
123

Gilbert Peterson
Sujeet Shenoi (Eds.)

Advances in
Digital Forensics XVI

IFIP AICT 589

IFIP Advances in Information
and Communication Technology 589

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board Members

TC 1 – Foundations of Computer Science
Luís Soares Barbosa , University of Minho, Braga, Portugal

TC 2 – Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

TC 3 – Education
Arthur Tatnall , Victoria University, Melbourne, Australia

TC 5 – Information Technology Applications
Erich J. Neuhold, University of Vienna, Austria

TC 6 – Communication Systems
Burkhard Stiller, University of Zurich, Zürich, Switzerland

TC 7 – System Modeling and Optimization
Fredi Tröltzsch, TU Berlin, Germany

TC 8 – Information Systems
Jan Pries-Heje, Roskilde University, Denmark

TC 9 – ICT and Society
David Kreps , University of Salford, Greater Manchester, UK

TC 10 – Computer Systems Technology
Ricardo Reis , Federal University of Rio Grande do Sul, Porto Alegre, Brazil

TC 11 – Security and Privacy Protection in Information Processing Systems
Steven Furnell , Plymouth University, UK

TC 12 – Artificial Intelligence
Eunika Mercier-Laurent , University of Reims Champagne-Ardenne, Reims, France

TC 13 – Human-Computer Interaction
Marco Winckler , University of Nice Sophia Antipolis, France

TC 14 – Entertainment Computing
Rainer Malaka, University of Bremen, Germany

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the first World
Computer Congress held in Paris the previous year. A federation for societies working
in information processing, IFIP’s aim is two-fold: to support information processing in
the countries of its members and to encourage technology transfer to developing na-
tions. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims
at achieving a worldwide professional and socially responsible development and
application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees and working groups, which organize
events and publications. IFIP’s events range from large international open conferences
to working conferences and local seminars.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is generally smaller and occasionally by invitation only. Their
purpose is to create an atmosphere conducive to innovation and development. Referee-
ing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative
Members, Members at Large, and Associate Members. The type of organization that
can apply for membership is a wide variety and includes national or international so-
cieties of individual computer scientists/ICT professionals, associations or federations
of such societies, government institutions/government related organizations, national or
international research institutes or consortia, universities, academies of sciences, com-
panies, national or international associations or federations of companies.

More information about this series at http://www.springer.com/series/6102

Gilbert Peterson • Sujeet Shenoi (Eds.)

Advances in
Digital Forensics XVI
16th IFIP WG 11.9 International Conference
New Delhi, India, January 6–8, 2020
Revised Selected Papers

123

Editors
Gilbert Peterson
Department of Electrical
and Computer Engineering
Air Force Institute of Technology
Wright-Patterson AFB, OH, USA

Sujeet Shenoi
Tandy School of Computer Science
University of Tulsa
Tulsa, OK, USA

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-030-56222-9 ISBN 978-3-030-56223-6 (eBook)
https://doi.org/10.1007/978-3-030-56223-6

© IFIP International Federation for Information Processing 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

Contributing Authors ix

Preface xvii

PART I THEMES AND ISSUES

1

Digital Forensics and the Big Data Deluge – Some Concerns Based
on Ramsey Theory

3

Martin Olivier

2

Identity and Sufficiency of Digital Evidence 25

Michael Losavio

PART II FORENSIC TECHNIQUES

3

Interactive Temporal Digital Forensic Event Analysis 39

Nikolai Adderley and Gilbert Peterson

4

Enhancing the Feature Profiles of Web Shells by Analyzing the
Performance of Multiple Detectors

57

Weiqing Huang, Chenggang Jia, Min Yu, Kam-Pui Chow, Jiuming Chen, Chao
Liu and Jianguo Jiang

5

A Novel Approach for Generating Synthetic Datasets for Digital
Forensics

73

Thomas Göbel, Thomas Schäfer, Julien Hachenberger, Jan Türr and Harald
Baier

6

Detecting Attacks on a Water Treatment System Using One-Class
Support Vector Machines

95

Ken Yau, Kam-Pui Chow and Siu-Ming Yiu

vi ADVANCES IN DIGITAL FORENSICS XVI

PART III FILESYSTEM FORENSICS

7

A Digital Media Similarity Measure for Triage of Digital Forensic
Evidence

111

Myeong Lim and James Jones

8

Resident Data Pattern Analysis Using Sector Clustering for Storage
Drive Forensics

137

Nitesh Bharadwaj, Upasna Singh and Gaurav Gupta

PART IV CLOUD FORENSICS

9

Forensic Analysis of Advanced Persistent Threat Attacks in Cloud
Environments

161

Changwei Liu, Anoop Singhal and Duminda Wijesekera

10

A Taxonomy of Hypervisor Forensic Tools 181

Anand Kumar Mishra, Mahesh Govil and Emmanuel Pilli

PART V SOCIAL MEDIA FORENSICS

11

Public Opinion Monitoring for Proactive Crime Detection Using
Named Entity Recognition

203

Wencan Wu, Kam-Pui Chow, Yonghao Mai and Jun Zhang

12

Retrieving E-Dating Application Artifacts from iPhone Backups 215

Ranul Thantilage and Nhien-An Le-Khac

PART VI MULTIMEDIA FORENSICS

13

Target Identity Attacks on Facial Recognition Systems 233

Saheb Chhabra, Naman Banati, Gaurav Gupta and Garima Gupta

14

Electric Network Frequency Based Audio Forensics Using Convo-
lutional Neural Networks

253

Maoyu Mao, Zhongcheng Xiao, Xiangui Kang, Xiang Li and Liang Xiao

Contents vii

PART VII NOVEL APPLICATIONS

15

Insider Threat Detection Using Multi-Autoencoder Filtering and
Unsupervised Learning

273

Yichen Wei, Kam-Pui Chow and Siu-Ming Yiu

16

Detecting Local Machine Data Leakage in Real Time 291

Jingcheng Liu, Yaping Zhang, Yuze Li, Yongheng Jia, Yao Chen and Jin Cao

Contributing Authors

Nikolai Adderley recently received his M.S. degree in Cyber Opera-
tions from the Air Force Institute of Technology, Wright-Patterson Air
Force Base, Ohio. His research interests include digital forensic analysis
and investigation, digital forensic visualization and computer forensic
time analysis.

Harald Baier is a Professor of Internet Security at Darmstadt Uni-
versity of Applied Sciences, Darmstadt, Germany; and a Principal In-
vestigator at the National Research Center for Applied Cybersecurity,
Darmstadt, Germany. His research interests include digital forensics,
network anomaly detection and security protocols.

Naman Banati received a B.Tech. degree in Computer Science and
Engineering from Netaji Subhas University of Technology, New Delhi,
India. His research interests include security in machine learning appli-
cations, image processing and computer vision.

Nitesh Bharadwaj is a Ph.D. student in Computer Science and Engi-
neering at the Defence Institute of Advanced Technology, Pune, India.
His research interests include digital forensics and machine learning.

Jin Cao is a Computer Science Researcher at Tianjin University, Tian-
jin, China. His research interests are in the area of digital forensics.

Jiuming Chen is a Ph.D. student in Cyber Security at the Institute of
Information Engineering, Chinese Academy of Sciences, Beijing, China.
His research interests include digital forensics, data mining and machine
learning.

x ADVANCES IN DIGITAL FORENSICS XVI

Yao Chen is an M.S. student in Computer Science at Tianjin University,
Tianjin, China. His research interests are in the area of data privacy.

Saheb Chhabra is a Ph.D. student in Computer Science and Engineer-
ing at Indraprastha Institute of Information Technology, New Delhi, In-
dia. His research interests include image processing and computer vision,
and their applications to document fraud detection.

Kam-Pui Chow, Chair, IFIP WG 11.9 on Digital Forensics, is an
Associate Professor of Computer Science at the University of Hong Kong,
Hong Kong, China. His research interests include information security,
digital forensics, live system forensics and digital surveillance.

Thomas Göbel is a Ph.D. student in Computer Science at Darmstadt
University of Applied Sciences, Darmstadt, Germany; and a Researcher
at the National Research Center for Applied Cybersecurity, Darmstadt,
Germany. His research interests include network security, network foren-
sics and anti-forensics.

Mahesh Govil is a Professor of Computer Science and Engineering
at Malaviya National Institute of Technology, Jaipur, India; and the
Director of National Institute of Technology Sikkim, Ravangla, India.
His research interests include real-time systems, parallel and distributed
systems, fault-tolerant systems and cloud computing.

Garima Gupta is a Postdoctoral Researcher in Computer Science and
Engineering at Indraprastha Institute of Information Technology, New
Delhi, India. Her research interests include image processing and com-
puter vision, and their applications to document fraud detection.

Gaurav Gupta, Vice Chair, IFIP WG 11.9 on Digital Forensics, is a
Scientist E in the Ministry of Electronics and Information Technology,
New Delhi, India. His research interests include mobile device security,
digital forensics, web application security, Internet of Things security
and security in emerging technologies.

Contributing Authors xi

Julien Hachenberger is a Researcher at the Fraunhofer Institute for
Secure Information Technology, Darmstadt, Germany. His research fo-
cuses on security in the manufacturing industry, especially in the context
of Industrie 4.0.

Weiqing Huang is a Professor of Cyber Security at the Institute of
Information Engineering, Chinese Academy of Sciences, Beijing, China.
His research interests include signal processing theory and technology,
electromagnetic acoustic-optic detection and protection, and information
security.

Chenggang Jia is a Ph.D. student in Cyber Security at the Institute of
Information Engineering, Chinese Academy of Sciences, Beijing, China.
His research interests include digital forensics and information security.

Yongheng Jia is an M.S. student in Computer Science at Tianjin Uni-
versity, Tianjin, China. His research interests include malware detection
and classification.

Jianguo Jiang is a Professor of Cyber Security at the Institute of Infor-
mation Engineering, Chinese Academy of Sciences, Beijing, China. His
research interests include network security, threat intelligence and data
security.

James Jones is an Associate Professor of Digital Forensics at George
Mason University, Fairfax, Virginia. His research interests include digital
artifact persistence, extraction, analysis and manipulation.

Xiangui Kang is a Professor of Computer Science and Cyber Security
in the School of Data and Computer Science at Sun Yat-Sen University,
Guangzhou, China. His research interests include information forensics,
watermarking, and multimedia communications and security.

Nhien-An Le-Khac is a Lecturer of Computer Science and the Direc-
tor of the Forensic Computing and Cybercrime Investigation Program
at University College Dublin, Dublin, Ireland. His research interests
include digital forensics, cyber security and artificial intelligence.

xii ADVANCES IN DIGITAL FORENSICS XVI

Xiang Li is an M.E. student in Information and Communications En-
gineering at Hainan University, Haikou, China. His research interests
include machine learning, computer vision and image processing.

Yuze Li is an M.S. student in Computer Science at Tianjin University,
Tianjin, China. His research interests include digital forensics and deep
learning.

Myeong Lim is a Ph.D. student in Information Technology at George
Mason University, Fairfax, Virginia. His research interests include digital
forensics, big data analysis and drive similarity.

Changwei Liu is a Principal Technology R&D Associate with Accen-
ture in Arlington, Virginia. Her research interests include trustworthy
artificial intelligence, cloud security and digital forensics.

Chao Liu is a Professor of Cyber Security at the Institute of Infor-
mation Engineering, Chinese Academy of Sciences, Beijing, China. His
research interests include mobile Internet security and network security
evaluation.

Jingcheng Liu is an M.S. student in Computer Science at Tianjin Uni-
versity, Tianjin, China. His research interests include data privacy and
intrusion detection.

Michael Losavio is an Assistant Professor of Criminal Justice at the
University of Louisville, Louisville, Kentucky. His research interests in-
clude legal and social issues related to computing and digital crime.

Yonghao Mai is a Professor of Information Technology at Hubei Police
University, Wuhan, China. His research interests include digital foren-
sics, cyber security, data warehousing and data mining.

Maoyu Mao is an M.E. student in Cyber Security at Sun Yat-sen Uni-
versity, Guangzhou, China. Her research interests include audio forensics
and machine learning.

Contributing Authors xiii

Anand Kumar Mishra is a Ph.D. student in Computer Science and
Engineering at Malaviya National Institute of Technology, Jaipur, In-
dia. His research interests include digital forensics and cyber security,
especially related to cloud computing and container technology.

Martin Olivier is a Professor of Computer Science at the University of
Pretoria, Pretoria, South Africa. His research focuses on digital forensics
– in particular, the science of digital forensics and database forensics.

Gilbert Peterson is a Professor of Computer Science at the Air Force
Institute of Technology, Wright-Patterson Air Force Base, Ohio. His
research interests include digital forensics, artificial intelligence and sta-
tistical machine learning.

Emmanuel Pilli is an Associate Professor and Head of the Department
of Computer Science and Engineering at Malaviya National Institute of
Technology, Jaipur, India. His research interests include cyber security,
digital forensics, cloud computing, big data, blockchains and the Internet
of Things.

Thomas Schäfer is a Researcher at the National Research Center for
Applied Cybersecurity, Darmstadt, Germany. His research interests in-
clude network forensics and automobile forensics.

Upasna Singh is an Assistant Professor of Computer Science and En-
gineering at the Defence Institute of Advanced Technology, Pune, India.
Her research interests include digital forensics, machine learning and
social network analysis.

Anoop Singhal is a Senior Computer Scientist and Program Manager
in the Computer Security Division at the National Institute of Standards
and Technology, Gaithersburg, Maryland. His research interests include
network security, network forensics, cloud security and data mining.

Ranul Thantilage is a Ph.D. student in Computer Science at Uni-
versity College Dublin, Dublin, Ireland. His research interests include
digital forensics, cyber security and big data analytics.

xiv ADVANCES IN DIGITAL FORENSICS XVI

Jan Türr is an M.Sc. student in Computer Science at Technical Uni-
versity Darmstadt, Darmstadt, Germany. His research interests include
digital forensics, network forensics and anti-forensics.

Yichen Wei is a Ph.D. student in Computer Science at the Univer-
sity of Hong Kong, Hong Kong, China. Her research interests include
information security, digital forensics and artificial intelligence.

Duminda Wijesekera is a Professor of Computer Science at George
Mason University, Fairfax, Virginia. His research interests include sys-
tems security, digital forensics and transportation systems.

Wencan Wu is an M.S. student in Computer Science at the University
of Hong Kong, Hong Kong, China. His research interests include digital
forensics and cyber security.

Liang Xiao is a Professor of Communications Engineering and Cyber
Security in the School of Communications Engineering at Xiamen Uni-
versity, Fujian, China. Her research interests include wireless security,
privacy protection and wireless communications.

Zhongcheng Xiao is an M.E. student in Software Engineering at Sun
Yat-sen University, Guangzhou, China. His research interests include
audio forensics and reinforcement learning.

Ken Yau is a Ph.D. student in Computer Science at the University of
Hong Kong, Hong Kong, China. His research interests are in the area of
digital forensics, with an emphasis on industrial control system forensics.

Siu-Ming Yiu is a Professor of Computer Science at the University of
Hong Kong, Hong Kong, China. His research interests include security,
cryptography, digital forensics and bioinformatics.

Min Yu is an Assistant Professor of Cyber Security at the Institute of
Information Engineering, Chinese Academy of Sciences, Beijing, China.
His research interests include malicious document detection, document
content security and document security design and evaluation.

Contributing Authors xv

Jun Zhang is a Professor of Information Technology at Hubei Police
University, Wuhan, China. His research interests include digital foren-
sics, cryptography and cyber security.

Yaping Zhang is an Assistant Professor of Computer Science at Tian-
jin University, Tianjin, China. His research interests include network
security, data mining and digital forensics.

Preface

Digital forensics deals with the acquisition, preservation, examination,
analysis and presentation of electronic evidence. Computer networks,
cloud computing, smartphones, embedded devices and the Internet of
Things have expanded the role of digital forensics beyond traditional
computer crime investigations. Practically every crime now involves
some aspect of digital evidence; digital forensics provides the techniques
and tools to articulate this evidence in legal proceedings. Digital foren-
sics also has myriad intelligence applications; furthermore, it has a vital
role in cyber security – investigations of security breaches yield valuable
information that can be used to design more secure and resilient systems.

This book, Advances in Digital Forensics XVI, is the sixteenth volume
in the annual series produced by the IFIP Working Group 11.9 on Dig-
ital Forensics, an international community of scientists, engineers and
practitioners dedicated to advancing the state of the art of research and
practice in digital forensics. The book presents original research results
and innovative applications in digital forensics. Also, it highlights some
of the major technical and legal issues related to digital evidence and
electronic crime investigations.

This volume contains sixteen revised and edited chapters based on
papers presented at the Sixteenth IFIP WG 11.9 International Confer-
ence on Digital Forensics, held in New Delhi, India on January 6-8, 2020.
The papers were refereed by members of IFIP Working Group 11.9 and
other internationally-recognized experts in digital forensics. The post-
conference manuscripts submitted by the authors were rewritten to ac-
commodate the suggestions provided by the conference attendees. They
were subsequently revised by the editors to produce the final chapters
published in this volume.

The chapters are organized into seven sections: Themes and Issues,
Forensic Techniques, Filesystem Forensics, Cloud Forensics, Social Me-
dia Forensics, Multimedia Forensics and Novel Applications. The cov-
erage of topics highlights the richness and vitality of the discipline, and
offers promising avenues for future research in digital forensics.

xviii ADVANCES IN DIGITAL FORENSICS XVI

This book is the result of the combined efforts of several individuals.
In particular, we thank Gaurav Gupta for his tireless work on behalf of
IFIP Working Group 11.9 on Digital Forensics. We also acknowledge
the conference sponsors, Cellebrite, Magnet Forensics and Lab Systems,
as well as the support provided by the Ministry of Electronics and Infor-
mation Technology of the Government of India, U.S. National Science
Foundation, U.S. National Security Agency and U.S. Secret Service.

GILBERT PETERSON AND SUJEET SHENOI

I

THEMES AND ISSUES

Chapter 1

DIGITAL FORENSICS AND THE BIG
DATA DELUGE – SOME CONCERNS
BASED ON RAMSEY THEORY

Martin Olivier

Abstract Constructions of science that slowly change over time are deemed to be
the basis of the reliability with which scientific knowledge is regarded. A
potential paradigm shift based on big data is looming – many researchers
believe that massive volumes of data have enough substance to capture
knowledge without the theories needed in earlier epochs. Patterns in big
data are deemed to be sufficient to make predictions about the future,
as well as about the past as a form of understanding. This chapter uses
an argument developed by Calude and Longo [6] to critically examine
the belief system of the proponents of data-driven knowledge, especially
as it applies to digital forensic science.

From Ramsey theory it follows that, if data is large enough, knowl-
edge is imbued in the domain represented by the data purely based on
the size of the data. The chapter concludes that it is generally im-
possible to distinguish between true domain knowledge and knowledge
inferred from spurious patterns that must exist purely as a function of
data size. In addition, what is deemed a significant pattern may be re-
futed by a pattern that has yet to be found. Hence, evidence based on
patterns found in big data is tenuous at best. Digital forensics should
therefore proceed with caution if it wants to embrace big data and the
paradigms that evolve from and around big data.

Keywords: Digital forensic science, big data, Ramsey theory, epistemology

1. Introduction

“Today, machine learning programs do a pretty good job most of the
time, but they don’t always work. People don’t understand why they
work or don’t work. If I’m working on a problem and need to under-
stand exactly why an algorithm works, I’m not going to apply machine
learning.”

Barbara Liskov, 2008 A.M. Turing Award Laureate [9]

c© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XVI, IFIP AICT 589, pp. 3–23, 2020.

https://doi.org/10.1007/978-3-030-56223-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56223-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-56223-6_1

4 ADVANCES IN DIGITAL FORENSICS XVI

“Deep learning and current AI, if you are really honest, has a lot of
limitations. We are very very far from human intelligence, and there
are some criticisms that are valid: It can propagate human biases, it’s
not easy to explain, it doesn’t have common sense, it’s more on the level
of pattern matching than robust semantic understanding.”

Jerome Pesenti, Vice President of Artificial Intelligence, Facebook [13]

From ancient times, science has operated on the basis of observation
of interesting patterns. Patterns observed in the movement of celestial
bodies, interactions between physical objects and even human behav-
ior simplified prediction and, eventually, culminated in scientific under-
standing.

In 1782, John Smeaton, a British engineer, offered his scientific knowl-
edge of sea currents as evidence in a case involving the silting of the
harbor at Wells-next-the-Sea in Norfolk [22]. At that time, evidence
relying on, say Newton’s work, would have been classified as hearsay
evidence unless Newton was called to confirm it – a challenge because
Newton passed away in 1727. Since 1782, science and expert witnesses
have become entrenched in legal proceedings.

We are currently at another watershed moment in history. With the
advent of big data, data science and deep learning, patterns are being
uncovered at an increasing rate and are used to predict future events.
In forensic science, pressure is increasing to use these technologies to
predict the past to provide a scientific basis for finding facts that may
be useful in legal proceedings.

Numerous calls have been made to engage intelligent techniques:

“[Artificial Intelligence] in digital forensics . . . does have a lot to offer
the digital forensics community. In the short term it is likely that it can
be immediately effective by the use of more complex pattern recognition
and data mining techniques” [16].

“[M]achine learning could play an important role in advancing these [code
attribution and automated reverse engineering] research areas” [16].

“Artificial Intelligence (AI) is an area of computer science that has con-
centrated on pattern recognition and . . . we highlighted some of the main
themes in AI and their appropriateness for use in a security and digital
forensics context” [17].

“AI is the perfect tool to aggregate information from the specifications
for cyber security . . . This use of AI will lift the burden of classification
of these data for the cyber analyst and provide a faster and more effective
result for determining who is to blame and how to respond” [23].

Olivier 5

However, from Ramsey theory, it is known that any dataset that is
large enough will contain a multitude of regular patterns. The patterns
stem from the size of the dataset, rather than anything represented by
the data; the patterns are guaranteed to exist even in random data.
A finding derived from big data may, therefore, have more to do with
the size of the data than with the case being litigated. Such spurious
patterns could lead to a spurious system of (in)justice.

This chapter follows the logic of a generic argument by Calude and
Longo [6] – based on Ramsey theory and ergodic theory – to reflect on
the role that big data and related technologies ought to play in forensic
science, with a specific focus on digital forensic science.

This chapter also discusses some aspects of patterns and repetitions
with specific reference to inferences based on the patterns. This is illus-
trated using court cases where short patterns played a significant role.
The chapter explores the guaranteed presence of (often spurious) pat-
terns in large datasets. Finally, it illustrates the inherent dangers that
arise if digital forensic findings are based on inferences from patterns in
big data.

2. Patterns and Repetition

It is all too human to expect chaos in nature and then to interpret
a pattern in the chaos as something of special significance. Conversely,
many aspects of nature (such as the coming and going of seasons) pro-
duce expectations of a regular pattern, and any deviation from the pat-
tern is often deemed significant. In games of chance, some events, such
as throwing a pair of dice and getting a double is deemed lucky, and
a series of such doubles may be deemed a lucky streak. However, the
streak cannot continue for long before one begins to doubt the integrity
of the dice. Conversely, one does not expect that the same person will
win a lottery on a fairly regular basis – if this were to happen, one would
doubt the integrity of the lottery system. In such sequences of events,
there are often sequences that would seem normal and sequences that
would seem to be anomalous.

On purely statistical grounds, if the probability of encountering some
phenomenon is p = 10−6, then one would expect to encounter the phe-
nomenon, on average, once in a million inspected cases. If it is the
probability of being born with an unusual medical condition, then the
usual absence of the condition would in all likelihood be labelled as nor-
mal, and when a child is born with the condition, it would be deemed
to be abnormal or, in the language used below, an anomaly.

6 ADVANCES IN DIGITAL FORENSICS XVI

In the examples above, the probabilities of the anomalies can be calcu-
lated rather accurately using basic probability theory and encountering
them (on average) once in given periods of time or volumes are expected.
More regular occurrences would, with very high probabilities, be indica-
tive of anomalies.

However, as the chapter will explain, in a large dataset, data clusters
that exhibit certain traits have to occur with mathematical certainty.
The sizes and prevalence of the clusters are functions of data size and
may be totally unrelated to what the data are purported to represent.
It seems natural to denote the more prevalent clusters as normal and
the less prevalent clusters as anomalies.

Such differentiation between normality and anomaly is often the basis
of intrusion detection in computer networks and it is increasingly be-
ing applied in digital forensics. This claim will be substantiated below.
However, if the occurrences of normal data and anomalies are due to the
size of the data, rather than some justifiable theory, then the distinction
between normality and anomaly is very tenuous at best (and would be
wrong in many cases). If this is the case, such differences should not
serve as the basis of scientific findings in forensic science.

To make matters more concrete, consider a web server request that
contains an extremely long URL. Often this is indicative of an attempt
to exploit a buffer overflow vulnerability in the server. Normal requests
are typically relatively short compared with anomalous requests. In
addition, if lengthy requests can be linked to known vulnerabilities in
servers, then the odds would increase that they are indeed malicious
requests.

Another common pattern in intrusion detection involves a port scan.
Methods for hiding port scans often interfere with some of the regular
features in typical port scans. A port scan is often an indication of
nefarious intention, unless the port scan was performed as part of an
official security assessment.

Correlating anomalous events such as unusual web requests and port
scans with reported computing incidents may be useful. However, it is
important to remember that causality may also work in the other direc-
tion, where the incident causes the anomaly. A computer system that
has lost connectivity typically makes an unusually large number of at-
tempts to re-establish connectivity. More importantly for the purposes
of this chapter, anomalous patterns may be entirely unrelated to inci-
dents to which they apparently correlate and deriving any significance
from the patterns would be incorrect. Making this case convincingly has
to be postponed. Understanding the belief in patterns begins at a much
simpler point – where a small correlation is just too significant to ignore.

Olivier 7

2.1 Small Correlations

Unexpected patterns are often deemed significant even in small data-
sets. To the best of this author’s knowledge, the interpretation of pat-
terns in a cyber-related court case has not led to significant scrutiny of
the presented evidence. Therefore, a well-known and widely discussed
matter is used to reflect on the use of patterns as evidence in court.

Consider the infamous, now discredited, Meadow’s law, which is based
on patterns: “One sudden infant death is a tragedy, two is suspicious
and three is murder, until proved otherwise” [15].

