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ELECTRIC NETWORK FREQUENCY
BASED AUDIO FORENSICS USING
CONVOLUTIONAL NEURAL NETWORKS

Maoyu Mao, Zhongcheng Xiao, Xiangui Kang, Xiang Li and Liang Xiao

Abstract Digital media forensics can exploit the electric network frequency of au-
dio signals to detect tampering. However, current electric network based
audio forensic schemes are limited by their inability to obtain concurrent
electric network frequency reference datasets from power grids. In ad-
dition, most forensic algorithms do not provide high detection precision
in adverse signal-to-noise conditions.

This chapter proposes an automated electric network frequency based
audio forensic scheme that monitors abrupt mutations of tampered
frames and discontinuities in the variations of electric network frequency
features. Specifically, the scheme utilizes the multiple signal classifica-
tion, Hilbert linear prediction and Welch algorithms to extract electric
network frequency features from audio signals; the extracted features
are passed to a convolutional neural network classifier to detect audio
tampering. The negative effects of low signal-to-noise ratios on electric
network frequency extraction are addressed by employing extra low-rank
filtering that removes voice activity and noise interference. Simulation
results demonstrate that the proposed scheme provides better audio
tampering detection accuracy compared with a benchmark method, es-
pecially under adverse signal-to-noise conditions.

Keywords: Audio forensics, electric network frequency, neural networks

1. Introduction

Audio editing software is often used by malicious actors to reduce the
reliability of judicial evidence and defeat intellectual property protection.
Audio tampering detection methods mostly rely on fingerprint informa-
tion embedded in audio signals. Since fragile watermarks cannot assist
in detecting private audio signal tampering [1], passive forensic schemes
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based on extracted audio features can provide lightweight solutions. Re-
searchers have developed detection methods based on local noise levels
of audio signals [18] and voice activity detection [10]. The electric net-
work frequency (ENF) of audio signals demonstrates that power grid
features are applicable to digital media forensics [5]. Specifically, elec-
tric network frequency signals can be used to verify recording features
such as time and location [7, 21], detect synchronization between audio
and video data [20] and verify the authenticity of multimedia [14].

Electric network frequency based audio tampering detection tech-
niques can verify if audio recordings have been edited at low compu-
tational cost. Ideally, the grid signal is a real sinusoid that fluctuates
around its nominal value of 50Hz or 60Hz. Given that control mech-
anisms and power supply parameters are different in different parts of
the world, electric network frequency signals display different fluctua-
tions and peak frequency transformations. When signal-to-noise ratio
(SNR) conditions are poor, disturbances near the electric network fre-
quency component may be confused with the peak corresponding to
the true electric network frequency [12]. Furthermore, due to legal re-
strictions, it is difficult to obtain concurrent reference datasets of power
systems [7]. Additionally, many edit detection schemes based on electric
network frequency variations adjust the classification thresholds man-
ually. Although some automated tampering detection schemes do not
rely on concurrent power reference datasets, new techniques are required
to improve detection accuracy and reduce computational costs.

This chapter proposes an electric network frequency based audio foren-
sic scheme that detects tampering. The scheme assumes a signal model
containing the electric network frequency component, where the back-
ground noise is low enough to ensure that the electric network frequency
signal is the energy-dominant signal around the nominal frequency. Au-
dio tampering is detected without using concurrent reference electric
network frequency signals from power networks. The scheme applies
two-stage – low-rank and bandpass – filtering to purify electric network
frequency signals in a narrow spectral vicinity and compensate for time
delays in order to obtain accurate estimates of the real-time edit loca-
tions. Based on the sensitivity of electric network frequency features to
phase discontinuity changes, variations in the electric network frequency
based features extracted from the multiple signal classification, Hilbert
linear prediction and Welch algorithms are combined as eigenvectors and
input to an automatic classifier. A convolutional neural network (CNN)
is employed in the audio tampering detection scheme to improve the
generalization ability in practical situations. Simulation results demon-
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strate that the proposed audio tampering detection scheme has good
accuracy and an expanded application scope.

