‖x(t) − f (t) −
∫ t

a
K (t, s, x(s))Δs‖β ≤ ε,
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there exists a solution x0 ∈ Cβ(IT;Rn) of the integral Eq. (2) with the property

‖x(t) − x0(t)‖β ≤ Cε.


�
Let us find sufficient conditions for the Hyers-Ulam stability of nonlinear Volterra

integral equation on time scales.

Theorem 2. Consider the nonlinear Volterra integral Eq. (2) satisfying conditions
of Theorem 1. Suppose x ∈ Cβ(IT;Rn) is such that satisfies the inequality

‖x(t) − f (t) −
∫ t

a
K (t, s, x(s))Δs‖β ≤ ε.

Then nonlinear Volterra integral Eq. (2) is Hyers-Ulam stable.

Proof. According to the Theorem 1 [16], there is a unique solution x0 of the Volterra
integral Eq. (2) in Banach space x0 ∈ Cβ(IT;Rn). Therefore we get the estimate

‖x(t) − x0(t)‖β ≤
∥
∥
∥
∥x(t) − f (t) −

∫ t

a
K (t, s, x(s))Δs

∥
∥
∥
∥

β

+
∥
∥
∥
∥

∫ t

a
K (t, s, x(s))Δs −

∫ t

a
K (t, s, x0(s))Δs

∥
∥
∥
∥

β

≤ ε + γ −1‖x(t) − x0(t)‖β.

Hence,
‖x(t) − x0(t)‖β ≤ Cε, (4)

where C = (1 − γ −1)−1. 
�
Example 1. Consider the scalar Volterra integral equation for an arbitrary T

x(t) = t2 +
∫ t

a
(s + σ(s))[x(s)2 + 1] 1

2 Δs, a, t ∈ IT = [a,+∞) ∩ T, a ≥ 0.

(5)
According to Theorem 1 [16], there is a unique solution of the Volterra integral
Eq. (5) in Banach space Cβ(IT;Rn), where β(t) = L(s)γ and γ > 1. Let us note
that according to [2] we have estimate

1 + γ (t2 − a2) ≤ eβ(t, a) ≤ exp(γ (t2 − a2))

which ensures the existence of a solution.
It follows from the Theorem 2 that integral Eq. (5) is Hyers-Ulam stable in Banach

space Cβ(IT;Rn).
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4 Hyers-Ulam Stability of Nonlinear Volterra Integral
Equation on Bounded Time Scales

In the case of a bounded (compact) time scales a, b ∈ IT = [a, b] ∩ T we have

1 ≤ sup
t∈IT

eβ(t, a) ≤ sup
t∈IT

exp
∫ t

a
β(s)Δs = M < ∞.

Let us note that every rd-continuous function on a compact interval is bounded.
Therefore supremum norm and Bielecki type norm at Banach space Cβ(IT;Rn) are
equivalent

sup
t∈IT

|x(t)| ≤ M‖x‖β ≤ M sup
t∈IT

|x(t)|.

We can take also γ = 1. Then β(t) = L(t) and we get estimate

‖[Fx](t) − [Fx ′](t)‖β ≤ (1 − M−1)‖x − x ′‖β.

From Theorem 2, we get

‖x(t) − x0(t)‖β ≤ M

∥
∥
∥
∥x(t) − f (t) −

∫ t

a
K (t, s, x(s))Δs

∥
∥
∥
∥

β

.

It follows

sup
t∈IT

|x(t) − x0(t)| ≤ M‖x(t) − x0(t)‖β

≤ M2

∥
∥
∥
∥x(t) − f (t) −

∫ t

a
K (t, s, x(s))Δs

∥
∥
∥
∥

β

≤ M2 sup
t∈IT

∣
∣
∣
∣x(t) − f (t) −

∫ t

a
K (t, s, x(s))Δs

∣
∣
∣
∣ .

Here C = M2.
It follows that integral Eq. (2) on bounded time scales is also Hyers-Ulam stable

in Banach space with supremum norm.
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5 Remarks

Itmight be interesting to obtain general results ofHyers-Ulam stability for functional,
integral functional, operatorial equations etc., namely for

x(t) = F(t, x(t)), t ∈ T

in a Banach space endowed with appropriate Bielecki type norm.
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On Some Stochastic Algorithms for the
Numerical Solution of the First Boundary
Value Problem for the Heat Equation

Alexander S. Sipin and Andrey N. Kuznetsov

Abstract We deal with statistical modeling algorithms for the numerical solution
of the first boundary value problem for the heat equation. Unbiased estimators of the
solution of a boundary value problem are built on the trajectories of random walks.
We consider a random walk on the boundary and a random walk on the cylinders
inside the region in which the boundary problem must be solved. The results of
computational experiments and some applications are presented. The complexity of
algorithms are estimated numerically.

1 Introduction

Let D be a bounded domain in Rn. We suppose that its boundary Γ consists of the
any finite smooth parts.

Let u(t, x) be a classical solution of the BVP for the heat equation

∂u(t, x)

∂t
= Δu(t, x) + f (t, x), x ∈ D, t > 0

u(t, x) = ψ(t, x), x ∈ Γ, t > 0 (1)

u(0, x) = ϕ(x), x ∈ D,

where ϕ ∈ C(D), ψ ∈ C([0,∞) × Γ ), f ∈ L2([0,∞) × D) and ϕ(x) = ψ(0, x)
for x ∈ Γ.

In the numerical solution of boundary value problems, various methods are used,
including probabilistic ones. Any probabilistic algorithm is based on a representation
of the solution of a boundary value problem in the formof amathematical expectation
of some random variable. This random variable is called an unbiased estimator for
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the u(t, x). Unbiased estimators for the u(t, x) are usually constructed on trajectories
of random walks or random processes with continuous time. Examples of unbiased
estimators for various boundary value problems can be found in books [1–4] and
papers [5–7].

We use theMonte Carlomethod to calculate the u(t, x) and construct the unbiased
estimators for the u(t, x) on the trajectories of twoMarkov chains: the RandomWalk
on the cylinders (RWC) and RandomWalk on the boundary (RWB). The complexity
of algorithms is estimated numerically.

2 RandomWalk on the Cylinders

Let us give a brief description of the walk simulation procedure and the construction
of an unbiased estimator (for a detailed description, see [3]).

We use the Mean Value Theorem to construct RWC and estimator for the u(t, x).
Let R = R(x) be the distance from a point x ∈ D to the boundary Γ, DR be the
ball centered at x of radius R and let r = ‖y − x‖. If R2 ≥ 2nt, then using Green
formula for the function u(τ, y) and the function

v(τ, y) = 1

[4π(t − τ)]
n
2

·
(
exp

(
− r2

4(t − τ)

)
− exp

(
− R2

4(t − τ)

))

we have Mean Value Theorem for the solution u(t, x) of the problem (1)

u(t, x) =
∫ t

0

∫
DR

v(τ, y) f (τ, y)dydτ

+
∫ t

0

∫
DR

(
R2

4(t − τ)2
− n

2(t − τ)

)
1

[4π(t − τ)]
n
2

· exp
(

− R2

4(t − τ)

)
u(τ, y)dydτ

+
∫
DR

v(0, y)ϕ(y)dy

+
∫ t

0

∫
∂DR

R

2(t − τ)

1

[4π(t − τ)]
n
2

· exp
(

− R2

4(t − τ)

)
u(τ, y)dy Sdτ,

that can be written in a probability form:

u(t, x) = I1 + I2 + I3 + I4, (2)

where

I1 = E1{
γ≤ R2

4tθ

}t · f
(
t − tθ, x + 2ρ

√
tθγΩ

)
, (3)
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I2 = E1{
γ> R2

4t

}1{
θ> n

2γ

}u
(
t − R2

4γ
, x + RρΩ

)
, (4)

I3 = E1{
γ≤ R2

4t

}ϕ(x + 2ρ
√
tγΩ), (5)

I4 = E1{
γ> R2

4t

}1{
θ≤ n

2γ

}u
(
t − R2

4γ
, x + RΩ

)
. (6)

Here, 1A is the indicator function of the event A. Random vector Ω is uniformly
distributed on the sphere of unit radius centered at the origin. The random variable
θ is uniformly distributed on the segment [0, 1]. The random variable ρ has the
distribution density nrn−1 on the segment [0, 1]. Finally, the random variable γ has
a gamma distribution density sn/2 exp(−s)/(1 + n/2).

If R2 < 2nt, then the representation for u(x, t) has a similar form:

I1 = E1{γ≤ n
2θ }

R2

2n
· f

(
t − R2

2n
θ, x + Rρ

√
2θγ

n
Ω

)
, (7)

I2 = E1{γ> n
2 }1{

θ> n
2γ

}u
(
t − R2

4γ
, x + RρΩ

)
, (8)

I3 = E1{γ≤ n
2 }u

(
t − R2

2n
, x + Rρ

√
2γ

n
Ω

)
, (9)

I4 = E1{γ> n
2 }1{

θ≤ n
2γ

}u
(
t − R2

4γ
, x + RΩ

)
. (10)

Now we define simulation procedure for RWC
(
t (k), x(k)

)
and a sequence of

random estimators ξk for the solution u(t, x).
Let γk, ρk, θk,Ωk(k = 1, 2, . . .) be the independent realizations of random vari-

ables defined previously. The distance R(x(k)) denote by Rk .Let x(0) = x , t (0) = t ,
ξ0 = u(t, x). It is obvious that the sum of random variables placed under the sign of
the expectation in terms I1, I2, I3, I4 is an unbiased estimate for u(t, x).But only one
factor before the function u is nonzero. The arguments of function u in this random
variable determine the next point for the RWC. For example, if R2

k < 2nt (k) and
γk ≤ n/2 then
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t (k + 1) = t (k) − R2
k

2n
, x(k + 1) = x(k) + Rkρk+1

√
2γk+1

n
Ωk+1.

A new estimator ξk+1 is obtained by replacing the function u(t (k), x(k)) in the
estimator ξk with its estimator by the formulas (7)–(10). So, under the selected
conditions, the function u(t (k), x(k)) in the estimator ξk is replaced by the sum

u(t (k + 1), x(k + 1)) + R2
k

2n
· f

(
t (k) − R2

k
2n

θk+1, x(k) + Rkρk+1

√
2θk+1γk+1

n
Ωk+1

)
.

In the second case, the process and estimators are defined in a similar way. The RWC
process stops at the moment N1, such that t (N1) = 0.

Some of the properties of the RWC process includes the following theorem
(see [3]).
Theorem 1.

1. The sequence of estimators ξk (k = 1, 2, . . .) is a square integrable martingale.
2. The RWC process

(
t (k), x(k)

)
(k = 1, 2, . . .) converges to (t∞, x∞) ∈ {0} ×

D ∪ [0, t] × Γ with probability 1.
3. Let δ > 0, N2 = min{k : R(x(k)) < δ} and Nδ = min(N1, N2). Then estimator

ξNδ
is unbiased for u(t, x).

4. Let η = δ2/max(γ, n/2). Then ENδ − 1 ≤ t/Eη + o(t).

Remark 1. In practice, we need to correct the estimator ξNδ
. Indeed, the value of

ξN2 = u(t (N2), x(N2)) is unknown for Nδ = N2. But we can change this value by
ψ(t (N2), x∗(N2)),where x∗(N2) ∈ Γ and ‖x∗(N2) − x(N2)‖ < δ.Anew estimator
denote by ξ ∗

Nδ
.

3 RandomWalk on the Boundary Algorithm

Nowwe describe one of the variants of the RandomWalk on the boundary algorithm
(Sabelfeld, Simonov [4]). For simplicity, we assume the domain D to be convex. We
write the solution of problem (1) as the sum of thermal potentials:

u(t, x) = u1(t, x) + u2(t, x) + u3(t, x), (11)

where

u1(t, x) = t · E1{
θγ≤ r2

4t

} f
(
t − tθ, x + 2

√
tθγΩ

)
, (12)

u2(t, x) = E1{
γ≤ r2

4t

}ϕ(x + 2
√
tγΩ), (13)
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where r is a distance between the points x and y ∈ Γ,which is visible from point x in
direction Ω. The random variable γ has a density pn(s) = sn/2−1 exp(−s)/(n/2).
The last function is a solution to a boundary value problem

∂u3(t, x)

∂t
= Δu3(t, x), x ∈ D, t > 0

u3(t, x) = ψ(t, x) − u1(t, x) − u2(t, x), x ∈ Γ, t > 0 (14)

u3(0, x) = 0, x ∈ D.

The function u3(t, x) is a double-layer potential

u3(t, x) = E1{
γ> r2

4t

}μ
(
t − r2

4γ
, x + rΩ

)
, (15)

where y = x + rΩ is a point of surface Γ , which is visible from point x in direction
Ω.

The density μ(t, x) satisfies the integral equation for x ∈ Γ

μ(t, x) = −E1{
γ> r2

4t

}μ
(
t − r2

4γ
, x + rΩ

)
+ 2g(t, x), (16)

where g(t, x) = ψ(t, x) − u1(t, x) − u2(t, x) for t > 0.

Remark 2. Note that in this equation vectorΩ is uniformly distributed in the hemi-
sphere defined by the inequality (Ω, νx ) < 0, where νx is an external normal vector
to the surface at point x ∈ Γ.

Now we define simulation procedure for RWB
(
t (k), x(k)

)
and a random estima-

tor ξ for the solution u(t, x).
Let x ∈ D, x(0) = x, t (0) = t > 0, ξ = 0 and γk, θk,Ωk(k = 1, 2, . . .) be the

independent realizations of random variables with a gamma distribution (with the
density pn(s)) and a uniform distribution on [0, 1] and uniform distribution on unit
sphere respectively.

At the first step,

1. We calculate the point y ∈ Γ at which the ray x(0) + rΩ1, r > 0 intersects the
surface Γ ;

2. If the condition θ1γ1 < r2/4t is fulfilled, then ξ := ξ + t · f (t − tθ1, x + 2√
tθ1γ1Ω1

)
;

3. If the condition γ1 > r2/4t is fulfilled, then we define a new point x(1) = x +
rΩ1 and a new time t (1) = t − r2/4γ1 and Q := 1;

4. If the condition γ1 ≤ r2/4t is fulfilled, then ξ := ξ + ϕ(x + 2
√
tγ1Ω1) and the

construction of the estimator is completed.
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Similar actions are performed in step k:

1. If (Ωk, νx(k−1)) > 0, then Ωk := −Ωk;
2. ξ := ξ + Q · 2ψ(t (k − 1), x(k − 1));
3. We calculate the point y ∈ Γ at which the ray x(k − 1) + rΩk, r > 0 intersects

the surface Γ ;
4. If the condition θkγk < r2/4t (k − 1) is fulfilled, then

ξ := ξ − Q · t · f
(
t (k − 1) − t (k − 1)θk, x(k − 1) + 2

√
t (k − 1)θkγkΩk

) ;
5. If the condition γk > r2/4t (k − 1) is fulfilled, then we define new point x(k) =

x(k − 1) + rΩk and new time t (k) = t (k − 1) − r2/4γk and Q := −Q;
6. If the condition γk ≤ r2/4t (k − 1) is fulfilled, then ξ := ξ − Q · ϕ(x(k − 1) +

2
√
t (k − 1)γkΩk) and the construction of the estimator is completed.

Remark 3. We constructed an estimator, which should be called the absorption-
collision estimator. It is the collision estimator for ψ(t, x) function and absorption
estimator for ϕ(t, x) function. Other estimators and process properties can be found
in [2, 4].

4 Numerical Results

Consider the boundary problem for the ball ‖ x ‖≤ ρ in R3. To determine the point
of intersection of the sphere with the ray, we obtain the formula

r = −(Ω, x) +
√

(Ω, x)2 + ρ2− ‖ x ‖2, (17)

in case ‖ x ‖< ρ and the formula

r = −2(Ω, x), (18)

in case ‖ x ‖= ρ.

Let n = 3, ρ = 1 and u(t, x) = exp(−t) · sin(x1 + t). Then

f (t, x) = exp(−t) · cos(x1 + t).

We calculate the values of the function u(t, p) for a point p = (0.5, 0.5, 0.5) for
different values of time. All results are shown for computing on a single core AMD
Ryzen 7 2700 processor. Parameter δ = 10−8 for the RWC process. The number
of trajectories is denoted by M. The variable L denotes the average length of the
trajectory, and the variable T stands for processor time.
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Table 1 Values of the function u(t, p) = exp(−t) · sin(x1 + t) at the point p = (0.5, 0.5, 0.5).
Monte Carlo method for (RWC) and (RWB) processes. (t = 0.5, u(t, p) = 0.5103779515)
M RWC ERR RWB ERR L RWC L RWB T RWC T RWB

104 0.51132 0.00419 0.51135 0.01811 87 3

105 0.51096 0.00134 0.50978 0.00574 87 3

106 0.51033 0.00042 0.51073 0.00182 87 3

107 0.51034 0.00013 0.51025 0.00057 87 3 177 c

108 0.51037 0.00018 3 53 c

Table 2 Values of the function u(t, p) = exp(−t) · sin(x1 + t) at the point p = (0.5, 0.5, 0.5).
Monte Carlo method for (RWC) and (RWB) processes. (t = 5, u(t, p) = −0.004753893319)
M RWC ERR RWB ERR L RWC L RWB T RWC T RWB

104 −0.0047598 0.0000346 −0.010500 0.024800 87 12

105 −0.0047580 0.0000109 −0.004316 0.007953 87 12

106 −0.0047566 0.0000035 −0.003726 0.002516 87 12

107 −0.0047547 0.0000011 −0.004548 0.000796 87 12 177 c

108 −0.004742 0.000252 12 201 c

Table 3 Values of the function u(t, p) = exp(−t) · sin(x1 + t) at the point p = (0.5, 0.5, 0.5).
Monte Carlo method for (RWC) and (RWB) processes. (t = 10, u(t, p) = −0.00003993812572)
M RWC ERR RWB ERR L RWC L RWB T RWC T RWB

104 −0.0000399551 0.0000003062 −0.0738000 0.02800 87 21

105 −0.0000399698 0.0000000969 −0.0733000 0.00887 87 21

106 −0.0000399287 0.0000000305 −0.0000911 0.00279 87 21

107 −0.0000399376 0.0000000096 −0.0000348 0.00089 87 21 185 c

108 −0.0000302 0.00028 21 345 c

Table 4 Values of the function u(t, p) = exp(−t) · sin(x1 + 2 · x2 − x3 + t) at the point p =
(0.5, 0.5, 0.5). Monte Carlo method for (RWC) and (RWB) processes. (t = 3, u(t, p) =
−0.03767897757)
M RWC ERR RWB ERR L RWC L RWB T RWC T RWB

104 −0.037844 0.000885 87

105 −0.037689 0.000282 −0.032908 0.031248 87 8

106 −0.037690 0.000089 −0.031764 0.009878 87 8

107 −0.037677 0.000028 −0.038145 0.003125 87 8 175 c

108 −0.037507 0.000988 8

109 −0.037628 0.000313 8 24 m. 02 c
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Table 5 Values of the function u(t, p) = t at the point p = (0.5, 0.5, 0.5). Monte Carlo method
for (RWC) and (RWB) processes. (t = 10, u(t, p) = 10)
M RWC ERR RWB ERR L RWC L RWB T RWC T RWB

104 10.000029 0.000448 9.914594 0.187085 87

105 10.000009 0.000138 9.941957 0.059305 87 21

106 9.9999996 0.000043 9.991535 0.018762 87 21

107 9.9999950 0.000014 9.999740 0.005936 87 21 164 c

108 10.000043 0.001877 21 286 c

Table 6 Values of the function u(t, p) = unknown at the point p = (0.5, 0.5, 0.5). Monte Carlo
method for (RWC) and (RWB) processes. (t = 10, f (t, p) = 0, ϕ(t, p) = 0, ψ(t, p) = t,)
M RWC ERR RWB ERR L RWC L RWB T RWC T RWB

104 9.95899 0.00203 9.98897 0.12767 87

105 9.95862 0.00065 9.95060 0.04002 87 21

106 9.95835 0.00021 9.95560 0.01263 87 21

107 9.95834 0.00007 9.95791 0.00400 87 21 164 c

108 9.95916 0.00126 21 281 c

5 Conclusion

The complexity of the algorithm for solving the problem was determined by the
time of its operation to achieve the required error. Therefore, each table presents one
run time for each algorithm. These times correspond to sample sizes at which the
algorithms give the same error. Analyzing the results, it can be noted that

1. For “small” values of t, the RWB algorithm works better than algorithm RWC.
(Table 1)

2. For “large” values of t, the RWC algorithm works better than algorithm RWB.
(Tables 2, 3)

3. For the complicated function u(t, x) the RWC algorithm works significantly
better than the RWB algorithm. (Table 4)

4. The complexity of the RWB algorithm grows with increasing time even on a
simple function u(t, x). (Table 5)

5. If the potentials u1(t, x), u2(t, x) are non-zero, the variance of the estimators of
the RWB algorithm increases quickly with increasing time. (Tables 3, 5)

6. If the potentials u1(t, x), u2(t, x) are zero, the variance of the estimators of the
RWB 100 times more than the variance of the estimators of the RWC. (Table 6)

Perhaps the problems of the RWB algorithm are related to the fact that the esti-
mators of the thermal potentials have a large variance. It would be interesting to find
estimates of potentials with less variance.

A feature of the RWC algorithm is the fulfillment of the condition τ < R2/(2n)

for a time step τ similar to the stability condition for an explicit difference scheme.
It is possible that the success of the RWC algorithm is associated with it.
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Local Controllability of a Class of
Fractional Differential Inclusions via
Derived Cones

Aurelian Cernea

Abstract We study a class of fractional differential inclusions defined by Caputo-
Katugampola fractional derivative and we provide a sufficient condition for local
controllability along a reference trajectory. This condition is obtain in terms of a
certain variational fractional differential inclusion associated to the problem studied.
More exactly, we prove that the reachable set of a certain variational fractional
differential inclusion of Caputo-Katugampola type is a derived cone in the sense of
Hestenes to the reachable set of the problem and then, in order to obtain our main
result, we essentially use an outstanding property of derived cones and a continuous
version of Filippov’s theorem for solutions of the fractional differential inclusion
considered.

Keywords Differential inclusion · Fractional derivative · Derived cone · Local
controllability

1 Introduction

The last years represent a period of strong development of the theory of differential
equations and inclusions of fractional order ([3, 8, 12, 13, 16] etc.). This is justified
by the fact that fractional differential equations are very useful tools in order tomodel
many physical phenomena.

Recently, a generalized Caputo-Katugampola fractional derivative was proposed
in [11] by Katugampola and afterwards he provided the existence of solutions for
fractional differential equations defined by this derivative. This Caputo-Katugampola
fractional derivative extends thewell knownCaputo andCaputo-Hadamard fractional
derivatives into a single form. Even if Katugampola fractional integral operator is
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an Erdélyi-Kober type operator [9] it is argued [11] that is not possible to derive
Hadamard equivalence operators from Erdélyi-Kober type operators. Also, in some
recent papers [1, 7, 17], several qualitative properties of solutions of fractional dif-
ferential equations defined by Caputo-Katugampola derivative were obtained.

In this paper we study the following problem

Dα,ρ
c x(t) ∈ F(t, x(t)) a.e. ([0, T ]), x(0) ∈ X0, x ′(0) ∈ X1, (1)

where α ∈ (1, 2], ρ ≥ 1, Dα,ρ
c is the Caputo-Katugampola fractional derivative, F :

[0, T ] × R → P(R) is a set-valued map and X0, X1 ⊂ R are closed sets.
The aim of the present paper is to provide a sufficient condition for local control-

lability along a reference trajectory of differential inclusion (1) in terms of certain
variational fractional differential inclusion associated to problem (1).

A key tool in our approach is the notion of derived cone to an arbitrary subset of
a normed space introduced by M. Hestenes in [10]. Initially this concept was used in
[10] to obtain necessary optimality conditions in control theory. Other properties of
derived cones obtained in [14, 15] are useful to obtain several results in the qualitative
theory of control systems.

We prove that the reachable set of a certain variational fractional differential
inclusion of Caputo-Katugampola type is a derived cone in the sense of Hestenes to
the reachable set of the problem (1). In order to obtain the continuity property in the
definition of a derived cone we shall use a continuous version of Filippov’s theorem
for solutions of fractional differential inclusion (1) recently obtained in [7] (see also
[4, 6]).

Wenote that a similar result for fractional differential inclusions defined byCaputo
fractional derivativemay be found in [5]; therefore, the present papermay be regarded
as an extension of the results in [5] to the more general problem (1).

The paper is organized as follows: in Sect. 2 we present the notations and the
preliminary results to be used in the sequel and in Sect. 3 we provide our main
results.

2 Preliminaries

In general the reachable set to a control system is, generally, neither a differentiable
manifold, nor a convex set, its infinitesimal properties may be characterized only
by tangent cones in a generalized sense, extending the classical concepts of tangent
cones in differential geometry and convex analysis, respectively.

Definition 1 [10] A subset D ⊂ Rn is said to be a derived set to X ⊂ Rn at x ∈ X if
for any finite subset {w1, ...,wk} ⊂ D, there exist s0 > 0 and a continuous mapping
α(.) : [0, s0]k → X such that α(0) = x and α(.) is (conically) differentiable at s = 0
with the derivative col[w1, ...,wk] in the sense that
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lim
Rk+�θ→0

||α(θ) − α(0) − ∑k
i=1 θiwi ||

||θ || = 0.

We shall write in this case that the derivative of α(.) at s = 0 is given by

Dα(0)θ =
k∑

i=1

θ jw j ∀θ = (θ1, ..., θk) ∈ Rk
+ := [0,∞)k .

A subset C ⊂ Rn is said to be a derived cone of X at x if it is a derived set and
also a convex cone.

For the basic properties of derived sets and cones we refer to M. Hestenes [10];
we recall that if D is a derived set then D

⋃ {0} as well as the convex cone generated
by D, defined by

cco(D) = {
k∑

i=1

λ jw j ; λ j ≥ 0, k ∈ N , wj ∈ D, j = 1, ..., k}

is also a derived set, hence a derived cone.
The fact that the derived cone is a proper generalization of the classical concepts

in differential geometry and convex analysis is illustrated by the following results
[10]: if X ⊂ Rn is a differentiable manifold and Tx X is the tangent space in the sense
of differential geometry to X at x

Tx X = {w ∈ Rn; ∃ c : (−s, s) → Rn, of class C1, c(0) = x, c′(0) = w},

then Tx X is a derived cone; also, if X ⊂ Rn is a convex subset then the tangent cone
in the sense of convex analysis defined by

TCx X = cl{t (y − x); t ≥ 0, y ∈ X}

is also a derived cone. Since any convex subcone of a derived cone is also a derived
cone, such an object may not be uniquely associated to a point x ∈ X ; moreover,
simple examples show that even amaximal with respect to set-inclusion derived cone
may not be uniquely defined: if the set X ⊂ R2 is defined by

X = C1

⋃
C2, C1 = {(x, x); x ≥ 0}, C2 = {(x,−x), x ≤ 0},

then C1 and C2 are both maximal derived cones of X at the point (0, 0) ∈ X .
At the same time, the up-to-date experience in nonsmooth analysis shows that for

some problems, the use of one of the intrinsic tangent cones may be preferable. The
most known intrinsic tangent cones in the literature (e.g. [2]) are the contingent, the
quasitangent (intermediate) and Clarke’s tangent cones, defined, respectively, by
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Kx X = {v ∈ X; ∃ sm → 0+, ∃ xm → x, xm ∈ X : xm − x

sm
→ v},

Qx X = {v ∈ X; ∀sm → 0+, ∃ xm → x, xm ∈ X : xm − x

sm
→ v},

Cx X = {v ∈ X; ∀ (xm, sm) → (x, 0+), xm ∈ X, ∃ ym ∈ X : ym − xm
sm

→ v}.

The next property of derived cone, obtained by Hestenes ([10], Theorem 4.7.4)
and stated in the next lemma is essential in the proof of our main result.

Lemma 1 Let X ⊂ Rn. Then x ∈ int (X) if and only if C = Rn is a derived cone at
x ∈ X to X.

Corresponding to each type of tangent cone, say τx X one may introduce (e.g. [2])
a set-valued directional derivative of a multifunction G(.) : X ⊂ Rn → P(Rn) (in
particular of a single-valued mapping) at a point (x, y) ∈ Graph(G) as follows

τyG(x; v) = {w ∈ Rn; (v,w) ∈ τ(x,y)Graph(G)}, v ∈ τx E .

We recall that a set-valued map, A(.) : Rn → P(Rn) is said to be a con-
vex (respectively, closed convex) process if Graph(A(.)) ⊂ Rn × Rn is a convex
(respectively, closed convex) cone. For the basic properties of convex processes we
refer to [2], but we shall use here only the above definition.

Let T > 0, I := [0, T ] and denote by L (I ) the σ -algebra of all Lebesgue mea-
surable subsets of I . Denote by P(R) the family of all nonempty subsets of R and
byB(R) the family of all Borel subsets of R.

As usual, we denote by C(I,R) the Banach space of all continuous functions
x(.) : I → R endowed with the norm |x(.)|C = supt∈I |x(t)| and by L1(I,R) the
Banach space of all (Bochner) integrable functions x(.) : I → R endowed with the
norm |x(.)|1 = ∫ T

0 |x(t)|dt .
In [11] the following notions were introduced. Let ρ > 0.

Definition 2 ([11]) (a) The generalized left-sided fractional integral of order α > 0
of a Lebesgue integrable function f : [0,∞) → R is defined by

I α,ρ f (t) = ρ1−α

Γ (α)

∫ t

0
(tρ − sρ)α−1sρ−1 f (s)ds,

provided the right-hand side is pointwise defined on (0,∞) and Γ (.) is (Euler’s)
Gamma function defined by Γ (α) = ∫ ∞

0 tα−1e−t dt .
(b) The generalized fractional derivative, corresponding to the generalized left-

sided fractional integral of a function f : [0,∞) → R is defined by

Dα,ρ f (t) = (t1−ρ d

dt
)n(I n−α,ρ)(t) = ρα−n+1

Γ (n − α)
(t1−ρ d

dt
)n

∫ t

0

sρ−1 f (s)

(tρ − sρ)α−n+1
ds
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if the integral exists and n = [α] + 1.
(c) The Caputo-Katugampola generalized fractional derivative is defined by

Dα,ρ
c f (t) = (Dα,ρ[ f (s) −

n−1∑

k=0

f (k)(0)

k! sk])(t)

We note that if ρ = 1, the Caputo-Katugampola fractional derivative becames the
well known Caputo fractional derivative. On the other hand, passing to the limit with
ρ → 0+, the above definition yields the Hadamard fractional derivative.

Definition 3. A function x(.) ∈ C(I,R) is called a solution of problem (1) if
there exists a function v(.) ∈ L1(I,R) with v(t) ∈ F(t, x(t)), a.e. (I ) such that
Dα,ρ

c x(t) = v(t), a.e. (I ) and x(0) = x0 ∈ X0, x ′(0) = x1 ∈ X1.
In this case we say that (x(.), v(.)) is a trajectory-selection pair of (1).

Hypothesis 1 (i) F(., .) : I × R → P(R) has nonempty closed values and is
L (I ) ⊗ B(R) measurable.

(ii) There exists L(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F(t, .) is
L(t)-Lipschitz in the sense that

dH (F(t, x), F(t, y)) ≤ L(t)|x − y| ∀x, y ∈ R,

where dH (., .) is the Hausdorff distance

d(A, B) = max{d∗(A, B), d∗(B, A)}, d∗(A, B) = sup{d(a, B); a ∈ A}.

Hypothesis 2 (i) S is a separable metric space, a(.), b(.) : S → R and c(.) : S →
(0,∞) are continuous mappings.

(ii) There exists the continuous mappings g(.), p(.) : S → L1(I,R), y(.) : S →
C(I,R) such that

(Dy(s))α,ρ
c (t) = g(s)(t) a.e. t ∈ I, ∀s ∈ S,

d(g(s)(t), F(t, y(s)(t)) ≤ p(s)(t) a.e. t ∈ I, ∀ s ∈ S.

We use next the following notation

ξ(s) = 1

1 − |I α,ρL| (|a(s) − y(s)(0)| + T |b(s) − (y(s))′(0)| + c(s) + |I α,ρ p(s)|), s ∈ S,

where |I α,ρL| := supt∈I |I α,ρL(t)| and |I α,ρ p(s)| := supt∈I |I α,ρ p(s)(t)|.
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Themain tool in characterizing derived cones to reachable sets of fractional differ-
ential inclusions is a certain version of Filippov’s theorem for fractional differential
inclusion (1) in [7].

Theorem 1 ([7]) Assume that Hypotheses 1 and 2 are satisfied.
If |I α,ρL| < 1, then there exist a continuous mapping x(.) : S → C(I,R) such

that for any s ∈ S, x(s)(.) is a solution of problem

Dα,ρ
c z(t) ∈ F(t, z(t)), z(0) = a(s), z′(0) = b(s)

such that
|x(s)(t) − y(s)(t)| ≤ ξ(s) ∀(t, s) ∈ I × S. (2)

3 The Main Results

We study next the reachable set of (1) defined by

RF (T, X0, X1) := {x(T ); x(.) is a solution of (1)}.

We consider a certain variational fractional differential inclusion and we shall prove
that the reachable set of this variational inclusion from derived cones C0 ⊂ R to X0

and C1 ⊂ R to X1 at time T is a derived cone to the reachable set RF (T, X0, X1).
Throughout in this section we assume the folowwing hypotheses.

Hypothesis 3 (i) Hypothesis 1 is satisfied, α ∈ (1, 2], ρ ≥ 1, |I α,ρL| < 1 and
X0, X1 ⊂ R are closed sets.

(ii) (z(.), f (.)) ∈ C(I,R) × L1(I,R) is a trajectory-selection pair of (1) and a
family A(t, .) : R → P(R), t ∈ I of convex processes satisfying the condition

A(t, u) ⊂ Q f (t)F(t, .)(z(t); u) ∀ u ∈ dom(A(t, .)), a.e. t ∈ I (3)

is assumed to be given and defines the variational inclusion

Dα,ρ
c w(t) ∈ A(t,w(t)). (4)

Remark 1 We mention that for any set-valued map F(., .), one may find an infi-
nite number of families of convex process A(t, .), t ∈ I , satisfying condition (3);
in fact any family of closed convex subcones of the quasitangent cones, A(t) ⊂
Q(z(t), f (t))graph(F(t, .)), defines the family of closed convex process

A(t, u) = {v ∈ R; (u, v) ∈ A(t)}, u, v ∈ R, t ∈ I
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that satisfy condition (3). For example, we may take an “intrinsic” family of
such closed convex process; namely, Clarke’s convex-valued directional derivatives
C f (t)F(t, .)(z(t); .).

When F(t, .) is assumed to be Lipschitz a.e. on I an alternative characterization
of the quasitangent directional derivative is (e.g., [2])

Q f (t)F(t, .)((z(t); u)) = {w ∈ R; lim
θ→0+

1

θ
d( f (t) + θw, F(t, z(t) + θu)) = 0}.

(5)

Theorem 2. Assume that Hypothesis 3 is satisfied, let C0 ⊂ R be a derived cone
to X0 at z(0) and C1 ⊂ R be a derived cone to X1 at z′(0). Then the reachable set
RA(T,C0,C1) of (4) is a derived cone to RF (T, X0, X1) at z(T ).

Proof In view of Definition1, let {w1, ...,wm} ⊂ RA(T,C0,C1), hence such that
there exist the trajectory-selection pairs (v1(.), g1(.)), ..., (vm(.), gm(.)) of the varia-
tional inclusion (4) such that

v j (T ) = wj , v j (0) ∈ C0, v′
j (0) ∈ C1, j = 1, 2, ...,m (6)

Since C0 ⊂ R is a derived cone to X0 at z(0) and C1 ⊂ R is a derived cone to X1

at z′(0), there exist the continuous mappings α0 : S = [0, θ0]m → X0, α1 : S → X1

such that
α0(0) = z(0), Dα0(0)s = ∑m

j=1 s j v j (0) ∀ s ∈ Rm+,

α1(0) = z′(0), Dα1(0)s = ∑m
j=1 s j v

′
j (0) ∀ s ∈ Rm+.

(7)

For any s = (s1, ..., sm) ∈ S and t ∈ I we set

y(s)(t) = z(t) + ∑m
j=1 s j v j (t),

g(s)(t) = f (t) + ∑m
j=1 s j g j (t),

p(s)(t) = d(g(s)(t), F(t, y(s)(t)))
(8)

and we prove that y(.), p(.) satisfy the hypothesis of Theorem1.
From the lipschitzianity of F(t, .) we have that for any s ∈ S, the measurable

function p(s)(.) in (8) it is also integrable.

p(s)(t) = d(g(s)(t), F(t, y(s)(t))) ≤
m∑

j=1

s j |g j (t)|

+ dH (F(t, z(t)), F(t, y(s)(t))) ≤
m∑

j=1

s j |g j (t)| + L(t)
m∑

j=1

s j |v j (t)|.

At the same time, the mapping s → p(s)(.) ∈ L1(I,R) is Lipschitzian (and, in
particular, continuous) since for any s, s ′ ∈ S one may write
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|p(s)(.) − p(s ′)(.)|1 =
∫ T

0
|p(s)(t) − p(s ′)(t)|dt ≤

∫ T

0
[|g(s)(t) − g(s ′)(t)| +

dH (F(t, y(s)(t)), F(t, y(s ′)(t))))]dt ≤ ||s − s ′||(
m∑

j=1

∫ T

0
[|g j (t)| + L(t)|v j (t)|]dt)

Define S1 := S\{(0, . . . , 0)} and c(.) : S1 → (0,∞), c(s) := ||s||2. It follows
from Theorem1 the existence of a continuous function x(.) : S1 → C(I,R) such
that for any s ∈ S1, x(s)(.) is a solution of (1.1) with the property (2).

For s = 0 we define x(0)(t) = y(0)(t) = z(t) ∀t ∈ I . Obviously, x(.) : S →
C(I,R) is also continuous.

Finally, we define the function α(.) : S → RF (T, X0, X1) by

α(s) = x(s)(T ) ∀s ∈ S.

Obviously, α(.) is continuous on S and verifies α(0) = z(T ).
In order to finish the proof we must show that α(.) is differentiable at s0 = 0 ∈ S

and its derivative is given by

Dα(0)(s) =
m∑

j=1

s jw j ∀ s ∈ Rm
+

which is equivalent with the fact that:

lim
s→0

1

||s|| (|α(s) − α(0) −
m∑

j=1

s jw j |) = 0. (9)

Taking into account (2) we obtain

1

||s|| |α(s) − α(0) −
m∑

j=1

s jw j | ≤ 1

||s|| |x(s)(T ) − y(s)(T )| ≤ 1

1 − |I α,ρL| ||s||

+ 1

1 − |I α,ρL|
1

||s|| |α0(s) − z(0) −
m∑

j=1

s j v j (0)| + T

1 − |I α,ρL| ·

1

||s|| |α1(s) − z′(0) −
m∑

j=1

s j v
′
j (0)| + T ρα−1

(1 − |I α,ρL|)Γ (α)ρα−1

∫ T

0

p(s)(u)

||s|| du

and therefore in view of (7), relation (9) is implied by the following property of the
mapping p(.) in (8)

lim
s→0

p(s)(t)

||s|| = 0 a.e. (I ). (10)
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In order to prove the last property we note since A(t, .) is a convex process for
any s ∈ S one has

m∑

j=1

s j
||s||g j (t) ∈ A(t,

m∑

j=1

s j
||s||u j (t)) ⊂ Q f (t)F(t, .)(z(t);

m∑

j=1

s j
||s||u j (t)) a.e. (I ).

Therefore, by (5) we obtain

lim
h→0+

1

h
d( f (t) + h

m∑

j=1

s j
||s||g j (t), F(t, z(t) + h

m∑

j=1

s j
||s||v j (t))) = 0. (11)

Finally, in order to prove that (11) implies (10) we take the compact metric space

m−1

+ = {σ ∈ Rm+; ||σ || = 1} and the real function ψt (., .) : (0, θ0] × 
m−1
+ → R+

defined by

ψt (h, σ ) = 1

h
d( f (t) + h

m∑

j=1

σ j g j (t), F(t, z(t) + h
m∑

j=1

σ j v j (t))), (12)

where σ = (σ1, ..., σm) and which according to (11) has the property

lim
θ→0+ ψt (θ, σ ) = 0 ∀ σ ∈ 
m−1

+ a.e. (I ) (13)

Using the fact that ψt (θ, .) is Lipschitzian and the fact that 
m−1
+ is a compact

metric space, from (13) it follows easily that

lim
θ→0+ max

σ∈
m−1+
ψt (θ, σ ) = 0

which implies the fact that

lim
s→0

ψt (||s||, s

||s|| ) = 0 a.e. (I )

and the proof is complete. ��
We apply now Theorem2 in order to obtain a sufficient condition for local con-

trollability of the fractional differential inclusion (1) along a reference trajectory, z(.)
at time T , in the sense that

z(T ) ∈ I nt (RF (T, X0, X1)).

Theorem 3 Let z(.), F(., .) and A(., .) satisfy Hypothesis 3, let C0 ⊂ R be a
derived cone to X0 at z(0) and C1 ⊂ R be a derived cone to X1 at z′(0). If, the
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variational fractional differential inclusion in (4) is controllable at T in the sense
that RA(T,C0,C1) = R, then the differential inclusion (1) is locally controllable
along z(.) at time T .

Proof The proof follows from Lemma1 and Theorem2. ��
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AModified Second-Order Collatz
Equation as a Mathematical Model
of Bipolar Disorder

Candace M. Kent

Abstract We propose, for the sake of dialogue, that the following system of differ-
ence equations serve as a phenomenological model of bipolar disorder, a psychiatric
illness characterized by cycles or recurrent episodes of severe disturbances in mood
(i.e., in being happy or sad, emotions at opposite poles of the spectrum):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn+1 = (axn + b) mod m,

zn+1 =
{ −zn − zn−1

2
, if zn + zn−1 is even,

−zn − zn−1, if zn + zn−1 is odd
+ sδ(xn),

where a, b,m ∈ N, x0 ∈ N ∪ {0}, s ∈ Z − {0}, z−1, z0 ∈ Z, and

δ(x) =
⎧
⎨

⎩

0, if x �= d ∈ {0, 1, . . . ,m − 1},

1, if x = d.

The first equation in the system is a linear congruential sequence, used to generate
a pseudo-random sequence of numbers; and the second equation is a modified (with
the addition of sδ(xn)) version of one of the sixteen Collatz difference equations
investigated by Amleh and colleagues in 1998. Let c be an odd scalar. While every
solution of the (unmodified) Collatz equation is eventually periodic in the three-cycle
(c, 0,−c) or (−c, 0, c), we observe (and conjecture) that every solution {zn}∞n=0 of
the system above is also eventually periodic, but not in the three-cycle (c, 0,−c) or
(−c, 0, c) and instead contains infinitely many recurrences of the interrupted three-
cycle (c, 0,−c) or (−c, 0, c). Thus, a solution {zn}∞n=0 of the system is intended
to represent the recurrent episodes of mood disturbance seen in an individual with
bipolar disorder.
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1 Introduction and Preliminaries

Bipolar disorder, in the distant past referred to as manic-depressive psychosis, is a
psychiatric illness that has a lifetime prevalence (i.e., proportion of the population that
has had a disease at some point during a lifetime [5]) of 1.2% and that is characterized
by extreme disturbances in mood. This disorder is considered cyclical in nature,
where an individual suffering from it experiences recurrent episodes of what is called
mania (i.e., excessive euphoria and unusually high energy) ormajor depression (i.e.,
profound sadness and low energy that is incapacitating), but with at least one of
the episodes being that of mania. These recurrent episodes of mania or depression
usually alternate with periods of remission in which the bipolar individual is what is
called euthymic, i.e., (temporarily) healthy and in a state of well-being.

The euphoric mood in mania is associated with features which fall under the fol-
lowing three categories: (1) hyperactivity; (2) increased risk-taking; and (3) increased
pleasure-seeking behavior [5]. The sadness in major depression has the associated
features of loss of appetite or overeating; insomnia or hypersomnia (i.e., too much
sleeping); psychomotor retardation (i.e., a slowing down of movement and think-
ing) or psychomotor agitation (i.e., agitated movement and thinking); feelings of
worthlessness or guilt; and a loss of pleasure in all or almost all activities [3].

Many individuals with bipolar disorder can be successfully treated with medi-
cation, called mood-stabilizing drugs, such as lithium carbonate or anticonvulsant
drugs. However, there is no cure for the illness, and a bipolar individual usually must
remain on medication for a lifetime.

We propose, for the sake of dialogue, that the following system of difference
equations serve as a phenomenological model of the longitudinal (i.e., lifetime)
course of untreated bipolar disorder:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn+1 = (axn + b) mod m, n = 0, 1, . . . ,

zn+1 =
{ −zn − zn−1

2
, if zn + zn−1 is even,

−zn − zn−1, if zn + zn−1 is odd
+ sδ(xn), n = 0, 1, . . . ,

(1)

where a, b,m ∈ N, x0 ∈ N ∪ {0}, s ∈ Z − {0}, z−1, z0 ∈ Z, and

δ(x) =
⎧
⎨

⎩

0, if x �= d ∈ {0, 1, . . . ,m − 1},

1, if x = d.

The first equation in system (1) that forms our mathematical model,

xn+1 = (axn + b) mod m, n = 0, 1, . . . ,
x0 ∈ N ∪ {0}, a, b ∈ N,

(2)
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is called a linear congruential sequence (for a thorough description, see [8]), which
is a pseudo-random number generator. The output of Eq. (2) feeds into the function
δ (in the second equation of the system) defined by

δ(x) =
⎧
⎨

⎩

0, if x �= d,

1, if x = d,

(3)

where d is chosen from the set {0, 1, . . . ,m − 1}. Under appropriate conditions
on a, b,m, and with x0 ∈ {0, 1, . . . ,m − 1}, Eq. (2) generates a periodic sequence
of whole numbers with period m that is some permuted version of the m-cycle
(0, 1, . . . ,m − 1). The appropriate conditions are given by the following theorem
(see Theorem A in Sect. 3.2.1.2 in [8]):

Theorem 1. Let {xn}∞n=0 be a solution of Eq. (2) with x0 ∈ N ∪ {0}. Then {xn}∞n=0 is
periodic (or eventually periodic) with period m if and only if

(i) the greatest common divisor gcd(b,m) = 1;
(ii) a − 1 is a multiple of every prime number p dividing m;
(iii) a − 1 is a multiple of 4 if m is a multiple of 4.

The second equation in system (1),

zn+1 =

⎧
⎪⎨

⎪⎩

−zn − zn−1

2
, if zn + zn−1 is even,

−zn − zn−1, if zn + zn−1 is odd

+ sδ(xn), n = 0, 1, . . . ,

z−1, z0 ∈ Z, s ∈ Z − {0},
(4)

is a modified version of one of the sixteen Collatz difference equations investigated
by Amleh and colleagues (see Eq. (6∗) in [1]):

yn+1 =

⎧
⎪⎨

⎪⎩

−yn − yn−1

2
, if yn + yn−1 is even,

−yn − yn−1, if yn + yn−1 is odd,

n = 0, 1, . . . ,

y−1, y0 ∈ Z.

(5)

An important result stated in [1] associated with Eq. (5) is as follows:

Theorem 2. Let {yn}∞n=−1 be a solution of Eq. (5) with y−1, y0 ∈ Z. Suppose that
the greatest common odd divisor gcod(y−1, y0) = c. Then {yn}∞n=−1 is eventually
periodic in the three-cycle (c, 0,−c) or the three-cycle (−c, 0, c). In particular, if
gcod(y−1, y0) = 1, then {yn}∞n=−1 is eventually periodic in the three cycle (1, 0,−1)
or the three cycle (−1, 0, 1).

Now, while it is observed (and conjectured) that every solution {zn}∞n=−1 of
system (1) is eventually periodic, every solution is not eventually the three-cycle
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(c, 0,−c) (or (−c, 0, c)), c an odd scalar. Instead, ifm in Eq. (2) is sufficiently large,
every solution {zn}∞n=−1 of system (1) contains intermittent or periodic recurrences of
the interrupted three-cycle (c, 0,−c) (or (−c, 0, c)). For, each time there is a devel-
oping three-cycle (c, 0,−c) (or (−c, 0, c)) in {zn}∞n=−1, the three-cycle is (in most
cases) terminated by the addition of the nonzero value sδ(xn) = s to (−zn − zn−1)/2
or −zn − zn−1, where δ(xn) is periodic with period m such that δ(xn) = 1 every m
terms and δ(xn) = 0 otherwise. However, as will be seen in the sequel, for m in Eq.
(2) sufficiently small, one does not even see interrupted three-cycles (c, 0,−c) (or
(−c, 0, c)).

So when m in Eq. (2) is sufficiently large, these periodic recurrences of the inter-
rupted three-cycle (c, 0,−c) (or (−c, 0, c)), c an odd scalar, in a solution {zn}∞n=−1 of
system (1) are intended to represent the recurrent episodes of mood disturbance seen
in an untreated individual with bipolar disorder. The addition of the nonzero value
sδ(xn) = s to (−zn − zn−1)/2 or −zn − zn−1 is intended to represent either external
environmental stimuli or internal biochemical stimuli which generally brings about
temporary remission from an episode of mood disturbance.

We consider another modified version of the Collatz equation (which in this case
is not part of a system) to serve as our second model of the longitudinal course of
treated bipolar disorder:

un+1 =

⎧
⎪⎨

⎪⎩

−un − un−1

2
, if un + un−1 is even,

−un − un−1, if un + un−1 is odd,

+ t, n = 0, 1, . . . , (6)

where t ∈ Z − {0} and u−1, u0 ∈ Z.We are able to show that every solution {un}∞n=−1
of Eq. (6) is eventually periodic, but not eventually the three-cycle (c, 0,−c) (or
(−c, 0, c)), c an odd scalar, and contains no occurences of the interrupted three-cycle
(c, 0,−c) (or (−c, 0, c)). Therefore, a solution {un}∞n=−1 is intended to represent the
period of remission that an individual with bipolar disorder is in while undergoing
treatmentwithmedication, in particular, withwhat is referred to as amood-stabilizing
drug possibly along with an antidepressant and some other psychiatric drugs.

In Sect. 2, we consider three examples along with their associated results or con-
jectures. The first example follows the longitudinal progression of bipolar disorder
in an untreated individual. System (1) is assigned values for its parameters and ini-
tial conditions, and m is sufficiently large enough to generate an eventually periodic
solution {zn}∞n=−1 with periodic recurrences of the interrupted three-cycle (c, 0,−c)
(or (−c, 0, c)), c an odd scalar. We subsequently show that if an arbitrary solution
{zn}∞n=−1 of system (1) is eventually periodic with period p, thenm|p. We conjecture
that every solution of system (1) is eventually periodic (but not necessarily with the
same period).

The second example is that of a disease-free first-degree relative (i.e., a relative
who is a parent, a full sibling, or an offspring) of an individual with bipolar disorder.
Since bipolar disorder is a genetic disease and thus hereditary, a first-degree relative
is most likely predisposed to but does not have to be stricken with the disease bipolar
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disorder. System (1) is assigned values for its parameters and initial conditions, and
m is sufficiently small enough to generate an eventually periodic solution {zn}∞n=−1
with no periodic occurrences of the interrupted three-cycle (c, 0,−c) (or (−c, 0, c)),
c an odd scalar.

The third example follows the longitudinal course of an individual with bipolar
disorderwho is chronically treatedwithmedication. System (6) is used and its param-
eter and initial conditions are assigned values. There are absolutely no occurrences
of the interrupted three-cycle (c, 0,−c) (or (−c, 0, c)), c an odd scalar, in the even-
tually periodic solution {un}∞n=−1. We then show that every solution {un}∞n=−1 of Eq.
(6) is bounded (with the bound dependent on initial values). We thus have bounded
sequences of integers generated by a difference equation, and so every solution of
Eq. (6) is eventually periodic (but not necessarily with the same period).

Section3 offers a neuropsychiatric interpretation of the examples and results in
Sect. 2.

2 Examples, Results, and Conjectures

2.1 Untreated Bipolar Disorder

Here we first give an example of a solution {zn}∞n=−1 of our first model, system (1),
which represents the longitudinal course of the disease, bipolar disorder, of an
untreated individual.

Example 1. We assign values to the parameters and initial conditions of the linear
congruential sequence, Eq. (2), and modified Collatz equation, Eq. (4), in system (1),
together with prescribing d in the definition of δ in Eq. (3), as follows:

1. We let a = 21, b = 3, m = 20, and x0 = 1 in Eq. (2), which satisfies Theo-
rem 1, thereby making the output, {xn}∞n=0, periodic with period 20. Then the
first equation in system (1) is

xn+1 = (21xn + 3) mod 20, n = 0, 1, . . . .

2. We let z−1 = 7, z0 = 10, and s = 20 (the fact that m = 20 and s = 20 is just
coincidence) in Eq. (4). Then the second equation in system (1) is

zn+1 =

⎧
⎪⎨

⎪⎩

−zn − zn−1

2
, if zn + zn−1 is even,

−zn − zn−1, if zn + zn−1 is odd

+ 20δ(xn), n = 0, 1, . . . .
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3. We let d = 15 ∈ {0, 1, . . . ,m − 1 = 19} in Eq. (3) to give us

δ(x) =
⎧
⎨

⎩

0, if x �= 15,

1, if x = 15.

Note that then the solution {xn}∞n=0 of the linear congruential sequence is such that
for k = 0, 1, . . ., x20k+18 = 15 so that δ(x20k+18) = 1 (and δ(xn) = 0 otherwise),
and so, in turn, the terms z20k+19 in the solution of the modified Collatz equation
have 20 added to (−zn − zn−1)/2 or −zn − zn−1.

The first 83 terms of {zn}∞n=−1 are as follows:

z−1 = 7, z0 = 10, z1 = −17, z2 = 7, z3 = 5, z4 = −6, z5 = 1,
z6 = 5, z7 = −3, z8 = −1, z9 = 2, z10 = −1, z11 = −1, z12 = 1,
z13 = 0, z14 = −1, z15 = 1, z16 = 0, ‖ z17 = −1, z18 = 1, z19 = 0 + 20 = 20,
z20 = −21, z21 = 1, z22 = 10, z23 = −11, z24 = 1, z25 = 5, z26 = −3,
z27 = −1, z28 = 2, z29 = −1, z30 = −1, z31 = 1, z32 = 0, z33 = −1,
z34 = 1, z35 = 0, z36 = −1, z37 = 1, z38 = 0, z39 = −1 + 20 = 19, z40 = −19,
z41 = 0, z42 = 19, z43 = −19, z44 = 0, z45 = 19, z46 = −19, z47 = 0,
z48 = 19, z49 = −19, z50 = 0, z51 = 19, z52 = −19, z53 = 0, z54 = 19,
z55 = −19, z56 = 0, z57 = 19, z58 = −19, z59 = 0 + 20 = 20, z60 = −1, z61 = −19,
z62 = 10, z63 = 9, z64 = −19, z65 = 5, z66 = 7, z67 = −6, z68 = −1,
z69 = 7, z70 = −3, z71 = −2, z72 = 5, z73 = −3, z74 = −1, z75 = 2,
z76 = −1, ‖ z77 = −1, z78 = 1, z79 = 0 + 20 = 20, z80 = −21, z81 = 1, . . . .

We describe some prominent features of the solution {zn}∞n=−1 and present some
interpretations:

1. Since z77 = z17, z78 = z18, and20δ(x78) = 20δ(x18) = 20,wehave that {zn}∞n=−1
is eventually periodic with period 60, i.e., {zn}∞n=17 is periodic with period 60.
Note that m|60, where m = 20.

2. Since {zn}∞n=−1 is eventually periodic, we can say that the interrupted three-cycle
(c, 0,−c) (or (−c, 0, c)), c an odd scalar, recurs indefinitely or periodically.
Specifically, the interrupted three-cycle (1, 0,−1) or (−19, 0, 19) occurs with
the blocks of successive terms z12 − z18, z60k+31 − z60k+38, for k = 0, 1, . . ., and
z60k+40 − z60k+58, for k = 0, 1, . . .. These intermittent or periodic recurrences of
the interrupted three-cycle (1, 0,−1) or (−19, 0, 19) are intended to represent
the recurrent episodes of mood disturbance in the untreated bipolar individual,
and all other terms in {zn}∞n=−1 are intended to represent remission of the disease.

3. In {zn}∞n=−1, immediately prior to each occurrence of the interrupted three-
cycle (1, 0,−1), is the block of five consecutive terms −3,−1, 2,−1,−1.
Specifically, this block of five consecutive terms occurs with z7 − z11 and
z60k+26 − z60k+30, for k = 0, 1, . . .. This block of terms, 3,−1, 2,−1,−1, is
intended to represent the occurrence of stressful events which precipitate most
episodes of mood disturbance in the untreated bipolar individual.
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4. The terms of {zn}∞n=−1 in which there is the periodic addition of 20δ(xn) = 20
are z19, z60k+39, for k = 0, 1, . . ., and z60k+59, for k = 0, 1, . . .. In particular,
the terms z19 and z60k+59, for k = 0, 1, . . ., are intended to represent the input
of external environmental or internal biochemical stimuli, which in some way
terminate the episodes of mood disturbance in the untreated bipolar individual.
The terms z60k+39, for k = 0, 1, . . ., are intended to represent external or internal
stimuli which in some way exacerbate episodes of mood disturbance. �	

We next state a result and conjecture, with the parameters and initial conditions
kept arbitrary.

Theorem 3. Let {zn}∞n=−1 be a solution of system (1), with {xn}∞n=0 a solution of the
linear congruential sequence of system (1) which satisfies Theorem 1. If {zn}∞n=−1 is
eventually periodic with period q, then q is a multiple of m, the period of {xn}∞n=0
and thus of {sδ(xn)}∞n=0 in the modified Collatz equation of system (1).

Proof. For the sake of convenience, we use the fact that if q is a multiple of m, then
the least common multiple lcm(m, q) = q, which, in turn, implies that if q is not a
multiple of m, then lcm(m, q) = kq, for k ∈ {2, 3, . . .}.

Now by hypothesis, we have that {zn}∞n=−1 is eventually periodic with period
q. So, for the sake of contradiction, we suppose that q is not a multiple of m and
lcm(m, q) = kq, for k ∈ {2, 3, . . .}. Then there exists N ≥ 1 such that

1. {zn}∞n=N is periodic with period q.
2. δ(xN−1) = 1.

Consequently, since lcm(m, q) �= q but lcm(m, q) = kq, for k ∈ {2, 3, . . .},
δ(xN+q−1) = 0butδ(xN+kq−1) = 1.Then, for someα, β ∈ Z, zN+q−2 = α, zN+q−1 =
β, and

zN+q =

⎧
⎪⎨

⎪⎩

−α − β

2
, if α + β is even,

−α − β, if α + β is odd

+ 0 ≡ γ.

By periodicity of {zn}∞n=N with period q, we have that

zN+kq−2 = α, zN+kq−1 = β, zN+kq = γ.

On the other hand, since δ(xN+kq−1) = 1, then

zN+kq = γ + s, s �= 0.

Therefore,
γ = zN+kq = γ + s,

which gives us a contradiction. Hence, q is a multiple of m. �	
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Conjecture 1. Let {zn}∞n=−1 be a solution of system (1), and suppose that the linear
congruential sequence in system (1) satisfies Theorem 1. Then {zn}∞n=−1 is eventually
periodic.

2.2 First-Degree Relative of Someone with Bipolar Disorder

We give an example of a solution {zn}∞n=−1 of our first model, system (1), which is
similar to Example 1, except thatm in the linear congruential sequence is smaller than
m = 20 (and so the parameters a, b are different too). We intend to have this second
example represent a first-degree relative of someone who has bipolar disorder. We
assume that the relative does not have the disease, but has the genotype (i.e., genetic
makeup) predisposing one to have the disease. We follow the longitudinal course of
the disease-free life of this first-degree relative.

Example 2. We assign values to the parameters and initial conditions of the linear
congruential sequence, Eq. (2), and modified Collatz equation, Eq. (4), in system (1),
along with prescribing d in the definition of δ in Eq. (3), as follows:

1. We let a = 11, b = 3, m = 10, and x0 = 1 in Eq. (2), which satisfies Theo-
rem 1, thereby making the output, {xn}∞n=0, periodic with period 10. Then the
first equation in system (1) is

xn+1 = (11xn + 3) mod 10, n = 0, 1, . . . .

2. We let z−1 = 7, z0 = 10, and s = 20 in Eq. (4). Then the second equation in
system (1) is

zn+1 =

⎧
⎪⎨

⎪⎩

−zn − zn−1

2
, if zn + zn−1 is even,

−zn − zn−1, if zn + zn−1 is odd

+ 20δ(xn), n = 0, 1, . . . .

3. We let d = 5 ∈ {0, 1, . . . ,m − 1 = 9} in Eq. (3) to give us

δ(x) =
⎧
⎨

⎩

0, if x �= 5,

1, if x = 5.

Note that then the solution {xn}∞n=0 of the linear congruential sequence is such that
for k = 0, 1, . . ., x10k+8 = 5 so that δ(x10k+8) = 1 (and δ(xn) = 0 otherwise),
and so, in turn, the terms z10k+9 in the solution of the modified Collatz equation
have 20 added to (−zn − zn−1)/2 or −zn − zn−1.

The first 53 terms of {zn}∞n=−1 are as follows:
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z−1 = 7, z0 = 10, z1 = −17, z2 = 7, z3 = 5, z4 = −6,
z5 = 1, z6 = 5, z7 = −3, z8 = −1, z9 = 2 + 20 = 22, z10 = −21,
z11 = −1, z12 = 11, z13 = −5, z14 = −3, z15 = 4, z16 = −1,
z17 = −3, z18 = 2, z19 = 1 + 20 = 21, z20 = −23, z21 = 1, z22 = 11,
z23 = −6, z24 = −5, z25 = 11, z26 = −3, z27 = −4, ‖ z28 = 7,
z29 = −3 + 20 = 17, z30 = −12, z31 = −5, z32 = 17, z33 = −6, z34 = −11,
z35 = 17, z36 = −3, z37 = −7, z38 = 5, z39 = 1 + 20 = 21, z40 = −13,
z41 = −4, z42 = 17, z43 = −13, z44 = −2, z45 = 15, z46 = −13,
z47 = −1, ‖ z48 = 7, z49 = −3 + 20 = 17, z50 = −12, z51 = −5, . . . .

We describe two prominent features of the solution {zn}∞n=−1, along with present-
ing our interpretations:

1. Since z48 = z28, z49 = z29, and20δ(x48) = 20δ(x28) = 20,wehave that {zn}∞n=−1
is eventually periodic with period 20, i.e., {zn}∞n=28 is periodic with period 20.
Note that m|20, where m = 10.

2. Since {zn}∞n=−1 is eventually periodic, we can say with definitude that there are
no occurrences of the interrupted three-cycle (c, 0,−c) (or (−c, 0, c)), c an
odd scalar. This lack of occurrence of the interrupted three-cycle is intended to
represent the disease-free state that the first-degree relative is in. This completely
healthy state is evidently due to the increased frequency of input of external
environmental or internal biochemical stimuli, which abolishes the occurrence
of episodes of mood disturbance and which is represented by the increased
frequency of addition of 20δ(xn) = 20 because m is relatively small (m is 10 as
against 20). �	

2.3 Treated Bipolar Disorder

We first give an example of a solution {un}∞n=−1 of our second model, Eq. (6), which
represents the longitudinal course of the disease, bipolar disorder, of an individual
treated with mood-stabilizing drugs.

Example 3. We let u−1 = 7, u0 = 10, and t = 4 in this second model to give us the
equation

un+1 =

⎧
⎪⎨

⎪⎩

−un − un−1

2
, if un + un−1 is even,

−un − un−1, if un + un−1 is odd

+ 4, n = 0, 1, . . . .

The solution {un}∞n=−1 is then the following:
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u−1 = 7, u0 = 10, u1 = −17 + 4 = −13, u2 = 3 + 4 = 7,
u3 = 3 + 4 = 7, u4 = −7 + 4 = −3, u5 = −2 + 4 = 2, u6 = 1 + 4 = 5, ‖
u7 = −7 + 4 = −3, u8 = −1 + 4 = 3, u9 = 0 + 4 = 4, ‖ u10 = −7 + 4 = −3,
u11 = −1 + 4 = 3, u12 = 0 + 4 = 4, . . . .

Wemake the followingobservations on and interpretationof the solution {un}∞n=−1:

1. Clearly, since u10 = u7 and u11 = u8, we have that {un}∞n=−1 is eventually peri-
odic with period 3, i.e., {zn}∞n=7 is periodic with period 3.

2. Since {un}∞n=−1 is eventually periodic, we can say with certainty that there is
the complete absence of the interrupted three-cycle (c, 0,−c) (or (−c, 0, c)),
c an odd scalar. This absence is intended to represent the successful treatment
by medications (i.e., the complete abolishment of episodes of mood disturbance
by drugs) of the individual with bipolar disorder. Note that the addition of 4 at
every iteration in the computation of terms of the solution {un}∞n=−1 is intended
to represent the continuous and constant medication regimen that the compliant
bipolar individual is on, which in an ideal world prevents any recurrence of
episodes of mood disturbance. �	

We next give results:

Remark 1. Let {un}∞n=−1 be a solution of Eq. (6), and let c be an odd scalar. Then
there is no occurrence of the block of three successive terms [c, 0,−c] or [−c, 0, c]
in the sequence {un}∞n=−1.

We give the proof for the absence of the block [c, 0,−c]. The proof for the absence
of the block [−c, 0, c] is similar and will be omitted.

Proof. If we assume the contrary (i.e. there is at least one occurrence of the block of
three successive terms [c, 0,−c]), we can further assume that there exists N ≥ −1
such that

uN = c, uN+1 = 0, uN+2 = −c.

Then, on the other hand, we can compute uN+2 from uN , which we know is odd, and
uN+1 which we know is even:

uN+2 = −uN+1 − uN + t = −c + t, t �= 0.

Therefore,
−c = uN+2 = −c + t,

which gives us a contradiction. �	
We now show that every solution {un}∞n=−1 of Eq. (6) is eventually periodic; but

to do so, we first need to show that every solution is bounded.
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Lemma 1. Let {un}∞n=−1 be a solution of Eq. (6). Then

|un| ≤ |u−1| + |u0| + |t |, for all n ≥ −1.

Proof. We will prove by induction that for every n ≥ 0,

|un−1|, |un|,
∣
∣
∣
∣
−un − un−1

2
+ t

∣
∣
∣
∣ ,

|−un − un−1 + t | ∈ [0, |u−1| + |u0| + |t |].

The claim is clearly true for n = 0.
So, suppose that n ≥ 0 and that

|un−1|, |un|,
∣
∣
∣
∣
−un − un−1

2
+ t

∣
∣
∣
∣ ,

|−un − un−1 + t | ∈ [0, |u−1| + |u0| + |t |].

We will show that

|un|, |un+1|,
∣
∣
∣
∣
−un+1 − un

2
+ t

∣
∣
∣
∣ ,

|−un+1 − un + t | ∈ [0, |u−1| + |u0| + |t |].

By the inductive hypothesis,

|un| ≤ |u−1| + |u0| + |t |.

Also by the inductive hypothesis,

|un+1| =
∣
∣
∣
∣
−un − un−1

2
+ t

∣
∣
∣
∣ ≤ |u−1| + |u0| + |t |,

if un + un−1 is even; and

|un+1| = |−un − un−1 + t | ≤ |u−1| + |u0| + |t |,

if un + un−1 is odd.

We next need to show that

∣
∣
∣
∣
−un+1 − un

2
+ t

∣
∣
∣
∣ ∈ [0, |u−1| + |u0| + |t |]:

If un + un−1 is even, then
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∣
∣
∣
∣
−un+1 − un

2
+ t

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣
∣
∣

−
(−un − un−1

2
+ t

)

− un

2
+ t

∣
∣
∣
∣
∣
∣
∣
∣

≤ 1
4 |un| + 1

4 |un−1| + 1
2 |t |

≤ |u−1| + |u0| + |t |.

If un + un−1 is odd, then

∣
∣
∣
∣
−un+1 − un

2
+ t

∣
∣
∣
∣ =

∣
∣
∣
∣
−(−un − un−1 + t) − un

2
+ t

∣
∣
∣
∣

≤ 1
2 |un−1| + 1

2 |t |

≤ |u−1| + |u0| + |t |.

Finally, we show that |−un+1 − un + t | ∈ [0, |u−1| + |u0| + |t |]:
If un + un−1 is even, then

|−un+1 − un + t | =
∣
∣
∣
∣−

(−un − un−1

2
+ t

)

− un + t

∣
∣
∣
∣

≤ 1
2 |un| + 1

2 |un−1|

≤ |u−1| + |u0| + |t |.

If un + un−1 is odd, then

|−un+1 − un + t | = |− (−un − un−1 + t) − un + t |

≤ |un−1|

≤ |u−1| + |u0| + |t |. �	

Theorem 4. Let {un}∞n=−1 be a solution of Eq. (6). Then {un}∞n=−1 is eventually
periodic.

Proof. By Lemma 1, there exists M > 0 such that |un| ≤ M for all n ≥ −1. Thus,
{un}∞n=−1 is aboundedsequenceof integers,whicharegeneratedbyasecond-orderdif-
ference equation. It then follows that there exist N ≥ −1 and q ∈ {2, 3, . . .} such that

uN+q = uN and uN+1+q = uN+1.

We then have that {un}∞n=N is periodic with period q. �	
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3 Concluding Remarks

The literature is rife with speculations and investigations into the etiology of bipolar
disorder. We find that two particular proposals on what underlies bipolar disorder
stand out. One proposal is that bipolar disorder is the result of inherited abnormalities
in the cellular signaling networks of the brain (i.e., the biochemical pathways and
cascades by which there is interneuronal communication or communication between
neurons). These abnormalities, in turn, lead to widespread dysfunction in a variety
of physiological processes which comprise bipolar disorder. (See [5] for the details
on the cellular signaling cascades felt to be involved, as well as [2, 4, 6, 9, 10],
and [15] for discussions on the neurochemical and physiological processes affected
by the cellular signaling dysfunction.)

The other proposal is that in bipolar individuals there are abnormalities in sleep and
in the endogenous genetic circadian clock, which cause endocrinologic, biochemical,
and electrophysiological disturbances, which, in turn, manifest themselves as the
signs and symptoms of bipolar disorder. (For a general discussion, see [5], and for
examples, see [7, 11–14], and [16].)

Based on our examples and results in Sect. 2, we now speculate on one aspect of
what causes the episodes of mood disturbance seen in bipolar disorder, at least early
on in the course of the disease. We feel this aspect, environmental in nature, interacts
with the genetic predisposition to having bipolar disorder.

We offer the proposition, which is actually the revisiting of an old concept, that
the episodes of mood disturbance that define bipolar disorder are triggered by either
overt or obscure precipitating environmental events, peculiar in content to the indi-
vidual undergoing the episodes, at least early on in the disease. Therefore, we believe
that there is indeed a delicate interplay between a stressful environment and the dys-
functional biochemistry/physiology of an individual with bipolar disorder. We refer
to the precipitating event as a traumatic event.

We define a traumatic event to be an environmental event characterized by external
stimuli that cannot be fully processed by the brain, i.e., external stimuli generating
internal informational thoughtswhich are then transmitted along neurons that are not,
for a particular individual, part of any recursive network of neurons.We then contend
that this inability to process external stimuli internally leaves a void inmental activity
that then triggers compensatory biochemical and physiological processes, only in the
case of a bipolar individual the processes, which were inherited, are dysfunctional.

We then propose that either treatment of the bipolar individual with mood-
stabilizingdrugs or receptionby thebipolar individual of incomingnew informational
stimuli that make it possible for the brain to assimilate the previously received trau-
matic event, can bring about remission from the current episode ofmood disturbance.
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Local Bifurcations in the Generalized
Cahn-Hilliard Equation

A. Kulikov and D. Kulikov

Abstract A periodic boundary value problem for a generalized Cahn-Hilliard equa-
tion is studied. Bifurcation problems are considered. The analysis of these bifurcation
problems use the methods of invariant manifold and the Poincare normal forms for
the dynamic systems with an infinite-dimensional space of initial conditions. It is
proved that this dynamic systems has a local attractor formed by unstable solutions
in the sense of Lyapunov definition. Asymptotic formulas for these solutions are
obtained.

Keywords Bifurcations · Generalized Cahn-Hilliard equation · Periodic boundary
value problem

1 Introduction

The paper considers one of the well-known equations of mathematical physics

ut − c(u2)x + (uxx + bu + b2u
2 − b3u

3)xx = 0, (1)

where u = u(t, x) and a, b, b2, b3, c are real constants, b3 ≥ 0.
This partial differential equation (PDE) is commonly called the generalized Cahn-

Hilliard equation. This nonlinear equation is used to describe various phenomena in
physics, hydrodynamics and chemical kinetics.

For c = b2 = 0, we obtain the original version of such an equation, which was
proposed in [1] and describes the evolution of the interface between two substances
in the case when a chemical reaction takes place between them.

If c �= 0, then Eq. (1) is usually called the convective version of the Cahn-Hilliard
equation [2].
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If c = b3 = 0, then we obtain a version of the Cahn-Hilliard equation, which
sometimes is called the Pukhnachev equation. This version arose in hydrodynamics
[3, 4], and it describes the change in the interface between two liquids.

Following many works (see, for example, [1–6]), we supplement Eq. (1) with
periodic boundary conditions. Without loss of generality, we can assume that these
conditions have the form

u(t, x + 2π) = u(t, x). (2)

We note that the boundary value problem (1), (2) has a family of homogeneous
equilibrium states u(t, x) = const. Next, we consider the existence and stability
of solutions of the boundary value problem (1), (2), which essentially depend on
x (ux (t, x) �= 0) and are close to homogeneous equilibrium states.

Remark 1. The Cahn-Hilliard equation maybe studied with other boundary condi-
tions (see, for example, [7]).

If we supplement the boundary value problem (1), (2) with the initial condition

u(0, x) = f (x), (3)

then we obtain the mixed problem (1), (2), (3) which is locally correctly solvable, if
f (x) ∈ H4 [8]. Recall that H4 denotes the Sobolev functional space [9], containing
2π - periodic function f (x), which have generalized derivatives up to fourth order
f ′(x), f ′′(x), f ′′′(x), f (I V ) ∈ L2(0, 2π).Recall that in this situation it follows from
the embedding theorems that f (x) ∈ C3[0, 2π ]. Let

M0( f ) = 1

2π

2π∫

0

f (x)dx, M0(u(t, x)) = 1

2π

2π∫

0

u(t, x)dx

be the spatial average.

Lemma 1. The following identity holds

M0(u(t, x)) = α,

where α ∈ R, u(t, x) is a solution of the boundary value problem (1), (2).
The proof of the lemma is based on the integration of Eq. (1) taking into account

the boundary conditions (2). It is clear that

1

2π

2π∫

0

(u2)xdx = 0,
1

2π

2π∫

0

(uxx + bu + b2u
2 − b3u

3)xxdx = 0.
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So,

1

2π

2π∫

0

ut (t, x)dx = d

dt
(
1

2π

2π∫

0

u(t, x)dx) = 0.

Consequently,
1

2π

2π∫

0

u(t, x)dx = α ∈ R.

By H4(α) we denote the affine space of functions f (x), for which M0( f ) = α.

Obviously, H4(α) is invariant for solutions of the boundary value problem (1), (2) in
the following sense: if f (x) ∈ H4(α), then the solution of the initial boundary value
problem (1), (2), (3) u(t, x) ∈ H4(α), for all t,when it exists. Of course, u(t, x) ≡ α

also belongs to H4(α).

Now, set
u(t, x) = α + v(t, x). (4)

Substitution (4) reduces the boundary value problem (1), (2) to a similar boundary
value problem for the auxiliary function v(t, x). Thus, we obtain

vt + vxxxx + b(α)vxx − c(α)vx − c(v2)x + [b2(α)v2 − b3v
3]xx = 0, (5)

v(t, x + 2π) = v(t, x), M0(v) = 0. (6)

Here, b(α) = b + 2αb2 − 3α2b3, b2(α) = b2 − 3αb3, c(α) = 2cα. The bound-
ary value problem (5), (6) has a unique spatially homogeneous steady state v(t, x) ≡
0. The main part of the work will be devoted to studying the behavior of solutions
of the boundary value problem (5), (6) with initial conditions from a neighborhood
of the zero solution. The neighborhood is understood in the sense of the norm of
the phase space (the space of initial conditions), i.e. H4,0, where f (x) ∈ H4,0

if f (x) ∈ H4 and M0( f ) = 0. In conclusion of this section, we emphasize that
boundary value problems (1), (2) and (5), (6) can be included in the class of abstract
parabolic equations (see, for example, [8, 10]).

2 Stability Analysis of the Zero Equilibrium State of the
Auxiliary Boundary Value Problem

In this section, we consider a linearised version of the boundary value problem (5),
(6), i.e. the following

vt = A(α)v, (7)

v(t, x + 2π) = v(t, x), M0(v) = 0, (8)
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where the linear differential operator (LDO) on the right side of Eq. (7) is defined
by the equality

A(α)y = −y(I V ) − b(α)y′′ + c(α)y′, y = y(x), y(x + 2π) = y(x), M0(y) = 0.

We shall be considering this LDO in the space H0,0 which consists of 2π -periodic
functions y(x) ∈ L2(0, 2π), if x ∈ (0, 2π), and has zero spatial average, i.e.
M0(y) = 0.Regarding its domain,we can choose, for example, the set of 2π -periodic
functions with zero spatial average. Obviously, in our case, LDO A(α) has countable
set of eigenvalues

λn = λn(α) = −n4 + b(α)n2 + ic(α)n,

with corresponding eigenfunctions exp(inx), n = ±1,±2,±3, . . . The family of
functions {exp(±inx)} forms a complete orthogonal system in the space L2,0(0, 2π)

(a function f (x) ∈ L2,0(0, 2π), if f (x) ∈ L2(0, 2π) and M0( f ) = 0). Therefore,
the following statement holds.

Lemma 2. The solutions of the boundary value problem (7), (8) are asymptotically
stable if b(α) < 1 and unstable, if b(α) > 1. For b(α) = 1 they are stable.

Moreover, for b(α) < 1 the zero solution to the nonlinear boundary value problem
(5), (6) is asymptotically stable, and for b(α) > 1. For b(α) = 1 the critical case in
the stability problem of the zero solution takes place.

The inequality
b(α) = b + 2b2α − 3b3α

2 < 1 (9)

distinguishes the condition for the stability of the equilibrium state u(t, x) = α of
the main boundary value problem (1), (2).

For example, the equilibrium state u(t, x) = 0 of the main boundary value prob-
lem (1), (2) is stable, if b < 1. Moreover, for b < 1 and sufficiently small b22 (for
example, b2 = 0) all equilibrium states u(t, x) = α of the boundary value problem
(1), (2) are stable. It is worth to emphasize, that the equilibrium state u(t, x) = α can-
not be asymptotically stable since the boundary value problem (1), (2) has a family
of equilibrium states u(t, x) = b, where b is an arbitrary real constant.

Remark 2. If we consider the nonlinear boundary value problem (5), (6), then for
b(α) < 1 and b2(α) = 0 the following statement holds.

Lemma 3. Let v(t, x) be the solution which exists for any t ≥ 0. Then

lim
t→∞

2π∫

0

v2(t, x)dx = 0.
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Indeed, if we multiply Eq. (5) by v(t, x) and integrate the resulting equality from
0 to 2π, then after transformations of the integrals on its right-hand side we obtain
the following equality

1

2

d

dt

2π∫

0

v2dx = −
2π∫

0

v2
xxdx + b(α)

2π∫

0

v2
xdx − 3b3

2π∫

0

v2v2
xdx .

The right hand side of the last equality is negative. Recall, that

2π∫

0

v2
xdx ≤

2π∫

0

v2
xxdx . The last inequality can be proved using the Parseval’s identity.

A similar statement holds if

b22(α) − 3(1 − b(α))b3 < 0.

3 Local Bifurcations of Auxiliary Boundary Value
Problems

In this section, we consider the question of local bifurcations for the auxiliary bound-
ary value problem (5), (6) . Let b(α) = 1 + γ ε,where ε ∈ (0, ε0), 0 < ε0 << 1, i.e.
ε is a small positive parameter,γ = ±1 and the correspondingversionwill be selected
later in the bifurcation analysis of the boundary value problem (5), (6).

Let b3 > 0. First, the question arises about the possibility of implementing the
equality b(α) = 1 + γ ε. Of course, it is related to the possibility of implementing
the equality b(α) = 1, which comes down to the analysis of the quadratic equation

3b3α
2 − 2b2α + 1 − b = 0. (10)

This equation has two real roots α1,2 = b2 ± √
D

3b3
, if D = b22 + 3b3(b − 1) > 0.

For D < 0 the main boundary value problem (1), (2) lacks equilibrium states
u(t, x) = α, for which there is a critical case in the stability problem for this equilib-
rium state.Moreover, for D < 0 all the homogeneous equilibrium states u(t, x) of the
boundary value problem (1), (2) are stable (for example, D < 0, if b < 1, b2 = 0).

So, let D > 0. Then, there is an equality b(α) = 1 + γ ε for α1(ε) = α1 + β1(ε)

or α2(ε) = α2 + β2(ε), where α1, α2 are roots of the quadratic equation (10)
and β j (ε)( j = 1, 2) are analytic functions of ε. For these, the equalities β j (0) =
0, β j (ε) = β jε + o(ε), where β j = −γ /(6b3α j − 2b2), are satisfied. It is clear that
6b3α j − 2b2 �= 0, since the roots α j are simple.
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A critical case arises if b3 = 0 or D = 0. For b3 = 0 the equality b(α) = 1 + γ ε

holds, if

α = α1 + β1ε, α1 = 1 − b

2b2
, β1 = γ

2b2
.

In this work we shall not consider the special case D = 0.
As a result, the auxiliary boundary value problem (5), (6) can be rewritten as

follows
vt = A(ε)v + c(v2)x − b2(ε)(v

2)xx + b3(v
3)xx , (11)

v(t, x + 2π) = v(t, x), M0(v) = 0, (12)

where b2(ε) = b4 j − 3b3β jε + o(ε), and b4 j = b2 − 3b3α j .

Finally,

A(ε)v = −vxxxx − (1 + γ ε)vxx + c(ε)vx , c(ε) = 2cα j + 2cβ jε + o(ε), j = 1, 2.

Next, we will use a shortened version of the notation, considering the index j already
fixed, and set c(0) = σ (c(0) = σ j = 2cα j ), 2cβ j = δ.

The LDO A(ε) has two eigenvalues λ1,2(ε) = γ ε ± i(σ + δε + o(ε)). The rest
of its eigenvalues lie in the half-plane of the complex plane divided by the inequality
Reλ ≤ −γ0 < 0.Finally, Reλ1,2(ε) = γ ε, i.e. Reλ′

1,2(ε)|ε=0 = γ �= 0, Imλ1,2(0) =
σ �= 0, if c �= 0, α j �= 0 (b �= 1).

We point out that the first group of conditions of the Andronov–Hopf theorem is
satisfied (see, for example, [11]).

We turn to the second part of this theorem and state it in a modern form, which
corresponds to the problem under study. It follows from the results of [11, 12]
that the nonlinear boundary value problem (11), (12) has a smooth two-dimensional
invariant manifoldM2(ε, α) (in different terminologyM2(ε, α) is a central manifold)
in a neighborhood of the zero equilibrium state. All solutions belonging to this
neighborhood tend to M2(ε, α).

The analysis of the dynamics of solutions to the boundary value problem (11),
(12) can be reduced to studying a system of two ordinary differential equations. In
complex form, this system can be written as

ż = ε[(a1 + ia2)z + (l1 + il2)z|z|2] + o(ε), (13)

where z = z(t) = z1(t) + i z2(t), a1, a2, l2, l2 ∈ R, the value l1 is called the first Lya-
punov value. If l1 �= 0, then, instead of Eq. (13), which is usually called the normal
Poincaré form, consider its shortened version (“truncated normal form”)

z′ = ε[(a1 + ia2)z + (l1 + il2)z|z|2]. (14)

To construct the right-hand side of differential equation (14), it is possible and
convenient to apply the following algorithm [13–17], which can be interpreted as
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an adaptation of the well-known Krylov-Bogoliubov method for partial differential
equations

We now consider the nonlinear boundary value problem (11), (12). In its analysis,
the notation A(0)v = A0v, B0v = −γ vxx + δvx will be used. Recall that b2(ε) =
b4 j + O(ε).Nextwewill use a simplified version of the notation b2(ε) = b4 + O(ε),

assuming, that α j (root of equation (10)) is chosen. Finally, the LDO A(0) has a pair
of purely imaginary eigenvalues ±iσ.

The solutions of the boundary value problem (11), (12) belonging to M2(α, ε)

should be sought in the next form

v(t, x, ε) = ε1/2v1(t, x, z, z) + εv2(t, x, z, z) + ε3/2v3(t, x, z, z) + o(ε3/2), (15)

where the functions v1, v2, v3 possess the following properties:

1) v1(t, x, z, z) = z exp(i x + iσ t) + z exp(−i x − iσ t), where z = z(t) are nor-
mal form solutions, i.e. the derivative of the complex-valued function is calcu-
lated by virtue of Eq. (14).

2) The functions v2, v3 depend quite smoothly on their variables. In particular, for
fixed, for fixed t, z, z v j (t, x, z, z) ∈ H 4

2,0, if we consider them as functions of x
We assume that they have the period 2π/σ with respect to t and, for them, the
following equalities

M±(v j ) = 0, j = 2, 3, M±(v j ) = 1

2π

2π∫

0

v j exp(±iσ t) exp(±i x)dxdt = 0.

hold. This class of solutions will be denoted by V .

We substitute the sum (15) into the boundary value problem (11), (12) and equate
the obtained expressions for ε, ε3/2. As a result, we obtain linear nonhomogeneous
boundary value problems for determining v2, v3 :

v2t − A0v2 = F2(t, x), (16)

v2(t, x + 2π) = v2(t, x), M0(v2) = 0, (17)

v3t − A0v3 = F3(t, x), (18)

v3(t, x + 2π) = v3(t, x), M0(v3) = 0. (19)

Here,
F2(t, x) = c(v2

1)x − b4(v2
1)xx ,

F3(t, x) = −[ψ exp(iσ t + i x) + ψ exp(−iσ t − i x)] + B0v1
+2c(v1v2)x − 2b4(v1v2)xx + b3(v3

1)xx ,
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andψ denotes the normalized right-hand side of the shortened normal form (14). We
emphasize once again that the derivative with respect to the variable t is calculates
in view of equation (14).

The boundary value problem (16), (17) is uniquely correctly solvable in the class
of functions V . Indeed, the conditions for its solvability in this class of functions

M±(F2) = 0

are satisfied. The equations M±(v2) = 0 distinguish the needed solution. In our case,

v2(t, x, z) = η2z
2 exp(2iσ t + 2i x) + η2z2 exp(−2iσ t − 2i x),

where the complex constant η2 has the following form

η2 = 2b4 + ci

6
.

We now turn to the analysis of the linear inhomogeneous boundary value problem
(18), (19). The use of solvability conditions allows us to define ψ :

ψ = (a1 + ia2)z + (l1 + il2)z|z|2,

where

a1 = γ, a2 = δ, l1 = −(3b3 + c2

3
) + 2

3
b24,

l2 = cb4, b4 = b2 − 3b3α, α = α j , j = 1, 2.

We point out once again that δ = δ j = 2cβ j , b4 = b4 j = b2 − 3b3α j , j = 1, 2,
i.e. These quantities depend on the choice of the roots of the quadratic equation (10).

Let c �= 0. The case c = 0 is considered separately. Let also l1 �= 0. Then, the
following holds.

Lemma 2. The differential equation (14) has a family of periodic solutions

z(t) = ρ0 exp(iεωt + iϕ0), (20)

where ϕ0 is an arbitrary real value.
Here,

ρ0 = √−γ / l1, ω = δ − l2γ / l1.

For this γ = 1, if l1 < 0 and γ = −1, if l1 > 0.
The family of periodic solutions (20) generates the limit cycle C(ε) of differential

equation (14). This limit cycle is stable (local attractor), if l1 < 0 and this cycle is
unstable if l1 > 0.
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To prove the last statement, we can set

z(t) = ρ(t) exp(iϕ(t)).

Then, instead of Eq. (14), we obtain the system

ρ̇ = ε(γρ + l1ρ
3), ρ = ρ(t) ≥ 0, ϕ̇ = ε(δ + l2ρ

2).

The first equation of this system has a zero equilibrium state which is unstable for
γ = 1. For such γ it has an asymptotically stable equilibrium ρ(t) = ρ0 = √−γ / l1,
if l1 < 0.

If γ = −1, then the first equation of the last system has an unstable equilibrium
state ρ(t) = ρ0 = √−γ / l1, if, of course, l1 > 0. Obviously, for γ = −1 the zero
solution of this equation is asymptotically stable

The validity of the statement follows from the results of [18, 19].

Theorem 1. There exists ε0 > 0, such that for all ε ∈ (0, ε0) the boundary value
problem (11), (12) has the limit cycle C(α, ε) corresponding to the limit cycle C(ε)

of the normal form (14). The cycle C(α, ε) inherits the stability of the cycle C(ε). For
the solutions which form this limit cycle, we have the following asymptotic formula

v(t, x, α, ε) = ε1/2ρ0[exp(iσ(ε)t + i x + iϕ0)

+ exp(−iσ(ε)t − i x − iϕ0)] + ερ2
0 [η2 exp(2iσ(ε)t + 2i x + 2iϕ0)

+ η2 exp(−2iσ(ε)t − 2i x − 2iϕ0)] + O(ε3/2),

(21)

where ϕ0 is an arbitrary constant, σ(ε) = σ + εω, and the constants σ, ω �= 0 were
indicated earlier.

We obtain the asymptotic formula (21) after substitution of solution (20) into the
formula for solutions defining M2(ε) in parametric form, i.e. into equality (15). The
asymptotic formula (21) can be rewritten in real form

v(t, x, α, ε) = 2ε1/2ρ0 cos(σ (ε)t + x + ϕ0)

+ 2ερ2
0 [η21 cos(2σ(ε)t + 2x + 2ϕ0)

− η22 sin(2σ(ε)t + 2x + 2ϕ0)] + O(ε3/2),

(22)

where η21 = b4
3

, η22 = c

6
.

Remark 3. For c = 0 we obtain σ = 0, l2 = 0. In this case, the normal form (14)
has equilibrium states

z(t) = ρ exp(iϕ), ϕ ∈ R, ρ ∈ R+.

Hence the nonlinear boundary value problem (11), (12) has the family of equilibrium
states corresponding to the equilibrium states of the normal form (14).
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4 The Main Result

Wenow return to the analysis of themain boundary value problem. Periodic solutions
of the main boundary value problems (1), (2), correspond to the periodic solutions
(23) of the auxiliary boundary value problem (5), (6), if, of course, b(α) = 1 +
γ ε, σ �= 0, α �= 0.

u(t, x, α(ε), ε) = α(ε) + v(t, x, α(ε), ε)

= α(ε) + 2ε1/2ρ0 cos(σ (ε)t + x + ϕ0)

+ 2ερ2
0 (η21 cos(2σ(ε)t + 2x + 2ϕ0)

− η22 sin(2σ(ε)t + 2x + 2ϕ0)) + O(ε3/2).

(23)

The family of solutions (23) in the phase space of solutions of the boundary value
problem (1), (2) generates a limit cycle for each ε ∈ (0, ε0) and all those α, for which
b(α) = 1 + γ ε, where α = α(ε) is one of the roots of the equation

3b3α
2 − 2b2α + (1 + γ ε − b) = 0 (24)

for ε ∈ (0, ε0), i.e. α(ε) ∈ I (ε), where I = (α j , α j (ε0)) or I = (α j (ε0), α j ), and
α j (ε0) is a corresponding root of the quadratic equation (24) for ε = ε0, and α j one
of the roots of Eq. (24). There are two such intervals in the general case ( j = 1, 2).

Let the equilibrium state of the boundary value problem (1), (2) u(t, x) = α or
α ∈ I j (ε) be chosen. Then, as already noted, this boundary value problem has the
limit cycleC(α, ε) and for l1 < 0 it is attractive in the following sense. Let u(t, x, α)

be some solution from its neighborhood and, in addition, u(t, x, α) ∈ H4(α). Then,
over time it approaches toC(α, ε).This fact follows from the analysis of the auxiliary
boundary value problem (11), (12). If the limit cyclesC(ε) of the auxiliary boundary
value problem (11), (12) are unstable for the considered ε, then the solutions u(t, x) ∈
H4(α) leave the neighborhood of the corresponding limit cycle C(α, ε).

Let Vj = ∪
α∈I j (ε)

C(α, ε), j = 1, 2. Then, the following statement holds.

Theorem 2. For all ε ∈ (0, ε0) an invariant two-parametermanifold for the solutions
of the boundary value problem (1), (2) has the following properties:

– for l1 < 0 the manifold Vj is a local attractor;
– for l1 > 0 the manifold Vj is a saddle invariant set;
– the varietyVj is formedby t by periodic solutions (23), the period ofwhich depends
on the choice of ε ∈ (0, ε0);

– solutions of the two-parameter family (23) are unstable in the Lyapunov sense in
the metric of the phase space of solutions of the boundary value problem (1), (2).

It follows from the previous constructions that it remains to verify only the last
part of Theorem 2 for l1 < 0, i.e. in the case when the limit cycles C(ε) of the
auxiliary boundary value problem are stable.
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Let ε = ε∗ ∈ (0, ε0) and u∗(t, x) be a solution of the family (23) for chosen ϕ∗.
We now set εμ = ε∗(1 + μ) and consider the solutions of family (23) for such a
chosen ε and ϕ = ϕ∗. We denote such solutions by uμ(t, x). It is obvious that

lim
μ→0

||uμ(0, x) − u∗(0, x)||H4 = 0

due to the continuous dependence of the solutions on the parameter ε. But, there
is a sequence tk = tk(ε∗, μ), such that ||uμ(tk, x) − u∗(tk, x)||H4 ≥ r, where r =
r(ε∗) > 0, but do not depend on μ. Moreover, when checking the last inequality,
it suffices to restrict ourselves to considering the “main” parts of the corresponding
asymptotic formulas and show that the inequality

||wμ(tk, x) − w∗(tk, x)||H4 ≥ 2r,

where
wμ = α(εμ) + 2ε1/2μ ρ0 cos(σ (εμ)tk + x + ϕ∗),
w∗ = α(ε∗) + 2ε1/2∗ ρ0 cos(σ (ε∗)tk + x + ϕ∗),

where ρ0 = √−γ / l1 (γ = 1, l1 < 0 and it does not depend on ε and μ), σ(ε) =
σ + εω and the constant (which was indicated earlier) ω �= 0, εμ = ε∗(1 + μ).

Obviously, for any function g(x) ∈ H4 the following inequality holds

||g||H4 ≥ ||gxxxx ||L2(0,2π).

Therefore, it is enough to verify the inequality

||wμxxxx − w∗xxxx ||L2(0,2π) ≥ 2r

for some t = tk .
In turn, it will be satisfied if we specify tk such that

||y||L2(0,2π) ≥ 4r,

where y = y(tk, x) = 2ε1/2∗ ρ0[cos(σ (εμ)tk + x + ϕ∗) − cos(σ (ε∗)tk + x + ϕ∗)].
It can readily be shown that

2π∫

0

y2(tk, x)dx = 16ε∗ρ2
0π sin2(

ωμε∗tk
2

)

and, consequently, for

tk = 1

μωε∗
(π + 2πk),



178 A. Kulikov and D. Kulikov

where k = 1, 2, 3, . . . , if μω > 0 and k = −1,−2,−3, . . . , if μω < 0. The given
integral is equal to 16ε∗ρ2

0π, i.e. as r = r(ε∗) we can choose ε
1/2
∗ ρ0 =

= ε
1/2
∗ (−γ / l1)1/2(π)1/2 > 0. So, instability of solutions of family (23) is proved.

5 Conclusion

In this work, the existence of a local attractor with unstable periodic solutions is
shown. Therefore, 2 out of 3 points of the definition of a chaotic attractor according
to the definition of Devaney [20] are fulfilled. The attractor found does not satisfy
only the third point of this definition, since the ergodicity of the flow generated by
the considered boundary value problem is absent on the local attractor.

The reported study was funded by RFBR according to the research project No
18-01-00672.

References

1. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J.
Chem. Phys. 28, 258–267 (1958)

2. Podolny, A., Zaks, M.A., Rubinstein, B.Y., Golovin, A.A., Nepomnyashchy, A.A.: Dynamics
of domain walls governed by the convective Cahn-Hilliard equation. Phys. D 201, 91–305
(2005)

3. Frolovskaya, O.A., Pukhnachev, V.V.: Stationary solutions of quadratic Cahn–Hilliard equation
and their stability. In: AIP Conference Proceedings, vol. 1561, pp. 47–52 (2013)

4. Frolovskaya, O.A., Admaev, O.V., Pukhnachev, V.V.: Special case of the Cahn-Hilliard equa-
tion. Siber. Electon. Math. Rep. 10, 324–334 (2013)

5. Novick-Cohen, A., Segel, L.A.: Nonlinear aspects of the Cahn-Hilliard equation. Phys. D 10,
277–298 (1984)

6. Kulikov, A.N., Kulikov, D.A.: Local bifurcations in the Cahn-Hilliard and Kuramoto-
Sivashinsky equations and in their generalizations. Comput. Math. Math. Phys. 59, 630–643
(2019)

7. Kulikov, A.N., Kulikov, D.A.: Spatially ingomogeneous solutions in two boundary value prob-
lems for the Cahn-Hilliard equations. Belgorod State Univ. Sci. Bull. Math. Phys. 51, 21–32
(2019)

8. Sobolevskii, P.E.: Equations of a parabolic type in a Banach space. Moscov. Mat. Obsc. 10,
297–350 (1961)

9. Lions, J.L., Magenes, E.: Problemes aux limit es nonhomogenes et applications, vol. 1. Dunod,
Paris (1968)

10. Krein, S.G.: Linear Equations in Banach Spaces. Springer, New York (1982)
11. Marsden, J.E., McCraken,M.: The Hopf Bifurcations and its Applications. Springer, NewYork

(1976)
12. Kulikov, A.N.: Inertial manifolds of nonlinear self-oscillations of differential equations in a

Hilbert space. Preprint 85 of Institute of M.V. Keldysh applied mathematics, Moscow (1991)
13. Kulikov,A.N.,Kulikov,D.A.: Formation ofwavy nanostructures on the surface of flat substrates

by ion bombardment. Comput. Math. Math. Phys. 52, 930–945 (2012)
14. Kulikov, A., Kulikov, D.: Bifurcation in Kuramoto-Sivashinsky equation. Pliska Stud. Math.

25, 101–110 (2015)



Local Bifurcations in the Generalized Cahn-Hilliard Equation 179

15. Kulikov, A.N., Kulikov, D.A.: Local bifurcations in the periodic boundary value problem for
the generalized Kuramoto-Sivashinsky. Autom. Remote Control 78, 1955–1966 (2017)

16. Kulikov, A.N., Kulikov, D.A.: Bifurcations in a boundary value problem of nanoelectronics. J.
Math. Sci. 208, 211–221 (2015)

17. Kulikov, A.N., Kulikov, D.A.: Spatially inhomogeneous solutions for a modified Kuramoto-
Sivashinsky equation. J. Math. Sci. 219, 173–183 (2016)

18. Kolesov, A.Y., Kulikov, A.N., Rozov, N.H.: Invariant tori of a class of point mapping: the
annulus principle. Differ. Equ. 39, 614–631 (2003)

19. Kolesov, A.Y., Kulikov, A.N., Rozov, N.K.: Invariant tori of a class of point transformations:
preservation of an invariant torus under perturbations. Differ. Equ. 39, 775–790 (2003)

20. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Westview Press, Colorado
(1989)



The Numerical Solution of Wave
Equation with Delay for the Case
of Variable Velocity Coefficient

Ekaterina Tashirova

Abstract The wave equations with delay and variable velocity coefficient are con-
sidered. A family of grid methods is constructed for the numerical solution of this
equations. The convergence of the constructed method is investigated by means of
embedding into a general difference scheme with delay. Results of calculating test
examples are presented.

1 Problem Statement

Let us consider wave equation with delay

∂2u

∂t2
= ∂

∂x

(
k(x, t)

∂u

∂x

)
+ f (x, t, u(x, t), ut (x, ·)) : t0 ≤ t ≤ T, 0 ≤ x ≤ X,

(1)
with boundary conditions

u(0, t) = g1(t), u(X, t) = g2(t) : t0 ≤ t ≤ T (2)

and initial conditions

u(x, t) = ϕ(x, t) : 0 ≤ x ≤ X, t0 − τ ≤ t < t0, (3)

Here, u(x, t) is the required function; ut (x, ·) = {u(x, t + ξ),−τ ≤ ξ < 0}—is
the history function of the required function to the moment t ; τ is the value of
delay; f (x, t, u(x, t), ut (x, ·))—is a functional defined on [0, X ] × [t0, T ] × R ×
Q[−τ, 0), Q = Q[−τ, 0)—is the set of piece-wise continuous functions on [−τ, 0)
with a finite number of discontinuity points of the first kind and continuous on the
right at the discontinuity points; ‖u(·)‖Q = supξ∈[−τ,0) |u(ξ)|.
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We assume that function k(x, t) is continuous and satisfies the following
conditions

0 < c1 ≤ k(x, t) ≤ c2 : t0 ≤ t ≤ T, 0 ≤ x ≤ X; (4)

|k(x, t) − k(x, t − Δ)|
Δ

≤ c3k(x, t − Δ), t > t0. (5)

We also assume that the functional f (x, t, u, u(·)) is Lipschitz with respect to the last
two arguments, i.e. there exists a constant L f such that, for all x ∈ [0, X ], t ∈ [t0, T ],
u1 ∈ R1, u2 ∈ R1, v1(·) ∈ Q[−τ, 0), v2(·) ∈ Q[−τ, 0) the following inequality
holds:

| f (x, t, u1, v1(·)) − f (x, t, u2, v2(·))|

≤ L f (|u1 − u2| + ‖v1(·) − v2(·)‖Q[−τ,0)). (6)

In addition we assume that the functional f and functions g1, g2, ϕ, k are such
that the problem has a unique solution u(x, t) [4].

2 Difference Method

Let us divide the interval [0, X ] into parts with step h = X/N .

xi = ih, i = 0, 1 . . . , N .

Let us divide the interval [t0, T ] into parts with step Δ. m = τ/Δ is an integer.

t j = t0 + jΔ, j = −m, . . . , M.

We will denote approximations of the exact solution of u(xi , t j ) by uij .
Introduce the discrete history to the moment t j for each fixed i :

{uik} j = {uik : j − m ≤ k ≤ j}.

Mapping I
I : {uik} j → vi

j (·) ∈ Q[−τ,Δ]

will be called an interpolation-extrapolation operator for the discrete history.
We will say that the interpolation–extrapolation operator has order of error p

on the exact solution if constants C1 and C2 exist and they are such that for all
i = 0, . . . , N , j = 0, . . . , M and t ∈ [t j − τ, t j+1] the following inequality holds

|vi
j (t) − u(xi , t)| ≤ C1 max

j−m≤k≤ j
|uik − u(xi , tk)| + C2Δ

p.
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The piece-wise linear interpolation

vi
j (ξ) = 1

Δ
((tl − t j − ξ)uil−1 + (t j + ξ − tl−1)u

i
l ), tl−1 ≤ t j + ξ ≤ tl , −τ ≤ ξ ≤ 0

(7)
has second order.

Consider a family of methods with weight (0 ≤ s ≤ 1):

uij+1 − 2uij + uij−1

Δ2
= s

(
ki+1/2
j

ui+1
j+1 − uij+1

h2
− ki−1/2

j

uij+1 − ui−1
j+1

h2

)

+ s

(
ki+1/2
j

ui+1
j−1 − uij−1

h2
− ki−1/2

j

uij−1 − ui−1
j−1

h2

)

+ (1 − 2s)

(
ki+1/2
j

ui+1
j − uij
h2

− ki−1/2
j

uij − ui−1
j

h2

)
+ Fi

j (v
i
j (·)),

i = 1, . . . N − 1, j = 0, . . . M − 1 (8)

with boundary conditions

u0j = g1(t j ), uN
j = g2(t j )

and initial conditions
uij = ϕ(xi , t j ) : − m ≤ j ≤ 0,

where ki+1/2
j = k(xi + h/2, t j ), k

i−1/2
j = k(xi − h/2, t j ); Fi

j (v(·))—is a functional
defined on v(·) = vi

j (·) = I ({uik} j ) ∈ Q[−τ,Δ], and connected with the functional
f (xi , t j , uij , v

i
j (·)); also we assume that functional Fi

j (v(·)) is Lipschitz with respect
to the variable v(·) with the constant LF .

For s = 0, we obtain an explicit scheme. For other s, 0 < s ≤ 1, for each fixed j ,
the system is linear tridiagonal with respect to uij+1 with diagonal dominance; hence,
it can be effectively solved by the tridiagonal matrix algorithm.

The residual (without interpolation) of the method is the value:

ψ i
j = u(xi , t j+1) − 2u(xi , t j ) + u(xi , t j−1)

Δ2
−

− s
(
k(xi + h/2, t j )

u(xi+1, t j+1) − u(xi , t j+1)

h2
−

− k(xi − h/2, t j )
u(xi , t j+1) − u(xi−1, t j+1)

h2

)
+

− s
(
k(xi + h/2, t j )

u(xi+1, t j−1) − u(xi , t j−1)

h2
−
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− k(xi − h/2, t j )
u(xi , t j−1) − u(xi−1, t j−1)

h2

)
+

− (1 − 2s)
(
k(xi + h/2, t j )

u(xi+1, t j ) − u(xi , t j )

h2
−

− k(xi − h/2, t j )
u(xi , t j ) − u(xi−1, t j )

h2

)
− Fi

j (ut j (xi , ·)). (9)

We will say that the residual has order h p1 + Δp2 , if there exists constant C such
that |ψ i

j | ≤ C(h p1 + Δp2) for all i = 1, . . . N − 1, j = 0, . . . M − 1.

Theorem 1. Suppose that the exact solution of the problem (1)–(3) has continuous
partial derivatives up to the fourth order, function k(x, t) has continuous partial
derivatives with respect to t up to the third order and Fi

j (v
i
j (·)) = f (t j , xi , uij , v

i
j (·)).

Then for every 0 ≤ s ≤ 1 the residual has order h2 + Δ2.

Proof. The residual of the method is the value:

ψ i
j = u(xi , t j+1) − 2u(xi , t j ) + u(xi , t j−1)

Δ2
−

− s
(
k(xi + h/2, t j )

u(xi+1, t j+1) − u(xi , t j+1)

h2
−

− k(xi − h/2, t j )
u(xi , t j+1) − u(xi−1, t j+1)

h2

)
+

− s
(
k(xi + h/2, t j )

u(xi+1, t j−1) − u(xi , t j−1)

h2
−

− k(xi − h/2, t j )
u(xi , t j−1) − u(xi−1, t j−1)

h2

)
+

− (1 − 2s)
(
k(xi + h/2, t j )

u(xi+1, t j ) − u(xi , t j )

h2
−

− k(xi − h/2, t j )
u(xi , t j ) − u(xi−1, t j )

h2

)
− Fi

j (ut j (xi , ·)).

Let us write the Taylor expansion of functions u(x, t) and k(x, t) in the neigh-
borhood of points (xi , t j ), (xi , t j+1), (xi , t j−1)

u(xi , t j+1) = u(xi , t j ) + ∂u

∂t
(xi , t j )Δ + 1

2

∂2u

∂t2
(xi , t j )Δ

2 + 1

6

∂3u

∂t3
(xi , t j )Δ

3 + O(Δ4),

where g = O(Δ4), if there exists constant C , such that the inequality |g| ≤ CΔ4

holds.

u(xi , t j−1) = u(xi , t j ) − ∂u

∂t
(xi , t j )Δ + 1

2

∂2u

∂t2
(xi , t j )Δ

2 − 1

6

∂3u

∂t3
(xi , t j )Δ

3 + O(Δ4),
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u(xi−1, t j ) = u(xi , t j ) − ∂u

∂x
(xi , t j )h + 1

2

∂2u

∂x2
(xi , t j )h

2 − 1

6

∂3u

∂x3
(xi , t j )h

3 + O(h4),

u(xi+1, t j ) = u(xi , t j ) + ∂u

∂x
(xi , t j )h + 1

2

∂2u

∂x2
(xi , t j )h

2 + 1

6

∂3u

∂x3
(xi , t j )h

3 + O(h4),

u(xi−1, t j+1) = u(xi , t j+1) − ∂u

∂x
(xi , t j+1)h + 1

2

∂2u

∂x2
(xi , t j+1)h

2

− 1

6

∂3u

∂x3
(xi , t j+1)h

3 + O(h4),

u(xi+1, t j+1) = u(xi , t j+1) + ∂u

∂x
(xi , t j+1)h + 1

2

∂2u

∂x2
(xi , t j+1)h

2

+ 1

6

∂3u

∂x3
(xi , t j+1)h

3 + O(h4),

u(xi−1, t j−1) = u(xi , t j−1) − ∂u

∂x
(xi , t j−1)h + 1

2

∂2u

∂x2
(xi , t j−1)h

2

− 1

6

∂3u

∂x3
(xi , t j−1)h

3 + O(h4),

u(xi+1, t j−1) = u(xi , t j−1) + ∂u

∂x
(xi , t j−1)h + 1

2

∂2u

∂x2
(xi , t j−1)h

2

+ 1

6

∂3u

∂x3
(xi , t j−1)h

3 + O(h4).

k(xi + h/2, t j ) = k(xi , t j ) + h

2

∂k

∂x
(xi , t j ) + O(h2)

k(xi − h/2, t j ) = k(xi , t j ) − h

2

∂k

∂x
(xi , t j ) + O(h2)

Using the expansions above we obtain

ψ i
j = ∂2u

∂t2
(xi , t j ) + O(Δ2)

− s

(
k(xi , t j )

∂2u

∂x2
(xi , t j+1) + ∂k

∂x
(xi , t j )

∂u

∂x
(xi , t j+1) + O(h2)

)

− s

(
k(xi , t j )

∂2u

∂x2
(xi , t j−1) + ∂k

∂x
(xi , t j )

∂u

∂x
(xi , t j−1) + O(h2)

)
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− (1 − 2s)

(
k(xi , t j )

∂2u

∂x2
(xi , t j ) + ∂k

∂x
(xi , t j )

∂u

∂x
(xi , t j ) + O(h2)

)

− f (t j , xi , u(xi , t j ), ut j (xi , ·)).

Let us write the Taylor expansion of functions ∂2u
∂x2 (x, t) and

∂u
∂x (x, t) in the neigh-

borhood of points (xi , t j )

∂2u

∂x2
(xi , t j+1) = ∂2u

∂x2
(xi , t j ) + ∂3u

∂t∂x2
(xi , t j )Δ + O(Δ2),

∂2u

∂x2
(xi , t j−1) = ∂2u

∂x2
(xi , t j ) − ∂3u

∂t∂x2
(xi , t j )Δ + O(Δ2).

∂u

∂x
(xi , t j+1) = ∂u

∂x
(xi , t j ) + ∂2u

∂t∂x
(xi , t j )Δ + O(Δ2),

∂u

∂x
(xi , t j−1) = ∂u

∂x
(xi , t j ) − ∂2u

∂t∂x
(xi , t j )Δ + O(Δ2),

Then we obtain

ψ i
j = ∂2u

∂t2
(xi , t j ) − k(xi , t j )

(
∂2u

∂x2
(xi , t j )

)
− ∂k

∂x
(xi , t j )

(
∂u

∂x
(xi , t j )

)

− f (t j , xi , u(xi , t j ), ut j (xi , ·)) + O(Δ2 + h2).

According to (1) ψ i
j = O(Δ2 + h2). ��

3 Convergence

Denote the error of the method at the nodes by εij = u(xi , t j ) − uij .
We say that the method converges with order h p + Δq , if there exists constant

C independent of Δ, h, such that the inequality |εij | ≤ C(h p + Δq) holds for all
i = 0, . . . , N , j = 0, . . . M.

Let us investigate the convergence of method (8) by means of embedding it into
the general difference scheme with delay [1, 2].

For each t j , denote the values of the discrete model by γ̃ j = (u0j , u
1
j , . . . u

N
j )T ∈

Γ̃ , where T is the transposition symbol, Γ̃—is a vector space of dimension N + 1
with the scalar product:
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(γ̃ , ω̃) =
N−1∑
i=1

γ̃ i ω̃i h, γ̃ = (γ̃ 0, γ̃ 1, . . . γ̃ N ) ∈ Γ̃ , ω̃ = (ω̃0, ω̃1, . . . ω̃N ) ∈ Γ̃ . (10)

and the norm
‖γ̃n‖Γ̃ = √

(γ̃n, γ̃n). (11)

In the space Γ̃ we introduce operators A(t), R(t), Ã(t) and R̃(t)

A(t)γ̃ j = μ̃ j , μ̃ j = (μ̃0
j , μ̃

1
j , . . . , μ̃

N
j )T ,

μ̃0
j = −k(xi + h/2, t)

uij − ui−1
j

h2
+ k(xi − h/2, t)

ui+1
j − uij
h2

, 1 ≤ i ≤ N − 1,

A(t)uij = 0, A(t)uN
j = 0, (12)

Ã(t) = Δ2A(t), (13)

R̃(t) = Δ2R(t) = 1

Δ2
E + s Ã(t), (14)

where E is the identity operator.
Then, system (8) can be written in the form

R(t j )(γ̃ j+1 − 2γ̃ j + γ̃ j−1) + A(t j )γ̃ j = Fj (I ({γ̃l} j )), (15)

Fj (v(·)) = (F0
j (v

0
j (·)), F1

j (v
1
j (·)), . . . , FN

j (vN
j (·)))T , v(·) = I ({γ̃k} j ) ∈ QN+1

[−τ,Δ]; QN+1[−τ,Δ]—the space of vector functions with components from
Q[−τ,Δ].

Operators A(t j ) and R(t j ) are self-adjoint and positive for all t j [3]. Hence there
exists R−1(t). Then we can reduce Eq. (15) to the explicit form

γ̃ j+1 = 2γ̃ j − γ̃ j−1 − R−1(t j )A(t j )γ̃ j + R−1(t j )(Fj (I ({γ̃l} j ))) (16)

We will assume that the following condition holds

R(t) >
1 + ε

4
A(t), t0 ≤ t ≤ T, (17)

where ε is constant independent of Δ and h.
Introduce vector γ j = (γ 1

j , γ
2
j )

T = (γ̃ j−1, γ̃ j )
T ∈ Γ , where Γ is a vector space

of dimension q = 2(N + 1) with norm

‖γn‖Γ =
√
1

4
(A(tn−1)(γ

2
n + γ 1

n ), γ 2
n + γ 1

n ) + ((R(tn−1) − 1

4
A(tn−1))(γ

2
n − γ 1

n ), γ 2
n − γ 1

n ) (18)
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Theorem 2. For norms (11) and (18) the following inequality holds

‖γn‖Γ ≤ D

Δ
(‖γn‖Γ̃ + ‖γn−1‖Γ̃ ).

Proof.

‖γn‖2Γ = 1

4
(A(tn−1)(γ

2
n + γ 1

n ), γ 2
n + γ 1

n ) + ((R(tn−1) − 1

4
A(tn−1))(γ

2
n − γ 1

n ), γ 2
n − γ 1

n )

≤ 1

4
‖A(tn−1)(γ

2
n + γ 1

n )‖Γ̃ ‖γ 2
n + γ 1

n ‖Γ̃

+ ‖(R(tn−1) − 1

4
A(tn−1))(γ

2
n − γ 1

n )‖Γ̃ ‖γ 2
n − γ 1

n ‖Γ̃

≤ 1

4ΔΓ̃
‖ Ã(tn−1)(γ

2
n + γ 1

n )‖Γ̃ ‖γ 2
n + γ̃ 1

n ‖Γ̃

+ 1

ΔΓ̃
‖(R̃(tn−1) − 1

4
Ã(tn−1))(γ

2
n − γ 1

n )‖Γ̃ ‖γ 2
n − γ 1

n ‖Γ̃

≤ 1

4Δ2
‖ Ã(tn−1)‖Γ̃ ‖γ 2

n + γ 1
n ‖2

Γ̃
+ 1

Δ2
‖R̃(tn−1) − 1

4
Ã(tn−1)‖Γ̃ ‖γ 2

n − γ 1
n ‖2

Γ̃

≤ 1

4Δ2
‖ Ã(tn−1)‖Γ̃ (‖γ 2

n ‖Γ̃ + ‖γ 1
n ‖Γ̃ )2

+ 1

Δ2
‖R̃(tn−1) − 1

4
Ã(tn−1)‖Γ̃ (‖γ 2

n ‖Γ̃ + ‖γ 1
n ‖Γ̃ )2

≤
(
1

4
‖ Ã(tn−1)‖Γ̃ + ‖R̃(tn−1) − 1

4
Ã‖Γ̃

)
1

Δ2
(‖γ 2

n ‖Γ̃ + ‖γ 1
n ‖Γ̃ )2.

Hence we get the following estimate

‖γn‖Γ ≤ D

Δ
(‖γ 2

n ‖Γ̃ + ‖γ 1
n ‖Γ̃ ),

where D =
√

1
4‖ Ã(tn−1)‖Γ̃ + ‖R̃(tn−1) − 1

4 Ã(tn−1)‖Γ̃ . ��
As a result, we obtain the difference scheme:

γ j+1 = Sjγ j + ΔΦ(t j , I ({γk} j ),Δ), (19)

where Sj =
(

0 1
−1 2 − R−1(t j )A(t j )

)
, Φ(t j , I ({γk} j ),Δ) =

(
0

R−1(t j )Fj (I ({γ 2
k } j ))

Δ

)
.
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The error of approximation (the residual) with interpolation in the general differ-
ence scheme is calculated by the formula

dn = (zn+1 − Snzn)/Δ − Φ(tn, I ({zi }n)), n = 0, ..., M − 1. (20)

We say that a method has error orderΔp1 + h p2 for approximation with interpola-
tion if there exists a constantC, such that ‖dn‖Γ ≤ C(Δp1 + h p2), n = 0, ..., M − 1.

This definition of residual differs from the earlier introduced definition of residual
without interpolation (9). However, the following statement is valid.

Theorem 3. Suppose that the residual in the sense of (9) has order Δp1 + h p2 , the
functions Fi

j are Lipschitz, interpolation–extrapolation operator I has error order
p0 on the exact solution. Then, the residual with interpolation has the same error
order with respect to Δ and h, and this order is Δmin{p0,p1,p2}.

Proof. Consider the norms of the coordinates of residual (20)

‖d1
n‖2Γ̃ = ‖(z1n+1 − z2n)/Δ‖2

Γ̃
=

∥∥∥∥ z̃n − z̃n
Δ

∥∥∥∥
2

Γ̃

= 0.

‖d2n‖2
Γ̃

=
∥∥∥∥(z2n+1 + z1n − 2z2n + R−1(tn)A(tn)z

2
n)/Δ − 1

Δ
R−1(tn)(F

n(I ({z2l }n)))
∥∥∥∥
2

Γ̃

=
∥∥∥∥ z̃n+1 + z̃n−1 − 2̃zn

Δ
+ 1

Δ
R−1(tn)A(tn )̃zn − 1

Δ
R−1(tn)(F

n(I ({̃zl }n)))
∥∥∥∥
2

Γ̃

= Δ2
∥∥∥∥ z̃n+1 − 2̃zn + z̃n−1

Δ2 + 1

Δ2 R
−1(tn)A(tn )̃zn − 1

Δ2 R
−1(tn)(F

n(I ({̃zl }n))
∥∥∥∥
2

Γ̃

.

‖d2n‖2
Γ̃

= Δ2
∥∥∥∥ z̃n+1 − 2̃zn + z̃n−1

Δ2 + 1

Δ2 R̃
−1(tn) Ã(tn )̃zn − R̃−1(tn)(F

n(I ({̃zl }n)
∥∥∥∥
2

Γ̃

≤ Δ2‖R̃−1‖2
Γ̃

∥∥∥∥R̃(tn)

(
z̃n+1 − 2̃zn + z̃n−1

Δ2

)
+ 1

Δ2 Ã(tn )̃zn − Fn(I ({̃zl }n))
∥∥∥∥
2

Γ̃

.(21)

Hence, by the definition of the operators R̃ (14), Ã (13)
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∥∥∥∥R̃(tn)

(
z̃n+1 − 2̃zn + z̃n−1

Δ2

)
+ 1

Δ2
Ã(tn )̃zn − Fn(I ({̃zl}n))

∥∥∥∥
2

Γ̃

=
∥∥∥∥ z̃n+1 − 2̃zn + z̃n−1

Δ2
+ s Ã

(
z̃n+1 − 2̃zn + z̃n−1

Δ2

)
+ 1

Δ2
Ã̃zn − Fn(I ({̃zl}n)

∥∥∥∥
2

Γ̃

=
∥∥∥∥ z̃n+1 − 2̃zn + z̃n−1

Δ2
+ 1

Δ2
(s Ã̃zn+1 + (1 − 2s) Ã̃zn + s Ã̃zn−1) − Fn(I ({̃zl}n)

∥∥∥∥
2

Γ̃

=
N−1∑
i=1

∣∣∣u(xi , t j+1) − 2u(xi , t j ) + u(xi , t j−1)

Δ2
−

− s
(
k(xi + h/2, t j )

u(xi+1, t j+1) − u(xi , t j+1)

h2
−

− k(xi − h/2, t j )
u(xi , t j+1) − u(xi−1, t j+1)

h2

)
+

− s
(
k(xi + h/2, t j )

u(xi+1, t j−1) − u(xi , t j−1)

h2
−

− k(xi − h/2, t j )
u(xi , t j−1) − u(xi−1, t j−1)

h2

)
+

− (1 − 2s)
(
k(xi + h/2, t j )

u(xi+1, t j ) − u(xi , t j )

h2
−

− −k(xi − h/2, t j )
u(xi , t j ) − u(xi−1, t j )

h2

)
− Fi

n(I ({uil }n))
∣∣∣2h. (22)

Let us estimate each term in the sum in (22) using the assumptions of the theorem

∣∣∣u(xi , t j+1) − 2u(xi , t j ) + u(xi , t j−1)

Δ2
−

− s
(
k(xi + h/2, t j )

u(xi+1, t j+1) − u(xi , t j+1)

h2
−

− k(xi − h/2, t j )
u(xi , t j+1) − u(xi−1, t j+1)

h2

)
+

− s
(
k(xi + h/2, t j )

u(xi+1, t j−1) − u(xi , t j−1)

h2
−

− k(xi − h/2, t j )
u(xi , t j−1) − u(xi−1, t j−1)

h2

)
+

− (1 − 2s)
(
k(xi + h/2, t j )

u(xi+1, t j ) − u(xi , t j )

h2
−

− k(xi − h/2, t j )
u(xi , t j ) − u(xi−1, t j )

h2

∣∣∣
≤ |ψ i

n| + |Fi
n(utn (xi , ·)) − Fi

n(I ({uil }n))|
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≤ C1(Δ
p1 + h p2) + LF‖utn (xi , ·) − I ({uil }n)‖Q ≤ C1(Δ

p1 + h p2) + LFC2Δ
p0 .

(23)
Thus, (21), (22), (23) yield

‖d2
n‖2Γ̃ ≤ Δ2‖R̃−1(tn)‖2Γ̃

N−1∑
i=1

(C1(Δ
p1 + h p2) + LFC2Δ

p0)2h

= Δ2‖R̃−1(tn)‖2Γ̃ (N − 1)(C1(Δ
p1 + h p2) + LFC2Δ

p0)2h

≤ Δ2(C3Δ
min{p1,p0} + C4h

p2)2

= Δ2
(
C3Δ

min{p1,p0} + C4
(
aΔ/

√
σ
)p2)2

,

where C3 = ‖R̃−1(tn)‖Γ̃

√
X (C1 + LFC2), C4 = ‖R̃−1(tn)‖Γ̃

√
X C1.

Therefore
‖d2

n‖2 ≤ C5Δ
min{p0,p1,p2}+1,

where C5 = C3 + C4(a/
√

σ)p2 .
Using Theorem 2 we obtain

‖d2
n‖2Γ̃ ≤ D

Δ
(‖dn‖Γ̃ + ‖dn−1‖Γ̃ ) ≤ D

Δ
(C5Δ

min{p0,p1,p2}+1).

‖dn‖Γ̃ ≤ CΔmin{p0,p1,p2},

where C = C5D. ��
The scheme (19) is stable, if

‖Sj‖Γ ≤ 1. (24)

To investigate the stability of the scheme, we apply the results of [3]. For this, we
consider the homogeneous difference scheme corresponding to (15):

R(t j )(γ̃ j+1 − 2γ̃ j + γ̃ j−1) + A(t j )γ̃ j = 0 (25)

It is proved in [3] that, if the scheme satisfies the conditions (17) and (5), then the
solution of (25) satisfies the inequality

‖γ j+1‖Γ ≤ ‖γ j‖Γ , (26)

which means that the estimate (24) holds.
Using results from [3] and condition (4) we obtain that condition (17) holds if the

following condition holds

s >
1

4

(
1 − 1

σ

)
, (27)
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where σ = c2Δ2/h2.
We have conducted the embedding into the general difference scheme with delay;

then we obtain the following statement.

Theorem 4. Suppose that stability condition (27) holds, the residual in the sense
of (9) has order Δp1 + h p2 , the functions Fi

j are Lipschitz, the interpolation–
extrapolation operator I is Lipschitz continuous and has error order p0 on the exact
solution. Then, the method converges with order Δmin{p0,p1,p2} + hmin{p0,p1,p2}.

It follows from the theorem thatmethod (8)with the piece-wise linear interpolation
(7) converges with order h2 + Δ2.

4 Example of Numerical Computation

Consider the equation with delay

∂2u

∂t2
(x, t) = ∂

∂x

(
cos xt · ∂u

∂x

)
+ π2e−t cos xt sin πx + eτ−2t sin2 πx

+ π te−t sin xt cos(πx) + u(x, t)(1 − u(x, t − τ)) : 0 ≤ t ≤ 3, 0 ≤ x ≤ 1 (28)

for τ = 2, with initial conditions:

u(x, t) = e−t sin πx : − τ ≤ t ≤ 0, 0 ≤ x ≤ 1

and boundary conditions

u(x, t) = e−t sin πx : 0 ≤ t ≤ 3

In Table1, we present the norms of the differences between the matrices of exact
and approximate solutions of Eq. (28) obtained for different values of the parameter
s and different steps. The norms of the differences were calculated by the formula

‖U‖1 = max
0≤ j≤M

N∑
i=0

|u(t j , xi ) − uij |h. (29)
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Table 1 Norms of differences between the exact and approximate solutions of Eq. (28)

N = 10 N = 15 N = 20 N = 15 N = 25 N = 50

M = 60 M = 90 M = 120 M = 36 M = 60 M = 120

s = 0 0.2691 0.1758 24.4750 9.8 · 1011 6.2 · 1023 4.7 · 1080
s = 0.5 0.2280 0.1490 0.1115 0.0013 0.0016 0.0008

s = 1 0.1869 0.1222 0.0615 0.0736 0.0392 0.0192
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Two Nontrivial Solutions for Robin
Problems Driven by a p–Laplacian
Operator

G. D’Aguì, A. Sciammetta, and E. Tornatore

Abstract By variational methods and critical point theorems, we show the existence
of two nontrivial solutions for a nonlinear elliptic problem under Robin condition
and when the nonlinearty satisfies the usual Ambrosetti-Rabinowitz condition.
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1 Introduction

In this paper we study the existence of two nontrivial weak solutions of following
nonlinear elliptic equation under Robin condition

⎧
⎨

⎩

−Δpu + |u|p−2u = λ f (x, u) in Ω,

∂u
∂ν

+ β(x)|u|p−2u = 0 on ∂Ω,

(1)

where Ω ⊂ RN (with N ≥ 3) is a non-empty bounded open set with a smooth
boundary ∂Ω , λ is a positive real parameter and 1 < p < N . The differential oper-
ator in (1) is described by the p-Laplacian, Δpu = div(|∇u|p−2∇u). We assume
f : Ω × R → R, β ∈ L∞(∂Ω), β(x) ≥ 0 a.e. on ∂Ω . In the boundary condition,
∂u
∂ν

denotes the generalized normal derivative defined by ∂u
∂ν

= |∇u|p−2∇u · ν(x),
ν(x) being the outward unit normal at x ∈ ∂Ω .
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A special case of our main result (see Theorem 6) can be given in the following
form.

Theorem 1. Let g : R → R be a nonnegative and continuous function such that
there exist positive constants a1, a2 and s ∈]p, p∗[ such that

|g(t)| ≤ a1 + a2|t |s−1 for all t ∈ R,

and

lim
τ→0+

g(τ )

τ
= +∞.

Moreover, assume that there exist ν > p and R > 0 such that

0 < ν

∫ τ

0
g(t)dt ≤ τg(τ ) for all τ ∈ R with |τ | ≥ R.

Then, there exists λ > 0 such that for each λ ∈]0, λ[, the problem
⎧
⎨

⎩

−Δpu + |u|p−2u = λg(u) in Ω,

∂u
∂ν

+ β(x)|u|p−2u = 0 on ∂Ω,

(2)

has at least two nonnegative weak solutions.

The main novelty of our paper is that we apply a recent critical-points result to
elliptic problems with p–Laplacian in the equation and with Robin conditions on the
boundary. There exist several existence results to problem (1), anyway our approach
is new and gives the existence of two nontrivial weak solutions. The assumptions on
the nonlinear term are easy to verify and so our results could be applied to several
problems of type (1).

Elliptic problems with Robin conditions have been studied by several authors by
applying different tools like fixed point theorems, sub and super-solution methods,
and critical point theory. We refer, without any claim to completeness, to the papers
[2, 7, 12–15] and the references therein.

Moreover, we observe that the derivation and application of critical point results
of that used here have been initiated by the works of Ricceri [16, 17] which were the
starting point of several generalizations in that direction for smooth and non-smooth
functionals, we refer only to some works of Marano-Motreanu [9, 10], and Bonanno
[3, 4] that inspired us in writing this paper.

The paper is organized as follows. In Sect. 2,we state themain definitions and tools
that we are going to need to prove our main results. Especially, we recall the abstract
critical point theorem of Bonanno-D’Aguì [5], which is an appropriate combination
of the local minimum theorem obtained by Bonanno with the classical and seminal
Ambrosetti–Rabinowitz theorem (see [1]), moreover we give a lemma about the
relation of our perturbation concerning the Ambrosetti–Rabinowitz condition and
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the Palais-Smale condition (Lemma 1). Then, in Sect. 3, we are going to prove our
main result which gives an answer about the existence of solutions to problem (1).
To be more precise, we obtain the existence of two nontrivial solutions of (1), see
Theorem 3, and the proof is based on the abstract critical points result stated in
Sect. 2. Finally, in Sect. 4, we consider special problem in the autonomous case, and
give an example in order to show the applicability of our results.

2 Preliminaries and Basic Notations

Let (X, ‖ · ‖) be a Banach space; its dual space is X∗ and the corresponding duality
pairing is denoted by 〈·, ·〉. Let I : X → R be a Gâteaux differentiable functional;
we say that I satisfies the Palais-Smale condition, (in short (PS)–condition), if every
sequence {un}n∈N ⊆ X such that {I (un)}n∈N ⊂ R is bounded, and I ′(un) → 0 in X∗
as n → +∞, admits a strongly convergent subsequence in X .

Let A : X → X∗ be a functional.We say that A has S+-property iff every sequence
{un}n∈N ⊂ X such that un ⇀ u in X and lim supn→+∞〈Aun, un − u〉 ≤ 0 implies
that un → u in X .

We consider the usual Sobolev space W 1,p(Ω), endowed with the norm

‖u‖ =
(∫

Ω

|u(x)|pdx +
∫

Ω

|∇u(x)|pdx
)1/p

,

and denote by (W 1,p(Ω))∗ its dual space.
Since 1 < p < N , p∗ = pN

N−p and it is known that, for every u ∈ W 1,p(Ω) there
exists a constant T ∈ R+ such that

‖u‖L p∗ (Ω) ≤ T ‖u‖, (3)

the constat T has been determined by Talenti (see [18]) and

T ≤ π− 1
2 N− 1

p

(
p − 1

N − p

)1− 1
p

⎛

⎝
Γ

(
1 + N

2

)
Γ (N )

Γ
(

N
p

)
Γ

(
1 + N − N

p

)

⎞

⎠

1
N

,

where Γ is the Euler function.
Fix s ∈ [1, p∗[, by Sobolev embedding theorem and Hölder’s inequality, for every
u ∈ W 1,p(Ω) we have that

‖u‖Ls (Ω) ≤ T |Ω| p∗−s
p∗s ‖u‖, (4)

where |Ω| denotes the Lebesguemeasure ofΩ inR. On ∂Ω we consider the (N − 1)-
dimensional Hausdorff (surface) measure σ(·). Using this measure, we can define
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in the usual way the “boundary” Lebesgue spaces L p(∂Ω) 1 ≤ p ≤ ∞. From the
theory of Sobolev spaces, we know that there exists a unique continuous linear map
γ0 : W 1,p(Ω) → L p(∂Ω), known as the “trace map”, such that

γ0(u) = u|∂Ω
for all u ∈ W 1,p(Ω) ∩ C(Ω).

Therefore we understand γ0(u) as representing the “boundary values” of an arbitrary

Sobolev function u. The tracemap γ0 is compact into Lη(∂Ω) for all η ∈
[
1, (N−1)p

N−p

[
.

Also, we have

imγ0 = W
1
p′ ,p(∂Ω),

(

p′ = p

p − 1

)

, kerγ0 = W 1,p(Ω).

In the sequel, for the sake of notational simplicity, we drop the use of the trace map
γ0. All restrictions of Sobolev functions u on ∂Ω are defined in the sense of traces.
In studying problem (1) we rely on the negative p-Laplacian −Δp : W 1,p(Ω) →
(W 1,p(Ω))∗. It is well-known that the operator −Δp is continuous, bounded, pseu-
domonotone and has the S+-property (see [6, 11]).

Throughout the sequel, we assume that the nonlinearity f : Ω × R → R is a
Carathéodory function i.e. f (·, t) ismeasurable for every t ∈ R, f (x, ·) is continuous
for almost every x ∈ Ω and satisfies the subcritical growth condition and the usual
Ambrosetti-Rabinowitz condition (in short (AR)-condition).

(H) There exist two nonnegative constants a1, a2, a constant s ∈]p, p∗[ such that

| f (x, t)| ≤ a1 + a2|t |s−1 for all (x, t) ∈ Ω × R.

Put F(x, t) =
∫ t

0
f (x, ξ)dξ for all (x, t) ∈ Ω × R.

(AR) There exist two constants μ > p and M > 0 such that, 0 < μF(x, t) ≤
t f (x, t), for all x ∈ Ω and for all |t | ≥ M .

We consider the C1-functionals Φ, Ψ : W 1,p(Ω) → R defined by

Φ(u) = 1

p
‖u‖p + 1

p

∫

∂Ω

β(x)|u(x)|pdσ, (5)

and

Ψ (u) =
∫

Ω

F(x, u(x))dx, (6)

for all u ∈ W 1,p(Ω), whose Gâteaux derivatives at point u ∈ W 1,p(Ω) are given by
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Φ ′(u)(v) =
∫

Ω

|∇u(x)|p−2∇u(x) · ∇v(x)dx

+
∫

Ω

|u(x)|p−2u(x)v(x)dx +
∫

∂Ω

β(x)|u(x)|p−2uvdσ,

and

Ψ ′(u)(v) =
∫

Ω

f (x, u(x))v(x)dx,

for every v ∈ W 1,p(Ω). Put Iλ = Φ − λΨ , we observe that critical points of Iλ are
weak solutions of (1).

We recall that a weak solution of problem (1) is any u ∈ W 1,p(Ω) such that

∫

Ω

|∇u(x)|p−2∇u(x) · ∇v(x)dx +
∫

Ω

|u(x)|p−2u(x)v(x)dx

+
∫

∂Ω

β(x)|u(x)|p−2u(x)v(x)dσ = λ

∫

Ω

f (x, u(x))v(x)dx .

Finally, we recall the following two non-zero critical points theorem established
in [5] that we use to point out our results.

Theorem 2. Let X be a real Banach space and letΦ,Ψ : X → R be two functionals
of class C1 such that inf

X
Φ(u) = Φ(0) = Ψ (0) = 0. Assume that there are r ∈ R

and ũ ∈ X, with 0 < Φ(ũ) < r , such that

sup
u∈Φ−1(]−∞,r ])

Ψ (u)

r
<

Ψ (ũ)

Φ(ũ)
, (7)

and, for each

λ ∈ Λ =
⎤

⎥
⎦

Φ(ũ)

Ψ (ũ)
,

r

sup
u∈Φ−1(]−∞,r ])

Ψ (u)

⎡

⎢
⎣ ,

the functional Iλ = Φ − λΨ satisfies the (PS)–condition and it is unbounded from
below.

Then, for each λ ∈ Λ, the functional Iλ admits at least two non-zero critical points
uλ,1, uλ,2 ∈ X such that I (uλ,1) < 0 < I (uλ,2).
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3 Main Results

In this section, we present our main results. To be precise, we establish the existence
result of two non zero weak solutions of problem (1).

We have the following Lemma.

Lemma 1. Assume that conditions (H)-(AR) hold. Then Iλ satisfies the (PS)–
condition.

Proof. Let {un}n∈N ⊆ W 1,p(Ω)be a sequence such that {Iλ(un)}n∈N ⊂ R is bounded,
and I ′

λ(un) → 0 in (W 1,p(Ω))∗ as n → +∞. Simple calculations show that

μIλ(un) − ||I ′
λ(un)||(W 1,p(Ω))∗ ||un || ≥ μIλ(un) − I ′

λ(un)(un) (8)
= μΦ(un) − λμΨ (un) − Φ ′(un)(un) + λΨ ′(un)(un)

=
(

μ

p
− 1

)

||un ||p +
(

μ

p
− 1

) ∫

∂Ω

β(x)|un(x)|pdσ

− λ

∫

Ω

(μF(x, un(x)) − f (x, un(x))un(x)) dx

≥
(

μ

p
− 1

)

||un ||p + C,

where C is a constant. If {un}n∈N is not bounded, from (8) we obtain a contradiction.
Therefore {un}n∈N is bounded in W 1,p(Ω). Then, using a subsequence if necessary
we may assume that un ⇀ u in W 1,p(Ω), un → u in Ll(Ω) where l ∈ [1, p∗[ and
un → u in Lη(∂Ω) for η ∈

[
1, (N−1)p

N−p

[
.

Using (H ) and the Hölder inequality, we obtain that

lim
n→∞

∫

Ω

f (x, un)(un − u)dx = 0, (9)

lim
n→∞

∫

∂Ω

β(x)|un|p−2un(un − u)dσ = 0, (10)

and

lim
n→∞

∫

Ω

|un|p−2un(un − u)dx = 0. (11)

Taking into account that such that I ′
λ(un) → 0 in X∗ as n → +∞, we have that

〈I ′
λ(un), un − u〉 = 〈−Δpun, un − u〉 +

∫

Ω

|un|p−2un(un − u)dx

+
∫

∂Ω

β(x)|un|p−2un(un − u)dσ −
∫

Ω

f (x, un)(un − u)dx → 0.
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From (9), (10) and (11) one has

lim sup
n→∞

〈−Δpun, un − u〉 ≤ 0.

By the S+-property of −Δp in W 1,p(Ω) we have that un → u in W 1,p(Ω). Hence
Iλ fulfills (PS)–condition. ��

Put

k = |Ω| + β∞|∂Ω|
|Ω| p

p∗
T p, (12)

where |∂Ω| =
∫

∂Ω

dσ = σ(∂Ω) and β∞ = ess sup
Ω

β(x).

Theorem 3. Assume that conditions (H) and (AR) hold. Moreover assume that
there are two positive constants c and d, with d < c, such that

a1c
1−p + a2

s
cs−p <

1

k|Ω|

∫

Ω

F(x, d)dx

d p
, (13)

where a1, a2, s and k are given by (H) and (12) respectively.

Then, for each λ ∈ Λ1 :=
⎤

⎥
⎦

k|Ω|
p
p∗

pT p
d p

∫

Ω

F(x, d)dx
, 1

pT p |Ω| p
N

1
a1c1−p+ a2

s cs−p

⎡

⎢
⎣,

problem (1) has at least two non-zero weak solutions.

Proof. Put Φ and Ψ as in (5) and (6). It is well known that Φ and Ψ satisfy all
regularity assumptions requested in Theorem 2.

Explicitly, we observe that from (13), one has Λ1 �= ∅.
Consider the constant function u(x) = d f orallx ∈ Ω , we observe that u ∈

W 1,p(Ω), taking into account (12) we have

Φ(u) = d p

p

(∫

Ω

dx +
∫

∂Ω

β(x)dσ

)

≤ d p

p
(|Ω| + β∞|∂Ω|) = k|Ω| p

p∗

pT p
d p. (14)

On the other hand one has

Ψ (u) =
∫

Ω

F (x, d) dx,

hence, we obtain

Ψ (u)

Φ(u)
≥ pT p

k|Ω| p
p∗

∫

Ω

F (x, d) dx

d p
. (15)
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Now, set r = 1
p

|Ω|
p
p∗

T p cp. For all u ∈ W 1,p(Ω) such that u ∈ Φ−1 (]−∞, r ]), tak-

ing (5) into account, one has that ‖u‖ ≤ (pr)
1
p we have

Φ−1 (]−∞, r ]) ⊆
{
u ∈ W 1,p(Ω) : ‖u‖ ≤ (pr)

1
p

}
. (16)

From (H) follows

|F(x, t)| ≤ a1|t | + a2
|t |s
s

for every (x, t) ∈ Ω × R. (17)

From (4), (16) and (17) one has

sup
u∈Φ−1(]−∞,r ])

Ψ (u)

r
≤

sup
‖u‖≤(pr)

1
p

Ψ (u)

r
(18)

≤
sup

‖u‖≤(pr)
1
p

(
a1‖u‖L1(Ω) + a2

s
‖u‖sLs (Ω)

)

r

≤
sup

‖u‖≤(pr)
1
p

(
a1T |Ω| p∗−1

p∗ ‖u‖ + a2
s
T s |Ω| p∗−s

p∗ ‖u‖s
)

r

≤ a1T |Ω| p∗−1
p∗ (pr)

1
p + a2

s T
s |Ω| p∗−s

p∗ (pr)
s
p

r

= pT p|Ω| p∗−p
p∗

⎡

⎣a1

(
T p pr

|Ω| p
p∗

) 1−p
p

+ a2
s

(
T p pr

|Ω| p
p∗

) s−p
p

⎤

⎦

= pT p|Ω| p
N

[
a1c

1−p + a2
s
cs−p

]
.

Therefore, from (13), (15), (18) we obtain condition (7) of Theorem 2. Moreover,
since 0 < d < c and again by virtue of (13), we infer that

kd p < cp. (19)

Indeed, arguing by contradiction, if we assume that kd p ≥ cp and using (17) we have

a1c
1−p + a2

s
cs−p ≥ 1

k

a1d + a2
s d

s

d p
≥ 1

k|Ω|

∫

Ω

F (x, d) dx

d p
,

which contradicts (13). Then from (14), (19) we obtain that

Φ(u) < r.
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By virtue of Lemma 1, for all fix λ ∈ Λ1 the functional Iλ satisfies the (PS)–
condition. Using (AR)–condition, it is easy to prove that the functional Iλ is
unbounded from below. Moreover, inf

u∈W 1,p(Ω)
Φ(u) = Φ(0) = Ψ (0) = 0, therefore,

all assumptions of Theorem 2 are satisfied. So, for all λ ∈ Λ1 ⊂ Λ problem (1)
admits at least two non-zero weak solutions. ��

Finally, we point out the following result that we will use to obtain nonnegative
solutions for our problem (1).

Lemma 2. Let f : Ω × R → R, assume that f (x, 0) ≥ 0 for a.e. x ∈ Ω . Consider
the problem ⎧

⎨

⎩

−Δpu + |u|p−2u = λ f+(x, u) in Ω,

∂u
∂ν

+ β(x)|u|p−2u = 0 on ∂Ω,

(20)

where

f+(x, t) =
⎧
⎨

⎩

f (x, 0), if t < 0,

f (x, t), if t ≥ 0.
(21)

Then, the weak solutions of problem (20) are nonnegative weak solution of
problem (1).