Meadow’s law formed the basis of expert evidence in a number of
cases. Arguably, the most prominent case was Regina v. Sally Clark [10].
Sally Clark’s first son, Charles, died in December 1996, aged 11 weeks.
The pathologist found that the death was due to natural causes.

Sally Clark’s second son, Harry, died in January 1998, aged 8 weeks.
The pathologist ruled Harry’s death to be unnatural and revised his
finding about Charles, whose death he also deemed to be unnatural.

Sir Samuel Roy Meadow (of Meadow’s law fame) was an expert wit-
ness in the ensuing murder trial. His evidence was based on the law
carrying his name, although the law was not mentioned explicitly dur-
ing his testimony.

Sally Clark was found guilty and sentenced to life. However, she was
released from jail in 2003 after a successful second appeal [11].

The pattern played a major role in Sally Clark’s conviction and in
the failure of her first appeal [10]. The judgment in the second appeal
provides interesting insights into how the pattern was construed by the
prosecution and jurors. This is discussed in more detail below.

2.2 Patterns and/or Knowledge

The previous paragraph illustrates that a potentially strong belief may
be formed even when a very short pattern is considered. Court argu-
ments turned on many facets of the Sally Clark case and the notion of
probability was deemed of minor importance; rather, medical knowledge
was deemed paramount in the original trial and in both appeals.

In contrast, machine learning, especially in the context of big data,
has tended to ignore underlying knowledge and focus on patterns. Lan-
gley [14] describes the development as follows: “During the 1990s, a
number of factors led to decreased interest in the role of knowledge. One
was the growing use of statistical and pattern recognition approaches,
which improved performance but which did not produce knowledge in
any generally recognized form.”

8 ADVANCES IN DIGITAL FORENSICS XVI

During earlier periods of artificial intelligence, underlying knowledge
about problem domains was significant. Knowledge representation was
at the core of expert systems and domain-specific heuristics improved
the speed of machine learning. However, as machine learning developed,
the focus shifted to an “increasing reliance on experimental evaluation
that revolved around performance metrics [which] meant there was no
evolutionary pressure to study knowledge-generating mechanisms” [14].

In a similar vein, Anderson [1] published an article in Wired with the
provocative title borrowed from an earlier claim by a George Box – The
end of theory: The data deluge makes the scientific method obsolete. In
this article, Anderson declares:

“Out with every theory of human behavior, from linguistics to sociology.
Forget taxonomy, ontology and psychology. Who knows why people do
what they do? The point is they do it, and we can track and measure
it with unprecedented fidelity. With enough data, the numbers speak for
themselves.”

2.3 Big Data

Big data has been a concern in the context of digital forensics ever
since it emerged as an academic discipline [2]. Some of the earliest
concerns were about finding the proverbial needles in haystacks as the
sizes of the haystacks increased [18]. Dramatic increases in the amount
of storage associated with computers have made comprehensive forensic
imaging very difficult. The emergence of the cloud has only exacerbated
the problem.

However, in parallel with these concerns, a new field of study devel-
oped under the big data rubric. The principle underlying this field is
that the universe and aspects of it behave according to some patterns.
If enough data is available, the analysis of the data can reveal the pat-
terns. Once the patterns are known, behavior becomes predictable. This
knowledge can be monetized or other benefits may be derived from it.
Meanwhile, the name of the field has changed over time – data mining,
data analytics, data science. Machine learning and deep learning are
closely associated with the field. This chapter uses the term big data
unless specific differentiation is required.

Given the popularity of big data, it was only natural that researchers
would posit the use of big data methods in digital forensics.

3. What Constitutes Correlation?

The Sally Clark case illustrates pattern recognition and correlation in
a small dataset.

Olivier 9

In the second appeal [11], the court pointed out that the previous
courts (erroneously) accepted that the deaths of her two children were
related (or correlated) on the following grounds (quoted verbatim):

(i) Christopher and Harry were about the same age at death namely 11 weeks and

8 weeks.

(ii) They were both discovered unconscious by Mrs. Clark in the bedroom, allegedly

both in a bouncy chair.

(iii) Both were found at about 9.30 in the evening, shortly after having taken a

successful feed.

(iv) Mrs. Clark had been alone with each child when he was discovered lifeless.

(v) In each case Mr. Clark was either away or about to go away from home in

connection with his work.

(vi) In each case there was evidence consistent with previous abuse.

(vii) In each case there was evidence consistent with recently inflicted deliberate in-

jury.

The appeal ruling considered each of these points systematically and
rejected every point. It should be noted that these points were raised by
the prosecution rather than the expert witnesses, and the court was, in
principle, equipped to deal with such arguments. However, the incorrect
reasoning in the original trial and the first appeal was only rectified by
the second appeal [11].

In contrast, when an expert witness uses such methods, the court is
ill equipped to deal with them, unless they are rebutted by other ex-
perts. The closest that any expert witness came to including anything
similar in expert testimony was Meadow’s testimony on the rarity of two
infant deaths in one family. Meadow cited from a work that the preva-
lence of Sudden Infant Death Syndrome (SIDS) was one in 8,543 cases.
Some claim that Meadow obtained this incidence from a 1995 article in
Lancet [3]. Hence, with the probability p of a SIDS case estimated to be
p = 1

8543 , Meadow determined the probability of repeated cases by mul-
tiplying the estimated probability p by the number of cases, assuming
that the occurrences of SIDS were independent.

In the Sally Clark case, Meadow concluded that the probability of two
SIDS deaths would be p2 – or about one in 73 million. He proceeded to
illustrate the rarity of two SIDS deaths using a sports betting analogy.
Although the judge downplayed the importance of this number in his
instructions to the jury, its effect arguably stuck. Of course, two deaths

10 ADVANCES IN DIGITAL FORENSICS XVI

in a family may not be independent – they may have been due to the
genetic makeup of the children – and hence, squaring the probability
(without showing independence) was incorrect. This was one of the
issues raised in a press release by the Royal Statistical Society [21] after
the denial of the first appeal [10].

The second aspect raised by the Royal Statistical Society [21] was the
emphasis on the small probability of a specific outcome. The probability
of SIDS is indeed small, but so is the probability (or relative prevalence)
of parents murdering multiple children. One cannot focus on the small
probability of a sequence of events S and proceed to conclude that an-
other unlikely sequence of events B is the logical inference.

As a second example, consider the case of Australian, Kathleen Fol-
bigg. Four of her children died very young: the first in 1989 at age
19 days, the second in 1991 at eight months, the third in 1993 at ten
months and the fourth in 1999 at 19 months. While experts used the
same calculations as Meadow during pretrial hearings, by the time Fol-
bigg’s trial started in March 2003, the British Court of Appeals had
already discredited Meadow’s law and calculations.

Meadow’s law was excluded by the court, but his ideas nevertheless
featured during the trial. A Professor Berry testified that “[t]he sud-
den and unexpected death of three children in the same family without
evidence of a natural cause is extraordinary. I am unable to rule out
that Caleb, Patrick, Sarah and possibly Laura Folbigg were suffocated
by the person who found them lifeless, and I believe that it is probable
that this was the case.” On the other hand, a Professor Herdson deemed
the events to be too different to correspond to a pattern in which SIDS
deaths would occur, and used the absence of a specific pattern (amongst
others) to be indicative of unnatural causes of death.

In the Sally Clark and Kathleen Folbigg cases other evidence was in-
fluential in the eventual findings of the various courts. In fact, this other
evidence was eventually more important than the presence or absence of
patterns.

In the Sally Clark case, microbiological test results for Harry were
not available to the defense and were only discovered by them after
the first appeal. The second appellate court found that the availability
of these results, along with expert testimony, could have impacted the
jury’s decision and concluded that the guilty verdict was unsafe. On
its own, the guilty verdict regarding Christopher’s death was unsafe.
The prosecution did not apply for a re-trial and the convictions were set
aside.

In the Kathleen Folbigg case, diaries that she maintained played a
significant role in the proceedings and the outcome of the trial. Public

Olivier 11

interest eventually led to a judicial inquiry by Reginald Blanch, former
Chief Judge of the New South Wales District Court, who reviewed the
case and heard new evidence. In his July 2019 report, Reginald Blanch
concluded that “the Inquiry does not cause me to have any reasonable
doubt as to the guilt of Kathleen Megan Folbigg for the offences of which
she was convicted. Indeed, as indicated, the evidence which has emerged
at the Inquiry, particularly her own explanations and behavior in respect
of her diaries, makes her guilt of these offences even more certain.” In
addition, “there is no reasonable doubt as to any matter that may have
affected the nature or severity of Ms. Folbigg’s sentence” [4].

4. Correlation in Big Data

Many papers express concern about or reject the notion that data
can speak for itself without the need for a theory. One only has to look
through the many papers that cite Anderson’s claim [1] to find such
critiques.

Calude and Longo [6] make a critique that should be taken seriously in
digital forensics. They “prove that very large databases have to contain
arbitrary correlations. These correlations appear only due to the size,
not the nature, of data. They can be found in ‘random’ generated, large
enough databases, which . . . implies that most correlations are spurious”
[emphasis by Calude and Longo].

Calude and Longo use a number of theorems from Ramsey theory and
ergodic theory that are relevant in the current context. This chapter only
focuses on the final claim made by Calude and Longo that is based on
Ramsey theory, but a different exposition is provided.

5. Ramsey Theory

Ramsey theory studies the number of objects that should be present
in a collection for order to emerge. Perhaps the best-known example
involves a scenario where people attend a party. Any two people at the
party will either have met previously or be mutual strangers. If colors
are used to represent the relationships between pairs of people, the case
where they have previously met may be represented by the color green
while the case where they are mutual strangers may be represented by
the color red.

The fundamental question in Ramsey theory is: What is the minimum
number of people who need to be at the party to have at least c cases of
the same color (or, stated differently, to have c monochromatic cases).

If, for example, c is chosen to be one, it is easy to show that n =
2. Specifically, the relationship between two attendees a and b can be

12 ADVANCES IN DIGITAL FORENSICS XVI

represented graphically as an edge between vertices a and b; the edge is
green if they know each other and red if they are mutual strangers.

Furthermore, if c = 2 then n = 3. Specifically, attendees a, b and c
can be depicted graphically as a triangle with vertices a, b and c, and
edges (a, b), (a, c) and (b, c) whose colors represent the relationships.
Since there are two colors (red and green) and three edges, at least two
edges must have the same color.

The notation R(s, t) is used to depict the so-called Ramsey numbers.
R(s, t) is the minimum number of objects in a set such that some re-
lationship holds among at least s members of the set, or does not hold
among at least t members of the set.

As illustrated by the party problem, it is natural to think about Ram-
sey theory in terms of graphs. In graph theory, a complete graph is one
where every vertex is connected to every other vertex. For n vertices,
the corresponding complete graph is denoted by Kn. A clique is a sub-
graph that is complete – where all the vertices are connected. In this
context, the task is to color a complete graph using two colors. One
color (say green) is used to color an edge if the relationship holds be-
tween the vertices connected by the edge; the other color (say red) is
used to color an edge if the relationship does not hold between the two
connected vertices. Then, the Ramsey number R(s, t) is the smallest n
such that graph Kn must either contain a clique of s (or larger) with
green edges or a clique of size t (or larger) with red edges. Note that,
instead of saying that a subgraph consists of, say, green edges, it is more
appropriate to say that a subgraph is induced by red edges. The former
term is used here for reasons of simplicity.

In general, the binary relationship used above – that some relationship
holds or does not hold – is too restrictive. It is useful to talk about any
set of relationships that form a partition of the possible relationships
that may hold between the vertices. If the vertices represent events
that occurred in a computer system under investigation, then the time
between the events may for some reason be deemed to be a possibly rel-
evant relationship. As an arbitrary example, events that occurred hours
apart, minutes apart and seconds (or less) apart form such a partition
– assuming a definition of time exists for events that occurred multi-
ple times. Obviously, a more precise notion of the informal concepts of
hours, minutes and seconds would also be required.

A cautionary note is required at this stage. The Ramsey theory intro-
duced here (following the exposition by Calude and Longo [6]) is based
on undirected graphs, where the relationships between objects or eve-
nts are symmetric. An appropriate example is the time between events.
However, the question of whether an event preceded another event, coin-

Olivier 13

cided with it or followed it is asymmetric and is, therefore, not covered
by the current discussion. In any case, the exclusion of asymmetric
relationships is not material in this chapter.

5.1 Finite Ramsey Theorem

In 1930, Ramsey [20] proved the following theorem that is the foun-
dation of the theory carrying his name:

Given any r, n and μ, we can find an m0 such that, if m ≥ m0 and the
r-combinations of any Γm are divided in any manner into μ mutually
exclusive classes Ci (i = l, 2, . . . , μ), then Γm must contain a sub-class
Δn such that all the r-combinations of members of Δn belong to the
same Ci.”

An r-combination is a set of r elements that occur in a dataset. If the
dataset contains the values {a, b, c, d}, then the 3-combinations present
are: {a, b, c}, {a, b, d}, {a, c, d} and {b, c, d}. Every 3-combination is
assigned to one of μ classes (or colors, as used previously).

An analogy with the training phase of supervised machine learning
can provide insights into the theorem. In supervised learning, a number
of inputs are provided to a classifier along with the class associated with
the inputs. Let r inputs be used for each instance to be classified and
let every instance be assigned to one of the μ classes. Let n be some
number that is chosen. Then, using only μ and n, a number m0 can be
determined such that any selection of m0 instances in the training data
will have at least n instances that belong to the same class. Note that
this analogy says nothing about the learning that may occur. It merely
says that having at least n instances of the same class in the training
data is unavoidable.

More formally, what the Finite Ramsey theorem does predict (and
guarantee) is that there is some (finite) number m0 such that after clas-
sifying m0 of the r-combinations, n of the r-combinations will have been
assigned to one of the classes. The theorem says nothing about the first
class that will reach this n threshold. It just says that the threshold
will have been reached. The point m0 at which a class is guaranteed
to reach the n threshold can sometimes be calculated precisely. Upper
bounds can be determined for cases where it cannot (yet) be calculated
precisely.

The fact that a certain relationship between members of some set
holds relatively often in a dataset may be of interest in unravelling an
incident. Ramsey’s theorem warns us to proceed with care. However, it
seems much more likely that an activity of interest in a digital forensic
investigation would consist of several actions that together constitute

14 ADVANCES IN DIGITAL FORENSICS XVI

an anomalous (or otherwise useful) indication of what transpired (or is
otherwise useful).

For example, in a case involving network communications, a message
may be deemed to be significant in terms of the hosts involved in sending
the message and the ports used. Hence, tuples consisting of these four
values may be deemed useful and classified in some manner. Whether
these values would be sufficient (or even relevant) cannot be answered
without more context.

As a more concrete example, consider the problem of authorship at-
tribution, which often uses contiguous sequences of linguistic elements
called n-grams. These elements may be letters, words, word pairs,
phonemes or other entities that experimentally turn out to be useful.
In a 2018 authorship attribution competition [12], “n-grams were the
most popular type of features to represent texts in” one of the primary
tasks in the competition. “More specifically, character and word n-grams
[were] used by the majority of the participants.”

Although the Finite Ramsey theorem does not play a significant role
in the remainder of this chapter, it sets the stage for the Van der Waerden
theorem of 1927, which is part of Ramsey theory. Once again, the logic
of Calude and Longo [6] is employed.

5.2 Van der Waerden’s Theorem

The Finite Ramsey theorem provides a threshold beyond which a cer-
tain number of relationships among the members of a set is guaranteed.
In contrast, Van der Waerden’s theorem considers regular occurrences of
some value in a sequence of values. It provides a threshold for the length
of the sequence. Once the sequence is as long as or longer than the com-
puted threshold, it is mathematically guaranteed that some value will
occur regularly at least k times in the sequence for any given k. For-
mally, Van der Waerden’s theorem states that the repeated value will
appear in an arithmetic progression. More informally, these k (or more)
identical values will have the same number of values separating them.
This pattern is referred to as a periodic pattern, in the sense that, once
the pattern starts, every pth value in the sequence is the same for at least
k occurrences. The threshold (or minimum sequence length) from which
point the repetitions are guaranteed is known as the Van der Waerden
number. The Van der Waerden number depends only on two values: (i)
number of distinct values that occur in the sequence; and (ii) number of
repetitions k that are desired. The sequence may correspond to a series
of process states, where a process is in the ready queue (R), executing

Olivier 15

(E), blocked (B), suspended (S) or terminating (T). Its execution history
may correspond to the process sequence:

R E B R E S E T

where the process states are listed using the first letters of their names.
In this example, the alphabet has five values. To have a guaranteed

periodic repetition that repeats, say k = 100 times, it is only needed to
determine the Van der Waerden value for an alphabet of size five and a
pattern of length 100.

Again using concepts from graph theory, the alphabet can be a set of
colors and, rather than talking about the size of the alphabet, it is more
convenient to simply refer to the number of colors in the sequence. Of
course, the colors may represent relationships between elements of some
set (as it did in the Ramsey theory above). The sequence to which Van
der Waerden’s theorem is used may, in the case of digital forensics, be
the sequence of changes in relationships between entities deemed to be
of interest in an examination.

The Van der Waerden number for k = 3 repetitions based on two
colors is 9. Assume that the two colors are red (R) and green (G). Then,
it is possible to construct a sequence of eight colors that have no periodic
repetition of length k = 3.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

G R G R R G R G G R G R R G R G R G R G R R G R G G

R R R G G G

(a) (b) (c)

Figure 1. Van der Waerden example.

Consider the string in Figure 1(a) where the positions of the colors
R and G are indicated above each color. The sequence has no periodic
repetitions.

To extend the sequence, the next item in the sequence has to be R

or G. Since the Van der Waerden number is 9, a repeating pattern is
guaranteed. If R is added, R occurs at positions 5, 7 and 9, as shown
in Figure 1(b). In the language used above, from position 5 onwards,
every second color is R and this is true for k = 3. In contrast, if G is
added as the ninth color, the G occurs in positions 3, 6 and 9. Every
third character (starting at position 3) is G and it repeats k = 3 times
as shown in Figure 1(c).

An important aspect of Van der Waerden’s theorem is illustrated by
the example above. Specifically, the theorem does not predict which

16 ADVANCES IN DIGITAL FORENSICS XVI

value will recur and it does not predict the distance between the recurring
values. However, it guarantees that a periodic pattern of the required
length will be present in the sequence.

To present the work using more formal notation, assume that each
member of a sequence of integers {1, 2, 3, . . . , N} is mapped to one of a
finite number of colors c. Given a number k, a value w exists such that
the numbers {1, 2, 3, . . . , w} contain at least k integers of the same color
that are equidistant from each other.

Let Σ be an alphabet with c symbols. Let s1s2s3 . . . sn be a string on
Σ. Then, for any value k, a value w exists such that the same symbol
would be repeated at least k times at equidistant positions in the string.
Stated differently, for any string of length w, there would be values j
and p such that:

sj = sj+p = sj+2p = . . . = sj+(k−1)p

The smallest number for which every string produced has at least k
periodic repetitions given an alphabet of size c is the Van der Waerden
number, which is denoted as W (c, k). The value of W (2, 3) is used to
demonstrate the concept. It is easy to show that W (2, 3) > 8 because
it is simple to produce a string using two symbols such that the same
symbol does not occur at equidistant positions.

As with the Finite Ramsey theorem, Van der Waerden’s theorem does
not indicate which symbol (or color) will be repeated. Few Van der
Waerden values are known, but upper bounds have been established.

Calude and Longo [6] express the real concern that the spurious reg-
ular pattern may be discovered and treated as a natural law from which
events in the future may be inferred. Recall that the minimum length k
of the regular pattern can be determined arbitrarily and that any ma-
chine learning application that needs k inputs for learning and testing,
will learn the pattern and make highly accurate predictions within the
repeated pattern. Forensics may indeed use such a law, but often data
analysis in digital forensics is retrospective.

Consider a case where an incident occurs at time t. An investigator
would collect as much data as possible leading up to the incident. As-
sume that data is available from time t0. From the Van der Waerden
theorem it is known that some regular pattern of at least length k exists
in the data, with the value k limited only by the size of the available
data.

A viable approach is to search the data for anomalies by working from
time t backwards until an anomaly has been found or no anomaly is
found if the start of the data has been reached. Assume that the search
for an anomaly stops at time t′ < t without excluding the possibility

Olivier 17

that t′ = t0. Also, assume that the repeating pattern occurs from time
ta to time tb. Note that this does not suggest that all the available data
should be sorted according to time; however, in many cases, data about
events would have an associated time or, at least, be ordered relatively.

At this point, it is instructive to consider strategies for visualizing the
data. The options include: (i) data may be sorted as one long (linear)
sequence of events; (ii) data from various logs may be placed in parallel
lines so that the times of the various recorded events line up; (iii) data
may be sorted according to event type (whether in one long line or in
parallel lines); (iv) data may be subdivided into more lines with one line
per user on whose authority the event occurs; (v) data may be stratified
per node and/or per instance when multiprocessors or cloud computing
are used; or (vi) data may be ordered in some other way. Patterns may
occur on a given time line, across time lines at some specific time or
involve various time lines in some systematic manner. None of these
matters as far as the conclusion is concerned. However, thinking about
such cases may make it simpler for a digital forensic practitioner to
intuitively accept that a pattern may indeed be discovered. Van der
Waerden’ theorem guarantees that a pattern will be present.

Given the ever increasing size of available data, it is possible to assume
that in the general case that warrants a thorough investigation, sufficient
data will be available to guarantee a pattern of length k, where k exceeds
the maximum sequences typically used in machine learning. In any case,
if a longer k is required, more data would be needed and the availability
of this data would not be a problem. In days gone by, logs were destroyed
because storage space was limited, but storage capacities have increased
significantly while storage costs have decreased, eliminating the need to
delete logged data. Moreover, the growth of big data has disincentivized
data deletion merely because the data is old.

5.3 Logic of Inference

Suppose a spurious pattern is discovered – a pattern for which no
causal reason exists.

As a temporal example, assume that evidence is available from time
t0 up to time t1. Assume that the incident occurred at time t with
t0 ≤ t ≤ t1.

In order to simplify the discussion, two brackets are used to indicate
a recurring pattern. A square bracket indicates that the pattern started
at exactly the time written before or after it whereas a round bracket
indicates that some time has elapsed. Thus, t0[)t would indicate that
the recurring pattern was present at the time of the available evidence

18 ADVANCES IN DIGITAL FORENSICS XVI

was collected, but stopped some time before the incident. Similarly, t[)t1
would indicate that the pattern started exactly when the incident oc-
curred, but did not continue until the end of the period during which the
evidence was collected. The notation remains readable without expressly
mentioning t0 and t1, so the simplified expression of when the incident
occurred will be used. Of course, if the incident occurred repeatedly,
the exposition would become more complex, but a single occurrence will
suffice for the current discussion.

Any pattern that coincides with the incident would likely be deemed
significant. Hence, (]t, t[) and t[] are likely to be seen as traces of cause
or effect, with (] possibly seen as causal traces and t[) and t[] seen as
traces of effect. Note that such cause and effect interpretations would
most probably be wrong, but would appear to be rather convincing.
Similarly, a pattern that covers the incident (t) may incorrectly be seen
as traces of some enabling condition.

More generally, the investigator may observe the pattern and attempt
to determine why the pattern disappeared (or began in the first place)
in the hope that it might shed light on the case. If machine learning is
deployed on the dataset, it may learn from the pattern what is deemed
to be normal and flag subsequent values as anomalies.

The discussion above assumed that a spurious pattern was discovered
and used for analysis. However, the starting point of the discussion was
that the pattern was spurious. Therefore, by definition, it is useless in
the analysis of the case.

One possible defense for the use of patterns is that they may be useful
as starting points to search for causality. As noted in this chapter, this
is indeed true – many laws of nature were first observed as patterns and
later understood in causal terms. However, the underlying question in
the current scenario is whether the search for patterns is, at least, useful
as a mechanism to reduce the search space for causality.

The short answer is that there are too many patterns in a big dataset.
Finding all the patterns and testing them for significance would be too
time consuming.

For a more formal discussion, assume that the relationships between
data points are expressed as colors. Neither the arity of the relation-
ships nor the number of possible categories (or colors) into which the
relationships can be classified are important in the current discussion.
They merely have an effect on whether there is enough data to enable
the application of Van der Waerden’s theorem. While a more precise
calculation is possible for a specific case, the assumption is that the big
data context implies that sufficient data is available.

Olivier 19

To be more concrete, assume that a bag of colored relationships
emerges and that the elements of the bag are arranged in a sequence
S. The sequence is the result of the pre-processing mentioned earlier.
It may be a temporal sequence of events with information of little sig-
nificance eliminated or some other mechanism would be used to arrange
the relationships.

Assume that a pattern of length n is deemed significant, where the
value of n may depend on the machine learning technique to be used
or any some other prerequisite for significance. Let s be the number of
elements in a sequence. Let wn be the Van der Waerden number that
guarantees a pattern of length n. As implied earlier, it is assumed that
s ≥ Wn in the context of big data.

Before continuing, it is important to reflect on the classification of
a specific collection of data points into a particular class (or, in the
language of graph theory, a particular color that it shares with other
collections of data points). Some classifications are straightforward. For
example, in the TCP/IP networking context, the expected port ranges
for requests or responses, directions of requests or responses, and many
other attributes can be classified as normal or anomalous without much
debate. However, the question whether this particular classification
scheme would be useful (or lead to the best possible evidence) is far from
clear. In the big scheme of things, it is known that the corpora from
which machine learning occurs often encode irrational categories. See,
for example, recent papers that illustrate how racism may be – and has
been – learned through artificial intelligence [5, 8, 19]. Indeed, confusion
between patterns in criminal behavior and patterns of criminal behavior
is just one example that may impact corpora used to characterize crime.

The point is that classifications of training sets often engage irrational
assumptions that are propagated when machines learn the biases as fac-
tually correct or the machines do not disclose the biases (e.g., biased
accuracy) in their classifications. For the purposes of this work, it is
sufficient to note that a different classification of relationships between
data points would yield a different sequence S′ of relationships, which
may contain one or more patterns that differ from the patterns observed
in S.