2. Related Work

Hua et al. [8] have discussed the limitations of electric network fre-
quency based tampering detection systems and the challenges posed by
noise and interference. Several electric network frequency extraction al-
gorithms such as the short-time Fourier transform and time recursive it-
erative adaptive algorithms are incorporated in instantaneous frequency
estimation techniques to achieve high-precision extraction by measur-
ing the maximum energy or weighted energy recorded from the average
frequencies of spectrograms [6].

A systematic assessment of parametric and non-parametric extraction
techniques for electric network frequency signals has demonstrated that
time-domain-based extraction algorithms are susceptible to frequency
anomalies caused by sudden changes in noise or speech activity [11]. In
addition, parametric algorithms such as the multiple signal classifica-
tion and Welch algorithms can improve resolution frequency estimation
of sinusoidal signals by using fewer data series than spectrogram-based
extraction algorithms.

An electric network frequency extraction scheme proposed by Lin and
Kang [12] applies robust principle component analysis to remove noise in-
terference and purify the electric network frequency when signal-to-noise
conditions are poor. It adopts the Hilbert linear prediction algorithm
to capture the electric network frequency from fewer audio recordings in
an efficient manner.

Nicolalde Rodriguez and Apolinario [16] have developed a digital au-
dio authenticity evaluation scheme that detects electric network fre-
quency phase transitions and leverages the spectral distance using an
adaptive filter as a linear indicator. An electric network frequency based
edit detection scheme for speech recordings designed by Esquef et al. [3]
yields low equal error rate (EER) values by comparing electric network
frequency variations around the nominal frequency with the upper limit
of the normal variations observed in an unedited signal. Hua et al. [9]
have analyzed the absolute error map between an electric network fre-
quency database and test electric network frequency signals to perform
timestamp verification and detect tampering via insertion, deletion and
splicing attacks with image erosion.

Nicolaide Rodriguez et al. [17] have also developed an automated au-
thenticity detection scheme for audio recordings via phase analysis of
high-order electric network frequency harmonics. Reis et al. [19] have
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designed an adulteration detection scheme for audio recordings that in-
tegrates the kurtosis features of electric network frequency signals in
rotational invariance techniques and Hilbert linear prediction in poor
signal-to-noise conditions to autonomously classify audio recordings us-
ing a support vector machine. Although kurtosis extraction speeds up
the classification, some characteristic information is lost.

Wang et al. [22] have developed a detection scheme that applies dis-
crete Fourier transforms of audio signals to achieve instantaneous phase
estimation using a support vector machine classifier. However, the ac-
curacy of the scheme is unsatisfactory and the cost of using a support
vector machine to evaluate the decision function is linearly related to the
number of training samples. This results in high computational costs for
large datasets.

Researchers have also applied convolutional neural networks to ana-
lyze audio recapture [13] and perform median filtering [2]. However, no
research has applied convolutional neural networks to electric network
frequency based audio tampering forensics.

3. System Model

Figure 1 shows a schematic diagram of the proposed audio forensic
scheme, which uses a convolutional neural network in conjunction with
the multiple signal classification (MUSIC), Hilbert linear prediction and
Welch algorithms.

The system initially reduces the sampling rate of an audio signal under
test x(m). Let ω0 be the nominal electric network frequency. According
to convention, the new sampling frequency fs is adjusted to 20 times
the nominal frequency ω0. Therefore, the sampled signal xds(n) where
0 < n ≤ m is obtained using a 1,000Hz or 1,200Hz sampling frequency.