Proof. If ū ∈ W 1,p(Ω) is aweak solution of (20), choosing v = ū− = max{−u, 0} ∈
W 1,p(Ω) as test function (see, for instance, [8, Lemma 7.6]), one has

∫

{ū<0}
|∇ū(x)|pdx +

∫

{ū<0}
|ū(x)|pdx +

∫

∂Ω

β(x)|ū(x)|pdσ

= λ

∫

{ū<0}
f+(x, ū(x))ū(x)dx ≤ 0,

that is ū ≥ 0 for a.e. x ∈ Ω . Then ū is a nonnegative weak solution of problem (1)
Hence, our claim is proved. ��

Now, we present our result on the existence of at least two nonnegative solutions.

Theorem 4. Let f : Ω × R → R be a continuous functions, f (x, 0) ≥ 0 a. e. x ∈
Ω . Assume that (H) and (AR)–condition hold. Moreover, there are two positive
constants c and d, with d < c, such that

a1c
1−p + a2

s
cs−p <

1

k|Ω|

∫

Ω

F(x, d)dx

d p
. (22)
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Then, for each λ ∈ Λ1 :=
⎤

⎥
⎦

k|Ω|
p
p∗

pT p
d p

∫

Ω

F(x, d)dx
, 1

pT p |Ω| p
N

1
a1c1−p+ a2

s cs−p

⎡

⎢
⎣ prob-

lem (1) has at least two nontrivial and nonnegative solutions.

Proof. Since all conditions of Theorem 3 are satisfied, then for each λ ∈ Λ1 the
problem (1) admits at least two non zero weak solutions inW 1,p(Ω) and, taking into
account Lemma 2, they are also nonnegative. ��

4 Some Consequences

We point out a special case of Theorem 3 when the nonlinearity f does not depend
on x .

Theorem 5. Let f : R → R be a nonnegative continuous function such that (H)

and (AR)–condition hold. Moreover, assume that there are two positive constants c
and d, with d < c, such that

a1c
1−p + a2

s
cs−p <

1

k

F(d)

d p
. (23)

Then, for each λ ∈ Λ2 :=
]

k

pT p |Ω| p
N

d p

F(d)
, 1

pT p |Ω| p
N

1
a1c1−p+ a2

s cs−p

[

problem

⎧
⎨

⎩

−Δpu + |u|p−2u = λ f (u) in Ω,

∂u
∂ν

+ β(x)|u|p−2u = 0 on ∂Ω,

(24)

has at least two nonnegative weak solutions.

Proof. Our aim is to apply Theorem 4. We observe that from condition (23) we
obtain condition (13) of Theorem 3 and moreover f (x, 0) ≥ 0 a.e. x ∈ Ω . Then, for

each λ ∈ Λ2 :=
]

k

pT p |Ω| p
N

d p

F(d)
, 1

pT p |Ω| p
N

1
a1c1−p+ a2

s cs−p

[

problem (24) has at least two

nonnegative weak solutions. ��
Finally, we want to consider the case when the nonlinear term of problem (24) is
super-(p − 1) linear at zero.

Theorem 6. Let f : R → R be a nonnegative continuous function such that (H)
and (AR)–condition hold and

lim sup
t→0+

F(t)

t p
= +∞, (25)
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and put λ∗ = 1

pT p |Ω| p
N
sup
c>0

1

a1c1−p + a2
s c

s−p
.

Then, for each λ ∈ ]0, λ∗[, problem (24) admits at least two nonnegative weak
solutions.

Proof. Put λ ∈ ]0, λ∗[, there is c > 0 such that λ < 1

pT p |Ω| p
N

1
a1c1−p+ a2

s cs−p . From (25)

there is 0 < d < c such that pT p |Ω| p
N

k
F(d)

d p > 1
λ
. Hence, Theorem 5 guarantees the

conclusion. ��
Example 1. Let p = 3, N = 4 and Ω = B(0, 3

1
8 ), the open ball of radius r = 3

1
8

and consider the function f : R → R given by f (t) = t4 + 1.
Putting a1 = 1, a2 = 5 and s = 5, we observe that conditions (H) holds. On the

other hand

F(t) =
∫ t

0
(ξ 4 + 1)dξ = t5

5
+ t ,

lim sup
t→0+

F(t)

t p
= lim

t→0+

t5 + 5t

5t3
= +∞,

and (AR)–condition is satisfied as a simple computation shows.
Moreover, one has that

T ≤ π− 1
2 4− 1

3 2
2
3

(
Γ (3)Γ (4)

Γ
(
4
3

)
Γ

(
11
3

)

) 1
4

,

sup
c>0

1

a1c1−p + a2
s c

s−p
= sup

c>0

1
1
c2 + c2

= 1

2
,

λ∗ = 1

pT p|Ω| p
N

sup
c>0

1

a1c1−p + a2
s c

s−p
≥ 22 · 5 3

4 · π
3
4

3
11
2

.

Using Theorem 6, for each λ ∈
]

0, 22·5 3
4 ·π 3

4

3
11
2

[

, the problem
{−Δ3u + |u|u = λ(t4 + 1) in Ω,

∂u
∂ν

+ β(x)|u|u = 0 on ∂Ω,

admits at least two nonnegative weak solutions.
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Multiple Periodic Solutions for a Duffing
Type Equation with One-Sided
Sublinear Nonlinearity: Beyond the
Poincaré-Birkhoff Twist Theorem

Tobia Dondè and Fabio Zanolin

Abstract We prove the existence of multiple periodic solutions for a planar Hamil-
tonian system generated from the second order scalar ODE of Duffing type x ′′ +
q(t)g(x) = 0 with g satisfying a one-sided condition of sublinear type. We consider
the classical approach based on the Poincaré-Birkhoff fixed point theorem as well
as some refinements on the side of the theory of bend-twist maps and topological
horseshoes. We focus our analysis to the case of a stepwise weight function, in order
to highlight the underlying geometrical structure.

1 Introduction

The Poincaré-Birkhoff fixed point theorem deals with a planar homeomorphism Ψ

defined on an annular region A, such that Ψ is area-preserving, leaves the boundary
of A invariant and rotates the two components of ∂A in opposite directions (twist
condition). Under these assumptions, in 1912 Poincaré conjectured (and proved in
some particular cases) the existence of at least two fixed points forΨ , a result known
as “the Poincaré last geometric theorem”. A proof for the existence of at least one
fixed point (and actually two in a non-degenerate situation) was obtained by Birkhoff
in 1913 [3]. In the subsequent years Birkhoff reconsidered the theorem as well as its
possible extensions to a more general setting, for instance, removing the assumption
of boundary invariance, or proposing some hypotheses of topological nature instead
of the area-preserving condition, thus opening a line of research that is still active
today (see for example [4, 9], and the references therein). The skepticism of some
mathematicians about the correctness of the proof of the second fixed pointmotivated
Brown and Neumann to present in [7] a full detailed proof, adapted from Birkhoff’s
1913 paper, in order to eliminate previous possible controversial aspects. Another
approach for the proof of the second fixed point has been proposed in [47], coupling
[3] with a result for removing fixed points of zero index.
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In order to express the twist condition in a more precise manner, the statement
of the Poincaré-Birkhoff theorem is usually presented in terms of the lifted map Ψ̃ .
Let us first introduce some notation. Let D(R) and D[R] be, respectively, the open
and the closed disc of center the origin and radius R > 0 in R

2 endowed with the
Euclidean norm || · ||. Let also CR := ∂D(R). Given 0 < r < R, we denote by A
or A[r, R] the closed annulus A[r, R] := D[R] \ D(r). Hence the area-preserving
(and orientation-preserving) homeomorphismΨ : A → Ψ (A) = A is lifted to amap
Ψ̃ : Ã → Ã, where Ã := R × [r, R] is the covering space of A via the covering
projection Π : (θ, ρ) �→ (ρ cos θ, ρ sin θ) and

Ψ̃ : (θ, ρ) �→ (θ + 2πJ (θ, ρ),R(θ, ρ)), (1)

with the functionsJ andR being 2π-periodic in the θ -variable. Then, the classical
(1912–1913) Poincaré-Birkhoff fixed point theoremcan be stated as follows (see [7]).

Theorem 1. Let Ψ : A → Ψ (A) = A be an area preserving homeomorphism such
that the following two conditions are satisfied:

R(θ, r) = r, R(θ, R) = R, ∀ θ ∈ R, (PB1)

∃ j ∈ Z : (J (θ, r) − j)(J (θ, R) − j) < 0, ∀ θ ∈ R. (PB2)

Then Ψ has at least two fixed points z1, z2 in the interior of A andJ (θ, ρ) = j for
Π(θ, ρ) = zi .

We refer to condition (PB1) as to the “boundary invariance” and we call (PB2) the
“twist condition”. The functionJ can be regarded as a rotation number associated
with the points. In the original formulation of the theorem it is j = 0, however any
integer j can be considered.

The Poincaré-Birkhoff theorem is a fundamental result in the areas of fixed point
theory and dynamical systems, as well as in their applications to differential equa-
tions. General presentations can be found in [28, 35, 37]. There is a large literature
on the subject and certain subtle and delicate points related to some controversial
extensions of the theorem have been settled only in recent years (see [29, 33, 46]).
In the applications to the study of periodic non-autonomous planar Hamiltonian sys-
tems, the mapΨ is often the Poincaré map (or one of its iterates). In this situation the
condition of boundary invariance is usually not satisfied, or very difficult to prove:
as a consequence, variants of the Poincaré-Birkhoff theorem in which the hypothesis
(PB1) is not required turn out to be quite useful for the applications (see [14] for
a general discussion on this topic). As a step in this direction we present the next
result, following from Ding in [18].

Theorem 2. Let Ψ : D[R] → Ψ (D[R]) ⊆ R
2 be an area preserving homeomor-

phism with Ψ (0) = 0 and such that the twist condition (PB2) holds. Then Ψ has at
least two fixed points z1, z2 in the interior of A andJ (θ, ρ) = j for Π(θ, ρ) = zi .
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The proof in [18] (see also [17, Appendix]) relies on the Jacobowitz version of
the Poincaré-Birkhoff theorem for a pointed topological disk [25, 26] which was
corrected in [29], since the result is true for strictly star-shaped pointed disks and
not valid in general, as shown by a counterexample in the same article. Another
(independent) proof of Theorem2 was obtained by Rebelo in [46], who brought
the proof back to that of Theorem1 and thus to the “safe” version of Brown and
Neumann [7]. Other versions of the Poincaré-Birkhoff theorem giving Theorem2
as a corollary can be found in [23, 24, 32, 45] (see also [20, Introduction] for a
general discussion about these delicate aspects). For Poincaré maps associated with
Hamiltonian systems there is a much more general version of the theorem due to
Fonda and Ureña in [21, 22], which holds in higher dimension, too.

In [15, 16], Ding proposed a variant of the Poincaré-Birkhoff theorem, by intro-
ducing the concept of “bend-twist map”. Given a continuous mapΨ : A → Ψ (A) ⊆
R

2 \ {0}, which admits a lifting Ψ̃ as in (1), we define

Υ (θ, ρ) := R(θ, ρ) − ρ.

We call Ψ a bend-twist map if it Ψ satisfies the twist condition and Υ changes its
sign on a non-contractible Jordan closed curve Γ contained in the set of points in the
interior of A where J = j . The original treatment was given in [15] for analytic
maps. There are extensions to continuous maps as well [43, 44]. The bend-twist map
condition is difficult to check in practice, due to the lack of information about the
curve Γ (which, in the non-analytic case, may not even be a curve). For this reason,
one can rely on the following corollary [15, Corollary 7.3] which also follows from
the Poincaré-Miranda theorem (as observed in [43]).

Theorem 3. Let Ψ : A = A[r, R] → Ψ (A) ⊆ R
2 \ {0} be a continuous map such

that the twist condition (PB2) holds. Suppose that there are two disjoint arcs α, β

contained in A, connecting the inner with the outer boundary of the annulus and
such that

Υ > 0 on α and Υ < 0 on β. (BT 1)

Then Ψ has at least two fixed points z1, z2 in the interior of A andJ (θ, ρ) = j for
Π(θ, ρ) = zi .

A simple variant of the above theorem considers 2n pairwise disjoint simple arcs
αi and βi (for i = 1, . . . , n) contained in A and connecting the inner with the outer
boundary. We label these arcs in cyclic order so that each βi is between αi and αi+1

and each αi is between βi−1 and βi (with αn+1 = α1 and β0 = βn) and suppose that

Υ > 0 on αi and Υ < 0 on βi , ∀ i = 1, . . . , n. (BTn)

Then Ψ has at least 2n fixed points zi in the interior of A and J (θ, ρ) = j for
Π(θ, ρ) = zi . These results also apply in the case of a topological annulus (namely,
a compact planar set homeomorphic to A) and do not require thatΨ is area-preserving
and also the assumption of Ψ being a homeomorphism is not required, as continuity
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is enough. Moreover, since the fixed points are obtained in regions with index ±1,
the results are robust with respect to small (continuous) perturbations of the map Ψ .

A special case in which condition (BT 1) holds is whenΨ (α) ∈ D(r) andΨ (β) ∈
R

2 \ D[R], namely, the annulus A, under the action of themapΨ , is not only twisted,
but also strongly stretched, in the sense that there is a portion of the annulus around
the curve α which is pulled inward near the origin inside the disc D(r), while there
is a portion of the annulus around the curve β which is pushed outside the disc
D[R]. This special situation where a strong bend and twist occur is reminiscent of
the geometry of the Smale horseshoe maps [36, 48] and, indeed, we will show how
to enter in a variant of the theory of topological horseshoes in the sense of Kennedy
and Yorke [27]. To this aim, we recall a few definitions which are useful for the
present setting. By a topological rectangle we mean a subset R of the plane which
is homeomorphic to the unit square. Given an arbitrary topological rectangle R we
can define an orientation, by selecting two disjoint compact arcs on its boundary.
The union of these arcs is denoted by R− and the pair ̂R := (R,R−) is called an
oriented rectangle. Usually the two components of R− are labelled as the left and
the right sides of ̂R. Given two oriented rectangles ̂A , ̂B, a continuous map Ψ

and a compact set H ⊆ dom(Ψ ) ∩ A , the notation (H, Ψ ) : ̂A �−→ ̂B means that
the following “stretching along the paths” (SAP) property is satisfied: any path γ ,
contained in A and joining the opposite sides of A −, contains a sub-path σ in H
such that the image of σ through Ψ is a path contained in B which connects the
opposite sides of B−. We also write Ψ : ̂A �−→ ̂B when H = A . By a path γ we
mean a continuous map defined on a compact interval. When, loosely speaking, we
say that a path is contained in a given set we actually refer to its image γ̄ . Sometimes
it will be useful to consider a relation of the formΨ : ̂A �−→k

̂B, for k ≥ 2 a positive
integer, which means that there are at least k compact subsets H1, . . . , Hk ofA such
that (Hi , Ψ ) : ̂A �−→ ̂B for all i = 1, . . . , k. From the results in [40, 41]we have that
Ψ has a fixed point in H whenever (H, Ψ ) : ̂R �−→ ̂R. If for a rectangleR we have
that Ψ : ̂R �−→k

̂R, for k ≥ 2, then Ψ has at least k fixed points in R. In this latter
situation, one can also prove the presence of chaotic-like dynamics of coin-tossing
type (this will be briefly discussed later).

The aim of this paper is to analyze, under these premises, the second order scalar
equation of Duffing type

x ′′ + q(t)g(x) = 0 (DE)

with q(t) being a periodic sign-changing weight. The prototypical nonlinearity we
consider is a function which changes sign at zero and is bounded only on one-side,
such as g(x) = −1 + exp(x). We prove the presence of periodic solutions coming in
pairs (Theorem4 in Sect. 2, following the Poincaré-Birkhoff theorem) or coming in
quadruplets (Theorem5 in Sect. 2, following bend-twist maps and SAP techniques),
the latter depending on the intensity of the negative part of q(·).
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2 Statement of the Main Results

We express (DE) as a sign-indefinite nonlinear first order planar systems of the form

x ′ = y, y′ = −aλ,μ(t)g(x). (2)

Throughout the article, we suppose that g : R → R is a locally Lipschitz continuous
function satisfying the following assumptions:

g(0) = 0, g(x)x > 0 for all x �= 0, g0 := lim inf|x |→0

g(x)

x
> 0. (C0)

We also suppose that at least one of the two following conditions holds:

(g−) g is bounded on R
−, (g+) g is bounded on R

+.

The weight function q(t) := aλ,μ(t) is defined starting from a T -periodic sign-
changing map a : R → R by setting

aλ,μ(t) = λa+(t) − μa−(t), λ, μ > 0,

where a+ := (a + |a|)/2 is the positive part of a(·) and a− := a+ − a is the negative
one. Given an interval I , we denote by a � 0 on I the condition a(t) ≥ 0 for almost
every t ∈ I with a > 0 on a subset of I of positive measure. Similarly, a ≺ 0 on
I means that −a � 0 on I . We suppose that, in a period, the weight function a(t)
displays one positive hump followed by one negative hump, i.e. there are t0 and
T1 ∈ ]0, T [ such that

a � 0 on [t0, t0 + T1] and a ≺ 0 on [t0 + T1, t0 + T ].

Due to the T -periodicity of the weight function, it is not restrictive to take t0 = 0
and we shall assume it for the rest of the paper. As for the regularity of the weight
function, we suppose that a(·) is continuous or piecewise-continuous (more general
Carathéodory assumptions could be considered, too).

We consider the Poincaré map associated with system (2), namely

Φ t
t0(z) := (x(t; t0, z), y(t; t0, z))

where (x(· ; t0, z), y(· ; t0, z)) is the solution of (2) satisfying the initial condition
z = (x(t0), y(t0)) and set Φ(z) := ΦT

0 (z). Since (2) has a Hamiltonian structure,
the associated Poincaré map is an area-preserving homeomorphism, defined on a
open set Ω := domΦ ⊆ R

2, with (0, 0) ∈ Ω . In view of the Introduction, a possible
method to prove the existence (andmultiplicity) of T -periodic solutionsmakes use of
the Poincaré-Birkhoff theorem. Accordingly, we look for a suitable annulus around
the origin with radii 0 < r0 < R0 such that for some a < b the twist condition
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rotz(T ) > b ∀ z : ||z|| = r0, rotz(T ) < a ∀ z : ||z|| = R0 (TC)

holds, where rotz(T ) is the rotation number on the interval [0, T ] associated with
z ∈ R

2 \ {(0, 0)}. In this setting, a standard definition of the rotation number is given
by rotz(T ) := rotz(0, T ), where

rotz(t1, t2) := 1

2π

∫ t2

t1

y(t)2 + aλ,μ(t)x(t)g(x(t))

x2(t) + y2(t)
dt, (3)

being (x(t), y(t)) the solution of (2) with (x(t1), y(t1)) = z �= (0, 0). Notice that
in (3) the angular displacement is positive when the rotations around the origin are
performed in the clockwise sense.

Under these assumptions, the Poincaré-Birkhoff theorem, in the version of [46,
Corollary 2], guarantees that for each integer j ∈ [a, b], there exist at least two T -
periodic solutions of system (2), having j as associated rotation number. It turns
out that these solutions have precisely 2 j simple transversal crossings with the y-
axis in the interval [0, T [ (see, for instance, [30, Theorem A]). Equivalently, for any
periodic solution (x(t), y(t)), we have that x has precisely 2 j simple zeros in the
interval [0, T [.

We stress that, to apply this approach, the Poincaré map must be well defined
on the annulus—actually, on the whole closed disc D[R0], that is D[R0] ⊆ Ω . As
shown in [13], for the superlinear equation x ′′ + q(t)x2n+1 = 0 (with n ≥ 1), even
for a positiveweight q(t) the global existence of the trajectories is not guaranteed, due
to the presence of solutions which blow-up in finite time with infinitely many winds
around the origin. In our case, the boundedness assumption at infinity, given by one
among (g−) or (g+), prevents such highly oscillatory phenomenon and guarantees the
continuability on [0, T1]. In the time intervals where the weight function is negative,
we cannot prevent blow-up phenomena (see [8]) unless we impose some growth
restrictions on the vector field (for instance, assuming both (g−) and (g+)).

At this point, if we are willing to assume the global continuability for the solutions
of (2), the following result can be stated.

Theorem 4. Assume (C0) and (g−) or (g+). Then, for each positive integer k, there
exists Λk > 0 such that for each λ > Λk and j = 1, . . . , k, the equation (DE) has
at least two T -periodic solutions having exactly 2 j -zeros in the interval [0, T [.
Notice that no condition on the parameter μ > 0 is required. On the other hand,
we are forced to suppose the global continuability of the solutions. The next result
overcomes the difficulties related to the Poincaré-Birkhoff approach, by using a
different fixed point theorem which requires μ to be sufficiently large.

Theorem 5. Assume (C0) and (g−) or (g+). Then, for each positive integer k, there
exists Λk > 0 such that for each λ > Λk there exists μ∗ = μ∗(λ) such that for each
μ > μ∗ and j = 1, . . . , k, the equation (DE) has at least four T -periodic solutions
having exactly 2 j -zeros in the interval [0, T [.
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In [19] the general proofs of Theorem4 andTheorem5 are given directly for a class of
planar systems including (2). Theorem4 is related to a previous work by Boscaggin
[5], dealing with subharmonic solutions. Concerning Theorem5, we propose in the
next section a different proof in the special case of a stepwise weight function. The
simplified form of the weight allows us to display the geometric features of the
problem and to provide more detailed information on the distribution of the zeros.

3 Proofs. A Simplified Geometric Framework

We focus on the particular case in which g : R → R is a locally Lipschitz continuous
function satisfying (C0) along with (g−). A possible choice could be g(x) = ex − 1,
but we stress that we do not ask for g to be unbounded on R+. Recalling the choice
of q(t), we rewrite (DE) as

x ′′ + aλ,μ(t)g(x) = 0. (4)

In order to illustrate quantitatively the main ideas of the proof we choose a stepwise
T -periodic function a(·) which takes value a(t) = 1 on an interval of length T1 and
value a(t) = −1 on a subsequent interval of length T2 = T − T1, so that aλ,μ is
defined as

aλ,μ(t) =
{

λ for t ∈ [0, T1[
−μ for t ∈ [T1, T1 + T2[ T1 + T2 = T . (5)

With this particular choice of a(t), the planar system associated with (4) turns out
to be a periodic switched system [2]. Such kind of systems are widely studied in
control theory.

For our analysis we first take into account the interval of positivity for the weight,
where (2) becomes

x ′ = y, y′ = −λg(x). (6)

For this system the origin is a local center, which is global if G (x) → +∞ as x →
±∞, where G (x) is the primitive of g(x) such that G (0) = 0. The associated energy
function is given by

E1(x, y) := 1

2
y2 + λG (x).

For any constant c with 0 < c < min{G (−∞),G (+∞)}, the level line of (6) of
positive energy λc is a closed orbit Γ which intersects the x-axis in the phase-
plane at two points (x−, 0) and (x+, 0) such that x− < 0 < x+, and c := G (x−) =
G (x+) > 0. We call τ(c) the period of Γ , which is given by

τ(c) = τ+(c) + τ−(c),
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where

τ+(c) :=
√

2

λ

∫ x+

0

dξ√
(c − G (ξ))

, τ−(c) :=
√

2

λ

∫ 0

x−

dξ√
(c − G (ξ))

The maps c �→ τ±(c) are continuous. To proceed with our discussion, we suppose
that G (−∞) ≤ G (+∞) (the other situation can be treated symmetrically). Then
τ−(c) → +∞ as c → G (−∞) (this follows from the fact that g(x)/x goes to zero
as x → −∞, see [38]). We can couple this result with an estimate near the origin

lim sup
c→0+

τ(c) ≤ 2π/
√

λg0

which follows from classical and elementary arguments.

Proposition 1. For each λ > 0, the time-mapping τ associated with system (6) is
continuous and its range includes the interval ]2π/

√
λg0,+∞[.

Showing the monotonicity of the whole time-map τ(c) is, in general, a difficult task.
However, for the exponential case g(x) = ex − 1 this has been proved in [11] (see
also [10]).

On the interval of negativity of aλ,μ(t), system (2) becomes

x ′ = y, y′ = μg(x), (7)

with g(x) as above. For this system the origin is a global saddle with unbounded
stable and unstable manifolds contained in the zero level set of the energy

E2(x, y) := 1

2
y2 − μG (x).

If we start from a point (0, y0)with y0 > 0 we can explicitly evaluate the blow-up
time as follows. First of all we compute the time needed to reach the level x = κ > 0
along the trajectory of (7), which is the curve of fixed energy E2(x, y) = E2(0, y0)
with y > 0. Equivalently, we have

y = x ′ =
√

y20 + 2μG (x)

from which

t =
∫ κ

0

dx
√

y20 + 2μG (x)

follows. Therefore, the blow-up time is given by

T (y0) =
∫ +∞

0

dx
√

y20 + 2μG (x)
.
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Standard theory guarantees that if the Keller-Osserman condition

∫ +∞ dx√
G (x)

< +∞ (8)

holds, then the blow-up time is always finite and T (y0) ↘ 0 for y0 ↗ +∞. On the
other hand, T (y0) ↗ +∞ for y0 ↘ 0+. Hence there exists ȳ > 0 such that T (y0) >

T2 for y0 ∈ ]0, ȳ[ and hence there is no blow-up in [T1, T ].
If we start with null derivative, i.e. from a point (x0, 0), then similar calculations

return

t =
∫ κ

x0

dx√
2μ(G (x) − G (x0))

and, since G (x) − G (x0) ∼ g(x0)(x − x0) for |x − x0| � 1, the improper integral
at x0 is finite. Therefore, the blow-up time is given by

T (x0) =
∫ +∞

x0

dx√
2μ(G (x) − G (x0))

.

If (8) is satisfied, then the blow-up time is always finite. Moreover, T (x0) → +∞
as x0 → 0+. A similar but more refined result can be found in [39, Lemma 3].

Nowwedescribe how toobtainTheorem4andTheorem5 for system (2) in the spe-
cial case of a T -periodic stepwise function as in (5). As we already observed, due to
the special formof theweight function, equation (2) is a periodic switched system and
therefore its associated Poincaré mapΦ on the interval [0, T ] splits asΦ = Φ2 ◦ Φ1

whereΦ1 is the Poincarémapon the interval [0, T1] associatedwith system (6) andΦ2

is the Poincaré map on the interval [0, T2] associated with system (7).

(I). Proof of Theorem4 for the Stepwise Weight

Proof. We start by selecting a closed orbit Γ 0 near the origin of (6) at a level energy
λc0 and fix λ sufficiently large, say λ > Λk , so that in view of Proposition1

τ(c0) <
T1

k + 1
. (9)

Next, for the given (fixed) λ, we consider a second energy level λc1 with c1 > c0
such that

τ−(c1) > 2T2 (10)

and denote by Γ 1 the corresponding closed orbit. Let also

A := {(x, y) : 2λc0 ≤ y2 + 2λG (x) ≤ 2λc1}

be the planar annular region enclosed betweenΓ 0 andΓ 1. If we assume that the Poin-
caré map Φ2 is defined on A , then the complete Poincaré map Φ associated with
system (2) is a well defined area-preserving homeomorphism of the annulusA onto
its imageΦ(A ) = Φ2(A ). In fact the annulus is invariant under the action ofΦ1.
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During the time interval [0, T1], each point z ∈ Γ 0 performs �T1/τ(c0)� complete
turns around the origin in the clockwise sense. This implies that

rotz(0, T1) ≥
⌊

T1
τ(c0)

⌋

, ∀ z ∈ Γ 0.

On the other hand, from [6, Lemma 3.1] we know that

rotz(T1, T ) = rotz(0, T2) > −1

2
, ∀ z �= (0, 0).

We conclude that rotz(T ) > k, for all z ∈ Γ 0.
During the time interval [0, T1], each point z ∈ Γ 1 is unable to complete a full

revolution around the origin, because the time needed to cross either the second or
the third quadrant is larger than T1. Using this information in connection to the fact
that the first and the third quadrants are positively invariant for the flow associated
with (7), we find that rotz(T ) < 1, for all z ∈ Γ 1.

Thus we have condition (TC) matched with b = k and a = 1. An application of
the Poincaré-Birkhoff fixed point theorem [46] (this time for a topological annulus
with strictly star-shaped boundaries) guarantees for each j = 1, . . . , k the existence
of at least two fixed points u j = (u j

x , u
j
y), v j = (v

j
x , v

j
y ) of the Poincaré map, with

u j , v j in the interior of A and such that rotu j (T ) = rotv j (T ) = j . This in turns
implies the existence of at least two T -periodic solutions of Eq. (4) with x(·) having
exactly 2 j-zeros in the interval [0, T ]. ��

In this manner, we have proved Theorem4 for system (2) in the special case of
a stepwise weight function aλ,μ as in (5). Notice that no assumption on μ > 0 is
required. On the other hand, we have to suppose that Φ2 is globally defined on A .

Remark 1. From (9) and the formulas for the period τ it is clear that assuming T1
fixed and λ large is equivalent to suppose λ fixed and T1 large. This also follows
from general considerations concerning the fact that equation x ′′ + λg(x) = 0 is
equivalent to u′′ + ε2λg(u) = 0 for u(ξ) := x(εξ). �

(II). An Intermediate Step

Now we show how to improve the previous result if we add the condition that μ

is sufficiently large. First of all, we take Γ 0 and Γ 1 as before and λ > Λk in order
to produce the desired twist for Φ at the boundary of A . Then we observe that
the derivative of the energy E1 along the trajectories of system (7) is given by
(λ + μ)yg(x), so it increases on the first and the third quadrant and decreases on
the second and the fourth. Hence, if μ is sufficiently large, we can find four arcs
ϕi ⊆ A , each one in the open i-th quadrant, with ϕi joining Γ 0 and Γ 1 such that
Φ2(ϕi ) is outside the region bounded by Γ 1 for i = 1, 3 and Φ2(ϕi ) is inside the
region bounded by Γ 0 for i = 2, 4. The corresponding position ofA and Φ2(A ) is
illustrated in Fig. 1.
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Fig. 1 Apossible configuration ofA andΦ2(A ). The example is obtained for g(x) = −1 + exp x ,
λ = μ = 0.1 and T2 = 1. The inner and outer boundary Γ 0 and Γ 1 of the annulusA are the energy
level lines E1(x, y) = E1(2, 0) and E1(x, y) = E1(2.1, 0). To produce this geometry, the value of
T1 is not relevant because the annulus is invariant for system (6). Since τ(c0) < τ(c1), to have a
desired twist condition, we need to assume T1 large enough

At this point, we enter in the setting of bend-twist maps. The arcs Φ−1
1 (ϕi ) divide

A into four regions, homeomorphic to rectangles. The boundary of each of these
regions can be split into two opposite sides contained in Γ 0 and Γ 1 and two other
opposite sides made by Φ−1

1 (ϕi ) and Φ−1
1 (ϕi+1) (in cyclic order). On Γ 0 and Γ 1

we have the previously proved twist condition on the rotation numbers, while on
the other two sides we have E1(Φ(P)) > E1(P) for P ∈ Φ−1

1 (ϕi ) with i = 1, 3
and E1(Φ(P)) < E1(P) for P ∈ Φ−1

1 (ϕi ) with i = 2, 4. Thus, using the Poincaré-
Miranda theorem, we obtain the existence of at least one fixed point of the Poincaré
map Φ in the interior of each of these regions. In this manner, under an additional
hypothesis of the form μ > μ∗(λ), we improve Theorem4 (for system (2) and again
in the special case of a stepwise weight), finding at least four solutions with a given
rotation number j for j = 1, . . . , k. On the other hand, we still suppose that Φ2 is
globally defined on A . The version of the bend-twist map theorem that we apply
here is robust for small perturbations of the Poincaré map, therefore the result holds
also for some non-Hamiltonian systems whose vector field is close to that of (4). ��
(III). Proof of Theorem5 for the Stepwise Weight

Proof. First of all, we start with the same construction as in (I) and choose Γ 0, λ >

Λk according to (9) and Γ 1 so that (10) is satisfied. Consistently with the previously
introduced notation, we take

x1− < x0− < 0 < x0+ < x1+, with G (xi−) = ci = G (xi+), i = 0, 1.
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Notice that the closed curves Γ i intersect the coordinate axes at the points (xi±, 0)
and (0,±√

2λci ). Next we choose x
μ
± and y0 with

x0− < xμ
− < 0 < xμ

+ < x0+ , and 0 < y0 <
√

2λc0

and define the orbits

X± := γ (xμ
±, 0), Y± := γ (0,±y0),

where we denote by γ (P) the complete orbit of the system passing through the point
P ∈ R

2.
Setting

T (X±) := ±2
∫ x1±

xμ
±

dx
√

2μ(G (x) − G (xμ
±))

, T (Y ) :=
∫ x1+

x1−

dx
√

y20 + 2μG (x)

we tune the values xμ
±, y0 and μ so that

max{T (X±),T (Y )} < T2.

Clearly, given the other parameters, we can always choose μ sufficiently large, say
μ > μ∗, so that the above condition is satisfied.

Finally, we introduce the stable and unstable manifolds,Ws andWu , for the origin
as saddle point of system (7). More precisely, we define the sets

Ws+ := {(x, y) : E2(x, y) = 0, x > 0, y < 0}, Ws− := {(x, y) : E2(x, y) = 0, x < 0, y > 0},

Wu+ := {(x, y) : E2(x, y) = 0, x > 0, y > 0}, Wu− := {(x, y) : E2(x, y) = 0, x < 0, y < 0},

so that Ws = Ws− ∪ Ws+ and Wu = Wu− ∪ Wu+. The resulting configuration is illus-
trated in Fig. 2.

The closed trajectories Γ 0, Γ 1 together with X±, Y±, Ws± and Wu± determine
eight regions that we denote by Ai and Bi for i = 1, . . . , 4, as in Fig. 3.

Each of the regions Ai and Bi is homeomorphic to the unit square and thus is
a topological rectangle. In this setting, we give an orientation to Ai by choosing
A −

i := Ai ∩ (Γ 0 ∪ Γ 1). We take as B−
i the closure of ∂Bi \ (Γ 0 ∪ Γ 1).

We can nowapply a result in the framework of the theory of topological horseshoes
as presented in [42] and [31]. Indeed, by the previous choice of λ > Λk we obtain
that

Φ1 : ̂Ai �−→k
̂Bi , ∀ i = 1, . . . , 4,

On the other hand, from μ > μ∗ it follows that

Φ2 : ̂Bi �−→ ̂Ai , ∀ i = 1, . . . , 4.
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Fig. 2 The present figure shows the appropriate overlapping of the phase-portraits of systems (6)
and (7)

Fig. 3 The present figure shows the regions Ai and Bi . We have labelled the regions following a
clockwise order, which is useful from the point of view of the dynamics

Then [42, Theorem 3.1] (see also [31, Theorem 2.1]) ensures the existence of at least
k fixed points for Φ = Φ2 ◦ Φ1 in each of the regionsAi . This, in turns, implies the
existence of 4k T -periodic solutions for system (2).

Such solutions are topologically different and can be classified, as follows: for
each j = 1, . . . , k there is a solution (x, y) with

◦ (x(0), y(0)) ∈ A1 with x(t) having 2 j zeros in ]0, T1[ and strictly positive in
[T1, T ];

◦ (x(0), y(0)) ∈ A2 with x(t) having 2 j − 1 zeros in ]0, T1[ and one zero in ]T1, T [;
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◦ (x(0), y(0)) ∈ A3 with x(t) having 2 j zeros in ]0, T1[ and strictly negative in
[T1, T ];

◦ (x(0), y(0)) ∈ A4 with x(t) having 2 j − 1 zeros in ]0, T1[ and one zero in ]T1, T [.
In conclusion, for each j = 1, . . . , k we find at least four T -periodic solutions having
precisely 2 j-zeros in [0, T [. ��
Remark 2. Having assumed that g is bounded onR−, we can also prove the existence
of a T -periodic solution with (x(0), y(0)) ∈ A3 and such that x(t) < 0 for all t ∈
[0, T ] while y(t) = x ′(t) has two zeros in [0, T [. Moreover, the results from [31,
42] guarantee also that each of the regionsAi contains a compact invariant set where
Φ is chaotic in the sense of Block and Coppel (see [1, 34]). At last, we also mention
that the result (from Theorem5) is robust with respect to small perturbations. In
particular, it applies to a perturbed Hamiltonian system of the form

x ′ = y + F1(t, x, y, ε), y′ = −aλ,μg(x) + F2(t, x, y, ε) (11)

with F1, F2 → 0 as ε → 0, uniformly in t , and for (x, y) on compact sets. Observe
that system (11) has not necessarily a Hamiltonian structure and therefore it is no
more guaranteed that the associated Poincaré map is area-preserving. �
Remark 3. We further observe that, for Eq. (4) the same results hold if condition
(g−) is relaxed to

lim
x→−∞

g(x)

x
= 0. (12)

Under the same condition at infinity, four T -periodic solutions are obtained also in
[6]. However, we stress that, the assumptions at the origin are completely different.
Indeed, in [6] a one-sided superlinear condition in zero, of the form g′(0+) = 0 or
g′(0−) = 0was required.As a consequence, forλ large, one could prove the existence
of four (or 4k) T -periodic solutions with prescribed nodal properties which come in
pair, namely two “small” and two “large”. In our case, if in place of g0 > 0we assume
g′(0+) = 0 or g′(0−) = 0, with the same approach we could prove the existence of
eight (or 8k) T -periodic solutions, four “small” and four “large”. �
Remark 4. We conclude this note by observing that if we want to produce the same
results for non-autonomous perturbations of the more general system

x ′ = h(y), y′ = −g(x), (13)

then we cannot replace (g−) (or (g+) with a weaker condition of the form of (12). In
fact, a crucial step in our proof is to have a twist condition, that is a gap in the period
between a fast orbit (like Γ 0) and slow one (like Γ 1). This is no more guaranteed
for an autonomous system of the form (13) if g(x) satisfies a sublinear condition at
infinity as (12). Indeed, the slow decay of g at infinity could be compensated by a fast
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growth of h at infinity. In [12] the Authors provide examples of isochronous centers
for planar Hamiltonian systems even in the case when one of the two components
is sublinear at infinity. See [19] for perturbations of system (13) with a periodic
sign-changing weight on the second equation. �
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Dynamical Models of Interrelation in a
Class of Artificial Networks

Felix Sadyrbaev, Svetlana Atslega, and Eduard Brokan

Abstract The system of ordinary differential equations that models a type of artifi-
cial networks is considered. The system consists of a sigmoidal function that depends
on linear combinations of the arguments minus the linear part. The linear combina-
tions of the arguments are described by the regulatory matrix W . For the three-
dimensional cases, several types of matrices W are considered and the behavior of
solutions of the system is analyzed. The attractive sets are constructed for most cases.
The illustrative examples are provided. The list of references consists of 12 items.

Keywords Gene regulatory networks · Dynamical systems · Artificial networks ·
Critical points · Attractors
Mathematics Subject Classification:34C60 · 34D45 · 92B20

1 Introduction

This article is devoted to the study of attracting sets of some systems of ordinary
differential equations that arise in the theory of artificial networks [11], genomic
regulatory networks [5, 6] and appears as an auxiliary instrument used in the design
of practically used networks [7]. We consider the system
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt

= 1

1 + e−μ1(w11x1+w12x2+w13xn−θ1)
− v1x1,

dx2
dt

= 1

1 + e−μ2(w21x1+w22x2+w23xn−θ2)
− v2x2,

dx3
dt

= 1

1 + e−μ3(w31x1+w32x2+w33x3−θ3)
− v3x3,

(1)

that can be considered as a model of interrelation in an artificial network, where
each xi (t) is a characteristic of the dynamics of i-th node. Any equation consists of
a nonlinear part minus the linear one. The linear part reflects the natural decay of
the network if interrelation between nodes ceased. Each node is affected by other
nodes. This influence is encoded in a nonlinear term, where the sigmoidal function
f [12] depends on a linear combination of all xi , multiplied by the corresponding
factor. The larger this factor is, the more intensive is the influence of x j to xi . All
information about interrelation between nodes is contained in the so called regulatory
matrix (sometimes called weight matrix)

W =
∣
∣
∣
∣
∣
∣

w11 w12 w13

w21 w22 w23

w31 w32 w33

∣
∣
∣
∣
∣
∣
. (2)

The element wi j serves as a measure of the impact of the x j on xi . There are other
parameters in the system. Constants μi are the individual characteristics (gain mea-
sure) of any xi .The constants θi serve as thresholds upon reachingwhich the influence
of other nodes begins to be felt. When the rules for all members of the model are
known, the future state of the network can be computed. The important question
about the system (1) and the corresponding network is obtaining information about
attractors. We consider several important cases of regulatory matrices W and thus
the respective types of interrelation in a network. For these systems, we provide
description of attractors and critical points. Some of them are non-attracting and,
taking into account, that the vector field on the boundary of the working region is
directed inside the region, the trajectories of the system can tend to attracting sets.
The process of pattern formation is also in the focus of our research. The paper con-
tains several sections. First, the technical means are described and needed formulas
are presented. Then, the particular cases of the behavior of trajectories are treated
such as the activation case, inhibition case, the triangular matrix W case. Finally,
several examples are given that show the possibility of all cases and the coefficient
conditions for the above-mentioned behaviors are provided. The related results and
the reviews can be found in [1–4, 10].
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2 Preliminary Results

The nullclines for the system are defined by the relations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 1

v1

1

1 + e−μ1 (w11x1+w12x2+w13x3−θ1)
,

x2 = 1

v2

1

1 + e−μ2 (w21x1+w22x2+w23x3−θ2)
,

x3 = 1

v3

1

1 + e−μ2 (w21x1+w22x2+w33x3−θ3)
.

(3)

The critical points for the system (1) are the cross points of the nullclines. They can
be found from the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 − 1

v1

1

1 + e−μ1 (w11x1+w12x2+w13x3−θ1)
= 0,

x2 − 1

v2

1

1 + e−μ2 (w21x1+w22x2+w23x3−θ2)
= 0,

x3 − 1

v3

1

1 + e−μ2 (w21x1+w22x2+w33x3−θ3)
= 0.

(4)

The linearized system for any critical point (x∗
1 , x

∗
2 , x

∗
3 ) is

⎧
⎨

⎩

u′
1 = −v1u1 + μ1w11g1u1 + μ1w12g1u2 + μ1w13g1u3,

u′
2 = −v2u2 + μ2w21g2u1 + μ2w22g2u2 + μ2w23g2u3,

u′
3 = −v3u3 + μ3w31g3u1 + μ3w32g3u2 + μ3w33g3u3,

(5)

where

g1 = e−μ1(w11x∗
1+w12x∗

2+w13x∗
3−θ1)

[1 + e−μ1(w11x∗
1+w12x∗

2+w13x∗
3−θ1)]2 , (6)

g2 = e−μ2(w21x∗
1+w22x∗

2+w23x∗
3−θ2)

[1 + e−μ2(w21x∗
1+w22x∗

2+w23x∗
3−θ2)]2 , (7)

g3 = e−μ3(w31x∗
1+w32x∗

2+w33x∗
3−θ3)

[1 + e−μ3(w31x∗
1+w32x∗

2+w33x∗
3−θ3)]2 . (8)

One has

A − λI =
∣
∣
∣
∣
∣
∣

μ1w11g1 − v1 − λ μ1w12g1 μ1w13g1
μ2w21g2 μ2w22g2 − v2 − λ μ2w23g2
μ3w31g3 μ3w32g3 μ3w33g3 − v3 − λ

∣
∣
∣
∣
∣
∣

(9)
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and the characteristic equation for v1 = v2 = v3 = 1 is

det|A − λI | = −Λ3 + (μ1w11g1 + μ2w22g2 + μ3w33g3)Λ2

+[μ1μ3g1g3(w31w13 − w11w33) + μ2μ3g2g3(w32w23 − w22w33)

+μ1μ2g1g2(w21w12 − w11w22)]Λ
−μ1μ2μ3g1g2g3(w11w32w23 + w21w12w33 + w31w22w13

−w11w22w33 − w12w23w31 − w13w21w32) = 0,

(10)

where Λ = λ + 1.

2.1 All Zeros on the Diagonal of the Regulatory Matrix

Set w11 = w22 = w33 = 0. The regulatory matrix is

W =
∣
∣
∣
∣
∣
∣

0 w12 w13

w21 0 w23

w31 w32 0

∣
∣
∣
∣
∣
∣

(11)

and the system of differential equations takes the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′
1 = 1

1 + e−μ1(w12x2+w13x3−θ1)
− x1,

x ′
2 = 1

1 + e−μ2(w21x1+w23x3−θ2)
− x2,

x ′
3 = 1

1 + e−μ3(w31x1+w32x2−θ3)
− x3.

(12)

The linearized system for a critical point (x∗
1 , x

∗
2 , x

∗
3 ) is then

⎧
⎨

⎩

u′
1 = −u1 + μ1w12g1u2 + μ1w13g1u3,

u′
2 = −u2 + μ2w21g2u1 + μ2w23g2u3,

u′
3 = −u3 + μ3w31g3u1 + μ3w32g3u2,

(13)

where g1, g2, g3, given in (6) to (8), are adapted to the case of the regulatory matrix
(11). The characteristic equation is

−Λ3 + BΛ + C = 0, (14)

where Λ = λ + 1,

B = μ1μ3g1g3(w31w13) + μ2μ3g2g3(w32w23) + μ1μ2g1g2(w21w12), (15)

C = μ1μ2μ3g1g2g3(w12w23w31 + w13w21w32). (16)



Dynamical Models of Interrelation in a Class of Artificial Networks 229

For further analysis let us recall the Cardano formulas applied to the equation

y3 + py + q = 0. (17)

It has complex roots if

Q :=
( p

3

)3 +
(q

2

)2
(18)

is positive. The complex roots are given by expressions

y2,3 = −a + b

2
± i(a − b)

√
3

2
, (19)

where
a = (−q

2
+ √

Q)
1
3 , b = (−q

2
− √

Q)
1
3

are real cubic roots satisfying a · b = − p
3 [8, §38]. The remaining real root of equa-

tion (17) y1 = a + b is real.

3 Conditions for a Critical Point to Be a Focus

Consider the case described in Subsect. 2.1. Returning to our notation, we get

Q := −
( B

3

)3 +
(C

2

)2
. (20)

Suppose that Q > 0. The characteristic numbers λ for a given critical point (x∗
1 ,

x∗
2 , x

∗
3 ) are

λ1 = −1 + (a + b),

λ2,3 = −1 − a + b

2
± i(a − b)

√
3

2
,

(21)

where

a =
(C

2
+ √

Q
) 1

3
, b =

(C

2
− √

Q
) 1

3
(22)

are the real values of cubic roots, Q is given by (20). We will call such a critical point
3D-focus. If the real part −1 − a+b

2 is positive, this is unstable 3D-focus.

Proposition 3.1. If Q > 0 or, which is the same,

(C

2

)2
>

( B

3

)3
(23)

for a critical point (x∗
1 , x

∗
2 , x

∗
3 ) of the system (12), then this point is a 3D-focus.
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Proof. Follows from (20) to (22).

Corollary 1. If B < 0 for some critical point, then this point is a 3D-focus.

Proof. The relation (23) is fulfilled, if B < 0.

Proposition 3.2. If system (12) has a critical point of type focus then it is unstable
focus only if −1 − a+b

2 , that is, the real part of λ2,3 in (21), is a positive value.

Proof. Follows from (21).

4 Inhibition-Activation

Consider the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′
1 = 1

1 + e−μ1(w12x2+w13x3−θ1)
− x1,

x ′
2 = 1

1 + e−μ2(w21x1+w23x3−θ2)
− x2,

x ′
3 = 1

1 + e−μ3(w31x1+x2−θ3)
− x3,

(24)

where w12, w13, w23 are negative, w21, w31, w32 are positive.
We consider the specific case

W =
∣
∣
∣
∣
∣
∣

0 −1 −1
1 0 −1
1 1 0

∣
∣
∣
∣
∣
∣
, (25)

μ1 = μ2 = μ3 = μ, θ1 = θ2 = θ3 = θ. The system then has a single critical point.
Introduce

g1 = e−μ(−x2−x3−θ)

[1 + e−μ(−x2−x3−θ)]2 (26)

g2 = e−μ( x1−x3−θ)

[1 + e−μ( x1−x3−θ)]2 (27)

g3 = e−μ( x1+x2−θ)

[1 + e−μ( x1+x2−θ)]2 (28)

Values of gi are in the range (0, 1). The linearized system now is

⎧
⎨

⎩

u′
1 = −u1 − μg1u2 − μg1u3,

u′
2 = μg2u1 − u2 − μg2u3,

u′
3 = μg3u1 + μg3u2 − u3.

(29)
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The characteristic equation can be obtained from

A − λI =
∣
∣
∣
∣
∣
∣

−1 − λ −μg1 −μg1
μg2 −1 − λ −μg2
μg3 μg3 −1 − λ

∣
∣
∣
∣
∣
∣

(30)

and

det|A − λI | = −λ3 − 3λ2 − μ2(g1g2 + g1g3 + g2g3)(λ + 1) − 3λ − 1 = 0.
(31)

The characteristic numbers are
⎧
⎨

⎩

λ1 = −1,
λ2 = −1 − μ

√
g1g2 + g1g3 + g2g3 i,

λ3 = −1 + μ
√
g1g2 + g1g3 + g2g3 i.

(32)

Proposition 4.1. A critical point of the system (24) under the above conditions is
3D-focus, that is, the following is true: there is 2D-subspace with a stable focus and
attraction in the remaining dimension.

5 Triangular System

We consider the specific case of the regulatory matrix

W =

∣
∣
∣
∣
∣
∣
∣
∣

w11 w12 ... w1n

0 w22 ... w2n

...

0 0 ... wnn

∣
∣
∣
∣
∣
∣
∣
∣

, (33)

but in the n-dimensional variant. The system of differential equations takes the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ′
1 = 1

1 + e−μ1(w11x1+w12x2+...+w1n xn−θ1)
− x1,

x ′
2 = 1

1 + e−μ2( w22x2+...+w2n xn−θ2)
− x2,

...

x ′
n = 1

1 + e−μn( wnn xn−θn)
− xn,

(34)

where n > 1. Constants wi j take values in (0; 1].
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5.1 Critical Points

Critical points of the system (34) are to be determined from

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1 = 1

1 + e−μ1(w11x1+w12x2+...+w1n xn−θ1)
,

x2 = 1

1 + e−μ2( w22x2+...+w2n xn−θ2)
,

...

xn = 1

1 + e−μn( wnn xn−θn)
.

(35)

Since the right sides in (35) are positive but less than unity, all critical points locate
in (0; 1) × (0; 1) × ... × (0; 1).

We claim that there are only three possibilities for the number of critical points
for the xn in the system (34).

Proposition 5.1. There are at most three values for xn in the system (35).

Proposition 5.2. The system (34) has at most 3n critical points.

Proof. Consider the two last equations of the system (35). The last one has at most
three critical points. This is true due to the S-shape graph of the sigmoidal function
in the right side of the last equation in (35). Putting each of them into the penultimate
equation and taking into account that for any xn it can have at most three roots xn−1,
at most nine values of xn−1 can be obtained. Proceeding in this manner, we obtain at
most 3n critical points.

5.2 Linearized System

The linearized system is

⎧
⎪⎪⎨

⎪⎪⎩

u′
1 = −u1 + μ1w11g1u1 + μ1w12g1u2 + ... + μ1w1ng1un,

u′
2 = −u2 + μ2w22g2u2 + ... + μ2w2ng2un,

...

u′
n = −un + μnwnngnun,

(36)

where

g1 = μ1e−μ1(w11x1+w12x2+...+w1n xn−θ1)

[1 + e−μ1(w11x1+w12x2+...+w1n xn−θ1)]2 (37)

g2 = μ2e−μ2(w22x2+...+w2n xn−θ2)

[1 + e−μ2(w22x2+...+w2n xn−θ2)]2 (38)

...
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gn = μne−μn(wnn xn−θn)

[1 + e−μn(wnn xn−θn)]2 . (39)

Values of gi are positive and less than unity. The characteristic values for a critical
point are to be obtained from

A − λI =

∣
∣
∣
∣
∣
∣
∣
∣

μ1w11g1 − 1 − λ μ1w12g1 ... μ1w1ng1
0 μ2w22g2 − 1 − λ ... μ2w2ng2
... ... ... ...

0 0 ... μnwnngn − 1 − λ

∣
∣
∣
∣
∣
∣
∣
∣

(40)

and
det|A − λI | = (μ1w11g1 − 1 − λ)(μ2w22g2 − 1 − λ)...

...(μnwnngn − 1 − λ) = 0.
. (41)

Evidently ⎧
⎪⎪⎨

⎪⎪⎩

λ1 = −1 + μ1w11g1,
λ2 = −1 + μ2w22g2,
...

λn = −1 + μnwnngn.

(42)

If μiwi i gi > 1 then λi > 0.
If μiwi i gi = 1 then λi = 0.
If μiwi i gi < 1 then λi < 0.

Proposition 5.3. The system (34) cannot have critical points of type focus.

Examples

Example 1. For the system with the triangular matrix W

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′
1 = 1

1 + e−3(x1+x2+x3−1)
− x1,

x ′
2 = 1

1 + e−3(x2+x3−1)
− x2,

x ′
3 = 1

1 + e−3(x3−1)
− x3,

(43)

the unique critical point is (0.084922, 0.0671045, 0.0555481). The values of λ for
this critical point are ⎧

⎨

⎩

λ1 = −1.23313,
λ2 = −1.1878,
λ3 = −1.15739.

(44)
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Example 2. Consider the system given in [9]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′
1 = 1

1 + e−7(x2−6.2x3−0.5)
− 0.62x1,

x ′
2 = 1

1 + e−7(x1−0.3)
− 0.42x2,

x ′
3 = 1

1 + e−13(x1−0.7)
− 0.1x3.

(45)

It has a single critical point at (0.4015, 1.5966, 0.2023). The characteristic values
for this point are λ1 = −1.8306, λ2,3 = 0.345301 ± 0.139015i. This critical point
is not attractive due to the positive real parts of λ2,3.

Example 3. The system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′
1 = 1

1 + e−7(x2−6.2x3−0.5)
− 0.62x1,

x ′
2 = 1

1 + e−7(x1−x3−0.3)
− 0.42x2,

x ′
3 = 1

1 + e−13(x1+x2−0.7)
− 0.1x3

(46)

has a single critical point at (0.037648, 0.247582, 0.0453218). The characteristic
values for this point are λ1 = −0.860672, λ2,3 = −0.139664 ± 0.0780681i. This
critical point is attractive.

Example 4. Further modification of the Example 2 leads to the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′
1 = 1

1 + e−7(x2−6.2x3−0.5)
− 0.62x1,

x ′
2 = 1

1 + e−7(x1−x3−0.3)
− 0.42x2,

x ′
3 = 1

1 + e−13(x1+0.1x2−0.7)
− 0.1x3,

(47)

which has a single critical point at (0.251009, 0.710983, 0.072996). The character-
istic values for this point are λ1 = −1.55538, λ2,3 = 0.207688 ± 0.412065i. This
critical point is not attractive. There is a periodic solution that can be drawn using
the initial values (0.032, 0.239, 0.03).

Example 5. Removing the coefficient 6.2 in the first equation of the system (47)
yields

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′
1 = 1

1 + e−7(x2−x3−0.5)
− 0.62x1,

x ′
2 = 1

1 + e−7(x1−x3−0.3)
− 0.42x2,

x ′
3 = 1

1 + e−13(x1+0.1x2−0.7)
− 0.1x3.

(48)
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Fig. 1 The periodic solution
in Example 4
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Fig. 2 The periodic solution
in Example 5
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This system has a single critical point at (0.356279, 0.548522, 0.228589). The char-
acteristic equation is

−λ3 − 1.14λ2 + 0.570414λ − 0.490819 = 0.

The characteristic values are λ1 = −1.66122, λ2,3 = 0.260612 ± 0.477009i. This
critical point is not attractive. The periodic solution can be drawn using the initial
values (0.064, 0.2, 0.08) (Figs. 1 and 2).

Example 6. The system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′
1 = 1

1 + e−7(x2−x3−0.5)
− 0.52x1,

x ′
2 = 1

1 + e−7(x1−x3−0.3)
− 0.42x2,

x ′
3 = 1

1 + e−13(x1+0.1x2−0.7)
− 0.1x3

(49)

has a single critical point at (0.36187, 0.53125, 0.240095). The characteristic values
are λ1 = −1.61197, λ2,3 = 0.285986 ± 0.466687i. This critical point is not attrac-
tive. The three trajectories tend to a periodic solution depicted in Fig. 3.
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Fig. 3 The periodic solution
in Example 6
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Fig. 4 The periodic solution
in Example 7
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Example 7. The system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′
1 = 1

1 + e−10(x2−x3−0.5)
− 0.09x1,

x ′
2 = 1

1 + e−5(x1−0.1x3−0.3)
− 0.9x2,

x ′
3 = 1

1 + e−20(x1+0.1x2−0.7)
− 0.09x3

(50)

has a single critical point at (0.478312, 0.723644, 0.533787). The characteristic
equation is

−λ3 − 1.08λ2 − 0.08948λ − 0.390813 = 0.

The characteristic values are λ1 = −1.25637, λ2,3 = 0.0881848 ± 0.550717i. This
critical point is not attractive. The trajectories tend to a periodic solution depicted in
Fig. 4.

The initial conditions for the periodic solutions in Examples 4 to 7 were found
by observing the projections of solutions on the three coordinate planes. Since any
nearby solution tends to the periodic one, starting from some moment all three pro-
jections become periodic.
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6 Conclusions

The behavior of solutions of systems of the form (1) strongly depends on the structure
of the weight matrix W. Any system (1) has at least one critical point in the region
D = (0, 1/v1) × (0, 1/v2) × (0, 1/v3). No trajectory of the system (1) can escape
this region. Multiple critical points are possible. Stable nodes, stable and unstable
3D-focuses and saddle points can occur. Systems with a triangular matrix W cannot
have focuses. Inhibition-activation systems of Sect. 4 have a critical point that is a
focus. The coefficient conditions are possible for a critical point to be a focus. No
attracting critical points may exist in D. The trajectories tend then to a pattern of
regular form. In the examples 4 to 7 periodic solutions are detected numerically
and have been visualized together with some neighboring trajectories. No chaotic
behavior was observed yet.
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Analytic Traveling-Wave Solutions of the
Kardar-Parisi-Zhang Interface Growing
Equation with Different Kind of Noise
Terms

I. F. Barna, G. Bognár, L. Mátyás, M. Guedda, and K. Hriczó

Abstract The one-dimensional Kardar-Parisi-Zhang dynamic interface growth
equation with the traveling-wave Ansatz is analyzed. As a new feature additional
analytic terms are added. From the mathematical point of view, these can be con-
sidered as various noise distribution functions. Six different cases were investigated
among others Gaussian, Lorentzian, white or even pink noise. Analytic solutions
are evaluated and analyzed for all cases. All results are expressible with various
special functions Mathieu, Bessel, Airy or Whittaker functions showing a very rich
mathematical structure with some common general characteristics. This study is the
continuation of our former work, where the same physical phenomena was investi-
gatedwith the self-similar Ansatz. The differences and similarities among the various
solutions are enlightened.
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1 Introduction

Solidification fronts or crystal growth is a scientific topic which attracts much inter-
est from a long time. Basic physics of growing crystallines can be found in large
number of textbooks (see e.g., [1]). One of the simplest nonlinear generalization of
the ubiquitous diffusion equation is the so called Kardar-Parisi-Zhang (KPZ) model
obtained from Langevin equation

∂u

∂t
= ν∇2u + λ

2
(∇u)2 + η(x, t), (1)

where u stands for the profile of the local growth [2]. The first term on the right
hand side describes relaxation of the interface by a surface tension preferring a
smooth surface. The next term is the lowest-order nonlinear term that can appear
in the surface growth equation justified with the Eden model. The origin of this
term lies in non-equilibrium. The third term is a Langevin noise which mimics the
stochastic nature of any growth process and usually has a Gaussian distribution. In
the last two decades numerous studies came to light about the KPZ equation.Without
completeness we mention some of them. The basic physical background of surface
growth can be found in the book of Barabási and Stanley [3]. Later, Hwa and Frey
[4, 5] investigated the KPZ model with the help of the renormalization group-theory
and the self-coupling method which is a precise and sophisticated method using
Green’s functions. Various dynamical scaling forms of C(x, t) = x−2ϕC(bx, bzt)
were considered for the correlation function (whereϕ, b and z are real constants). The
field theoretical approach by Lässig was to derive and investigate the KPZ equation
[6]. Kriecherbauer and Krug wrote a review paper [7], where the KPZ equation was
derived from hydrodynamical equations using a general current density relation.

Several models exist and all lead to similar equations as the KPZ model, one of
them is the interface growth of bacterial colonies [8]. Additional general interface
growing models were developed based on the so-called Kuramoto-Sivashinsky (KS)
equation which shows similarity to the KPZ model with an extra ∇4u term [9].

Kersner and Vicsek investigated the traveling wave dynamics of the singular
interface equation [10] which is closely related to the KPZ equation. One may find
certain kind of analytic solutions to the problem [11] as already mentioned in [12].

Ódor and co-worker intensively examined the two dimensionalKPZ equationwith
dynamical simulations to investigate the aging properties of polymers or glasses [13].

Beyond these continuous models based on partial differential equations (PDEs),
there are large number of purely numerical methods available to study diverse surface
growth effects. As a view we mention the kinetic Monte Carlo [14] model, Lattice-
Boltzmann simulations [15], and the etching model [16].

In this paper we investigate the solutions to the KPZ equation with the traveling
wave Ansatz in one-dimension applying various forms of the noise term. The effects
of the parameters involved in the problem are examined.
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2 Theory

In general, non-linear PDEs has no general mathematical theory which could help us
to understand general features or to derive physically relevant solutions. Basically,
there are two different trial functions (or Ansatz) which have well-founded physical
interpretation. The first one is the traveling wave solution, which mimics the wave
property of the investigated phenomena described by the non-linear PDE of the form

u(x, t) = f (x ± ct) = f (ω), (2)

where c means the velocity of the corresponding wave. Gliding and Kersner used
the traveling wave Ansatz to investigate study numerous reaction-diffusion equation
systems [17]. To describe pattern formation phenomena [18] the traveling waves
Ansatz is a useful tool as well. Saarloos investigated the front propagation into
unstable states [19], where traveling waves play a key role.

This simple trial function can be generalized in numerousways, e.g., to e−αt f (x ±
ct) := e−αt f (ω) which describes exponential decay or to g(t) · f (x ± c · t) :=
g(t) f (ω) which can even be a power law function of the time as well. We note,
that the application of these Ansatz to the KPZ equation leads to the triviality of
e−αt = g(t) ≡ 1. In 2006, He and Wu developed the so-called exp-function method
[20] which relying on an Ansatz (a rational combination of exponential functions),
involving many unknown parameters to be specified at the stage of solving the prob-
lem. The method soon drew the attention of many researchers, who described it
as “straightforward”, “reliable”, and “effective”. Later, Aslan and Marinakis [21]
summarized various applications of the Ansatz.

There is another existing remarkable Ansatz interpolating the traveling-wave and
the self-similar Ansatz by Benhamidouche [22].

The second one is the self-similar Ansatz [23] of the form u(x, t) = t−α f
(
x
tβ

) :=
t−α f (ω). The associated mathematical and physical properties were exhaustively
discussed in our former publications [24, 25] or in a book chapter [26] in the field of
hydrodynamics. All these kind of methods belong to the so-called reduction mecha-
nism, where applying a suitable variable transformation the original PDEs or systems
of PDEs are reduced to an ordinary differential equation (ODE) or systems of ODEs.

3 Results Without the Noise Term

Applying the traveling wave Ansatz to the KPZ PDE with η(x, t) = 0, Eq. (1) leads
to the ODE of

− ν f ′′(ω) + f ′(ω)

[
c − λ

2
f ′(ω)

]
= 0, (3)
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From now on we use the Maple 12 mathematical program package to obtain analytic
solutions in closed forms. For Eq. (3), it can be given as

f (ω) = 2

λ
ln

⎛

⎝
λ

[
c1νe

cη
ν + c2c

]

2νc

⎞

⎠ ν, (4)

where c1 and c2 are the constants of integration and c is the speed of the wave.
We fix this notation from now on throughout the paper. Note, that this is an equa-

tion of a linear function f (ω) = aω + b (just given in a complicated form) with any
kind of parameter set, except c1 = 0 which gives a constant solution. This physically
means that there is a continuous surface growing till infinity which is quite unphysi-
cal. Therefore, some additional noise is needed to have surface growing phenomena.
We remark the general properties of all the forthcoming solutions. Due to the Hopf-
Cole transformation [27, 28] (h = A ln(y)) convertes the non-linear KPZ equation
to the regular heat conduction (or diffusion) equation with an additional stochastic
source term eliminating the non-linear gradient-squared term. All the solutions con-
tain a logarithmic function with a complicated argument. In this sense, the solutions
have the same structure, the only basic difference is the kind of special function
in the argument. If these argument functions take periodically positive and nega-
tive real values then the logarithmic function creates distinct intervals (small islands
which describe the surface growing mechanisms, and define the final solution). This
statement is generally true for our former study as well [29, 30].

Remark that the solution to (1) obtained from the self-similar Ansatz reads

f (ω) = 2ν

λ
ln

(
λc1

√
πν er f [ω/(2

√
ν)] + c2

2ν

)
, (5)

where er f [ ] means the error function [31]. Figure1 compares these two solutions.
We note the asymptotic convergence of the self-similar solution and the divergence of
the traveling-wave solution.We have the same conclusion as in our former study [29]
(where the self-similar Ansatz was applied), that without any noise term the KPZ
equation cannot be applied to describe surface growth phenomena. The different
kind of noise terms define different kind of extra islands (parts of the solution having
compact supports) and these islands show a growth dynamics.

To have a better understanding between the two solutions, Fig. 2 shows the pro-
jection of both complete solutions u(x, y = 0, t). The major differences are still
present.
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Fig. 1 The two shape
functions of the KPZ
equation without any kind of
noise term. The solid line
represents the solution for
traveling-wave and the
dashed line is for the
self-similar Ansatz. The
applied parameter set is c1 =
c2 = c = 1, ν = 4, λ = 3

Fig. 2 The two solutions of
the KPZ equation without
any noise term. The upper
lying function represents the
traveling-wave solution. The
applied parameter set is the
same as used above

4 Results with Various Noise Terms

As we mentioned in our former study [29] only the additional noise term makes the
KPZ solutions interesting. We search the solutions with the traveling-wave Ansatz,
therefore is it necessary that the noise term η should be an analytic function of
ω = x + ct like η(ω) = a(x + ct)2. We will see that for some kind of noise terms it
is not possible to find a closed analytic solution when all the physical parameters are
free (ν, λ, c, a), however, if some parameters are fixed it becomes possible to find
analytic expressions. It is also clear, that it is impossible to perform a mathematically
rigorous complete function analysis according to all four physical and two integral
parameters c1, c2. We performed numerous parameter studies and gave the most
relevant parameter dependencies of the solutions.
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Fig. 3 Three different shape
functions for the brown noise
n = −2. The applied
physical parameter set is
λ = 5, ν = 3, a = 2 and
c = 2. The dashed line is for
c1 = 1, c2 = 0, the dotted
line is for c1 = c2 = 1 and
the solid line is for
c1 = 0, c2 = 1, respectively

4.1 Brown Noise n = −2

As first, case let us consider the brown noise η(x, t) = a
ω2 . It leads to the following

ODE

− ν f ′′(ω) + f ′(ω)

[
c − λ

2
f ′(ω)

]
− a

ω2
= 0. (6)

The solution can be given in the form

f (ω) = 1

λ

(

cη + ν ln

{
λ2

[−c1 Id
(
cω
2ν

) + c2Kd
(
cω
2ν

)]2

c2ω
[
Kd

(
cω
2ν

)
Id+1

(
cω
2ν

) + Id
(
cω
2ν

)
Kd+1

(
cω
2ν

)]2

})

(7)

where Id(ω) and Kd(ω) are the modified Bessel functions of the first and second
kind [31] with the subscript of d =

√
ν2−2aλ
2ν + 1. To obtain real solutions for the KPZ

equation (which provides the height of the surface) the order of the Bessel function
(notated as the subscript) has to be non-negative and provides the following constrain
ν2 ≥ 2aλ. This gives us a reasonable relation among the three terms of the right hand
side of Eq. (1). When the magnitude of the noise term a becomes large enough no
surface growth take place. Figure3 presents solutions with different combinations of
the integration constants c1, c2. Having in mind, that the Kd() Bessel function of the
second kind is regular at infinity, one gets that it has a strong decay at large argument
ω. The c1 = 0, c2 = 0 type solutions have physical relevance. Figure4 shows the
complete solution of the KPZ equation. It can be seen that a sharp and localized peak
exists for a short time. Therefore, no typical surface growth phenomena is described
with this kind of noise and initial conditions.
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Fig. 4 The solution u(x, t)
to the KPZ equation for the
brown noise n = −2 with
the parameter set of c1 =
c2 = c = 1, ν = 4, λ = 3

4.2 Pink Noise n = −1

The noise term η = a
ω
corresponds to the ODE

− ν f ′′(ω) + f ′(ω)

[
c − λ

2
f ′(ω)

]
− a

ω
= 0, (8)

whose general solution is

f (ω) = 1

λ
+ ln

{ −cλ[c1M(εb) − c2U (εb)]
M(εd)(2νcU (εb) + aλU (εb)) + 2M(εb)νcU (εd)

}
, (9)

where M(εb) and U (εd) are the Kummer M and Kummer U functions (for more
see [31]) with the parameters of εb = ( 2cν−aλ

2cν , 2, cω
ν

) and εd = (−aλ
2cν , 2, cω

ν
). Figure5

shows three different shape functions corresponding to the pink noise. The evaluation
of direct parameter dependencies of the solutions are not trivial. In some reasonable
parameter range we found the following trends: for fixed a, c, ν and larger λ values,
the solution shows more independent well-defined “bumps” or islands and higher
steepness of the line which connects the maxima of the existing peaks of the islands.
At fixed parameter values a, c, λ, different values of ν just shift the position of the
existing peaks. The role of a and c is not defined. Figure6 presents a total solution
u(x, t) to the KPZ equation, the freely traveling three islands are clearly seen.

4.3 White Noise n = 0

Here, the noise term is η = aω0 = a which leads to the ODE of
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Fig. 5 Three different shape
functions for the pink noise
(n = −1). Solid, dashed and
dotted lines are for the
parameter sets of
(c1 = c2 = 1; c = 1/2, ν =
0.85, λ = 3, a = 2),
(c1 = c2 = 1; c = 1/2, ν =
0.85, λ = 2.5, a = 2),
(c1 = c2 = 1; c = 0.6, ν =
0.85, λ = 5, a = 2),
respectively

Fig. 6 The total solution of
the KPZ equation for
n = −1 with the applied
parameter set c1 = c2 =
1, c = 1/2, ν = 0.85λ = 3
and a = 2

− ν f ′′(ω) + f ′(ω)

[
c − λ

2
f ′(ω)

]
− a = 0, (10)

f (ω) = ωc

λ
− ω

√
c2 − 2aλ

λ
− 2ν ln(2)

λ
−

ν ln

⎛

⎜
⎝ c2−2aλ

λ2

[

c1e
ω

√
c2−2aλ
ν −c2

]2

⎞

⎟
⎠

λ
(11)

Figure7 shows two shape functions for two different parameter sets. There exists
basically two different functions depending on the ratios of the integral constants c1
and c2. The first is a pure linear function with infinite range and its domain represents
boundless surface growth, which is a physical nonsense. The second solution is a
sum of a linear and logarithmic function with a domain bounded from above due to
the argument of the ln function. Figure8 shows the final solution of the KPZ equation
u(x, t). We note that with the substitution ω = x + ct only the first kind of solution
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Fig. 7 Two shape functions
for the constant or white
noise. The solid line is for
the parameter set
c1 = 4, c2 = −1, c =
0.3, ν = 2, λ = 1, a = 1,
and the dashed line is for
c1 = c2 = 1, c = 4, ν =
0.5, λ = 1, a = 0.3,
respectively

Fig. 8 The KPZ solution for
the constant or white noise.
The applied parameter set is
c1 = c2 = 1, c = 4, ν =
0.5, λ = 1, a = 0.3,
respectively

remains real. For the second parameter set which creates a modified ln function with
a cut at well-defined argument becomes complex.

4.4 Blue Noise n = 1

The last color noise η = aω leads to the ODE of

− ν f ′′(ω) + f ′(ω)

[
c − λ

2
f ′(ω)

]
− aω = 0, (12)

with the general solution of

f (ω) = cω

λ
− 4ν ln(2)

3λ
+ 2ν

3λ
ln

{
λ2[c1Ai(ω̃) − c2Bi(ω̃)]3

νa[Ai(1, ω̃)Bi(1, ω̃) − Bi(1, ω̃)Ai(ω̃))]3
}

(13)
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Fig. 9 The shape function
for the blue noise for three
parameter sets. The solid,
dashed and dotted lines are
for the parameter sets
(c1 = 1, c2 = 0, c = 3, a =
0.5, ν = 1.5, λ = 2),
(c1 = c2 = c = 1, a =
1, ν = 1, λ = 3), and
(c1 = c2 = c = 1, a =
1, ν = 1, λ = 3),
respectively

Fig. 10 The solution u(x, t)
for the n = 1 or blue noise
with the applied parameter
set of c1 = c2 = c = 1, ν =
2, λ = 3, a = 1

where Ai(ω̃), Biω̃) denote the Airy functions of the first and second kind and
Ai(1, ω̃) and Bi(1, ω̃) are the first derivatives of the Airy functions, where we used

the following notation: ω̃ = −(2aωλ−c2)4
1
3
(

aλ

ν2

)1/3

4aλ
. Exhaustive details of the Airy func-

tion can be found in [32].When the argumentω is positive, Ai(ω) is positive, convex,
and decreasing exponentially to zero, while Bi(ω) is positive, convex, and increas-
ing exponentially. When ω is negative, Aiω) and Biω) oscillate around zero with
ever-increasing frequency and ever-decreasing amplitude.

Figure9 represents shape functions with different parameter sets. Our analysis
showed that the composite argument of the ln function is purely real having a decay-
ing oscillatory behavior with alternatively positive and negative values. The ln func-
tion creates infinite number of separate “bumps” or islands with compact supports
and infinite first spatial derivatives at their boarders. Combining the first two terms
of the (13), we get an infinite series of separate islands with increasing height. The
ratio c/λ is the steepness of the line, this automatically defines the steepness of the
absolute height of the islands. The effects of the various parameters are not quite
independent and hard to define, we may say that in general each parameter ν, λ, a, c
alone can change the widths, spacing and absolute height of the peaks. Figure10
shows the total solution of the KPZ equation. The traveling “bumps” are clearly
visible.
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4.5 Lorentzian Noise

As a first non-colour noise let us consider the Lorentzian noise of the form η = a
1+ω2 .

It leads to the ODE of

− ν f ′′(ω) + f ′(ω)

[
c − λ

2
f ′(ω)

]
− a

1 + ω2
= 0, (14)

We mention, that for the classical exponential and Gaussian noise distributions
we could not give solutions in closed analytic form. Unfortunately, there is no closed
analytic expression available if all the parameters (ν, λ, c, a) are free. The formal
solution contains integrals of the Heun C confluent functions multiplied by some
polynomials. However, if the parameters a, λ, ν are fixed, there is analytic solution
available for free propagation speed c. The exact solution for a = λ = ν = 1/2, and
c = 2 is the following

f (ω) = cω +
2 ln

{
c1C(B) − c2ωC(A)

2(ω4 + ω2)[C(A)C ′(B) − C(B)C ′(A)] + (1 + ω2)C(A)C(B)

}
, (15)

where C ′() means the first derivative of the Heun C function [33]. For the better
transparency we introduce the following notations A = 0, 1

2 , 1,
c2

4 , 1 − c2

4 ;−ω2 and

B = 0,− 1
2 , 1,

c2

4 , 1 − c2

4 ;−ω2.
Figure11 shows the shape function for given parameter set. There is a broad

island close to the origin and numerous tiny ones at larger arguments. The numerical
accuracy of Maple 12 was enhanced to reach this resolution. It is well-known that
the Heun functions are the most complicated objects among special functions and
the evaluations needs more computer time.

Figure12 presents the total solution of the original KPZ. Due to the substitution
ω = x + ct the original local solution broke down to several smaller islands which
freely propagate in time and space.

4.6 Periodic Noise

The last perturbation investigated is a periodic function η = a sin(ω) and

− ν f ′′(ω) + f ′(ω)

[
c − λ

2
f ′(ω)

]
− a sin(ω) = 0. (16)
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Fig. 11 The shape function
for the Lorentzian noise. The
applied parameters are
c1 = 0.5, c2 = 2, c = 1, ν =
1, a = 1, λ = 3

Fig. 12 The solution of the
KPZ equation for Lorentzian
noise, with the parameters
mentioned above

The general solution can be given as

f (ω) = 1

λ

(
cω + 2 ln

{
λ[c1C(εa) − c2S(εa)]

ν[−C ′(εa)S(εa) + C(εa)S′(εa)]
})

, (17)

where C(εa), S(εa),C ′(εa) and S′(εa) are the Mathieu S and Mathieu C functions
and the first derivatives. For basic properties we refer to [31]. For a complex study
about Mathieu functions see [34–36]. In (17), we used the abbreviation of εa =
− c2

ν2 ,− aλ
ν2 ,−π

4 + ω
2 .

Figure13 shows a typical shape function for the periodic noise term. Due to the
elaborate properties of even the single Mathieu C or S functions for some parameter
pairs a, q the function is finite with periodic oscillations and for some neighboring
parameters it is divergent for large arguments. No general parameter dependence can
be stated. The parameter space of the set of six real values (c1, c2, c, a, ν, λ) is too
large to map. After the evaluation of numerous shape functions we may state, that
a typical shape function is presented with two larger islands close to the origin and
numerous smaller intervals. For large argument ω the shape function shows a steep
decay.
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Fig. 13 The shape function
for the periodic noise. The
applied parameters are
c1 = 0.5, c2 = 2, c = 1, ν =
1, a = 1, λ = 3

Fig. 14 The complete
traveling wave solution
u(x, t) for periodic noise
with the same parameter set
as given above

Figure14 shows the complete solution. Note, that the first two broader islands
can be seen as they freely travel. Due to the finite resolution the smaller islands are
represented as irregular noise in the background.

5 Conclusions

In summary, we can say that with an appropriate change of variables applying the
traveling-wave Ansatz onemay obtain analytic solution for the KPZ equation for one
spatial dimension with numerous noise terms. We investigated four type of power-
law noise ωn with exponents of −2,−1, 0, 1, called the brown, pink, white and blue
noise, respectively. Each integer exponent describes completely different dynamics.
Additionally, the properties of Gaussian and Lorentzian noises are investigated. Pro-
viding completely dissimilar surfaces with growth dynamics. All solutions can be
describedwith non-trivial combinations of various special functions, like error,Whit-
taker,Kummer orHeun. The parameter dependencies of the solutions are investigated
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and discussed. Future works are planned for the investigations of two dimensional
surfaces.
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Triple Solutions for Elastic Beam
Equations of the Fourth-Order
with Boundary Conditions Subjected
to an Elastic Device

G. Bonanno, A. Chinnì, and D. O’Regan

Abstract Under appropriate conditions on the nonlinear term, the existence of mul-
tiple solutions for a fourth-order problem is established. The result, obtained by
variational techniques, is completed by applications and examples.

Keywords Fourth-order equations · Critical points · Variational methods

Mathematics Subject Classification 2010: 34B15

1 Introduction

In this paper, we will examine the following fourth-order problem

⎧
⎨

⎩

u(iv)(x) = λ f (x, u(x)) in [0, 1]
u(0) = u′(0) = 0
u′′(1) = 0 u′′′(1) + μg(u(1)) = 0

(Pλ,μ)
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where f : [0, 1] × lR → lR and g : lR → lR are continuous functions and λ,μ are
positive parameters. Solutions of problem (Pλ,μ) are functions u = u(x)which mea-
sure the downward deflection of a flexible elastic beam of length 1, clamped at its
left end x = 0, resting on an elastic device (given by g) at its right end x = 1 and
subjected to a deforming force f . Existence of solutions for problem (Pλ,μ) has been
extensively studied both with iterative methods and with variational methods. We
refer the reader for example to [2–8].
The aim of this paper is to look for conditions in order that this problem admits
multiple solutions. Precisely, using variational techniques, we will prove the exis-
tence of at least three classical solutions, by requiring a suitable behavior both of
the nonlinear term and the elastic device. The main tool is a critical point theorem
obtained by Bonanno and Marano in [1].
The paper consists of three sections. Section2 contains some basic properties of
the space in which we will search for solutions of problem (Pλ,μ) and the technical
features of the associated energy functional. The main result for problem (Pλ,μ) and
its proof are given in the same section. Section3 is devoted to some applications and
examples of the results illustrated in Sect. 2.

2 Existence of Three Solutions for Problem (Pλ,μ)

Denoted by H 2([0, 1]) the Sobolev space of all functions u : [0, 1] → lR such that
u and its distributional derivative u′ are absolutely continuous and u′′ belongs to
L2([0, 1]), the solutions of problem (Pλ,μ) lie in the following subspace

X := {u ∈ H 2([0, 1]) : u(0) = u′(0) = 0}·

X is equipped with inner product

〈u, v〉 :=
∫ 1

0
u′′(t)v′′(t) dt

and with norm

‖u‖ :=
(∫ 1

0
(u′′(t))2 dt

) 1
2

that make it an Hilbert space. As proved in [4], X is compactly embedded on
C1([0, 1]) and we have

‖u‖C1([0,1]) := max
{‖u‖∞, ‖u′‖∞

} ≤ ‖u‖ (1)
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for each u ∈ X . Fix λ, μ > 0, and we consider the functional

Iλ,μ := Φ − λΨλ,μ,

where Φ,Ψλ,μ : X → lR are defined by

Φ(u) := 1

2
‖u‖2

and

Ψλ,μ(u) :=
∫ 1

0
F(x, u(x)) dx + μ

λ
G(u(1))

for each u ∈ X with F(x, t) := ∫ t
0 f (x, ξ) dξ and G(t) := ∫ t

0 g(ξ) dξ for each
x, t ∈ [0, 1]. We list below some properties of the functionals Φ and Ψλ,μ:

• Φ is sequentially weakly lower semicontinuous;
• Φ is coercive;
• Φ is in C1(X) and we have

〈
Φ ′(u), v

〉 =
∫ 1

0
u′′(x)v′′(x) dx

for each u, v ∈ X ;
• Φ ′ admits a continuous inverse on X∗
• Ψλ,μ is in C1(X) and we have

〈
Ψ ′

λ,μ(u), v
〉 =

∫ 1

0
f (x, u(x))v(x) dx + μ

λ
g(u(1))v(1)

for each u, v ∈ X .

Weak solutions of problem (Pλ,μ) coincide with critical points of the functional Iλ,μ

for each λ,μ > 0. In particular, in [4] the authors proved that, if f : [0, 1] × lR → lR
is continuous, then the critical points of Iλ,μ are classical solutions for problem (Pλ,μ).
The tool that will allow us to obtain multiple solutions for problem (Pλ,μ) is the
following critical point result obtained by G. Bonanno and S.A. Marano in [1]. In
particular, for λ and μ in precise intervals, the existence of three classical solutions
for problem (Pλ,μ) is established.

Theorem 1. (Theorem 3.6 of [1]) Let X be a reflexive real Banach space, Φ : X →
lR be a coercive, continuously Gâteaux differentiable and sequentially weakly lower
semicontinuous functional whose Gâteaux derivative admits a continuous inverse on
X∗,Ψ : X → lR be a continuouslyGâteaux differentiable functional whose Gâteaux
derivative is compact such that

inf
x∈X Φ(x) = Φ(0) = Ψ (0) = 0.
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Assume that there exist r > 0 and x̄ ∈ X, with r < Φ(x̄), such that:

(a1)

sup
Φ(x)≤r

Ψ (x)

r < Ψ (x̄)
Φ(x̄) ;

(a2) for each λ ∈ �r :=]Φ(x̄)

Ψ (x̄)
,

r

supΦ(x)≤r Ψ (x)
[ the functional Φ − λΨ is

coercive.

Then, for each λ ∈ �r , the functional Φ − λΨ has at least three distinct critical
points in X.

Before introducing themain result,wemakemore precise somenotation.Withα ≥ 0,
we put

Fα :=
∫ 1

0
max|ξ |≤α

F(x, ξ) dx

and
Gα := max|ξ |≤α

G(ξ)·

Theorem 2. Assume that

( f1) there exist two constants 0 < γ < δ, such that

Fγ

γ 2
<

1

8π4

(
3

2

)3
∫ 1

3
4
F(x, δ) dx

δ2
,

( f2) F(x, t) ≥ 0 for almost every x ∈ [0, 1] and for all t ∈ [0, δ],

( f3) lim sup
|t |→+∞

supx∈[0,1] F(x, t)

t2
≤ 0.

Then, for each λ ∈ �δ,γ :=
⎤

⎦4π4
(
2
3

)3 δ2

∫ 1
3
4
F(x, δ) dx

,
γ 2

2Fγ

⎡

⎣ , and for each g :

lR → lR continuous such that lg := lim sup|t |→+∞
G(t)
t2 < +∞, there exists η̃λ,g > 0,

where

η̃λ,g =

⎧
⎪⎪⎨

⎪⎪⎩

min
{

γ 2−2λFγ

2Gγ , 1
2max{0,lg}

}
if G(δ) ≥ 0

min

{

γ 2−2λFγ

2Gγ ,
4π4δ2−λ( 3

2 )
3 ∫ 1

3
4
F(x,δ) dx

( 3
2 )

3
G(δ)

, 1
max{0,2lg}

}

if G(δ) < 0,
(2)

such that for each μ ∈]0, η̃λ,g[ the problem (Pλ,μ) admits at least three classical
solutions.



Triple Solutions for Elastic Beam Equations ... 259

Proof. Fix λ ∈ �δ,γ . Taking into account that Gγ := max|ξ |≤γ
G(ξ) ≥ G(0) = 0, we

observe that η̃λ,g > 0. Indeed, ifG (δ) ≥ 0, by λ ∈ �δ,γ it follows that γ 2 − 2λFγ >

0. Hence η̃λ,g > 0. Let G (δ) < 0. We have by λ ∈ �δ,γ that

4π4

(
2

3

)3
δ2

1∫

3/4
F(x, δ)dx

< λ,

which implies 4π4δ2 − λ
(
3
2

)3 1∫

3/4
F(x, δ)dx < 0. Hence η̃λ,g > 0, in this case as

well. In both cases we have η̃λ,g = +∞ when Gγ = 0 and/or lg ≤ 0.
Now, fix g : lR → lR continuous and μ ∈]0, η̃λ,g[ , and we apply Theorem 1 to the
functionalsΦ,Ψλ,μ defined on X . As stated before,Φ andΨλ,μ verify the regularities
requested in Theorem 1. We prove that assumptions of Theorem 1 are verified for
r = γ 2

2 and v̄ ∈ X defined by

v̄(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 x ∈ [0, 3
8 ]

δ cos2( 4πx
3 ) x ∈] 38 , 3

4 [

δ x ∈ [ 34 , 1].

(3)

Indeed we have

Φ(v̄) = 4π4δ2
(
2

3

)3

. (4)

On the other hand one has

Ψλ,μ(v̄) =
∫ 1

0
F(x, v̄(x)) dx + μ

λ
G(δ) ≥

∫ 1

3
4

F(x, δ) dx + μ

λ
G(δ)

where we applied condition ( f2) to ensure
∫ 1
0 F(x, v̄(x)) dx ≥ ∫ 1

3
4
F(x, δ) dx .

So, we obtain

Ψλ,μ(v̄)

Φ(v̄)
≥

∫ 1
3
4
F(x, δ) dx + μ

λ
G(δ)

4π4δ2
(
2
3

)3 · (5)

Condition (1) provides that ‖u‖ ≤ γ = √
2r and ‖u‖∞ ≤ γ for each u ∈ Φ−1(] −

∞, r ]) and so we have

1

r
sup

u∈Φ−1(]−∞,r ])
Ψλ,μ(u) ≤ 2

γ 2
Fγ + 2

γ 2

μ

λ
Gγ · (6)
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Now, if G(δ) ≥ 0, taking into account that λ ∈ �δ,γ and that in particular η̃λ,g ≤
γ 2−2λFγ

2Gγ , one has

2

γ 2
Fγ + 2

γ 2

μ

λ
Gγ ≤ 2

γ 2
Fγ + 2

γ 2

η̃λ,g

λ
Gγ ≤ 1

λ

and

1

λ
<

1

4π4δ2

(
3

2

)3 ∫ 1

3
4

F(x, δ) dx ≤ 1

4π4δ2

(
3

2

)3
(∫ 1

3
4

F(x, δ) dx + μ

λ
G(δ)

)

·

If G(δ) < 0, taking into account that, in particular,

η̃λ,g ≤ min

⎧
⎨

⎩

γ 2 − 2λFγ

2Gγ
,
4π4δ2 − λ

(
3
2

)3 ∫ 1
3
4
F(x, δ) dx

(
3
2

)3
G(δ)

⎫
⎬

⎭
, (7)

we have as above

2

γ 2
Fγ + 2

γ 2

μ

λ
Gγ ≤ 2

γ 2
Fγ + 2

γ 2

η̃λ,g

λ
Gγ ≤ 1

λ

and, again from (7),

1

λ
<

1

4π4δ2

(
3

2

)3
(∫ 1

3
4

F(x, δ) dx + μ

λ
G(δ)

)

·

In all cases, taking into account (5) and (6), we obtain

1

r
sup

u∈Φ−1(]−∞,r ])
Ψλ,μ(u) <

1

λ
<

Ψλ,μ(v̄)

Φ(v̄)
,

and so assumption (a1) of Theorem 1 is verified.
Moreover, we observe that from 0 < γ < δ, one has Φ(v̄) > r . Indeed, if 4π4δ2
(
2
3

)3 = Φ(v̄) ≤ r = γ 2

2 then δ < 3
√
3

8π2 γ < γ , a contradiction with the hypothesis.
Now, we prove that the functional Iλ,μ is coercive.
Fix max

{
0, lg

}
< l < 1

2μ , and there exists a positive constant k such that

G(ξ) ≤ lξ 2 + k

for each ξ ∈ lR. Now, fix 0 < ε <

1
2 − μl

λ
. From ( f3) there is a positive constant kε

such that
F(x, ξ) ≤ εξ 2 + kε
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for each (x, ξ) ∈ [0, 1] × lR. Taking into account that ‖u‖∞ ≤ ‖u‖, it follows that,
for each u ∈ X ,

Iλ,μ(u) = Φ(u) − λΨλ,μ(u) ≥ (
1

2
− λε − lμ)‖u‖2 − λkε − μk.

This leads to the coercivity of Iλ,μ and condition (a2) of Theorem 1 is also verified.

Finally, since λ ∈ �δ,γ ⊆
]

Φ(v̄)

Ψλ,μ(v̄)
,

r

supΦ(u)≤r Ψλ,μ(u)

[

, Theorem 1 guarantees the

existence of three distinct critical points for the functional Iλ,μ that are classical
solutions for problem (Pλ,μ). ��

3 Applications and Examples

The following result is a consequence of Theorem 2 and concerns the autonomous
case.

Corollary 1. Assume that f : lR → [0,+∞[, f �≡ 0 is a continuous function such
that

( f̃1) limt→0+ f (t)
t = limt→+∞ f (t)

t = 0.

Then, for eachλ > λ̄ := 16π4( 23 )
3 inf{δ > 0 : δ2

F(δ)
> 0}, for each g : lR → [0,+∞[

continuous such that limt→0+ g(t)
t = limt→+∞ g(t)

t = 0 and for each μ > 0, the
problem ⎧

⎨

⎩

u(iv)(x) = λ f (u(x)) in [0, 1]
u(0) = u′(0) = 0
u′′(1) = 0 u′′′(1) + μg(u(1)) = 0

(8)

admits at least three classical solutions.

Proof. First of all we observe that nonnegativity of f implies that F is not decreasing
on lR and in particular that F(t) ≥ 0 for t ∈ [0,+∞[, so condition ( f2) requested in
Theorem 2 is clearly verified. Moreover, condition ( f3) of Theorem 2 follows clearly
by ( f̃1).
Fixλ > λ̄, g : lR → [0,+∞[ continuous such that limt→0+ g(t)

t = limt→+∞ g(t)
t = 0

andμ > 0, and taking into account that Fα = F(α) andGα = G(α) for each α ≥ 0,
we choose δ̄ > 0 such that

1

λ
<

F(δ̄)

δ̄2

(
3

2

)3 1

16π4
·

Because we have

lim
t→0+

t2 − 2λF(t)

2G(t)
= +∞,
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one has in particular t2−2λF(t)
2G(t) > μ for t ∈]0, γ1[, while ( f̃1) ensures

F(t)

t2
<

1

2λ

for t ∈]0, γ2[. With γ̄ < min{δ̄, γ1, γ2}, we have γ̄ < δ̄,

F(γ̄ )

γ̄ 2
<

1

32π4

(
3

2

)3 F(δ̄)

δ̄2

and, taking into account that lg = 0 and G(δ̄) ≥ 0,

0 < μ <
γ̄ 2 − 2λF(γ̄ )

2G(γ̄ )
= η̃λ,g·

So, all the conditions requested in Theorem 2 are verified and problem (8) admits at
least three classical solutions. ��
Remark 1. In Corollary 1, since we have f (0) = g(0) = 0 then problem (8) admits
at least two non trivial classical solutions.

Example 1. The function f : lR → lR defined by

f (t) :=
{ |t |3, |t | ≤ 1,√|t |, |t | > 1

(9)

verifies for example the assumptions of Theorem 1.
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Dynamics of Discrete Operator
Equations

George L. Karakostas

Abstract The translation of nonautonomous difference causal operators defined on
the set of sequences is introduced and some facts from the dynamics of abstract
nonautonomous difference equations are presented. Also, a sufficient number of
applications are given to obtain results on asymptotic stability of the equilibria.

1 Introduction

Autonomous (continuous or discrete) systems are invariant in time. Any action in
nonautonomous systemdepends on time.We are interesting in discrete systems. Such
systemsarise,mainly,by takingdiscreteapproximationofcontinuousmodelsand they
are described by the so called difference equations. They are used to obtain approx-
imate solutions of mathematical problems with recurrences, or to build various dis-
crete models in economics, psychology, sociology, etc. For instance, the continuous
time model for the well known logistic equation dN/dt = r N (1 − N/K ), has dis-
crete analogs the equations Nn+1 = Nn + RNn(1 − Nn/K ), Nn+1 = Nn exp(R(1 −
Nn/K )) and others. Nevertheless, such equations may arise independently, such as
xn+1 = β + 1/xnxn−1 [8]. Perhaps the first theoretical results on nonautonomous dif-
ference equationswere given by Poincaré [1885] and Peron [1921], see the references
in [16], pp. 343–344. The Poincare and Perron Theorems provide information for the
asymptotic behavior of the quantities xn+1/xn , or (xn)1/n , when (xn) is a solution of
a nonautonomous linear difference equation. Goldberg’s book [25] (1986)1 is a good
source of examples ondifference equations.Also, the bookbyLaSalle, [42] published
in 1976, deals, mainly, with the role of Lyapunov functions to the study of stabil-
ity in autonomous systems, while in [43] a more general situation is investigated. A
deep exhibition of ergodic theory related to nonautonomous dynamical systems can
be found in Petersen’s book [47]. Elaydi’s book [16] is an extended presentation of
autonomous and nonautonomous difference equations. A very interesting investiga-
tion with a great number of examples and a rich bibliography of difference equations
is exhibited in the Agarwal’s book [6], see, also, [4].
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Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece
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1The first edition of the book goes back to 1958.
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Most of the known works dealing with this topic refer to autonomous difference
equations, due to their invariance in time and the fact that the solutions can be
formally explicitly given by the composition of the response function. Indeed, for the
difference equation xn+1 = f (xn) the solution is, trivially, given by xn = f (n)(x0),
where x0 is the initial state. So, what one has to do is to obtain the iteration of f .
Notice that in this case one can predict chaos, see the Sarkovskii’s Theorem [21], or
the Li-Yorke relation of periodicitywith chaos [44], aswell as the books byAbraham,
Gardini and Mira [1], Bahi and Guyeux [9], Zhang [54], Devaney [12], etc. On the
other hand the nonautonomous case is more complicated. Indeed, let us borrow from
[24] (pp. 49–50) the simple nonhomogeneous linear difference equation

xn+1 = anxn + bn. (1)

Although the solution can be given in a closed form as

xn = x0

n−1∏

k=0

ak +
n−2∑

k=0

bk

n−1∏

i=k+1

ai + bn−1

in general, no asymptotic properties of it can easily be found. In Sect. 5 we shall
return to it.

Generally, if we have a sequence of mappings Qn : X → X , where X is a metric
space, then the difference equation (or process)

xn+1 = Qn(xn) (2)

admits the solution xn = Qn−1 ◦ Qn−2 ◦ · · · ◦ Q0(x0), where x0 is the initial value.
However the problem of finding the composition of all these operators and inves-
tigating the chain transitivity and attractivity by critical values is not so easy. See,
e.g., [53]. The problem becomes more difficult if the dependence of the operator
Qn is not only on xn , but on all, or some previous values of the sequence (xn). For
instance, the Volterra difference equation xn+1 = ∑n

j=0 K (n, j, x j ), studied in the
literature (see, e.g. [19] and the references therein), or equations described in Sect. 2
of [5], cannot be written in the form (2). However though the problem gets a simple
form, its complexity stays on. Therefore, in order to see the asymptotic behavior
of the solutions we have to apply other methods based on the sense of dynamical
systems.2 To this approach in a series of papers Elaydi and Sacker (see [18] and
the references therein) presented a skew-product semi-flow, as the discretization of
the continuous dynamical systems, as they were suggested by Sell [49]. (The mean-
ing of the skew-product flow appeared in a paper of Miller [45] in 1965.) In this
work we extend their main idea. In some of our previous works [35, 36] we have
studied the asymptotic behavior of autonomous difference equations by using the so

2Linearization is a good method, but, notice that sometimes it gives false information, see, [20],
p. 22.
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called full limiting sequences method, suggested in 1989, [29]. From the first point
of view the method seemed to be very simple, but latter it was proved to be very
useful (see, e.g., [30–34, 37, 41]. We shall recall the notion of the limiting and full
limiting sequences in subsequent sections. What is new and it is introduced here
is the meaning of the translation of causal operators defined on a set of sequences.
Then a skew-product semi-flow is build by using the shifting process of sequences
and the translation of the operator. These notions are used to obtain the full limiting
equations of difference equations and predict results on the asymptotic behavior of
several specific types of nonautonomous difference equations. The work is organized
as follows: Section 2 contains a background on the shifting semi-flow of sequences
with some facts on limiting and full limiting equations. Section 3 presents the trans-
lation and the dynamics of nonautonomous and discrete operators defined on the
set of d-dimensional sequences. The full limiting orbits and limiting equations are
exhibited in Sect. 4, while in Sect. 5 and 6 several applications to some discrete
models are given.

2 Full Limiting Sequences

Webeginwith some factswhichwe borrow fromour previous research (see, [29]) and
refer to the so called shifting semi-flow, present the theory of full limiting sequences
and give a short review of some of its applications. Our approach is quite different
from the usual arguments on point-shifting discrete dynamical systems exhibited
elsewhere in the literature, see, e.g. Easton [14], LaSalle [42], etc.

Let Z be the set of all integers, N the set of positive integers and N0 the set
N ∪ {0}. We shall work on a metric space (X, d). In some cases we need X to be
linear. Let E := XN0 .We assume that E is endowedwith the point-wise convergence,
or equivalently, convergence uniformly on finite sets.

Let R(x) be the range of a sequence x ∈ E .
For any n ∈ N0 and x ∈ E define the shifting operator S : E → E by the type

(Sx)k = xk+1, k = 0, 1, 2, · · · . Then for each n we set Snx = S(Sn−1x), where S0

is the identity operator. Thus, we have (Snx)k = xk+n . Later on, in case we have a
two sided sequence x we shall permit the index n to be negative. Clearly, Sn maps E
into itself, it is continuous and furthermore the mapping π : (n, x) → Snx defines a
discrete semi-dynamical system with phase-space E , called the shifting semi-flow.

The proof of the next result is obvious.

Proposition 1. A trajectory π(·, x) is (i) stationary (m-periodic), if and only if the
sequence x is constant (m periodic), (ii) compact (or Lagrange stable) with respect
to the semi-flow π if and only if the set R(x) is relatively compact.
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Proposition 2. Take x ∈ E withR(x) relatively compact. Then theω-limit setω(x)
with respect to the semi-flow π is nonempty, compact, invariant and invariantly
connected.3 Also any x̄ ∈ ω(x) has a full trajectory U (x̄) which stays in ω(x).

Proof. From Proposition 1, the trajectory π(·, x) is compact. Then the first four
facts follow easily as in the general theory on discrete dynamical systems (see e.g.
[42]). For the last one take any x̄ ∈ ω(x). Then there is a sequence of positive
integers (nm) such that lim π(nm, x) = x̄ . SinceR(x) is relatively compact, there is
a subsequence nm,1 of (nm), such that the limit limm x−1+nm,1 =: l1 exists. Similarly,
there is a subsequence nm2 of (nm,1), such that the limit limm x−2+nm,2 =: l2 exists.
We proceed inductively for any positive integer k to obtain a subsequence nm,k of
(nm,k−1), such that the limit lim x−k+nm,k =: lk exists. Finally define x̂−k =: lk and
x̂k =: x̄k for each nonnegative integer k. Obviously, the so defined item x̂ is a two-
sided sequence · · · , x̂−k, x̂−k+1, · · · , x̂0, x̂1, x̂2, · · · whose the restriction onN0 is the
sequence x̄ . The full trajectoryU (x̄)of x̄ is definedbyU (x̄)(k) := Sk x̄ and it is the set
{u ∈ E : (∃k ∈ Z) un = x̂k+n, (∀n ∈ N0)}. It remains to show that any termofU (x̄)
stays inω(x). To this end, take any u ∈ U (x̄). Then we haveU (x̄)(k)n = un = x̂k+n ,
for a certain k ∈ Z. If k ≥ 0, then we have u = limm π(k + nm, x). If k < 0, then for
any s > −k, we have nm,s ≥ ms ≥ s > −k and so u = limm π(k + nm,s, x), which
proves the result.

We call x̄ a limiting sequence of x and x̂ a full limiting sequence of x . Since the limit
sets are invariant, it follows that any limiting or full limiting sequence of a limiting
or full limiting sequence of a sequence (xn) is, again, a limiting, or full limiting,
respectively, sequence of (xn).

If a sequence converges to a limit, say l ∈ X , then the set of full limiting sequences
consists of the two-sided constant sequence · · · , l, l, · · · .

A sequence x =: (xn), is called slowly varying, if for each positive integer k it
holds limn→+∞ d(xn+k, xn) = 0. Thus, if it is bounded then, any of its full limiting
sequences is constant.

We remind that a sequence (xn) is almost periodic, if for each ε > 0 the set of
all p ∈ Z for which d(xn+p, xn) ≤ ε, for all n = 0, 1, 2, · · · is relatively dense, in
the sense that there is a m such that every interval of positive integers of length m
contains at least one such p. (Such a number p is called ε-period.) Some interesting
facts about the construction of almost periodic sequences as well as examples of
almost periodic sequences can be found in the literature, see, e.g. [51, 52] and the
references therein.

Motivated from the notion of an asymptotically almost periodic function (intro-
duced by Fréchet in 1941), a bounded sequence (xn) is called asymptotically (Bohr-)
almost periodic, if for every ε > 0 we can find integers l > 0 and M > 0 such that
every subinterval J of positive integers of length l contains at least one number m
such that d(xn+m, xn) ≤ ε, for all n ≥ M . According to [10], Theorem 1.3.1, if a
point of a metric space is asymptotically almost periodic with respect to a semi-flow,

3This means that the set cannot be written as the disjoint union of two closed invariant sets.
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then its ω limit set coincides with the closure of the almost periodic trajectory. In the
spirit of this fact we state the following obvious result:

Proposition 3. If a sequence (xn) is asymptotically almost periodic, then any full
limiting sequence is almost periodic.

For the inverse of the result andmore facts about the asymptotic almost periodicity
and Poisson stability will be given in a forthcoming work.

The main applications of this theory is based on the following fact: If x is a
bounded sequence then any sequence of positive integers converging to+∞produces
a full limiting sequence. To apply this fact consider an autonomous delay difference
equation of the form

x ′
n := xn+1 = H(xn, xn−1, · · · , xn−k). (3)

where H : (X)k+1 → X .
It is easy to see that if x ∈ E is a solution of (3), then Smx is also a solution

for any m ≥ 0. Moreover, if x̂ is a full limiting sequence of x , we have x̂n =
liml π(n, π(rl , x))0 = liml π(rl + n, x)0 = liml xrl+n , for each n ∈ Z, and some
sequence (rl) converging to +∞. (Clearly rl + n ≥ 0, for all large l.) Thus, from (3)
we see that x ′

rl+n = H(xrl+n, xrl+n−1, · · · , xrl+n−k) and, passing to the limits, we get
x̂ ′
n = H(x̂n, x̂n−1, · · · , x̂n−k). Therefore, any full limiting sequence of a solution of
(3) satisfies the same equation for all integers. Such a sequence (if it exists) is usually
called a full solution.

A great number of applications of the theory of full limiting sequences are pre-
sented in the literature. See, e.g. [23, 26, 29–37, 46].

3 Dynamics of Nonautonomous Discrete Operators

Let x, u be two sequences in E . For anym ∈ N0 define the new sequence
(
μm,xu

)
k :=

xk, k < m and
(
μm,xu

)
k := uk−m, k ≥ m. Let D be an open subset of E with the

following property:
For any x, u in D and m ∈ N0 the sequence μm,xu belongs to D.
LetD be the class of all such domains.We shall work on the setT of all operators

with domain in D which are causal in the sense that, for any m, if it holds xn = yn ,
for all of n = 0, 1, 2, · · · ,m, then (T x)m = (T y)m . The class T is endowed with
the following continuous convergence structure (which is inspired from Artstein’s
Appendix of [42] as well as from the more general convergence structure applying
in [28]: A sequence of operators Tk ∈ T with domains DTk k = 0, 1, 2, · · · , will
converge to an operator T ∈ T , with domain DT , if the following facts hold: For
any sequence (uk) such that uk ∈ DTk , k = 1, 2, ... and uk → u, for a certain u ∈ E ,
it holds u ∈ DT and Tkuk → Tu.

The prototype of such a causal operator is the discrete Volterra operator, i.e.,
the equation xi+1 = F(i, x0, · · · , xi ), i ≥ 0, discussed elsewhere (see, e.g., [11]),
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but we will restrict ourselves to the familiar discrete version of the Volterra integral
equation4 defined by

(T x)m = am +
m∑

j=0

gm, j (x j ), m = 0, 1, 2, · · · . (4)

IfU is the common domain of the family (gm, j ), then DT is the set of all x ∈ E such
that xk ∈ U , for all k = 0, 1, 2, . . . .

Assume that the metric space X is linear and let T ∈ T . For any x ∈ DT and
m ∈ N0 define the translation of the operator T along the sequence x by m by the
type

(Tm,xu)k = (Sx)m − (T x)m + (Tμm,xu)m+k, k = 0, 1, · · · , u ∈ DT .

If x is a solution of the operator equation Sx = T x , or X is a not necessarily linear
metric space, then the translation of T along a solution x at any m is defined by

(Tm,xu)k = (Tμm,xu)m+k, k = 0, 1, · · · , u ∈ DT . (5)

In this case we have T0,x = T . Therefore in the linear case, the factor (Sx)m −
(T x)m denotes the perturbation of the translation when x is not a solution. For
example, the translation of the operator T defined by (4) along a solution x of equation
Sx = T x , at any m, is given by (Tm,xu)k = am+k + ∑−1

j=−m gm+k,m+ j ((Sx)m+ j ) +
∑k

j=0 gm+k,m+ j (u j ).

Theorem 1. For any T ∈ T , m ∈ N0 and x ∈ DT the translation operator Tm,x has
the following properties: (i) Tm,x ∈ T . (ii) The operators Tm+l,x and (Tm,x )l,Smx have
the same domain and are identically equal. (iii) For each m the mapping x → Tm,x

is continuous.

Proof. (i) This is implied from the definition of the translation.
(ii) It is easy to see that for all u with u0 = xm+l it holds (μm,xμl,Sm xu)s =

(μm+l,xu)s . Therefore ((Tm,x )l,Smxu)k = (Sm+1x)l − (Tm,x Smx)l + (Tm,xμl,Sm x

u)l+k =(Sx)l+m − [(Sx)m − (T x)m + (T x)l+m] + (Sx)m − (T x)m + (Tμm,xμl,Sm x

u)m+l+k = (Sx)l+m − (T x)l+m + (Tμm+l,xu)k = (Tm+l,xu)k . Property (iii) is a con-
sequence of the continuity of the operator T .

Assume that X is a linear space. Given T ∈ T and x ∈ DT define themapping γ :
(m; (x, T0,x )) → (π(m, x), Tm,x ), with domain W := N0 × {(x, S) : (∃T ∈ T ) :
x ∈ DT , S = T0,x }. If X is not necessarily linear space, define the mapping γ , as
above, with domainW := N0 × {(x, T ) : T ∈ T , x ∈ DT , Sx = T x}. It is easy

4The background for discrete Volterra equations can be found in the well-known monograph by
Agarwal [3], as well as in Elaydi [17] and Kocić and Ladas [40].
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to see that γ is a (discrete) skew-product semi-flow.5 Indeed, continuity is obvious
and the identity condition γ (0; (x, T0,x )) = (π(0, x), T0,x ) = (x, T0,x ) as well as the
cocycle condition γ (m; γ (l; (x, T0,x )) = γ (m; (π(l, x), Tl,x )) = (π(m;π(l; x)),
(Tm,x )m,π(l;x) = (π(m + l; x), Tm+l,x ) hold because of Theorem 1. Continuity of
(x, T ) → γ (m; (x, T )) is obvious.

Theorem 2. Assume that X is a linear metric space, T ∈ T and x ∈ DT . A point
(x, T0,x ) is m-periodic with respect to the semi-flow γ , if and only if it holds

Smx = x and T Smu = SmTu + (T x)0 − (T x)m, (6)

for all u ∈ DT with uk = xk, k = 0, 1, · · · ,m.

Proof. If (x, T ) is periodic with period m, it holds Smx = x and Tm,x = T0,x .
From the first we get xm+k = xk for all k = 0, 1, 2, · · · . Let u ∈ E with uk =
xk , k = 0, 1, · · · ,m. Then we have (Tm,x Smu)k = (T0,x Smu)k, k = 0, 1, 2, · · · .
The first part is equal to (Sx)m − (T x)m + (Tμm,x Smu)m+k = (Sx)m − (T x)m +
(Tu)m+k = xm+1 − (T x)m + (Sm(Tu))k , while the right part is equal to (Sx)0 −
(T x)0 + (Tμ0,x Smu)k = x1 − (T x)0 + (T Smu)k . This shows the “only if” part.

To show the “if” part, fix any u ∈ E(x0), k ∈ N0 and define y := μm,x [μk,Smxu].
From (6) we have Smx = x , thus y = μm,x [μk,xu]. It is clear that, for any s ≤ m, it
holds ys = xs . Hence from (6) we get

(T Sm y)s+k = (SmT y)s+k + (T x)0 − (T x)m, s = 0, 1, · · · . (7)

On the other hand relation (6) implies that

(T x)0 − (T x)m = (T Smx)k − (Sm(T x))k = (T x)k − (T x)m+k . (8)

Now we observe that for any s = 0, 1, 2, · · · it holds (Tm+k,xu)s − (Tk,xu)s =
(Sx)m+k − (T x)m+k + (Tμm+k,xu)s+m+k − (Sx)k + (T x)k − (Tμk,xu)s+k = (T x)k
−(T x)m+k + (Tμm,xμk,xu)s+m+k − (Tμk,xu)s+k = (T x)k − (T x)m+k + (T y)s+m+k

−(T Sm y)s+k = (T x)k − (T x)m+k + (Sm(T y))s+k − (T Sm y)s+k = 0, becauseof (8).
This completes the proof.

It is clear that if X is not necessarily linear, Theorem 2 states as follows:

Theorem 3. A point (x, T ) is m-periodic with respect to the semi-flow γ , if and
only if it holds Smx = x and TSmu = SmTu, for all u ∈ DT with uk = xk, k =
0, 1, · · · ,m.

Corollary 1. If a point (x, T0,x ) is periodic with period m, then the sequence T x is
also periodic with the same period, whenever it is bounded.

5For continuous skew product semi-flows consult [48]. A method of skew products of dynamical
systems, which is powerful to examine the geometrical structures of trajectories in dynamical
systems, was first studied by Anzai [2] in connection with isomorphy problems in ergodic theory.
See, also, [19].
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Proof. From (6) we conclude that the quantity (T Smx)lm − (SmT x)lm = (T x)lm −
(T x)(l+1)m =: ξ is fixed and it does not depend on l = 0, 1, 2, · · · . Thus (T x)m −
(T x)(l+1)m = lξ , which due to the fact that T x is bounded, implies ξ = 0. Now, the
result follows from (8).

Corollary 2. If a point (x, T0,x ) is periodic with period m and the sequence T x is
bounded, then it holds SmT = T Sm.

It is well known that a point of a dynamical or semi-dynamical system is a rest
point if it is periodic with period any positive number. Therefore, a point (x, T ) is a
rest point if x is a constant sequence, say x = a and (6) holds for any m ∈ N.

Theorem 4. Consider the Volterra type operator T defined by (4) and assume that
the pair (x, T ) is a periodic pointwith periodm.Then the sequence x must be periodic
with period m and, for a certain sequence (bk) depending on x, the operator T can
be written in the convolution form

(Tu)k = bk +
k∑

j=0

hk− j (u j ), k = 0, 1, 2, · · · . (9)

Proof. From Theorem 2 the sequence x must be periodic with period m, and more-
over for all n, k ∈ N0 and u ∈ DT , with u j = x j for j = 0, 1, · · ·m we have a0 +
g0,0(x0) − am − ∑m

j=0 gm, j (x j ) = ak + ∑k
j=0 gk, j (u j+m) − ak+m − ∑m+k

j=0 gk+m, j

(u j ) = ak + ∑k
j=0 gk, j (u j+m) − ak+m − ∑m−1

j=0 gk+m, j (c) − ∑k
j=0 gk+m, j+m(u j+m).

Thus the quantity
∑k

j=0[gk+m, j+m(u j+m) − gk, j (u j+m)] does not depend on the
quantity u. This means that we can write gk+m, j+m(ξ) − gk, j (ξ) = hk, j,m , where
the right side does not depend on ξ . Put j = 0 and k + m = r . Then we have
gr,m(ξ) = gr−m,0(ξ) + hr−m,0,m =: hr−m(ξ) + pr−m,m . It shows that the original
operator T can bewritten in the form (9), where bk := ak + ∑k

j=0 pk− j, j . This proves
the result.

Example 1. Consider the Nemytski type discrete difference equation

vn+1 = gn(vn, vn−1, · · · , vn−ρ), n = 0, 1, · · · , (10)

in the reals, where ρ is a positive integer. In order to write it in the form Sx = T x ,
we use the idea of LaSalle [43] and work on the ρ + 1-dimensional space by defining
(T x)n := (

gn(x1n , x
2
n , · · · , xρ+1

n ), x1n , x
2
n , · · · , xρ

n
)T
, where x1n := vn, x2n := vn−1,

· · · , xρ+1
n := vn−ρ . This equation has the form xn+1 = fn(xn) studied in terms of

processes elsewhere, see, e.g., [41]. Any solution of equation Sx = T x has first
coordinate a solution of the original scalar equation.

Theorem 5. Let x be a sequence of points in Rρ+1. If the pair (x, T0,x ) is periodic
with period m(≥ ρ), then the sequences x and (gn) are periodic with period m.
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Proof. From Theorem 2 we must have Smx = x , and for any sequence u of points
in Rρ+1, condition (6) must be satisfied. Then we have gk(u1ρ+k, u

2
ρ+k, · · · , uρ+1

k ) −
gm+k(u1ρ+k, u

2
ρ+k, · · · , uρ+1

k ) = g0(x10 , x
2
0 , · · · , xρ+1

0 ) − gm(x1m, x2m, · · · , xρ+1
m ) =

: M , for each k = 0, 1, 2, · · · . Since the arguments u1ρ+k, u
2
ρ+k, · · · , uρ+1

k for k ≥ 0
are arbitrary, we must have gk+m(ξ0, ξ1, · · · , ξρ) = gk(ξ0, ξ1, · · · , ξρ) − M , for all
vectors in Rm+1. Inductively, we can, easily, obtain gλm(ξ0, ξ1, · · · , ξρ) = −λM +
g0(ξ0, ξ1, · · · , ξρ), for all λ = 0, 1, · · · . Since (gn(ξ0, ξ1, · · · , ξρ)) forms a bounded
sequence, we must have M = 0. This completes the proof.

Before giving some compactness conditions on the semi flow, we need to
define a class of sequences as follows: Let x ∈ E and (tk) be a sequence of
positive integers. The symbol S (x, (tk)) will denote the set of all two param-
eter sequences (sm,tk ) such that sm,tk

n = xn for all n = 0, 1, · · · , tk and all m, k
as well as the limits limm Stk sm,tk , limk Stk sm,tk exist and the successive limits
limk limm Stk sm,tk , limm limk Stk sm,tk exist and are equal. We start with the case of
X being a linear metric space.

Theorem 6. Let x ∈ E withR(x) relatively compact. Also, assume that (1) for any
sequence (tk) of positive integers converging to+∞, there is a subsequence (tl) such
that for any sequence (sm,tl ) inS (x, (tl)), converging to some point with respect to
m, the limit

lim
l

[(T x)tl − Stl (T sm,tl )] (11)

exists for a certain m, and (2) the limit limm Stl (T sm,tl ) exists uniformly with respect
to l, in the l∞ topology. Then the motion of the point (x, T0,x ) is compact.

Proof. Let (tk) be a sequence of positive integers. If (tk) is bounded, we can assume
that it converges to some t , thus tk = t , eventually. This shows that Stk x = St x , for
all large k. For the second coordinate of the motion, we have (Ttk ,xu)k = (Sx)tk −
(T x)tk + (Tμtk ,xu)k = (Sx)t − (T x)t + (Tμt,xu)k , for all large k. Thus we see that
the (Stk x, Ttk ,x ) converges to (St x, Tt,x ).

Now, assume that the sequence (tk) is not bounded and it converges to +∞.
Also, due to Proposition 1(ii), we can assume that the sequence (Stk x) converges
to a certain limit x̄ . By assumption (1) there is a subsequence (tl) of (tk) such that
(11) holds for every (sm,tl ) inS (x, (tl)). Let (ul) be a sequence in the domain of T
converging to some u ∈ E . We set sm,tl := μtl ,xu

l for all m and l. Then observe that
(sm,tl ) is an element ofS (x, (tl)). Therefore by (11) there is a sequence a ∈ E such
that liml Ttl ,xu

l = liml[(Sx)tl − (T x)tl + Stl (T (sm,tl )] = a.We claim that the limit a
does not depend on the sequence (ul). Indeed, let (vl) be another sequence converging
to u. Then, as above we conclude that there is some b such that liml Ttl ,xv

l = b.
Define a new sequence (wl) as follows: w1 := u1, w2 := v2, w3 := u3, · · · which
converges to u. Define s̄m,tl := μtl ,xw

l and apply (8). Then the limit liml Ttl ,xw
l exists

and is equal to a and b. Thus a = b. Therefore we can write a = Ru, for an operator
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R. By the previous construction we have R = lim Ttl ,x , and moreover R is causal.
It remains to show that R is continuous. To do that we let (um) be a sequence in

E converging to some u0. For any m = 0, 1, · · · , we define the sequence rm,tl
n :=

(1 − e−nl)umn + e−nl xtl , n = 0, 1, · · · and let sm,tl := μtl ,xr
m,tl . Since x is bounded,

we observe that sm,tl
p = xp, for all p < tl, liml limm sm,tl = u0 = limm liml sm,tl , thus

sm,tl it belongs to S (x, (tl)). Also, we have limm sm,tl = s0,tl , thus from condition
(2) and the continuity of T we conclude that

lim
m

Stl (T sm,tl ) = Stl (T s0,tl ) (12)

exists uniformly with respect to l. Moreover, since and liml sm,l = um , for allm, and
liml Ttl ,x = R, we have

lim
l
Ttl ,x s

m,tl = Rum . (13)

Fix a k ∈ N0 and let ε > 0. By (12) it follows that there is some m0 such that
d((Ttl ,x s

m,tl )k, (Ttl ,x s
0,tl )k) < ε, for all m ≥ m0 and all indices l. Fix an m̄ ≥ m0.

From(13) there is some index l0 such that for all l ≥ l0 wehaved((Ttl ,x s
m̄,tl )k, (Rum̄)k)

≤ ε andd((Ttl ,x s
0,tl )k, (Ru0)k) ≤ ε. Last three relations imply thatd((Rum̄)k, (Ru0)k)

≤ d((Rum̄)k, (Ttl ,x s
m̄,tl )k) + d((Ttl ,x s

m̄,tl )k, (Ttl ,x s
0,tl )k) + d((Ttl ,x s

0,tl )k, (Ru0)k) <

3ε. The proof is complete.

If X is not necessarily linear, then the previous theorem states as follows and its proof
is quite similar to the previous one:

Theorem 7. Assume that the assumptions of Theorem6 keep in force, except relation
(11) which is replaced with the fact that the limit liml Stl (T sm,tl ) exists for a certain
m. Then the motion of the point (x, T ) is compact.

4 Full Limiting Orbits and Limiting Equations Along
Solutions

Here we introduce the notion of the full limiting orbits of a pair (x, T ), when x is
a solution of equation Sx = T x . (Notice that in this case we have T0,x = T ). These
items are points of the form (x∗, T ∗), where x∗ is a full limiting sequence of x and T ∗
is an operator acting on the set of two-sided sequences. Also given any point (x̄, T̄ )

in the ω limit set ω(x, T ) of (x, T ), we construct a full orbit (x̄, T̄ ) in ω(x, T ).
Consider an operator T , such that the pair (x, T ) is compact, where x is a solution

of Sx = T x . Let (x̄, T̄ ) be a point inω(x, T ). Thus there is a sequence (tn) of positive
integers converging to +∞, such that lim(Stn x, Ttn ,x ) = (x̄, T̄ ). By Proposition 2
there is a subsequence (rn) of (tn)which generates a full trajectoryU (x̄) of x̄ and a full
limiting sequence x∗ such that U (x̄)(0) = x̄ and x∗

k+ j = (Skx∗) j = (U (x̄)(k)) j =
lim(Stn+k x) j = limn xtn+k+ j , for all j = 0, 1, · · · . Fix a k ∈ Z. Then eventually rn +



Dynamics of Discrete Operator Equations 275

k is a nonnegative integer. By compactness there is a subsequence (sn) of (rn) with
the property that limn Tsn+k,x = limn(Tsn ,x )k,Stn x =: T ∗

k,x̄ .

Proposition 4. The two-sided sequence V (x̄, T̄ )k := Yk := (U (x̄)(k), T ∗
k,x̄ ), k ∈ Z

defines a full orbit through (x̄, T̄ ) and it stays in ω(x, T ).

Proof. First we show Yk ∈ ω(x, T ), for all k ∈ Z. Indeed, let k be fixed. There is
a sequence (tn) converging to +∞, such that U (x̄)(k) j = lim(Stn+k x) j . Also, for
all j ∈ N0 we have (T ∗

k,x̄ ) j,U (x̄)(k) = limn(Ttn+k,x ) j,Stn+k x = limn Ttn+k+ j,x = T ∗
k+ j,x̄ .

Thereforewehaveγ ( j; Y (k)) = γ ( j; (U (x̄)(k), T ∗
k,x̄ ) = (S jU (x̄)(k), (T ∗

k,x̄ ) j,U (x̄)(k))

= (U (x̄)(k + j), T ∗
k+ j,x̄ )) = Yk+ j . Notice that Y0 = (U (x̄)(0), T ∗

0,x̄ ) = (x̄, T̄ ). This
completes the proof.

Consider a solution x of equation Sx = T x . Then the translation of T along x at
m is given by (5). Moreover we can easily observe that for any positive integer m it
holds S(Smx) = Tm,x Smx , that is the sequence (Smx) solves the operator equation
u = Tm,xu. Assume that the point (x, T ) is compact, with respect to the semi-flow
γ and let (x̄, T̄ ) ∈ ω(x, T ). Then for each k ∈ Z fixed, there is a sequence (tn)
converging to +∞ such that limn(Stn+k x, Ttn+k,x ) = (U (x̄)(k), T ∗

k,x̄ ). Also, due to
the previous observation we get S(Stn+k x) = Ttn+k,x Stn+k x , and keeping in mind the
convergence structure of the space of operators, we get S(U (x̄)(k)) = T ∗

k,x̄U (x̄)(k).
Hence we proved the following result:

Theorem 8. Let x be a solution of equation Sx = T x, where the pair (x, T ) is
compact. Then any full limiting sequence of the solution x satisfies a full limiting
equation of the original operator equation.

5 Some Applications

Application 1. In [8] the local asymptotic stability of the positive solutions of equa-
tion xn+1 = β + 1/xnxn−1 was discussed, and by using a result from [7] it was proved
that if β ≥ 4−1/3, then any positive solution has a finite limit. Here, by using the semi
flow, we show the following more general result:

Theorem 9. Consider the (scalar) difference equation xn+1 = βn + αn
xn xn−1

, where
the sequences (αn) and (βn) have positive terms and converge to some positive α

and β, respectively. If β ≥ (α/4)1/3, then any positive solution converges to the
unique positive root of equation u3 − βu2 − α = 0.

Proof. Any solution x of equation is bounded since for a fixed ε ∈ (0, β) it
holds xn+1 ≥ β − ε and xn+1 ≤ β + ε + (α + ε)/(β − ε)2, eventually. Define the
full limiting sequences y and z of the solution x such that y0 = lim sup xn and
z0 = lim inf xn . These two two-sided sequences satisfy the full limiting equation
un+1 = β + α

unun−1
, n ∈ Z. From this we get y0 ≤ β + α/z20 and z0 ≥ β + α/y20 .



276 G. L. Karakostas

Combining these two relations we finally conclude that y0 = z0. This proves the
convergence of the solution. The uniqueness of the (positive) equilibrium of equa-
tion, follows from the fact that the two curves y = v − β and y = a/v2 intersect at
a unique point in the positive orthant.

Application 2. Here we prove the following result which extends a result in [41],
Chapter2:

Theorem 10. Consider thedifference equation xn+1= βn xn+γn xn−1

An+Bnxn+Cnxn−1
, n = 0, 1, · · · ,

where the sequences (βn), (γn), (An), (Bn), (cn) have nonnegative terms and con-
verge to nonnegative reals β, γ, A, B,C respectively satisfying β + γ ≤ A, with
A > 0. Then any solution starting from nonnegative initial values converge to 0.

Proof. Let (xn) be a solution starting from nonnegative initial values. Then all terms
of the sequence are nonnegative and satisfy xn+1 < 1

Bn
(βn − γn

Bn
Cn

) + γn
Cn

. The right
side converges to a finite limit, which means that the solution is bounded. Let y and
z be the full limiting sequences of (xn) as in Theorem 9. The result will follow if we
show that y0 = 0. Indeed, we have

y0 = βy−1 + γ y−2

A + By0 + Cy−1
≤ (β + γ )y0

A + (B + C)z0
. (14)

If equality holds, then y0 = y−1 = y−2 and thus y0 = βy−1+γ y−2

A+By0+Cy−1
= (β+γ )y0

A+(B+C)y0
, and

so A + (B + C)y0 = β + γ ≤ A. Hence y0 = 0. If in (14) the strict inequality holds,
then we get A + (B + C)z0 < β + γ ≤ A, a contradiction. Thus y0 = 0 and the
proof is complete.

Application 3. Nextwe shall discuss the difference equation xn+1 = pn + xn−1

xkn
, n =

0, 1, · · · , where k is a positive real number. We shall prove the following result:

Theorem 11. Assume that (pn) is bounded and lim inf pn > k1/k ≥ 1. If (pn) is
slowly varying, then any solution is also slowly varying. Moreover, if (pn) converges
to some p, then any solution converges to the unique positive root ρ of the algebraic
equation ρ = p + ρ1−k .

Proof. Fix some a, b such that a > p > b > 1 and let n0 be chosen with the
property that pn ∈ [a, b] for all n ≥ n0. Let μ := a−k < 1. Then we can find
xm+n0+1 ≤ b/(1 − μ) + max{xn0 , xn0 + 1}, for all m = 1, 2, · · · . Hence, the solu-
tion x is bounded. Let w be a full liming sequence of x . Then, it is generated by a
sequence of integers (kn). This sequence, also, generates a full limiting sequence of
(pn), say p, which must be a constant. Hence w satisfies the full limiting equation

wn+1 = p + wn−1

wk
n

. (15)

We show that (wn) is a constant sequence. In order to prove it we let supwn :=
W . If there is some index m such that W = wm , then we let yn := wn+m , for any
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n ∈ Z. If there is some sequence (mn) converging to +∞ such thatW = limwmn =
lim supwn , then we get a full limiting sequence (yn) generated by (mn). We do the
same, when (mn) converges to−∞. In any case the two-sided sequence (yn) satisfies
the difference Eq. (15), for all n. Similarly, we obtain a full limiting sequence (zn)
such that z0 = inf wn . Hence we have y0 ≤ p + y0/zk0 and z0 ≥ p + z0/yk0 . From
these relations we get y0 = z0, which clearly, proves the first result.

If the limit of (pn) exists, then p is the unique full limiting sequence of (pn), thus
(wn) is a constant sequence, ρ say, satisfying (15). This means that ρ = p + ρ1−k ,
and the proof is complete.

The previous arguments extend some results given in [13] (with k=1), in [41],
Chapter4, (where pn = p > 1 and k = 1), as well as in [27] (with pn = p).

Application 4. Consider the exponential type difference equation xn+1 = an +
bnxn−1 exp(−g(xn, xn−1, · · · , xn−m)), n = 0, 1, 2 · · · , where the sequences (an)
and (bn) have positive terms and g is a positive function. We shall show the fol-
lowing result:

Theorem 12. Assume that the sequences (an) and (bn) converge to a(> 0) and
b(> 0), respectively, and the function g(ξ1, ξ2, · · · , ξm+1), is increasing with respect
to each variable, the function G(t) := g(t, t, · · · , t) converges to +∞, it is increas-
ing and its first derivative is nonincreasing. If b(1 + tG ′(t)) < exp(G(t)), for
all t ≥ 0, then there is a unique positive real K satisfying the equation K =
a + bK exp(−G(K )) and any positive solution converges to K .

Proof. It is not hard to see that the function Φ(t) := t − bt exp(−G(t)) maps the
interval [0,+∞) onto itself and it is strictly increasing. Thus the equation Φ(t) = a
admits a unique solution K . Now, by using our assumptions, we can show that
(xn) is bounded. Let y and z be the full limiting sequences of x as in previous
applications. Then we obtain the pair of inequalities y0 ≤ a + by0e−G(z0), z0 ≥ a +
bz0 exp(−G(y0))(≥ a > 0) which imply y0 = z0 and the proof is complete.

The previous result extends a result of [22], when g(ξ1, · · · , ξm+1) = ξ1, an =
a and bn = b. An interesting application of the previous result is given when
g(ξ1, · · · , ξm+1) := ξ

r1
1 ξ

r2
2 · · · ξ rm+1

m+1, where r1 + r2 + · · · rm+1 = 1.

Application 5. If (xn) is a sequence of real numbers, define its limiting oscillation
by the type

O(x) := lim sup xn − lim inf xn.

Theorem 13. Consider the difference Eq. (1) given in the Introduction and assume
that (an) has positive terms and it converges to some a ∈ (0, 1). Then any solution
satisfies O(x) ≤ O(b)/(1 − a). Moreover if bn → b, then xn → b/(1 − a).

Proof. First we can show that (|xn|) is bounded. Let y and z be the full limiting
sequences of (xn), as in the previous application. Then we obtain y0 ≤ ay0 + b and
z0 ≥ az0 + lim inf bn . Hence, on one hand we get y0 − z0 ≤ O(b)/(1 − a)), on the
other hand b ≤ (1 − a)z0 ≤ (1 − a)y0 ≤ b. These relations imply the results.
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Application 6. Finally, we have the difference equation xn+1 = αn + βn/xn

Theorem 14. Assume that a sequence (αn) has nonnegative terms and it converges
to a positive real α. Also assume that (βn) is a bounded sequence with nonnegative
terms. Then for any positive solution of the difference equation it holds O(x) ≤
O(b)/a. In particular, if (βn) converges to someβ(≥ 0), then the solution x converges
to 1

2 [α + √
α2 + 4β].

Proof. Let a, A be lower and upper bounds of the sequence (αn) and B an upper
bound of (βn). Then we have xn+1 ≥ a and xn+1 ≤ A + B/a, for each n. Hence, any
positive solution is bounded. Take the full limiting sequences (yn) and (zn), as in
Theorem 9. Then they satisfy y0 ≤ α + lim supβn/z0 and z0 ≥ α + lim inf βn/y0.
Combining these two relations we get the result.

Corollary 3. Consider the general Fibonacci sequence ζn+1 = αnζn + βnζn−1 with
any (positive) initial values. If the sequences (αn) and (βn) converge to some positive
reals α, β respectively, then it holds lim ζn+1/ζn = 1

2 [α + √
α2 + 4β].

Proof. The sequence xn := ζn/ζn−1 satisfies the equation in Theorem 14.

References

1. Abraham, R.L., Gardini, L., Mira, C.: Chaos in Discrete Dynamical Systems. Springer,
New York (1977)

2. Anzai, H.: Ergodic skew product transformations on the torus. Osaka Math. J. 3, 83–99 (1951)
3. Agarwal, R.P.: Difference Equations and Inequalities: Theory, Methods, and Applications.

Monographs and Textbooks in Pure and Applied Mathematics, 2nd edn. Marcel Dekker Inc.,
New York (2000)

4. Agarwal, R.P., Bohner, M., Grace, S.R., O’Regan, D.: Discrete Oscillation Theory. Hindawi
Publicing Corp., New York (2005)

5. Agarwal, R.P., Wong, P.J.Y.: Advanced Topics in Difference Equations. Kluwer Academic
Publ., Dordrecht (1997)

6. Ravi, P.: Agarwal, Difference Equations and Inequalities, Pure and Applied Mathematics.
Marcel Dekker, Inc., New York (2000)

7. Amleh, A.M., Camouzis, E., Ladas, G.: On the dynamics of a rational difference equations I.
Int. J. Differ. Eqn. 3(1), 1–35 (2008)

8. Anisimova, A.: On the second order rational difference equation xn+1 = β + 1
xn xn−1

, in dif-
ference equations. Discrete dynamical systems and applications. In: ICDEA, Barcelona, Spain
(2012)

9. Bahi, J.M., Guyeux, C.: Discrete Dynamical Systems and Chaotic Machines, Theorey and
Applications. CRP Press, A Chapman & Hall Book, Taylor and Francis Group (2013)

10. Cheban, D.N.: Asymptotically Almost Periodic Solutions of Differential Equations. Hindawi
Publishing Corporation, New York (2009)

11. Crisci, M.R., Kolmanovski, V.B., Russo, E., Vecchio, A.: Boundedness of discrete Volterra
equations. J. Math. Anal. Appl. 211, 106–130 (1997)

12. Devaney,R.:An Introduction toChaoticDynamical Systems, 2nd edn.Addison-Wesley,Boston
(1989)



Dynamics of Discrete Operator Equations 279

13. Devault, R., Kocic, V.L., Stutson, D.: Global behavior of solutions of the nonlinear difference
equation xn+1 = pn + xn−1

xn
. J. Diff. Eqn. Appl. 11, 707–719 (2005)

14. Robert, W.: Easton, Geometric Methods for Discrete Dynamical Systems. Oxford Engineering
Science Series, vol. 50. Oxford University Press, New York (1998)

15. Kin, E.: Skew products of dynamical systems. Trans. Am. Math. Soc. 166, 27–43 (1972)
16. Elaydi, S.N.: An Introduction to Difference Equations. Springer, New York (1995)
17. Elaydi, S.N.: An Introduction to Difference Equations. Undergraduate Texts in Mathematics,

3rd edn. Springer, New York (2005)
18. Elaydi, S., Sacker, R.J.: Skew-product dynamical systems: applications to difference equations.

Trinity University, Digital Commons@ Trinity 4, 1–22 (2004)
19. Elaydi, S.N., Kocic, V.L.: Global stability of a nonlinear Voltrerra difference system. Differ.

Eqn. Dyn. Syst. 2, 337–345 (1994)
20. Galor, O.: Discrete Dynamical Systems. Springer, Berlin (2007)
21. Holmgen, R.A.: A First Course in Discrete Dynamical Systems. Springer, New York (1994)
22. El-Metwally, E., Grove, E.A., Ladas, G., Levins, R., Radin, M.: On the difference equation,

xn+1 = α + βxn−1e−xn . Nonlinear Anal. 47, 4623–4634 (2001)
23. El-Metwally, H., Grove, E.A., Ladas, G.: A global convergence result with applications to

periodic solutions. J. Math. Anal. Appl. 245, 161–170 (2000)
24. Marotto, F.R.: Introduction to Mathematical Modeling Using Discrete Dynamical Systems.

Thomson Brooks/Cole, Pacific Grove (2006)
25. Goldberg, S.: Introduction to Difference Equations. Dover Publ., New York (1986)
26. Gunawardena, J.: Cycle times and fixed points of min-max functions. In: Cohen, G., Quadrat,

J.P. (eds.) 11th International Conference on Analysis and Optimization of Systems Discrete
Event Systems. Lecture Notes in Control and Information Sciences, vol. 199 (1994). Springer,
Heidelberg

27. Hamza, A.E., Morsy, A.: On the recursive sequence xn+1 = α + xn−1
xkn

. Appl. Math. Lett. 22,

91–95 (2009)
28. Karakostas, G.L.: Causal operators and topological dynamics. Ann. Mat. Pura Appl. 131, 1–27

(1982)
29. Karakostas, G.L.: A discrete semi-flow in the space of sequences and study of convergence of

sequences defined by a recured way. Mathematiki Epitheorisi 36, 66–74 (1989)
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Research of Four-Dimensional Dynamic
Systems Describing Processes
of Three’level Assimilation

Temur Chilachava, Sandra Pinelas, and George Pochkhua

Abstract In this work a new nonlinear mathematical model of process of three level
assimilation which is described by four-dimensional dynamic systems is offered. In
case of constancy of coefficients special points of the dynamic system are found.
The conditions on constant coefficients for which it is possible to find special points
with all four coordinates non-negative are determined. Introducing some depen-
dence among coefficients of the system, two first integrals are derived, and the four-
dimensional system is reduced to a two-dimensional one.

The sign-variable divergence theorem of a two-dimensional vector field in some
one-coherent area of the first quadrant of the phase plane is proved. According to
Bendixon’s criterion it is possible to have a closed integral curve completely lying
in this area.

Introduction. Mathematical modeling of physical processes has a long history.
Mathematical modeling of physical processes involves the model adequacy, which
is validated by Newton’s non-relative five laws of classical mechanics: mass conser-
vation law; law of conservation of impulse; the law of conservation the momentum
of impulse; the first law of thermodynamics, i.e. energy conservation law; the second
law of thermodynamics, i.e. entropy conservation law [1–5].

Creation of mathematical models is more original in social sphere, because, they
are more difficult to substantiate [6–8].

We created a new direction of mathematical modeling, i.e. “Mathematical Model-
ing of Information Warfare” [9–11]. In these models two antagonistic sides waging
with each other information warfare and also the third peacekeeping side trying
to extinguish information warfare are considered. Conditions on model parameters
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at which the third side will be able to force the conflicted sides to completion of
information warfare are found.

We also offered mathematical models of forecasting the results of political elec-
tions in case of two or three parties. Also models in case of change of selective
subjects before the next elections have been considered [12–16].

We proposed to create new nonlinear mathematical models of economic cooper-
ation between two politically (not military opposition) mutually warring sides (two
countries or a country and its legal region) which consider economic or other type of
cooperation between different parts of population aimed to the peaceful resolution
of conflicts [17, 18].

Taking into consideration the important tendencies in the world, it is important
to study demographic and assimilation of social processes through mathematical
modeling.

In [19] we considered a new nonlinear continuous mathematical model of linguis-
tic globalization. Two categories of the world’s population are considered: a category
that hinders and a category leading to the dominant position of the English language.
With a positive demographic factor of the population, which prevents globalization
or a negative demographic factor of the population contributing to globalization, it
is shown that the dynamic systems describing these processes allow the existence of
two topologically not equivalent phase portraits (a stable node, a limit cycle).

It is known that, in the world, a social process of assimilation of languages is
hidden. This process, as a rule, considers expansion of an area of the dominating
languages (state languages of economically powerful states) at the expenses of less
widespread languages (state languages economically of rather weak states).

According to this point of view, today, for less widespread languages (including
classic languages) the conditions under which there will be no disappearance of the
major languages are important, i.e. there will be no full assimilation of people talking
in these languages.

1 System of the Equations and Initial Conditions

In this work a new nonlinear mathematical model of process of three-level assimila-
tion which is described by four-dimensional dynamic system is offered:

⎧
⎪⎪⎨

⎪⎪⎩

du(t)
dt = α1(t)u(t) + β1(t)u(t)v(t) + β2(t)u(t)w(t) + β3(t)u(t)z(t)

dv(t)
dt = α2(t)v(t) − β4(t)u(t)v(t) + β5(t)v(t)w(t) + β6(t)v(t)z(t)

dw(t)
dt = α3(t)w(t) − β7(t)u(t)w(t) − β8(t)v(t)w(t) + β9(t)w(t)z(t)

dz(t)
dt = α4(t)z(t) − β10(t)u(t)z(t) − β11(t)v(t)z(t) − β12(t)w(t)z(t)

(1.1)

u(0) = u0, v(0) = v0, w(0) = w0, z(0) = z0, (1.2)
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alpha1(t) < 0, α4(t) > 0, βi (t) > 0, i = 1 − 12
u, v, w, z ∈ C1[0, T ], t ∈ [0, T ] (1.3)

[0, T ]—assimilation process consideration period (as a rule, several decades, are
possible till a century);
u(t)—thefirst population andpowerful government institutionswith verywidespread
language (English) influencing, through administrative resources, population talk-
ing in other three different languages;
v(t)—the second population and government institutions with widespread second
languagewhich undergoes assimilation fromEnglish, but in turn influencing, through
administrative resources, the third and fourth populations with the purpose of their
assimilation (for examples, French, German, Russian, Spanish, Chinese, Turkish and
other);
w(t)—the third population which undergoes bilateral assimilation from two rather
powerful states (for examples, Ukrainian, Arabic, Romanian (Moldavian), Catalan,
and other);
z(t)—the fourth population which undergoes assimilation from the other three pow-
erful languages (for examples, Occitan, Provencal language, Gagauz, and other)
(Fig. 1);

Fig. 1 The scenario of process of three-level assimilation

The new mathematical model introduced in what follows assumes the natural
inequalities:

βi (t) > 0, i = 1 − 12, t ∈ [0, T ]. (1.4)

We avoid to consider the trivial process of assimilation, in which a strong side
completely assimilates the other three sides.

For the description of a nontrivial process, it is necessary to assume one among
the following assumptions:

Assumption 1: ⎧
⎪⎪⎨

⎪⎪⎩

α1(t) < 0
α2(t) ≥ 0
α3(t) ≥ 0
α4(t) > 0

t ∈ [0, T ] (1.5)
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Assumption 2: ⎧
⎪⎪⎨

⎪⎪⎩

α1(t) < 0
α2(t) ≤ 0
α3(t) ≤ 0
α4(t) > 0

t ∈ [0, T ] (1.6)

Assumption 3: ⎧
⎪⎪⎨

⎪⎪⎩

α1(t) < 0
α2(t) ≤ 0
α3(t) ≥ 0
α4(t) > 0

t ∈ [0, T ] (1.7)

Assumption 4: ⎧
⎪⎪⎨

⎪⎪⎩

α1(t) < 0
α2(t) ≥ 0
α3(t) ≤ 0
α4(t) > 0

t ∈ [0, T ] (1.8)

2 Some Special Cases

We will assume that all coefficients of system of the equations (1.1) are constants

⎧
⎪⎪⎨

⎪⎪⎩

du(t)
dt = α1u(t) + β1u(t)v(t) + β2u(t)w(t) + β3u(t)z(t)

dv(t)
dt = α2v(t) − β4u(t)v(t) + β5v(t)w(t) + β6v(t)z(t)

dw(t)
dt = α3w(t) − β7u(t)w(t) − β8v(t)w(t) + β9w(t)z(t)

dz(t)
dt = α4z(t) − β10u(t)z(t) − β11v(t)z(t) − β12w(t)z(t)

(2.1)

u(0) = u0, v(0) = v0, w(0) = w0, z(0) = z0,

βi > 0, i = 1 − 12, α1 < 0, α4 > 0, t ∈ [0, T ].