From a pessimistic perspective, it is possible that up to s of the classi-
fications made in the sequence S may be incorrect. If r colors are used,
then it is possible to arrive at rs colorings of a sequence of length s,
of which the specific colored sequence S is just one of the sequences.
Since s ≥ wn, each rs would have a periodic pattern of at least length n,
which would make the pattern significant. While it should be possible

20 ADVANCES IN DIGITAL FORENSICS XVI

to discard the bulk of these rs colorings as nonsensical, demonstrating
that they are all nonsensical would be a mammoth task.

It also possible that a single incorrect classification rule could lead to
a pattern that would not have existed. In addition, a pattern depends
on the order of the relationships and other pre-processing tasks that are
often based on the intuition of the individual who mines a large dataset.
If the pattern discovered in S is incriminating evidence, how does the
investigator show that a somewhat different – and possibly more accurate
– classification of relationships would not have led to the discovery of
an equally convincing pattern that may be exculpatory evidence? The
converse outcome, where incriminating evidence is overlooked and an
exculpatory pattern found – based on a tiny misclassification – is equally
serious.

In the context of evidence, the potential existence of meaningful pat-
terns in sr datasets, where s is already a large number, is sufficient to
cast doubt on any pattern found. Unlike the small datasets considered
earlier, the sheer number of possible patterns precludes the exploration
of each pattern as an alternative and keeping or excluding it. Any find-
ing based on such a pattern should be approached with caution – it is
far too easy for the opposing counsel to cast doubt on the conclusions.
The obvious exception is when a theoretical basis from forensic science
exists that can speak to the significance of specific patterns. However,
such patterns should be searched for in cases where they would be of
help, rather than be discovered via a process such as data mining.

6. Conclusions

The increasing volumes of data that pertain to criminal and civil
matters is a well-known challenge facing investigators. However, big
data techniques thrive on large volumes of data and learning from such
data is touted as a viable solution for many problems, even when the
problems are not fully understood.

This chapter has used the same logic as Calude and Longo to explore
the impact of data size on what may be discovered in the data. Ramsey
theory and, more specifically, Van der Waerden’s theorem demonstrate
that spurious patterns are mathematically guaranteed to exist in large
enough datasets. This implies that a discovered pattern may be spurious
– in other words, it may be a function of the size of the data instead
of the content that the data purportedly represents. The discovery of
a pattern does not exclude the discovery of other patterns that may
contradict what was inferred from a discovered pattern. And, of course,
it is computationally infeasible to find all the patterns in big data.

Olivier 21

If forensic conclusions are based on a pattern that has been found, the
opposing side has a simple rebuttal for any such conclusion – How does
the investigator know that a meaningful pattern has been examined?
Without being able to justify the conclusion, there is no way to distin-
guish between a meaningless result derived from a spurious pattern and
a correct, but unreliable, result derived from a meaningful pattern.

Digital forensic practitioners and researchers would be well advised
to avoid calls to jump on the big data bandwagon and wantonly use
its technologies until the findings can be shown to yield evidence that
is compatible with the requirements of presenting the truth, the whole
truth, and nothing but the truth, which, by definition, must be free from
bias.

References

[1] C. Anderson, The end of theory: The data deluge makes the scien-
tific method obsolete, Wired, June 23, 2008.

[2] N. Beebe, Digital forensic research: The good, the bad and the un-
addressed, in Advances in Digital Forensics V, G. Peterson and S.
Shenoi (Eds.), Springer, Heidelberg, Germany, pp. 17–36, 2009.

[3] P. Blair, P. Fleming, D. Bensley, I. Smith, C. Bacon and E. Taylor,
Plastic mattresses and sudden infant death syndrome, Lancet, vol.
345(8951), p. 720, 1995.

[4] R. Blanch, Report of the Inquiry into the Convictions of Kathleen
Megan Folbigg, State of New South Wales, Parramatta, Aus-
tralia (www.folbigginquiry.justice.nsw.gov.au/Documents/
Report%20of%20the%20Inquiry%20into%20the%20convictions%

20of%20Kathleen%20Megan%20Folbigg.pdf), 2019.

[5] J. Buolamwini and T. Gebru, Gender shades: Intersectional accu-
racy disparities in commercial gender classification, Proceedings of
Machine Learning Research, vol. 81, pp. 77–91, 2018.

[6] C. Calude and G. Longo, The deluge of spurious correlations in big
data, Foundations of Science, vol. 22(3), pp. 595–612, 2017.

[7] J. Clemens, Automatic classification of object code using machine
learning, Digital Investigation, vol. 14(S1), pp. S156–S162, 2015.

[8] K. Crawford and T. Paglen, Excavating AI: The Politics of Training
Sets for Machine Learning, Excavating AI (www.excavating.ai),
September 19, 2019.

[9] S. D’Agostino, The architect of modern algorithms, Quanta Maga-
zine, November 20, 2019.

22 ADVANCES IN DIGITAL FORENSICS XVI

[10] England and Wales Court of Appeal (Criminal Division), Regina
v. Sally Clark, EWCA Crim 54, Case No: 1999/07495/Y3, Royal
Courts of Justice, London, United Kingdom, October 2, 2000.

[11] England and Wales Court of Appeal (Criminal Division), Regina
v. Sally Clark, EWCA Crim 1020, Case No. 2002/03824/Y3, Royal
Courts of Justice, London, United Kingdom, April 11, 2003.

[12] M. Kestemont, M. Tschuggnall, E. Stamatatos, W. Daelemans, G.
Specht and B. Potthast, Overview of the author identification task
at PAN-2018: Cross-domain authorship attribution and style change
detection, in Working Notes of CLEF 2018 – Conference and Labs
of the Evaluation Forum, L. Cappellato, N. Ferro, J. Nie and L.
Soulier (Eds.), Volume 2125, CEUR-WS.org, RWTH Aachen Uni-
versity, Aachen, Germany, 2018.

[13] W. Knight, Facebook’s head of AI says the field will soon “hit the
wall,” Wired, December 4, 2019.

[14] P. Langley, The changing science of machine learning, Machine
Learning, vol. 82(3), pp. 275–279, 2011.

[15] R. Meadow, Fatal abuse and smothering, in ABC of Child Abuse, R.
Meadow (Ed.), BMJ Publishing Group, London, United Kingdom,
pp. 27–29,1997.

[16] F. Mitchell, The use of artificial intelligence in digital forensics: An
introduction, Digital Evidence and Electronic Signature Law Re-
view, vol. 7, pp. 35–41, 2010.

[17] F. Mitchell, An overview of artificial intelligence based pattern
matching in a security and digital forensic context, in Cyberpatterns,
C. Blackwell and H. Zhu (Eds.), Springer, Cham, Switzerland, pp.
215–222, 2014.

[18] M. Pollitt and A. Whitledge, Exploring big haystacks, in Advances
in Digital Forensics II, M. Olivier and S. Shenoi (Eds.), Springer,
Boston, Massachusetts, pp. 67–76, 2006.

[19] I. Raji and J. Buolamwini, Actionable auditing: Investigating the
impact of publicly naming biased performance results of commer-
cial AI products, Proceedings of the AAAI/ACM Conference on AI,
Ethics and Society, pp. 429–435, 2019.

[20] F. Ramsey, On a problem of formal logic, Proceedings of the London
Mathematical Society, vol. s2-30(1), pp. 264–286, 1930.

[21] Royal Statistical Society, Royal Statistical Society concerned by is-
sues raised in Sally Clark case, News Release, London, United King-
dom, October 23, 2001.

Olivier 23

[22] J. Smeaton, Reports of the Late John Smeaton, F.R.S., Made on
Various Occasions, in the Course of his Employment as a Civil
Engineer, Volume II, Longman, London, United Kingdom, 1812.

[23] J. Wulff, Artificial intelligence and law enforcement, Australasian
Policing, vol. 10(1), pp. 16–23, 2018.

Chapter 2

IDENTITY AND SUFFICIENCY
OF DIGITAL EVIDENCE

Michael Losavio

Abstract Digital evidence proffered by prosecutors is subject to the same stan-
dards as all other evidence. However, a major concern is that the novelty
of digital evidence may lead to less rigor in its application. This chap-
ter discusses issues related to identity and sufficiency of digital evidence,
including the need for authenticity and reliability, and concerns about
identification via digital evidence.

Keywords: Digital evidence, identification, authentication, hearsay

1. Introduction

The identification of the responsible party is a core issue in all crim-
inal investigations and prosecutions, including the pursuit of computer
and online misconduct. Indeed, the identification of the person who
committed the offense is an essential element that the government must
establish beyond a reasonable doubt (United States v. Alexander [7]).
However, this may be especially challenging for computer and online mis-
conduct because evidence used for identification is often circumstantial
or indirect rather than direct (e.g., I saw him do it).

By contrast, in many cases, digital evidence may be used in support
of warrants for the search and seizure of direct evidence to establish
the identity of the offender. A canonical example is digital contraband
such as child pornography. Information about network usage for contra-
band downloads, such as an IP address, is deemed sufficient for a search
warrant of the physical space associated with the IP address. Finding
such contraband on a person’s device supports an adjudicative finding
that identifies the person as the offender with knowing possession of the
contraband.

c© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XVI, IFIP AICT 589, pp. 25–36, 2020.

https://doi.org/10.1007/978-3-030-56223-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56223-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-56223-6_2

26 ADVANCES IN DIGITAL FORENSICS XVI

But the use of such evidence to establish identification may become
attenuated with other forms of computer and network activity, especially
misconduct beyond the possession of digital contraband. This may in-
crease the risk of the incorrect identification of an innocent person as
the offender.

Often, other evidence may be necessary to establish linkage to the
identity of the offender. One example is the use of closed-circuit tele-
vision camera recordings of device access that link a person physically
to the site of activity; this additional evidence can be crucial. However,
when only trace identification of a defendant is found or little direct ev-
idence identifies the culprit, the government must prove by additional,
sufficient probative facts to infer a culpable rather than accidental con-
nection.

This chapter discusses issues related to identity and sufficiency of
digital evidence, including the need for authenticity and reliability, and
concerns about identification via digital evidence to prove guilt.

2. Background

This section discusses the legal foundation for identification using dig-
ital evidence. It reviews jurisprudence related to circumstantial or in-
direct evidence obtained via traditional – non-digital – forensics. The
extrapolation is key to developing best practices for the growing body
of digital evidence.

In United States v. Jordan [14], the court listed additional and sub-
stantial evidence linking the defendant to artifacts of the crime where no
direct witness evidence identified him. The indirect evidence included
the debit card linked to the account used in the offense, a receipt for
the money order used to open the account, a cell phone containing the
fraudulent message and a gift card used to pay for the telephone number
on the distributed fraudulent documents.

In Mikes v. Bork [10], the court found that, with only fingerprints
linking a defendant to a crime, the government must show a further
connection that establishes guilt.

These cases imply that in similar scenarios involving computer or on-
line misconduct, where direct witness identification is not possible, the
identification of the culprit may be proven by inferential and circum-
stantial evidence [16, 17]. Network traces of activity are like fingerprints,
remnants of activity that may indicate a connection without defining the
depth of the connection.

The comment on fingerprint-only cases in Mikes v. Bork [10] is in-
structive. Often, a profile of electronic data may be assembled to create

Losavio 27

a functional equivalent of the fingerprint, but this still requires attention
to sufficient inferential and circumstantial evidence to make a conclusion
of guilt beyond a reasonable doubt. When a defendant has been con-
victed primarily on the basis of digital evidence, there was additional
circumstantial evidence beyond coincident account usage or the use of
the defendant’s name to connect the defendant to the crime (see, e.g.,
United States v. Ray [13], United States v. Gonzalez [18] and United
States v. Jordan [14]).

For example, in United States v. Ray [13], an email message containing
contraband was connected to the defendant by additional evidence in
the email, such as pictures of his children, and testimony regarding his
access and control of the relevant computer services. In United States v.
Gonzalez [18], the defendant engaged in health care fraud and aggravated
identity theft via online billing of health insurance companies. Extensive
circumstantial text messaging evidence relating to the fraud ultimately
established the connection to Gonzalez.

3. Sufficient Evidence of the Act

In United States v. Fraser [11], the U.S. Federal Court of Appeals
(Sixth Circuit) discussed proper attribution regarding conduct under
Federal Rule of Evidence 404(b) [24]. It did so in the context of other
acts such as writings (like metadata) that contain particular facts from
which attribution may be inferred.

The parties argued in this case that the other act – a book that the
defendant wrote – was not some sort of previous scam, but the act
of writing about the scam. Specifically, the defendant did not argue
that the trial court should have determined whether he had previously
committed the scam described in his book The Birth of a Criminal.
Moreover, there was no indication that the evidence was admitted for
the purpose of showing that he had actually committed the scam in the
past.

The trial court made the proper preliminary determination that the
defendant wrote The Birth of a Criminal. The court noted that the
book had the picture of the defendant on the cover, listed him as the
author, had a copyright date of 2002, an ISBN of 2972571302 listed
on Amazon.com and was published by Gutter Publications. The book
was further authenticated by the publisher’s website, which listed the
defendant as the founder of Gutter Magazine. The trial court thus, with
detailed findings, properly determined as a preliminary matter that the
defendant wrote the book.

28 ADVANCES IN DIGITAL FORENSICS XVI

Proof of modus operandi may be used to demonstrate identity, such
as permitting signature evidence when identity was “the largest single
issue” in the case [12], yet excluding evidence because proof of a modus
operandi is only relevant when there is an issue regarding the defendant’s
identity [22]. Together these offer a profile of the types of evidence of
computer and network activity that may meet the threshold of suffi-
cient evidence to establish offender identity. A prosecution may mix and
match different evidentiary facts to establish who perpetrated a crime,
even when direct evidence of the identity of the offender is absent.

4. Digital Identity Case Study

This section discusses a case study involving the application of evi-
dentiary facts in an electronic fraud prosecution.

4.1 Electronic Fraud Case

A lucrative area of criminal activity is bank and credit card fraud.
Electronic banking and e-commerce systems often rely on the reduction
of identification to alphanumeric strings that are easily copied or forged.
The growth in two-factor authentication helps reduce such misconduct,
but the continued reliance on a reduced identifier set assures that these
systems will be targets of criminal activity.

One criminal case involved multiple acts of bank and credit card
fraud [23]. Online applications for loans, drawdowns of loan funds and
credit card and debit card use were conducted using online electronic
identification. A related series of acts relating to bank fraud and unau-
thorized access to automated teller machines (ATMs) included the co-
incidence of ATM access transactions with photographs maintained by
the devices with timestamps of transactions. The configurations of the
ATM systems with cameras provided direct time-stamped photographic
evidence that identified the culprit. However, beyond the ATM trans-
actions with photographs, there was no other evidence to correlate or
identify who was using the debit card for the other transactions and was
conducting fraudulent online loan applications and withdrawal actions.

To remedy the gap, the prosecution offered evidence from a senior
bank fraud analyst of an online loan application made using a name, date
of birth and social security number of a putative relative as the contact
and a contact email. The bank fraud analyst recommended denial of
the loan application because the date of issuance of the social security
number was long before the date of birth of the applicant. However, the
analyst acknowledged that he could not tell from the application who
was sitting at the computer when it was made.

Losavio 29

To continue to frame the identification, another bank officer, who
knew one of the victims as she worked to resolve his complaints, testified
to handling an online loan application for $15,000 in the victim’s name.
She also testified to calling the telephone number on the application in
order to speak with the fraud victim:

"A young gentleman answered the phone."

"He said ‘hold on a second’ and came back.

It was the same person I asked to talk to Mr. Victim-1 before."

"So I proceeded with the conversation.

I said, ‘Victim-1?’ and he said ‘Yes.’"

"This is a bank officer calling.

I see that you have applied for a $15,000 premier loan with us.

It is approved so I just want to see when you want to come in

and close the loan."

Q. "What did the person on the other end say?"

A. "The person said, ‘I’ll be in tomorrow.’"

"I said, ‘Okay. Come in with your ID.

You’ll need to come into the branch and sign.’"

"At that point the person said, ‘I have to come to the branch?’"

"I said, ‘Yes. You have to bring your ID.

I have to enter it into the computer.’"

"He said, ‘Okay. I’ll be there tomorrow.’"

Q. "Did the person ever show up?"

A. "No."

Q. "Did the loan ever close?"

A. "No."

Additional evidence relating to these indirect actions came from an-
other bank officer, who acknowledged an account note on the compro-
mised joint checking account that said “Victim-1 has verified for [the
defendant] to cash checks to $500. Please contact Victim-1 with any
questions and ID [the defendant].”

Nevertheless, upon considering all the circumstantial factors relat-
ing to misconduct, the identification of the wrongdoer in this case was
deemed sufficient by the court (United States v. Vance [21]).

30 ADVANCES IN DIGITAL FORENSICS XVI

4.2 Fraud Case Analysis

The criminal charging document (indictment) asserted that the de-
fendant used the social security number of another person as the means
of identification. The trial court found that the defendant used Victim-
1’s social security number as a means of identification to open a bank
account.

Victim-1 testified that he did not give the defendant permission to use
his social security number to open the account. The trial court asserted
that the defendant, when using Victim-1’s social security number to
open the checking account and submit an online loan application in his
own name with Victim-1’s social security number, was attempting to
commit bank fraud.

However, there was little to no evidence to support the finding that
defendant had used Victim-1’s social security number. The transactions
were done in an anonymous manner with insufficient direct connection
to the defendant. Indeed, the analysis of the trial court that supported
the identification of the defendant as the offender would appear to have
gaps.

Despite the fact that no direct evidence connected the defendant to
the bank application, the trial court found “sufficient circumstantial ev-
idence that [the defendant] had made the loan application.”

Although the business records from the bank and the cable records,
which were submitted a few days after the bench trial concluded, and
although the records showed that the loan application was submitted
from an IP address registered to [another person] and not the defendant,
the court concluded there was sufficient circumstantial evidence that it
was the defendant, as opposed to someone else, who submitted the loan
application using Victim-1’s social security number.

Significantly, as it relates to the charge, neither the defendant nor
any other defense witness admitted to applying for a loan at the bank
in the defendant’s name with Victim-1’s social security number. In fact,
it would have been very odd for someone else to do this.

In effect, the trial court found that, although the IP address used for
the fraudulent transactions belonged to someone other than the defen-
dant and there was no direct evidence associating the defendant with
the transactions, it is significant and relevant to the defendant’s guilt
that no one else admitted to the crime. This would appear to violate
the basic tenets of a criminal prosecution where the state must prove
guilt instead of a defendant having to prove innocence.

The trial court maintained that there was certainly circumstantial
evidence from which the court could conclude that the defendant com-

Losavio 31

mitted the offense of attempted bank fraud when he requested a loan
in his own name using someone else’s social security number. By using
Victim-1’s social security number, the defendant was certainly aware
that, perhaps, if he had used his own social security number, he would
have been unable to obtain the loan because his credit score was not high
enough or he could have been denied the loan for some other reason.

Ultimately, the court found that the defendant did attempt to commit
bank fraud and that he used some other person’s identification during
and in relation to the attempted bank fraud. The court concluded that
the prosecution had submitted sufficient evidence beyond a reasonable
doubt and, therefore, the defendant was found guilty.

In the pursuit of justice, the challenge is to collect and present suffi-
cient evidence to establish guilt or, conversely, show innocence. Beyond
this is the reliability of the evidence and the result – avoiding the false
positive of convicting an innocent person or the false negative of acquit-
ting a guilty party.

4.3 Sufficiency for Identification

Is there support for the trial court’s factual findings about the online
identity of the offender? That someone else did not confess to the of-
fense or even that evidence did not point to anyone else do not support
that the defendant committed the offense. Given the identity problems
with online activities, it is just as likely that the defendant’s means of
identification – his name – was misappropriated by others. This funda-
mental failure to sufficiently establish that the defendant committed the
act establishes that he should not have been convicted of the crime.

Issues of identity in an online context are significant, leading to the
need for greater evidence of real identity in all online contexts using
a variety of tools [2]. There was little or no evidence to support the
finding that the defendant himself had used Victim-1’s social security
number. It was all done in an anonymous manner online with insuf-
ficient connection to the defendant. There was little or nothing that
connected the defendant to the bank application. There was no authen-
tication of the information connecting the name on the application to
the real defendant according to Federal Rule of Evidence 901 [27], which
requires authentication through proof that an item of evidence is what
it is claimed to be.

An identification standard like this does not simply set a low bar on
identification, it opens identification to error and manipulation. This
case study suggests how false trails of evidence could be created to lead
to innocent parties. Unfortunately, many motives are present for such

32 ADVANCES IN DIGITAL FORENSICS XVI

seemingly pointless malice. Harassment, often of a former spouse or
significant other, would be a prime beneficiary of this standard of iden-
tification proof without connection. That a jury may decide beyond
a reasonable doubt is not sufficient protection. U.S. law states that a
judge must dismiss if no rational trier of fact could find proof beyond
a reasonable doubt [28]. This is critical as online criminality continues
to grow. Indeed, it is essential that adequate evidence be established to
convict the guilty and protect the innocent.

5. Authentication and Hearsay Issues

Authentication is a foundational issue for any evidence, digital or oth-
erwise, that establishes identity. To authenticate a fact in evidence is
to demonstrate that it is what it is claimed to be. A digital artifact
from social media with a defendant’s name and photograph must have
sufficient facts to authenticate the printout with the name and photo-
graph. In the United States, this is covered by Federal Rule of Evidence
901(a) [8]. For example, evidence of website postings has been held to be
insufficiently authenticated when the party offering the evidence failed
to show that the sponsoring organization of the website actually posted
the statements instead of a third party [9].

The hearsay rule relates to reliability and testability. According to
Federal Rule of Evidence 801(c) [25], hearsay is “a statement that: (i)
the declarant does not make while testifying at the current trial or hear-
ing; and (ii) a party offers in evidence to prove the truth of the matter
asserted in the statement.” A U.S. federal court [15] has held that video
purporting to demonstrate proper medical procedures was a “statement”
offered for the “truth of the matter asserted” under Federal Rule of Evi-
dence 801 [25] and, thus, its admission was impermissible hearsay (error
harmless). In a related discussion about the reliability of online arti-
facts and their authentication as ancient documents per Federal Rule of
Evidence 803(16) [26], which assumes age brings reliability, the United
States Judicial Committee on Rules of Practice and Procedure noted
that “[c]ommittee members unanimously agreed that Rule 803(16) was
problematic, as it was based on the false premise that authenticity of a
document means that the assertions in the document are reliable – this
is patently not the case.”

In another case [19], social media postings of pictures of a defendant
with a gun, guns and marijuana were out-or-court “statements” that the
defendant illegally possessed a firearm as well as drugs, guns and money.
This is a multiple hearsay issue because the photographs are statements
in themselves that are restated by their posting on Facebook for viewing,

Losavio 33

restated again by their printouts and restated yet again to the jury. In
this case, no foundation was made about the form of the statements or
that the statements were made by the defendant. The jury ultimately
found that the photographs constituted evidence of the defendant’s of-
fense because their admission materially impacted the outcome of the
prosecution to prove guilt.

6. Identification in Online Environments

The challenges to identification using computer and network activity
are serious and they may lead to erroneous findings. The errors cut to-
wards the conviction of the innocent as well as the exoneration of the
guilty. These are unjust and damaging to the credibility of identifica-
tion, undermining its utility even as online misconduct grows. It creates
an expanded tool for serious and disruptive crimes against all people
through the use of forged information and “fake news.” The harm from
such online misinformation includes harassment, reputation damage and
information fraud. Commercial services such as Reputation Defender [4]
have been created to alleviate this problem.

In 2008, then vice-presidential candidate Sarah Palin was targeted by
online impersonators who sent people to her home for a barbecue [29].
Online impersonation has led to the enactment of criminal prohibitions
against online harassment through impersonation [6].

As digital forensics leverages artificial intelligence, machine learning
and data mining, more challenges will arise that must be addressed be-
fore the innocent are hurt. The Los Angeles Police Department has
suspended the use of predictive policing tools due to inconsistent imple-
mentation [5]. A law enforcement technology vendor recently empaneled
experts to review the use of artificial intelligence for policing, only to
have the panel advise against any implementation using available tech-
nologies [1]. An algorithm-driven, robo-adjudication, anti-fraud system
was found to produce erroneous decisions in more than 80% of fraud
determinations before it was suspended, albeit after causing financial
damage to many people [20]. Each of these presents questions of ac-
curacy, reliability and justice. Each of these offers significant, if not
essential, support for public safety in this online era.

Failure to address the potential problems posed by advanced technolo-
gies will undermine law enforcement activities as well as public safety.
Strong steps must be taken or the future may well be dystopian [3].

34 ADVANCES IN DIGITAL FORENSICS XVI

7. Conclusions

The identification of online criminals has been a troublesome issue
over the entire lifetime of digital forensics. Increased online criminal ac-
tivity, whether domestic or transnational, exacerbates the challenges to
identifying the true entities responsible for crimes. The allure of simple,
alphanumeric authentication and identification for online transactions
has contributed to the explosion of cyber crime. Nevertheless, the need
to prosecute criminals should not weaken the resolve to ensure that the
right persons are held responsible for their crimes. It is imperative that
protocols are created for the accurate identification and authentication
of online misconduct and online miscreants.

References

[1] Axon AI and Policing Technology Ethics Board, First Report of the
Axon AI and Policing Technology Ethics Board, Axon, Scottsdale,
Arizona, 2019.

[2] J. Blue, J. Condell, T. Lunney and E. Furey, Bayesian-chain: In-
telligent identity authentication, Proceedings of the Twenty-Ninth
Irish Signals and Systems Conference, 2018.

[3] T. Maughan, Infinite Detail, Farrar, Straus and Giroux, New York,
2019.

[4] Reputation Defender, About Reputation Defender, Redwood City,
California (www.reputationdefender.com/about), 2020.

[5] M. Smith, Review of Selected Los Angeles Police Department Data-
Driven Policing Strategies, BPC #19-0072, Office of the Inspec-
tor General, Los Angeles Police Commission, Los Angeles, Cal-
ifornia (www.lapdpolicecom.lacity.org/031219/BPC_19-0072.
pdf), 2019.

[6] State of Texas, Texas Penal Code §33.07. Online imperson-
ation, Austin, Texas (codes.findlaw.com/tx/penal-code/penal
-sect-33-07.html), 2020.