The low-rank structure of the electric network frequency signal in
the short-time Fourier transform (STFT) domain is leveraged to sepa-
rate grid signals from interference by robust principal component anal-
ysis (RPCA). Let Xds be the amplitude spectrum of the sampled signal
xds(n). Then, the robust principal component analysis objective is given
by:

min
X̂C ,XE

rank
(

X̂C

)

+ λ
∥

∥

∥
XE

∥

∥

∥

0
s.t. X̂C +XE = Xds (1)

where ‖ · ‖0 is the L0-norm, λ > 0 is a parameter that trades off the

low-rank part with the electric network frequency component X̂C , and
XE is the sparsity part containing the impulse noise and speech activity
signal.
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Figure 1. Proposed audio forensic scheme.

Due to the non-convex optimization objective, a relaxation is applied
to Equation (1) according to [23]. Thus, the principal component anal-
ysis objective becomes:

min
X̂C ,XE

∥

∥

∥
X̂C

∥

∥

∥

∗
+ λ

∥

∥

∥
XE

∥

∥

∥

1
s.t. X̂C +XE = Xds (2)

where ‖ · ‖∗ is a nuclear norm and ‖ · ‖1 is the L1-norm.

Next, X̂C is derived by the augmentedLagrangemultiplier method [12]
and the inverse short-time Fourier transform (ISTFT) is employed to
determine the low-rank filtered signal sequence denoted by x̂C(n).

Grid signals with electric network frequency components xC(n) are
insulated from interference falling into the low-order space by filtering
x̂C(n). Instead of a finite impulse response filter, a fourth-order elliptic
filter is adopted with a phase that is approximately linear and adjacent
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to the bandpass region. This reduces the computational complexity and
computational costs.

The grid signal xkC(n) obtained from the audio recording k after two-
stage filtering is similar to a narrow-band pseudo-sinusoidal signal. To
simplify the presentation, the audio recording index k in the superscript
is omitted. Accordingly, the time-domain representation of the electric
network frequency signal in the interval is modeled as:

xC(n) = a cos

(

2π
xF (n)

fs
n+ φ

)

1 ≤ n ≤ L (3)

where L is the length of time-domain signal, xF (n) is the electrical net-
work frequency to be estimated, fs is the sampling frequency and a and
φ are related to the magnitude and phase, respectively.

4. ENF-Based Forensics with CNN

During electrical network frequency extraction, the captured grid sig-
nal xC(n) is typically divided into Y time frames of fixed-length l con-
taining overlapping portions where Y ∈ {L/l}0≤l≤L. A frequency esti-
mation algorithm is then used to obtain the components of the electrical
network frequency characteristics in frame i where 1 ≤ i ≤ Y .

The MUSIC algorithm is a subspace spectrum estimation algorithm
based on feature structure decomposition. The algorithm decomposes
the covariance matrix of a signal sequence into a singular value. By
constructing the orthogonal signal and noise subspaces, the algorithm
provides spatial spectral functions that can be used to estimate electrical
network frequency features. Since electrical network frequency signals
contain one real sinusoid, two complex frequency sinusoids are embedded
in the white noise P for electrical network frequency signals.

The algorithm first computes the M×N sample data matrix A based

on the power grid signal X
(i)
C of audio frame i:

A =
[

aC(1) aC(2) . . . aC(N − 1)
]T

(4)

where aC(n) = [xC(n), xC(n+ 1), . . . , xC(n+M − 1)]T , M is the order
of the covariance matrix that is chosen to be larger than P and M ∈
[

N
3 ,

2N
3

]

[6].

Next, the eigenvalue decomposition of the auto-covariance matrix
R = 1

N
AHA is computed. Since the signal and noise are indepen-

dent, the covariance can be decomposed and the space comprising the
eigenvectors corresponding to the large eigenvalues (q1 q2 . . .qP ) is the
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signal subspace S. Also, the space comprising the eigenvectors corre-
sponding to the small eigenvalues

(

qP+1 qP+2 . . .qP+M

)

is the noise
subspace Gn.