Stationary points of the nonlinear system of differential equations (2.1) are:

M0(0; 0; 0; 0), M1(0; 0; α4
β12

;−α3
β9

), M2(0; α4
β11

; 0;−α2
β6

),

M3(0; α3
β8

;−α2
β5

; 0), M4(
α4
β10

; 0; 0;−α1
β3

), M5(
α3
β7

; 0;−α1
β2

; 0),
M6(

α2
β4

;−α1
β1

; 0; 0), M7(0; v∗;w∗; z∗), M8(u∗∗; 0;w∗∗; z∗∗),
M9(u∗∗∗; v∗∗∗; 0; z∗∗∗), M10(u∗∗∗∗; v∗∗∗∗;w∗∗∗∗; 0),
M11(u∗∗∗∗∗; v∗∗∗∗∗;w∗∗∗∗∗; z∗∗∗∗∗),

(2.2)
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where

v∗, w∗, z∗ :
⎧
⎨

⎩

α2 + β5w + β6z = 0
α3 − β8v + β9z = 0
α4 − β11v − β12w = 0,

u∗∗, w∗∗, z∗∗ :
⎧
⎨

⎩

α1 + β2w + β3z = 0
α3 − β7u + β9z = 0
α4 − β10u − β12w = 0,

u∗∗∗, v∗∗∗, z∗∗∗ :
⎧
⎨

⎩

α1 + β1v + β3z = 0
α2 − β4u + β6z = 0
α4 − β10u − β11v = 0,

u∗∗∗∗, v∗∗∗∗, w∗∗∗∗ :
⎧
⎨

⎩

α1 + β1v + β2w = 0
α2 − β4u + β5w = 0
α3 − β7u − β8v = 0,

u∗∗∗∗∗, v∗∗∗∗∗, w∗∗∗∗∗, z∗∗∗∗∗ :

⎧
⎪⎪⎨

⎪⎪⎩

α1 + β1v + β2w + β3z = 0
α2 − β4u + β5w + β6z = 0
α3 − β7u − β8v + β9z = 0
α4 − β10u − β11v − β12w = 0.

We will enter transformation

u = u − u0, v = v − v0, w = w − w0, z = z − z0. (2.3)

Then from (1.2), (2.1), (2.3) it is easy to receive

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du(t)
dt

u+u0
= α1 + β1v0 + β2w0 + β1v + β2w + β3z0 + β3z

dv(t)
dt

v+v0
= α2 − β4u0 + β5w0 − β4u + β5w + β6z0 + β6z

dw(t)
dt

w+w0
= α3 − β7u0 − β8v0 − β7u − β8v + β9z0 + β9z

dz(t)
dt

z+z0
= α4 − β10u0 − β11v0 − β10u − β11v − β12w0 − β12w

(2.4)

We will pick up coefficients of a system of the Eq. (2.1) (model parameters) so
that it was carried out

⎧
⎪⎪⎨

⎪⎪⎩

α1 + β1v0 + β2w0 + β3z0 = 0
α2 − β4u0 + β5w0 + β6z0 = 0
α3 − β7u0 − β8v0 + β9z0 = 0
α4 − β10u0 − β11v0 − β12w0 = 0

(2.5)

Existence of a set of positive solutions (u0, v0, w0, z0) of a system (2.5), requires
that the determinants of the following five matrices are equal to zero:
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Δ =

∣
∣
∣
∣
∣
∣
∣
∣

0 β1 β2 β3

−β4 0 β5 β6

−β7 −β8 0 β9

−β10 −β11 −β12 0

∣
∣
∣
∣
∣
∣
∣
∣

= 0 (2.6)

Δ1 =

∣
∣
∣
∣
∣
∣
∣
∣

−α1 β1 β2 β3

−α2 0 β5 β6

−α3 −β8 0 β9

−α4 −β11 −β12 0

∣
∣
∣
∣
∣
∣
∣
∣

= 0 (2.7)

Δ2 =

∣
∣
∣
∣
∣
∣
∣
∣

0 −α1 β2 β3

−β4 −α2 β5 β6

−β7 −α3 0 β9

−β10 −α4 −β12 0

∣
∣
∣
∣
∣
∣
∣
∣

= 0 (2.8)

Δ3 =

∣
∣
∣
∣
∣
∣
∣
∣

0 β1 −α1 β3

−β4 0 −α2 β6

−β7 −β8 −α3 β9

−β10 −β11 −α4 0

∣
∣
∣
∣
∣
∣
∣
∣

= 0 (2.9)

Δ4 =

∣
∣
∣
∣
∣
∣
∣
∣

0 β1 β2 −α1

−β4 0 β5 −α2

−β7 −β8 0 −α3

−β10 −β11 −β12 −α4

∣
∣
∣
∣
∣
∣
∣
∣

= 0 (2.10)

From (2.6)–(2.10) it is easy to receive

Δ = β4(β3β8β12 − β2β9β11 + β1β9β12) − β7(β3β5β11 − β2β6β11 + β1β6β12)

+ β10(β1β5β9 − β2β6β8 + β3β5β8) = 0

Δ1 = −α1(β6β8β12 − β5β9β11) + α2(β1β9β12 − β2β9β11 + β3β8β12)

− α3(β3β5β11 − β2β6β11 + β1β6β12) + α4(β1β5β9 − β2β6β8 + β3β5β8) = 0

Δ2 = α1(β6β7β12 − β5β9β10 − β4β9β12) − α2(β3β7β12 − β2β9β10)

+ α3(β3β4β12 − β2β6β10 + β3β5β10) + α4(β2β6β7 − β3β5β7 − β2β4β9) = 0

Δ3 = α1(−β6β7β11 + β6β8β10 + β4β9β11) − α2(−β3β7β11 + β1β9β10 + β3β8β10)

− α3(β3β4β11 − β2β6β10)+α4(β3β4β8 − β1β6β7 + β1β4β9) = 0

Δ4 = α1(−β4β8β12 + β5β7β11 − β5β8β10) − α2(β2β7β11 − β2β8β10 − β1β7β12)

+ α3(β2β4β11 − β1β5β10 − β1β4β12) − α4(β2β4β8 − β1β5β7) = 0

(2.11)
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2.1 A First Reduction

Let’s consider a special case, assuming the positions:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β1 = β4

β2 = β7

β3 = β10

β5 = β8

β6 = β11

β9 = β12

(2.12)

Then from (2.1), (2.12) it is easy to receive

Δ = (β3β5 − β2β6 + β1β9)
2 = 0

Δ1 = (β3β5 − β2β6 + β1β9)(α2β9 − α3β6 + α4β5) = 0
Δ2 = (β3β5 − β2β6 + β1β9)(−α1β9 + α3β3 − α4β2) = 0
Δ3 = (β3β5 − β2β6 + β1β9)(α1β6 − α2β3 + α4β1) = 0
Δ4 = (β3β5 − β2β6 + β1β9)(−α1β5 + α2β2 − α3β1) = 0

(2.13)

Thus, in this considered special case, we find

β3β5 + β1β9 = β2β6 (2.14)

so that the following system holds:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Δ = 0
Δ1 = 0
Δ2 = 0
Δ3 = 0
Δ4 = 0.

(2.15)

Thus, from (2.4) and (2.5), (2.12) we will receive the following system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du(t)
dt

u+u0
= β1v + β2w + β3z

dv(t)
dt

v+v0
= −β1u + β5w + β6z

dw(t)
dt

w+w0
= −β2u − β5v + β9z

dz(t)
dt

z+z0
= −β3u − β6v − β9w

(2.16)

If we multiply the first Eq. (2.16) by γ1, the second equation—by γ2, the third
equation—by γ3, the fourth equation—by γ4 and adding the obtained four equations
of the system, then we get
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d
dt [ln(u + u0)γ1(v + v0)

γ2(w + w0)
γ3(z + z0)γ4 ]

= −(β1γ2 + β2γ3 + β3γ4)u + (β1γ1 − β5γ3 − β6γ4)v

+(β2γ1 + β5γ2 − β9γ4)w + (β3γ1 + β6γ2 + β9γ3)z
(2.17)

In (2.17) we will pick up γ1, γ2, γ3, γ4 so that the following algebraic linear
system follows ⎧

⎪⎪⎨

⎪⎪⎩

β3γ1 + β6γ2 + β9γ3 = 0
β2γ1 + β5γ2 − β9γ4 = 0
β1γ1 − β5γ3 − β6γ4 = 0
β1γ2 + β2γ3 + β3γ4 = 0

(2.18)

The determinant of the system (2.18), owing to (2.13) must be zero

Δ∗ =

∣
∣
∣
∣
∣
∣
∣
∣

β3 β6 β9 0
β2 β5 0 −β9

β1 0 −β5 −β6

0 β1 β2 β3

∣
∣
∣
∣
∣
∣
∣
∣

= −Δ = 0. (2.19)

Therefore, there is a set of nontrivial solutions γ1, γ2, γ3, γ4 of system (2.18).
Taking into account (1.2), (2.3), (2.17), (2.18), a first integral of the system (2.16)
takes the form

uγ1vγ2wγ3 zγ4 = uγ1
0 v

γ2
0 w

γ3
0 zγ4

0 (2.20)

It is easy shown that owing to (2.13), (2.14), (2.19), the following property holds

rank

⎛

⎜
⎜
⎝

β3 β6 β9 0
β2 β5 0 −β9

β1 0 −β5 −β6

0 β1 β2 β3

⎞

⎟
⎟
⎠ = 2 (2.21)

therefore, in the system (2.18) two of the four unknown γ1, γ2, γ3, γ4, can be taken
arbitrarily. In what follows, we take γ1 = 1, γ4 = 1, so that, deleting the first and
fourth equation of the system (2.18), we find

⎧
⎪⎪⎨

⎪⎪⎩

γ1 = 1
γ2 = β9−β2

β5

γ3 = β1−β6

β5

γ4 = 1

(2.22)

Thus, the above first integral (2.20) becomes:

uv
β9−β2

β5 w
β1−β6

β5 z = u0v
β9−β2

β5
0 w

β1−β6
β5

0 z0 (2.23)
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2.2 A Second Reduction

Now we consider the special case when

{
β2 − β9 = β5

β6 − β1 = β5
(2.24)

The system (2.24), taking into account equality (2.14), leads to the equation

β3 = β1 + β2 (2.25)

Thus, if the coefficients βi > 0, i = 1 − 12, in the system (2.12) are connected
by the equations ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 = β4

β2 = β7

β3 = β10

β5 = β8

β6 = β11

β9 = β12

β3β5 + β1β9 = β2β6

β2 − β9 = β5

β6 − β1 = β5

β2 > β5

(2.26)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 = β1

β2 = β2

β3 = β1 + β2

β4 = β1

β5 = β5

β6 = β1 + β5

β7 = β2

β8 = β5

β9 = β2 − β5

β10 = β1 + β2

β11 = β1 + β5

β12 = β2 − β5

β2 > β5

(2.27)

then the system (2.1) takes the form
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⎧
⎪⎪⎨

⎪⎪⎩

du(t)
dt = α1u(t) + β1u(t)v(t) + β2u(t)w(t) + (β1 + β2)u(t)z(t)

dv(t)
dt = α2v(t) − β1u(t)v(t) + β5v(t)w(t) + (β1 + β5)v(t)z(t)

dw(t)
dt = α3w(t) − β2u(t)w(t) − β5v(t)w(t) + (β2 − β5)w(t)z(t)

dz(t)
dt = α4z(t) − (β1 + β2)u(t)z(t) − (β1 + β5)v(t)z(t) − (β2 − β5)w(t)z(t)

(2.28)
and its first integral becomes

uz = vwp, p ≡ u0z0
v0w0

= const (2.29)

According to Kronecker-Capelli’s theorem, the non-homogeneous linear system
(2.5) is compatible if and only if the rank of the system matrix is equal to that of the
expanded matrix. By Eqs. (2.12), (2.14), (2.21) we have

rank

⎛

⎜
⎜
⎝

0 β1 β2 β3

−β1 0 β5 β6

−β2 −β5 0 β9

−β3 −β6 −β9 0

⎞

⎟
⎟
⎠ = 2 (2.30)

therefore, must be also two the rank of the expanded matrix:

rank

⎛

⎜
⎜
⎝

0 β1 β2 β3 −α1

−β1 0 β5 β6 −α2

−β2 −β5 0 β9 −α3

−β3 −β6 −β9 0 −α4

⎞

⎟
⎟
⎠ = 2 (2.31)

This leads to the following system for α1, α2, α3, α4

⎧
⎪⎪⎨

⎪⎪⎩

α1β5 − α2β2 + α3β1 = 0
α2β9 − α3β6 + α4β5 = 0
α1β6 − α2β3 + α4β1 = 0
α1β9 − α3β3 + α4β2 = 0

(2.32)

Thus, under the conditions (2.27), (2.30)–(2.32), the system (2.5) foru0, v0, w0, z0,
has a set of solutions and, as a same time, owing to (2.30), giving arbitrarily for exam-
ple u0, v0, the other two unknowns w0, z0 are defined by the system (2.5).

From the system (2.32), owing to (2.27), it is easy to receive

α1 + α4 = α2 + α3 (2.33)

Taking into account the assumptions of our model (not triviality of mathemati-
cal model), it is possible to assume additional restrictions for demographic factors
α1, α2, α3, α4 of the sides
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{
α1 = α2β2−α3β1

β5
< 0

α4 = α3β6−α2β9

β5
> 0

(2.34)

For finding a second first integral of the system (2.28), we will consider its first
three equations

⎧
⎨

⎩

du(t)
dt = α1u(t) + β1u(t)v(t) + β2u(t)w(t) + (β1 + β2)u(t)z(t)

dv(t)
dt = α2v(t) − β1u(t)v(t) + β5v(t)w(t) + (β1 + β5)v(t)z(t)

dw(t)
dt = α3w(t) − β2u(t)w(t) − β5v(t)w(t) + (β2 − β5)w(t)z(t)

(2.35)

After simple transformations in (2.28), we will receive

⎧
⎨

⎩

1
u
du
dt = α1 + β1v + β2w + (β1 + β2)z

1
v
dv
dt = α2 − β1u + β5w + (β1 + β5)z

1
w

dw
dt = α3 − β2u − β5v + (β2 − β5)z

(2.36)

We will multiply the first equation of a system (2.36) on a, the second - on b, the
third - on c, an the received equations we will put

a
u
du
dt + b

v
dv
dt + c

w
dw
dt = (α1a + α2b + α3c) − (β1b + β2c)u + (β1a − β5c)v

+(β2a + β5b)w + [(β1 + β2)a + (β1 + β5)b + (β2 − β5)c] z
(2.37)

Now we will pick up a, b, c so that the system took place

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α1a + α2b + α3c = 0
β1b + β2c = 0
β1a − β5c = 0
β2a + β5b = 0
(β1 + β2)a + (β1 + β5)b + (β2 − β5)c = 0

(2.38)

Owing to (2.32), the system (2.38) is equivalent to the following system

⎧
⎨

⎩

β1b + β2c = 0
β1a − β5c = 0
β2a + β5b = 0

(2.39)

The decision (2.39) has the following appearance

⎧
⎪⎨

⎪⎩

a = a
b = − β2

β5
a

c = β1

β5
a

(2.40)

Taking into account (2.38), from (2.37) it is easy to receive the first integral of
system (2.36)



292 T. Chilachava et al.

uavbwc = ua0v
b
0w

c
0 (2.41)

For example, having taken a = 1, from (2.40) we will receive

⎧
⎪⎨

⎪⎩

a = 1
b = − β2

β5

c = β1

β5

and (2.41) will take a form

uv
− β2

β5 w
β1
β5 = u0v

− β2
β5

0 w

β1
β5
0 (2.42)

If taking into account (2.27), we pick up

⎧
⎨

⎩

β1 = β5

β2 = 2β5

β5 = β5

(2.43)

then (2.42) will define the first integral of the system (2.36) or the second first integral
of the system (2.28) taking into account (2.43)

uw

v2
= u0w0

v2
0

≡ q (2.44)

Thus (2.29), (2.44), under the assumptions (2.34), (2.43), represent the two first
integrals for the following system with initial conditions

⎧
⎪⎪⎨

⎪⎪⎩

du(t)
dt = α1u(t) + β1u(t)v(t) + 2β1u(t)w(t) + 3β1u(t)z(t)

dv(t)
dt = α2v(t) − β1u(t)v(t) + β1v(t)w(t) + 2β1v(t)z(t)

dw(t)
dt = α3w(t) − 2β1u(t)w(t) − β1v(t)w(t) + β1w(t)z(t)

dz(t)
dt = α4z(t) − 3β1u(t)z(t) − 2β1v(t)z(t) − β1w(t)z(t)

(2.45)

u(0) = u0, v(0) = v0, w(0) = w0, z(0) = z0

α1 = 2α2 − α3 < 0, α4 = 2α3 − α2 > 0

The two first integrals of the system (2.45) can be written in the following form:

{
w = q v2

u

z = pq v3

u2
(2.46)

Thus we have reduced the original four-dimensional dynamic system to the fol-
lowing two-dimensional one:
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⎧
⎪⎨

⎪⎩

du(t)
dt = α1u(t) + β1u(t)v(t) + 2β1qv2(t) + 3β1 pq

v3(t)
u(t)

dv(t)
dt = α2v(t) − β1u(t)v(t) + β1q

v3(t)
u(t) + 2β1 pq

v4(t)
u2(t)

(2.47)

u(0) = u0, v(0) = v0

Thus, we received a nonlinear two-dimensional dynamic system (2.47).

2.3 A Third Reduction

Now, let’s us consider the special case when

α1 + α2 = 0 (2.48)

which does not contradict conditions (2.33), (2.34) and leads to the system

⎧
⎪⎪⎨

⎪⎪⎩

α1 < 0
α2 = −α1 = |α1| > 0
α3 = −3α1 = 3 |α1| > 0
α4 = −5α1 = 5 |α1| > 0

(2.49)

Thus, according to (2.47), (2.48), we get a two-dimensional dynamic system

⎧
⎪⎨

⎪⎩

du(t)
dt = α1u(t) + β1u(t)v(t) + 2β1qv2(t) + 3β1 pq

v3(t)
u(t)

dv(t)
dt = −α1v(t) − β1u(t)v(t) + β1q

v3(t)
u(t) + 2β1 pq

v4(t)
u2(t)

(2.50)

u(0) = u0, v(0) = v0

Theorem. The Cauchy problem (2.50), in some one-coherent area D ⊂ (O, u(t),
v(t)) of the first quadrant of the phase plane (O, u(t), v(t)), has a closed integral
curve completely lying in this area.

Proof. The system of nonlinear differential equations (2.50) will be written in vector
form

d

dt

(
u(t)
v(t)

)

=
(
F1(u, v)

F2(u, v)

)

≡ →
F, (2.51)

where

F1(u, v) ≡ α1u(t) + β1u(t)v(t) + 2β1qv2(t) + 3β1 pq
v3(t)
u(t)

F2(u, v) ≡ α2v(t) − β1u(t)v(t) + β1q
v3(t)
u(t) + 2β1 pq

v4(t)
u2(t)

(2.52)
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Let’s find the divergence of the two-dimensional vector field
→
F

div
→
F = ∇i Fi = ∂F1

∂u + ∂F2
∂v

∂F1
∂u = α1 + β1v − 3β1 pq

v3

u2
∂F2
∂v

= −α1 − β1u + 3β1q
v2

u + 8β1 pq
v3

u2

(2.53)

Therefore

div
→
F = β1v − β1u + 3β1q

v2

u
+ 5β1 pq

v3

u2
(2.54)

We investigate the following function of two variables

Φ(u, v) ≡ β1v − β1u + 3β1q
v2

u
+ 5β1 pq

v3

u2
(2.55)

and we will establish its signs in the first quarter of the phase plane (O, u, v).
By using Eq. (2.55), it is possible to show where, on some half-line (making

physical sense for the model) of the first quadrant of the phase plane (O, u, v) the
function of two variables Φ(u, v) vanishes.

We investigate the behavior of Φ(u, v) function on the (O, u, v) phase plane.
Let’s consider a straight line

v = ku (2.56)

Then, from (2.55), (2.56), we will receive

Φ(u) = uβ1
(
k − 1 + 3k2q + 5pqk3

)
(2.57)

Let’s enter designation

f (k) ≡ k − 1 + 3k2q + 5pqk3 (2.58)

It is easy to show that the equation

f (k) = 0 (2.59)

has at least a positive root.
From (2.58) we find:

f (0) = −1 < 0, f (1) = 3q + 5pq > 0, f (∞) > 0, f (−∞) < 0,
d f
dk = 1 + 6qk + 15pqk2 > 0, k > 0, f (k) ∈ C∞ (2.60)

also there is at least a positive k∗ such that

f (k∗) = 0
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at the same time, by (2.60)

0 < k∗ < 1, k∗ ‖u0, v0, w0, z0.

Thus the following conditions hold

v > k∗u Φ(u, v) > 0
v < k∗u Φ(u, v) < 0
v = k∗u Φ(u, v) = 0

(2.61)

Thus, given (2.54), (2.55), (2.61) it is shown that the divergence of the vector field
in the first quadrant of the phase plane (O, u(t), v(t)) at the intersection of a straight
line v = k∗u changes its sign, hence according to the Bendixson’s criterion, in some
one-coherent area D ⊂ (O, u(t), v(t)) containing a segment of that straight line, it
is possible to have a closed integral curve completely lying in this area.

Theorem is Proved
Under the conditions (2.27), (2.43), (2.49), the special point (2.2) of the nonlinear

system of the differential equations (2.1), with all positive coordinates
M11(u∗∗∗∗∗; v∗∗∗∗∗;w∗∗∗∗∗; z∗∗∗∗∗), will be defined from the solution of the following
linear algebraic system of equations u∗∗∗∗∗, v∗∗∗∗∗, w∗∗∗∗∗, z∗∗∗∗∗ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v + 2w + 3z = −α1
β1−u + w + 2z = α1

β1

2u + v − z = −3α1
β1

3u + 2v + w = −5α1
β1

(2.62)

The rank of the matrix of the system (2.62) is equal to two

rank

⎛

⎜
⎜
⎝

0 1 2 3
−1 0 1 2
2 1 0 −1
3 2 1 0

⎞

⎟
⎟
⎠ = 2

Therefore two positive coordinates of a special point can be taken arbitrarily, and
two others will be defined from two independent equations of the system (2.62)

w∗∗∗∗∗ = −a α1
β1

,

z∗∗∗∗∗ = −b α1
β1

,

u∗∗∗∗∗ = −α1
β1

(1 + a + 2b) ,

v∗∗∗∗∗ = −α1
β1

(1 − 2a − 3b) .

(2.63)

At the same time positive parameters need to be picked up so that the following
system of inequalities hold
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⎧
⎨

⎩

a > 0
b > 0
(2 + k∗)a + (3 + 2k∗)b + k∗ = 1

(2.64)

If the third equation of the system (2.64) holds, we find

k∗ = 1 − 2a − 3b

1 + a + 2b
(2.65)

so that the point M12(u∗∗∗∗∗; v∗∗∗∗∗) lies on the line v = k∗u (O, u, v)phase plane,
and it is also the projection of the point M11(u∗∗∗∗∗; v∗∗∗∗∗;w∗∗∗∗∗; z∗∗∗∗∗) on to this
phase plane.

Thus according to (2.55), (2.61) in the first quadrant of the phase plane (O, u(t),
v(t)) there is such area in which F(u, v) function of a sign change and according to
Bendixson’s criterion in this area existence of the closed integrated curve is possible,
i.e. in this case according to (2.46) w(t), z(t) functions doesn’t become equal to
zero and there is no full assimilation of the third and fourth languages.

Conclusion. Thus, assuming some relations between constant coefficients of the
mathematical model, two first integrals of the nonlinear system of differential equa-
tions are obtained and the four-dimensional dynamic system is reduced to a two-
dimensional one. The theorem of the sign-variable divergence of a two-dimensional
vector field in some one-coherent area of the first quadrant of the phase plane has
been proved. According to Bendixson ’s criterion, a closed integral curve, that is, the
existence of a non-zero solution, is possible in this area. For these constant model
parameter values, no language is fully assimilated.

The authors express their deep gratitude to professors Paolo Ricci and Ilia Tavkhe-
lidze for the repeated discussion of this work. Especially we want to note the useful
advice of Professor Paolo Ricci, which contributed to improving the presentation of
the results of the work.
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Abstract This paper is devoted to study of existence of at least two positive solutions
for a nonlinearNeumannboundary value problem involving the discrete p-Laplacian.
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1 Introduction

In this paper, we investigate the existence of two positive solutions for the following
nonlinear discrete Neumann boundary value problem

{−Δ(φp(Δu(k − 1))) + q(k)φp(u(k)) = λ f (k, u(k)), k ∈ [1, N ],
Δu(0) = Δu(N ) = 0,

Nλ, f

where λ is a positive parameter, N is a fixed positive integer, [0, N + 1] is the discrete
interval {0, ..., N + 1}, φp(s) := |s|p−2s, 1 < p < +∞ and for all k ∈ [0, N + 1],
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The theory of difference equations employs numerical analysis, fixed point meth-
ods, upper an lower solutionsmethods (see, for instance, [3, 5, 7, 23]). The variational
approach represents an important advance as it allows to prove multiplicity results,
usually, under a suitable condition on the nonlinearities, see [1, 2, 7–11, 14–22, 24,
25].

In the present paper,we study the problem (Nλ, f ) following a variational approach,
based on a recent result of Bonanno and D’Aguì (see [6]), that assures the existence
of at least two non trivial critical points for a certain class of functionals defined on
infinite-dimensional Banach space. This theorem is obtained by combining a local
minimum result given in [13], together with the Ambrosetti-Rabinowitz theorem
(see [4]). In the application of the mountain pass theorem, to prove the Palais-Smale
condition of the energy functional associated to the nonlinear differential problems,
theAmbrosetti-Rabinowitz condition is requested on the nonlinear term, in particular
this means that the nonlinear term has to be more than p-superlinear at infinity.

In this paper, exploiting that the variational framework of the problem (Nλ, f ) is
defined in a finite-dimensional space, we prove that the p-superlinearity at infinity
of the primitive on the nonlinearity is enough to prove the Palais-Smale condition.
For a complete overview on variational methods on finite Banach spaces and discrete
problems, see [12]. We obtain, here, Theorem2, which gived the existence of two
positive solutions, by requiring an algebraic condition on the nonlinearity (we mean
(6) in 2).

The paper is so organized: Sect. 2, contains basic definitions and main results on
difference equations and some critical point tools, in addition, Lemma2 is given in
order to prove the Palais-Smale condition of the functional associated to problem
(Nλ, f ). Section3 is devoted to our main result. In particular, our main theorem allows
us to obtain two positive solutions with only one hypothesis on the primitive of the
nonlinear term f without any asymptotic behaviour at zero.Moreover, a consequence
(Corollary1) (requiring the p-superlinearity at infinity and the p-sublinearity at zero
on the primitive of f ) of ourmain result is presented in order to show the applicability
of our results.

2 Mathematical Background

In the N + 2-dimensional Banach space

X = {u : [0, N + 1] → lR : Δu(0) = Δu(N ) = 0},

we consider the norm

‖u‖ :=
(

N+1∑
k=1

|Δu(k − 1)|p +
N∑

k=1

q(k)|u(k)|p
)1/p

∀u ∈ X.
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Moreover, we will use also the equivalent norm

‖u‖∞ := max
k∈[0,N+1] |u(k)|, ∀u ∈ X.

For our purpose, it will be useful the following inequality

‖u‖∞ ≤ ‖u‖q−1/p, ∀u ∈ X, where q := min
k∈[1,N ] qk . (1)

Moreover, we mention the classical Hölder norm on X .

‖u‖p =
(

N+1∑
k=0

|u(k)|p
) 1

p

.

We observe that being X a finite dimensional Banach space, all norms defined on it
are equivalent and in particular, there exist two positive constants L1 and L2 such
that

L1‖u‖p ≤ ‖u‖ ≤ L2‖u‖p. (2)

To describe the variational framework of problem (Nλ, f ), we introduce the fol-
lowing two functions

Φ(u) := ‖u‖p

p
and Ψ (u) :=

N∑
k=1

F(k, u(k)), ∀u ∈ X, (3)

where F(k, t) := ∫ t
0 f (k, ξ)dξ for every (k, t) ∈ [1, N ] × lR. Clearly, Φ and Ψ are

two functionals of class C1(X, lR) whose Gâteaux derivatives at the point u ∈ X are
given by

Φ ′(u)(v) =
N+1∑
k=1

φp (Δu (k − 1)) Δv (k − 1) + q(k) |u (k)|p−2 u (k) v (k) ,

and

Ψ ′(u)(v) =
N∑

k=1

f (k, u (k)) v(k),

for all u, v ∈ X . Taking into account that
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−
N∑

k=1

Δ(φp(Δu(k − 1)))v(k) =
N+1∑
k=1

φp(Δu(k − 1))Δv(k − 1), ∀ u v,∈ X,

it is easy to verify, see also [25], that

Lemma 1. A vector u ∈ X is a solution of problem (Nλ, f ) if and only if u is a critical
point of the function Iλ = Φ − λΨ .

Let (X, ‖ · ‖) be a Banach space and let I ∈ C1(X, lR). We say that I satisfies the
Palais-Smale condition (in short (PS)-condition), if any sequence {un}n∈lN ⊆ X such
that

1. {I (un)}n∈lN is bounded,
2. {I ′(un)}n∈lN converges to 0 in X∗,

admits a subsequence which is convergent in X .
Here, we recall the abstract result established in [6], on the existence of two

non-zero critical points.

Theorem 1. Let X be a real Banach space and letΦ,Ψ : X → lR be two functionals
of class C1 such that inf

X
Φ = Φ(0) = Ψ (0) = 0. Assume that there are r ∈ lR and

ũ ∈ X, with 0 < Φ(ũ) < r , such that

sup
u∈Φ−1(]−∞,r ])

Ψ (u)

r
<

Ψ (ũ)

Φ(ũ)
, (4)

and, for each

λ ∈ Λ =
⎤
⎥⎦Φ(ũ)

Ψ (ũ)
,

r

sup
u∈Φ−1(]−∞,r ])

Ψ (u)

⎡
⎢⎣ ,

the functional Iλ = Φ − λΨ satisfies the (PS)-condition and it is unbounded from
below.

Then, for each λ ∈ Λ, the functional Iλ admits at least two non-zero critical points
uλ,1, uλ,2 such that I (uλ,1) < 0 < I (uλ,2).

Here and in the sequel we suppose f (k, 0) ≥ 0 for all k ∈ [1, N ]. We assume that
f (k, x) = f (k, 0) for all x < 0 and for all k ∈ [1, N ]. Put

L∞(k) := lim inf
s→+∞

F(k, s)

s p
, L∞ := min

k∈[1,N ] L∞(k).

We give the following lemma.
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Lemma 2. If L∞ > 0 then Iλ satisfies (PS)-condition and it is unbounded from

below for all λ ∈
]

L p
2

pL∞
,+∞

[
, where L2 is given in (2).

Proof. Since L∞ > 0 we put λ >
L p
2

pL∞
and l such that L∞ > l >

L p
2

pλ
. Let {un} be

a sequence such that lim
n→+∞ Iλ(un) = c and lim

n→+∞ I ′
λ(un) = 0. Put u+

n = max{un, 0}
and u−

n = max{−un, 0} for all n ∈ lN. We have that {u−
n } is bounded. In fact, one has

∣∣Δu−
n (k − 1)

∣∣p ≤ −φp (Δun(k − 1)) Δu−
n (k − 1),

for all k ∈ [1, N + 1], and

q(k)
∣∣u−

n (k)
∣∣p = −q(k) |un(k)|p−2 un(k)u

−
n (k),

for all k ∈ [1, N + 1].
So we have,

N+1∑
k=1

(∣∣Δu−
n (k − 1)

∣∣p + q(k)
∣∣u−

n (k)
∣∣p)

≤ −
N+1∑
k=1

(
φp (Δun(k − 1)) Δu−

n (k − 1) + q(k) |un(k)|p−2 un(k)u
−
n (k)

)
.

So,

‖u−
n ‖p =

N+1∑
k=1

(∣∣Δu−
n (k − 1)

∣∣p + q(k)
∣∣u−

n (k)
∣∣p)

≤ −
N+1∑
k=1

(
φp (Δun(k − 1)) Δu−

n (k − 1) + q(k) |un(k)|p−2 un(k)u
−
n (k)

)

= −Φ ′(un)(u−
n ).

By definition of u−
n and taking into account that f (k, x) = f (k, 0) for all x < 0 and

for all k ∈ [1, N ], we have

Ψ ′(un)(u−
n ) =

N∑
k=1

f (k, un(k)) u
−
n (k) ≥ 0.

So, we get

‖u−
n ‖p ≤ −Φ ′(un)(u−

n ) ≤ −Φ ′(un)(u−
n ) + λΨ ′(un)(u−

n ),
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that is
‖u−

n ‖p ≤ −I ′
λ(un)(u

−
n ), (5)

for all n ∈ lN. Now, from lim
n→+∞ I ′

λ(un) = 0, one has lim
n→+∞

I ′
λ(un)(u

−
n )

‖u−
n ‖ = 0, for

which, taking (5) into account, gives lim
n→+∞ ‖u−

n ‖ = 0. So, we obtain the claim.

And, there is M > 0 such that ‖u−
n ‖ ≤ M , ‖u−

n ‖p ≤ M

L1
= L , 0 ≤ u−

n (k) ≤ L for

all k ∈ [1, N ] for all n ∈ lN.
At this point, by contradiction argument, assume that {un} is unbounded (that is,

{u+
n } is unbounded).

From lim inf
s→+∞

F(k, s)

s p
= L∞(k) ≥ L∞ > l there is δk > 0 such that F(k, s) > ls p

for all s > δk . Moreover,

F(k, s) ≥ min
s∈[−L ,δk ]

F(k, s) ≥ ls p − l (max{δk, L})p + min
s∈[−L ,δk ]

F(k, s)

≥ ls p − max{l (max δk, L)p − min
s∈[−L ,δk ]

F(k, s), 0} = ls p − Q(k)

for all s ∈ [−L , δk]. Hence, F(k, s) ≥ ls p − Q(k) for all s ≥ −L . It follows that

F (k, un(k)) ≥ l (un(k))
p − Q(k) for all n ∈ lN and for all k ∈ [1, N ],

N∑
k=1

F(k,

un(k)) ≥
N∑

k=1

[
l (un(k))

p − Q(k)
] = l‖un‖p

p −
N∑

k=1

Q(k) = l‖un‖p
p − Q, that is,

Ψ (un) ≥ l‖un‖p
p − Q,

for all n ∈ lN. Therefore, one has

Iλ(un) = Φ(un) − λΨ (un) = 1

p
‖un‖p − λΨ (un) ≤ L p

2

p
‖un‖p

p − λl‖un‖p
p + λQ,

that is

Iλ(un) ≤
(
L p
2

p
− λl

)
‖un‖p

p + λQ,

for all n ∈ lN. Since ‖un‖p → +∞ and
L p
2

p
− λl < 0, one has lim

n→+∞ Iλ(un) = −∞
and this is absurd. Hence, Iλ satisfies (PS)-condition.

Finally, we get that Iλ is unbounded from below. Let {un} be such that {u−
n } is

bounded and {u+
n } is unbounded. As before, we obtain Ψ (un) ≥ l‖un‖p

p − Q, for all
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n ∈ lN and, consequently, Iλ(un) ≤
(
L p
2

p
− λl

)
‖un‖p

p + λQ, for all n ∈ lN. Hence,

lim
n→+∞ Iλ(un) = −∞ and the proof is complete.

3 Main Results

In this section, we present the main existence result of our paper. We start putting

Q =
N∑

k=1

q(k).

Theorem 2. Let f : [1, N ] × lR → lR be a continuous function such that f (k, 0) ≥
0 for all k ∈ [1, N ], and f (k, 0) �= 0 for some k ∈ [1, N ]. Assume also that there
exist two positive constants c and d with d < c such that

N∑
k=1

max|ξ |≤c
F(k, ξ)

cp
< q min

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

Q

N∑
k=1

F(k, d)

d p
,
L∞
L p
2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (6)

Then, for each λ ∈ Λ̄ with

Λ̄ =

⎤
⎥⎥⎥⎥⎥⎦
max

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
Q

p

d p

N∑
k=1

F(k, d)

,
L p
2

pL∞

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,
q

p

cp

N∑
k=1

max|ξ |≤c
F(k, ξ)

⎡
⎢⎢⎢⎢⎢⎣

,

the problem (Nλ, f ) admits at least two positive solutions.

Proof. We consider the functionals Φ and Ψ given in (3). Φ and Ψ satisfy all
regularity assumptions requested in Theorem1, moreover we have that any critical
point in X of the functional Iλ is exactly a solution of problem (Nλ, f ). Furthermore,
inf
S

Φ = Φ(0) = Ψ (0) = 0. In order to prove our result, we need to verify condition

(4) of Theorem1. Fix λ ∈ Λ̄, from (6) one has that L∞ > 0 and Λ̄ is non-degenerate.

From Lemma2, the functional Iλ satisfies the (PS)-condition for each λ >
L p
2

pL∞
,
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and it is unbounded from below. Now, put r = qcp

p
, an condier u ∈ Φ−1 (]−∞, r ]);

so such a u satisfies

1

p
‖u‖p ≤ r,

so

‖u‖ ≤ (pr)
1
p .

One has

|u| ≤ 1

q
1
p

‖u‖ ≤
(
pr

q

) 1
p

= c.

So,

Ψ (u) =
N∑

k=1

F(k, u(k)) ≤
N∑

k=1

max|ξ |≤c
F(k, ξ),

for all u ∈ X such that u ∈ Φ−1 (]−∞, r ]).
Hence,

sup
u∈Φ−1(]−∞,r ])

Ψ (u)

r
≤ p

q

N∑
k=1

max|ξ |≤c
F(k, ξ)

cp
. (7)

Now, let be ũ ∈ lRN+2 be such that ũ(k) = d for all k ∈ [0, N + 1]. Clearly, ũ ∈ X
and it holds

Φ(ũ) = Qd p

p
, (8)

and so, we have

Ψ (ũ)

Φ(ũ)
= p

Q

N∑
k=1

F(k, d)

d p
. (9)

Therefore, from (7), (9) and assumption (6) one has

sup
u∈Φ−1(]−∞,r ])

Ψ (u)

r
<

Ψ (ũ)

Φ(ũ)
.
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Moreover, taking into account that 0 < d < c and again by (6), we have that

0 < d <

(
q

Q

) 1
p

c. (10)

Indeed, by contradiction, if we suppose that d ≥
(
q

Q

) 1
p

c, we have

N∑
k=1

max|ξ |≤c
F(k, ξ)

cp
≥

N∑
k=1

F(k, d)

cp
≥ q

Q

N∑
k=1

F(k, d)

d p
,

which contradicts (6). Hence by (8) and (10) we get 0 < Φ(ũ) < r .
So, finally we obtain that Iλ admits at least two non-zero critical points and then,

for all λ ∈ Λ̄ ⊂ Λ, these are non zero solutions of (Nλ, f ).

Since we are interested to obtain a positive solution for problem (Nλ, f ), we adopt
the following truncation on the functions f (k, s),

f +(k, s) =
{
f (k, s), if s ≥ 0;
f (k, 0), if s < 0.

Fixedλ ∈ Λ+
c .Workingwith the truncations f +(k, s), sincewehave that f (k(0, s) �=

0 for some k ∈ [1, N ], let u a non trivial solution guaranteed in the first part of the
proof, now, to prove the u is nonnegative, we exploit the u is a critical point of the
energy functional Iλ = Φ − λΨ associated to problem (Nλ, f +). In other words, we
have that u ∈ X satisfies the following condition

N+1∑
k=1

φp(Δu(k − 1))Δv(k − 1) +
N∑

k=1

q(k)φp(u(k))v(k) =
N∑

k=1

f +(k, u(k))v(k), ∀u, v ∈ X.

(11)
From this, taking as test function v = −u−, it is a simple computation to prove that
‖u−‖ = 0, that is u is nonnegative. Moreover, arguing by contradiction, we show
that u is also a positive solution of problem (Nλ, f ). Suppose that u(k) = 0 for some
k ∈ [1, N ]. Being u a solution of problem (Nλ, f ) we have

φp(Δu(k − 1)) − φp(Δu(k)) = f (k, 0) ≥ 0,

which implies that

0 ≥ −|u(k − 1)|p−2u(k − 1) − |u(k + 1)|p−2u(k + 1) ≥ 0.
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So, we have that u(k − 1) = u(k + 1) = 0. Hence, iterating this process, we get
that u(k) = 0 for every k ∈ [1, N ], which contradicts that u is nontrivial and this
completes the proof.

Now, we present a particular case of Theorem2.

Corollary 1. Assume that f is a continuous function such that f (k, 0) > 0 for all
k ∈ [0, N ] and

lim sup
t→0+

F(k, t)

t p
= +∞, (12)

and

lim
t→+∞

F(k, t)

t p
= +∞,

for all k ∈ [0, N ], and put λ∗ = q

p
sup
c>0

cp

N∑
k=1

max|ξ |≤c
F(k, ξ)

.

Then, for each λ ∈ ]0, λ∗[, the problem (Nλ, f ) admits at least two positive
solutions.

Proof. First, note that L∞ = +∞. Then, fix λ ∈ ]0, λ∗[ and c > 0 such that

λ <
q

p

cp

N∑
k=1

max|ξ |≤c
F(k, ξ)

.

From (12) we have

lim sup
t→0+

N∑
k=1

F(k, t)

t p
= +∞,

then there is d > 0 with d < c such that
p

Q

N∑
k=1

F(k, d)

d p
>

1

λ
. Hence, Theorem2

ensures the conclusion.
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Structure of Solution Sets for Fractional
Partial Integro-Differential Equations

Hedia Benaouda

Abstract Our aim in this paper is to study in the first part the existence of mild
solutions to the following partial fractional integro-differential equation with nonlo-
cal conditions and in the second one we deal with extending the classical Kneser’s
theorem and Aronszajn type result for this class of equations by showing that the set
of all solutions is a compact and Rδ-set.

1 Introduction

In this work, we study the existence of mild solutions and topological structure of
the solution set to the following partial integro-differential equation with nonlocal
conditions:

cDαx(t) = Ax(t) +
∫ t

0
B(t − s)x(s)ds + f (t, x(t)), t ∈ [0, b], (1)

x(0) = x0 + h(x), (2)

where cDα stand for the Caputo fractional derivative, 0 < α ≤ 1, A : D(A) ⊂ E →
E is a closed linear operator on aBanach space (E, |.|), (B(t))t≥0 is a family of closed
linear operators on E having the same domain D(B) ⊃ D(A) which is independent
of t, f : [0, b] × E → E and h : C([0, b], E) → E are given functions satisfying
conditions to be specified later, C([0, b], E) stands for the space of continuous func-
tions from [0, b] to E endowed with the uniform norm topology. Equations of the
form (1)–(2) serve as an abstract formulation ofmany partial integrodifferential equa-
tions arising in heat flow in materials with memory, viscoelasticity and many other
physical phenomena [2]. The problem of existence and uniqueness of partial differ-
ential equations have been studied bymany authors using different approaches [3–7].
The rest of this paper is organized as follows. In Sect. 2, we give some preliminary
results on the fractional calculus. In Sect. 3, we study the existence of mild solutions
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for (1)–(2) under some hypothesis using Mönch fixed point theorem. In Sect. 4 we
extend the classical Kneser’s theorem and Aronszajn type result by proving that the
set of all solutions is compact and Rδ-set.

2 Preliminaries

In this section, we introduce some facts about t the Caputo fractional derivative that
are used throughout this paper. Let J := [0, b], b > 0 and (E, | · |) be a Banach
space. C(J, E) be the space of E-valued continuous functions on J endowed with
the uniform norm topology

‖x‖∞ = sup{‖x(t), t ∈ J }.

L1(J, E) the space of E-valued Bochner integrable functions on J with the norm

‖ f ‖L1 =
∫ b

0
‖ f (t)‖dt.

Definition 1 ([10, 11]). The fractional (arbitrary) order integral of the function h ∈
L1([a, b], R+) of order α ∈ R+ is defined by

I α
a h(t) =

∫ t

a

(t − s)α−1

Γ (α)
h(s)ds,

whereΓ is the gamma function.When a = 0,wewrite I αh(t) = h(t) ∗ ϕα(t),where

ϕα(t) = tα−1

Γ (α)
for t > 0, and ϕα(t) = 0 for t ≤ 0, and ϕα → δ(t) as α → 0, where

δ is the delta function.

Definition 2 ([10, 11]). For a function h given on the interval [a, b], the Caputo
fractional-order derivative of h of order α ∈ R+, is defined by

(cDα
a+h)(t) = 1

Γ (1 − α)

∫ t

a
(t − s)−αh(n+1)(s)ds,

where n = [α] + 1.

Let us recall the following definitions and results that will be used in the sequel.

Definition 3. Let E be a real Banach space and (Y,≤) a partially ordered set. A
function β : P(E) → Y is called a measure of noncompactness in E if

β(Ω) = β(coΩ)

for every Ω ⊂ P(E), where coΩ denotes the closed convex hull of Ω .
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Definition 4. [8] A measure of noncompactness β is called:

(i) monotone if Ω0,Ω1 ∈ P(E), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1)

(ii) nonsingular if β({a} ∪ Ω) = β(Ω) for every a ∈ E , Ω ∈ P(E);
(iii) invariant with respect to union with compact sets, if β({K } ∪ Ω) = β(Ω) for

every K ∈ Pk(E) and Ω ∈ P(E).

If Y is a cone in a normed space, we say that the MNC is

(iv) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω .
(v) algebraically semiadditive, if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for each Ω0,

Ω1 ∈ P(E).

One of most important example of a measure of noncompactness possessing all
these properties is the Kuratowski measure of noncompactness defined by:

ν(X) := inf

{
ε > 0 : X ⊆

n⋃
i=1

Bi and diam(Bi ) ≤ ε

}
.

where diam(Bi ) = sup {‖x − y‖; x, y ∈ Bi }.

Lemma 1. [10, 11] If {un}+∞
n=1 ⊂ L1(J, E) satisfies ‖un(t)‖ ≤ κ(t) a.e. on J for

all n ≥ 1 with some κ ∈ L1(J, R+). Then the function ν({un(t)}+∞
n=1) belongs to

L1(J, R+) and

ν

({∫ t

0
un(s)ds : n ≥ 1

})
≤ 2

∫ t

0
ν(un(s)ds : n ≥ 1)ds. (3)

Lemma 2. [1] Let E be a Banach space, C ⊂ E be closed and bounded and F :
C → E a condensing map. Then I − F is proper and I − F maps closed subsets of
C onto closed sets.

Recall that the map I − F is proper if it is continuous and for every compact K ⊂ E ,
the set (I − F)−1(K ) is compact. The application of the topological degree theory
for condensing maps implies the following fixed point principle.

Theorem 1. (Mönch fixed point theorem) [9] Let D be a bounded, closed and convex
subset of a Banach X space such that 0 ∈ D, and let T be a continuous mapping of
D into itself. If the implication

V = ¯convN (V ), or V = N (V ) ∪ {0} ⇒ ν(V ) = 0

holds for every subset V of D, then N has a fixed point.

Definition 5. [1] Let A ⊂ P(X). The set A is called a contractible space provided
there exists a continuous homotopy H : A × [0, 1] → A and x0 ∈ A such that
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(a) H(x, 0) = x , for every x ∈ A,
(b) H(x, 1) = x0, for every x ∈ A,

i.e. if the identity map is homotopic to a constant map (A is homotopically equiva-
lent to a point). Note that if A ∈ Pcv,cl(X), then A is contractible, but the class of
contractible sets is much larger than the class of closed convex sets.

Definition 6. A ∈ P(X) is a retract of X if there exists a continuousmap r : X → A
such that

r(a) = a, for every a ∈ A.

Definition 7. Acompact nonempty space X is called an Rδ–set provided there exists
a decreasing sequence of compact nonempty contractible spaces {Xn}+∞

n=1 such that
X = ⋂+∞

n=1 Xn .

Let us recall the well-known Lasota-Yorke approximation lemma.

Lemma 3. [1] Let E be a normed space, X a metric space and F : X → E be a
continuous map. Then, for each ε > 0, there is a locally Lipschitz map Fε : X → E
such that

‖F(x) − Fε(x)‖ < ε, for every x ∈ X.

Theorem 2. [1] Let (X, d) be a metric space, (E, ‖ · ‖) a Banach space and F :
X → E apropermap.Assume further that for each ε > 0, a propermap Fε : X → E
is given, and the following two conditions are satisfied:

(a) ‖Fε(x) − F(x)‖ < ε, for every x ∈ X,
(b) for every ε > 0 and u ∈ E in a neighborhood of the origin such that ‖u‖ ≤ ε,

the equation Fε(x) = u has exactly one solution xε .

Then the set S = F−1(0) is an Rδ-set.

3 Main Result

Definition 8. The Wright function Ψα(θ) defined by

Mq(θ) =
∞∑
n=1

(−θ)n−1

(n − 1)!Γ (1 − αn)

is such that ∫ ∞

0
θδΨα(θ)dθ = Γ (1 + δ)

Γ (1 + αδ)
, for δ ≥ 0.

Using definitions 1 and 2, it is very easy to check that the problem (1)–(2) in the
equivalent integral equation
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x(t) = x0 + h(x) + 1

Γ (q)

∫ t

0
(t − s)α−1

×
[
Ax(s) + f (s, x(s)) +

∫ s

0
K (s − r)x(r)dr

]
ds, for t ∈ [0, b]. (4)

provided that the integral in (4) exists. Applying the Laplace transform,

v(λ) = ∫ ∞
0 e−λs x(s)ds, andw(λ) = ∫ ∞

0 e−λs
(
f (s, x(s)) + ∫ s

0 B(s − r)x(r)dr
)
ds,

λ > 0,
we can reasoning similarly as in [10, 11] to obtain

x(t) =
∫ ∞

0
Ψα(θ)T (tαθ)x0dθ + α

∫ t

0

∫ ∞

0
θ(t − s)α−1Ψβ(θ)T ((t − s)αθ)

×
[
f (s, x(s)) +

∫ s

0
B(s − r)x(r)dr

]
dθds,

Define the operators Kα ,Sα

Kα(t) = tα−1Pα(t), Pα(t) = α

∫ ∞

0
θΨα(θ)S((t)αθ)dθ,

Sα =
∫ ∞

0
Ψα(θ)T (tαθ)dθ,

The properties of these operators was explored by Zhou [10, 11].
We can also write

x(t) = Sα(t)x0 +
∫ t

0
Kα(t − s)

[
f (s, x(s)) +

∫ s

0
B(s − r)x(r)dr

]
ds.

We need to make the following assumptions.

(H1) T (t) is continuous in the uniform operator topology for t > 0, and {T (t)}t≥0f
is uniformly bounded, i.e., there exists M > 1 such that

sup
t∈[0,+∞)

|T (t)| < M.

(H2) The map f : [0, b] × E → E is satisfies the Carathéodory conditions; that is,
f (., x) is measurable for all x ∈ E and f (t, .) is continuous for almost all
t ∈ [0, b].

(H3) There exists a function ρ, ρ ∈ L1(J, R+) and a nondecreasing continuous
function Ω,ψ : R+ → R+ such that such that

| f (t, x)| ≤ ρ(t)Ω(|x |), for all t ∈ [0, b] and x ∈ E .

|B(t)x | ≤ ρ(t)ψ(|x |), for all t ∈ [0, b] and x ∈ E .
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(H4) There exists a function C f ∈ C(J, E),CB ∈ L1(J, R+) such that for each
nonempty, bounded set V ⊂ E

ν( f (t, V )) ≤ C f (t)ν(V ), for all t ∈ [0, b].

ν(B(t)V ) ≤ CB(t)ν(V ), for all t ∈ [0, b].

(H5) There are constants Lh > 0,Ch such that

‖h(x1) − h(x2)‖ ≤ Lh‖x1 − x2‖, for all x1, x2 ∈ E .

ν(h(V ) ≤ Chν(V ), for all V ⊂ C([0, b], E).

(H6) There exists a constant R satisfying

R ≥ Mbα

Γ (α)
(x0 + Lh R + |h(0)|) + Mbα

Γ (α + 1)
[‖ρ‖L1Ω(R) + ψ(R)‖ρ‖L1 ] .

we need the following auxiliary lemmas.

Lemma 4. [10, 11] Under assumption (H1), Pα(t) is continuous in the uniform
operator topology for t > 0.

Lemma 5. [10, 11] Under assumption (H1), for any fixed t > 0, {Kα(t)}t>0 and
{Sα(t)}t>0, are linear operators, and for any x ∈ X

‖Kα(t)x‖ ≤ Mtα−1

Γ (α)
‖x‖, ‖Sα(t)x‖ ≤ Mtα−1

Γ (α)
‖x‖

Lemma 6. [10, 11] Under assumption (H1), {Kα(t)}t>0 and {Sα(t)}t>0, are
strongly continuous, which means that, for any x ∈ X and 0 < t ′ < t ′′ ≤ b we have

‖Kα(t ′)x − Kα(t ′′)x‖ → 0, ‖Sα(t ′)x − Sα(t ′′)x‖ → 0,

as t ′, t ′′ → 0,

Theorem 3. Assume that assumptions (H1)–(H5) hold. If

ChMbα

Γ (α)
+ 2Mbα

(‖C f ‖∞ + 4M‖CB‖L1

)
Γ (α + 1)

< 1. (5)

then the boundary value problem (1)–(2) has at least one mild solution.

We transform the problem (1)–(2) into a fixed point problem. Consider the operator
N : C([0, b], E) → C([0, b], E) defined by:
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Nx(t) = Sα(t)x0 +
∫ t

0
Kα(t − s)

[
f (s, x(s)) +

∫ s

0
B(s − r)x(r)dr

]
ds.

Clearly from lemmas 4, 5, 6 the operator N is well defined and the fixed points of
N are solutions to (1)–(2). Thus F i x N = S( f, x0 + h(.)).
Next, we subdivide the proof into several steps as follows Set DR = {x ∈ C(J, E),

‖x‖ ≤ R}.
Step 1. N maps DR into itself.
For each x ∈ DR we have for each t ∈ J , Using conditions (H1)–(H3) and (H6).

‖Nx(t)‖ ≤ ‖Sα(t)x0 +
∫ t

0
Kα(t − s)

[
f (s, x(s)) +

∫ s

0
B(s − r)x(r)dr

]
ds‖

≤ Mbα

Γ (α)
(x0 + Lh R + |h(0)|) + M

Γ (α)

∫ t

0
(t − s)α−1

[
‖ f (s, x(s))‖ +

∫ s

0
‖B(s − r)(x(s))‖dr

]
ds

≤ Mbα

Γ (α)
(x0 + Lh R + |h(0)|) + Mbα

Γ (α + 1)

[‖ρ‖L1Ω(‖x‖) + ψ(‖x‖)‖ρ‖L1
]

≤ Mbα

Γ (α)
(x0 + Lh R + |h(0)|) + Mbα

Γ (α + 1)

[‖ρ‖L1Ω(R) + ψ(R)‖ρ‖L1
] ≤ R.

Step 2. N is continuous.
Let {xn} be a sequence such that xn → x in C([0, b], E). The

‖N (xn)(t) − N (x)(t)‖
≤ ‖

∫ t

0
Kα(t − s)

[
f (s, xn(s)) − f (s, x(s)) +

∫ s

0
B(s − r)(xn(s) − x(s))dr

]
ds‖

≤ M

Γ (α)

∫ t

0
(t − s)α−1 [‖ f (s, xn(s)) − f (s, x(s))‖ + ‖xn − x‖‖ψ‖L1

]
ds.

By assumption (H2) we know that for a.e. s ∈ [0, b], we have

lim
n→+∞ f (s, xn(s)) = f (s, x(s)).

Hence using dominated convergence theorem, we deduce that

‖N (xn) − N (x)‖ → 0, as n → +∞.

Step 3. N maps bounded sets into bounded sets in C([0, b], E). Indeed, it is enough
to show that there exists a positive constant � such that for each x ∈ Bη = {x ∈
C([0, b], E) : ‖x‖ ≤ η} one has ‖N (x)‖ ≤ �. Let x ∈ Bη. Then for each t ∈ [0, b],
by (H1), (H3)and (H5) we have
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‖Nx(t)‖ ≤ ‖Sα(t)x0 +
∫ t

0
Kα(t − s)

[
f (s, x(s)) +

∫ s

0
B(s − r)x(r)dr

]
ds‖

≤ Mbα

Γ (α)
(x0 + Lhη + |h(0)|) + M

Γ (α)

∫ t

0
(t − s)α−1

[
‖ f (s, x(s))‖ +

∫ s

0
‖B(s − r)(x(s))‖dr

]
ds

≤ Mbα

Γ (α)
(x0 + Lhη + |h(0)|) + Mbα

Γ (α + 1)

[‖ρ‖L1Ω(‖x‖) + ψ(‖x‖)‖ρ‖L1
]

≤ Mbα

Γ (α)
(x0 + Lhη + |h(0)|) + Mbα

Γ (α + 1)

[‖ρ‖L1Ω(η) + ψ(η)‖ρ‖L1
] := �.

Step 4. N maps bounded sets into equicontinuous sets.
We prove {Nx, x ∈ Bη}is equicontinuous

Let t1, t2 ∈ [0, b], t1 ≤ t2, let Bη be a bounded set in C([0, b], E) as in Step 2, and
let x ∈ Bη, we have

‖N (x)(t2) − N (x)(t1)‖ ≤
‖Sα(t2)(x0 + h(x)) − Sα(t1)(x0 + h(x))

+
∫ t2

0
Kα(t2 − s)

[
f (s, x(s)) +

∫ s

0
B(s − r)x(r)dr

]

− Kα(t1 − s)

[
f (s, x(s)) +

∫ s

0
B(s − r)x(r)dr

]
ds‖

≤ ‖Sα(t2)(x0 + h(x)) − Sα(t1)(x0 + h(x))‖
+ ‖

∫ t2

0
‖ (Kα(t2 − s) − ‖Kα(t1 − s))

[
f (s, x(s)) +

∫ s

0
B(s − r)x(r)dr

]
ds

+
∫ t2

t1

Kα(t1 − s)

[
f (s, x(s)) +

∫ s

0
B(s − r)x(r)dr

]
ds‖

≤ ‖Sα(t2)(x0 + h(x)) − Sα(t1)(x0 + h(x))‖
+ ‖

∫ t2

0
‖ (Kα(t2 − s) − ‖Kα(t1 − s))

[
f (s, x(s)) +

∫ s

0
B(s − r)x(r)dr

]
ds‖

+ ‖
∫ t2

t1

Kα(t1 − s)

[
f (s, x(s)) +

∫ s

0
B(s − r)x(r)dr

]
ds‖.

From the fact that Sα(t), Kα(t) are uniformly continuous on J, we deduce then
{Nx, x ∈ Bη} is equi-continuous. Now let V be a subset of DR such that V ⊂
conv(T (V ) ∪ {0}). V is bounded and equicontinuous, and therefore the function
t → v(t) = ν(V (t)) is continuous and bounded on J.

From properties of the measure of noncompactness ν, we have for each t ∈ J ,

v(t) ≤ ν(N (V )(t)) ∪ {0})
≤ ν(N (V )(t)).
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First we will estimate ν(N (V )(t)).
Using Lemma1, (H4), (H5) and the properties of the measure of noncompactness

ν one has,

ν(NV (t)) ≤ ν

{
Sα(t)(x0 + h(x)) +

∫ t

0
Kα(t − s)

[
f (s, x(s)) +

∫ s

0
B(s − r)x(r)dr

]
ds, x(t) ∈ V (t)

}

≤ ν {Sα(t)(x0 + h(x)) x(t) ∈ V (t)}
+ ν

{∫ t

0
Kα(t − s)

[
f (s, x(s)) +

∫ s

0
B(s − r)x(r)dr

]
ds, x(s) ∈ V (t)

}

≤ ChMbα

Γ (α)
ν(V (t)) + M

Γ (α)

∫ t

0
(t − s)α−1 [

C f (t)ν(V (t)) + ‖CB‖L1ν(V (t)
]
ds

≤
[
ChMbα

Γ (α)
+ Mbα

(‖C f ‖∞ + ‖CB‖L1
)

Γ (α + 1)

]
ν(V (t))

It follows then that

v(t) ≤ ‖v‖∞

[
ChMbα

Γ (α)
+ Mbα

(‖C f ‖∞ + ‖CB‖L1

)
Γ (α + 1)

]
,

which means that

‖v‖∞

(
1 − ChMbα

Γ (α)
+ Mbα

(‖C f ‖∞ + ‖CB‖L1

)
Γ (α + 1)

)
≤ 0.

By (5) it follows that ‖v‖∞ = 0; that is, v(t) = 0 for each t ∈ J , and then V (t)
is relatively compact in E . In view of the Ascoli-Arzela theorem, V is relatively
compact in DR . Applying now Theorem 1, we conclude that N has a fixed point
which is a solution of the problem (1)–(2).

4 Compactness of Solution Set

Now we show that the set

S = {x ∈ C([0, T ], E) : X is a solution of (1) − (2) is compact}.

Let (xn)n∈N be a sequence in S. We put Λ = {xn : n ∈ N } ⊆ C([0, b], E). Then
from earlier parts of the proof of this theorem, we conclude that Λ is bounded and
equicontinuous, in another hand it easily to prove that the set

{xn(t), n ∈ N , xn ∈ Λ},
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for afixedpoint t ∈ J is relatively compact. Then from theAscoli-Arzela theorem,we
can conclude thatΛ is compact, it follows then {xn}n∈N has a subsequence (xnm )nm∈N
converges to x with (xnm )nm∈N ⊂ S = {x ∈ C([0, b], E) : x is a solution of
(1) − (2)}.
Let

z(t) = Sα(t)(x0 + h(x)) +
∫ t

0
Kα(t − s)

[
f (s, x(s)) +

∫ s

0
B(s − r)x(r)dr

]
ds

and

|xnm (t) − z(t)| ≤ |Sα(t)(x0 + h(xm)) − Sα(t)(x0 + h(x))|
+

∫ t

0
Kα(t − s) [| f (s, xm(s)) − f (s, x(s))|

+
∫ s

0
‖B(s − r)‖|xm(r) − x(s)|dr

]
ds.

As nm → +∞, xnm (t) → z(t), and then

x(t) = Sα(t)(x0 + h(x)) +
∫ t

0
Kα(t − s)

[
f (s, x(s)) +

∫ s

0
B(s − r)x(r)dr

]
ds.

We conclude that {xn | n ∈ N } has subsequence converging to x in S.
Hence S( f, x0 + h(x)) is compact.
Define

f̃ (t, x(t)) =
{
f (t, x(t)), |x(t)| ≤ M,

f (t, Mx(t)
|x(t)| ), |x(t)| ≥ M,

B̃(t, x(t)) =
{
B(t, x(t)), |x(t)| ≤ M,

B(t, Mx(t)
|x(t)| ), |x(t)| ≥ M,

h̃(x) =
{
h(x), ‖xt‖ ≤ M,

h(Mx
‖x‖ ), ‖x‖ ≥ M,

Since f, B, h are continuous, the function f̃ , B̃, h̃ are continuous and bounded by
(H4), (H5) so there exists M f > 0, MB > 0 and Mh > 0 such that

f̃ (t, u)| ≤ M f , for a.e. t and all u ∈ E . (6)

|B̃(t)u| ≤ MB, for a.e. t and all u ∈ E . (7)

|̃hx | ≤ Mh, for a.e. t and all x ∈ C(J, E). (8)
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We consider the following modified problem,

{
cDαx(t) = Ax(t) + ∫ t

0 B̃(t − s)x(s)ds + f̃ (t, x(t)), t ∈ J = [0, b], 0 < α ≤ 1,
x(0) = x0 + h̃(x).

We can easily prove that S( f, B, x0 + h(x)) = S( f̃ , B̃x0 + h(x)) = Fix Ñ , where

Ñ : C([0, b], E) −→ C([0, b], E)

is defined by

Ñ (x)(t) = Sα(t)(x0 + h̃(x)) +
∫ t

0
Kα(t − s)

[
f̃ (s, x(s)) +

∫ s

0
B̃(s − r)x(r)dr

]
ds.

We can estimate

Ñ (x)(t) ≤ Mtα

Γ (α)
|x0 + h̃(x)| +

∫ t

0
Kα(t − s)

[
f̃ (s, x(s)) +

∫ s

0
B̃(s − r)x(r)dr

]
ds

≤ Mtα

Γ (α)
|x0 + h̃(x)| + Mtα

Γ (α + 1)
[M f + bMB ]

≤ Mtα

Γ (α)
(|x0| + Mh) + Mbα

Γ (α + 1)
[M f + bMB ].

Finally we have
‖Ñ (x)‖ ≤ M∗,

then Ñ is uniformly bounded, as in steps 3 to 4 we can prove that

Ñ : C([0, b], E) −→ C([0, b], E),

is compact which allows us to define the compact perturbation of the identity
G̃(x) = x − Ñ (x) which is a proper map.
From the compactness of Ñ , we can easily prove that all conditions of Theorem(2)

are satisfied. Therefore the solution set S( f̃ , c0) = G̃−1(0) is an Rδ-set so S( f, c0)
is an Rδ-set.

5 Conclusion

In this paper we have given a result concerning the existence of Mild solution of
a class of fractional partial differential integro-differential equation with nonlocal
conditions using measure of non-compactness combined with Mönch fixed point
theorem, we also extend the classical Kneser’s theorem and Aronszajn type result
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for this class of equations by showing that the set of all solutions is compact and
Rδ-set.
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Study of the Equivalent Impedance
of a Resonator Array Using Difference
Equations

Helena Albuquerque and José Alberto

Abstract In this paper we present a mathematical model, based on the theory of
difference equations, to study the wireless power transfer using resonator arrays.
This approach is relevant for a better understanding of the system because it gives
us a closed form for the equivalent impedance of the array of resonators that allows
us to make predictions about the behavior of the system. We prove that the complete
solution of the problem depends only on the initial conditions and possible pertur-
bations introduced. Using the computer software MATLAB we present in the last
section of this paper some illustrations of our results.

Keywords Wireless power transfer · Difference equations · Resonator array

1 Introduction

Recently, wireless power transfer (WPT) has received considerable attention in the
scientific community due to a significant number of applications, ranging from charg-
ing electrical vehicles [1] to powering small electronic devices [9, 11]. These systems
are able to transfer power without needing electrical contact, which is particularly
useful in harsh environments (dust, dirt or water). In order to transfer power over
longer distances, arrays of magnetically coupled resonators are used [2, 3, 5, 7, 8,
10, 12, 13], placed in a line with a receiver that slides along the line. The electrical
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characterization of the resonator array is needed to design an efficient WPT sys-
tem. More specifically, the knowledge of the value of the resonator array equivalent
impedance allows the power supplied by the source to be predicted.

In this paperwe develop themathematical approach described in [3, 4, 14] in order
to study the continued fraction that represents the equivalent impedance of the array
of resonators as a recursive sequence, which general term can be determined through
the resolution of finite difference equations with constant coefficients. Although we
briefly approached the behavior of the system for large numbers, we will deepen
this study in this work, presenting a description of the monotonicity and of the
speed of the convergence of the modeling sequence. To illustrate the mathematical
approach developed in this paper, a few examples made with the software MATLAB
are presented. Moreover, the approach developed in this work gives a consistent
theoretical basis that can be used as a powerful tool for designing a WPT system
composed of an array of resonators with chosen properties and behaviour.

2 Description of the Circuit

In this work we will consider the same circuit described in [2–4]: an array of res-
onators (cells) disposed in a line. Each two adjacent resonators are spaced by the
same distance between them and are magnetically coupled with a mutual inductance
M, while the coupling between nonadjacent resonators is neglected. Each cell can be
described as an R-L-C series circuit, as seen in Fig. 1 [4]. In the circuit, R represents
the intrinsic resistance of the resonator cell, L its self-inductance and C the addi-
tional capacitance needed to tune it to the resonant frequencyω0 = 2π f0 = 1/

√
LC .

The impedance of each cell is then given by: Ẑ = R + jωL + 1/( jωC), which, at
the resonant angular frequency ω0, becomes equal to its intrinsic resistance R. A
voltage source V̂s feeds the first cell of the array and a termination impedance ẐT is
be connected to the last cell of the array.

When there is a receiver above the line, as shown in Fig. 1(a), the receiver absorbs
part of the power arriving from the source at the lth cell under it and this fact represents
a perturbation in the system. This perturbation caused by the magnetic coupling
between the receiver and the lth cell of the resonator array adds an impedance Ẑd to
that cell (lth cell). So the equivalent circuit can be represented as in Fig. 1(b). We
assume that Ẑd = Rd is real, when working at the resonant frequency, as we consider
the receiver has the same resonant frequency as the cells of the array.

The resonator array circuit can be simplified by using an equivalent impedance
Ẑeq , that represents the impedance of all the resonators after the supplied one and
the receivers (if any), as depicted in Fig. 2. The equivalent impedance Ẑeq has the
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Fig. 1 Circuit of (a) an array composed of n + 1 cells with a receiver above the lth cell and (b) the
equivalent circuit with the impedance Ẑd representing the receiver inserted in the lth cell

Fig. 2 Equivalent circuit for
the array in Fig. 1 with an
equivalent impedance Ẑeq
representing the resonator
array and the receiver (if
any), excluding the resonator
connected to the voltage
source

following expression, if the receiver is placed above the last cell of the resonator
array (Ẑ ′

T = ẐT + Ẑd ) or if there is no receiver (Ẑ ′
T = ẐT ) [2–4]:

Ẑeq = (ωM)2

Ẑ + (ωM)2

· · · + (ωM)2

Ẑ + (ωM)2

Ẑ + Ẑ ′
T

. (1)

In case the receiver coil is placed above any other cell of the resonator array, intro-
ducing the impedance Ẑd , Ẑeq becomes:
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Ẑeq = (ωM)2

Ẑ + (ωM)2

· · · + (ωM)2

Ẑd + Ẑ + (ωM)2

· · · + (ωM)2

Ẑ + ẐT

. (2)

3 Mathematical Analysis of the Continued Fraction

In the following section we will describe the mathematical approach described in
[3, 4], by developing the study of the system for large natural values, in particular
regarding monotonicity and the speed of convergence of the sequence. We prove in
this section that, although the behavior of the system for very large values does not
depend on the initial conditions and on the introduced perturbations, the opposite
happens with the monotonicity (in the real case) and the convergence speed of the
modeling sequence. Those depend on the initial conditions of the problem but, as it
will be explained later in this section, they can be controlled by predictable limits.

3.1 Fraction Without a Perturbation

We can rewrite the continued fraction (1) for any number n + 1 of resonators and
n ≥ 0 using generic letters a, b∈ C

∗:

xn = a

b+
a

b+ · · · a
b
. (3)

Then, (3) is the nth term of the following recursive sequence (with k ≥ 1):

xk = a

b + xk−1
(4)

with
x0 = p0

q0
. (5)

Knowing that the (n + 1) cells of the array are labelled from 1 to n + 1, with 1 being
the cell connected to the termination impedance and n + 1 is the cell connected to
the voltage source (Fig. 1), the term x0 corresponds to the termination impedance of
the array (Ẑ ′

T in (1) or ẐT in (2)). Thus, noting by
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xk = pk
qk

, (6)

we can verify by induction that {pn} and {qn} are sequences defined by the following
recurrence relations:

pn = bpn−1 + apn−2

qn = bqn−1 + aqn−2
for n ≥ 2, (7)

being p0 and q0 fixed and p1 and q1 given by

p1 = aq0; q1 = bq0 + p0 . (8)

Thus, the sequences {pn} and {qn} are defined by linear homogeneous second order
difference equations with constant coefficients which can be solved directly. In fact,
the equation in (7) given by pn − bpn−1 − apn−2 = 0 is a linear homogeneous second
order difference equation with constant coefficients. Therefore, from [6] its solution
is given by pn = m1λ

n
1 + m2λ

n
2 supposing that λ1 and λ2 are distinct solutions of the

equationλ2 − bλ − a = 0 (which is the case that applies to our practical application):

λ2 − bλ − a = 0 ⇔ λ = b ± √
b2 + 4a

2
(9)

wherem1 andm2 are constants that should be determined using the initial conditions.
The same considerations can be done for {qn}, considering qn = m3λ

n
1 + m4λ

n
2.

Then we can determine the general term of the sequence {xn} = {pn/qn}:

xn =
a1

(
b−√

b2+4a
2

)n + a2
(
b+√

b2+4a
2

)n

b1
(
b−√

b2+4a
2

)n + b2
(
b+√

b2+4a
2

)n (10)

in which a1, a2, b1 and b2 are constants determined by the initial conditions. For
simplicity, setting p0 = x0 and q0=1, a1, a2, b1 and b2 can be obtained by solving
the following system:

a1 + a2 = x0
b1 + b2 = 1
a1
2

(
b − √

b2 + 4a
)

+ a2
2

(
b + √

b2 + 4a
)

= a

b1
2

(
b − √

b2 + 4a
)

+ b2
2

(
b + √

b2 + 4a
)

= b + x0

(11)
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3.2 Fraction with a Perturbation (l th Term)

The expression (2), is the equivalent impedance of a multiple resonator system for a
receiver placed above the lth cell of the receiver line and can be rewritten using the
following fraction:

xn = xn = a

b+
a

b+ · · · a

b′+ · · · a
b

with a, b, b′∈ C
∗. (12)

To solve this fraction and determine its value, we split the fraction in two fractions
(one with l and the other with n − l terms), determine the value of xk for the (l − 1)th
term, then determine the lth value xl using the perturbation b′ and, finally, using xl
as an initial value, we determine the value of the fraction, with the last n − l values.

We start by calculating the term of (l − 1)th order, using (10):

xl−1 =
a1

(
b − √

b2 + 4a
)l−1 + a2

(
b + √

b2 + 4a
)l−1

b1
(
b − √

b2 + 4a
)l−1 + b2

(
b + √

b2 + 4a
)l−1 (13)

in which a1, a2, b1 and b2 are determined by the initial conditions x0 and x1 as done
before, with (11). After, we have to determine the value of

xl = a

b′ + xl−1
= y0 (14)

and a

b + y0
= y1. (15)

Then, (14) and (15) are the initial conditions used to determine the value of the
fraction yn−l = xn:

yn−l = xn =
c1

(
b − √

b2 + 4a
)n−l + c2

(
b + √

b2 + 4a
)n−l

d1
(
b − √

b2 + 4a
)n−l + d2

(
b + √

b2 + 4a
)n−l . (16)

The constants c1, c2, d1 and d2 (shown in appendix) are determined by the initial
conditions y0 and y1, using (11), where, for simplicity is assumed that p0 = y0 and
q0 = 1.

In conclusion, (16) represents the value of the fraction (2) for n + 1 resonators
with the perturbation in the lth term, (receiver facing the lth resonator, in which l =1
resonator connected to the termination impedance and l =n in the resonator after the
one connected to the voltage source).
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3.3 Study of the Convergence of the Continued Fraction

Following the study of the fraction, we can study its behaviour for a large number of
terms, in other words its value for n → ∞.

Supposing that z2 − bz − a = 0 has distinct roots z1 and z2, with |z1| > |z2| , we
have ∣∣∣∣

z2
z1

∣∣∣∣ < 1, so lim
n→∞

(
z2
z1

)n

= 0. (17)

Now we can demonstrate that xn tends to the quotient of the coefficients of zn1. For

example, if
∣∣∣b − √

b2 + 4a
∣∣∣ <

∣∣∣b + √
b2 + 4a

∣∣∣, i.e. z1 = b + √
b2 + 4a and z2 =

b − √
b2 + 4a from (10) we can conclude that

xn = a2zn1 + a1zn2
b2zn1 + b1zn2

(18)

thus

lim
n→∞ xn = lim

n→∞

a2 + a1
(
z2
z1

)n

b2 + b1
(
z2
z1

)n = a2
b2

. (19)

Calculating the constants a2 and b2, it is interesting to note that the value of

the limit (19) is always equal to 1
2

(√
4a + b2 − b

)
and that does not depend on

the initial conditions. This means that, for fixed values of a, b∈ C, the value of the
fraction is always the samewhen the number of terms is infinite. So if we set the value

x0 = 1
2

(√
4a + b2 − b

)
it is easy to prove that {xn} becomes a constant sequence.

Furthermore, for a finite number of perturbations, the behaviour of the fraction at
infinity remains the same.

3.4 Study of the Monotonicity of the Sequence

Following the analysis of the convergence, for a, b, b′, p0, q0 ∈ R, with a, b > 0
and x0 ≥ 0, we study the monotonicity of the sequence, i.e., whether the sequence
that represents the continued fraction increases or decreases with the increase of the
number terms.

From (18) we can write that

xn = a1
b1

+ a2b1 − a1b2

b1
(
b1

(
z2
z1

)n + b2
) (20)
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We now study the monotonicity of {b1wn + b2}, with wn =
(
z2
z1

)n
. The alternate

behaviour of {wn} with positive and negative values, being its sub-sequences {w2n}
and {w2n+1} with different monotonicities (one is increasing, the other is decreas-
ing) and both convergent to zero, yields an analogous behaviour of the sequence
{b1wn + b2}. The sign of the sequence depends on the sign of b1 that is positive if
x0 < a2

b2
and negative otherwise, as b2 is always positive.

Thus, in case x0 > a2
b2
, the subsequences {b1w2n + b2} and {b1w2n+1 + b2} are

decreasing and increasing with values higher and lower than b2, respectively, and
both converging to b2. It can be seen the decrease of an even term to its consecutive
odd term and an increase of an odd term to its consecutive even term. The opposite
occurs if x0 < a2

b2
. Moreover, {b1wn + b2} is a sequence with positive real terms, as

|b1| < |b2|. Then, considering that (a2b1 − a1b2) is negative if x0 > a2
b2

and positive

otherwise, we have that a2b1−a1b2
b1

is always positive.
Regarding themonotonicity of the sequencewe can conclude that is notmonotonic

and the terms tend to the limit alternatively from lower and higher values, as it
converges. Moreover, all the terms of the sequence are bounded by the first two
terms, x0 and x1.

3.5 Study of the Speed of Convergence

After the study of the monotonicity, we study the speed of convergence by finding
the order of the term in which the absolute value of the difference between the value
of the fraction and the limit of the fraction is smaller than a given value ε.

Without any lack of generality, we suppose that
∣∣∣b − √

b2 + 4a
∣∣∣ < |b

+√
b2 + 4a

∣∣∣. Using (18) and the initial conditions described above, we have that

(a1b2 − a2b1) = 2
z1−z2

(p0q1 − p1q0) and that (a1b2 − a2b1) depends on the initial
conditions. Therefore, letting

δn =
∣∣∣xn − lim

n→∞ xn
∣∣∣ =

∣∣∣∣
a2zn1 + a1zn2
b2zn1 + b1zn2

− a2
b2

∣∣∣∣ (21)

for any ε > 0 there is an integer number N such that for n > N , we have δn < ε.

Knowing that wn =
(
z2
z1

)n
is a sequence that tends to zero due to

∣∣∣ z2z1
∣∣∣ < 1, we have

δn =
∣∣∣∣
a2 + a1wn

b2 + b1wn
− a2

b2

∣∣∣∣ =
∣∣∣∣
(a1b2 − a2b1) wn

b2 (b1wn + b2)

∣∣∣∣ = |a1b2 − a2b1| |wn|
|b2| |b1wn + b2| (22)

Assuming that Q is a non-zero lower bound of the convergent sequence
|b1wn + b2|, we have that |b1wn + b2| > Q, so
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δn = |a1b2 − a2b1| |wn|
|b2| Q < ε (23)

is equivalent to

N > log∣∣∣ z2z1
∣∣∣

( |b2| Q
|a1b2 − a2b1|ε

)
(24)

In conclusion, for any ε > 0, we can set an order N equal to the largest integer

contained in log∣∣∣ z2z1
∣∣∣

(
|b2|Q

|a1b2−a2b1|ε
)
such that for n > N , xn is in the circle centered

in − z2
2 with a radius equal to ε. For the particular case where the constants are real,

we can set Q = |b1w0 + b2| if x0 > a2
b2
, or Q = |b1w1 + b2| otherwise.

4 Numerical Analysis of the Value and Characteristics of
the Continued fraction

In this section, the theoretical results described in the previous section are applied
to a WPT system composed of an array of resonators and the expressions (1) and
(2) are found. Examples of calculations are carried out with the software MATLAB
and some numerical results are presented and discussed, using the values determined
experimentally in [4]: L = 12.6µH,C = 93.1 nF, R = 0.11�,M = −1.55µHand
f0 = 147 kHz.

4.1 Numerical Analysis of the Value of the Equivalent
Impedance

To obtain the expression of the equivalent impedance Ẑeq , wewrite the generic values
of the fractions (10) and (16) in terms of the characteristics of the WPT system, as
done in [4].: a = (ωM)2, b = Ẑ , x0 = Ẑ ′

T = ẐT + Ẑd (which is reduced to ẐT when
the receiver is not above the last cell), b′ = Ẑd + Ẑ .

4.1.1 Value of the Equivalent Impedance Without a Receiver over the
Resonator line or with the Receiver on the Last Cell of the
Resonator Line

Ẑeq = f n(2(ωM)2 − gẐ ′
T ) + gn( f Ẑ ′

T − 2(ωM)2)

f n( f + 2Ẑ ′
T ) − gn(g + 2Ẑ ′

T )
(25)

where f = Ẑ −
√
Ẑ2 + 4 (ωM) 2 and g = Ẑ +

√
Ẑ2 + 4 (ωM) 2.
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Fig. 3 Value of Ẑeq (real and imaginary parts) for different receiver positions and for different
values of Ẑd , for f = 160kHz and for ẐT = 1.5�. The position of the receiver is 1 when is over
the cell connected to the termination impedance and 49 when over the cell after the one connected
to the voltage source

4.1.2 Value of the Equivalent Impedance with a Receiver over the
Resonator Line at Any Position

Ẑeq = (ωM) 2
(
e1 f ng2l + e2 f 2l gn − f l gl (e3 f n + e4gn)

)

f ngl
(
e5 f l + e6gl

) + f l gn
(
e7 f l + e8gl

) (26)

where the constants e1, e2, e3, e4, e5, e6, e7, and e8 are described in the Appendix.
In Fig. 3 the equivalent impedance Ẑeq is calculated versus the position of the

receiver and for different values of the receiver impedance Ẑd , considering the case
in which we are working at a frequency ( f = 160 kHz) different than the resonant
one (ω 
= ω0), meaning that Ẑ has an imaginary value.We can notice that for a line of
50 resonators, the equivalent impedance is affected more significantly as the receiver
gets closer to the cell after the one connected to the source. Moreover, the effect
increases with the value of Ẑd .

4.2 Numerical Study of the Convergence of the Fraction

For the constants a2 and b2 given in theAppendix, for an infinite number of resonators
the continued fraction (25) converges to the following value:

lim
n→∞ Ẑeq = 1

2

(
−Ẑ +

√
Ẑ2 + 4 (ωM)2

)
. (27)
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Fig. 4 Value of the equivalent impedance Ẑeq with (a) its real and imaginary parts and (b) its
magnitude and angle, for f = 160kHz, different values of Ẑ ′

T and different numbers of resonators

We can see that (27) does not depend on the initial conditions, i.e., the impedance
Ẑ ′
T . The limit depends only on the electrical characteristics of the cells, the mutual

inductance M and the angular frequencyω. Using the expression (1), for a frequency
f =160kHz different than the resonant frequency, we can obtain and plot the equiva-
lent impedance Ẑeq for different numbers of resonators n + 1 and for different values
of Ẑ ′

T (Fig. 4).
As we increase the length of the resonator line, the equivalent impedance con-

verges to the same value, even for different values of the termination impedance
Ẑ ′
T . Moreover, setting the impedance Ẑ ′

T equal to (27), the value of the equivalent
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Fig. 5 Value of the impedance Ẑ ′
T = 1

2

(
−Ẑ +

√
Ẑ2 + 4 (ωM)2

)
considering its (a) real and

imaginary parts and (b) magnitude and argument for different values of the frequency

impedance Ẑeq is constant regardless of the number of resonators. This value at the
resonant frequency approximates to ω0M for R � ω0M , as referred in [10].

Furthermore, when a receiver is placed over the (l + 1)th resonator and the line is
terminated with an impedance Ẑ ′

T equal to (27) we can determine Ẑeq with (25) by

setting Ẑ ′
T equal to 1

2

(
−Ẑ +

√
Ẑ2 + 4 (ωM)2

)
+ Ẑd and replacing n with n − l.

Furthermore, using the values in [4], we can plot the variation of the impedance

Ẑ ′
T = 1

2

(
−Ẑ +

√
Ẑ2 + 4 (ωM)2

)
versus frequency as shown in Fig. 5.

4.3 Numerical Analysis of the Monotonicity of the Value of
the Impedance

As seen in Sect. 3.4, the monotonicity of the odd or even terms of the sequence
depends on the sign of a2b1 − a1b2, which, for the resonance frequency (a =
(ω0M)2, b = R, x0 = R′

T ), is given by
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Fig. 6 Plot of a2b1 − a1b2 versus R′
T

(ω0M)2 − R′2
T − RR′

T√
R2 + 4 (ω0M)2

(28)

Using the values determined experimentally in [4] the value of a2b1 − a1b2 is shown
in Fig. 6.

It can be seen that a2b1 − a1b2 is zero for R′
T = 1

2

(
−R +

√
R2 + 4 (ω0M)2

)
,

positive for R′
T < 1

2

(
−R +

√
R2 + 4 (ω0M)2

)
and negative otherwise.

The values of the even and odd terms of the sequence of the continued fraction

decrease and increase, respectively, for R′
T < 1

2

(
−R +

√
R2 + 4 (ω0M)2

)
; other-

wise, the opposite behaviour is observed.

4.4 Analysis of the Variation of the Speed of Convergence
with the Variation of the Circuit Parameters

As in the previous section, it is assumed that the array is operating at the resonant
frequency meaning that all the parameters become real. Recalling (21), defined in
Sect. 3.5, for n = 0 (one resonator) and n = 1 (two resonators) we have

δ0 =
∣∣∣∣∣
R + 2R′

T −
√
R2 + 4 (ω0M)2

2

∣∣∣∣∣ (29)

and

δ1 =
∣∣∣∣∣
R −

√
R2 + 4 (ω0M)2

2
+ (ω0M)2

R + R′
T

∣∣∣∣∣ (30)

It can be seen in Fig. 7 that δ0 = δ1 = 0 for R′
T = 1

2

(
−R +

√
R2 + 4 (ω0M)2

)
.

Moreover, δ0 < δ1 when R′
T < 1

2

(
−R +

√
R2 + 4 (ω0M)2

)
, and δ0 > δ1 for R′

T >

1
2

(
−R +

√
R2 + 4 (ω0M)2

)
. The largest differences between the value of the equiv-

alent impedance Ẑeq and its limit (27) for n → ∞, are given by δ0 and δ1.
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Fig. 7 Value of δ for different values of R′
T

Fig. 8 Value of Ẑeq versus the number of resonators, for R′
T = 20� and ε = 0.7

From (24), we have

N > log ∣∣∣∣∣
R−

√
R2+4(ω0M)2

R+
√

R2+4(ω0M)2

∣∣∣∣∣

(
2

R −
√
R2 + 4 (ω0M)2 + 2R′

T

ε

)
, (31)

for R′
T > 1

2

(
−R +

√
R2 + 4 (ω0M)2

)
or

N > log ∣∣∣∣∣
R−

√
R2+4(ω0M)2

R+
√

R2+4(ω0M)2

∣∣∣∣∣

⎛
⎝ 2

(
R + R′

T

)

2 (ω0M)2 − R′
T

(√
R2 + 4 (ω0M)2 + R

) ε

⎞
⎠ . (32)

for R′
T < 1

2

(
−R +

√
R2 + 4 (ω0M)2

)
.

The minimum number of resonators after the one connected to the voltage source
so that the difference between Ẑeq and lim

n→∞ Ẑeq is within ±ε is given by the integer

number N . N is calculated as the smallest integer greater than the logarithm of

(31), when R′
T > 1

2

(
−R +

√
R2 + 4 (ω0M)2

)
. As an example, for R′

T = 20� and

ε = 0.7, which represents 51% of lim
n→∞ Ẑeq , the value of the logarithm is 42.7 and

thus N = 43 (i.e. 44 resonators) as Fig. 8 shows.
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5 Conclusion

In this paper, the theory of linear homogeneous difference equations is applied to
the study of the continued fraction that represents the equivalent impedance of an
array of resonators in order to obtain a more complete and rigorous understanding
of the behaviour of the system. In this way, it is studied the explicit closed-form
expression for the equivalent impedance which depends on the circuit parameters,
termination impedance, number of resonators andposition and impedance of receiver.
Moreover, from the mathematical analysis of the convergence and monotonicity of
the recursive sequence that defines the continued fraction, a better insight of the
behaviour of the fraction with respect to its variables can be achieved. It is found
that, for an arbitrarily large number of resonators, the equivalent impedance value
is given only by the electrical parameters of the resonator array, Ẑ and ωM , and
that it does not depend on the value of the termination impedance, Ẑ ′

T , and on the
finite number of receivers over the line. Moreover, by terminating the resonator
array with this impedance, the impedance of the resonator line is constant for any
number of resonators. It is also proved that the recursive sequence used to model the
system has an oscillating behaviour, having the even and odd subsequences opposite
monotonicities (increasing or decreasing), according to the value of the termination
impedance. As a consequence, for an array with a certain number of resonators,
the equivalent impedance is bounded by the two first two terms of the recursive
sequence (i.e., by the termination impedance, Ẑ ′

T , and the equivalent impedance of
one resonator seen from the cell connected to the source).

Appendix

Constants a1,, a2, b1, c1,, c2, d1, d2 ,e1, e2, e3, e4, e5, e6, e7, e8:

a1 = x0
2 − a√

b2+4a
+ bx0

2
√
b2+4a

; a2 = x0
2 + a√

b2+4a
− bx0

2
√
b2+4a

b1 = 1
2 − x0√

b2+4a
− b

2
√
b2+4a

; b2 = 1
2 + x0√

b2+4a
+ b

2
√
b2+4a

c1 = y0
2 − a√

b2+4a
+ y0b

2
√
b2+4a

; c2 = y0
2 + a√

b2+4a
− y0b

2
√
b2+4a

d1 = 1
2 − y0√

b2+4a
− b

2
√
b2+4a

; d2 = 1
2 + y0√

b2+4a
+ b

2
√
b2+4a

e1 = Ẑd

(
2 (ωM) 2 − f ẐT

)
; e2 = Ẑd

(
2 (ωM) 2 − gẐT

)

e3 = g
(
Ẑ − Ẑd

)
ẐT + 2 (ωM) 2

(
−h + Ẑd + 2ẐT

)

e4 = f
(
Ẑ − Ẑd

)
ẐT + 2 (ωM) 2

(
h + Ẑd + 2ẐT

)

e5 = (ωM) 2
(
4 (ωM) 2 + f

(
Ẑ + Ẑd

)
+ 2

(
−h + Ẑd

)
ẐT

)

e6 = Ẑd
(
f Ẑ ẐT + (ωM) 2

(
− f + 2ẐT

))
; e7 = Ẑd

(
gẐ ẐT − (ωM) 2

(
g − 2ẐT

))

e8 = (ωM) 2
(
4 (ωM) 2 + g

(
Ẑ + Ẑd

)
+ 2

(
h + Ẑd

)
ẐT

)
; h =

√
Ẑ2 + 4 (ωM) 2
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Asymptotics of an Equation with Large
State-Dependent Delay

Ilia Kashchenko

Abstract In this paper, the local dynamics and asymptotic approximation of solu-
tions of equation with large state-dependent delay is studied. Stability of equilibrium
is studied and critical cases are identified. When values of parameters are close to
critical ones the nonlinear parabolic equations are constructed. Solutions of these
equations determine the behaviour of the solutions and main terms of asymptotics
of the solution.

1 Introduction

Delay differential equations are used as mathematical models of various physical
and biological systems [4, 7, 17, 18, 20]. The phase space of DDEs is infinite-
dimensional [8]. This specific feature of delay systems not only makes them more
difficult to analysis, but also complicates the dynamics [6, 12, 25].

This article is devoted to the asymptotic of solutions of state-dependent delay dif-
ferential equations (SD-DDE). In these equations delay is not constant, but depends
on the state of the system. Problems of such kind arise in various applications
(see, e.g., [3, 11, 22, 23, 26]). Some results about existence and stability of
solutions (especially periodic solutions) of SD-DDE one may found, for example, in
[2, 5, 9, 10, 19, 21].

This paper extends previous article [15]. Here we will study the situation when
time delay is a given function of the state of the system not only in current moment,
but also in previous moments. At the same time important assumption is that the
delay time is sufficiently large. The same assumption in the systems with constant
delay leads to a complicated and high-dimensional dynamics [1, 13, 24, 25].

Consider the nonlinear differential-difference equationwith state-dependent delay

u̇ + u = F(u(t − Tϕ(uh))), uh =
0∫

−h

u(t + s)dr(s) (

0∫

−h

dr(s) = 1) (1)
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where F(u) andϕ(u) > 0 are sufficiently smooth functions andT, h > 0 are a param-
eters. Themain assumption is that the delay parameter T is sufficiently large: T � 1.

Assume F(0) = 0, so Eq. (1) has equilibrium u ≡ 0. Let study the behaviour of
solutions of Eq. (1) from small fixed (i.e., T -independent) neighbourhood of the zero
equilibrium.

Introduce the phase space. Let r1, r2 and R are positive numbers such that |ϕ(v)| ≤
R for all |v| ≤ r2 and |uh | ≤ r2 for all u such that max |u| ≤ r1. For a sufficiently
small fixed r0 let the initial data for solutions in (1) belong to C[−T R(r0), 0].

Represent non-linear functions F(v) and ϕ(v) in a neighbourhood of zero in the
form

F(v) = av + bv2 + cv3 + O(v4),

ϕ(v) = 1 + αv + βv2 + O(v3).

Using normalization t → T t in (1) we obtain the equation

εu̇ + u = F(u(t − ϕ(uε,h)), uε,h =
0∫

−h

u(t + εs)dr(s), 0 < ε = T−1 � 1.

(2)
Now we have the problem to study the behaviour of solutions of Eq. (2) from small
(but ε-independent) neighbourhood of zero in the space C[−R(r0), 0].

In the case ϕ(v) ≡ 1 this problem was studied in [14, 16]. It was shown that the
critical cases have an infinite dimension (i.e., it is unbounded as ε → 0). As the
main results, special nonlinear boundary value problems of the parabolic type were
constructed which nonlocal dynamics determine the behaviour of the solutions to
Eq. (2) (for small ε) that belong to a sufficiently small ε-independent neighborhood
of zero.Below, the technique from [14, 16], basedon the construction of quasi-normal
forms is used to study Eq. (2). Specifically, it will be shown that the dynamics of this
equation can be more complicated than in the case of a constant delay.

2 Linear Analysis

Let us start with a linear analysis. Linearised at the zero equilibrium equation for
Eq. (2) is equation with constant delay

εẋ + x = ax(t − 1).

It’s the same as in the case ϕ(v) ≡ 1 (see [14, 16]). Thus, characteristic equation

ελ + 1 = a exp(−λ) (3)
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is the same as in the case of constant delay. Location of its roots determines the
stability of equilibrium [8].

From [14, 16] we have the next result.

Theorem 1. For |a| < 1 all roots of (3) have negative real parts that are separated
from the imaginary axis as ε → 0. All solutions of Eq. (2) from a sufficiently small
ε-independent neighborhood of u = 0 tend to zero as t → ∞.

If |a| > 1, then there is a root of (3), such that its real part is positive and separated
from zero as ε → 0. Zero equilibrium is unstable and the dynamics of (2) became
non-local: there are no stable regimes in neighbourhood of u = 0.

From this Theorem it follows that it is necessary to consider the case when the
parameter a is close to ±1.

Further, consider the nearly critical case

a = ±(1 + ε pa1), p > 0.

Under these conditions, the characteristic Eq. (3) has infinitely many roots with real
parts tending to zero as ε → 0. By applying methods based on the construction of
normal forms, the analysis of the local dynamics of (2) in the first approximation
will be reduced to study of special nonlinear parabolic equation—quasinormal form
[14, 16].

Consider cases a ≈ 1 and a ≈ −1 separately.

3 Critical Case a ≈ 1

First let a = 1 + ε2a1. In this case an infinite number of roots of (3) tend to 2kπ i
(k ∈ Z ). Consider asymptotic series

u = ε2ξ(τ, x) + ε3u2(τ, x) + · · · , (4)

where τ = ε2t , x = (1 − ε + ε2)t , and the dependence on x is 1-periodic. Substi-
tuting (4) into (2) and collecting same powers of ε, at the second step the solvability
condition for the resulting equation for u2, yields an equation for determining the
unknown ξ(τ, x):

∂ξ

∂τ
= 1

2

∂2ξ

∂x2
+ a1ξ + bξ 2 − αξ

∂ξ

∂x
(5)

with periodic boundary conditions

ξ(τ, x + 1) ≡ ξ(τ, x). (6)

Note, that in contrast to the case of constant delay (α = 0) the nonlinearity in this
system contains the derivative of ξ with respect to x .

Solutions of (5), (6) give a zero-order approximation for solutions of (2).



342 I. Kashchenko

Theorem 2. Let the boundary value problem (5), (6) has a solution ξ0(τ, x) bounded
as well as its derivatives. Then

u0(t, ε) = ε2ξ0(ε
2t, (1 − ε + ε2)t) (7)

produce in Eq. (2) asymptotically small discrepancy of order o(ε4) uniformly for all
t ∈ [0,+∞).

Proof. Denote τ = ε2t , x = (1 − ε + ε2)t . Using periodicity of xi0(τ, x) andTaylor
series expansions we obtain asymptotic formulas

uε,h = ε2ξ0(τ, x) + o(ε2),

ϕ(uε,h) = 1 + ε2αξ0(τ, x) + o(ε2),

u(t − ϕ(uε,h)) = ε2ξ0 + ε3
∂ξ0

∂x
− ε4

∂ξ0

∂τ
− ε4

∂ξ0

∂x
− ε4αξ0

∂ξ0

∂x
+ 1

2
ε4

∂2ξ0

∂x2
+ o(ε4),

u̇ = ε2(1 − ε)
∂ξ0

∂x
+ o(ε3).

Here all residuals o(ε2), o(ε3) and o(ε4) are uniform due to the fact that ξ0(τ, x) and
its derivatives are bounded.

Using these formulas substitute (7) into Eq. (2) and obtain that all terms which
are bigger than O(ε4) are vanishes and we have

o(ε4) = −ε4
∂ξ0

∂τ
− ε4αξ0

∂ξ0

∂x
+ 1

2
ε4

∂2ξ0

∂x2
+ ε4a1ξ0 + ε4bξ 2

o + o(ε4).

Since ξ0(τ, r) is a solution of (5), the discrepancy is small of order of o(ε4) uniformly
for all t ∈ [0,+∞).

When a = 1 + ε pa1 (0 < p < 2), the situation is much more complicated. In
contrast to the previous case, steady states are formed at asymptotically high (as
ε → 0) “modes”, i.e. the second argument of ξ is rapidly oscillating. Also, the order
of the solution amplitude varies as well.

Introduce the following notation. Let z > 0 is arbitrary fixed and letΘz = Θz(ε) ∈
[0, 1) produce an integer when added to ε p/2−1z. Function Θz(ε) is bounded, piece-
wise continues and take all its values infinite number of times when ε → 0.

An analogue of (4) is the series

u = ε pξ(τ, x) + ε2pu2(τ, x) + · · · ,

where τ = ε pt and x = (ε p/2−1z + Θz − ε p/2z)t . Note that p/2 − 1 < 0, so x is a
“fast” time.
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Then we obtain the following equation for determining ξ(t, x)

∂ξ

∂τ
= 1

2
z2

∂2ξ

∂x2
+ a1ξ − αzξ

∂ξ

∂x
(8)

with periodic boundary conditions (6).
Note that (8) contain an arbitrary parameter z at the second derivative with respect

to r and in nonlinearity.

Theorem 3. Let z > 0, ξ0(τ, x) be solution of (8), (6) bounded as well as its deriva-
tives for all τ ≥ 0 and x ∈ [0, 1] . Then

u0(t, ε) = ε pξ(ε pt, (ε p/2−1z + Θz − zε p/2)t)

produce in (2) asymptotically small discrepancy of order O(ε2p) uniformly for all
t ≥ 0.

Proof. Proof of this theorem is similar to the proof of Theorem 2.

4 Critical Case a ≈ −1

Now let a = −1 + ε2a1. Then (3) has infinitely many roots tending to π(2k + 1)i
(k = 0,±1,±2, . . .). Consider the asymptotic series

u = εξ(τ, x) + ε2u2(τ, x) + ε3u3(τ, x) + · · · , (9)

where τ = ε2t , x = (1 − ε + ε2)t , functions u2(τ, x) and u3(τ, x) are periodic by x
with the period equal to 1, and ξ(τ, x) is the linear combination of the critical modes
exp(π(2k + 1)i x):

ξ(τ, x) =
∞∑

k=−∞
ξk(τ ) exp(π(2k + 1)i x).

Substitute (9) into (2) and collect same powers of ε. At ε1 we get identity, then at ε2

we obtain

u2 = 1

2
(bξ 2 − αξ

∂ξ

∂x
).

Finally, after simplifying the equality at ε3 we get complex parabolic equation for
determining ξ(τ, x):

∂ξ

∂τ
= 1

2

∂2ξ

∂x2
− a1ξ − (b2 + c)ξ 3 + (

1

2
αb − β)ξ 2 ∂ξ

∂x
− 1

2
α2ξ(

∂ξ

∂x
)2 (10)
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with anti-periodic boundary conditions

ξ(τ, x + 1) = −ξ(τ, x). (11)

Theorem 4. Let the boundary value problem (10), (11) has a solution ξ0(τ, x)
bounded as well as its derivatives for all τ ≥ 0 and x ∈ [0, 1]. Then

u0(t, ε) = εξ0(τ, x) + 1

2
ε2(bξ 2

0 (τ, x) − αξ0
(
τ, x)

∂ξ0(τ, x)

∂x

)

produce in Eq. (2) an asymptotically small discrepancy of order O(ε3) uniformly for
all t ≥ 0. where τ = ε2t and x = (1 − ε + ε2)t.

Proof. This theorem can be proved by the same way as Theorem 2.

Note that, in some cases, solutions of problem (10), (11) can be found analytically.
For example, consider a standard bifurcation from the equilibrium of Eq. (10) with
a1 = − 1

2π
2 + μ, |μ| � 1. Here, we have a double zero root at the origin (in the

linear problem) with two groups of solutions.
Under the condition a1 = −1 + ε pa1, where 0 < p < 2, the situation is more

complicated.
Let us formulate the result. Values z and Θz have the same meaning as before.
Consider the boundary value problem

∂ξ

∂τ
= z2

2
(1 − α2ξ 2)

∂2ξ

∂x2
− a1ξ − (b2 + c)ξ 3 + (

1

2
αb − β)zξ 2 ∂ξ

∂x
− z2

2
α2ξ(

∂ξ

∂x
)2.

(12)
with a boundary condition

ξ(τ, x) = −ξ(τ, x + 1). (13)

Theorem 5. Let for some z > 0 Eq. (12) has solution ξ0(τ, x) bounded for all τ ≥ 0
as well as its derivatives. Then

u0(t, ε) = ε p/2ξ0(τ, x) + 1

2
ε p(bξ 2

0 (τ, x) − αξ0
(
τ, x)

∂ξ0(τ, x)

∂x

)

produce in (2) asymptotically small discrepancy of order o(ε p) uniformly for all
t ≥ 0. Here τ = ε pt and x = (ε

p
2 −1z + Θz − zε

p
2 )t .

5 Conclusion

The differential equation with large state-dependent delay was considered. We have
identified critical cases in the equilibrium stability problem. In critical cases special
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nonlinear boundary value problems was constructed. Its solutions determine the
main terms of asymptotic approximations of solutions to the original SD-DDE in a
small neighbourhood of the equilibrium. Very important that these boundary value
problems does not depend on small parameter and easily may be solved numerically.

The coefficients of constructed boundary value problems depend on the param-
eters α and β of the function ϕ(v) and does not depend on the function r(s) from
definition of uh . Thus main terms of solutions and their dynamics does not depend
on r(s) too.

Acknowledgements This work was funded by RFBR according to the research project 18-29-
10043.
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About Some Methods of Analytic
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of a Wide Set of Geometric Figures
with “Complex” Configuration
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Abstract We will present 2 different analytical representations of only one general
idea—this is the representation of complex movements using the superposition of
certain elementary displacements! Despite of the analytical and structural similarity
of these representations, they describe fundamentally different geometric figures (in
statics) and trajectories of motion (in dynamics). In previous articles [1–9] a wide
class of geometric figures—“Generalized Twisting and Rotated” bodies GRT n

m in
short—was defined through their analytic representation. In particular cases, this ana-
lytic representation gives back many classical objects (torus, helicoid, helix, Möbius
strip ... etc.). The aim of this article is to consider some geometric properties of a
wide subclass of the generally defined surfaces. We show some geometric properties
of GRT and GML—surfaces.

Keywords Analytic representation · Möbius strip · Möbius-Listing’s surfaces ·
Jacobi matrix · Jacobian · One-to one transformation · Regular points · Self-cross
points
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• X,Y, Z and x, y, z, t—is the ordinary notation for space and time coordinates;
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where:

1. τ ∈ [τ∗, τ ∗],where τ∗ ≤ τ ∗ usually are non-negative constants;
2. ψ ∈ [0, 2π ];
3. θ ∈ [0, 2πh], where h ∈ R (Real);

(1)

But sometimes, as a special case, we suppose that

τ ∈ [−τ ∗, τ ∗] (1∗)

• Pm ≡ A1A2 . . . Am denotes a “Plane figure withm-symmetry”, in particular Pm is
a “regular polygon” or a star polygon, andm is the number of its angles or vertices.
In the general case the edges of “regular polygons” are not always straight lines
(Ai Ai+1 may be, for example: edge of epicycloid, or edge of hypocycloid, or part
of lemniscate of Bernoulli, and so on).

• PRm ≡ A1A2 . . . Am A′
1A

′
2 . . . A′

m denotes an orthogonal prism, whose ends
A1A2 . . . Am and A′

1A
′
2 . . . A′

m are “Plane m-symmetric figures” Pm ;

For example:
– PR0—is a segment and P0 is a point;
– PR1—is an orthogonal cylinder, whose cross section is a P1—plane figure

without symmetry;
– PR2 ≡ A1A2A′

1A
′
2 is a rectangle, if P2 ≡ A1A2 is a segment of straight line; but

also PR2 may be a cylinder with cross section P2 (ellipse, or lemniscate of Bernoulli
and so on);

– PR∞—is an orthogonal cylinder, whose cross section is a P∞-circle.

x = p(τ, ψ, t); z = q(τ, ψ, t); (2)

or

x = p(τ, ψ, t) cosψ; z = p(τ, ψ, t) sinψ; (2∗)

are the analytic representations of the shape of a “Plane figure with m-symmetry”
Pm whichmaychangeover time, but p(0, 0, t) = q(0, 0, t) = 0 and thepoint (0, 0, t)
is always the center of symmetry of this polygon (see [2, 7]).

• D(p, q, t) or D(p, t)—diameter of plane figure Pm ;
• OO ′—axis of symmetry of the prism PRm ;
• g(θ)—an arbitrary sufficiently smooth function

g(θ) : [0, 2πh] → [0, 2πh]; (3)

and if h = 1, then for every � ∈ [0, 2π ] there exists θ ∈ [0, 2π ], such that � =
g(θ);
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• modm(n)-natural number < m; for every two numbers m ∈ N (natural) and n ∈
Z (integer) there exists a unique representation n = km + j ≡ km + modm(n),
where k ∈ Z and j ≡ modm(n) ∈ N

⋃ {0};

μ ≡
{
n/m, when m ∈ N n ∈ Z
n, when m = ∞ n ∈ Z or (n ∈ R (Real))

(4)

IIA. Generalized Twisting and Rotated bodies in dynamics—GT Rn
m (some-

times called “Surfaces of revolution” see [7, 11]) are defined by the parametric
representations:

X (τ, ψ, θ, t) = T1(t) + [R(ψ, θ, t) + p(τ, ψ, θ, t) cos(ψ + μg(θ))] cos(θ + M(t))

Y (τ, ψ, θ, t) = T2(t) + [R(ψ, θ, t) + p(τ, ψ, θ, t) cos(ψ + μg(θ))] sin(θ + M(t)) (5)
Z(τ, ψ, θ, t) = T3(t) + Q(θ, t) + p(τ, ψ, θ, t) sin(ψ + μg(θ))

where, respectively:
– the arguments (τ, ψ, θ, t) are defined in (1);
– the functions R(ψ, θ, t) cos(θ + M(t)) and R(ψ, θ, t) sin(θ + M(t)) define the

“Shape of the plane basic line”, more precisely “Shape of the orthogonal projection
on the plane XOY of the basic line” of corresponding body (see e.g.: circle in Figs. 1a,
b, c, g; ellipse in Fig. 1e; spiral in Figs. 1d, f, i and square in Fig. 1h);

1. If R(ψ, θ, t) = const. > 0 the basic line is a circle with radius R;
2. In general this may be any plane curve for example R(ψ, θ, t) = �(θ) Gielis

curve (6) [10]

�(θ) =
(∣

∣
∣
∣
cos(m1

4 · θ)

A

∣
∣
∣
∣

n2

+
∣
∣
∣
∣
sin(m2

4 · θ)

B

∣
∣
∣
∣

n3)− 1
n1

(6)

– Function p(τ, ψ, θ, t) defines the “Shape of the radial cross section” of the
corresponding figure.

1. If p(τ, ψ, θ, t) = τ defined by (1∗) and (5) (where m = 2; n = 1; g(θ) ≡ θ )
this figure is a classic Möbius strip;

2. In general case this radius p(τ, ψ, θ, t) may vary depending on angle ψ (this
means for fixed values θ and t , the radial cross sections have different shapes, for
example Gielis curve (6) p(τ, ψ, θ, t) = �(ψ)with different parameters, e.g. a half-
angle for m1 = m2 = 1/2 and argument ψ instead θ in (6)), and on angle θ , but also
over time (some examples of figures with different radial cross sections are shown:
epicycloid k = 6 in Fig. 1: b and h; hypocycloid k = 4 in Fig. 1c; trifolium curve in
Fig. 1g; square in Fig. 1e and f; circle in Fig. 1d; variable radius ellipse in Fig. 1i).

The shape of the plane basic line and of the shape of the radial cross section are
the two fundamental shapes, perpendicular to each other. A special case is the torus,
with the smaller and the larger circle defining the torus. The ratio of smaller to larger
circle allows for a continuous transformation from sphere to torus, with spindle tori
as intermediate shapes.
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When the shape of the radial cross section describes the curve only, a surface is
described, but when also the disk of the radial cross section is included (e.g. when
in (5) and (6) max p(τ, ψ, θ, t) = max �(ψ) ≡ D(p, t) ≤ min R(ψ, θ) is used), the
results are bodies. In the same way shells can be defined for τ ∈ [τ∗, τ ∗] (where
τ ∗ − τ∗ is sufficiently small) a restricted range.

Additional functions are:
– The function g(θ) from (3) defines the “Rule of twisting around basic line”.

For any function g(θ) the movement is called semi-regular; it is called regular for
g(θ) ≡ θ .

– The number μ in (4) defines the “Characteristic of twisting”;
– Q(θ, t) is a smooth function which defines the “Law of vertical stretching of

figure” (see e.g.: Q ≡ 0 in Fig. 1d,e,f; Q ≡ const. 	= 0 in Fig. 1b,c,g; ∂Q/∂θ 	= 0
in Fig. 1h,i);

– (T1(t); T2(t); T3(t))—vector of displacement of a given body in space as a
whole.

Therefore, this parametric representation defines a GT Rn
m body (some examples

are shown in Fig. 1) with the following restrictions:
(1) The OO ′-axis of symmetry (middle line) of the prism PRm is transformed

into a “Basic line” (sometimes called “Profile curve”);
(2) Rotation at the end of the prism (2) or (2∗) is semi-regular along the middle

line OO ′, or the twisting of the shape of radial cross section around the basic line is
semi-regular (depending on g(θ)).

IIB Generalized Möbius—Listing’s Bodies— in short GMLn
m{μ} (μ ∈ Q

defined in (4))—is obtained by identifying the opposite ends of the prism PRm

in such a way that:
(A) For any integer n ∈ Z and i = 1, · · · ,m each vertex Ai coincides with

A′
(i+n) ≡ A′

(modm (i+n)), and each edge Ai A(i+1) coincides with the edge

A′
(i+n)A

′
(i+n+1) ≡ A′

(modm (i+n))A
′
(modm (i+n+1))

correspondingly;
(B) The integer n ∈ Z denotes the number of rotations of the end of the prismwith

respect to the axis OO ′ before the identification. If n > 0, the rotations are counter-
clockwise, and if n < 0 then rotations are clockwise. Some particular examples of
GMLn

m and its graphical realizations can be found in [2, 4, 6–8] (see e.g. Fig. 1e, 2
or 3).

Definition 1. TheBasic line of theGMLn
m{μ} body for eachμ ∈ Q, is a continuous

closed plane or spatial line on which the axis of symmetry OO ′ of the prism PRm

transforms after identifying the ends of the prism. (examples of basic lines: Fig. 2
circle, i.e. μ = 0, Fig. 3d torus line μ = 3 [6]).

Definition 2. A Rib of the GMLn
m{μ} body for each μ ∈ Q, is a continuous closed

line, in which only the vertices of the radial cross sections (plane m-symmetric fig-
ures) of this body or ribs of prism PRm are situated; i.e. torus line with characteristic
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μ (examples of rib lines: for Fig. 2a and b one torus line with μ = 1/4; for Fig. 2c
one torus line with μ = 5/6; for Fig. 1e four and for Fig.2d seven circles i.e. for
each—μ = 0, for Fig.2f two torus lines with μ = 1/2).

Definition 3. A Side of the GMLn
m{μ} body for each GMLn

m{μ}, is a continuous
closed surface, inwhich only the sides of the radial cross sections (planem-symmetric
figures) of this body or sides of prism PRm are situated. These are the zones between
the ribs.

To facilitate the calculation of long and complicated expressions, we introduce
some notations and abbreviations:

X ≡ X (τ, ψ, θ, t); Y ≡ Y (τ, ψ, θ, t); Z ≡ Z(τ, ψ, θ, t);
R ≡ R(ψ, θ, t); Rψ ≡ ∂R(ψ, θ, t)

∂ψ
; Rθ ≡ ∂R(ψ, θ, t)

∂θ
; Q ≡ Q(θ, t);

p ≡ p(τ, ψ, θ, t); pτ ≡ ∂p(τ, ψ, θ, t)

∂τ
; pψ ≡ ∂p(τ, ψ, θ, t)

∂ψ
; pθ ≡ ∂p(τ, ψ, θ, t)

∂θ
;

cos ≡ cos(ψ + μg(θ)); sin ≡ sin(ψ + μg(θ)); (7)
Cos ≡ cos(θ + M(t)); Sin ≡ sin(θ + M(t));

∂cos

∂θ
≡ ∂cos(ψ + μg(θ))

∂θ
= −μg′(θ) sin(ψ + μg(θ)) ≡ −μg′ · sin;

∂sin

∂θ
≡ ∂sin(ψ + μg(θ))

∂θ
= μg′(θ) cos(ψ + μg(θ)) ≡ μg′ · cos;

where g′—is the derivative of the function g(θ) with argument θ ; in these abbrevia-
tions, representation (5) in static has the form

X = T1 + [R + p · cos] · Cos

Y = T2 + [R + p · cos] · Sin (5∗)

Z = T3 + Q + p · sin,

where T1 = T1(t0); T2 = T2(t0); T3 = T3(t0) are constants, defining the position in
space.

• Some additional information about the classification of GRT n
m and GMLn

m
bodies are reported in [2–9].

III. Some Geometric Properties of “Semi-Regular” GRT n
m or GMLn

m Bodies
and Surfaces
In this part we study some geometric characteristic of a “Semi-Regular” static Gen-
eralized Möbius-Listing’s bodies GMLn

m . According to abbreviations (5∗):

Xτ ≡ ∂X

∂τ
= pτ · cos · Cos; Yτ ≡ ∂Y

∂τ
= pτ · cos · Sin; Zτ ≡ ∂Z

∂τ
= pτ · sin;

(8)
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Xθ ≡ ∂X

∂θ
= RθCos − RSin + pθ · cos · Cos − μg′ p · sin · Cos − p · cos · Sin

Yθ ≡ ∂Y

∂θ
= Rθ Sin + RCos + pθ · cos · Sin − μg′ p · sin · Sin + p · cos · Cos (9)

Zθ ≡ ∂Z

∂θ
= pθ · sin + μg′ p · cos

Xψ ≡ ∂X

∂ψ
= RψCos + pψ · cos · Cos − p · sin · Cos

Yψ ≡ ∂Y

∂ψ
= Rψ Sin + pψ · cos · Sin − p · sin · Sin (10)

Zψ ≡ ∂Z

∂ψ
= pψ · sin + p · cos

Proposition 1. The Jacobi Matrix

J (τ, ψ, θ, t0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂X

∂τ

∂Y

∂τ

∂Z

∂τ

∂X

∂θ

∂Y

∂θ

∂Z

∂θ

∂X

∂ψ

∂Y

∂ψ

∂Z

∂ψ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(11)

of all GT Rn
m bodies (according to representation (5) and (5∗)) for all fixed values of

time t0 has determinant

det (J (τ, ψ, θ, t0)) = pτ · [R + p · cos] · [p − Rψ · sin] (12)

Corollary 1. If Rψ = 0 and R > p, i.e. 1. function R(ψ, θ) is independent of argu-
ment ψ ; and 2. the large radius is greater than the radius of radial cross section of
GRT n

m bodies (both are completely natural conditions), then representation (5) is a
one to one correspondence of the points of the PRm prism and points of correspond-
ing GRT n

m body.

Proof. According to expression (12)

det ((τ, ψ, θ, t0)) = p · pτ · [R + p · cos] 	= 0

1. pτ 	= 0—natural condition (the opposite would mean that the function is inde-
pendent of argument τ and this is impossible).

2. p 	= 0—otherwise this means the radial cross section is a point!
3. R + pcos > 0 because R > p > 0.
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Remark 1. (A) At any fixed moment t0, this is a representation of a real three-
dimensional body, which can be theoretically constructed from a prism PRm by
continuous deformation. This GRT n

m or GMLn
m object (5) has no self-intersecting

points.
(B) The representation (5) can be considered as a complex motion of a three-

dimensional body or plane surface in time as a superposition of elementary displace-
ments. (Example in representation (5), replace argument θ with argument t and the
functions do not depend on argument θ ).

(C) Roughly speaking the first movement is a twisting in a plane perpendicular
to the main movement (the simplest example is the torsion of an aircraft propeller)!

(D) The GMLn
m surfaces and bodies are a very important subset of GRT n

m bodies
(Q(θ, t) = 0 or Q(θ, t) - is a 2π -periodic sufficiently smooth function of argument
θ ).

Proposition 2. 1. If gcd(m, n) = k, then a full external side of corresponding
GMLn

m surface or body (Definition3) (with radial cross section convex polygon)
is a k—colored surface; i.e. it is possible to paint the surface of this figure in k dif-
ferent colors without taking away of the brush. It is prohibited to cross the rib of this
figure [4–6].

2. If gcd(m, n) = k, then a full side of corresponding GMLn
m surface or body

(with radial cross section simple star) is a 2k—colored surface (see Remark 4 in [4,
5]);

Examples of different surfaces or bodies are shown in: Fig. 1e—4 colored; Fig. 2a,
c and 3a are one colored, Fig. 2b, f, 3b, c and d are 2 colored; Fig. 2d—14 colored;

IV. Some Geometric Properties of “Regular” GMLn
2 Surfaces

This is one of a simplest but most important subclass of GML surfaces, when the
shape of the basic line does not depend on arguments ψ, θ and g(θ) ≡ θ . Some
examples are given in Figure3. They can be considered in two ways:

1. This is the static surface that is obtained from the rectangle PR2 by twisting
n times around the axis OO ′ of symmetry before gluing the ends (representation
(13), when arguments ψ0, t0 are fixed). This means that the representation (5) has
following simple form:

X (τ, ψ0, θ, t0) = T1(t0) + [R + τ · cos(ψ0 + n

2
· θ)] cos(θ + M(t0))

Y (τ, ψ0, θ, t0) = T2(t0) + [R + τ · cos(ψ0 + n

2
· θ)] sin(θ + M(t0)) (13)

Z(τ, ψ0, θ, t0) = T3(t0) + τ · sin(ψ0 + n

2
· θ)

2. This is a trace (trajectory surface) that a segment leaves that revolves around
a basic line perpendicular to it (particularly, representation (13∗), when arguments
ψ0, θ0 are fixed).
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X (τ, ψ0, θ0, t) = [R + τ · cos(ψ0 + n

2
· t] cos(θ0 + t)

Y (τ, ψ0, θ0, t) = [R + τ · cos(ψ0 + n

2
· t] sin(θ0 + t)) (13∗)

Z(τ, ψ0, θ0, t) = τ · sin(ψ0 + n

2
· t)

Remark 2. 1.According to Corollary1, expressions: (12), (13) and p = τ, pτ = 1,

det (JGMLn
2
(τ, ψ0, θ, t0)) = τ · [R + τ · cos(ψ0 + n

2
· θ)]

and this expression never vanishes, since the condition is always R > τ > 0 (because
without this restriction it is impossible to make this object).

2. According to expression (13∗) this trajectory may have some self-crossing
points, because such a trajectory does not need such a restriction R > τ .

3. According to Proposition 2 for GMLn
2 surfaces:

a. If n is an even number, then each function X,Y, Z in the representations (13)
or (13∗) are 2π -periodic functions of the argument θ or t . (see e.g. Fig. 3b, c and d);

b. If n is a odd number, then each function X,Y, Z in the representation (13)
is a 4π -periodic function satisfying the following properties (Möbius-property, see
[6–8]) (see e.g. Fig. 3a).

X (τ, θ + 2π); Y (τ, θ + 2π); Z(τ, θ + 2π) = X (−τ, θ); Y (−τ, θ); Z(−τ, θ)

(14)

V. Some Examples and Geometric Properties of “Semi-Regular” DRT n
m and

DMLn
m Surfaces

These are the trajectories of bodies or surface which appear when:
1. DRT n

m—a plane m-symmetrical figure (or PRm-prism) makes n-turns around
the baseline (only in the tangent plane of the virtual cylinder) after one complete
round-trip of this curve around the axis OZ ;

2. DMLn
m—a plane m-symmetrical figure makes n-turns around the baseline

(only in the tangent plane of the virtual cylinder) before gluing.
We will call these geometric objects Degenerated Rotated and Twisted DRT n

m
and Degenerated Möbius-Listing’s DMLn

m surfaces or bodies. The analytic repre-
sentations of these motions according to abbreviations (7) have following form

X = T1 + R · Cos + p · cos · Sin
Y = T2 + R · Sin + p · cos · Cos (15)

Z = T3 + Q + p · sin.

The main difference between this representation (15) and (5) is not only in math-
ematical form, but also in the value of the determinant of the Jacobi matrix (in this
case it is sometime reset to zero).
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Proposition 3. The Jacobi matrix of all DT Rn
m bodies (according to representation

(15)) for all fixed value of time t0 have determinant

det (JDRT (τ, ψ, θ, t0)) = p · pτ · [Rθ − μg′Rψ ] · [Sin2 − Cos2] − p2 · pτ · cos
−Rψ · R · pτ · sin + 2p · pτ · Sin · Cos · [R + Rψ · sin · cos] (16)

Corollary 2. Even the simplest case determinant of Jacobi matrix for some values
of the argument is zero! This is the point of degeneration on the surface.

det (JDRT (τ, ψ, θ, t0)) = p · pτ · [2R · Sin · Cos − p · cos].

Despite the conditions of the functions R(ψ, θ, t) and p(τ, ψ, θ, t) there always
remains the possibility that the determinants will be zero (Fig. 4).

Studying the geometric properties of these surfaces is certainly possible, but this
can only be done if necessary, and then only in those sub-domains where there are
no points of degenerations.
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On Nonpower-Law Asymptotic Behavior
of Blow-Up Solutions to Emden-Fowler
Type Higher-Order Differential
Equations

I. V. Astashova and M. Yu. Vasilev

Abstract For the equation

y(n) = p0 | y |k sgn y, n ≥ 12, k > 1, p0 > 0, (1)

the existence of positive solutions with nonpower-law asymptotic behavior is proved,
namely

y(x) = (x∗ − x)−
n

k−1 h(log (x∗ − x)), x → x∗ − 0, (2)

where h is a positive periodic non-constant function on R. To prove the existence, a
useful modification of the Hopf bifurcation theorem is used.

1 Introduction

For the equation

y(n) = p0 | y |k sgn y, n ≥ 2, k > 1, p0 > 0, (3)

we study blow-up solutions, i.e. those with limx→x∗−0 y(x) = ∞. The origin of the
considered problem is described in [1] (problem 16.4), and [2]. It was earlier proved
for sufficiently large n (see [3]), for n = 12 (see [4]), for n = 13, 14 (see [5]), and
for n = 15 (see [6]) that there exists k = k(n) > 1 such that Eq. (3) has a solution
with nonpower-law asymptotic behavior, namely
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y(x) = (x∗ − x)−
n

k−1 h(log (x∗ − x)), x → x∗ − 0, (4)

where h is a positive periodic non-constant function on R. Now we prove this result
for arbitrary n ≥ 12.

Note that it was also proved for n = 2 (see [1]) and for n = 3, 4 [7] that all blow-up
solutions have power-law asymptotic behavior:

y(x) = C(x∗ − x)−α (1 + o(1)) , x → x∗ − 0, (5)

with

α = n

k − 1
, C =

(
α(α + 1) . . . (α + n − 1)

p0

) 1
k−1

. (6)

The existence of a solution satisfying (5) was proved for arbitrary n ≥ 2. For 2 ≤
n ≤ 11 an (n − 1)-parametric family of such solutions to Eq. (3) was proved to exist
for any x∗ (see [7–9], Ch.I(5.1)). It was proved that for slightly superlinear equations
of arbitrary order n ≥ 5 all blow-up solutions have power-law asymptotic behavior
(see [10, 11]), but for strongly superlinear equations of arbitrary order 12 to 203 (see
[12]) a power-law asymptotic behavior is atypical (the Lebesgue measure of the set
of initial data generating solutions with power-law asymptotic behavior is equal to
zero).

2 Main Result

In this section, a result on the existence of solutions with nonpower-law asymptotic
behavior is formulated for Eq. (3) with n ≥ 12.

Theorem 1. For any n ≥ 12 there exists k > 1 such that Eq. (3) has a solution y(x)
with

y( j)(x) = (x∗ − x)−α− j h j ( log(x
∗ − x) ),

j = 0, 1, . . . , n − 1,

where α is defined by (6) and h j are periodic positive non-constant functions on R.

3 Proof of the Main Result

To prove the main result of this article we transform Eq. (3) into a dynamical system
and use a version of the Hopf Bifurcation theorem (see [13]).
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3.1 Transformation of Equation (3)

Equation (3) can be transformed into a dynamical system (see [7] or [9], Ch.I(5.1))
by using the substitution

x∗ − x = e−t , y = (C + v) eαt , (7)

whereC and α are defined by (6). The derivatives y( j), j = 0, 1, . . . , n − 1, become

e(α+ j)t · L j (v, v
′, . . . , v( j)),

where v( j) = d j v

dt j
, and L j is a linear function with

L j (0, 0, . . . , 0) = Cα(α + 1) . . . (α + j − 1) �= 0

and its coefficient of v( j) equal to 1.
Thus (3) is transformed into

e(α+n)t · Ln(v, v
′, . . . , v(n)) = p0 (C + v)keαkt (8)

and then into

v(n) = p0 (C + v)k − p0 C
k −

n−1∑
j=0

a j v
( j), (9)

where a j , j = 1, ..., n, are the coefficients of v( j) in the linear function Ln and
(n − j)-degree polynomial functions in α. Equation (9) can be written as

v(n) = kCk−1 p0v −
n−1∑
j=0

a j v
( j) + f (v), (10)

where
f (v) = p0

(
(C + v)k − Ck − kCk−1v

) = O(v2),

f ′(v) = O(v) as v → 0,

Suppose V = (V0, ..., Vn−1) is the vector with coordinates Vj = v( j), j = 0, . . . ,
n − 1. Then Eq. (10) can be written as

dV

dt
= AV + F(V ), (11)
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where F is the vector function F(V ) = (0, ..., 0, Fn−1(V )) with Fn−1(V ) = f (V0)

and A is a constant n × n matrix, namely

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
· · · · . . . ·
0 0 0 0 . . . 1

−ã0 −a1 −a2 −a3 . . . −an−1

⎞
⎟⎟⎟⎟⎟⎟⎠

with
ã0 = a0 − kCk−1 p0 = a0 − kα(α + 1) . . . (α + n − 1)

= a0 − (α + 1) . . . (α + n − 1)(α + n)
(12)

and eigenvalues satisfying the equation

0 = det(A − λE) = (−1)n+1(−ã0 − a1λ − · · · − an−1λ
n−1 − λn)

= (−1)n+1
(
(α + 1)(α + 2) . . . (α + n) − (λ + α) . . . (λ + α + n − 1)

)
,

(13)

which is equivalent to

n−1∏
j=0

(λ + α + j) =
n−1∏
j=0

(1 + α + j). (14)

3.2 Preliminary Results

Theorem 2 (The Hopf Bifurcation Theorem [14]). Consider an α-parameteri-
zed dynamical system ẋ = Lαx + Qα(x) in a neighborhood of 0 ∈ R

n with linear
operators Lα and smooth enough functions Qα(x) = O

(|x |2) as x → 0. Let λα

and λ̄α be simple complex conjugated eigenvalues of the operators Lα. Suppose
Reλα̃ = Reλ̄α̃ = 0 for some α̃ and the operator L α̃ has no other eigenvalues with
zero real part.

If Re dλα

dα
(α̃) �= 0, then there exist continuous mappings ε 
→ α(ε) ∈ R, ε 
→

T (ε) ∈ R, and ε 
→ b(ε) ∈ R
n defined in a neighborhood of 0 and such that

α(0) = α̃, T (0) = 2π/Imλα̃, b(0) = 0, b(ε) �= 0 for ε �= 0, and the solutions to
the problems

ẋ = Lα(ε)x + Qα(ε)(x), x(0) = b(ε)

are T (ε)-periodic and non-constant.

Theorem 3 (Modification of the Hopf Theorem [13]). Consider an α-paramete-
rized dynamical system ẋ = f (x, α),where f : Rn+1 
→ R

n is a Cr function (r ≥ 3)
such that f (0, α) = 0 for allα ∈ R. Suppose the Jacobianmatrix Dx f (0, α̃) ≡ A(α̃)
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has ±iβ as simple eigenvalues for some α̃ ∈ R. Let v and w be eigenvectors such
that Av = βiv, A∗w = βiw, where A∗ denotes the transpose conjugate matrix of the

matrix A. Put ϕ ≡ Re(eit v),ψ ≡ Re(eitw),Θ j = 1

j !
2π∫
0

(
∂ j ( fx )

∂α j
(0, α̃)ϕ, ψ

)
dt .

If Θc �= 0 for some odd number c, then (0, α̃) is a bifurcation point of peri-
odic solutions of ẋ = f (x, α). More precisely, there exist continuous mappings
ε 
→ α(ε) ∈ R, ε 
→ T (ε) ∈ R, and ε 
→ b(ε) ∈ R

n defined in a neighborhood of 0
and such thatα(0) = α̃, T (0) = 2π

β
,b(0) = 0, b(ε) �= 0 for ε �= 0,and the solutions

to the problems
ẋ = f (x, α(ε)), x(0) = b(ε)

are T (ε)-periodic and non-constant.

To apply the Hopf Bifurcation theorem we study Eq. (11) and the roots of the
algebraic Eq. (14).

Lemma 1 ([5]). For any integer n ≥ 12 there exist α > 0 and q > 0 such that

n−1∏
j=0

(qi + α + j) =
n−1∏
j=0

(1 + α + j). (15)

Lemma 2 ([5]). For any α > 0 and any integer n > 1 all roots λ ∈ C to Eq. (14)
are simple.

3.3 Proof of Theorem 1 for n = 16

To apply the classical Hopf bifurcation theorem it remains to check the transversality
condition Re dλα

dα
(α̃) �= 0. However, for this we have to prove a particular case of

Lemma 1 (for n = 16) with the additional estimate α > 4.

Consider the positive functions ρn(α) and σn(α) defined for all α > 0 via the
equations

n−1∏
j=0

(
ρn(α)2 + (α + j)2

) =
n−1∏
j=0

(1 + α + j)2 (16)

and
n−1∑
j=0

arg
(
σn(α)i + α + j

) = 2π (17)

supposing arg z ∈ [0, 2π) for all z ∈ C \ {0}.
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Now, we prove the existence of α > 4 such that ρn(α) and σn(α) are equal to the
same value q, which makes the two sides of (15) to have equal modules squared and
arguments.

Lemma 3. ρn(α) < σn(α) for sufficiently large α.

Proof. Equation (16) defining the function ρn(α) may be written as

n−1∏
j=0

(
1 + 2 j

α
+ j2

α2
+

(
ρn(α)

α

)2
)

=
n−1∏
j=0

(
1 + j + 1

α

)2

.

This shows that
ρn(α)

α
→ 0 as α → +∞.

Equation (17) defining the function σn(α) may be written as

n−1∑
j=0

arctan

σn(α)

α

1 + j

α

= 2π.

This shows that
σn(α)

α
→ tan

2π

n
> 0 as α → +∞. Thus, ρn(α) < σn(α) for suf-

ficiently large α.

Lemma 4. ρ16(4) > σ16(4).

Proof. Calculations show that

15∏
j=0

(ρ16(4)
2 + (4 + j)2) =

15∏
j=0

(5 + j)2 = 20!2
4!2 > 1.02 · 1034,

15∏
j=0

((
√
16.9)2 + 4 + j)2) =

15∏
j=0

((16.9 + (4 + j)2) < 1.02 · 1034.

Consequently, ρ16(4) >
√
16.9. Now we prove that σ16(4) <

√
16.9.

15∑
j=0

arg(i
√
16.9 + 4 + j) =

19∑
j=4

arctan

√
16.9

j
=

11∑
j=4

(
arctan

√
16.9

j
+ arctan

√
16.9

23 − j

)

=
(
arctan

√
16.9

4
+ arctan

√
16.9

19

)
+

(
arctan

√
16.9

5
+ arctan

√
16.9

18

)
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+
(
arctan

√
16.9

6
+ arctan

√
16.9

17

)
+

(
arctan

√
16.9

7
+ arctan

√
16.9

16

)

+
(
arctan

√
16.9

8
+ arctan

√
16.9

15

)
+

(
arctan

√
16.9

9
+ arctan

√
16.9

14

)

+
(
arctan

√
16.9

10
+ arctan

√
16.9

13

)
+

(
arctan

√
16.9

11
+ arctan

√
16.9

12

)

= arctan
23

√
16.9

59.1
+ arctan

23
√
16.9

73.1
+ arctan

23
√
16.9

85.1
+ arctan

23
√
16.9

95.1

+ arctan
23

√
16.9

103.1
+ arctan

23
√
16.9

109.1
+ arctan

23
√
16.9

113.1
+ arctan

23
√
16.9

115.1

=
(
arctan

23
√
16.9

59.1
+ arctan

23
√
16.9

115.1

)
+

(
arctan

23
√
16.9

73.1
+ arctan

23
√
16.9

113.1

)

+
(
arctan

23
√
16.9

85.1
+ arctan

23
√
16.9

109.1

)
+

(
arctan

23
√
16.9

95.1
+ arctan

23
√
16.9

103.1

)

> (π − arctan 8) + (π − arctan 27) + arctan 53 + arctan 27

> 2π − arctan 8 + arctan 53 > 2π.

Lemma 4 is proved.

It follows from the previous lemmas that for n = 16 there exists α > 4 such that
ρn(α) = σn(α). In other words, there exists α > 4 and q > 0 satisfying (15).

Lemma 5. If α > 4 and q > 0 satisfy the polynomial Eq. (15) with n = 16, then
q2 < 3α + 5.
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Proof. Suppose that q2 ≥ 3α + 5. Then by the substitution α = x + 4, x > 0 we
obtain

0 =
15∏
j=0

(q2 + (α + j)2) −
15∏
j=0

(1 + α + j)2 ≥
15∏
j=0

(3α + 5 + (α + j)2) −
15∏
j=0

(1 + α + j)2

=
15∏
j=0

(3(x + 4) + 5 + (x + 4 + j)2) −
15∏
j=0

(5 + x + j)2 = 16x31 + 6008x30 + 1083320x29

+ 124909060x28 + 10346958048x27 + 655873445556x26 + 33088544670480x25

+ 1364273934048714x24 + 46845738509472552x23 + 1358250645535902456x22

+ 33597563403075497280x21 + 714518112665170116810x20

+13139980014580765008816x19 + 209824392142851028227096x18

+ 2917526044055626441371336x17 + 35381047693929819567554847x16

+374406309656399083867870608x15 + 3455282329668110634135853068x14

+ 27762847831737562495107829808x13 + 193660610621079373247365814128x12

+ 1167859506965501209338409024504x11 + 6053414704888747912009095383744x10

+ 26761570080450447023578667222592x9 + 99878302212425543314300198979457x8

+ 310418927289662193023860542327984x7 + 788696073282846162775363136169840x6

+1596416517107600883219437082580800x5 + 2478942035386106131273894570306656x4

+ 2782844558929121673466794032264448x3 + 2032786024054120635868885845636864x2

+ 764150278182231899482437402897408x + 52101059551946625208969009725696,

which is positive for any x > 0. This contradiction to (15) yields q2 < 3α + 5.
Lemma 5 is proved.

The condition Re dλα

dα
(α̃) �= 0 needed for the Hopf theorem, expressed explicitly

by means of the implicit function theorem, looks like

⎡
⎣n−1∑

j=0

α + j

q2 + (α + j)2

⎤
⎦
2

+
⎡
⎣n−1∑

j=0

q

q2 + (α + j)2

⎤
⎦
2

�=
n−1∑
j=0

α + j

q2 + (α + j)2

n−1∑
j=0

1

1 + α + j
.
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Lemma 6. If n = 16, 0 < q2 < 3α + 5, then

⎡
⎣n−1∑

j=0

α + j

q2 + (α + j)2

⎤
⎦

2

+
⎡
⎣n−1∑

j=0

q

q2 + (α + j)2

⎤
⎦

2

>

n−1∑
j=0

α + j

q2 + (α + j)2

n−1∑
j=0

1

1 + α + j
.

(18)

Proof. Hereafter all sums and products with no limits indicated are over j =
0, 1, . . . , n − 1.

Multiplying inequality (18) by U∗ =
∏

(1 + α + j) and then twice by V∗ =∏[
q2 + (α + j)2

]
, we obtain the following equivalent inequality provided α > 0:

U∗
[(∑

(α + j)Vj

)2 + q2
(∑

Vj

)2
]

> V∗
∑

(α + j)Vj

∑
Uj (19)

with the polynomials Uj = U∗
1 + α + j

and Vj = V∗
q2 + (α + j)2

.

Put q2 = 3α + 5

1 + w
, w > 0. Substituting this into inequality (19) and multiplying

the result by (1 + w)2n−1 we obtain another equivalent one:

U∗
[
(1 + w)

(∑
(α + j)Pj

)2 + (3α + 5)
(∑

Pj

)2
]

> P∗ ·
∑

(α + j)Pj ·
∑

Uj

(20)

with P∗ =
∏[

3α + 5 + (1 + w)(α + j)2
]
and Pj = P∗

3α + 5 + (1 + w)(α + j)2
.

Both sides of inequality (20) are polynomials of α and w with non-negative inte-
ger coefficients. So, they can be computed exactly, with no rounding. This rather
cumbersome computation gives the following result for the difference of the left-
and right-hand sides of (20) expressed as

U∗
[
(1 + w)

(∑
(α + j)Pj

)2 + (3α + 5)
(∑

Pj

)2
]

− P∗
∑

(α + j)Pj

∑
Uj =

5n−2∑
j=0

Δ jα
j

(21)

with polynomials Δ j ∈ R[w]. Straightforward though very cumbersome calcula-
tions show that Δ5n−2 = 0, and all other Δ j in (21) are polynomials with positive
coefficients if n = 16.
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This completes the proof of Lemma 6.
Now the Hopf bifurcation theorem and the lemmas proved provide, for n = 16,

the existence of a family αε > 0 such that Eq. (14) with α = α0 has imaginary roots
λ = ±qi and, for sufficiently small ε, system (11)withα = αε has a periodic solution
Vε(t)with periodTε → T = 2π

q as ε → 0. In particular, the coordinateVε,0(t) = v(t)
of the vector Vε(t) is also a periodic function with the same period. Then, taking into
account (7), we obtain

y(x) = (
C + v(−log(x∗ − x))

)
(x∗ − x)−α.

Put h(s) = C + v(−s),which is a non-constant continuous periodic and positive for
sufficiently small ε function and obtain the required equality

y(x) = (x∗ − x)−α h( log(x∗ − x) ).

In the similar way we obtain the related expressions for y( j)(x), j = 0, . . . , n − 1.
Theorem 1 for n = 16 is proved.

3.4 Proof of Theorem 1 in General Case

We can obtain some useful formulas

ã0 = α(α + 1) . . . (α + n − 1) − (α + 1) . . . (α + n) = −n(α + 1) . . . (α + n − 1), (22)

dn−1(−ã0)

dαn−1
= n!, dn−1(−a1)

dαn−1
= −n!, (23)

dn−2(−ã0)

dαn−2
= n

(
(n − 1)!α + (n − 2)!n(n − 1)

2

)
= (2α + 1)n!

2
, (24)

dn−1(−a2)

dαn−1
= 0,

dn−2(−a2)

dαn−2
= −(n − 2)!n(n − 1)

2
= −n!

2
. (25)

By using (13), we can prove for n, α, q from Lemma1 that the vector

v = (1, qi,−q2,−q3i, q4, . . . )

is an eigenvector of the matrix A corresponding to the eigenvalue qi . Consider also
an eigenvector w of the matrix A∗ corresponding to the eigenvalue qi , assuming its
last coordinate to equal 1: w = (. . . . . . , 1). Then

ϕ = Re(eit v) = (cos t,−q sin t,−q2 cos t, q3 sin t, q4 cos t, . . . ),
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ψ = Re(eitw) = (. . . . . . , cos t).

Using formulas (23)–(25), we obtain

Θn−1 = 1

(n − 1)!
2π∫
0

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0
n! −n! 0 . . . 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

cos t
−q sin t

...

...

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎝

...

...

...

cos t

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠
dt

= 1

(n − 1)!
2π∫
0

n! (cos2 t + q sin t cos t) dt = πn �= 0,

Θn−2 = 1

(n − 2)!
2π∫
0

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

0 0 0 0 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 0 . . . 0
(2α+1)n!

2
dn−2(−a1)
dαn−2 − n!

2 0 . . . 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

cos t
−q sin t
−q2 cos t

.

.

.

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎜⎜⎝

.

.

.

.

.

.

.

.

.

cos t

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠
dt

= π

(n − 2)!

(
(2α + 1)n!

2
+ q2n!

2

)
= πn(n − 1)

2
(2α + 1 + q2) > 0.

So, for any n ≥ 12 we have Θn−1 > 0 and Θn−2 > 0 if α > 0, and one of the
numbers n − 1 or n − 2 is odd. Consequently, all conditions of Theorem 3 due to
the lemmas are fulfilled. Therefore, for n ≥ 12 the existence of a family αε > 0
was proved such that Eq. (14) with α0 = α̃ has imaginary roots λ = ±qi and for
sufficiently small ε system (11) with α = αε has a periodic solution Vε(t) with
period Tε → T = 2π

q as ε → 0. This, as well as in previous section, completes the
proof of Theorem 1, for arbitrary n ≥ 12 now.
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Third Order Iterative Method
for Nonlinear Difference Schemes

Irina Iumanova and Svyatoslav Solodushkin

Abstract A partial differential equation with fractional Riesz derivative and non-
linearity in differentiation operator is studied. We considered an implicit method
which is a fractional analogue of Crank-Nicolson method and, therefore, implies the
necessity of iterative solving of non-linear system on each time layer. To acceler-
ate the convergence we elaborate a two stage iterative method which does not use
derivatives and could be considered as an analog of Stefensen’s method. The theorem
of third order convergence is proved. Results of numerical examples coincides with
theoretical ones.