[7] United States Court of Appeals (Ninth Circuit), United States v.
Alexander, Federal Reporter, Third Series, vol. 48, pp. 1477–1484,
1995.

[8] United States Court of Appeals (Second Circuit), United States v.
Vayner, Federal Reporter, Third Series, vol. 769, pp. 125–131, 2014.

[9] United States Court of Appeals (Seventh Circuit), United States
v. Jackson, Federal Reporter, Third Series, vol. 208, pp. 633–637,
2000.

Losavio 35

[10] United States Court of Appeals (Sixth Circuit), Mikes v. Bork,
Federal Reporter, Second Series, vol. 947, pp. 353–361, 1991.

[11] United States Court of Appeals (Sixth Circuit), United States v.
Fraser, Federal Reporter, Third Series, vol. 448, pp. 833–842, 2006.

[12] United States Court of Appeals (Sixth Circuit), United States v.
Perry, Federal Reporter, Third Series, vol. 438, pp. 642–652, 2006.

[13] United States Court of Appeals (Sixth Circuit), United States v.
Ray, Federal Appendix, vol. 189, pp. 436, 449–450, 2006.

[14] United States Court of Appeals (Sixth Circuit), United States v.
Jordan, Federal Reporter, Third Series, vol. 544, pp. 656–671, 2008.

[15] United States Court of Appeals (Sixth Circuit), United States v.
Martinez, Federal Reporter, Third Series, vol. 588, pp. 301–317,
2009.

[16] United States Court of Appeals (Sixth Circuit), United States v.
Boyd, Federal Appendix, vol. 447, pp. 684–690, 2011.

[17] United States Court of Appeals (Sixth Circuit), United States v.
Davis, Federal Appendix, vol. 531, pp. 601–607, 2013.

[18] United States Court of Appeals (Sixth Circuit), United States v.
Gonzalez, Federal Appendix, vol. 560, pp. 554–559, 2014.

[19] United States Court of Appeals (Sixth Circuit), United States v.
Farrad, Federal Reporter, Third Series, vol. 895, pp. 859, 875–880,
2018.

[20] United States Court of Appeals (Sixth Circuit), Cahoo et al. v. SAS
Analytics Inc. et al., Federal Reporter, Third Series, vol. 912, pp.
887–897, 2019.

[21] United States Court of Appeals (Sixth Circuit), United States v.
Vance, No. 19-5160, Decided and Filed, April 17, 2020.

[22] United States Court of Appeals (Tenth Circuit), Chavez v. City of
Albuquerque, Federal Reporter, Third Series, vol. 402, pp. 1039–
1046, 2005.

[23] United States District Court (Eastern District of Kentucky), United
States v. Vance, Transcript of Trial, Case No. 18-CR-10, R. 72,
Ewald, Transcript of Trial, 9/5/2018, pp 48–49, 2018.

[24] United States Government, Rule 404. Character evidence; crimes or
other acts, Federal Rules of Evidence, Washington, DC (www.law.
cornell.edu/rules/fre/rule_404), 2020.

[25] United States Government, Rule 801. Definitions that apply to this
article; exclusions from hearsay, Federal Rules of Evidence, Wash-
ington, DC (www.law.cornell.edu/rules/fre/rule_801), 2020.

36 ADVANCES IN DIGITAL FORENSICS XVI

[26] United States Government, Rule 803. Exceptions to the rule against
hearsay, Federal Rules of Evidence, Washington, DC (www.law.
cornell.edu/rules/fre/rule_803), 2020.

[27] United States Government, Rule 901. Authenticating or identifying
evidence, Federal Rules of Evidence, Washington, DC (www.law.
cornell.edu/rules/fre/rule_901), 2020.

[28] United States Supreme Court, Jackson v. Virginia, U.S. Supreme
Court, vol. 443, pp. 307–339, 1979.

[29] J. Velasco, Four Case Studies in Fraud: Social Media and Identity
Theft, SocialnomicsBlog (socialnomics.net/2016/01/13/4-case
-studies-in-fraud-social-media-and-identity-theft), Jan-
uary 13, 2016.

II

FORENSIC TECHNIQUES

Chapter 3

INTERACTIVE TEMPORAL DIGITAL
FORENSIC EVENT ANALYSIS

Nikolai Adderley and Gilbert Peterson

Abstract Current digital forensic tools and applications lack the capability to
visually present high-level system events and their associated low-level
traces in a user interpretable form. This chapter describes the Temporal
Analysis Integration Management Application (TAIMA), an interactive
graphical user interface that renders graph-based information visual-
izations for digital forensic event reconstruction. By leveraging corre-
lation and abstraction as core functions, TAIMA reduces the manual,
labor-intensive efforts needed to conduct timeline analyses during digi-
tal forensic examinations. A pilot usability study conducted to evaluate
TAIMA supports the claim that correlation and abstraction of low-level
events into high-level system events can enhance digital forensic exam-
inations.

Keywords: Automated event reconstruction, information visualization

1. Introduction

The discipline of digital forensics has been under constant pressure as
advancements in digital device technology outpace the technical capa-
bilities of digital forensic tools and applications [20]. Exacerbating the
issue is the increased use of computers in the commission of crimes [10].
Continuous increases in the amount of heterogeneous data involved in
investigations have made digital forensic analyses complex and time-
consuming.

Current digital forensic analysis applications are primarily trace-based
and force practitioners to rely on manual, labor-intensive practices for
performing correlations and reconstructing events [18, 20]. As a result,
it is difficult to establish a holistic understanding of an entire system

c© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XVI, IFIP AICT 589, pp. 39–55, 2020.

https://doi.org/10.1007/978-3-030-56223-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56223-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-56223-6_3

40 ADVANCES IN DIGITAL FORENSICS XVI

image and to identify patterns and anomalies in a reasonable amount of
time.

Information visualization (InfoVis) and abstraction leverage human
perceptual and intellectual capabilities to reduce forensic practitioner
workload and analysis time [23]. Specifically, information visualization
takes advantage of human visual and analytical capabilities to explore
data; data exploration is conducted using visual displays that offer flex-
ible data encodings in perceptually effective environments [8]. Abstrac-
tion reduces the amount of data displayed to users and minimizes the
adverse effects of text-based information overload [19, 22]. Studies that
combine information visualization and abstraction reveal that digital
forensic practitioners appreciate displays that minimize the number of
items for review, but still present relevant information [9].

This chapter describes the Temporal Analysis Integration Manage-
ment Application (TAIMA), a proof-of-concept information visualiza-
tion application that enhances digital forensic investigations with an
emphasis on the analysis phase of the digital forensic process. TAIMA
leverages temporal system event reconstruction and information visu-
alization to enrich a graphical timeline with discrete high-level system
events. The information visualization component enables a practitioner
to adjust the focus from a case-wide overview to a detailed view of low-
level traces. The detailed view enables the practitioner to confirm the
accuracy of reconstruction.

A usability study of TAIMA was conducted in which digital forensic
practitioners completed a simulated digital forensic analysis task. Dur-
ing the study, all the participants were able to locate all the evidence
items. The post-task survey results reveal that all the participants found
TAIMA to be intuitive and easy to learn. Additionally, the participants
felt that the visualization was effective at helping them complete their
tasks. The results demonstrate the power of correlation and abstraction
in supporting timeline analyses.

2. Related Work

Timeline analysis of digital system events helps identify when eve-
nts occurred and the order in which they occurred. Timestamp data
from multiple data sources (e.g., registry files, event logs, link files and
prefetch files) help clarify the temporal proximity of system traces, test
investigative hypotheses and identify additional system traces of interest
that would have been overlooked without timeline examination [11].

Despite the critical role that timelines play in forensic investigations,
most industry-standard digital forensic applications merely focus on data

Adderley & Peterson 41

Figure 1. log2timeline CSV output.

collection. After importing artifacts into their applications, practitioners
are left with vast amounts of low-level traces. The majority of indus-
try applications either have limited capabilities for generating timelines
or entirely lack the capabilities [3]. The applications that do generate
timelines often provide static timelines or histograms, or simply export
digital artifacts as comma-separated value (CSV) reports (Figure 1).

For example, Encase (version 8.07) [7] generates a calendar timeline
with individual artifacts represented as dots on the calendar (Figure 2).
Forensic Toolkit (FTK) [1] generates a histogram timeline (Figure 3).

Previous work in digital forensic visualization has highlighted the diffi-
culty in handling the vast amounts of extracted data involved in timeline
analyses [19]. Carbone and Bean [3] describe the lack of intuitive GUIs
and integrated timelines when dealing with large heterogeneous datasets.
Without careful planning, visualizations quickly become overwhelming;
the overcrowded displays cause information overloads. Gudjonsson [6]
notes that practitioners often struggle to complete forensic analyses us-
ing timelines that are overcrowded and stresses the importance of reduc-
ing the amount of reviewed data to facilitate timeline analyses.

Olsson and Boldt [18] demonstrate the advantages of using the Cyber-
Forensics TimeLab (CFTL) graphical timeline tool over Forensic Toolkit
(FTK); the post questionnaire from their study reveals that participants
solved a hypothetical case “significantly faster using CFTL than when
using FTK.” Teelink and Erbacher [23] demonstrate that visualization
techniques assist practitioners in the forensic data analysis process. The
two studies combined interactive capabilities with visualization tools.
The combination resulted in practitioners experiencing improvements

42 ADVANCES IN DIGITAL FORENSICS XVI

Figure 2. Encase timeline view.

Figure 3. Forensic Toolkit timeline view.

in the digital forensic process and reductions in the time required to
identify suspicious files.

As a visualization tool, TAIMA enhances digital forensic examina-
tions by providing practitioners with an interactive environment inte-
grated with visual representations of digital evidence. The interactive

Adderley & Peterson 43

capabilities and visualizations enabled practitioners to answer all the
investigative questions posed in a user evaluation study.

3. TAIMA

TAIMA displays digital evidence on a graph-based timeline to en-
hance forensic analyses and facilitate event reconstruction. The primary
purpose of TAIMA is to provide an overview of the types of system eve-
nts that exist on a media image. TAIMA’s intuitive GUI precludes users
from having to learn a programming language or use a command line
interface.

At the core of TAIMA is the rendering of a graph-based timeline that
overcomes the effects of information overload. Using only a date/time
range as a search parameter, a practitioner is able to identify suspicious
files and events without labor-intensive manual exploration, or any plug-
ins or code. TAIMA displays high-level system events on a single screen
along with the locations of the traces that are related to the high-level
events.

User accessibility was a core function goal during the TAIMA design
phase. The application was intended to be used by technical as well
as non-technical practitioners. Industry tools that provide extensive
features and capabilities can be overwhelming. For example, Encase is
not user friendly enough for non-technical practitioners. TAIMA, which
is backed by the Neo4j graph-based database, provides non-technical
users with the ability to issue database queries using only date/time
ranges; no programming skills or additional plugins are required.

3.1 Design Principles

The development strategy for TAIMA followed Shneiderman’s interac-
tive GUI design principles [22]. Shneiderman proposed a user-centered
GUI design guide model that supports the use of information visual-
ization in digital forensic applications. He stresses the importance of
providing a modern information visualization GUI that supports the
processing of large volumes of heterogeneous data.

The TAIMA development process also followed the Visual Information
Seeking Mantra (overview first, zoom and filter, details on demand) [19].
The mantra specifies information visualization design techniques and
interactive controls for presenting data in an organized and intuitive
manner that enables easy traversal. To fulfill the mantra requirements,
TAIMA first presents an overview of all the high-level system events in
a time-span as discrete color-coded tiles on a timeline. The graph-based
timeline display enables a practitioner to view the temporal proximity

44 ADVANCES IN DIGITAL FORENSICS XVI

Figure 4. TAIMA GUI.

of system events quickly and also provides an easy way to identify (at
a glance on a single screen) clusters of system events. Moreover, the
practitioner can adjust the point-of-view by zooming in on a timeline to
adjust the scale for detailed views of specific time intervals.

TAIMA was designed to minimize the effects of large, complex (het-
erogeneous) data volumes on the digital forensic investigation process,
especially during the analysis phase. Accordingly, TAIMA was built
using the GRANDstack (GraphQL, React, Apollo, Neo4j Database) ar-
chitecture. GRANDstack is an ecosystem of software applications that
are used to create full-stack web and mobile GUIs [5]. The integration of
the applications allows for a scalable JavaScript web application backed
by a Neo4j database [16]. An important advantage of the GRANDstack
ecosystem is its provision of a modern web browser, which reduces the
TAIMA learning time.

3.2 GUI Timeline

Graph-based digital forensic timelines mitigate many of the challenges
encountered when attempting to analyze vast volumes of data [4, 8, 18].

Figure 4 shows the principal TAIMA GUI interactions. The user is
presented with the React GUI front-end to enter a time interval of in-
terest (start time and end time). Clicking the submit button sends a
GraphQL query via the GraphQL service with the timestamps as search

Adderley & Peterson 45

parameters to the Neo4j database. GraphQL is a query language that
enables developers to specify schema definitions to express the data to be
requested from a datastore. The Apollo client integrates with GraphQL
to process and route data requests to the Neo4j database [2]. The
GraphQL server implements the logic for querying the modeled Neo4j
database (via the addition of abstraction nodes) to search for high-level
events based on their temporal attributes. After fetching the data, the
Apollo client sends the results to the GraphQL server. The React GUI
integration with the Apollo client is configured to store the results of
the query within a React component to render the visualization. The
database query results are automatically converted to graphical form
and presented to the user on a graph-based timeline.

The TAIMA information visualization timeline component shown in
Figure 4 displays discrete high-level system events chronologically. The
graph-based timeline enables a practitioner to identify patterns and
anomalies during data analysis while providing an overview that facili-
tates the overall understanding of system events.

Figure 4 also shows the various parts of a timeline: input fields, sub-
mit button, high-level events, traces via a tooltip, time grid and dates.
The tooltip dialog box satisfies the “details on demand” interactive GUI
requirement specified by Shneiderman [22]. This requirement enables a
practitioner to view additional information about events by placing the
mouse pointer over the event tile. A text-box displays the trace artifacts
responsible for the event.

The visualization in Figure 4 shows four abstracted events. These in-
clude two program installation events (blue titles), denoted by “Installa-
tion Completed Successfully.” Additionally, there are two power events
(purple titles), denoted by “System Uptime Report/Event Log Service
Started.” The temporal proximity of the four high-level system events
suggests that the system of interest was restarted due to the installation
of Microsoft Visual C++ 2008 on 11 April 2017 at approximately 8PM
local system time.

Figure 5 shows an overview of the activities on the timeline for the
time interval 03 April 2017 12:00 AM to 15 June 2017 12:00 PM. Note
that various programs (EXEs) were executed on the system of interest
on 3 April 2017 and 11 April 2017.

3.3 Abstraction Technique

The abstraction technique implemented byTAIMA leverages the graph
database generated via property graph event reconstruction (PGER) [21].
This technique extracts temporal traces from a media image and imports

46 ADVANCES IN DIGITAL FORENSICS XVI

Figure 5. TAIMA global view.

them into a native labeled property graph that stores system events as
nodes linked via cause-effect relationships. The links enable the temporal
traces to be rapidly correlated and abstracted into a single narrative.

As a proof-of-concept tool, TAIMA supports five high-level abstrac-
tion system events: (i) program installation; (ii) power (startup/shut-
down); (iii) program execution; (iv) file download; and (v) web history.
The overall logic for creating abstraction events and relationships in-
volves searching a time window for the declared low-level events. The
time window is subsequently searched for related events. If the declared
low-level events are found in the time window, then a high-level system
event abstraction node is created; this creates a link. Multiple trace
matching enforces the credibility of the high-level system event abstrac-
tion event. In addition to creating relationships, the low-level traces are
used to enrich the abstracted event.

Program Installation. The Cypher query shown in Figure 6 creates
a program installation abstraction node that is a relational correlation of
four low-level traces associated with the particular program installation
event.

Lines 1 through 5 of the Cypher query find all the action and object
nodes associated with the event log entries that occurred within a ten-
second window. Line 6 filters the object nodes down to three event log
entries: (i) MsiInstaller/11707; (ii) MsiInstaller/1042; and (iii) MsiIn-
staller/1033. In Lines 7 through 8, the COLLECT command aggregates
the action and object nodes based on time, and the DISTINCT com-
mands filter the list to include only unique timestamps. This eliminates
having multiple entries for a given timestamp; only unique timestamps

Adderley & Peterson 47

1 MATCH (:parser {parserName: "eventLog"}) <-[:PARSER] -

(act:action)-[:EFFECTS]->(event:object)

2 MATCH (act)-[:AT_TIME]->(sec:Second)

3 MATCH p = (sec)-[:NEXT *10]->()

4 WITH p, event

5 UNWIND nodes(p) AS secNodes

6 MATCH (secNodes)<-[:AT_TIME]-(act:action)--(obj2:object)

7 WHERE obj2.filename IN ["MsiInstaller/1107",

"MsiInstaller/1042", "MsiInstaller/1033"]

8 WITH act.timestamp as timestamp, COLLECT(DISTINCT

act.message) as messages, COLLECT(DISTINCT obj2.filename)

as filenames, COLLECT(DISTINCT act) as acts

9 CREATE (a:Abstraction{Event: ’Program Installation’,

Trigger:filenames, Description:messages, timestamp:timestamp})

10 FOREACH (act in acts | MERGE (act)-

[:LVL1_ABSTRACTION_LINK]->(a))

FOREACH (set in obj2s | MERGE (set)-

[:LVL1_ABSTRACTION_LINK]->(a))

Figure 6. Program installation query.

are tracked. Line 9 creates the abstraction nodes. Finally, Line 10, cre-
ates a relationship (LVL1 ABSTRACTION LINK) to the action (red)
and object (blue) nodes associated with the program installation.

Figure 7. Program installation abstraction node linked to four traces.

Figure 7 shows a graph representation of the query result. The cen-
ter node is the abstraction node, which is connected to four low-level
nodes. High-level system events (i.e., center nodes) are only created

48 ADVANCES IN DIGITAL FORENSICS XVI

and added to the graph model if the criteria imposed by expert rules
are satisfied. The event logs, MsiInstaller/11707, MsiInstaller/1042 and
MsiInstaller/1033, constitute evidence that a program installation event
occurred. New relationships (e.g., LVL1 ABSTRACTION LINK) are
added to the abstraction node to correlate the low-level traces connected
to the program installation event. Aggregating low-level events and link-
ing them to higher-level events reduce the amount of data presented to
the practitioner and also increases the efficiency of the application (i.e.,
lower computational cost).

Power. Power events (shutdown, startup and sleep) are established
by tracking the start and stop of the Windows Customer Experience
Improvement (CEI) and Windows Event logs. The combination of these
two traces is a strong indicator of power events. EventLog/6013 logs
the total system running time after system boot-up. EventLog/6005
generates a log entry message that the Windows Event Log service was
started.

Program Execution. The program execution abstraction is based
on identifying prefetch file artifacts. The prefetch file, which is created
every time an application is executed on a Windows system, contains
information about the files associated with the application. Windows
uses the prefetch information to reduce and optimize the loading time of
the application during subsequent executions. Analyzing prefetch files
provides insights into the files used by applications and the files that the
Windows operating system loads at startup.

File Download. The download abstraction event nodes include Fire-
fox and Chrome event log entries. The format string from the parser
provides the complete path of the location of the downloaded file on the
host.

Web History. The web history abstraction tracks the following traces:
(i) source URL; (ii) web history; (iii) complete path of the downloaded
file; and (iv) what happened to the file after it was downloaded.

4. Evaluating User Experience

TAIMA applies novel information visualization concepts and methods
to digital forensic investigations. A usability evaluation study was con-
ducted in order to examine their effectiveness. The study followed the
user experience evaluation guidelines specified by Lam et al. [13]. Such
an evaluation includes assessments that analyze individual responses and

Adderley & Peterson 49

attitudes towards a visualization [12]. The user evaluation performed in
this research combined usability testing (UX) and the broadly-used post-
study system usability questionnaire (PSSUQ), thereby drawing on their
collective strengths [14].

The original PSSUQ comprises 19 items. However, this study em-
ployed a modified version that included 15 items. Since error handling
was not implemented in TAIMA, the four related questions were removed
from the PSSUQ.

Data from the user study included participant performance and open-
ended feedback provided by a post-task questionnaire. The participant
performance metrics included the task performance expressed in terms
of the task completion time and completion rate (i.e., percentage of the
six hacking software traces that were correctly found by a participant).
Additionally, a subjective user satisfaction rating, captured via the post-
task questionnaire, provided insights into the participants’ overall sat-
isfaction with TAIMA. The questionnaire also included an open-ended
section for the participants to provide feedback about TAIMA.

4.1 Study Participants

According to Nielsen [17], approximately 90% of usability problems
are discovered in usability evaluation studies with no more than five
participants. This study had five participants, all of whom were either
computer crime investigators or digital forensic analysts with one to
two years of experience using industry-standard tools to analyze digital
evidence.

Statistical analysis of the outcome was not appropriate due to the
small sample size. The simulated hacking scenario reflected tasks that
are typically performed in a digital forensic investigation. The partici-
pants also provided feedback on enhancing TAIMA.

4.2 Procedure

The usability testing portion of the evaluation employed a scenario
involving an abandoned notebook computer suspected of being used for
hacking purposes [15]. The participants were tasked with conducting a
digital forensic analysis using TAIMA to identify hacking software ap-
plications on the abandoned computer. The task was deemed successful
if all six hacking software applications were discovered.

Before starting their tasks, the participants were provided access to
TAIMA to explore the visualization features and capabilities. The test-
ing officially started after the participants verbally expressed that they

50 ADVANCES IN DIGITAL FORENSICS XVI

Table 1. Post-study system usability questionnaire (PSSUQ) usability metrics.

Item Rating

1 Overall, I was satisfied with how easy it was to use this system 6.2
2 It was simple to use this system 6.4
3 I was able to complete the tasks and scenarios quickly using this

system
5.8

4 I felt comfortable using this system 6.4
5 It was easy to learn to use this system 7.0
6 I believe I could become productive quickly using this system 6.4
7 Whenever I made a mistake using the system, I could recover easily

and quickly
6.0

8 It was easy to find the information I needed 6.4
9 The visualization provided by the system was easy to understand 6.6

10 The visualization was effective at helping me complete the tasks
and scenarios

6.6

11 The organization of information on the interface was clear 6.2
12 The interface of this system was pleasant 6.0
13 I liked using the interface of this system 6.0
14 This system has all the functions and capabilities I expect it to

have
5.0

15 Overall, I was satisfied with this system 6.2

felt comfortable using TAIMA. After completing the task, the partici-
pants completed the PSSUQ.

The user study assessed two goals:

Effectiveness of TAIMA at assisting forensic analyses by present-
ing digital evidence using best practice information visualization
techniques.

Effectiveness of the TAIMA infrastructure and processes at reduc-
ing the challenges associated with the examination and presenta-
tion of vast volumes of digital evidence.

The results of the assessment provided insights into the participants’
attitudes towards the information visualization. Additionally, the as-
sessment determined if TAIMA improved the analysis and presentation
of large volumes of digital evidence.

4.3 Results

Table 1 and Figure 8 present the PSSUQ results. Note that higher
scores denote better usability.

Adderley & Peterson 51

Figure 8. Post-study system usability questionnaire (PSSUQ) subscores.

The survey results reveal that the participants were highly satisfied
with the usability of TAIMA – as indicated by a 100% (7 out of 7)
rating for Item 5 (It was easy to learn to use this system). Item 9
(The visualization provided by the system was easy to understand) and
Item 10 (The visualization was effective at helping me complete the tasks
and scenarios) received the next highest rating of 94% (6.6 out of 7).

All the participants noted that they enjoyed not having to conduct an
extensive search to find relevant artifacts. They also appreciated that
important and relevant information was presented to them on one screen.
Additionally, the participants found TAIMA to be easy to use due to
its straightforward controls and intuitive display. This highlights the
visualization effectiveness achieved by the intuitive display that reduces
the data presented while still providing the critical information needed
to complete the task.

One participant commented that the visualization was “extremely
beneficial” and that it made observations of system activity “easy and
fast.” Another participant noted that it was easy to understand the visu-
alization. This suggests that the integration of exploratory information
visualization and abstraction techniques provides an accurate means to
reconstruct timelines despite the challenges imposed by data complexity
and data volume in digital forensic investigations.

Some items received low scores. The lowest score was received by
Item 14 (This system has all the functions and capabilities I expect it
to have). But this is a reasonable score because TAIMA is a prototype

52 ADVANCES IN DIGITAL FORENSICS XVI

system and the emphasis during development was on data reduction and
accuracy.

The participants also provided suggestions on improving TAIMA. The
suggestions included adding keyword search and file content viewing
functionalities. This is because, during the testing, the participants
wanted to search for particular files of interest instead of only using a
data/time range. After these files were identified on the timeline, the
participants did not want to have to search the timeline again for the
files. In addition to viewing the locations of files of interest via a tooltip,
participants were also interested in viewing the contents of the files.
Also, TAIMA does not provide exporting or printing capabilities. The
only option is to use print-screen to generate reports. Reporting is not
only a desirable function, but also an essential part of the digital forensic
process.

Finally, the participants felt that TAIMA provides limited function-
ality. They wanted more ways to customize TAIMA and wanted more
control over the interface. For example, they wanted more filtering op-
tions. Also, after the results are returned and populated on the timeline,
the participants wanted the ability to eliminate system events that were
not of interest.

5. Conclusions

Establishing timelines is vital in digital forensic investigations. How-
ever, most digital forensic tools and applications merely present timelines
as histograms or as raw trace entries in files. Additionally, traditional
timeline analysis uses static text-based timelines that force practitioners
to employ labor-intensive manual practices that often miss significant
pieces of evidence.

The TAIMA prototype described in this chapter was specifically de-
veloped to mitigate these challenges. It leverages information visualiza-
tion concepts and techniques to automate the creation of graph-based
timelines of high-level system events. TAIMA enriches timelines with
discrete high-level system events by presenting temporal data attributes
in a practitioner-focused GUI.

The high usability ratings obtained by TAIMA in the user evaluation
study reveal that it is intuitive, easy to learn, effective and accurate.
These results satisfy the primary goal of the research – to address the
significant challenges introduced by data complexity and data volume in
digital forensic investigations.