The following assumptions are made for the complex form of the ob-
servation model described above:

Different x
(i)
C (n) signals are linearly independent of each other.

The additive noise u(n) is the complex noise with zero mean ad-
ditive, uncorrelated and the same variance σ2

u.

Given the orthogonality property of the white noise eigenvectors and

signal steering vectors v
(

X
(i)
C

)

, the signal steering vectors v
(

X
(i)
C

)

can

be written in complex form as:

v
(

X
(i)
C

)

=
[

1, ej2πX
(i)
C , ej4πX

(i)
C , . . . , ej2(M−1)πX

(i)
C

]H

(5)

where j =
√
−1 and [ · ]H denotes the conjugate transposition.

The pseudo-spectral function PMU is computed as:

PMU =
1

v∗

(

X
(i)
C

)

Gi
nG

i∗

n v
(

X
(i)
C

) (6)

where ∗ is the element conjugate.
Ultimately, the estimated electrical network frequency XMU is ob-

tained by searching for the spectral peak of the spatial-spectral function
PMU . The MUSIC algorithm estimates a fixed parameter for each frame,
which is the best electrical network frequency value in the least mean
square sense for a given signal sequence.

The Hilbert linear prediction extraction algorithm is more sensitive
to sharp phase changes than the MUSIC algorithm. However, the MU-
SIC algorithm is more robust to noise interference. According to Equa-
tion (3), the electrical network frequency value ĥC(n) can be estimated
by the transient phase change of the Hilbert transform from the real-
valued estimate xC(n) as follows:

ĥC(n) = xC(n) + jH
{

xC(n)
}

(7)

where j =
√
−1 and H is the Hilbert operator.

Since the analytical version of a pseudo-sinusoidal signal is equivalent
to the real-valued signal with respect to xF (n), the linearly predictable
property can be applied to the complex model. This yields:

ĥC(n) = ae

(
j2π

xF (n)

fs
n+φ

)
= β1ĥC(n− 1) (8)
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where β1 = e

(
j2π

xF (n)

fs

)
is the first-order prediction coefficient.

The signal entry s(n) = xF (n) + u(n) is then obtained by adding the
additive complex noise u(n).

Given the assumption that additive complex noise is always equiv-
alent, the approximation s(n) ≈ β1s(n − 1) is obtained according to
Equation (8). Extending this equation to the entire audio recording
yields: S1 ≈ β1S2 where S1 = [s(n− 1), s(n− 2), . . . , s(n)]0<n≤m and S2

is the sequence with one sample shift from S1.
Therefore, the crux of electrical network frequency estimation is to

minimize the weighted linear prediction error in the minimum squared
sense as follows:

min J(β1) = eTWe = (S2 − β1S1)
H W (S2 − β1S1) (9)

where W is a symmetric weighting matrix, H is the conjugate trans-
position operator and J(β1) is the total cost function denoted by the
weighted squared error e.

The symmetric weighted matrix W, which is obtained by Markov
estimation, is given by:

W=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1+‖β1 ‖2 −β1 0 0 . . . 0
−β∗

1 1+ ‖β1 ‖2 −β1 0 . . . 0
...

...
...

...
...

...
0 . . . 0 −β∗

1 1+ ‖β1 ‖2 −β1

0 0
... 0 −β∗

1 1+ ‖β1 ‖2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−1

(10)
where ∗ and [ · ]−1 are the element conjugate and matrix inverse, respec-
tively.

Upon setting the differential in Equation (9) to zero, the prediction
coefficient β1 is given by:

β1 =
S1

HWS2

S1
HWS1

(11)

Equations (9) through (11) reveal that the computation of β1 is an
iterative process. Having obtained β1, the Hilbert linear prediction of
the electrical network frequency XL is computed as:

XL = fs
1

2π
∠(β1) (12)

For consistency with other characteristics, XL is divided into frag-
ments and the maximum value of the absolute values is taken as the ith

segment electrical network frequency estimate X
(i)
L .
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Figure 2. Electrical network frequency fingerprints in three recording fragments.