1 Introduction

Over the past decades it has been recognized that fractional partial differential equa-
tions are convenient mathematical tool for describing some phenomena in numerous
fields such as viscoelasticity, control systems, population dynamics, financial prob-
lems and physics, see [4, 5, 7, 12] and loads of references therein. Due to the fact that
many natural processes are non-linear it is necessary to study fractional differential
equations in partial derivatives with non-linearity in differentiation operators. From
the mathematical point of view these equations provide an example of extremely
complex, interesting and little-studied object. Analytical solution of these equations
could be found in exceptional cases only, and therefore the elaboration of appropriate
numerical methods and acceleration of their convergence is a relevant problem.

Numerical methods for partial fractional differential equations with non-linearity
in heterogeneous function, but not in differential operators, have been already built
and deeply studied in many works [10].
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In [16] authors focused on the study of the Crank–Nicolson scheme for the Riesz
space fractional-order parabolic type sine-Gordon equation. The existence, unique-
ness, stability, and convergence were proved.

Implicit difference schemes for fractional partial differential equations with time
delay were constructed in [8, 9]. The authors used shifted Grünwald–Letnikov for-
mulas for the approximation of fractional derivatives with respect to spatial variables
and the L1-algorithm for the approximation of fractional derivatives in time.

A discrete monotone iterative method for space-fractional non-linear diffusion-
reaction equation was reported in [5]. The authors proposed a Crank–Nicolson
discretization of a reaction-diffusion system with fractional spatial derivative of
the Riesz type. The finite-difference scheme was based on the use of fractional
order centered differences, and it was solved by a monotone iterative technique.
As an application, the particular case of the space-fractional Fisher’s equation is
theoretically analyzed in full detail. In that case, the monotone iterative method
guarantees the preservation of the positivity and the boundedness of the numerical
approximations.

On the other hand numerical methods for partial fractional differential equations
with non-linearity in differentiation operators have not been studied yet. In [12], as
in most similar works, numerical methods are not considered, but attempts are made
to find the exact solution in the form of series.

For integer order partial differential equations with non-linearity in differential
operators an implicit difference scheme was constructed in [11]. Then the non-linear
difference scheme was solved by the Newton method and convergence was demon-
strated in numerical experiments, but no proves were given.

The development of difference schemes for partial fractional differential equations
with non-linearity in differentiation operators has some issues. Explicit schemes as
it was demonstrated in numerical experiments are unstable. On the other hand direct
application of the implicit scheme leads to the necessity to solve non-linear systems
of high dimensional on each time layer. For integer order derivatives these systems
are three-diagonal or at least band, and special iterativemethods could be applied. For
Riesz derivatives, which are nonlocal, these non-linear systems are fully-filled, and
complexity of their solving increase dramatically. This is why the elaboration of an
iterative method which requires less number of calculation to achieve the necessary
accuracy seems very tempting.

Iterative methods are the main to solve non-linear problems [2, 3, 13]. Despite
the fact that tremendous efforts were made to improve the computational efficiency
of iterative methods, in particular to increase the convergence rate, there is a lack of
theoretical investigation in multidimensional case. Namely, usually authors offer a
new method, prove the theorem of convergence in Banach space and after that either
estimate the order in series of numerical experiments or prove the convergence with
order in R1 case only.

In [1] the Newton-type method was proposed and divided differences instead of
Frechet derivatives were used. Theorems of semilocal convergence in a Banach space
were proved, however the order of convergence was not proved.
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We consider an initial boundary value problem

∂ω(u(x, t))

∂t
= ∂αu(x, t)

∂|x|α + f (x, t), (1)

where t and x are independent variables, 0 � t � T , 0 � x � X , u(x, t) is an
unknown function tobe foundandω is a given functionwhichproperties are described
below, the order α of fractional Riesz derivative is assumed to be in range 1 < α � 2.
The Riesz fractional derivative is defined as follow

∂αu(x, t)

∂|x|α = 1

2 cos( πα
2 )Γ (2 − α)

d2

dx2

∫ +∞

−∞
u(ξ, t)

|x − ξ |α−1
dξ. (2)

Initial and boundary conditions are set as follow

u(x, 0) = ϕ(x), 0 � x � X , (3)

u(0, t) = μ0(t), u(X , t) = μ1(t), 0 � t � T . (4)

It is supposed that u(x, t) = 0 for x < 0 and x > X .

We assume that the problem (1)–(4) has a unique solution, understood in the
classical sense, and this solution sufficiently smooth. We also assume that ω is twice
continuously differentiable in its domain and its first derivative is uniformly greater
than zero in the neighbourhood of solution u

0 < ω̂ ≤ ω′(u). (5)

These conditionals are essential to ensure the convergence of the difference
scheme, and details could be found in [6], where the convergence of a non-linear
difference scheme with usage of Newtonmethod on time layers was shown for initial
boundary value problem with integer derivatives. For Riesz fractional derivatives the
technique of proof is the same.

2 Implicit Difference Scheme

We consider an equidistant partition of [0,X ] into parts with step size h = X /N and
define the grid xi = ih, i = 0, . . . ,N . We also split the time interval [0,T ] into M
parts with step size Δ = T/M and define the grid tj = jΔ, j = 0, . . . ,M .

Denote by uij the approximation of the function value u(xi, tj), i = 0, 1, . . .N ,

j = 0, . . .M , at the respective node.
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To approximate the Riesz fractional derivative in the internal grid nodes we use
formula [15]

∂αu(xi, tj)

∂|x|α = − 1

hα

N−i∑
s=−i

gα,su
i+s
j + O(h2), 1 ≤ i ≤ N − 1, (6)

where {gα,s}+∞
s=−∞ be a sequence defined by

gα,s = (−1)sΓ (α + 1)

Γ (α
2 − s + 1)Γ (α

2 + s + 1)
.

Let us consider a non-linear difference scheme, j = 0, 1, . . . ,M − 1,

ω(uij+1) − ω(uij)

Δ
= −1

2hα

(
N−i∑
s=−i

gα,su
i+s
j+1 +

N−i∑
s=−i

gα,su
i+s
j )

)
+ f ij+1/2,

for i = 1, . . . ,N − 1,

and u0j+1 = μ0(tj+1), uNj+1 = μ1(tj+1),

(7)

with initial conditions uij = ϕ(xi), i = 0, 1 . . . ,N . To make notation shorter f ij+1/2
denotes f (xi, tj + Δ/2).

To find a solution uj+1 = (u1j+1, u
2
j+1, . . . , u

N−1
j+1 ) on each next time layer it is

necessary to solve a corresponding non-linear system, which can be written in the
form F(uj+1) = 0, F : RN−1 → R

N−1. To deal with it we build a two-step iterative
method, and all necessary definitions are given below.

Definition 1 ([14]). Let F be a continuous non-linear mapping from a Banach space
X to Y . Linear operator F(u1, u2) is called the first divided difference of operator F
if the following requirements hold:

1. for each fixed u1, u2 ∈ X operator F(u1, u2) is such that F(u1, u2)(u1 − u2) =
F(u1) − F(u2);

2. if the Frechet derivative F ′(u) exists then F(u, u) = F ′(u).

Firstly it should bementioned that Definition (1) is given for a function, but not for
an equation. Secondly it specifies the first divided difference in a not unique way. To
give an example of one possible constructivization of Definition (1) let us consider
the simplest multidimensional case X = Y = R

2, a function F(u) : R2 → R
2 and

two points u1 = (u11, u
2
1), u2 = (u12, u

2
2), so

F (u1) =
(
f1(u11, u

2
1)

f2(u11, u
2
1)

)
, F (u2) =

(
f1(u12, u

2
2)

f2(u12, u
2
2)

)
.
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The first divided difference could be define as follow

F (u1, u2) =

⎛
⎜⎜⎝
f1(u11, u

2
1) − f1(u12, u

2
1)

u11 − u12

f1(u12, u
2
1) − f1(u12, u

2
2)

u21 − u22
f2(u11, u

2
1) − f2(u12, u

2
1)

u11 − u12

f2(u12, u
2
1) − f2(u12, u

2
2)

u21 − u22

⎞
⎟⎟⎠ . (8)

Now let us consider the equation F(u) = 0 in a form of fixed point prob-
lem Φ(u) = u, where Φ(u) = u − λF(u) and λ is parameter. For the simplest 2-
dimensional case, i.e. u = (u1, u2), these equations could be respectively represented
in coordinate-wise forms

{
f1(u

1, u2) = 0,

f2(u
1, u2) = 0,

{
ϕ1(u

1, u2) = u1,

ϕ2(u
1, u2) = u2,

where

ϕ1(u
1, u2) = u1 − λf1(u

1, u2), ϕ2(u
1, u2) = u2 − λf2(u

1, u2).

In term of Φ the definition of the first divided difference has the following form

Φ (u1, u2) =

⎛
⎜⎜⎝

ϕ1(u11, u
2
1) − ϕ1(u12, u

2
1)

u11 − u12

ϕ1(u12, u
2
1) − ϕ1(u12, u

2
2)

u21 − u22
ϕ2(u11, u

2
1) − ϕ2(u12, u

2
1)

u11 − u12

ϕ2(u12, u
2
1) − ϕ2(u12, u

2
2)

u21 − u22

⎞
⎟⎟⎠ . (9)

To find uj+1 in difference scheme (7) we consider it in an abstract form F(uj+1) =
0, F : RN−1 → R

N−1. We also consider an auxiliary function: Φ(uj+1) = uj+1 −
λF(uj+1).

Let us propose a two-step iterative method

u(k+1)
j+1 = ũ(k)

j+1 − μ
[
F

(
u(k)
j+1, Φ

(
u(k)
j+1

))]−1
F

(̃
u(k)
j+1

)
, (10)

ũ(k)
j+1 = u(k)

j+1 −
[
F

(
u(k)
j+1, Φ

(
u(k)
j+1

))]−1
F

(
u(k)
j+1

)
, (11)

where u(k)
j+1 is the k-th iteration of a solution uj+1, and ũ

(k)
j+1 is an auxiliary sequence,

λ ∈ (0, 1], μ ∈ (0, 1], k = 0, 1, . . . ,K . Without loss of generality and to simplify
the narration we assume that the same number K of iterations are performed on each
time layer. As initial approximation in (11) we take a value from the previous time
layer u(0)

j+1 = u(K)
j . Note that F

(
u′, u′′) = 1

λ

(
E − Φ

(
u′, u′′)) .

For initial boundary value problem with integer derivatives and non-linearity in
differential operators the convergence of a non-linear difference scheme with usage
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of Newton method on time layers was shown in [6]. For Riesz fractional derivatives
the technique of proof is the same. In the next section we show that method (10)–(11)
converges with third order and its computational efficiency is greater then in Newton
method.

3 Convergence of Two-Step Iterative Method

We consider an equation F(u) = 0, F : RN−1 → R
N−1. Let F(u) be a continues, the

operator of the first divided difference is invertible, i.e. in the domain of our interest
there exist [F(u′, u′′)]−1 = [E − Φ(u′, u′′)]−1.We consider method (10)–(11) and to
simplify notation we will not use subscript j + 1; without loss of generality we also
take μ = λ = 1, see remark below.

Theorem 1. Let the following conditions hold:

1.
∥∥F(u(0))

∥∥ = ∥∥u(0) − Φ
(
u(0)

)∥∥ ≤ η;
2. there exists an open domain Ω ⊆ R

N−1 such that for each u′, u′′, u′′′ ∈ Ω the
following three estimations hold

a.
∥∥[F(u′, u′′)]−1

∥∥ = ∥∥[E − Φ(u′, u′′)]−1
∥∥ ≤ B;

b.
∥∥Φ(u′, u′′)

∥∥ ≤ M ;
c.

∥∥Φ(u′, u′′) − Φ(u′′, u′′′)
∥∥ ≤ K

∥∥u′ − u′′′∥∥ ,

where B,M ,K are constants;
3. h = C2B2KM η < 1;
4. the set Ω fully contains a closed ball

∥∥u − u(0)
∥∥ ≤ R, (12)

where R = C1S0
C2BKM

, Sk =
∞∑
n=k

h2
n
, C1 = 1 + B2KM F̂, C2 = 1 + B2KF̂ and

F̂ = sup
x∈Ω

‖F(x)‖.

Then (a) all elements of the sequence
(
u(k)

)
, defined by the method (10)–(11) which

starts from the certain u(0), lie in the ball (12), (b) the sequence
(
u(k)

)
has a limit u∗

in the ball (12), and (c) the estimation takes place

∥∥u∗ − u(k)
∥∥ ≤ C1

C2BKM
Sk (k = 0, 1, 2, . . .).

Proof. Directly from formulas (10)–(11) we get

x̃(k+1) − x̃(k) = − [
F

(
x̃(k), Φ

(
x̃(k)

))]−1 (
F

(
x̃(k)

) + F
(
x(k)

)) ; (13)
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x̃(k+1) − Φ
(
x̃(k)

) = F
(
x̃(k)

) − [
F

(
x̃(k), Φ

(
x̃(k)

))]−1 (
F

(
x̃(k)

) + F
(
x(k)

))
=

[
E − [

F
(
x̃(k), Φ

(
x̃(k)

))]−1
]
F

(
x̃(k)

) − [
F

(
x̃(k), Φ

(
x̃(k)

))]−1
F

(
x(k)

)

= − [
F

(
x̃(k), Φ

(
x̃(k)

))]−1 (
E−F

(
x̃(k), Φ

(
x̃(k)

)))
F

(
x̃(k)

)
− [

F
(
x̃(k), Φ

(
x̃(k)

))]−1
F

(
x(k)

)
= − [

F
(
x̃(k), Φ

(
x̃(k)

))]−1 [
Φ

(
x̃(k), Φ

(
x̃(k)

))
F

(
x̃(k)

) + F
(
x(k)

)] ;

(14)

x(k) − Φ
(
x̃(k)

) = x̃(k) − Φ
(
x̃(k)

) − [
F

(
x̃(k), Φ

(
x̃(k)

))]−1
F

(
x̃(k)

)
= F

(
x̃(k)

) − [
F

(
x̃(k), Φ

(
x̃(k)

))]−1
F

(
x̃(k)

)
=

(
E − [

F
(
x̃(k), Φ

(
x̃(k)

))]−1
)
F

(
x̃(k)

)

= − [
F

(
x̃(k), Φ

(
x̃(k)

))]−1 (
E − F

(
x̃(k), Φ

(
x̃(k)

)))
F

(
x̃(k)

)
= − [

F
(
x̃(k), Φ

(
x̃(k)

))]−1
Φ

(
x̃(k), Φ

(
x̃(k)

))
F

(
x̃(k)

)
.

(15)

According to the Definition (1) and formulas (10)–(11) we get

F
(
x(k)

) = F
(
x̃(k)

) + F
(
x(k), x̃(k)

) (
x(k) − x̃(k)

) = F
(
x̃(k)

) − F
(
x(k), x̃(k)

)
× [

F
(
x̃(k), Φ

(
x̃(k)

))]−1
F

(
x̃(k)

) =
(
E − F

(
x(k), x̃(k)

) [
F

(
x̃(k), Φ

(
x̃(k)

))]−1
)

× F
(
x̃(k)

) =
(
F

(
x̃(k), Φ

(
x̃(k)

)) [
F

(
x̃(k), Φ

(
x̃(k)

))]−1

− F
(
x(k), x̃(k)

) [
F

(
x̃(k), Φ

(
x̃(k)

))]−1
)
F

(
x̃(k)

)

= − (
F

(
x(k), x̃(k)

) − F
(
x̃(k), Φ

(
x̃(k)

))) [
F

(
x̃(k), Φ

(
x̃(k)

))]−1
F

(
x̃(k)

);
(16)

F
(
x̃(k+1)

) = F
(
x̃(k)

) + F
(
x̃(k+1), x̃(k)

) (
x̃(k+1) − x̃(k)

)
= −F

(
x̃(k), Φ

(
x̃(k)

)) (
x(k) − x̃(k)

) + F
(
x̃(k+1), x̃(k)

) (
x̃(k+1) − x̃(k)

)
= −F

(
x̃(k), Φ

(
x̃(k)

)) (
x(k) − x̃(k+1)

) + (
F

(
x̃(k+1), x̃(k)

) − F
(
x̃(k), Φ

(
x̃(k)

)))
× (

x̃(k+1) − x̃(k)
) = −F

(
x(k)

) − (
F

(
x̃(k+1), x̃(k)

) − F
(
x̃(k), Φ

(
x̃(k)

)))
× [

F
(
x̃(k), Φ

(
x̃(k)

))]−1 (
F

(
x̃(k)

) + F
(
x(k)

))
.

(17)
Based on conditions (a)–(c) the following inequalities could be derived from

(13)–(17)
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∥∥x(k) − Φ
(
x̃(k)

)∥∥ �
∥∥∥[
F

(
x̃(k), Φ

(
x̃(k)

))]−1
∥∥∥

× ∥∥Φ
(
x̃(k), Φ

(
x̃(k)

))∥∥ · ∥∥F (
x̃(k)

)∥∥ � BM
∥∥F (

x̃(k)
)∥∥ ;

∥∥F (
x(k)

)∥∥ �
∥∥F (

x(k), x̃(k)
) − F

(
x̃(k), Φ

(
x̃(k)

))∥∥ ∥∥∥[
F

(
x̃(k), Φ

(
x̃(k)

))]−1
∥∥∥

× ∥∥F (
x̃(k)

)∥∥ � KB
∥∥x(k) − Φ

(
x̃(k)

)∥∥ · ∥∥F (
x̃(k)

)∥∥ � B2KM
∥∥F (

x̃(k)
)∥∥2 ;

(18)

∥∥x̃(k+1) − x̃(k)
∥∥ �

∥∥∥[
F

(
x̃(k), Φ

(
x̃(k)

))]−1
∥∥∥ · (∥∥F (

x̃(k)
)∥∥ + ∥∥F (

x(k)
)∥∥)

� B
∥∥F (

x̃(k)
)∥∥ + B3KM

∥∥F (
x̃(k)

)∥∥2 ;
(19)

∥∥x̃(k+1) − Φ
(
x̃(k)

)∥∥ �
∥∥∥[
F

(
x̃(k), Φ

(
x̃(k)

))]−1
∥∥∥

× (∥∥Φ
(
x̃(k), Φ

(
x̃(k)

))∥∥ · ∥∥F (
x̃(k)

)∥∥ + ∥∥F (
x(k)

)∥∥)
� B

(
M

∥∥F (
x̃(k)

)∥∥ + ∥∥F (
x(k)

)∥∥)
� BM

∥∥F (
x̃(k)

)∥∥ + B3KM
∥∥F (

x̃(k)
)∥∥2 ;

(20)

∥∥F (
x̃(k+1)

)∥∥ �
∥∥F (

x(k)
)∥∥ + ∥∥F (

x̃(k+1), x̃(k)
) − F

(
x̃(k), Φ

(
x̃(k)

))∥∥
×

∥∥∥[
F

(
x̃(k), Φ

(
x̃(k)

))]−1
∥∥∥ · (∥∥F (

x̃(k)
)∥∥ + ∥∥F (

x(k)
)∥∥)

� B2KM
∥∥F (

x̃(k)
)∥∥2 + BK

∥∥x̃(k+1) − Φ
(
x̃(k)

)∥∥ · (∥∥F (
x̃(k)

)∥∥ + ∥∥F (
x(k)

)∥∥)
� B2KM

∥∥F (
x̃(k)

)∥∥2 + BK
(
BM

∥∥F (
x̃(k)

)∥∥ + B3KM
∥∥F (

x̃(k)
)∥∥2

)

×
(∥∥F (

x̃(k)
)∥∥ + B2KM

∥∥F (
x̃(k)

)∥∥2
)

� 2B2KM
∥∥F (

x̃(k)
)∥∥2 + B4K2M (M + 1)

∥∥F (
x̃(k)

)∥∥3 + B6K3M 2
∥∥F (

x̃(k)
)∥∥4

.

(21)

Let us consider inequalities (19), (20) and (21). There exist such constants C1, C2

and C3 that ∥∥x̃(k+1) − x̃(k)
∥∥ � C1B

∥∥F (
x̃(k)

)∥∥ , (22)

∥∥x̃(k+1) − Φ
(
x̃(k)

)∥∥ � C3BM
∥∥F (

x̃(k)
)∥∥ , (23)

∥∥F (
x̃(k+1)

)∥∥ � C2B
2KM

∥∥F (
x̃(k)

)∥∥2
. (24)

Using induction we derive from (22), (23) and (24) the following

∥∥̃x(k+1) − x̃(k)
∥∥ � C1h2

k

C2BKM
; ∥∥̃x(k+1) − Φ

(̃
x(k)

)∥∥ � C3h2
k

C2BK
, (25)
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∥∥F (̃
x(k+1)

)∥∥ � h2
k+1−1η,

where k = 0, 1, 2, . . . .

Based on (25) we obtain

∥∥x̃(k+p) − x̃(k)
∥∥ � C1

C2BKM

(
h2

k + h2
k+1 + · · · + h2

k+p−1
)

. (26)

Passing to the limit (p → ∞) we obtain

∥∥x̃∗ − x̃(k)
∥∥ � C1

C2BKM

∞∑
n=k

h2
n = C1

C2BKM
Sk (k = 0, 1, 2, . . . ) .

Passing to the limit (k → ∞) we see that x̃∗ is a solution to the equation F(u) = 0.
Let us show that the elements x̃0, Φ

(
x̃0

)
, x̃1, Φ

(
x̃1

)
, . . . , x̃k , Φ

(
x̃k

)
belong to

the ball (12). This follows from inductively provable inequalities
∥∥x̃(k) − x̃(0)

∥∥ �
∥∥x̃(k) − x̃(k−1)

∥∥ + ∥∥x̃(k−1) − x̃(k−2)
∥∥ + . . .

+ ∥∥x̃(1) − x̃(0)
∥∥ � C1h2

k−1

C2BKM
+ · · · + C1h2

0

C2BKM
� C1

C2BKM

k−1∑
n=0

h2
n

and ∥∥Φ
(
x̃(k)

) − x̃(0)
∥∥ �

∥∥Φ
(
x̃(k)

) − x̃(k+1)
∥∥ + ∥∥x̃(k+1) − x̃(0)

∥∥

� C2h2
k

C2BK
+ C1

C2BKM

k∑
n=0

h2
n
.

(27)

From inequality (27) when k → ∞ we obtain the estimate

∥∥x̃∗ − x̃(0)
∥∥ � C1S0

C2BKM

and make sure that x̃∗ belongs to the ball (12). 
�
Let us remark that, if parameters μ and λ of method (10)–(11) lay in the segment

(0, 1) then condition (3) of Theorem1 should be rewritten in the following form

h = C2B2KM
μ

λ
η < 1. The technique of proof is preserved.

The following theorem gives conditions for convergence with the third order.

Theorem 2. Assume that

1. equation F(u) = 0 has a solution in the ball

∥∥u − u(0)
∥∥ ≤ ρ; (28)
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2. for each u′, u′′, u′′′ from the ball

∥∥u − u(0)
∥∥ ≤ (1 + α) ρ (29)

the following three estimations hold

a.
∥∥[F(u′, u′′)]−1

∥∥ = ∥∥[E − Φ(u′, u′′)]−1
∥∥ ≤ B;

b.
∥∥Φ(u′, u′′)

∥∥ ≤ M ;
c.

∥∥Φ(u′, u′′) − Φ(u′′, u′′′)
∥∥ ≤ K

∥∥u′ − u′′′∥∥ ,

whereB,M ,K are constants, at thatα = max{l2ρ2, M },where l = √
2CBKM ,

C is a constant;
3. lρ < 1.

Then (a) the solution u∗ of equation F(u) = 0 is unique in the ball (28), (b) sequence(
u(k)

)
, defined by the method (10)–(11), converges to u∗ with the third order, i.e. the

following estimation of the convergence rate holds

∥∥u∗ − u(k)
∥∥ ≤ 1

l
(lρ)3

k
(k = 0, 1, 2, . . .). (30)

Proof. Let k = 0, then the estimate (30) is valid on the basis of condition (1) of the
theorem. Elements x̃(0) Φ

(
x̃(0)

)
belong to the ball (29), because

∥∥Φ
(
x̃(0)

) − x̃(0)
∥∥ = ∥∥Φ

(
x̃(0)

) − Φ
(
x̃∗) + x̃∗ − x̃(0)

∥∥
�

∥∥Φ
(
x̃∗, x̃(0)

)∥∥ · ∥∥x̃∗ − x̃(0)
∥∥ + ∥∥x̃∗ − x̃(0)

∥∥ � (1 + M ) ρ � (1 + α) ρ.

Let us analyze the behavior of the error using (10)–(11)

x̃∗ − x̃(k+1) = x̃∗ − x(k) + [
F

(
x̃(k), Φ

(
x̃(k)

))]−1
F

(
x(k)

)
= x̃∗ − x(k) − [

F
(
x̃(k), Φ

(
x̃(k)

))]−1 (
F

(
x̃∗) − F

(
x(k)

))
= x̃∗ − x(k) − [

F
(
x̃(k), Φ

(
x̃(k)

))]−1
F

(
x̃∗, x(k)

) (
x̃∗ − x(k)

)
=

(
E − [

F
(
x̃(k), Φ

(
x̃(k)

))]−1
F

(
x̃∗, x(k)

)) (
x̃∗ − x(k)

)

= [
F

(
x̃(k), Φ

(
x̃(k)

))]−1 (
F

(
x̃(k), Φ

(
x̃(k)

)) − F
(
x̃∗, x(k)

)) (
x̃∗ − x(k)

)
,

x̃∗ − x(k) = x̃∗ − x̃(k) + [
F

(
x̃(k), Φ

(
x̃(k)

))]−1
F

(
x̃(k)

)
= x̃∗ − x̃(k) − [

F
(
x̃(k), Φ

(
x̃(k)

))]−1 (
F

(
x̃∗) − F

(
x̃(k)

))
= x̃∗ − x̃(k) − [

F
(
x̃(k), Φ

(
x̃(k)

))]−1
F

(
x̃∗, x̃(k)

) (
x̃∗ − x̃(k)

)
=

(
E − [

F
(
x̃(k), Φ

(
x̃(k)

))]−1
F

(
x̃∗, x̃(k)

)) (
x̃∗ − x̃(k)

)

= [
F

(
x̃(k), Φ

(
x̃(k)

))]−1 (
F

(
x̃(k), Φ

(
x̃(k)

)) − F
(
x̃∗, x̃(k)

)) (
x̃∗ − x̃(k)

)
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and
x̃∗ − Φ

(
x̃(k)

) = Φ
(
x̃∗) − Φ

(
x̃(k)

) = Φ
(
x̃∗, x̃(k)

) (
x̃∗ − x̃(k)

)
.

From here we derive that
∥∥F (

x̃(k), Φ
(
x̃(k)

)) − F
(
x̃∗, x(k)

)∥∥
= ∥∥F (

x̃(k), Φ
(
x̃(k)

)) − F
(
Φ

(
x̃(k)

)
, x̃∗) + F

(
Φ

(
x̃(k)

)
, x̃∗) − F

(
x̃∗, x(k)

)∥∥
�

∥∥F (
x̃(k), Φ

(
x̃(k)

)) − F
(
Φ

(
x̃(k)

)
, x̃∗)∥∥

+ ∥∥F (
Φ

(
x̃(k)

)
, x̃∗) − F

(
x̃∗, x(k)

)∥∥ � K
∥∥x̃∗ − x̃(k)

∥∥
+ K

∥∥Φ
(
x̃(k)

) − x(k)
∥∥ � K

∥∥x̃∗ − x̃(k)
∥∥ + K

∥∥x̃∗ − Φ
(
x̃(k)

)∥∥ + K
∥∥x̃∗ − x(k)

∥∥
� K(M + 1)

∥∥x̃∗ − x̃(k)
∥∥ + K

∥∥x̃∗ − x(k)
∥∥ ,

∥∥x̃∗ − x(k)
∥∥ � BK

∥∥x̃∗ − Φ
(
x̃(k)

)∥∥ · ∥∥x̃∗ − x̃(k)
∥∥ � BKM

∥∥x̃∗ − x̃(k)
∥∥2

and

∥∥x̃∗ − x̃(k+1)
∥∥ � B2KM

(
K(M + 1)

∥∥x̃∗ − x̃(k)
∥∥ + BK2M

∥∥x̃∗ − x̃(k)
∥∥2

)

× ∥∥x̃∗ − x̃(k)
∥∥2 � B2K2M (M + 1)

∥∥x̃∗ − x̃(k)
∥∥3 + B3K3M 2

∥∥x̃∗ − x̃(k)
∥∥4

.

There is a positive constant C such that

∥∥x̃∗ − x̃(k+1)
∥∥ � CB2K2M (M + 1)

∥∥x̃∗ − x̃(k)
∥∥3

, (31)

that means the method (10)–(11) converges with at least third order. From (31) by
induction we obtain the estimate (30).

The estimate (31) is valid under the assumption that the elements x̃(k) andΦ
(
x̃(k)

)
belong to the ball. Let us show that this is indeed so. For k � 1 we have

∥∥∥x̃(k) − x̃(0)
∥∥∥ �

∥∥∥x̃(k) − x̃∗
∥∥∥ +

∥∥∥x̃∗ − x̃(0)
∥∥∥ � 1

l
(lρ)3

k + ρ �
(
1 + l2ρ2

)
ρ � (1 + α) ρ

and ∥∥Φ
(
x̃(k)

) − x̃(0)
∥∥ �

∥∥Φ
(
x̃(k)

) − Φ
(
x̃∗) + x̃∗ − x̃(0)

∥∥
�

∥∥Φ
(
x̃∗, x̃(k)

) (
x̃∗ − x̃(k)

)∥∥ + ∥∥x̃∗ − x̃(0)
∥∥

� Ml2ρ3 + ρ < (1 + M ) ρ � (1 + α) ρ.

From (31) and what was deduced above it follows that lim x̃(k) = x̃∗ as k → ∞.

If the equation would have a solution in ball (28), then, using similar reasoning,
we could show that lim x̃(k) = x̃∗∗ as k → ∞. Based on the uniqueness of the limit
element of a convergent sequence

(
x̃(k)

)
the solution x̃∗ is unique in ball (28). 
�
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The Theorems1 and 2 impose less stringent conditions on the operator of the first
divided difference than is done, for example, in [1].

4 Numerical Examples

Let us consider a concrete example. Namely, in Eq. (1) we take ω(u) = exp(u) and
perform numerical simulations in various time and space grids.

Let us consider the initial boundary value problem

∂eu

∂t
= ∂1.5u

∂|x|1.5 − f (x, t) (32)

on the domain x ∈ (0, 1), t ∈ (0, 4π), where

f (x, t) = − exp
(
x2 (1 − x)2 cos(t)

)
x2 (1 − x)2 sin(t)

− cos(t)√
2π

16

315

(
32 (1 − x)2.5 + 32 x2.5 + 160 x1.5 (−1.125 + x)

− 5 (1 − x)1.5 (4 + 32 x) + 60 x0.5 (1.3125 − 2.25 x + x2)

+ 3.75 (1 − x)0.5 (1 + 4 x + 16 x2)

)
.

Initial and boundary conditions are defined as follow

u(x, 0) = x2 (1 − x)2, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 4π.

Problem (32) has an exact solution u(x, t) = x2 (1 − x)2 cos t.
The algorithm was implemented using Python 3.7, all computations were per-

formed in a double precision. To compare the Newton method and the elaborated
method (10)–(11) we took the accuracy which should be achieved during the itera-
tions to be ε = 10−5, i.e. ‖u(k)

j+1 − u(k−1)
j+1 ‖ ≤ ε.

Results of numerical experiments with method (10)–(11) are presented in Table 1.
The third column shows the maximum of absolute difference between the exact
and numerical solutionsdiffΔ,h = max

i,j
|uij − u(xi, tj)|, i = 0, . . . ,N , j = 0, . . . ,M ,

where N and M are the number of segments in space and time. The fourth column
represents the ratio of the error reduction as the space grid refined.
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Table 1 Convergence of method (10)–(11) in various time and space grids

Δ h diffΔ,h Error rate

π/10 1 × 2−2 9.5399 × 10−3 –

1 × 2−3 2.7679 × 10−3 3.4465

1 × 2−4 1.2202 × 10−3 2.2684

1 × 2−5 8.6654 × 10−4 1.4081

1 × 2−6 7.8471 × 10−4 1.1043

π/20 1 × 2−2 8.9632 ×10−3 –

1 × 2−3 2.2025×10−3 4.0694

1 × 2−4 6.5309×10−4 3.3725

1 × 2−5 2.9702×10−4 2.1988

1 × 2−6 2.1477×10−4 1.3829

π/40 1 × 2−2 8.8006×10−3 –

1 × 2−3 2.0554×10−3 4.2816

1 × 2−4 5.0953×10−4 4.0339

1 × 2−5 1.5430×10−4 3.3021

1 × 2−6 7.2263×10−5 2.1353

In the series of experiments withΔ = π/40 the error related to the time discretiza-
tion is small in comparison with the error related to the coordinate discretization; the
analysis of the error behavior reveals the second convergence with respect to space
variables, i.e. when the step becomes half as much, the error becomes almost two
times less as well.

The analysis of the data in the table shows that only the consistent decrease of
steps yields the decrease of error. Indeed, in the series of experiments withΔ = π/10
the halving of h does not cause the corresponding decrease of error, because the total
error is mostly induced by the time discretization.

To show the advantages of the developed method over the Newton method we
compare the number of iterations necessary to achieve the desired accuracy, see Table
2. The row “Iteration number” represents the average number of iterations done at
each time layer.

Definition 2 ([13]). The efficiency index of the iterative method is called quantity
p1/θ , where p is the order of convergence of the method, θ is the number of function
calculations at each iterative step.

The efficiency index of method (10)–(11) is 31/2 ≈ 1.732 while Newton method
has the efficiency index 2 only. So, despite the fact that the elaborated method (10)–
(11) requires two steps per iterations and, therefore, two calculations of function
values, the total amount of computational work is fewer than in Newton method.
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Table 2 Average number of iterations and errors norms

N 16 16 16 16

M 10 20 40 80

Method (10)–(11)

diff 1.2202 × 10−3 6.5309 × 10−4 5.0953 × 10−4 4.978 × 10−4

Iter. num. 1.63 1.50 1.06 1.03

Newton method

diff 1.1971 × 10−3 6.734 × 10−4 6.1102 × 10−4 5.012 × 10−4

Iter. num. 5.125 5.125 5.03 4.53
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Non-homogeneous Boundary Problems
for One-Dimensional Flow of the
Compressible Viscous and
Heat-Conducting Micropolar Fluid

Ivan Dražić

Abstract We consider nonstationary 1-D flow of a compressible viscous and heat-
conducting micropolar fluid which is in the thermodynamical sense perfect and
polytropic.

In the first part of the work we present corresponding initial-boundary value
problems whereby we allow non-homogeneous boundary conditions for velocity,
microrotation or temperature.

In the second part of the work we present existence results for described problems
under the additional assumption that the initial density and initial temperature are
strictly positive.

1 Introduction

Today, modern engineering is shifting its focus frommacro tomicro level. Nanotech-
nology is slowly entering all spheres of human activity and it is up to mathematics to
properly follow this trend with associated models. Continuum mechanics have been
macro-oriented for a long time, and any attempt to model a phenomenon on a micro-
scale has generally resulted in a model that was so complex that its mathematical
analysis would generally not be possible. That was until the 1960s when Eringen
established the micropolar continuummodel with the introduction of a new variable,
microrotation. With this new variable he was able to model phenomena at the micro
level.

In this paper, we concentrate on an isotropic compressible and thermally conduc-
tivemicropolar fluid,whichweassume tobeperfect andpolytropic in thermodynamic
terms. The mathematical analysis of this model began with a one-dimensional case
in [4], and that case is the focus of this paper. In addition to the one-dimensional case,
a multidimensional case with different symmetries in solutions has been considered
to date, and we refer to [1] for details.
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In the last few years, themicropolar fluidmodel is successfully applied in different
engineering areas, as well as in the field of medicine. For some specific applications,
we refer to [2], together with references cited herein.

The main goal of this paper is to give an overview of recent results concerning the
described one-dimensional model in the relation to different boundary conditions,
with the focus on the existence of the solution of the associated system of partial
differential equations.

2 The Mathematical Model

In [4] the following system was established:

ρt + ρ2vx = 0, (1)

vt = (ρvx)x − K(ρθ)x, (2)

ρωt = A (ρ(ρωx)x − ω), (3)

ρθt = −Kρ2θvx + ρ2(vx)
2 + ρ2(ωx)

2 + ω2 + Dρ(ρθx)x, (4)

which describes the one-dimensional motion of an isotropic, viscous and heat con-
ducting micropolar fluid, which is in the thermodynamical sense perfect and poly-
tropic. Equations (1)-(4) are, respectively, local forms of conservation laws for the
mass, momentum, momentum moment and energy, where we have the following
notations:

• ρ - mass density,
• v - velocity,
• ω - microrotation velocity,
• θ - absolute temperature,
• K,A,D - positive constants.

The system (1)-(4) is given in the Lagrangian form and considered in the domain
]0, 1[×R+, together with smooth enough initial conditions:

ρ(x, 0) = ρ0(x), v(x, 0) = v0(x), ω(x, 0) = ω0(x), θ(x, 0) = θ0(x), (5)

whereby we assume that the functions ρ0 and θ0 are strictly positive and bounded:

m ≤ ρ0(x), θ0(x) ≤ M , x ∈]0, 1[, (6)

where m,M ∈ R+.
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To complete the problem, we will propose various kinds of boundary conditions
and consider the properties of the so-called generalized solution which is given in
the following definition.

Definition 1. Given any T ∈ R+, a generalized solution to the system (1)-(4) in the
domain QT =]0, 1[×]0,T [, together with appropriate initial and boundary condi-
tions is a function

(x, t) �→ (ρ, v, ω, θ)(x, t), (x, t) ∈ QT , (7)

where
ρ ∈ L∞(0,T ;H1(]0, 1[)) ∩ H1(QT ) , inf

QT

ρ > 0 , (8)

v, ω, θ ∈ L∞(0,T ;H1(]0, 1[)) ∩ H1(QT ) ∩ L2(0,T ;H2(]0, 1[)), (9)

that satisfies the Eqs. (1)-(4) a.e. in QT and initial and boundary conditions in the
sense of traces.

Let us mention that by using the embedding and interpolation theorems one can
conclude that our generalized solution could be treated as a strong solution. In fact,
we have

ρ ∈ L∞(0,T ;C([0, 1])) ∩ C([0,T ],L2(]0, 1[)) , (10)

v, ω, θ ∈ L2(0,T ;C1([0, 1])) ∩ C([0,T ],H1(]0, 1[)), (11)

v, ω, θ ∈ C(QT ). (12)

3 Existence of the Solution in Dependence of Boundary
Conditions

3.1 Homogeneous Case

Let us first consider the problemwith homogeneous boundary conditions for velocity,
microrotation and heat-flux:

v(0, t) = v(1, t) = 0, ω(0, t) = ω(1, t) = 0, θx(0, t) = θx(1, t) = 0. (13)

This conditions were analyzed in [4] and [5], from where we have the following
theorem:
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Theorem 1. Let the functions ρ0, θ0 ∈ H1(]0, 1[) satisfy the conditions (6) and let
v0, ω0 ∈ H1

0(]0, 1[). Then for any T ∈ R+ there exists unique generalized solution
to the problem (1)-(5) and (13) in the domain QT having the property

θ > 0 in QT . (14)

Using the Faedo-Gelerikin method, local existence was proved in [4] as well as
the uniqueness of the solution. Then, based on extension principle and series of a
priori estimates, in [5] the global existence theorem was established.

From physical point of view, these boundary conditions are used to model the
flow between solid thermo-insulated walls.

For this case we also know that the solution is regular and exponentially stable;
for recent progress in this case we refer to [3].

3.2 Non-homogeneous Conditions for Velocity
and Microrotation

Nowwe will consider the problem with homogeneous boundary conditions for heat-
flux, but with inhomogeneous boundary conditions for velocity and microrotation:

v(0, t) = μ0(t), v(1, t) = μ1(t), ω(0, t) = ν0(t), ω(1, t) = ν1(t), (15)

θx(0, t) = θx(1, t) = 0. (16)

For these condition we have the following theorem:

Theorem 2. Let the functions ρ0, θ0, v0, ω0 ∈ H1(]0, 1[) and μ0, μ1, ν0, ν1 ∈ H2

(]0,T [) satisfy the conditions (6) as well as the compatibility conditions:

v0(0) = μ0(0), (17)

v0(1) = μ1(0), (18)

ω0(0) = ν0(0), (19)

ω0(1) = ν1(0). (20)

Let also exist a constant δ > 0 such that

l(t) =
∫ 1

0

1

ρ(0)
dx +

∫ t

0
[μ1(τ ) − μ0(τ )] dτ ≥ δ, (21)
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for t ∈]0,T [. Then for any T ∈ R+ there exists a generalized solution to the problem
(1)-(5) and (15)-(16) in the domain QT having the property

θ > 0 in QT . (22)

The local existence for this case was proved in [8], while global existence is
given in [10]. The proofs in these two works are very similar as the ones in [4] and
[5], but here the procedure of homogenization of boundary conditions is performed
first which, produces much complex system comparing the case with homogeneous
boundary conditions. From physical point of view these boundary conditions are
used to model the piston problem. Regarding the further mathematical properties,
for this case we just know that the solution is regular. For details we refer to [9].

3.3 Non-homogeneous Conditions for Temperature

In this subsection we will consider the problem with homogeneous boundary con-
ditions for velocity and microrotation, but inhomogeneous boundary conditions for
temperature:

v(0, t) = v(1, t) = 0, ω(0, t) = ω(1, t) = 0 (23)

θ(0, t) = μ0(t), θ(1, t) = μ1(t). (24)

For these condition we have the following theorem:

Theorem 3. Let the functions ρ0, θ0 ∈ H1(]0, 1[) satisfy the conditions (6) and let
v0, ω0 ∈ H1

0(]0, 1[). Let the functions μ0, μ1 ∈ H2(]0,T [) satisfy the compatibility
conditions:

θ0(0) = μ0(0), (25)

θ0(1) = μ1(0), (26)

as well as the conditions:

μ0(t) ≥ m, μ1(t) ≥ m, (27)

for t ∈]0,T [ and m defined in (6). Then for any T ∈ R+ there exists a generalized
solution to the problem (1)-(5) and (23)-(24) in the domain QT having the property

θ > 0 in QT . (28)

This case was analyzed in [11] and [12], whereby the local existence was estab-
lished in [11] and global in [12].
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From physical point of view, these boundary conditions are used to model the
flow between solid walls with varying temperature. Mathematical analysis of the
properties of the solution, especially regarding the regularity and stabilization for
this case is still open problem.

3.4 The Cauchy Problem

Herewe consider the problem (1)-(5) defined for x ∈ R without boundary conditions.
In this case we have the following theorem.

Theorem 4. Let the initial functions ρ0, θ0, ω0 and θ0 satisfy the following
conditions:

m ≤ ρ0(x), θ0(x) ≤ M , x ∈ R, (29)

where m,M ∈ R+, and

ρ0 − 1, θ0 − 1, v0, ω0 ∈ H1(R). (30)

Then for any T ∈ R+ there exists an unique solution to the problem (1)-(5) in the
domain QT = R×]0,T [ having the properties:

ρ − 1 ∈ L∞(0,T ;H1(R)) ∩ H1(QT ), (31)

v, ω, θ − 1 ∈ L∞(0,T ;H1(R)) ∩ H1(QT ) ∩ L2(0,T ;H2(R)), (32)

that satisfies the equations (1)-(4) a.e. in QT and conditions (5) in the sense of traces.

This theorem was proved in [6] and [7]. In [6] the existence was proved, while
uniqueness was established in [7]. The uniqueness was proved using the classical
approachwithGronwall inequality, and for existence themethodof domain extending
was used.

For recent results in mathematical analysis of these case we refer to [13].

4 Conclusion

In this paper, we considered the one dimensional flow of a compressible micropolar
fluid, whereby we assumed that the fluid is heat-conducting, isotropic and in ther-
modynamical sense perfect and polytropic. The corresponding system is coupled
by smooth enough initial conditions and we analysed different cases of boundary
conditions in relation to existence of generalized solution.
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4. Mujaković, N.: One-dimensional flow of a compressible viscous micropolar fluid: a local
existence theorem. Glasnik Matematički. 33, 71–91 (1998)
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The General Case of Cutting GML
Bodies: The Geometrical Solution

Johan Gielis, Diego Caratelli, and Ilia Tavkhelidze

Abstract The original motivation to study this class of geometrical objects of Gen-
eralized Möbius-Listing GML surfaces and bodies was the observation that the solu-
tion of boundary value problems greatly depends on the structure of the boundary of
domains. Since around 2010 GML’s were merged with (continuous) Gielis Transfor-
mations, which provide a unifying description of geometrical shapes, as a general-
ization of the Pythagorean Theorem. The resulting geometrical objects can be used
for modeling a wide range of natural shapes and phenomena.

The cutting ofGML bodies and surfaces, with theMöbius strip as one special case,
is related to the field of knots and links, and classifications were obtained for GML
with cross sectional symmetry of 2, 3, 4, 5 and 6. The general case of cutting GML
bodies and surfaces, in particular the number of ways of cutting, could be solved
by reducing the 3D problem to planar geometry [1]. This also unveiled a range of
connections with topology, combinatorics, elasticity theory and theoretical physics.

1 Generalized Möbius-Listing surfaces and bodies

G M Ln
m are torus-like surfaces or bodies, which are constructed by identifying oppo-

site sides of a cylinder or prisms with given cross sections (Fig. 1) [1, 2], whereby the
original cylinder or prism may be twisted. These cross sections of the G M Ln

m bod-
ies are closed planar curves with symmetry m. For the classical cylinder or Möbius
band, the cross section is a line, swept along a path forming a ribbon and twisted an
even or odd number of times around the basic line, which is the line traced out by
the centre of the line. The lower index m in G M Ln

m determines the symmetry of the
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Fig. 1 GML surfaces and bodies

cross section and the upper index n describes the number of twists. GML surfaces
or bodies can either be closed (e.g. a classical torus) or not (Fig. 1f). We observe in
G M Ln

4:

1. For G M L0
4 and G M L4

4 (Fig. 1 a&d) there are no (n = 0) or four (n = 4) twists
of the original prism of 90◦ each. The original identification of opposite sides of
the square prism with vertices ABCD and A’B’C’D’ is then AA’-BB’-CC’-DD’.
This corresponds to four-coloured surfaces of the GML, and this is the case for
any multiple of four.

2. For G M L2
4 and G M L14

4 (Fig. 1 b& e) there are two (n = 2) or fourteen (n = 14)
twists of the original prism of 90◦ each. The original identification of opposite
sides of the square prism with vertices ABCD and A’B’C’D’ is then AC’-BD’-
CA’-DB’ and this corresponds to two coloured surfaces. With one brush and two
colours, the whole surface can be painted, and this is the case for any multiple
of four plus 2.

3. For G M L1
4 and G M L3

4 (Fig. 1 c&f), there are 1 (n = 1) and 3 (n = 3) twists of
the original prism of 90◦ each. The original identification of opposite sides of
the square prism with vertices ABCD and A’B’C’D’ is then AD’-BA’-CB’-DC’
for n = 1. The case n = 3 is symmetrical, i.e. one twist of 90◦ anticlockwise
instead of clockwise for n = 1 and both lead to one coloured surfaces. With one
brush and one colour only, the whole surface can be painted, and this is the case
for any multiple of four plus or minus one.

The planar curves with symmetry m can be regular polygons or any closed plane
curve - including circles. GML surfaces are generated when only the curve itself - as
boundary of a region is considered (Fig. 1f for G M L3

4), or they are bodies when also
the disk enclosed by the curve is considered. A convenient method for both sections
and curve is the use of Gielis curves and transformations, a generalization of Lamé
curves [3]. These curves have been defined for 3D and higher as well [4], in the
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spirit of spherical coordinates, but this immediate use in GML avoids the laborious
generalization to cylindrical or other coordinate systems, since such systems can all
be considered as subsets of GML. They are also a generalization of canal surfaces
defining boundaries and disks.

Interestingly, Gielis transformations can morph manifolds in a space to the space
itself (and back). This is in the spirit of Gabriel Lamé (1795–1860), which has been
characterised as follows [5]: “The importance to consider all systems of curvilinear
coordinates, and not only the four or five (Cartesian, oblique, cylindrical, spheri-
cal, bipolar) in use around 1830 is all in all considerable. One can compare this
move to Descartes, who instead of about ten curves studied by the Ancients, passes
immediately to an infinite number of curves, that can represent physical phenomena.
Now, following Lamé, before representing the phenomenon itself, to each physical
situations a curvilinear coordinate system is associated, which reflects the shape of
the place where it resides”.

The current investigation is to determine the total number of possible cuts if the
GML surfaces and bodies are cut along a certain line or surface. This is inspired
by the cutting of the original Möbius band and so far, the classification of cutting
of G M Ln

m surfaces and bodies was achieved for classic Möbius bands [3], and for
G M Ln

m with m = 2, 3, 4, 5 and 6 [6–9]. A full classification was also achieved for
cutting of classic Möbius bands with any k number of (parallel) knives [10]. These
classifications revealed a close link between the cutting of GML bodies and surfaces,
the study of knots and links, andwith the colouring of surfaces. The challenge remains
to classify the cutting of general GML bodies when the cross section of the GML
body is a regular m-polygon, for any value of m. However, the choice for regular
polygons does not restrict immediate generalizations.

2 The Cutting of GML Bodies

Cutting is performed with 1) a straight knife, which 2) cuts perpendicular to the
polygonal cross section of the GML, and 3) the knife cuts the m-polygon boundary
exactly in two points or two times (depending on the thickness of the knife). For 3)
there are three possibilities: the cut of the polygon can be from a vertex to a vertex
VV, from a vertex to a side or edge VS, or from side to side SS (= edge to edge).
The precise orientation of this knife (and the positions where it cuts the boundary) is
maintained during the complete cutting process, until the knife returns to its starting
position, and the cutting is completed. Depending on the number of twists, a number
of independent bodies results, that is related to the divisors of m.

If we consider the GML with square cross section of Fig. 1, the results of cutting
are shown in Fig. 2 (a. G M L4ω

4 and b. G M L4ω+2
4 ). Figure2a shows the results of

cutting for G M L4ω
4 , with ω a natural number (multiples of 4). In the case of ω = 0

the structure is untwisted as G M L0
4 in Fig. 1, but in the case of ω = 1 the structure

is twisted 360◦ as G M L4
4 in Fig. 1. If a cut is made, in all cases, two bodies result.

Depending on the cut made, the resulting bodies have a certain cross sectional shape
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and a defined number of twists, as indicated in the column “structure of the elements”.
For example a cut from side 1 to side 3, results in case B, and if this cut contains
the center (SB) case Bb results. In both cases the resulting bodies have quadrangular
shapes, and are twisted 4ω times. For a diagonal cut from vertex to vertex (case D)
two triangular bodies results, each twisted 3ω times.

The resulting bodies for G M L4ω+2
4 bodies (Fig. 1b and d) are shown in Fig. 2b.

For case A also two bodies result, a hexagonal one and a triangular one, with the
specified number of twists, G M L6ω+3

6 and G M L6ω+3
3 respectively. For G M L4ω+2

4
(i.e. twists of 180◦) it is possible that only one body results (cases BII andD), but with
a higher number of twists (G M L8ω+8

4 for BII and G M L6ω+6
3 for D). This happens

when the cut is made through the centre and this is completely analogous to the
Möbius phenomenon resulting from cutting a ribbon along the central line, dividing
the ribbon in two equal parts. The number of twists depends on the shape of the
resulting object and is a multiple of this shape parameter m.

In Fig. 2 also the link group is given, both for the individual resulting elements and
for the total object. Depending on the parameters m and n, complicated graphs result
as in Fig. 3a, which are intertwined individual GML bodies. The graphical display
with closed interlinked bodies can also be shown in a ribbon style with identification
(Fig. 3b; the lines or ribbons do not cross in the plane).

Whereas the original GML cutting results were based on cutting of full 3D GML
bodies and surfaces, with a fixed GML and a moving knife, the total possible cuts
can also be studied by planar geometry, as suggested by Fig. 2. Figure4 shows the
results of all possible vertex-to-vertex cuts and vertex-to-side cuts for GML’s with
square and with hexagonal cross section. The results are related to the divisors of m.
The three rows for the square in Fig. 4 are related to divisors 1, 4 and 2, and the four
rows for the hexagon are related to divisors 1, 6, 3 and 2.
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Fig. 3 a 3D representation and b Ribbon style representation

Lemma 1: Cutting a fixed G M Ln
m body with a moving knife is fully equivalent to

rotating the same G M Ln
m body through a fixed knife.

Hence, planar geometry can indeed be used to study the total number of possible
ways of cutting and give indications about the shape and link number of the resulting
bodies.

Remark 1: This fixed knife can have one or more blades and the number of blades
is determined by the divisors of m and thus by the twisting number n. For example in
the hexagon in Fig. 4, the second row is obtained using a fixed knife with six blades,
and the third row is obtained with a three-bladed knife [1, 11].

Remark 2: Using a fixed knife the GML body has only to be rotated over 360◦ to
obtain the full cutting. A moving knife has to perform (n.360◦) rotations [1, 11].

Remark3:Originally the inspiration of reversing to a fixed knifewas by howbamboo
culms are cut, but it is noted that in his seminal paper on Special Relativity Theory,
Einstein makes reference to the well-known fact that Maxwell’s laws of magnetism
ensure that it makes no difference whether a magnet moves near a fixed conductor, or
themagnet is fixed and the conductor ismoving [12] (There is an intimate relationship
between SRT and Gielis Transformations [13]).

Remark 4: This cutting of polygons is reminiscent of similar problems of cutting
polygons with diagonals (which are VV -cuts), due to Euler and Cayley [1], but the
case of GML is more general since also vertex to side or side to side cuts are taken
into account. It is also related to dividing a circle with equally spaced points, but then
each edge or side has to be counted as well as a VV, namely a cut from one point Vi

to the next point Vi+1 on the circle. In cutting polygons, the shortest VV cut is from
Vi to Vi+2.
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Fig. 4 VV and VS cuts for G M L4n
4 and G M Ln

6 [1]

Fig. 5 Numbering of
pentagon, vertices in blue,
sides in red

3 Cutting Regular Polygons

3.1 The Basic Rules

Consider a regular m-polygon. Vertices and sides are numbered from 1 to m. In Fig. 5
the example of a pentagon is shown.

A regular m-polygon can be cut in various ways, from vertex to vertex (notation
V Vi j , e.g. V V1,3 from vertex 1 to vertex 3), from vertex to side (notation V Sik , e.g.
V S1,3 from vertex 1 to side 3), or from side to side (notation SSkl , e.g. SS1,3 from
side 1 to side 3). V Vmax , V Smax and SSmax are the cuts from and to vertices or sides
with maximal separation (max is not necessarily the longest length). For example in
Fig. 5, V Vmax = V V1,3 = V V1,4; V Smax = V S1,3, and SSmax = SS1,3. If the line
in SSmax cuts side 3 in the middle, and the cut of side 1 is moved to vertex 1, then
SSmax can be made arbitrarily close to V Smax = V S1,3.

The following general facts can be observed in Fig. 6:
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Fig. 6 Understanding modes of cutting

1. In a polygon for even m, V Vmax goes through the centre of the polygon (m = 6),
and in a polygon for odd m, V Smax goes through the centre, crossing the side
opposite the vertex in the middle (m=7).

2. Going from a regularm-polygon to a (m+1)-polygon introduces one extra vertex
and one extra side. Fromm = 4 tom = 5 a line converts into awedge of V V1,3 =
V V1,4, giving one extra vertex and one extra side. Considering V Smax a wedge
is created in m = even polygons (m = 8), and one line (through the centre) in m
= odd polygons (m = 7, m = 9).

3. In m = 10, all cuts or diagonals are drawn from one vertex. Besides the V Vmax

the other VV cuts are two by two symmetrical (solid and dashed lines). In the
case of m = odd, the same can be said for VS cuts (m = 7).

4. A single cut divides an m-polygon into two parts, which are defined by their
shape and number of vertices and sides. In m = 4 the square is divided by the
red diagonal into two triangles. In m = 6 the hexagon is divided into two equal
quadrilaterals or trapezoids. In m = 11 the polygons is divided into an octagonal
shape with 8 vertices, and a pentagonal shape with 5 vertices.
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3.2 Cutting and Divisors of M

There is a definite relation between the ways of cutting and the number of divisors
of m. In Fig. 6, m = 11, a V V1,5 cut is related to the smallest divisor of m, dmin=1.
For m = 12 in Fig. 6 we have:

1. V V1,4 cut (dark blue dashed line), is repeated as V V4,7 and as V V7,10 and V V10,1.
In fact, the latter cuts are obtained from the original V1,4 cut (blue dashed line)
by a rotation by 2π

4 . This gives a square, related to divisor 4.
2. V V1,5 cut (blue solid line), is repeated as V V5,9 and as V V9,1. In fact, the latter

cuts are obtained from the original V1,5 cut (blue solid line) by a rotation by 2π
3 .

This gives a triangle, related to divisor 3.
3. V V1,3 cut is repeated 6 times over an angle of 2π

6 , related to divisor 6. This will
give a hexagon.

4. V V1,2 cut does not divide the polygon, but coincides with the original side 1.
Rotation this by 2π

12 will give the original dodecagon. An inscribed dodecagon
is obtained via a SS1,2 cut, rotated twelve times by 2π

12 . Both cases are related to
dmax = 12.

In m = 4 the upper blue line is a SS1,2 cut from side 1 to side 2. When rotated by
180◦ the lower blue line is obtained, for the second smallest divisor d2 = 2.

The inscribed figures (triangle and square in m = 12) close in one rotation but
this can be generalized, for m = p

q with p, q rational numbers and relative prime.

1. In m = 5 the sequence V V1,3, V V3,5, V V5,2, V V2,4, V V4,1 will generate a
pentagram in the pentagon, i.e. a figure that closes in 2 rotations, having 5
angles that are spaced 4π

5 = 144◦ apart. This generates the classic Pythagorean
pentagram that led to the discovery of irrational numbers and the golden ratio.

2. In m = 7 the sequence V V1,3, V V3,5, V V5,7, V V7,2, V V2,4, V V4,6, VV6,1

generates a heptagram, closing in 2 rotations, corresponding to m = p
q = 7

2.
3. Also inm = 7 the sequenceV V1,4, V V4,7, V V7,3, V V3,6, V V6,2, V V2,5, V V 5,1

generates a heptagram, closing in 3 rotations, corresponding to m = p
q = 7

3 .

3.3 Rotations and Scaling Straight Knives

With these rules the analytic definition of d-knife is a construction, with i straight
lines, is:

sin

(
α + 2π

m
i

)
xi + cos

(
α + 2π

m
i

)
yi + δ = 0 , i = 0, 1, .., m − 1; − π

m
≤ α ≤ π

m
, (1)

The number of straight lines depends on the divisor of m. For any integer m
the divisors are numbered from 1 (smallest divisor, knife d1) to m. The latter is the
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Fig. 7 Cutting with di knives (d2 = 2, d3 = 4, d4 = 8, d5 = 16) and the resulting sectors

Fig. 8 Converting V Vmax
into SS cut through centre of
the sides by rotation

maximal divisor and is denoted as dmax=m . For m = 16 with 5 divisors we have the
following di knives: (d1 = 1; d2 = 2 ; d3 = 4; d4 = 8; dmax = 16).

A d1 knife is a single line cutting the polygon. Other knifes can be constructed by
rotating and translating this knife. For m = 16 results of cutting with di knives for
divisors 2, 4, 8 and 16 are shown in Fig. 7. They are rotations of the d1 knife given
by the parameter α in (1). Parameter δ in (1) is called zooming parameter since, for
example in Fig. 4 rows 2 and 3, the red hexagon and red triangle, respectively can be
made larger or smaller, depending on the position of the knives.

The combination of the rotation parameter α and the zooming parameter δ in (1)
gives more possibilities. A translation of the knife to a position parallel to the original
knife is given by the parameter δ in (1) in the case of a SS cut, moving the cutting
position along the edge or side. In the case of a VS cut, a rotation of the knife with
vertex V as centre of rotation can be done, to cut the edge or side at another position.

The relation of divisors and rotations show thatVV and SS cuts can be transformed
into each other by rotations (Fig. 8):

1. In m = 6, the V Vmax = V V1,4 cut or diagonal can be rotated every 60◦ and all
diagonals meet in the centre (Result is 6 diagonals that coincide 2 by 2)

2. This shape can then be rotated by 30◦, resulting in SSmax . The rotation can in
fact be done for any angle.

There aremanyways inwhich the figures can be transformed into the other figures,
using rotation and scaling. A first example sequence of rotations and scaling could
be:

1. If the red square in Fig. 9g is rotated by 45◦ the result is c,
2. If the red square in c is scaled to size zero, d results.
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Fig. 9 Ways of cutting square

3. If the cross in d is rotated by 45◦ the result is a.

A second example in Fig. 9:

1. If the red square in f is scaled to a larger size, e results; when it is scaled to a
smaller size g results.

2. When the inscribed figure in g is rotated so that one of the sides of the small
yellow triangles ends in a vertex, we obtain b.

This shows that all figures (for G M L4 with a square cross section) can be con-
sidered as transformations of an inscribed square relative to the circumscribed one.
For other symmetries this is the relation of the inscribed m-polygon inside an cir-
cumscribing m-polygon.

3.4 The Way of Cutting Determines the Final Result

In Fig. 9 from left to right, all possible cuts are shown for a square

1. a. One case of VV cut, with two V Vmax diagonals
2. b. One case of VS cut, with a V S1,2 cut and its rotations over 2π

4 . It total 3
different shapes are created. Four green triangles, four blue quadrilaterals and
one red square. The smaller red square can be considered as the inscribed square
rotated and scaled to smaller size.

3. c and d.Two cases of SSmax = SS1,3 cuts and rotations. One SS cut does not pass
through the centre (c.) and the other one passes through the centre (d). The former
creates 3 different sets of quadrilaterals indicated by different colours. The latter
creates four different squares. (In GML in d. these four different squares form
one body (compare Fig. 2b, case BII), and in c. each of the coloured zones creates
3 separated bodies)

4. Three cases of SS1,2 cuts (e, f, g). It is clear that the result depends on where
the cut is made. The middle figure f. is the inscribed square, while e. and g. are
scaled version (larger and smaller, in this case without rotation).

5. This also generates different shapes. In e. four triangles and one octagon; in
f. four triangles and one square and in g. one set of 4 triangles, one set of 4
pentagons and a central square. Again in GML and in rational Gielis curves
RGC they will form different bodies or layers.
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Fig. 10 Hexagon cutting

Note that in Fig. 9 we have 1 VV -cut (a), 1 VS-cut (b), and 5 SS-cuts, 2 for SS1,3

(c,d) and 3 for SS1,2 (e,f,g). The same logic is applied to hexagons in Fig. 10, with
more possibilities of cutting, namely two VV cuts, two VS cuts and eight SS cuts.
Here we have 2 VV -cuts, 2 VS-cuts and 8 SS-cuts (SS1,2, SS1,3 and SS1,4).

3.5 Inheritance of Possible Cuts for Different Divisors

In Fig. 11 VV and VS cuts are shown for m = 4, 6. A square has three divisors, so 3
rows; for the hexagon there are four rows corresponding to 4 divisors. For m prime
only 2 rows result, for divisors m and 1.

• For even m the vertical columns of square and hexagon in Fig. 11 show that the
possible cuts are the same for all divisors, as the result of rotating cut 1 over the
relevant angle, related to divisor. The identification of vertices and of the knife
(e.g. for d2 =2 lower row Fig. 11) links the cutting of m-polygons to cutting of
G M Ln

m bodies
• For odd m (in case of pentagon in Fig. 12), the VV cuts are inherited from cut 1 via
rotations. This is not the case for the VS cuts of the pentagon in Fig. 12. However,
one figure is missing in the upper row, namely the VS cut not through the centre.
If this figure is also considered, then also for the pentagon the number of cuts is
fully inherited for the two divisors, as in the case of the even m.

• The reason why in Fig. 12 for the pentagon (and in general for any odd m) only one
figure is shown for VS (the cut through the centre) is that the number of sectors and
the number of vertices and sides of the resulting polygons remains the same. In the
case of the pentagon and V S1,3 = V Smax , two quadrilateral figures are created,
whether or not the cut goes through the centre. The quadrilateral shapes share the
topological characteristic of four vertices and four sides.

• In case of the V S1,3 = V Smax cut going through the centre, the two quadrilateral
shapes have also the exactly same shape, a geometrical characteristic. If V S1,3 does
not pass through the centre, then the geometrical shapes of the two quadrilaterals
are different.

So, if this geometrical characteristic is considered, also for divisor 1 or one cut,
two different shapes need to be considered, whereby the two shapes are different or
the same. In the topological case, these two shapes reduce to one shape as in Fig. 12.
The same line of reasoning can be considered for SS cuts, where in Fig. 12 there are
2 line cuts in upper row versus 8 in the lower row.
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Fig. 11 VV and VS cuts of square and hexagon

Fig. 12 All possible cuttings of a pentagon via VV, VS and SS cuts

In general, starting from the maximum divisor, or max cuts equal to m, for other
divisors the number of possibilities is inherited precisely, in the geometrical sense.
This leads to Theorem 1.

4 The Geometrical Solution

Theorem 1: The total number of different ways of cutting an m-polygon �
geo
m is the

number of 1 or m cuts, times the number of divisors of m.

• For even m (= 2k): �
geo
m = N div

m

(
m + 1 + N SS

m−2

)
• For odd m (= 2k + 1): �

geo
m = N div

m

(
m + 2 + N SS

m−2

)

Proof: The total number of ways of cutting an m-polygon according to the rules
described above with d-knives for the geometrical case, for m = even and m= odd
respectively is as follows:VV, VS and SS cuts increase from by 1, 1 and 3 respectively
from a given even or odd number to the next even or odd number. As a result, the
total number of ways of cutting using a dm knife increases by 5 to each subsequent
even or odd number (Table1, Subtotal), which gives the sequence (2), 2, 7, 7, 12, 12,
22, 22, 27, 27, 32, 32, 37, 37 . . . for m = 2, 3, 4, 5…15. Taking sums the sequence
4, 14, 24, 34, 44, 54, 64, 74… results, which is monotonically increasing.
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Table 1 Number of possible cuts for even and odd m

m = even Cut type 2 4 6 8 10 12 14

(m − 2)/2 VV 0 1 2 3 4 5 6

(m − 2)/2 VS 0 1 2 3 4 5 6

Step +3 SS 2 5 8 11 14 17 20

Subtotal 2 7 12 17 22 27 32

Divisors 2 3 4 4 4 6 4

Total 4 21 48 68 88 162 128

m = odd Cut type 3 5 7 9 11 13 15

(m − 3)/2 VV 0 1 2 3 4 5 6

(m + 1)/2 VS 2 3 4 5 6 7 8

Step + 3 SS 5 8 11 14 17 20 23

Subtotal 7 12 17 22 27 32 37

Divisors 2 2 2 3 2 2 4

Total 14 24 34 66 54 64 148

Since the number of possibilities is determined by d1 and dm and is inherited
by the other divisors given identification of vertices and knives (Fig. 13 for divisors
1, 2 and 6 in a hexagon), the total number is then the subtotal times the number
of divisors. The identification links planar geometry to 3D G M Ln

m bodies. If one
follows the d1-knife along the basic line of the G M L6

6 body, the different positions
of the knives indicated by arrows in Fig. 13 for d1 function as a clock, relative to the
torus circumscribing the G M L6

6 body. For other knives the clock arithmetic is the
same, albeit with more hands.

Table2 gives the product of the subtotals with positive integers. Entries in rows
can be computed as un = un−1 + un−2 − un−3, with u0 = 2 for even and u0 = 3 for
odd numbers. In bold red are the totals of Table1 for m odd and in bold green for m
even.

The number of possible cuts can be given by a recurrence formula. For Nm , the
number of ways of cutting an m-gon for one divisor, whereby N SS

m stands for the
number of SS cuts for m and N SS

m−2 for the number of SS cuts for the polygon with
(m − 2) (i.e. the previous odd or even number) and with k a natural number.

• For even m (= 2k): Nm=2k = m + 1 + N SS
m−2 (1a)

• For odd m (= 2k + 1): Nm=2k+1 = m + 2 + N SS
m−2 (1b)

If the number of SS cuts is kept separate, taking into account the step +3, this
part of the general formula is recursive. Since N SS

m =
(
N SS

m−2 + 3
)
, it follows that

N SS
m−4 + 6 = N SS

m−6 + 9 = …
Because of the exact inheritance for the geometrical case the total number of ways

of cutting for all divisors is then the above formula times the number of divisors N div
m

of a number m.
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Fig. 13 Inheritance from d1 by all d-knives through identification

Table 2 Product of subtotals of Table1 and number of divisors

N◦ divisors 2 7 12 17 22 27 32 37

2 4 14 24 34 44 54 64 74

3 6 21 36 51 66 81 96 111

4 8 28 48 68 88 108 128 148

5 10 35 60 85 110 135 160 185

6 12 42 72 102 132 162 192 222

Remark 5:When considering polygons with convex sides, V Vi,i+1 are possible, so
the number of cuts increases by m. When knives are used to cut a circle from equally
spaced points, the V Vi,i+1 cuts need to be added, in particular m cuts.

• For even m (= 2k): Nm=2k = 2m + 1 + N SS
m−2 (2a)

• For odd m (= 2k + 1): Nm=2k+1 = 2m + 2 + N SS
m−2 (2b)
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Computational Simulation of Bacterial
Infections in Surgical Procedures: An
Exploratory Study

J. A. Ferreira, Paula de Oliveira, and Pascoal M. Silva

Abstract These last years the insertion of implants andmedical devices has emerged
as a common surgical procedure. Following their implantation, the bacteria, inocu-
lated during the surgery, or coming from a preexisting focus of infection, can colo-
nize a significant proportion of them. The resistance of bacteria against antibiotics
increases dramatically once a colony forms. Researchers of different fields are work-
ing on the development of new strategies to destroy such colonies: the dispersion of
antibacterial drugs in the coatings, or the use of antiadherent coatings are common
approaches. The first issue is addressed in this paper. A mathematical model of sus-
tained drug delivery, from a medical implant, and its action on the bacterial fight, is
presented. The model is composed by coupled systems of Partial Differential Equa-
tions that describe the release of drug and the evolution of the biotic population. The
fate of the bacterial infection is analyzed as a function of the initial contamination
during surgery, the permeability of the coating and the dissolution rate of the drug.
Computational simulations will give a lively picture of the process.

Keywords Computational simulation · Bacterial infections · Partial differential
equations

1 Introduction

Each year millions of medical devices are implanted through common surgi-
cal procedures worldwide. More and more patients receive orthopedic implants,
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coronary stents, catheters, pacemakers, valves, cochlear implants, breast implants,
dental implants, and intraocular or therapeutic contact lenses. However, a significant
proportion of each type of these devices can be colonized by bacteria and becomes
the focus of implant-related infections. This fact can be explained by the inoculation
of bacteria during the surgery, the existence of a focus of infection in the patient or by
the simultaneous action of these two causes. The more septic is the operating theatre
and the longer the surgery takes, the more chance there is for bacteria to breed. The
species Staphylococcus aureus and Staphylococcus epidermidis are two of the most
common bacteria related to infections of implanted medical devices [5, 12].

It is expected that the increasing use of implantable devices will lead to a rise
in the number of related infections. This happens due to two main reasons. The
first one is the damagement of epithelial barriers during surgery, and the consequent
impairment of host defense mechanisms. Bacteria from the patient’s skin or mucous
can contaminate the device during the implantation. Bacteria can also come from the
hands of the staff, or from the hospital environment. The second reason is bacterial
adherence. When bacteria adhere to surfaces, they have a larger likelihood to survive
because nutrients, which are in suspension in the surrounding fluids, deposit on
the surfaces, leading to an increase of their local concentration. Most strains of
those bacteria form then biofilms, which are clusters of cells embedded in a matrix.
The resistance of bacteria against the host immune system and antibacterial agents
increases dramatically once a biofilm forms. Accordingly, it is essential to eradicate
bacteria in the first hours following the surgery [6, 8].

The most common approaches for preventing the biofilm formation (Fig. 1) and
avoiding infections are (i) the dispersion of antimicrobial agents in a polymeric coat-
ing of the implant, and/or (ii) the use of anti-adherent coatings [3, 7, 13]. Modelling
and computational simulation of those strategies, complemented by the simultaneous
prediction of bacterial densities can represent an important coadjutant to laborato-
rial experiments. In this paper we will address issue (i), from a mathematical point
of view. We present a mathematical model to predict the delivery of drug from a
biodegradable coating of a medical implant and, simultaneously, to predict the evo-
lution of a bacterial population. The model is composed by a set of coupled systems

Fig. 1 Biofilm formation - Adapted from www.zmescience.com/science/what-are-biofilms
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of Partial Differential Equations, that represent the evolution of an antibacterial agent
and its action against the colony of bacteria inoculated during surgery. We assume
that these bacteria are homogeneously dispersed in the surface of the implant, in the
moment of the insertion. Assuming this initial form of sepsis, we are aware that a
huge number of factors influence the fate of bacterial fighting.

In this exploratory study we analyze the influence of the initial bacterial contam-
ination and of the properties of the polymer coating and the drug on the bacterial
behavior. Regarding the polymer properties we illustrate the effect of the coating
permeability; in what concerns the drug we simulate the dependence on its dissolu-
tion rate. At the best of our knowledge, the model represents an original contribution
as it simulates an in vivo interplay of some of the main actors of the process. We
remark that the mathematical model studied here is an improvement of the one con-
sidered in [1] where the drug delivery mathematical model was coupled with a one
dimensional model for the bacterial density. In Sect. 2 we present the mathematical
model. In Sect. 3 we exhibit a set of numerical simulations to illustrate the behavior
of the model. Namely, in Sect. 3.1 we present simulations of the global behavior
of the concentrations of the solid drug, the dissolved drug and the interstitial fluid.
The evolution of the bacterial density is also analyzed. In Sect. 3.2 we illustrate the
influence of the initial contamination in the behavior of the bacteria. The influence
of the coating permeability and the drug dissolution coefficient are also exhibited.
Finally in Sect. 4 some conclusions are raised.

2 Mathematical Model

In what follows we use the following notation. Let Ω be a two-dimensional open
domain and [0, T ] a time interval. If u : Ω × [0, T ] → IR is a function then, for
t ∈ [0, T ], by u(t) we represent the function u(t) : Ω → IR given by u(t)(x) =
u(x, t), x ∈ Ω. We represent in Fig. 2 the geometry of the model: Ω1 stands for a
biodegradable polymeric coating of ametallic implant andΩ2 represents the adjacent
tissue. The drug is initially dispersed in Ω1 in the solid state. When it enters in
contactwith the interstitial fluid, that permeates the surrounding tissueΩ2, it dissolves
progressively and the drug is delivered through the interface ∂Ω1,2. The boundary
∂Ω1,le f t represents the interface between the polymeric coating and a metal implant.
We assume that there are no fluxes – of interstitial fluid, drug or bacteria - through
this boundary. An initial concentration of bacteria, resulting from the inoculation
during the surgery, is considered on the interface ∂Ω1,2.

The unknowns of the model are the concentration of interstitial fluid c�, the con-
centration of the solid drug cs , the dissolved drug cd and the density of the bacterial
population cb.

The cascade of phenomena that occurs is described by the permeation of the
interstitial fluid in the porous biodegradable coating Ω1, the dissolution of the solid
drug in Ω1, the diffusion of the dissolved drug through Ω1 and Ω2 and the fight
against the bacterial population.
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Fig. 2 Spatial domain

1. Polymeric coating – domain Ω1

The behavior of the concentrations of the interstitial fluid, c�, the solid drug con-
centration, cs , and the dissolved drug, cd1, in Ω1, are governed by the following
equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c�

∂t
(t) = ∇.(D�(t)∇c�(t))

∂cd1
∂t

(t) = ∇.(Def (t)∇cd1(t)) + f (cs(t), cd1(t), c�(t)) − Rdbcd1(t)cb(t)

∂cs
∂t

(t) = − f (cs(t), cd1(t), c�(t))

,

(1)
for t ∈ (0, T ]. In (1), D� represents the diffusion coefficient of the interstitial
fluid in the polymeric coating. We consider that Ω1 is a biodegradable porous
medium and that D� dependents on time. Accordingly the diffusion coefficient
Def of the dissolved drug is also time dependent. For the time evolution of the
porosity ε(t) due to the polymeric coating degradation we take

ε(t) = ε0 + (1 − ε0)(1 + e−2kd t − e−kd t )

that was introduced in [11]. In this last expression ε0 stands for the initial porosity
of the polymeric coating and kd represents the degradation rate. The diffusion
coefficient of the interstitial fluid is represented by
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D�(t) = (ε(t))
3
2 D�,0,

where D�,0 represents the initial diffusion in the non degraded coating [9]. The
diffusion coefficient of the dissolved drug is a weighted mean

Def (t) = 1 − ε(t))D1 + k̃ε(t)D2

1 − ε(t) + k̃ε(t)
,

where D1 stands for the drug diffusion coefficient in the solid part of the polymer,
D2 represents the drug diffusion in the polymer pores filled with fluid [11]. We
note that k̃ denotes the drug partition coefficient, between the liquid filled pores
and the solid polymer. For simplicity we take k̃ = 1. The consumption of drug
by the bacterial population is represented by the term Rdbcd1(t)cb(t), where
Rdb stands for a positive constant. The reaction term f represents the rate of
conversion of solid drug into dissolved drug and is defined by

f (cs(t), cd1(t), c�(t)) = αH(cs(t))
csol − cd1(t)

csol
c�(t),

where α is the dissolution rate, H is the Heaviside function and csol represents
the solubility limit concentration [10].

2. Adjacent tissue – domain Ω2

The evolution of the dissolved drug concentration in Ω2, cd2, is described by

∂cd2
∂t

(t) = ∇.(Dd2∇cd2(t)) − Rdbcd2(t)cb(t), (2)

for t ∈ (0, T ], where Dd2 represents the diffusion coefficient. This coefficient
is space dependent due to the fact that bacteria have been inoculated during
the surgery and consequently diffusion assumes different values in Ω2,b and
Ω2,nob = Ω2\Ω2,b, where Ω2,b represents the spatial domain occupied by bac-
teria at initial time. We define

Dd2(x) =
⎧
⎨

⎩

Tol, x ∈ Ω2,b

Dd2nob, x ∈ Ω2,nob

,

with Tol < Dd2nob.
3. Polymeric coating and adjacent tissue – domain Ω1 ∪ Ω2

The density of bacteria, cb, is governed by

∂cb
∂t

(t) = ∇.(Dbact∇cb(t)) + Fun(cd(t))cb(t), (3)

for t ∈ (0, T ],where cd = cd1 inΩ1 and cd = cd2 inΩ2, the diffusion coefficient
Dbact depends on space and is defined by
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Dbact (x) =
⎧
⎨

⎩

Db1, x ∈ Ω1

Db2, x ∈ Ω2

.

The net proliferation of the bacteria is defined by

Fun(c) = λ − Emaxcγ

cγ

50 + cγ
. (4)

Equation (4) represents the balance between proliferation and the antibacterial
action of the drug. This action is defined by Hill model, that is extensively
used in the literature. We believe that one of the reasons for its success is its
flexibility and effectiveness in fitting experimental data [4]. It includes the two
main pharmacodynamic properties of a drug: the maximum effect (Emax ) and
the concentration producing 50% of the maximum effect (c50). More precisely,
Emax represents the maximum effect which can be expected from the drug: when
this magnitude of effect is reached, increasing the dose will not produce a greater
magnitudeof effect. InEq. (4),γ represents ameasure of the cooperationbetween
bacteria. If γ = 1 the adhesion of the bacteria to the surfaces is independent of
each other. If γ > 1, then there is cooperation, and if γ < 1 no cooperation
occurs. We will consider γ = 1.

Coupled systems (1)–(3) are completed with the following initial, boundary and
interface conditions:

• Initial conditions:

c�(0) = cd1(0) = 0, cs(0) = cs,i , cb(0) = 0 in Ω1, cd2(0) = 0, cb(0) = cb,i in Ω2.

• Boundary conditions:

– ∂Ω1,le f t is isolated that means that Jc(t).η1 = 0 on ∂Ω1,le f t , t ∈ (0, T ], for c =
c�, cd1, cb,where Jc(t) denotes the flux of c andη1 represents the unitary exterior
normal to Ω1,

– ∂Ω2,right is isolated that is

Jc(t).η2 = 0 on ∂Ω2,right , t ∈ (0, T ],

for c = cb, cd2, where, as before, Jc(t) denotes the flux of c and η2 represents
the unitary exterior normal to Ω2,

– symmetry conditions on
⋃

i=1,2, j=top,down

∂Ωi, j that are mathematically defined

by
∂c

∂x2
(t) = 0 on

⋃

j=top,down

∂Ω1, j , t ∈ (0, T ],
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for c = c�, cd2, cb, and

∂c

∂x2
(t) = 0 on

⋃

j=top,down

∂Ω2, j , t ∈ (0, T ],

for c = cd2, cb.

• Interface conditions:
On the common boundary of Ω1 and Ω2, ∂Ω1,2, we assume that the fluid flux is
proportional to the difference between the fluid concentration on the boundary and
the fluid concentration cext in Ω2, that is Jc�

(t).η2 = β(c�(t) − cext ) on∂Ω1,2, t ∈
(0, T ], where β is related with the permeability of the interface that, to simplify,
we assume time independent. For the dissolved drug concentration we assume the
continuity of the concentration and of the flux, that is

cd,1(t) = cd,2(t), Jcd1(t).η1 + Jcd2(t).η2 = 0 on ∂Ω1,2, t ∈ (0, T ].

3 Numerical Simulations

The problem is solved for the first 7 h after surgery and considering that bacteria
have been inoculated during the procedure.

3.1 Drug Distribution and Bacterial Dynamics

In this section we begin by exhibiting global pictures of drug distribution (Dapto-
mycin) and of bacterial evolution using the values presented in Table1.

Table 1 Parameter values used in the numerical simulations

Parameter (unit) Value Parameter (unit) Value

D�,0 (m2/s) 10−9 D1 (m2/s) 5 × 10−10

D2 (m2/s) 2D1 Dd2nob (m2/s) 2D2

Dtol (m2/s) Dd2nob/10 Db1 (m2/s) 5 × 10−11

Db2 (m2/s) 10−11

α (1/s) 5 × 10−4 csol (mol/mm3) 2

kd 3 × 10−4 ε0 5 × 10−2

cs,i (mol/mm3) 5 cext (mol/mm3) 1

β (m/s) 1 × 10−4 L1, L2 (mm) 2, 3

Rdb (m3/(mol.s)) 1 × 10−5
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Fig. 3 Behavior of the mass of interstitial fluid M�(t), solid drug Ms(t) and dissolved drug Md (t)
for t ∈ [0, 7h] in Ω1

Fig. 4 Dissolved drug distribution at t = 10 (min) and t = 1 (h)

The following parameters related with Daptomycin are used [2]: Emax = 4 (h−1),

c50 = 0.5, λ = 0.6 (h−1). In Fig. 3 a global picture of the masses of interstitial fluid,
solid and dissolved drug, in Ω1, is exhibited. The mass of interstitial fluid in Ω1,
M�(t), increases over time until a steady state is reached. The mass of solid drug in
Ω1, Ms(t), decreases as the interstitial fluid permeates the polymer and accordingly
the dissolved drug mass in Ω1, Md(t), increases.

The dissolved drug distribution at t = 10 (min) and t = 1 (h) is represented in
Fig. 4. The permeation of the dissolved drug in the polymer coating and the surround-
ing tissue is clearly observed.
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Fig. 5 Bacterial distribution at t = 10 m, t = 1 h and t = 3 h

The distribution of bacteria at t = 10 min, t = 1 h and t = 3 h is shown in Fig. 5.
Initially the bacteria inoculated are on the polymer/tissue interface zone. It can be
observed that, as time increases, bacterial density decreases. For the set of parameters
used in the simulation the drug fights effectively the bacterial population. We note
that in Fig. 4 and 5 the scales in the plots are different.

In Fig. 6 we plot the bacteria mass Mb(t). It can be observed that by the first hour
of release the bacteria mass stops increasing and it is almost null after 7 h.

3.2 Influence of Parameters

In this section we illustrate the influence of three different parameters: the initial
bacterialmass, the permeability coefficient (β) and the dissolution rate of the drug (α).

Non aseptic surgery
We begin by analyzing the effect of surgical contamination by considering that an
initial bacterial population enters the patient on the surface of the medical device,
that is on ∂Ω1,2.
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Fig. 6 Evolution of bacteria mass Mb(t) during 7 h

In Fig. 7 the influence of the initial bacterial population on the time evolution
of the total mass of bacteria Mb(t) is illustrated for t ∈ [0, 7h]. For an high initial
bacterial density (cb,i = 18, 20) the infection evolves and the drug has no efficacy.
Otherwise, for lower a bacterial density (cb,i = 1.8), Mb(t) tends to zero. These
results illustrate the crucial importance of aseptic conditions in the procedure and in
the hospital environment.

Permeability of the coating
The influence of the permeability of the device coating, represented by β, in the
evolution of Mb(t) is illustrated in Fig. 8. When β increases, a larger amount of
interstitial fluid permeates the coating, more dissolved drug is available and the
release is enhanced. Accordingly Mb(t) decreases.

Influence of the dissolution rate of the drug
The influence of the dissolution rate on the evolution of the bacteria mass during
7 h, is illustrated in Fig. 9. As it can be observed, Mb(t) is very sensitive to the
dissolution rate. The dissolution coefficient of an antibacterial drug can dictate the
fate of a bacterial infection. For α = 5 × 10−4 the infection is not quelled; if the drug
has a dissolution coefficient twice that value, then the infection is eliminated.
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Fig. 7 Evolution of bacterial mass Mb(t) for cb,i = 1.8, 18, 20, during 7 h

Fig. 8 Evolution of bacterial mass Mb(t) for different coating permeability β = 5 × 10−6, 5 ×
10−4, during 7 h
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Fig. 9 Evolution of bacterialmassMb(t) for different dissolution ratesα = 5 × 10−4, 10−3,during
7 h

4 Conclusion

When medical devices are inserted through surgical procedures the floating bacteria,
inoculated during the surgery, adhere to the foreign surface, and can form a biofilm.
This biofilm protects them against the host immune system and the antibacterial
drugs. To avoid biofilm formationmedical devices can be coatedwith a polymer layer,
where an anti-bacterial drug is dispersed. We present in this paper a mathematical
model based on three coupled systems of partial differential equations, that govern
the kinetics of an anti-bacterial drug, eluted from a medical implant, and its action
on a bacterial population. We carried on several numerical simulations that suggest
the following preliminary results:

1. Aseptic procedure and operating theatre: It is commonplace to say that an aseptic
operation theatre is crucial to prevent bacterial infections. In Fig. 7 we quantify
this assertion. The plots in this figure suggest that if the initial contamination
exceeds a certain threshold then it is very difficult to fight the infection.

2. Permeability of the polymeric coating: As suggested by Fig. 8, the permeability
of the coating has a meaningful effect on the evolution of the bacterial popula-
tion. A larger permeability coefficient, β, enhances the permeation of the inter-
stitial fluid that dictates the dissolution of the solid drug. More dissolved drug is
released and the likelihood of eliminating the bacterial population increases.
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3. Dissolution rate: In Fig. 9, we illustrate the dependence of the bacterial popula-
tion on the dissolution rate. The results suggest that the drug dissolution rate is
a key parameter for controlling the evolution of the bacterial density.

We are aware that the present study has an exploratory character, for several
reasons, namely the use of a simplified geometry, the assumption that the initial
contamination is homogeneous and the lack of a chemoattractant term in the bacterial
equation. We plan to address these problems in the near future.

Acknowledgements This workwas supported byCentro deMatemática daUniversidade de Coim-
bra UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MCTES and co-
funded by the European Regional Development Fund through the Partnership Agreement PT2020.
The first and the second authors were also supported by the project NEXT.parts – Next- genera-
tion of advanced hybrid parts, funded by EU’s Horizon 2020 science programme (Portugal 2020,
COMPETE 2020).

References

1. Bernardes,R., Ferreira, J.A.,Grassi,M.,Nhangumbe,M., deOliveira, P.: Fighting opportunistic
bacteria in drug delivery medical devices. SIAM J. Appl. Math. 79(6), 2456–2478 (2019)

2. Begic, D., von Eiff, C., Tsuji, B.: Daptomycin pharmacodynamics against Staphylococcus
aureus hemBmutants displaying the small colonyvariant phenotype. J.Antimicrob.Chemother.
63, 977–981 (2009)

3. Gallo, J., Holinka, M., Moucha, C.: Antibacterial surface treatment for orthopaedic implants.
Int. J. Mol. Sci. 15, 13849–13880 (2014)

4. Gesztelyi, R., Zsuga, J., Kemeny-Beke, A., Varga, B., Juhasz, B., Tosaki, A.: The Hill equation
and the origin of quantitative pharmacology. Arch. Hist. Exact Sci. 66, 427–438 (2012)

5. Gutiérrez, D., Hidalgo-Cantabrana, C., Rodríguez, A., García, P., Ruas-Madiedo, P.: Monitor-
ing in real time the formation and removal of biofilms from clinical related pathogens using an
impedance-based technology. PLoS ONE 11, 0163966 (2016)

6. Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., Sintim, H.: Biofilm formation
mechanisms and targets for developing antibiofilmagents. FutureMed.Chem.7, 493512 (2015)

7. Romanò, C., Tsuchiya, H., Morelli, I., Battaglia, A.G., Drago, L.: Infection Antibacterial coat-
ing of implants: are we missing something? Bone Joint Res. 8, 199–206 (2019)

8. Sharma, D., Misba, L., Khan, A.: Antibiotics versus biofilm: an emerging battle ground in
microbial communities. Antimicrob. Resist. Infect. Control 8, 76 (2019)

9. Shen, L., Chen, Z.: Critical reviewof the impact of tortuosity on diffusion. Chem. Eng. Sci. 62,
3748–3755 (2007)

10. Siepmann, J., Siepmann, F.: Modeling of diffusion controlled drug delivery. J. Controlled
Release 161, 351–362 (2012)

11. Zhu,X., Braatz, R.:Amechanisticmodel for drug release in PLGAbiodegradable stent coatings
coupled with polymer degradation and erosion. J. Biomed. Mater. Res., Part A 103, 2269–2279
(2015)

12. VanEpps, J., Younger, J.: Implantable device related infection. Schock 46, 597–608 (2016)
13. Wang, M., Tang, T.: Surface treatment strategies to combat implant-related infection from the

beginning. J. Orthop. Transl. 17, 42–54 (2019)



Coupling Temperature with Drug
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Abstract The use of enhancers to increase drug release from medical devices and
drug transport through tissues has been largely investigated. Researchers from differ-
ent fields like polymer chemistry, materials science, pharmaceutics, bioengineering,
and chemical engineering have addressed efforts to combine materials, stimuli and
drugs to design effective drug delivery platforms. For instance heat has been used to
increase transdermal drug delivery. Patcheswith iron batteries are today in themarket
where heat generated by the batteries increases the drug release from the patches and
the permeability of the skin, increasing drug absorption. Heat has been also used to
increase drug availability in the target tissue in other contexts like in chemotherapy.
In this case, to avoid the side effects of the systemic chemotherapy administration,
drugs are encapsulated in thermosensitive carriers that transport the drug to the target
where the cargo release is enhanced by heat. The aim of the present work is to study
a system of partial differential equations (PDEs), from a numerical point of view,
that can been used to describe the drug transport through tissues enhanced by heat.
The system is composed by nonlinear PDEs for the temperature and for the drug
concentration where the drug diffusion coefficient depends on the temperature. A
finite difference method is studied and the qualitative behaviour of the temperature
and concentration is numerically illustrated.

Keywords System of partial differential equations · Numerical study · Drug
transport through tissues · Finite difference method
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The use of enhancers to increase the drug release from medical devices and the drug
transport through the tissues have been largely investigated. Researchers from differ-
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and chemical engineering, have been making huge efforts to combine materials,
stimuli and drugs properties to design effective drug eluting devices [8, 11, 13, 14,
16]. For instance heat has been used to increase transdermal drug delivery [2, 15]
and patches with iron batteries are today in the market. Heat generated by batter-
ies increases the drug release from the patches and the permeability of the skin,
leading to a larger drug absorption. Heat has been also used to increase drug avail-
ability in chemotherapy [12, 13]. In this case, to avoid the side effects of the systemic
chemotherapy administration, drugs are encapsulated in thermoresponsive polymeric
transporters that deliver the drugs locally.

Mathematical modeling and numerical simulation is a powerful tool to predict
drug release from a medical device and its distribution in the target tissue enhanced
by stimuli. The mathematical models combine equations for the stimulus and for the
drug transport. To obtain accurate numerical solutions of the qualitative behaviour
of the stimulus and drug concentration, it is crucial to use numerical methods with
high convergence order, defined on nonuniform grids.

The aim of this work is to study a system of partial differential equations, from a
numerical point of view, that can been used to describe drug transport through a tissue
enhanced by heat. The system is composed by nonlinear PDEs for the temperature
and for the drug concentration, where the drug diffusion coefficient depends on the
temperature. Classically the convergence analysis of finite difference methods, for
linear initial value problems, is based on the Lax-Richtmyer equivalence theorem that
states that a consistent finite difference method is convergent if and only if is stable
[9]. From this result, a practical rule used to study convergence of finite difference
methods for linear initial value problems, is defined by “Stability and Consistency
implies Convergence”, where the convergence order at least equal to the consistency
order.

For finite difference methods defined on nonuniform meshes, the consistency
order may be less than the order of the corresponding finite difference methods
defined on uniform meshes. Consequently, based on the Lax rule, it is not possible
to conclude to conclude that the convergence order on nonuniform meshes is equal
to the convergence order on uniform meshes.

There exists a long list of contributions showing that the convergence order of
several linear finite difference methods defined on nonuniform grids is equal to
the convergence order of the corresponding finite difference methods defined with
uniform grids. Without being exhaustive we mention the classical papers [3, 7, 10],
where the analysis requires smoothness of the solutions of the continuous problem,
and [1, 4–6] where the convergence analysis requires lower smoothness than those
considered in the first group of papers.

Here we are mainly interested in the study of a finite difference scheme for the
following system:

∂T

∂t
(x, t) = DT

∂2T

∂x2
(x, t) + G(T (x, t)), (x, t) ∈ Ω × (

0, T f
]
, (1)
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and

∂c

∂t
(x, t) = ∂

∂x

(
Dd(T (x, t))

∂c

∂x
(x, t)

)
+ Q(c(x, t)), (x, t) ∈ Ω × (

0, T f
]
. (2)

The mathematical analysis will be established considering the system (1), (2) com-
pleted by the boundary conditions

T (t) = 0 and c(t) = 0 on ∂Ω × (
0, T f

]
(3)

and the initial conditions

T (0) = T0 and c(0) = c0 in Ω × (
0, T f

]
. (4)

To simplify the presentation the following notation is used: ifw : Ω × [0, T f ] → IR,
by w(t) we represent the function w(t) : Ω → IR given by w(t)(x) = w(x, t), x ∈
Ω . Here and in the rest of this workΩ = (a, b), ∂Ω = {a, b}, and T f denotes a final
time.

The finite difference method that will be studied is defined on nonuniform grids
and it can be seen as a fully discrete piecewise linear finite element method. The con-
vergence analysis will be performed assuming that T (t), c(t) ∈ C4(Ω), t ∈ (0, T f ],
and we show that the numerical approximations for T (t) and c(t), Th(t) and ch(t),
respectively, are second order accurate.

This paper is composed by 5 sections. In Sect. 2 we present definitions and basic
results. The first convergence results are presented in Sect. 3 where we establish first
order estimates for the errors of Th(t) and ch(t) assuming that T (t), c(t) ∈ C3(Ω).
These results are improved in Sect. 4 assuming that T (t), c(t) ∈ C4(Ω), t ∈ (0, T f ].
Finally, in Sect. 5 we present numerical illustrations. To conclude, some conclusions
are addressed in Sect. 6.

2 Preliminary Definitions and Results

Let Λ be a sequence of vectors h with positive entries (h1, · · · , hN ) such that
N∑

i=1

hi = b − a and hmax → 0, where hmax = max
i

hi . For h ∈ Λ, we introduce inΩ

the nonuniform grid Ωh = {xi , i = 0, · · · , N , xi − xi−1 = hi , i = 1, . . . , N , x0 =
a, xN = b}. We denote by Ωh and ∂Ωh the set of interior nodes Ω ∩ Ωh and the
boundary points ∂Ω ∩ Ωh , respectively.

ByWh we represent the space of grid functions defined inΩh and the space of grid
functions inWh that are null at the boundary points is denoted byWh,0. We introduce
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in Wh,0 the inner product (uh, vh)h =
N−1∑

i=1

hi+1/2uh(xi )vh(xi ), uh, vh ∈ Wh,0, where

hi+1/2 = hi+hi+1

2 , being the corresponding normdenoted by‖.‖h .Weuse the notations

(uh, vh)+ =
N∑

i=1

hiuh(xi )vh(xi ), uh, vh ∈ Wh, ‖uh‖+ = ( N∑

i=1

hi (uh(xi ))
2
)1/2

.

Let D−x , D∗
x and D2 be the following finite difference operators:

D−xuh(xi ) = uh(xi ) − uh(xi−1)

hi
, i = 1, · · · , N

D∗
x uh(xi ) = uh(xi+1) − uh(xi )

hi+1/2
, i = 0, · · · , N − 1,

D2uh(xi ) = D−xuh(xi+1) − D−xuh(xi )

hi+1/2
, i = 1, · · · , N − 1,

where uh ∈ Wh .
In the next result we establish a discrete version of the integration by parts rule

and a discrete version of Poincaré-Friedrich’s inequality.

Proposition 1 For all uh ∈ Wh and vh ∈ Wh,0(Ωh), we have

1. (−D∗
x uh, vh)h = (uh, D−xvh)+,

2. (−D2uh, vh)h = (D−xuh, D−xvh)+,

3. ‖uh‖2h ≤ |Ω|‖D−xuh‖2+.

where |Ω| denotes the measure of Ω .

By Th(t) and ch(t) we represent the semi-discrete approximations of T (t) and
c(t), respectively, defined by the following ordinary differential systems:

⎧
⎨

⎩

T ′
h(t) = DT D2Th(t) + G(Th(t)) in Ωh × (

0, T f
]
,

Th(t) = 0 in ∂Ωh × (
0, T f

]
,

Th(0) = RhT0 in Ωh,

(5)

⎧
⎨

⎩

c′
h(t) = D∗

x (Dd(MhTh)D−xch(t)) + Q(ch(t)) in Ωh × (
0, T f

]
,

ch(t) = 0 in ∂Ωh × (
0, T f

]
,

ch(0) = Rhc0 in Ωh,

(6)

where Rh : C(Ω) → Wh is the restriction operator Rhu(xi ) = u(xi ), i = 0, . . . , N ,
and Mh denotes the average operator Mhuh(xi ) = 1

2 (uh(xi−1) + uh(xi )), i = 1, . . . ,
N − 1, uh ∈ Wh .

We notice that Th(t) and ch(t) defined by (5) and (6), respectively, can be seen as
fully discrete piecewise linear finite element solutions. In fact, the weak formulations
of the initial boundary value problems (IBVP) (1), (2), (3), (4) are given by
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(T ′(t), u) = −DT (
∂T

∂x
(t), u′) + (G(T (t)), u) a.e. in (0, T f ],∀u ∈ H 1

0 (Ω),

(T (0), u) = (T0, u), ∀u ∈ L2(Ω),
(7)

and

(c′(t), w) = −(Dd(T (t))
∂c

∂x
(t), w′) + (Q(c(t)), w) a.e. in (0, T f ],∀w ∈ H 1

0 (Ω),

(c(0), w) = (c0, w), ∀w ∈ L2(Ω).

(8)
In (7), (8), a.e. means almost everywhere and by L2(Ω) and H 1

0 (Ω) we denote the
usual Sobolev spaces endowed with the usual inner products and norms.

The piecewise linear finite element approximations for T (t) and c(t) defined by
(7) and (8), respectively, are computed considering the piecewise linear interpola-
tion functions PhTh(t), Phch(t) ∈ H 1

0 (Ω) of Th(t), ch(t) ∈ Wh,0, respectively. These
functions are solutions of the following weak problems:

(PhT
′
h(t), Phuh) = −DT (

∂PhTh
∂x

(t), Phu
′
h) + (G(PhTh(t)), Phuh)in (0, T f ],∀uh ∈ Wh,0,

(PhTh(0), Phuh) = (Ph RhT0, Phuh), ∀uh ∈ Wh,0,
(9)

and

(Phc
′
h(t), Phwh) = −(Dd (PhTh(t))

∂Phch
∂x

(t), Phw
′
h) + (Q(Phch(t)), Phwh) in (0, T f ], ∀wh ∈ Wh,0,

(Phch(0), Phwh) = (Ph Rhc0, Phwh), ∀wh ∈ Wh,0.

(10)
The two finite problems (9), (10) are then replaced by the fully discrete piecewise

linear finite element approximations

(T ′
h(t), uh)h = −DT (D−x Th(t), D−xuh)+(G(Th(t)), uh)h in (0, T f ],∀uh ∈ Wh,0,

(Th(0), uh)h = (RhT0, uh)h, ∀uh ∈ Wh,0,

(11)
and

(c′h(t), wh)h = −(Dd (MhTh(t))D−x ch(t), D−xwh)+ + (Q(ch(t)), wh)h in (0, T f ],∀wh ∈ Wh,0,

(ch(0), wh)h = (Rhc0, wh)h , ∀wh ∈ Wh,0.

(12)
Finally, choosing in each equation of (11), (12) a sequence of grid functions where
each element is equal to one in a grid point and zero in the rest we arrive to the IBVP
(5) and (6).
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3 Convergence Analysis for Solutions in C3(Ω)

In this sectionweestablish estimates for the errors ET (t) = RhT (t) − Th(t), Ec(t) =
Rhc(t) − ch(t), where Th(t), ch(t) are given by (5) and (6) or (11) and (12). We
assume that the coefficient function Dd satisfies the following assumption:
H1 : Dd ∈ C1

b(IR) and Dd ≥ β ≥ 0 in IR.

We assume that G and Q have bounded first order derivatives, that is

max
IR

G ′ ≤ CG, max
IR

Q′ ≤ CQ,

where CG and CQ are constants.

3.1 Temperature

We start by studying the error ET (t) = RhT (t) − Th(t).

Theorem 1 Let the solution T of (1) in L2(0, T f ,C3(Ω)) and let Th be defined
by (5), such that RhT, Th ∈ C1([0, T f ],Wh,0). Then there exists a positive constant
Const, h and t independent, such that ET (t) = RhT (t) − Th(t) satisfies

‖ET (t)‖2h +
∫ t

0
eCG (t−s)‖D−x ET (s)‖2+ds ≤ Consth2max

∫ t

0
eCG (t−s)‖T (s)‖2

C3(Ω)
ds,

(13)
for t ∈ [0, T f ] and h ∈ Λ.

Proof Let Tr,T (t) be the truncation error induced by the spatial discretization defined
in (5). For Tr,T (t) we have the following representation

Tr,T (xi , t) = 1

6

(
h2i+1

∂3T

∂x3
(ηi , t) − h2i

∂3T

∂x3
(ξi , t)

)
,

where ηi , ξi ∈ [xi−1, xi+1], i = 1, . . . , N − 1.
It can be shown that for the error ET (t) we have

(ET (t)′, ET (t))h = −DT (D−x ET (t), D−x ET (t))+ + (G(RhT (t)) − G(Th(t)), ET (t))h
+ (Tr,T (t), ET (t))h, t ∈ (0, T f ].

Young’s inequality leads to

1

2

d

dt
‖ET (t)‖2h + DT ‖D−x ET (t)‖2+ ≤ 1

4ε2
≤ ‖Tr,T (t)‖2h + ε2‖ET (t)‖2h + CG‖ET (t)‖2h,

where ε �= 0. Considering now the discrete Poincaré-Friedrich’s inequality we get
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d

dt
‖ET (t)‖2h + 2(DT − |Ω|ε2)‖D−x ET (t)‖2+ + 1

2ε2
‖Tr,T (t)‖2h + CG‖ET (t)‖2h .

(14)
To establish an error estimation for ET (t), we need to compute an upper bound for
‖Tr,T (t)‖2h . As

‖Tr,T (t)‖2h ≤ 2

9
D2

T |Ω|‖T (t)‖C3(Ω)h
2
max ,

fixing ε such that DT − ε2|Ω| > 0, and defining Const = 1

18ε2
D2

T |Ω|
DT − ε2|Ω| , we

conclude that

d

dt

(
e−CGt‖ET (t)‖2h +

∫ t

0
e−CGs‖D−x ET (s)‖2+ds − Const

∫ t

0
e−CGs‖T (s)‖C3(Ω)ds

)
≤ 0,

(15)
for t ∈ [0, T f ]. This inequality leads to (13).

3.2 Concentration

In this section we establish an upper bound for the error Ec(t) = Rhc(t) − ch(t),
where c is defined by (2). As c depends on the solution T of (1), we will get an
upper bound for Ec(t) depending on the error ET (t) as well as on the truncation
error associated with the spatial discretization defined in (6).

Theorem 2 Let T and c be solutions of (1) and (2), respectively, in L2(0, T f ,C3(Ω))

and let Th, ch be defined by (5) and (6), respectively. Let ET (t) and Ec(t) be the
spatial-discretization errors ET (t) = RhT (t) − Th(t) and Ec(t) = Rhc(t) − ch(t).
If Rhc, ch ∈ C1([0, T f ],Wh,0) and RhT, Th ∈ C([0, T f ],Wh,0), there exists a posi-
tive constant Const, h and t independent, such that

‖Ec(t)‖2h +
∫ t

0
eCQ (t−s)‖D−x Ec(s)‖2+ds ≤ Const

(∫ t

0
eCQ (t−s)‖ET (s)‖2h‖c(s)‖2

C1(Ω)
ds

+ h2max

∫ t

0
e(CQ+CG )(t−s)‖c(s)‖2

C3(Ω)
(‖T (s)‖2

C2(Ω)
+ 1)ds + h2max

)
,

(16)

for t ∈ [0, T f ] and h ∈ Λ.

Proof Let Tr,c(t) be the truncation error induced by the spatial discretization defined
in (6). It can be shown that Tr,c(t) admits the representation

Tr,c(xi , t) = D′
d (T (xi , t))

(
hi − hi+1

2

)[
∂2T

∂x2
(xi , t)

∂c

∂x
(xi , t) + ∂T

∂x
(xi , t)

∂2c

∂x2
(xi , t)

]

+ Dd (T (xi , t))

6hi+1/2

(

h2i
∂3c

∂x3
(ξi , t) − h2i+1

∂3c

∂x3
(ηi , t)

)

+ O(h2max ),

(17)
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where O(h2max ) represents a term, depending on ‖c(t)‖C3(Ω) and ‖T (t)‖C3(Ω), such
that |O(h2max )| ≤ Const h2max , being Const a positive and h and time independent
constant.

From (17), for ‖Trc(t)‖2h we easily get the following

‖Tr,c(t)‖2h ≤ Consth2max

(
(‖T (t)‖2

C2(Ω)
+ 1)‖c(t)‖2

C3(Ω)
+ h2max

)
. (18)

For the error Ec(t) we have

(Ec(t)′, Ec(t))h = −([Dd(MhRhT (t)) − Dd(MhTh(t))] D−x Rhc(t), D−x Ec(t))+
− ((Dd(MhTh(t)))D−x Ec(t), D−x Ec(t))+
+ (Q(Rhc(t)) − Q(ch(t)), Ec(t))h + (Tr,c(t), Ec(t))h .

(19)
As

|([Dd(MhRhT (t)) − Dd(MhTh(t))] D−x Rhc(t), D−x Ec(t))+|
≤ ‖Dd‖C1

b (IR)

√
2‖ET (t)‖h‖c(t)‖C1(Ω)‖D−x Ec(t)‖+,

for εi �= 0, i = 1, 2, considering the assumption H1 we obtain

d

dt
‖Ec(t)‖2h + 2(β − ε21 − |Ω|ε22)‖D−x Ec(t)‖2+

≤ 1

ε21
‖Dd‖C1

b (IR)‖ET (t)‖2h‖c(t)‖2C1(Ω)
+ 1

2ε22
‖Tr,c(t)‖2h + CQ‖Ec(t)‖2h .

(20)

Then, fixing the constants εi , i = 1, 2, such that 2(β − ε21 − |Ω|ε22) > 0, we guar-
antee the existence of a positive constant Const , h and t independent, such that

‖Ec(t)‖2h +
∫ t

0
eCQ(t−s)‖D−x Ec(s)‖2+ds

≤ Const
∫ t

0
eCQ(t−s)

(
‖ET (s)‖2h‖c(s)‖2C1(Ω)

+ ‖Tr,c(s)‖2h
)
ds,

(21)

and taking into account the upper bound (18) we deduce (16).

4 Convergence Analysis for Solutions in C4(Ω)

In Theorems1 and 2, assuming that the solutions T (t) and c(t) are in C3(Ω), we
establish that

‖ET (t)‖h ≤ Consthmax , ‖Ec(t)‖h ≤ Consthmax ,

and
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∫ t

0
eCG (t−s)‖D−x ET (s)‖2+ds ≤ Consth2max ,

∫ t

0
eCQ (t−s)‖D−x Ec(s)‖2+ds ≤ Consth2max .

In this section we increase the convergence orders increasing the regularity of T (t)
and c(t), namely by assuming that T (t), c(t) ∈ C4(Ω).

4.1 Temperature

Theorem 3 Let T be solution of (1) in L2(0, T f ,C4(Ω)) and let Th be defined by (5),
such that RhT, Th ∈ C1([0, T f ],Wh,0). Then there exists a positive constant Const,
h and t independent, such that ET (t) = RhT (t) − Th(t) satisfies

‖ET (t)‖2h +
∫ t

0
eCG (t−s)‖D−x ET (s)‖2+ds ≤ Consth4max

∫ t

0
eCG (t−s)‖T (s)‖2

C4(Ω)
ds,

(22)
for t ∈ [0, T f ] and h ∈ Λ.

Proof As in the proof of Theorem1, we have

1

2

d

dt
‖ET (t)‖2h + DT ‖D−x ET (t)‖2+ = (Tr,T (t), ET (t))h + (G(RhT (t)) − G(Th(t)), ET (t))h .

(23)
Taking into account that T (t) ∈ C4(Ω), we have for Tr,T (t) the following represen-
tation

Tr,T (xi , t) = DT

3
(hi+1 − hi )

∂3T

∂x3
(xi , t) + O(h2max ),

where |O(h2max)| ≤ Consth2max‖T (t)‖C4(Ω). Then for (Tr,T (t), ET (t))h we obtain

(Tr,T (t), ET (t))h = DT

6

N−1∑

i=1

(
∂3T

∂x3
(xi , t)ET (xi , t) − ∂3T

∂x3
(xi−1, t)ET (xi−1, t)

)

+ (O(h2max ), ET (t))h,

that leads to

(Tr,T (t), ET (t))h ≤ DT

6

N−1∑

i=1

h3i
∂3T

∂x3
(xi , t)D−x ET (xi ) + DT

6

N−1∑

i=1

h2i

∫ xi

xi−1

∂4T

∂x4
(x, t)dxET (xi−1, t)

+ (O(h2max ), ET (t))h

= DT

6
(A + B) + (O(h2max ), ET (t))h .

For A and B we have the following upper bounds

|A| ≤ h2max

√|Ω|‖T (t)‖C3(Ω)‖D−x ET (t)‖+ (24)
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and

|B| ≤ h2max

√
2‖∂4T

∂x4
(t)‖L2(Ω)‖ET (t)‖h, (25)

respectively.
Then, considering Young’s and Poincaré-Friedrich’s inequalities and εi �= 0, i =

1, 2, 3, we get

|(Tr,T (t), ET (t))h| ≤ h4max

(D2
T

36

( 1

4ε21
|Ω|‖T (t)‖2

C3(Ω)
+ 1

ε22
‖∂4T

∂x4
(t)‖2L2(Ω)

)

+Const 1
ε23

‖T (t)‖2
C4(Ω)

)
+ (ε21 + |Ω|(ε2 + ε23))‖D−x ET (t)‖2+.

(26)

Taking the last upper bound in (23) we deduce

1

2

d

dt
‖ET (t)‖2h + (DT − (ε21 + |Ω|(ε2 + ε23)))‖D−x ET (t)‖2+

≤ h4max

( D2
T

36

( 1

4ε21
|Ω|‖T (t)‖2

C3(Ω)
+ 1

ε22
‖ ∂4T

∂x4
(t)‖2L2(Ω)

)
+ Const

1

ε23
‖T (t)‖2

C4(Ω)

)

+CG‖ET (t)‖2h,

(27)

for t ∈ (0, T f ]. Fixing in (27) εi �= 0, i = 1, 2, 3, such that DT − (ε21 + |Ω|(ε2 +
ε23)) > 0, we guarantee the existence a positive constantConst , h and t independent,
such that (22) holds.

4.2 Concentration

Theorem 4 Let T and c be solutions of (1) and (2), respectively, in L2(0, T f ,C4(Ω))

and let Th, ch be defined by (5) and (6), respectively. Let ET (t) and Ec(t) be the
spatial-discretization errors ET (t) = RhT (t) − Th(t) and Ec(t) = Rhc(t) − ch(t).
If Rhc, ch ∈ C1([0, T f ],Wh,0) and RhT, Th ∈ C([0, T f ],Wh,0), there exists a posi-
tive constant h and t independent such that

‖Ec(t)‖2h +
∫ t

0
eCQ (t−s)‖D−x Ec(s)‖2+ds ≤ Const

( ∫ t

0
eCQ (t−s)‖ET (s)‖2h‖c(s)‖2

C1(Ω)
ds

+ h4max

∫ t

0
eCQ (t−s)‖c(s)‖2

C4(Ω)
(‖T (s)‖2

C3(Ω)
+ 1)ds

)
,

(28)

for t ∈ [0, T f ] and h ∈ Λ.

Proof The truncation error induced by the spatial discretization defined in (6) has
the representation
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Tr,c(xi , t) = (hi − hi+1)
( 1

3
D′
d (T (xi , t))

[
∂2T

∂x2
(xi , t)

∂c

∂x
(xi , t) + ∂T

∂x
(xi , t)

∂2c

∂x2
(xi , t)

]

+ 1

3
Dd (T (xi , t))

∂3c

∂x3
(xi , t)

)
+ O(h2max ),

where |O(h2max)| ≤ Const‖c(t)‖C4(Ω)

(‖T (t)‖C3(Ω) + 1
)
.

Let g(x, t) be defined by

g(x, t) =
( 1

3
D′

d(T (x, t))

[
∂2T

∂x2
(x, t)

∂c

∂x
(x, t) + ∂T

∂x
(x, t)

∂2c

∂x2
(x, t)

]

+ 1

3
Dd(T (x, t))

∂3c

∂x3
(x, t)

)
.

Then, as in the proof of the Theorem3, we have

|(Tr,c(t), Ec(t))h | ≤ 1

2
h2max

(
‖g(t)‖C(Ω)

√|Ω|‖D−x Ec(t)‖+ + √
2‖ ∂g

∂x
(t)‖L2(Ω)‖Ec(t)‖h

)

+ ‖O(h2max )‖‖Ec(t)‖h .

Consequently, discrete Poincaré-Friedrichs inequality leads to

|(Tr,c(t), Ec(t)| ≤ 1

2ε21
|Ω|

(
h4max

(
‖g(t)‖2

C(Ω)
+ 2‖∂g

∂x
(t)‖2L2(Ω)

)
+ ‖O(h2max )‖2h

)2

+ ε21‖D−x Ec(t)‖2+,

where ε1 �= 0.
Following the proof of the Theorem2, we obtain

1

2

d

dt
‖ET (t)‖2h + (β − ε21 − ε22)‖D−x ET (t)‖2+ ≤ 1

2ε22
‖Dd‖C1

b (IR)
‖ET (t)‖2h‖c(t)‖2C1(Ω)

+ 1

2ε21
|Ω|

(
h4max

(
‖g(t)‖2

C(Ω)
+ 2‖ ∂g

∂x
(t)‖2L2(Ω)

)
+ ‖O(h2max )‖2h

)2

+CQ‖Ec(t)‖2h .
(29)

Fixing εi �= 0, i = 1, 2, such that β − ε21 − ε22 > 0, we guarantee the existence of a
positive constant Const , h and t independent, such that

d

dt
‖Ec(t)‖2h + ‖D−x Ec(t)‖2+ ≤ Const

(
‖ET (t)‖2h‖c(t)‖2C1(Ω)

+ h4max‖c(t)‖2C4(Ω)
(‖T (t)‖2

C3(Ω)
+ 1)

)
+ CQ‖Ec(t)‖2h, t ∈ (0, T f ].

(30)

Finally, to conclude, we remark that inequality (30) leads to (28).

From Theorems3 and 4 we conclude the next result:
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Corollary 1 Under the assumptions of the Theorems3 and 4 for the error Ec(t) =
Rhc(t) − ch(t) holds the following

‖Ec(t)‖2h +
∫ t

0
eCQ(t−s)‖D−x Ec(s)‖ 2

+ds

≤ Consth4max

∫ t

0

(
‖T (s)‖2

C4(Ω)
+ ‖c(s)‖2

C4(Ω)
(‖T (s)‖2

C3(Ω)
+ 1)

)
ds.

for t ∈ [0, T f ] and h ∈ Λ.

5 Numerical Simulation

In this section we illustrate the qualitative behaviour of T and c combining (5)
and (6) with an explicit-implicit approach defined using Euler’s method. The con-
centration diffusion term is approximated implicitly and the reaction terms in the
temperature and concentration equations are approximately explicitly. We take Ω =
[0, 1], hmax = 10−2, [0, T f ] = [0, 10], the time stepsize Δt = 10−2, Dd(T (t)) =
D0e

− K
T (t) , D0 = 10−2, K = 10/8.314, DT (T ) = Dd(T ),v(T (t)) = bT (t),withb =

10−1, T (0, x) = 310x(1 − x)(K ), c(c, 0) = x(1 − x), x ∈ [0, 1], G defined by

G(T (t)) = 312 − 2cos(3t), for ∈ (0, 0.4), andG(T (t)) = 0 for t ≥ 0.4, (31)

and Q = 0.
Figure1 illustrates the behaviour of T (left) and c(right) at t = 1. These plots were

obtainedwith andwithout the heat sourceG defined by (31).Weobserve that at t = 1,
the drug concentration inΩ under the effect of the heat source is approximately zero.
However a significant amount of drug remains in Ω when no heat enhancement is
considered. These results show the efficacy of the stimulus in the drug delivery. To
confirm our conclusions, in Fig. 2 we illustrate the behaviour of the mass released

Mr (t) = M(0) −
∫

ω

c(x, t)dx, t ∈ [0, 4], where M(0) = ∫
Ω
c(x, 0)dx is the initial

drug mass. As it can be seen, with the source term G, Mr attains its stationary state
near to t = 1 while, without the heat source, Mr (t) attains the stationary state near
to t = 3.5.
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Fig. 1 The plots of T (left) and c (right) at t = 1 with and without the heat source G defined by
(31)

Fig. 2 The plots of the
released mass Mr (t) with
and without the heat source
G defined by (31)
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6 Conclusion

In this work we establish error estimates for the numerical approximations of (1) and
(2) defined by the finite difference methods (5) and (6) on nonuniform grids. These
methods can be seen as fully discrete piecewise linear finite element methods.

Theorems3 and 4 are themain results of this work. In Theorem3we prove that the
finite difference method (5) leads to second order approximations for the solution
of (1). This result shows that the method is supraconvergent: though the spatial
truncation error is only of first order, the method is second order convergent. In
Theorem4 we establish an error estimate for ch defined by (6) when Th is given by
(5). This result allows us to conclude that the finite difference method (5), (6) is also
second-order convergent. The regularity of the solutions of the IBVP (1) and (2) is the
main requirement imposed in the proof of thementioned results, T (t), c(t) ∈ C4(Ω).

The qualitative behaviour of the solutions of the IBVPs (1), (2), (3) and (4) is
numerically illustrated. Let t∗T denotes the time needed for the drug released mass
Mr (t) to reach its stationary state when heat is used to enhance the drug transport.
Let t∗ be the corresponding time without the action of the stimulus. The numerical
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results presented in Fig. 2 show that t∗T << t∗. This finding confirms that heat can
be an effective stimulus to enhance drug transport.
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Drug Release from Thermosensitive
Polymeric Platforms—Towards Non
Fickian Models

J. A. Ferreira, Paula de Oliveira, and Elisa Silveira

Abstract To reduce the side effects of chemotherapy drugs, namely in cancer ther-
apy, researchers of different fields are making tremendous efforts to design new drug
systems that can be used to deliver the drug locally in a sustainable way. Polymeric
nanocarriers are investigated to transport the drug to the target tissue where the cargo
should be delivered. Physical or chemical stimuli are being considered to enhance the
drug release. Heat is investigated to enhance drug release and drug transport in differ-
ent scenarios as transdermal drug delivery or cancer treatment. In this case the drug is
entrapped in a thermoresponsive polymeric carrier and its release is enhanced by the
temperature increasing. Traditionally, drug transport and the temperature evolution
are described by parabolic equations based on Fick’s law. To describe accurately drug
transport through a viscoelastic material, Fick’s law should be modified to include
the viscoelastic properties of the tissues. In this work we propose a mathematical
model to describe the drug release from a thermoresponsive platform. To simplify,
we assume that the time evolution occurs at discrete time levels that allows the intro-
duction of the temperature as an input of our model. An explicit representation of
the drug concentration is obtained.
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1 Introduction

To reduce the side effects of chemotherapy drugs, namely in cancer therapy, phar-
maceutics, material engineers, medical researchers, are addressing their effort to
design new drug delivery systems that can be used to release the drug locally. When
drug delivery platforms are in contact with the target tissue, the drug release can be
stimulated byphysical or chemical stimuli like heat, light, ultrasound, electric ormag-
netic fields, pH or enzymes. We mention without being exhaustive the recent papers
[1, 9, 10] and the references therein. To put the drug in contact with the target, the
drug is entrapped in polymeric platforms and the release occurs under the action of
a stimulus. It is clear that the polymeric structure should react in the presence of the
stimulus.

Different biodegradable and biocompatible polymers are currently used in drug
release systems. PNIPAAm, Poly(N-isopropylacrylamide), is a thermoresponsive
polymer extensively investigated for applications on controlled delivery [8] and in
cancer therapy [2]. The drug release from a thermoresponsive polymeric platform,
or from a stimuli responsive polymeric structure, is the corollary of a cascade of
phenomena: fluid entrance, polymer swelling, drug dissolution and drug transport.

The classical diffusion equations

∂T

∂t
= DTΔT + G(T ) in Ω × (0, T f

]
(1)

and
∂c

∂t
= ∇ (Dd(T )∇c) + Q(c) in Ω × (0, T f

]
, (2)

for the temperatureT anddrug concentration c, are oftenused todescribe the transport
of a drug enhanced by heat in a domain Ω representing a polymeric reservoir, a
target tissue or both domains coupled. In (1), and (2), DT and Dd stand for the
diffusion coefficients of the temperature and the drug respectively. These equations
are established using Fick’s law for the flux J

J (x, t) = −D∇�(x, t) (3)

and the mass conservation equation

∂�

∂t
+ ∇ J = R(�) in Ω × (0, T f ], (4)

where � = T, c and R = G, Q represents the reaction terms.
We notice that both media, polymeric platform and target tissue, can be seen as

viscoelastic materials where the drug transport or the fluid entrance is of non-Fickian
type. In fact, when the fluid or drugmoleculesmove through themedium, a resistance
to particles movement is imposed by the medium structure. This resistance can be
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seen as a stress driven diffusion that acts as a barrier to particles transport. In [4, 5]
and [6], the resistance offered by the internal medium structure is interpreted as an
opposite convective field. We remark that hyperbolic equations of wave type were
proposed to describe the heat transport in [3] and studied in [7].

Stimuli responsive polymers, like PNIPAAm, are characterized by a phase tran-
sition temperature, the so called Critical Solution Temperature (CST): they swell for
temperatures below the CST and shrink when the temperature is above the CST [12].
The change of state of the polymer is a continuous function of the temperature.
The mathematical modeling of this continuous change requires a mathematical law
for the polymer shape evolution in function of the temperature. To the best of our
knowledge the issue has not been described in the literature.

The mathematical modeling of drug release from a temperature sensitive polymer
was considered in [11] using a Fickian description for the drug transport. The author
assumes that the temperature effects on the polymer states occur discretely in time.
In this last work, the spatial domain has two different configurations and the drug
transport is described by the diffusion Eq. (2). In the present paper, while studying the
effect of the temperature on the behaviour of the polymer as in [11], the viscoelastic
effect of the polymeric structure on the drug transport is taken into account. We
assume that the polymer has two different states: the swollen and the shrink states that
change discretely in time. Each one of these states is characterized by different Young
modulus, defined by the intensity of crosslinks of the polymeric chains. In Sect. 2 we
present the mathematical model for the drug transport using an integro-differential
equation. An equivalent partial differential equation will be established. The solution
of the differential problem whose spatial domain and differential equation change
discretely in time is presented in Sect. 3. Some conclusions are presented in Sect. 4.

2 An Hybrid Non Fickian Mathematical Model

Let Ω(t), t ∈ [0, T f ] be the spatial domain that changes in time. We assume that
Ω(t) is homogeneous and isotropic, we take Ω(t) = (−H(t), H(t)). Considering
that the concentration and temperature have symmetric profiles with respect to the
origin, we take Ω(t) = [0, H(t)]. At x = 0 we impose the symmetric boundary
conditions and at x = H(t) we assume that all the drug that attains the boundary
is immediately removed. For x ∈ Ω(t), the drug concentration is described by the
conservation equation

∂c

∂t
= −∇(JF (t) + JNF (t)). (5)

In (5), JF (t) and JNF (t) denote the Fickian and the non Fickian drug fluxes that are
defined, respectively, by Fick’s law (3) and by

JNF (t) = −Dv(T )∇σ(t),
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where σ(t) represents the polymeric stress. As in [4, 5], we assume that the vis-
coelastic behavior of the polymer is described by the generalized Maxwell model
also known as the Maxwell-Wiechert model with one arm

σ(t) = −
∫ t

0

(
E0 + E1e

− E1(t−s)
μ

) ∂ε

∂s
ds, (6)

where E0, E1 represent the Young modulus that depend on the temperature T (t).
In (6), μ denotes the viscosity of the polymer-solvent solution and ε represents the
polymeric strain. We remark that a nonlinear relation between the strain ε and the
concentration c was proposed for instance in [5]. This type of relation could be
adopted in the model presented in this paper. However to simplify, we assume that
ε = λc. Then for the concentration we get

∂c

∂t
(t) =∇(D(t)∇c(t))

− λ∇
⎡

⎢
⎣Dv(t)∇

∫ t

0

⎛

⎜
⎝E0(s) + E1(s)e

−
∫ t

s

E1(θ)

μ(θ)
dθ

⎞

⎟
⎠

∂c

∂s
(s)ds

⎤

⎥
⎦

(7)

in (0, H(t)) × (0, T f ], where D(t) = D(T (t)), Dv(t) = Dv(T (t)), Ei (t) =
Ei (T (t)), i = 0, 1, and μ(t) = μ(T (t)). Equation (7) is completed with the bound-
ary conditions

∇c(0, t) = 0, c(H(t), t) = 0, t ∈ (0, T f ]. (8)

and the initial condition
c(0) = g in (0, H(0)). (9)

The IBVP (7), (8), (9) should be coupled with (1) for the temperature and a mathe-
matical law for H(t).

Following [11], we assume that the temperature switches between two val-
ues, below and above the critical solution temperature, leading to two different
states for the spatial domain. Then [0, T f ] is split into a number of subintervals,
[0, T f ] = ∪n−2

i=0 [ti , ti+1) ∪ [tn−1, tn], t0 = 0, tn = T f . We further assume that in the
first time interval the polymeric structure is collapsed, which means that the temper-
ature is above the critical temperature solution. Consequently, in ∪i=0[t2i , t2i+1) the
polymeric structure is in the dry state and in ∪i=1[t2i−1, t2i ) it is in the swollen state.
Moreover, for [t j , t j+1) we have

σ�(t) = −λ(E1,� + E0,�)c�(t) + λ

(
E0,� + E1,�e

− E1,�
μ�

(t−t j )
)
c�(t j )

+ λ
E2
1,�

μ�

∫ t

t j

e− E1,�
μ�

(t−θ)c�(θ)dθ,

(10)
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for � = c, s. The indices c and s are used to represent the dependence of the solutions
and parameter values on the dry and swollen states, respectively. Taking in (7) the
expression (10) we obtain to the following integro-differential equation

∂c�

∂t
(t) = (D − Dv,�λÊ�)Δc�(t) + Dv,�λ

E2
1,�

μ�

∫ t

t j

e− E1,�
μ�

(t−θ)
Δc�(θ)dθ

+ Dv,�λ
(
E0,� + E1,�e

− E1,�
μ�

(t−t j )
)
Δc�(t j ),

(11)

where Ê� = E0,� + E1,�.

Finally, it is easy to show that c� satisfies

∂2c�

∂t2
+ α�

∂c�

∂t
= D1,�Δ

∂c�

∂t
+ D2,�α�Δc� + β�α�Δc�(t j ) in (0, H�) × (t j , t j+1),

(12)
whereα� = E1,�

μ�
, D1,� = D − Dv,�λÊ�, D2,� = D − Dv,�λE0,�, β� = Dv,�λE0,� and

� = c, s. Equation (12) is complemented with the boundary conditions

∇c�(0, t) = 0, c�(H�, t) = 0, t ∈ (t j , t j+1). (13)

The main problem now is the definition of the initial conditions. It is clear that when
t ∈ [0, t1), the initial conditions are given by

{
cc(0) = g
∂cc
∂t

(0) = DΔg in (0, Hc).
(14)

To define the initial conditions for (12), from (11) we get

∂c�

∂t
(t j ) = DΔc�(t j ) in (0, H�).

The question then arises. To solve the problem in the next time interval(t1, t2), what
are the initial conditions that should be used in t1? In the preceding step, that is in
the computation of the solution in [0, t1) we computed the value c�(t1) in the spatial
domain [0, H(t1)). However this value can not be used as the initial condition for
the next time step as the spatial domain is now (0, H(t2)). More generally: What
is the definition of c�(t j )? We follow in our approach the procedure presented in
[11]. If in the interval (t j−1, t j ) the polymeric structure is in the collapsed state,
then a solution cc defined in [0, Hc] × [t j−1, t j ) was computed. However the initial
conditions for (12) involve a function defined in [0, Hs]. One possibility to define
the initial conditions for (12) is to extend cc to [0, Hs] constructing cc,ext such that

∫ Hc

0
cc(x, t j )dx =

∫ Hs

0
cc,ext (x)dx . (15)
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The idea underlying (15) is the conservation of mass: when the polymer swollens
or shrinks the concentration changes but the mass is instantaneously constant. Then
the initial conditions for (12) are defined by

{
cs(t j ) = cc,ext
∂cs
∂t

(t j ) = DΔcc,ext in (0, Hc).
(16)

Summarizing, when the viscoelastic effect of the polymer is taken into account
proposing the following algorithm to solve our problem. If the polymer is in the
collapsed state at t = 0 then:

1. Solve the IBVP
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2cc
∂t2

+ αc
∂cc
∂t

= D1,cΔ
∂cc
∂t

+ D2,cαcΔcc + βcαcΔg in(0, Hc) × (t0, t1],
∇cc(0, t) = 0, cc(Hc, t) = 0, t ∈ [t0, t1],
cc(x, 0) = g(x),

∂cc
∂t

(x, 0) = DΔg(x), x ∈ [0, Hc),

(17)
2. Extend cc(t1) to [0, Hs] constructing cc,ext such that

∫ Hc

0
cc(x, t1)ds =

∫ Hs

0
cc,ext (x)dx . (18)

3. For i = 1, . . . , n − 1, solve the IBVP

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2c�
∂t2

+ α�
∂c�
∂t

= D1,�Δ
∂c�
∂t

+ D2,�α�Δc� + β�α�Δcext (ti ) in (0, H�) × (ti , ti+1],
∇c�(0, t) = 0, c�(H�, t) = 0, t ∈ [ti , ti+1],
c�(x, ti ) = cext (x, ti ),

∂c�
∂t

(x, ti ) = D
∂cext
∂t

(x, ti ), x ∈ [0, H�]
(19)

with � = c or � = s for i even or odd, respectively, and cext is the extension of
c�(ti ) defined in [0, H∗] with H∗ = Hs or H∗ = Hc for i even or odd, respec-
tively, satisfying

• if i is even ∫ Hs

0
cs(x, ti ) =

∫ Hc

0
cs,ext (x)dx, (20)

• if i is odd ∫ Hc

0
cc(x, ti ) =

∫ Hs

0
cc,ext (x)dx . (21)
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3 An Analytic Solution

In this section, using Fourier analysis, we introduce the general explicit expressions
for the solutions of the defined IBVP’s. In the first result we establish a formal
representation for the solution of the IBVP (17).

Theorem 1. If g ∈ L2(Ω) is such that ∇g ∈ L2(Ω) and g(0) = ∇g(Hc) = 0, then

cc(x, t) =
∞∑

n∈Ic,P
cos

(
(2n + 1)π

2Hc
x

)
(A0

ne
ω+,ct + B0

n e
ω−,ct )

+
∑

n∈Ic,H
cos

(
(2n + 1)π

2Hc
x

)
eRect (C0

ncos(ωct) + D0
nsin(ωct)) − βc

D2,c
g(x)

(22)
for x ∈ [0, Hc], t ∈ [t0, t1], defines a formal solution cc(x, t) of the IBVP (22).
In (22), Ic,P = {n ∈ IN0 : n ≥ n+ or n ≤ n−}, Ic,H = {n ∈ IN0 : n− < n < n+},

n± =
⌊
1

2

(
2Hc

√
αc

π

√
D2,c ±√D2,c − D1,c

D1,c
− 1

)⌋

, (23)

provided that
√
1 − D1,c

D2,c
+√D1,c

√
D1,c

D2,c

π
2Hc

√
αc

< 1,

γc =
(

(2n + 1)π

2Hc

)2

, (24)

ω±,c = −(αc + γcD1,c) ±√(αc + γcD1,c)2 − 4γcαcD2,c

2
, (25)

Rec = −αc + γcD1,c

2
, (26)

ωc =
√

−(αc + γcD1,c)2 + 4γcαcD2,c, (27)

and the Fourier coefficients A0
n, B

0
n ,C

0
n , D

0
n are given by

A0
n = D2,cDĝ′′

(n) − ω−,c(D2,c + βc)ĝ(n)

D2,c(ω+,c − ω−,c)
, (28)

B0
n = ω+,c(D2,c + βc)ĝ(n) − D2,cDĝ′′

(n)

D2,c(ω+,c − ω−,c)
, (29)

C0
n = (D2,c + βc)ĝ(n)

D2,c
, (30)
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and

D0
n = D2,cDĝ′′

(n) − Rec(D2,c + βc)ĝ(n)

D2,cωc
(31)

where the notation f̂ (n) = 2

Hc

∫ Hc

0
f (x)cos

(
(2n + 1)π

2Hc
x

)
dx was used.

Proof. We start by the following convenient change of variable

cc(x, t) = uc(x, t) − βccc(x, 0)

D2,c
(32)

that converts the nonhomogeneous IBVP (17) in the homogeneous one

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u2c
∂t2

+ αc
∂uc
∂t

= D1,cΔ

(
∂uc
∂t

)
+ D2,cαcΔuc(x, t), (x, t) ∈ (0, Hc) × (t0, t1],

uc(x, 0) =
(
1 + βc

D2,c

)
g(x),

∂uc
∂t

(x, 0) = DΔg(x), x ∈ [0, Hc],
uc(Hc, t) = 0, ∇uc(0, t) = 0, t ∈ [t0, t1].

(33)
To obtain the solution of the new IBVP (33), we apply the method of separation of

variables, defining uc(x, t) = X (x)T (t). Hence, replacing it in the partial differential
equation of (33) we get

T
′′
(t)X (x) + αc X (x)T

′
(t) = D1,c X

′′
(x)T

′
(t) + D2,cαc X

′′
(x)T (t),

that leads to
T

′′
(t) + αcT

′
(t)

D1,cT
′
(t) + D2,cαcT (t)

= X
′′
(x)

X (x)
= −γ.

From the boundary conditions we obtain X (Hc)T (t) = 0 and X
′
(0)T (t) = 0 and

consequently we should have X (Hc) = 0 and X ′(0) = 0. Then for X we obtain the
boundary value problem

X
′′
(x) + γ X (x) = 0, x ∈ (0, Hc),

X ′(0) = 0, X (Hc) = 0,
(34)

and for T we deduce

T
′′
(t) + (αc + γ D1,c)T

′
(t) + γ D2,cαcT (t) = 0.

We remark that if γ ≤ 0, then X (x) = 0 that leads to the null solution. So, γ > 0,
and

X (x) = A0
ncos(

√
γ x) + B0

n sen(
√

γ x).
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As X (Hc) = 0 and X
′
(0) = 0, we obtain

X (x) = cos

(
(2n + 1)π

2Hc
x

)
, n ∈ IN0,

and γc is given by (24).
On the other hand, to obtain T we notice that z2 + (αc + γcD1,c)z +

γcαcD2,c = 0. Thus

z = −(αc + γcD1,c) ±√(αc + γcD1,c)2 − 4γcαcD2,c

2
. (35)

The definition of T depends on the nature of the roots defined by (35).

• If (αc + γcD1)
2 − 4γcαcD2,c ≥ 0, (35) have the roots (25) and consequently, T is

given by
T (t) = A0

ne
ω+,ct + B0

n e
ω−,ct . (36)

• If (αc + γcD1)
2 − 4γcαcD2,c < 0, then

T (t) =
(
C0
ncos(ωct) + D0

nsin(ωct)
)
eRect (37)

where Rec and ωc are given by (26) and (27).

To conclude the expression of uc we need to specify the set of n ∈ IN0 such that (αc +
γcD1)

2 − 4γcαcD2,c ≥ 0 or (αc + γcD1)
2 − 4γcαcD2,c < 0 holds. Let n+ and n− be

defined by (41) which are the real zeros of (αc + γcD1)
2 − 4γcαcD2,c. Then, for n ∈

Ic,P =] − ∞, n−] ∪ [n+,+∞[, T (t) is given by (36) and, for n ∈ Ic,H =]n−, n+[,
T (t) is given by (37). Consequently, the candidate to uc admits the representation

uc(x, t) =
∑

n∈Ic,P
cos

(
(2n + 1)π

2Hc
x

)
(A0

ne
ω+,ct + B0

n e
ω−,ct )

+
∑

n∈Ic,H
cos

(
(2n + 1)π

2Hc
x

)
eRect (C0

ncos(ωct) + D0
nsin(ωc))

where the constants A0
n , B

0
n , C

0
n and D0

n are computed using the initial conditions of

the IBVP (33). Using the Fourier series of
(
1 + βc

D2,c

)
g and Dg

′′
we easily get the

algebraic systems

A0
n + B0

n = (D2,c + βc)ĝ(n)

D2,c

ω+,c A
0
n + ω−,c B

0
n = Dĝ′′

(n)
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and

C0
n = (D2,c + βc)ĝ(n)

D2,c

RecC
0
n + ωcD

0
n = Dĝ′′

(n),

where the notation f̂ (n) = 2

Hc

∫ Hc

0
f (x)cos

(
(2n + 1)π

2Hc
x

)
dx was used. Solving

the last linear systems we get A0
n, B

0
n ,C

0
n , D

0
n given by (28), (29), (30) and (31),

respectively, that concludes the proof.

We observe that the computed solution is formal. To show that it is in fact solution
of the IBVP (22) we need to prove that the series (22) defines a function cc in
[0, Hc] × [t0, t1] that is continuous, admits the partial derivatives that arise in the
partial differential equation in (22) and satisfies all the conditions imposed to solve
the problem.

To obtain a solution in the time interval [t1, t2] we need to define an extension of
cc(t1), established in Theorem 1, to [0, Hs] such that (18) holds. We start by noting
that cc(x, t1) can be rewritten in the following equivalent form

cc(x, t1) =
∞∑

n=0

cos

(
(2n + 1)π

2Hc
x

)
Cn (38)

where

Cn =
{
A0
ne

ω+,ct1 + B0
n e

ω−,ct1 − βc

D2,c
ĝ(n) n ∈ Ic,P ,

eRect1(C0
ncos(ωct1) + D0

nsin(ωct1)) − βc

D2,c
ĝ(n) n ∈ Ic,H ,

with ĝ(n) = 2

Hc

∫ Hc

0
g(x)cos

(
(2n + 1)π

2Hc
x

)
dx . We take

cc,ext (x) = Hc

Hs

∞∑

n=0

cos

(
(2n + 1)π

2Hs
x

)
Cn, x ∈ [0, Hs]. (39)

The extension cc,ext defined by (39) satisfies (18) and its Fourier form is convenient
to obtain easily the solution of the IBVP (19), with � = s, i = 1, in [0, Hs] × [t1, t2].
In fact, applying Theorem 1

cs (x, t) =
∞∑

n∈Is,P
cos

(
(2n + 1)π

2Hs
x

)
(A1ne

ω+,s t + B1
n e

ω−,s t )

+
∑

n∈Is,H
cos

(
(2n + 1)π

2Hs
x

)
eRes t (C1

ncos(ωs t) + D1
nsin(ωs t)) − βs

D2,s
cc,ext (x, t1)

(40)

with Is,P = {n ∈ IN0 : n ≥ n+ or n ≤ n−}, Is,H = {n ∈ IN0 : n− < n < n+},
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n± =
⌊
1

2

(
2Hs

√
αs

π

√
D2,s ±√D2,s − D1,s

D1,s
− 1

)⌋

, (41)

provided that
√
1 − D1,s

D2,s
+√D1,s

√
D1,s

D2,s

π
2Hs

√
αs

< 1,

γs =
(

(2n + 1)π

2Hs

)2

,

ω±,s = −(αs + γs D1,s) ±√(αs + γs D1,s)2 − 4γsαs D2,s

2
,

Res = −αs + γs D1,s

2
,

ωs =
√

−(αs + γs D1,s)2 + 4γsαs D2,s, (42)

and the Fourier coefficients A1
n, B

1
n ,C

1
n , D

1
n are given by

A1
n = D2,s D ̂cc,ext (t1)

′′
(n) − ω−,s(D2,s + βs) ̂cc,ext (t1)(n)

D2,s(ω+,s − ω−,s)
,

B1
n = ω+,s(D2,s + βs) ̂cc,ext (t1)(n) − D2,s D ̂cc,ext (t1)

′′
(n)

D2,s(ω+,s − ω−,s)
,

C1
n = (D2,s + βs) ̂cc,ext (t1)(n)

D2,s
,

and

D1
n = D2,s D ̂cc,ext (t1)

′′
(n) − Res(D2,s + βs) ̂cc,ext (t1)(n)

D2,sωs

where ̂cc,ext (t1)(n) = 2

Hs

∫ Hs

0
cc,ext (x, t1)cos

(
(2n + 1)π

2Hs
x

)
dx .

To obtain the solution for [0, Hc] × [t2, t3] we apply again the Theorem 1 with
the convenient adaptations.
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4 Conclusions

The main objective of this work is the introduction of mathematical models for the
drug release frompolymeric thermoresponsive platforms. The polymer is a viscoelas-
tic material where the Young modulus depends on temperature. The polymer has a
lower critical solution temperature (LCST) and it switches from a collapsed state,
for temperatures above the LCST, to a swollen state, for temperatures lower than the
LCST.