Much of the future research and development activities related to
TAIMA will be driven by the feedback received from the usability study

Adderley & Peterson 53

participants. Priorities include providing printing and data export ca-
pabilities. Even more important is supporting report generation, which
is an essential component of the digital forensic process.

One of strengths of TAIMA is its ability to filter and reduce the num-
bers of events on timelines. Enabling users to customize filtering ac-
cording to their needs should make the application even more effective.
Future activities will also focus on the robust testing of TAIMA using a
large image with real-world activities and complex system events.

References

[1] AccessData, Forensic Toolkit (FTK), Orem, Utah (accessdata.
com/products-services/forensic-toolkit-ftk), 2020.

[2] Apollo Docs, Configuring the Cache, Apollo, San Francisco, Califor-
nia (www.apollographql.com/docs/react/advanced/cach ing),
2020.

[3] R. Carbone and C. Bean, Generating Computer Forensic Super-
Timelines under Linux: A Comprehensive Guide for Windows-
Based Disk Images, Technical Memorandum TM2011-216, Defence
R&D Canada, Valcartier, Canada, 2011.

[4] Y. Chabot, A. Bertaux, C. Nicolle and T. Kechadi, Automatic time-
line construction and analysis for computer forensic purposes, Pro-
ceedings of the IEEE Joint Intelligence and Security Informatics
Conference, pp. 276–279, 2014.

[5] GRANDstack, Build Full Stack Graph Applications with Ease
(grandstack.io), 2020.

[6] K. Gudjonsson, Mastering the Super Timeline with log2timeline,
Information Security Reading Room, SANS Institute, Bethesda,
Maryland, 2010.

[7] Guidance Software, EnCase Forensic User Guide, Version 8.07,
Pasadena, California, 2018.

[8] G. Hales, Visualization of device datasets to assist digital forensic
investigations, Proceedings of the International Conference on Cyber
Situational Awareness, Data Analytics and Assessment, 2017.

[9] H. Hibshi, T. Vidas and L. Cranor, Usability of forensic tools: A
user study, Proceedings of the Sixth International Conference on IT
Security Incident Management and IT Forensics, pp. 81–91, 2011.

[10] P. Hitlin, Internet, social media use and device ownership in U.S.
have plateaued after years of growth, Fact Tank – News in Numbers,
Pew Research Center, Washington, DC, September 28, 2018.

54 ADVANCES IN DIGITAL FORENSICS XVI

[11] B. Inglot, L. Liu and N. Antonopoulos, A framework for enhanced
timeline analysis in digital forensics, Proceedings of the IEEE In-
ternational Conference on Green Computing and Communications,
pp. 253–256, 2012.

[12] T. Isenberg, P. Isenberg, J. Chen, M. Sedlmair and T. Moller, A
systematic review of the practice of evaluating visualization, IEEE
Transactions on Visualization Computer Graphics, vol. 19(12), pp.
2818–2827, 2013.

[13] H. Lam, E. Bertini, P. Isenberg, C. Plaisant and S. Carpendale, Em-
pirical studies in information visualization: Seven scenarios, IEEE
Transactions on Visualization and Computer Graphics, vol. 18(9),
pp. 1520–1536, 2012.

[14] J. Lewis, Psychometric evaluation of the post-study system usability
questionnaire: The PSSUQ, Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 36(16), pp. 1259–1260,
1992.

[15] National Institute of Standards and Technology, Hacking Case,
Gaithersburg, Maryland (www.cfreds.nist.gov/Hacking_Case.
html), April 16, 2018.

[16] Neo4j, Introducing Neo4j, San Mateo, California (neo4j.com),
2020.

[17] J. Nielsen, Why you only need to test with 5 users, Nielsen Nor-
man Group, Fremont, California (www.nngroup.com/articles/
why-you-only-need-to-test-with-5-users), March 18, 2000.

[18] J. Olsson and M. Boldt, Computer forensic timeline visualization
tool, Digital Investigation, vol. 6(S), pp. S78–S87, 2009.

[19] G. Osborne and J. Slay, Digital forensic infovis: An implementa-
tion of a process for visualization of digital evidence, Proceedings of
the Sixth International Conference on Availability, Reliability and
Security, pp. 196–201, 2011.

[20] G. Osborne, B. Turnbull and J. Slay, The “Explore, Investigate and
Correlate” (EIC) conceptual framework for digital forensic informa-
tion visualization, Proceedings of the International Conference on
Availability, Reliability and Security, pp. 629–634, 2010.

[21] D. Schelkoph, G. Peterson and J. Okolica, Digital forensic event
graph reconstruction, Proceedings of the International Conference
on Digital Forensics and Cyber Crime, pp. 185–203, 2018.

[22] B. Shneiderman, The eyes have it: A task by data type taxonomy
for information visualizations, Proceedings of the IEEE Symposium
on Visual Languages, pp. 336–343, 1996.

Adderley & Peterson 55

[23] S. Teerlink and R. Erbacher, Improving the computer forensic anal-
ysis process through visualization, Communications of the ACM,
vol. 49(2), pp. 71–75, 2006.

Chapter 4

ENHANCING THE FEATURE PROFILES
OF WEB SHELLS BY ANALYZING THE
PERFORMANCE OF MULTIPLE
DETECTORS

Weiqing Huang, Chenggang Jia, Min Yu, Kam-Pui Chow, Jiuming
Chen, Chao Liu and Jianguo Jiang

Abstract Web shells are commonly used to transfer malicious scripts in order to
control web servers remotely. Malicious web shells are detected by ex-
tracting the feature profiles of known web shells and creating a learning
model that classifies malicious samples. This chapter proposes a novel
feature profile scheme for characterizing malicious web shells based on
the opcode sequences and static properties of PHP scripts. A real-world
dataset is employed to compare the performance of the feature profile
scheme against state-of-art schemes using various machine learning al-
gorithms. The experimental results demonstrate that the new feature
profile scheme significantly reduces the false positive rate.

Keywords: Web shells, feature profiles, text vectorization, machine learning

1. Introduction

High profile web attacks have highlighted the importance of prevent-
ing web application penetrations that serve as springboards for compro-
mising networks [12]. A web shell is often the first step in setting up
a backdoor for web application penetration – it is a web script that is
placed in a publicly-accessible web server to enable an attacker to obtain
web server root permissions and remote control [7].

Accurately detecting web shells in web servers could significantly re-
duce web application penetration attacks. However, attackers insert hid-
den functionality in web shells to hinder detection. As a result, evidence
pertaining to web shell attacks is difficult to find among the massive

c© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XVI, IFIP AICT 589, pp. 57–72, 2020.

https://doi.org/10.1007/978-3-030-56223-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56223-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-56223-6_4

58 ADVANCES IN DIGITAL FORENSICS XVI

amounts of normal data. Forensic practitioners have to search for web
shells manually, a task that is laborious and time-consuming.

Researchers have proposed several methods for detecting malicious
web shells. A common approach is to extract features and construct
feature profiles that characterize web shells, following which a classifica-
tion model is developed using a machine learning algorithm.

Liu et al. [5] have proposed a detection model based on convolutional
and recurrent neural networks that does not consider the attacker’s in-
tentions or require payload sample labeling. Although these learning
models may exhibit good performance for specific types of web shells,
the models often yield large false positive rates when applied to real-
world datasets. Moreover, researchers often ignore the feature profiles
and potential behaviors of web shells, and merely view detection as a
black-box operation. This makes it difficult to apply and evaluate the
detection models in real-world environments. As a result, forensic prac-
titioners have to manually sift through large volumes of data to detect
malicious web shells hidden among numerous false positives.

This chapter compares the detection performance of multiple feature
profile schemes and machine learning models to identify the reasons for
the differences. A general test platform based on real-world web shells
collected from public datasets is used to evaluate the performance of the
feature profiles and learning models. The experiments reveal that web
shell detection performance is affected by feature profiles, text vector-
ization methods and machine learning models. A novel feature profile
scheme is proposed for characterizing malicious web shells based on the
opcode sequences and static properties of PHP scripts. The evaluation
results demonstrate that the detection method significantly improves
malicious web shell classification as well as the ability to detect custom
web shell functionality.

2. Related Work

A web shell is a malicious script that attempts to maintain persistent
access in an exploited web application [1]. It is assigned to the post-
exploitation stage of the attack chain. A web shell does not have any
exploitability on its own, but it can be leveraged by attacks such as SQL
injection, remote file inclusion and cross-site scripting. Its functions in-
clude facilitating persistent remote access, privilege escalation, antivirus
software evasion and zombie botnet control.

A web shell can be written in any language that is supported by a
web server. Typical examples include PHP, JSP and ASP. Some web
shells are tiny, needing only a single line of code whereas others are full-

Huang et al. 59

featured with thousands of lines of code. Well-known web shell families
are c99, r57, b374k and barc0de [8].

Wang et al. [14] have used a multi-layer perceptron neural network to
detect web shells. They converted sample source code to byte code using
a compiler, following which they used bigrams and the term-frequency-
inverse-frequency (TF-IDF) statistic to obtain a frequency matrix that
was passed to the multi-layer perceptron. Their multi-layer perceptron
approach yielded 90% detection accuracy.

Wrench and Irwin [15] have determined the similarity levels between
PHP malware samples using four measures to create representative sim-
ilarity matrices. The malware samples were decoded, the contents of
user-defined function bodies and names of user-defined functions were
extracted, and file fuzzy hash values were created for similarity analysis.

Yong et al. [16] have employed a deep neural network that detects
server-side web shells with good results. Fang et al. [4] have used random
forest machine learning with the fastText library to obtain excellent web
shell detection results.

Several tools have been developed for web shell detection. One exam-
ple is CloudWalker for Linux and macOS systems [2]. Web Shell Detec-
tor is a PHP script that identifies PHP, CGI(Perl), ASP and ASPX web
shells [3]. The php-malware-finder tool is designed to crawl filesystems
and analyze files against a set of YARA malware identification rules [13].
WebShell.Pub employs traditional features and cloud-based large data
dual-engine killing technology [10]. D Shield is an active defense soft-
ware tool designed for Microsoft IIS systems [11]; it prevents invasions of
websites and web servers by applying internal and external protections.

3. Proposed Web Shell Detection Method

This section describes the proposed web shell detection method. It
has two components: (i) web shell feature extraction; and (ii) learning
model creation.

3.1 Web Shell Feature Extraction

Figure 1 shows the web shell feature extraction process. The model
uses PHP opcode sequences of execution path features, opcode sequences
of code features and static features to distinguish web shells.

Two types of features are extracted from PHP samples: (i) opcode
sequence features; and (ii) static features. The opcode sequences of
PHP scripts are obtained using the PHP VLD extension [9] to hook into
the Zend engine and dump the opcodes (execution units) of the scripts.
Next, the opcode sequences based on execution paths in the PHP scripts

60 ADVANCES IN DIGITAL FORENSICS XVI

PHP Sam
ple

O
bfuscated

VLD

NeoPI
Inform

ation
Entropy

Longest W
ord

Dangerous
Functions

eval()

Feature M
atrix

str_replace()
base64_decode()

O
pcode Sequences of

Code Features

assert()

O
pcode Sequences of

Runtim
e Path Features

TF-ID
F

Doc2Vec

Text Sequence
Vectorization

Static Features

Dangerous Functions

Dangerous
Variables

$_PO
ST

$_REQ
U

EST
$_FILES

$_CO
O

KIE

Dangerous Variables

F
igu

re
1
.

W
eb

sh
ell

fea
tu
re

ex
tra

ctio
n
.

Huang et al. 61

0. <?php

1. echo ‘‘hello world’’;

2. ?>

Figure 2. Simple PHP script.

Table 1. VLD execution results.

Line Opcode# Opcode Branch Lines Sop-Eop Path

1 0 EXT STMT 0 1-2 0-2 1
1 ECHO

2 2 RETURN

and the opcode sequences corresponding to the code are obtained. TF-
IDF and the Doc2Vec tool are used to vectorize opcode sequences of
the PHP scripts. Static features such as the longest string, entropy and
dangerous functions and variables are also extracted. Finally, the two
feature matrices are combined to create a single feature matrix.

Opcode Sequence Features. Opcode arrays generated by a PHP
compiler from source code are similar to assembler code generated by a
C compiler. However, instead of being directly executed by the CPU,
opcode arrays are executed by a PHP interpreter.

The PHP VLD extension is often used for web shell detection [9]. The
extension yields two parts. One is the opcode sequences corresponding
to the PHP code. The other is the opcode sequences of the execution
paths in the code. If only opcode sequences from the first part are
considered, interference by certain opcodes causes some PHP code not
to be executed, which renders it benign. Therefore, the second part is
employed to abstract the opcode sequences.

Figure 2 shows a simple PHP script. Table 1 shows the VLD execution
results. The left portion of Table 1 shows the opcodes corresponding to
each line of the PHP script. In this portion of the table, Line refers
to the line number in the PHP script, Opcode# refers to the opcode
number and Opcode refers to the opcode name.

The right portion of the table shows the branches and paths of code
execution. Branch refers to the number of the branch, Lines refers to
the line numbers in the PHP script corresponding to the branch, Sop-
Eop refers to the starting and ending opcode numbers of the branch,

62 ADVANCES IN DIGITAL FORENSICS XVI

and Path refers to the path number of the branch. In this case, there
is only one path, which starts at Line 0 and continues in Lines 1 and 2.
The opcode sequence of the code is determined from the Line 0 opcode
to Line 2 opcode. The opcode sequence of the path is: EXT STMT,
ECHO and RETURN.

The opcode sequences of the PHP scripts are generated in the form
of text. TF-IDF and the Doc2Vec tool are used to vectorize the text to
a matrix of fixed dimensions for input to a machine learning algorithm.

Static Features. The static features include: (i) longest string; (ii)
information entropy; and (iii) dangerous functions and variables:

Longest String: Web shells maintain stealth using techniques
such as encryption, encoding and stitching to obfuscate strings.
Normal PHP scripts mostly comprise short strings whereas obfus-
cated code often contains long strings. The longest string feature
is computed as the length of the longest string divided by ten.

Information Entropy: Information entropy is the average rate
at which a stochastic source of data produces information. Encryp-
tion and compression increase the randomness and information
entropy. An obfuscated web shell typically has high information
entropy.

Dangerous Functions and Variables: Certain PHP functions
are deemed to be high risk. Examples are eval, system, assert
and cmd shell that make system calls. Also, fopen, fwrite and
SQL, which can modify files.

3.2 Learning Model Construction

The features extracted from PHP scripts, namely, opcode sequences
of code, opcode sequences of runtime paths and static features, are in-
put to TF-IDF and the Doc2Vec tool that vectorize the text for input
to a machine learning algorithm. Figure 2 shows the machine learn-
ing models employed in the web shell detection framework developed in
this research. The models include the support vector machine (SVM),
random forest (RF) and k-nearest neighbor (KNN) models.

The dataset was randomly divided to create a training dataset with
70% of the overall data and a testing dataset with the remaining 30% of
the data. The training dataset was input to the three learning models
to obtain the trained models. The testing dataset was then input to the
trained models as well as commercial web shell detection products to
evaluate the detection performance.

Huang et al. 63

PH
P

So
ur

ce
Co

de
 D

at
as

et
s

O
pc

od
e

Se
qu

en
ce

s
of

Ru
nt

im
e

Pa
th

 F
ea

tu
re

s
TF

-ID
F

Fe
at

ur
e

M
at

ric
es

Fe
at

ur
e

Ex
tr

ac
tio

n

M
od

el
 C

on
st

ru
ct

io
n

O
bf

us
ca

te
d

O
pc

od
e

Du
m

p
Fi

le
Pr

e-
Pr

oc
es

si
ng

Lo
ng

es
t

St
rin

g
In

fo
rm

at
io

n
En

tro
py

Da
ng

er
ou

s
Fu

nc
tio

ns
 a

nd
Va

ria
bl

es
St

at
ic

 F
ea

tu
re

 E
xt

ra
ct

io
n

Do
c2

Ve
c

Te
xt

 V
ec

to
riz

at
io

n
O

pc
od

e
Se

qu
en

ce
s

of
Co

de
 F

ea
tu

re
s

An
al

yz
e

Pa
rt

iti
on

 o
f

D
at

as
et

s

Tr
ai

ni
ng

 S
et

Te
st

in
g

Se
t

Ra
nd

om
 F

or
es

t
M

od
el

SV
M

 M
od

el

Tr
ai

ne
d

M
od

el
s

KN
N

 M
od

el

SV
M

Re
su

lts
Ra

nd
om

 F
or

es
t

Re
su

lts
KN

N
Re

su
lts

Pr
od

uc
ts D

 S
hi

el
d

D
 S

hi
el

d
Re

su
lts

Cl
ou

dW
al

ke
r

Cl
ou

dW
al

ke
r

R
es

ul
ts

F
ig
u
re

3
.

W
eb

sh
el
l
d
et
ec
ti
o
n
fr
a
m
ew

o
rk
.

64 ADVANCES IN DIGITAL FORENSICS XVI

Table 2. Data sources and samples.

Data Source Number of Samples Type

WordPress 4,244 Benign
phpMyAdmin 1,207 Benign
Smarty 213 Benign
Yii 6,202 Benign
PHPCMS 1,207 Benign
GitHub 2,050 Malicious

4. Experiments and Evaluation

This section discusses the data sources and data samples, data pro-
cessing methods and data used for training and testing. Additionally, it
describes three sets of comparative experiments that were conducted to
assess the influences of web shell features, text vectorization and learn-
ing algorithms (as well as commercial products) on the detection results.
The shortcomings of current web shell detection tools with respect to
the proposed detection method are also discussed.

4.1 Data Sources and Samples

A total of 13,073 benign PHP scripts and 2,050 malicious PHP scripts
were collected. The benign samples came from PHP content manage-
ment platforms such as WordPress, phpMyAdmin and Smarty. The ma-
licious samples were collected from GitHub projects. Table 2 provides
details about the data sources and samples.

4.2 Data Processing

The first step was to compute the hash values of the PHP scripts.
Analysis of the hash values revealed that a little over one-half of the
malicious samples (1,031 samples) were included in the benign samples.
Manual analysis of the 1,031 samples revealed that they were, in fact,
benign – this raises questions about the results presented by researchers
who have used these datasets [4, 6, 14]. In any case, these 1,031 samples
were eliminated to leave only 1,019 malicious samples.

The UnPHP API was employed to deobfuscate the samples. Following
this, VLD was used to obtain opcode dumps of the PHP scripts. The
opcode sequences were based on the code and execution paths in the
dumped files. The opcode sequences were input to TF-IDF and Doc2Vec
to obtain two types of feature vectors. Meanwhile, NeoPI was employed
to obtain the static features of the samples and count the numbers of

Huang et al. 65

Table 3. Dataset summary.

Category Property Value

Dataset Number of samples 12,309
Number of benign samples 11,397
Number of malicious samples 912

Number of Input Features TF-IDF 181 + 23 = 214
Doc2Vec 10 + 23 = 33

Training Set (70%) Number of benign samples 7,979
Number of malicious samples 646

Testing Set (30%) Number of benign samples 3,418
Number of malicious samples 266

malicious functions and variables in each sample. Since some scripts
could not be analyzed by NeoPI, the number of malicious samples was
reduced to 912. Finally, the vectorized and static features were combined
to obtain the final sample features.

Table 3 provides details about the final dataset, numbers of input
features, and the training and testing datasets.

4.3 Evaluation of Feature Sets
This section discusses the effects of input features on the classification

results. In order to compare the classification results for different feature
sets, TF-IDF was used for text vectorization and random forest (RF) was
selected as the learning model.

Figure 4 shows the detection results obtained using two types of op-
code sequences (path seq and code seq) and static features. The path -
seq feature yielded the best accuracy, recall and F1 score metrics whereas
the static features yielded poor results for these metrics.

Table 4 shows the true positive (TP), false negative (FN), false pos-
itive (FP) and true negative (TN) values for combinations of opcode
sequence and static features with TF-IDF vectorization compared with
static features alone. Note that using an opcode sequence feature with
static features produced better results than using only static features.

Analysis of the false negative samples revealed that the opcode se-
quence features can distinguish some malicious samples with static fea-
tures that are not obvious. This was especially noticeable in the case of
custom malicious functions used to create backdoors; examples include
database write operations and file entry operations. A normal database
operation directly stores the data from a form to the database. How-

66 ADVANCES IN DIGITAL FORENSICS XVI

Path Sequence Code Sequence Static
0.97

0.975

0.98

0.985
Accuracy
Recall
F1

Figure 4. Evaluation of feature sets.

Table 4. Detection performance for various feature sets.

Feature Sets TP FN FP TN

path seq + static + TF-IDF + RF 3,410 8 51 215
code seq + static + TF-IDF + RF 3,409 9 68 198
static + RF 3,400 18 80 186

ever, a malicious database operation decrypts the data from the form
and then operates on the database based on the decrypted string. When
only static features were used, the malicious operations were classified as
normal because there were no malicious features aside from the decryp-
tion function. For these reasons, 35 malicious samples could be detected
using the static features alone.

The 26 samples that were only detected using opcode sequence fea-
tures were also analyzed. Most of the samples could not be detected
using only static features because they employed custom malicious func-
tions instead of common malicious functions. This shows the relative
advantage of using opcode sequence features based on runtime paths.

Table 5 shows the numbers of malicious functions that were detected
when opcode sequence and static features were used in combination, but
were not detected when static features were used alone. The samples
are divided into six categories based on the malicious functions: (i)
command line; (ii) file read and write; (iii) file search; (iv) database
backdoor; (v) encrypted communication; and (vi) password acquisition.

Huang et al. 67

Table 5. Sample misclassification (opcode + static features vs. static features).

Category Malicious Functions in
Misclassified Samples

Command Line 14

File Read and Write 12

File Search 4

Database Backdoor 2

Encrypted Communication 9

Password Acquisition 2

4.4 Evaluation of Text Vectorization Methods

Three comparative experiments were conducted to verify the suitabil-
ity of the TF-IDF and Doc2Vec text vectorization methods. In order
to compare the two text vectorization methods, the opcode sequences
of execution path features and static features were combined to create
the input features, and random forest was used as the learning model.
TF-IDF and two Doc2Vec versions, Doc2Vec10 and Doc2Vec181, that
generated ten and 181 vector parameters, respectively, were evaluated.

TF-IDF Doc2Vec10 Doc2Vec181
0.96

0.965

0.97

0.975

0.98

0.985
Accuracy
Recall
F1

Figure 5. Evaluation of text vectorization methods.

Figure 5 demonstrates that TF-IDF performed better than both ver-
sions of Doc2Vec in terms of accuracy, recall and the F1 score.

68 ADVANCES IN DIGITAL FORENSICS XVI

Table 6. Detection performance for various text vectorization methods.

Vectorization Method TP FN FP TN

TF-IDF 3,410 8 51 215
Doc2Vec10 3,409 9 93 173
Doc2Vec181 3,410 8 108 158

Table 6 shows that the true positive rates are similar for TF-IDF and
the two Doc2Vec versions, but the false positive and true negative rates
are significantly lower for both Doc2Vec versions.

The comparative experiment using Doc2Vec10 and Doc2Vec181 to
generate ten vectors and 181 vectors, respectively, was conducted to
prove that static features have higher weights among all the features.
The results in Figure 5 and Table 6 indicate that the presence of too
many Doc2Vec vectors weakened the proportion of static features, lead-
ing to a decrease in detection performance.

Table 7. Sample misclassification (TF-IDF vs. Doc2Vec).

Category Malicious Functions in
Misclassified Samples

Command Line 17

File Read and Write 14

File Search 4

Database Backdoor 11

Encrypted Communication 9

Password Acquisition 1

Table 7 shows the numbers of malicious functions that were detected
when TF-IDF was used, but were not detected when Doc2Vec was used.
The Doc2Vec tool was unable to detect considerable numbers of com-
mand line (long samples), file read and write, and database backdoor
functions. This is because the method underlying Doc2Vec pays more
attention to context than the TF-IDF method. Since only one path
in the code sequences of a malicious sample may be malicious, there is
considerable interference by non-malicious paths on the features. This
also explains why researchers have suggested that the Doc2Vec detection
performance is below par [6].

Huang et al. 69

SVM RF KNN D Shield CloudWalker
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98 Accuracy
Recall
F1

Figure 6. Evaluation of detection algorithms and commercial products.

4.5 Evaluation of Algorithms and Products

The experiments described above demonstrated that opcode sequence
features combined with static features and TF-IDF are the best com-
bination for detecting malicious web shells. This section discusses the
detection results obtained for various machine learning algorithms with
the best feature set combination and TF-IDF along with the detection
results obtained using two commercial web shell detection products.
The machine learning algorithms included the support vector machine
(SVM), random forest (RF) and k-nearest neighbor (KNN) algorithms.
The commercial products included D Shield [11] and CloudWalker [2].

The results in Figure 6 demonstrate that the random forest algo-
rithm based web shell detection solution yielded much better detection
performance compared with the support vector machine and k-nearest
neighbor algorithm based solutions in terms of accuracy, recall and the
F1 score. This is because the random forest algorithm, which is an en-
semble learning model based on decision trees, has better generalization
ability than single models like the support vector machine and k-nearest
neighbor algorithms. Figure 6 also shows that the random forest algo-
rithm based solution was slightly better than the D Shield product and
moderately better than CloudWalker in terms of accuracy, recall and
the F1 score.

70 ADVANCES IN DIGITAL FORENSICS XVI

Table 8. Detection performance of various algorithms and commercial products.

Algorithms and Products TP FN FP TN

SVM Algorithm 3,417 1 248 18
RF Algorithm 3,410 8 51 215
KNN Algorithm 3,410 18 157 109
D Shield Product 3,410 8 108 158
CloudWalker Product 3,392 26 98 168

Table 8 shows that the random forest algorithm based solution has
the best overall performance compared with the other two learning al-
gorithm based solutions and the two commercial products. Specifically,
the random forest algorithm based solution has the lowest combination
of false negative and false positive values.

Table 9. Sample misclassification (random forest solution vs. D Shield).

Category Malicious Functions in
Misclassified Samples

Command Line 7

File Read and Write 9

File Search 3

Database Backdoor 1

Encrypted 7
Communication

Password 1
Acquisition

Table 9 shows the numbers of malicious functions that were detected
when the random forest algorithm based solution was used, but were not
detected by D Shield. Analysis of these samples revealed that D Shield
is poor at detecting web shells with custom malicious functions. The
results also reveal that using opcode sequences of execution path features
enhance malicious web shell detection.