The Welch algorithm is an improved periodogram method. The al-
gorithm reduces noise in the estimated power spectrum by enhancing
the frequency resolution, yielding the largest maximum correlation co-
efficient around the nominal frequency compared with the MUSIC algo-
rithm and other methods.

The Welch estimate is obtained from the power spectral density. The
algorithm divides each audio recording into overlapped segments mul-
tiplied by a Hamming window. The frequency sample w, which corre-
sponds to the maximum periodogram value, is extracted as the Welch-

based electrical network frequency estimate denoted by X
(i)
W . Next, a

quadratic interpolation is employed to fit the quadratic model of w. The
Welch algorithm with a Hamming window improves the spectral distor-
tion caused by the large-side lobe of the rectangular window, yielding an
accurate electrical network frequency estimate XW that is not affected
by interference.

Figure 2 clearly shows the electrical network frequency based finger-
prints used to verify the effectiveness of the proposed audio forensic
scheme. The fingerprints are located in three recording fragments named
1p, 2p and 3p at 60Hz with slight offsetting for easy viewing. The three

261



ADVANCES IN DIGITAL FORENSICS XVI

Figure 3. Network architecture of the proposed audio forensic scheme.

recording fragments, all with the same number of samples, are derived
from the MUSIC, Hilbert linear prediction and Welch (MHPW) feature
estimation algorithms.

The forensic fingerprints simultaneously display high stability and
sensitivity to tampering operations. For example, the fingerprints in
recording fragments 1p and 2p show stable pseudo-sinusoidal fluctua-
tions whereas the fingerprints in the tampered fragment 3p show sensi-
tive mutations.

Instead of manually determining the threshold, a novel deep learning
approach is applied to identify tampered audio recordings. The elec-
trical network frequency signals extracted by the three algorithms are
directly modeled as features to avoid information loss when extracting
the representative values of features.

Three-dimensional feature vectors F =
[

Xk
L, X

k
MU , X

k
W

]

0<k≤N
are ob-

tained from the N audio recordings. When the lengths of the recordings
in the audio dataset are different, the nominal frequency of 50Hz or
60Hz is applied to fill the feature vectors to the same length. The three
feature channels with the same length constitute the input layer of the
neural network structure.

Figure 3 shows the network architecture of the audio tampering de-
tection scheme. The convolutional neural network model has four convo-
lution layers, two pooling layers, one full connection layer and an input
layer and output layer. Before processing the features, min-max nor-
malization is used to amplify the differences and variation rules of the
features. Next, given the overlaps of the adjacent electrical network fre-
quency components, convolution is used to refine the energy changes in
the electrical network frequency signals, which improves the detection
accuracy. Finally, the tag distribution obtained by the convolutional
neural network model is used to compute the detection performance
metrics.
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5. Experiments and Results

This section describes the simulation experiments and the results ob-
tained.

5.1 Experimental Setup

The experiments were performed on Matlab and Python 3.6 platforms
with the scikit-learn package.

The electrical network frequency based features were extracted from
two classical audio databases. The first was the Carioca 1 database [17],
a telephone recording database of the public switched telephone network
containing 16-bit mono waves at a 44.1 kHz sampling rate and coded by
pulse code modulation with an electrical network frequency component
around 60Hz, The second was the Spanish Speech database [4] sampled
at 16 kHz with a nominal electrical network frequency component around
50Hz. The databases each contain 100 original voice audio recordings
and 100 edited versions of the original voice audio recordings.