To simulate the evolution of the polymeric platform, was assume that the change
in the temperature leads to two different states of the polymeric structure. A hybrid
model is obtained by splitting the time interval into disjoint subintervals, where
a moving boundary polymeric domain is constructed. In each time subinterval,
corresponding alternately, to a shrink and a swollen state, the drug transport is
characterized by two sets of different values. An analytic approach based on Fourier
analysis is proposed to construct the solution of the problem. The main theoretical
result—Theorem 1, that allows the construction of a solution of the hybridmodel, can
be used to study its qualitative behaviour. Thermoresponsive polymers are attracting
an enormous scientific interest for advanced applications in drug delivery.Mathemat-
ical modelling and simulation of drug delivery, from these materials, appears as an
important co-adjutant in pioneering experimental studies. Though the work included
in this paper still as an exploratory character, we think that promising numerical
simulations can be obtained by using the Fourier approach presented here. In the
near future we plan to develop this approach as well as the design of FEM/FDMwell
adapted to the moving boundary value problem.
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Some Properties of a Generalized
Solution for Shear Flow of a
Compressible Viscous Micropolar
Fluid Model

Loredana Simčić and Ivan Dražić

Abstract We consider the non-stationary shear flow of a compressible viscous and
heat-conducting micropolar fluid between two parallel plates that present solid ther-
moinsulated walls, whereby the lower plate is fixed and the upper one is moving
irrotationally. We assume that the fluid is perfect and polytropic in the thermody-
namical sense, as well as that the initial density and temperature are strictly posi-
tive. We take smooth initial functions and analyze the corresponding problem with
non-homogeneous boundary data for velocity and homogeneous boundary data for
microrotation and heat flux.

In this work we give the overview of the current progress in mathematical analysis
of the described problem with particular emphasis on the existence theorems and the
uniqueness of the solution.

1 Introduction

The micropolar fluid model is a generalization of the classical Navier-Stokes model
which allows the mathematical analysis of physical phenomena at the micro level. It
was first introduced byAhmedCemal Eringen in the 1960swhen he, besides classical
hydrodynamical variables (such as mass density and velocity field), introduced the
new vector field called microrotation velocity. It is important to note that in the
micropolar fluid model the microdeformations are neglected.

In the last few years, themicropolar fluidmodel is widely applied in different engi-
neering areas. For example, we can find the micropolar fluid model as the base model
for liquid crystals with rigid molecules, magnetic fluids, clouds with dust, muddy
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456 L. Simčić and I. Dražić

fluids, some biological fluids, etc. [6]. For some specific applications, particularly in
the field of medicine, we refer to [2], together with corresponding references.

Assumptions for the model in this paper are that the flow is isotropic, viscous and
heat-conducting, as well as that the fluid is in the thermodynamical sense perfect
and polytropic. Such a flow was first considered by Mujaković in [9]. Since then, the
models with spherical and cylindrical symmetry of the solution were also analyzed
[3, 7].

In this workwe analyze the flow between two parallel thermo-insulated horizontal
plates, with the upper one moving irrotationally. This kind of flow is called a shear
flow and it has a great potential for applications, especially in lubrication theory, for
example in the lubrication of magnetic disks, as it was stated in [5]. It is interesting
to note that this model requires nonhomogeneous boundary conditions for velocity.
For heat flux and microrotation field classical homogeneous boundary conditions are
proposed.

The main goal of this paper is to give an overview of recent results concerning the
shear flow model for compressible micropolar heat-conducting fluid. The paper is
organized as follows: In the next section, we will derive the system which describes
shear flow in the micropolar setting, first in the Eulerian, and then in the Lagrangian
description.Thenwewill give anoverviewof the current progress in themathematical
analysis of this problem. We will introduce the generalized solution to the problem
together with existence and uniqueness theorems.

2 The Mathematical Model

In this section we will describe the general mathematical model for the flow of
the isotropic, viscous and heat-conducting compressible micropolar fluid stated, for
example, in the book [8]. In the secondpart of the section,wepresent one-dimensional
model derived from general model, which is used to describe the shear flow, as it
was stated in [5]. The model is first given in Eulerian coordinates, and then in the
Lagrangian.

The general model is:
ρ̇ = −ρ∇ · v, (1)

ρv̇ = ∇ · T + ρf, (2)

ρ jI ω̇ = ∇ · C + Tx + ρg, (3)

ρ Ė = −∇ · q + T : ∇v + C : ∇ω − Tx · ω, (4)

Ti j = (−p + λvk,k)δi j + μ
(
vi, j + v j,i

) + μr
(
v j,i − vi, j

) − 2μrεmi jωm, (5)

Ci j = c0ωk,kδij + cd
(
ωi,j + ωj,i

) + ca
(
ωj,i − ωi,j

)
, (6)
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q = −kθ∇θ, (7)

p = Rρθ, (8)

E = cvθ, (9)

defined on the domain QT = Ω ×]0, T [, where T > 0 is arbitrary and Ω ⊂ R3.
Here ρ, v, ω, E , and θ are, respectively, the mass density, velocity, microrotation

velocity, internal energy density and absolute temperature. T is the stress tensor,
C is the couple stress tensor, q is the heat flux density vector, f is the body force
density, g is the body couple density. p denotes pressure and the positive constant
jI is microinertia density. λ and μ are coefficients of viscosity and μr , c0, cd and
ca are coefficients of microviscosity. By the constant kθ (kθ ≥ 0) we denote the heat
conduction coefficient. The positive constant R is the specific gas constant and the
positive constant cv denotes the specific heat at a constant volume.

Equations (1)–(4) are, respectively, local forms of the conservation laws for mass,
momentum,momentummoment and energy. Equations (5)–(6) are constitutive equa-
tions for the micropolar continuum. Equation (7) is the Fourier law and Eqs. (8)–(9)
present the assumptions that our fluid is perfect and polytropic. The coefficients of
viscosity and the coefficients of microviscosity are related through the Clausius-
Duhamel inequalities, as follows:

μ ≥ 0, 3λ + 2μ ≥ 0, μr ≥ 0. (10)

cd ≥ 0, 3c0 + 2cd ≥ 0, |cd − ca| ≤ cd + ca . (11)

Vector Tx in the Eqs. (3) and (4) is an axial vector with the Cartesian components
(Tx )i = εi jkT jk . εi jk is the Levi-Civita symbol, δi j is Kronecker delta and we assume
the Einstein notation for summation. The colon operator in Eq. (4) is the scalar
product of tensors, for example T : ∇v = T j i vi, j . The differential (dot) operator in
Eqs. (1)–(4) denotes material derivative defined by

ḃ = ∂t b + (∇b) · v. (12)

We analyze the flow between two parallel thermo-insulated horizontal plates, with
the gravity force acting in the negative x-direction. We assume that lower plate is
given by x = 0 and upper plate by x = 1. Because of these assumptions, we expect
that the functions ρ, v, ω and θ depend only on the vertical variable x and the time
variable t , so we take

ρ(x, t) = ρ(x, t), θ(x, t) = θ(x, t), (13)

v(x, t) = v(x, t) = (
va(x, t), vb(x, t), vc(x, t)

)
, (14)
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ω(x, t) = ω(x, t) = (
ωa(x, t), ωb(x, t), ωc(x, t)

)
, (15)

for (x, t) ∈ ]0, 1[× ]0, T [. Let us note that in thiswaywe still have three-dimensional
fluid domain, but the corresponding problem became one-dimensional.

We assume that the lower plate is fixed and that the upper one is moving irro-
tationally. Therefore, we have the following boundary conditions for the velocity
vector v:

v(0, t) = 0, v(1, t) = a(t), (16)

where the vector a(t) = (0, a1(t), a2(t)) defines the motion of the upper bounding
plate. For the microrotation field and the heat flux we have standard homogeneous
boundary conditions:

ω(0, t) = ω(1, t) = 0, (17)

∂xθ(0, t) = ∂xθ(1, t) = 0. (18)

For initial conditions we take

ρ(x, 0) = ρ0(x), θ(x, 0) = θ0(x), (19)

v(x, 0) = (
va
0 (x), vb

0(x), vc
0(x)

)
, (20)

ω(x, 0) = (
ωa
0(x), ωb

0(x), ωc
0(x)

)
, (21)

where the functions on the right-hand sides of the Eqs. (19)–(21) are smooth enough
functions.

Now, using the assumptions (13)–(15), from (1)–(9) we obtain the model in the
Eulerian description:

∂tρ + va ∂xρ + ρ ∂xv
a = 0, (22)

ρ(∂tv
a + va ∂xv

a) = −∂x (Rρθ) + (λ + 2μ)∂xxv
a, (23)

ρ(∂tv
b + va ∂xv

b) = (μ + μr )∂xxv
b − 2μr∂xω

c, (24)

ρ(∂tv
c + va ∂xv

c) = (μ + μr )∂xxv
c + 2μr∂xω

b, (25)

jI ρ(∂tω
a + va ∂xω

a) = (c0 + 2cd)∂xxω
a − 4μrω

a, (26)

jI ρ(∂tω
b + va ∂xω

b) = (cd + ca)∂xxω
b − 4μrω

b − 2μr∂xv
c, (27)

jI ρ(∂tω
c + va ∂xω

c) = (cd + ca)∂xxω
c − 4μrω

c + 2μr∂xv
b, (28)



Shear Flow of a Compressible Viscous Micropolar Fluid Model 459

cvρ(∂tθ + va ∂xθ) = kθ ∂xxθ − Rρθ∂xv
a

+(λ + 2μ)(∂xv
a)2 + (μ + μr )

(
(∂xv

b)2 + (∂xv
c)2

)

+4μr
(
(ωa)2 + (ωb)2 + (ωc)2

) + 4μr (ω
b∂xv

c − ωc∂xv
b)

+(c0 + 2cd)(∂xω
a)2 + (cd + ca)

(
(∂xω

b)2 + (∂xω
c)2

)
, (29)

and then in the Lagrangian description:

∂tρ + ρ2∂xv
a = 0, (30)

∂tv
a = −∂x (Rρθ) + (λ + 2μ)∂x (ρ∂xv

a), (31)

∂tv
b = (μ + μr )∂x (ρ∂xv

b) − 2μr∂xω
c, (32)

∂tv
c = (μ + μr )∂x (ρ∂xv

c) + 2μr∂xω
b, (33)

jI ∂tω
a = (c0 + 2cd)∂x (ρ∂xω

a) − 4μr
ωa

ρ
, (34)

jI ∂tω
b = (cd + ca)∂x (ρ∂xω

b) − 4μr
ωb

ρ
− 2μr∂xv

c, (35)

jI ∂tω
c = (cd + ca)∂x (ρ∂xω

c) − 4μr
ωc

ρ
+ 2μr∂xv

b, (36)

cv∂tθ = kθ ∂x (ρ∂xθ) − Rρθ ∂xω
a + (λ+2μ)ρ(∂xv

a)2 + (μ +μr )ρ((∂xv
b)2

+(∂xv
c)2) + 4μr

1

ρ
((ωa)2 + (ωb)2 + (ωc)2) + 4μr (ω

b∂xv
c − ωc∂xv

b)

+(c0 + 2cd)ρ(∂xω
a)2 + (cd + ca)ρ((∂xω

b)2 + (∂xω
c)2). (37)

As it was shown in [5], in order to homogenize the boundary condition for v(1, t),
we take the substitution

V(x, t) = u(x, t) − h(x, t), (38)

where
u = (0, vb, vc), (39)

and

h(x, t) = a(t)
∫ x

0

dy

ρ(y, t)
. (40)
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Finally, we obtain the system

∂tρ + ρ2∂xv
a = 0, (41)

∂tv
a = −∂x (Rρθ) + (λ + 2μ)∂x (ρ ∂xv

a), (42)

∂t V = (μ + μr )∂x (ρ ∂x V) + 2μr∇ × w − ∂t h, (43)

jI ∂tω
a = (c0 + 2cd)∂x (ρ ∂xω

a) − 4μr
ωa

ρ
, (44)

jI ∂t w = (cd + ca)∂x (ρ ∂x w) − 4μr

ρ
w + 2μr∇ × V + 2μr∇ × h, (45)

cv∂tθ = kθ ∂x (ρ ∂xθ) − Rρθ∂xv
a + (λ + 2μ)ρ(∂xv

a)2 + (μ + μr )ρ|∂x V|2

+2(μ + μr )ρ∂x V∂x h + (μ + μr )ρ|∂x h|2 + 4μr
|w|2
ρ

− 4μr (∇ × V) · w

+ 4μr
w2

ρ
− 4μr (∇ × h) · w + (c0 + 2cd)ρ(∂xω

a)2 + (cd + ca)ρ|∂x w|2, (46)

va(0, t) = va(1, t) = 0, V(0, t) = V(1, t) = 0, (47)

ωa(0, t) = ωa(1, t) = 0, w(0, t) = w(1, t) = 0, (48)

∂xθ(0, t) = ∂xθ(1, t) = 0, (49)

ρ(x, 0) = ρ0(x), θ(x, 0) = θ0(x), (50)

va(x, 0) = va
0 (x), V(x, 0) = V0(x) = u0(x) − a(0)

∫ x

0

dy

ρ0(y)
, (51)

ωa(x, 0) = ωa
0(x), w(x, 0) = w0(x), (52)

where
w = (0, ωb, ωc). (53)

3 Properties of the Solution

In this section we consider the properties of the so-called generalized solution to the
problem (41)–(52), defined for example in [10]. For the readers’ convenience, we
state it here also.
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Definition 1. A generalized solution of the problem (41)–(52) in the domain QT =
]0, 1[× ]0, T [ is a function

(x, t) �→ (ρ, va, vb, vc, ωa, ωb, ωc, θ)(x, t), (x, t) ∈ QT , (54)

where
ρ ∈ L∞(0, T ;H1(]0, 1[)) ∩ H1(QT ) , inf

QT

ρ > 0 , (55)

va, vb, vc, ωa, ωb, ωc, θ ∈ L∞(0, T ;H1(]0, 1[)) ∩ H1(QT ) ∩ L2(0, T ;H2(]0, 1[)),
(56)

that satisfies Eqs. (41)–(46) a.e. in QT and conditions (47)–(52) in the sense of traces.

The existence of the generalized solution to the problem (41)–(52) was analyzed
first. Using the Faedo–Galerkin method, Ivan Dražić proved in [4] the existence
locally in time. The result is summarized in the following theorem:

Theorem 1. Let the initial functions satisfy the conditions

ρ0(x) ≥ m, θ0(x) ≥ m for x ∈ ]0, 1[, (57)

where m ∈ R+, as well as

ρ0, θ0 ∈ H1(]0, 1[), va
0 , v

b
0 , v

c
0, ω

a
0 , ω

b
0, ω

c
0 ∈ H1

0(]0, 1[), (58)

a1(t), a2(t) ∈ H2(]0, T [). (59)

Then there exists T0, 0 < T0 ≤ T , such that the desribed problem has a generalized
solution in Q0 = QT0 , having the property

θ > 0 in Q0. (60)

Now, as we know that the solution exists, we can start to analyze the properties of
the solution. The first property which was analysed is the uniqueness of a generalized
solution, which was proved in [10]. The result is stated in the next theorem.

Theorem 2. If the problem (41)–(52) has a generalized solution defined by (54)–
(56), then this solution is unique.

To prove Theorem 2, the method based on forming an auxiliary system for the
difference of two solutions and analysis of its solution was used. This method was
described in [1], where it has been applied for the one-dimensional case of a classical
fluid. In what follows, we will give a sketch of the proof of Theorem 2.
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3.1 Sketch of the Proof of Theorem 2

For simplicity, as given in [10], hereafter we consider the specific volume u = ρ−1

instead of the density ρ. Now we assume that

(ui , v
a
i , vb

i , v
c
i , ω

a
i , ω

b
i , ω

c
i , θi ), i = 1, 2 (61)

are two distinct generalized solutions of the problem (41)–(52) in the domain QT

with the properties (57)–(58), (60).
We introduce the functions u = u1 − u2, va = va

1 − va
2 , v

b = vb
1 − vb

2 , v
c = vc

1 −
vc
2, ω

a = ωa
1 − ωa

2 , ω
b = ωb

1 − ωb
2, ω

c = ωc
1 − ωc

2 and θ = θ1 − θ2.
After some calculations it can be shown that (u, va, vb, vc, ωa, ωb, ωc, θ) satisfy

the following system:
∂t u = ∂xv

a, (62)

∂tv
a = −R∂x

(
θ

u1

)
+ R∂x

(
θ2u

u1u2

)
+ (λ + 2μ)∂x

(
1

u1
∂xv

a − u

u1u2
∂xv

a
2

)
,

(63)

∂tv
b = (μ + μr )∂x

(
1

u1
∂xv

b − u

u1u2
∂xv

b
2

)
− 2μr∂xω

c, (64)

∂tv
c = (μ + μr )∂x

(
1

u1
∂xv

c − u

u1u2
∂xv

c
2

)
+ 2μr∂xω

b, (65)

jI ∂tω
a = (c0 + 2cd)∂x

(
1

u1
∂xω

a − u

u1u2
∂xω

a
2

)
− 4μr

(
u1ω

a + uωa
2

)
, (66)

jI ∂tω
b = (cd + ca)∂x

(
1

u1
∂xω

b − u

u1u2
∂xω

b
2

)
− 4μr

(
u1ω

b + uωb
2

) − 2μr∂xv
c,

(67)

jI ∂tω
c = (cd + ca)∂x

(
1

u1
∂xω

c − u

u1u2
∂xω

c
2

)
− 4μr

(
u1ω

c + uωc
2

) + 2μr∂xv
b,

(68)
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cv∂t θ = k∂x

(
1

u1
∂x θ − u

u1u2
∂x θ2

)
− R

1

u1

(
θ1∂x ωa + θ∂x ωa

2
)

+R
u

u1u2
θ2∂x ωa

2 + (λ + 2μ)
1

u1
∂x va (

∂x va
1 + ∂x va

2
) − (λ + 2μ)

u

u1u2
(∂x va

2 )2

+(μ + μr )
1

u1
∂x vb

(
∂x vb

1 + ∂x vb
2

)
− (μ + μr )

u

u1u2
(∂x vb

2 )2

+(μ + μr )
1

u1
∂x vc (

∂x vc
1 + ∂x vc

2
) − (μ + μr )

u

u1u2
(∂x vc

2)
2

+4μr u1
(
ωa (

ωa
1 + ωa

2
) + ωb

(
ωb
1 + ωb

2

)
+ ωc (

ωc
1 + ωc

2
))

+4μr u
(
(ωa

2 )2 + (ωb
2)2 + (ωc

2)
2
)

+4μr

(
ωb
1∂x vc + ωb∂x vc

2 − ωc
1∂x vb − ωc∂x vb

2

)

+(c0 + 2cd )
1

u1
∂x ωa (

∂x ωa
1 + ∂x ωa

2
) − (c0 + 2cd )

u

u1u2
(∂x ωa

2 )2

+(cd + ca)
1

u1
∂x ωb

(
∂x ωb

1 + ∂x ωb
2

)
− (cd + ca)

u

u1u2
(∂x ωb

2)2

+(cd + ca)
1

u1
∂x ωc (

∂x ωc
1 + ∂x ωc

2
) − (cd + ca)

u

u1u2
(∂x ωc

2)
2, (69)

with initial and boundary conditions for the functions u, va, vb, vc, ωa, ωb, ωc and θ :

u(x, 0) = 0, va(x, 0) = 0, vb(x, 0) = 0, vc(x, 0) = 0,

ωa(x, 0) = 0, ωb(x, 0) = 0, ωc(x, 0) = 0, θ(x, 0) = 0, (70)

va(0, t) = va(1, t) = 0, vb(0, t) = vb(1, t) = 0, vc(0, t) = vc(1, t) = 0,

ωa(0, t) = ωa(1, t) = 0, ωb(0, t) = ωb(1, t) = 0, ωc(0, t) = ωc(1, t) = 0,

∂xθ(0, t) = ∂xθ(1, t) = 0 (71)

for x ∈ ]0, 1[, t ∈ ]0, T [.
Next, in [10] a series of estimates for the solution of the problem (62)–(71) were

derived, which we summarize in the following lemma:

Lemma 1. There exists a constant C > 0 such that for any t ∈ ]0, T [ we have:

∥∥u(t)
∥∥2 ≤ C

∫ t

0

∥∥∂xv
a(τ )

∥∥2
dτ. (72)

∥
∥va(t)

∥
∥2 +

∫ t

0

∥
∥∂xv

a(τ )
∥
∥2

dτ ≤ C
∫ t

0

∥
∥θ(τ )

∥
∥2

dτ. (73)

∥∥vb(t)
∥∥2 +

∫ t

0

∥∥∂xv
b(τ )

∥∥2
dτ ≤ C

∫ t

0

(∥∥θ(τ )
∥∥2 + ∥∥∂xω

c(τ )
∥∥2

)
dτ, (74)
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∥∥vc(t)
∥∥2 +

∫ t

0

∥∥∂xv
c(τ )

∥∥2
dτ ≤ C

∫ t

0

(∥∥θ(τ )
∥∥2 + ∥∥∂xω

b(τ )
∥∥2

)
dτ. (75)

∥∥ωa(t)
∥∥2 +

∫ t

0

∥∥∂xω
a(τ )

∥∥2
dτ ≤ C

∫ t

0

∥∥θ(τ )
∥∥2

dτ, (76)

∥∥ωb(t)
∥∥2 +

∫ t

0

∥∥∂xω
b(τ )

∥∥2
dτ ≤ C

∫ t

0

∥∥θ(τ )
∥∥2

dτ + ε

∫ t

0

∥∥∂xv
c(τ )

∥∥2
dτ, (77)

∥∥ωc(t)
∥∥2 +

∫ t

0

∥∥∂xω
c(τ )

∥∥2
dτ ≤ C

∫ t

0

∥∥θ(τ )
∥∥2

dτ + ε

∫ t

0

∥∥∂xv
b(τ )

∥∥2
dτ, (78)

where ε > 0 is arbitrary.

For the proof of Lemma 1 we use (62)–(68) and properties of the generalized
solution, Hölder, Young and Gronwall inequalities, as well as inequalities

| f |2 ≤ 2
∥∥ f

∥∥ ∥∥∂x f
∥∥ ,

∥∥ f
∥∥ ≤ 2

∥∥∂x f
∥∥ , (79)

|∂x f |2 ≤ 2
∥∥∂x f

∥∥ ∥∥∂xx f
∥∥ ,

∥∥∂x f
∥∥ ≤ 2

∥∥∂xx f
∥∥ , (80)

which are derived from the well-known Friedrichs, Poincare and Gagliardo-
Ladyzhenskaya inequalities.

By combining inequalities obtained in Lemma 1, we obtain the following lemma:

Lemma 2. There exists a constant C > 0 such that for any t ∈ ]0, T [ we have

∥∥u(t)
∥∥2 + ∥∥va(t)

∥∥2 + ∥∥vb(t)
∥∥2 + ∥∥vc(t)

∥∥2 + ∥∥ωa(t)
∥∥2 + ∥∥ωb(t)

∥∥2

+ ∥
∥ωc(t)

∥
∥2 +

∫ t

0

(∥
∥∂xv

a(τ )
∥
∥2 + ∥

∥∂xv
b(τ )

∥
∥2 + ∥

∥∂xv
c(τ )

∥
∥2

+ ∥∥∂xω
a(τ )

∥∥2 + ∥∥∂xω
b(τ )

∥∥2 + ∥∥∂xω
c(τ )

∥∥2
)

dτ ≤ C
∫ t

0

∥∥θ(τ )
∥∥2

dτ. (81)

In a similar way as in Lemma 1, in [10] we get

Lemma 3. There exists a constant C > 0 such that for any t ∈ ]0, T [ we have

∥∥θ(t)
∥∥2 +

∫ t

0

∥∥∂xθ(τ )
∥∥2

dτ ≤ C
∫ t

0

∥∥θ(τ )
∥∥2

dτ. (82)

By applying Gronwall inequality to (82), we get θ = 0 on QT . From (81) we get

u = 0, va = vb = vc = 0 ωa = ωb = ωc = 0 on QT , (83)

which proves Theorem 2.
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4 Conclusion

In this paper, the overview of the recent results for the shear flow of a compressible
micropolar fluid flow was given. As it was stated before, we know that correspond-
ing non-homogeneous boundary condition problem has a unique local solution. Let
us also note that the numerical solution for this problem is also constructed in [5],
whereby two differentmethodswere used; the first one is the Faedo-Galerkin approx-
imations, and the second one is the finite difference method. The other properties,
such as global existence, stabilization, as well as regularity of the solution, are cur-
rently subjects of our research.
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Collocation Solution of Fractional
Differential Equations in Piecewise
Nonpolynomial Spaces

M. Luísa Morgado and Magda Rebelo

Abstract In this paper, we develop an accurate collocation scheme for ordinary
initial value problems of the Caputo type and in order to illustrate the performance
of the method we provide several numerical examples. At the end, we also indicate
how this method can be used to approximate the solution of time-fractional diffusion
equations. At it will be seen, it allows us to obtain accurate solutions even when the
solution is not smooth at the origin.

1 Introduction

Our concern here is the accurate numerical solution of initial value problems (IVPs)
for ordinary fractional differential equations of the Caputo type:

Dα y(t) = f (t, y(t)), 0 < t ≤ T, (1)

y(0) = y0, (2)

where α is a real number such that 0 < α < 1, T > 0 and Dα denotes the Caputo
differential operator of order α /∈ N, defined by [3]:

Dα y(t) := RL Dα(y − T [y])(t),
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where T [y] is the Taylor polynomial of degree �α� for y, centered at 0, and RL Dα

is the Riemann-Liouville derivative of order α [7].
The latter is defined by RL Dα := D�α� J �α�−α , with J β being the Riemann-

Liouville integral operator,

J β y(t) := 1

Γ (β)

∫ t

0
(t − s)β−1y(s)ds

and D�α� is the classical integer order derivative, where �α� is the smallest integer
greater than or equal to α.

We also assume that the right hand-side function satisfies a Lipschitz condition
with respect to the second variable:

| f (t, y) − f (t, z)| ≤ L |y − z| , (3)

for some constant L > 0 independent of t , y and z, which is a necessary condition
to ensure the uniqueness of the solution (see [4]).

In the last decades, a huge amount of papers addressed this subject, by reporting
a series of numerical schemes for the solution of (1)–(2). We refer the book of Li and
Zeng [5] for a survey of those works. Most of the developed numerical schemes are
based in finite differences formulas, assuming a certain smoothness of the solution.
Whenever this is not the case, it will be convenient to use graded meshes reflecting
the singularities of the solution, in order to recover the optimal orders of convergence
(see [8]).

Opposed to the integer-order case, fractional-order problems as (1)–(2) may pos-
sess nonsmooth solutions even when the data is sufficiently smooth.

In [4] the following result, analysing the behavior of the solution near the origin,
was proved:

Lemma 1 ([4]). Assume that the solution of (1)–(2) exists and is unique on [0, T ],
for a certain T > 0. If α = p

q , where p ≥ 1 and q ≥ 2 are two relatively prime
integers and if the right-hand side function f can be written in the form f (t, y(t)) =
f (t1/q , y(t)), where f is analytic in a neighborhood of (0, y0), then there exists a
r > 0 such that the unique solution of the problem (1)–(2) can be represented in
terms of powers of t1/q :

y(t) =
∞∑
i=0

ai t
i/q , t ∈ [0, r), (4)

where the ai are constants.

Results on the existence and uniqueness of solution of such problems may be
found in [4] as well their equivalence to Volterra integral equations with weakly
singular kernels:
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Lemma 2 ([4]). If the function f is continuous, the initial value problem (1)–(2) is
equivalent to the following Volterra integral equation of the second kind:

y(t) = y0 + 1

Γ (α)

∫ t

0
(t − s)α−1 f (s, y(s))ds. (5)

In [6] a nonpolynomial collocation method was derived for problems of the form
(1)–(2) taking into account their equivalent integral representation (2). Choosing
suitable piecewise nonpolynomial spaces, the method there was able to deal with the
same accuracy for problems with smooth and nonsmooth solutions.

Here, we will use a different approach. We will find the collocation solution of
(1)–(2) directly without falling back on (5). The obtained numerical scheme is easier
to derive and implement than the one obtained in [6] and, as we will see in the
forthcoming section, it attains the same accuracy than the one in [6].

2 Numerical Scheme

For α ∈ (0, 1), taking the definition of the Caputo derivative into account, (1) may
be rewritten as:

1

Γ (1 − α)

d

dt

∫ t

0
(t − s)−α (y(s) − y0) ds = f (t, y(t)), t > 0. (6)

Let us consider a uniform partition of I = [0, T ]

Ih = {0 = t0 < t1 < . . . < tN = T } ,

where ti = ih, i = 0, . . . , N , h = T
N , and set

σ0 = [0, t1], σn = (tn, tn+1], n = 1, . . . , N − 1. (7)

In order to deal with the potential singularities of the solution (cf. (4)), given
m ∈ N, we define the nonpolynomial space

V α
m = span

{
t i+ jα, i, j ∈ N0, i + jα < m

}
. (8)

In order to simplify the above notation we introduce the index set

Wα,m = {i + jα, i, j ∈ N0, i + jα < m} = {νk : k = 1, ..., �} .

Using this notation we can write V α
m as

V α
m = span {tνk , k = 1, ..., �} . (9)
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Let

Xh = {tni = tn + ci h : 0 ≤ c1 < c2 < . . . < c� ≤ 1, n = 0, 1, . . . , N − 1} (10)

be a set of collocation points, determined by the given mesh Ih and the collocation
parameters ci , i = 1, . . . , �.
Defining the piecewise nonpolynomial spaces:

V α
h,m = {

v : v|σi ∈ V α
m , i = 0, 1, . . . , N − 1

}
,

the collocation solution v ∈ V α
h,m will be found by requiring that v satisfies the given

fractional differential equation (1) on a subset Xh and coincides with exact solution
y(t) at t = 0. That is,

v(0) = y0, (11)⎡
⎣ d

dt

⎛
⎝ i−1∑

j=0

∫ t j+1

t j

(t − s)−α (v(s) − y0) ds +
∫ t

ti

(t − s)−α (v(s) − y0) ds

⎞
⎠

⎤
⎦

t=tik

= Γ (1 − α) f (tik, v(tik)), i = 0, 1, ..., N − 1, k = 1, 2, ..., �. (12)

The natural way to proceed now is to consider the following type of Lagrange
basis representation of v, whose restriction to σi , i = 0, . . . , N − 1, is (see [2]):

v (s) =
�∑

k=1

Lik(s)v(tik), s ∈ σi , (13)

where the Lagrange functions Lik ∈ V α
m are defined by

Lik(t) =
�∑

p=1

β i
pk t

νp , i = 0, 1, ..., N − 1, k = 1, ..., �, (14)

and the coefficients [β i
pk]p=1,...,� may be determined by solving the (� × �) linear

system of equations Lik(ti j ) = δ jk, k, j = 1, . . . , �.
On the other hand, the approximate solution v ∈ V α

h,m is such that v(0) = y0, so
that the number of unknowns is not less than the number of equations, we consider
in the first subinterval, σ0, the collocation parameters c0 = 0 < c1 < ... < cm ≤ 1
and v(s), for s ∈ σ0, is given by

v(s) = L01(s)y0 +
�∑

k=2

L0k(s)v(t0k). (15)
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In this way, (11) and (12) becomes:

y0

�∑
p=1

γ 1k
1pβ1

p1 +
�∑

m=2

�∑
p=1

γ 1k
1pβ1

pmv(t0m ) − y0t
−α
0k Γ (1 − α) = f (t0k , v(t0k )), k = 2, ...,m,

i−1∑
j=0

⎛
⎝ �∑
m=1

�∑
p=1

γ ik
j pβ

j
pmv(t jm )

⎞
⎠ − y0t

−α
ik +

�∑
m=1

�∑
p=1

γ ik
ip βi

pmv(tim ) = Γ (1 − α) f (tik , v(tik )),

i = 2, ..., N − 1, k = 1, 2, ...,m, (16)

where the coefficients γ ik
j,m are defined through:

γ ik
j p =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
g(νp, i, k, t j ) − g(νp, i, k, t j+1)

] + ηpt
−α+νp
ik

[
h(νp, t j , i, k) − h(νp, t j+1, i, k)

]
, j 
= i,

g(νp, i, k, ti ) + ηpt
−α+νp
ik

[
Γ (1 − α)Γ (νp + 1)

Γ (2 − α − νp)
− h(νp, ti , i, k)

]
, j = i,

with

ηp = (1 − α + νp),

g(β, i, k, t) = t−α+β−1
ik t

(
1 − t

tik

)−α (
t

tik

)β

,

h(β, t, i, k) = B t
tik

(β + 1, 1 − α),

where Bz(a, b) is the incomplete beta function.
Then, the solution of (1)–(2) restricted to the interval σi , i = 0, 1, . . . , N − 1, is

given by (13) where the coefficients v(tik), k = 1, 2, . . . , �, are the solution of the
system above.

Obviously this is a linear system whenever f (t, y(t)) = g(t) + by(t), for some
real b and continuous function g.

3 Nonpolynomial Collocation Method Applied to the Time
Fractional Diffusion Equation

In this section we apply the nonpolynomial collocation method to solve a time frac-
tional diffusion equation, by using a combination of the method of lines and the
proposed collocation method described on the previous section.

Let us consider the time fractional diffusion equation given by:

∂αu(x, t)

∂tα
= Dα

∂2u(x, t)

∂x2
+ f (x, t), t > 0, 0 ≤ x ≤ L , (17)
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with initial condition:
u(x, 0) = g(x), (18)

and boundary conditions:

u(0, t) = ϕ0(t), u(L , t) = ϕL(t), t > 0, (19)

where Dα is the diffusion coefficient and α is the order of the fractional derivative,
given in the Caputo sense, that satisfies 0 < α < 1.

We will use the method of lines for the numerical approximation of (17)–(19).
First, spatial derivatives are approximated using finite differences and then the

resulting system of semi-discrete ordinary differential equations is solved by using
the nonpolynomial collocation method described in the previous section.

We consider a uniform spacemesh on the interval [0, L], defined by the gridpoints
xi = ih, i = 0, . . . , n, where h = L

n , and we approximate the space derivative by a
second order finite difference:

∂2u(xi , t)

∂x2
= u(xi+1, t) − 2u(xi , t) + u(xi−1, t)

h2
+ O(h2), i = 1, . . . , n − 1.

(20)
We then obtain the following system of n − 1 ordinary fractional differential equa-
tions of order α:

∂α yi (t)

∂tα
= Dα

yi+1(t) − 2yi (t) + yi−1(t)

h2
+ f (xi , t), i = 1, . . . , n − 1, (21)

where yi (t) ≈ u(xi , t).
Note that from the boundary conditions (19), we have y0(t) = ϕ0(t), yn(t) =

ϕL(t) and from the initial condition (18), we obtain:

yi (0) = g(xi ), i = 1, . . . , n − 1, (22)

and therefore, the solution of the n − 1 initial value problems (21)–(22) may be
determined by using any initial value problem solver. The problem to solve may be
outlined as follows.

For each n ∈ N and t ≥ 0 we define

y(t) = [
y0(t) y1(t) y2(t) . . . yn−1(t) yn(t)

] = [
ϕ0(t) y1(t) y2(t) . . . yn−1(t) ϕL(t)

]
.

Thus, the system (21)–(22) can be rewritten as follows

{
∂α yi (t)

∂tα
= Gi (t, y(t)), i = 1, . . . , n − 1,

yi (0) = g(xi ), i = 1, . . . , n − 1,
(23)
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where each function Gi is defined by

Gi (t, y(t)) = Dα
yi+1(t) − 2yi (t) + yi−1(t)

h2
+ f (xi , t), i = 1, . . . , n − 1, t > 0. (24)

Hence, we end up with a system of (n − 1) fractional ordinary differential equa-
tions to solve. Each one of these systems is solved by using the nonpolynomial
collocation method (16). As we will see, the numerical results suggest that we are
able to obtain an optimal order of convergence in time.

4 Numerical Results

In this section we illustrate the performance of the proposed nonpolynomial collo-
cation method (16) (NPCM). In order to do this we consider several examples.

Throughout this section, εN and ε̂N represent the errors at the collocation and
discretisation points, respectively, and p the experimental order of convergence:

εN = max
i=0,1,...,N−1

max
k=1,...,�

|y(tik) − yN (tik)| , (25)

ε̂N = max
i=0,1,...,N

|y(ti ) − yN (ti )| , (26)

p = log

(
εN

ε2N

)
/ log(2), (27)

where yN (t) ∈ V α
h,m and h = T

N .
On the other hand, the set of collocation parameters that we consider to define the

collocation points at the subintervals σi , i = 1, ..., N − 1 are given by:

• c1 = 0.25, c2 = 0.308658, c3 = 0.691342, c� = 0.8, if � = 4;
• c1 = 0.0380602, c2 = 0.2, c3 = 0.308658, c4 = 0.691342, c� = 0.96194,
if � = 5;

• c1 = 0.108658, c2 = 0.308658, c3 = 0.591342, c4 = 0.69, c5 = 0.791342,
c� = 0.96194, if � = 6;

• c1 = 0.1, c2 = 0.25, c3 = 0.308658, c4 = 0.45, c5 = 0.591342, c6 = 0.691342,
c7 = 0.8, c� = 0.96194, if � = 8;

• c1 = 0.1, c2 = 0.15, c3 = 0.25, c4 = 0.308658, c5 = 0.45, c6 = 0.591342,
c7 = 0.691342, c8 = 0.8, c� = 0.96194, if � = 9.

The collocation parameters ci , i = 2, ..., � on the first interval, σ0, are given by the
same values and c1 = 0.
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First we consider a linear initial value problem (IVP) whose solution is regular:

{
Dα (y(t)) = 6(4−α)

Γ (1−α)
t3−α − y(t)

Cα
+ t3, t ∈ (0, 1]

y(0) = 0,
, (28)

where Cα =
4∏

i=1
(α − i) and the exact solution is given by y(t) = Cαt3.

In Table1 we present the numerical results related with the approximate solution
of (28) obtained by the application of the NPCM on the space V α

h,2 for several values
of h and for α = 1

3 , α = 1
2 and α = 2

3 .
In Table2 the maximum of the errors at the collocation and mesh points obtained

by the application of the NPCM, on the space V α
h,3, for α = 1

2 and α = 2
3 , are listed.

From Table2 we can see that the maximum of the errors, using the NPCM on the
space V α

h,3 applied to the Example (28), at the mesh points and collocation points,
converges to zero with order 3. On the other hand, from Table1 we observe that the
the maximum of the errors, at the collocation parameters, using the NPCM on the
space V α

h,2 converges to zero with convergence order approximately 3.

Table 1 Maximum of the errors and experimental order of convergence for the NPCM, applied to
the IVP (28) on the spaces V α

h,2, h = 1/N , for several values of h and α

N α = 1/3 α = 1/2 α = 2/3

εN p εN p εN p

5 1.394 · 10−2 − 8.977 · 10−3 − 3.458 · 10−3 −
10 1.766 · 10−3 2.98 1.142 · 10−3 2.97 4.414 · 10−4 2.97

20 2.231 · 10−4 2.98 1.445 · 10−4 2.98 5.591 · 10−5 2.98

40 2.813 · 10−5 2.99 1.823 · 10−5 2.99 7.048 · 10−6 2.99

80 3.540 · 10−6 2.99 2.293 · 10−6 2.99 8.857 · 10−7 2.99

160 4.450 · 10−7 2.99 2.879 · 10−7 2.99 1.111 · 10−7 3.00

Table 2 Maximum of the errors and experimental orders of convergence for the NPCM, applied
to the IVP (28) on the space V α

h,3, h = 1/N , for several values of h

N α = 1/2 α = 2/3

ε̂N p εN p ε̂N p εN p

5 4.120 · 10−4 − 8.503 · 10−4 − 3.467 · 10−5 − 6.143 · 10−5 −
10 5.336 · 10−5 2.94 1.083 · 10−4 2.97 4.587 · 10−6 2.92 7.863 · 10−6 2.97

20 6.840 · 10−6 2.96 1.373 · 10−5 2.98 5.943 · 10−7 2.95 9.977 · 10−7 2.98

40 8.704 · 10−7 2.97 1.732 · 10−6 2.99 7.600 · 10−8 2.97 1.259 · 10−7 2.99

80 1.102 · 10−7 2.98 2.180 · 10−7 2.99 9.638 · 10−9 2.98 1.583 · 10−8 2.99

160 1.390 · 10−8 2.99 2.739 · 10−8 2.99 1.216 · 10−5 2.99 1.986 · 10−9 2.99
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Nowwe consider a class of linear initial value problems whose analytical solution
is not smooth:

{
Dα (y) (t) = 105( 9

2 −α)
√

π

16Γ (11/2−α)
t
7
2 −α + 3t

7
2 − 3y t ∈ (0, T ], α ∈ (0, 1),

y(0) = 0,
. (29)

For each α ∈ (0, 1) the exact solution of the previous initial value problem is y(t) =
t7/2.

In Tables3 and 4 we present the numerical results obtained by the application
of the NPCM on the spaces V α

h,m , m = 2, 3, for several values of h. The results of
Tables3 and 4 suggest that the maximum of the errors at the collocation points, using
the NPCMon the spaces V α

h,m ,m = 2, 3, converges to zero with order 3 in both cases.
Note that the solutions of the examples (28) and (29) are such that y ∈ V α

4 (I ).
In Fig. 1 we illustrate this fact with the absolute error related with the approximate
solution obtained with the NPCM on the space V 1/2

1/40,4, for Examples (28) and (29).

Table 3 Maximum of the errors and experimental order of convergence for the NPCM, applied to
the IVP (28) on the spaces V α

h,2, h = 1/N , for several values of h and α

N α = 1/3 α = 1/2 α = 2/3

εN p εN p εN p

5 3.553 · 10−4 − 3.693 · 10−4 − 4.985 · 10−4 −
10 3.852 · 10−5 3.21 4.078 · 10−5 3.18 5.392 · 10−5 3.21

20 4.102 · 10−6 3.23 4.316 · 10−6 3.24 5.440 · 10−6 3.31

40 4.283 · 10−7 3.26 4.390 · 10−7 3.30 5.4236 · 10−7 3.38

80 4.382 · 10−8 3.29 4.318 · 10−8 3.35 4.887 · 10−8 3.42

160 4.395 · 10−9 3.32 4.132 · 10−9 3.39 4.472 · 10−9 3.45

Table 4 Maximum of the errors and experimental orders of convergence for the NPCM, applied
to the IVP (28) on the space V α

h,3, h = 1/N , for several values of h

N α = 1/3 α = 1/2 α = 2/3

εN p εN p εN p

5 7.850 · 10−6 − 9.691 · 10−5 − 5.604 · 10−5 −
10 8.505 · 10−7 3.21 1.115 · 10−5 3.12 6.236 · 10−6 3.17

20 9.013 · 108 3.24 1.214 · 10−6 3.20 6.401 · 10−7 3.28

40 9.336 · 10−9 3.27 1.259 · 10−7 3.27 6.228 · 10−8 3.36

80 9.457 · 10−10 3.30 1.254 · 10−8 3.33 5.852 · 10−9 3.41

160 9.383 · 10−11 3.33 1.210 · 10−9 3.37 5.377 · 10−10 3.44
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Fig. 1 Absolute errors related with the approximate solutions obtained with the NPCM on the
space V 1/2

1/40,4. Left: Example (28). Right: Example (29).

Table 5 Maximum of the errors and experimental order of convergence for the NPCM, applied to
the IVP (30) on the spaces V α

h,2, h = 1/N , for several values of h

N α = 1/3 α = 1/2 α = 2/3

εN p εN p εN p

5 1.576 · 10−3 − 3.026 · 10−3 − 1.160 · 10−3 −
10 1.080 · 10−4 3.87 3.574 · 10−4 3.08 6.184 · 10−5 4.23

20 7.044 · 10−6 3.94 3.581 · 10−5 3.32 3.178 · 10−6 4.28

40 4.421 · 10−7 3.99 3.328 · 10−6 3.43 1.605 · 10−7 4.31

80 2.691 · 10−8 4.04 2.992 · 10−7 3.48 8.034 · 10−9 4.32

160 1.600 · 10−9 4.07 2.653 · 10−8 3.50 4.003 · 10−10 4.33

In what follows we consider a nonlinear example:

⎧⎪⎨
⎪⎩

Dα (y) (t) = 40320
Γ (9−α)

t8−α − 3Γ (5+α/2)
Γ (5−α/2) t

4−α/2 + 9
4Γ (α + 1)

+ (
3
2 t

α/2 − t4
)3 − (y(t))3/2 , t ∈ (0, 1],

y(0) = 0.

(30)

The exact solution of this initial value problem is y(t) = t8 − 3t4+α/2 + 9
4 t

α ,
meaning that the solution y(t) can be written as y(t) = u(t) + v(t) with u(t) =
9
4 t

α ∈ V α
m and v(t) = t8 − 3t4+α/2 ∈ Cm([0, 1]), m = 1, 2, 3, 4.

For this example, the maximum of the errors and the experimental orders of
convergence, related with the approximation obtained by the NPCM on the spaces
V α
h,m ,m = 2, 3, are presented, for different values of the stepsize h and α, in Tables5

and 6.
Now we consider a multi-term initial value problem, a Bagley-Torvik fractional

differential equation (see for example [1]). These equations arise, for example, in
the modelling of the motion of a rigid plate immersed in a Newtonian fluid. Here we
consider the Bagley-Torvik fractional differential equation given by:
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{
AD2y(t) + BDν y(t) + Cy(t) = g(t), t ∈ (0, 1],
y(0) = 0, y′(0) = 0,

(31)

where A = B = C = 1, ν = 3/2, g(t) = 2 + √
t/π + t2 and the analytical solution

is known and given by y(t) = t2.
First, we convert this problem into the equivalent linear system of equations

⎧⎪⎪⎨
⎪⎪⎩

D0.5y1(t) = y2(t)
D0.5y2(t) = y3(t)
D0.5y3(t) = y4(t)
D0.5y4(t) = −y1(t) − y2(t) + g(t)

, (32)

together with the conditions y1(0) = 0 and y3(0) = 0.
On the other hand the derivative of non integer order, at t = 0, must be zero which

implies y2(0) = 0 and y4(0) = 0.
In our numerical experiments we have used the NPCM, described in Sect. 2 and

applied it to a system of differential equations of fractional order α = 1/2, on the
space V α

h, 2, to approximate the solution of the system of fractional equations (32).
The numerical results presented in Table7 suggest that the maximum of the errors
at the collocation and mesh points converges to zero with the same order p = 2.

Table 6 Maximum of the errors and experimental orders of convergence for the NPCM, applied
to the IVP (30) on the space V α

h,3, h = 1/N , for several values of h

N α = 1/2 α = 2/3

εN p εN p

5 6.445 · 10−4 − 7.280 · 10−4 −
10 4.035 · 10−5 4.00 4.080 · 10−5 4.15

20 2.349 · 10−6 4.10 2.107 · 10−6 4.28

40 1.313 · 10−7 4.16 1.065 · 10−7 4.31

80 7.163 · 10−9 4.20 5.330 · 10−9 4.32

160 3.849 · 10−10 4.22 2.665 · 10−10 4.32

Table 7 Maximumof the errors at themesh and collocation points and estimates of the convergence
order, p, using the NPCM on the space V α

1/N ,2 to solve (32)

N ε̂N p εN p

5 1.455 · 10−3 − 5.088 · 10−4 −
10 3.649 · 10−4 2.00 1.326 · 10−4 1.94

20 9.129 · 10−5 2.00 3.350 · 10−5 1.98

40 2.283 · 10−5 2.00 8.400 · 10−6 2.00

80 5.707 · 10−6 2.00 2.102 · 10−6 2.00
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Table 8 Nonpolynomial collocation method on the spaces V α
2,τ and V α

3,τ , α = 1/2, for example
(33) for several values of τ and h. The maximum of the absolute errors at the mesh points and the
experimental orders of convergence p and q related with the stepsizes τ and h, respectively
V α
2,τ V α

3,τ

h = τ εh,τ p = q h τ εh,τ p p

1/4 1.132 · 10−2 − 1/4 1/3 9.536 · 10−3 − −
1/8 4.256 · 10−3 1.41 1/8 1/4 3.267 · 10−3 1.56 2.32

1/16 1.223 · 10−3 1.80 1/16 1/7 1.0495 · 10−3 1.67 2.46

1/32 3.263 · 10−4 1.91 1/32 1/11 2.922 · 10−4 1.85 2.77

1/64 8.418 · 10−5 1.95 1/64 1/16 7.709 · 10−5 1.92 2.89

Finally the last example that we consider is an initial-boundary value problem for
the time-fractional diffusion equation:

⎧⎪⎨
⎪⎩

∂αu(x,t)
∂tα = ∂2u(x,t)

∂x2
+ 3Γ (α)

4 x4(x − 1)t − 4x2(5x − 3)t1+α, t > 0, 0 ≤ x ≤ 1,
u(x, 0) = 0,
u(0, t) = u(1, t) = 0.

(33)

whose analytical solution is u(x, t) = x4(x − 1)t1+α and α = 1/2.
The numerical error is measured by determining the maximum error at the mesh

points (xi , t jp):

εh,τ = max
i=1,...,n, j=1,...,N

p=1,...,�

∣∣u(xi , t jp) − yi (t jp)
∣∣ , N = 1

τ
, n = L

h
(34)

where yi is the numerical solution obtained for the i-th spatial function and u(xi , t jp)
is the exact solution evaluated at points (xi , t jp).

For each case, the experimental time and space rates of convergence were com-
puted and denoted by p and q, respectively.

The numerical results obtained for the time-fractional diffusion equation (33) on
the spaces V α

m,τ ,m = 2, 3, are presented in Table8 and the numerical results suggest
that p ∼ m (not dependent on the order of the fractional derivative) and q ∼ 2.

5 Conclusions

In this work we have derived a piecewise nonpolynomial collocation method to
approximate the solution of fractional differential equations that can dealwith smooth
and nonsmooth solutions of this type of problems. We also illustrate the accuracy
and feasibility of the proposed method with several examples and the numerical
results suggest that the proposed method is convergent and the order of convergence
depends on the nonpolynomial space V α

m that we choose to approximate the solution
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of the problem. The analysis of the convergence of the described numerical method
will appear in a forthcoming paper. On the other hand, the numerical technique can
also be used to solve a time fractional diffusion equation, by using a combination of
the method of lines and the proposed piecewise nonpolynomial collocation method.
For that problems the numerical results suggest that we obtain an optimal order of
convergence in time.
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On Conditions on the Potential in a
Sturm– Liouville Problem and an Upper
Estimate of its First Eigenvalue

S. Ezhak and M. Telnova

Abstract We consider a Sturm–Liouville problem with Dirichlet boundary condi-
tions and a weighted integral condition on the potential which may have singularities
of different orders at the end-points of the interval (0, 1). In this article we give one
extra integral condition which is required for existence of the first eigenvalue of this
problem. We find the values of parameters of the weighted integral condition, for
which the first eigenvalue exists. We use the variational method for finding the first
eigenvalue. Showing that the first eigenvalue is not greater than π2, we prove that
for 0 < γ < 1, α, β > 2γ − 1, the upper estimate for the first eigenvalue is strictly
less than π2.

1 Introduction

Consider the Sturm–Liouville problem

y′′ + Q(x)y + λy = 0, x ∈ (0, 1), (1)

y(0) = y(1) = 0, (2)

where Q belongs to the set Tα,β,γ of all measurable locally integrable functions on
(0, 1) with non–negative values such that the integral condition

∫ 1

0
xα(1 − x)βQγ (x)dx = 1, γ �= 0, (3)

∫ 1

0
x(1 − x)Q(x)dx < ∞ (4)

hold.
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A function y is a solution to problem (1), (2) if it is absolutely continuous on
the segment [0, 1], satisfies (2), its derivative y′ is absolutely continuous on any
segment [ρ, 1 − ρ], where 0 < ρ < 1

2 , and equality (1) holds almost everywhere in
the interval (0, 1).

This work is continuation of studies initiated byY.V. Egorov andV.A. Kondratiev
in [1] the eigenvalue estimates of Sturm–Liouville problems, in particular, of the
problem for the equation y′′ + λQ(x)y = 0withDirichlet boundary conditions and a
non-negative summable on [0, 1]potential Q satisfying the condition‖Q‖Lγ (0,1) = 1,
γ �= 0. The problem for the equation y′′ − Q(x)y + λy = 0 with Dirichlet boundary
conditions and a summable on (0, π) potential Q: ‖Q‖Lγ (0,π) ≤ t , for γ ≥ 1, t ≥ 1
was considered in [2]. We study a problem of that kind provided the integral condi-
tions contain weight functions.

In Theorem1 of this workwe prove that if condition (4) does not hold, then for any
0 ≤ p ≤ +∞ there is no solution y to Eq. (1) with properties y(0) = 0, y′(0) = p.

From the results of [3] (Chapter1, §2, Theorem 3) it follows that Tα,β,γ is empty
provided γ < 0, α ≤ 2γ − 1 or β ≤ 2γ − 1, for other values α, β, γ , γ �= 0, the set
Tα,β,γ is not empty. Thus, for γ < 0, α ≤ 2γ − 1 or β ≤ 2γ − 1, there is no function
Q satisfying (3) and (4) taken together and, as a consequence, the first eigenvalue of
problem (1), (2) does not exist.

Consider the functional

R[Q, y] =
∫ 1
0 y′2dx − ∫ 1

0 Q(x)y2dx∫ 1
0 y2dx

.

Condition (4) is sufficient for boundedness of R[Q, y] from below. In Theorem2 of
this work we prove that for any Q ∈ Tα,β,γ ,

λ1(Q) = inf
y∈H 1

0 (0,1)\{0}
R[Q, y].

For any α, β, γ , γ �= 0, for any Q ∈ Tα,β,γ , we have

Mα,β,γ = sup
Q∈Tα,β,γ

inf
y∈H 1

0 (0,1)\{0}
R[Q, y] ≤ inf

y∈H 1
0 (0,1)\{0}

∫ 1
0 y′2dx∫ 1
0 y2 dx

= π2.

It was proved [4] that if γ > 1, −∞ < α, β < +∞ or 0 < γ ≤ 1, α ≤ 2γ −
1, −∞ < β < +∞ (β ≤ 2γ − 1, −∞ < α < +∞), then Mα,β,γ = π2; if γ < 0,
α, β > 2γ − 1, then Mα,β,γ < π2.

In this article we prove that if 0 < γ < 1, α, β > 2γ − 1, then Mα,β,γ < π2.



On conditions on the potential in a Sturm– Liouville problem 483

2 Results

Theorem 1. For any real number λ let us consider Eq. (1), where Q is a measurable
locally integrable function on (0, 1) with non–negative values such that for any
0 < δ < 1 ∫ δ

0
xQ(x)dx = +∞.

Then there is no solution y to Eq. (1) such that y(0) = 0, y′(0) = p for any
0 ≤ p ≤ +∞.

In order to prove this theorem we use Remark 2.1 to Theorem 2.2 ([3], Chapter1,
§1): Let y be a solution to the equation y′′ + Q(x)y = 0, where the function Q is
measurable non–negative summable on any segment [ε, 1 − ε], 0 < ε < 1

2 . Let y be
defined on [0, δ], 0 < δ ≤ 1, and y(0) = 0, y′(0) = p, p > 0. Then we have

∫ 1

0
xQ(x)dx < +∞.

Proof. Suppose that there is a solution y to Eq. (1) such that y(0) = 0, y′(0) = p
for some p > 0. Then in some right δ–semineighborhood of 0 we have y(x) >

p
2 x .

Since

y′(δ) = p +
∫ δ

0
−(Q(x) + λ)ydx,

then we obtain that the integral

∫ δ

0
−(Q(x) + λ)ydx = y′(δ) − p

is finite. The integral
∫ δ

0 λydx is also finite. Consequently, the integral
∫ δ

0 Q(x)ydx
is finite, too, but on the contrary

∫ δ

0
Q(x)ydx >

p

2

∫ δ

0
Q(x)xdx = +∞.

Consequently, if the first eigenfunction of the problem exists provided∫ 1
0 xQ(x)dx = +∞, then y′(0) = +∞ or y′(0) = 0.
If y′(0) = +∞, then there exsists a right δ–semineighborhood of 0, where y′′ ≤ 0.

Then in this neighborhood we have Q(x) + λ ≥ 0 and taking into account Remark
2.1 we obtain again that ∫ δ

0
xQ(x)dx < +∞.
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Assume that y′(0) = 0. Since y(0) = 0 and y is non-negative, then in some right
δ–semineighborhood of 0 the function y can be convex downward and y′′ ≥ 0. Then
in this neighborhood we have Q(x) + λ ≤ 0. If 0 ≤ Q(x) ≤ −λ, then Q is bounded
on [0, δ], and again we have

∫ δ

0
xQ(x)dx < +∞.

Under the conditions y(0) = 0 and y′(0) = 0, in some right δ–semineighborhood
of 0 the derivative of the second order y′′ can change its sign, moreover, there is no
interval (0, δ1), δ1 < δ, at all points of which y′′(x) > 0.

Integrating equality (1) over [0, δ], we obtain the equation

− y′(δ) −
∫ δ

0
λydx =

∫ δ

0
Q(x)ydx . (5)

If equality (5) holds, then−y′(δ) − ∫ δ

0 λydx is a positive numberM . If y′′ changes
its sign and y′ exists on (0, 1), then there are points in δ–semineighborhood of 0, at
which y has minimum. Let us numerate these minimum-points, taking the rightmost
one, which is less than δ, as x1. We obtain the sequence of minimum-points, which
converges to 0 from the right. Let us join by segments the neighbor points of the
graph of y which correspond to these minimum-points. On each segmentΔi between
neighbor minimum-points xi+1 and xi , i ≥ 1, the graph of the function lies above one
of the lines joining points (0, 0) and (xi+1, y(xi+1)) or points (0, 0) and (xi , y(xi )).
The equation of this line is y = pi x , where pi = min{y(xi+1), y(xi )}.

In virtue of the Lebesgue integral property ([8], Theorem 8, p. 141) if f (x) is a
summable on the set E function, then for any ε > 0 there is a number δ > 0 such
that for any set e ⊂ E the inequality μ(e) < δ implies that

∣∣∫
e f (x)dx

∣∣ < ε.

Since
∫ δ

0 Q(x)xdx = +∞, then there is a positive number ε = M
p∗ , such that for

any δ > 0 there exists a set e ⊂ E , such that μ(e) < δ and

∣∣∣∣
∫
e
Q(x)xdx

∣∣∣∣ ≥ ε.

Thus, choosing a set e as a set belonging to one of the segments Δi and denoting by
p∗ the corresponding pi , we obtain

∫ δ

0
Q(x)ydx >

∞∑
i=1

∫
Δi

Q(x)pi xdx > p∗
∫
e
Q(x)xdx ≥ M,

and equality (5) does not hold.
Theorem1 is proved.
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Theorem 2. For any γ < 0, α, β > 2γ − 1 and γ > 0, −∞ < α, β < +∞, for
any function Q ∈ Tα,β,γ ,

λ1(Q) = inf
y∈H 1

0 (0,1)\{0}
R[Q, y].

Proof. By the Hölder inequality, for any y ∈ H 1
0 (0, 1) and x ∈ (0, 1), we have

y2(x) =
( x∫

0

y′(t) dt
)2

≤ x

x∫

0

y′2(t) dt,

y2(x) =
(

−
1∫

x

y′(t) dt
)2

≤ (1 − x)

1∫

x

y′2(t) dt.

Then

y2

x(1 − x)
= y2

x
+ y2

1 − x
≤

x∫

0

y′2(t) dt +
1∫

x

y′2(t) dt =
1∫

0

y′2(t) dt,

∫ 1

0
Q(x)y2dx ≤

(∫ 1

0
y′2dx

) ∫ 1

0
x(1 − x)Q(x)dx

and

R[Q, y] =
∫ 1
0 y′2dx − ∫ 1

0 Q(x)y2dx∫ 1
0 y2dx

≥
∫ 1
0 y′2dx

(
1 − ∫ 1

0 x(1 − x)Q(x)dx
)

∫ 1
0 y2dx

.

Since R[Q, y] = R[Q, |y|], therefore, we can assume that the function y is non-
negative. If any function y ∈ H 1

0 (0, 1) is convex downward on some subsegment
of [0, 1], we can construct the other function y1, convex upward on [0, 1] and, as
a consequence, positive on (0, 1) such that R[Q, y1] ≤ R[Q, y]. To do it we join
by segment any two points on the graph of y, the leftmost and the rightmost ones,
betweenwhich the function is convex downward. Therefore, investigating the bound-
edness of the functional R from below, we can consider functions which are positive
on (0, 1) and convex upward.

Let

Γ∗ =
{
y ∈ H 1

0 (0, 1) |
1∫

0

y2 dx = 1

}
,
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I [Q, y] =
1∫

0

y′2 dx −
∫ 1

0
Q(x)y2dx .

Since for any y ∈ H 1
0 (0, 1) the equality R[Q, y] = R

[
Q,

y∫ 1
0 y2dx

]
holds, then

inf
y∈H 1

0 (0,1)\{0}
R[Q, y] = inf

y∈Γ∗
I [Q, y].

For any y ∈ H 1
0 (0, 1), we have

∫ 1

0
y2dx ≤ 1

2

∫ 1

0
y′2dx .

Then for any y ∈ Γ∗, ∫ 1

0
y′2dx ≥ 2.

If the function y ∈ Γ∗ is convex upward, then on
[
0, 1

2

]
we have

y(x) ≥ 2y

(
1

2

)
· x

and on
[
1
2 , 1

]
we have

y(x) ≥ 2y

(
1

2

)
· (1 − x).

Consider the function

ỹ(x) =
{
2y

(
1
2

) · x, x ∈ [
0, 1

2

]
,

2y
(
1
2

) · (1 − x), x ∈ [
1
2 , 1

]
.

Since y is positive on (0, 1), we can write the following relations

∫ 1
0 Q(x)y2dx ≤ sup[0,1]

y2

x(1−x)

∫ 1
0 Q(x)x(1 − x)dx

= sup
[0,1]

1
x(1−x)

y2

∫ 1
0 Q(x)x(1 − x)dx .

Further,

sup
[0,1]

1
x(1−x)

y2

< sup
[0,1]

1
x(1−x)

ỹ2

= 1

inf [0,1] x(1−x)
ỹ2

.

On
[
0, 1

2

]
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inf
[0, 12 ]

x(1 − x)

ỹ2
= inf

[0, 12 ]

x(1 − x)

4y2
(
1
2

)
x2

= inf
[0, 12 ]

1 − x

4y2
(
1
2

)
x

=
1
2

4y2
(
1
2

)
1
2

= 1

4y2
(
1
2

) .

On
[
1
2 , 1

]

inf
[ 1
2 ,1]

x(1 − x)

ỹ2
= inf

[ 1
2 ,1]

x(1 − x)

4y2
(
1
2

)
(1 − x)2

= inf
[ 1
2 ,1]

x

4y2
(
1
2

)
(1 − x)

= 1

4y2
(
1
2

) .

Then ∫ 1

0
Q(x)y2dx ≤ 4y2

(
1

2

) ∫ 1

0
Q(x)x(1 − x)dx .

The function y is convex upward, consequently, the area of the region bounded by
the graph of y and the x-axis is greater than the area of the triangle with the vertices
(0, 0), ( 12 , y

(
1
2

)
), (1, 0). Therefore,

1 =
(∫ 1

0
y2dx

) 1
2

≥
∫ 1

0
ydx >

1

2
y

(
1

2

)
,

and

y

(
1

2

)
< 2.

Thus,

4y2
(
1

2

) ∫ 1

0
Q(x)x(1 − x)dx < 16

∫ 1

0
Q(x)x(1 − x)dx = Const

and

∫ 1
0 y′2dx − ∫ 1

0 Q(x)y2dx ≥ ∫ 1
0 y′2dx − 4y2

(
1
2

) ∫ 1
0 Q(x)x(1 − x)dx

> 2 − 16
∫ 1
0 Q(x)x(1 − x)dx .

If the integral
∫ 1
0 x(1 − x)Q(x)dx is finite, then I [Q, y] is bounded from below

in Γ∗ and R[Q, y] is bounded from below in H 1
0 (0, 1). Thus, for γ < 0, α, β >

2γ − 1 and γ > 0, −∞ < α, β < +∞, for any Q ∈ Tα,β,γ , the functional R[Q, y]
is bounded from below in H 1

0 (0, 1) and there is a finite

inf
y∈H 1

0 (0,1)\{0}
R[Q, y] = m.

Lemma 1. For any γ < 0, α, β > 2γ − 1 and γ > 0, −∞ < α, β < +∞, for any
Q ∈ Tα,β,γ , there exists a positive on (0, 1) function u ∈ Γ∗ such that
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R[Q, u] = inf
y∈Γ∗

I [Q, y].

Proof. Let {̃qk} be a minimizing sequence of the functional R[Q, y] in H 1
0 (0, 1).

Then {qk} = { q̃k
C1/2
k

}, whereCk =
1∫
0
q̃k2 dx , is aminimizing sequence of the functional

I [Q, y] in Γ∗, i.e. I [Q, qk] → m as k → ∞.

We can assume that qk is non-negative. If any function qk is convex downward on
some subsegment of [0, 1], we can construct the other function yk , convex upward on
[0, 1] and positive on (0, 1) such that R[Q, yk] ≤ R[Q, qk]. Therefore, let us assume
that every function of the minimizing sequence {yk} is positive on (0, 1) and convex
upward.

Let us show that the sequence {yk} is bounded in H 1
0 (0, 1). By one and the same

reasons we can show that for any k,

∫ 1

0
Q(x)y2k ≤ 16

∫ 1

0
Q(x)x(1 − x)dx .

For any sufficiently large k,

∫ 1

0
y′2
k dx −

∫ 1

0
Q(x)y2k dx < m + 1

and ∫ 1

0
y′2
k dx < m + 1 + 16

∫ 1

0
Q(x)x(1 − x)dx = Const.

Since for γ < 0, α, β > 2γ − 1 and γ > 0,−∞ < α, β < +∞, {yk} is bounded
in H 1

0 (0, 1), then it contains the subsequence {zk}, which converges weakly in
H 1

0 (0, 1) to some function u, moreover, ‖u‖2
H 1
0 (0,1)

is bounded by the same constant

as ‖zk‖2H 1
0 (0,1)

. H 1
0 (0, 1) is compactly embedded inC[0, 1], consequently, there exists

a subsequence {sk} of {yk}, which converges inC[0, 1]. SinceC[0, 1] is embedded in
L2(0, 1), the sequence {sk} converges in L2(0, 1) to some function u and as k → ∞,

1∫

0

s2k dx −→
1∫

0

u2 dx,

1∫

0

u2 dx = 1. (6)

Since {sk} is bounded in H 1
0 (0, 1), the sequence {s ′

k} is bounded in L2(0, 1). Then
there exists a subsequence {wk} of {sk} such that the sequence {w′

k} converges weakly
to the function u′ in L2(0, 1). Then (see. [6, p. 217])

‖u′‖2L2(0,1) ≤ lim
k→∞ ‖w′

k‖2L2(0,1) = A.
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Thus,
‖u′‖2L2(0,1) ≤ A. (7)

Let {vk} be a subsequence of {wk} such that

lim
k→∞

1∫

0

v′
k
2 dx = lim

k→∞

1∫

0

w′
k
2 dx = A.

Since m is a limit of the sequence {I [Q, vk]}, m − A is a limit of the sequence{
−

1∫
0
Q(x)v2

k dx

}
. Then for any ε > 0 there exists a number K such that for any

k ≥ K ,
1∫

0

Q(x)v2
k dx > A − m − ε. (8)

Let us apply the Lebesgue theorem (see. [9, p. 5]). Since {v2
k } converges to u2 in

L1(0, 1), there exists a subsequence {rk} of {vk} such that the sequence {Q(x)r2k }
converges to the function Q(x)u2 as k → ∞ almost everywhere in [0, 1]. We have
shown that for any rk ,

∫ 1

0
Q(x)r2k dx ≤ 16

∫ 1

0
Q(x)x(1 − x)dx = Const.

Then

Q(x)u2 ∈ L1(0, 1)

and as k → ∞,

1∫

0

Q(x)r2k dx −→
1∫

0

Q(x)u2 dx .

If for any k ≥ K , inequality (8) holds, then
1∫
0
Q(x)u2 dx ≥ A − m − ε.

Since ε can be arbitrary small, we obtain
1∫
0
Q(x)u2 dx ≥ A − m and

−
1∫

0

Q(x)u2 dx ≤ m − A. (9)



490 S. Ezhak and M. Telnova

In virtue of (7) and (9), we get I [Q, u] ≤ m. Since m = inf
y∈Γ∗

I [Q, y], we have

I [Q, u] = m. In virtue of (6), we obtain u ∈ Γ∗.
As a limit-function of {rk}, u is non-negative on [0, 1]. Let us prove that u is

convex upward and, consequently, is positive on (0, 1).
Assume that there exist points x1, x2 ∈ [0, 1] and a number 0 < μ < 1 such that

u(μx1 + (1 − μ)x2) < μu(x1) + (1 − μ)u(x2).

Consider the function

ũ(x) =
{
u, x ∈ [0, 1] \ [x1, x2],
u(x1) + (x − x1)

u(x2)−u(x1)
x2−x1

, x ∈ [x1, x2].

We have u(x1) = ũ(x1), u(x2) = ũ(x2). Let x3 = μx1 + (1 − μ)x2. Then u(x3) <

ũ(x3). Put
x̃1 = sup

u(x)≥ũ(x), x1≤x<x3

x, x̃2 = inf
u(x)≥ũ(x), x3<x≤x2

x .

Then for any x ∈ (x̃1, x̃2), we have u(x) < ũ(x).
Put

û(x) =
{
u, x ∈ [0, 1] \ [x̃1, x̃2],
u(x̃1) + (x − x̃1)

u(x̃2)−u(x̃1)
x̃2−x̃1

, x ∈ [x̃1, x̃2].

Let us show that [Q, û] < R[Q, u]. Indeed,
∫ 1

0
û2dx >

∫ 1

0
u2dx,

∫ 1

0
Q(x )̂u2dx >

∫ 1

0
Q(x)u2dx,

∫ 1

0
û′2dx ≤

∫ 1

0
u′2dx .

The latter inequality follows from the equality

∫ 1

0
û′2dx −

∫ 1

0
u′2dx =

∫ x̃2

x̃1

û′2dx −
∫ x̃2

x̃1

u′2dx

and the fact that, as y(x̃1) = u(x̃1), y(x̃2) = u(x̃2), the minimum of the functional
J [y] = ∫ x̃2

x̃1
y′2dx is attained at the function y = C1x + C2, where C1,C2 are con-

stants. Therefore, R[Q, û] < R[Q, u]. Since û ∈ H 1
0 (0, 1), we get the contradiction

with the fact that infH 1
0 (0,1)\{0} R[Q, y] = R[Q, u]. Consequently, u is a positive con-

vex upward on (0, 1) function.
Lemma1 is proved.

Lemma 2. Let the function u satisfy the conditions of Lemma1. Then u is a solution
to the equation
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y′′ + Q(x)y + my = 0,

where m is the minimal eigenvalue of problem (1), (2).

Proof. Let z ∈ H 1
0 (0, 1). Consider a function of variable t ∈ R

g(t) =
∫ 1
0 (u′ + t z′)2 dx − ∫ 1

0 Q(x)(u + t z)2 dx∫ 1
0 (u + t z)2dx

.

Since g(0) = infH 1
0 (0,1)\{0} R[Q, y] = R[Q, u], then g′(0) = 0. If u ∈ Γ∗ and

I [Q, u] = m, then for any z ∈ H 1
0 (0, 1),

∫ 1

0
u′z′dx −

∫ 1

0
Q(x)uz dx = m

∫ 1

0
u z dx .

Note that for γ < 0, α, β > 2γ − 1 and γ > 0, −∞ < α, β < +∞, for any z ∈
H 1

0 (0, 1), the integral
1∫
0
Q(x)uz dx absolutely converges because

1∫

0

Q(x)|uz| dx ≤
(∫ 1

0
u′2dx

) 1
2
(∫ 1

0
z′2dx

) 1
2

⎛
⎝

1∫

0

x(1 − x)Q(x) dx

⎞
⎠ .

If z ∈ C∞
0 (0, 1), then u′ has a generalized derivative

u′′ = −Q(x)u − mu.

According toCorollary 2.6.1. of Theorem2.6.1 (see. [7, p. 41]), if u, v ∈ L p(a, b),
1 ≤ p ≤ ∞, and the interval (a, b) is finite, v(x) is the generalized derivative of the
k—th order of u(x), then u(x) is continuously differentiable k − 1 times on [a, b] and
almost everywhere on it has the classical derivative of the k—th order u(k)(x) = v(x).
Moreover, the derivative u(k−1)(x) is absolutely continuous on [a, b].

Since Q is a locally integrable on (0, 1) function, it is integrable on any segment
[ρ, 1 − ρ], where 0 < ρ < 1

2 . Then u is continuously differentiable on [ρ, 1 − ρ]
and almost everywhere on it has the classical derivative of the second order

u′′ = −Q(x)u − mu.

Moreover, u′ is absolutely continuous on [ρ, 1 − ρ].
Thus, Eq. (1) holds almost everywhere in (0, 1). The boundary conditions hold

because u belongs to H 1
0 (0, 1). Consequently, u is a solution to problem (1), (2) with

the eigenvalue λ = m.
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For any solution z of problem (1), (2) let us multiply the left and the right parts
of Eq. (1) by z1, where

z1(x) =
{
z, x ∈ (ρ, 1 − ρ),

0, x ∈ [0, ρ] ∪ [1 − ρ, 1],

and, integrating by parts over [ρ, 1 − ρ], we obtain:
∫ 1−ρ

ρ

z′2 dx −
∫ 1−ρ

ρ

Q(x)z2 dx = λ

∫ 1−ρ

ρ

z2dx .

Coming to the limit as ρ → 0, we obtain the equality

∫ 1

0
z′2 dx −

∫ 1

0
Q(x)z2 dx = λ

∫ 1

0
z2dx .

Here we use the facts that z1(ρ) = z1(1 − ρ) = 0, z′(ρ), z′(1 − ρ) are finite. Tak-
ing into account that m = inf

y∈H 1
0 \{0}

R[Q, y], we obtain the inequality λ ≥ m, which

implies that m is the minimal eigenvalue of problem (1), (2).
Lemma2 is proved.

Theorem2 is proved.

Theorem 3. If 0 < γ < 1, α, β > 2γ − 1, then Mα,β,γ < π2.

Remark 1. For 0 < γ < 1/2, the resultM0,0,γ < π2 was obtained byA. Vladimirov
[5]. The proof of Theorem3 is based on [5], although the proofs of statements in the
present work may differ from those supposed by the author in [5].

Proof. Let 0 < γ < 1, α, β > 2γ − 1 and Q ∈ Tα,β,γ be a function such that
λ1(Q) > (π − ε)2, where ε > 0 is a sufficiently small number.

Consider the functionsρ, θ ∈ C1[0, 1] y = ρ · sin θ , y′/
√

λ1(Q) = ρ · cos θ , and
a measurable non–negative locally integrable on (0, 1) function σ = Q · sin2 θ .

Let us further write λ instead of λ1(Q). For the function y, we have

y′
x = ρ ′

θ · θ ′
x · sin θ + ρ · cos θ · θ ′

x = θ ′
x

(
ρ ′

θ · sin θ + ρ · cos θ
) = √

λ · ρ · cos θ,

y′′
x = √

λ (ρ ′
θ · θ ′

x · cos θ − ρ · sin θ · θ ′
x ) = √

λ θ ′
x (ρ ′

θ · cos θ − ρ · sin θ).

Having multiplied the first of these equalities by cos θ and the second by sin θ and
subtracting, we obtain

− y′′
x√
λ

sin θ = θ ′
x ρ − √

λ ρ cos2 θ.



On conditions on the potential in a Sturm– Liouville problem 493

On the other side,

y′′
x = (−Q − λ)y = (−Q − λ)ρ sin θ = − σρ

sin θ
− λρ sin θ

and

θ ′
x = σ + λ√

λ
.

Since θ ′(x) > 0 on (0, 1), the function θ is increasing on [0, π ]. Under the assump-
tions of the theorem, we have

∫ 1

0

σθ ′

λ + σ
dx =

∫ 1

0

(
θ ′ − √

λ
)
dx = π − √

λ < ε. (10)

Estimate the integral

∫ 1

0
xα(1 − x)βQγ (x)dx ≤ A

∫ 1
2

0
xαQγ (x)dx + B

∫ 1

1
2

(1 − x)βQγ (x)dx,

where

A =
{
1, β ≥ 0,(
1
2

)β
, 2γ − 1 < β < 0,

B =
{
1, α ≥ 0,(
1
2

)α
, 2γ − 1 < α < 0.

Consider the first of these integrals.

∫ 1
2
0 xαQγ (x)dx = ∫ 1

2
0 σγ · sin−2γ θ · xα dx = √

λ
∫ 1

2
0

σγ ·sin−2γ θ ·xα

λ+σ
θ ′dx

= √
λ

(∫
Eε

σ γ ·sin−2γ θ ·xα

λ+σ
θ ′dx + ∫

Eε

σ γ ·sin−2γ θ ·xα

λ+σ
θ ′dx

)
,

where

Eε = {x ∈
[
0,

1

2

]
: σ(x) > ε

α−2γ+1
1−γ+α }.

Then ∫
Eε

θ ′dx = ∫
Eε

σ θ ′
λ+σ

· λ+σ
σ

dx <

(
λ

ε
α−2γ+1
1−γ+α

+ 1

) ∫
Eε

σ θ ′
λ+σ

dx

<

(
λ

ε
α−2γ+1
1−γ+α

+ 1

)
ε ≤ π2 · ε

γ

1−γ+α + ε.

Denote
μ(ε) = π2 · ε

γ

1−γ+α + ε < 2π2 · ε
γ

1−γ+α .

For α > 2γ − 1, the number 1 − γ + α is positive. At the beginning of the proof
we should have chosen ε such that μ(ε) ≤ π

2 .
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If 0 < γ ≤ 1
2 , by the Cauchy inequality, knowing that λ > 4, we have

2
√

λσγ = 2

λ
1−2γ
2

λ1−γ σ γ <
2

λ
1−2γ
2

((1 − γ )λ + γ σ) < 2λ + 2
1+2γ
2 γ σ ≤ 2λ + σ,

due to
2

λ
1−2γ
2

(1 − γ ) ≤ 2,
2

λ
1−2γ
2

γ < 2
1+2γ
2 γ ≤ 1.

If 1
2 < γ < 1, by the Cauchy inequality, knowing that λ > 4, we have

2
√

λσγ = 2λγ− 1
2 λ1−γ σ γ < 2λγ− 1

2 ((1 − γ )λ + γ σ)

< 2π ((1 − γ )λ + γ σ) < 2π (λ + σ) .

In either case, for 0 < γ < 1, we have

√
λσγ < π (λ + σ) (11)

and √
λ

∫
Eε

σ γ sin−2γ θ xα

λ + σ
θ ′dx < π

∫
Eε

sin−2γ θxαθ ′dx .

At first, let us consider the case α ≥ 0 and α > 2γ − 1. The condition

θ ′ = λ + σ√
λ

>
√

λ

implies that

θ(x) =
∫ x

0
θ ′(t)dt >

√
λx .

Since on
[
0, π

2

]
we have sin θ ≥ 2

π
θ, then

sin−2γ θ ≤
(
2

π
θ

)−2γ

<

(
2

π

√
λ

)−2γ

x−2γ .

The inequality
√

λ > 2 implies that

x <
π

2

sin θ√
λ

<
π

4
sin θ.

For α ≥ 0,

xα <
(π

4

)α

sinα θ.



On conditions on the potential in a Sturm– Liouville problem 495

For 0 ≤ α ≤ 2γ and 0 ≤ μ(θ) ≤ π
2 , since sin θ ≥ 2

π
θ , we have

√
λ

∫
Eε

σ γ ·sin−2γ θ ·xα

λ+σ
θ ′dx < π

∫
Eε
sin−2γ θ · xαθ ′dx

≤ π
∫ μ(ε)

0

(
π
4

)α (
2
π

)α−2γ
θα−2γ dθ < π2γ+12−α−2γ

(
2π2·ε

γ
1−γ+α

)α−2γ+1

α−2γ+1

= 21−4γ π2α−2γ+3

α−2γ+1 ε
γ(α−2γ+1)
1−γ+α .

Further, since
√

λ
λ+σ

< 1√
λ

< 1
2 , we have

√
λ

∫
Eε

σ γ ·sin−2γ θ ·xα

λ+σ
θ ′dx ≤ 1

2

(
π
4

)α
ε

(α−2γ+1)γ
1−γ+α

∫ π

0 sinα−2γ θ · dθ

≤ 1
2

(
π
4

)α
ε

(α−2γ+1)γ
1−γ+α

∫ π

0

(
2
π

)α−2γ
θα−2γ dθ = πα+1 ε

(α−2γ+1)γ
1−γ+α

α−2γ+1 2−α−2γ−1.

Thus,

∫ 1
2

0
xαQγ (x)dx ≤ ε

(α−2γ+1)γ
1−γ+α

α − 2γ + 1

(
21−4γ π2α−2γ+3 + 2−α−2γ−1πα+1

)
.

If α > 2γ , then sinα−2γ θ ≤ θα−2γ and

∫ 1
2

0
xαQγ (x)dx ≤ ε

(α−2γ+1)γ
1−γ+α

α − 2γ + 1

(
2−α−2γ+1π3α−4γ+3 + 2−2α−1π2α−2γ+1

)
.

If 2γ − 1 < α < 0, consider the function

θ(x) = θ(0) +
∫ x

0
θ ′(t)dt =

∫ x

0
θ ′(t)dt.

Since θ is a continuously differentiable on [0, 1
2 ] function, the conditions of mean-

value theorem hold and there exists a point ξ ∈ [0, 1
2 ] such that

θ(x) = θ(0) +
∫ x

0
θ ′(t)dt =

∫ x

0
θ ′(t)dt = θ ′(ξ)x ≤

(
max
[0, 12 ]

θ ′(x)

)
x .

Let K = max[0, 12 ] θ ′(x). Then on [0, 1
2 ] we have θ(x) ≤ Kx . If α < 0, then xα ≤

K−αθα . Since sin θ ≥ 2
π
θ , we obtain

√
λ

∫
Eε

σ γ ·sin−2γ θ ·xα

λ+σ
θ ′dx < π

∫
Eε
sin−2γ θ · xαθ ′dx

≤ π
∫ μ(ε)

0

(
2
π

)−2γ
θα−2γ K−αdθ = π

(
2
π

)−2γ
K−α

(
2π2·ε

γ
1−γ+α

)α−2γ+1

α−2γ+1

= 2α−4γ+1π2α−2γ+3

α−2γ+1 K−αε
γ (α−2γ+1)
1−γ+α ,
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√
λ

∫
Eε

σ γ ·sin−2γ θ ·xα

λ+σ
θ ′dx ≤ 1

2ε
(α−2γ+1)γ
1−γ+α

∫ π

0 K−αθα−2γ dθ

= 1
2K

−αε
(α−2γ+1)γ
1−γ+α πα−2γ+1

α−2γ+1 .

Thus,

∫ 1
2

0
xαQγ (x)dx ≤ ε

(α−2γ+1)γ
1−γ+α

α − 2γ + 1
K−απα−2γ+1 (

2α−4γ+1πα+2 + 2−1) .

Similarly, changing variables 1 − x = t or taking the fact that on
[

π
2 , π

]

sin θ ≥ 2

π
(π − θ), θ(x) = π −

∫ 1
2

x
θ ′(t)dt,

we obtain the similar result for
∫ 1

1
2
(1 − x)βQγ (x)dx .

For α, β > 2γ − 1, the numbers 1 − γ + α and 1 − γ + β are positive. Denote

M = min{ (α − 2γ + 1)γ

1 − γ + α
,
(β − 2γ + 1)γ

1 − γ + β
}.

We have shown that there exists a constant C > 0 such that

∫ 1

0
xα(1 − x)βQγ (x)dx ≤ CεM .

Since ε can be arbitrary small, we get the contradiction with condition (3).
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IFOHAM-A Generalization of the
Picard-Lindelöff Iteration Method

Marta Sacramento, Cecília Almeida, and Miguel Moreira

Abstract IFOHAM (Iterative First order HAM) is an iterative technique based on
the first order equation of the Homotopy Analysis Method (HAM). It can be shown
that IFOHAM generalizes Picard-Lindeloff’s iteration algorithm and can be used to
solve nonlinear differential equations. In this work IFOHAM will be implemented
in an symbolic computer environment and we will analyze and test its applicability
to find series solutions of second order nonlinear differential equations with periodic
solutions. In particular, we will show that the IFOHAM method is able to identify
the fundamental frequencies as well as the amplitudes of such periodic solutions.
Knowledge of these parameters is of particular importance in design and mainte-
nance activities as it characterizes the oscillatory behavior of many real systems with
nonlinear responses. The results of tests performed using the IFOHAMmethod will
be compared with results available in the literature using the HAM as well as with
results obtained using classical numerical techniques to solve differential equations.

1 Introduction

The HAM (Homotopy Analysis Method) was developed by Shijun Liao [4] and
consists in an analytic approximation method [11] to solve nonlinear ordinary dif-
ferential equations as well as partial differential equations. This technique is based
on the concept of homotopy and transforms the original problem:

N [u] = 0 (1)
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into a family of problems characterized by the following linear differential equations:

L [u1(t)] = c0 [N [u0(t)]] (2)

L
[
um(t) − um−1(t)

] = c0Dm−1 [N [φ(t; q)]] (3)

withm ∈ N andm > 1. The recursive resolution of (2) and (3) gives the successive
terms of the requested solution:

u(t) = u0(t) +
+∞∑

i=1

ui (t). (4)

Note that L represents an appropriate linear operator; u0 = u0(t) represents an
initial solution guess of the original problem; c0 represents an appropriate conver-
gence control parameter;Dk represents the homotopic derivative operator of order k
defined by:

Dk = 1

k!
∂k

∂qk

∣∣∣
∣
q=0

. (5)

Finally, φ(t; q) represents the homotopy Maclaurin series reading:

φ(t; q) = u0(t) +
+∞∑

n=1

un(t)q
n, q ∈ [0, 1] . (6)

In the works [6–8], the explanation of the applications details of HAM, as well as,
numerous illustrative applications, both introductory and advanced, can be consulted.

It’s important to mention that the HAM has the following features, that gives
advantages over other asymptotic nonlinear problem solving techniques:

• Guarantee of convergence by adequately choosing c0, the convergence control
parameter;

• Flexibility on the choice of base functions and decide about the solution expression
by adequately choosing L and the initial guess u0(t);

• Great generality of application ranging from solving weakly to strong nonlinear
differential equations or even fractional differential equations;

• Ability to find important parameters, such as amplitude and frequency, of periodic
solutions of nonlinear problems.

Of these facts, among others, the HAM has been widely applied by the scientific
community in recent years in solving nonlinear problems.
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2 The IFOHAM Method

The IFOHAM (Iterative First order HAM) is an asymptotic technique for solving
nonlinear differential equations that generalizes the Picard-Lindelöff’s method and
is inspired by the HAM (Homotopy AnalysisMethod). Indeed, in addressing the first
order Initial Value Problem (IVP)

{ dx
dt = f (t, x)
x(t0) = x (0)

0
, (7)

based on HAM, one can find

u1(t) = c0L
−1 [N [u0(t)]] (8)

from (2). Assuming the convergence of (4), one can conjecture that

u0(t) + u1(t) (9)

leads to a better initial guess than the (postulated) original one, u0(t). We are thus led
to the iterative algorithm we call IFOHAM (see [10], for a more detailed description
of this method):

⎧
⎪⎪⎨

⎪⎪⎩

u0(t) = x (0)
0

L
[
un+1(t)

] = c0
[
N

[∑n
k=0 uk(t)

]]
, n ≥ 0

with uk(t0) = 0, ∀k ∈ N
xn = ∑n

k=0 uk(t)

. (10)

It is demonstrated in [10] that, if

L [h(t)] = dh

dt
(t), (11)

and

N [x] ≡ dx

dt
− f (t, x), (12)

then, the iterative algorithm IFOHAM (10), is equivalent to the following algorithm

{
x0(t) = x (0)

0

xn+1(t) = (1 + c0)xn(t) − c0(x
(0)
0 + ∫ t

t0
f (ξ, xn(ξ))dξ), n ≥ 0

(13)

which generalizes the Picard-Lindelöff’s iterative method. Clearly, if c0 = −1, this
technique (13) coincides exactlywith the aforementionedPicard-Lindelöff’s iterative
process, as we can immediately observe:
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{
x0(t) = x (0)

0

xn+1(t) = x (0)
0 + ∫ t

t0
f (ξ, xn(ξ))dξ, n ≥ 0

(14)

It was shown in [10] that the parameter c0 also influences the convergence speed
of IFOHAM applied to the family of problems described by (12). So, the proper
choice of c0 allows to improve the performance of the IFOHAM method.

In [10] it is conjectured the applicability of IFOHAM in solving problems already
addressed and solved by the method HAM, such as, second order problems. The
applicability of IFOHAM in determining the fundamental frequency, as well as,
amplitudes of periodic solutions of nonlinear problems is also conjectured. In order
to address these issues we will focus here on the autonomous Duffing equation and
on the van der Pol equation.

3 Autonomous Duffing Equation

TheDuffing equation is typically a second order non-linear differential equation with
a cubic polynomial stiffness term, as well as, a linear viscous type damping term [2].
This nonlinear equation was introduced by Georg Duffing in 1918 as a result of
his work in forced vibrations in a system with a cubic softening nonlinearity. The
autonomous Duffing equation can display an interesting self-oscillatory behavior.

Consider the autonomous Duffing equation studied in detail in [7] and described
by the second-order nonlinear differential equation.

d2x

dt2
+ λx + εx3 = 0, (15)

with the initial conditions,
x(0) = x∗ (16)

and
dx

dt
(0) = 0. (17)

In Chapter2 of [7] the qualitative study of this nonlinear problem is performed,
through which the ranges of values of λ and ε are determined, so that the problem in
question presents periodic solutions. The knowledge of the fundamental frequency
ω, characteristic of such periodic solutions is particularly important. This is because
not only enables the expression of the solution in terms of a well-suited trigonometric
series, but it also has an enormous practical importance.

The determination of periodic solutions of different orders using HAM, the corre-
sponding square means of the residual and the fundamental frequencies is performed
byLiao in the aforementionedwork for different parameter valuesλ, ε and x(0) = x∗.
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Table 1 Parameters used in
tests A, B and C

λ ε x∗

A 9
4 1 1

B 0 1 1

C 4 −1 −1

In order to compare the results obtained with the IFOHAM and the HAM, we will
use the values of the parameters λ, ε e x(0) = x∗ shown in Table1.

3.1 Strategy for Determining the Frequency Using IFOHAM

As with using the HAM method, in approaching the problem (15) using IFOHAM,
it becomes necessary to make the variable transformation τ = ωt and define

x(t) = y(τ ), (18)

to highlight, in the equivalent problem resulting from this change of variable, the
fundamental frequency ω. Then,

d2x

dt2
= ω2 d

2y

dτ 2
, (19)

and the expression (15) can be rewritten (doing γ = ω2) in the form

γ
d2y

dτ 2
+ λy + εy3 = 0. (20)

The corresponding initial conditions that must be satisfied by the function y = y(τ )

will be
y(0) = x∗ (21)

and
dy

dτ
(0) = 0. (22)

From y = y(τ ), the sought solution x = x(t), of the differential equation (15), will
simply be

x = x(t) = y(ωt). (23)
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3.2 Using the IFOHAM Algorithm

In order to apply the IFOHAM algorithm, define

N
[
γ, y

] = γ
d2y

dτ 2
+ λy + εy3 = 0, (24)

and let’s follow the procedures adopted by the HAM users regarding the establish-
ment of the rule of construction of the expression’s solution, choosing an appropriate
linear operator L and choosing an initial guess u0 = u0(τ ) of the sought solution.
The motivation for such choices can be found in Chapter2 of [7] and also, for exam-
ple, in [5]. We will then have

⎧
⎪⎪⎨

⎪⎪⎩

u0(τ ) = x∗ cos τ

γnL
[
un+1(τ )

] = c0
[
N

[
γn,

∑n
k=0 uk(τ )

]]
, n ≥ 0

with uk(τ0) = 0 and u′
k(τ0) = 0 ∀k ∈ N

yn = ∑n
k=0 uk(τ )

, (25)

with

L [ f ] = d2 f

dτ 2
+ f. (26)

The procedure we will use to determine the successive γn terms, unknown in the
process (25) will follow the approach taken and justified, for example in [5]. This
procedure is based on the elimination, in each iterate of the so-called secular terms
τ cos τ resulting from the resolution of the linear differential equation:

γnL
[
un+1(τ )

] = c0

[

N

[

γn,

n∑

k=0

uk(τ )

]]

. (27)

That is, at each iteration, the choice of γn is made to ensure that the term un+1, to be
determined, doesn’t have secular plots of type τ cos τ . The origin of this procedure,
as referred to and cited in [5], dates back to works by Lindstedt, Bohlin, Poincaré
and Gyldén.

If the process described is convergent it will lead to sequences

γn → γ and yn+1 =
n+1∑

k=0

uk(τ ) → y (28)

whose limits satisfy the Initial Value Problem (20) and (22).
To better understand the application of the IFOHAM to solve the problem under

study, we will exemplify below the analytical procedures necessary to compute the
first iterate. From (24) and (26), we can deduce:
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γ0(
d2u1
dτ 2

+ u1) = c0(γ0
d2u0
dτ 2

+ λu0 + εu30). (29)

Since u0(τ ) = x∗ cos τ and noting that cos3 τ = 1
4 cos 3τ + 3

4 cos τ we will obtain
the expression of the differential equation (30) to solve to find u1 and γ0:

γ0(
d2u1
dτ 2

+ u1) = c0

{
(−γ0x

∗ + λx∗ + 3ε(x∗)3

4
) cos τ + ε(x∗)3

4
cos 3τ

}
. (30)

In order to avoid the emergence of the secular terms, τ cos τ , in the general solution
of (30), it will be sufficient to ensure that

−γ0x
∗ + λx∗ + 3ε(x∗)3

4
= 0,

that is

γ0 = λ + 3ε(x∗)2

4
. (31)

The obtained values for γ0 in test cases A, B and C are shown in Table2.
Once the value of γ0 is set, the problem to be solved will be reduced to determine

u1, from the resulting initial values problem:

⎧
⎪⎨

⎪⎩

γ0

(
d2u1
dτ 2 + u1

)
= c0

ε(x∗)3
4 cos 3τ

u1 (0) = 0
u′
1 (0) = 0

. (32)

A particular solution u1 of (32) is going to be

u1(τ ) = C1 cos 3τ + C2 sin 3τ.

Hence,

u1(τ ) = − c0
γ0

ε(x∗)3

32
cos 3τ.

Table 2 Values of γ0 in tests
A, B and C

λ ε x∗ γ0

A 9
4 1 1 3

B 0 1 1 3
4

C 4 −1 −1 13
4
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So, the general solution u1, of (32), will be

u1(τ ) = A cos τ + B sin τ − c0
γ0

ε(x∗)3

32
cos 3τ,

from which, taking into account the initial conditions (u1(0) = 0 e u′
1(0) = 0), we

deduce:

u1(τ ) = c0
γ0

ε(x∗)3

32
cos τ − c0

γ0

ε(x∗)3

32
cos 3τ. (33)

The approximate order 1, complete solution of the problem, will be:

y1(τ ) = u1(τ ) + u0(τ ) = c0
γ0

ε(x∗)3

32
cos τ − c0

γ0

ε(x∗)3

32
cos 3τ + x∗ cos τ. (34)

Considering c0 = −1, the approximate order 1, complete solution of the problem
defined by Case A, will be:

y1(τ ) = 1

96
cos 3τ + 95

96
cos τ. (35)

The calculation of the following n ≥ 1 terms, the pairs (γn, un+1)will be determined
a similarly way, thus obtaining (in case of convergence) sequences

γn → γ and yn+1 =
n+1∑

k=0

uk(τ ) → y.

Assuming the convergence of the method and remembering (23), the approximate
M-order IFOHAM solution of the original problem (15) and (17), will simply be:

xM(t) = yM(
√

γMt). (36)

The methodology followed is analogous to the methodology adopted in the appli-
cation of the HAM technique, see for example page 38 of [7].

3.3 Tests and Numerical Simulations

The tests and numerical simulations will be performed in MATLAB. In the imple-
mentation of the IFOHAM algorithmwe will use the symbolic toolbox of the refered
platform. In the numerical resolution of the test problems we will use the Runge-
Kutta method associated with theMATLAB ode45 routine. As mentioned, we will
apply the IFOHAM technique to solve the initial values problem (15) and (17) by
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choosing for λ, ε e x∗ the values indicated in Table1, respectively, associated with
cases A, B and C.

It is noteworthy that in the application of the IFOHAMwe used, in all simulations,
the value c0 = −1 relegating for future work the analysis of the influence of this
parameter on the convergence of this technique.

In Figs. 1, 2 and 3 we plot the approximate order 3 IFOHAM solutions and the
corresponding RK45 numerical solutions obtained with the Runge-Kutta method. to
each case tested: Case A, Case B, and Case C.

In measuring the convergence trend we will calculate, in each iterate, the discrete
versionof the quadraticmeanof the residue over a complete periodof the approximate
order M solution (discrete squared residual):

EM =
∫ 2π
0 (N

[
γM , yM

]
)2dτ

2π
, (37)

which will be computed as

EM ≈
∑k=N

k=0 (N
[
γM , yM(τk)

]
)2

N + 1
, (38)

where

τk = 2kπ

N
and N = 50. (39)
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Fig. 1 AutonomousDuffing equation: approximate order 3 IFOHAMsolution andRK45 numerical
solution (γ = 9/4, ε = 1 and x∗ = 1)
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Fig. 2 AutonomousDuffing equation: approximate order 3 IFOHAMsolution andRK45 numerical
solution (γ = 0, ε = 1 and x∗ = 1)
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Fig. 3 AutonomousDuffing equation: approximate order 3 IFOHAMsolution andRK45 numerical
solution (γ = 4, ε = −1 and x∗ = −1)
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Table 3 Values of γM = ω2
M (squared angular frequency) and EM (discrete squared residual) of

the first 3 iterates

IFOHAM-Case A

Order M γM EM (c0 = −1)

0 3.000000000000000 0.031862745098039

1 2.992350260416667 0.000030759662724

2 2.992176238814215 0.000000008188297

3 2.992173084940535 0.000000000002787

Table 4 Values of γM = ω2
M (squared angular frequency) and EM (discrete squared residual) of

the first 3 iterates

IFOHAM-Case B

Order M γM EM (c0 = −1)

0 0.750000000000000 0.031862745098039

1 0.721354166666667 0.000492900346247

2 0.718128571631923 0.000003750953237

3 0.717803950705108 0.000000038067810

Table 5 Values of γM = ω2
M (squared angular frequency) and EM (discrete squared residual) of

the first 3 iterates

IFOHAM-Case C

Order M γM EM (c0 = −1)

0 3.250000000000000 0.031862745098039

1 3.242649778106509 0.000026979989273

2 3.242778638653018 0.000000004554289

3 3.242777081822536 0.000000000000845

In Tables3, 4 and 5we present the values obtained in theM-order approximations,
using the method IFOHAM, of the squared angular frequency of the oscillation
γ = ω2, as well as the corresponding values of the discrete squared residual EM (38)
for each one of the test cases: Case A, Case B, and Case C.

We present below the approximate order 1 solution obtained, in the resolution of
case A, based on the implementation of the IFOHAM in MATLAB:

x1(t) = 1

96
cos 3τ + 95

96
cos τ with

{
τ = √

γ1t
γ1 = 2.992350260416667

. (40)

Of course, the expressions (35) and (40) are coincident.
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Table 6 Values of γ5 = ω2
5 (squared angular frequency) and E5 (discrete squared residual) from

Liao using HAM

HAM, Liao [7]

Case γ5 E5(c0)

A (c0 = − 1
3 ) 2.9921730367 1.3 × 10−14

B (c0 = − 4
3 ) 0.7177741910 1.5 × 10−8

C (c0 = − 3
10 ) 3.2427770978 6.7 × 10−14

3.4 Discussion of Results

Figures1, 2 and 3 show that the approximate order 3 solutions of the problem under
study using the IFOHAM are apparently coincident with the numerical solutions
resulting from the numerical simulations based on the 4th/5th order Runge-Kutta
method, in all cases, A, B, and C, tested.

Looking at Tables3, 4 and 5 we observe a convergence trend of the approximate
solutions of increasing order generated by IFOHAM. This fact can be observed in the
sharp decrease in the values of the quadratic mean of the residue EM , from iterated
to iterated. The decrease ratio of this parameter, from iterated to iterated, is less
than 10−2 and can assume values of the order of 10−4. Naturally, this convergence
trend is accompanied by the stabilization of the values γM = ω2

M . Necessarily, the
approximate values of the frequencies ωM generated by the IFOHAM, will be all the
more satisfactory the smaller the quadratic mean EM of the corresponding residues.

In Tables2.7 and 2.8 of [7], we can access the values of the quadratic mean of
the residuals EM and the values of γM = ω2

M obtained using HAM, addressing the
problem under study (15) and (17), under the configurations corresponding to cases
A, B and C.

Note that in the referred application of HAM, it was used by Liao optimized
convergence control parameters c0. In contrast, when using IFOHAM here we used
the constant value convergence control parameter c0 = −1.

A rough comparison between the tabulated values in [7] and values obtained here
and displayed in Tables3, 4 and 5 suggests that the approximate 3rd order solutions
obtained using IFOHAM are substantially less accurate than the approximate 5th
order solutions obtained using HAM [see Table6].

It should be noted, however, that the IFOHAMandHAMare intrinsically distinct.
The IFOHAM is iterative while the HAM is constructive, facts that may explain dif-
ferences in the performanceof these techniques. In the computational implementation
of the IFOHAM algorithm, the automatic obtaining of higher order approximations
presents the difficulties normally associated with iterative processes in which the
extension/complexity of each iterate significantly increases.
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4 Van der Pol Equation

The van der Pol equation was introduced and studied in 1920 by the Dutch physicist
Balthazar van der Pol in the context of modeling the oscillatory behavior of electric
current in a triode type electronic valve [12].

Consider the autonomous van der Pol equation

d2x

dt2
+ μ(x2 − 1)

dx

dt
+ x = 0, (41)

where μ accounts for the intensity of nonlinear damping.
Assumingμ > 0, the dynamics described by the autonomous van der Pol equation

(41) is that of a self-excited system which evolves to a stable periodic behavior, that
is, there is a single limit cycle (stable) for which the solution evolves regardless of
the initial conditions [1].

The oscillatory solution has an amplitude close to 2. The exact value of the ampli-
tude depends on the parameter μ [9].

4.1 Strategy for Determining the Amplitude and Frequency
Using IFOHAM

The strategy we will adopt to determine the amplitude and frequency of the self-
excited oscillatory response of (41) extends the adopted steps in determining the
frequency of the oscillating solution of the Duffing autonomous equation in the
previous section and follow the strategy defined by Liao in [3] in solving the same
problem using HAM.

As noted, the van der Pol equation has a single limit cycle for which the oscil-
latory solution evolves independently of the initial conditions. This limit cycle is
characterized by an amplitude response a and natural frequency ω. Suppose then,
and without loss of generality, that x(0) assumes precisely the amplitude value a (for
now unknown):

x(0) = a. (42)

To close the problem postulate additionally

dx

dt
(0) = 0. (43)

Then, assume the variable transformation τ = ωt and set

x(t) = ay(τ ) (44)
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to highlight, in the new problem, the unknown oscillatory amplitude a and the fun-
damental frequency ω. Because

dx

dt
= aω

dy

dτ
(45)

and
d2x

dt2
= aω2 d

2y

dτ 2
(46)

the expression (41) can be rewritten in the equivalent form

ω2 d
2y

dτ 2
+ μ(a2y2 − 1)ω

dy

dτ
+ y = 0, (47)

with the initial conditions now associated with the new function y = y(τ ), which is
solution of the problem (47):

y(0) = 1 and
dy

dτ
(0) = 0. (48)

Once determined the function y = y(τ ), solution of the differential equation (47),
the sought solution x = x(t), of the differential equation (41), will simply be

x = x(t) = ay(ωt). (49)

4.2 Using the IFOHAM Algorithm

Define the operator N for a condensed description of the problem. (47):

N [a, ω, y] = ω2 d
2y

dτ 2
+ μ(a2y2 − 1)ω

dy

dτ
+ y. (50)

In applying the IFOHAM technique we will follow procedures common to those
used in applying the HAM technique regarding the establishment of the solution
expression construction rule, choosing the linear operatorL and choosing the initial
guess u0 = u0(τ ) of the solution sought that must meet the initial conditions. These
procedures are justified in Chapter2 of [7], as well as, for example, in [5] or [3].
Then ⎧

⎪⎪⎨

⎪⎪⎩

u0(τ ) = cos τ

ω2
nL

[
un+1(τ )

] = c0
[
N

[
an, ωn,

∑n
k=0 uk(τ )

]]
, n ≥ 0

with uk(τ0) = 0 and u′
k(τ0) = 0 ∀k ∈ N

yn = ∑n
k=0 uk(τ )

, (51)
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with

L [ f ] = d2 f

dτ 2
+ f. (52)

Note that u0(τ ) = cos τ satisfies the postulated initial conditions (48).
The procedure adopted to determine the sequence of iterates an and ωn in the

process (51) followed the approach taken and justified, for example in [5]. This
procedure is based on the elimination in each iterate of the so-called secular terms
τ cos τ and τ sin τ resulting from the resolution of the linear differential equation:

ω2
nL

[
un+1(τ )

] = c0

[

N

[

an, ωn,

n∑

k=0

uk(τ )

]]

. (53)

The origin of this procedure, as referred to, and cited in [5], dates back to works by
Lindstedt, Bohlin, Poincaré and Gyldén.

The described process, being convergent, will lead to the determination of
sequences {an}, {ωn} and {yn+1}, such that

an → a, (54)

ωn → ω, (55)

yn+1 =
n+1∑

k=0

uk(τ ) → y, (56)

whose limits a, ω and y, satisfy the initial value problem (47) and (48). So, the
determination of the sought solution (49) is accompanied by the determination of
the parameters a and ω.

Assuming the convergence of the method and remembering (49), the approximate
M-order IFOHAM solution of the original initial value problem (41), (42) and (43),
will simply be:

xM(t) = aM yM(ωMt). (57)

4.3 Tests and Numerical Simulations

In the elaboration of tests and numerical simulations, in this section, wewill continue
to use MATLAB and the corresponding symbolic toolbox, as well as, the MATLAB
ode45 numerical routine. As mentioned above, the IFOHAM technique will be
applied to solve the problem (41), with initial values (42) and (43).

It is noteworthy that, in the application of the IFOHAMmethod, we use in all sim-
ulations the value c0 = −1 relegating for future work the analysis of the convergence
influence of this parameter.
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In Figs. 1, 2 and 3, we plot the approximate order 2 IFOHAM solutions and the
RK45 numerical solutions obtained with the Runge-Kutta method, corresponding to
each tested case: μ = 0.25, μ = 0.5 and μ = 1.0.

In measuring the convergence trend of the IFOHAMmethod, as previously done,
we will calculate in each iterate the discrete version of the quadratic mean of the
residue over a complete period (discrete squared residual), of the approximate solu-
tion of order M ,

EM =
∫ 2π
0 (N [aM , ωM , yM ])

2 dτ

2π
, (58)

which will be computed as follows,

EM ≈
∑k=N

k=0

(
N

[
aM,ωM , yM (τk)

])2

N + 1
, (59)

where

τk = 2kπ

N
and N = 50. (60)

In Tables7, 8 and 9, we present the values obtained with the IFOHAMmethod of
the M-order discrete squared residual EM , the angular frequency of the oscillation
ωM as well as the amplitude aM of the oscillatory response, for each case tested:
μ = 0.25, μ = 0.5 e μ = 1.0.

Table 7 Values of EM (discrete squared residual),ωM (squared angular frequency) and aM (ampli-
tude) of the first two iterates (μ = 0.25)

IFOHAM (c0 = −1) - μ = 0.25

Order M EM ωM aM
0 0.030637254901961 1.000000000000000 2.000000000000000

1 0.001797600707410 0.996244692913550 1.997947938077153

2 0.000017619444480 0.996126327784815 2.000666070870019

Table 8 Values of EM (discrete squared residual),ωM (squared angular frequency) and aM (ampli-
tude) of the first two iterates (μ = 0.25)

IFOHAM (c0 = −1) - μ = 0.50

Order M EM ωM aM
0 0.122549019607843 1.000000000000000 2.000000000000000

1 0.027598653855655 0.986712903267367 1.990661336451152

2 0.001088915644987 0.984926844180597 2.002824407806937
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Table 9 Van der Pol equation: values of EM (discrete squared residual), ωM (squared angular
frequency) and aM (amplitude) of the first two iterates (μ = 1.0)

IFOHAM (c0 = −1) - μ = 1.0

Order M EM ωM aM
0 0.490196078431373 1.000000000000000 2.000000000000000

1 0.408178242095261 0.970406578035910 1.947754466672885

2 0.070306106500186 0.948058574258731 2.011425421086219
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Fig. 4 Van der Pol equation: IFOHAM approximate solution of order 2 and numerical RK45
solution (μ = 0.25)

4.4 Discussion of the Results

Figures4 (case: μ = 0.25) and 5 (case: μ = 0.5) show that the approximate order 2
solutions of the problem under study, obtained using the IFOHAMmethod, appear to
coincide with the numerical solutions resulting from numerical simulations based on
the 4th/5th order Runge-Kutta method. In 6, whereμ = 1.0, clearly the approximate
order 2 IFOHAM solution does not satisfactorily follow the numerical solution.

From the observation of the discrete squared residual EM decrease in Tables7,
8 and 9, we observe the convergence trend of the approximate increasing order
solutions generated by IFOHAM.

Of course, this convergence trend is accompanied by the stabilization of the values
of ωM and aM successively generated by the method. Necessarily, the approximate
values of the frequenciesωM and amplitudes aM , generated by the IFOHAMmethod,
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Fig. 5 Van der Pol equation: IFOHAM approximate solution of order 2 and numerical RK45
solution (μ = 0.5)
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Fig. 6 IFOHAM approximate solution of order 2 and numerical RK45 solution (μ = 1.0.)

will be all the more satisfactory the lower of the quadratic mean EM of the corre-
sponding discrete squared residual.

Asμ grows, we can observe a decrease in the accuracy of the 2nd order IFOHAM
approximation obtained. This explains the unsatisfactory fit between the approximate
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order 2 IFOHAM solution and the numerical solution shown in Fig. 6. Note that this
difficulty is aggravated by the growth of the parameter μ.

Obtaining more accurate oscillatory solutions requires the calculation of approx-
imate IFOHAM solutions of order substantially greater than 2. However, as men-
tioned above when discussing the results of applying this method to solve the Duffing
equation, this task presents the difficulties associated with the efficiency of iterative
processes in which the extent/complexity of each iterate significantly increases.

5 Conclusions and Recommendations for Future Work

5.1 Conclusions

Taking into account the results presented and the discussion made, the following
conclusions are drawn:

• IFOHAM can determine periodic solutions of second order nonlinear problems
and the corresponding amplitudes and oscillatory frequencies;

• IFOHAM is easy to program and apply, although, getting automatic solutions of
higher order approximations presents the difficulties associated with iterative pro-
cesses, in which the extension/complexity of each iterate significantly increases;

• The conjecture that IFOHAM is an extension of the Picard-Lindelöff iterative
method is confirmed, which may be of theoretical interest.

5.2 Future Work

As for future work, the following developments are expected:

• Optimize the computational implementation of the IFOHAM algorithm to enable
the automatic obtaining of higher order approximate solutions;

• Use IFOHAM to study the complex dynamic of the Duffing-Holmes equation;
• Use IFOHAM to study and determine the amplitude and oscillatory frequencies
of coupled nonlinear systems, such as wake oscillator models;

• Study the convergence behavior of IFOHAM depending on the properties of the
nonlinear differential equation under consideration, as well as, as a function of the
parameter c0.

Acknowledgements We thank the Navy Research Center (CINAV) for their financial support in
carrying out this work.
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Well-Posedness of Volterra
Integro-Differential Equations with
Fractional Exponential Kernels

N. A. Rautian

Abstract Well-defined solvability of initial boundary value problems for integro-
differential equationswith unbounded operator coefficients inHilbert spaces is estab-
lished inweightedSobolev spaces on thepositive semi-axis. Theprincipal part of such
equations is an abstract hyperbolic equation perturbed by terms with Volterra inte-
gral operators. These equations can be regarded as an abstract generalization of the
Gurtin-Pipkin integro-differential equation that describes heat transfer in materials
with memory and has a number of other applications. Numerous problems of heredi-
tary mechanics and thermal physics have motivated the study of such equations.

1 Introduction

We study integro-differential equations with unbounded operator coefficients in
Hilbert space. Let us list some problems the study of which leads to equations with
the same abstract operator form as that of the equations considered in this paper. For
example we consider the Gurtin-Pipkin integro-differential equation

utt (x, t) = uxx (x, t) −
∫ t

0
K (t − τ)uxx (x, τ )dτ + f (x, t)

which describes the process of heat propagation in media with memory (See [3–5]),
process of wave propagation in the viscoelastic media (see [1, 2]) and also arising in
theproblemsofporousmedia (See [6, 7]).Moreover theGurtin-Pipkinequationarises
in the averaging procedure of a two-phasedmedium containing two liquids in the the-
ory of strongly nonhomogeneous media. The kernel function K (t) is the strictly pos-
itive nonincreasing function characterizing memory of media.

In this connection, it is preferable to consider integro-differential equations with
operator coefficients in aHilbert space (abstract integro-differential equations),which
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can be realized as integro-differential equations with partial derivatives with respect
to the space variableswhere necessary. In the proof of the existence theorems,we effi-
ciently utilize the Hilbert structure of the spaces W 2

2,γ (R+, A), L2,γ (R+, H) and the
Paley–Wiener theorem.

In our previous papers [8–13], the case in which the kernel K(t) can be represented
by a series in decaying exponentials with positive coefficients problem (1)–(3) was
studied in detail. Our approach to the study was based on the spectral analysis of the
operator function which also permits proving the well-posed solvability and repre-
senting the solution of this problem in the formof a series in exponentials correspond-
ing to points of the spectrum of the operator function L(λ). Note that the results of
[8, 9, 12, 13] were summarized in Chap.3 of the monograph [10].

2 Statement of theMainResults

Let H be a separable Hilbert space, and let A be a self-adjoint positive operator A∗ =
A on H with compact inverse.

d2u

dt2
+ A2u −

t∫

0

K (t − s)A2u (s) ds = f (t) , t ∈ R+, (1)

u(+0) = ϕ0, (2)

u(1)(+0) = ϕ1. (3)

The scalar function K (t) is representable as

K (t) =
∞∑
j=1

c j R j (t) , (4)

where c j > 0, j ∈ N, R j (t) are fractional exponential Rabotnov functions (see [2],
Ch. I) of the form

R j (t) = tα−1
∞∑

n=0

(−β j )
ntnα

Γ [(n + 1)α] , 0 < α ≤ 1, (5)

Γ (·) is the Euler gamma function. We assume that the sequence {β j } satisfies the
following conditions: 0 < β j < β j+1, j ∈ N, β j → +∞, j → +∞. In addition, we
assume that ∞∑

j=1

c j

β j
< 1. (6)
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The Laplace transform of R j (t) has the form

R̂ j (λ) = 1

λα + β j
,

(see [2], Ch. I). In this case, λα (0 < α ≤ 1) is understood as the main branch of the
multivalued function f (λ) = λα , λ ∈ C with a cut along the negative real half-line:
λα = |λ|αeiα arg λ, −π < arg λ < π. Applying the inverse Laplace transform to the
main branch of themultivalued function R̂ j (λ)weobtain (see [2], Ch. I) the following
integral representation of function R j (t):

R j (t) = 1

2π i
lim

R→+∞

γ+i R∫

γ−i R

eλt dλ

λα + β j
= sin πα

π

+∞∫

0

e−tτ dτ

τα + 2β j cosπα + β2
j τ

−α
.

Let W n
2,γ (R+, An) denote the Sobolev space of vector functions on the half-line

R+ = (0,∞)with values in H equipped with the norm

‖u‖W n
2,γ (R+,An) ≡

(∫ ∞

0
e−2γ t

(∥∥u(n)(t)
∥∥2

H + ∥∥Anu(t)
∥∥2

H

)
dt

)1/2

, γ ≥ 0.

See [14], Ch.1 for more details on the spaces W n
2,γ

(
R+, A2

)
. For n = 0, we put

W 0
2,γ

(
R+, A0

) = L2,γ (R+, H), where L2,γ (R+, H) denotes the space of measur-
able functions with values in H equipped with the norm

‖ f ‖L2,γ (R+,H) =
⎛
⎝

+∞∫

0

e−2γ t‖ f (t)‖2H dt

⎞
⎠

1/2

.

Definition 1. A vector-function u is said to be a strong solution of problem (1)–(3)
if it belongs to W 2

2,γ (R+, A2) for some γ � 0, satisfies (1) almost everywhere on the
half-lineR+, and satisfies initial condition (2), (3).

Definition 2. Avector-function u is said to be a generalized solution of problem (1)–
(3) if it belongs W 1

2,γ (R+, A), for some γ � 0, satisfies initial condition (2) and the
identity

〈
A

⎡
⎣u(t) −

t∫

0

K (t − s)u(s)ds

⎤
⎦ , Av(t)

〉

L2,γ (R+,H)

− 〈
u′(t), v′(t)

〉
L2,γ (R+,H)

+2γ
〈
u′(t), v(t)

〉
L2,γ (R+,H)

= 〈 f (t), v(t)〉L2,γ (R+,H) + (ϕ1, v(0))H (7)
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for some γ � 0 for all v(t) ∈ W 1
2,γ (R+, A) satisfying the condition lim

t→+∞ v(t)e−2γ t

= 0.

Weturn thedomain Dom(Aβ)of theoperator Aβ ,β > 0, intoaHilbert space Hβ by
introducing the norm ‖ · ‖β = ‖Aβ · ‖ on Dom(Aβ), which is equivalent to the norm
of the graph Aβ .

The following theorem gives sufficient conditions for the correct solvability of
problem (1)–(3).

Theorem 1. Assume that A f (t) ∈ L2,γ0 (R+, H) for some γ0 > 0, the kernel K (t)
is representable as (4), (5) with a constant α (0 < α < 1), and condition (6) hold;
in addition ϕ0 ∈ H3 and ϕ1 ∈ H2. Then there exists such γ1 > γ0, that, for all γ �
γ1 problem (1)–(3) has a unique solution in the space W 2

2,γ

(
R+, A2

)
, satisfying the

inequality

‖u‖W 2
2,γ (R+,A2) � d

(
‖A f ‖L2,γ (R+,H) + ∥∥A3ϕ0

∥∥
H + ∥∥A2ϕ1

∥∥
H

)
, (8)

with a constant d independent of the vector function f and the vectors ϕ0 and ϕ1.

It should be noticed that our approach to the proof of the theorem about the well-
definedsolvabilityof the initial boundaryvalueproblemfor theabstractGurtin–Pipkin
equation essentially differs from that used by Pandolfi in [14]. Moreover, in contrast
to the results of the present paper, Pandolfi studies the solvability in functional spaces
defined on a finite interval (0, T ) of the time variable t whereas we consider the exis-
tence of solutions in weighted Sobolev spaces W 2

2,γ (R+, A) on the semi-axis R+. In
theproofof the existence theorem,weefficientlyuse theHilbert structureof the spaces
W 2

2,γ (R+, A), L2,γ (R+, H) and the Paley–Wiener theorem.

Theorem 2. Assume that f (t) ∈ L2,γ0 (R+, H) for some γ0 > 0, the kernel K (t) is
representable as (4), (5) with a constant α (0 < α < 1), and condition (6) holds; in
addition, ϕ0 ∈ H2 and ϕ1 ∈ H. Then there exists γ1 > γ0 such that, for all γ � γ1
problem (1)–(3) has a unique generalized solution in the space W 1

2,γ (R+, A) satis-
fying the inequality

‖u‖W 2
2,γ (R+,A2) � d

(
‖ f ‖L2,γ (R+,H) + ∥∥A2ϕ0

∥∥
H + ‖Aϕ1‖H

)
, (9)

with a constant d independent of the vector function f and the vectors ϕ0 and ϕ1.

Considering the Laplace transformof (1)with homogeneous initial conditions, we
arrive at the equation L(λ)û(λ) = f̂ (λ), where the operator function

L (λ) = λ2 I + A2 − K̂ (λ)A2, (10)

is the symbol of this equation, while û(λ) and f̂ (λ) are the Laplace transforms of the
vector functions u(t) and f (t), respectively; here, K̂ (λ) is the Laplace transform of
the kernel K (t), which is representable as
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K̂ (λ) =
∞∑
j=1

c j

λα + β j
, 0 < α ≤ 1. (11)

3 Proofs of the Theorems 1 and 2

3.1 Proof of the Auxiliary Statements

To prove Theorems 1, 2 we need the following assertions.

Proposition 1. For any γ � γ1 > 0 and all n ∈ N there exist positive constants d1
and d2 such that the inequalities

sup
Re λ>γ

∣∣∣∣ an

ln (λ)

∣∣∣∣ � d1 < ∞, sup
Re λ>γ

∣∣∣∣ λ

ln (λ)

∣∣∣∣ � d2 < ∞. (12)

hold in the half-plane {λ : Re λ > γ }.
Proof (Proposition 1). Let λ = x + iy = |λ| (cosϕ + i sin ϕ). Note that sgn y =
sgn sin(αϕ) for 0 < α � 1. The Laplace transform K̂ (λ) of the kernel K (t) admits
the representation

K̂ (λ) =
∞∑
j=1

[
c j

(|λ|α cos (αϕ) + β j
) − i |λ|α sin (αϕ)(|λ|α cos (αϕ) + β j

)2 + (|λ|α sin (αϕ))
2

]
. (13)

Consider the scalar functions

Mn (λ) = ln (λ)

a2
n

= 1

a2
n

(L (λ) en, en) = λ2

a2
n

+ 1 −
∞∑

k=1

ck

λα + βk
, n ∈ N

and separate their real and imaginary parts

ReMn (λ) = x2 − y2

a2
n

+ 1 − Re K̂ (λ) , ImMn (λ) = 2xy

a2
n

− Im K̂ (λ) .

We divide the right half-plane {λ : Re λ > γ0} into two the domains

Ω1 = {|y| > Re λ := x > γ0, y = Im λ} , Ω2 = {λ : Re λ = x > |y| , y = Im λ} .

First, we estimate the expression

∣∣∣∣ an

ln (λ)

∣∣∣∣ in the domainΩ1. We have
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|ln(λ)|
a2

n

� |Im Mn(λ)| =
∣∣∣∣∣
2xy

a2
n

+
∞∑

k=1

ck
|λ|α sin(αϕ)

|λ|2α + 2|λ|αβk cos(αϕ) + β2
k

∣∣∣∣∣

� 2x |y|
a2

n

+
∞∑

k=1

ck

|y|α|
∣∣∣sin

(π

4
α
)∣∣∣

(|λ|α + βk)
2 � 2γ |y|

a2
n

+ c1
|y|α

∣∣∣sin
(π

4
α
)∣∣∣

((√
2|y|

)α + β1

)2

�
2γ |y|

((√
2|y|

)α + β1

)2 + c1|y|αa2
nsin

2
(π

4
α
)

a2
n

((√
2|y|

)α + β1

)2

�

√
2γ |y|

((√
2|y|

)α + β1

)√
c1|y|α/2an

∣∣∣sin
(π

4
α
)∣∣∣

a2
n

((√
2|y|

)α + β1

)2
√
2γ c1|y| α+1

2

∣∣∣sin
(π

4
α
)∣∣∣

an

((√
2|y|

)α + β1

) �

√
2γ c1

∣∣∣sin
(π

4
α
)∣∣∣((√

2
)α + β1

γ α

) |y| 1−α
2

an

�

√
2γ c1

∣∣∣sin
(π

4
α
)∣∣∣((√

2
)α + β1

γ α

) γ
1−α
2

an
= k(α, γ )

an
,

where k(α, γ ) is a positive constant depending on the parameters α (0 < α < 1) and

γ > 0. Therefore, the estimate
an

|ln(λ)| � 1

k(α, γ )
holds for all λ ∈ Ω1.

(2) Now let us estimate the expression

∣∣∣∣ an

ln (λ)

∣∣∣∣ in the domain Ω2. We use condition

(6) to obtain

|ln(λ)|
a2

n
� |Re Mn(λ)|

=
∣∣∣∣∣
x2 − y2

a2
n

+ 1 −
∞∑

k=1

ck
|λ|α cos(αϕ) + βk

(|λ|α cos(αϕ) + βk)
2 + (|λ|α sin(αϕ))2

∣∣∣∣∣ � 1 −
∞∑

k=1

ck

βk
> 0.

Indeed, note that

∞∑
k=1

ck
|λ|α cos(αϕ) + βk

(|λ|α cos(αϕ) + βk)
2 + (|λ|α sin(αϕ))2

�
∞∑

k=1

ck

|λ|α cos(αϕ) + βk
�

∞∑
k=1

ck

βk
< 1. (14)
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holds for all ϕ ∈ (−π/4, π/4). Therefore, for all λ ∈ Ω2 we have the estimate
an

|ln(λ)| � 1

a1

(
1 −

∞∑
k=1

ck

βk

) . Thus, we finally obtain the estimate

sup
Re λ>γ

an

|ln(λ)| �
(
min

{
k(α, γ ), a1

(
1 −

∞∑
k=1

ck

βk

)})−1

=: d1.

Let us estimate the expression

∣∣∣∣ λ

ln (λ)

∣∣∣∣ for all λ = x + iy, x > γ . We have

∣∣∣∣ ln(λ)

λ

∣∣∣∣ =
∣∣∣∣∣λ + a2

n

λ

(
1 −

∞∑
k=1

ck

λα + βk

)∣∣∣∣∣

=
∣∣∣∣∣x + iy + a2

n(x − iy)

x2 + y2

(
1 −

∞∑
k=1

ck
|λ|α cos(αϕ) + βk − i |λ|α sin(αϕ)

(|λ|α cos(αϕ) + βk)
2 + (|λ|α sin(αϕ))2

)∣∣∣∣∣

� x + a2
n x

x2 + y2

(
1 −

∞∑
k=1

ck
|λ|α cos(αϕ) + βk

(|λ|α cos(αϕ) + βk)
2 + (|λ|α sin(αϕ))2

)

� x + a2
n x

x2 + y2

(
1 −

∞∑
k=1

ck

βk

)
> x > γ.

This implies the estimate

∣∣∣∣ λ

ln(λ)

∣∣∣∣ <
1

γ
=: d2. for allλ = x + iy, x > γ . The proof of

the Proposition 1 is complete.

In turn, inequalities (12), (14), respectively, imply the estimates

sup
Re λ>γ

∥∥AL−1 (λ)
∥∥ � d1 < ∞. (15)

sup
Re λ>γ

∥∥λL−1 (λ)
∥∥ � d2 < ∞. (16)

Set

h (t) =
t∫

0

K (t − s)A2 (cos (As) ϕ0 + A−1 sin (As) ϕ1
)

ds.

Proposition 2. Let the assumptions of Theorem 1 be satisfied. Then for anyγ � γ1 >

γ0 the function h satisfies the estimate

‖h (t)‖L2,γ (R+,H) � d3
(∥∥A2ϕ0

∥∥ + ‖Aϕ1‖
)

(17)
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with a constant d3 independent of the vectors ϕ0 and ϕ1.

Proof (Proposition 2). To estimate the norm of the vector function h (t) in the space
L2,γ (R+, H), it suffices, by the Paley–Wiener theorem, to estimate the norm of the
vector function ĥ (λ) in the Hardy space H2(Re λ > γ, H). The vector function ĥ (λ)

admits the representation

ĥ (λ) = K̂ (λ)
[
λ
(
λ2 I + A2

)−1
A2ϕ0 + A

(
λ2 I + A2

)−1
Aϕ1

]
=

Therefore, its norm satisfies the relation

∥∥∥ĥ(λ)

∥∥∥2
H2(Re λ>γ,H)

(18)

= sup
x>γ

+∞∫

−∞

∥∥∥K̂ (x + iy)
[
(x + iy)

(
(x + iy)2 I + A2

)−1
A2ϕ0

+ A
(
(x + iy)2 I + A2

)−1
Aϕ1

]∥∥∥2
H

dy.

Let us estimate the resulting integral:

∥∥∥K̂ (x + iy)
[
(x + iy)

(
(x + iy)2 I + A2

)−1
A2ϕ0 + A

(
(x + iy)2 I + A2

)−1
Aϕ1

]∥∥∥2
H

� C

∣∣∣∣∣
∞∑

k=1

ck

(x + iy)α + βk

∣∣∣∣∣
2 (∥∥∥(x + iy)

(
(x + iy)2 I + A2

)−1
A2ϕ0

∥∥∥2
H

+
∥∥∥A

(
(x + iy)2 I + A2)−1

Aϕ1

∥∥∥2
H

)

� C

( ∞∑
k=1

ck

|(x + iy)α + βk |

)2 ( ∞∑
n=1

|x + iy|2a4
n |ϕ0n|2∣∣(x + iy)2 + a2

n

∣∣2 +
∞∑

n=1

a4
n |ϕ1n|2∣∣(x + iy)2 + a2

n

∣∣2
)

= C

( ∞∑
k=1

ck

|(x + iy)α + βk |

)2 ( ∞∑
n=1

(x2 + y2)a4
n |ϕ0n|2

(x2 − y2 + a2
n)

2 + 4x2y2

+
∞∑

n=1

a4
n |ϕ1n|2

(x2 − y2 + a2
n)

2 + 4x2y2

)
. (19)

Note that
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(x2 − y2 + a2
n)

2 + 4x2y2 = (
x2 + (y − an)

2) (x2 + (y + an)
2) .

Moreover, for x > γ we have the inequality

ck

|(x + iy)α + βk |
= ck√(

(x2 + y2)α/2 cos(αϕ) + βk

)2 + (x2 + y2)αsin2(αϕ)

� ck

βk
.

Then, using the estimate (19) we obtain the following estimate of the integral

∥∥∥ĥ(λ)

∥∥∥2
H2(Re λ>γ,H)

� C

( ∞∑
k=1

ck

βk

)2

sup
x>γ

∞∑
n=1

⎛
⎝

+∞∫

−∞

(x2 + y2)a4
n |ϕ0n|2(

x2 + (y − an)
2) (x2 + (y + an)

2)dy

+
+∞∫

−∞

a4
n |ϕ1n|2(

x2 + (y − an)
2) (x2 + (y + an)

2)dy

⎞
⎠

� 2C

( ∞∑
k=1

ck

βk

)2

sup
x>γ

∞∑
n=1

⎛
⎝

+∞∫

0

a4
n |ϕ0n |2(

x2 + (y − an)2
)dy +

+∞∫

0

a4
n |ϕ1n |2

a2
n

(
x2 + (y − an)2

)dy

⎞
⎠

� C
2π

γ

( ∞∑
k=1

ck

βk

)2 ( ∞∑
n=1

a4
n |ϕ0n |2 +

∞∑
n=1

a2
n |ϕ1n |2

)
= C

2π

γ

(∥∥∥A2ϕ0

∥∥∥2
H

+ ‖Aϕ1‖2H
)

.

The proof of the Proposition 2 is complete.

3.2 Proof of the Theorem 1

We begin the proof of the Theorem 1 in the case of homogeneous (zero) initial con-
ditions (ϕ0 = ϕ1 = 0). We use Laplace transformation in order to prove the correct
solvability of the problem (1)–(3). Now we are going to remind the base assertions
that will be used later.

Definition 3. We denote by H2(�λ > γ, H) the Hardy space of vector-functions
f̂ (λ) taking values in the space H , holomorphic (analytic) in the semiplane {λ ∈ C :
�λ > γ � 0} endowed with the norm

sup
x>γ

∫ +∞

−∞

∥∥∥ f̂ (x + iy)

∥∥∥2
H

dy < ∞, (λ = x + iy). (20)
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We formulate well-known Paley–Wiener theorem for Hardy space H2(�λ > γ, H).

Theorem (Paley-Wiener).

(1) The space H2(�λ > γ, H) coincides with the set of vector-functions (Laplace
transformations) representing in the form

f̂ (λ) = 1√
2π

∫ ∞

0
e−λt f (t)dt, (21)

with vector-function f (t) ∈ L2,γ (R+, H), λ ∈ C, �λ > γ � 0.
(2) There exists unique vector-function f (t) ∈ L2,γ (R+, H) for arbitrary vector-

function f̂ (λ) ∈ H2(�λ > γ, H) and the following inversion formula take place

f (t) = 1√
2π

∫ +∞

−∞
f̂ (γ + iy)e(γ+iy)t dy, t ∈ R+, γ � 0 (22)

(3) The following equality take place for vector-function f̂ (λ) ∈ H2(�λ > γ, H)

and f (t) ∈ L2,γ (R+, H), connected by relation (21):

‖ f̂ ‖2H2(�λ>γ,H) ≡ sup
x>γ

∫ +∞

−∞

∥∥∥ f̂ (x + iy)

∥∥∥2
H

dy

=
∫ +∞

0
e−2γ t ‖ f (t)‖2H dt ≡ ‖ f ‖2L2,γ (R+,H) (23)

The theorem formulated above is well-known for the scalar functions. However it
is easily generalized for the vector-functions taking values in the separable Hilbert
space.

Let us return to the proof of Theorem 1 for the zero initial data ϕ0 = ϕ1 = 0. We
apply the Laplace transform to (1) and obtain the following representation for the
Laplace transform of the solution of problem (1)–(3):

û (λ) = L−1 (λ) f̂ (λ) (24)

Let us prove the unique solvability of problem (1)–(3) in the space W 2
2,γ

(
R+, A2

)
for

any γ � γ1 > γ0.
First, let us show that the vector function A2u (t) belongs to the space

L2,γ (R+, H) . It is easily seen that

A2û (λ) = A2L−1 (λ) f̂ (λ) = AL−1 (λ) A f̂ (λ) (25)

By the Paley–Wiener theorem, A f̂ (λ) ∈ H2 (Re λ > γ0; H), because A f (t) ∈
L2,γ0 (R+, H) .Moreover, we have

‖A f ‖L2,γ0
(R+,H) =

∥∥∥A f̂
∥∥∥

H2(Re λ>γ0,H)
. (26)
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By the first estimate in (15) and formulas (25) and (26), we have

∥∥A2u
∥∥2

L2,γ (R+,H)
= ∥∥A2û

∥∥2
H2(Re λ>γ,H)

=
∥∥∥AL−1 (λ) A f̂ (λ)

∥∥∥2
H2(Re λ>γ,H)

� d2
1 ‖A f ‖2L2,γ (R+,H) . (27)

Thus, the vector function A2u (t)belongs to the space L2,γ (R+, H) and the following
estimate holds: ∥∥A2u

∥∥
L2,γ (R+,H)

� d1‖A f ‖L2,γ (R+,H). (28)

Now let us show that the vector function λ2û (λ) also belongs to the space

H2 (Re λ > γ, H). Note that I = λ2L−1 (λ) +
(
1 − K̂ (λ)

)
A2L−1 (λ) for Re λ >

γ . Therefore, for Re λ > γ we have

f̂ (λ) = λ2û (λ) +
(
1 − K̂ (λ)

)
A2L−1 (λ) f̂ (λ) . (29)

By the assumptions about the function K (t), the function 1 − K̂ (λ) is bounded and
analytic in the half-plane {λ : Re λ > γ }. Indeed, the following inequality holds:

∣∣∣1 − K̂ (λ)

∣∣∣ � 1 +
∞∑

k=1

ck

|λα + βk | � 1 +
∞∑

k=1

ck

βk
< 2.

By (6) the regularity (analyticity) follows from the uniform convergence of the
series. Let us estimate the norm of the vector function λ2û (λ) in the Hardy space
H2 (Re λ > γ, H).

From the representation (29), inequality (15) and previous estimate we obtain

∥∥λ2û (λ)
∥∥

H2(Re λ>γ,H)
� ‖ f̂ (λ)‖H2(Re λ>γ,H)

+|1 − K̂ (λ)|∥∥AL−1 (λ) A f (λ)
∥∥

H2(Re λ>γ,H)
� const‖A f (λ)‖

H2(Re λ>γ,H)
. (30)

Thus, the Paley–Wiener theorem implies the inequality

∥∥∥∥d2u

dt2

∥∥∥∥
2

L2,γ (R+,H)

� d1 ‖A f ‖2L2,γ (R+,H) . (31)

Finally, combining the estimates (28) and (31), we see that the vector function u (t)
belongs to the space W 2

2,γ (R+, H), and the following estimate holds:

‖u‖W 2
2,γ (R+,A2) � d2‖A f ‖L2,γ (R+,H). (32)

Now consider problem (1)–(3) with inhomogeneous initial data ϕ0 and ϕ1. Set
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u (t) = cos (At) ϕ0 + A−1 sin (At) ϕ1 + w (t) . (33)

Then the vector functionw (t) is a solution of the problem

d2w

dt2
+ A2w (t) −

∫ t

0
K (t − s)A2w (s) ds = f1 (t) , (34)

w (+0) = w(1) (+0) = 0, (35)

where f1 (t) = f (t) − h (t) and

h (t) =
t∫

0

K (t − s)A2
(
cos (As) ϕ0 + A−1 sin (As) ϕ1

)
ds.

To prove the theorem, it suffices to prove the inequality

‖A f1‖L2,γ (R+,H) � ‖A f ‖L2,γ (R+,H) + ‖Ah‖L2,γ (R+,H) < ∞. (36)

The estimate (17) implies the estimate

‖Ah (t)‖L2,γ (R+,H) � d4
(∥∥A3ϕ0

∥∥ + ∥∥A2ϕ1

∥∥) (37)

with a constant d4 independent of the vectors ϕ0 and ϕ1.
Now let us prove the uniqueness of the strong solution of problem (1)–(3). Assume

that there exist two distinct strong solutions u1(t) and u2(t) of problem (1)–(3). Then
the vector function v(t) = u1(t) − u2(t) is a strong solution of problem (1)–(3) with
zero right-hand side f (t) ≡ 0 and zero initial vectors ϕ0 = ϕ1 = 0, and its Laplace
transform v̂(λ) satisfies theequation L(λ)v̂(λ) = 0.Therefore,wehave v̂(λ) = 0and,
by the inversion formula for the Laplace transform, v(t) ≡ 0. The proof of Theorem1
is complete.

3.3 Proof of the Theorem 2

Assume that u(t) is the strong solution of problem (1)–(3) with zero initial data ϕ0 =
ϕ1 = 0.Applying theLaplace transform to (1),weobtain the following representation
for the Laplace transform of the strong solution u(t) of problem (1)–(3):

û (λ) = L−1 (λ) f̂ (λ) (38)
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Consider the projection un(t) of the vector function u(t) onto the one-dimensional
subspace spanned by the vector en; i.e., un(t) = (u(t), en)H . Then we have ûn(λ) =(
û(λ), en

)
H = l−1

n (λ) f̂n(λ).
First, let us prove the generalized solvability in the space W 1

2,γ (R+, A) of problem
(1), (2) with zero initial data ϕ0 = ϕ1 = 0 for any γ � γ1 > γ0. To this end, we prove
the following assertion.

Claim 1. If a function un(t)en is a strong solution of the problem

d2u

dt2
+ A2u −

t∫

0

K (t − s)A2u (s) ds = fn (t) en, t ∈ R+, (39)

u(+0) = 0, u(1)(+0) = 0, (40)

then the function un(t)en is a generalized solution of this problem.

Proof. Indeed, taking the inner product of both sides of (39) by the function v(t) ∈
W 1

2,γ (R+, A) in the space L2,γ (R+, H), where γ � γ1 > γ0 we obtain

+∞∫

0

(
u′′

n(t)en, v(t)
)

H e−2γ t dt

+
+∞∫

0

⎛
⎝A2

⎡
⎣un(t)en −

t∫

0

K (t − s)un(s)ends

⎤
⎦ , v(t)

⎞
⎠

H

e−2γ t dt

=
+∞∫

0

( fn(t)en, v(t))H e−2γ t dt .

We integrate the first term by parts and obtain

+∞∫

0

(
u′′

n(t)en, v(t)
)

H
e−2γ t dt

= −(ϕ1, v(0))H − 〈
u′

n(t), v
′(t)

〉
L2,γ (R+,H)

+ 2γ
〈
u′

n(t), v(t)
〉
L2,γ (R+,H)

.

Transforming the second term, we obtain
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+∞∫

0

⎛
⎝A2

⎡
⎣un(t)en −

t∫

0

K (t − s)un(s)ends

⎤
⎦ , v(t)

⎞
⎠

H

e−2γ t dt

=
〈

A

⎡
⎣un(t)en −

t∫

0

K (t − s)un(s)ends

⎤
⎦ , Av(t)

〉

L2,γ (R+,H)

.

Thus, the function un(t)en satisfies the identity

〈
A

⎡
⎣un(t)en +

t∫

0

K (t − s)un(s)ends

⎤
⎦ , Av(t)

〉

L2,γ (R+,H)

−〈
u′

n(t)en, v
′(t)

〉
L2,γ (R+,H)

+ 2γ
〈
u′

n(t)en, v(t)
〉
L2,γ (R+,H)

= 〈 fn(t)en, v(t)〉L2,γ (R+,H)

and hence is a generalized solution of problem (39), (40). The proof of the claim is
complete.

Corollary 1. If the vector function SN (t) =
N∑

n=1
un(t)en is a strong solution of the

problem

d2u

dt2
+ A2u −

t∫

0

K (t − s)A2u (s) ds = FN (t) , t ∈ R+, (41)

u(+0) = 0, u(1)(+0) = 0, (42)

where FN (t) =
N∑

n=1
fn(t), then the vector function SN (t) is a generalized solution of

problem (41), (42); i.e., the following identity holds:

〈
A

⎡
⎣SN (t) +

t∫

0

K (t − s)SN (s)ds

⎤
⎦ , Av(t)

〉

L2,γ (R+,H)

− 〈
S′

N (t), v′(t)
〉
L2,γ (R+)

+2γ
〈
S′

N (t), v(t)
〉
L2,γ (R+,H)

= 〈FN (t), v(t)〉L2,γ (R+,H) (43)

Nowwe return to the proof ofTheorem2.Let us show that if its conditions are satis-

fied, then the vector function u(t) =
∞∑

n=1
un(t)en (where, for each n ∈ N, the function

un(t)en is a strong solution of the corresponding problem (39), (40)) is a generalized
solution of problem (1)–(3).

To this end, using the estimate (12)we show that the sequence SN (t) =
N∑

n=1
un(t)en

is a Cauchy sequence in the space W 1
2,γ (R+, A). We have
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‖SN (t) − SM(t)‖2W 1
2,γ (R+,A)

=
∥∥∥∥∥

N∑
n=M+1

un(t)en

∥∥∥∥∥
2

W 1
2,γ (R+,A)

=
∥∥∥∥∥A

N∑
n=M+1

un(t)en

∥∥∥∥∥
2

L2,γ (R+,H)

+
∥∥∥∥∥

N∑
n=M+1

u′
n(t)en

∥∥∥∥∥
2

L2,γ (R+,H)

=
∥∥∥∥∥A

N∑
n=M+1

ûn(λ)en

∥∥∥∥∥
2

H2(�λ>0,H)

+
∥∥∥∥∥

N∑
n=M+1

λûn(λ)en

∥∥∥∥∥
2

H2(�λ>0,H)

= sup
x>γ

+∞∫

−∞

(
N∑

n=M+1

|anûn(x + iy)|2 +
N∑

n=M+1

|(x + iy)ûn(x + iy)|2
)

dy

= sup
x>γ

+∞∫

−∞

⎛
⎝ N∑

n=M+1

∣∣∣∣∣
an f̂n(x + iy)

ln(x + iy)

∣∣∣∣∣
2

+
N∑

n=M+1

∣∣∣∣∣
(x + iy) f̂n(x + iy)

ln(x + iy)

∣∣∣∣∣
2
⎞
⎠ dy

�
+∞∫

−∞

N∑
n=M+1

sup
x>γ

(∣∣∣∣ an

ln(x + iy)

∣∣∣∣
2

+
∣∣∣∣ x + iy

ln(x + iy)

∣∣∣∣
2
) ∣∣∣ f̂n(x + iy)

∣∣∣
2

dy

� d5 sup
x>γ

+∞∫

−∞

N∑
n=M+1

∣∣∣ f̂n(x + iy)

∣∣∣2dy = d5

∥∥∥∥∥
N∑

n=M+1

f̂n(λ)en

∥∥∥∥∥
H2(�λ>0,H)

= d5

∥∥∥∥∥
N∑

n=M+1

fn(t)en

∥∥∥∥∥
2

L2,γ (R+,H)

. (44)

By the assumptions of Theorem 2, the vector function f (t) belongs to the space
L2,γ (R+, H), and therefore, the sequence of vector functions SN (t) converges in the
space W 1

2,γ (R+, A) to the vector function u(t) if the sequence FN (t) converges to the
vector function F(t) in the space L2,γ (R+, H). Passing to the limit as N → +∞ in

identity (43), we obtain identity (7) for ϕ1 = 0; i.e., the function u(t) =
∞∑

n=1
un(t)en is

a generalized solution of problem (1)–(3).