However, 15 malicious samples that were detected by D Shield were
missed by the random forest algorithm based solution. Analysis of these
samples revealed that the random forest based solution was hindered
by the inclusion of functions such as eval() and phpinfo(). These

Huang et al. 71

functions also appeared in a small number of positive samples, which
may be the reason for their misclassification.

5. Conclusions

This chapter has proposed a malicious web shell detection method
that leverages opcode sequence and static features of PHP scripts along
with text vectorization and machine learning. Experiments using a gen-
eral web shell detection framework relying on real-world data collected
from public datasets reveal that the detection performance is affected by
feature profiles, text vectorization methods and machine learning mod-
els. The experimental evaluations demonstrate that using the combina-
tion of opcode sequence and static features along with TF-IDF vector-
ization and the random forest machine learning algorithm outperforms
other machine learning algorithm based solutions as well as the D Shell
and CloudWalker commercial web shell detection products. In particu-
lar, the low false positive rate renders the proposed method useful and
efficient in forensic investigations.

Acknowledgement

This research was supported by the Natural Science Foundation of
China under Grant no. 61402476 and by the National Key R&D Program
of China under Grant no. 2017YFB0801900.

References

[1] Acunetix, An Introduction to Web-Shells, London, United King-
dom (www.acunetix.com/websitesecurity/introduction-web
shells), 2016.

[2] Chaitin Tech, CloudWalker Platform, GitHub (github.com/chai
tin/cloudwalker), March 7, 2020.

[3] M. Emposha, PHP-Shell-Detector, GitHub (github.com/emposha/
PHP-Shell-Detector), October 5, 2015.

[4] Y. Fang, Y. Qiu, L. Liu and C. Huang, Detecting web shells based on
random forest with fastText, Proceedings of the International Con-
ference on Computing and Artificial Intelligence, pp. 52–56, 2018.

[5] H. Liu, B. Lang, M. Liu and H. Yan, CNN and RNN based pay-
load classification methods for attack detection, Knowledge-Based
Systems, vol. 163, pp. 332–341, 2019.

[6] Z. Lv, H. Yan and R. Mei, Automatic and accurate detection of
web shells based on convolutional neural networks, Proceedings of
the China Cyber Security Annual Conference, pp. 73–85, 2018.

72 ADVANCES IN DIGITAL FORENSICS XVI

[7] MITRE Corporation, Web Shell, Bethesda, Maryland (attack.
mitre.org/techniques/T1100), 2019.

[8] T. Moore and R. Clayton, Evil searching: Compromise and recom-
promise of Internet hosts for phishing, Proceedings of the Interna-
tional Conference on Financial Cryptography and Data Security,
pp. 256–272, 2009.

[9] D. Rethans, More Source Analysis with VLD (derickrethans.nl/
more-source-analysis-with-vld.html), February 19, 2010.

[10] ShellPub.com, Webshell.Pub, Beijing, China (www.shellpub.com),
2020.

[11] Shenzhen Di Element Technology, D Shield, Shenzen, China (www.
d99net.net), 2020.

[12] O. Starov, J. Dahse, S. Ahmad, T. Holz and N. Nikiforakis, No
honor among thieves: A large-scale analysis of malicious web shells,
Proceedings of the Twenty-Fifth International Conference on World
Wide Web, pp. 1021–1032, 2016.

[13] J. Voisin, php-malware-finder, GitHub (github.com/nbs-sys
tem/php-malware-finder), May 26, 2020.

[14] Z. Wang, J. Yang, M. Dai, R. Xu and X. Liang, A method for detect-
ing web shells based on multi-layer perception, Academic Journal
of Computing and Information Science, vol. 2(1), pp. 81–91, 2019.

[15] P. Wrench and B. Irwin, Towards a PHP web shell taxonomy using
de-obfuscation-assisted similarity analysis, Proceedings of the Infor-
mation Security for South Africa Conference, 2015.

[16] B. Yong, X. Liu, Y. Liu, H. Yin, L. Huang and Q. Zhou, Web
behavior detection based on deep neural networks, Proceedings of
the IEEE SmartWorld, Ubiquitous Intelligence and Computing, Ad-
vanced and Trusted Computing, Scalable Computing and Commu-
nications, Cloud and Big Data Computing, Internet of People and
Smart City Innovation Conferences, pp. 1911–1916, 2018.

Chapter 5

ANOVELAPPROACHFORGENERATING
SYNTHETIC DATASETS FOR DIGITAL
FORENSICS

Thomas Göbel, Thomas Schäfer, Julien Hachenberger, Jan Türr and
Harald Baier

Abstract Increases in the quantity and complexity of digital evidence necessitate
the development and application of advanced, accurate and efficient dig-
ital forensic tools. Digital forensic tool testing helps assure the verac-
ity of digital evidence, but it requires appropriate validation datasets.
The datasets are crucial to evaluating reproducibility and improving
the state of the art. Datasets can be real-world or synthetic. While
real-world datasets have the advantage of relevance, the interpretation
of results can be difficult because reliable ground truth may not exist.
In contrast, ground truth is easily established for synthetic datasets.

This chapter presents the hystck framework for generating synthetic
datasets with ground truth. The framework supports the automated
generation of synthetic network traffic and operating system and appli-
cation artifacts by simulating human-computer interactions. The gen-
erated data can be indistinguishable from data generated by normal
human-computer interactions. The modular structure of the framework
enhances the ability to incorporate extensions that simulate new appli-
cations and generate new types of network traffic.

Keywords: Synthetic dataset generation, network traffic, operating system data

1. Introduction

Advanced, accurate and efficient digital forensic tools are vital to pro-
cessing the large volumes of complex digital evidence encountered in
digital forensic investigations. In order to be admissible in court, open
source digital forensic tools must meet four criteria: (i) tools, techniques
and procedures are thoroughly tested to assess the occurrences of false
negatives and false positives; (ii) results are verifiable and falsifiable in

c© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XVI, IFIP AICT 589, pp. 73–93, 2020.

https://doi.org/10.1007/978-3-030-56223-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56223-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-56223-6_5

74 ADVANCES IN DIGITAL FORENSICS XVI

order to specify possible error rates; (iii) new procedures are discussed
in the scientific community and subjected to objective peer reviews; and
(iv) new procedures are accepted by the digital forensic community [4].

In order to evaluate a suitable digital forensic tool (e.g., for network
traffic forensics), appropriate forensic testing and evaluation datasets
comprising correctly-labeled data that are similar to real-world data are
required. Tool testing, as suggested by Carrier [4], can only be performed
if suitable datasets are available to assess the accuracy and generalizabil-
ity of the results. NIST’s Computer Forensic Tool Testing (CFTT) Pro-
gram [13] is responsible for developing test methods for digital forensic
tools and producing appropriate test data. The main criteria for digi-
tal evidence admissibility in court are that appropriate tests should be
repeatable and reproducible. These criteria cannot be achieved without
high-fidelity testing and evaluation datasets for forensic tools, techniques
and procedures.

A number of datasets have been proposed for testing and evaluat-
ing digital forensic tools. Ring et al. [15] identify a broad spectrum
of network-based datasets that have been released from 1998 through
2019. However, datasets quickly become outdated. They are often too
academic, too specific, too synthetic (and thus too unrealistic) and/or
too anonymized. Additionally, there is a lack of good real-world datasets.

Grajeda et al. [7] stress the relevance of up-to-date datasets and the
importance of sharing them in the digital forensics community. Their
research reveals that 198 of the 351 analyzed datasets (56.4%) were ex-
perimentally generated, where researchers considered ad hoc scenarios
to create data for their experiments. Only 129 (36.7%) were real-world
datasets and 16 (4.6%) were computer-generated datasets (e.g., using
algorithms, bots or simulators). Grajeda and colleagues also noted that
45.6% (160 out of 351) of the datasets were newly created, but only
3.8% of them (6 of 160) were released to the public due to concerns
about releasing digital forensic data, especially real-world data. Accord-
ing to some researchers [1, 7], barriers to publishing datasets include
data protection laws, privacy and intellectual property concerns, lack of
resources and/or capabilities, and lack of understanding of the impor-
tance of sharing.

Aside from the availability and standardization of datasets, the pro-
cess of generating data is of crucial importance. The generated datasets
must be reliable and realistic. Additionally, the more extensive the
datasets, the better they are for education and training, and for the
application of machine learning algorithms.

Meanwhile, the heterogeneity and complexity of modern infrastruc-
tures require the use of a variety of forensic acquisition and analysis

Göbel et al. 75

methods. Sophisticated analyses involve attack attribution based on re-
curring attack patterns and the correlation of diverse information from
multiple data sources. Therefore, from a data synthesis point of view,
it is not enough to merely generate network traffic in PCAP files, but
also digital evidence from other sources (e.g., server-side information in
Apache log files, client-side information in syslog/event logs and even
memory dumps).

This chapter describes the hystck framework for generating synthetic
evaluation corpora for digital forensics using a novel approach that allows
the modeling of a complete infrastructure with a realistic network envi-
ronment. Although the main goal is to generate benign and malicious
network traffic, the proposed framework offers a more holistic data syn-
thesis approach compared with existing traffic generators. Specifically,
it simulates entire operating system sequences and applications via syn-
thetic human-computer interactions, generating a ground truth that is
realistic and comprehensive to the extent possible. The framework also
enables researchers to generate network traffic as well as relevant digital
evidence and artifacts in operating systems, such as data that is typically
stored in application-dependent log files and in main memory.

The open source nature of the framework with complete source code
and documentation can be leveraged by researchers to generate synthetic
digital forensic corpora that are comparable to real-world corpora. The
framework supports the generation of a reliable ground truth using a
holistic approach with a real-world context that simulates a complete in-
frastructure with multiple running operating systems, application types
and network protocols. An open API enables the synthetic generation
of traffic to be programmed. Finally, the framework is modular and
extensible, enabling researchers to simulate new operating systems, ap-
plications and network protocols.

2. Related Work

Demand for datasets has always been great in the intrusion detection
community for evaluating new techniques and comparing their perfor-
mance against existing ones. As a result, several approaches have been
proposed for generating intrusion detection datasets. Molnar et al. [12]
reveal that a large number of network traffic generators are available,
but most of them are focused on specific application areas, which makes
comparative evaluations extremely difficult. Other approaches generate
synthetic traffic by mimicking human user activity, but the generated
traffic typically is restricted to a single protocol or application type, or
only contains data without context.

76 ADVANCES IN DIGITAL FORENSICS XVI

ID2T [6] is a Python-based network dataset synthesizer that was de-
veloped to overcome the shortcomings of the infamous KDD Cup 1999.
ID2T essentially creates a new dataset by merging two PCAP-based
network traffic dumps, one containing benign traffic and the other con-
taining malicious traffic. During the merging process, ID2T accounts
for network characteristics to avoid the artifacts seen in the KDD Cup
1999 dataset [9]. FLAME [2] is similar to ID2T, but it requires NetFlow-
based traffic dumps. However, both ID2T and FLAME do not address
the problem of generating initial network dumps.

Moirai [3] is a testbed creation framework that supports the emulation
of Windows and Linux hosts. The framework uses an INI configuration
file to define an “experiment” that has rudimentary support for installa-
tion routines, host process control and file exchange, but does not provide
keyboard/window manager based controls. In addition, most commits
were made during a short period of time, after which the testbed no
longer appears to be maintained.

Emulab [8] is a network testbed that enables researchers to define
and perform tests of virtual network environments. Emulab simulta-
neously refers to the open source platform for defining and controlling
experimental environments, as well as the actual entity that runs the
virtualized systems. A user interface and Python-based scripting lan-
guage are provided for creating experimental hardware, software and
network setups. Emulab supports GENI RSpec to enhance interoper-
ability. DETER is an extension of Emulab that focuses on security-
sensitive experiments. It incorporates several architectural changes to
prevent malware from compromising other experiments and the under-
lying infrastructure. However, both Emulab and DETER do not provide
opportunities for modeling and simulating user activities.

The LARIAT testbed [16] developed by MIT Lincoln Laboratory sup-
ports the modeling of benign and malicious activities in networked en-
vironments. Wright et al. [19] have further extended LARIAT to record
and replay user activity at the user interface level using Markov chains.
This provides a more realistic network footprint compared with the orig-
inal LARIAT implementation, which was based on statistically-derived
network events combined with an application protocol generator. While
LARIAT receives good scores for its ability to simulate user activity, a
major drawback is its limited accessibility – it is neither open source nor
publicly available.

Related work on the automated generation of persistent disk images
also deserves mention. NIST [14] has released reference datasets that
provide forensic practitioners with simulated digital evidence for exam-
ination. Moch et al. [10, 11] have developed the Forensic Image Gener-

Göbel et al. 77

ator Generator (Forensig2) that generates filesystem images for digital
forensics training courses. Another similar tool is ForGe – Forensic Test
Image Generator [18]. Yet another similar system is EviPlant [17], which
facilitates the efficient creation, manipulation, storage and distribution
of digital forensic challenge problems for education and training pur-
poses. However, all these tools are prototypes. Only the source code of
ForGe is available, but the last commit was five years ago.

Traffic generators and image generators are disparate – traffic gener-
ators exclusively generate traffic and image generators do not produce
traffic. Since the primary goal is to develop a holistic data synthesis
framework that generates more than just network traffic and forensic
disk images, existing generators are unsatisfactory. The aforementioned
approaches do not provide mechanisms for dynamically modeling an en-
tire infrastructure in a modular manner, nor are they open source and
maintained or enable the automation of user activity. Indeed, the re-
view of the literature reveals that no generator comparable to hystck

combines all these features, and synthesizes network traffic and operating
system and application artifacts based on human-computer interactions.

3. Framework Architecture and Functionality

This section describes the architecture and functionality of the hystck
framework.

3.1 Overview

The hystck framework is designed to generate network traffic and
other relevant digital evidence – that do not differ from real network
traffic and disk images – by simulating human-computer interactions.
Therefore, a special user interaction model was developed to capture
and articulate human-computer interactions. The framework generates
datasets by executing user interaction models. In order for user inter-
action models to generate network traffic, a solution with an operating
system and graphical user interface is required. Additionally, it should
be possible to install new software that can be executed by a user inter-
action model at a later time.

Virtualization was chosen when designing the framework because any
operating system and applications can be installed on a virtual machine.
The Kernel-based Virtual Machine (KVM) is employed for virtualiza-
tion and libvirt is used for KVM administration. Other hypervisors
supported by libvirt (e.g., VirtualBox) may be integrated into the
framework. Since the framework must simulate the behavior of multi-

78 ADVANCES IN DIGITAL FORENSICS XVI

Figure 1. Framework architecture.

ple operating systems, a platform-independent programming language is
required. This is why the framework was developed entirely in Python.

3.2 Framework Architecture

The framework engages a client-server architecture. The server-side
has a framework master that manages the virtual machines. The client-
side has an interaction manager, an agent that runs in the background
and controls the graphical user interfaces of the virtual machines.

Figure 1 shows the interactions between the two main components.
The framework master communicates with the interaction manager run-
ning on a virtual machine via a TCP socket on port 11000. The con-
nection is used to send commands that control applications running on
the virtual machine (e.g., start, close and window change) as well as
keystrokes and mouse events.

The framework is divided into two parts to ensure that simulations
work correctly. One is the server-side (physical machine) on which a
specific scenario is implemented. The other part comprises the client-
side virtual machines that execute commands in the scenario. Traffic
produced by the virtual machines and sent to the Internet (internet
network) is captured in the PCAP format using the tcpdump tool. To
ensure that captures do not contain non-relevant control traffic, in addi-
tion to the internet network, a second network named local is created.
The local network is used for communications between the framework
master and interaction manager.

Göbel et al. 79

A separate virtual machine (guest) is created for each computer or
user to be simulated. Therefore, virtual machine template files for Linux
and Windows systems must be created in advance. All the images of
the guest virtual machines are derived from the template files so that
each simulated user works in an isolated execution environment and can
use different software. The interaction manager currently supports the
Linux, Windows 7 and Windows 10 operating systems.

The constants.py configuration file is used to adapt the framework
settings. The configuration file contains information such as the number
of virtual machines to be created, the names of the template files, the
IP addresses of the local network (192.168.100.1 in Figure 1) and
internet network (192.168.101.1 in Figure 1), and the MAC addresses
of the virtual machine network interfaces for IP address assignment using
DHCP.

The framework initiates the cloning of a virtual machine and estab-
lishes the connection to the guest (through which the guest sends and
receives commands) based on its MAC address. This is accomplished
using the GuestListener helper class. After the communications path
has been established, the Guest class is invoked with the appropriate
parameters to actually clone and start the virtual machine. After the
virtual machine has started, the network interfaces are extracted and
sniffers for the correct interfaces are started. The last key component
is the Agent class, which handles the connection between the host and
a virtual machine by having an agent running as an instance in the
guest. At this point, commands may be invoked to start applications
and perform tasks.

3.3 Data Synthesis Procedure

Figure 2 provides details about the operation of the framework.

1. The VMM class functions as a setup environment to create and con-
trol guests. It ensures that the default guest parameters (IP ad-
dress, MAC address, template, tcpdump, etc.) are set to success-
fully clone templates. Also, it creates sockets on all the interfaces
for the agents to listen on the guests.

2. The Guest class loads the parameters from the constants.py con-
figuration file. The class creates and controls the guests using the
template files.

3. The MAC addresses are linked to IP addresses and stored in the
network configuration files for use by libvirt.

4. The local and internet networks are created by libvirt.

80 ADVANCES IN DIGITAL FORENSICS XVI

Figure 2. Data synthesis procedure.

5. The Guest class creates the virtual machines based on the tem-
plates using libvirt. In addition, a lock file is created.

6. The Guest class causes each guest to load its user interaction
model.

Göbel et al. 81

Figure 3. Framework flow diagram.

7. The user interaction models are executed in the guests. This causes
the virtual machines to be started by libvirt. The tcpdump tool
is started on the host for each virtual machine in order to record
network traffic.

8. The guest instances connect to the virtual machine.

9. The process flow of each user interaction model proceeds, whereby
the interaction manager controls the graphical user interface and
simulates the desired behavior using the operating system and its
applications (e.g., Firefox and Thunderbird).

10. The simulation is complete. The virtual machines are shut down
by libvirt and tcpdump stops capturing traffic.

11. Finally, the virtual machines and the local and internet network
interfaces are deleted by libvirt. The lock file is also deleted.

The flow diagram in Figure 3 shows the most important steps in the
workflow. The workflow begins with cloning, starting and connecting
to the virtual machine. Next, a test is made to check if the connection

82 ADVANCES IN DIGITAL FORENSICS XVI

Table 1. Supported framework features.

Function Protocol Windows 7/10 Ubuntu 19

Firefox browse URL HTTP/HTTPS Yes Yes
Firefox click elements HTTP/HTTPS Yes Yes
Firefox download HTTP/HTTPS Yes Yes
Thunderbird send email SMTP/SMTPS Yes Yes
Thunderbird receive email POP3/IMAP/IMAPS Yes Yes
Thunderbird fill mailbox file – Yes Yes
SSH connection/file transfer SSH/SFTP Yes Yes
SMB file transfer SMB Yes Yes
IPP print job IPP Yes Yes
Pidgin IM and IRC XMPP/IRC Yes No
VeraCrypt create container – Yes NT
VeraCrypt (un)mount container – Yes NT
Execute console commands – Yes Yes
Change system clock – Yes Yes
Multiuser capability – Yes No

has been established; if this is true, the simulation functions are exe-
cuted. The functions include browsing websites, sending email and ex-
changing instant messages. After all the simulation functions have been
executed, the virtual machine is shut down. Following this, a parame-
ter value is checked to determine if the virtual machine should remain in
virtmanager or if it should be deleted. For example, the virtual machine
image should be maintained if it is desired to correlate network traffic
with operating-system-dependent traces. Finally, tcpdump is closed and
the capture files are saved.

3.4 Supported Features

The framework currently simulates common applications and traffic
types. Table 1 shows the list of supported features, including the simu-
lation activities in the operating systems. Note that “NT” means that
the feature was not tested. The following details are provided about the
supported features:

Firefox: Certain behavior by the Firefox web browser can be
simulated. The most important feature is the ability to browse
websites. With the support of the web browser environment, it is
possible to simulate common traffic types, including typical traffic
patterns such as those involving streaming platforms. It is also
possible to interact with websites using an xpath component to
trigger click events on website objects.

Göbel et al. 83

Thunderbird: A Thunderbird module is available for creating
email traffic. The module supports basic Thunderbird activities
such as logging into an email account, and sending and receiving
email.

SSH/SFTP: The SSH protocol is widely used to securely log into
and transfer files across enterprise server infrastructures. This is
easily simulated because the framework provides full Linux Bash
shell and Windows command line functionality.

Pidgin: The Pidgin chat client supports a variety of chat services.
It is possible to simulate instant messaging traffic (e.g., IRC) such
as sending and receiving chat messages.

Botnets: A module is available for simulating botnet attacks by
Zeus, Asprox, Mariposa and Waledac. It is possible to generate
network dumps of entire attacks from the victims’ perspectives.

VeraCrypt: A module is available for simulating the creation
of encrypted containers. The module is only used in the image
generation part.

3.5 Network Traffic Synthesizer

As mentioned above, the guest systems and virtual machines have two
network interfaces. The local interface is for transmitting hystck com-
mands while the internet interface is a bridge to the Internet. From
the traffic generation point of view, the internet interface is interest-
ing because all relevant traffic flows through it. The separation was
implemented to prevent framework communications from showing up in
network captures. Specifically, it ensures that all framework commu-
nications, such as telling a guest to browse a website, are handled by
the local interface and everything else, such as actually browsing the
website and sending and receiving email, are handled by the internet

interface.
To obtain a traffic dump, hystck searches for a specific IP address and

starts tcpdump with the corresponding network interface as a parame-
ter. The tcpdump tool then captures every packet traveling through the
network, outgoing as well as incoming. The tool continues to capture all
the packets as long as the guest operating system is running and dumps
them into a specified file.

In an experiment with Firefox, only two websites were visited, but the
captured traffic exceeded 17,000 network packets. Many of the packets
were related to the Firefox landing page (about 20 pages are loaded when

84 ADVANCES IN DIGITAL FORENSICS XVI

Figure 4. Generating persistent disk images.

the browser is opened). However, another large – and more important –
group comprised packets associated with Windows services and updates
that executed in the background from the time the operating system was
started. Clearly, much more traffic would be captured when simulating
complete operating system behavior. Thus, the framework can generate
more realistic datasets than other traffic generators.

3.6 Disk Image Generator

In addition to network traffic, the framework can be used to generate
persistent disk images as in [10, 11, 17, 18]. Depending on the user
interaction model, the framework can partially automate forensic image
generation, including background data and planted evidence.

Figure 4 shows how the framework can emulate a number of appli-
cations on the guest systems; this is highly versatile. Additionally, the
modular architecture enables new applications to be added. It is possible
to specify and emulate a variety of user behaviors on guests using sim-
ple user interaction models. Many plugins for web browsing, program
execution and file injection are provided. System time can be altered
automatically to simulate system usage over a large interval of time.
The framework also creates a report of all the activities performed on
the image with hash values. At first glance, an image would be indistin-
guishable from the image of an actual system operated by a user. This
is advantageous for education and training purposes where a variety of
datasets can be created in an automated manner. Only one large base
image is necessary in the framework. The distribution of the actual im-

Göbel et al. 85

Figure 5. Generator workflow.

age is performed via snapshots in the QEMU-based file format, which
are less than 1GiB and only include the differences from the base image.

Locard’s exchange principle states that every contact leaves a trace.
This poses a problem during image generation. Every interaction with
the operating system leaves a trace – usually multiple traces. These were
seen in the framework components inside a virtual machine (e.g., Python
installation, hystck agent source code, third party libraries, Bash scripts
for the startup process and network connections to the virtual machine
monitor). Future research will attempt to reduce the presence of these
artifacts in images.

4. Generator and Reporter

This section describes the automated generation of images and net-
work dumps. Also, it describes the reporting function, which summarizes
everything that occurred in a virtual machine.

4.1 Generator

The hystck generator can almost automatically produce large amounts
of traces and traffic. For example, the generator could instruct the
framework to send hundreds of email messages and to browse numerous
websites in order to generate benign and malicious data. Benign data
corresponds to the generated haystack of good files. Malicious data cor-
responds to needles inserted in the haystack for subsequent detection.

The generator produces a variety of data types – normal, suspicious
and malicious data (e.g., PDFs, images and text). As Figure 5 demon-
strates, the generator takes in a YAML file and calls the functions asso-
ciated with the YAML tags. The YAML configuration file helps setup

86 ADVANCES IN DIGITAL FORENSICS XVI

the traffic and image generation process. Next, several action suites are
created that describe the order and protocols under which files are sent;
the action suites execute on the virtual machines. If desired, the data
to be sent over the network may be selected randomly.

The configuration file grants wide access to framework functionality
because special programming expertise is not needed to generate differ-
ent types of traffic. Moreover, every portion of the YAML file is described
in detail in the documentation, which enables users to understand what
can be done with the generator and how it can be done.

In addition to the generator, a separate virtual machine is used to
provide necessary services (e.g., Samba server, print server and local
mail server). The virtual machine is started headless without a graphical
user interface. If the virtual machine is installed as specified in the
documentation, then the framework knows exactly where to find all the
relevant services.

Users who have good understanding of Python and the hystck code-
base have the option of manually scripting scenarios without using the
generator. An example of manually-generated user interaction model
source code is shown later (Figure 7). Note that it is not necessary to
develop models independently because tweaking the YAML file of the
hystck generator could produce the same outcome or even richer out-
comes as the operations are configurable.

4.2 Reporter

The framework and its generator make it easy to produce datasets
with hundreds or thousands of executed operations. This would make it
very difficult to manually keep track of every detail of every operation.
The hystck reporter keeps track of what happened and when, main-
taining information about every benign and malicious operation. The
reporting function is very useful for education and training, enabling in-
structors to tailor images and/or network dumps to their teaching goals.
Additionally, the reporter could produce an XML document that assists
an instructor in grading student work (e.g., providing all the details
about a scenario). This document could then be viewed via the web
viewer integrated in the framework or using a tool that can parse XML
files.