Simulations were performed to evaluate the performance of the au-
dio forensic scheme with N = 400 audio recordings. Each recording
was divided into time frames of length l = 1 second with an overlap of
0.5 seconds. In the simulations, 70% of the original audio recordings and
tampered audio recordings were randomly chosen to train the convolu-
tional neural network. The remaining 30% of all the recordings were
randomly-chosen for the testing set. Distributing the data into training
and testing datasets in this manner ensured that every portion of the
data would be more representative. The data randomness had to be
high due to the large number of parameters and strong learning ability
of the convolutional neural network, and so that the random gradient
descent optimization function did not get stuck in a local minimum.

Multiple evaluations were performed to achieve fair comparisons with
the benchmark strategy proposed by Reis et al. [19]. The detection error
tradeoff (DET) curves were obtained by plotting the false negative rate
(FNR) versus false positive rate (FPR) curves for various thresholds [15].
In general, as the false positive rate increases to 100%, the false negative
rate decreases, and vice versa. The equal error rate is the point at which
the false negative rate and false positive rate are equal. The overall error
rate (OER) is computed as the average of the false negative rate and
false positive rate.
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Table 1. Overall error rates for combinations of fusion features.

Feature Overall Error Rate

MUSIC 7.5%
Hilbert Linear Prediction 5.1%
Welch 6.3%
MUSIC + Hilbert Linear Prediction 6.3%
Hilbert Linear Prediction + Welch 4.4%
MUSIC + Welch 6.5%
MUSIC + Hilbert Linear Prediction + Welch (MHPW) 3.2%
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5.2 Detection Performance

Table 1 shows the overall error rates for feature vectors obtained
by combining fusion features. Combining all three features (MUSIC,
Hilbert linear prediction and Welch (MHPW)) yields the lowest overall
error rate of 3.2% compared with using any one feature or any two fea-
tures. When all three features are used together, the overall error rates
fall by 4.3%, 1.9% and 3.1%, respectively, from the overall error rates
when the MUSIC, Hilbert linear prediction and Welch algorithms are
used alone.

However, the overall error rates obtained for the mixed features ex-
tracted by two of the three algorithms may be suboptimal to those ex-
tracted by a single algorithm; this is due to the cancellation of the sharp
peak features of the two algorithms. For example, the overall error rate
for the fusion features extracted by the MUSIC and Welch algorithms
is reduced by 1.0% compared with the overall error rate of the features
extracted by the MUSIC algorithm alone. The proper choice of features
plays an important role in the accurate detection of audio tampering.

Table 2. Overall error rates for various classifiers.

Classifier Overall Error Rate

Neural Network 9.1%
Random Forest 9.1%
Decision Tree 7.3%
Logistic Regression 6.7%
Support Vector Machine 4.2%
Convolutional Neural Network 3.2%

Table 2 shows that the proposed scheme using the convolutional neu-
ral network with MUSIC, Hilbert linear prediction and Welch features
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Table 3. Cross-domain evaluations of the audio databases.

Training Database Testing Database Overall Error Rate

Carioca 1 Spanish Speech 4.3%
Spanish Speech Carioca 1 4.5%
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has the lowest overall error rate compared with the other classifiers. For
example, the overall error rate is 5.9% less than that obtained by the
neural network scheme and is 1.0% less than that obtained by the sup-
port vector machine scheme. Additionally, the detection performance of
the proposed scheme using the convolutional neural network with the
MUSIC, Hilbert linear prediction and Welch features has an overall er-
ror rate that is 1.3% less than that obtained by the benchmark strategy
with a support vector machine described in [19].

Table 3 shows the results of cross-domain evaluations when the Cari-
oca 1 and Spanish Speech databases were used for training and testing,
respectively, and vice versa. Using the combination of MUSIC, Hilbert
linear prediction and Welch features trained with the Carioca 1 data-
base yields slightly better prediction results (4.3%) compared with when
the Spanish Speech database was used for training (4.5%). This could
be because the extracted features of Caricoa 1 are more obvious, which
renders the trained model more representative and the testing results
more accurate.