Now let us estimate the norm of the generalized solution u(t) =
∞∑

n=1
un(t)en in the

spaceW 1
2,γ (R+, A). By setting M = 0 and SM (t) = 0 in the chain of inequalities (44),

we obtain the inequality
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‖SN (t)‖2W 1
2,γ (R+,A)

� d5

∥∥∥∥∥
N∑

n=1

fn(t)en

∥∥∥∥∥
2

L2,γ (R+,H)

� d5 ‖ f (t)‖2L2,γ (R+,H) .

from which, passing to the limit as N → +∞we obtain the estimate

‖u(t)‖2W 1
2,γ (R+,A)

� d5 ‖ f (t)‖2L2,γ (R+,H) . (45)

Now consider problem (1)–(3) with inhomogeneous initial data ϕ0 and ϕ1. Set

u (t) = cos (At) ϕ0 + A−1 sin (At) ϕ1 + w (t) . (46)

Claim 2. The vector function u(t) is a generalized solution of problem (1)–(3)when-
ever the vector function w (t) is a generalized solution of the problem

d2w

dt2
+ A2w (t) −

∫ t

0
K (t − s)A2w (s) ds = f1 (t) , (47)

w (+0) = w(1) (+0) = 0, (48)

where f1 (t) = f (t) − h (t),

h (t) =
t∫

0

K (t − s)A2
(
cos (As) ϕ0 + A−1 sin (As) ϕ1

)
ds.

The conditions of Theorem 2 and Proposition imply the estimate

‖ f1‖L2,γ (R+,H) � ‖ f ‖L2,γ (R+,H) + ‖h‖L2,γ (R+,H) < ∞. (49)

Thus, the assumptions of Theorem 2 are satisfied for problem (47), (48). A straight-
forward substitution of the vector function u(t) given by (46) into identity (7) readily
proves the assertion of Claim 2. Moreover, the estimate (45) and Proposition 2 imply
the estimate (9). The proof of Theorem 2 is complete.
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On Non-local Boundary-Value Problems
for Higher-Order Non-linear Functional
Differential Equations

Nataliya Dilna

Abstract Some optimal, in a sense, general conditions sufficient for a unique solv-
ability of the non-local boundary-value problem for higher-order non-linear func-
tional differential equations are established. The class of equations considered covers,
in particular, non-linear equations with transformed argument, integro-differential
equations and neutral equations. Example is presented to illustrate the optimality of
results.

Keywords Boundary-value problem · Functional-differential equations ·
Non-local conditions · Unique solvability · Differential inequality · Optimal
conditions

MSC 2010: 34K10 · 34K38

1 Problem Formulation and Definition

The paper deals with the question on the existence and uniqueness of a solution of a
non-local boundary-value problem for higher-order non-linear functional differential
equations of the general form

uk
(m)(t) = ( fku)(t) + qk(t), t ∈ [a, b], k = 1, n, (1)

uk
(m−i)(a) = ϕm−ik(u), k = 1, n, i = 1,m, (2)

wherem, n ∈ N, i ≤ m, fk : W m([a, b],Rn) → L1([a, b],R), k = 1, n, are, gener-
ally speaking, non-linear operators, qk ∈ L1([a, b],R), ϕik : W m([a, b],Rn) → R,
i = 1,m, k = 1, n, non-linear functionals from the spaceW m([a, b],Rn) of vector-
functions with absolutely continuous coordinates u(m−1).
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The investigation has been motivated, mainly, by the recent publications [4, 8, 9,
13, 16]. The general problem (1), (2) are active studied in modern literature (see,
[3–5, 10] and references therein).

We have established conditions sufficient for a unique solvability of the non-local
boundary-value problem for systems of non-linear higher-order functional differen-
tial equations (1), (2). The idea of proof of our results is based on the application
of an abstract result ensuring the unique solvability of an equation with an operator
satisfying Lipschitz-type conditions with respect to a suitable cone (see, Theorem
49.4 from [12]). The main result of this paper and corollaries are in Sect. 3, auxiliary
statements one can find in Sect. 4; the proof of the main general Theorem1 is in
Sect. 5; conditions sufficient for the unique solvability of linear functional differen-
tial equations are in Sect. 6; it is shown in Sect. 7 that the obtained results are, in a
sense, optimal.

In the general case, operator f from Eq. (1) is given on W m([a, b],Rn) only
and, thus, the right-hand side term of Eq. (1) may contain terms with derivatives,
and, hence, the statements presented in what follows are applicable, in particular, to
functional differential equations of the neutral type.

By a solution of problem (1), (2), as usual (see, e.g., [1]), we mean a vector
function u = (uk)nk=1 : [a, b] → R

n whose components are absolutely continuous,
satisfy system (1) almost everywhere on the interval [a, b], and possess properties
(2) at the point a for i = 1,m.

Definition 1. A linear operator l = (lk)nk=1 : W m([a, b],Rn) → L1([a, b],Rn) is
said to belong to the set Sh0,hm−1

if the boundary value problem

uk
(m)(t) = (lku)(t) + qk(t), t ∈ [a, b], k = 1, n, (3)

uk
(m−i)(a) = hm−ik(u) + cm−ik, k = 1, n, i = 1,m, (4)

where hik : W m → R, i = 1, 2, k = 1, n, are linear functionals, has a unique solu-
tion u = (uk)nk=1 for any qk ∈ L1([a, b],R) and, moreover, the solution of (3), (4)
possesses the property

min
t∈[a,b] uk(t) ≥ 0, k = 1, n, (5)

whenever the components of the function qk , k = 1, n, and constants cik , k = 1, n,
i = 1,m, appearing in (3) are non-negative almost everywhere on [a, b].

2 Notation

Through whole work will used the next notations.

1. We fix a bounded interval [a, b] and a natural numbers n and m.
2. R := (−∞,∞); ‖x‖ := max1≤i≤n |xi | for x = (xi )ni=1 ∈ R

n .
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3. L1([a, b],Rn) is the Banach space of all the Lebesgue integrable vector-
functions u : [a, b] → R

n with the standard norm

L1([a, b],Rn) � u 	−→
∫ b

a
‖u(s)‖ ds.

4. W m([a, b],Rn) is set of vector-functions u = (ui )ni=1 : [a, b] → R
n with u(m−1)

absolutely continuous on [a, b] and the norm given by the formula

W m([a, b],Rn) � u 	−→ ‖u‖W m :=
∫ b

a
‖u(m)(s)‖ ds +

m−1∑
i=0

‖u(i)(a)‖. (6)

5. For i = 1, n, by W m
(0)([a, b],Rn) we denote the set of vector-functions u =

(ui )ni=1 : [a, b] → R
n from W m([a, b],Rn) such that the components of u are

non-negative a.e. on [a, b].
6. For i = 1, n, by W m

(m)([a, b],Rn) we denote the set of vector-functions u =
(ui )ni=1 : [a, b] → R

n fromW m([a, b],Rn) such that the components of u(m)
i (t)

are non-negative a.e. on [a, b] and u( j)
i (a) ≥ 0, for i = 1, n, 0 ≤ j ≤ m − 1.

In what follows, the symbolsW m([a, b],Rn),W m
(0)([a, b],Rn),W m

(m)([a, b],Rn),
corresponding to the fixed a, b, and n will usually appear simply asW m ,W m

(0),W
m

(m).

3 General Results

3.1 Main Theorem

The main general result of this paper is the next theorem.

Theorem 1. Assume that there exist some linear operators p = (pk)nk=1 : W m →
L1, ξ = (ξk)

n
k=1 : W m → L1, and linear functionals hi = (hik)nik=1 : W m → R

n,
ri = (rik)nk=1 : W m → R

n, i = 1,m − 1, which satisfy the inclusions

p ∈ Sh0,hm−1
,

1

2
(p + ξ) ∈ S 1

2 (h0+r0),
1
2 (hm−1+rm−1)

, (7)

and such that for arbitrary functions u = (uk)nk=1 : [a, b] → R
n, v = (vk)

n
k=1 :

[a, b] → R
n from W m with the properties

uk(t) ≥ vk(t), t ∈ [a, b], k = 1, n, (8)
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the inequalities

ξk(u − v)(t) ≤ ( fku)(t) − ( fkv)(t) ≤ pk(u − v)(t), t ∈ [a, b], k = 1, n, (9)

and

rik(u − v)(t) ≤ ϕik(u) − ϕik(v) ≤ hik(u − v), i = 1,m − 1, k = 1, n (10)

hold.
Then the non-local boundary-value problem (1), (2) has a unique solution for an

arbitrary function q ∈ L1.

We get the next corollaries from this theorem.

3.2 Corollaries

Theorem 2. Suppose that for arbitrary absolutely continuous vector-functions
u = (uk)nk=1 : [a, b] → R

n and v = (vk)
n
k=1 : [a, b] → R

n with properties (8) the
inequalities (10) and

∣∣( fku)(t) − ( fkv)(t) − l1k(u − v)(t)
∣∣ ≤ l2k(u − v)(t), k = 1, n, (11)

hold for some linear operators l j = (l jk)nk=1 : W m → L1, j = 1, 2, which satisfy
inclusions

l1 + l2 ∈ Sh0,hm−1
, l1 ∈ S 1

2 (h0+r0),
1
2 (hm−1,hm−1)

. (12)

Then the boundary-value problem (1), (2) is uniquely solvable for an arbitrary
q ∈ L1.

Proof. Obviously, that condition (11) is equivalent to the relation

l1k (u − v)(t) − l2k (u − v)(t)

≤ ( fku)(t) − ( fkv)(t) ≤ l1k (u − v)(t) + l2k (u − v)(t) (13)

for arbitrary functions u and v from W m with properties (8) and t ∈ [a, b]. Let us
put for any k = 1, 2, . . . , n

(pku)(t) := (l1ku)(t) + (l2ku)(t) and (ξku)(t) := (l1ku)(t) − (l2ku)(t). (14)

Then (13) means that f satisfies condition (9). It is also clear that (12) provides of (7)
with pk and ξk given by (14). Application of Theorem1 thus leads us to the assertion
of Theorem2.

The next corollaries is true.
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Definition 2. We say, that an operator p = (pk)nk=1 : W m → L1 is positive, if for
arbitrary vector-function u ∈ W m

(0) the next inequality

(pku)(t) ≥ 0, k = 1, n,

is true for a.e. t ∈ [a, b].
Corollary 1. Let there exist some positive linear operators gi = (gik)nk=1 : W m →
L1, i = 1, 2, and linear functionals hik : W m → Randrik : W m → Rwith property
(10) for which the inequality

|( fku)(t) − ( fkv)(t) + g2k(u − v)(t)| ≤ g1k(u − v)(t), k = 1, n, (15)

is true for u and v fromW m with property (8). Furthermore, assume that inclusions

g1 ∈ Sh0,hm−1
, −1

2
g2 ∈ S 1

2 (h0+r0),
1
2 (hm−1,hm−1)

(16)

are fulfilled.
Then the non-local boundary-value problem (1), (2) has a unique solution for an

arbitrary function q ∈ L1.

Proof. It follows from assumption (15) and the positivity of the operator g2 that the
relations

|( fku)(t) − ( fkv)(t) + 1
2g2k(u − v)(t)|

= |( fku)(t) − ( fkv)(t) + g2k(u − v)(t) − 1
2g2k(u − v)(t)|

≤ g1k(u − v)(t) + 1
2 |g2k(u − v)(t)| = g1k(u − v)(t) + 1

2g2k(u − v)(t)

are true for any u and v with properties (8). This means that f = ( fk)nk=1 admits
estimate (11) with the operators l1 and l2 defined by the equalities

l1 := −1

2
g2, l2 := g1 + 1

2
g2. (17)

Moreover, assumption (16) guarantees that inclusions (12) hold for l1 and l2 from
(17). Thus, we can apply Theorem2, which leads us to the required assertion.

4 Auxiliary Propositions

To prove our main result, we use the following statement on the unique solvability
of an equation with a Lipschitz type non-linearity established in [12].

Let us consider the abstract operator-equation

Fx = z, (18)
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where F : E1 → E2 is a mapping between a normed space 〈E1, ‖·‖E1
〉 and a Banach

space 〈E2, ‖·‖E2
〉 over the field R, and z is an arbitrary element from E2.

Let Ki ⊂ Ei , i = 1, 2, be cones [11]. The cones Ki , i = 1, 2, induce natural partial
orderings of the respective spaces. Thus, for each i = 1, 2, we write x �Ki y and
y �Ki x if and only if {x, y} ⊂ Ei and y − x ∈ Ki .

Theorem 3 ([12, Theorem 49.4]). Let the cone K2 be normal and generating. Fur-
thermore, let Bk : E1 → E2, k = 1, 2, be additive and homogeneous operators such
that B−1

1 and (B1 + B2)
−1 exist and possess the properties

B−1
1 (K2) ⊂ K1, (19)

(B1 + B2)
−1(K2) ⊂ K1 (20)

and, furthermore, let the order relation

B1(x − y) �K2 Fx − Fy �K2 B2(x − y) (21)

be satisfied for any pair (x, y) ∈ E2
1 such that x �K1 y.

Then Eq. (18) has a unique solution for an arbitrary z from E2.

Let us recall two definitions (see, e.g., [11, 12]).

Definition 3. A cone K2 ⊂ E2 is called normal if there exists a constant γ ∈
(0,+∞) such that ‖x‖E2 ≤ γ ‖y‖E2 for arbitrary {x, y} ⊂ E2 with the property
0 �K2 x �K2 y.

Definition 4. A cone K1 is called generating in E1 if every element u ∈ E1 can be
represented in the form u = u1 − u2, where {u1, u2} ⊂ K1.

4.1 Lemmas

We need some technical lemmas.

Lemma 1. The following propositions are true:

1. The set W m
(0) is a cone in the space W

m.
2. The set W m

(m) is a normal and generating cone in the space W m.

Proof. Let us proof assertion 1. If {u1, u2} ⊂ W m
(m) and {λ1, λ2} ⊂ [0,+∞), then,

obviously, λ1u1 + λ2u2 lies in W m
(m) as well. Suppose that u ∈ W m

(m) and −u ∈ W m
(m)

simultaneously. Taking into account the definition of W m
(m), we have u

(m) ≡ 0 and,
moreover, u(a) = 0, . . . , u(m−1)(a) = 0, whence it is obvious that u ≡ 0. Thus,W m

(m)

is a cone in W m .
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Let us proof assertion 2. In order to check that the cone W m
(m) is normal, it is

sufficient to show that every set of the form

{
x ∈ W m : {x − u, v − x} ⊂ W m

(m)}, u, v ∈ Wm,max{‖u‖W m , ‖v‖W m } ≤ 1
}
,

(22)
is bounded with respect to the norm ‖·‖W m (see (6)). Indeed, if an arbitrary x belongs
to set (22), then for a.e. t ∈ [a, b]

u(m)(t) ≤ x (m)(t) ≤ v(m)(t), 0 ≤ u( j)(a) ≤ x ( j)(a) ≤ v( j)(a), 0 ≤ j ≤ m − 1

componentwise. Therefore,

‖x‖W m =
∫ b

a
‖x (m)(s)‖ ds +

m−1∑
i=0

‖x (i)(a)‖ ≤ ‖u‖W m + ‖v‖W m ≤ 2,

which, in view of the arbitrariness of x , implies that set (22) is bounded.
Finally, let us check, that the cone W m

(m) is generating cone in the space W m . To
proof that, it is sufficient to show that every element x of W m admits a majorant in
W m

(m). Let x ∈ W m be arbitrary. Then x has the form

x(t) =
∫ t

a

(
. . .

∫ α

a
X (s)ds . . .

)
dη +

m−1∑
i=0

(t − a)m−i

(m − i)! x (m−i)(a), t ∈ [a, b],
(23)

where X ∈ L1, X = x (m). Equality (23) implies that, componentwise,

x (m)(t) ≤ u(m)(t), t ∈ [a, b],

where for t ∈ [a, b]

u(t) =
(∫ t

a

(
. . .

∫ α

a
|X j (s)|ds . . .

)
dη +

m−1∑
i=0

(t − a)m−i

(m − i)! |x (m−i)
j (a)|,

)n

j=0

.

(24)
It is obvious from (24) that u(a) ≥ 0, . . . , u(m−1)(a) ≥ 0, and u(m) is non-negative
and, therefore, u is an element of W m

(m). This, due to the arbitrariness of x , proves
that W m

(m) is generating. The proof is finished.

Let us define a linear operator Vl,h0,hm−1
: W m → W m by putting

(Vl,h0,hm−1
u)(t) :=

u(t) −
∫ t

a

(
. . .

∫ α

a
(lu)(s) ds . . .

)
dη −

m∑
i=1

(t − a)m−i

(m − i)! hm−ik (u) (25)

for all u ∈ W m .
The next lemmas are true.



542 N. Dilna

Lemma 2. Function u from the space W m is a solution of the equation

(Vl,h0,hm−1
u)(t) =

∫ t

a

(
. . .

∫ α

a
q(s)ds . . .

)
dη, t ∈ [a, b],

where q ∈ L1, if and only if it is a solution of the non-local boundary value problem
(3), (4).

The next lemma states the relation between the property described in Definition1
and the positive invertibility of operator (25).

Lemma 3. Let l = (lk)nk=1 : W m → L1 is linear operator such that

l ∈ Sh0,hm−1
, (26)

then the linear operator Vl,h0,hm−1
: W m → W m given by formula (25) is invertible

and, moreover, its inverse V−1
l,h0,hm−1

is satisfies the inclusion

V−1
l,h0,hm−1

(W m
(m)) ⊂ W m

(0). (27)

Proof. Suppose thatmapping l belongs to the setSh0,hm−1
.Given an arbitrary function

y = (yk)nk=1 ∈ W m , consider the equation

Vl,h0,hm−1
u = y. (28)

Since y ∈ W m , then y(m) ∈ L1 and

y(t) −
m−1∑
i=0

y(m−i)(a) =
∫ t

a

(
. . .

∫ α

a
y(m)(s)ds . . .

)
dη.

According to (26), there exists a unique function u ∈ W m such that

u(m)(t) = (lu)(t) + y(m)(t), t ∈ [a, b],
u(m−i)(a) = hm−i (u) + y(m−i)(a), i = 1,m.

By Lemma2, it follows that u is a unique solution of Eq. (28). Due to the arbitrariness
of y ∈ W m , it follows that V−1

l,h0,hm−1
exists and, hence, u = V−1

l,h0,hm−1
y.

Inclusion (26) also guarantees that if the functions yk , k = 1, n, are such that

y(m)
k (t) ≥ 0, y(m−1)(a) ≥ 0, . . . , y′(a) ≥ 0, y(a) ≥ 0, (29)

then the components of u are non-negative and, therefore, V−1
l,h0,hm−1

y ∈ W m
(0). How-

ever, relations (29) mean that y ∈ W m
(m) (see Notation 4). Since y is arbitrary, we thus

arrive at the required inclusion (27).
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Lemma 4. The identity

Vp,h0,hm−1
+ Vξ,h0,hm−1

= 2V 1
2 (p+ξ), 12 (h0+r0),

1
2 (hm−1,hm−1)

. (30)

holds for arbitrary linear operators {p, ξ} : W m → L1, i = 1, 2,

Proof. Equality (30) is obtained immediately from relation (25).

Remark 1. A linear operator l = (lk)nk=1 : W m → L1 belongs to the setSh0,hm−1
, if

problem
u(a) = h(a) (31)

for the system

u′
k (t) =

∫ t

a
. . .

∫ α

a︸ ︷︷ ︸
m−1

(lku)(s) ds . . . dη︸ ︷︷ ︸
m−1

+
m−1∑
i=1

(t − a)m−i

(m − i)! hm−ik (u)

+
∫ t

a
. . .

∫ α

a︸ ︷︷ ︸
m−1

qk (s) ds . . . dη︸ ︷︷ ︸
m−1

, t ∈ [a, b], k = 1, 2, . . . , n, (32)

has a unique solution u = (uk)nk=1 for any {qk | k = 1, n} ⊂ L1 and, moreover, the
solution of (32), (31) possesses property (5) if qk , k = 1, n, are non-negative almost
everywhere on [a, b].

A number of results related to the solvability of the linear and non-linear boundary-
value problem (32), (31) (and therefore, by virtue of Remark1, to properties of the
setSϕ0,ϕm−1 ) can be found, for example, in [2, 3, 6, 7, 13–16].

5 Proof of the Theorem1

Proof. Let us take E1 = E2 = W m and define amapping F : W m → W m by setting

(Fu)(t) := (V f,ϕ0,ϕm−1u)(t), t ∈ [a, b], (33)

for any u fromW m , where V f,ϕ0,ϕm−1 is given by (25). Then Eq. (33) takes form (18)
with

z(t) :=
∫ t

a

(
. . .

∫ α

a
q(s)ds . . .

)
dη, t ∈ [a, b].

Consider problem (31), (32). It is clear (see Remark1) that an absolutely con-
tinuous vector function u = (uk)nk=1 : [a, b] → R

n is a solution of (31), (32) if, and
only if it satisfies the equation
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V f,ϕ0,ϕm−1u = z.

Assumption (9) means that the estimate

−p1k(u − v)(t) ≤ −( fku)(t) + ( fkv)(t) ≤ −p2k(u − v)(t), t ∈ [a, b],

is true for any u and v with property (8) and all k = 1, n. The relation

u(m)
k (t) − v

(m)
k (t) − p1k (u − v)(t) ≤ u(m)

k (t) − v
(m)
k (t) − ( fku)(t) − ( fkv)(t)

≤ u(m)
k (t) − v

(m)
k (t) − p2k (u − v)(t), (34)

hold for almost all t from [a, b].
Let us specify the linear mappings Bik : W m → W m , i = 1, 2, k = 1, n, by the

next way
(B1ku)(t) := Vp,h0,hm−1

, t ∈ [a, b], (35)

(B2ku)(t) := Vξ,r0,rm−1 , t ∈ [a, b], (36)

where {u, v} ∈ W m have the properties (8). Thenm-times integrating (34) and taking
property (2) and notation (35), (36) into account, we have

B1k(u − v)(t)

≤ u(t) −
∫ t

a

(
. . .

∫ α

a
( fku)(s)ds . . .

)
dη −

m∑
i=1

(t − a)m−i

(m − i)! ϕm−ik(u)

− (v(t) −
∫ t

a

(
. . .

∫ α

a
( fkv)(s)ds . . .

)
dη −

m∑
i=1

(t − a)m−i

(m − i)! ϕm−ik(v))

≤ B2k(u − v)(t), t ∈ [a, b], k = 1, n (37)

for any u = (uk)nk=1 and v = (vk)
n
k=1 with properties (8).

In view of the mapping V f,ϕ0,ϕm−1 (see, formulae (25)) and the sets

W m
(0) and W m

(m)

(see 5 and 6 in Notation) we have that estimates (34) and (37) ensure the validity of
the inclusion

B1(u − v) ≤W m V f,ϕ0,ϕm−1u − V f,ϕ0,ϕm−1v ≤W m B2(u − v)

for any function u and v with properties (8) from W m .
Now we determine K1 and K2 by the formulae

K1 := W m
(0), K2 := W m

(m). (38)
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By Lemma1, the set K1 forms a cone in the normed space W m , whereas K2 is a
normal and generating cone in the Banach space W m .

From Lemma4 follows, that identity (30) is fulfilled and, therefore,

B1 + B2 = 2V 1
2 (p1+p2),

1
2 (h0+r0),

1
2 (hm−1+rm−1)

. (39)

Taking into account (7), Lemma3 guarantees the invertibility of the operators
Vp1,h0,hm−1

and V 1
2 (p1+p2),

1
2 (h0+r0),

1
2 (hm−1+rm−1)

. So, we have that B−1
1 = V−1

p1,h0,hm−1
and

by (39), the relation

(B1 + B2)
−1 = 1

2
V−1

1
2 (p1+p2),

1
2 (h0+r0),

1
2 (hm−1+rm−1)

is true. Lemma3 also ensures the positivity of the inverse operators in the sense that

V−1
p1,h0,hm−1

(W m
(m)) ⊂ W m

(0),

V−1
1
2 (p1+p2),

1
2 (h0+r0),

1
2 (hm−1+rm−1)

(W m
(m)) ⊂ W m

(0)

and, hence, inclusions (19), (20) hold.
Finally, in view of assumption (9), we see that relation (21) holds with F , B1, and

B2 given by (33), (35), (36) with respect to the cones K1 and K2 defined by (38).
Applying Theorem3, we establish the unique solvability of the boundary value

problem (32), (31) for arbitrary q ∈ L1. Taking Remark1 into account, we complete
the proof of Theorem1.

6 On Non-local Problems for Higher-Order Linear
Functional Differential Equations

Assume that operator f in Eq. (1) and functionals ϕi , i = 1,m − 1 in (2) are linear
then the next theorem is true.

Theorem 4. Assume that there exist some linear operators p = (pk)nk=1 : W m →
L1, ξ = (ξk)

n
k=1 : W m → L1, which satisfy inclusions

p ∈ Sϕ0,ϕm−1 ,
1

2
(p + ξ) ∈ Sϕ0,ϕm−1 , (40)

such that inequalities

(ξkω)(t) ≤ ( fkω)(t) ≤ (pkω)(t), t ∈ [a, b], k = 1, n,

hold for any absolutely continuous vector-function ω : [a, b] → R
n from W m

(0).
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Then the non-local linear boundary-value problem (1), (2) has a unique solution
for an arbitrary function q = (qk)nk=1 ∈ L1.

Proof. It is easy to see that Theorem4 is a simple case of the Theorem1 with

u − v = ω ∈ W m
(0), ϕi = hi = ri : W m → R

n, i = 1,m − 1. (41)

We get the next corollary.

Corollary 2. Suppose that for arbitrary absolutely continuous vector-function ω =
(ωk)

n
k=1 : [a, b] → R

n from W m
(0) the inequality

∣∣( fkω)(t) − (l1kω)(t)
∣∣ ≤ (l2kω)(t), k = 1, n,

holds for some linear operators l j = (l jk)nk=1 : W m → L1, j = 1, 2, which satisfy
inclusions

l1 + l2 ∈ Sϕ0,ϕm−1 , l1 ∈ S(ϕ0,ϕm−1). (42)

Then the non-local linear boundary-value problem (1), (2) is uniquely solvable
for an arbitrary q ∈ L1.

Proof. Obviously, that Corollary2 is a simple case of the Theorem2 with ω, ϕi

defined by (41).

7 Optimality of Conditions

Note that assumption (7), (12), (16), (40), (42) we can not replaced by their weaker
versions. For example, in Theorem2 inclusion (42) can not be replaced by the
condition

(1 − ε)
(
l1 + l2

) ∈ Sϕ0,ϕm−1 , l1 ∈ Sϕ0,ϕm−1 (43)

nor by the condition

l1 + l2 ∈ Sϕ0,ϕm−1 , (1 − ε)l1 ∈ Sϕ0,ϕm−1 (44)

where ε is an arbitrarily small positive number.
To ascertain this we consider the next example.

Example 1. Let us consider the simple linear problem

u1(a) = 0, u2(a) = 0, u′
1(a) = 0, u′

2(a) = 0, u′′
1(a) = 0, u′′

2(a) = 0
(45)
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for the linear functional differential system

u′′′
1 (t) = 1

(τ − a)3

(
5u1(τ ) − u2(τ )

) + q1, t ∈ [a, b], (46)

u′′′
2 (t) = − 1

(τ − a)3

(
u1(τ ) − 5u2(τ )

) + q2, t ∈ [a, b], (47)

where τ is a given point from (a, b], qi ∈ L1, i = 1, 2, and fix some ε ∈ [0, 1).
It is clear that (45)–(47) is a particular case of problem (1)–(2), where m = 3,

n = 2, operator f is defined by

( fku)(t) := (−1)k+1

(τ − a)3

((
2k(1 + (−1)k+1) + 1

)
u1(τ ) − (

2k + (−1)k
)
u2(τ )

)
,

for all t ∈ [a, b], k = 1, 2, and ϕik = 0, i = 0, 1, 2, k = 1, 2.
Let us fix some ε ∈ [0, 1). It is easy to see that problem (45)–(47) has the family

of solutions
uk(t) = (−1)k+1λ(t − a)3, t ∈ [a, b], k = 1, 2,

where λ ∈ R is arbitrary. However, condition (43) in this case is satisfied for all
ε ∈ (0, 1) with

l1 := 0, l2u := 1

(τ − a)2

(
5u1(τ ) + u2(τ )

u1(τ ) + 5u2(τ )

)
,

because initial value problem (45) for the system

u′′′
1 (t) = (1 − ε)

(τ − a)2

(
5u1(τ ) + u2(τ )

)
+ q1, t ∈ [a, b],

u′′′
2 (t) = (1 − ε)

(τ − a)2

(
u1(τ ) + 5u2(τ )

)
+ q2, t ∈ [a, b],

has only trivial solution.
In a similar way, one can specify an example showing the optimality of condition

(44).
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On the Discrete Fourier Transform
Eigenvectors and Spontaneous
Symmetry Breaking

Mesuma K. Atakishiyeva, Natig M. Atakishiyev, and Juan Loreto-Hernández

Abstract The present work aims to give a detailed discussion of a recently intro-
duced difference analogue of quantum number operator in terms of the raising and
lowering difference operators, that governs eigenvectors of the N -dimensional dis-
crete (finite) Fourier transform (DFT). In particular, we argue that the aforementioned
discrete number operatorN (N ) has distinct eigenvalues only if it is associated with
the DFT’s based on grids {x0, x1, ..., xN−1}, xk = √

2π/N k, with N odd. This means
that in the cases of the DFT’s on grids {x0, x1, ..., xN−1} with N even the discrete
reflection symmetry in the space of eigenvectors of the discrete number operator
N (N ) is spontaneously broken. This essential distinction between even and odd
dimensions is intimately related with the algebraic properties of the above DFT rais-
ing and lowering difference operators and consistent with the well-known formula
for the multiplicities of the eigenvalues, associated with the N -dimensional discrete
Fourier transform.

1 Introduction

We choose to set out by recalling first some mathematical aspects of the classical
Fourier integral transform (FIT)
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(F f ) (x) ≡ 1√
2π

∫
R

e i x y f (y) dy = g(x) (1.1)

and its finite analogue, discrete Fourier transform (DFT) Φ(N ). It is well known that
the eigenfunctions of the FIT operator (1.1), associated with the eigenvalues i n, are
explicitly given as

ψn(x) := Hn(x) exp
(−x2/2

)
, (1.2)

whereHn(x) are the Hermite polynomials. Recall that the functionsψn(x) are usually
referred to as Hermite functions in the mathematical literature, whereas in quantum
mechanics they emerge as eigenfunctions of the Hamiltonian H for the linear har-
monic oscillator, which is a self-adjoint differential operator of the second order (see,
for example, [1]),

H = 1

2

(
x2 − d2

dx2

)
. (1.3)

The functions ψn(x) represent an important explicit example of an orthogonal and
complete system in the Hilbert space L2(R, dx) of square-integrable functions on the
full real line x ∈ R. Observe also that since the fourth power of the FIT operatorF
is the unit operator, the only four distinct eigenvalues among i ns are ±1 and ±i.

As for the discrete Fourier transform Φ(N ), based on N points, it is represented
by the N × N unitary symmetric matrix Φ (N ) = ‖Φ (N )

m, n‖ (frequently referred to as
Schur’s matrix) with elements

Φ (N )
m, n = 1√

N
exp

(
2π i

N
mn

)
≡ 1√

N
qmn, (1.4)

where q := exp(2π i/N ) and m, n ∈ {0, 1, . . . ,N−1} [2–6]. Given a complex val-
ued vector y with components {yk}N−1

k=0 , one can compute another vector z with
components

zm =
N−1∑
n=0

Φ (N )
m, n y n, (1.5)

referred to as the discrete Fourier transform of the vector y. Those vectors f (k), which
are solutions of the standard equations

N−1∑
n=0

Φ (N )
m, n f

( k)
n = λk f

( k)
m , k ∈ {0, 1, . . . ,N−1}, (1.6)

then represent eigenvectors of the DFT operator Φ (N ), associated with the eigen-
values λk . Since the fourth power of Φ(N ) is the unit matrix, the only four distinct
eigenvalues amongλk ’s are± 1 and± i, the same as in the case of the FIT operatorF .
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The purpose of this presentation is to provide a detailed account of a difference
analogue of the differential operator H, that commutes with the DFT operator Φ(N ).
The ability to solve a difference equation for this difference analogue of H, then
enables one to find an analytical form of the set of eigenvectors for the DFT operator
Φ(N ). The key to our approach thus lies in the recognition that the eigenvectors of
the DFT operator Φ(N ) can be constructed in complete analogy with the continuous
case of the FIT operator F (see [7–9] for details of this approach to deriving the
DFT eigenvectors). The ‘value added’ in moving from the continuous FIT case
to its discrete counterpart DFT is the discovery that the discrete number operator
N (N ), that governs eigenvectors of theN -dimensional DFT, has distinct eigenvalues
only if it is associated with the DFT’s based on grids {0, 1, ...,N − 1} with odd
N = 2L + 1, whereas in the cases of the DFT’s on grids {0, 1, ...,N − 1} with even
N = 2L the discrete reflection symmetry in the space of eigenvectors of the discrete
number operator N (N ) is spontaneously broken. This essential distinction between
even and odd dimensions is shown to be consistent with the well-known formula for
the multiplicities of the eigenvalues, associated with the N -dimensional DFT [10].

In Sect. 2 we discuss how to construct a difference equation for the DFT eigenvec-
tors in terms of the lowering and raising difference operators, which are defined by the
standard intertwining relations with the DFT operator Φ(N ). Section 3 is devoted to
the evaluation of the rank of those lowering and raising operators. Section 4 discusses
the consistency of our approach with the well-known formula for the multiplicities
of the eigenvalues, associated with the N -dimensional DFT. In Section 5, we derive
an explicit form of the lowest odd-dimensional DFT eigenvector in terms of finite
continuous fractions. Finally, Sect. 6 briefly outlines some further research directions
of interest.

2 Difference Equation for the DFT Eigenvectors

It is a remarkable fact that an appropriate difference equation for the eigenvectors f (n)

of the DFT, associated with the eigenvalues λn = i n, can be constructed in complete
analogy with the continuous case when the functions ψn(x), defined as in (1.2),
satisfy the second order differential equation

Hψn(x) = (n + 1/2) ψn(x). (2.1)

To bring out this fact we recall first that the differential operator H in (2.1) can be
factorized in terms of the lowering a and raising a† first order differential operators as

H = a† a + 1

2
I, (2.2)



552 M. K. Atakishiyeva et al.

where I is the identity operator and

a = 1√
2

(
x + d

dx

)
, a† = 1√

2

(
x − d

dx

)
. (2.3)

The operators a and a† obey the standard Heisenberg commutation relation

[
a, a†

] := a a† − a† a ≡
[

d

dx
, x

]
= I (2.4)

and the intertwining relations

aF = iF a, a† F = − iFa†, (2.5)

with the FIT operator F . Recall also that very often it is more convenient to work
directly with the quantum number operator N, defined as

N := H − 1

2
I = a† a. (2.6)

Then from (2.5) it follows at once that the differential operator H, as well as the
number operator N, do commute with the FIT operator F . This is why the FIT
operator F and the differential operator H (or, equivalently, the number operator
N) have the same set of the eigenfunctions ψn(x), which can be now written in a
compact form as

ψn(x) = 1√
n!

(
a†

)n
ψ0(x). (2.7)

Recently it was suggested in [7] to construct a discrete number operator

N (N ) := bᵀ
N bN (2.8)

in terms of the difference raising and lowering operatorsbᵀ
N andbN , which are defined

by the standard intertwining relations

bN Φ(N ) = iΦ(N ) bN , bᵀ
N Φ(N ) = − iΦ(N ) bᵀ

N , N ≥ 3, (2.9)

with the DFT operator Φ(N ). Then from (2.9) it follows at once that this discrete
number operatorN (N ) does commute with the DFT operator Φ(N ) and can be inter-
preted as a difference analogue of the quantum number operator N, associated with
the continuous IFT. Therefore solutions of a difference equation for eigenvectors of
the discrete number operator N (N ) represent the desired set of eigenvectors for the
DFT operator Φ(N ) at the same time.

We now turn to the question of finding explicit forms of the difference raising and
lowering operators bᵀ

N and bN , defined by the (2.9). Let us introduce first two oper-
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ators Q (±) with matrix elements Q (±)

kl := q± kδkl , where q = e2π i/N ≡ e i θN , θN :=
2π/N . Then, by the above definition,Q (±) y = z (±), where z (±)

k = ∑N−1
l=0 Q (±)

kl yl =∑N−1
l=0 q± kδkl yl = q± k yk . Thismeans that under the action of the operatorsQ (±) the

components yk of an arbitrary vector y get multiplied by the factors q±k , respectively.
Consequently, for their linear combinations

C := 1

2

(
Q (+) + Q (−)

)
, S := 1

2i

(
Q (+) − Q (−)

)
, (2.10)

one obtains that

(
Cy

)
k

= 1

2

(
qk + q− k

)
yk = cos(k θN ) yk ,

(
S y

)
k

= 1

2i

(
qk − q− k

)
yk = sin(k θN ) yk . (2.11)

The next step is to define a pair of the shift operators T(±) with matrix elements
T (±)

kl := δk±1, l , where δ−1, l ≡ δN−1, l and δN , l ≡ δ0, l . Then

(
T(±) y

)
k

=
N−1∑
l=0

T (±)

kl yl =
N−1∑
l=0

δk±1, l yl = yk±1, (2.12)

where y−1 ≡ yN−1 and yN ≡ y0.

Lemma 1. Components of any N-periodic vector y satisfy the following identities:

N−1∑
k=0

q j(k ± 1) yk =
N−1∑
k=0

q j k yk ∓ 1, j = 0, 1, 2, ...,N − 1. (2.13)

Proof. Begin with the left side of the first identity in (2.13),

N−1∑
k=0

q j (k+1) yk =
N∑

m=1

q j m ym−1 =
N−1∑
m=1

q j m ym−1 + q j N yN−1 =
N−1∑
m=0

q j m ym−1,

(2.14)
in view of the evident relation qNj = 1. The second identity in (2.13) is argued
similarly. �	
The operators Q (±) and T(±) are actually interconnected through the FFT operator
Φ(N ) in the following way.

Proposition 1. The intertwining relations

Q (±) Φ(N ) = Φ(N ) T(∓), T(±) Φ(N ) = Φ(N ) Q (±), (2.15)

for the operators Q (±) and T(±) with the FFT operator Φ(N ) are respectively valid.
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Proof. Two relations on the left in (2.15) follow directly from the lemma, if one
takes into account the definition of the shift operators T(±). So let us consider now
matrix elements of two identities on the right in (2.15):

(
T(±) Φ(N )

)
mn

=
N−1∑
k=0

T (±)

mk Φ
(N )

k n =
N−1∑
k=0

δm±1, k Φ
(N )

k n = Φ
(N )
m±1, n

= 1√
N

q (m±1) n = q± n Φ(N )
m, n =

N−1∑
l=0

Φ
(N )

m, l q
± l δl n =

(
Φ (N ) Q(±)

)
mn

.

This completes the proof of the proposition. �	
Notice that if a vector y (n) with the components {y(n)

j }N−1
j=0 isN -periodic, then allm

vectors z (n;m), which have, by definition, components {z(n;m)
j }N−1

j=0 :={qmj y(n)
j }N−1

j=0 , m
is an arbitrary integer number, are also N -periodic. Therefore, applying each line in
(2.15)m times in succession, one arrives at the following corollary to the proposition:

q±mj
N−1∑
k=0

Φ
(N )

j, k y(n)
k =

N−1∑
k=0

Φ
(N )

j, k Tm
∓ y(n)

k ,

Tm
±

N−1∑
k=0

Φ
(N )

j, k y(n)
k =

N−1∑
k=0

Φ
(N )

j, k q±mk y(n)
k , (2.16)

where m is an integer.
Finally, to formulate explicit forms of the operators bN and bᵀ

N , let us consider
now two operators X and D (N > 2):

X := 1

2i

√
N

2π

(
Q (+) − Q (−)

)
≡

√
N

2π
S, D := 1

2

√
N

2π

(
T(+) − T(−)

)
.

(2.17)
From the intertwining relations (2.15) it follows then that

D Φ(N ) = iΦ(N )X , X Φ(N ) = iΦ(N )D . (2.18)

Difference raising and lowering operators bN and bᵀ
N may be now defined as

bN := 1√
2

(X + D) = 1

2

√
N

π

[
S + 1

2

(
T(+) − T(−)

)]
, (2.19a)

bᵀ
N := 1√

2
(X − D) = 1

2

√
N

π

[
S − 1

2

(
T(+) − T(−)

)]
. (2.19b)
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We also display the N × N matrix form of the operators bN and bᵀ
N , respectively:

bN =
√
2π

N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 0 0 −1
−1 s1 1 0 · · · 0 0 0 0
0 −1 s2 1 · · · 0 0 0 0
0 0 −1 s3 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · sN−4 1 0 0
0 0 0 0 · · · −1 sN−3 1 0
0 0 0 0 · · · 0 −1 sN−2 1
1 0 0 0 · · · 0 0 −1 sN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.20)

where sk := 2 sin 2π
N k, 0 ≤ k ≤ N − 1, and N is an arbitrary integer, N ≥ 2. Notice

that the raising difference operator bᵀ
N is the matrix transpose of the lowering differ-

ence operator bN .
The DFT eigenvectors f (N )

n are thus governed by the difference equation

N (N )f (N )
n = λ(N )

n f (N )
n , (2.21)

where the discrete number operator N (N ) is expressed in terms of the raising and
lowering difference operators bᵀ

N and bN as N (N ) = bᵀ
N bN .

3 More on Raising and Lowering Operators

In this section we evaluate the rank of the N -dimensional difference operators bN
and bᵀ

N and demonstrate that the characteristic equations for those operators have
a particular ‘cyclic’ form. To begin with, notice that the N × N matrix in (2.20),
associated with the lowering difference operator bN , is traceless, because one checks
easily that

∑N−1
k=1 sk = 0. Also, since sN−k = −sk by definition of the parameters sk ,

the diagonal elements of the matrix in (2.20) are of the form

{0, s1, s2, ..., sL−1, 0,−sL−1, ...,−s2,−s1}, N = 2L,

{0, s1, s2, ..., sL,−sL, ...,−s2,−s1}, N = 2L + 1, (3.1)

for even and odd dimensions N , respectively. Observe also that this matrix bN is
of ‘almost’ tridiagonal form: it has ± 1 elements in the upper-right and lower-left
corners but otherwise is tridiagonal. Since those ± 1 elements can be regarded as
cyclic extensions of the subdiagonal and the superdiagonal elements, these type of
matrices are referred to as extended-tridiagonal matrices [11–13].

The matrix bN is noninvertible and its rank is different for the even and odd
dimensions N . This can be shown in the following way.

At this point, we recall first that the space spanned by the rows (columns) of
a matrix A is called the row (column) space of A; its dimension is called the row
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(column) rank. The rank of a matrix equals the row (column) rank [14]. Also, the
process ofGaussian elimination is simplified byworking directlywith the augmented
matrix of the linear system and applying certain operations to its rows (columns).
Those row (column) operations correspond to the three types of operation that may
be applied to a linear system during Gaussian elimination: they are called elementary
row (column) operations and they can be applied to any matrix. The elementary row
(column) operations are as follows:

(a) interchange rows (columns) i and j;
(b) add c times row (column) j to row (column) i where c is any scalar;
(c) multiply row (column) i by a non-zero scalar c.

From the matrix point of view the essential content of theorem, which describes the
possible behaviour of a linear system, is that any matrix can be put in row echelon
form by application of a suitable finite sequence of elementary row operations [15].

Let us evaluate now the rank of the matrix bN = √
2π/N×ML with odd N =

2L + 1, L ≥ 1, where the matrixML is

ML :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 0 0 · · · 0 −1
−1 s1 1 0 · · · 0 0 0 · · · 0 0
0 −1 s2 1 · · · 0 0 0 · · · 0 0
0 0 −1 s3 · · · 0 0 0 · · · 0 0
...

...
...

. . .
. . .

. . .
...

...
...

...
...

0 0 · · · 0 −1 sL 1 0 · · · 0 0
0 0 · · · 0 0 −1 −sL 1 · · · 0 0
...

...
...

...
...

...
. . .

. . .
. . .

...
...

0 0 · · · 0 0 0 · · · −1 −s3 1 0
0 0 · · · 0 0 0 · · · 0 −1 −s2 1
1 0 · · · 0 0 0 · · · 0 0 −1 −s1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.2)

By elementary column operations [15] one may cast the matrix ML into the form

M
′
L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 0 · · · 0 −1 0
s1 1 0 · · · 0 0 0 · · · 0 0 −1
−1 s2 1 · · · 0 0 0 · · · 0 0 0
0 −1 s3 · · · 0 0 0 · · · 0 0 0
...

...
. . .

. . .
. . .

...
...

...
...

...
...

0 · · · 0 −1 sL 1 0 · · · 0 0 0
0 · · · 0 0 −1 −sL 1 · · · 0 0 0
...

...
...

...
...

. . .
. . .

. . .
...

...
...

0 · · · 0 0 0 · · · −1 −s3 1 0 0
0 · · · 0 0 0 · · · 0 −1 −s2 1 0
0 · · · 0 0 0 · · · 0 0 −1 −s1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.3)
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which is almost in the column echelon form, except for the two elements equal to
−1 on the upper right corner of this matrix. But it is not hard to eliminate them by
further elementary column operations over the last two columns, and bringM

′
L into

complete column echelon form. Indeed, let us add to the penultimate column in (3.3)
its first column plus the last one, multiplied by the parameter s1, to get

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 0 · · · 0 0 0
s1 1 0 · · · 0 0 0 · · · 0 0 −1
−1 s2 1 · · · 0 0 0 · · · 0 −1 0
0 −1 s3 · · · 0 0 0 · · · 0 0 0
...

...
. . .

. . .
. . .

...
...

...
...

...
...

0 · · · 0 −1 sL 1 0 · · · 0 0 0
0 · · · 0 0 −1 −sL 1 · · · 0 0 0
...

...
...

...
...

. . .
. . .

. . .
...

...
...

0 · · · 0 0 0 · · · −1 −s3 1 0 0
0 · · · 0 0 0 · · · 0 −1 −s2 1 0
0 · · · 0 0 0 · · · 0 0 −1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.4)

So the next step is to add to the last column in (3.4) the second column plus the
penultimate one, multiplied by the parameter s2; this results in

M
′′
L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0 0 · · · 0 0 0
s1 1 0 · · · 0 0 0 · · · 0 0 0
−1 s2 1 · · · 0 0 0 · · · 0 −1 0
0 −1 s3 · · · 0 0 0 · · · 0 0 −1
...

...
. . .

. . .
. . .

...
...

...
...

...
...

0 · · · 0 −1 sL 1 0 · · · 0 0 0
0 · · · 0 0 −1 −sL 1 · · · 0 0 0
...

...
...

...
...

. . .
. . .

. . .
...

...
...

0 · · · 0 0 0 · · · −1 −s3 1 0 0
0 · · · 0 0 0 · · · 0 −1 −s2 1 s2
0 · · · 0 0 0 · · · 0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.5)

Let us emphasize that this formM
′′
L of the initial matrixML contains the principal

minor (M
′′
L )i,j, 3 ≤ i, j ≤ N , of order N − 2 ≡ 2(L − 1) + 1, which results from the

deletion of the first two rows and columns in (3.5), and this minor has the same
structure as the matrix M

′
L−1 in (3.3). One therefore may employ the same type of

elementary column operations as above in order to move those two elements equal
to −1 in the last two columns in (3.5) another two rows down. Repeating those steps
L − 1 times, one finally arrives at the form, which contains a principal minor of order
3 on its lower right corner; this minor has the same structure as M

′
1 . It is plain that

in the latter case
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M
′
1 =

⎡
⎣ 1 −1 0

s1 1 −1
−1 −s1 1

⎤
⎦ =⇒

⎡
⎣ 1 0 0

s1 1 −1
−1 −1 1

⎤
⎦ =⇒

⎡
⎣ 1 0 0

s1 1 0
−1 −1 0

⎤
⎦ , (3.6)

wherewe added the first column plus the third column,multiplied by s1, to the second
column at the first step, and the second column to the third one at the second step.
This means that the matrix ML is finally reduced to the complete column echelon
form of a lower triangular matrix, which has nonzero first N − 1 diagonal elements
and vanishing the last diagonal element and one zero elements on its main diagonal.
Hence detML = 0, rankML = N − 1 and the null space of the matrix ML is one-
dimensional.

Turning now to the case of the matrix bN with even N = 2L, L ≥ 2, one may
likewise employ the same inductive procedure in L as in the odd case N = 2L + 1.
Although the corresponding matrix for even N = 2L has almost the same structure
as ML in the odd case, the diagonal elements of those two matrices are essentially
different: as indicated in (3.1), there are two zero diagonal elements in the even
case N = 2L and only one zero element in the odd case N = 2L + 1. One therefore
checks easily that all even case matrices can be transformed, by elementary column
operations, into the complete echelon formwith two zero columns at the end. Thus in
the even N = 2L case detbN = 0, rankbN = N − 2 and the null space of the matrix
bN is two-dimensional.

One important remark must be made at this point, however. Since the discrete
quantum number operatorN (N ) is defined asN (N ) = bᵀ

N bN , every element of the
null space of the matrix bN evidently represents at the same time the eigenvector of
the operatorN (N ), associated with the zero eigenvalue as well. Therefore the present
result that the dimensions of the null spaces of thematrices bN are equal to 1 and 2 for
odd and even N ’s, respectively, already strongly indicates that the spectral properties
of the discrete quantum number operator N (N ) essentially differ for even and odd
dimensions N . We shall comment more on this heretofore undetected distinction
between even and odd dimensional DFT’s below, in Sect. 5.

Let us draw attention now to the remarkable ’cyclic’ properties of the lowering and
raising difference operators bN and bᵀ

N , which can be formulated in the following
way. Recall first that the equation which is solved to find eigenvalues of N × N
matrixM is usually interpreted as the equation for finding roots of the characteristic
polynomial

pM (λ) := det(λI − M ) = λN + c1λ
N−1 + c2λ

N−2 + · · · + cN−1λ + cN , (3.7)

where I is the N × N identity matrix and the coefficient ck is (−1)k times the sum of
the determinants of all of the principal k × k minors ofM (note that by this definition
c1 = − trace(M ) and cN = (−1)NdetM ). The Cayley–Hamilton theorem then states
that a N × N matrixM is annihilated by its characteristic polynomial (3.7), that is,

pM (M ) = MN + c1M
N−1 + c2M

N−2 + · · · + cN−1M + cN = 0. (3.8)
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It is plain that for a singular traceless matrix M the coefficients c1 and cN vanish. It
turns out that for the particular traceless matrices of the form bN and bᵀ

N there are
many more zero coefficients in the identity (3.8). The point is that from the defining
intertwinning relations (2.9) for the lowering and raising difference operators bN and
bᵀ
N it follows that

(Φ(N ))† bN Φ(N ) = i bN , (Φ(N ))† bᵀ
N Φ(N ) = − i bᵀ

N . (3.9)

This means that if, for instance, bN f (N ) = λ f (N ) and λ = 0, then bN g (N ) =
−iλ g (N ), where the eigenvector g (N ) of the operator bN is defined as g (N ) :=
(Φ(N ))† f (N ).Hence, if the operator bN has nonzero eigenvalue λ, associated with the
eigenvector f (N ), then it has another eigenvalue −iλ, associated with the eigenvector
g (N ), as well. Moreover, since the DFT operator Φ(N ) is of order 4, each nonzero
eigenvalue λ is actually accompanied by the 3 other eigenvalues ik λ, k = 1, 2, 3.
Since the polynomial (z − λ)(z − iλ)(z + λ)(z + iλ) = z4 − λ4, one therefore con-
cludes that in the characteristic Eq. (3.8) for the lowering operator bN ,N ≥ 5, the
only nonzero coefficients are c4, c8, ..., c4k , where k := [N/4]. This characteristic
equation can be thus written in the ‘cyclic’ form as

bNN + c4bN−4
N + ... + c4kbN−4k

N =
(
b4N − λ4

1

)(
b4N − λ4

2

)
...

(
b4N − λ4

k

)
blN = 0,

(3.10)
where 0 ≤ l := N − 4k ≤ 3 and λ1, λ2, ..., λk are some constants.

To close this section, we recall here that the raising difference operator bᵀ
N is the

matrix transpose of the lowering difference operator bN ; hence the former operator
has the same set of properties as the latter one: the vanishing determinant and trace,
the same rank, distinct for even and odd dimensions N , and the same characteristic
Eq. (3.10).

4 Multiplicities of the DFT Eigenvalues

As a starting point in this section, we remind the reader that there are the two so-called
Chebyshev sets of functions

{sin t, sin 2t, ..., sin nt}, {1, cos t, cos 2t, ..., cos nt}, (4.1)

which are defined on intervals (0, π) and [0, π ], respectively. These Chebyshev sets
were employed in [2, 3] to give a simple proof of the explicit expressions for the
multiplicitiesmk(ik), 0 ≤ k ≤ 3 of the eigenvalues 1, i,−1,−i of theN -dimensional
discrete Fourier transform,
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m0(1) =
[
N

4

]
+ 1, m1(i) =

[
N + 1

4

]
,

m2(−1) =
[
N + 2

4

]
, m3(−i) =

[
N + 3

4

]
− 1, (4.2)

where the symbol [X ] stands for the greatest integer lower than X or equal to X . Note
that the lowering bN and raising bᵀ

N difference operators, as well as their product,
the discrete number operator N (N ) = bᵀ

NbN , do depend on the set of parameters
{s1, s2, ..., sN−1}, which may be regarded as the particular case of the Chebyshev
set of smooth functions taken at the distinct points tk := 2πk/N , 1 ≤ k ≤ (N − 1).
Thus the fact that this particular set of parameters {s1, s2, ..., sN−1} plays a key role in
our study, is not accidental at all. But the real reason for mentioning here the formula
(4.2) for multiplicities is the following. The formula (4.2) had been known for a long
time before the appearance of the above-mentioned papers [2, 3]. Nevertheless, what
seems to remain unnoticed is that this formula clearly points out the dissimilarity
between ordering the even-dimensional eigenvectors and odd-dimensional eigenvec-
tors of the DFT operator Φ(N ). This can be argued in the following way.

Imagine that one has a set of N marbles in 4 colors: m0(1) green, m1(i) blue,
m2(−1) yellow, and m3(−i) red ones; the marbles of the same color are assumed
for the moment to be identical. Also, there are boxes of various sizes with n + 1
compartments, which are consecutively labeled by 0, 1, 2, ..., n. The question is how
to select a box of minimal size in order to arrange in it, one by one, all theN marbles,
taking into account that the green marbles may be placed only into compartments,
marked as 0, 4, 8, ..., bluemarbles—into compartments,marked as 1, 5, 9, ..., yellow
marbles—into compartments, marked as 2, 6, 10, ..., and red ones—into compart-
ments 3, 7, 11, ....

To solve this rather simple combinatorial problem, observe that all odd dimensions
N ≥ 3 can be divided into two sets as:

a) N = 3 (mod 4), i.e., N = 3 + 4l, l = 0, 1, 2, 3, ...,

m0(1) = m1(i) = m2(−1) = l + 1, m3(−i) = l,
3∑

k=0

mk(i
k) = 3(l + 1) + l = 4l + 3 = N .

In particular, for N = 3 (i.e., l = 0) this set can be schematically depicted as

Fig. 1
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b) N = 5 (mod 4), i.e., N = 5 + 4l, l = 0, 1, 2, 3, ...,

m0(1) = l + 2, m1(i) = m2(−1) = m3(−i) = l + 1,
3∑

k=0

mk(i
k) = l + 2 + 3(l + 1) = 4l + 5 = N .

In particular, for N = 5 (i.e., l = 0) this set can be schematically depicted as

Fig. 2

By the same token, all even dimensions N ≥ 4 can be divided into two sets of the
form:

b) N = 4 (mod 4), i.e., N = 4 + 4l, l = 0, 1, 2, 3, ...,

m0(1) = l + 2, m1(i) = m2(−1) = l + 1, m3(−i) = l,
3∑

k=0

mk(i
k) = l + 2 + 2(l + 1) + l = 4(l + 1) = N ;

In particular, for N = 4 (i.e., l = 0) this set can be schematically depicted as.

Fig. 3

b) N = 6 (mod 4), i.e., N = 6 + 4l, l = 0, 1, 2, 3, ...,

m0(1) = l + 2, m1(i) = l + 1, m2(−1) = l + 2, m3(−i) = l + 1,
3∑

k=0

mk(i
k) = 2(l + 1) + 2(l + 2) = 4l + 6 = N .

In particular, for N = 6 (i.e., l = 0) this set can be schematically depicted as

Fig. 4
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Inspection of the 4 above figures indicates that for each odd numberN of marbles it is
sufficient to use a box, which contains onlyN compartments in it; whilst in the case of
all even numbers N of marbles one needs to use boxes with N + 1 compartments in
them. Thus simply by examining the well-known formulas (4.2) for the multiplicities
of the eigenvalues for the N -dimensional DFT operator Φ(N ) one arrives at the same
conclusions concerning essential differences between symmetry properties of the
eigenvectors for the even and odd dimensional DFT operator Φ(N ), as we elaborated
at the end of the previous section.

5 Lowest Odd-Dimensional DFT Eigenvector

Now, before proceeding to the problem of finding the lowest DFT eigenvector f (N )
0

explicitly, we call attention to the following symmetry properties of the DFT eigen-
vectors f (N )

n , 0 ≤ n ≤ N − 1, in general. In the continuous case the number operator
N commuteswith the reflection operatorP, which is defined on the full real line x ∈ R

as P x = − x. Hence the Hermite functions (1.2) are either reflection symmetric or
antisymmetric, that is, Pψn(x) = ψn(−x) = (−1)n ψn(x). The discrete analogue of
the reflection operator P is represented by the N × N matrix

Pd := VJ ≡ JV†, (5.1)

where J is the N × N matrix with ones on the secondary diagonal, V = T(−) and
V† = T(+) (recall that T (±)

kl = δk±1,l, 0 ≤ k, l ≤ N − 1). Similar to the continuous
case, the discrete number operatorN (N ) is Pd -symmetric, that is, [N (N ),Pd ] = 0.

Therefore it is plain that the DFT eigenvectors f (N )
n , 0 ≤ n ≤ N − 1, should

be either Pd -symmetric or Pd -antisymmetric: from Pd f (N )
n = g (N )

n it follows that(
g (N )
n

)
k

= (−1)n
(
f (N )
n

)
N−k−1

.

It is natural to define the lowest DFT eigenvector f (N )
0 by the difference equation

bN f (N )
0 = 0. In other words, the lowest DFT eigenvector f (N )

0 is defined as the eigen-
vector of the lowering difference operator bN , associated with the zero eigenvalue.
But as we have argued in Sect. 3, the null space of the matrix bN is one-dimensional
for all DFT’s, based on odd points N = 2L + 1, whereas it is two-dimensional for
all DFT’s on even points N = 2L. This means that the lowest DFT eigenvector f (N )

0
of the discrete number operator N (N ) is uniquely defined for all odd dimensions
N = 2L + 1, whereas in the cases of even dimensions N = 2L the Pd -symmetry in
the space of eigenvectors of the operatorN (N ) is spontaneously broken. Hence only
for odd dimensions N = 2L + 1 it is possible to construct a ladder-type hierarchy
explicitly for the all higher DFT eigenvectors f (N )

n , 1 ≤ n ≤ N − 1 = 2L, of the form
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f (N )
n = 1

dn

(
bᵀ
N

)n
f (N )
0 , dn := (λ1λ2...λn)

1/2, (5.2)

where λ1, λ2, ..., λn are the eigenvalues of the discrete number operatorN (N ). So to
begin with, one needs to find first the lowest DFT eigenvector f (N )

0 analytically.
Let us look for solutions of the difference equation bN f (N )

0 = 0 in the form

f (N )
0 = (x0, x1, x2, . . . , x2L−1, x2L)

T , N = 2L + 1, (5.3)

without assuming a priori knowledge of whether this solution is symmetric or anti-
symmetric. Then the equation bN f (N )

0 = 0 reduces to the following N = 2L + 1
homogeneous equations

x1 − x2L = 0,
s1x1 + x2 − x0 = 0,
s2x2 + x3 − x1 = 0,

· · · · · ·
sLxL + xL+1 − xL−1 = 0,

−sLxL+1 + xL+2 − xL = 0,
· · · · · ·

−s2x2L−1 + x2L − x2L−2 = 0,
−s1x2L + x0 − x2L−1 = 0,

(5.4)

for the N = 2L + 1 components x0, x1, x2, . . . , x2L−1, x2L of the vector f (N )
0 . From

the first line in (5.4) it follows at once that x2L = x1, from the second and last lines
it follows that x2L−1 = x2, and so on. This means that the vector f (N )

0 has only L + 1
linearly independent components and can be written as

f (N )
0 = (x0, x1, x2, . . . , xL, xL, . . . , x2, x1)

T , (5.5)

whereas the system (5.4) reduces to the system of L homogeneous equations

x0 − s1x1 − x2 = 0,
x1 − s2x2 − x3 = 0,
x2 − s3x3 − x4 = 0,

· · · · · ·
xL−3 − sL−2xL−2 − xL−1 = 0,
xL−2 − sL−1xL−1 − xL = 0,
xL−1 − sLxL − xL = 0,

(5.6)

for those L + 1 independent components x0, x1, x2, . . . , xL of the vector f
(N )
0 .

It is worth noting that from (5.5) it is already evident that the lowest odd-
dimensional DFT eigenvector f (N )

0 is Pd -symmetric, Pd f
(N )
0 = f (N )

0 for all
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N = 2L + 1, and this symmetry property of f (N )
0 follows directly from the defin-

ing difference equation bN f (N )
0 = 0 itself.

To solve the system (5.6), one of the components x0, x1, x2, . . . , xL should be
considered as an arbitrary one (note that from the last line in (5.6) it is clear that it
should be the component xL), so that the system (5.6) transforms into a system of L
inhomogeneous equations

x0 − s1x1 − x2 = 0,
x1 − s2x2 − x3 = 0,
x2 − s3x3 − x4 = 0,

· · · · · ·
xL−3 − sL−2xL−2 − xL−1 = 0,
xL−2 − sL−1xL−1 − xL = 0,

xL−1 = (1 + sL) xL,

(5.7)

for the L components x0, x1, x2, . . . , xL−1.
The augmented matrix associated with this linear system of equations is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −s1 −1 0 0 · · · 0 0 0
0 1 −s2 −1 0 · · · 0 0 0
0 0 1 −s3 −1 · · · 0 0 0
...

...
...

. . .
. . .

. . .
...

...
...

0 0 0 · · · 1 −sL−3 −1 0 0
0 0 0 · · · 0 1 −sL−2 −1 0
0 0 0 · · · 0 0 1 −sL−1 1
0 0 0 · · · 0 0 0 1 sL + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.8)

Since the matrix coefficient in (5.8) is represented by an upper triangular matrix with
units on its diagonal, its determinant is equal to 1. Therefore, by employing Cramer’s
rule one obtains all unknowns xk , 0 ≤ k ≤ L − 1, in terms of the following L×L
determinants:

xk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −s1 −1 · · · 0 0 · · · 0 0 0

0 1 −s2
. . . 0 0 · · · 0 0 0

0 0 1
. . . −1 0 · · · 0 0 0

...
...

...
. . . −sk−1 0 0

...
...

...

0 0 0 · · · 1 0 −1 0 · · · 0
0 0 0 · · · 0 0 −sk+1 −1 · · · 0
...

...
...

...
...

...
. . .

. . .
. . .

...

0 0 0 · · · 0 0 · · · 1 −sL−2 −1
0 0 0 · · · 0 1 · · · 0 1 −sL−1

0 0 0 · · · 0 sL + 1 · · · 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.9)
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Note that the first principal (k − 1)×(k − 1) minor in (5.9), delineated by the
dashed line in the left upper part of the determinant, is also of the upper triangular
form and its determinant is therefore equal to 1. Hence, each unknown xk can be also
expressed in terms of the (L − k)×(L − k) determinants of the form

xk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −sk+1 −1 · · · 0 0 0 0
0 1 −sk+2 · · · 0 0 0 0
0 0 1 · · · 0 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 −sL−3 −1 0
0 0 0 · · · 0 1 −sL−2 −1
1 0 0 · · · 0 0 1 −sL−1

1 + sL 0 0 · · · 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.10)

This means that only the unknown x0 is actually determined as the L×L determinant,
defined by (5.10) with k = 0, whereas all the other unknowns xk , 1 ≤ k ≤ L − 1,
are expressed in terms of the descending (L − k)×(L − k) determinants (5.10),
respectively.

Thus we conclude that the normalized lowest odd-dimensional eigenvector f (N )
0

of the discrete number operator N (N ) can be explicitly written as

f (N )
0 = c−1

0 (x0, x1, . . . , xL−1, 1, 1, xL−1, . . . , x1), (5.11)

where all L independent components xk , k = 0, . . . ,L − 1, are defined by (5.10)
in terms of the (L − k)×(L − k) determinants, respectively, and the normalization
constant

c0 =
(2π
N

)1/4[
x20 + 2

(
1 + x21 + . . . + x2L−1

)]1/2
. (5.12)

In connection with the formula (5.11), it may be remarked that from the algebraic
point of view this procedure of deriving the explicit form of the lowest eigenvector
f (N )
0 is equivalent to finding a basis for the null space of the matrix bN .
Recall that the null space of the matrix bN is the subspace of RN consisting of

all solutions of the linear system bN f (N )
0 = 0 (see, for example, [15]). To solve this

system, one can put bN in reduced echelon form by using row operations in the same
way as we detailed it in Sect. 3. Then this system bN f (N )

0 = 0 can be solved quickly
by the process of back substitution, to get the same solution f (N )

0 as in (5.11), up to
a constant factor.

Note that more convenient explicit expressions for the independent components
xk of the lowest eigenvector f

(N )
0 may be found by using the Laplacian determinant

expansion by the minors, associated with the only two nonzero elements in the first
column in (5.10), in order to reduce this determinant to the sum of two (L − k − 2)×
(L − k − 2) and (L − k − 1)×(L − k − 1) three-diagonal determinants of the same
type,
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xk = ΔL−k−2(sk+1, . . . , sL−2) + (1 + sL)ΔL−k−1(sk+1, . . . , sL−1). (5.13)

Observe that in (5.13) we have used the notation

Δn(a1, . . . , an) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 · · · 0 0 0
−1 a2 1 · · · 0 0 0
0 −1 a3 · · · 0 0 0
...

...
. . .

. . .
. . .

...
...

0 0 0
. . . an−2 1 0

0 0 0 · · · −1 an−1 1
0 0 0 · · · 0 −1 an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n ≥ 1, Δ0 = 1, (5.14)

for the determinant, which satisfies two three-term recursions

Δn(a1, ..., an) = a1 Δn−1(a2, ..., an) + Δn−2(a3, ..., an),

Δn(a1, ..., an) = an Δn−1(a1, ..., an−1) + Δn−2(a1, ..., an−2). (5.15)

The above recursions are readily derived from (5.14) with the aid of the Laplacian
determinant expansion by the minors, associated with the only two nonzero elements
either in the first column in (5.14), or in the last column of (5.14), respectively. Hence
an explicit dependence of the determinantΔn(a1, ..., an) on the parameters a1, ..., an
can be formulated in terms of the particular finite continued fractions, containing
those parameters a1, ..., an. Indeed, upon employing the square bracket notation for
the finite continued fraction (see, for example, [16])

�a1, a2, . . . , an� := a1 + 1

a2 + 1

a3 + 1

. . . + 1

an

, (5.16)

the determinant Δn(a1, ..., an) can be represented by a product of finite continued
fractions as follows.

Lemma 2. Let a1, a2, . . . , an be real numbers. Then the determinant Δn(a1, ..., an)
can be written in the form

Δn(a1, . . . , an) = �an, . . . , a1��an−1, . . . , a1� · · · �a2, a1��a1�, (5.17)

which is valid for ∀n ∈ N.

Proof. We proceed by induction. For n = 1,Δ1(a1) = a1 = �a1�. Now suppose that
equality (5.17) holds for all 1 < n ≤ m. Then for n = m + 1, from the second line
in (5.15) and the induction hypothesis one obtains that
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Δm+1(a1, . . . , am+1) = am+1Δm(a1, . . . , am) + Δm−1(a1, . . . , am−1)

= am+1�am, . . . , a1��am−1, . . . , a1� · · · �a2, a1��a1� + �am−1, . . . , a1� · · · �a2, a1��a1�
=

(
am+1�am, . . . , a1� + 1

)
�am−1, . . . , a1� · · · �a2, a1��a1�

= �am+1, am, . . . , a1��am, . . . , a1��am−1, . . . , a1� · · · �a2, a1��a1�, (5.18)

where in the penultimate line the identity

am+1�am, . . . , a1� + 1 = �am+1, am, . . . , a1� �am, . . . , a1� (5.19)

is employed, which represents just another form of writing down the definition (5.16)
for the bracket notation. �	
We are now in a position to express the components of the lowest odd-dimensional
eigenvector f (N )

0 in terms of finite continued fractions as follows.

Proposition 2. Let bN be the matrix given by (2.20) and f (N )
0 be the solution of the

difference equation bN f (N )
0 = 0, given by (5.11). Then xL−1 = 1 + sL and all other

components xk , k = 0, . . . ,L − 2, are equal to

xk =
(
1 + �sL, sL−1, . . . , sk+2, sk+1�

) L−k−2∏
j=0

�sL−1−j, sL−2−j, . . . , sk+2, sk+1�.

(5.20)

Proof. It follows from (5.7) that xL−1 = 1 + sL. By using the identity

sL �sL−1, sL−2, . . . , sk+1� = �sL, sL−1, . . . , sk+1� �sL−1, sL−2, . . . , sk+1� − 1,
(5.21)

which is valid by (5.18), from (5.13) and the above lemma one derives that

xk = �sL−2, . . . , sk+1� �sL−3, . . . , sk+1� · · · �sk+2, sk+1� �sk+1�

+(sL + 1)�sL−1, . . . , sk+1� �sL−2, . . . , sk+1� · · · �sk+2, sk+1� �sk+1�

= �sL, sL−1, . . . , sk+2, sk+1� · · · �sk+1� + �sL−1, sL−2, . . . , sk+2, sk+1� · · · �sk+1�

=
(
1 + �sL, sL−1, . . . , sk+2, sk+1�

) L−k−2∏
j=0

�sL−1−j, sL−2−j, . . . , sk+2, sk+1�, (5.22)

where k = 0, . . . ,L − 2. This completes the proof of (5.20). �	

6 Concluding Remarks

To summarize, we have thus succeeded in deriving the discrete number operator
N (N ) in terms of the raising and lowering difference operators, which satisfy the
standard intertwining with the DFT operator. We proved that the discrete number
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operator N (N ) has distinct eigenvalues only if this operator is associated with the
DFT’s based on grids {x0, x1, ..., xN−1} with odd N = 2L + 1, whereas in the cases
of the DFT’s based on grids {x0, x1, ..., xN−1} with even N = 2L the discrete reflec-
tion symmetry in the space of eigenvectors of the discrete number operatorN (N ) is
spontaneously broken. This essential distinction between even and odd dimensions
has been shown to be consistent with the well-known old formula for the multiplic-
ities of the eigenvalues, associated with the N -dimensional DFT. Finally, we have
explicitly found the lowest DFT eigenvector f (N )

0 of the operator N (N ) for all odd
dimensions N = 2L + 1, which helped us to formulate a ladder-type hierarchy of all
the higher DFT eigenvectors f (N )

n , 1 ≤ n ≤ N − 1 = 2L. However, what is missing
in this exposition of our current understanding of the discrete Fourier transform,
is the explicit form of the discrete analogue of the eigenfunctions of the Fourier
integral transform in terms of the Hermite polynomials Hn(x) times the lowest FIT
eigenfunction ψ0(x) = e−x2/2. We believe that we need just a bit more time in order
to resolve this final piece of the puzzle, which has for a long time surrounded the
explicit form of the eigenvectors of the discrete Fourier transform.
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General Sets of Bell-Sheffer
and Log-Sheffer Polynomials

Pierpaolo Natalini, Sandra Pinelas, and Paolo Emilio Ricci

Abstract The introduction of iterated exponential and logarithmic functions allows
to construct new sets of Bell-Sheffer and logarithmic Sheffer (shortly log-Sheffer)
polynomials, whose shift operators and differential equations exhibit an iterative
character. In this context it is possible to define, for every integers r and s, polyno-
mials of higher order. They give back, in particular cases, the Bell-exponential and
logarithmic polynomials and numbers introduced in preceding papers. Connections
with integer sequences appearing in Combinatorial analysis are also mentioned.

Keywords Sheffer polynomials · Generating functions · Monomiality principle ·
Shift operators · Combinatorial analysis

AMS 2010 Mathematics Subject Classifications. 33C99 · 05A10 · 11P81

1 Introduction

In recent articles [8, 9, 21], new sets of Sheffer [26] and Brenke [7] polynomials,
based on higher order Bell numbers [4, 13, 15, 16, 21], have been studied. Further-
more, several integer sequences associated [27] with the considered polynomials sets
both of exponential [1, 2] and logarithmic [8] type have been introduced.

It isworth to note that exponential and logarithmic polynomials have been recently
studied in the multidimensional case [18–20].
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In preceding articles [16, 22] some particular cases of exponential-Sheffer and
logarithmic-Sheffer polynomials have been introduced. In this article we extend
these results to the general case of exponential (Bell-Sheffer) and logarithmic-Sheffer
(Log-Sheffer) polynomials.

2 Sheffer Polynomials

The Sheffer polynomials {sn(x)} are introduced [26] by means of the exponential
generating function [28] of the type:

A(t) exp(xH (t)) =
∞∑

n=0

sn(x)
tn

n! , (2.1)

where

A(t) =
∞∑

n=0

an
tn

n! , (a0 �= 0),

H (t) =
∞∑

n=0

hn
tn

n! , (h0 = 0).

(2.2)

According to a different characterization (see [25, p. 18]), the same polynomial
sequence can be defined by means of the pair (g(t), f (t)), where g(t) is an invertible
series and f (t) is a delta series:

g(t) =
∞∑

n=0

gn
tn

n! , (g0 �= 0),

f (t) =
∞∑

n=0

fn
tn

n! , (f0 = 0, f1 �= 0).

(2.3)

Denoting by f −1(t) the compositional inverse of f (t) (i.e. such that f
(
f −1(t)

) =
f −1 (f (t)) = t), the exponential generating function of the sequence {sn(x)} is
given by

1

g[f −1(t)] exp
(
xf −1(t)

) =
∞∑

n=0

sn(x)
tn

n! , (2.4)
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so that

A(t) = 1

g[f −1(t)] , H (t) = f −1(t). (2.5)

When g(t) ≡ 1, the Sheffer sequence corresponding to the pair (1, f (t)) is called the
associated Sheffer sequence {σn(x)} for f (t), and its exponential generating function
is given by

exp
(
xf −1(t)

) =
∞∑

n=0

σn(x)
tn

n! . (2.6)

A list of known Sheffer polynomial sequences and their associated ones can be found
in [5, 6].

2.1 Shift Operators and Differential Equation

We recall that a polynomial set {pn(x)} is called quasi-monomial if and only if there

exist two operators P̂ and M̂ such that

P̂ (pn(x)) = npn−1(x), M̂ (pn(x)) = pn+1(x), (n = 1, 2, . . . ). (2.7)

P̂ is called the derivative operator and M̂ the multiplication operator, as they act in
the same way of classical operators on monomials.

This definition traces back to a paper by Steffensen [29] recently improved by
Dattoli [10, 11] and widely used in several applications [12].

Ben Cheikh [3] proved that every polynomial set is quasi-monomial under the
action of suitable derivative and multiplication operators. In particular, in the same
article, the following result is proved, as a particular case of Corollary 3.2:

Theorem 2.1. Let (pn(x)) denote a Sheffer polynomial set, defined by the generating
function

A(t) exp(xH (t)) =
∞∑

n=0

pn(x)
tn

n! , (2.8)

where

A(t) =
∞∑

n=0

ãnt
n, (ã0 �= 0), (2.9)
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and

H (t) =
∞∑

n=0

h̃n t
n+1, (h̃0 �= 0). (2.10)

Denoting, as before, by f (t) the compositional inverse ofH (t), the Sheffer polynomial
set {pn(x)} is quasi-monomial under the action of the operators

P̂ = f (Dx), M̂ = A′[f (Dx)]
A[f (Dx)] + xH ′[f (Dx)], (2.11)

where prime denotes the ordinary derivatives with respect to t.
Furthermore, according to the monomiality principle, the quasi-monomial poly-

nomials {pn(x)} satisfy the differential equation

M̂ P̂ pn(x) = n pn(x). (2.12)

3 New Exponential and Logarithmic-Sheffer
Polynomial Sets

We introduce, for shortness, the following compact notation.
Put, by definition:

E0(t) := exp(t) − 1
E1(t) := E0(E0(t)) = exp(exp(t) − 1) − 1
. . . . . . . . .

Er(t) := E0(Er−1(t)) = exp(exp(. . . (exp(t) − 1) . . . ) − 1) − 1, [(r + 1)−times exp],
Er(Es(t)) = Er+s+1(t),

and in a similar way:

�0(t) := log(t + 1)
�1(t) := �0(�0(t)) = log(log(t + 1) + 1)
. . . . . . . . .

�r(t) := �0(�r−1(t)) = log (log (. . . (log(t + 1) + 1) . . . ) + 1) , [(r + 1)−times log],
�r(�s(t)) = �r+s+1(t).
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3.1 Operational Rules

Note that, for every integers r, k, h,

Er(�r(t)) = t, �r(Er(t)) = t,

(if k > h) Ek(�h(t)) = Ek−h−1(t), Eh(�k(t)) = �k−h−1(t),

(if k > h) �k(Eh(t)) = �k−h−1(t), �h(Ek(t)) = Ek−h−1(t),

eEr(t) = Er+1(t) + 1, e�r(t) = �r−1(t) + 1,

(3.1)

and it is suitable to put, by definition:

E−1(t) := �−1(t) := t. (3.2)

Furthermore, the differentiation rules hold

• For the exponential functions

DtE0(t) = et = E0(t) + 1,

DtE1(t) = [E1(t) + 1][E0(t) + 1],
(3.3)

and, in general, for every r ≥ 0,

DtEr(t) =
r∏

�=0

[E�(t) + 1], (3.4)

• For the logarithmic functions

Dt�0(t) = 1

t + 1
,

Dt�1(t) = 1

[log(t + 1) + 1](t + 1)
= 1

[�0(t) + 1](t + 1)
,

(3.5)

and in general, for every s ≥ 0,:

Dt�s(t) =
[

s∏

�=0

[
��−1(t) + 1

]
]−1

. (3.6)
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Remark 3.1. Note that the coefficients of the Taylor expansion of E1(t) are given
by the Bell numbers bn = b[1]

n

E1(t) + 1 =
∞∑

n=0

b[1]
n

tn

n! ,

and, in general the coefficients of the Taylor expansion of Er(t) are given by the
higher order Bell numbers b[r]

n

Er(t) + 1 =
∞∑

n=0

b[r]
n

tn

n! . (3.7)

The higher order Bell numbers, also known as higher order exponential numbers,
have been considered in [13–15], and used in [21] in the framework of Brenke and
Sheffer polynomials. The first few of them are shown in Table 1.

Remark 3.2. Note that the coefficients of the Taylor expansion of �0(t) are given
by the logarithmic numbers l[1]n = (−1)n−1(n − 1)!

�0(t) =
∞∑

n=1

l[1]n

tn

n! =
∞∑

n=1

(−1)n−1(n − 1)! t
n

n! , (3.8)

and, in general the coefficients of the Taylor expansion of �r−1(t) are given by the
higher order logarithmic numbers l[r]n

Table 1 Bell and higher order Bell numbers for n = 1, 2, . . . , 10

n b[1]
n b[2]

n b[3]
n b[4]

n b[5]
n

0 1 1 1 1 1

1 1 1 1 1 1

2 2 3 4 5 6

3 5 12 22 35 51

4 15 60 154 315 561

5 52 358 1304 3455 7556

6 203 2471 12915 44590 120196

7 877 19302 146115 660665 2201856

8 4140 167894 1855570 11035095 45592666

9 21147 1606137 26097835 204904830 1051951026

10 115975 16733779 402215465 4183174520 26740775306
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Table 2 Logarithmic numbers for n = 1, 2, . . . , 10

n l[1]n l[2]n l[3]n l[4]n l[5]n

1 1 1 1 1 1

2 −1 −2 −3 −4 −5

3 2 7 15 26 40

4 −6 −35 −105 −234 −440

5 24 228 947 2696 6170

6 −120 −1834 −10472 −37919 −105315

7 720 17582 137337 630521 2120610

8 −5040 −195866 −2085605 −12111114 −49242470

9 40320 2487832 36017472 264051201 1296133195

10 −362880 −35499576 −697407850 −6445170229 −38152216495

�r−1(t) =
∞∑

n=1

l[r]n

tn

n! . (3.9)

The higher order logarithmic numbers, which are the counterpart of the higher order
Bell (exponential) numbers, have been considered in [8], and used there in the frame-
work of new sets of Sheffer polynomials. The first few of them are shown in Table 2.

It isworth to note that the (absolute value) of numbers contained inTable 2, read by
column for r = 1, 2, . . . , 10, are contained in the Encyclopedia of integer sequences
[27], respectively under A000142, A003713, A000268, A000310, A000359.

The same table, read by rows, for n = 3 gives a symmetric integer sequence
known under A005449 (second pentagonal numbers n(3n + 1)/2), for n = 4 gives a
sequence known under A094952 (derived from pentagonal numbers, or from Stirling
numbers of the first kind matrix), while the subsequent sequences for n = 5, 6, . . . ,
are not included in the Encyclopedia.

Therefore, the above definitions are useful to clarify themeaning of the considered
sequences.

Remark 3.3. In what follows, it is convenient to put, by definition, in (3.8)–(3.9),
l[r]0 = 1, ∀r ≥ 0, so that �0(Dx) + 1 = ∑∞

k=0 l
[1]
k tn/n!, and in general �r−1(Dx) +

1 = ∑∞
k=0 l

[r]
k tn/n!.

3.2 Cases to Be Considered

In the following Sections we consider the Sheffer polynomial sets defined by the
generating functions:

http://oeis.org/A000142
http://oeis.org/A003713
http://oeis.org/A000268
http://oeis.org/A000310
http://oeis.org/A000359
http://oeis.org/A005449
http://oeis.org/A094952
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The Case Exp-Exp

• Exp-Exp I.1.

G(t, x) = exp[Er(t) + x Es(t)] =
∞∑

n=0

e[r,s]
n (x)

tn

n! , (r ≥ s)

• Exp-Exp I.2.

G(t, x) = exp[Er(t) + x Es(t)] =
∞∑

n=0

ẽ[r,s]
n (x)

tn

n! , (r < s)

The Case Log-Log

• Log-Log II.1.

G(t, x) = exp[�r(t) + x�s(t)] =
∞∑

n=0

�[r,s]
n (x)

tn

n! , (r ≥ s)

• Log-Log II.2.

G(t, x) = exp[�r(t) + x�s(t)] =
∞∑

n=0

�̃[r,s]
n (x)

tn

n! , (r < s)

The Case Exp-Log

G(t, x) = exp[Er(t) + x�s(t)] =
∞∑

n=0

ε[r,s]
n (x)

tn

n! , (r ≥ s)

The Case Log-Exp

G(t, x) = exp[�r(t) + x Es(t)] =
∞∑

n=0

λ[r,s]
n (x)

tn

n! , (r ≥ s)

The particular cases Exp-Exp I.1 and Log-Log II.1, when r = s have been already
considered (see respectively [16, 22]). Other basic exponential and logarithmic Shef-
fer polynomial sets, defined by assuming A(t) = et have been examined in preceding
articles (see [17, 23]).
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4 The Case Exp-Exp

We have:

A(t) = exp[Er(t)], H (t) = Es(t),

A′(t)
A(t)

=
r∏

�=0

[E�(t) + 1], H ′(t) =
s∏

�=0

[E�(t) + 1],

H−1(t) = �s(t) = f (t),

so that

P̂ = �s(Dx),

M̂ =
r∏

�=0

[E�(�s(Dx)) + 1] + x
s∏

�=0

[E�(�s(Dx)) + 1].

Remark 4.1. Note that, putting a(t) = exp[Er(t)], b(t) = exp[Es(t)] and x = θ , the
generating function writes:

G(t, x) = exp[Er(t)](exp[Es(t)])x = a(t)[b(t)]θ

so that, for every fixed t, as a function of θ , is a logarithmic spiral [24].

4.1 The Case Exp-Exp I.1

Being r ≤ s, recalling the operational rules (3.1), we find:

M̂ = (1 + x)
r∏

�=0

[E�(�s(Dx)) + 1] + x
s∏

�=r+1

[E�(�s(Dx)) + 1] =

= (1 + x)
r∏

�=0

[�s−�−1(Dx) + 1] + x
s∏

�=r+1

[�s−�−1(Dx) + 1],

so that we have the differential equation:

{
(1 + x)

r∏

�=0

[�s−�−1(Dx) + 1] + x
s∏

�=r+1

[�s−�−1(Dx) + 1]
}

�s(Dx) e
[r,s]
n (x) = n e[r,s]

n (x).



580 P. Natalini et al.

4.2 Example

Let G(t, x) = exp[E1(t) + x E2(t)] =
∞∑

n=1

e[1,2]
n (x)

tn

n! .
The first few e[1,2]

n (x) polynomials are:

e[1,2]0 (x) = 1

e[1,2]1 (x) = x + 1

e[1,2]2 (x) = x2 + 5x + 3

e[1,2]3 (x) = x3 + 12x2 + 30x + 12

e[1,2]4 (x) = x4 + 22x3 + 129x2 + 210x + 60

e[1,2]5 (x) = x5 + 35x4 + 375x3 + 1425x2 + 1678x + 358

e[1,2]6 (x) = x6 + 51x5 + 870x4 + 6045x3 + 16683x2 + 15047x + 2471

e[1,2]7 (x) = x7 + 70x6 + 1743x5 + 19320x4 + 97818x3 + 208565x2 + 149404x + 19302

Further values can be easily achieved by using Wolfram Alpha©.

Remark 4.2. Note that the sequence {1, 1, 3, 12, 60, 358, 2471, 19302, . . . }
appears in the Encyclopedia of Integer Sequences [27] under A000258—Number
of 3-level labeled rooted trees with n leaves.—Christian G. Bower, Aug 15, 1998.

Differential Equation

{
(1 + x) [�0(Dx) + 1] [�1(Dx) + 1] + x (Dx + 1)

}
�2(Dx) e[1,2]

n (x) = n e[1,2]
n (x).

Therefore, using positions in Remark 3.3, we find:

[
(1 + x)

∞∑

k=0

l[1]k
Dk
x

k!
∞∑

k=0

l[2]k
Dk
x

k! + x (Dx + 1)
] ∞∑

k=0

l[3]k+1
Dk+1
x

(k + 1)! ẽ
[2,1]
n (x) = n ẽ[2,1]n (x),

[
(1 + x)

∑

k1+k2+k3=k
0≤k≤n−1

(
k

k1, k2, k3

)
l[1]k1

l[2]k2
l[3]k3+1(k3 + 1)Dk+1

x

+ x (Dx + 1)
n−1∑

k=0

l[3]k+1

Dk+1
x

(k + 1)!
]
ẽ[2,1]
n (x) = n ẽ[2,1]

n (x),

since the series applied to a polynomial of degree n reduce to a finite sums.

http://oeis.org/A000258
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4.3 The Case Exp-Exp I.2

Being r > s, recalling the operational rules (3.1), we find:

M̂ = (1 + x)
s∏

�=0

[E�(�s(Dx)) + 1] +
r∏

�=s+1

[E�(�s(Dx)) + 1] =

= (1 + x)
s∏

�=0

[�s−�−1(Dx) + 1] +
r∏

�=s+1

[E�−s−1(Dx) + 1],

so that we have the differential equation:

{
(1 + x)

s∏

�=0

[�s−�−1(Dx) + 1] +
r∏

�=s+1

[E�−s−1(Dx) + 1]
}

�s(Dx) ẽ
[r,s]
n (x) = n ẽ[r,s]

n (x).

4.4 Example

Let G(t, x) = exp[E2(t) + x E1(t)] =
∞∑

n=1

ẽ[2,1]
n (x)

tn

n! .
The first few ẽ[2,1]

n (x) polynomials are:

ẽ[2,1]0 (x) = 1

ẽ[2,1]1 (x) = x + 1

ẽ[2,1]2 (x) = x2 + 4x + 4

ẽ[2,1]3 (x) = x3 + 9x2 + 23x + 22

ẽ[2,1]4 (x) = x4 + 16x3 + 80x2 + 171x + 154

ẽ[2,1]5 (x) = x5 + 25x4 + 210x3 + 795x2 + 1537x + 1304

ẽ[2,1]6 (x) = x6 + 36x5 + 460x4 + 2765x3 + 8932x2 + 16059x + 12915

ẽ[2,1]7 (x) = x7 + 49x6 + 889x5 + 7875x4 + 38577x3 + 112378x2 + 190339x + 146115

Further values can be easily achieved by using Wolfram Alpha©.
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Remark 4.3. Note that the sequence {1, 1, 4, 22, 154, 1304, 12915, 146115, . . . }
appears in the Encyclopedia of Integer Sequences [27] under A000307—Number of
4-level labeled rooted trees with n leaves.

Differential Equation

[
(1 + x)(Dx + 1)[�0(Dx) + 1] + eDx

]
�1(Dx) ẽ[2,1]

n (x) = n ẽ[2,1]
n (x),

Therefore, using positions in Remark 3.3, we find:

[
(1 + x)(Dx + 1)

∞∑

k=0

l[1]k

Dk
x

k!
∞∑

k=0

l[2]k+1

Dk+1
x

(k + 1)!

+
∞∑

k=0

Dk
x

k!
∞∑

k=0

l[2]k+1

Dk+1
x

(k + 1)!
]
ẽ[2,1]
n (x) = n ẽ[2,1]

n (x),

[
(1 + x)(Dx + 1)

n−1∑

k=0

k∑

h=0

l[1]k−h l
[2]
h+1

(k − h)! (h + 1)!D
k+1
x

+
n−1∑

k=0

k∑

h=0

l[2]h+1

(k − h)! (h + 1)!D
k+1
x

]
ẽ[2,1]
n (x) = n ẽ[2,1]

n (x),

since the series applied to a polynomial of degree n reduce to a finite sums.

5 The Case Log-Log

We have:

A(t) = exp[�r(t)], H (t) = �s(t),

A′(t)
A(t)

=
[

r∏

�=0

[��−1(t) + 1]
]−1

, H ′(t) =
[

s∏

�=0

[��−1(t) + 1]
]−1

,

H−1(t) = Es(t) = f (t),

http://oeis.org/A000307
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so that

P̂ = Es(Dx),

M̂ =
[

r∏

�=0

[��−1(Es(Dx)) + 1]
]−1

+ x

[
s∏

�=0

[��−1(Es(Dx)) + 1]
]−1

.

Remark 5.1. Note that, here and in what follows, we could write

A(t) = exp[�r(t)] = �r−1(t) + 1 and G(t, x) = (�r−1(t) + 1)(�s−1(t) + 1)x,

but we used the notation above to highlight, here and in what follows, the symmetry
with respect to the Exp case.

The above notation for G(t, x), putting a(t) = �r−1(t) + 1, b(t) = �s−1(t) + 1
and x = θ , shows that the generating function, for every fixed t, as a function of θ ,
is a logarithmic spiral [24].

5.1 The Case Log-Log I.1

Being r ≤ s, recalling the operational rules (3.1), we find:

M̂ = (1 + x)

[
r∏

�=0

[��−1(Es(Dx)) + 1]
]−1

+ x

[
s∏

�=r+1

[��−1(Es(Dx)) + 1]
]−1

= (1 + x)

[
r∏

�=0

[Es−�(Dx) + 1]
]−1

+ x

[
s∏

�=r+1

[Es−�(Dx) + 1]
]−1

,

so that we have the differential equation:

⎧
⎨

⎩(1 + x)

[
r∏

�=0

[Es−�(Dx) + 1]
]−1

+ x

[
s∏

�=r+1

[Es−�(Dx) + 1]
]−1

⎫
⎬

⎭Es(Dx) �[r,s]
n (x) = n �[r,s]

n (x).



584 P. Natalini et al.

5.2 Example

Let G(t, x) = exp[�2(t) + x�3(t)] =
∞∑

n=1

�[2,3]
n (x)

tn

n! .
The first few �[2,3]

n (x) polynomials are:

�
[2,3]
0 (x) = 1

�
[2,3]
1 (x) = x + 1

�
[2,3]
2 (x) = x2 − 2x − 2

�
[2,3]
3 (x) = x3 − 9x2 + 8x + 7

�
[2,3]
4 (x) = x4 − 20x3 + 92x2 − 54x − 35

�
[2,3]
5 (x) = x5 − 35x4 + 360x3 − 1140x2 + 551x + 228

�
[2,3]
6 (x) = x6 − 54x5 + 970x4 − 6850x3 + 16951x2 − 7615x − 1834

�
[2,3]
7 (x) = x7 − 77x6 + 2128x5 − 26145x4 − 142821x3 − 296457x2 + 130686x + 17582

Further values can be easily achieved by using Wolfram Alpha©.

Differential Equation

{
(1 + x)

[
[E3(Dx) + 1][E2(Dx) + 1][E1(Dx) + 1]

]−1

+ x [E0(Dx) + 1]−1
}
E3(Dx) e[1,2]

n (x) = n e[1,2]
n (x),

where the series expansions of the Ek(·) + 1 functions (k = 0, 1, 2, 3) are reported
in Eq. (3.7).

5.3 The Case Log-Log I.2

Being r > s, recalling the operational rules (3.1), we find:



General Sets of Bell-Sheffer and Log-Sheffer Polynomials 585

M̂ = (1 + x)

[
s∏

�=0

[��−1(Es(Dx)) + 1]
]−1

+
[

r∏

�=s+1

[��−1(Es(Dx)) + 1]
]−1

= (1 + x)

[
s∏

�=0

[Es−�(Dx) + 1]
]−1

+
[

r∏

�=s+1

[��−s−2(Dx) + 1]
]−1

,

so that we have the differential equation:

⎧
⎨

⎩(1 + x)

[
s∏

�=0

[Es−�(Dx) + 1]
]−1

+
[

r∏

�=s+1

[��−s−2(Dx) + 1]
]−1

⎫
⎬

⎭Es(Dx) �̃[r,s]
n (x) = n �̃[r,s]

n (x).

5.4 Example

Let G(t, x) = exp[�3(t) + x�2(t)] =
∞∑

n=1

�̃[3,2]
n (x)

tn

n! .

The first few �̃[3,2]
n (x) polynomials are:

�̃
[3,2]
0 (x) = 1

�̃
[3,2]
1 (x) = x + 1

�̃
[3,2]
2 (x) = x2 − x − 3

�̃
[3,2]
3 (x) = x3 − 6x2 − 3x + 15

�̃
[3,2]
4 (x) = x4 − 14x3 + 33x2 + 69x − 105

�̃
[3,2]
5 (x) = x5 − 25x4 + 165x3 − 120x2 − 1003x + 947

�̃
[3,2]
6 (x) = x6 − 39x5 + 480x4 − 1860x3 − 1383x2 + 14842x − 10472

�̃
[3,2]
7 (x) = x7 − 56x6 + 1092x5 − 8610x4 + 19047x3 + 60571x2 − 238843x + 137337
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Further values can be easily achieved by using Wolfram Alpha©.

Differential Equation

{
(1 + x)

[
[E2(Dx) + 1][E1(Dx) + 1][E0(Dx) + 1]

]−1

+ x [Dx + 1]−1
}
E2(Dx) �̃[3,2]

n (x) = n �̃[3,2]
n (x),

where the series expansions of the Ek(·) + 1 functions (k = 0, 1, 2) and the �1(·)
function are reported in Eqs. (3.7) and (3.8).

6 The Case Exp-Log

We have:

A(t) = exp[Er(t)], H (t) = �s(t),

A′(t)
A(t)

=
r∏

�=0

[E�(t) + 1], H ′(t) =
[

s∏

�=0

[��−1(t) + 1]
]−1

,

H−1(t) = Es(t) = f (t),

so that

P̂ = Es(Dx),

M̂ =
r∏

�=0

[E�(Es(Dx)) + 1] + x

[
s∏

�=0

[��−1(Es(Dx)) + 1]
]−1

.

Recalling the operational rules (3.1), we find:

M̂ =
r∏

�=0

[E�(Es(Dx)) + 1] + x

[
s∏

�=0

[��−1(Es(Dx)) + 1]
]−1

=
r∏

�=0

[E�+s+1(Dx) + 1] + x

[
s∏

�=0

[Es−�(Dx) + 1]
]−1

,

so that we have the differential equation:

⎧
⎨

⎩

r∏

�=0

[E�+s+1(Dx) + 1] + x

[
s∏

�=0

[Es−�(Dx) + 1]
]−1

⎫
⎬

⎭Es(Dx) ε[r,s]
n (x) = n ε[r,s]

n (x).
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6.1 Example

Let G(t, x) = exp[E3(t) + x�2(t)] =
∞∑

n=1

ε[3,2]
n (x)

tn

n! .
The first few ε[3,2]

n (x) polynomials are:

ε
[3,2]
0 (x) = 1

ε
[3,2]
1 (x) = x + 1

ε
[3,2]
2 (x) = x2 − x + 5

ε
[3,2]
3 (x) = x3 − 6x2 + 21x + 35

ε
[3,2]
4 (x) = x4 − 14x3 + 81x2 + 5x + 315

ε
[3,2]
5 (x) = x5 − 25x4 + 245x3 − 640x2 + 1697x + 3455

ε
[3,2]
6 (x) = x6 − 39x5 + 600x4 − 3620x3 + 11757x2 + 4390x + 44590

ε
[3,2]
7 (x) = x7 − 56x6 + 1260x5 − 12950x4 + 69027x3 − 121961x2 + 294683x + 660665

Further values can be easily achieved by using Wolfram Alpha©.

Remark 6.1. Note that the sequence {1, 1, 5, 35, 315, 3455, 44590, 660665, . . . }
appears in the Encyclopedia of Integer Sequences [27] under A000357—Number of
5-level labeled rooted trees with n leaves.

Differential Equation

{
[E3(Dx) + 1][E4(Dx) + 1][E5(Dx) + 1][E6(Dx) + 1]

+ x
[
[E0(Dx) + 1][E1(Dx) + 1][E2(Dx) + 1]

]−1}
E2(Dx) ε[3,2]

n (x) = n ε[3,2]
n (x),

where E0(Dx) + 1 = exp(Dx) and the series expansions of the Ek(·) + 1 functions
(k = 1, 2, 3, 4, 5, 6) are reported in Eq. (3.7).

It is convenient to write the above equation in this form:

{[ 6∏

h=0

[Eh(Dx) + 1]
]
[E2(Dx) + 1] −

[ 6∏

h=0

[Eh(Dx) + 1]
]}

ε[3,2]
n (x)

+ x E2(Dx) ε[3,2]
n (x) = n

[ 2∏

h=0

[Eh(Dx) + 1] ε[3,2]
n (x).

http://oeis.org/A000357
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Then, we can apply the Cauchy multi-product formula. For instance, we have:

[ 6∏

h=0

[Eh(Dx) + 1]
]
[E2(Dx) + 1]

=
∑

k0+k1+···+k7=k
0≤k≤∞

(
k

k0, k1, . . . , k7

) 6∏

�=0

b[�]
k�

· b[2]
k7

Dk
x

k! ,

and in similar way the other multi-products follow.

7 The Case Log-Exp

We have:

A(t) = exp[�r(t)], H (t) = Es(t),

A′(t)
A(t)

=
[

r∏

�=0

[��−1(t) + 1]
]−1

, H ′(t) =
s∏

�=0

[E�(t) + 1],

H−1(t) = �s(t) = f (t),

so that

P̂ = �s(Dx),

M̂ =
[

r∏

�=0

[��−1(�s(Dx)) + 1]
]−1

+ x
s∏

�=0

[E�(�s(Dx)) + 1].

Recalling the operational rules (3.1), we find:

M̂ =
[

r∏

�=0

[��−1(�s(Dx)) + 1]
]−1

+ x
s∏

�=0

[E�(�s(Dx)) + 1]

=
[

r∏

�=0

[��+s(Dx) + 1]
]−1

+ x
s∏

�=0

[�s−�−1(Dx) + 1],
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so that we have the differential equation:

⎧
⎨

⎩

[
r∏

�=0

[��+s(Dx) + 1]
]−1

+ x
s∏

�=0

[�s−�−1(Dx) + 1]
⎫
⎬

⎭�s(Dx) λ[r,s]
n (x)= n λ[r,s]

n (x).

7.1 Example

Let G(t, x) = exp[�1(t) + x E3(t)] =
∞∑

n=1

λ[1,3]
n (x)

tn

n! .
The first few λ[1,3]

n (x) polynomials are:

λ
[1,3]
0 (x) = 1

λ
[1,3]
1 (x) = x + 1

λ
[1,3]
2 (x) = x2 + 6x − 1

λ
[1,3]
3 (x) = x3 + 15x2 + 31x + 2

λ
[1,3]
4 (x) = x4 + 28x3 + 178x2 + 226x − 6

λ
[1,3]
5 (x) = x5 + 45x4 + 570x3 + 2230x2 + 1904x + 24

λ
[1,3]
6 (x) = x6 + 66x5 + 1385x4 + 10990x3 + 30154x2 + 19093x − 120

λ
[1,3]
7 (x) = x7 + 91x6 + 2849x5 + 37940x4 + 214564x3 + 444703x2 + 216472x + 720

Further values can be easily achieved by using Wolfram Alpha©.
The (absolute value) of the above polynomials, computed at x = 0, are contained

in the Encyclopedia of integer sequences [27], under A000142.

Differential Equation

{[
[�3(Dx) + 1][�4(Dx) + 1]

]−1

+ x [�2(Dx) + 1][�1(Dx) + 1][�0(Dx) + 1][Dx + 1]
}

�3(Dx) λ
[1,3]
n (x) = n λ

[1,3]
n (x),

where the series expansions of the �k(·) + 1 functions (k = 0, 1, 2, 3, 4) function
are reported in equations Remark 3.3, and by Eq. (3.2), �−1(Dx) + 1 := Dx + 1.
It is convenient to write the above equation in this form:

http://oeis.org/A000142
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{
�3(Dx) + x

4∏

h=−1

[�h(Dx) + 1] �3(Dx)
}

λ[1,3]
n (x) = n

4∏

h=3

[�h(Dx) + 1] λ[1,3]
n (x).

Then, we can apply the Cauchy multi-product formula. For instance, we have:

(Dx + 1)
4∏

n=0

[�n(Dx) + 1]

= (Dx + 1)
∑

k0+k1+···+k4=k
0≤k≤∞

(
k

k0, k1, . . . , k4

) 4∏

�=0

l[�]k�

Dk
x

k! ,

and in similar way the other product follows.

8 Conclusion

Wehave introduced general sets of Exponential-Bell polynomials and their Logarith-
mic counterparts. The resulting polynomials satisfy operational differential equations
whose coefficients are expressed in terms of generalized Bell or logarithmic num-
bers. The resulting connections of the values at the origin—or at the point x = 1—of
some polynomial sets with the generalized Bell and logarithmic numbers have been
noticed.
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Existence Results for Periodic Boundary
Value Problems with a Convenction Term

Pasquale Candito and Roberto Livrea

Abstract By using an abstract coincidence point theorem for sequentially weakly
continuous maps the existence of at least one positive solution is obtained for a
periodic second order boundary value problem with a reaction term involving the
derivative u′ of the solution u: the so called convention term. As a consequence of
the main result also the existence of at least one positive solution is obtained for a
parameter-depending problem.

2010 AMS Subject Classification:34B15 · 34B18

1 Introduction

The aim of this paper is to obtain new existence results for the following periodic
boundary value problem

{−u′′ + M(t)u = f (t, u, u′) in (0, T )

u(T ) − u(0) = u′(T ) − u′(0) = 0,
(1)

where T > 0,M : [0, T ] → R is a continuous and positive function and f : [0, T ] ×
R × R → R is a continuous function with f (t, 0, 0) �= 0, for every t ∈ [0, T ].
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As usual, here we say that problem (1) has a convention term because the nonlin-
earity f depends both on the function u and its derivative u′.

Concerning boundary value problems there is a well consolidated literature where
many pioneering results are obtained by several scholars using different tools, as for
instance, a priori bounds and topological degree [8, 10, 22]; upper and lowermethods
[7, 14, 24] and fixed point theory [1, 11].

In particular, as pointed out in [25], the application of the fixed point theorem
in studying problem (1) is strictly connected to the sign properties of the Green’s
function associated to the linear homogeneous problem, that is f ≡ 0.

Recently, many authors paid attention to this topic and very interesting results are
pointed out in [2, 5, 12, 13, 15, 18, 20, 26, 27].

Here, for obtaining our main results, we apply a coincidence point theorem for
sequentially weakly continuous maps [3], see Theorem 1 below, in the variational
setting used in [23]. Such approach in spirit is based on an useful version of Fan’s fixed
point theorem [9] contained in [4]. However, we do not use the Green’s function to
get the solutions of problem (1). Moreover, we do not require any asymptotic growth
condition on the nonlinearity f at zero and/or at infinity. We just assume condition
(9) below, together f (t, 0, 0) �= 0, for every t ∈ [0, T ] to guarantee the existence of
a nontrivial solution which become positive provided that f (t, 0, 0) > 0 for every
t ∈ [0, T ].

However, as far as we know, there are few papers dealing with problem (1). For
example, in [19], applying a coincidence degree theorem and when the nonlinear
term is of the form f (t, x, y) = h(t)g(x, y), the existence of at least one positive
solution is ensured in terms of the relative behaviors of g(x,y)

|x |+|y| for |x | + |y| near 0
and +∞, where

(H) h : [0, T ] → [0,+∞) and g : [0,+∞) × R → [0,+∞) are continuous,
h(t) �≡ 0.

Furthermore, for the readers interested to the applications of periodic BVP in physics
and engineering, we again mention [19] and the references therein.

On the other hand, it seems that much more attention is paid to problems without
convention terms and depending from a positive parameter λ. An example is the
following {−u′′ + M(t)u = λg(t, u) in (0, T )

u(T ) − u(0) = u′(T ) − u′(0) = 0,
(2)

where T > 0,M : [0, T ] → R is a continuous and positive function and g : [0, T ] ×
R → R is a continuous function.

In this case, many existence, non-existence and multiplicity results have been
obtained, for instance, in [12, 13, 16, 17, 20, 21, 27], requiring suitable asymptotic
behaviors of the “slope ” f (t, u)/u of f at zero and at infinity.

Finally, for the sake of completeness, we wish to stress that in [3] and [6] a similar
approach to those proposed in the present note has been adopted for the study of a
Dirichlet and a Neumann boundary value problem respectively.
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2 Preliminaries

We recall that the weak derivative of a function u ∈ L1([0, T ]) is a function u′ ∈
L1([0, T ]) such that

∫ T

0
u(t)ϕ′(t) dt = −

∫ T

0
u′(t)ϕ(t) dt

for every ϕ ∈ C∞
T , where C∞

T is the space of indefinitely differentiable T -periodic
functions (see [23]).

Let us denote by HT the Sobolev space of functions u ∈ L2([0, T ]) having a weak
derivative u′ ∈ L2([0, T ]), while

H 2
T = {u ∈ HT : u′ ∈ HT }.

According to ([23, pp. 6–7]), for every u ∈ H 2
T one has that

∫ T

0
u′(t) dt =

∫ T

0
u′′(t) dt = 0,

hence the periodic conditions u(T ) − u(0) = u′(T ) − u′(0) = 0 hold. Moreover, if
we endow H 2

T with the norm

‖u‖ = ‖u‖2 + ‖u′‖2 + ‖u′′‖2
for every u ∈ H 2

T and on C1([0, T ]) we consider the norm

‖u‖C1 = max{‖u‖∞, ‖u′‖∞},

H 2
T is compactly embedded in C1([0, T ]), see [23, Proposition 1.2]. In particular, if

u ∈ H 2
T observe that

|u(t)| = 1

T

∣∣∣∣
∫ T

0
u(s) +

∫ T

0

(∫ t

s
u′(x) dx

)
ds

∣∣∣∣
≤ 1

T
‖u‖1 + ‖u′‖1 ≤ T−1/2‖u‖2 + T 1/2‖u′‖2

≤ max{T−1/2, T 1/2}‖u‖

for every t ∈ [0, T ]. Thus, if we put

cT = max{T−1/2, T 1/2}, (3)

one can conclude that
‖u‖∞ ≤ cT ‖u‖. (4)



596 P. Candito and R. Livrea

Similarly one can obtain
‖u′‖∞ ≤ cT ‖u‖, (5)

namely
‖u‖C1 ≤ cT ‖u‖. (6)

Incidentally, observe that if 0 < T ≤ 1 then cT = T−1/2 and one can realize the
equality in (6) choosing u constant. Namely, if 0 < T ≤ 1 the constant introduced in
(3) is the best one of the embedding. Some sharp estimates for the norms of functions
in HT can be found in [23, Proposition 1.3].

A direct computation based on (6) shows that for every r > 0

Br = {u ∈ H 2
T : ‖u‖ ≤ r} ⊆ {u ∈ C1([0, 1]) : ‖u‖C1 ≤ cT r}. (7)

The following coincidence point theorem represents the key tool for the proof of
our main results.

Theorem 1. Let X, Y be real Banach spaces, let K be a weakly compact, convex
subset of X, and let F, G be sequentially weakly continuous functions from K into
Y , that is, if xn ⇀ x in K then F(xn) ⇀ F(x) and G(xn) ⇀ G(x) in Y . Assume
that F−1(y) is a nonempty convex set for all y ∈ G(K ). Then there exists x0 ∈ K
such that F(x0) = G(x0).

3 Main Results

Here is the first existence result for the considered periodic problem.

Theorem 2. Let f : [0, T ] × R × R → R be a continuous function. Put

τ = μ

cT
√
T [1 + (T + 1)(‖M‖∞ + μ)]

, (8)

with μ = mint∈[0,T ] M(t), and assume that there exists r > 0 such that

max
(t,x,y)∈[0,T ]×[−r,r ]×[−r,r ]

| f (t, x, y)| ≤ τ · r. (9)

Then, problem (1) admits at least one classical solution ũ such that

(ũ(t), ũ′(t), ũ′′(t)) ∈ [−r, r ] × [−r, r ] × [−(‖M‖∞ + τ)r, (‖M‖∞ + τ)r ].
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Proof. We will apply Theorem 1 with X = H 2
T , Y = X∗, K = Bρ , being ρ = r

cT
,

and F,G : X → X∗ the functions defined as follows

F(u)(v) =
∫ T

0
(u′(t)v′(t) + M(t)u(t)v(t)) dt,

G(u)(v) =
∫ T

0
f (t, u(t), u′(t)) dt

for every u, v ∈ X . Indeed, K is weakly compact in view of the reflexivity of X ,
while the compactness of the embedding of X into C1([0, T ]) assures that both F
and G are sequentially weakly continuous functions from X to X∗.
We claim that

G(K ) ⊆ F(K ). (10)

Fix w∗ ∈ G(K ) and let w ∈ K be such that G(w) = w∗. Put

g(t) = f (t, w(t), w′(t))

for all t ∈ [0, T ] and observe that g ∈ C0([0, T ]). Hence, applying the Minty-
Browder theorem (or the Lax-Milgram theorem) in the space HT , the following
problem ⎧⎨

⎩
−u′′ + M(t)u = g(t) in (0, T )

u(T ) − u(0) = u(T ) − u(0) = 0
(11)

admits a unique weak solution uw ∈ HT and, in particular, thanks to the classical
regularity theory, one has that uw ∈ C2([0, T ]) and it is a classical solution.
If we localize uw ∈ H 2

T and prove that

uw ∈ Bρ, (12)

we can conclude that (10) holds, since F(uw) = G(w) = w∗.
To this end, we first point out that

‖uw‖∞ ≤ ‖g‖∞
μ

, (13)

‖u′
w‖∞ ≤ T

(‖M‖∞
μ

+ 1

)
‖g‖∞, (14)

and

‖u′′
w‖∞ ≤

(‖M‖∞
μ

+ 1

)
‖g‖∞. (15)
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Indeed, fix k = ‖g‖∞
μ

and put ϕ(t) = (uw − k)+. Obviously ϕ ∈ HT and ϕ′ = u′
w ·

χ{uw≥k}. Hence, from (11) one has

∫ T

0
(u′

wϕ′ + M(t)uwϕ) dt =
∫ T

0
gϕ dt

that is

0 ≤
∫ T

0
M(t)(uw − k)(uw − k)+ dt

≤
∫ T

0
((u′

w)2χ{uw≥k} + M(t)(uw − k)(uw − k)+) dt

=
∫ T

0
(g − M(t)k)(uw − k)+ dt ≤ 0,

and this implies that (uw − k)(uw − k)+ ≡ 0, namely

uw(t) ≤ k (16)

for every t ∈ [0, T ]. Arguing in a similar way, one has that

− k ≤ uw(t) (17)

for every t ∈ [0, T ]. Clearly (16) and (17) lead to (13).
Moreover, since uw(0) = uw(T ), there exists t0 ∈ (0, T ) such that u′

w(t0) = 0 and,
in view of (13), for every t ∈ [0, T ] one has

|u′
w(t)| =

∣∣∣∣
∫ t

t0

u′′
w(s) ds

∣∣∣∣
=

∣∣∣∣
∫ t

t0

(M(s)uw(s) − g(s)) ds

∣∣∣∣
≤ T (‖M‖∞‖uw‖∞ + ‖g‖∞)

≤ T

(‖M‖∞
μ

+ 1

)
‖g‖∞,

namely (14) holds.
Exploiting again that uw is a classical solution of problem (11), from (13) one derives

‖u′′
w‖∞ ≤

(‖M‖∞
μ

+ 1

)
‖g‖∞

and (15) is verified.
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Now observe that from (7) it follows that ‖w‖C1 ≤ r , hence, in view of assumption
(9), ‖g‖∞ ≤ τ · r . Putting together (13)–(15) and this last estimate, one has

‖uw‖2 + ‖u′
w‖2 + ‖u′′

w‖2 ≤ τ

√
T

μ
[1 + (T + 1)(‖M‖∞ + μ)] r = r

cT
= ρ,

namely (12) holds and (10) is verified.
It is simple to verify that F is injective, hence F−1(w∗) = {uw} for everyw∗ ∈ G(K )

and all the assumptions of Theorem 1 are satisfied. Thus, there exists ũ ∈ K such that

F(ũ)(v) = G(ũ)(v)

for every v ∈ H 2
T . ButC

∞
T ⊂ H 2

T implies that ũ′ ∈ HT , beingM(t)ũ − f (t, ũ, ũ′) its
weak derivative. The regularity theory assures that ũ ∈ C2([0, T ]) and it is a classical
solution of (1). The proof is complete since ‖ũ‖∞, and ‖ũ′‖∞ can be estimated
recalling (7), while ‖ũ′′‖∞ can be estimated exploiting the fact that ũ solves (1).

As a consequence of the previous result, we can state the main constant sign
periodic solution theorem.

Theorem 3. Let f : [0, T ] × R × R → R be a continuous function such that
f (t, 0, 0) > 0 for every t ∈ [0, T ]. Let τ > 0 as defined in (8) and assume that

max
(t,x,y)∈[0,T ]×[0,r ]×[−r,r ]

| f (t, x, y)| ≤ τ · r. (18)

Then, problem (1) admits at least one positive classical solution ũ such that

(ũ(t), ũ′(t), ũ′′(t)) ∈ (0, r ] × (0, r ] × [−(‖M‖∞ + τ)r, (‖M‖∞ + τ)r ].

Proof. We make use of some truncation arguments. Let f̂ : [0, T ] × R × R → R
be the function defined by

f̂ (t, x, y) =
{
f (t, x, y) if x ≥ 0
f (t, 0, y) if x < 0.

(19)

If we consider the following auxiliary periodic problem

{−u′′ + M(t)u = f̂ (t, u, u′) in [0, T ]
u(T ) − u(0) = u′(T ) − u(0) = 0,

(20)

it is evident that the non negative solutions of (20) are also constant sign solutions of
problem (1). At this point, we can observe that, thanks to (18) and (19), f̂ satisfies
all the assumptions of Theorem 2. Hence, problem (20) admits at least one classical
solution ũ ∈ C2([0, T ]). Finally, the proof is complete if we verify that

min
t∈[0,T ] ũ(t) > 0. (21)
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Suppose (21) false, namely, there exists t∗ ∈ [0, T ] such that

ũ(t∗) = min
t∈[0,T ] ũ(t) ≤ 0.

Thus, we have that
ũ′(t∗) = 0, ũ′′(t∗) ≥ 0. (22)

Indeed, if t∗ ∈ (0, T ) then (22) is obvious. Otherwise, suppose that t∗ = 0 (the other
case t∗ = T is analogous). Since 0 is a minimizer of ũ one has that ũ′(0) ≥ 0, but
the periodic boundary conditions lead to ũ′(0) = 0. Otherwise, if ũ′(0) > 0 one has
ũ′(T ) > 0 and for t close to T one achieves the contradiction ũ(t) < ũ(T ) = ũ(0) =
min[0,T ] ũ.
Moreover, if it was ũ′′(0) < 0, since ũ ∈ C2([0, T ]), one could find a suitable δ > 0
such that ũ′(t) < 0 for all t ∈ (0, δ), in contradiction with the fact that t∗ = 0 is a
minimizer.
At this point, exploiting (22) one is lead to the evident contradiction

0 ≥ −ũ′′(t∗) + M(t∗)ũ(t∗) = f̂ (t∗, ũ(t∗), ũ′(t∗)) = f (t∗, 0, 0) > 0.

In conclusion, (21) holds and the proof is completed.

Remark 1. The existence of a negative classical solution can be similarly proved if
one assumes that f (t, 0, 0) < 0 for every t ∈ [0, T ], in place of f (t, 0, 0) > 0.

Corollary 1. Let M : [0, T ] → R be a continuous and positive function and g :
[0, T ] × R → R a continuous function. Then, there exists λ∗ > 0 such that, for each
λ ∈ ] − λ∗, λ∗[, problem (2) admits at least one classical solution.

Proof. Let τ be as given in (8) and put

λ∗ = τ sup
r>0

r

max[0,T ]×[−r,r ] |g(t, x)|
.

Therefore, fixed λ such that |λ| < λ∗, it is clear that there exists r > 0 such that

max
(t,x)∈[0,T ]×[−r,r ]

|λg(t, x)| < τr.

In few words, the function λg fulfils condition (9) of Theorem 2 and our conclusion
follows.

Example 1. The following problem

{−u′′ + u
2 = 2+sin(t)

40π2 (1 − u3)(1 − u′4) in [0, 2π ]
u(2π) − u(0) = u′(2π) − u′(0) = 0,

(23)

admits at least one positive and non constant solution.
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Indeed, we can apply Theorem 3 if we consider r = 1, M(t) ≡ 1/2 and put

f (t, x, y) = 2 + sin(t)

40π2
(1 − x3)(1 − y4)

for every (t, x, y) ∈ [0, 1] × R × R. Direct computations show that

max[0,1]×[0,1]×[−1,1] | f (t, x, y)| = max[0,1]×[0,1]×[−1,1]
2 + sin(t)

40π2
(1 − x3)(1 − y4)

= 3

40π2
,

namely (18) is satisfied, being τ = 1
8π(1+π)

. Hence, (23) has at least one positive
classical solution u0 such that

(u0(t), u
′
0(t), u

′′
0(t)) ∈ (0, 1] × (0, 1] ×

[
−1

2
− 1

8π(1 + π)
,
1

2
+ 1

8π(1 + π)

]

for every t ∈ [0, 1]. Finally, it is easy to verify that (23) does not admits constant
solutions.
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Numerical Solution of the Time
Fractional Cable Equation

M. Luísa Morgado, Pedro M. Lima, and Mariana V. Mendes

Abstract The time fractional diffusion equation has attracted the attention of many
researchers in the last years due to its many applications in different domains. In this
article we are concerned with one of these models, the time fractional cable equation:

∂2V (x, t)

∂x2
− ∂αV (x, t)

∂xα
− V (x, t) = 0, (1)

which describes the spatial and temporal dependence of transmembrane potential
V (x, t) along the axial direction of a cylindrical nerve cell segment. Here ∂αV (x,t)

∂xα is
a Caputo-type derivative, with 0 < α < 1. We use a numerical scheme to solve Eq.
(1), which is based on the L1-method and on a finite-difference scheme for the time
and space discretization, respectively. In order to deal with the singularity at t = 0
we use non-uniform meshes. Numerical examples are presented which illustrate the
efficiency of the method.

1 Introduction

In this article we are concerned with a fractional model in Neurophysiology, a sci-
entific field that studies the functioning of the nervous system based on tools like
electrophysiological recordings, voltage clamp, extracellular single-unit recording
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Fig. 1 Structure of a typical
neuron (https://training.seer.
cancer.gov/anatomy/
nervous/tissue.html)

and recording of local field potentials. This area is related to many others, e.g. elec-
trophysiology, neuroanatomy, mathematical neuroscience, and biophysics.

Our main objective is to model the electrical conduction in non-isopotential
excitable cells called neurons. Before we start describing the process we need to
look into the neuron structure that we can see in Fig. 1 .

Looking at the picture we can see that a dendrite looks like branches of a tree
around the cell body of the neuron. It is through the dendrites that the neurons receive
electrical signals.

1.1 Cable Equation in Neurophysiology

The cable equation has been used all over the years to study multiple applications.
In this work we will consider an application to Neurophysiology.

The cable equation uses mathematical algorithms to calculate electric current
along passive neurites (neuronal process that refers to any projection from the cell
body of a neuron), particularly the dendrites that receive synaptic inputs at different
sites and times. The neuron may be polarized by means of experimentally imposed
voltages and currents. This behaviour of the neuron is well described by the one-
dimensional cable equation.

In [5], the author explains the following: “The cable equation model of passive
axons can thus be a valuable tool both for analyzing the means by which a neuron
combines a pattern of synaptic inputs to produce a specific computation and for deter-
mining the functionally significant electrical parameters of the cell by measurements
of the response to various applied currents. In order for the model to be of practical
use, though, it must be possible first to set up the equation so that the boundary
and initial conditions correspond to the anatomical, physiological, and experimental
realities, and second, to solve the equation under these conditions.”

In the present work we are going to consider only the case of a finite cable, that
is, we will consider a dendrite of finite length L which does not branch out or have
any synaptic connections.

This is an important condition that we have to take into account when choosing a
numerical scheme to approximate the solution.

https://training.seer.cancer.gov/anatomy/nervous/tissue.html
https://training.seer.cancer.gov/anatomy/nervous/tissue.html
https://training.seer.cancer.gov/anatomy/nervous/tissue.html
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1.2 The Time Fractional Cable Equation

As mentioned above, the cable equation has many applications, in particular, the one
-dimensional cable model can be used in Neurophysiology. In this case it simulates
electric current along neurites. As pointed out in [10], the equation “describes the
spatial and temporal dependence of transmembrane potential u(t, x) along the axial
x direction of a cylindrical nerve cell segment”.

The resulting differential equation for the transmembrane potential takes the form
of a standard diffusion equation with an extra term to account leakage of ions out of
the membrane, which results in a decay of the electric signal in space and in time.

We are dealing with a Cauchy Problem where we see the behaviour of the trans-
membrane potential when the system is excited at one end. We are going to apply the
cable equation to a finite length cable. Therefore, we are considering the spacial rank
between x = 0 and x = L and time interval [0, T ]. When applied to the problem
under consideration, cable equation has the following form [2]:

rm
∂um(t, x)

∂t
= θ2

∂2um(t, x)

∂x2
− um(t, x) + Em + rm Iinj I (t, x), t ∈ [0, T ], x ∈ [0, L]. (2)

In this equation um(t, x) is themembrane potential inmV and Iin j (t, x) is the injected
current in Amperes. The remaining coefficients are constants: rm is the membrane
resistance per unit length of the fiber in Ωcm, ν = rmcm is the membrane time
constant and θ = (rm/ra)0.5 is the membrane space constant. cm is the capacitance
per unit length of cable of diameter d in units of F/cm. ra is the axial resistance per
unit length inΩ/cm. Em is the leakage reversal potential due to different ions inmV
and it varies depending on the cell type, but we are going to consider Em = 0 for the
simplicity of the problem. In [10], instead of (2), the authors introduce an equation
with non integer order temporal derivative:

∂αU (Υ, χ)

∂Υ α
= ∂2U (Υ, χ)

∂χ2
−U (Υ, χ) + I (Υ, χ)

θcm
, t ∈ [0, T ], x ∈ [0, L] (3)

where I (Υ, χ) = θν Iin j (Υ, χ) and Iin j (Υ, χ) is the applied stimulus current density
also scaled (per unit length). cm = Cmπd and Cm is capacitance per unit area in
F/cm2. The diameter of the cable is d and it is in units of μm, θ is the membrane
space constant. We also take Υ = tν and χ = x/θ .

The fractional cable model is more realistic than the standard integer-order cable
equation. In fact, “the fractional cable model predicts that postsynaptic potentials
propagating along dendrites with larger spine densities can arrive at the soma faster
and be sustained at higher levels over longer times” (see [1]). Sincewe takeα ∈]0, 1[,
we expect that the solutions of the Eq. (3) describe better the qualitative behaviour of
the membrane potential than the usual approach with α = 1. Moreover, by changing
α we can fit the numerical results to the experimental ones.

For the fractional derivative in time we are going to use the Caputo definition. The
reason why we use this definition instead of any other is because it has already been
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proposed in [10] to model spiking adaptation for a homogeneous membrane patch.
Since the Caputo fractional derivative is a non-local operator (see [8]), “it could be
also introduced to explain behaviours like multiple timescale dynamics and memory
effects, related to the complexity of the medium”, as pointed out in [10].

In order tomake this equation realistic to the problem in studywe need to establish
the boundary and initial conditions in such a way that corresponds to the anatomical,
physiological and experimental realities, and also to solve the equation under these
conditions. The partial differential equation for a single unbranched cable has a
unique solution only if boundary conditions are specified at the endpoints. Since
we are going to consider the finite cable equation we define the terminations as
x = 0 and x = L . There are several boundary conditions for the finite cable equation
[2, 9] corresponding to different situations. For example, in the killed-end orDirichlet
case the voltage is clamped to zero and the axial current “leaks” out to ground. This is
the case that we are going to use and it can be simulated using the L1 method, as we
will describe in the next section. This is also the simplest case in which the end of the
neurite has been cut. This can arise in some preparations such as dissociated cells,
and it means that the intracellular and extracellular media are directly connected at
the end of the neurite. Thus the membrane potential at the end of the neurite is equal
to the extracellular potential.

u(0, t) = 0, t > 0 (4)

u(L , t) = 0, t > 0. (5)

The intracellular fluid therefore ends abruptly and abuts the extracellular fluid. If
the end at x = 0 is killed, then for x < 0 the depolarization is zero, as is the resting
potential. This killed end is sometimes referred to as a short-circuit termination.

The initial data describe the depolarization present at the beginning of the exper-
iment for all relevant values of x . Thus we have

u(x, 0) = s(x), 0 ≤ x ≤ L . (6)

In the next section we will introduce a numerical scheme to approximate the solution
of general problems of the form

∂αu(t, x)

∂tα
= ∂2u(t, x)

∂x2
− u(t, x) + v(t, x), t ∈ (0, T ), x ∈ (0, L) (7)

which satisfies the boundary conditions (4), (5) and the initial condition (6), andwhere
∂αu(t, x)

∂tα
represents the Caputo derivative of order α, 0 < α < 1 of the function u

with respect to the variable t , which, for the considered values of α is given by:

∂αu(t, x)

∂tα
= 1

Γ (1 − α)

∫ t

0
(t − s)−α ∂u(s, x)

∂s
ds, t > 0.
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2 Numerical Method

In order to discretize (7), we will consider a time graded mesh defined through
the meshpoints ti = (

i
N

)r
T , i = 0, 1, . . . , N , where r ≥ 1 is the grading exponent,

and a uniform space mesh with stepsize h = L
M . It should be noticed that when

r = 1 we obtain a uniform time mesh; if not, the length of each time interval of the
partition is variable and denoted by τi = ti+1 − ti , i = 0, ..., N − 1. At each point
(ti , x j ), i = 1, . . . , N , j = 1, . . . , M − 1, we are going to use the L1 approximation
formula for the fractional time derivative (see for example [4])

∂αu(ti , x j )

∂tα
≈

i−1∑
k=0

bik+1(u(tk+1, x j ) − u(tk, x j )), (8)

where

bik+1 = 1

Γ (2 − α)τk
((ti − tk)

1−α − (ti − tk+1)
1−α), (9)

and a central finite difference formula for the space derivative:

∂2u(ti , x j )

∂x2
≈ u(ti , x j+1) − 2u(ti , x j ) + u(ti , x j−1)

h2
. (10)

It is known that if u ∈ C2,4 ([0, T ] × [0, L]), then the order of the approximations (8)
and (10) are 2 − α and 2, respectively, but it is also known that the class of problems
which satisfies such regularity assumptions with respect to the time variable is very
restrictive [3]. Moreover, in [7], the authors proved that typical solutions of problems
of the form (4)–(7) satisfy:

∣∣∣∣∂
ku

∂xk
(t, x)

∣∣∣∣ ≤ C f or k = 0, 1, 2, 3, 4, (11)

∣∣∣∣∂
lu

∂t l
(t, x)

∣∣∣∣ ≤ C(1 + tα−l) f or l = 0, 1, 2, (12)

for all (t, x) ∈ (0, T ] × [0, L].
In Theorem 1 of [6] it is also shown that if the solution of such problems is less

singular than these typical solutions, in the sense that

∣∣∣∣∂
lu

∂t l
(t, x)

∣∣∣∣ ≤ C(1 + tβ−l) f or l = 0, 1, 2, (13)

for some β > α, then the initial condition s(x) is uniquely defined by the right-hand
side function v(t, x).

Inserting (8) and (10) in (7), taking into account the initial and boundary conditions
and denoting by uij ≈ u(ti , x j ), vi

j = v(ti , x j )we obtain the finite difference scheme
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uij (h
2bii + 2 + h2) − uij+1 − uij−1 = = h2bii u

i−1
j − h2

i−2∑
k=0

(bik+1u
k+1
j − ukj ) + vi

j h
2,

i = 1, . . . , N , j = 1, . . . , M − 1, which in a matrix form writes

⎛
⎜⎜⎜⎝

h2bii + 2 + h2 −1 0 ... 0
−1 h2bii + 2 + h2 −1 ... 0
...

0 0 ... −1 h2bii + 2 + h2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ui1
ui2
...

uiM−1

⎞
⎟⎟⎟⎠ = (14)

= h2bii

⎛
⎜⎜⎜⎝

ui−1
1

ui−1
2
...

ui−1
M−1

⎞
⎟⎟⎟⎠ − h2

⎛
⎜⎜⎜⎝

∑i−2
k=0 b

i
k+1(u

k+1
1 − uk1)∑i−2

k=0 b
i
k+1(u

k+1
2 − uk2)

...∑i−2
k=0 b

i
k+1(u

k+1
M−1 − ukM−1)

⎞
⎟⎟⎟⎠ + h2

⎛
⎜⎜⎜⎝

vi
1

vi
2
...

vi
M−1

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

ui0
0
...

uiM

⎞
⎟⎟⎟⎠

Before we proceed with the analysis of this numerical scheme, we will prove some
auxiliary results.

Lemma 1. Assume that 0 < α < 1. The coefficients bik , i, k = 1, 2, ...N, defined in
(9), satisfy

1. bii > 0, i = 1, 2, ..., N,
2. bii > bi+1

i+1, i = 1, 2, ..., N − 1,
3. bik+1 > bik , k = 1, ..., i and i = 1, ..., N,

4. b j
1 ≥ bl1, 1 ≤ j ≤ l and l = 1, ..., N,

5. tαj b
j
1 ≥ tαl b

l
1, 1 ≤ j ≤ l, l = 1, ..., N.

Proof. 1. bii = 1

Γ (2 − α)τi−1
((ti − ti−1)

1−α = 1

Γ (2 − α)τi−1
(τi−1)

1−α > 0.

2. bii = 1

Γ (2 − α)τi−1
(τi−1)

1−α >
1

Γ (2 − α)τi
(τi )

1−α = bi+1
i+1.

3. To prove this, we will use the definition of bik+1 in (9):

bik+1 = 1

Γ (1 − α)τk

∫ tk+1

tk

(ti − s)−αds. (15)

So, by the theorem of the mean value for integrals, there must exist a κk
1 ∈

(tk, tk+1) such that

bik+1 = 1

Γ (1 − α)τk
(ti − κk

1 )
−ατk = 1

Γ (1 − α)
(ti − κk

1 )
−α.

Following the same idea, there must exist a κk
2 ∈ (tk−1, tk) such that
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bik = 1

Γ (1 − α)τk−1
(ti − κk

2 )
−ατk−1 = 1

Γ (1 − α)
(ti − κk

2 )
−α.

Since κk
2 < κk

1 , we have the following

bik+1 − bik = 1

Γ (1 − α)
((ti − κk

1 )
−α − (ti − κk

2 )
−α) > 0. (16)

4. We must prove that

(
(t j − t0)

1−α − (t j − t1)
1−α

) ≥ (
(tl − t0)

1−α − (tl − t1)
1−α

) ⇔(
t1−α
j − (t j − t1)

1−α
) ≥ (

t1−α
l − (tl − t1)

1−α
)

Let f (x) = x1−α − (x − t1)1−α . In this case, the inequality abovewrites f (t j ) −
f (tl) ≥ 0. Using the mean value theorem, we have f (t j ) − f (tl) = (t j − tl)
f ′(η), η ∈]t j , tl[. Note that t j − tl ≤ 0. Since for x > t1,

f ′(x) = (1 − α)x−α − (1 − α)(x − t1)
−α = (1 − α)(x−α − (x − t1)

−α) < 0

we conclude that f (t j ) − f (tl) ≥ 0, 1 ≤ j ≤ l, l = 1, ..., N .
5. Here we must prove that

tαj
{
(t j − t0)

1−α − (t j − t1)
1−α

} ≥ tαl
{
(tl − t0)

1−α − (tl − t1)
1−α

}

Proceeding as in 5, it suffices to show that g′(x) ≤ 0 ∀x > t1 for g(x) =
xα(x1−α − (x − t1)1−α). In fact,

g′(x) = αxα−1(x1−α − (x − t1)
1−α) + (1 − α)xα(x−α − (x − t1)

−α)

= 1 − αxα−1(x − t1/x)
1−α − (1 − α)(1 − t1/x)

−α

Let t1 < x , By the Newton Binomial we get the following:

(
1 − t1

x

)1−α = 1 − t1
x

(1 − α) +
( t1
x

)2
(1 − α)

(−α

2

)
+ O

( t1
x

)2

⇔
(
1 − t1

x

)1−α = 1 + t1
x

α +
( t1
x

)2 (−α)(1 − α)

2
+ O

( t1
x

)2

α
(
1 − t1

x

)1−α = α − α(1 − α)
t1
x

+ α2

2
(1 − α)

( t1
x

)2 + o
( t1
x

)2
(17)

(1 − α)
(
1 − t1

x

)−α = (1 − α) − α(1 − α)
t1
x

+ (1 − α)
α(1 + α)

2

( t1
x

)2 + o
( t1
x

)2
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Taking (17) into account, we obtain:

g′(x) = 1 −
(

α − α(1 − α)
t1
x

+ α2

2
(1 − α)

( t1
x

)2 + o
( t1
x

)2

+ (1 − α) − α(1 − α)
t1
x

+ (1 − α)
α(1 + α)

2

( t1
x

)2 + o
( t1
x

)2)

= 1 − α − 1 + α − α(1 − α)
t1
x

+ α(1 − α)
t1
x

− 1 − α

2
α
( t1
x

)2 + o
( t1
x

)2

→ g′(x) < 0

Lemma 2. [3] Let

Si = δα
t u

i − dα

dtα
u(ti ), i = 1, . . . , N , (18)

where δα
t u

i denotes an approximation of u(ti ) given by the L1 formula (see (8)). Then

|Si | ≤ t−α
i max

k=1,...,i
φk,

where

φ1 = τα
1 sup

s∈(0,t1)

(
s1−α

∣∣∣∣u(t1) − u(t0)

t1 − t0
− d

ds
u(s)

∣∣∣∣
)

,

φk = τ 2−α
k tαk sup

s∈(tk−1,tk )

∣∣∣∣ d
2

ds2
u(s)

∣∣∣∣ , k = 2, . . . , i.

Lemma 3. If a function u(t) satisfies

u(�)(t) ≤ C(1 + tβ−�) for � = 0, 1, 2, (19)

for some β ≥ α, then

|Si | ≤ t−α
i N−min{βr,2−α}, i = 1, . . . , N .

Proof. It suffices to show that

φ j ≤ CN−min{βr,2−α}, j ≥ 1 (20)

Let us first analyse φ1. Note that

φ1 ≤ τα
1

[
sup

s∈(0,t1)

(
s1−α

∣∣∣∣u(t1) − u(t0)

t1 − t0

∣∣∣∣
)

+ sup
s∈(0,t1)

(
s1−α

∣∣∣∣ dds u(s)

∣∣∣∣
)]

.
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Since

s1−α

∣∣∣∣u(t1) − u(t0)

t1 − t0

∣∣∣∣ ≤ τ−α
1

∣∣∣
∫ t1

t0

u′(s)ds
∣∣∣ ≤ Cτ−α

1

∣∣∣
∫ t1

0
sβ−1ds

∣∣∣

= C
τ−α
1

β
τ

β

1 ≤ Dτ
β−α

1 ,

and

s1−α

∣∣∣∣ dds u(s)

∣∣∣∣ ≤ Cs1−αsβ−1 = Csβ−α ≤ C1τ
β−α

1 .

we conclude (because τ1 = t1 ≤ CN−r ) that

φ1 ≤ Cτα
1 τ

β−α

1 = Cτ
β

1 ≤ CN−βr .

Let us now analyse φ j , j ≥ 2. From (19) we have

sup
s∈(t j−1,t j )

∣∣∣∣ d
2

ds2
u(s)

∣∣∣∣ ≤ Ctβ−2
j .

Then

φ j ≤ Cτ 2−α
j tαj t

β−2
j = C

(
τ j

t j

)2−α

tβj , j ≥ 2

Let γ = min{βr, 2 − α}. Then

φ j ≤ C

(
τ j

t j

)γ

tβj , j ≥ 2 ≤ C̃
N−γ tγ (1−1/r)

j

t j
tβj = C̃ N−γ t−γ /r+β

j

Since −γ /r + β ≥ 0, then

φ j ≤ N−γ t−γ /r+β

j ≤ DN−γ = DN−min{βr,2−α}, j ≥ 2.

Theorem 1. The numerical scheme (14) is uniquely solvable.

Proof. Taking into account Lemma 1, we have bii > 0 for each i = 1, ..., N , and then
the matrix in the left-hand side of (14) is strictly diagonal dominant, and therefore,
the system has a unique solution.

In order to prove the stability and convergence of the numerical scheme, let us first
note that (2) can be rewritten as

L1u
i
j = L2u

i−1
j + vi

j h
2 (21)
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where
L1u

i
j = uij (h

2bii + 2 + h2) − uij+1 − uij−1 (22)

L2u
i−1
j = h2bii u

i−1
j − h2

i−2∑
k=0

bik+1(u
k+1
j − ukj ). (23)

Let’s consider the initial condition has the error as ε0j , that is, let’s replace s(x j )

with s̃(x j ) = s(x j ) + ε0j , j = 1, ..., M − 1 and let uij and ũ
i
j be the solutions of the

problem (4)–(7) with initial condition s and s̃, respectively. Defining the error as
εij = uij − ũij , we have the following

L1ε
i
j = L2ε

i−1
j . (24)

Theorem 2. The numerical scheme (2) is unconditionally stable.

Proof. We will prove that
∥∥Ek+1

∥∥ ≤ ||E0||, k = 0, 1, 2, ..., N − 1, where Ek =
[εk1 , εk2 , ..., εkM−1]T by using mathematical induction. For k = 0 and assuming |ε1l | =
max j=1,...,M |ε1j |, we have

h2b11||E1|| = h2b11|ε1l | ≤ h2b11|ε1l | + h2|ε1l | = h2b11|ε1l | + h2|ε1l | + 2|ε1l | − 2|ε1l |
≤ h2b11|ε1l | + h2|ε1l | + 2|ε1l | − |ε1l+1| − |ε1l−1|
= |ε1l |(h2b11 + 2 + h2) − |ε1l+1| − |ε1l−1| ≤ |ε1l (h2b11 + 2 + h2) − ε1l+1 − ε1l−1|
= |L1ε

1
l | = |L2ε

0
l | = |h2b11ε0l | = h2b11|ε0l | ≤ h2b11||E0||,

and therefore ||E1|| ≤ ||E0||. Now suppose that ||Ek || ≤ ||E0||, with k = 0, 1,
2, ..., i and i = 1, ..., N − 1. Let also |εk+1

l | = max j=1,...,M−1 |εk+1
j |. Using again

Lemma 1 and the triangular inequality we are going to prove that ||Ek+1|| ≤ ||E0||.
h2bk+1

k+1||Ek+1|| = h2bk+1
k+1|εk+1

l | ≤ h2bk+1
k+1|εk+1

l | + h2|εk+1
l | + 2|εk+1

l | − 2|εk+1
l |

≤ |εk+1
l (h2bk+1

k+1 + 2 + h2) − εk+1
l+1 − εk+1

l−1 | = |L1ε
k+1
l | = |L2ε

k
l |

= |h2bk+1
k+1ε

k
l − h2

k−1∑
s=0

bk+1
s+1 (ε

s+1
l − εsl )|

= |h2bk+1
1 ε0l + h2

k∑
s=0

(bk+1
s+1 − bk+1

s )εk+1
l |

≤ h2bk+1
1 |ε0l | + h2

k∑
s=1

(bk+1
s+1 − bk+1

s )|εkl |

≤ h2bk+1
1 ||E0|| + h2

k∑
s=1

(bk+1
s+1 − bk+1

s )||E0|| = h2bk+1
k+1||E0||,

and then ||EK+1|| ≤ ||E0||.
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For the convergence analysis of the numerical scheme we define the errors at the
mesh points:

ηi
j = u(ti , x j ) − uij (25)

for i = 1, ..., N , j = 1, ..., M − 1 and we consider the error vector at the time-level
i :

Hi = (ηi
1, η

i
2, ..., η

i
M−1)

T , i = 1, ..., N . (26)

Taking into account the approximations for the time and space derivatives, the dif-
ferential equation in (7) may be written at the point (t, x) = (ti , x j ) as:

i−1∑
k=0

bik+1(u(tk+1, x j ) − u(tk , x j )) = u(ti , x j+1) − 2u(ti , x j ) + u(ti , x j−1)

h2
− u(ti , x j )

+ v(ti , x j ) + Ri j (27)

where i = 1, ..., N , j = 1, ..., M − 1 and Ri j comprises of the errors committed
in the approximations of the time Caputo derivative and the space second order
derivative We will assume that the solution of (4)–(7) satisfies conditions (11) and
(13), for β ≥ α, and then for i = 1, ..., N , j = 1, ..., M − 1,

||Ri j ||∞ = max
j=1,...,M−1

|Ri j | ≤ C(t−α
i N−min{βr,2−α} + h2) = Ri (28)

We easily see that the errors ηi
j satisfy:

{
L1η

i+1
j = L2η

i
j + h2Ri j , i = 1, 2, ..., N − 1, j = 1, 2, ..., M − 1

η0
j = 0, j = 1, 2, ..., M − 1

. (29)

with L1 and L2 defined in (22) and (23), respectively.

Lemma 4. Under the conditions (11) and (13), there must exist a positive constant
C1 such that:

||Hl || ≤ C1(t
−α
l N−γ + h2)

bll − ∑l−2
k=0(b

l
k+2 − blk+1)

, (30)

for l = 1, ..., N, γ = min{βr, 2 − α} and Hl defined in (26).