5. Framework Validation

As mentioned above, the hystck framework was specifically designed
to simulate human-computer interactions in order to generate foren-
sic images and network traffic that would at best be indistinguishable

Göbel et al. 87

Figure 6. Traffic generation using Firefox.

from real-world human-computer interactions. This section describes
two practical scenarios involving the generation of web and mail traffic
using the framework. The section also shows how simulations of other
applications can be integrated into the framework. Not every function
can be discussed here, which is why interested readers are referred to the
GitHub repository (github.com/dasec/hystck) for technical details.

5.1 Web Traffic and Mail Traffic Generation

While the modular structure of the framework supports the develop-
ment and implementation of custom user interaction models to generate
traffic and images for a variety of scenarios, several implemented mod-
els can inspire the creation of new scenarios with the same or different
applications. This section describes two implemented models involving
Firefox and Thunderbird.

Figure 6 shows traffic generation using the Firefox application. After
installing the hystck framework and preparing the virtual machine tem-

Create Traffic by

88 ADVANCES IN DIGITAL FORENSICS XVI

plate as described above, the appropriate Python script is executed. The
framework creates a copy of the prepared virtual machine and starts it.
The virtual machine then establishes a connection to the host, follow-
ing which the user interaction model is executed. In this example, the
interaction manager, which runs on the client-side, opens an instance
of Firefox, visits multiple websites in succession and downloads content
before closing the application.

Figure 7 shows the code snippet corresponding to the user interaction
model that simulates Firefox behavior. In the snippet, the framework
waits for the connection to the interaction manager to be established,
after which the web browser simulation begins. Depending on the chosen
functions, it is possible, for example, to visit and interact with websites,
download files and log into a Facebook account.

The procedure for generating traffic with Thunderbird is quite similar
to the Firefox example shown at the bottom of Figure 7. One difference is
that user authentication is required when using an email service. There-
fore, before traffic is generated, the interaction manager must receive the
user login credentials and the recipient’s email address from the host-
side script. Traffic is subsequently generated by sending an email from
the user to the recipient.

Finally, as discussed above, the entire generation process is easily
automated and repeated multiple times using the framework generator.

5.2 Framework Extensions

The framework is designed with extensibility in mind. A variety of
user activities and operating system behaviors based on new applica-
tions can be generated at any time. The applications may be added us-
ing the skeleton.py file located in the application folder in the GitHub
repository. The file provides developers with a basic structure of four
classes. However, only two classes, SkeletonVmmSideCommands and
SkeletonGuestSideCommands, are relevant. The other two classes are
only for command parsing and do not need to be altered.

The SkeletonVmmSideCommands class is responsible for the host-side
assembly of commands; it implements the functions that send the appro-
priate commands. The SkeletonGuestSideCommands class is the actual
implementation. Everything written in this class is executed by the
virtual machine and causes actions by an application or the operating
system.

Two functions are provided in the skeleton to facilitate the addition of
applications. The open and close functions trigger the corresponding
actions in the application. Additional assistance for integrating custom

Göbel et al. 89

1 from hystck.core.vmHelper import vmHelper

2 from hystck.core.vm import vm

3

4 vmhelper = vmHelper()

5 vmobj = vmhelper.createVM(vmname="windows-vm01", template=

"windows")

6

7 #wait for vm

8 for vm in vmhelper.vms:

9 while vm.state != "connected"

10 time.sleep(0.1)

11

12 # vm.state == "connected":

13 # Email login data for Thunderbird

14 mail.add_imap_account("imap.web.de", "smtp.web.de",

15 "anonymous_sender@web.de", "password", "Sender Name",

16 "Example Subject", 2, 3, 1, 3)

17 ...

18 # begin of firefox session by opening the application

and visiting a website

19 browserobj = vm.openBrowser("firefox", "www.h-da.de")

20 # downloading via firefox

21 browser_obj.download_from(

22 ’https://www.nist.gov/itl/ssd/software-quality-group/’ +

23 ’computer-forensics-tool-testing-program-cftt/’ +

24 ’computer-forensic-0-0-2’,

25 ’Video dd files (zip format)’)

26 # login for facebook via firefox

27 browserobj.facebook_login(username="user@domain.de",

password="password")

28 browserobj.close()

29 ...

30 # enter recipient address and message and send email

31 mail.send_mail(message="testmail", subject="testmail",

32 receiver="anonymous_receiver@web.de")

Figure 7. User interaction model code simulating Firefox and Thunderbird behavior.

applications is available in the template class files and framework docu-
mentation.

6. Future Work

While the framework is versatile and supports diverse tasks, it will
never cover all the use cases because new operating systems, applica-
tions and protocols will always have to be integrated. However, the

90 ADVANCES IN DIGITAL FORENSICS XVI

modular architecture facilitates extensibility by enabling new user in-
teraction models and scenarios to be incorporated. The framework can
be made more functional by increasing the number of supported appli-
cations, including applications that use protocols such as FTPS, SIP
and VoIP, and messenger applications such as WhatsApp Desktop and
Skype. Many applications are cloud-based or require network connec-
tions to function and, therefore, generate traffic in the background al-
most “automatically.” In addition to generating benign traffic, it is also
necessary to simulate network attacks for attack traffic generation. The
first steps in this direction have already been implemented by inserting
malicious data (needles) into the network stream using the generator
and by incorporating the botnet component.

As far as the core components of the framework are concerned, an im-
portant future task is to add data synthesis support for macOS. Frame-
work agents will also be developed for Android and iOS.

Since the framework is based on the client-server model, it is cumber-
some to test code changes quickly. This will be addressed by developing
an efficient test base and debugging mechanisms. Another important
task is to reduce artifacts in the generated images (e.g., agent source
code and virtual machine monitor connections). In addition, it is nec-
essary to integrate automated memory dump processes for Linux and
Windows virtual machines to correlate relevant information with data
captured by tcpdump and data stored in virtual machine persistent stor-
age.

Other research problems are modeling normal user behavior and simu-
lating daily routines and environment interactions in network infrastruc-
tures. Chinchilla et al. [5] describe some characterizations of Internet
traffic and perform a user classification. Studies will be performed on
user behavior to produce high-fidelity user simulations. It will also be
necessary to develop metrics for dataset quality, including comparing
synthetically-generated and real-world datasets.

7. Conclusions

The hystck framework offers a novel approach for generating digital
forensic datasets. The data synthesis approach is more holistic than
existing traffic generators. The framework models and simulates real
human-computer interactions to generate network traffic and forensic
images.

A key advantage of the framework is its extensibility. The modular,
plugin-based design involving user interaction models enables users to
write and integrate plugins for custom system interactions and realistic

Göbel et al. 91

traffic generation. Another advantage is scalability – it is possible to
simulate a network of computers with diverse operating systems, users,
applications and protocols, each running in their own virtual machines.
More systems can be added to the network environment at any time by
simply introducing more virtual machines. The framework also offers
an efficient image distribution feature because only small differential
images need to be shared. Furthermore, the framework operates in a
time-independent manner as the system time can be changed at will;
this makes it possible to simulate multiple user interactions during a
desired time interval. Additionally, the framework is case independent
in that it is not necessary to model user behavior manually; an API is
provided to automatically interact with the framework.

As the future research tasks are implemented, the framework will
evolve to become a powerful dataset generator. These datasets can
be used for new network traffic analysis tools and network forensic ap-
proaches, simulating realistic user interactions for classical drive foren-
sics, analyzing memory dumps and investigating network usage and data
storage by mobile device applications.

The latest version of the framework source code is downloadable from
the GitHub repository (github.com/dasec/hystck). The framework
documentation, an installation guide and details about framework fea-
tures and adding custom code for simulating other application types are
available at hystck/docs. The pre-compiled documentation is available
at hystck/docs/src/ build/html/index.html.

Acknowledgements

This research was supported by the German Federal Ministry of Ed-
ucation and Research (BMBF) under Forschung an Fachhochschulen
(Contract No. 13FH019IB6) and by the Hessen State Ministry for Higher
Education, Research and the Arts (HMWK) under CRISP. The authors
also wish to thank Reinhard Stampp and Sascha Kopp, who played im-
portant roles in implementing the framework.

References

[1] S. Abt and H. Baier, Are we missing labels? A study of the avail-
ability of ground truth in network security research, Proceedings of
the Third International Workshop on Building Analysis Datasets
and Gathering Experience Returns for Security, pp. 40–55, 2014.

[2] D. Brauckhoff, A. Wagner and M. May, FLAME: A flow-level
anomaly modeling engine, Proceedings of the Conference on Cyber
Security Experimentation and Test, article no. 1, 2008.

92 ADVANCES IN DIGITAL FORENSICS XVI

[3] G. Brogi and V. Tong, Sharing and replaying attack scenarios
with Moirai, presented at the Rendezvous de la Recherche et de
l’Enseignement de la Sécurité des Systèmes d’Information (Infor-
mation Systems Security Research and Education Meeting), 2017.

[4] B. Carrier, Open Source Digital Forensic Tools: The Legal Argu-
ment, @stake, Cambridge, Massachusetts, 2002.

[5] R. Chinchilla, J. Hoag, D. Koonce, H. Kruse, S. Osterman and Y.
Wang, Characterization of Internet traffic and user classification:
Foundations for the next generation of network emulation, Proceed-
ings of the Tenth International Conference on Telecommunications
Systems, Modeling and Analysis, 2002.

[6] C. Cordero, E. Vasilomanolakis, N. Milanov, C. Koch, D. Hausheer
and M. Muhlhauser, ID2T: A DIY dataset creation toolkit for in-
trusion detection systems, Proceedings of the IEEE Conference on
Communications and Network Security, pp. 739–740, 2015.

[7] C. Grajeda, F. Breitinger and I. Baggili, Availability of datasets for
digital forensics – And what is missing, Digital Investigation, vol.
22(S), pp. S94–S105, 2017.

[8] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb and J. Lepreau, Large-scale virtualization in the Emu-
lab network testbed, Proceedings of the USENIX Annual Technical
Conference, pp. 113–128, 2008.

[9] M. Mahoney and P. Chan, An analysis of the 1999 DARPA/Lin-
coln Laboratory evaluation data for network anomaly detection,
Proceedings of the International Workshop on Recent Advances in
Intrusion Detection, pp. 220–237, 2003.

[10] C. Moch and F. Freiling, The Forensic Image Generator Generator
(Forensig2), Proceedings of the Fifth International Conference on IT
Security Incident Management and IT Forensics, pp. 78–93, 2009.

[11] C. Moch and F. Freiling, Evaluating the Forensic Image Generator
Generator, Proceedings of the International Conference on Digital
Forensics and Cyber Crime, pp. 238–252, 2011.

[12] S. Molnar, P. Megyesi and G. Szabo, How to validate traffic gener-
ators? Proceedings of the IEEE International Conference on Com-
munications Workshops, pp. 1340–1344, 2013.

[13] National Institute of Standards and Technology, Computer
Forensic Tool Testing (CFTT) Program, Gaithersburg, Maryland
(www.nist.gov/itl/ssd/software-quality-group/computer-
forensics-tool-testing-program-cftt), 2019.

Göbel et al. 93

[14] National Institute of Standards and Technology, The CFReDS
Project, Gaithersburg, Maryland (www.cfreds.nist.gov), 2019.

[15] M. Ring, S. Wunderlich, D. Scheuring, D. Landes and A. Hotho,
A survey of network-based intrusion detection datasets, Computers
and Security, vol. 86, pp. 147–167, 2019.

[16] L. Rossey, R. Cunningham, D. Fried, J. Rabek, R. Lippmann, J.
Haines and M. Zissman, LARIAT: Lincoln adaptable real-time in-
formation assurance testbed, Proceedings of the IEEE Aerospace
Conference, 2002.

[17] M. Scanlon, X. Du and D. Lillis, EviPlant: An efficient digital foren-
sics challenge creation, manipulation and distribution solution, Dig-
ital Investigation, vol. 20(S), pp. S29–S36, 2017.

[18] H. Visti, S. Tohill and P. Douglas, Automatic creation of computer
forensic test images, in Computational Forensics, U. Garain and F.
Shafait (Eds.), Springer, Cham, Switzerland, pp. 163–175, 2015.

[19] C. Wright, C. Connelly, T. Braje, J. Rabek, L. Rossey and R.
Cunningham, Generating client workloads and high-fidelity network
traffic for controllable repeatable experiments in computer security,
Proceedings of the International Workshop on Recent Advances in
Intrusion Detection, pp. 218–237, 2010.

Chapter 6

DETECTING ATTACKS ON A WATER
TREATMENT SYSTEM USING ONE-
CLASS SUPPORT VECTOR MACHINES

Ken Yau, Kam-Pui Chow and Siu-Ming Yiu

Abstract Critical infrastructure assets such as power grids and water treatment
plants are monitored and managed by industrial control systems. At-
tacks that leverage industrial control systems to disrupt or damage in-
frastructure assets can impact human lives, the economy and the en-
vironment. Several attack detection methods have been proposed, but
they are often difficult to implement and their accuracy is often low.
Additionally, these methods do not consider the digital forensic aspects.

This chapter focuses on the use of machine learning, specifically one-
class support vector machines, for attack detection and forensic investi-
gations. The methodology is evaluated using a water treatment testbed,
a scaled-down version of a real-world industrial water treatment plant.
Data collected under normal operations and attacks are used in the
study. In order to enhance detection accuracy, the water treatment
process is divided into sub-processes for individual one-class support
vector machine model training. The experimental results demonstrate
that the trained sub-process models yield better detection performance
than the trained complete process model. Additionally, the approach
enhances the efficiency and effectiveness of forensic investigations.

Keywords: Machine learning, one-class SVM, forensics, water treatment system

1. Introduction

Industrial control systems, which combine distributed computing and
physical process monitoring and control [9], are commonly used to oper-
ate critical infrastructure assets such as power grids and water treatment
plants. Industrial control systems make it convenient to operate infras-
tructure assets remotely, but the added convenience comes at the cost
of increased vulnerabilities [13]. Specifically, an attacker can compro-

c© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XVI, IFIP AICT 589, pp. 95–108, 2020.

https://doi.org/10.1007/978-3-030-56223-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56223-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-56223-6_6

96 ADVANCES IN DIGITAL FORENSICS XVI

mise a corporate network using conventional network security attacks
and leverage the access to pivot and target industrial control systems.
A widely-reported attack on a Ukrainian power grid in December 2015
caused a power outage to more than 200,000 customers [10]. The at-
tackers leveraged spear phishing email, variants of the BlackEnergy 3
malware and Microsoft Office documents containing malware to pene-
trate information technology networks and launch attacks on electrical
substations.

Digital forensics is increasingly engaging artificial intelligence to ana-
lyze large amounts of complex data [11]. Meanwhile, machine learning
techniques have been shown to be very effective at detecting anoma-
lies and attacks in industrial control systems. Supervised learning has
yielded results with high precision, but the approach requires labeled
(normal and attack) data for training. Class labeling is a challenging
task because it is time consuming for large datasets and often requires
manual efforts of the part of control system experts. Moreover, it is
difficult or impossible to collect attack data. While some attacks may
be simulated, it is not possible to simulate all possible attacks [19].

To address these challenges, this research employs a semi-supervised
machine learning methodology in which a one-class support vector ma-
chine (OC-SVM) model is trained using normal data, following which
data that deviate from the trained model are identified as attacks. This
methodology does not need class labeling. Moreover, normal data for
training is readily obtained.

An important aspect of the proposed methodology is that the physi-
cal process is divided into sub-processes and a one-class support vector
machine model is created for each sub-process, which improves attack
detection performance. Additionally, the division renders forensic in-
vestigations more effective. Instead of investigating the entire system at
one time, a forensic practitioner can focus on individual sub-processes as
needed. Since each trained sub-process model is responsible for detecting
specific attacks, the practitioner is able to narrow the scope to perform
data collection and investigate each sub-process individually. Experi-
ments with a water treatment testbed demonstrate the improvements in
attack detection and effectiveness of incident investigations.

2. Related Work

Attack detection in industrial control systems has been the subject
of considerable research. Machine learning is one of the successful ap-
proaches for implementing attack detection.

Yau, Chow & Yiu 97

Yau et al. [21, 22] have proposed forensic solutions for a simulated
traffic light system that leverage machine learning techniques. They cap-
tured the values of relevant memory addresses used by the programmable
logic controller that monitored and managed the traffic light system.
The memory values were stored in a log file for model training and the
trained model was used to identify anomalous programmable logic con-
troller behavior. Although the solutions achieved high attack detection
accuracy, the simulated system used in the research did not approach
the scale and complexity of a real-world traffic light system.

Inoue et al. [8] have evaluated the application of unsupervised ma-
chine learning methods to anomaly detection in cyber-physical systems.
Specifically, they compared two methods, deep neural networks and one-
class support vector machines, for detecting anomalies in the same water
treatment testbed used in this research. The results reveal that the two
methods have various advantages and disadvantages with regard to de-
tection performance and accuracy.

Mounce et al. [12] have employed supervised machine learning with
support vector regression to detect novel events in time series data per-
taining to water flow and pressure. The novel events include pipe bursts,
hydrant flushing and sensor failure. Their research demonstrates that
the methodology provides faster alert generation than approaches using
artificial neural networks and fuzzy inference.

Schuster et al. [15] have applied one-class support vector machines to
a number of real-world industrial control system traffic traces. Their
experimental results show that one-class support vector machines are
effective at analyzing network packets and packet sequences to detect
anomalies.

Kravchik and Shabtai [9] have developed a methodology for detecting
anomalies and attacks in industrial control systems using a 1D convolu-
tional neural network and autoencoders. Convolutional neural networks
are a popular machine learning technique used in image processing appli-
cations. An autoencoder is a neural network that is trained to reproduce
its input, thereby learning useful properties of the data. Applications of
the methodology to several popular public datasets reveal that the detec-
tion results match or exceed previously-published results while featuring
a small footprint and short training and detection times, and providing
more generality.

The methodology presented in this chapter is distinct from other ap-
proaches in that it divides a complex process into sub-processes for one-
class support vector machine model training in order to increase attack
detection performance and accuracy. The data used in this research was
collected from a testbed that closely mimics a real-world water treat-

98 ADVANCES IN DIGITAL FORENSICS XVI

Figure 1. Secure Water Treatment (SWaT) testbed [3].

ment plant. A sliding window method is employed to process time series
datasets for one-class support vector machine model training. Addi-
tionally, the methodology enhances forensic investigations of industrial
control system incidents.

3. Secure Water Treatment Testbed

The Secure Water Treatment (SWaT) testbed shown in Figure 1 is
set up at the iTrust Centre for Research in Cyber Security at Singapore
University of Technology and Design. The testbed closely mimics a real-
world water treatment plant [3]. The testbed takes raw water as input,
executes a series of treatments and outputs recycled water.

The water treatment process comprises six sub-processes or stages P1
through P6 (Figure 2) [20]. Raw water enters the raw water tank (P1)
from where it is pumped to chemical tanks. After chemical dosing and
static mixing (P2), the water is passed to an ultrafiltration (UF) system
(P3) and ultraviolet (UV) lamps (P4). Following this, the water is fed to
a reverse osmosis (RO) system (P5). Finally, a backwash process cleans

Yau, Chow & Yiu 99

Legend
P1: Raw Water Supply and Storage
P2: Chemical Dosing
P3: Ultrafiltration (UF)
P4: Dechlorination
P5: Reverse Osmosis (RO)
P6: RO Permeate Transfer and UF Backwash

AITx0y: Analyzer Indicator Transmitter
DPITx0y: Differential Pressure Indicator
Transmitter
FITx0y: Flow Indicator Transmitter
LITx0y: Level Indicator Transmitter
MVx0y: Motorized Valve
Px0y: Pump
x: Component No.
y: Process Module No.

x Raw Water
Tank PumpMV101

P101

FIT101

LIT101
P1

Re

Pr Raw Permeate
Tank

UF Backwash
Tank

UF Backwash
Pump

Recycled
Water

P602

P6

AIT504
Pr: Permeate Re: Reject

RO Boost
Pump

Cartridge
Filter

Reverse Osmosis
(RO) Unit

P501AIT503

P5

x

x

P201 P203 P205

HCL NaOCl NaCl

Static
Mixer MV201FIT201, AIT201

AIT202, AIT203

Chemical Dosing
Station

P2

x

Chemical Tanks and Dosing Pumps

x

UF Feed
Tank

Ultrafiltration
Unit (UF)

UF Feed
Pump

DPIT301

LIT30
1

P301

P3

xRO Feed
Tank

RO Feed
Pump

Ultraviolet (UV)
Dechlorinator

NaHSO3

FIT401

P401 LIT40
1

FIT402

P4

x

x

Raw
Water

Figure 2. Six-stage water treatment process [3].

the membranes of the ultrafiltration system using the water produced
by the reverse osmosis system (P6).

Sensors are employed at each sub-process; the sensor values are passed
to a programmable logic controller, which monitors the states of the sub-
processes. Based on the sensor values, the programmable logic controller
directs actuators to manipulate the states of the sub-processes. For
example, in the case of sub-process P1, the sensor LIT101 monitors the
water level in the raw water tank. The programmable logic controller
reads the sensor value and decides whether or not to change the state
of the actuator, valve MV-101. If the LIT-101 sensor value is above a
threshold, the programmable logic controller may deactivate valve MV-
101, which stops raw water flow into the tank.

100 ADVANCES IN DIGITAL FORENSICS XVI

4. Data Collection

The data collection process lasted 11 days. The testbed was operated
continuously 24 hours/day during the entire period. During the first
seven days, the testbed operated under normal conditions (i.e., without
attacks).

Attacks were launched during the last four days of the data collection
process [7]. The attacks were created systematically from an attack
model [1] that considers attacker intent. A total of 36 distinct attacks
were launched on the SWaT testbed. The attacks fell in the following
four categories [7]:

Single Stage Single Point (SSSP): This type of attack targets
one point in a single stage (sub-process).

Single Stage Multi Point (SSMP): This type of attack targets
two or more attack points in a single stage (sub-process).

Multi Stage Single Point (MSSP): This type of attack targets
one point in multiple stages (sub-processes).

Multi Stage Multi Point (MSMP): This type of attack targets
two or more points in multiple stages (sub-processes).

Data from all the testbed sensors and actuators was logged every sec-
ond and stored in a historian. A total of 946,722 data samples involving
51 attributes (e.g., FIT101, LIT101 and P101) were collected over the
11-day period. Figure 3 shows sample data that was collected during
the experiments.

5. One-Class Support Vector Machine

Machine learning builds an automated analytical model using algo-
rithms that learn from data iteratively. Based on the model, machine
learning enables the automated discovery of hidden insights without ex-
plicit programming [14]. A one-class support vector machine is a semi-
supervised learning model that is widely used to detect anomalous eve-
nts. The one-class support vector machine essentially finds the maximal
margin hyperplane using an appropriate kernel function to map most of
the training data to one side of the hyperplane [2]. Thus, it is trained
using only data from only one (normal) class. After being trained with
normal data, the one-class support vector machine classifies test data as
normal data or abnormal (i.e., attack) data.

Yau, Chow & Yiu 101

 Timestamp FIT101 LIT101 MV101 P101 P102 AIT201 AIT202 AIT203 FIT201 ….

 22/ 12/ 2015 4:30:00 PM 0 124.3135 1 1 1 251.9226 8.313446 312.7916 0 ….

 22/ 12/ 2015 4:30:01 PM 0 124.392 1 1 1 251.9226 8.313446 312.7916 0 ….

 22/ 12/ 2015 4:30:02 PM 0 124.4705 1 1 1 251.9226 8.313446 312.7916 0 ….

 22/ 12/ 2015 4:30:03 PM 0 124.6668 1 1 1 251.9226 8.313446 312.7916 0 ….

 22/ 12/ 2015 4:30:04 PM 0 124.5098 1 1 1 251.9226 8.313446 312.7916 0 ….

 22/ 12/ 2015 4:30:05 PM 0 123.921 1 1 1 251.9226 8.313446 312.7916 0 ….

 22/ 12/ 2015 4:30:06 PM 0 123.5284 1 1 1 251.9226 8.313446 312.7916 0 ….

 22/ 12/ 2015 4:30:07 PM 0 123.4107 1 1 1 251.9226 8.313446 312.7916 0 ….

 22/ 12/ 2015 4:30:08 PM 0 123.2144 1 1 1 251.9226 8.312805 312.7916 0 ….

 22/ 12/ 2015 4:30:09 PM 0 123.3322 1 1 1 251.9226 8.310242 312.7916 0 ….

 22/ 12/ 2015 4:30:10 PM 0 123.7247 1 1 1 251.9226 8.30896 312.8685 0 ….

 22/ 12/ 2015 4:30:11 PM 0 124.2742 1 1 1 251.9226 8.30896 312.9198 0 ….

 22/ 12/ 2015 4:30:12 PM 0 124.4705 1 1 1 251.9226 8.30896 312.9198 0 ….

 22/ 12/ 2015 4:30:13 PM 0 124.863 1 1 1 251.9226 8.30896 312.9198 0 ….

 22/ 12/ 2015 4:30:14 PM 0 125.0593 1 1 1 251.9226 8.30896 312.9198 0 ….

 22/ 12/ 2015 4:30:15 PM 0 124.5883 1 1 1 251.9226 8.30896 312.9198 0 ….

 22/ 12/ 2015 4:30:16 PM 0 124.392 1 1 1 251.9226 8.30896 312.9198 0 ….

Figure 3. Sample data.

6. Methodology

In the experiments, data from the first seven days (without attacks)
was used to train the one-class support vector machine. Data from the
last four days (with attacks) was used to evaluate the one-class support
vector machine performance.