However, the difference between the two overall error rates is small
(0.2%), which may be due to the number of training sessions, number
of iterations, final convergence and small differences in only one set of
random values in the convolutional neural network. As observed above,
a mixed training dataset yields better detection performance than using
a single dataset for training. For example, the detection with the mixed
(Carioca 1 and Spanish Speech) training dataset decreases the overall
error rate by 1.3% compared with the single Carioca 1 training dataset
and 1.1% compared with the single Spanish Speech dataset. The key
insight is that the increased data diversity provided by mixed training
increases the generality of the learned model, which improves the detec-
tion performance and reduces the overall error rate.

Figure 4 compares the detection performance of the proposed scheme
using the convolutional neural network with MUSIC, Hilbert linear pre-
diction and Welch features (CNN with MHPW) versus the detection
performance of the benchmark strategy by Reis et al. [19]. The same
Carioca 1 and Spanish Speech databases with N = 400 audio record-
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Figure 4. Comparison of detection performance.
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ings and l = 1 second were used in the comparison. The DET curve of
the proposed scheme (CNN with MHPW) is much closer to the y-axis
(i.e., lower false negative rates) compared with the benchmark strategy.
Moreover, the proposed scheme has an equal error rate of 3.3%, which
is less than the 4% equal error rate of the benchmark strategy.

5.3 Results for Different SNR Conditions

This section evaluates the performance of the proposed audio foren-
sic scheme under signal-to-noise ratios ranging from 5dB to 30 dB. The
speech activity detector of Esquef et al. [3] was used to separate the
noise from speech signals in the Carioca 1 and Spanish Speech data-
bases, following which various levels of additional background Gaussian
noise were introduced. It is important to note that the results of this
evaluation can be generalized to any audio recording.

Figure 5 shows the performance of the proposed audio forensic scheme
(CNN with MHPW) under various signal-to-noise ratios. The equal er-
ror rates obtained for the datasets corrupted by Gaussian noise decrease
with increasing signal-to-noise ratio because the classifier acquires more
accurate electric network frequency information with less noise. The
performance gap is much wider at lower signal-to-noise ratios, which
validates the effectiveness of low-rank filtering for noise correction. For
example, the proposed scheme decreases the equal error rate from 20.8%
to 17.9% for the lowest signal-to-noise ratio of 5 dB. In fact, the proposed
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Figure 5. Performance of the audio forensic scheme under different SNR conditions.
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scheme achieves optimal performance faster than the benchmark strat-
egy with less signal information. Specifically, the equal error rate of
the proposed scheme decreases from 17.9% at 5 dB to 4.0% at 25 dB
whereas the benchmark strategy achieves the same equal error rate only
at 30 dB. Moreover, despite showing a consistent performance trend, the
proposed scheme is more effective than the benchmark strategy even for
low signal-to-noise ratios. This demonstrates that the low-rank filtering
incorporated in the proposed scheme improves the accuracy of detecting
audio tampering, especially in poor signal-to-noise conditions.

6. Conclusions

The audio forensic scheme described in this chapter leverages a convo-
lutional neural network classifier to evaluate electric network frequency
features in audio signals to detect tampering without manual regula-
tion or information about the concurrent reference frequency from the
power grid. The experimental results demonstrate that the audio foren-
sic scheme increases the accuracy of tamper detection and is better
adapted to noisy environments than the benchmark strategy of Reis et
al. [19]. For example, the proposed scheme reduces the overall error rate
by 1.3% and increases the equal error rate by 0.7% compared with the
benchmark strategy. Additionally, it increases the equal error rate up
to 2.9% compared with the benchmark strategy under different signal-
to-noise conditions. The tamper detection performance and robustness
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in noisy environments help ensure the reliability of audio evidence and
protect intellectual property.

Future research will attempt to enhance detection accuracy and ef-
ficiency in more aggressive scenarios, and develop an online detection
system that identifies the specific locations of audio tampering. Addi-
tionally, future research will explore the application of electric network
frequency signals in video forensics.
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