Proof. We use mathematical induction to prove the Lemma 4. For l = 1, let p to be
a natural number such that ||H 1|| = max j=1,...,M |η1

j | = |η1
p|. Then,
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b11h
2||H 1|| = b11h

2|η1
p| ≤ b11h

2|η1
p| + h2|η1

p| + 2|η1
p| − |η1

p| − |η1
p|

≤ (h2b11 + h2 + 2)|η1
p| − |η1

p+1| − |η1
p−1|

≤ |(h2b11 + h2 + 2)η1
p − η1

p+1 − η1
p−1| = ‖L1η

1
p| = |L2η

0
p + h2R1p| ≤ h2||R1p||∞

≤ C1(t
−α
l N−γ + h2)

and then (30) is proved for l = 1. Let us assume that

||Hm || ≤ C1(t−α
m N−γ + h2)

bmm − ∑m−2
k=0 (bmk+2 − bmk+1)

,

holds for m = 1, ..., l − 1, and show that it remains valid for m = l. Let q ∈ N be
such that ||Hl ||∞ = |ηl

q |.
h2bll ||Hl || = h2bll |ηlq | ≤ h2bll |ηlq | + h2|ηlq | = h2bll |ηlq | + h2|ηlq | + 2|ηlq | − 2|ηlq |

≤ |(h2bll + h2 + 2)ηlq + ηlq − ηlq+1 − ηlq−1| = |L1η
l
q |

= |L2η
l−1
q + h2Rlq | ≤ |L2η

l−1
q | + Ch2(t−α

l N−γ + h2)

= |h2bll |ηl−1
q − h2

l−2∑
k=0

blk+1(η
k+1
q − ηkq )| + Ch2(t−α

l N−γ + h2)

= h2
l−1∑
k=1

(blk+1 − blk)|ηkq | + Ch2(t−α
l N−γ + h2)

= h2
l−2∑
j=0

(blj+2 − blj+1)|η j+1
q | + Ch2(t−α

l N−γ + h2)

= h2
l−2∑
j=0

(blj+2 − blj+1)||H j+1|| + Ch2(t−α
l N−γ + h2)

≤ h2
l−2∑
j=0

(blj+2 − blj+1)
C1(t

−α
j+1N

−γ + h2)

b j+1
j+1 − ∑ j−2

k=0(b
j+1
k+2 − b j+1

k+1)
+ Ch2(t−α

l N−γ + h2)

where in the last step, we used the induction hypothesis.
Defining

Al = bll −
l−2∑
j=0

(blj+2 − blj+1), (31)

we easily verify that Al = bl1 and then, using the two last properties of Lemma 1,
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bll h
2||Hl ||∞ ≤ h2

l−2∑
j=0

(blj+2 − blj+1)
C1(t

−α
j+1N

γ + h2)

b j+1
1

+ Ch2(t−α
l N−γ + h2)

≤ h2
l−2∑
j=0

(blj+2 − blj+1)
C1(t

−α
j+1N

γ + h2)

bl1
+ Ch2(t−α

l N−γ + h2)

≤ C̄1h2bll (t
−α
1 N−γ + h2)

Al
(32)

the result is proved.

Next we prove the main result concerning the convergence analysis of the numer-
ical scheme.

Theorem 3. Assume that the solution of (4)–(7) satisfies (11) and (13). Then

||Hl ||∞ ≤ C(N−γ + h2), l = 1, ..., N , (33)

where γ = min{βr, 2 − α}.
Proof. First note that

Al = bl1 = τ−α
0

Γ (2 − α)

(
(lr )1−α − (lr − 1)1−α

)
(34)

Since

lim
l→∞

(lr )−α

(lr )1−α − (lr − 1)1−α
= lim

δ→∞
δ−α

δ1−α − (δ − 1)1−α
= 1

1 − α
. (35)

then, there must exist a positive constant C2 such that for large l, (30) becomes

||Hl || ≤ C1C2(t
−α
l N−γ + h2)

(lr )−ατ−α
0

= C1C2(t
−α
l N−γ + h2)

(lr t1)−α
= C1C2(t

−α
l N−γ + h2)

t−α
l τ−α

0

= C1C2N
−γ + tαl h

2 ≤ C(N−γ + h2) = C(N−min(βr,2−α) + h2). (36)

3 Numerical Results and Discussion

In this case, we do not know the exact solution to compare it with the numerical
results. For this reason we introduce the following estimate of the convergence order
with respect to time:

k = log2

( |UN −U 2N |
|U 2N −U 4N |

)
(37)

where UN stands for the solution of the Eq. (7) obtained with N steps in time.
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Table 1 Solution of the killed end problem with M = 100 at the point (Υ, χ) = (1, 0.5), using
different uniform meshes in time. k is the estimate of the convergence order with respect to t (see
(37))

α 0.2 0.4 0.6 0.8

N UN
M k UN

M k UN
M k UN

M k

100 345.362 350.825 357.585 365.654

200 345.375 350.848 357.613 365.68

400 345.382 1.0051 350.86 1.009 357.627 1.019 365.692 1.04

800 345.386 1.0027 350.866 1.0052 357.634 1.0127 365.698 1.03

Table 2 Solution of the problem killed end problem with M = 100 at the point (Υ, χ) = (1, 0.5),
using a non uniform mesh in time with r = 2−α

α
. k is the estimate of the convergence order with

respect to t (see (37))

α 0.2 0.4 0.6 0.8

N UN
M k UN

M k UN
M k UN

M k

100 345.44 350.87 357.634 365.681

200 345.523 350.871 357.638 365.694

400 345.533 1.82 350.872 1.62 357.64 1.43 365.699 1.19

800 345.513 1.81 350.872 1.61 320.766 1.42 365.702 1.18

Table 3 Solution of the killed end problem with N = 100 at the point (Υ, χ) = (0.5, 1), using a
uniform mesh in space. p is the estimate of the convergence order with respect to x (see (38))

α 0.2 0.4 0.6 0.8

M UN
M p UN

M p UN
M p UN

M p

100 345.362 350.825 357.585 365.654

200 345.363 350.826 357.586 365.655

400 345.364 2.0 350.827 2.0 357.587 2.0 365.655 2.0

800 345.364 2.0 350.827 2.0 357.587 2.0 365.693 2.0

Wealsopresent an estimate of the convergenceorderwith respect to space stepsize,
h, similar to (37):

p = log2

( |UM −U2M |
|U2M −U4M |

)
(38)

where UM stands for the numerical solution obtained with M steps in space.
We consider the initial condition s(x) = −70χ(χ − 1)mV . The following prob-

lem is the one that we are going to solve numerically using the the method described
in Sect. 2.
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Fig. 2 The membrane
potential, U (1, χ), at the
fixed point Υ = 1 for
different values of α ∈]0, 1[
using a time non-uniform
and space uniform mesh (N
= 400 and M = 100)

Fig. 3 The membrane potential,U (Υ, M/2), at the fixed space point χ = M/2 for different values
of α ∈]0, 1[ using a space uniform and a time non-uniform mesh (N = 400 and M = 100)

∂αU (Υ,χ)

∂Υ α = ∂2U (Υ,χ)

∂χ2 −U (Υ, χ) + 300, Υ ∈ [0, 1], χ ∈ [0, 1],
U (0, χ) = −70χ(χ − 1), χ ∈]0, 1[,

U (Υ, 0) = 0, Υ ∈ [0, 1],
U (Υ, 1) = 0, Υ ∈ [0, 1].

(39)

In Table1 we are going to present the solution of the problem (39) in a single point,
U (ti , x j ), where i = N and j = M/2 because this is where the biggest errors are
expected (taking into account the usual behaviour of the solution in diffusion prob-
lems with this kind of boundary conditions).

The results in Tables1, 2 and 3 confirm the theoretical results obtained in Sect. 2.
When we calculate the solution using a uniform mesh we obtain a experimental
order of k ≈ 1 (see Table1), while with the non uniform mesh we get the expected
experimental order k ≈ 2 − α with α ∈]0, 1[ (see Table2), when using r = 2−α

α
.

The numerical results confirm that the method is convergent and the experimental
order is in agreement with the theoretical predictions in Sect. 2. In particular, when
a graded mesh is used, with the proper value of the grading coefficient, the optimal
convergence order k = 2 − α is recovered, in spite of the singularity of the problem.
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In Table3 we calculate the space convergence order to show that it is also in
agreement with the theoretical results in Sect. 2.

Besides (39), we decided to consider an analogous problem with the first order
temporal derivative instead of the fractional temporal one, and check the difference
between these two approaches.

To obtain the numerical results in the case of the integer order problem, we used
the implicit Euler method for the time derivative and the central finite difference
method for the second order space derivative.

Some graphics of the numerical results obtained by this scheme are plotted in
Figs. 2 and 3.

In Fig. 2 we display the solution profile at a fixed time moment (Υ = 1). As
it could be expected the maximal values of the solution are attained close to the
midpoint (χ = 0.5) and the solution with α = 1 (first order derivative) has higher
values than the other ones.

Figure3 illustrates how the solution changes with time, with χ = 0.5, and how its
behavior depends on α. For values of Υ close to 0, the solution with α = 1 (integer
order) has smaller values than the solutions with other values of α. We can also
observe that this solution has a regular behavior near the origin, while as α decreases
the slope of the graphic at the origin becomes steeper and steeper. These results are
in agreement with what could be expected, knowing the asymptotic behavior of the
solutions of fractional order equations.

4 Conclusion

We have introduced a numerical scheme for solving the time fractional cable equa-
tion, based on the use of the L1-method to approximate the fractional time derivative
and a second-order finite difference scheme to approximate the space derivative. We
have analysed the stability and convergence of the method, and proved that using a
graded mesh, with a proper value of the grading coefficient, it is possible to recover
the optimal convergence order of the L1-method, in spite of the singularity of the
solution at the origin. Finally, we have presented some numerical examples that
confirm the theoretical predictions.

References

1. Henry, B.I., Langlands, T.A.M., Wearne, S.L.: Fractional cable models for spiny neuronal
dendrites. Phys. Rev. Lett. 100(12), 128103 (2008)

2. Koch, C.: Biophysics of Computation: Information Processing in Single Neuron, vol. 298–300,
pp. 43–44. Oxford University Press, New York (2004)

3. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional
derivative problem in two and three dimensions. Math. Comput. 88, 1–20 (2017)



Numerical Solution of the Time Fractional Cable Equation 619

4. Li, C., Zeng, F.: Numerical Methods for Fractional Calculus, pp. 43–46. Chapman Hall Crcs,
Boca Raton (2015)

5. Norman, R.S.: Cable theory for finite length dendritic cylinders with initial and boundary
conditions. Biophys. J. 12(1), 25–45 (1972)

6. Stynes, M.: Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19,
1554–1562 (2016)

7. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on a graded
meshes for a time-fraction diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

8. Teka, W., Marinov, T.M.: Neuronal spike timing adaptation described with a fractional leaky
integrate-and-fire model. PLoS Comput. Biol. 10(3), 1003526 (2014)

9. Tuckwell, H.C.: Introduction to Theoretical Neurobiology: Linear Cable Theory and Denditric
Structure. Cambridge Studies in Mathematical Biology, vol. 1. Cambridge University Press,
Cambridge (1988)

10. Vitali, S., Castellani, G., Mainardi, F.: Time fractional cable equation and applications in
neurophysiology. Chaos Solitons Fractals 102, 467–472 (2017)



Modelling Antibody-Antigen Interactions

Qi Wang and Yupeng Liu

Abstract In this paper we construct and analyse mathematical models for antibody-
antigen reactions, which are important for understanding bioaffinity devices. We
consider three types of immunoassays: the direct assay, the competitive assay (which
are analysed with and without diffusion effects) and the sandwich assay.

1 Introduction

We give examples and analyse problems where modelling of transport phenomena
only affect the transient behaviour of the system and has no effect on the final steady
states of the species involved. It is often the case that the equilibrium values are the
only piece of information required for the solution of a practical problem (although,
sometimes, time to reach equilibrium is the real issue) and in such situations it
is important to identify the conditions under which a complex partial differential
equations model can be replaced with a simpler one. Such problems as these are
related to immunosensors, a class of bioaffinity devices, and involve mathematical
models of antibody-antigen interactions.

2 The Direct Assay

This section studies the kinetics of the binding reaction between an antigen and
an antibody, with and without modelling of transport effects. This simple reac-
tion is rarely used on its own for diagnostic purposes but lies at the heart of every
immunosensing device and so we must study it first.
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2.1 Simplified Model for the Direct Assay

We start our study of the direct antibody-antigen interactions by ignoring transport of
species and concentrating on the kinetics of the reaction. This will result in a simple
system of ordinary differential equations model and our aim here is to provide a
formula for the equilibrium values of all reactants and products as well as their
dependence on initial conditions.

The antibody-antigen interaction can be expressed by the following reaction equa-
tion symbolically,

A + B
k
�
k−

C, (1)

where A represents antigen, B represents antibody, and C represents the product of
antigen and antibody. Reaction (1) has a forward (association) reaction rate of k and
a backward (dissociation) reaction rate of k−, where the forward reaction rate is very
large (around 1000 times bigger than the reaction rate constant k1 in the Michaelis-
Menten kinetics) while the backward reaction is very slow and is therefore often
neglected. This fact reflects the high affinity between antigen and its corresponding
antibody.We denote the concentration of the chemical species in reaction (1) by their
corresponding lower case letters, namely

a = [A], b = [B], c = [C].

The dynamics of the system is described by the following non-dimensional system
of ordinary differential equations

⎧
⎨

⎩

da
dt = −ab + μc (a)
db
dt = −ab + μc (b)
dc
dt = ab − μc, (c)

(2)

with non-dimensional initial conditions a(0) = ψ , b(0) = 1, c(0) = 0, and conser-
vation laws

{
a + c = ψ (a)
b + c = 1, (b)

(3)

where

μ = k−
kb0

, ψ = a0
b0

. (4)

Note that μ � 1, since the backward reaction is assumed to be much slower than
the forward reaction; also, as soon as the experiment is set up, b0 is fixed, due to the
immobilisation of the antibody.

Based on the non-dimensional conservation laws in (3), we can reduce system (2)
down to a single equation in terms of c, then the equilibrium value for c is below,
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where we must select the root which satisfies the condition c < 1.

c = 1

2

(
1 + ψ + μ −

√
(1 + ψ + μ)2 − 4ψ

)
. (5)

This solution is equivalent to that obtained in [1], where a spatially extended model
is considered. Note also that ifμ � 1, the leading order approximation for c is given
by

c = 1

2
(ψ + 1 − |ψ − 1|) ,

which gives different results depending on whether ψ > 1 or ψ < 1.

In what follows, we derive approximate formulas for the equilibrium values of a,
b and c using regular perturbation expansions. Such approximations will allow for
a more clear interpretation of these results within the experimental framework. We
assume the parameter μ is small and write

c = c0 + μc1 + μ2c2 + · · · (6)

Collecting coefficients of like powers of μ, at O(1) and O(μ), we obtain

c = 1 + μ

1 − ψ
+ · · · (7)

or

c = ψ + μψ

ψ − 1
+ · · · (8)

Now since that the solution of c is less than 1 (c < a0 for the dimensional variables),
we have to consider these solutions with regard to the following three cases:

• When ψ > 1, we choose the solution

c = 1 + μ

1 − ψ
+ · · · ;

• When ψ < 1, we choose the solution

c = ψ + μψ

ψ − 1
+ · · · ;

• When ψ = 1, we cannot choose either of the two solutions obtained in Eqs. (7)
and (8), since the two solutions do not allowψ = 1 (we cannot have a zero denom-
inator). Thus, to obtain the solution in this case, we start the asymptotic analysis
again with ψ = 1 substituted into the equation in terms of c, which yields

c2 − (2 + μ)c + 1 = 0. (9)
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It is now more appropriate to use the expansion

c = c0 + √
μc1 + μc2 + μ

√
μc3 + · · · (10)

since we can clearly see that there is an
√

μ term contained in Eq. (5), and thus we
obtain

(c0 + √
μc1 + μc2 + μ

√
μc3 + · · · )2 − (2 + μ)(c0 + √

μc1 + μc2 + μ
√

μc3 + · · · ) + 1 = 0.

Again, by collecting terms in powers of
√

μ, at O(1) and O(
√

μ), we obtain

c = 1 − √
μ + · · ·

or
c = 1 + √

μ + · · ·

where c = 1 + √
μ + · · · cannot be a solution, since c < 1.

We now present a summary of the equilibrium values for the antigen, antibody
and product in all three cases discussed above.

Case 1: When a0 > b0 (i.e., ψ > 1), the equilibrium solutions are

⎧
⎪⎨

⎪⎩

a = ψ − 1 + μ

ψ−1 + · · · (a)
b = μ

ψ−1 + · · · (b)
c = 1 − μ

ψ−1 + · · · (c)
(11)

Case 2: When a0 < b0 (i.e., ψ < 1), the equilibrium solutions are

⎧
⎪⎨

⎪⎩

a = μψ

1−ψ
+ · · · (a)

b = 1 − ψ + μψ

1−ψ
+ · · · (b)

c = ψ − μψ

1−ψ
+ · · · (c)

(12)

Case 3: When a0 = b0 (i.e., ψ = 1), the equilibrium solutions are

⎧
⎨

⎩

a = √
μ + · · · (a)

b = √
μ + · · · (b)

c = 1 − √
μ + · · · (c)

(13)

In particular, the equilibrium value of the product is

c =
⎧
⎨

⎩

1 − μ

ψ−1 + · · · , if ψ < 1

ψ − μψ

1−ψ
+ · · · , if ψ > 1

1 − √
μ + · · · , if ψ = 1.

(14)
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Fig. 1 Product concentration as a function of the initial (non-dimensional) antigen concentration
ψ . Black curve correspond to the exact solution of c given by Eq. (5), red curves and the blue dot
correspond to the approximate solution of c given by Eq. (14). Typical values for constants used in
this simulation are: b0 = 2, k = 100, k− = 8 in (a) and k− = 0 in (b)

We note that the asymptotic expansions derived above are not uniformly valid as they
fail within an O(μ) region about ψ = 1. (It is easy to see that within this region, the
termμ/(ψ − 1) becomes O(1)). Since b0 is kept constant, we can view c in Eq. (14)
as a function of the initial (non-dimensional) antigen concentration ψ = a0/b0 and
this dependence is plotted in Fig. 1, together with the exact solution for c given by
Eq. (5). The region of non-uniformity for the asymptotic solution is clearly visible in
the figure. However, real immunoassay devices generally work under the condition
a0 > b0 (ψ > 1) and in this regionwe have a uniform approximation. The calibration
curve would then consist of the increasing right-hand branch of the red graph in
Fig. 1(a).We note that, if |ψ − 1| > O(μ), then use of the approximation expression
(14)might offer better insight into the behaviour of the solution forμ � 1, especially
for chemistry researchers.

As was expected, the steady states of system (2) depend on whether a0 > b0
or a0 < b0 (antigen or antibody predominates). If, for example, the concentration of
antigen is greater than that of antibody (Case 1), we see from (11) that, reverting back
to dimensional variables, b ≈ 0, c ≈ b0 and a ≈ a0 − b0, which is intuitively clear.
(In other words, the antibody is almost depleted and the concentration of product
approaches that of the original antibody concentration.) Note also that, if we ignore
the backward reaction and let μ = 0, the steady states in this case become: b∗ = 0,
c∗ = b0 and a∗ = a0 − b0. Similar interpretations are also easily obtained for the
solutions in Cases 2 and 3.

2.2 Diffusion Model for the Direct Assay

This subsection covers a spatially extended model of direct antibody-antigen inter-
actions, where the two species are contained within a small cell (which we represent
mathematically as a one-dimensional spatial domain). More specifically, we con-
sider the case when the antibody is immobilised on a surface while the antigen is
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free to diffuse before the interaction between the two species. The resulting model
is closely related to the work in [1] and [2], where it was presented as a simplified
description (ignoring competitive effects) of a Fluorescence Capillary-Fill Device, a
type of pregnancy test studied in [3]. We mention some of the mathematical results
obtained in [1] and [2], but the emphasis of this section is on obtaining an exact
formula for the equilibrium states of reactants and products and comparing these
results to those of the simplified model in Sect. 3.1.

We obtain the non-dimensional system as shown below,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂a(x,t)
∂t = ∂2a(x,t)

∂x2 (a)
a(x, 0) = ψ1 (b)
∂a(0,t)

∂x = 0 (c)
∂a(1,t)

∂x = γ (μ1c(t) − a(1, t)(1 − c(t))) (d)
c(t) + ∫ 1

0 a(x, t)dx = ψ1, (e)

(15)

where x ∈ (0, 1) and we define

ψ1 = a0d

b0
, γ = dkb0

D
, μ1 = k−d

kb0
. (16)

Next, we are going to analyse system (15) as t → ∞. At equilibrium, we obtain
the solution of the product concentration as

c∗ = 1

2

(
1 + μ1 + ψ1 −

√
(1 + μ1 + ψ1)2 − 4ψ1

)
. (17)

Note that the steady-state given above for the diffusion system is identical to the
equilibrium value obtained in Eq. (5) for the spatially-independent case, if we allow
for the slight differences in the definitions of μ1, ψ1 (see Eq. (16)) and μ, ψ (see
Eq. (4)).

In what follows, we obtain an equivalent formulation of the diffusion system
(15) in the form of a nonlinear Volterra integro-differential equation. We follow the
approach suggested in [1] and use Laplace transforms, inverse Laplace transform
and convolution theorem for Laplace transform we yields the following Volterra
integro-differential equation, namely

dc(t)

dt
= γψ1 − γ (μ1 + ψ1)c(t) − γ (1 − c(t))

∫ t

0
f (t − s)

dc(s)

ds
ds, (18)

where the kernel f (t) can be calculated as

f̃ (x, t) = L−1
t

[
1√
s

1 + e−2
√
sx

1 − e−2
√
sx

]

. (19)
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Using the geometric series formula

1

1 − x
= 1 + x + x2 + x3 + · · · =

∞∑

n=0

xn, for |x | < 1,

we can write Eq. (19) as

f̃ (x, t) = L−1
t

[
1√
π

∞∑

n=0

(√
π

s
e−2(n+1)

√
sx +

√
π

s
e−2n

√
sx

)]

. (20)

From the theory of Laplace transforms (refer to, for example [4]), we know that

L
[
x− 1

2 e− a
4x

]
=

√
π

s
e−√

as,

and hence, we can write Eq. (20) as

f̃ (x, t) = 1√
π t

∞∑

n=0

(
e− (n+1)2x2

t + e− n2x2

t

)
= 1√

π t

(

1 + 2
∞∑

n=1

e− n2x2

t

)

,

which gives the kernel

f (t) = f̃ (1, t) = 1√
π t

(

1 + 2
∞∑

n=1

e− n2

t

)

. (21)

We have obtained the integro-differential Eq. (18) as an equivalent formulation
for system (15). As illustrated in [1, 2] and [5], this Volterra integro-differential
equation is more amenable to both analytical and numerical studies.

In what follows, we find an approximation for c(t), the product concentration,
using a regular perturbation method. Consider an analytic expansion for c(t) of the
form

c(t) = c0(t) + ε2c
1(t) + · · · (22)

where

ε2 = 1

ψ1
= b0

a0d

as suggested in [1],which assumed thatγ is order ε,withγ = γψ1ε,γψ1 andγμ1 are
of order 1. The non-dimensional parameter ε2 can be considered small as the antibody
sites are usually limited, and is more appropriate for the subsequent perturbation
analysis than the parameter μ used previously. Substituting the expansion (22) into
(18), at O(1) and O(ε2), we obtain
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dc1(t)

dt
= −γ (μ1 + ψ1)c

1(t) − γ 2ψ2
1

(

1 − ψ1
μ1 + ψ1

(1 − e−γ (μ1+ψ1)t )

)∫ t

0
f (t − s)e−γ (μ1+ψ1)s ds. (23)

Again, (23) is a first-order ordinary differential equation which can be solved to
obtain

c1(t) = − γ 2ψ3
1

μ1 + ψ1
e−γ (μ1+ψ1)t

∫ t

0

∫ u

0

(
μ1

ψ1
eγ (μ1+ψ1)u + 1

)

f (u − s)e−γ (μ1+ψ1)sdsdu. (24)

The double integral in Eq. (24) can be simplified as follows by changing the order
of integration

∫ t

0

∫ t

s

(
μ1

ψ1
eγ (μ1+ψ1)u + 1

)

f (u − s)e−γ (μ1+ψ1)sduds.

Now apply the transformation of u = v + s and changing the order of integration
again, yields

1

γ (μ1 + ψ1)

∫ t

0

(
γ (μ1 + ψ1)μ1

ψ1
(t − v)eγ (μ1+ψ1)v + 1 − e−γ (μ1+ψ1)(t−v)

)

f (v)dv.

Therefore,

c1(t) = − γψ3
1

(μ1 + ψ1)2
e−γ (μ1+ψ1)t ×

∫ t

0

(
γ (μ1 + ψ1)μ1

ψ1
(t − v)eγ (μ1+ψ1)v + 1 − e−γ (μ1+ψ1)(t−v)

)

f (v)dv,

which gives an approximation of the function c(t) that can be evaluated numerically.

3 The Competitive Assay

Competitive binding immunoassays are based on antibody-antigen interactions in
which the number of antigen binding sites on the antibody is limited. The antigen
and a labelled analogue are incubated together with a fixed concentration of the
antibody and the signal produced will reflect the competition between the antigen
and analogue for binding to the antibody. This method requires that the antibody
should have the same binding affinity for the antigen as for the labelled analogue; we
also assume that the probability of binding to antibody is the same for both species.

3.1 Simplified Model for the Competitive Assay

As in the previous section, we start by studying the kinetics of the chemical reactions
in a competitive assay in the absence of any transport effects. The antibody-antigen
interactions with competition can be expressed symbolically as
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A + B
k
�
k−

C, A
′ + B

k
�
k−

C
′
, (25)

where A, B and C are the same as defined in Sect. 2.1; A
′
is basically the antigen

with a label attached to it called an analogue, and C
′
is the product formed by the

antibody and analogue. We assume the two reactions have the same forward and
backward rate constants of k and k−, and we denote the concentration of all reactants
and products by their corresponding lower case letters, namely

a = [A], a
′ = [A′ ], b = [B], c = [C], c

′ = [C ′ ].

The dynamics of the system is described by the following system of dimensionless
equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

da
dt = −ab + μc (a)
da

′

dt = −a
′
b + μc

′
(b)

db
dt = −b(a + a

′
) + μ(c + c

′
) (c)

dc
dt = ab − μc (d)
dc

′

dt = a
′
b − μc

′
. (e)

(26)

The non-dimensional initial conditions are:

a(0) = ψ, a
′
(0) = ψ

′
, b(0) = 1, c(0) = 0, c

′
(0) = 0,

and the non-dimensional conservation laws become
⎧
⎨

⎩

a + c = ψ (a)
a

′ + c
′ = ψ

′
(b)

b + c + c
′ = 1, (c)

(27)

where we define

ψ = a0
b0

, ψ
′ = a

′
0

b0
, μ = k−

kb0
. (28)

Using similar calculations to those shown in the previous section, system (26)
together with the conservation laws (27) yield the following equilibrium equation
for the antibody concentration, b,

b2 −
(
1 − ψ − ψ

′ − μ
)
b − μ = 0. (29)
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The exact values of the steady states for all the species are as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b = 1
2

(
1 − ψ − ψ

′ − μ + √
(1 − ψ − ψ

′ − μ)2 + 4μ
)

(a)

a = ψμ

μ+b (b)

a
′ = ψ

′
μ

μ+b (c)

c = ψb
μ+b (d)

c
′ = ψ

′
b

μ+b . (e)

(30)

We are now going to calculate the asymptotic approximations to these solutions as
shown in (30), in a manner similar to the previous model. Again we start with an
expansion of the form

b = b̃0 + μb1 + μ2b2 + · · · (31)

(we have used the notation b̃0 for the first term of the expansion in order to avoid
confusing it with b0, the initial antibody concentration). Then substituting Eq. (31)
into (29), we get

(b̃0 + μb1 + μ2b2 + · · · )2 −
(
1 − ψ − ψ

′ − μ
)

(b̃0 + μb1 + μ2b2 + · · · ) − μ = 0.

By collecting coefficients of powers of μ, at O(1), O(μ) and O(μ2) we obtain

b = μ
1

ψ + ψ
′ − 1

− μ2 ψ + ψ
′

(
ψ + ψ

′ − 1
)3 + · · · , if ψ + ψ

′
> 1,

or

b = 1 − ψ − ψ
′ + μ

ψ + ψ
′

1 − ψ − ψ
′ + · · · , if ψ + ψ

′
< 1.

In the case where ψ + ψ
′ = 1, we cannot choose either of the two solutions, since

the denominators in the solutions are equal to zero. In this case, we have to start
the asymptotic analysis again with ψ + ψ

′ = 1 substituted into Eq. (29). Thus the
equilibrium values for b are given by the equation

b2 + μb − μ = 0. (32)

Again, in this case it is more appropriate to use the expansion

b = b̃0 + √
μb1 + μb2 + μ

√
μb3 + · · · (33)

since we can clearly see that there is an
√

μ term contained in Eq. (30a). Substituting
the new expansion (33) into Eq. (32), we obtain the equation

(b̃0 + √
μb1 + μb2 + μ

√
μb3 + · · · )2 + μ(b̃0 + √

μb1 + μb2 + μ
√

μb3 + · · · ) − μ = 0,
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and then by collecting coefficients of powers of
√

μ, at O(1), O(
√

μ), O(μ) and
O(μ

√
μ) yields

b = √
μ − 1

2
μ + · · ·

or

b = −√
μ − 1

2
μ + · · · , which cannot be a solution, since b > 0.

Now we need to find the solutions for a, a
′
, c and c

′
. From Eq. (26a) and (27a), we

get
da

dt
= −ab + μ(ψ − a),

which indicates that the equilibrium value of a can be obtained. Here, we are going
to use the same asymptotic expansion (33) for b, and use the expansion for a as

a = ã0 + μa1 + μ2a2 + · · · (34)

To summarise, the equilibrium solutions for the reactants and products in the three
cases discussed above are as follows:

Case 1: When b0 < a0 + a
′
0 (i.e., ψ + ψ

′
> 1), the equilibrium solutions are

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a = ψ − ψ

ψ+ψ
′ + μ

ψ

(ψ+ψ
′−1)(ψ+ψ

′
)
+ · · · (a)

a
′ = ψ

′ − ψ
′

ψ+ψ
′ + μ

ψ
′

(ψ+ψ
′−1)(ψ+ψ

′
)
+ · · · (b)

b = μ

ψ+ψ
′−1

− μ2 ψ+ψ
′

(ψ+ψ
′−1)3

+ · · · (c)

c = ψ

ψ+ψ
′ − μ

ψ

(ψ+ψ
′−1)(ψ+ψ

′
)
+ · · · (d)

c
′ = ψ

′

ψ+ψ
′ − μ

ψ
′

(ψ+ψ
′−1)(ψ+ψ

′
)
+ · · · (e)

(35)

Case 2: When b0 > a0 + a
′
0 (i.e., ψ + ψ

′
< 1), the equilibrium solutions are

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a = μ
ψ

1−ψ−ψ
′ + · · · (a)

a
′ = μ

ψ
′

1−ψ−ψ
′ + · · · (b)

b = 1 − ψ − ψ
′ + μ

ψ+ψ
′

1−ψ−ψ
′ + · · · (c)

c = ψ − μ
ψ

1−ψ−ψ
′ + · · · (d)

c
′ = ψ

′ − μ
ψ

′

1−ψ−ψ
′ + · · · (e)

(36)
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Case 3: When b0 = a0 + a
′
0 (i.e., ψ + ψ

′ = 1), the equilibrium solutions are

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a = √
μψ − 1

2μψ + · · · (a)
a

′ = √
μψ

′ − 1
2μψ

′ + · · · (b)
b = √

μ − 1
2μ + · · · (c)

c = ψ − √
μψ + 1

2μψ + · · · (d)
c

′ = ψ
′ − √

μψ
′ + 1

2μψ
′ + · · · (e)

(37)

Note that if a
′
0 = 0 (i.e., labelled antigen is absent), the assay is no longer a com-

petition system and solutions (35)–(37) reduce to the solutions (11)–(13) obtained
in Sect. 2.1. Also note that the behaviour of the competitive system is qualitatively
different in the three cases discussed above. Case 1 (b0 < a0 + a

′
0) is the case which

is most relevant to experiments, since antibody sites are limited so there is a true com-
petition between antigen and analogue. In this case, the equilibrium solutions show
that antibody sites are almost depleted while antigen and analogue bind to a ratio
equal to that of their initial concentrations. In Case 2 (b0 > a0 + a

′
0), the antibody

binding sites are plentiful and so all antigen and analogue molecules will eventually
bind and form products.

We now show how these results can be used for constructing calibration curves for
competitive systems. The solutions of antibody-antigen interactionswith competition
model were considered in the case of b0 < a0 + a

′
0, b0 > a0 + a

′
0 and b0 = a0 +

a
′
0. In a real-life testing situation, a0 is unknown, so the analysis below is more
appropriate (we assume that b0 and a

′
0 are given).

Case I:When b0 ≤ a
′
0 (i.e.,ψ

′
> 1); this implies b0 < a0 + a

′
0 orψ + ψ

′
> 1, since

a0 is positive. The solution in this case is identical to the solution obtained in Eq. (35)
presented above. The expression of the labelled product in terms ofψ andψ

′
is given

by

c
′ = ψ

′

ψ + ψ
′ − μ

ψ
′

(ψ + ψ
′ − 1)(ψ + ψ

′
)

+ · · ·

We plot c
′
againstψ , as given by the proceeding formula, to get the calibration curve

(red) in Fig. 2. This is compared with the plot of the exact solution (black) given
by Eq. (30e) and the two curves are in good agreement for μ � 1. Note that, since

Fig. 2 Exact value (black)
and asymptotic
approximation (red) for the
labelled product as functions
of ψ in Case I. Typical
values for constants used in
this simulation are: b0 = 1,
a

′
0 = 1, k = 100 and k− = 8
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Fig. 3 Exact value (black) and asymptotic approximation (red) for the labelled product as functions
of ψ in Case II. Typical values for constants used in this simulation are: b0 = 2, a

′
0 = 1, k = 100,

k− = 8 in (a) and k− = 0 in (b)

ψ
′
> 1, the asymptotic approximation in this case is uniformly valid for all values

of ψ > 0.

Case II: When b0 > a
′
0 (i.e., ψ

′
< 1), we need to consider the following two situa-

tions;

• If b0 > a0 + a
′
0 then ψ < 1 − ψ

′
, and the solution for c

′
is given by Eq. (36e)

(Case 2 in the previous analysis);
• If b0 < a0 + a

′
0 then ψ > 1 − ψ

′
, and the solution for c

′
is given by Eq. (35e)

(Case 1 in the previous analysis).

Therefore, we conclude the solution for c
′
is given by

c
′ =

⎧
⎪⎪⎨

⎪⎪⎩

ψ
′

ψ+ψ
′ − μ

ψ
′

(ψ+ψ
′−1)(ψ+ψ

′
)
+ · · · , if ψ + ψ

′
> 1 (b0 < a0 + a

′
0)

ψ
′ − μ

ψ
′

1−ψ−ψ
′ + · · · , if ψ + ψ

′
< 1 (b0 > a0 + a

′
0)

ψ
′ − √

μψ
′ + 1

2μψ
′ + · · · , if ψ + ψ

′ = 1 (b0 = a0 + a
′
0).

Combining these three solution branches, we obtain the plots shown in Fig. 3, which
are shown together with the exact solution for c

′
given by Eq. (30e).

We make the same remark as in the case of direct assays, namely that the asymp-
totic approximation for c

′
in this case is not uniformly valid around ψ = 1 − ψ

′
.

Once again, the restriction ψ + ψ
′
> 1 applies in most practical situations so that

non-uniformity will not be relevant in this region. Note also that, when μ = 0, the
asymptotic approximation is identical to equations in system (30).

3.2 Diffusion Model for the Competitive Assay

We now consider the case when some of the reactants are free to diffuse within a
small cell, modelled as a one-dimensional domain. Just as in Sect. 2.2, we assume that
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the antibody is immobilised to a surface (in our one-dimensional model this actually
corresponds to one point) while the antigen and labelled antigen canmove throughout
the cell. A consistent non-dimensional system of equations which describes the
behaviour of the relevant chemical species is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂a(x,t)
∂t = ∂2a(x,t)

∂x2 (a)
∂a

′
(x,t)
∂t = ∂2a

′
(x,t)

∂x2 (b)
a(x, 0) = ψ1 (c)
a

′
(x, 0) = ψ2 (d)

∂a(0,t)
∂x = 0 (e)

∂a
′
(0,t)
∂x = 0 (f)

∂a(1,t)
∂x = γ

(
μ1c(t) − a(1, t)

(
1 − c(t) − c

′
(t)

))
(g)

∂a
′
(1,t)
∂x = γ

(
μ1c

′
(t) − a

′
(1, t)

(
1 − c(t) − c

′
(t)

))
(h)

c(t) + ∫ 1
0 a(x, t)dx = ψ1 (i)

c′(t) + ∫ 1
0 a

′
(x, t)dx = ψ2, (j)

(38)

with x ∈ (0, 1), t ≥ 0, and we define

ψ1 = a0d

b0
, γ = dkb0

D
, μ1 = k−d

kb0
, ψ2 = a

′
0d

b0
.

Next, we are going to analyse system (38) as t → ∞. At equilibrium,

b∗ = 1

2

(
1 − μ1 − ψ1 − ψ2 +

√
(1 − μ1 − ψ1 − ψ2)2 + 4μ1

)
. (39)

Also, we obtain the solutions for a∗(x), a ′∗(x), c∗ and c
′∗ as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a∗ = ψ1μ1

μ1+b∗ (a)

a
′∗ = ψ2μ1

μ1+b∗ (b)

c∗ = ψ1b∗
μ1+b∗ (c)

c
′∗ = ψ2b∗

μ1+b∗ , (d)

(40)

which are the same solutions as shown in (30) obtained in Sect. 3.1 (since d/b0 in
the diffusion model is equivalent to 1/b0 in the non-diffusion model). Using Laplace
transforms and their properties we carry out a similar calculation to that given in
Sect. 2.2 and obtain the following system of Volterra integro-differential equations:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dc(t)

dt
= γψ1 − γ (μ1 + ψ1)c(t) − γψ1c

′
(t)

− γ
(
1 − c(t) − c

′
(t)

) ∫ t

0
f (t − s)

dc

ds
(s)ds

(a)

dc
′
(t)

dt
= γψ2 − γψ2c(t) − γ (μ1 + ψ2) c

′
(t)

− γ
(
1 − c(t) − c

′
(t)

) ∫ t

0
f (t − s)

dc
′

ds
(s)ds,

(b)

(41)

where f (t) has the same definition as in Sect. 2.2. (see (21)). Note that in the
absence of labelled antigen (c

′ = 0), Eq. (41a) yields the result obtained for the
non-competitive assay (see (18)).

Adding (41a) and (41b) and, if we use the conservation law c(t) + c
′
(t) = 1 −

b(t), we get

db(t)

dt
= γμ1 − γ (μ1 + ψ1 + ψ2)b(t) − γ b(t)

∫ t

0
f (t − s)

db

ds
(s)ds. (42)

Once the solution of b(t) is calculated (using, for example, the asymptotic or numer-
ical methods detailed in [1, 2]), the product concentration c

′
(t) can be determined

from Eq. (41b), which yields

dc
′
(t)

dt
= −γμ1c

′
(t) + γ b(t)

(

ψ2 −
∫ t

0
f (t − s)

dc
′

ds
(s)ds

)

. (43)

Hence, instead of solving a coupled system of integro-differential Eq. (41), we can
now solve the independent Eq. (42) followed by Eq. (43). A regular perturbation
analysis could be applied to (42) and (43), which is similar to the one used in Sect. 2.2
to obtain an approximation for b(t) and c

′
(t).

We conclude that, our assumption of identical rate constants for antibody-antigen
and antibody-analogue binding leads to a significant simplification of the problem
studied in [5], whereby a coupled system of Volterra integro-differential equations
was replaced by an uncoupled one. However, this simplification may not always
be feasible since the label attachment may interfere with the antigen’s epitope and
therefore has to be considered carefully for each experimental setting.

4 The Sandwich Assay

The Sandwich assay (refer to, for example, [6]) is a type of immunoassay in which
an antibody for the antigen to be assayed is immobilised to a solid surface (this
antibody is often referred to as the capture antibody), then the sample containing
the test analyte is added and the reaction has been allowed to reach equilibrium.
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A second antibody, which has a radioactive or fluorescent label (and is therefore
called a tracer) is added, sandwiching the antigen. Again, after removal of excess,
the amount of bound label is measured. The signal level in this type of assay is
clearly proportional to the analyte concentration in the sample, just like in the direct
assay. The second antibody may be specific for a different epitope on the antigen,
thus enhancing overall specificity, or for the first antibody bound to an antigen. This
process can be symbolically represented by the reactions given by (44).

A + B1

k1
�
k−1

C1, D + B1

k1
�
k−1

C2, A + B2

k2
�
k−2

D, C1 + B2

k2
�
k−2

C2, (44)

where A represents antigen, B1 represents the immobilised antibody (also referred
to as capture antibody), B2 represents the labelled antibody, C1 is the product of the
antigen and immobilised antibody,C2 is the product ofC1 and labelled antibody (also
referred to as the sandwich product), and D is the product of antigen and labelled
antibody. The first two reactions have a forward reaction rate of k1 and a backward
reaction rate of k−1, the third and fourth reactions have a forward and backward
reaction rate of k2 and k−2 respectively. We have assumed that the affinity of each
antibody for the corresponding antigen is the same regardless of whether the antigen
is free or bound to another antibody; this simplifying assumption is not essential
for the model and could easily be relaxed later. We denote the concentration of the
reactants and products by their corresponding lower case letters, i.e.,

a = [A], b1 = [B1], b2 = [B2], c1 = [C1], c2 = [C2], d = [D].

The dynamic of the system is described by the following non-dimensional system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

da
dt = K−1c1 + K−2d − ab1 − K

′
ab2 (a)

db1
dt = K−1(c1 + c2) − b1(a + d) (b)
db2
dt = K−2(c2 + d) − K

′
b2(a + c1) (c)

dc1
dt = ab1 − K−1c1 − K

′
b2c1 + K−2c2 (d)

dc2
dt = K

′
b2c1 + b1d − (K−1 + K−2)c2 (e)

dd
dt = K

′
ab2 − K−2d − b1d + K−1c2, (f)

(45)

where we let

K−1 = k−1

k1β1
, K−2 = k−2

k1β1
, K

′ = k2
k1

. (46)

The non-dimensional initial conditions and conservation laws are:

a(0) = α

β1
, b1(0) = 1, b2(0) = β2

β1
, c1(0) = 0, c1(0) = 0, d(0) = 0,

(47)
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and

⎧
⎨

⎩

a + c1 + c2 + d = α
β1

(a)
b1 + c1 + c2 = 1 (b)
b2 + c2 + d = β2

β1
. (c)

(48)

From the steady state forms of Eq. (45) and the conservation laws (48) we find that

b21 +
(

α

β1
− 1 + K−1

)

b1 − K−1 = 0, b22 +
(

α − β2

β1
+ K−2

K ′

)

b2 − K−2β2

K ′
β1

= 0,

and

c2 =
β2

β1
b1 + K

′
b2 − (1 + K

′
)b1b2

b1 + K−1 + K ′b2 + K−3
, K−3 = k−3

k1β1
.

Therefore, it is possible to calculate the exact values of the steady states for all
the species, provided that all the reaction constants and initial concentrations are
accurately known. Some calibration curves, consisting of the steady states of c2,
c2 + d and b2 as functions of initial antigen concentration, α are plotted in Fig. 4.
The reason for plotting these species is that some antibodies have radioactive or
fluorescent labels which can be measured both at the surface and in the solution.
If the signal is measured at the surface, we need to plot c2 and compare it with
experimental data; however, for signals measured in the solution, it is c2 + d we are
interested in. Note also that over the short initial stage of the reaction, there exists a
linear response between the signal and analyte concentration.

The performance of a biosensor is often affected by the presence of a non-specific
(noisy) component of the recorded signal. In the configuration described above, any
measurement of the fluorescent label in solution would inevitably include B2, which
is the amount of labelled antibody left over (or unbound) after the reaction. This is a
non-specific measurement as it does not provide any information about the antigen
in the sample. We have also plotted b2, the noise, together with the “good” signals
in Fig. 4.

Fig. 4 Sandwich product c2
(red), combined product
c2 + d (blue), and unbound
tracer b2 (green) as functions
of initial antigen
concentration α. Typical
values for constants used in
this simulation are:
k1 = 100, k−1 = 10,
k2 = 100, k−2 = 10, β1 = 2
and β2 = 2
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An alternative modelling strategy is to construct a two-step model. In the first
step, we add antigen to the capture antibody and allow the reaction

A + B1

k1
�
k−1

C1, (49)

to proceed to equilibrium. This corresponds to the direct assay model studied in
Sect. 2.1, where exact and approximate formulas were obtained for the equilibrium
value ofC1. After the unbound antigen is washed away, we construct a second model
where the labelled antibody is introduced in the system (which does not contain any
free antigen) and reacts with the product C1 to form C2,

C1 + B2

k2
�
k−2

C2. (50)

The equilibrium value of c2 can then be obtained as a function of c1 and hence of the
initial antigen concentration, a0. Note that this modelling strategy does not eliminate
noise completely as, even after washing, the reversible nature of the reactions (49)
and (50) means that small amounts of free A and C1 will still be present in the
solution. (However, in an experimental setting, washing is always practiced since it
greatly reduces these amounts hence minimising non-specific interactions).

The analysis of this two-step model is similar to the one presented above and will
not be given here; instead, it will be performed as part of future studies into sandwich
bioassays (refer to the conclusions section). What this example illustrates is how, in
a simple model, it is possible to distinguish between the specific signal and the noise
and we believe that this calculation should bring valuable insight into experimental
procedures.

5 Summary

In this paper we analysed several modelling strategies for antibody-antigen interac-
tions with possible applications to immunoassay design. For direct and competitive
assays, we constructed two types of mathematical models: one-point models which
describe only the reaction kinetics and spatially extended models which allowed for
transport of one or more species to the reaction site. For both these assays (and both
types of models) we were able to derive exact formulas for the equilibrium values of
all reactants and construct calibration curves, which give the final product as a func-
tion of the initial analyte concentration. It was concluded that, for each of the assays
considered, both modelling approaches gave identical equilibrium values and hence
the biosensor response was the same regardless of whether transport effects were
included in the model or not. Therefore, if the value of the equilibrium state is the
only piece of information required in an experimental context we would recommend
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using the simpler model without diffusion. However, in many practical problems, the
time taken to achieve equilibrium is also a parameter of interest and, in such cases, we
obviously cannot neglect transport. Our modelling results were found to agree with
the results in [1, 2] and [5] which presented more detailed and rigorous mathematical
studies of diffusion models for similar direct and competitive assays. As remarked
before, the aim of our work in this chapter was to find conditions under which simpler
models and studies could be used in the context of antibody-antigen interactions. The
last section presented a different type of immunoassay, namely a sandwich assay, for
which a simple one-point model was used in order to construct a calibration curve.
This example illustrated how mathematical modelling has the potential to evaluate
the ratio between specific and non-specific signals in an experimental problem and
optimise biosensor performance by identifying parameter regions where the noise is
minimal.
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Positive Solutions for a Class of Nonlocal
Discrete Boundary Value Problems

Rodica Luca

Abstract We study the existence of positive solutions for a nonlinear second-order
difference equation with a linear term, a parameter and a sign-changing nonlinearity,
subject to multi-point boundary conditions. In the proof of our main results we use
the Guo-Krasnosel’skii fixed point theorem and the nonlinear alternative of Leray-
Schauder type.

1 Introduction

We consider the nonlinear second-order difference equation

(E) Δ2un−1 − Lun + λ f (n, un) = 0, n = 1, N − 1,

with the multi-point boundary conditions

(BC) u0 =
p∑

i=1

aiuξi , uN =
q∑

i=1

biuηi ,

where N ∈ N, N > 2, p, q ∈ N, Δ is the forward difference operator with stepsize
1, Δun = un+1 − un , Δ2un−1 = un+1 − 2un + un−1, and n = k,m means that n =
k, k + 1, . . . ,m for k, m ∈ N, ai ∈ R and ξi ∈ N for all i = 1, p, bi ∈ R and ηi ∈ N
for all i = 1, q , 1 ≤ ξ1 < · · · < ξp ≤ N − 1, 1 ≤ η1 < · · · < ηq ≤ N − 1, L is a
positive constant, λ is a positive parameter and f is a sign-changing nonlinearity.

Under some assumptions on the nonlinearity f , we present intervals for the param-
eter λ such that problem (E) − (BC) has positive solutions (un)n=0,N with un > 0
for all n = 0, N . The problem (E) − (BC) with L = 0 and ai = 0 for all i = 1, p
was recently studied in the paper [20]. The existence of positive solutions for the
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problem (E) − (BC)with λ = 1 (that is, without parameter) was investigated in [21]
by using the Guo-Krasnosel’skii fixed point theorem. The equation (E) with λ = 1
and L = 0, where the nonlinearity f may be unbounded below or non-positive,
subject to the boundary conditions u0 = u1 and uN = uN−1, which is a resonant
problem, has been studied in the paper [8] by transforming it into a non-resonant
problem. The existence, nonexistence and multiplicity of positive solutions for dif-
ference equations and systems of difference equations with parameters or without
parameters, with non-negative or sign-changing nonlinearities, supplemented with
various boundary conditions were investigated in the papers [1, 3, 5–7, 9–11, 13,
15–17, 22–24] and the monograph [14]. We also recommend the readers the mono-
graphs [2, 18] and [19] for various applications of the nonlinear difference equations
in many domains.

2 Preliminary Results

In this section we present some auxiliary results from [21] that will be used in the
proof of our main theorems.

We consider the second-order difference equation

Δ2un−1 − Lun + yn = 0, n = 1, N − 1, (1)

with the multi-point boundary conditions (BC), where yn ∈ R for all n = 1, N − 1.
We denote by A = L+2+√

L2+4L
2 the biggest solution of the characteric equation

r2 − (L + 2)r + 1 = 0 associated to Eq. (1). We also denote by

Δ1 =
(

p∑

i=1

ai A
ξi − 1

) (
1

AN
−

q∑

i=1

bi
1

Aηi

)

+
(
1 −

p∑

i=1

ai
1

Aξi

) (
AN −

q∑

i=1

bi A
ηi

)
.

Lemma 1 ([21]). If Δ1 �= 0, then the unique solution of problem (1)-(BC) can be

expressed as un =
N−1∑

j=1

G(n, j)y j , n = 0, N, where the Green function G is given by

G(n, j) = g(n, j)

+ 1

Δ1

[
An

(
q∑

i=1

bi
1

Aηi
− 1

AN

)
+ 1

An

(
AN −

q∑

i=1

bi A
ηi

)]
p∑

i=1

ai g(ξi , j)

+ 1

Δ1

[
An

(
1 −

p∑

i=1

ai
1

Aξi

)
+ 1

An

(
p∑

i=1

ai A
ξi − 1

)]
q∑

i=1

bi g(ηi , j),

(2)
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for all n = 0, N and j = 1, N − 1, and the function g is given by

g(n, j) = A

(A2 − 1)(AN − A−N )

×
{

(A j − A− j )(AN−n − An−N ), 1 ≤ j < n ≤ N ,

(An − A−n)(AN− j − A j−N ), 0 ≤ n ≤ j ≤ N − 1.

Lemma 2 ([21]). We assume that ai ≥ 0 for all i = 1, p, b j ≥ 0 for all j = 1, q,∑p
i=1 ai A

ξi ≥ 1,
∑p

i=1 ai
1
Aξi

≤ 1,
∑q

i=1 bi
1
Aηi ≥ 1

AN ,
∑q

i=1 bi A
ηi ≤ AN , and Δ1 >

0. Then the Green function G given by (2) satisfies the inequalities

k(n)h( j) ≤ G(n, j) ≤ Λh( j), ∀ n = 0, N , j = 1, N − 1,

where

Λ = 1 + 1

Δ1

[
AN

(
q∑

i=1

bi
1

Aηi
− 1

AN

)
+ AN −

q∑

i=1

bi A
ηi

] (
p∑

i=1

ai

)

+ 1

Δ1

[
AN

(
1 −

p∑

i=1

ai
1

Aξi

)
+

p∑

i=1

ai A
ξi − 1

] (
q∑

i=1

bi

)
,

h( j) = A
(A2−1)(AN−A−N )

(A j − A− j )(AN− j − A j−N ), ∀ j = 1, N − 1,

k(n) = 1

AN−1 − A1−N
min{An − A−n, AN−n − An−N }, ∀ n = 0, N .

Lemma 3 ([21]).Under the assumptions of Lemma 2, the solution un, n = 0, N of
problem (1)-(BC) satisfies the inequality un ≥ 1

Λ
k(n)um for all n, m = 0, N.

We also present here the Guo-Krasnosel’skii fixed point theorem (see [12]) and
the nonlinear alternative of Leray-Schauder type (see [4]) that will be used in the
next section.

Theorem 1. Let X be a Banach space and let C ⊂ X be a cone in X. Assume
Ω1 and Ω2 are bounded open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and let A :
C ∩ (Ω2 \ Ω1) → C be a completely continuous operator (continuous and compact)
such that, either

(i) ‖Au‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω2, or
(ii) ‖Au‖ ≥ ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ C ∩ ∂Ω2.

Then A has a fixed point in C ∩ (Ω2 \ Ω1).

Theorem 2. Let X be a Banach space with Ω ⊂ X closed and convex. Assume U
is a relatively open subset of Ω with 0 ∈ U, and let S : U → Ω be a completely
continuous operator. Then either

(1) S has a fixed point in U, or
(2) there exist u ∈ ∂U and ν ∈ (0, 1) such that u = νSu.
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3 Existence of Positive Solutions

In this section, we will give intervals for the parameter λ such that problem (E) −
(BC) has at least one or two positive solutions.We present now the basic assumptions
that we will use in the existence results.

(H1) ai ≥ 0 for all i = 1, p, b j ≥ 0 for all j = 1, q ,
∑p

i=1 ai A
ξi ≥ 1,

∑p
i=1 ai

1
Aξi

≤
1,

∑q
i=1 bi

1
Aηi ≥ 1

AN ,
∑q

i=1 bi A
ηi ≤ AN , Δ1 > 0 and L > 0.

(H2) The function f : {1, . . . , N − 1} × R+ → R is continuous, and there exist
cn ≥ 0, n = 1, N − 1 such that f (n, u) ≥ −cn for all n = 1, N − 1, u ∈ R+,
(R+ = [0,∞)).

We denote by (rn)n=0,N the solution of problem (1)-(BC) with yn = λcn for all
n = 1, N − 1, namely the solution of problem

⎧
⎪⎨

⎪⎩

Δ2un−1 − Lun + λcn = 0, n = 1, N − 1,

u0 =
p∑

i=1

aiuξi , uN =
q∑

i=1

biuηi ,
(3)

where cn, n = 0, N are given in (H2). So, by using the Green function G and
Lemma 1, we have rn = λ

∑N−1
j=1 G(n, j)c j for all n = 0, N .

We consider the difference equation

Δ2vn−1 − Lvn + λ( f (n, (vn − rn)
∗) + cn) = 0, n = 1, N − 1, (4)

with the multi-point boundary conditions

v0 =
p∑

i=1

aivξi , vN =
q∑

i=1

bivηi , (5)

where y∗ = y if y ≥ 0 and y∗ = 0 if y < 0.
We deduce easily that the sequence (un)n=0,N is a positive solution of prob-

lem (E) − (BC) (un > 0 for all n = 0, N ) if and only if (vn)n=0,N , vn = un + rn ,
n = 0, N is a solution of the boundary value problem (4)–(5) with vn > rn for all
n = 0, N .

By using Lemma 1, we also obtain that the sequence (vn)n=0,N is a solution of
problem (4)–(5) if and only if (vn)n=0,N is a solution of the problem

vn = λ

N−1∑

j=1

G(n, j)( f ( j, (v j − r j )
∗) + c j ), n = 0, N . (6)
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Weconsider theBanach space X = RN+1 = {v = (vn)n=0,N , vn ∈ R, n = 0, N }
endowed with the maximum norm ‖v‖ = maxn=0,N |vn|, and we define the operator
T : X → X , T (v) = (Tn(v))n=0,N , where

Tn(v) = λ

N−1∑

j=1

G(n, j)( f ( j, (v j − r j )
∗) + c j ), n = 0, N , v = (vn)n=0,N .

By (H2), the operator T is completely continuous. We also define the cone

P =
{
v ∈ X, v = (vn)n=0,N , vn ≥ k(n)

Λ
‖v‖, ∀ n = 0, N

}
.

By using Lemma 3, we deduce that T (P) ⊂ P . In addition, we remark that the
sequence (vn)n=0,N is a solution of problem (6) if and only if (vn)n=0,N is a fixed
point of operator T . So the existence of positive solutions of problem (E) − (BC)

is reduced to the fixed point problem of operator T in the cone P . We denote by
k0 = min{k(n), n = 1, N − 1}. Because N > 2, we have k0 ∈ (0, 1).

Theorem 3. Assume that (H1), (H2) and

(H3) lim
u→∞ min

n=1,N−1

f (n, u)

u
= ∞,

hold. Then there exists a constant λ∗ > 0 such that for any λ ∈ (0, λ∗] the problem
(E) − (BC) has at least one positive solution.

Proof. We choose a positive number R1 > Λ2

k0

∑N−1
j=1 h( j)c j , and we define the

set Ω1 = {v ∈ X, ‖v‖ < R1}. We introduce the constant λ∗ = min{1, R1(ΛM0∑N−1
j=1 h( j))−1} where

M0 = max{ max
n=1,N−1,u∈[0,R1]

{ f (n, u) + cn}, 1}.

Let λ ∈ (0, λ∗]. Because rn ≤ λΛ
∑N−1

j=1 h( j)c j for all n = 0, N , we deduce for
any v ∈ P ∩ ∂Ω1 that

[vn − rn]∗ ≤ vn ≤ ‖v‖ = R1, ∀ n = 0, N ,

and

vn − rn ≥ k(n)

Λ
‖v‖ − rn ≥ k(n)

Λ
‖v‖ − λΛ

N−1∑

j=1

h( j)c j

≥ k0R1

Λ
− λΛ

N−1∑

j=1

h( j)c j ≥ k0R1

Λ
− λ∗Λ

N−1∑

j=1

h( j)c j

≥ k0R1

Λ
− Λ

N−1∑

j=1

h( j)c j > 0, ∀ n = 1, N − 1.
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Then for any v ∈ P ∩ ∂Ω1, we conclude

Tn(v) ≤ λΛ

N−1∑

j=1

h( j)[ f ( j, (v j − r j )
∗) + c j ]

≤ λ∗ΛM0

N−1∑

j=1

h( j) ≤ R1 = ‖v‖, ∀ n = 0, N .

Hence we obtain

‖T (v)‖ = max
n=0,N

|Tn(v)| ≤ ‖v‖, ∀ v ∈ P ∩ ∂Ω1. (7)

We consider now the constant L1 = 2Λ(λk20
∑N−1

j=1 h( j))−1. By (H3) we deduce
that there exists a constant M1 > 0 such that

f (n, u) ≥ L1u, ∀ n = 1, N − 1, u ≥ M1. (8)

We define R2 > R1, with R2 ≥ max
{
2ΛM1
k0

, 2Λ2

k0

∑N−1
j=1 h( j)c j

}
and let Ω2 = {v ∈

X, ‖v‖ < R2}. Then for any v ∈ P ∩ ∂Ω2, we have

vn − rn = vn − λ

N−1∑

j=1

G(n, j)c j ≥ vn −
N−1∑

j=1

G(n, j)c j

≥ vn − Λ

N−1∑

j=1

h( j)c j ≥ vn − vnΛ
2

‖v‖k(n)

N−1∑

j=1

h( j)c j

= vn

⎡

⎣1 − Λ2

R2k0

N−1∑

j=1

h( j)c j

⎤

⎦ ≥ vn

2
≥ 0, ∀ n = 1, N − 1.

So we obtain for all n = 1, N − 1

[vn − rn]∗ = vn − rn ≥ 1

2
vn ≥ k(n)

2Λ
‖v‖ ≥ k0

2Λ
R2 ≥ M1. (9)

Then for any v ∈ P ∩ ∂Ω2, by (8) and (9) we deduce

f (n, [vn − rn]∗) ≥ L1([vn − rn]∗) ≥ L1

2
vn, ∀ n = 1, N − 1.

Therefore for any v ∈ P ∩ ∂Ω2 and n = 1, N − 1 we conclude
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Tn(v) ≥ λ

N−1∑

j=1

G(n, j)L1([v j − r j ]∗) ≥ λ

N−1∑

j=1

G(n, j)
L1k0R2

2Λ

≥ λL1k0R2

2Λ

N−1∑

j=1

k(n)h( j) ≥ λL1k20R2

2Λ

N−1∑

j=1

h( j) = R2.

Hence we obtain
‖T (v)‖ ≥ ‖v‖, ∀ v ∈ P ∩ ∂Ω2. (10)

By (7), (10) and Theorem 1 (i), we deduce that operator T has a fixed point
v1 = (v1

n)n=0,N ∈ P with R1 ≤ ‖v1‖ ≤ R2. In addition, we have

u1n = v1
n − rn = v1

n − λ

N−1∑

j=1

G(n, j)c j ≥ v1
n − λΛ

N−1∑

j=1

h( j)c j

≥ k(n)

Λ
‖v1‖ − λΛ

N−1∑

j=1

h( j)c j ≥ k0R1

Λ
− Λ

N−1∑

j=1

h( j)c j > 0, ∀ n = 1, N − 1,

u10 = v1
0 − r0 =

p∑

i=1

aiu
1
ξi

> 0, u1N = v1
N − rN =

q∑

i=1

biu
1
ηi

> 0.

Then u1 = (u1n)n=0,N is a positive solution of problem (E) − (BC).

Theorem 4. Assume that (H1), (H2) and

(H4)
∑N−1

i=1 ci > 0, lim inf
u→∞ min

n=1,N−1
f (n, u) > L0, with L0 = 2Λ2 ∑N−1

j=1 h( j)c j

k20
∑N−1

j=1 h( j)
and

lim
u→∞ max

n=1,N−1

| f (n, u)|
u

= 0,

hold. Then there exists a constant λ∗ > 0 such that for any λ ≥ λ∗, the problem
(E) − (BC) has at least one positive solution.

Proof. By (H4) we obtain that there exists M2 > 0 such that f (n, u) ≥ L0 for all
n = 1, N − 1 and u ≥ M2.We define λ∗ = M2(Λ

∑N−1
j=1 h( j)c j )−1.We assume that

λ ≥ λ∗. Let R3 = 2λΛ2

k0

∑N−1
j=1 h( j)c j > 0 and Ω3 = {v ∈ X, ‖v‖ < R3}. Then for

any v ∈ P ∩ ∂Ω3, we deduce

vn − rn ≥ k(n)

Λ
‖v‖ − λ

N−1∑

j=1

G(n, j)c j ≥ k(n)

Λ
‖v‖ − λΛ

N−1∑

j=1

h( j)c j

≥ k0R3

Λ
− λΛ

N−1∑

j=1

h( j)c j = λΛ

N−1∑

j=1

h( j)c j

≥ λ∗Λ
N−1∑

j=1

h( j)c j = M2 > 0, ∀ n = 1, N − 1.
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Therefore for any v ∈ P ∩ ∂Ω3 we conclude

Tn(v) ≥ λk(n)

N−1∑

j=1

h( j)( f ( j, [v j − r j ]∗) + c j )

≥ λk0

N−1∑

j=1

h( j)L0 = ‖v‖, ∀ n = 1, N − 1.

So we obtain
‖T (v)‖ ≥ ‖v‖, ∀ v ∈ P ∩ ∂Ω3. (11)

Next we consider the positive number ε = (2λΛ
∑N−1

j=1 h( j))−1. Then by (H4),

we deduce that there exists M3 > 0 such that | f (n, u)| ≤ εu for all n = 1, N − 1
and u ≥ M3. So we obtain | f (n, u)| ≤ M4 + εu for all n = 1, N − 1 and u ≥ 0,
where M4 = maxn=1,N−1,u∈[0,M3] | f (n, u)|. We define now R4 > R3 with R4 ≥
2λΛ

∑N−1
j=1 h( j)(M4 + c j ) and Ω4 = {v ∈ X, ‖v‖ < R4}. Then for any v ∈ P ∩

∂Ω4, we have vn − rn > M2 for all n = 1, N − 1 and

Tn(v) ≤ λΛ

N−1∑

j=1

h( j)[ f ( j, [v j − r j ]∗) + c j ]

≤ λΛ

N−1∑

j=1

h( j)[M4 + ε[v j − r j ]∗ + c j ]

≤ λΛ

N−1∑

j=1

h( j)(M4 + c j ) + λεΛR4

N−1∑

j=1

h( j)

≤ R4
2 + R4

2 = R4 = ‖v‖, ∀ n = 0, N .

Therefore
‖T (v)‖ ≤ ‖v‖, ∀ v ∈ P ∩ ∂Ω4. (12)

By (11), (12) and Theorem 1 (ii), we deduce that operator T has a fixed point
v1 ∈ P , v1 = (v1

n)n=0,N with R3 ≤ ‖v1‖ ≤ R4. Besides, we conclude
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u1n = v1
n − rn ≥ v1

n − λΛ

N−1∑

j=1

h( j)c j ≥ k(n)

Λ
‖v1‖ − λΛ

N−1∑

j=1

h( j)c j

≥ k0R3

Λ
− λΛ

N−1∑

j=1

h( j)c j = λΛ

N−1∑

j=1

h( j)c j

≥ λ∗Λ
N−1∑

j=1

h( j)c j = M2 > 0, ∀ n = 1, N − 1,

u10 = v1
0 − r0 =

p∑

i=1

aiu
1
ξi

> 0, u1N = v1
N − rn =

q∑

i=1

biu
1
ηi

> 0.

Then u1 = (u1n)n=0,N is a positive solution of problem (E) − (BC).

In a similar manner used in the proof of Theorem 4, we obtain the following result.

Theorem 5. Assume that (H1), (H2) and

(H̃4)
∑N−1

i=1 ci > 0, lim
u→∞ min

n=1,N−1
f (n, u) = ∞ and lim

u→∞ max
n=1,N−1

| f (n, u)|
u

= 0,

hold. Then there exists a constant λ̃∗ > 0 such that for any λ ≥ λ̃∗, the problem
(E) − (BC) has at least one positive solution.

Theorem 6. Assume that (H1), (H2) and

(H5) f (n, 0) > 0 for all n = 1, N − 1,

hold. Then there exists a constant λ0 > 0 such that for any λ ∈ (0, λ0] the problem
(E) − (BC) has at least one positive solution.

Proof. Let δ ∈ (0, 1) be fixed. By using (H2) and (H5), there exists R0 ∈ (0, 1]
such that f (n, u) ≥ δ f (n, 0) > 0 for all n = 1, N − 1 and u ∈ [0, R0]. We define

f (R0) = max
n=1,N−1, u∈[0,R0]

{ f (n, u) + cn} ≥ max
n=1,N−1

{δ f (n, 0) + cn} > 0,

λ0 = R0(2Λ f (R0)
∑N−1

j=1 h( j))−1.

We will show that for any λ ∈ (0, λ0], problem (E) − (BC) has at least one
positive solution. So let λ ∈ (0, λ0] be arbitrary, but fixed for the moment. We define
the set U = {v ∈ P, v = (vn)n=0,N , ‖v‖ < R0}. We suppose that there exists v ∈
∂U (‖v‖ = R0) and ν ∈ (0, 1) such that v = νT (v). We deduce that

[vn − rn]∗ = vn − rn ≤ vn ≤ R0, i f vn − rn ≥ 0,
[vn − rn]∗ = 0, i f vn − rn < 0, n = 0, N .
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Then by Lemma 2, we have

vn = νTn(v) ≤ Tn(v) ≤ λΛ

N−1∑

j=1

h( j) f (R0) ≤ λ0Λ f (R0)

N−1∑

j=1

h( j) = R0

2
.

Therefore we obtain R0 = ‖v‖ ≤ R0
2 , which is a contradiction.

Hence by Theorem 2 (withΩ = P) we conclude that operator T has a fixed point
v0 = (v0

n)n=0,N ∈ U . That is v0 = T (v0) or v0
n = Tn(v0), n = 0, N and ‖v0‖ ≤ R0

with v0
n ≥ k(n)

λ
‖v0‖ for all n = 0, N . Moreover, by Lemma 2 we deduce

v0
n = Tn(v0) ≥ λ

N−1∑

j=1

G(n, j)(δ f ( j, 0) + c j )

≥ λk0

N−1∑

j=1

h( j) f ( j, 0) + λ

N−1∑

j=1

G(n, j)c j

≥ λk0 min
j=1,N−1

f ( j, 0)
N−1∑

j=1

h( j) + rn > rn, ∀ n = 1, N − 1,

and so u0n = v0
n − rn > 0 for all n = 1, N − 1, and u00 = v0

0 − r0 = ∑p
i=1 aiu

0
ξi

>

0, u0N = v0
N − rN = ∑q

i=1 biu
0
ηi

> 0. Then u0 = (u0n)n=0,N is a positive solution of
problem (E) − (BC).

Theorem 7. Assume that (H1), (H2), (H3) and (H5) hold. Then the boundary
value problem (E) − (BC) has at least two positive solutions for λ > 0 sufficiently
small.

Proof. By Theorem 3 (in which we choose R1 > 1) and Theorem 6, we deduce that
for 0 < λ ≤ min{λ∗, λ0}, problem (E) − (BC) has at least two positive solutions
u1 = (u1n)n=0,N and u0 = (u0n)n=0,N with ‖u1 + r̃‖ > 1 and ‖u0 + r̃‖ ≤ 1, where
r̃ = (rn)n=0,N .

4 Examples

Let N = 20, L = 2, p = 2, q = 1, ξ1 = 5, ξ2 = 15, a1 = 2, a2 = 1
3 , η1 = 10, b1 =

1
2 . We consider the difference equation

(E0) Δ2un−1 − 2un + λ f (n, un) = 0, n = 1, 19,
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with the multi-point boundary conditions

(BC0) u0 = 2u5 + 1

3
u15, u20 = 1

2
u10.

Weobtain A = 2 + √
3,Δ1 ≈ 2.73999 × 1011 > 0,

∑p
i=1 ai A

ξi ≈ 1.26502 × 108 >

1,
∑p

i=1 ai
1
Aξi

≈ 0.00276244 < 1,
∑q

i=1 bi
1
Aηi ≈ 9.53882 × 10−7 > 1

A20 ≈ 3.63956
× 10−12,

∑q
i=1 bi A

ηi ≈ 262087 < A20 ≈ 2.74758 × 1011. Therefore assumption
(H1) is satisfied. In addition we have

g(n, j) = A
(A2−1)(A20−A−20)

{
(A j − A− j )(A20−n − An−20), 1 ≤ j < n ≤ 20,
(An − A−n)(A20− j − A j−20), 0 ≤ n ≤ j ≤ 19,

G(n, j) = g(n, j)
+ 1

Δ1

[
An

(
1
2

1
A10 − 1

A20

) + 1
An

(
A20 − 1

2 A
10

)] (
2g(5, j) + 1

3g(15, j)
)

+ 1
Δ1

[
An

(
1 − 2 1

A5 − 1
3

1
A15

) + 1
An

(
2A5 + 1

3 A
15 − 1

)]
1
2g(10, j),

n = 0, 20, j = 1, 19,
h( j) = A

(A2−1)(A20−A−20)
(A j − A− j )(A20− j − A j−20), j = 1, 19,

k(n) = 1
A19−A−19 min{An − A−n, A20−n − An−20}, n = 0, 20.

We also obtain Λ ≈ 3.84003043 and k0 ≈ 4.7053 × 10−11.

Example 1. We consider the function

f (n, u) = (u + 1)4/3

n(n + 2)
+ ln

n

n + 3
, ∀ n = 1, 19, u ∈ [0,∞).

Here we have cn = ln n+3
n ≥ 0 for all n = 1, 19 and then we obtain f (n, u) ≥

−cn for all n = 1, 19 and u ∈ [0,∞). Because limu→∞ f (n, u)/u = ∞, then the
assumptions (H2) and (H3) are satisfied. We choose R1 = 6.53502 × 1011 which
satisfies the condition from the beginning of the proof of Theorem 3. Then M0 ≈
1.89034 × 1015 and λ∗ ≈ 3.09645 × 106. By Theorem 3 we deduce that (E0) −
(BC0) has at least one positive solution for any λ ∈ (0, λ∗].
Example 2. We consider the function

f (n, u) = (u − 1)(u − 2), n = 1, 19, u ∈ [0,∞).

Then there exists M̃0 > 0 (M̃0 = 1
4 ) such that f (n, u) + M̃0 ≥ 0 for all n = 1, 19

and u ≥ 0, (cn = M̃0 = 1
4 for all n = 1, 19) and f (n, 0) = 2 > 0 for all n = 1, 19.

So assumptions (H2) and (H5) are satisfied. Let δ = 3
8 < 1 and R0 = 1

2 . Then
f (n, u) ≥ δ f (n, 0) for all n = 1, 19 and u ∈ [0, 1

2 ]. Besides f (R0) = 9
4 and there-

fore we obtain λ0 ≈ 9.95213 × 108. By Theorem 6, for any λ ∈ (0, λ0], we deduce
that problem (E0) − (BC0) has at least one positive solution.
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Dynamics of a Certain Nonlinearly
Perturbed Heat Equation

Carlos Ramos, Ana Isabel Santos, and Sandra Vinagre

Abstract We consider a system described by the linear heat equation, with appro-
priate boundary conditions in order tomodel the temperature on awire with adiabatic
endpoints, which is perturbed nonlinearly by a family of quadratic maps. The time
instants of the perturbation are determined by an additional dynamical system, seen
here as part of the external interacting system. We study the complex behaviour of
the system, namely the dependence on initial conditions.

1 Introduction

We study an infinite dimension dynamical systemwhose irregular behavior is mainly
determined by an iteratedmapof the interval. Previousworkswith similar perspective
and which were our motivation can be found in [6–9] and [10]. The configuration
of the system considered here is itself an interval, I , and the state of the system is
determined by a differentiable function on I . For the time evolution we consider
two distinct phases: a regular continuous phase determined by the diffusion equation
(heat equation), characterized by a diffusing coefficient λ; a perturbation regime,
with discrete time, which is determined by the action of an operator, T fμ , induced
by an interval map fμ, characterized by a parameter μ. The dissipative nature of
the diffusion equation progressively eliminates irregular aspects of the state function
with the time flow. Therefore, we expect rapid convergent behavior to a stable state.
However, the external perturbation, in this case modeled by T fμ , if it arises from
a chaotic interval map fμ, introduces irregularities and complexity for the possible
observed states, in particular the number of critical points of the state functions grows
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and evolves in a chaotic manner. The interplay between the dissipative nature of the
heat equation and the expansive nature of the interval map gives us a very complex
behavior, taking into account the variation of the control parameters λ andμ.We have
previously addressed this problem, see [2, 4] and [5], for the fully developed chaotic
regime, with μ so that the topological entropy of fμ is positive. In this case, we
observe a that a transient phase occurs, in which the number of critical points of the
state function grows exponentially with time, for almost every initial condition. After
these transient phase the state functions oscillate in a chaotic manner, nevertheless
with a limited number of critical points. This number of critical points vary around
a certain average value. This average number of critical points and also its standard
deviation are mainly dependent on the parameter λ and not on μ, see [4]. Moreover,
this stationary average number of critical points, in the stationary phase, does not
depend on the initial condition chosen, only the time needed to attain the stationary
phase.

Here, we deal with the zero topological entropy situation. In this case, we observe
that the number of critical points in the stationary phase depends strongly on the initial
condition. Moreover, although the topological entropy of the interval map is zero,
which would lead us to expect simple behavior—in fact all the initial conditions lead
to periodic state functions—nevertheless, there are an infinite number of attractive
periodic functions, depending on the initial condition. Therefore, this case deserves
further study, which is initiated here. We start with certain preliminary material.

Consider the class of differentiable functions

A = {
ϕ ∈ C1([0, 1]) : ϕ′(0) = ϕ′(1) = 0, |cp (ϕ)| < ∞}

,

where |cp (ϕ)| denotes the number of critical points of ϕ. That is, a function belongs
to the class A if it is differentiable, its derivatives at the endpoints are 0 and its
number of critical points are finite.

Following [2], the interval maps we consider here, modeling the perturbation,
belongs to the well studied quadratic family defined by fμ (x) = 1 − μx2, with μ ∈
(0, 2]. There is a maximal invariant interval, [−1, 1], where the relevant dynamics
occurs, that is, the iterates f kμ (x0) := fμ

(
. . . fμ (x0)

)
(k times) of initial points x0

in [−1, 1] will belong to [−1, 1], for every k. For initial points x0 outside [−1, 1],
the iterates f kμ (x0), k ∈ N diverge to infinity.

The one parameter family of operators T fμ , induced by fμ onA , which determines
the perturbation regime, is defined by

T fμ : A → A
ϕ �→ fμ ◦ ϕ.

For each parameter μ, the operator T fμ is well defined since
(
fμ ◦ ϕ

)′
(0) =(

fμ ◦ ϕ
)′

(1) = 0, therefore, we consider the discrete dynamical system (A , T fμ).
Since points outside the interval [−1, 1] goes to infinity under iteration of fμ, and
every iterate of initial points belonging to the interval [−1, 1] belongs to [−1, 1], the
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iterates of initial functions φ0 whose image is contained in [−1, 1] will maintain its
image contained in [−1, 1]. If the image of φ0 is not contained in [−1, 1], then the
iterates of φ0 under the operator T fμ will explode.

2 Nonlinear Perturbed Heat Equation

We consider the unit interval representing an ideal wire. The temperature function
at each point x ∈ [0, 1] and each time instant t ∈ R

+
0 is denoted by ψ(x, t). We

consider also that the wire is such that the time evolution of the temperature function
is described by the linear heat equation

∂ψ

∂t
= λ

∂2ψ

∂x2
, (1)

where λ is a constant, the diffusion coefficient. If there is no heat exchange in the
endpoints x = 0 and x = 1, we have adiabatic boundary conditions

∂ψ

∂x
(0, t) = ∂ψ

∂x
(1, t) = 0. (2)

The initial condition ψ(x, 0) = φ0 (x) is chosen from the classA , introduced in the
previous section. The solution can be written as follows

ψ(x, t) =
∞∑

n=0

cne
−n2π2λt cos (nπx) , (3)

where the coefficients cn are determined by the initial condition written as a cosine
Fourier series

φ0 (x) =
∞∑

n=0

cn cos(nπx). (4)

From the explicit solution (3), we see that for every fixed t∗ ∈ R
+
0 , we have

ψ(x, t∗) ∈ A .
Suppose the system is perturbed in time instants t1, t2, . . . through a certain non-

linear process. Being the temperature distribution along thewire initially given by the
function ψ0(x, t), for t0 < t < t1, after the perturbation the temperature function is
ψ1(x, t), for t > t1. We have continuous time evolution for t ∈]t j , t j+1[ and discrete
time evolution for t = t j . We assume that the perturbation is characterized by a non-
linearmap f so thatψ j+1(x, t j+1) = f (ψ j (x, t j+1)), withψ1(x, t1) = f (ψ0(x, t1)).
If the time instants are tk = k ∈ N, the time evolution of the system is described by
the sequence of functions
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{ψ0, ψ1, ψ2, . . . , ψk, . . .} , (5)

each function ψk satisfying the heat equation for x ∈ [0, 1], t ∈ [k, k + 1[ , k ∈ N0,
with initial conditions determined by

ψk+1(x, k + 1) = f (ψk(x, k + 1)) , for k ∈ N0,

and ψ0(x, 0) = φ0 (x) a given function from A .
Next, in a first example, we show snapshots of the evolution of the system in a

linear continuous regime, still without perturbation, and, in a second example, we
show what occurs to the system when we introduce a perturbation at certain time
instants.

Example 1. Let us consider λ = 0.005 and

ψ0 (x, 0) = φ0 (x) = 0.1 − 0.2 cos(2πx) − 0.1 cos(3πx) − 0.1 cos(4πx)

+0.2 cos(5πx) + 0.1 cos(6πx) + .3 cos(7πx) − 0.2 cos(8πx).

In Fig. 1, we show the evolution of the system in a linear continuous regime for the
initial condition ψ (x, 0).
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Fig. 1 Graphs of aψ (x, 0),bψ (x, 0.4), cψ (x, 0.8),dψ (x, 1.2), eψ (x, 1.6) and f ψ (x, 2), with
λ = 0.005 and ψ (x, 0) = 0.1 − 0.2 cos(2πx) − 0.1 cos(3πx) − 0.1 cos(4πx) + 0.2 cos(5πx) +
0.1 cos(6πx) + .3 cos(7πx) − 0.2 cos(8πx)
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Example 2. Consider fμ (x) = 1 − μx2, with μ = 2, λ = 0.00005 and

ψ0 (x, 0) = φ0 (x) = 0.1 − 0.2 cos(2πx) − 0.1 cos(3πx) − 0.1 cos(4πx)

+0.2 cos(5πx) + 0.1 cos(6πx) + .3 cos(7πx) − 0.2 cos(8πx).

In the Fig. 2, we show the evolution of the system described by the heat equation,
which is perturbed in time instants t = 1, 2, 3, 4, 90, 91, 92, 93, 94.
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Fig. 2 Graphs of a ψ0 (x, 1), b ψ1 (x, 2), c ψ2 (x, 3), d ψ3 (x, 4), e ψ90 (x, 91), f ψ91 (x, 92),
g ψ92 (x, 93), h ψ93 (x, 94) and i ψ94 (x, 95), with λ = 0.00005, fμ (x) = 1 − μx2,
μ = 2 and ψ (x, 0) = 0.1 − 0.2 cos(2πx) − 0.1 cos(3πx) − 0.1 cos(4πx) + 0.2 cos(5πx) +
0.1 cos(6πx) + .3 cos(7πx) − 0.2 cos(8πx)
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The discrete dynamical system used in this work is the following. We consider
the state space A , the operator T fμ and an operator Uλ,ε : A → A , which gives
the time evolution under the unperturbed regime, with diffusion coefficient λ. The
operator Uλ,ε is defined implicitly by

Uλ,εψ (x, t) := ψ (x, t + ε) .

Let us consider the operator Vμ,λ,ε : A → A defined by

Vμ,λ,ε := T fμ ◦Uλ,ε.

If the system is perturbed in natural time instants, with fixed increments, it is
sufficient to consider a natural value for ε. In fact, if the time increment is a /∈ N,
we can rescale through the parameter λ. Therefore, we set ε = 1 and we define
Vμ,λ ≡ Vμ,λ,1. Our discrete dynamical system is, then, defined by the pair

(
A , Vμ,λ

)
.

When we iterate a function φ0 (x) in A , under Vμ,λ, the obtained iterates φk (x) =
V k

μ,λ (φ0 (x)) will correspond to the solution given by the sequence of functions (5)
in the time instants φk (x) = ψk (x, k). If, for some reason, we need to obtain the
temperature function at a non integer time instant t ′ we simply use the solution
presented in (3) with initial condition given by ψ (x, 0) = V k

μ,λ (φ0 (x)), where k =[
t ′
]
is the integer part of t ′. Then, we evaluate the function for the time instant t ′ − k,

that is, ψ
(
x, t ′ − k

)
.

3 The Evolution of Critical Points of the Iterates
φk = Vk

μ,λ (φ0)

As we referred above, in our previous works was established that, in certain
conditions—namely positive topological entropy of fμ—the iterates, under Vμ,λ,
have an exponential grow of number of critical points up to a certain level, see [2].
After attaining a certain number of critical points, which depends on the parameters,
this number oscillates and becomes limited. For the dynamical system

(
A , Vμ,λ

)
,

the number of critical points does not grow exponentially. Indeed, it attains a balance
between the creation of new critical points, due to the interval map effect, and the
destruction of critical points, due to the dissipative effect of the heat equation.

The topological entropy of an interval map g is an important measure for the char-
acterization of the complex behaviour of the map under iteration (see [3]). Roughly
speaking as greater topological entropy more complex is the dynamical behaviour.
For the infinite dimensional system (A , Tg), the topological entropy of g measures
the growth rate of the number of critical points for the functions inA (see [1]). That
is, if the topological entropy is zero, then the growth rate is polynomial or there is no
growth at all, for almost every initial functions. For positive topological entropy the
iterates will have an increasingly number of critical points, growing exponentially
under iteration.
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Inwhat followswe consider a set of representative initial conditions,whose graphs
are in the Fig. 7:

ψ0 (x) = 0.2 + 0.1 cos(πx) − 0.2 cos(2πx) + 0.1 cos(3πx)

+ 0.1 cos(4πx) − 0.1 cos(5πx) + 0.2 cos(6πx),

ψ̃0 (x) = 0.2 + 0.1 cos(πx) − 0.2 cos(2πx) + 0.1 cos(3πx),

ϕ0 (x) = 0.2 + 0.1 cos(πx) − 0.2 cos(2πx) + 0.1 cos(3πx)

+ 0.1 cos(4πx) − 0.1 cos(5πx) + 0.2 cos(6πx)

+ 0.1 cos(7πx) + 0.2 cos(8πx) + 0.2 cos(9πx),

ϕ̃0 (x) = 0.03 cos(2πx) + 0.2 cos(3πx) − 0.2 cos(5πx)

+ 0.3 cos(6πx) − 0.3 cos(29πx),

φ0 (x) = 0.07 cos(2πx) + 0.07 cos(3πx) − 0.07 cos(5πx)

+ 0.07 cos(6πx) − 0.07 cos(29πx),

φ̃0 (x) = 0.03 cos(2πx) + 0.05 cos(3πx) − 0.07 cos(4πx)

+ 0.07 cos(5πx) + 0.03 cos(7πx),

ρ0 (x) = 0.45 − 0.45 cos(2πx),

ρ̃0 (x) = −0.75 cos(4πx),

α0 (x) = 0.3 + 0.6 cos(2πx) − 0.45 cos(4πx),

α̃0 (x) = −0.1 − 0.55 cos(2πx) − 0.2 cos(4πx) + 0.5 cos(6πx),

β0 (x) = −0.1 − 0.55 cos(2πx) − 0.15 cos(4πx) − 0.15 cos(6πx) + 0.5 cos(8πx),

β̃0 (x) = −0.75 cos(6πx),

and
σ0 (x) = −0.75 cos(8πx).

3.1 Positive Topological Entropy of fμ

The average number of critical points of the iterates depends on the diffusion coeffi-
cient λ, when we decrease the diffusion coefficient λ, the average number of critical
points, at which the temperature function stabilizes, increases, as we can see in the
Table 1.
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Table 1 The arithmetic mean and the standard deviation for thirteen different initial conditions,
ψ0, ψ̃0, ϕ0, ϕ̃0, φ0, φ̃0, ρ0, ρ̃0, α0, α̃0, β0, β̃0, σ0, of the number of critical points. The values are
presented for μ = 2 and for two different values of the diffusion coefficient λ (λ = 0.00005 and
λ = 0.00001)
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Fig. 3 Graph of η (λ) = C0λ
C1 , with a C0 = 0.2 andC1 = −0.5 and bC0 = 0.3 andC1 = −0.47

Using the values obtained numerically for the distribution of the critical points,
we determined, in [4], an empirical relation which characterizes this phenomena,
and we can enunciate the following result.

Numerical Result 1. Whenμ is such that ht
(
fμ

)
> 0, the average number of criti-

cal points, η (λ), does not depend on μ, only on λ. Moreover, if
λ ∈ [0.0000075, 0.01], then we have approximately the rule

η (λ) = C0λ
C1, (6)

with C0 = 0.25 ± 0.05 and C1 = −0.485 ± 0.015 (see Fig.3).

3.2 Topological Entropy of fμ Equal to Zero

For the cases in which the quadratic map fμ has topological entropy equal to zero,
that is, the cases the parameterμ is such that ht

(
fμ

) = 0, it is not possible to present
a formula similar to the one that was presented in the result (6). For zero topological
entropy the number and the evolution of critical points depends strongly on the initial
conditions, regardless of the value of λ. Moreover, the standard deviation is very high
although the growth of the critical points is low, aswe can see in the Table 2.However,
we observed that for fixed initial conditions the asymptotic behavior follows a pattern
similar to the previously identified in the result (6). In this case, what depends on the
initial condition, is not the existence of exponential decay on the parameter λ, are
the constants of this decay, as we enunciate in the result (7).
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Table 3 The values for C0 and C1, em (7), for the initial conditions ψ0, ψ̃0, ϕ0, ϕ̃0, φ0, φ̃0, ρ0, ρ̃0,
α0, α̃0, β0, β̃0 and σ0

Numerical Result 2. Let ψ0 ∈ A and μ such that ht
(
fμ

) = 0. If λ ∈ [0.0000075,
0.0001], then the average number of critical points, ημ,ψ0 (λ), is given approximately
by the rule

ημ,ψ0 (λ) = C0 (ψ0) λC1(ψ0), (7)

where C0 (ψ0) and C1 (ψ0) depend on the initial condition ψ0 and μ .

In the Table 3,we present the values forC0 andC1, em (7), for the initial conditions
ψ0, ψ̃0, ϕ0, ϕ̃0, φ0, φ̃0, ρ0, ρ̃0, α0, α̃0, β0, β̃0 and σ0, and in the following example
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Fig. 4 Graph of ημ,ψ0 (λ) = C0 (ψ0) λC1(ψ0), with a C0 (ψ0) = 0.6073 and C1 (ψ0) = −0.3297
and b C0 (ψ0) = 0.6663 and C1 (ψ0) = −0.3235

we present the graph of the average number of the critical points for three of these
initial conditions.

Example 3. Consider fμ (x) = 1 − μx2, with μ = 1.3815 . . .,

ψ0 (x, 0) = 0.2 + 0.1 cos(πx) − 0.2 cos(2πx) + 0.1 cos(3πx)

+ 0.1 cos(4πx) − 0.1 cos(5πx) + 0.2 cos(6πx),

ψ̃0 (x, 0) = 0.2 + 0.1 cos(πx) − 0.2 cos(2πx) + 0.1 cos(3πx)

and
ρ0 (x, 0) = 0.45 − 0.45 cos(2πx).

For these initial conditions we have C0 (ψ0) = 0.6368 ± 0.0295 and C1 (ψ0) =
−0.3266 ± 0.0031, C0 (ϕ0) = 0.0416 ± 0.0055 and C1 (ϕ0) = −0.5722 ± 0.0007,
and C0 (ρ0) = 0.0791 ± 0.0079 and C1 (ρ0) = −0.5253 ± 0.0012. In Figs. 4, 5 and
6, we present the graphs of ημ,ψ0 (λ) .
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Fig. 5 Graph of ημ,ϕ0 (λ) = C0 (ϕ0) λC1(ϕ0), with a C0 (ϕ0) = 0.0361 and C1 (ϕ0) = −0.5729
and b C0 (ϕ0) = 0.0471 and C1 (ϕ0) = −0.5715
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Fig. 6 Graph of ημ,ρ0 (λ) = C0 (ρ0) λC1(ρ0), with aC0 (ρ0) = 0.0712 andC1 (ρ0) = −0.5265 and
b C0 (ρ0) = 0.087 and C1 (ρ0) = −0.5241
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4 Conclusions

The studied system is governed by a diffusion equation with a periodic nonlinear
perturbation induced by an iterated map of the interval—a quadratic family fμ. We
have two parameters, the diffusion coefficient λ and the parameter characterizing fμ,
μ. The system exhibits a transient phase in which the number of critical points grows
and its growth depends essentially on the topological entropy of fμ. The dissipative
nature of the diffusion equation eventually becomes dominant and the number of
critical points stabilize around an average value, and with a certain dispersion. This
average value, in the positive topological entropy case decays exponentially with the
parameter λ and does not depend on μ. Moreover, the coefficients of the decay does
not depend on the initial condition chosen. In a certain sense, the positive topological
entropy produces an homogeneous exponential growth in the transient phase which
disguise the differences in the initial conditions, normalizing the further behavior in
the stable regime.

In the zero topological entropy, this does not happen and the significative dif-
ferences in the initial conditions perpetuate through the stable regime. In this
stable regime, the decay of the average number of critical points with λ and
also its standard deviation depends strongly on the initial condition, as we can
observe in the Table 3, for example, compare ψ0 with φ̃0, where C0 (ψ0) =
0.6368 ± 0.0295, C1 (ψ0) = −0.3266 ± 0.0031, and C0

(
φ̃0

) = 0.0053 ± 0.0035,
C1

(
φ̃0

) = −0.7780 ± 0.0615.
Moreover, depending on μ, with zero topological entropy, we obtain periodical

behavior for every initial condition, with the period given by the period of the critical
point of fμ. However, the periodic orbit itself is unique for each initial condition,
which was somehow unexpected.

For the positive and zero topological entropy cases, we considered, for the coef-
ficient λ, the intervals [0.0000075, 0.01] and [0.0000075, 0.0001], respectively,
because the relevant dynamics occurs at these intervals (for example, for larger
values of the coefficient λ, the system converges to a constant).

Acknowledgements Thiswork has been partially supported by national funds by FCT—Funda-ção
para a Ciência e a Tecnologia within the project UID/MAT/04674/2019.
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The Dynamics of a Hybrid Chaotic
System

Carlos Ramos, Ana Isabel Santos, and Sandra Vinagre

Abstract We consider a forced damped piecewise linear oscillator whose motion
is modeled by the second-order non-autonomous differential equation. Our hybrid
chaotic system has a continuous regime, where the time flow is characterized by the
explicit solutions of the ordinary differential equations, and a singular regime, where
the time flow is characterized by an appropriate transformation linking the explicit
solutions from one domain to the other. The purpose of this work is to study the
complex behaviour of the system, namely the dependence on initial conditions and
parameter variation.

1 Introduction

Piecewise linear dynamics may be used to study several mechanical systems such as
gear box and rotor-bearing systems. For many years, the dynamics of gears has been
of great interest to improve transmission and to reducemachinery noise. Although, in
the initial phase, the linear vibration model developed provides a good prediction of
gear vibration at low speeds, owing to high speed requirement in this type of systems,
the linear vibrationmodel is no longer adequate. So, in recent decades, with the aimof
finding the origin of the vibration andnoise, the piecewise linearmodel and the impact
model were developed. In the literature, we find several models considering the
piecewise linear system to describe engineering vibrations, such as vibration in gear
box, rotor-bearing and elasto-plastic structures (see [1]). For example, in 1983, Shaw
and Holmes [4] investigated a piecewise linear system with a single discontinuity
using themapping technique.More recently, Luo andChen [1] presented an idealized
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piecewise linear system with impacts to model the vibration of gear transmission
systems, which was investigated analytically through the corresponding mapping
structures. Moreover, piecewise linear systems, on one hand have explicit solutions,
since involves linear differential equations, on the other hand can be used to study
chaotic nonlinear systems, through the methods we explain below.

In this paper, we consider a forced damped piecewise linear oscillator whose
motion is modeled by the second-order non-autonomous differential equation

x ′′ + α x ′ + g(x) = F cos(ωt), (1)

where α is the damping coefficient, F is the forcing amplitude, ω is the forcing
frequency and g is a linear function. Therefore, we have a continuous regime, where
the time flow is characterized by the explicit solutions of the ordinary differential
equations, and a singular regime, where the time flow is characterized by an appro-
priate transformation linking the explicit solutions from one domain to the other. In
the continuous regime, we have in fact a linear regime. The phase space is parti-
tioned in these continuous regimes, and in each set of the partition the system has
a unique explicit solution, since the ODE is linear in each part. When the system
is in a singular regime it changes to another region of the partition, entering again
in the continuous regime. This method allow us to study a nonlinear system with
very complex behaviour such as (1). Our differential dynamical system is studied
by making use of numerical simulations, with similar techniques as the ones applied
in [2].

Fromour previouswork, [3], we know that the behaviour of the system, depending
on the parameters, is simple, periodic or chaotic. The behaviour in the chaotic regime
is characterized by phase-space trajectories exhibiting many orbits that are nearly
closed. Moreover, in certain regions of the parameters there are sensitivity to the
initial conditions and sensitivity to parameter perturbation. In the present work, we
intend to investigate, making use of numerical simulations, where are these regions,
namely we want determine the region where occurs periodic and chaotic motion and
the existence of regions where the model explodes.

2 The Forced Damped Piecewise Oscillator Model

In this section, we present the problem whose behaviour we intended to study. In
order to do that, consider that x represents the displacement, x ′ the velocity and x ′′
the acceleration, so the motion of a forced damped oscillator can be described by the
second-order non-autonomous differential equation (1), where g is a linear piecewise
function defined by

g(x) = (−1) j(x)
2

π
x + (−1) j(x)+12 j (x) ,
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where the function j (x) is given by

j (x) = 1

π

(
x + π

2

)
− mod

[
1

π

(
x + π

2

)
, 1

]
.

The local solutions of Eq. (1) are known explicitly on each interval I j , for j ∈ Z,

since the two families of differential equations involved are

x ′′ + αx ′ + 2

π
x − 2 j = F cos(ωt) (2)

for x ∈ I j =
[
−π

2
+ jπ,

π

2
+ jπ

]
and j even, and

x ′′ + αx ′ − 2

π
x + 2 j = F cos(ωt) (3)

for x ∈ I j =
[
−π

2
+ jπ,

π

2
+ jπ

]
and j odd.

So, aswe can seen in [3], considering the initial conditions x(t0) = x0 ∈ I j ,with j

even, x ′(t0) = v0 and |α| <

√
8
π
, the local solution of the family of differential

equations (2) in each interval I j , with j even, is

x(t) = e− α
2 (t−t0)

[
A1 cos

(√
β1 (t − t0)

)
+ A2 sin

(√
β1 (t − t0)

)]

+ F
(
2
π

− ω2
)

α2ω2 + (
2
π

− ω2
)2 cos (ω (t − t0)) (4)

+ F α ω

α2ω2 + (
2
π

− ω2
)2 sin (ω (t − t0)) + jπ,

where β1 = 2

π
−

(α

2

)2
and the coefficients A1 and A2, that depend on the initial

conditions, are

A1 = x0 − jπ − F
(
2
π

− ω2
)

(
2
π

− ω2
)2 + α2ω2

,

A2 = − 1√
β1

[
F α ω2

α2ω2 + (
2
π

− ω2
)2 − v0 + α

2

(
jπ − x0 + F

(
2
π

− ω2
)

α2ω2 + (
2
π

− ω2
)2

)]
.

On the other hand, the local solution of the family of differential equations (3)
in each interval I j , with j odd, based now on the initial conditions x(t0) = x0 ∈
I j , with j odd, and x ′(t0) = v0, is given by
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x(t) = e− α
2 (t−t0)

[
B1 e

−√
β2(t−t0) + B2 e

√
β2(t−t0)

]
+

− F
(
2
π

+ ω2
)

α2ω2 + (
2
π

+ ω2
)2 cos (ω (t − t0)) (5)

+ F α ω

α2ω2 + (
2
π

+ ω2
)2 sin (ω (t − t0)) + jπ,

where β2 = 2

π
+

(α

2

)2
and the coefficients B1 and B2 are

B1 = 1

2
√

β2

[
F α ω2

α2ω2 + (
2
π

+ ω2
)2 − v0 −

(√
β2 − α

2

)

×
(
jπ − x0 − F

(
2
π

+ ω2
)

α2ω2 + (
2
π

+ ω2
)2

)]
,

B2 =
(
jπ − x0 + F

(
2
π

+ ω2
)

α2ω2 + (
2
π

+ ω2
)2

) (
1

2
+ α

4
√

β2

)
+

+ 1

2
√

β2

(
F α ω2

α2ω2 + (
2
π

+ ω2
)2 − v0

)
.

Therefore, the families of solutions (4) and (5) can be systematically matched at

x = −π

2
+ jπ and x = π

2
+ jπ, j ∈ Z,

to obtain the global solution of the Eq. (1) as a continuous function.
In what follows, we present two examples to illustrate the behaviour of x as a

function of time for several sets of parameters and initial conditions.

Example 1. Consider the damping coefficient α = 0.62, the forcing frequency ω =
0.6, the value of the forcing amplitude F between 1.08331 and 1.16367, and the
initial conditions x(0) = −1.00251 and x ′(0) = 0.

We can see in the Fig. 1 that the behaviour of the motion of the forced damped
piecewise linear oscillator changes radicallywhen the forcing amplitude F increases.
Since, for the same values of the damping coefficient α and the forcing frequency ω,
we obtain different types of periodic and aperiodic orbits, which exhibits different
attractors.

Although the pattern presented in the Fig. 1(e) is not simple, it is not completely
random. The behaviour in the chaotic regime is characterized by the phase-space
trajectories exhibiting many orbits that are nearly closed. This is a common property
of chaotic systems – they generally exhibit phase-space trajectories with significant
structure.
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Fig. 1 Graphs of the orbits for a F = 1.08331, b F = 1.12138, c F = 1.12984, d F =
1.14253 and e F = 1.16367, with α = 0.62, ω = 0.6 and the initial conditions x(0) =
−1.00251 and x ′(0) = 0
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Fig. 2 Graphs of a the orbit and b the first return map of a periodic point, for α = 0.588, ω = 0.6,
F = 1.10681 and the initial conditions x(0) = 0.22 and x ′(0) = 0

Example 2. Consider the set of parameters α = 0.588, ω = 0.6 and F = 1.10681,
and the initial conditions x(0) = 0.22 and x ′(0) = 0.

In the Fig. 2, we show a periodic orbit of period nine and the correspondent first
return map, which is plotted for the velocity of the forced damped piecewise linear
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oscillator and yields a chaotic behavior. The first return map indicates that, for this
set of parameter values, the behaviour of x can be modeled by a one-dimensional
iterated map.

3 Numeric Simulations

In this section, we present the numeric study of the behaviour of the model according
to the variation of the parameter values and the initial conditions. Considering the
value of the forcing frequency parameter ω fixed at 0.6, we studied the behaviour of
x as a function of time for several sets of parameters of the damping coefficient α and
the forcing amplitude F. The cases here presented correspond to four different types
of initial conditions, namely we assume the motion of the forced damped piecewise
linear oscillator evolves froma rest position, a non null position butwith zero velocity,
a non null speed and, finally, from a non null position and speed. In all these cases, we
analyzed the existence of periodic and chaotic motion and the existence of regions
where the model explodes, when the damping coefficient α varies between 0.45 and
1, in 0.02 step increments.

Note that in the next figures, which reflected the behaviour of the system for
the cases previously refereed, to each colour corresponds a different period of the
orbit (from lighter to darker), from the fixed point until period 2, 3, 4, ... and, finally,
explosion.

The Rest Position Case
In the first numeric simulation, we analyze the behaviour of the motion of the forced
damped piecewise oscillator when its starts from a rest position. Therefore, we con-
sider the second-order non-autonomous differential equation (1) with the initial con-
ditions x(0) = 0 and x ′(0) = 0.

In the Fig. 3, we present the evolution of the system for the same values of the
damping coefficient α when the forcing amplitude F increases. As we can see in
this figure, in the region below the line F1 (α) ≈ 0.1239 + 1.54744α the system has
only one critical point, which is a fixed point, regardless the parameter values for the
damping coefficient and the forcing amplitude considered. However, the behaviour
of the motion of the forced damped piecewise oscillator changes radically when
the values of the forcing amplitude F increase above this line, since in the region
between the lines F1 (α) and F2 (α) ≈ 0.15 + 1.71α we obtain different types of
orbits ranging from periodic to aperiodic ones. On the order hand, in the region
above the second line, F2 (α), the model always “explodes”.

The Non Null Position Case
Now we consider the cases where the motion of the forced damped piecewise oscil-
lator starts with zero velocity, but the initial position is different of zero. In order to
be able to establish a comparison with the previous example, we assumed the same
values for the damping coefficient α and for the forcing amplitude F .
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Fig. 3 Graph of the evolution of the period of the orbits, when F increases and α varies between
0.45 and 1, with the initial conditions x(0) = x ′(0) = 0
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Fig. 4 Graph of the evolution of the period the orbits, when F increases and α varies between 0.45
and 1, with the initial conditions x(0) = 0.22 and x ′(0) = 0



676 C. Ramos et al.

0.5 0.6 0.7 0.8 0.9 1.0
0.8

1.0

1.2

1.4

1.6

1.8

F

a

Fig. 5 Graph of the evolution of the period the orbits, when F increases and α varies between 0.45
and 1, with the initial conditions x(0) = −1.00251 and x ′(0) = 0

In the Figs. 4 and 5, we have the behaviour of the motion of the forced damped
piecewise linear oscillator when we consider two different sets of initial conditions,
x(0) = 0.22, x ′(0) = 0 and x(0) = −1.0025, x ′(0) = 0, respectively. In both cases,
the pattern described above remains, which means that we have explosion in the
region above the second line F2 (α) and a fixed critical point in the region below the
first line F1 (α). In the region between the two lines, we have again major changes in
the behaviour of the motion of the forced damped piecewise oscillator as the forcing
amplitude F increases.

The Non Null Speed Case
The graphs of the simulations which follows were obtained considering that the
system which describes the motion of the forced damped piecewise linear oscillator
evolves from a non rest position, in both caseswith non null initial velocity speed, that
is, we consider the initial conditions x(0) = 0, x ′(0) = 0.25 and x(0) = 0, x ′(0) =
0.715.

For these cases, we consider again the values of the damping coefficientα between
0.45 and 1 and an increasing forcing amplitude F . So, in the graphs presented in the
Figs. 6 and 7 we can see that the pattern described above remains, that is, we have
a fixed critical point in the region below the line 0.1239 + 1.54744α and explosion
in the region above the line 0.15 + 1.71α. Once again, the evolution of the model
changes quickly when the forcing amplitude F increases.



The Dynamics of a Hybrid Chaotic System 677

0.5 0.6 0.7 0.8 0.9 1.0
0.8

1.0

1.2

1.4

1.6

1.8

F

a

Fig. 6 Graph of the evolution of the period the orbits, when F increases and α varies between 0.45
and 1, with the initial conditions x(0) = 0 and x ′(0) = 0.25
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Fig. 7 Graph of the evolution of the period the orbits, when F increases and α varies between 0.45
and 1, with the initial conditions x(0) = 0 and x ′(0) = 0.715
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Fig. 8 Graph of the evolution of the period the orbits, when F increases and α varies between 0.45
and 1, with the initial conditions x(0) = 0.22 and x ′(0) = 0.715

The Non Null Position and Velocity Case
Finally, we present the case where the behaviour of the motion of the forced damped
piecewise linear oscillator is analyzed assuming that it starts from a non rest position
with non null position and speed.

In the Figs. 8 and 9, we present the graphs of the evolution of the motion
where the initial conditions are, respectively, x(0) = 0.22, x ′(0) = 0.715 and x(0) =
−1.00251, x ′(0) = 0.25, that is the case where the system evolves from a starting
non null position with non null velocity. Comparing the simulations in both figures,
we can see that, for higher values of α (greater than 0.88), the system with the first
set of initial conditions reaches the explosion point later than the system with the
second set of initial conditions. However, in both cases we have explosion in the
region above the line F2 (α) and a fixed critical point in the region below the line
F1 (α).



The Dynamics of a Hybrid Chaotic System 679

0.5 0.6 0.7 0.8 0.9 1.0
0.8

1.0

1.2

1.4

1.6

1.8

F

a

Fig. 9 Graph of the evolution of the period the orbits, when F increases and α varies between 0.45
and 1, with the initial conditions x(0) = −1.00251 and x ′(0) = 0.25

4 Conclusions

The system analyzed is governed by a second-order non-autonomous differential
equation that models a forced damped piecewise linear oscillator. Considering that
the parameter corresponding to the forcing frequencyω is fixed at 0.6, our system has
only two parameters, the damping coefficient α and the forcing amplitude F. So, we
studied the behaviour of x as a function of time for several sets of parameters α and
F and with different initial conditions, namely we analyzed the existence of periodic
and chaotic motion and the existence of regions where the model explodes, for fixed
values of the parameters. In all the cases analyzed, considering an increasing forcing
amplitude F and that the values of the damping coefficient α varies between 0.45
and 1, we conclude that the system always has only one fixed critical point in the
region below the line F1 (α) ≈ 0.1239 + 1.54744α and always explodes in the region
above the second line F2 (α) ≈ 0.15 + 1.71α. Nevertheless, when the parameters of
the damping coefficient α and the forcing amplitude F take values in the region
between theses two lines, that is, when F1 (α) ≺ F (α) ≺ F2 (α) the behaviour of
the motion of the forced damped piecewise oscillator changes radically, since in this
region we obtain different types of orbits ranging from periodic to aperiodic ones.
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On Regularity of Tetrahedral Meshes
Produced by Some Red-Type
Refinements

Sergey Korotov and Jon Eivind Vatne

Abstract In this work we propose a strategy for red-type refinements of tetrahedra
which produces families of face-to-face tetrahedral partitions satisfying the maxi-
mum angle condition, a highly desired property in mesh generation, interpolation
theory and finite element analysis.

1 Introduction

Along with various bisection-type methods (see e.g. the review [11]), the so-called
red refinements (and associated with them red-green and green post-refinements) are
the most popular techniques for refining simplicial meshes [1, 6, 10, 14–16], see
Figs. 1 and 2.

However, the question of regularity of the meshes produced by the red-type tech-
nique is not always simple to answer as it is, in fact, not uniquely defined in dimen-
sions three and higher, and moreover the similarity effect (always existing in the
two-dimensional case) is present very rarely in higher dimensions, see Theorem 11.
The situation leading to the non-uniqueness is illustrated in Fig. 2, where we see the
red refinement technique applied to a tetrahedron (3D red refinement). It is easy to
observe that there always exist three choices for selecting the interior diagonal inside
of each father-tetrahedron to be refined as the diagonal should connect midpoints
of two opposite edges of the tetrahedron considered. The situation is even harder in
higher dimensions.

In this work we analyse one of the strategies for selecting such interior edges
for tetrahedra involved and prove in a simple way that the resulting families of
tetrahedral partitions satisfy the so-called maximum angle condition of Křížek (see
(1)), using for that an equivalent form of this condition recently proposed in [8].
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Fig. 1 Red refinements (using midpoints of edges) of a triangle and a triangulation

Fig. 2 3D red refinement
(using midpoints of edges
and midlines of triangular
faces) of a tetrahedron

This regularity condition is still sufficient for guaranteeing the convergence of finite
element aproximations [13] in various norms, and, at the same time, it presents a
rather weak geometrical limitation so that it can be employed for real-life meshes
with stretched elements, opposite to the so-called inscribed ball condition (see e.g.
[3]), which prevents mesh elements from shrinking.

2 Mesh Regularity Definitions

Definition 1. A polyhedron is the closure Ω of a bounded nonempty domain Ω ⊂
R3 whose boundary can be expressed as a finite union of polygons.

Definition 2. A finite set of tetrahedra (denoted by the symbol T , possibly with
subindices) is called a (face-to-face or conforming) tetrahedral partition of a poly-
hedron Ω if

(i) the union of all the tetrahedra is Ω ,
(ii) the interiors of the tetrahedra are mutually disjoint,
(iii) any face of any tetrahedron from the set is either a face of another tetrahedron

in the set, or a subset of ∂Ω .
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Theorem 3. For any polyhedron there exists a conforming partition into tetrahedra.

The constructive proof is presented e.g. in [12].

Definition 4. For a given tetrahedral partition Th the discretization parameter h
(called also themesh size) stands for themaximum length of all edges in the partition,
i.e.,

h = max
T∈Th

hT ,

where
hT = diam T .

To prove various convergence statements in numerical analysis, we usually work
with infinite sequences of partitions when the associated discretization parameter
tends to zero.

Definition 5. A set of partitions F is called a family of partitions if for every ε > 0
there exists Th ∈ F such that h < ε.

The following maximum angle conditions for tetrahedral meshes was proposed
by Křížek in [13]: there exists a constant γ0 < π such that for any face-to-face
tetrahedralization Th ∈ F and any tetrahedron T ∈ Th one has

γD ≤ γ0 and γF ≤ γ0, (1)

where γD is the maximum dihedral angles between faces of T and γF is the maximum
angle in all four triangular faces of T .

Remark 6. The maximum angle condition (1) covers several types (needle, splinter,
and wedge) of tetrahedral degeneracies illustrated in Fig. 3. Its natural analog to
higher dimensions is presented in [9].

In 1978, Eriksson introduced a generalization of the sine function to an arbitrary
d-dimensional spatial angle, see [5, p. 74], which reads for the tetrahedral case as
follows.

Definition 7. Let Âi be the spatial angle at the vertex Ai , i = 0, 1, 2, 3, of the tetra-
hedron T = conv {A0, A1, A2, A3}. Then 3-sine of the angle Âi is computed as

sin3( Âi |A0A1A2A3) = 9 (meas 3T )2

2�3
j=0, j �=imeas 2Fj

, (2)

where Fj is the triangular face opposite to the vertex A j .

Remark 8. The above definition can be applied to three (linearly independent) vec-
tors by letting Ai be the point of origin of the vectors and the remaining vertices be the
endpoints of the vectors. In this formulation, Eriksson proves that the value of sin3
is unchanged if the vectors are rescaled by a nonzero factor (positive or negative).
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FLAT  TETRAHEDRA

Fig. 3 Classification of degenerated (skinny and flat) tetrahedra according to [2, 4]

Definition 9. A familyF = {Th}h→0 of face-to-face tetrahedral partitions of a poly-
hedron Ω is said to satisfy the generalized maximum angle condition if there exists
a constant C > 0 such that for any Th ∈ F and any T ∈ Th one can always choose
3 edges of T , which, when considered as vectors, constitute a (higher-dimensional)
angle whose 3-sine is bounded from below by the constant C .

In this definition,we actually allowboth possible scenaria: the three edges emanate
from a commonvertex (forming a corner), or they go fromvertex to vertex throughout
the tetrahedron (forming a path).

Theorem 10. The generalized maximum angle condition of Definition 9 is equiva-
lent to the maximum angle condition (1).

For the proof see [9].

3 Main Result

First, we mention several auxiliary results closely related to the regularity of tetra-
hedral meshes produced by the red-type refinements.
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Theorem 11. There exists only one type of tetrahedron T (up to similarity) whose
red refinement produces eight congruent subtetrahedra similar to T . It is called the
Sommerville tetrahedron T1.

The proof is given in [10, 16].
The next result immediately follows from the fact that the four “exterior” subtetra-

hedra arising from the red refinement algorithmare similar to the original tetrahedron,
see Fig. 4 (right).

Theorem 12. The maximum (minimum) dihedral angles between faces and also
the maximum (minimum) angles in all triangular faces of all tetrahedra T ∈ Th ∈ F
generatedby the red-type refinements formnondecreasing (nonincreasing) sequences
as h → 0.

Red Refinement Algorithm: In a given tetrahedron we fix three edges forming a
path, see Fig. 4 (left), where these edges are marked by bold lines and have lengths
2a, 2b, and 2c. For the red refinement to be performedwe select the only interior edge
which connects two opposite edges which both are not among those three selected
ones. The resulting partition is presented in Fig. 4 (right).

Main Properties of the Algorithm:A simple case-by-case analysis shows that each
of eight resulting subtetrahedra has a path consisting of halves of those three edges
(i.e. a, b, and c) selected in the father tetrahedron (however, not necessarily in the
same order). See again Fig. 4 for an illustration. Moreover, all edges marked there by
a are parallel to the edge 2a, and similarly all edges marked by b are parallel to the
edge 2b, and all edges marked by c are parallel to 2c. We choose this path to repeat
the red refinement.
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a
a

c

a

a
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c
a

b
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Fig. 4 3D red refinement explosed
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The main result of the paper reads now as follows.

Theorem 13. Given a face-to-face tetrahedral partition Th0 of a polyhedron Ω .
Then the family of partitionsF = {Th}h→0, generated from Th0 by the red refinement
algorithm presented above, satisfies the generalized maximum angle condition of
Definition 9.

Proof. For any selections of interior edges in refined tetrahedra (at any refinement
level), the faces of all tetrahedra are split in the same way, so there is no problem
with guaranteeing overall conformity.

Now, in each tetrahedron T from Th0 we fix a path of three edges 2aT , 2bT , 2cT
and calculate three-dimensional sine of the angle made by these edges. From the
properties of the algorithm discussed in above we observe that at each refinement
level for any resulting subtetrahedra we always have a triple of edges which are
parallel to those initial fixed three edges in the father tetrahedron from Th0 . Using
Remark 8, we also observe that sin3 of all these triples are just the same as sin3 of the
initial fixed edges in the father tetrahedron. And now the validity of the generalized
maximum angle condition immediately follows with a constant

C = min
T∈Th0

sin3(2aT , 2bT , 2cT ).

4 Final Comments

1. It would be interesting to get similar results in higher dimensions.
2. The maximum angle condition is only a sufficient condition for FEM conver-

gence, as demonstrated in [7], so it would be important to find some weaker
regularity concepts especially taking into account that not all degeneracies of
Fig. 3 are covered by this maximum angle condition.
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Difference Scheme for Partial
Differential Equations of Fractional
Order with a Nonlinear Differentiation
Operator

Svyatoslav Solodushkin, Tatiana Gorbova, and Vladimir Pimenov

Abstract A fractional differential equation in partial derivatives with non-linearity
in differentiation operator is considered. We developed a numerical method which
has the second order of convergence in time and first order in space and could
be considered as a fractional analog of Crank–Nicolson method. Nonlinear high
dimensional systemswhich arise on each time layer are solved iteratively. Themethod
is proven to be consistent and unconditionally stable. Results of numerical examples
coincides with theoretical ones.

1 Introduction

Fractional differential equations have found interesting applications in many fields
of the natural sciences and engineering, including the theory of viscoelasticity, the
theory of thermoelasticity, financial problems, self-similar protein dynamics and
population dynamics, see [2, 7, 8] and loads of references therein. Sincemany natural
processes are nonlinear,we are dictated to consider fractional differential equations in
partial derivatives with non-linearity in the differentiation operators. From the point
of view of computational mathematics these equations is an exceptionally complex,
fascinating and little-studied object.

Explicit solution of such equations could be found in exceptional cases only, there-
fore the elaboration, substantiation and program realization of numerical methods
for these equations are of great interest.

Numerical methods for partial fractional differential equations where the non-
linearity could be involved in a heterogeneous function, but not in the differential
operators, have been elaborated and studied in the past decades. Below we review
some approaches to their numerical solving.
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There are two basic types of fractional equations [7]: with fractional derivatives in
time, where the Caputo definition is mainly used, and fractional derivatives in space,
where the Riemann–Liouville and the Riesz definitions are used. In this paper we
consider the second type only.

In [9] an approach based on the classical Crank–Nicholson method was used to
solve initial-boundary value fractional diffusive equations. Stability, consistency, and
convergence were examined. It was shown that the fractional analog of the Crank–
Nicholson method based on the shifted Grünwald formula is unconditionally stable.
The Richardson extrapolation method was used to increase the convergence order
with respect to space up to the second.

Implicit difference schemes for fractional partial differential equations with time
delaywere constructed in [4, 5]. The authors used shiftedGrünwald–Letnikov formu-
las for the approximation of fractional derivatives with respect to spatial variables
and the L1-algorithm for the approximation of fractional derivatives in time. The
technique is very similar to used in the present work.

Energy-preserving finite-difference scheme with fractional centered differences
were presented in [2].

At the same time numerical methods for partial fractional differential equations
with a non-linearity in the differentiation operators have not been studied yet. In [8],
as in most similar works, numerical methods are not considered, but attempts are
made to find the exact solution in the form of series.

The elaboration of difference schemes for partial fractional differential equations
with a non-linearity in the differentiation operators is associated with a number of
difficulties. Numerical experiments showed that the explicit schemes lead to instabil-
ity. On the other hand direct application of the implicit scheme leads to the necessity
to solve nonlinear systems of large dimension. This work is a continuation of [1]
where initial-boundary value problem in partial derivatives with a non-linearity in
the differentiation operators was considered for integer-order case.

In this paper we consider an equation of the following form

∂p(x, t)

∂t
= ∂αφ(p(x, t))

∂xα
+ f (x, t), (1)

where t and x are independent variables, 0 ≤ t ≤ T, 0 ≤ x ≤ X, and p(x, t) is
an unknown function to be found, φ is a given non-linear function. The left-sides
fractional derivative is defined in Riemann–Liouville sense

∂αF(x)

∂xα
= 1

Γ (n − α)

dn

dxn

∫ x

0

F(ξ)

(x − ξ)α−n+1
dξ,

where n is integer such that n − 1 < α ≤ n, and it is supposed that F(x) = 0 for
x ≤ 0. In the rest of this article we consider the case 1 < α ≤ 2.
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Initial and boundary conditions are set as follow

p(x, 0) = ϕ(x), 0 ≤ x ≤ X, (2)

p(0, t) = p0(t), p(X, t) = p1(t), 0 ≤ t ≤ T . (3)

Note that α = 2 is the classical diffusion equation. The case of 1 < α ≤ 2 models
a super-diffusive flow in which a cloud of diffusing particles spreads at a faster rate
than the classical diffusion model predicts, and α = 1 corresponds to the classical
advective flow.

In this paper the technique described in [10] is used: by means of the change of
variables, the non-linearity in the differentiation operator with respect to the spatial
variable is transmitted to the time differentiation operator. Then an implicit differ-
ence scheme is constructed, the appeared nonlinear system is solved by the Newton
method. The main result consists in proving the stability and convergence of the
constructed algorithm.

2 Implicit Difference Scheme

Assuming the single-valued invertibility of φ(p) on the domain of our interest, we
make the substitution u = φ(p), p = ω(u), then (1) is transformed to the form

∂ω(u(x, t))

∂t
= ∂αu(x, t)

∂xα
+ f (x, t), (4)

and the initial and boundary conditions could be rewritten as follow:

u(x, 0) = φ(ϕ(x)), 0 � x � X, (5)

u(0, t) = φ(p0(t)) = μ0(t), u(X, t) = φ(p1(t)) = μ1(t), 0 ≤ t ≤ T . (6)

We shall assume that the problem (4)–(6) has a unique solution, understood in
the classical sense, and this solution has continuous derivatives with respect to state
variables x up to fourth order, continuous derivatives with respect to time t up to
second order. Also, we assume that ω is twice continuously differentiable in its
domain and its first derivative is uniformly greater than zero

0 < ω̂ ≤ ω′(u). (7)

We consider an equidistant partition of [0, X ] into parts with step size
h = X/N and define the grid xi = ih, i = 0, . . . , N . We also split the time inter-
val [0, T ] into M parts with step size Δ = T/M and define the grid t j = jΔ,

j = 0, . . . , M.

Denote by uij the approximation of the function value u(xi , t j ), i = 0, 1, . . . N ,

j = 0, . . . M, at the respective node.
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To approximate the left-sides fractional derivative in the internal grid nodes we
use the shifted Grünwald formula [3]

∂αu(xi , t j )

∂xα
≈ 1

hα

i+1∑
s=0

gα,s u(xi+1−s, t j ), 1 ≤ i ≤ N − 1,

where the normalized Grünwald weights are defined as follow gα,0 = 1 and gα,s =
(−1)s α(α−1)...(α−s+1)

s! , s = 1, 2, 3, . . ..
Consider a nonlinear implicit difference scheme, j = 0, 1, ..., M − 1,

ω(uij+1) − ω(uij )

Δ
= 1

2hα

(
i+1∑
s=0

gα,s u
i+1−s
j+1 +

i+1∑
s=0

gα,s u
i+1−s
j

)
+ f ij+1/2,

for i = 1, ..., N − 1,

and u0j+1 = μ0(t j+1), uN
j+1 = μ1(t j+1)

(8)

with initial conditions uij = φ(ϕ(xi )), i = 0, ..., N .Tomake notation shorter f ij+1/2
denotes f (xi , t j + Δ/2).

For each fixed j the (8) is a system of equations that are nonlinear with respect
to uij+1, i = 1, ..., N − 1. To solve (8) at each time layer j we apply Newton’s
method [10],

ω(uij+1[k]) + ω′(uij+1[k])(uij+1[k + 1] − uij+1[k]) − ω(uij )

= Δ

2hα

(
i+1∑
s=0

gα,s u
i+1−s
j+1 +

i+1∑
s=0

gα,s u
i+1−s
j

)
+ Δ f ij+1/2,

(9)

where k is an iteration number, k = 0, 1, ..., and uij+1[k] is k−th approximation by
the Newton’s method to uij+1, i = 1, ..., N − 1. Note, when we search uij+1[k + 1]
in (9) we use uij which represents not the exact solution obtained at the j-th time
layer (it is actually unknown) but its approximation in Newton’s method.

Let us denote y j = (u1j , u
2
j , . . . , u

N−1
j )T ∈ Y , where Y is a vector space of dimen-

sion N − 1 and T is a transpose sign.
Let us consider a matrix A which elements Ai, j are defined as follow

Ai, j =

⎧⎪⎪⎨
⎪⎪⎩

η gα,i− j+1 for j ≤ i − 1
η gα,1 for j = i
η gα,0 for j = i + 1
0 for j > i + 1

,

whereη = 1

2hα
.Wealso define vector functionsω(y j ) and f j as vectorswith compo-

nentsω(uij ) and f (xi , t j ) respectively, then system (8) could be represented as follow
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ω(y j+1) − ΔAyj+1 = ΔAyj + ω(y j ) + Δ f j+1/2. (10)

In a similar way we denote y j [k] = (u1j [k], u2j [k], . . . , uN−1
j [k])T ∈ Y , also we

denote by ω′(y j ) the diagonal matrix with ω′(uij ) on the main diagonal in i-th row.

Lemma 1. [3] Matrix ω′(y j+1[k]) − ΔA is positively defined.

According to Lemma 1 the linear system, which should be solved at each iteration
of (9), is solvable for each k, and then the iterative process (9) with exactly K
iterations on each time layer can be written in the form

y j+1[k + 1] = (ω′(y j+1[k]) − ΔA)−1×
×

(
ω(y j [K ]) + ΔAyj [K ] + ω′(y j+1[k])y j+1[k] − ω(y j+1[k])

)
+

+Δ(ω′(y j+1[k]) − ΔA)−1 f j+1/2, k = 0, . . . , K − 1,

(11)

y j+1[0] = y j [K ]. (12)

Each iteration involves the need to calculate the value of a nonlinear (with respect
to y j+1[k]) operators and solve a linear (with respect to y j+1[k + 1]) system. Since
ω′(y j+1[k]) − ΔA is an almost triangular matrix, it could be effectively inverted
using special algorithms. Therefore the iterative algorithm is not computationally
expensive.

To study the convergence of difference scheme (8) supplemented by iterative
method (11)–(12) we will look at them from the point of view of functional analysis
and operator equations. To do this, we present in the next section the corresponding
results on the convergence of nonlinear difference schemes in general form [6]. After
that we embed a method (8), (11)–(12) into the general scheme.

3 Convergence of General Nonlinear Difference Schemes

Let a segment [0, T ] be divided into M parts with step Δ = T/M and nodes are
defined as t j = jΔ, j = 0, . . . , M. A discrete model is defined as a grid function
y j = y(t j ) ∈ Y, j = 0, . . . , M , where Y is q-dimensional normed space with norm
‖ · ‖Y .Wewill assume that the dimensionq of the spaceY depends on someparameter
h > 0.Note, that in the previous section h corresponded to the grid step with respect
to space.

Initial value of the model is defined as y(t0) = y0.
The formula of advance of the model by a step is, by definition, the relation

y j+1 = S(y j ) + ΔΦ(y j ), (13)
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where the transition operator S(y j ) = S(y j ; t j ,Δ, h) is a nonlinear operator which is
Lipschitzwith a constant LS = LS(Δ, h) andΦ(y j ) = Φ(y j ; t j ,Δ, h) is a nonlinear
operator which is Lipschitz with a constant LΦ = LΦ(Δ, h).

The function of exact values is, by definition, the mapping

Z(t j ,Δ, h) = z j ∈ Y, j = 0, . . . , M.

To know the function of exact values means to know the exact solution of the original
problem in the nodes. In what follows, for simplicity, we assume that the initial value
coincide with the initial value of the function of the exact values y0 = z0.

Wewill say that themethod (13) converges if there exists a constantC independent
of Δ and h and a function q(Δ, h), lim

Δ→0,h→0
q(Δ, h) = 0, such that the following

inequality holds:
‖ z j − y j ‖Y≤ Cq(Δ, h) (14)

for all j = 0, . . . , M. Function q(Δ, h) defines the order of convergence.
The order of convergence depends on the approximation error and the stability

properties of the method. An error of approximation (a residual) is, by definition, the
grid function

d j = (z j+1 − S(z j ))/Δ − Φ(z j ), j = 0, . . . , M − 1. (15)

Wewill say that the error of approximation inmethod (13) has an order of q(Δ, h),

if there exists a constantC independent ofΔ and h such that for all j = 0, . . . , M − 1
the following inequality holds:

‖ d j ‖Y≤ Cq(Δ, h).

The method (13) is said to be stable, if

LS = LS(Δ, h) ≤ 1. (16)

Theorem 1. Let method (13) is stable, the error of approximation has an order
q(Δ, h), lim

Δ→0,h→0
q(Δ, h) = 0, then method (13) converges with order q(Δ, h).

Proof. Let us denote δ j =‖ z j − y j ‖Y , j = 0, . . . , M. Since S andΦ are Lipschitz
ones, for all j = 0, . . . , M − 1 we have

δ j+1 =‖ S(z j ) + ΔΦ(z j ) + Δd j − S(y j ) − ΔΦ(y j ) ‖Y� LSδ j + ΔLΦδ j + Δ ‖ d j ‖Y .

Using the stability condition, we obtain

δ j+1 � (1 + ΔLΦ)δ j + Δ ‖ d j ‖Y .
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Taking into account that δ0 = 0, from this estimate the following estimate could be
deduced by standard methods (see for example [6])

δ j � D

LΦ

exp(T LΦ),

where D = max
0≤l≤M

‖dl‖Y .The last estimate is right for all j = 0, . . . , M.This implies

the conclusion of the theorem. �	
The transformation of the nonlinear difference scheme to explicit form (13) is

usually not an easy task. So, let us consider the approximation of this scheme in the
form of an iterative process1

y j+1[k + 1] = S̃(y j+1[k]; y j [K ]) + ΔΦ̃(y j+1[k]; y j [K ]), k = 0, . . . , K − 1,
(17)

where the number of iterations K on each time layer j is fixed, and as the initial
approximation on each time layer it is taken y j+1[0] = y j [K ]. Iterative process (17)
is reduced to the form

y j+1[K ] = ŜK (y j [K ]) + ΔΦ̂K (y j [K ]). (18)

The definitions introduced above for the general nonlinear scheme (13) could be
transformed in an obvious way for the approximation scheme (18).

We will say that the method (18) converges if there exists a constant C and a
function q(Δ, h, K ),

lim
Δ→0,h→0,K→∞ q(Δ, h, K ) = 0,

such that for all j = 0, . . . , M, the following inequality holds:

‖ z j − y j [K ] ‖Y� Cq(Δ, h, K ).

The method (18) is said to be stable, if the operator ŜK is Lipschitz with the
constant L ŜK

such that
L ŜK

= L ŜK
(Δ, h, K ) � 1. (19)

The error of approximation of the method (18) is defined in a similar way.
The following theorem is hold, which could be proved in a similar way.

Theorem 2. Let the method (18) is stable, the approximation error is of the order
q(Δ, h, K ), lim

Δ→0,h→0,K→∞ q(Δ, h, K ) = 0, then the method converges with the

order q(Δ, h, K ).

1Notice that iterative method (11) has form (17).
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4 Embedding of the Difference Method in a General
Nonlinear Scheme

We rewrite the system (8) (or Eq. (10)) in the form

F(y j+1) = ω(y j+1) − ΔAyj+1 − ΔAyj − ω(y j ) − Δ f j+1/2 = 0. (20)

Then Newton’s method (9) (or (11)) could be written in the form

y j+1[k + 1] = y j+1[k] − F ′−1(y j+1[k])F(y j+1[k]),

F ′(y j+1[k]) = ω′(y j+1[k]) − ΔA, k = 0, . . . , K − 1. (21)

Let us denote
Ψ (y) = y − F ′−1(y)F(y). (22)

Method (18) could be rewritten in the form

y j+1[K ] = S̃(Ψ (Ψ (. . . Ψ (y j+1[0])))) + ΔΦ̃(Ψ (Ψ (. . . Ψ (y j+1[0])))). (23)

Taking into account (12), method (23) could also be written in the form

y j+1[K ] = S̃(Ψ (Ψ (. . . Ψ (y j [K ])))) + ΔΦ̃(Ψ (Ψ (. . . Ψ (y j+1[0])))), (24)

that coincides with form (18) if one takes ŜK (·) = S̃(Ψ (Ψ (. . . Ψ (·)))) and Φ̂K (·) =
Φ̃(Ψ (Ψ (. . . Ψ (·)))).

The embedding of the method in the general scheme is done. Now we need to
check the stability condition, show that operator Φ̂K is Lipschitz one and find out
the order of the residual.

5 Stability and Approximation Order

Let us verify that under certain conditions the operatorΨ in (22) is contractive, which
implies the stability condition in the approximation scheme. As a norm in the space
Y hereinafter we use the Euclidean one.

Let y and y + ε be two vectors from a neighborhood Dr of radius r with center
at the root of Eq. (20). Then,

Ψ (y + ε) − Ψ (y) = y + ε − F ′−1(y + ε)F(y + ε) − y + F ′−1(y)F(y)

= ε − F ′−1(y + ε)F(y + ε) + F ′−1(y + ε)F(y) − F ′−1(y + ε)F(y) + F ′−1(y)F(y)

= {
ε − F ′−1(y + ε)(F(y + ε) − F(y))

} + {
F ′−1(y)F(y) − F ′−1(y + ε)F(y)

}
.

(25)
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Let us require the norms of expressions in each curly brace in (25) are less than
q
2‖ε‖, q < 1, then the operator Ψ (y) is contractive.

The following representation holds

F(y + ε) − F(y) = F ′(y + ε)ε − 1

2
F ′′(ϑ11)ε

2,

where F ′′(y) is a diagonal matrix with ω′′(yi ) on the diagonal, vector ϑ11 lies on the
line segment connecting the tips of the vectors y and y + ε, and ε2 is a vector with
coordinates (εi )2.

Since ω is twice continuously differentiable on the domain of our interest, ω′′(yi )
is uniformly bounded, and therefore we have

|ω′′(u)| ≤ 2C1.

Then, according to (7) the following estimates hold

‖F ′−1(y)‖ ≤ C2, ‖F ′−1(y + ε)‖ ≤ C2. (26)

Combining these gives us the following inequality

‖ε − F ′−1(y + ε)(F(y + ε) − F(y))‖ ≤ C1C2‖ε‖2.

Let us require the condition holds

C1C2‖ε‖ <
q

2
, (27)

this can be obtained by reducing r. For example, since ‖ε‖ ≤ 2r, then condition (27)
is true if

4C1C2r < q. (28)

As a result we obtain

‖ε − F ′−1(y + ε)(F(y + ε) − F(y))‖ ≤ q

2
‖ε‖. (29)

Now let us estimate the second curly brace in (25)

F ′−1(y)F(y) − F ′−1(y + ε)F(y) = F ′−1(y)(F ′(y + ε) − F ′(y))F ′−1(y + ε)F(y)

= F ′−1(y)F ′′(ϑ12)F
′−1(y + ε)F(y)ε, (30)

where vector ϑ12 lies on the segment connecting the tips of the vectors y and y + ε.

Since ω is twice smooth, there exist such constant C3 that the following estimate
holds
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‖F ′′(ϑ12)‖ ≤ C3. (31)

Let us estimate the term F(y). If we take values on the previous layer as the initial
approximation of Newton method on the current layer y = y j+1[0] = y j [K ], then
(20) implies

F(y) = −2ΔAyj [K ] − Δ f j+1/2.

Hence, in view of the assumption that Ay and f j (y) are bounded,

‖F(y)‖ ≤ ΔC4. (32)

Take (30)–(32) into account and make a restriction on a step

ΔC2
2C3C4 <

q

2
, (33)

then
‖S−1(y)F(y) − S−1(y + ε)F(y)‖ ≤ q

2
‖ε‖. (34)

As a result from (25), (29) and (34) we deduce

‖Ψ (y + ε) − Ψ (y)‖ ≤ L‖ε‖, L < 1. (35)

Note that condition (28) can also be rewritten in the form of a restriction on the
smallness of a step Δ, just as it was done in (33).

Thus, it was proved the following

Lemma 2. If conditions (28), (33) are satisfied, then the operator Ψ (y) of the form
(22) is contractive.

Under the mentioned in Lemma 2 conditions method (9) converges and the fol-
lowing estimate holds

‖y j+1[K ] − y j+1‖ ≤ qK‖y j+1[0] − y j+1‖. (36)

This also implies the

Theorem 3. If conditions (28), (33) are met, then the implicit approximation
method (9), represented in the form (18) is stable in the sense of definition (19).

Proof. Since the operator Ψ (y) is contractive and S̃ in (17) is bounded, then (24)
implies the stability condition (19) in the approximation scheme. �	

Let us make a remark. Operator Φ̂K defined according to (18), (24) is Lipschitz.
Now we study the residual of method (9) which is presented in form (18). First,

consider method (8).
The residual of method (8) is, by definition, a grid function
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ψ i
j = ω(u(xi , t j+1)) − ω(u(xi , t j ))

Δ
− Au(xi , t j ) − Au(xi , t j+1) − f j+1/2, (37)

where i = 1, . . . , N − 1, j = 0, . . . , M − 1.

Lemma 3. Let the exact solution u(x, t) of the boundary-value problem (4)–(6) be
twice continuously differentiable with respect to t, all its derivatives with respect
to x up to order four be continuous and belong to L1, and let fractional derivative
∂αu(x, t)/∂xα be twice continuously differentiable with respect to t. Let also func-
tion ω(u) be twice continuously differentiable in a bounded domain containing the
solution u(x, t). Then there exists such a constant C5, that

|ψ i
j | ≤ C5(Δ

2 + h), i = 1, . . . , N − 1, j = 1, . . . , M − 1. (38)

Proof. Using the Taylor expansion with respect to t in the neighborhood of point
(xi , t j+1/2), we have

ψ i
j = 1

Δ

(
ω(u(xi , t j+1/2)) + Δ

2
ω′(u(xi , t j+1/2))u

′
t (xi , t j+1/2)

+Δ2

8

(
ω′′(u(xi , t j+1/2))u

′(xi , t j+1/2) + ω′(u(xi , t j+1/2))u
′′(xi , t j+1/2)

)

−
[
ω(u(xi , t j+1/2)) − Δ

2
ω′(u(xi , t j+1/2))u

′
t (xi , t j+1/2)

+Δ2

8

(
ω′′(u(xi , t j+1/2))u

′(xi , t j+1/2) + ω′(u(xi , t j+1/2))u
′′(xi , t j+1/2)

) + O(Δ3)
])

−Au(xi , t j ) − Au(xi , t j+1) − f (xi , t j+1/2)

= ∂ω(u(xi , t j+1/2))

∂t
+ O(Δ2) − Au(xi , t j ) − Au(xi , t j+1) − f j+1/2.

According to [9]

Au(xi , t j ) = ∂αu(xi , t j )

∂xα
+ O(h).

Expanding these fractional derivatives in a series in powers of t in the neighbour-
hood of the point (xi , t j+1/2), we obtain (38). �	

Let us now study how the solution of Eq. (8) changes when the parameters of the
equation change. To do this along with an equation of the form (8) written in the
form (20) we consider an equation of the form

F̄(ȳ j+1) = ω(ȳ j+1) − ΔAȳ j+1 − ΔAȳ j − ω(ȳ j ) − Δ f j+1/2 = 0, (39)

where ‖ȳ j − y j‖ ≤ δ.

Lemma 4. The following estimation holds
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‖ȳ j+1 − y j+1‖ ≤ C7δ. (40)

Proof. Subtract Eq. (20) from Eq. (39) and get

ω(ȳ j+1) − ΔAȳ j+1 − ΔAȳ j − ω(y j+1) − ΔAyj+1 − ΔAyj = ω(ȳ j ) − ω(y j ).

For the i-th coordinate this equation looks like

ω(ȳij+1) − ΔAȳij+1 − ΔAȳij − ω(yij+1) − ΔAyij+1 − ΔAyij = ω(ȳij ) − ω(yij ).

We use the finite-increments formula:

(ω′(θ) − ΔA)(ȳij+1 − yij+1) = (ω′(θ1) − ΔA)(ȳij − yij ).

Due to condition (7) and operator’s A properties there is such a constant C7 that
inequality (40) holds. �	
Theorem 4. If conditions (7), (28) and (33) hold then implicit approximationmethod
(9), represented in form (18), has a residual of orderΔ2 + h + λ2K ,where0 < λ < 1.

Proof. Let us rewrite expression (37) in the following form

ω(u(xi , t j+1)) − ΔAu(xi , t j+1) = ω(u(xi , t j )) + ΔAu(xi , t j ) + Δ f j+1/2 + Δψ̂ i
j ,

Due to Lemmas 3 and 4 the following estimate holds

|u(xi , t j+1) − uij+1| ≤ C6C7Δ(Δ2 + h).

According to (36) this implies

|u(xi , t j+1[K ]) − uij+1[K ]| ≤ C6C7Δ(Δ2 + h + λ2K ), 0 < λ < 1,

and this implies the conclusion of the theorem. �	
Theorems 2, 3 and 4 imply the theorem about convergence.

Theorem 5. The implicit approximation method (9) written in the form (18) or (24)
converges and has the order Δ2 + h + λ2K , 0 < λ < 1.

6 Numerical Examples

Let us consider two concrete examples. Namely, in Eq. (4) we take ω(u) = exp(u)

in the first example and ω(u) = u + u3 in the second one.
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Example 1. Let us consider the initial boundary value problem

∂eu

∂t
= ∂1.5u

∂x1.5
− ex

2 cos t x2 sin t − 4√
π

√
x cos t (41)

on the domain x ∈ (0, 1), t ∈ (0, 4π). Initial and boundary conditions are defined
as follow

u(x, 0) = x2, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = cos t, 0 ≤ t ≤ 4π.

Problem (41) has an exact solution u(x, t) = x2 cos t.

Example 2. Let us consider the initial boundary value problem

∂(u + u3)

∂t
= ∂1.5u

∂x1.5
− (x2 + 3x6 cos2 t) sin t − 4√

π

√
x cos t (42)

on the domain x ∈ (0, 1), t ∈ (0, 4π). Initial and boundary conditions are defined
as follow

u(x, 0) = x2, 0 ≤ x ≤ 1,

u(0, t) = 0, u(1, t) = cos t, 0 ≤ t ≤ 4π.

Problem (41) has an exact solution u(x, t) = x2 cos t.

In both examples the accuracy of Newton method was chosen to be ε = 10−5.

The algorithm was implemented using Python 3.7, all computations were performed
in a double precision.

Results of numerical Examples 1 and 2 are presented in Table 1. The third and fifth
columns show the maximum of absolute difference between the exact and numer-
ical solutions diffΔ,h = max

i, j
|uij − u(xi , t j )|, i = 0, . . . , N , j = 0, . . . , M, where

N andM are the number of segments in space and time. The fourth and sixth columns
show the ratio of the error reduction as the space grid refined.

In the series of experiments withΔ = π/40 the error related to the time discretiza-
tion is small in comparison with the error related to the coordinate discretization;
the analysis of the error behavior reveals the first convergence with respect to space
variables, i.e., when the step becomes half as much, the error becomes almost two
times less as well.

The analysis of the data in the table shows that only the consistent decrease of
steps yields the decrease of error. Indeed, in the series of experiments withΔ = π/10
the halving of h does not cause the corresponding decrease of error, because the total
error is mostly induced by the time discretization.
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Table 1 Table of absolute errors and error rates. Numerical results of two examples are reported

Δ h ω(u) = exp(u) Error rate ω(u) = u + u3 Error rate

diffΔ,h diffΔ,h

π/10 1 × 2−2 2.0207 × 10−2 - 1.9947 × 10−2 -

1 × 2−3 8.7812 × 10−3 2.3012 8.8478 × 10−3 2.2545

1 × 2−4 3.1322 × 10−3 2.8035 3.1593 × 10−3 2.8005

1 × 2−5 2.8955 × 10−3 1.0817 3.2744 × 10−3 0.9647

1 × 2−6 4.3512 × 10−3 0.6654 4.6792 × 10−3 0.6998

π/20 1 × 2−2 2.3837 × 10−2 - 2.3213 × 10−2 -

1 × 2−3 1.2582 × 10−2 1.8946 1.2282 × 10−2 1.8901

1 × 2−4 6.0080 × 10−3 2.0942 5.8997 × 10−3 2.0818

1 × 2−5 2.4774 × 10−3 2.4251 2.5062 × 10−3 2.3540

1 × 2−6 7.8381 × 10−4 3.1607 8.1704 × 10−4 3.0675

π/40 1 × 2−2 2.4683 × 10−2 - 2.4027 × 10−2 -

1 × 2−3 1.3501 × 10−2 1.8282 1.3149 × 10−2 1.8272

1 × 2−4 6.9687 × 10−3 1.9374 6.7958 × 10−3 1.9349

1 × 2−5 3.4219 × 10−3 2.0365 3.3455 × 10−3 2.0314

1 × 2−6 1.5745 × 10−3 2.1732 1.5529 × 10−3 2.1543

By Theorem 3 the proposed difference scheme is stable with any ratio of steps;
however, due to the ill-posedness of the numerical differentiation, the decrease of h
makes the approximations of ∂αu/∂αx in (4)more sensitive to the computer rounding
error, which leads to the increase of the error. The decrease of Δ consistent with
h is a peculiar regularizer which prevents errors from growing and accumulating.
Experiments with Δ = π/10 illustrate this fact.
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On the Behavior of Solutions
with Positive Initial Data
to Higher-Order Differential Equations
with General Power-Law Nonlinearity

Tatiana Korchemkina

Abstract Higher-orderdifferential equationwithgeneralpower-lawnonlinearityare
considered. In particular, solutions with positive initial data are studied depending on
the values of nonlinearity exponents. It is proven that if the sum of nonlinearity expo-
nents is greater than one, then any considered solution has afinite right domain bound-
ary. In the case of a constant potential solutions with power-law behavior are found.

1 Introduction

Consider solutions with positive initial data to higher order differential equation with
general power-law nonlinearity

y(n) = p
(
x, y, y′, . . . , y(n−1)

) |y|k0 ∣∣y′∣∣k1 . . .
∣∣y(n−1)

∣∣kn−1 sgn
(
y y′ . . . y(n−1)

)
,

(1)
with n ≥ 2, positive real nonlinearity exponents k0, k1, . . . kn−1 and positive contin-
uous in x and Lipschitz continuous in u0, u1, . . . , un−1 function p(u0, u1, . . . , un−1)

satisfying the inequalities

0 < m ≤ p
(
x, y, y′, . . . , y(n−1)

) ≤ M < +∞. (2)

Qualitative behavior and asymptotic estimates of positive increasing solutions for
higher order differential equation y(n) = f

(
x, y, y′, . . . , y(n−1)

)
with

(−1)m f (x, u0, u1, . . . , un−1) ≥ g(x)|y( j)|k j , k j > 1

were obtained by I.T. Kiguradze and T.A. Chanturia in [1]. Questions of qualita-
tive and asymptotic behavior of solution to higher order Emden–Fowler differential
equations (k1 = . . . = kn−1 = 0) were studied by I.V. Astashova in [2–5].

In the casen = 2 the results onqualitative behavior of solutions canbe found in [6],
and asymptotic behavior is studied in [7]. In this paper several results are generalized
for higher order differential equations with general power-law nonlinearity.
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2 Qualitative Behavior of Solutions

Consider qualitative behavior of solutions with positive initial data. First of all, let
us prove that (n − 1)-th derivative of such solutions tends to infinity near their right
domain boundaries.

Theorem 1. Suppose that the function p(u0, u1, . . . , un−1) is continuous in x, Lip-
schitz continuous in u0, u1, . . . , un−1, and satisfies inequalities (2). Then for any
maximally extended solution y(x) to Eq. (1), satisfying the conditions y(x0) > 0,
y′(x0) > 0, ..., y(n−1)(x0) > 0 at some point x0, it holds that y(n−1) → +∞ as
x → x∗, where x∗ ≤ +∞ is the right domain boundary of y(x).

Proof. Let us notice that

y(n)(x) ≥ m (y(x0))
k0

(
y′(x0)

)k1
. . .

(
y(n−1)(x0)

)kn−1
,

and then

y(n−1)(x) − y(n−1)(x0) ≥ m (y(x0))
k0

(
y′(x0)

)k1
. . .

(
y(n−1)(x0)

)kn−1
(x − x0).

Thus, in the case x∗ = +∞ derivative y(n−1)(x) is also unbounded as x → x∗.
Consider now the case x∗ < +∞. Let us prove the statement of the theorem

by contradiction: suppose y(n−1)(x) ≤ Dn−1 < +∞ for x ∈ [x0, x∗). Then on this
interval the following inequalities also hold:

y(n−2)(x) ≤ Dn−1(x − x0) + y(n−2)(x0) ≤ Dn−1(x
∗ − x0) + y(n−2)(x0) = Dn−2 < +∞,

y(n−3)(x) ≤ Dn−2(x − x0) + y(n−3)(x0) ≤ Dn−2(x
∗ − x0) + y(n−3)(x0) = Dn−3 < +∞,

and similarly we obtain that y( j)(x) ≤ Dj < +∞ for j = 1, 2, . . . , n − 1, and
also y(x) ≤ D0 < +∞. It means that the solution y(x) and its derivatives have
finite limits as x → x∗ − 0, which implies that the solution can be extended to the
right of x∗, which leads to a contradiction.

Thus, y(n−1)(x) → +∞ as x → x∗, and the theorem is proven.
	


Now let us study whether the right domain boundary of a solution with positive
initial data is finite or infinite. Denote

K =
n−1∑

i=0

ki , κ =
n−1∑

i=1

i kn−1−i .

Theorem 2. Suppose n ≥ 2, K > 1, the function p(u0, u1, . . . , un−1) is continuous
in x, Lipschitz continuous in u0, u1, . . . , un−1, and satisfies inequality

p
(
x, y, y′, . . . , y(n−1)) ≥ m > 0.
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Then there exists a constant ξ = ξ(n,m, k0, . . . , kn−1) such that any maximally
extended solution y(x) to (1), satisfying the conditions y(x0) > 0, y′(x0) > 0, . . . ,

y(n−2)(x0) > 0, y(n−1)(x0) = yn−1 > 0, at some point x0 has a finite right domain
boundary x∗ > x0 and the following estimate holds:

x∗ − x0 < ξ y
− K−1

κ+1
n−1 .

Proof. As it was shown in the previous theorem, y(n−1) → +∞ as x → x∗. Con-
sider a sequence of points xi , i = 0, 1, . . . , such that y(n−1)(xi ) = 2 y(n−1)(xi−1) =
2i yn−1.

Then for x ∈ [xi , xi+1] we have

y(n−1) ≥ 2i yn−1,

hence
y(n−2)(x) > y(n−2)(x) − y(n−2)(xi ) ≥ 2i yn−1(x − xi ),

y(n−3)(x) > y(n−3)(x) − y(n−3)(xi ) > 2i yn−1
(x − xi )2

2
,

and by further integrating we obtain

y( j)(x) > y( j)(x) − y( j)(xi ) ≥ 2i yn−1
(x − xi )n−1− j

(n − 1 − j)! , j = n − 2, . . . , 1,

and, finally,

y(x) > y(x) − y(xi ) > 2i yn−1
(x − xi )n−1

(n − 1)! .

Then, according to Eq. (1), for y(n) we derive

y(n) > m

∣∣∣
∣2

i yn−1
(x − xi )n−1

(n − 1)!
∣∣∣
∣

k0

. . .
∣∣2i yn−1(x − xi )

∣∣kn−2
∣∣2i yn−1

∣∣kn−1

y(n) > C0 2
i K yKn−1(x − xi )

κ,

where C0 is a constant depending only on m, n and k0, k1, . . . , kn−1.
By integrating the above inequality on [xi , xi+1] we obtain

2i yn−1 > y(n−1)(xi+1) − y(n−1)(xi ) > C0 (2i yn−1)
K (xi+1 − xi )

κ,

(xi+1 − xi )
κ < C−1

0 (2i yn−1)
− (K−1),
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and then
xi+1 − xi < C1(2

i yn−1)
− K−1

κ

with constant C1 = C
− 1

κ

0 depending only on m, n and k0, k1, . . . , kn−1.
Now, summarizing the obtained inequalities for i = 0, 1, . . ., we have

+∞∑

i=0

(xi+1 − xi ) < C1 y
− K−1

κ

n−1

+∞∑

i=0

2−i K−1
κ .

Since K > 1, the series in the right part of the above inequality converges, thus

x∗ − x0 = lim
i→+∞ xi − x0 =

+∞∑

i=0

(xi+1 − xi ) < ξ y
− K−1

κ

n−1 ,

where ξ = C1

+∞∑

i=0
2−i K−1

κ is a constant depending only onm, n, k0, k1, . . . , kn−1, and

the theorem is proven.
	


Remark 1. Theorem 2 generalizes the result obtained in [6] for n = 2.

3 On the Power-Law Solutions in the Case of a Constant
Potential

Let us find a solution in the form y = C(x∗ − x)−α to Eq. (1) with constant potential
p

(
x, y, y′, . . . , y(n−1)

) ≡ (−1)n−1 p0.

Denote κ =
n−1∑

i=1
i ki .

Theorem 3. Let n ≥ 2, p0 > 0 and K > 1. Then equation

y(n) = (−1)n−1 p0 |y|k0 ∣∣y′∣∣k1 . . .
∣∣y(n−1)

∣∣kn−1 sgn
(
y y′ . . . y(n−1)

)
(3)

has a solution y = C(x∗ − x)−α , where x∗ < ∞ is the right domain boundary,

C =

⎛

⎜⎜⎜
⎜
⎝

n−1∏

i=0
|α + i |1−

n−1∑

i+1
ki

p0

⎞

⎟⎟⎟
⎟
⎠

1
K−1

, α = n − κ

K − 1
.
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Proof. Let us put y = C(x∗ − x)−α into Eq. (3). According to the equation, we have

C(x∗ − x)−α−n
n−1∏

i=0

(α + i) = (−1)n−1 p0 sgn
(
(−1)n−1 α (α + 1) . . . (α + n − 2)

)·

∣∣C(x∗ − x)−α
∣∣k0

n−1∏

i=1

∣∣∣∣
∣∣
C(x∗ − x)−α−i

i−1∏

j=0

(α + j)

∣∣∣∣
∣∣

ki

,

and due to that fact that K > 1,

α + n − 1 = n − κ

K − 1
+ n − 1 =

=
n −

n−1∑

i=1
iki + (n − 1)

(
n−1∑

i=0
ki − 1

)

K − 1
=

1 +
n−1∑

i=0
(n − 1 − i) ki

K − 1
> 0,

which means that sgn (α + n − 1) > 0, and so

C(x∗ − x)−α−n
n−1∏

i=0

|α + i | = p0 C
K (x∗ − x)

−
n−1∑

i=0
ki (α+i)

n−1∏

i=1

i−1∏

j=0

|α + i |k j ,

which implies

(x∗ − x)
−α−n+

n−1∑

i=0
ki (α+i) = p0 C

K−1α−1
n−1∏

i=1

⎛

⎝|α + i |−1
i−1∏

j=0

|α + j |k j

⎞

⎠ .

Since x∗ − x is a variable value, the equality is possible only when both left and
right parts are equal to 1. Thus,

(x∗ − x)
−α−n+

n−1∑

i=0
ki (α+i) = 1, p0 C

K−1α−1
n−1∏

i=1

⎛

⎝|α + i |−1
i−1∏

j=0

|α + j |k j

⎞

⎠ = 1,

(4)
and we derive the following equation for α:

α + n =
n−1∑

i=0

ki (α + i),

hence
n − κ = α (K − 1) ,
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and

α = n − κ

K − 1
= n − k1 − 2 k2 − . . . − (n − 1) kn−1

k0 + k1 + . . . + kn−1 − 1
.

Now calculate the constant C from (4):

p0 C
K−1α−1

n−1∏

i=1

⎛

⎝|α + i |−1
i−1∏

j=0

|α + j |k j

⎞

⎠ = 1,

CK−1 =
⎛

⎝p0 α−1
n−1∏

i=1

⎛

⎝|α + i |−1
i−1∏

j=0

|α + j |k j

⎞

⎠

⎞

⎠

−1

,

CK−1 =
(
n−1∏

i=0

|α + i |
)⎛

⎝p0

n−1∏

i=0

|α + i |
n−1∑

i+1
ki

⎞

⎠

−1

,

and, finally,

C =

⎛

⎜⎜⎜⎜
⎝

n−1∏

i=0
|α + i |1−

n−1∑

i+1
ki

p0

⎞

⎟⎟⎟⎟
⎠

1
K−1

,

or

C =
( |α|1−k1−...−kn−1 |α + 1|1−k2−...−kn−1 . . . |α + n − 2|1−kn−1 |α + n − 1|

p0

) 1
K−1

.

	

Remark 2. Note that the equation

y(n) = p0|y|k sgn y, n ≥ 2, k > 1, p0 > 0

for any x∗ ∈ R has the solution y = C(x∗ − x)−α with

α = n

k − 1
, C =

(
α (α + 1) . . . (α + n − 2) (α + n − 1)

p0

) 1
k−1

,

which corresponds to the result obtained in theorem 3 with k1 = . . . = kn−1 = 0
(see [2], 5.1). The existence of solutions to equation (1) equivalent to C (x∗ − x)−α

as x → x∗ − 0 in general case is an open problem. For n = 2 this problemwas solved
in [7], and for n ≥ 3, k1 = . . . = kn−1 = 0 it was solved in [2], Chap. 5 and [3, 5].
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Intuitionistic Fuzzy Stability of an Finite
Dimensional Cubic Functional Equation

Sandra Pinelas, V. Govindan, K. Tamilvanan, and S. Baskaran

Abstract In the current work, the intuitionistic fuzzy version of Hypers-Ulam sta-
bility for a k-dimensional cubic functional equation

k∑

j=1

f

⎡

⎣
k∑

i(�= j)=1

ni xi − n j x j

⎤

⎦ + (6 − k) f

(
k∑

i=1

ni xi

)

=4

⎡

⎣
k∑

j=1

k∑

i(< j)=1

f (ni xi + n j x j ) − (k − 2)
k∑

i=1

f (ni xi )

⎤

⎦

by applying a direct and fixed point methods is investigated. This way shows that
some fixed points of a suitable operator can be a cubic mapping.
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1 Introduction

In [29], Ulam proposed the general Ulam stability problem: “When is it true that by
slightly changing the hypotheses of a theorem one can still assert that the thesis of the
theorem remains true or approximately true?” In [14], Hyers gave the first affirmative
answer to the question of Ulam for additive functional equations on Banach spaces.
On the other hand, Cădariu and Radu noticed that a fixed point alternative method is
very important for the solution of the Ulam problem. In other words, they employed
this fixed point method to the investigation of the Cauchy functional equation [10]
and for the quadratic functional equation [9] (for more applications of this method,
see [3, 4, 6–8, 11] and [31]).

In 1965, Zadeh [32] introduced the notion of fuzzy sets which is a powerful
hand set for modeling uncertainty and vagueness in various problems arising in the
field of science and engineering. After that, fuzzy theory has become very active
area of research and a lot of developments have been made in the theory of fuzzy
sets to find the fuzzy analogues of the classical set theory. In fact, a large number of
research papers have appeared by using the concept of fuzzy set and numbers and also
fuzzification of many classical theories has been made. The concept of intuitionistic
fuzzy normed spaces, initially has been introduced by Saadati and Park in [22].
Then, Saadati et al. have obtained a modified case of intuitionistic fuzzy normed
spaces by improving the separation condition and strengthening some conditions in
the definition of [2]. Many authors have considered the intuitionistic fuzzy normed
linear spaces, and intuitionistic fuzzy 2-normed spaces (see [1, 2, 13, 16]). Also, the
generalized Hyers-Ulam stability of different functional equations in intuitionistic
fuzzy normed spaces has been studied by a number of the authors (see [5, 15, 20,
21, 25–28] and [30]).

In this paper, we consider the cubic functional equation of the form

k∑

j=1

f

⎡

⎣
k∑

i(�= j)=1

ni xi − n j x j

⎤

⎦ + (6 − k) f

(
k∑

i=1

ni xi

)

=4

⎡

⎣
k∑

j=1

k∑

i(< j)=1

f (ni xi + n j x j ) − (k − 2)
k∑

i=1

f (ni xi )

⎤

⎦

(1)

It is easy to check that the function f (x) = ax3 is a solution of the functional Eq.
(1) and also find the general solution of the cubic functional Eq. (1). In this paper,
we study some stability results concerning the functional Eq. (1) in the setting intu-
itionistic fuzzy normed space.
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2 Definitions and Notations

In this section, we firstly restate the usual terminology, notations and con- ventions of
the theory of intuitionistic fuzzy normed space, as in [17], [19], [20], [21] and [23].
Then, we prove the generalized Ulam-Hyers stability of the Eq. (1) in intuitionistic
fuzzy normed spaces, based on the fixed point Theorem.

Definition 2.1. An intuitionistic fuzzy set Aζ,η in a universal set U is an object

Aζ,η = {(ζA(u), ηA(u))|u ∈ U }

for all u ∈ U, ζA(u) ∈ [0, 1] and ηA(u) ∈ [0, 1] are called the membership degree
and the non-membership degree, respectively, of u in Aζ,η and, furthermore, they
satisfy ζA(u) + ηA(u) ≤ 1.

We denote its units by 0L∗ = (0, 1) and 1L∗ = (1, 0). Classically, a triangular
norm ∗ = T on [0, 1] is defined as an increasing, commutative, associative mapping
T : [0, 1]2 → [0, 1] satisfying T (1, x) = 1 ∗ x = x for all x ∈ [0, 1]. A triangular
conorm S = ♦ is defined as an increasing, commutative, associative mapping S :
[0, 1]2 → [0, 1] satisfying S(0, x) = 0♦x = x for all x ∈ [0, 1].

Using the lattice (L∗,≤L∗), these definitions can be straightforwardly extended.

Definition 2.2. A triangular norm (t-norm) on L∗ is a mapping T : (L∗)2 → L∗
satisfying the following conditions:

(i) (∀x ∈ L∗) (T (x, 1L∗) = x) (boundary condition);
(ii) (∀x, y ∈ (L∗)2)(T (x, y) = T (y, x)) (commutativity);
(iii) (∀x, y, z ∈ (L∗)3)(T (x, T (y, z)) = T (T (x, y), z)) (associativity);
(iv) (∀x, x ′

, y, y
′ ∈ (L∗)4)(x ≤L∗ x

′
and y ≤L∗ y

′ ⇒ T (x, y) ≤L∗ T (x
′
, y

′
))

(monotonicity).

If (L∗,≤L∗ , T ) is an Abelian topological monoid with unit 1L∗ , then L∗ is said to
be a continuous t-norm.

Definition 2.3. Acontinuous t-normsTon L∗ is said to be continuous t-representable
if there exist a continuous t-norm ∗ and a continuous t-conorm ♦ on [0, 1] such that,
for all x = (x1, x2), y = (y1, y2) ∈ L∗,

T (x, y) = (x1 ∗ y1, x2♦y2).

Definition 2.4. Anegator on L∗ is any decreasingmapping N : L∗ → L∗ satisfying
N : (0L∗) = 1L∗ and N (1L∗) = 0L∗ . If N (N (x)) = x for all x ∈ L∗, then N is called
an involutive negator. A negator on [0, 1] is a decreasingmapping N : [0, 1] → [0, 1]
satisfying Pμ,ν(0) = 1 and Pμ,ν(1) = 0. Ns denotes the standard negator on [0, 1]
defined by

Ns(x) = 1 − x, ∀x ∈ [0, 1].
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Definition 2.5. Let μ and ν be membership and nonmembership degree of an intu-
itionistic fuzzy set from X × (0,+∞) to [0, 1] such that μx (t) + νx (t) ≤ 1 for all
x ∈ X and all t > 0. the triple (X, Pμ,ν, T ) is said to be an intuitionistic fuzzy normed
space (briefly IFN-space) if X is a vector space, T is a continuous t-representable
and Pμ,ν is a mapping X × (0,+∞) → L∗ satisfying the following conditions: for
all x, y ∈ X and t, s > 0,

(IFN1) Pμ,ν(x, 0) = 0L∗ ;
(IFN2) Pμ,ν(x, t) = 1L∗ if and only if x = 0;
(IFN3) Pμ,ν(αx, t) = Pμ,ν(x,

t
|α| ) for all α �= 0;

(IFN4) Pμ,ν(x + y, t + s) ≥L∗ T (Pμ,ν(x, t), Pμ,ν(y, s)).

In this case,Pμ,ν is called an intuitionistic fuzzy norm. Here, Pμ,ν(x, t) =
(μx (t), νx (t)).

Definition 2.6. A sequence {xn} in an IFN-space (X, Pμ,ν, T ) is called Cauchy
sequence if, for any ε > 0 and t > 0, there exists n0 ∈ N such that

Pμ,ν(xn − xm, t) > L∗ (Ns(ε), ε), ∀n,m ≥ n0,

where Ns is the standard negator.

Definition 2.7. The sequence {xn} is said to be convergent to a point x ∈ X (denoted

by xn
Pμ,ν−−→ x) if

Pμ,ν(xn − x, t) → 1L∗ as n → ∞

for every t > 0.

Definition 2.8. An IFN-space (X, Pμ,ν, T ) is said to be complete if every Cauchy
sequence in X is convergent to a point x ∈ X .

Theorem (Banach Contraction Principle): Let (X, d) be a complete metric space
and consider a mapping T : X → X which is strictly contractive mapping, that is

(A1) d
(
Tx , Ty

) ≤ Ld (x, y) for some (Lipschitz constant ) L < 1, then

(1) The mapping T has one and only fixed point x∗ = T (x∗) ;
(2) The fixed point for each given element x∗ is globally attractive that is

(A2) lim
n→∞T nx = x∗,for any starting point x ∈ X ;

(1) One has the following estimation inequalities:

(A3) d (T nx, x∗) ≤ 1
1−L d

(
T nx, T n+1x

)
,for all n ≥ 0, x ∈ X.

(A4) d (x, x∗) ≤ 1
1−L d (x, x∗) , ∀ x ∈ X .

Theorem (The Alternative of fixed point): Suppose that for a complete generalized
metric space (X, d) and a strictly contractive mapping T : X −→ X with Lipschitz
constant L. Then, for each given element x ∈ X either
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(B1) d(T nx, T n+1x) = +∞, for all n ≥ 0, or
(B2) There exists natural number n0 such that

(i) d(T nx, T n+1x) < ∞ for all n ≥ n0;
(ii) The sequence (T nx) is convergent to a fixed point y∗ of T;
(iii) y∗ is the unique fixed point of T in the set Y = {y ∈ X; d(T n0x, y) < ∞};
(iv) d(y∗, y) ≤ 1

1−L d(y, T y) for all y ∈ Y .

3 General Solution of the Functional Eq. (1)

In this section, we discuss the general solution of the functional Eq. (1).

Theorem 3.1. If an odd mapping f : X → Y satisfies the functional equation

f (2x + y) + f (2x − y) = 2 f (x + y) + 2 f (x − y) + 12 f (x), ∀x, y ∈ X (2)

if and only if f : X → Y satisfies the functional equation

k∑

j=1

f

⎡

⎣
k∑

i(�= j)=1

ni xi − n j x j

⎤

⎦ + (6 − k) f

(
k∑

i=1

ni xi

)

= 4

⎡

⎣
k∑

j=1

k∑

i(< j)=1

f (ni xi + n j x j ) − (k − 2)
k∑

i=1

f (ni xi )

⎤

⎦

(3)

forall x1, x2, ...xn ∈ X

Proof. Let f : X → Y satisfies the functional Eq. (2). Setting (x, y) by (0, 0) in (2),
we get f (0) = 0. Replacing (x, y) by (x, 0), (x, x) and (x, 2x) respectively in (2),
we obtain

f (2x) = 23 f (x), f (3x) = 33 f (x) and f (4x) = 43 f (x) (4)

for all x ∈ X . In general for any positive integer a, we have

f (ax) = a3 f (x), (5)

for all x ∈ X . It is easy to verify from (5), that

f (a2x) = a6 f (x) and f (a3x) = a9 f (x), (6)
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for all x ∈ X . Pluging (x, y) by (nx1 + n2x2, n3x3) in (2), we get

f (2nx1 + 2n2x2 + n3x3) + f (2nx1 + 2n2x2 − n3x3) + 2 f (−nx1 − n2x2 − n3x3)

+ 2 f (−nx1 − n2x2 + n3x3) = 12 f (nx1 + n2x2)
(7)

for all x1, x2, x3 ∈ X . Replacing (x, y) by (n2x2 + n3x3, nx1) in (2), we have

f (nx1 + 2n2x2 + nx
3) + f (−nx1 + 2n2x2 + 2n3x3) + 2 f (−nx1 − n2x2 − n3x3)

+ 2 f (nx1 − n2x2 − n3x3) = 12 f (n2x2 + n3x3)
(8)

for all x1, x2, x3 ∈ X . Switching (x, y) by (nx1 + n3x3, n2x2) in (2), we arrive

f (2nx1 + n2x2 + 2n3x3) + f (2nx1 − n2x2 + 2n3x3) + 2 f (−nx1 − n2x2 − n3x3)

+2 f (−nx1 + n2x2 − n3x3) = 12 f (nx1 + n3x3) (9)

for all x1, x2, x3 ∈ X . Adding (7), (8) and (9), We obtain

12 f (nx1 + n2x2) + 12 f (n2x2 + n3x3) + 12 f (nx1 + n3x3) = f (2nx1 + 2n2x2 + n3x3)

+ f (2nx1 + 2n2x2 − n3x3) + 2 f (−nx1 − n2x2 − n3x3) + 2 f (−nx1 − n2x2 + n3x3)

+ f (nx1 + 2n2x2 + 2n3x3) + f (−nx1 − 2n2x2 + 2n3x3) + 2 f (−nx1 − n2x2 − n3x3)

+2 f (nx1 − n2x2 − n3x3) + f (2nx1 + n2x2 + 2n3x3) + f (2nx1 − n2x2 + 2n3x3)

+2 f (−nx1 − n2x2 − n3x3) + 2 f (−nx1 + n2x2 − mmn3x3) (10)

for all x1, x2, x3 ∈ X . Replacing (x, y) by (nx1, 2n2x2 + n3x3) in (2), we reach

f (2nx1 + 2n2x2 + n3x3) = f (−2nx1 + 2n2x2 + n3x3) + 2 f (nx1 + 2n2x2
+n3x3) + 2 f (nx1 − 2n2x2 − n3x3) + 12 f (nx1) (11)

for all x1, x2, x3 ∈ X . Adding f (2nx1 + 2n2x2 − n3x3) on both sides of (11), we get

f (2nx1 + 2n2x2 + n3x3) + f (2nx1 + 2n2x2 − n3x3) = 2 f (nx1 + 2n2x2
+n3x3) + 2 f (nx1 − 2n2x2 − n3x3) + 12 f (nx1) + 2 f (−2nx1 + n2x2 + n3x3)

+2 f (2nx1 + n2x2 − n3x3) + 12 f (n2x2) (12)

for all x1, x2, x3 ∈ X . Interchanging (x, y) by (n2x2, nx1 + 2n3x3) in (2), we have

f (nx1 + 2n2x2 + 2n3x3) = f (nx1 + 2n2x2 + 2n3x3) + 2 f (−nx1 + n2x2
−2n3x3) + 12 f (n2x2) + f (nx1 − 2n2x2 + 2n3x3) (13)

for all x1, x2, x3 ∈ X . Adding f (−nx1 + 2n2x2 + 2n3x3) on both sides of (13), we
arrive
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f (nx1 + 2n2x2 + 2n3x3) + f (−nx1 + 2n2x2 + 2n3x3) = 2 f (nx1 + n2x2
+2n3x3) + 2 f (−nx1 + n2x2 − 2n3x3) + 12 f (n2x2) + 2 f (nx1 − 2n2x2

+n3x3) + 2 f (−nx1 + 2n2x2 + n3x3) + 12 f (n3x3) (14)

for all x1, x2, x3 ∈ X . Pluging (x, y) by (n3x3, 2nx1 + n2x2) in (2), we receive

f (2nx1 + n2x2 + 2n3x3) = 2 f (2nx1 + n2x2 + n3x3)1 + 2 f (−2nx1 − n2x2
+n3x3) + 12 f (n3x3) + f (2nx1 + n2x2 − 2n3x3) (15)

for all x1, x2, x3 ∈ X . Adding f (2nx1 − n2x2 + 2n3x3) on both sides of (15), we
have

f (2nx1 + n2x2 + 2n3x3) + f (2nx1 − n2x2 + 2n3x3) = 2 f (2nx1 + n2x2 + n3x3)

+2 f (−2nx1 − n2x2 + n3x3) + 12 f (n3x3) + 2 f (nx1 + n2x2 − 2n3x3)

+2 f (nx1 − n2x2 + 2n3x3) + 12 f (nx1) (16)

for all x1, x2, x3 ∈ X . Using (12), (14) and (16) in (10), we arrive

12 f (nx1 + n2x2) + 12 f (n2x2 + n3x3) + 12 f (nx1 + n3x3) = 2 f (nx1 + 2n2x2 + n3x3)

+2 f (nx1 − 2n2x2 − n3x3) + 12 f (nx1) + 2 f (−2nx1 + n2x2 + n3x3)

+2 f (2nx1 + n2x2 − n3x3) + 12 f (n2x2) + 2 f (−nx1 − n2x2 − n3x3) + 2 f (−nx1 − n2x2

+n3x3) + 2 f (nx1 + n2x2 + 2n3x3) + 2 f (−nx1 + n2x2 − 2n3x3) + 12 f (n2x2)

+2 f (nx1 − 2n2x2 + n3x3) + 2 f (−nx1 + 2n2x2 + n3x3) + 12 f (n3x3)

+2 f (−nx1 − n2x2 − n3x3) + 2 f (nx1 − n2x2 − n3x3) + 2 f (2nx1 + n2x2 + n3x3)

+2 f (−2nx1 − n2x2 + n3x3) + 12 f (n3x3) + 2 f (nx1 + n2x2 − 2n3x3)

+2 f (nx1 − n2x2 + 2n3x3) + 12 f (nx1) + 2 f (−nx1 − n2x2 − n3x3)

+2 f (−nx1 + n2x2 − n3x3) (17)

for all x1, x2, x3 ∈ X . Replacing (x, y) by (n3x3, 2nx1 + n3x3) in (2), we get

f (2nx1 + 2n2x2 + n3x3) = 2 f (2nx1 + n2x2 + n3x3) + 2 f (−2nx1 + n2x2
−n3x3) + 12 f (n2x2) + f (2nx1 − 2n2x2 + n3x3) (18)

for all x1, x2, x3 ∈ X . Adding f (2nx1 + 2n2x2 − n3x3) on both sides of (18), we
reach

f (2nx1 + 2n2x2 + n3x3) + f (2nx1 + 2n2x2 − n3x3) = 2 f (2nx1 + n2x2 + n3x3)

+2 f (−2nx1 − n2x2 − n3x3) + 12 f (n2x2) + 2 f (nx1 − 2n2x2 + n3x3)

+2 f (nx1 + 2n2x2 − n3x3) + 12 f (nx1) (19)
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for all x1, x2, x3 ∈ X . Switching (x, y) by (n3x3, nx1 + 2n2x2) in (2), we obtain

f (nx1 + 2n2x2 + 2n3x3) = 2 f (nx1 + 2n2x2 + n3x3) + 2 f (−nx1 − 2n2x2
+n3x3) + 12 f (n3x3) + f (nx1 + 2n2x2 − 2n3x3) (20)

for all x1, x2, x3 ∈ X . Adding f (−nx1 + 2n2x2 + 2n3x3) on both sides of (20), we
attain

f (nx1 + 2n2x2 + 2n3x3) + f (−nx1 + 2n2x2 + 2n3x3) = 2 f (2nx1 + 2n2x2 + n3x3)

+2 f (−nx1 − 2n2x2 + n3x3) + 12 f (n3x3) + 2 f (nx1 + n2x2 − 2n3x3)

+2 f (−nx1 + n2x2 + 2n3x3) + 12 f (n2x2) (21)

for all x1, x2, x3 ∈ X . Replacing (x, y) by (nx1, n2x2 + 2n3x3) in (2), we reach

f (2nx1 + n2x2 + 2n3x3) = 2 f (nx1 + n2x2 + 2n3x3) + 2 f (nx1 − n2x2
−2n3x3) + 12 f (nx1) + f (−2nx1 + n2x2 + 2n3x3) (22)

for all x1, x2, x3 ∈ X . Adding f (2nx1 − n2x2 + 2n3x3) on both sides of (22), we
arrive

f (2nx1 + n2x2 + 2n3x3) + f (2nx1 − n2x2 + 2n3x3 = 2 f (2nx1 + n2x2 + n3x3))

+2 f (nx1 − n2x2 − 2n3x3) + 12 f (nx1) + 2 f (−2nx1 + n2x2 + n3x3)

+2 f (2nx1 − n2x2 + n3x3) + 12 f (n3x3) (23)

for all x1, x2, x3 ∈ X . Using (19), (21) and (23) in (20), we have

12 f (nx1 + n2x2) + 12 f (n2x2 + n3x3) + 12 f (nx1 + n3x3)

= 2 f (nx1 − 2n2x2 + n3x3) + 2 f (nx1 + 2n2x2 − n3x3)

+12 f (nx1) + 2 f (2nx1 + n2x2 + n3x3) + 2 f (−2nx1 + n2x2 − n3x3)

+12 f (n2x2) + 2 f (−nx1 − n2x2 − n3x3) + 2 f (−nx1 − n2x2
+n3x3) + 2 f (nx1 + n2x2 − 2n3x3) + 2 f (−nx1 + n2x2 + 2n3x3)

+12 f (n2x2) + 2 f (nx1 + 2n2x2 + n3x3) + 2 f (−nx1 − 2n2x2 + n3x3)

12 f (n3x3) + 2 f (−nx1 − n2x2 − n3x3) + 2 f (nx1 − n2x2 − n3x3)

+2 f (−2nx1 + n2x2 + n3x3) + 2 f (2nx1 − n2x2 + n3x3) + 12 f (n3x3)

+2 f (nx1 + n2x2 + 2n3x3) + 2 f (nx1 − n2x2 − 2n3x3) + 12 f (nx1)

+2 f (−nx1 − n2x2 − n3x3) + 2 f (−nx1 + n2x2 − n3x3) (24)

for all x1, x2, x3 ∈ X . Adding Eqs. (17) , (24) and continuing this process upto n
times attacks, we arrive
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k∑

j=1

f

⎡

⎣
k∑

i(�= j)=1

ni xi − n j x j

⎤

⎦ + (6 − k) f

(
k∑

i=1

ni xi

)

= 4

⎡

⎣
k∑

j=1

k∑

i(< j)=1

f (ni xi + n j x j ) − (k − 2)
k∑

i=1

f (ni xi )

⎤

⎦

(25)

for all xi , x j ∈ X .Conversely, f : X → Y satisfies the functional Eq. (3) and replac-
ing (x1, x2, x3, .......xk) by (x, 0, 0.....0), (0, x, 0, 0.....0) and (0, 0, x, 0, 0....0)
respectively in (3), we obtain

f (nx) = n3 f (x), f (n2x) = n6 f (x), f (n3x) = n9 f (x) (26)

and so on, for all x ∈ X . One can easy to verify from (26) that

f

(
x

ni

)
=

(
1

ni

)3

f (xi ), ∀x, y ∈ X. (27)

Switching (x1, x2, x3, ....xk) by

(
x
n , x

n2 ,
y
n3 , 0, 0....0

)
in (3), we get

3 f (2x + y) + f (2x − y) = 24 f (x) − 6 f (y) + 8 f (x + y) (28)

for all x, y ∈ X . Interchanging y by −y in (28), we have

3 f (2x − y) + f (2x + y) = 24 f (x) + 6 f (y) + 8 f (x − y) (29)

for all x, y ∈ X . Adding the Eqs. (28) and (29), we arrive our result. �

4 Stability Results for the Functional Eq. (1): Direct
Method

In this section, we investigate the generalized Ulam-Hyers stability of the functional
Eq. (1) in Intuitionistic fuzzy normed space via direct method.

Theorem 4.1. Let β ∈ {−1, 1}. Let X be a linear space, (Z , P
′
μ,ν, T ) be an IFN-

space, α : Xn → Z be a mapping with 0 <
(
d
23

)β
< 1,

P
′
μ,ν

(
α(2βx, 0, 0), r

) ≥L∗ P
′
μ,ν

(
dβα(x, 0, · · · , 0), r

)
(30)

for all x ∈ X and all r > 0, and

lim
n→∞ P

′
μ,ν

(
α(2βnx1, 2

βnx2, · · · , 2βnxk), 2
3βnr

) = 1L∗ (31)
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for all x1, x2, · · · , xk ∈ X and all r > 0.
(
Y, P

′
μ,ν, T

)
be an IFN-space. Suppose that

a function f : X → Y satisfies the inequality

Pμ,ν (Df (x1, x2, · · · , xk), r) ≥L∗ P
′
μ,ν (α(x1, x2, · · · , xk), r) (32)

for all r > 0 and all x1, x2, · · · , xk ∈ X. Then the limit

Pμ,ν

(
C(x) − f (2βnx)

23βn

)
→ 1L∗ , as n → ∞, r > 0 (33)

exists for all x ∈ X and themappingC : X → Y is a unique cubicmapping satisfying
(1) and

Pμ,ν ( f (x) − C(x), r) ≥L∗ P
′
μ,ν

(
α(x, 0, · · · , 0), 4r | n3 − d |) (34)

for all x ∈ X and all r > 0.

Proof. First assume β = 1. Replacing (x1, x2, · · · , xk) by (x, 0, · · · , 0) in (1), we
get

Pμ,ν

(
4 f (nx) − 4n3 f (x), r

) ≥L∗ P
′
μ,ν (α(x, 0, · · · , 0), r) (35)

for all x ∈ X and all r > 0. Replacing x by ni x in (35) and using (IFN3), we have

Pμ,ν

(
f (ni+1x)

n3
− f (ni x),

r

4n3

)
≥L∗ P

′
μ,ν

(
α(ni x, 0, · · · , 0), r

)
(36)

for all x ∈ X and all r > 0. Using (30), (IFN3) in (36), we get

Pμ,ν

(
f (ni+1x)

n3
− f (ni ),

r

4n3

)
≥L∗ P

′
μ,ν

(
α(x, 0, · · · , 0),

r

di

)
(37)

for all x ∈ X and all r > 0. It is easy to verify from (37), that

Pμ,ν

(
f (ni+1x)

n3(i+1)
− f (ni )

n3i
,

r

4n3(i+1)

)
≥L∗ P

′
μ,ν

(
α(x, 0, · · · , 0),

r

di

)
(38)

holds for all x ∈ X and all r > 0. Replacing r by dir in (38), we obtain

Pμ,ν

(
f (ni+1x)

n3(i+1)
− f (ni )

n3i
,

dir

4n3(i+1)

)
≥L∗ P

′
μ,ν (α(x, 0, · · · , 0), r) (39)

for all x ∈ X and all r > 0. It is easy to see that

f (2i x)

23i
− f (x) =

i−1∑

l=0

f (nl+1x)

n3(l+1)
− f (nl x)

n3l
(40)
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for all x ∈ X . from Eqs. (39) and (40), we get

Pμ,ν

(
f (ni x)

n3i
− f (x),

i−1∑

l=0

dlr

4n3(l+1)

)
≥L∗ T i−1

l=0

(
P

′
μ,ν

(
f (nl+1x)

n3(l+1)
− f (nl x)

n3l
,

dlr

n3(l+1)

))

≥L∗ T i−1
l=0

(
P

′
μ,ν(α(x, 0, · · · , 0), r)

)

≥L∗ P
′
μ,ν(α(x, 0, · · · , 0), r) (41)

for all x ∈ X and all r > 0. Replacing x by nmx in (41) and using (30), we attain

Pμ,ν

(
f (ni+mx)

n3(i+m)
− f (nmx)

n3m
,

i−1∑

l=0

dlr

4n3(1+l+m)

)
≥L∗ P

′
μ,ν

(
α(x, 0, · · · , 0),

r

dm

)

(42)
for all x ∈ X and all r > 0 and all m, i ≥ 0. Replacing r by dmr in (42), we get

Pμ,ν

(
f (ni+mx)

n3(i+m)
− f (nmx)

n3m
,

i+m−1∑

l=m

dlr

4n3(1+l)

)
≥L∗ P

′
μ,ν (α(x, 0, · · · , 0), r) (43)

for all x ∈ X and all r > 0 and all m, i ≥ 0. Using (IFN3) in (43), we reach

Pμ,ν

(
f (ni+mx)

n3(i+m)
− f (nmx)

n3m
, r

)
≥L∗ P

′
μ,ν

(
α(x, 0, · · · , 0),

r
∑i+m−1

l=m
dl

4n3(1+l)

)

(44)
for all x ∈ X and all r > 0 and allm, i ≥ 0. Since 0 < d < n3 and

∑i
l=0

(
d
n3

)l
< ∞.

Thus { f (ni x)
n3i } is a Cauchy sequence in (Y, Pμ,ν, T ). Since (Y, Pμ,ν, T ) is a complete

IFN-space, this sequence converges to some point C(x) ∈ Y . So one can define the
mapping C : X → Y by

Pμ,ν

(
C(x) − f (nβi x)

n3βi

)
→ 1L∗ as n → ∞, r > 0

for all x ∈ X . Letting m = 0 in (44), we get

Pμ,ν

(
f (ni x)

n3i
− f (x), r

)
≥L∗ P

′
μ,ν

(
α(x, 0, · · · , 0),

r
∑i−1

l=0
dl

4n3(l+1)

)
(45)

for all x ∈ X and all r > 0. Letting n → ∞ in (45), we reach

Pμ,ν( f (x) − C(x), r) ≥L∗ P
′
μ,ν

(
α(x, 0, · · · , 0), 4r(n3 − d)

)
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for all x ∈ X and all r > 0. To prove C satisfies the (1), replacing (x1, x2, · · · , xk)
by (ni x1, ni x2, · · · , ni xk) in (32), respectively, we attain

Pμ,ν

(
1

n3i
D f (ni x1, n

i x2, · · · , ni xk), r

)
≥L∗ P

′
μ,ν

(
α(ni x1, n

i x2, · · · , ni xk), n
3i r

)

(46)
for all r > 0 and all x1, x2, · · · , xk ∈ X . Hence C satisfies the cubic functional Eq.
(1). In order to proveC(x) is unique,we let D(x) be another cubic functional equation
satisfying (1) and (34). Hence,

Pμ,ν(C(x) − D(x), r) = Pμ,ν

(
C(ni x)

n3i
− D(ni x)

n3i
, r

)

≥L∗ T {Pμ,ν

(
C(ni x)

n3i
− f (ni x)

n3i
,
r

2

)
, Pμ,ν

(
f (ni x)

n3i
− D(ni x)

n3i
,
r

2

)
,
r

2
}

≥L∗ P
′
μ,ν

(
α(ni x, 0, · · · , 0),

4rn3i (n3 − d)

2

)

≥L∗ P
′
μ,ν

(
α(x, 0, · · · , 0),

2rn3i (n3 − d)

di

)

for all x ∈ X and all r > 0. Since

lim
n→∞

2rn3i (n3 − d)

di
= ∞,

we obtain

lim
n→∞ P

′
μ,ν

(
α(x, 0, · · · , 0),

2rn3i (n3 − d)

di

)
= 1L∗ .

Thus
Pμ,ν(C(x) − D(x), r) = 1L∗

for all x ∈ X and all r > 0, hence C(x) = D(x). Therefore C(x) is unique. For
β = −1, we can prove the result by a similar method. This completes the proof of
the theorem. �

The following corollary is an immediate consequence of Theorem 4.1, concerning
the stability for the functional Eq. (1).

Corollary 4.1. Suppose that the function f : X → Y satisfies the inequality
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Pμ,ν(Df (x1, x2, · · · , xk), r) ≥L∗

⎧
⎪⎨

⎪⎩

P
′
μ,ν(ϕ, r)

P
′
μ,ν(ϕ

∑k
i=1 ||xi ||s, r)

P
′
μ,ν(ϕ(

∑k
i=1 ||xi ||ks + 	k

i=1||xi ||s), r)

for all x1, x2, · · · , xk ∈ X and all r > 0, where ϕ, s are constants with ϕ > 0. Then
there exists a unique cubic mapping C : X → Y such that

Pμ,ν( f (x) − C(x), r) ≥

⎧
⎪⎨

⎪⎩

P
′
μ,ν(ϕ, 4r | n3 − 1 | r)

P
′
μ,ν

(
ϕ||x ||s, 4r | n3 − ns | r) ; s �= 3

P
′
μ,ν

(
ϕ||x ||ks, 4r | n3 − nks | r) ; s �= 3

k

for all x ∈ X and all r > 0.

5 Stability Results for the Functional Eq. (1): Fixed Point
Method

In this section, we establish the generalized Ulam-Hyers Stability of the functional
Eq. (1) in Intuitionistic fuzzy Normed space via fixed point method.

For to prove the stability result, we define the following: ηi is a constant such that

ηi =
{
n i f i = 0
1
n i f i = 1

and 
 is the set such that 
 = {g/g : X → Y, g(0) = 0} .

Theorem 5.1. Let f : X → Y be a mapping for which there exist a function α :
X3 → Z with the condition

lim
k→∞ P

′
μ,ν

(
α(ηk

i x1, η
k
i x2, · · · , ηk

i xk), η
3k
i r

) = 1L∗ (47)

for all x1, x2, · · · , xk ∈ X and r > 0 and satisfying the functional inequality

Pμ,ν (Df (x1, x2, · · · , xk), r) ≥L∗ P
′
μ,ν (α(x1, x2, · · · , xk), r) (48)

for all x1, x2, · · · , xk ∈ X and r > 0. If there exists L = L(i) such that the function
x → β(x) = 1

4α
(
x
n , 0, · · · , 0

)
has the property

P
′
μ,ν

(
L
1

η3
i

β(ηi x), r

)
= P

′
μ,ν (β(x), r) (49)
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for all X ∈ X and r > 0. Then there exists unique cubic function C : X → Y satis-
fying the functional Eq. (1) and

Pμ,ν ( f (x) − C(x), r) ≥L∗ P
′
μ,ν

(
β(x),

L1−i

1 − L
r

)
(50)

for all x ∈ X and r > 0.

Proof. Let d be a general metric on 
, such that

d(g, h) = inf{k ∈ (0,∞)|Pμ,ν(g(x) − h(x), r) ≥L∗ P
′
μ,ν (β(x), kr) , x ∈ X, r > 0}.

It is easy to see that (
, d) is complete. Define T : 
 → 
 by Tg(x) = 1
η3
i
g(ηi x),

for all x ∈ X . For g, h ∈ 
, we have

d(g, h) ≤ k

⇒ Pμ,ν(g(x) − h(x), r) ≥L∗ P
′
μ,ν(β(x), kr)

⇒ Pμ,ν

(
g(ηi x)

η3
i

− h(ηi x)

η3
i

, r

)
≥L∗ P

′
μ,ν

(
β(ηi x), kη

3
i r

)

⇒ Pμ,ν (Tg(x) − Th(x), r) ≥L∗ P
′
μ,ν (β(x), kLr)

⇒ d (Tg(x), Th(x)) ≤ kL

⇒ d(Tg, Th) ≤ Ld(g, h)

for all g, h ∈ 
. Therefore T is strictly contractive mapping on 
 with Lipschitz
constant L . Replacing (x1, x2, · · · , xk) by (x, 0, · · · , 0) in (48), we get

Pμ,ν(4 f (nx) − 4n3 f (x), r) ≥L∗ P
′
μ,ν(α(x, 0, · · · , 0), r) (51)

for all x ∈ X and r > 0. using (IFN2) in (51), we arrive

Pμ,ν

(
f (nx)

n3
− f (x), r

)
≥L∗ P

′
μ,ν

(
α(x, 0, · · · , 0), 4n3r

)
(52)

for all x ∈ X and r > 0 with the help of (49) when i = 0, it follows from (52), we
get
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⇒ Pμ,ν

(
f (nx)

n3
− f (x), r

)
≥L∗ P

′
μ,ν (β(x), Lr) (53)

⇒ d(T f, f ) ≤ L = L1 = L1−i .

Replacing x by x
n in (51), we attain

Pμ,ν

(
f (x) − n3 f

( x
n

)
, r

)
≥L∗ P

′
μ,ν

(
α

( x
n

, 0, · · · , 0
)

, 4r
)

(54)

for all x ∈ X and r > 0 with the help of (49) when i = 1, it follows from (54) we
get

⇒ Pμ,ν

(
f (x) − n3 f

( x
n

)
, r

)
≥L∗ P

′
μ,ν (β(x), r) (55)

⇒ d( f, T f ) ≤ 1 = L0 = L1−i .

Then from (53) and (55), we can conclude

d( f, T f ) ≤ L1−i < ∞.

Now from the fixed point alternative in both cases, it follows that there exists a fixed
point C of T in 
 such that

lim
n→∞ Pμ,ν

(
f (ηn

i x)

ηn
i

− C(x), r

)
→ 1L∗ (56)

for all x ∈ X and r > 0. Replacing (x1, x2, · · · , xk) by (ηi x1, ηi x2, · · · , ηi xk) in
(48), we obtain

Pμ,ν

(
1

η3n
i

D f (ηi x1, ηi x2, · · · , ηi xk), r

)
≥L∗ P

′
μ,ν(α(ηi x1, ηi x2, · · · , ηi xk), η

3n
i r)

(57)
for all r > 0 and all x1, x2, · · · , xk ∈ X . By proceeding the same procedure as in
the Theorem 4.1, we can prove the function C : X → Y satisfies the functional
Eq. (1). By fixed point alternative, since C is unique fixed point of T in the set
� = { f ∈ 
|d( f,C) < ∞}. Therefore C is a unique function such that

Pμ,ν( f (x) − C(x), r) ≥L∗ P
′
μ,ν(β(x), kr) (58)

for all x ∈ X and k, r > 0. Again using the fixed point alternative, we obtain

d( f,C) ≤ 1

1 − L
d( f, T f )
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⇒ f ( f,C) ≤ L1−i

1 − L

⇒ Pμ,ν( f (x) − C(x), r) ≥L∗ P
′
μ,ν

(
β(x),

L1−i

1 − L
r

)
,

for all x ∈ X and r > 0. This completes the proof of the theorem.

From Theorem 5.1, we obtain the following corollary concerning the stability for
the functional Eq. (1).

Corollary 5.1. Suppose that a function f : X → Y satisfies the inequality

Pμ,ν(Df (x1, x2, · · · , xk), r) ≥L∗

⎧
⎪⎨

⎪⎩

P
′
μ,ν(ϕ, r)

P
′
μ,ν(ϕ

∑k
i=1 ||xi ||s, r)

P
′
μ,ν(ϕ(

∑k
i=1 ||xi ||ks + 	3

i=1||xi ||s), r)

for all x1, x2, · · · , xk ∈ X and r > 0, where ϕ, s are constants with ϕ > 0. Then
there exists a unique cubic mapping C : X → Y such that

Pμ,ν( f (x) − C(x), r) ≥L∗

⎧
⎪⎨

⎪⎩

P
′
μ,ν(ϕ, 4r | n3 − 1 | r)

P
′
μ,ν

(
ϕ||x ||s, 4r | n3 − ns | r) ; s �= 3

P
′
μ,ν

(
ϕ||x ||ks, 4r | n3 − nks | r) ; s �= 3

k

for all x ∈ X and r > 0.

Proof. Setting

α(x1, x2, · · · , xk) =

⎧
⎪⎨

⎪⎩

ϕ

ϕ(
∑k

i=1 ||xi ||s)
ϕ(

∏k
i=1 ||xi ||s + ∑k

i=1 ||xi ||ks)

for all x1, x2, · · · , xk ∈ X . Then

P
′
μ,ν

(
α

(
ηki x1, η

k
i x2, · · · , ηki xk

)
, η3ki r

)
=

⎧
⎪⎪⎨

⎪⎪⎩

P
′
μ,ν(ϕ, η3ki r)

P
′
μ,ν

(
ϕ

∑k
i=1 ||xi ||s , η(3−s)k

i r
)

P
′
μ,ν

(
ϕ(

∑k
i=1 ||xi ||ks + 	3

i=1||xi ||s), η(3−ks)k
i r

)

=

⎧
⎪⎨

⎪⎩

−→ 1 as k −→ ∞,

−→ 1 as k −→ ∞,

−→ 1 as k −→ ∞.

Thus, (47) is holds. But we have
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β(x) = 1

4
α

( x
n

, 0, · · · , 0
)

has the property

P
′
μ,ν

(
L
1

η3
i

β(ηi x), r

)
≥ P

′
μ,ν(β(x), r)

for all x ∈ X and r > 0. Hence

P
′
μ,ν(β(x), r) = N ′

(
α

( x
n

, 0, · · · , 0
)

, 4r
)

=

⎧
⎪⎨

⎪⎩

P
′
μ,ν(ϕ, 4r)

P
′
μ,ν

(
ϕ|| xn ||s, 4r)

P
′
μ,ν

(
ϕ|| xn ||ks, 4r) .

Now,

P
′
μ,ν

(
1

η3
i

β(ηi x), r

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P
′
μ,ν

(
ϕ

η3
i
, 4r

)

P
′
μ,ν

(
ϕ

η3
i

(
1
ns

) ||ηi x ||s, 4r
)

P
′
μ,ν

(
ϕ

η3
i

(
1
nns

) ||ηi x ||ns, 4r
)

=

⎧
⎪⎨

⎪⎩

P
′
μ,ν(η

−3
i β(x), 4r)

P
′
μ,ν(η

s−3
i β(x), 4r)

P
′
μ,ν(η

ks−3
i β(x), 4r)

Now from the following cases for the conditions of ηi .
Case (i): L = n−3 f or s = 0 i f i = 0

Pμ,ν( f (x) − C(x), r) ≥L∗ P
′
μ,ν

(
L1−i

1−L β(x), r
)

≥L∗ P
′
μ,ν

(
ϕ(n−3)
1−n−3 , 4r

)
≥L∗ P

′
μ,ν

(
ϕ, 4(n3 − 1)r

)

Case (ii): L = n3 f or s = 0 i f i = 1

Pμ,ν( f (x) − C(x), r) ≥L∗ P
′
μ,ν

(
L1−i

1−L β(x), r
)

≥L∗ P
′
μ,ν

(
ϕ

1−n3
, 4r

)
≥L∗ P

′
μ,ν

(
ϕ, 4(1 − n3)r

)

Case (iii): L = ns−3 f or s < 3 i f i = 0

N ( f (x) − C(x), r) ≥L∗ P
′
μ,ν

(
L1−i

1 − L
β(x), r

)
≥L∗ P

′
μ,ν

(
ns−3

1 − ns−3

ϕ||x ||s
ns

, 4r

)

≥L∗ P
′
μ,ν

(
ϕ||x ||s, 4r(n3 − ns)

)



730 S. Pinelas et al.

Case (iv): L = n3−s f or s > 3 i f i = 1

Pμ,ν( f (x) − C(x), r) ≥L∗ P
′
μ,ν

(
L1−i

1 − L
β(x), r

)
≥L∗ P

′
μ,ν

(
1

1 − n3−s

ϕ||x ||s
ns

, 4r

)

≥L∗ P
′
μ,ν

(
ϕ||x ||s , 4r(ns − n3)

)

Case (v): L = nks−3 f or s < 3
k i f i = 0

Pμ,ν( f (x) − C(x), r) ≥L∗ N ′
(

L1−i

1 − L
β(x), r

)
≥L∗ P

′
μ,ν

(
nks−3

1 − nks−3

ϕ||x ||ks
nks

, 4r

)

≥L∗ P
′
μ,ν

(
ϕ||x ||ks , 4r(n3 − nks)

)

Case (vi): L = n3−ks f or s < 3
k i f i = 1

Pμ,ν( f (x) − C(x), r) ≥L∗ P
′
μ,ν

(
L1−i

1 − L
β(x), r

)
≥L∗ P

′
μ,ν

(
1

1 − n3−ks

ϕ||x ||ks
nks

, 4r

)

≥L∗ P
′
μ,ν

(
ϕ||x ||ks , 4r(nks − n3)

)
.

Hence the proof is completed.
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An Abstract Impulsive Second-Order
Functional-Differential Cauchy Problem
with Nonlocal Conditions

Haydar Akça, Jamal Benbourenane, Valéry Covachev,
and Zlatinka Covacheva

Abstract The main concern of the paper is to prove the existence, uniqueness and
continuous dependence of mild and classical solutions of a semilinear impulsive
second-order functional-differential equation with nonlocal initial conditions. We
consider the Cauchy problem in general Banach spaces, and apply the theory of
strongly continuous cosine families of linear operators and the Banach fixed-point
theorem.

1 Introduction

Many evolutionary processes in nature are characterized by the fact that, at certain
instants of time, they experience a rapid change of their states. The theory of the
impulsive differential equations is one of the attractive branches of differential equa-
tions, which has extensive realistic mathematical modelling applications in physics,
chemistry, engineering, and biological and medical sciences. The nonlocal condition
generalizes the classical initial condition. In our previous papers [1, 2], we found
sufficient conditions for the existence, uniqueness and continuous dependence of
a mild solution of a first-order impulsive functional-differential evolution nonlocal
Cauchy problem such that the linear part of the right-hand side of the differential
equation is given by the infinitesimal generator of a strongly continuous semigroup
of bounded linear operators.
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2 Statement of the Problem

We consider an impulsive abstract nonlocal semilinear second-order functional-
differential Cauchy problem in the form

u′′(t) + Au(t) = f (t, u(t), u(b1(t)), . . . , u(bm(t))), t ∈ (0, T ] \
κ⋃

k=1

{τk}, (1)

Δu(τk) = Ik(u(τk)), Δu′(τk) = I k(u(τk), u
′(τk)), k = 1, κ, (2)

u(0) = u0, u′(0) +
p∑

i=1

giu(ti ) = u1, (3)

where A is a linear operator from a real Banach space X into itself, u : [0, T ] →
X, f : [0, T ] × Xm+1 → X, bi : [0, T ] → [0, T ] (i = 1,m), u0, u1 ∈ X, gi ∈ R

(i = 1, p) and Δu(τk) = u(τk + 0) − u(τk − 0) ≡ u(τk + 0) − u(τk), Δu′(τk) =
u′(τk + 0) − u′(τk − 0) ≡ u′(τk + 0) − u′(τk), 0 < τ1 < τ2 < · · · < τκ < T are the
instants of impulse effect and 0 < t1 < t2 < · · · < tp < T .

The main concern of the present paper is to find sufficient conditions for the
existence, uniqueness and continuous dependence of mild and classical solutions of
problem (1)–(3).

3 Preliminaries

We shall need the following definitions [6–9].

Definition 1. A one-parameter family {C(t) : t ∈ R} of bounded linear operators
mapping the Banach space X into itself is called a strongly continuous cosine family
if and only if

1. C(s + t) + C(s − t) = 2C(s)C(t) for all s, t ∈ R.
2. C(0) = I (the identity operator).
3. C(t)x is continuous in t on R for each fixed x ∈ X .

Definition 2. The infinitesimal generator of a strongly continuous cosine family
{C(t)} is the operator A : X ⊃ D(A) → X defined by

Ax := d2

dt2
C(t)x

∣∣∣∣
t=0

, x ∈ D(A),

where
D(A) := {

x ∈ X : C(t)x is of class C2 with respect to t
}
.
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We introduce the assumptions:

A1. The operator−A is the infinitesimal generator of a strongly continuous cosine
family {C(t) : t ∈ R} of bounded linear operators from X to itself.
A2. The adjoint operator A∗ is densely defined in X∗, i.e., D(A∗) = X∗.

Let us denote

E := {
x ∈ X : C(t)x is of class C1 with respect to t

}
.

The associated sine family {S(t) : t ∈ R} is defined by

S(t)x :=
∫ t

0
C(s)x ds, x ∈ X, t ∈ R.

Further on, we denote by ‖C(t)‖, ‖S(t)‖ and ‖A‖ the operator norms of C(t), S(t)
and A in the Banach space X , respectively. From Assumption A1, it follows that
there exists a constant M ≥ 1 such that

‖C(t)‖ ≤ M and ‖S(t)‖ ≤ M for t ∈ [0, T ]. (4)

Following [5], we present a result obtained by J. Bochenek in [4].
Let us consider the Cauchy problem

x ′′(t) + Ax(t) = h(t), t ∈ (0, T ],
x(0) = x0, x ′(0) = x1. (5)

Definition 3. A function x : [0, T ] → X is said to be a classical solution of
problem (5) if

x ∈ C1([0, T ], X) ∩ C2((0, T ], X),

x(0) = x0 and x ′(0) = x1,

x ′′(t) + Ax(t) = h(t) for t ∈ (0, T ].

Theorem 1. Suppose that

1. Assumptions A1 and A2 are satisfied;
2. h : [0, T ] → X is Lipschitz continuous;
3. x0 ∈ D(A) and x1 ∈ E.
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Then, problem (5) has a unique classical solution given by the formula

x(t) = C(t)x0 + S(t)x1 +
∫ t

0
S(t − s)h(s) ds, t ∈ [0, T ].

It is easy to see that this result can be generalized for the impulsive system

x ′′(t) + Ax(t) = h(t), t ∈ (0, T ] \ {τ1, τ2, . . . , τκ}, (6)

Δx(τk) = Ik, Δx ′(τk) = I k, k = 1, κ, (7)

x(0) = x0, x ′(0) = x1. (8)

For convenience, we denote J = [0, T ], J0 = [0, τ1], Jk = (τk, τk+1], k = 1, κ − 1,
Jκ = (τκ , T ], J ′ = J \ {0, τ1, τ2, . . . , τκ}. For a function x : J → X , we denote by
x|k the restriction of x to Jk , k = 0, κ , with ‖x|k‖Jk = sup

s∈Jk

‖x|k(s)‖. If the function
x|k happens to be differentiable, we denote its derivative by x ′

|k . Further we introduce
the following classes of functions:

PC(J ′, X) = {
x : J → X | x|k ∈ C(Jk, X), k = 0, κ,

and there exist x(τk + 0), k = 1, κ
}
,

PC1(J ′, X) = {
x ∈ PC(J ′, X)| x ′

|k ∈ C(Jk, X), k = 0, κ,

and there exist x ′(τk + 0), k = 1, κ
}
.

PC(J ′, X) is a Banach space with norm ‖x‖PC = max
{‖x|k‖Jk , k = 0, κ

}
, and

PC1(J ′, X) is a Banach space with norm ‖x‖PC1 = ‖x‖PC + ‖x ′‖PC .

Definition 4. A function x ∈ PC1(J ′, X) ∩ C2(J ′, X) is called a classical solution
of problem (6)–(8) if it satisfies the differential equation (6) on J ′, together with the
impulse conditions (7) and the initial conditions (8).

Theorem 2. [3] Suppose that

1. Assumptions A1 and A2 are satisfied;
2. h ∈ PC(J ′, X) is such that its restrictions to Jk are Lipschitz continuous, k =

0, κ;
3. x0 ∈ D(A) and x1 ∈ E.
4. Ik ∈ D(A) and I k ∈ E for k = 1, κ .

Then, problem (6)–(8) has a unique classical solution given by the formula

x(t) = C(t)x0 + S(t)x1 +
∫ t

0
S(t − s)h(s) ds (9)

+
∑

0<τk<t

C(t − τk)Ik +
∑

0<τk<t

S(t − τk)I k, t ∈ J.
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Theorem2 can be proved by applying Theorem1 on each interval of continuity Jk ,
k = 0, κ .

This theorem suggests the following definition.

Definition 5. A function u ∈ PC1(J ′, X) satisfying the integro-summary equation

u(t) = C(t)u0 + S(t)

(
u1 −

p∑

i=1

giu(ti )

)
(10)

+
∫ t

0
S(t − s) f (s, u(s), u(b1(s)), . . . , u(bm(s))) ds

+
∑

0<τk<t

C(t − τk)Ik(u(τk)) +
∑

0<τk<t

S(t − τk)I k(u(τk), u
′(τk)), t ∈ J,

is said to be a mild solution of the nonlocal problem (1)–(3).

4 Main Results

4.1 Existence and Uniqueness of a Mild Solution

Theorem 3. Suppose that

1. Assumption A1 is satisfied;
2. The function t �→ f (t, x, y1, . . . , ym) belongs to PC(J ′, X), and there exists a

positive constant L1 such that

‖ f (t, x, y1, . . . , ym) − f (t, x̃, ỹ1, . . . , ỹm)‖ ≤ L1

⎛

⎝‖x − x̃‖ +
m∑

j=1

‖y j − ỹ j‖
⎞

⎠

for t ∈ [0, T ], x, x̃, y j , ỹ j ∈ X, j = 1,m;
3. Ik : X → E and I k : X2 → X and there exist positive constants L2 and L3 such

that

‖Ik(x) − Ik(x̃)‖ ≤ L2‖x − x̃‖ and ‖I k(x, y) − I k(x̃, ỹ)‖ ≤ L3(‖x − x̃‖ + ‖y − ỹ‖)

for k = 1, κ , x, x̃, y, ỹ ∈ X;



738 H. Akça et al.

4. q := 2M̃

[
p∑

i=1
|gi | + (m + 1)T L1 + κ(L2 + L3)

]
< 1, where M̃ = max{M,

M ′}, M was defined in (4), and M ′ = sup{‖C ′(t)‖ : t ∈ [0, T ]};
5. u0 ∈ E and u1 ∈ X.

Then, problem (1)–(3) has a unique mild solution.

Proof. We can write Eq. (10) in an operator form

u = Fu,

where the operator F : PC1(J ′, X) → PC1(J ′, X) is defined by

(Fu)(t) = C(t)u0 + S(t)

(
u1 −

p∑

i=1

giu(ti )

)

+
∫ t

0
S(t − s) f (s, u(s), u(b1(s)), . . . , u(bm(s))) ds

+
∑

0<τk<t

C(t − τk)Ik(u(τk)) +
∑

0<τk<t

S(t − τk)I k(u(τk), u
′(τk)), t ∈ [0, T ].

Now, we show thatF is a contraction on the Banach space PC1(J ′, X). In fact, for
u, ũ ∈ PC1(J ′, X), we have

(Fu)(t) − (F ũ)(t) = −S(t)
p∑

i=1

gi (u(ti ) − ũ(ti ))

+
∫ t

0
S(t − s) ( f (s, u(s), u(b1(s)), . . . , u(bm(s)))

− f (s, ũ(s), ũ(b1(s)), . . . , ũ(bm(s)))) ds

+
∑

0<τk<t

C(t − τk) (Ik(u(τk)) − Ik(ũ(τk)))

+
∑

0<τk<t

S(t − τk)
(
I k(u(τk), u

′(τk)) − I k(ũ(τk), ũ
′(τk))

)
, t ∈ [0, T ],
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hence,

‖(Fu)(t) − (F ũ)(t)‖ ≤ ‖S(t)‖
p∑

i=1

|gi | · ‖u(ti ) − ũ(ti )‖

+
∫ t

0
‖S(t − s)‖ · ‖ f (s, u(s), u(b1(s)), . . . , u(bm(s)))

− f (s, ũ(s), ũ(b1(s)), . . . , ũ(bm(s)))‖ ds
+

∑

0<τk<t

‖C(t − τk)‖ · ‖Ik(u(τk)) − Ik(ũ(τk))‖

+
∑

0<τk<t

‖S(t − τk)‖ · ‖I k(u(τk), u
′(τk)) − I k(ũ(τk), ũ

′(τk))‖

≤ M
p∑

i=1

|gi |‖u − ũ‖PC + ML1

∫ t

0

⎛

⎝‖u(s) − ũ(s)‖ +
m∑

j=1

‖u(b j (s)) − ũ(b j (s))‖
⎞

⎠ ds

+ M
∑

0<τk<t

{
L2‖u(τk) − ũ(τk)‖ + L3

(‖u(τk) − ũ(τk)‖ + ‖u′(τk) − ũ′(τk)‖
)}

≤ M

{[ p∑

i=1

|gi | + (m + 1)T L1 + κ(L2 + L3)

]
‖u − ũ‖PC + κL3‖u′ − ũ′‖PC

}
. (11)

Similarly, we obtain

(Fu)′(t) − (F ũ)′(t) = −C(t)
p∑

i=1

gi (u(ti ) − ũ(ti ))

+
∫ t

0
C(t − s) ( f (s, u(s), u(b1(s)), . . . , u(bm(s)))

− f (s, ũ(s), ũ(b1(s)), . . . , ũ(bm(s)))) ds

+
∑

0<τk<t

C ′(t − τk) (Ik(u(τk)) − Ik(ũ(τk)))

+
∑

0<τk<t

C(t − τk)
(
I k(u(τk), u

′(τk)) − I k(ũ(τk), ũ
′(τk))

)
, t ∈ [0, T ],

hence,

‖(Fu)′(t) − (F ũ)′(t)‖ (12)

≤
{
M ′κL2 + M

[ p∑

i=1

|gi | + (m + 1)T L1 + κL3

]}
‖u − ũ‖PC + MκL3‖u′ − ũ′‖PC .
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From (11) and (12), we derive the estimate

‖Fu − F ũ‖PC1 ≤
{
M

[
2

p∑

i=1

|gi | + 2(m + 1)T L1 + κ(L2 + 2L3)

]

+ M ′κL2

}
‖u − ũ‖PC + 2MκL3‖u′ − ũ′‖PC

≤ 2M̃

[
p∑

i=1

|gi | + (m + 1)T L1 + κ(L2 + L3)

]
‖u − ũ‖PC1 = q‖u − ũ‖PC1 .

Thus, the contraction mapping F has a unique fixed point u ∈ PC1(J ′, X), which
is the mild solution of problem (1)–(3). �
Remark 1. In [3], for a system similar to (1)–(3), we proved the existence of a mild
solution under considerably less restrictive conditions.

4.2 Existence and Uniqueness of a Classical Solution

Now let us consider system (1)–(3) satisfying assumptions A1, A2, and conditions
2, 3, 4 and 5 of Theorem3 replaced respectively by

2′. The function t �→ f (t, x, y1, . . . , ym) belongs to PC(J ′, X) and there exists a
positive constant L̃1 such that

‖ f (t, x, y1, . . . , ym) − f (t̃, x̃, ỹ1, . . . , ỹm)‖

≤ L̃1

⎛

⎝|t − t̃ | + ‖x − x̃‖ +
m∑

j=1

‖y j − ỹ j‖
⎞

⎠

for t, t̃ ∈ Jk , k = 0, κ , x, x̃, y j , ỹ j ∈ X , j = 1,m;
3′. Ik : X → D(A) and I k : X2 → E , and there exist positive constants L2 and

L3 such that

‖Ik(x) − Ik(x̃)‖ ≤ L2‖x − x̃‖ and ‖I k(x, y) − I k(x̃, ỹ)‖ ≤ L3(‖x − x̃‖ + ‖y − ỹ‖)

for k = 1, κ , x, x̃, y, ỹ ∈ X ;

4′. q̃ := 2M̃

[
p∑

i=1
|gi | + (m + 1)T L̃1 + κ(L2 + L3)

]
< 1;

5′. u0 ∈ D(A) and u1 ∈ E .

Next, we introduce the assumption
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A3. The functionsbi (i = 1,m) are one-to-one [0, T ] → [0, T ], and satisfybi (τk) =
τk (k = 1, κ) and

|bi (t) − bi (t̃ )| ≤ βi |t − t̃ | for t, t̃ ∈ Jk,

where βi (i = 1,m) are some positive constants.

Similarly to Definition4, we give the following definition.

Definition 6. A function u ∈ PC1(J ′, X) ∩ C2(J ′, X) is called a classical solution
of problem (1)–(3) if it satisfies the differential equation (1) on J ′, together with the
impulse conditions (2) and the nonlocal initial conditions (3).

Theorem 4. Suppose that system (1)–(3) satisfies assumptions A1–A3, as well as
conditions 2′–5′. Then, problem (1)–(3) has a unique classical solution.

Proof. Since all assumptions ofTheorem3are satisfied, problem (1)–(3) has a unique
mild solution u. We shall show that u is a classical solution of problem (1)–(3).

Let t, t̃ ∈ Jk for some k ∈ {0, 1, . . . , κ}. Then, we have

u(t) − u(t̃ ) =
∫ 1

0

∂

∂s
u(st + (1 − s)t̃ ) ds =

∫ 1

0
(t − t̃ )u′(st + (1 − s)t̃ ) ds,

which implies

‖u(t) − u(t̃ )‖ ≤ |t − t̃ |
∫ 1

0
‖u′(st + (1 − s)t̃ )‖ ds ≤ |t − t̃ | sup

s∈J
‖u′(s)‖.

Further on, by virtue of assumption A3, we obtain

‖u(bi (t)) − u(bi (t̃ ))‖ ≤ |bi (t) − bi (t̃ )| sup
s∈J

‖u′(s)‖ ≤ βi |t − t̃ | sup
s∈J

‖u′(s)‖

and, in view of condition 2′,

‖ f (t, u(t), u(b1(t)), . . . , u(bm(t)) − f (t̃, u(t̃ ), u(b1(t̃ ), . . . , u(bm(t̃ )))‖

≤ L̃1

{
|t − t̃ | + ‖u(t) − u(t̃ )‖ +

m∑

i=1

‖u(bi (t)) − u(bi (t̃ ))‖
}

≤ L̃1

{
1 + sup

s∈J
‖u′(s)‖

(
1 +

m∑

i=1

βi

)}
|t − t̃ |.

This inequality shows that the mapping [0, T ] � t �→ f (t, u(t), u(b1(t)), . . . ,
u(bm(t))) ∈ X is Lipschitz continuous on each interval Jk , k = 0, κ . Thus, in view
of Theorem2, the problem
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v′′(t) + Av(t) = f (t, u(t), u(b1(t)), . . . , u(bm(t))), t ∈ J ′,
Δv(τk) = Ik(u(τk)), Δv′(τk) = I k(u(τk), u

′(τk)), k = 1, κ,

v(0) = u0, v′(0) +
p∑

i=1

giu(ti ) = u1,

has a unique classical solution v(t) given by the formula

v(t) = C(t)u0 + S(t)

(
u1 −

p∑

i=1

giu(ti )

)

+
∫ t

0
S(t − s) f (s, u(s), u(b1(s)), . . . , u(bm(s))) ds

+
∑

0<τk<t

C(t − τk)Ik(u(τk)) +
∑

0<τk<t

S(t − τk)I k(u(τk), u
′(τk)), t ∈ J.

Since the unique mild solution u(t) of problem (1)–(3) satisfies Eq. (10), then u(t) ≡
v(t), that is, u(t) is the unique classical solution of problem (1)–(3). �

4.3 Continuous Dependence of a Solution on the Initial
Condition and Bounded Perturbations of the Impulse
Operators

First, we study the continuous dependence of a solution on the initial condition.

Theorem 5. Let all assumptions of Theorem3 be satisfied. Suppose that u and ũ are
mild solutions respectively of problem (1)–(3) and the impulsive system (1), (2) with
initial condition

ũ(0) = ũ0, ũ′(0) +
p∑

i=1

gi ũ(ti ) = ũ1, ˜(3)

where ũ0 ∈ D(A) and ũ1 ∈ E. Then,

‖u − ũ‖PC1 ≤ 2M̃

1 − q
(‖u0 − ũ0‖ + ‖u1 − ũ1‖) . (13)

Proof. From Eq. (10) applied to the mild solutions u and ũ, we have

u(t) − ũ(t) = C(t)(u0 − ũ0) + S(t)

[
(u1 − ũ1) −

p∑

i=1

gi (u(ti ) − ũ(ti ))

]
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+
∫ t

0
S(t − s) ( f (s, u(s), u(b1(s)), . . . , u(bm(s)))

− f (s, ũ(s), ũ(b1(s)), . . . , ũ(bm(s)))) ds

+
∑

0<τk<t

C(t − τk)(Ik(u(τk)) − Ik(ũ(τk)))

+
∑

0<τk<t

S(t − τk)(I k(u(τk), u
′(τk)) − I k(ũ(τk), ũ

′(τk))), t ∈ [0, T ], (14)

which implies

‖u(t) − ũ(t)‖ ≤ M (‖u0 − ũ0‖ + ‖u1 − ũ1‖) (15)

+ M

{[
p∑

i=1

|gi | + (m + 1)T L1 + κ(L2 + L3)

]
‖u − ũ‖PC + κL3‖u′ − ũ′‖PC

}
.

Similarly, we obtain

u′(t) − ũ′(t) = C ′(t)(u0 − ũ0) + C(t)

[
(u1 − ũ1) −

p∑

i=1

gi (u(ti ) − ũ(ti ))

]

+
∫ t

0
C(t − s) ( f (s, u(s), u(b1(s)), . . . , u(bm(s)))

− f (s, ũ(s), ũ(b1(s)), . . . , ũ(bm(s)))) ds

+
∑

0<τk<t

C ′(t − τk) (Ik(u(τk)) − Ik(ũ(τk)))

+
∑

0<τk<t

C(t − τk)
(
I k(u(τk), u

′(τk)) − I k(ũ(τk), ũ
′(τk))

)
, t ∈ [0, T ],

hence,

‖u′(t) − ũ′(t)‖ ≤ M ′‖u0 − ũ0‖ + M‖u1 − ũ1‖ (16)

+
{
M ′κL2 + M

[ p∑

i=1

|gi | + (m + 1)T L1 + κL3

]}
‖u − ũ‖PC + MκL3‖u′ − ũ′‖PC .

Adding together inequalities (15) and (16), we obtain

‖u(t) − ũ(t)‖ + ‖u′(t) − ũ′(t)‖ ≤ 2M̃ (‖u0 − ũ0‖ + ‖u1 − ũ1‖)

+ 2M̃

[
p∑

i=1

|gi | + (m + 1)T L1 + κ(L2 + L3)

]
‖u − ũ‖PC1

≡ 2M̃ (‖u0 − ũ0‖ + ‖u1 − ũ1‖) + q‖u − ũ‖PC1 .
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Taking the supremum of the left-hand side over J , we deduce

‖u − ũ‖PC1 ≤ 2M̃ (‖u0 − ũ0‖ + ‖u1 − ũ1‖) + q‖u − ũ‖PC1 ,

which implies estimate (13). �
This theorem shows that the unique mild solution u of problem (1)–(3) provided

by Theorem3 depends continuously on the initial data u0, u1. If u is the unique
classical solution of problem (1)–(3) provided byTheorem4, it is also amild solution.
So it satisfies estimate (13), consequently, it depends continuously on the initial data
u0, u1.

Finally, we study the continuous dependence of a solution on the initial condition
and bounded perturbations of the impulse operators.

Theorem 6. Let all assumptions of Theorem3 be satisfied. Suppose that u and ũ
are mild solutions respectively of problem (1)–(3) and system (1) provided with the
impulse conditions

Δũ(τk) = Ĩk(ũ(τk)), Δũ′(τk) = Ĩ k(ũ(τk), ũ
′(τk)), k = 1, κ, ˜(2)

and with initial condition (3̃), where ũ0 ∈ D(A) and ũ1 ∈ E. Here, Ĩk : X → E and

Ĩ k : X2 → X satisfy

‖ Ĩk(x) − Ĩk(x̃)‖ ≤ L2‖x − x̃‖ and ‖ Ĩ k(x, y) − Ĩ k(x̃, ỹ)‖ ≤ L3(‖x − x̃‖ + ‖y − ỹ‖)

for k = 1, κ , x, x̃, y, ỹ ∈ X; moreover,

‖Ik − Ĩk‖ := sup
x∈X

‖Ik (x) − Ĩk (x)‖ < ∞ and ‖I k − Ĩ k‖ := sup
(x,y)∈X2

‖I k (x, y) − Ĩ k (x, y)‖ < ∞.

Then,

‖u − ũ‖PC1 ≤ 2M̃

1 − q

[
‖u0 − ũ0‖ + ‖u1 − ũ1‖ +

κ∑

k=1

(
‖Ik − Ĩk‖ + ‖I k − Ĩ k‖

)]
.

(17)

Proof. It suffices just to slightly modify the proof of Theorem5. Instead of (14), we
have
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u(t) − ũ(t) = C(t)(u0 − ũ0) + S(t)

[
(u1 − ũ1) −

p∑

i=1

gi (u(ti ) − ũ(ti ))

]

+
∫ t

0
S(t − s) ( f (s, u(s), u(b1(s)), . . . , u(bm(s)))

− f (s, ũ(s), ũ(b1(s)), . . . , ũ(bm(s)))) ds

+
∑

0<τk<t

C(t − τk)(Ik(u(τk)) − Ĩk(ũ(τk))) (18)

+
∑

0<τk<t

S(t − τk)(I k(u(τk), u
′(τk)) − Ĩ k(ũ(τk), ũ

′(τk))), t ∈ [0, T ].

Next, we use the inequalities

‖Ik(u(τk)) − Ĩk(ũ(τk))‖ ≤ ‖Ik(u(τk)) − Ik(ũ(τk))‖ + ‖Ik(ũ(τk)) − Ĩk(ũ(τk))‖
≤ L2‖u − ũ‖PC + ‖Ik − Ĩk‖

and, similarly,

‖I k(u(τk), u
′(τk)) − Ĩ k(ũ(τk), ũ

′(τk))‖ ≤ L3
(‖u − ũ‖PC + ‖u′ − ũ′‖PC

) + ‖I k − Ĩ k‖.

In view of these inequalities, (18) implies

‖u(t) − ũ(t)‖ ≤ M

{
‖u0 − ũ0‖ + ‖u1 − ũ1‖ +

κ∑

k=1

(
‖Ik − Ĩk‖ + ‖I k − Ĩ k‖

)

+
[ p∑

i=1

|gi | + (m + 1)T L1 + κ(L2 + L3)

]
‖u − ũ‖PC + κL3‖u′ − ũ′‖PC

}
. (19)

Similarly, instead of (16), we obtain

‖u′(t) − ũ′(t)‖

≤ M ′
(

‖u0 − ũ0‖ +
κ∑

k=1

‖Ik − Ĩk‖
)

+ M

(
‖u1 − ũ1‖ +

κ∑

k=1

‖I k − Ĩ k‖
)

(20)

+
{
M ′κL2 + M

[ p∑

i=1

|gi | + (m + 1)T L1 + κL3

]}
‖u − ũ‖PC + MκL3‖u′ − ũ′‖PC .
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Adding together inequalities (19) and (20), and taking the supremum of the left-hand
side over J , we deduce

‖u − ũ‖PC1 ≤ q‖u − ũ‖PC1

+ 2M̃

[
‖u0 − ũ0‖ + ‖u1 − ũ1‖ +

κ∑

k=1

(
‖Ik − Ĩk‖ + ‖I k − Ĩ k‖

)]
,

which implies estimate (17). �
The last theorem was added following a referee’s suggestion.

5 Conclusion

In the present paper, we considered a nonlocal Cauchy problem for a semilinear
impulsive second-order functional-differential equation in a general Banach space.
Under the assumption that the linear part of the equation is given by the infinitesimal
generator of a strongly continuous cosine family of bounded linear operators, we
found sufficient conditions for the existence, uniqueness and continuous dependence
of mild and classical solutions on the initial data and bounded perturbations of the
impulse operators.
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Representations of Solutions of
Hyperbolic Volterra Integro-Differential
Equations with Singular Kernels

V. V. Vlasov and N. A. Rautian

Abstract The purpose of the present paper is to study the asymptotic behavior of
solutions of integro-differential equations on the basis of spectral analysis of their
symbols. To this end, we obtain representations of strong solutions of these equations
in the form of a sum of terms corresponding to the real and nonreal parts of the spec-
trum of the operator functions that are the symbols of these equations. The equations
in question are abstract forms of linear partial integro-differential equations arising in
the theory of viscoelasticity and in a number of other important applications. These
representations are new for the class of integro-differential equations considered in
the paper.

1 Introduction

Integro-differential equationswith unbounded operator coefficients in aHilbert space
are studied in this work. The equations under consideration are abstract hyperbolic
equations perturbed by terms containing Volterra integral operators. The kernels of
theseVolterra operators are sumsof fractional exponentialRabotnov functions. These
integro-differential equations can be realized as partial integro-differential equations
arising in the theory of viscoelasticity (see [1, 2]) and also as Gurtin-Pipkin integro-
differential equations (see [3–5]), which describe heat transfer with a finite rate in
media with memory. In addition, equations of this type arise in homogenization
problems for multiphase media (see [6, 7]).
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2 Definitions, Notation and Problem Statements

Let H be a separable Hilbert space, and let A be a self-adjoint positive operator
A∗ = A on H with compact inverse.

d2u

dt2
+ A2u −

t∫

0

K (t − s)A2u (s) ds = f (t) , t ∈ R+, (1)

u(+0) = ϕ0, (2)

u(1)(+0) = ϕ1. (3)

The scalar function K (t) is representable as

K (t) =
∞∑
j=1

c j R j (t) , (4)

where c j > 0, j ∈ N, R j (t) are fractional exponential Rabotnov functions (see
[1, Ch. I]) of the form

R j (t) = tα−1
∞∑
n=0

(−β j )
ntnα

Γ [(n + 1)α] , 0 < α ≤ 1, (5)

Γ (·) is the Euler gamma function. We assume that the sequence {β j } satisfies the
following conditions: 0 < β j < β j+1, j ∈ N, β j → +∞, j → +∞. In addition, we
assume that ∞∑

j=1

c j
β j

< 1. (6)

The Laplace transform of R j (t) has the form

R̂ j (λ) = 1

λα + β j
,

(see [2], Ch. I). In this case, λα (0 < α ≤ 1) is understood as the main branch of
the multivalued function f (λ) = λα , λ ∈ C with a cut along the negative real half-
line: λα = |λ|αeiα arg λ, −π < arg λ < π . Applying the inverse Laplace transform to
the main branch of the multivalued function R̂ j (λ) we obtain (see [2], Ch. I) the
following integral representation of function R j (t):
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R j (t) = 1

2π i
lim

R→+∞

γ+i R∫

γ−i R

eλt dλ

λα + β j
= sin πα

π

+∞∫

0

e−tτdτ

τα + 2β j cosπα + β2
j τ

−α
.

Considering the Laplace transform of (1) with homogeneous initial conditions,
we arrive at the equation L(λ)û(λ) = f̂ (λ), where the operator function

L (λ) = λ2 I + A2 − K̂ (λ)A2, (7)

is the symbol of this equation, while û(λ) and f̂ (λ) are the Laplace transforms of
the vector functions u(t) and f (t), respectively; here, K̂ (λ) is the Laplace transform
of the kernel K (t), which is representable as

K̂ (λ) =
∞∑
j=1

c j
λα + β j

, 0 < α ≤ 1. (8)

In this work, we study the problem of spectrum localization for the operator
function L(λ) being the symbol of this Eq. (1) and establish the results about repre-
sentations of the strong solutions of this equation.

In our previous works [8, 9, 11, 13], we studied problem the initial value problem
(1)–(3) in detail in the case when the kernel K (t) is representable as a series of
decreasing exponentials with positive coefficients, which is equivalent to the case
α = 1 in representation (4). Our approach was based on the spectral analysis of
operator function (7)which alsomakes it possible to derive a result concerning correct
solvability and the representation of the solution of the problem under consideration
as a series in exponentials corresponding to spectral points of L(λ). We also note
that the results of [8, 9, 11] are summarized in Chapter3 in [10].

3 Formulation of Results

We convert the domain Dom(Aβ) of the operator Aβ , β > 0, into a Hilbert space
Hβ by introducing the norm ‖ · ‖β = ‖Aβ · ‖ on Dom(Aβ), which is equivalent to
the norm of the graph Aβ .

Let Wn
2,γ (R+, An) denote the Sobolev space of vector-functions on the semiaxis

R+ = (0,∞) with values in H equipped with the norm

‖u‖Wn
2,γ (R+,An) ≡

(∫ ∞

0
e−2γ t

(∥∥u(n)(t)
∥∥2

H + ∥∥Anu(t)
∥∥2
H

)
dt

)1/2

, γ ≥ 0.
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See [15], Ch.1 for more details on the spaces Wn
2,γ

(
R+, A2

)
. For n = 0, we put

W 0
2,γ

(
R+, A0

) = L2,γ (R+, H), where L2,γ (R+, H) denotes the space of measur-
able functions with values in H equipped with the norm

‖ f ‖L2,γ (R+,H) =
⎛
⎝

+∞∫

0

e−2γ t‖ f (t)‖2Hdt
⎞
⎠

1/2

.

Definition 1. A vector-function u is said to be a strong solution of problem (1)–(3)
if it belongs toW 2

2,γ (R+, A2) for some γ � 0, satisfies (1) almost everywhere on the
half-line R+, and obeys initial condition (2), (3).

3.1 Spectral Analysis

Let a j denote the eigenvalues of the operator A (Ae j = a j e j ) numbered in increas-
ing order: 0 < a1 < a2 < ... < an < ..., an → +∞, (n → +∞). The correspond-
ing eigenvectors

{
e j

}∞
j=1 form an orthonormal basis in the space H . We consider the

restriction of the operator function L(λ) to the one-dimensional space spanned by
en:

ln (λ) = (L (λ) en, en) = λ2 + a2n

(
1 −

∞∑
k=1

ck
λα + βk

)
. (9)

We study the structure of the spectrum of L(λ) in the case when condition (6) is
hold.

Theorem 1. Assume that condition (6) holds. Then the spectrum of the operator
function L(λ) is in the open left half-plane.

Remark 1. When the condition
∞∑
j=1

c j
β j

> 1 holds, there are infinitelymany real eigen-

values of L(λ) in the right half-plane. Thus, (6) is a necessary condition for the
stability of problem (1)–(3).

If the condition
∞∑
j=1

c j
γ j

= 1 holds, then point λ = 0 belongs to the spectra of

operator function L(λ) and it is the eigenvalue of infinite multiplicity.

Theorem 2. Assume that condition (6) holds and c j = 0 for all j above some N ∈
N. Then the spectra of operator function L(λ) is representable as

σ(L) :=
{
λ±
n ∈ C\R, λ−

n = λ+
n |n ∈ N

}
, (10)

where λ±
n are two nonreal complex conjugate zeros of L(λ) that for each sufficiently

large n ∈ N have the asymptotics
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λ±
n = − sin

(πα

2

)
a1−α
n

Q

2
± ian

(
1 − cos

(πα

2

)
a−α
n

Q

2

)
+ o

(
a1−α
n

)
, n → +∞, (11)

where Q =
N∑
j=1

c j .

It is appropriate to make the following important remark.

Remark 2. For α = 1 asymptotic formula (11) becomes the previously known
asymptotic formula (2.15) from [8] (see also [10]).

Full proofs on the Theorem2 see in the [12]. Proofs of the close results are
contained in [20, 21].

3.2 Representations of the Solutions

We formulate theorems on a representation of the strong solution of problem (1)–(3).
Let us introduce the following notations:

Kn(τ ) =
a2n

(
K̂− (−τ) − K̂+ (−τ)

)
(
τ 2 + a2n

(
1 − K̂+ (−τ)

)) (
τ 2 + a2n

(
1 − K̂− (−τ)

)) ,

K̂± (−τ) =
N∑

k=1

ck
ταe±iπα + βk

.

Theorem 3. Assume that the assumptions of Theorem2hold,α ∈ (
0, 1

2

)
and f (t) ≡

0. Then the strong solution of problem (1)–(3) is representable in the form

u(t) = uI (t) + uR(t), t > 0, (12)

where the vector-function uI (t) is representable as

uI (t) =
∞∑
n=1

(
ωn(t, λ

+
n ) + ωn(t, λ

−
n )

)
en, ωn(t, λ) = (ϕ1n + λϕ0n) eλt

l(1)n (λ)
, (13)

while the vector-function uR (t) is representable as

uR(t) =
∞∑
n=1

uRn (t)en, uRn (t) =
∫ ∞

0
e−tτKn(τ ) (−τϕ0n + ϕ1n)dτ, (14)

moreover, series (13) and (14) converge in the norm of the space H and λ±
n are

nonreal eigenvalues of operator function L(λ) and ϕkn = (ϕk, en), n ∈ N, k = 0, 1.
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Theorems4 and 5 stated below give estimates of the vector functions uI (t) and
uR (t). Note that the component uI (t) corresponds to nonreal eigenvalues λ±

n and
is responsible for the wave nature of the behavior of the solutions. The component
uR (t) is responsible for the behavior of the operator function L−1 (λ) at the cut along
the negative half-line. Thus, representation (12) gives a dichotomy of the solution.

Let Pn denote the orthoprojector onto the subspace being the linear span of the
vectors

{
e j

}n
j=1, and let Qn denote the orthoprojector onto the subspace orthogonal

to the subspace PnH that is Qn = I − Pn thus, H is representable as the orthogonal
sum

H = PnH ⊕ QnH.

We give results on estimates for the projections of uI (t) onto QnH and PnH .

Theorem 4. Assume that the assumptions of Theorem3 hold and the initial data are
such that ϕ0 ∈ H3 and ϕ1 ∈ H2. Then, for any ε > 0 there is a natural number n0
such that the vector function uI (t) defined by (13) satisfies the estimates

∥∥Qn0 A
muI (t)

∥∥ � θ1

∥∥∥Qn0e
−k A1−α t Amϕ0

∥∥∥ + θ2

∥∥∥Qn0e
−k A1−α t Am−1ϕ1

∥∥∥ , t > 0,

(15)

0 < k = 1

2
sin

(πα

2

) N∑
j=1

c j − ε, (16)

∥∥Pn0 AmuI (t)
∥∥ � θ3e

−δt
{∥∥Pn0 Amϕ0

∥∥ + ∥∥Pn0 Am−1ϕ1

∥∥}
, t > 0, (17)

δ = dist

({
λ±
j

}n0

j=1
, {iy|y ∈ R}

)
, (18)

where m = 0, 1, 2, the positive constants δ, θ1, θ2, θ3 do not depend on the vectors
ϕ0 and ϕ1.

Note that δ is the distance from the subset of nonreal eigenvalues
{
λ±
j

}n0

j=1
to the

imaginary axis. Due to Theorem1 the spectra of the operator function L(λ) is in the
left half-plane.

Theorem 5. Assume that the assumptions of Theorem4 hold. Then, for any ε > 0
the vector-function w (t) defined by (14) satisfies the estimate

∥∥AmuR (t)
∥∥2 � e−2εt

{
k1

∥∥Am−αϕ0

∥∥2 + k2
∥∥Am−1−αϕ1

∥∥2
}

+ k3
{
ε2(2+α)

∥∥Am−2ϕ0

∥∥2 + ε2(1+α)
∥∥Am−2ϕ1

∥∥2
}

, t > 0, (19)

where m = 0, 1, 2, and the positive constants k1, k2, k3 do not depend on the vectors
ϕ0 and ϕ1.
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4 Proofs of the Theorems3–5

4.1 Proof of the Theorem3

Accordingly conversion formula of the Laplace transform, the strong solution u (t)
of the problem (1)–(3) is representable in the form

u (t) = v. p.
1

2π i

γ+i∞∫

γ−i∞
L−1 (λ) (λϕ0 + ϕ1) e

λt dλ

= lim
R→+∞

1

2π i

γ+i R∫

γ−i R

L−1 (λ) (λϕ0 + ϕ1) e
λt dλ.

Let a j denote the eigenvalues of the operator A (Ae j = a j e j ) numbered in ascend-
ing order: 0 < a1 < a2 < ... < an < ..., an → +∞, (n → +∞). The correspond-
ing eigenvectors

{
e j

}∞
j=1 form an orthonormal basis in the space H . We consider the

projection of the vector function u (t) to the one-dimensional space spanned by en:
en : un (t) = (u (t) , en). Then un (t) is representable as

un (t) = v. p.
1

2π i

γ+i∞∫

γ−i∞
l−1
n (λ) (λϕ0n + ϕ1n) e

λt dλ

= lim
R→+∞

1

2π i

γ+i R∫

γ−i R

l−1
n (λ) (λϕ0n + ϕ1n) e

λt dλ,

where ϕ0n = (ϕ0, en), ϕ1n = (ϕ1, en), ln (λ) = λ2 + a2n
(
1 − K̂ (λ)

)
. By Theorem2

the function ûn (λ) has simple poles in the left half-plane at the points λ±
n with a

cut along the negative real half-line. On the complex plane we consider the counter-
clockwise contour Γ where

Γ = Γ0 ∪ Γ1 ∪ C+
R ∪ R+ ∪ R− ∪ C−

R ∪ Γ2,

Γ0 = {λ : Re λ = γ,−R � Im λ � R} , Γ1 = {λ : 0 � Re λ � γ, Im λ = R},

C+
R = {λ : λ = Reiϕ,

π

2
� ϕ � π}, R+ = {λ : Im λ = 0,−R � Re λ � 0},

R− = {λ : Im λ = 0,−R � Re λ � 0}, C−
R = {λ : λ = Reiϕ,−π � ϕ � −3

2
π},
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Γ2 = {λ : 0 � Re λ � γ, Im λ = −R}.

Remind (see proof of Lemma 3.1 from [18]) that on the complex plane with a cut
along the negative real half-line the following estimate holds:

∣∣∣K̂ (λ)

∣∣∣ � const

|λ|α . (20)

For sufficiently large modules λ on the complex plane with a cut along the negative
real half-line, we have

∣∣∣∣∣∣
λ

λ2 + a2n
(
1 − K̂ (λ)

)
∣∣∣∣∣∣ � |λ|

|λ|2
∣∣∣∣∣1 + a2n

(
1

λ2
− K̂ (λ)

λ2

)∣∣∣∣∣
� 1

|λ|
∣∣∣∣∣1 −

∣∣∣∣∣
a2n
λ2

+ a2n K̂ (λ)

λ2

∣∣∣∣∣
∣∣∣∣∣
. (21)

We note that for sufficiently large modules λ = Reiϕ and for given an the following
estimate is valid

∣∣∣∣ a2n
R2e2iϕ

+ a2n
R(2+α)eiϕ(2+α)

∣∣∣∣ � a2n

R2

(
1 + 1

Rα

) � 2a2n
R2

. (22)

Hence for sufficiently large radius R0 > 2an for all R > R0 we obtain the inequality

2a2n
R2

<
1

2
. (23)

It follows from the last inequality and estimates (20)–(23) that

∣∣l−1
n (λ) (λϕ0n + ϕ1n)

∣∣ � 2

R
|ϕ0n| + 2

R2
|ϕ1n| , (24)

for all R > 2an , λ = Reiϕ . It follows from the estimate (24) the Jordan lemma that
for any t > 0

∫

C±
R

l−1
n (λ) (λϕ0n + ϕ1n) e

λt dλ → 0, |λ| = R → +∞.

Now let us show that the integrals from function ûn (λ) over the segments Γ1 and
Γ2 tend to zero as R → +∞. By using the estimate (24) we obtain the chain of
inequalities
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∣∣∣∣∣∣
±i R+γ∫

±i R

l−1
n (λ) (λϕ0n + ϕ1n) e

λt dλ

∣∣∣∣∣∣ �
γ∫

0

∣∣l−1
n (x ± i R) ((x ± i R) ϕ0n + ϕ1n)

∣∣ extdx

�
(
2

R
|ϕ0n| + 2

R2
|ϕ1n|

)
eγ t − 1

t
. (25)

It is easy to see that the right part of (25) tend to zero as R → +∞.
Let us analyze the behavior ûn (λ) on the upper and lower coasts of the cut respec-

tively. At first consider the upper coast of the cut from −R until −ε. On the upper
coast of the cut we obtain the expression, having the following form for λ = x :

_−ε_∫

−R

ext (xϕ0n + ϕ1n)

x2 + a2n
(
1 − K̂+ (x)

)dx =
R∫

ε

e−τ t (−τϕ0n + ϕ1n)

τ 2 + a2n
(
1 − K̂+ (−τ)

)dτ, (26)

where function K̂+ (−τ) have the form

K̂+ (−τ) =
N∑

k=1

ck
ταeiπα + βk

.

Now consider the possibility of limit passage for ε → +0 R → +∞. Since to the
condition of theorem

N∑
k=1

ck
βk

< 1,

then under the integral sign expression in formula (26) do not have singularities in
the neighborhood of the origin< that is integral will be not singular for τ → +0 and
is possible (26) to put ε = 0. On account of exponential decreasing of integrand for
τ → +∞ in integral is possible to pass to the limit for R → +∞ . Hence, on the
upper coast of the cut after limit procedure we obtain the expression

+∞∫

0

e−tτ (−τϕ0n + ϕ1n)

τ 2 + a2n
(
1 − K̂+ (−τ)

)dτ. (27)

Absolutely analogously we obtain the expression on the lower coast of the cut

−
+∞∫

0

e−tτ (−τϕ0n + ϕ1n)

τ 2 + a2n
(
1 − K̂− (−τ)

)dτ, (28)

where function K̂− (−τ) has the form
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K̂− (−τ) =
N∑

k=1

ck
ταe−iπα + βk

.

Let us realize the limit passage in integrating function ûn (λ) Γ for R → +∞.
Then integral for contour Γ0 in limit, for R → +∞, will give function un (t), due to
inversion formula for Laplace transform. The integrals of function ûn (λ) for contours
Γ1, Γ2,C

+
R ,C

−
R , will tends to zero as we proved. In turn the integrals along the cuts at

limit for, R → +∞, will converse to the following integrals (27), (28). Hence, after
passing to limit for R → +∞, we obtain, that function un (t)will have the following
representation:

un (t) = u+
n (t) + u−

n (t) + uRn (t) , (29)

where

u+
n (t) = res

λ=λ+
n

(
ûn (λ) eλt

) =
(
λ+
n ϕ0n + ϕ1n

)
eλ+

n t

2λ+
n − a2n K̂

(1)
(
λ+
n
) ,

u−
n (t) = res

λ=λ−
n

(
ûn (λ) eλt

) =
(
λ−
n ϕ0n + ϕ1n

)
eλ−

n t

2λ−
n − a2n K̂

(1)
(
λ−
n
) ,

uRn (t) =
+∞∫

0

e−tτ (−τϕ0n + ϕ1n)

τ 2 + a2n
(
1 − K̂+ (−τ)

)dτ −
+∞∫

0

etτ (−τϕ0n + ϕ1n)

τ 2 + a2n
(
1 − K̂− (−τ)

)dτ.

(30)
Note, that multiplier 2π i before residues are absent, because in formula of the inverse

formula of Laplace transform occur the multiplier
1

2π i
.

So, we obtain on formal level, that solution of initial problem admits the repre-
sentation in the form of sum of the series

u (t) =
∞∑
n=1

(
u+
n (t) + u−

n (t) + uRn (t)
)
en. (31)

The proof of convergence the series (13), (14) and series (30) are obtained in
process of proving the Theorem4 under obtaining the estimates of the sums of these
series.

4.2 Proof of the Theorem4

Let us analyze the convergence of the series

∞∑
n=1

(
u+
n (t) + u−

n (t)
)
en. (32)
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Remind that eigenvalues are complex-conjugate λ̄+
n = λ−

n because, the coefficients of

expansion of Rabotnov function are real-valued. Due to the same reason K̂ (1)
(
λ+
n

) =
K̂ (1)

(
λ−
n

)
. Hence, the representations are valid

u+
n (t) =

(
λ+
n ϕ0n + ϕ1n

)
eλ+

n t
(
2λ−

n − K̂ (1)
(
λ−
n

))
∣∣∣2λ+

n − a2n K̂
(1)

(
λ+
n
)∣∣∣2

,

u−
n (t) =

(
λ−
n ϕ0n + ϕ1n

)
eλ−

n t
(
2λ+

n − K̂ (1)
(
λ+
n

))
∣∣∣2λ+

n − a2n K̂
(1)

(
λ+
n
)∣∣∣2

. (33)

and consequently,

u+
n (t) + u−

n (t)

=
(
4
∣∣λ+

n

∣∣2 Re(exp(λ+
n t)) + 2Re

(
exp(λ+

n t)λ
+
n K̂

(1)
(
λ+
n

)))
ϕ0n∣∣∣2λ+

n − a2n K̂
(1)

(
λ+
n
)∣∣∣2

+
(
4Re

(
λ−
n e

λ+
n t

) − 2Re
(
eλ+

n t K̂ (1)
(
λ−
n

)))
ϕ1n∣∣∣2λ+

n − a2n K̂
(1)

(
λ+
n
)∣∣∣2

. (34)

Remark, that at the proof of lemma 3.1 in the article [12], the following estimate was
obtained ∣∣∣K̂ (1) (λ)

∣∣∣ � const

|λ|α+1 , (35)

in the domain Ωπ−δ =
{
λ : |arg λ| < π − δ, 0 < δ <

π

2

}
. Let us use this estimate

in order to estimate denominator in the expression (34). We assume for the further
description the following proposition.

Proposition 1. There are exists such positive constants d1 d2, that for all n, begining
from certain n0 ∈ N, the following inequalities are satisfied

d1an �
∣∣λ±

n

∣∣ � d2an. (36)

This proposition is direct corollary of the asymptotic formula (11). Really, the left
part of the inequality (36) arise from evident inequality

∣∣Im λ±
n

∣∣ �
∣∣λ±

n

∣∣, and also to
the fact,that for n > n0
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∣∣Im λ±
n

∣∣ � 1

2
an

(
1 − cos

απ

2
a−α
n

Q

2

)
.

Right part of the inequality (36) arise from the following chain of the inequalities,
valid for n > n0:

∣∣λ±
n

∣∣ �
∣∣Re λ±

n

∣∣ + ∣∣Im λ±
n

∣∣ � 2
∣∣Im λ±

n

∣∣ � 2an .

Hence, from the inequalities (35) and (36) we obtain, that for n > n0

∣∣∣K̂ (1)
(
λ±
n

)∣∣∣ � C1

a1+α
n

,

with certain positive constant C1. From this estimate and inequality (36) we derive,
that for n > n0

∣∣∣2λ±
n − a2n K̂

(1)
(
λ±
n

)∣∣∣ �
∣∣2λ±

n

∣∣ −
∣∣∣a2n K̂ (1)

(
λ±
n

)∣∣∣ � k1an − k2a
1−α
n � C2an, (37)

with certain positive constants k1, k2, C2.
Let us obtain the upper estimate of the numerator in the expression (34), using

the inequality (36) and also asymptotic formula (11). For every ε > 0 exists such
number n0 ∈ N, that for n > n0 numerators of the first and the second terms admit
the following estimates respectively

∣∣∣4Re eλ+
n t

∣∣λ+
n

∣∣2ϕ0n − 2Re
(
eλ+

n tλ+
n K̂

(1)
(
λ−
n

))
ϕ0n

∣∣∣
� C3

(
e−ka1−α

n t
(
a2n + C4a

−α
n

)) |ϕ0n| (38)

∣∣∣2Re
(
eλ+

n t
(
2λ−

n − K̂ (1)
(
λ−
n

)))
ϕ1n

∣∣∣ � C5e
−ka1−α

n t
(
an − C6a

−1−α
n

) |ϕ1n| , (39)

with positive constants C3, C4, C5, C6, where

k = 1

2
sin

(πα

2

) N∑
j=1

c j − ε.

Uniting the inequalities (37)–(39), and throwing decreasing terms, on the base (34),
we obtain the following estimate

∣∣u+
n (t) + u−

n (t)
∣∣ � C7e

−ka1−α
n t |ϕ0n| + C8e

−ka1−α
n t a−1

n |ϕ1n| , (40)

with certain positive constants C7, C8, independent from n > n0. Hence, on the base
(40) for vector-function
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uIn (t) =
∞∑

n=n0+1

(
u+
n (t) + u−

n (t)
)
en

we receive the following estimate

‖uIn (t)‖2 � θ1

∞∑
n=n0+1

e−2ka1−α
n t |ϕ0n|2 + θ2

∞∑
n=n0+1

e−2ka1−α
n t a−2

n |ϕ1n|2 . (41)

with positive constants θ1, θ2, independent from n, and also from ϕ0n , ϕ1n . The
estimate (41) may be rewritten in the form

∥∥Qn0uI (t)
∥∥2 � θ1

∥∥∥Qn0e
−k A1−α tϕ0

∥∥∥2 + θ2

∥∥∥Qn0e
−k A1−α t A−1ϕ1

∥∥∥2
, (42)

where Qn0 - orthoprojector on the space, orthogonal to finite dimentional subspace,
spanned on the vectors

{
e j

}n0
j=1, and constants θ1, θ2 which do not depend of ϕ1, ϕ2.

In turn, from the estimate (42) follow the inequality

∥∥Qn0uI (t)
∥∥ � β1

∥∥∥Qn0e
−k A1−α tϕ0

∥∥∥ + β2

∥∥∥Qn0e
−k A1−α t A−1ϕ1

∥∥∥ (43)

with constants β1, β2, independent from ϕ0, ϕ1.
The estimate (17) of component of the solution Pn0uI (t) immediately follows

from the conclusion of Theorem1 about the fact, that spectra of operator-function
L(λ) is lying in open left half-plane. Hence, there is exists such δ > 0, that finite
number of eigenvalues {λ±

j }n0j=1 is separate from imaginary axis by vertical strip
{λ : −δ < Re < 0}. Asymptotic of nonreal eigenvalues λ±

j , given by formula (11),
is obtained for sufficiently large an . For the description of localization the first 2n0
nonreal eigenvalues {λ±

j }n0j=1 we need methods different from asymptotic methods.
Hence we obtained the estimates (15), (17) for m = 0. In order to receive the cases
m = 1, m = 2 we substitute vector-functions Au(t) and Au(t) instead of u(t) and
after that repeat all the steps of the proof. Theorem4 is proved.

4.3 Proof of the Theorem5

Let us pass to the estimate of vector-function uR (t) Consider coordinate functions
uRn (t) = (uR(t), en):

uRn (t) =
+∞∫

0

e−tτ (−τϕ0 + ϕ1) a2n
(
K̂− (−τ) − K̂+ (−τ)

)
(
τ 2 + a2n

(
1 − K̂+ (−τ)

)) (
τ 2 + a2n

(
1 − K̂− (−τ)

))dτ . (44)

Our purpose is the estimate of function uRn (t).
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Note, that

K̂+ (−τ) − K̂− (−τ) = (− sin πα) τα

n∑
k=1

ck
(τα cosπα + βk)

2 + τ 2αsin2πα
. (45)

As far as α ∈
(
0,

1

2

)
, then cos (απ) � 0. Using this fact, let us estimate from below

the denominator in the expression (44). From the inequalities

∣∣∣τ 2 + a2n
(
1 − K̂± (−τ)

)∣∣∣ � τ 2 + a2n
(
1 − Re K̂± (−τ)

)
,

1 − Re K̂± (−τ) = 1 −
n∑

k=1

ck (τα cos (απ) + βk)

τ 2α + 2βkτα cos (απ) + β2
k

� 1 −
n∑

k=1

ck (τα cos (απ) + βk)

τ 2αcos2 (απ) + 2βkτα cos (απ) + β2
k

= 1 −
n∑

k=1

ck
τα cos (απ) + βk

� 1 −
n∑

k=1

ck
βk

= δ2 > 0 (46)

with constant δ > 0, we obtain

∣∣∣τ 2 + a2n
(
1 − K̂± (−τ)

)∣∣∣ � τ 2 + δ2a2n . (47)

Hence on the base (46), (47) we obtain the inequality

|uRn (t)| �
∞∫

0

e−τ t
(τ |ϕ0n| + |ϕ1n|) a2n

∣∣∣K̂+ (−τ) − K̂− (−τ)

∣∣∣
(
τ 2 + δ2a2n

)2 dτ = I1n + I2n.

(48)

Let us devide the integral in the right part (48) in two integrals: from ε > 0 to +∞
and from 0 until ε. Denote first integral I1n , second integral denote by I2n . We pass
to the estimate of integral I1n . Note that from representation (45) follow, that for
τ ∈ (ε,+∞) the estimate is correct

∣∣∣K̂+ (−τ) − K̂− (−τ)

∣∣∣ � d1
τα

(49)

with positive constant d1. In addition, for all τ ∈ (ε,+∞) the estimate is valid
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a2n
τ 2 + δ2a2n

� d2, (50)

where d2 - positive constant independent from n.
On the base of (47)–(50), we receive

I1n �
+∞∫

ε

e−τ t
(τ |ϕ0n| + |ϕ1n|) a2n

∣∣∣K̂+ (−τ) − K̂− (−τ)

∣∣∣
(
τ 2 + δ2a2n

)2 dτ

� e−εt q1

⎧⎨
⎩

⎛
⎝

+∞∫

ε

τ 1−α(
τ 2 + δ2a2n

)dτ

⎞
⎠ |ϕ0n| +

⎛
⎝

+∞∫

ε

dτ

τα
(
τ 2 + δ2a2n

)
⎞
⎠ |ϕ1n|

⎫⎬
⎭ , (51)

with positive constant q1, independent from n.

Realizing change of the variables η = τ

an
, we obtain

+∞∫

ε

τ 1−α

τ 2 + δ2a2n
dτ = 1

aα
n

+∞∫

ε/an

η1−α

δ2 + η2
dη � 1

aα
n

+∞∫

0

η1−α

δ2 + η2
dη,

+∞∫

ε

dτ

τα
(
τ 2 + δ2a2n

) = 1

a1+α
n

+∞∫

ε/an

dη

ηα
(
δ2 + η2

) � 1

a1+α
n

+∞∫

0

dη

ηα
(
δ2 + η2

) . (52)

Due to the fact, that α ∈
(
0,

1

2

)
integrals in the right part (52) are convergent. It

follows from the estimates (51), (52) that

I1n � e−εt
{
d1

∣∣a−α
n ϕ0n

∣∣ + d2
∣∣a−(1+α)

n ϕ1n

∣∣} (53)

with positive constants d1, d2, independent of n.
Integral I2n may be rewritten in the form

I2n =
∫ ε

0
e−τ t

(
τ

∣∣a−2
n ϕ0n

∣∣ + ∣∣a−2
n ϕ1n

∣∣) ∣∣∣K̂+ (−τ) − K̂− (−τ)

∣∣∣
(

τ 2

a2n
+ 1

)2 dτ. (54)

Note, that for small τ ∈ (0, ε), according to (45)

∣∣∣K̂+ (−τ) − K̂− (−τ)

∣∣∣ � p1τ
α (55)

c with positive constant p1.
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In follows from here and (54), (55) that I2n admits the estimate

I2n � p2

∫ ε

0
e−τ t

(
τ 1+α

∣∣a−2
n ϕ0n

∣∣ + τα
∣∣a−2

n ϕ1n

∣∣) dτ = p2 J2n. (56)

with positive constant p2, independent of n.
Let us change the variables θ = τ t , dθ = tdτ . Then integral in right part (56)

will has the form:

J2n = 1

t2+α

∫ εt

0
θ1+αe−θ

∣∣a−2
n ϕ0n

∣∣dθ + 1

t1+α

∫ εt

0
θαe−θ

∣∣a−2
n ϕ1n

∣∣ dθ. (57)

Applying the second mean theorem to integrals in right part (57), we obtain

J2n = (εt)1+α

t2+α

∫ εt

ξ1

e−θ
∣∣a−2

n ϕ0n

∣∣ dθ

+ (εt)α

t1+α

∫ εt

ξ2

e−θ
∣∣a−2

n ϕ1n

∣∣dθ, ξ1, ξ2 ∈ (0, εt) (58)

In turn integral in right part of the relation (58) admits the following estimate

J2n �
(εt)2+α

∣∣a−2
n ϕ0n

∣∣
t2+α

+ (εt)1+α
∣∣a−2

n ϕ1n

∣∣
t1+α

= ε2+α
∣∣a−2

n ϕ0n

∣∣ + ε1+α
∣∣a−2

n ϕ1n

∣∣ . (59)

Hence from relations (56) and (59) we receive the estimate

I2n � const
(
ε2+α

∣∣a−2
n ϕ0n

∣∣ + ε1+α
∣∣a−2

n ϕ1n

∣∣) . (60)

Uniting the estimates (48), (53) and(60), we obtain as the final result

|uRn(t)| � e−εt
{
d1

∣∣a−α
n ϕ0n

∣∣ + d2
∣∣a−1−α

n ϕ1n

∣∣}
+ d3

{
ε2+α

∣∣a−2
n ϕ0n

∣∣ + ε1+α
∣∣a−2

n ϕ1n

∣∣} . (61)

From the estimate (61) follows the estimate of vector function uR (t):

‖uR (t)‖2 � e2εt
{
k1

∞∑
n=1

∣∣a−α
n ϕ0n

∣∣2 + k2

∞∑
n=1

∣∣a−1−α
n ϕ1n

∣∣2
}

+ k3

{
ε2(2+α)

∞∑
n=1

∣∣a−2
n ϕ0n

∣∣2 + ε2(1+α)

∞∑
n=1

∣∣a−2
n ϕ1n

∣∣2
}

. (62)
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In turn estimate (62) may be rewritten in the form

‖uR (t)‖2 � e−2εt
{
k1

∥∥A−αϕ0

∥∥2 + k2
∥∥A−1−αϕ1

∥∥2
}

+
+ k3

{
ε2(2+α)

∥∥A−2ϕ0

∥∥2 + ε2(1+α)
∥∥A−2ϕ1

∥∥2
}

.

Hence we obtained the estimate (19) for m = 0. In order to receive the cases m = 1,
m = 2 we substitute vector-functions Au(t) and Au(t) instead function u(t) and
after that repeat all steps of the proof of the case m = 0. Theorem5 is proved.
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Chiral Properties of Discrete Joyce
and Hestenes Equations

Volodymyr Sushch

Abstract This paper concerns the question of how chirality is realized for discrete
counterparts of the Dirac-Kähler equation in the Hestenes and Joyce forms. It is
shown that left and right chiral states for these discrete equations can be described
with the aid of some projectors on a space of discrete forms. The proposed discrete
model admits a chiral symmetry. We construct discrete analogues of spin operators,
describe spin eigenstates for a discrete Joyce equation, and also discuss chirality
(A preprint version of the article is available as ArXiv preprint: http://arxiv.org/pdf/
1912.01296).

Keywords Dirac-Kähler equation · Hestenes equation · Joyce equation ·
Chirality · Clifford product · Spin eigenstates

1 Introduction

We present some recent results in the discretisation of the Dirac equation in the
geometric algebra of spacetime by using theDirac-Kähler approach. In this approach,
a discretisation scheme is geometric in nature and rests upon the use of the differential
forms calculus. The general topic of this paper is the description of some discrete
constructions in which the chiral properties of the Dirac theory are captured. In the
context of the geometric discretisation, it is natural to introduce a Clifford product
acting on the space of discrete inhomogeneous forms as was discussed in [20]. This
work is a direct continuation of that described in my previous papers [15–20]. In
[16], on the issue of chirality, special attention to a discrete Hodge star operator has
been paid. A central role of the Hodge star to deal with chiral symmetry in the lattice
formulation was already pointed out by Rabin [14]. There are several approaches to
study of discrete versions of the Dirac-Kähler equation based on the use of a discrete
Clifford calculus framework on lattices. For a review of discrete Clifford analysis,
we refer the reader to [5–7, 13, 21].
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Wefirst briefly review somenotations and basic facts on theDirac-Kähler equation
[12, 14] and the Dirac equation in the spacetime algebra [8, 9]. Let M = R

1,3 be
Minkowski space. Denote by Λr (M) the vector space of smooth complex-valued
differential r -forms, r = 0, 1, 2, 3, 4. Let d : Λr (M) → Λr+1(M) be the exterior
differential and let δ : Λr (M) → Λr−1(M) be the formal adjoint of d with respect
to the natural inner product in Λr (M). We have

δ = ∗d∗,

where ∗ is the Hodge star operator ∗ : Λr (M) → Λ4−r (M) with respect to the
Lorentz metric. Denote by Λ(M) the set of all differential forms on M . We have

Λ(M) = Λ0(M) ⊕ Λ1(M) ⊕ Λ2(M) ⊕ Λ3(M) ⊕ Λ4(M).

Let Ω ∈ Λ(M) be an inhomogeneous differential form, i.e., Ω = ∑4
r=0

r
ω, where

r
ω ∈ Λr (M). The Dirac-Kähler equation for a free electron is given by

i(d + δ)Ω = mΩ, (1)

where i is the usual complex unit and m is a mass parameter.
Let {γ0, γ1, γ2, γ3} be a vector basis of the Clifford algebra C�(1, 3), namely

γμγν + γνγμ = 2gμν, where gμν = diag(1,−1,−1,−1) and μ, ν = 0, 1, 2, 3.
Hestenes [9] calls this algebra the spacetime algebra. It is known that the vectors
γμ can be represented by the 4 × 4 Dirac gamma matrices [1, 9]. Through the
identification of the basic covectors dxμ and the matrices γμ which arises from
representation theory, one connects the differential forms under the Clifford prod-
uct to the algebra of gamma matrices. In other words, the graded algebra Λ(M)

endowed with the Clifford multiplication is an example of a Clifford algebra. It is
true that Eq. (1) is equivalent to the four usual Dirac equations (traditional column-
spinor equations). LetΛR(M) denote the set of real-valued differential forms and let
Λev(M) = Λ0(M) ⊕ Λ2(M) ⊕ Λ4(M). The Dirac equation in the Hestenes form
[8, 9] can be written in terms of inhomogeneous forms as

− (d + δ)Ωevγ1γ2 = mΩevγ0, Ωev ∈ Λev
R

(M). (2)

We consider also the generalized bivector Dirac equation [10] in the form

i(d + δ)Ωev = mΩevγ0, Ωev ∈ Λev(M). (3)

Following Baylis [2] we call Eq. (3) the Joyce equation. This equation is equivalent
to two copies of the usual Dirac equation. For a deeper discussion of equivalence of
Dirac formulations we refer the reader to [11].

The goal of this work is to establish the chirality of discrete versions of the Dirac
equation in the Hestenes and Joyce forms. We show that defined some projectors
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on the space of discrete forms one can decompose solutions of Eqs. (1)–(3) into its
left-handed and right-handed parts. Two types of such projectors are introduced and
we prove that a discrete Dirac-Kähler operator flips the chirality for both of them.
We also construct spin ± 1

2 eigenstates for a discrete counterpart of the plane wave
solution to a discrete Joyce equation and discuss chirality for such fields.

2 Discrete Dirac-Kähler, Hestenes and Joyce Equations

In this section, we recall some discrete constructions concerning the Dirac-Kähler
equation and a discrete Clifford calculus. A discretisation scheme is based on the
language of differential forms and is described in [16]. The approach was originated
byDezin [4]. For the convenience of the reader we briefly repeat the relevant material
from [16] without proofs, thus making our presentation self-contained. All details
one can find in [15, 16].

Let K (4) = K ⊗ K ⊗ K ⊗ K be a cochain complex with complex coefficients,
where K is the 1-dimensional complex generated by 0- and 1-dimensional basis
elements xkμ and ekμ , kμ ∈ Z, respectively. Then an arbitrary r -dimensional basis
element of K (4) can be written as sk(r) = sk0 ⊗ sk1 ⊗ sk2 ⊗ sk3 , where skμ is either
xkμ or ekμ , μ = 0, 1, 2, 3 and k = (k0, k1, k2, k3) is a multi-index. The symbol (r)
contains the whole required information about the number and position ekμ ∈ K in
sk(r) ∈ K (4). For example, the 1-dimensional basis elements of K (4) can be written
as

ek0 = ek0 ⊗ xk1 ⊗ xk2 ⊗ xk3 , ek1 = xk0 ⊗ ek1 ⊗ xk2 ⊗ xk3 ,

ek2 = xk0 ⊗ xk1 ⊗ ek2 ⊗ xk3 , ek3 = xk0 ⊗ xk1 ⊗ xk2 ⊗ ek3 .

The 2-dimensional basis elements of K (4) have the form

ek01 = ek0 ⊗ ek1 ⊗ xk2 ⊗ xk3 , ek02 = ek0 ⊗ xk1 ⊗ ek2 ⊗ xk3 , ek03 = ek0 ⊗ xk1 ⊗ xk2 ⊗ ek3 ,

ek12 = xk0 ⊗ ek1 ⊗ ek2 ⊗ xk3 , ek13 = xk0 ⊗ ek1 ⊗ xk2 ⊗ ek3 , ek23 = xk0 ⊗ xk1 ⊗ ek2 ⊗ ek3 .

In the same way one can write down the 3-dimensional basic elements ek012, e
k
013, e

k
023

and ek123. Finally, denote by

xk = xk0 ⊗ xk1 ⊗ xk2 ⊗ xk3 , ek = ek0 ⊗ ek1 ⊗ ek2 ⊗ ek3

the 0- and 4-dimensional basis elements of K (4).
The complex K (4) is a discrete analogue of Λ(M) and cochains play a role

of differential forms. Let us call them forms or discrete forms to emphasize their
relationship with differential forms. Then we have

K (4) = K 0(4) ⊕ K 1(4) ⊕ K 2(4) ⊕ K 3(4) ⊕ K 4(4),
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where Kr (4) denotes the set of all discrete r -forms, and any
r
ω ∈ Kr (4) can be

expressed as

0
ω =

∑

k

0
ωk x

k,
2
ω =

∑

k

∑

μ<ν

ω
μν

k ekμν,
4
ω =

∑

k

4
ωke

k, (4)

1
ω =

∑

k

3∑

μ=0

ω
μ

k e
k
μ,

3
ω =

∑

k

∑

ι<μ<ν

ω
ιμν

k ekιμν, (5)

where
0
ωk, ω

μν

k ,
4
ωk, ω

μ

k and ω
ιμν

k are complex numbers.
Let dc : Kr (4) → Kr+1(4) be a discrete analogue of the exterior derivative d and

let δc : Kr (4) → Kr−1(4) be a discrete analogue of the codifferential δ. It is clear
that δc = ∗dc∗. For more precise definitions of these operators we refer the reader
to [16]. In this paper we give only the difference expressions for dc and δc. Let the
difference operator Δμ be defined by

Δμω
(r)
k = ω

(r)
τμk

− ω
(r)
k , (6)

where ω
(r)
k ∈ C is a component of

r
ω ∈ Kr (4) and τμ is the shift operator which acts

as τμk = (k0, ...kμ + 1, ...k3), μ = 0, 1, 2, 3. For forms (4), (5) we have

dc 0
ω =

∑

k

3∑

μ=0

(Δμ

0
ωk)e

k
μ, dc 1

ω =
∑

k

∑

μ<ν

(Δμων
k − Δνω

μ

k )ekμν, (7)

dc 2
ω =

∑

k

[
(Δ0ω

12
k − Δ1ω

02
k + Δ2ω

01
k )ek012 + (Δ0ω

13
k − Δ1ω

03
k + Δ3ω

01
k )ek013 (8)

+(Δ0ω
23
k − Δ2ω

03
k + Δ3ω

02
k )ek023 + (Δ1ω

23
k − Δ2ω

13
k + Δ3ω

12
k )ek123

]
,

dc 3
ω =

∑

k

(Δ0ω
123
k − Δ1ω

023
k + Δ2ω

013
k − Δ3ω

012
k )ek, dc 4

ω = 0, (9)

δc
0
ω = 0, δc

1
ω =

∑

k

(Δ0ω
0
k − Δ1ω

1
k − Δ2ω

2
k − Δ3ω

3
k)x

k, (10)

δc
2
ω =

∑

k

[
(Δ1ω

01
k + Δ2ω

02
k + Δ3ω

03
k )ek0 + (Δ0ω

01
k + Δ2ω

12
k + Δ3ω

13
k )ek1 (11)

+(Δ0ω
02
k − Δ1ω

12
k + Δ3ω

23
k )ek2 + (Δ0ω

03
k − Δ1ω

13
k − Δ2ω

23
k )ek3

]
,
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δc
3
ω =

∑

k

[
(−Δ2ω

012
k − Δ3ω

013
k )ek01 + (Δ1ω

012
k − Δ3ω

023
k )ek02 (12)

+(Δ1ω
013
k + Δ2ω

023
k )ek03 + (Δ0ω

012
k − Δ3ω

123
k )ek12

+(Δ0ω
013
k + Δ2ω

123
k )ek13 + (Δ0ω

023
k − Δ1ω

123
k )ek23

]
,

δc
4
ω =

∑

k

[
(Δ3

4
ωk)e

k
012 − (Δ2

4
ωk)e

k
013 + (Δ1

4
ωk)e

k
023 + (Δ0

4
ωk)e

k
123

]
. (13)

Let Ω ∈ K (4) be a discrete inhomogeneous form, that is

Ω =
4∑

r=0

r
ω, (14)

where
r
ω ∈ Kr (4) is given by (4) and (5). A discrete analogue of the Dirac-Kähler

equation (1) can be defined as

i(dc + δc)Ω = mΩ. (15)

We can write this equation more explicitly by separating its homogeneous compo-
nents as

iδc
1
ω = m

0
ω, i(dc 1

ω + δc
3
ω) = m

2
ω, idc 3

ω = m
4
ω, (16)

i(dc 0
ω + δc

2
ω) = m

1
ω, i(dc 2

ω + δc
4
ω) = m

3
ω.

Substituting (7)–(13) into (16) one obtains the set of 16 difference equations [16].
As in [17], we define the Clifford multiplication of the basis elements xk and ekμ,

μ = 0, 1, 2, 3, by the following rules:

(a) xkxk = xk, xkekμ = ekμx
k = ekμ,

(b) ekμe
k
ν + ekνe

k
μ = 2gμνx

k, gμν = diag(1,−1,−1,−1),

(c) ekμ1
· · · ekμs

= ekμ1···μs
for 0 ≤ μ1 < · · · < μs ≤ 3,

supposing the product to be zero in all other cases.
The operation is linearly extended to arbitrary discrete forms.
Consider the following unit forms

x =
∑

k

xk, e =
∑

k

ek, eμ =
∑

k

ekμ, eμν =
∑

k

ekμν, (17)
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where μ, ν = 0, 1, 2, 3. Note that the unit 0-form x plays a role of the unit element

in K (4), i.e., for any r -form
r
ω we have x

r
ω = r

ωx = r
ω.

Proposition 1. For the unit forms x ∈ K 0(4) and eμ ∈ K 1(4) given by (17) the
following holds

eμeν + eνeμ = 2gμνx, μ, ν = 0, 1, 2, 3. (18)

Proof. By the rule (b), it is obvious. �	
Proposition 2. Let Ω ∈ K (4) be an inhomogeneous discrete form. Then we have

(dc + δc)Ω =
3∑

μ=0

eμΔμΩ, (19)

where Δμ is the difference operator which acts on each component of Ω by the
rule (6).

Proof. See Proposition 1 in [18]. �	
Thus the discrete Dirac-Kähler equation (15) can be rewritten in the form

i
3∑

μ=0

eμΔμΩ = mΩ.

Let Kev(4) = K 0(4) ⊕ K 2(4) ⊕ K 4(4) and let Ωev ∈ Kev(4) be a real-valued even

inhomogeneous form, i.e., Ωev = 0
ω + 2

ω + 4
ω. A discrete analogue of the Hestenes

equation (2) is defined by

− (dc + δc)Ωeve1e2 = mΩeve0, (20)

or equivalently,

−
3∑

μ=0

eμΔμΩeve1e2 = mΩeve0,

where e1, e2 and e0 are given by (17). A discrete analogue of the Joyce equation (3)
is given by

i(dc + δc)Ωev = mΩeve0, (21)

where Ωev ∈ Kev(4) is a complex-valued even inhomogeneous form. Clearly,
Eq. (21) can be rewritten in the form

i
3∑

μ=0

eμΔμΩev = mΩeve0.
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Applying (7)–(13) Eqs. (20) and (21) can be expressed also in terms of difference
equations (see [17, 18]).

3 Chirality and the Discrete Joyce Equation

In the continuum Dirac theory, the fifth gamma matrix γ5 defined by γ5 = iγ0γ1γ2γ3
plays a central role in formulating chiral fermions. It is known that in the language of
differential forms the Hodge star operator ∗ has similar properties, up to sign, as γ5.
The difficulties in defining a discrete Hodge star operator to deal with chirality on
the lattice were discussed by Rabin in [14]. Several discrete versions of the Hodge
star operator have been proposed in [3, 16, 22] in which the chiral properties for
Dirac-Kähler fermions in the geometric discretisation are captured. In this section,
we use a discrete analogue of γ5 to describe the chirality of a discrete Dirac field in
the Joyce formulation.

Consider the constant 4-form e5 defined by

e5 = ie0e1e2e3 = ie, (22)

where eμ ∈ K 1(4) and e ∈ K 4(4) are given by (17). The form e5 generates the action

e5 : r
ω → e5

r
ω, where

r
ω ∈ Kr (4). Note also that

e5 : Kr (4) → K 4−r (4).

It is easy to check that

e25 = x and e5eμ = −eμe5 for μ = 0, 1, 2, 3. (23)

Hence the form e5 ∈ K 4(4) has exactly the same properties as γ5.

Proposition 3. For any inhomogeneous form Ω ∈ K (4) we have

e5(d
c + δc)Ω = −(dc + δc)e5Ω. (24)

Proof. By Proposition 2 and (23), the equality (24) follows. �	
Consider the following constant forms

PL = x − e5
2

, PR = x + e5
2

. (25)

Since
P2
L = PL PL = PL , P2

R = PR PR = PR,
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it follows that PL and PR are projectors. Let us represent Ω ∈ K (4) as

Ω = ΩL + ΩR, (26)

where
ΩL = PLΩ, ΩR = PRΩ. (27)

It is clear that e5ΩR = ΩR and e5ΩL = −ΩL . Hence we can say thatΩ decomposes
into its self-dual and anti-self-dual parts with respect to the action e5. The self-dual
and anti-self-dual components ofΩ correspond to the chiral right and chiral left parts
of a solution of the discrete Dirac-Kähler equation.

Proposition 4. If Ω is a solution of the massless discrete Dirac-Kähler equation

i(dc + δc)Ω = 0, (28)

then so are both ΩR and ΩL .

Proof. Let Ω ∈ K (4) be a solution of Eq. (28). Using (24) and (27) we obtain

i(dc + δc)(Ω ± e5Ω) = i(dc + δc)Ω ∓ e5i(d
c + δc)Ω = 0.

�	
From Proposition 4 it follows immediately that the massless discrete Dirac-Kähler
equation is invariant under the transformation

Ω −→ Ω ± e5Ω. (29)

In other words, the discrete model admits the chiral symmetry (29) of Eq. (28) with
respect to the action e5.

Proposition 5. If Ω is a solution of the discrete Dirac-Kähler equation (15) then
we have

i(dc + δc)ΩL = mΩR,

i(dc + δc)ΩR = mΩL .

Proof. From (24) it follows that

(dc + δc)PLΩ = PR(dc + δc)Ω, (dc + δc)PRΩ = PL(d
c + δc)Ω (30)

for any Ω ∈ K (4). Let Ω be a solution of Eq. (15). By (30), we have

i(dc + δc)ΩL = i(dc + δc)PLΩ = PR(mΩ) = mΩR
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and
i(dc + δc)ΩR = i(dc + δc)PRΩ = PL(mΩ) = mΩL .

�	
Hence, just as in the continuum case, the operator i(dc + δc) flips the chirality and
the massive discrete Dirac-Kähler equation decomposes into two parts.

LetΩev ∈ Kev(4) be a complex-valued even inhomogeneous form. Then we have

Ωev = PLΩ
ev + PRΩev = Ωev

L + Ωev
R ,

where PL and PR are given by (25). The discrete Joyce equation splits into two parts
in the following way.

Proposition 6. IfΩev is a solution of the discrete Joyce equation (21) then we have

i(dc + δc)Ωev
L = mΩev

R e0, (31)

i(dc + δc)Ωev
R = mΩev

L e0. (32)

Proof. The proof is the same as that for Proposition 5. �	
Thus the chiral properties are captured for our discrete model.

4 Chirality and the Discrete Hestenes Equation

Recall that the Hestenes equation is a form of the Dirac equation in the real algebra
C�R(1, 3). The discrete Hestenes equation acts in the space of real-valued even form
Kev(4). Unfortunately, to discus the chiral properties of this equation the action (22)
makes no sense because the form e5 defined by (22) is complex-valued. To make
sense of the chiral action onemust substitute for e5 a real-valued action. Let us denote
by ∗5 the following transformation

∗5 : r
ω → e

r
ωe2e1, (33)

where
r
ω ∈ Kr (4) and e, e2, e1 are given by (17). It is true that ∗5 : Kev(4) → Kev(4).

Proposition 7. For any inhomogeneous form Ω ∈ K (4) we have

(∗5)
2Ω = Ω, and (∗5eμ + eμ∗5)Ω = 0 for μ = 0, 1, 2, 3. (34)

Proof. By definition, e = e0e1e2e3 and e2 = ee = −x . Then for any
r
ω ∈ Kr (4) we

have
(∗5)

2 r
ω = ∗5(∗5

r
ω) = e(e

r
ωe2e1)e2e1 = x

r
ωx = r

ω.
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Since e ∈ K 4(4) anticommuteswith eμ ∈ K 1(4) forμ = 0, 1, 2, 3, i.e., eeμ = −eμe,
the second equality of (34) follows immediately. �	
Proposition 8. LetΩ ∈ K (4) be an inhomogeneous form. Then the following holds

(∗5(d
c + δc) + (dc + δc)∗5)Ω = 0. (35)

Proof. By (34), the proof repeats the proof of Proposition 3. �	
From (34) and (35) it follows that to deal with chirality in the case of the discrete
Hestenes equation one can take ∗5.

Proposition 9. The massless discrete Dirac-Kähler equation is invariant under the
transformation

Ω −→ Ω ± ∗5Ω. (36)

Proof. By (35), it is obvious. �	
It follows that the discrete model admits a chiral symmetry of the type (36).

Let us consider the following operations

P∗
L = 1 − ∗5

2
, P∗

R = 1 + ∗5

2
. (37)

It is easy to check that

(P∗
L )2Ω = P∗

LΩ, (P∗
R)2Ω = P∗

RΩ, P∗
L P

∗
RΩ = P∗

R P
∗
LΩ = 0

for any Ω ∈ K (4). Hence, the operations P∗
L and P∗

R are projectors. ThenΩ ∈ K (4)
can be represented as (26), where

ΩL = P∗
LΩ, ΩR = P∗

RΩ.

LetΩev ∈ Kev(4) be a real-valued even inhomogeneous form. Then the formsΩev
L =

P∗
LΩev and Ωev

R = P∗
RΩev are even and we have

Ωev = Ωev
L + Ωev

R .

It should be noted that Ωev
R and Ωev

L are self-dual and anti-self-dual parts of Ωev

with respect to the action ∗5. They correspond to the chiral right and chiral left parts
of a solution of the discrete Hestenes equation. Similarly, as in the case of the Joyce
equation, we have the following decomposition of the discrete Hestenes equation.

Proposition 10. If Ωev is a solution of the discrete Hestenes equation (20) then we
have

−(dc + δc)Ωev
L e1e2 = mΩev

R e0,

−(dc + δc)Ωev
R e1e2 = mΩev

L e0.
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Proof. Using (35) and (37) we obtain

(dc + δc)P∗
LΩ = P∗

R(dc + δc)Ω, (dc + δc)P∗
RΩ = P∗

L (dc + δc)Ω

for any Ω ∈ K (4). Therefore the proof repeats the proof of Proposition 5. �	
Let us consider the parity operation P : Kr (4) → Kr (4) defined by

P
r
ω = e0

r
ωe0, (38)

where
r
ω ∈ Kr (4) and e0 ∈ K 1(4) is given by (17). It is clear that P2 r

ω = r
ω. But the

second statement of Proposition 7 is not true. The parity operation (38) changes the
chirality of discrete forms in the following way.

Proposition 11. For any form Ω ∈ K (4) we have

P(P∗
LΩ) = P∗

R(PΩ), P(P∗
RΩ) = P∗

L (PΩ), (39)

where P∗
L and P∗

R are given by (37).

Proof. Since e0 commuteswith e2e1 and anticommuteswith e it follows immediately.
�	
Decompose an even inhomogeneous form Ωev ∈ K (4) as follows

Ωev = Ωev
+ + Ωev

− ,

where Ωev+ commutes with e0 and Ωev− anticommutes with it, i.e.,

e0Ω
ev
± = ±Ωev

± e0. (40)

Proposition 12. Let Ωev
±R = P∗

RΩev± and Ωev
±L = P∗

LΩev± . Then we have

PΩev
+R = Ωev

+L , PΩev
−R = −Ωev

−L ,

PΩev
+L = Ωev

+R, PΩev
−L = −Ωev

−R .

Proof. By (38)–(40), we obtain

PΩev+R = P(P∗
RΩev+ ) = P∗

L (PΩev+ ) = P∗
L (e0Ω

ev+ e0) = P∗
L (Ωev+ e0e0) = P∗

LΩev+ = Ωev+L .

The same proof remains valid for all other cases. �	
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5 Discrete Plane Wave Solutions and Spin Eigenstates

Discrete versions of the planewave solutions to discrete Joyce andHestenes equations
are constructed in [19] and [20]. In this section, we study spin properties of these
solutions in the case of the discrete Joyce equation and discus how the chirality
is realized for spin eigenstates in our discrete model. Recall a discrete version of
the general plane wave solution for the Joyce equation (see for details [19]). Let
ψ ∈ K 0(4) and let

ψ =
∑

k

(i p0 + 1)k0(i p1 + 1)k1(i p2 + 1)k2(i p3 + 1)k3xk,

where i is the usual complex unit, pμ ∈ R and k = (k0, k1, k2, k3) is a multi-index.
Let A be the even inhomogeneous form given by

A = a1((m − p0)x + p1e01 + p2e02 + p3e03)

+a2((m − p0)e12 + p2e01 − p1e02 + p3e)

+a3((m − p0)e13 + p3e01 − p1e03 − p2e)

+a4((m − p0)e23 + p3e02 − p2e03 + p1e),

where p0 = ±
√
m2 + p21 + p22 + p23, aμ = αμ

m−p0
and αμ is an arbitrary complex

number for μ = 1, 2, 3, 4. Here the even unit forms x ∈ K 0(4), e ∈ K 4(4) and
eμν ∈ K 2(4)aregivenby(17).Then themostgeneralplanewavesolutionofEq. (21) is

Ωev = Aψ. (41)

Let consider a particular case of (41), namely p2 = p3 = 0. This situation corre-
sponds to one in the continuum case in which the plane wave solution is propagating
along only one axis, e.g., x1. In the continuum case, such solutions for a Dirac gen-
eralized bivector equation are described in [10]. Then we have

ψ =
∑

k

(i p0 + 1)k0(i p1 + 1)k1xk (42)

and

A = a1((m − p0)x + p1e01) + a2((m − p0)e12 − p1e02)

+ a3((m − p0)e13 − p1e03) + a4((m − p0)e23 + p1e). (43)

Let us introduce the following constant 2-forms

S1 = i
1

2
e23, S2 = −i

1

2
e13, S3 = i

1

2
e12. (44)
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By definition, we have e12e12 = e13e13 = e23e23 = −x and one may easy calculate
that S21 + S22 + S23 = 1

2 (
1
2 + 1)x . Hence similarly to the continuum case the forms

(44) can be interpreted as spin operators for our discrete model and spin eigenstates
of ± 1

2 along the direction of propagation can be described for the solution (41),
where ψ and A are given by (42) and (43).

An easy computation shows that the equations S2A = 1
2 A and S3A = 1

2 A, where
A is given by (43), have only trivial solutions, i.e., a1 = a2 = a3 = a4 = 0. However,
the equation S1A = 1

2 A has an non-trivial solution. Indeed, applying the spin operator
S1 to (43) we obtain

S1A = i
1

2

(
a1(m − p0)e23 + a1 p1e + a2(m − p0)e13 − a2 p1e03

− a3(m − p0)e12 + a3 p1e02 − a4(m − p0)x − a4 p1e01
)
. (45)

Combining (45) with (43) we conclude that S1A = 1
2 A if and only if a1 = −ia4 and

a2 = −ia3. It follows that A can be represented as

A = a1A1 + a2A2, (46)

where

A1 = (m − p0)x + p1e01 + i(m − p0)e23 + i p1e,

A2 = (m − p0)e12 − p1e02 + i(m − p0)e13 − i p1e03, (47)

and a1, a2 are arbitrary constant. Sinceψ is a 0-formwe have S1Ωev = 1
2Ω

ev , where
Ωev is the plane wave solution (41) and A is given by (46). On other words, Ωev is
an eigenstate corresponding to the eigenvalue 1

2 of the spin operator S1.
It is clear that if Aψ is a solution of the discrete Joyce equation then Āψ , where Ā

denotes the complex conjugate of A, is also a solution. It can also be seen that Ā =
ā1 Ā1 + ā2 Ā2 satisfies the equation S1 Ā = − 1

2 Ā. Hence, similarly as in continuum
case [10] the solutions Aψ and Āψ , where ψ and A are given by (42) and (46), can
be interpreted as spin up and spin down solutions correspondingly.

It should be noted that the chirality is captured for the spin solutions described
above. Applying the projectors (25) to the forms A1 and A2 given by (47) one can
calculate

PR A1 = 1

2
(m − p0 + p1)(x + e01 + ie23 + ie),

PL A1 = 1

2
(m − p0 − p1)(x − e01 + ie23 − ie),

PR A2 = 1

2
(m − p0 + p1)(e12 − e02 + ie13 − ie03),

PL A2 = 1

2
(m − p0 − p1)(e12 + e02 + ie13 + ie03).
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Thus we have the following two left and two right chiral states

Ωev
1L = PL A1ψ, Ωev

2L = PL A2ψ, Ωev
1R = PR A1ψ, Ωev

2R = PR A2ψ, (48)

where ψ is given by (41). Obviously, as has already been described in Sect. 3 the
forms (48) satisfy Eqs. (31) and (32).
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