Since the scales of the various testbed features (attributes) were dif-
ferent (Figure 3), the min-max scaling method was used to normalize
the values of the features to a scale of 0 to 1 in order to achieve better
model training performance. Min-max scaling is performed as follows:

x
′

=
x−min(x)

max(x)−min(x)

where x is the original value and x
′

is the normalized value.
Since the data was logged as a time series, the sliding window method

was used to convert the data into individual feature vectors [6, 8]. As-
sume that li is the ith log entry and w is the window size, then the
window Wi is given by:

Wi = li, li+1, . . . , li+w−1

If there are k entries l1, l2, . . . , lk, then k − w + 1 windows Wi,W2, . . . ,
Wk−w+1 are generated. A window is labeled as an attack window if at

102 ADVANCES IN DIGITAL FORENSICS XVI

 Timestamp FIT101 LIT101 M V101 P101 P102 FIT601 P601 P602 P603 Normal/ Attack

 28/12/ 2015 10:29:10 AM 2.428979 815.9471 2 1 1 … 0.000128 1 1 1 Normal

 28/12/ 2015 10:29:11 AM 2.424174 816.1041 2 1 1 … 0.000128 1 1 1 Normal

 28/12/ 2015 10:29:12 AM 2.424174 816.3788 2 1 1 … 0.000128 1 1 1 Normal

 28/12/ 2015 10:29:13 AM 2.447234 816.8499 2 1 1 … 0.000128 1 1 1 Normal

 28/12/ 2015 10:29:14 AM 2.493675 817.6742 2 1 1 … 0.000128 1 1 1 Attack

 28/12/ 2015 10:29:15 AM 2.535951 817.9490 2 1 1 … 0.000128 1 1 1 Attack

 28/12/ 2015 10:29:16 AM 2.535951 817.9490 2 1 1 … 0.000128 1 1 1 Attack

 28/12/ 2015 10:29:17 AM 2.569900 818.4592 2 1 1 … 0.000128 1 1 1 Attack

 28/12/ 2015 10:29:18 AM 2.610575 818.8911 2 1 1 … 0.000128 1 1 1 Attack

 28/12/ 2015 10:29:19 AM 2.635557 818.6948 2 1 1 … 0.000128 1 1 1 Attack

 28/12/ 2015 10:29:20 AM 2.657336 819.3228 2 1 1 … 0.000128 1 1 1 Attack

 28/12/ 2015 10:29:21 AM 2.663741 819.7938 2 1 1 … 0.000128 1 1 1 Attack

W1 = <l1, l2, l3>, Normal

W3 = <l3, l4, l5>, Attack

W2 = <l2, l3, l4>, Normal

Figure 4. Sliding log entries into windows of size three.

least one of the log entries li, li+1, . . . , li+w−1 in the window is labeled
as an attack; otherwise, the window is labeled as a normal window.

Figure 4 shows how the log entries slide into windows of size three.
Each window is fed to the trained model to classify it as normal or attack.
The experiments compared the trained model performance achieved for
different window sizes.

Figure 5. Approach 1: Model training for the entire SWaT process.

In general, there are two approaches for model training. Approach 1
creates a trained a model using the entire process with all the data
features (Figure 5). The trained model is then used to determine if any
attacks were launched against the water treatment system. However,
this approach cannot identify the sub-processes that were attacked.

The second approach, Approach 2, trains the models for the sub-
processes separately using their own features. Figure 6 shows the details
of the approach. For example, the model MP1 is trained using only

Yau, Chow & Yiu 103

Figure 6. Approach 2: Model training for each of the six SWaT sub-processes.

P1 features (FIT101, LIT101, MV101, P101 and P102). The trained
model MP1 is then used to detect attacks on sub-process P1. The one-
class support vector machine used in the experiments was implemented
using the scikit-learn machine learning library [16] on TensorFlow [18],
an end-to-end open source machine learning platform.

Optimum one-class support vector machine classifiers for attack de-
tection were realized using the parameters: (i) nu = 10−5; (ii) gamma
= auto; and (iii) kernel = sigmoid. Note that nu is an upper bound
on the fraction of training errors and a lower bound on the fraction of
support vectors; gamma defines the influence of a single training sample

104 ADVANCES IN DIGITAL FORENSICS XVI

(default value is auto, which corresponds to the reciprocal of the number
of features); and the kernel type may be linear, poly, rbf or sigmoid.

7. Evaluation and Experimental Results

This section describes the evaluation procedure and the experimental
results.

7.1 Evaluation

Since an imbalance exists between normal and attack data in the
testing dataset, it is not appropriate to measure the performance of a
one-class support vector machine model using the accuracy metric (i.e.,
number of correct predictions from among all predictions made). In
the case of imbalanced datasets, when the minority (attack) class is an
important class, the performance metrics suggested by Bekkar et al. [4]
are more appropriate. These metrics are based on a confusion matrix
that reports the number of true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN).

Precision, recall and F-score were used to evaluate the performance
of a classifier on the minority class [5, 17]:

Precision: This measure is defined as the number of correctly
classified positive samples divided by the number of samples la-
beled by the system as positive:

Precision =
TP

TP + FP

Recall: This measure is defined as the number of correctly classi-
fied positive samples divided by the number of all relevant samples
(i.e., all the samples that should have been identified as positive):

Recall =
TP

TP + FN

F-score: This measure is defined as the harmonic mean of the
precision and recall:

F-score = 2× Precision× Recall

Precision + Recall

7.2 Experimental Results

According to Dietterich [6], the sliding window method converts a
sequential supervised learning problem into a classical supervised learn-
ing problem, which yields adequate performance in many applications.

Yau, Chow & Yiu 105

Table 1. Approach 1 classification performance.

Window Size Precision (%) Recall (%) F-score (%)

N/A 88.07 99.96 93.63
3 88.08 99.96 93.64
5 88.08 99.96 93.64

Table 2. Approach 2 classification performance.

Sub-Process Window Size Precision (%) Recall (%) F-score (%)

P1 (5 Features)
N/A 98.28 99.86 99.07
3 98.28 99.86 99.06
5 98.28 99.86 99.06

P2 (11 Features)
N/A 99.25 100.00 99.63
3 99.25 100.00 99.63
5 99.25 100.00 99.63

P3 (9 Features)
N/A 90.29 100.00 94.89
3 90.44 99.98 94.97
5 90.47 99.95 94.98

P4 (9 Features)
N/A 99.07 99.89 99.48
3 99.07 99.89 99.48
5 99.08 99.89 99.48

P5 (13 Features)
N/A 99.49 99.91 99.70
3 99.49 99.91 99.70
5 99.49 99.91 99.70

P6 (4 Features)
N/A 99.82 99.99 99.91
3 99.82 99.99 99.91
5 99.82 99.99 99.91

However, the experimental results demonstrate that the sliding window
method applied to the entire process (Approach 1 in Table 1) and to
individual sub-processes (Approach 2 in Table 2) does not improve the
performance of the one-class support vector machine classifiers for at-
tack detection when the window sizes are set to three and five. On the
other hand, the precision and F-score values are significantly increased
for Approach 2 (Table 2), which divides the entire process into six sub-
processes for model training. Note that identical parameter settings (nu
= 10−5, gamma = auto and kernel = sigmoid) were employed for one-
class support vector machine training in Approach 1 and Approach 2.

An advantage of the proposed methodology is that the parameter set-
tings can be adjusted individually for training each sub-process classifier
in order to achieve the best performance. Moreover, this methodology re-

106 ADVANCES IN DIGITAL FORENSICS XVI

sults in better attack detection performance, and increases the efficiency
and effectiveness of forensic investigations. Since the timestamps, dura-
tions and activity sequences of sub-process attacks are recorded in a log
file during the classification process (Figure 6), a forensic investigator is
able to obtain more evidence about the case from the classification log
file when the attack log activities and time sequences are correlated with
other system/network logs and the activity logs on a suspect’s computer.

8. Conclusions

Detecting and investigating attacks on industrial control systems are
vital to securing critical infrastructure assets. This chapter has described
a semi-supervised machine learning methodology in which a one-class
support vector machine model is trained using normal data, following
which attacks are identified as data that deviates from the trained model.
The methodology eliminates the need to employ labeled (normal and
attack) data for training – class labeling is time consuming for large
datasets and it is difficult, if not impossible, to collect attack data. An-
other important aspect is that the methodology divides a physical pro-
cess into sub-processes, and a one-class support vector machine model
is created for each sub-process.

Experimental results using a water treatment testbed demonstrate
that the trained sub-process models yield better attack detection per-
formance than the trained complete process model. Additionally, the
division into sub-processes renders forensic investigations more effective.
Instead of investigating the entire system at one time, a forensic prac-
titioner can focus on individual sub-processes as needed. Since each
trained sub-process model is responsible for detecting specific attacks,
the practitioner is able to narrow the scope to perform data collection
and investigate each sub-process individually.

Future research will attempt to improve attack detection performance
using machine learning on large, real-world datasets. Additionally, it is
will attempt to use artificial intelligence techniques to support forensic
investigations of industrial control systems.

Acknowledgement

The authors wish to thank the iTrust Centre for Research in Cyber
Security at Singapore University of Technology and Design for providing
the datasets used in this research.

Yau, Chow & Yiu 107

References

[1] S. Adepu and A. Mathur, An investigation into the response of a
water treatment system to cyber attacks, Proceedings of the Seven-
teenth IEEE International Symposium on High Assurance Systems
Engineering, pp. 141–148, 2016.

[2] S. Amraee, A. Vafaei, K. Jamshidi and P. Adibi, Abnormal event
detection in crowded scenes using a one-class SVM, Signal, Image
and Video Processing, vol. 12(6), pp. 1115–1123, 2018.

[3] K. Aung, Secure Water Treatment Testbed (SWaT): An Overview,
iTrust Centre for Research in Cyber Security, Singapore University
of Technology and Design, Singapore, 2015.

[4] M. Bekkar, K. Djemaa and T. Alitouche, Evaluation measures for
model assessment over imbalanced datasets, Journal of Information
Engineering and Applications, vol. 3(10), pp. 27–38, 2013.

[5] A. Bottenberg and J. Ward, Applied Multiple Linear Regression,
Technical Documentary Report PRL-TDR-63-6, Air Force Systems
Command, Lackland Air Force Base, Texas, 1963.

[6] G. Dietterich, Machine learning for sequential data: A review, Pro-
ceedings of the Joint IAPR International Workshops on Statistical
Techniques in Pattern Recognition, and Structural and Syntactic
Pattern Recognition, pp. 15–30, 2002.

[7] J. Goh, S. Adepu, K. Junejo and A. Mathur, A dataset to support
research in the design of secure water treatment systems, Proceed-
ings of the International Conference on Critical Information Infras-
tructures Security, pp. 88–99, 2016.

[8] J. Inoue, Y. Yamagata, Y. Chen, M. Poskitt and J. Sun, Anomaly
detection in a water treatment system using unsupervised machine
learning, Proceedings of the IEEE International Conference on Data
Mining Workshops, pp. 1058–1065, 2017.

[9] M. Kravchik and A. Shabtai, Efficient Cyber Attack Detection in
Industrial Control Systems using Lightweight Neural Networks, De-
partment of Software and Information Systems Engineering, Ben-
Gurion University of the Negev, Beer-Sheva, Israel, 2019.

[10] M. Lee, M. Assante and T. Conway, Analysis of the Cyber Attack on
the Ukrainian Power Grid, TLP: White, SANS Industrial Control
Systems, Bethesda, Maryland, and Electricity Information Sharing
and Analysis Center, Washington, DC, 2016.

[11] F. Mitchell, The use of artificial intelligence in digital forensics: An
introduction, Digital Evidence and Electronic Signature Law Re-
view, vol. 7, pp. 35–41, 2010.

108 ADVANCES IN DIGITAL FORENSICS XVI

[12] S. Mounce, R. Mounce and J. Boxall, Novelty detection for time
series data analysis in water distribution systems using support vec-
tor machines, Journal of Hydroinformatics, vol. 13(4), pp. 672–686,
2011.

[13] D. Ramotsoela, A. Abu-Mahfouz and G. Hancke, A survey of
anomaly detection in industrial wireless sensor networks with criti-
cal water system infrastructure as a case study, Sensors, vol. 18(8),
article E2491, 2018.

[14] SAS Institute, Machine learning: What it is and why it matters,
Cary, North Carolina (www.sas.com/en_us/insights/analytics/
machine-learning.html), 2019.

[15] F. Schuster, A. Paul, R. Rietz and H. Koenig, Potential of using a
one-class SVM for detecting protocol-specific anomalies in industrial
networks, Proceedings of the IEEE Symposium Series on Computa-
tional Intelligence, pp. 83–90, 2015.

[16] scikit-learn, Machine learning in Python (scikit-learn.org),
2019.

[17] M. Sokolova and G. Lapalme, A systematic analysis of performance
measures for classification tasks, Information Processing and Man-
agement, vol. 45(4), pp. 427–437, 2009.

[18] TensorFlow, TensorFlow: An end-to-end open source machine learn-
ing platform (www.tensorflow.org), 2019.

[19] R. Vlasveld, Introduction to One-Class Support Vector Ma-
chines (rvlasveld.github.io/blog/2013/07/12/introduction-
to-one-class-support-vector-machines), July 12, 2013.

[20] J. Wang, J. Sun, Y. Jia, S. Qin and Z. Xu, Towards “verifying” a wa-
ter treatment system, in Formal Methods, K. Havelund, J. Peleska,
B. Roscoe and E. de Vink (Eds.), Springer, Cham, Switzerland, pp.
73–92, 2018.

[21] K. Yau and K. Chow, PLC forensics based on control program logic
change detection, Journal of Digital Forensics, Security and Law,
vol. 10(4), pp. 59–68, 2015.

[22] K. Yau and K. Chow, Detecting anomalous programmable logic
controller events using machine learning, in Advances in Digital
Forensics XIII, G. Peterson and S. Shenoi (Eds.), Springer, Cham,
Switzerland, pp. 81–94, 2017.

III

FILESYSTEM FORENSICS

Chapter 7

A DIGITAL MEDIA SIMILARITY
MEASURE FOR TRIAGE OF
DIGITAL FORENSIC EVIDENCE

Myeong Lim and James Jones

Abstract As the volume of potential digital evidence increases, digital forensic
practitioners are challenged to determine the best allocation of their
limited resources. While automation will continue to partially mitigate
this problem, the preliminary question about which media should be
examined by human or machine remains largely unsolved. This chapter
describes and validates a methodology for assessing digital media simi-
larity to assist with digital media triage decisions. The application of the
methodology is predicated on the idea that unexamined media is likely
to be relevant or interesting to a practitioner if the media is similar to
other media that were previously determined to be relevant or interest-
ing. The methodology builds on prior work using sector hashing and the
Jaccard index of similarity. These two methods are combined in a novel
manner and the accuracy of the resulting methodology is demonstrated
using a collection of hard drive images with known ground truth. The
work goes beyond interesting file and file fragment matching. Specifi-
cally, it assesses the overall similarity of digital media to identify systems
that might share applications and thus be related, even if common files
of interest are encrypted, deleted or otherwise unavailable. In addition
to triage decisions, digital media similarity may be used to infer links
and associations between disparate entities.

Keywords: Drive similarity, link discovery, sector hashing, Jaccard index

1. Introduction

Digital forensic practitioners extract and process evidence from digi-
tal sources and media, often during the course of criminal investigations.
Digital evidence is fragile and volatile, and requires the attention of a

c© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XVI, IFIP AICT 589, pp. 111–135, 2020.

https://doi.org/10.1007/978-3-030-56223-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56223-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-56223-6_7

112 ADVANCES IN DIGITAL FORENSICS XVI

trained specialist to ensure that content of evidentiary value can be ef-
fectively isolated and extracted in a forensically-sound manner. One of
the roles of a digital forensic practitioner is to find supporting evidence
by recovering data such as files, email and photographs from computer
hard drives as well as from cell phones, flash drives, RAM chips and
network devices. Cloud computing has expanded data storage to mul-
tiple geographically-dispersed systems such as game consoles, Internet
of Things devices and embedded systems, which are also the targets of
digital forensic investigations.

As more digital data is created and digital storage systems grow in
size, forensic practitioners are overwhelmed by the volume of data to
be analyzed and backlogs in digital forensic laboratories are common.
According to an FBI Regional Computer Forensics Laboratory Program
report [23], more than 15,000 digital devices and storage media were
previewed and six petabytes of data were processed by the FBI in 2017
alone, and several Regional Computer Forensics Laboratories set the
reduction of backlogs as an explicit goal. In 2018, the Digital Foren-
sics Unit of the Department of Homeland Security Cyber Crime Center
processed seven petabytes of data.

Digital forensic practitioners seek to prioritize the data sources to
be analyzed given limited time, and human and computing resources.
Manual and forensic-tool-based analyses may take many hours to com-
plete for each data source. Even with automated tools such as En-
Case [6], FTK and Autopsy, additional human review time is required
before forensic analyses of drives can be conducted. Practitioners often
do not have adequate information to make decisions about which media
to work on first, something that can only be determined by spending
valuable time and resources on each candidate source. The lack of ef-
ficient tools and knowledge about potential evidence on a device cause
inefficiencies that can lead to critical deadlines being missed and delays
in disseminating actionable information.

With limited time, digital forensic practitioners must pick and choose
which digital media to review from among the many available, making
media triage a necessity. While triage tools exist for explicit tasks such
as finding substrings of interest and specific files, a general purpose triage
method based on a similarity measure between arbitrary-sized content
and a labeled collection of digital media images is required. For example,
a hard drive image that shows high similarity to a cluster of previously-
labeled drive images of interest can be prioritized for further analysis.
The similarity may be used to infer relationships between entities and
as the basis for examining additional media.

Lim & Jones 113

This chapter proposes a digital media similarity measure based on sec-
tor hashing and a variant of the Jaccard index to help address these chal-
lenges. The similarity measure enables forensic practitioners to quickly
and accurately measure the similarity of unexamined digital media to
other images that are known to be relevant or interesting. A similar
image is more likely to contain evidence of interest and may be used to
discover previously-unknown links between entities.

2. Background

The proposed method relies on a modified Jaccard index similarity
measure computed over digital media sector hashes. The similarity
is computed based on the sectors present in digital media after ad-
justing for known common sectors (e.g., operating system and low en-
tropy sectors) and weighting based on sector frequency. A sector size of
512 bytes is used regardless of the actual sector size so that fragments
can match across devices with different sector sizes; these are assumed
to be 512 bytes or 4,096 bytes in most cases. It is also assumed that files
are stored on sector (cluster) boundaries, which is generally accepted to
be true. Of course, sector hashing and other content-specific techniques,
including the proposed methodology, cannot be used to match identical
data that is encrypted with different keys.

Cryptographic hashing computes a fixed size output for an arbitrary
length input. Changes in input have unpredictable and equally signifi-
cant effects on the output regardless of the scope and nature of the input
changes.

Sector hashing computes the hashes of data stored in digital media
sectors. File hashing computes the hashes of data stored in digital media
files. Advantages of sector hashing over file hashing are that sector
hashing does not require filesystem interpretation and the entire file to
be present for the presence of common data to be inferred. In general,
finding more content in a file increases the likelihood that the entire
file is present. This facilitates analysis, but recovering entire files is not
necessary to conduct triage and useful analyses. In this work, matching
sectors may be the result of deleted and partially-overwritten data as
well as other activity (e.g., temporary files and swap space files).

The Jaccard index (JI) is a simple and widely used similarity measure
that is applied to arbitrary sets of data [24]. The index, which measures
the similarity between finite sample sets, is computed as follows:

JI(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| 0 ≤ JI(A, B) ≤ 1

114 ADVANCES IN DIGITAL FORENSICS XVI

where JI(A, B) is the cardinality of the intersection of sets A and B
divided by the cardinality of the union of sets A and B. In this work,
the sets A and B comprise sector hashes from digital media of potential
interest.

3. Use Cases

The following two use cases are considered in this research:

I have a collection of digital media. Are any of these items similar
to media I have seen before and about which I care (or not care)?

I have a collection of digital media and I know where they came
from. Are any of these items similar to each other? Can their sim-
ilarity tell me anything about connections between people and/or
devices?

Breitinger et al. [5] state that resemblance (R) and containment (C)
are two common types of similarity queries, and that a similarity identifi-
cation algorithm should handle one of four use cases: (i) object similarity
detection (R); (ii) cross correlation (R); (iii) embedded object detection
(C); and (iv) fragment detection (C). The two use cases considered in
this work are similarity detection and cross correlation between hard
drive images, which are routinely encountered in law enforcement and
national security investigations. In both the use cases, digital forensic
practitioners may or may not know the sources of the evidentiary items
and their relationships to the active investigations.

4. Previous Work

Many forensic tools and algorithms use string searches as their basis.
The strings may be user-specified regular expressions that match features
such as email addresses, telephone numbers, social security numbers,
credit card numbers, network IP addresses and other kinds of informa-
tion that might correspond to pseudo-unique identifiers [12, 15, 21, 31].
Garfinkel [11] defines a pseudo-unique identifier as “an identifier that has
sufficient entropy such that within a given corpus it is highly unlikely
that the identifier will be repeated by chance.”

Garfinkel [11] also identified an issue with typical forensic analysis –
that a hard drive image does not correlate with other images. In particu-
lar, he listed three problems: (i) improper prioritization; (ii) lost oppor-
tunities for data correlation; and (iii) improper emphasis on document
recovery. He attempted to address these problems via cross-drive analy-
sis that used pseudo-unique information such as social security numbers,

Lim & Jones 115

credit card numbers and email addresses. In his approach, feature ex-
tractors analyzed the string files and wrote their results to feature files.
The extracted features were then applied to a multi-drive corpus to iden-
tify associations between different drives.

In the case of second-order cross-drive analysis, a different question is
raised: Which drives in the corpus have the largest number of features in
common? To answer this question, Garfinkel [11] implemented the Multi
Drive Correlator (MDC). The input to MDC is a set of drive images with
a feature to be correlated and the output is a list of (feature, drive-list)
tuples. The MDC program reads multiple feature files and generates
a report, which shows the number of drives on which each feature was
seen, the total number of times each feature was seen on the drives and
the list of drives on which each feature occurred.

Beverly et al. [1] extended this work using Ethernet media access
control (MAC) addresses extracted from validated IP packets. They
treated the MAC addresses and drive images as nodes, and addresses on
a hard drive image as links in a graph. From the partitioned graph, they
were able to obtain distinct clusters in the collection of drive images.

Young et al. [32] introduced a file-agnostic approach that leverages the
speed of hashing. They employed sector hashes instead of file hashes.
They compared blocks (fixed-sized file fragments) against a large data
set of sector hashes, and considered individual sectors and collections of
contiguous sectors (blocks or clusters). Their method is based on two
hypotheses:

If a block of data from a file is distinct, then a copy of the block
found on a data storage device is evidence that the file is or was
present.

If the blocks of a file are shown to be distinct with respect to a
large and representative corpus, then the blocks can be treated as
if they are universally distinct.

Young et al. [32] suggest that analyses of digital media would be more
accurate and faster if a database of hash values computed from fixed-
sized blocks of data is used. They employed large corpora such as Gov-
docs [13] and the NSRL RDS [18] to populate the hash value database.
Three types of sectors – singleton, paired and common sectors – were
analyzed to understand the root causes of non-distinct blocks. They
discovered that the major reason for encountering common sectors was
that the same block existed in many files due to malware code reuse and
common file container formats. In order to implement a field deployment
on a laptop, Young and colleagues considered sampling sectors instead of
processing all the media sectors. Several database implementations were

116 ADVANCES IN DIGITAL FORENSICS XVI

considered and a Bloom filter front-end was ultimately implemented to
speed up generic query times [3]. Young et al. analyzed several filesys-
tems to demonstrate the generality of their approach. However, en-
crypted files and filesystems were found to be problematic because the
same data of interest is stored differently when encrypted.

Garfinkel and McCarrin [14] have proposed hashing blocks instead of
entire files; this block hashing method inspired the similarity measure
methodology proposed in this chapter. Garfinkel and McCarrin also
specified the HASH-SETS algorithm that identifies the existence of files
and the HASH-RUN algorithm that reassembles files using a database
of file block hashes. A fixed block size (e.g., 4KiB) may present a prob-
lem due to filesystem alignment. However, this is addressed by hashing
overlapping blocks with a 4KiB sliding window over the entire drive and
moving the window one sector at a time.

Taguchi [29] experimented with different sample sizes using random
sampling and sector hashing for drive triage. Given a drive, the goal was
to provide a practitioner with information about the utility of continuing
an investigation. If a block hash value of target data is in the database,
then it is very probable that the target file is on the drive. However, if no
hashes are found during sampling, then a confidence level is computed
that indicates the likelihood that the target data is not on the drive.

The spamsum program developed by Tridgell [30] performs context-
triggered piecewise hashing to find updates of files. It identifies email
messages that are similar to known spam. The ssdeep program de-
veloped by Kornblum [16], which is based on spamsum, computes and
matches context-triggered piecewise hash values. It is more effective
than spamsum for relatively small objects that are similar in size. How-
ever, it is vulnerable to attacks that insert trigger sequences at the be-
ginning of files, exploiting the fact that an ssdeep signature value can
have at most 64 characters [4].

Roussev and colleagues [25–27] have developed a similarity digest
hashing method that is implemented in a program called sdhash. The
program finds the features from a neighborhood with the lowest proba-
bility of being encountered by chance. Each selected feature, which is a
64-byte sequence, is hashed and placed in a Bloom filter. When a filter
reaches full capacity, a new filter is generated. Thus, a similarity digest
is a collection of a sequence of Bloom filters.

Oliver et al. [19] have proposed a locality-sensitive hashing methodol-
ogy called TLSH. TLSH populates an array of bucket counts by process-
ing an input byte sequence using a sliding window. Quartile points are
computed from the array, following which the digest header and body
are constructed. The digest header values are based on the quartile

Lim & Jones 117

points, file length and checksum. The digest body comprises a sequence
of bit pairs determined by each bucket value in relation to the quartile
points. A distance score is assigned between two digests; this score is a
summed-up distance between the digest headers and digest bodies. The
distance between two digest headers is based on file lengths and quar-
tile ratios. The distance between two digest bodies is computed as the
Hamming distance. Experiments indicate that TLSH is more robust to
random adversarial manipulations than ssdeep and sdhash.

Penrose et al. [22] have used a Bloom filter for rapid contraband file
detection. The Bloom filter reduces the size of the database (hashes in
this case) by an order of magnitude, but incurs a small false positive rate.
Penrose and colleagues subsequently implemented a larger Bloom filter
for faster access, achieving 99% accuracy while scanning for contraband
files in minutes using a test dataset.

Bjelland et al. [2] present three common scenarios where approximate
matching can be applied: (i) search; (ii) streaming; and (iii) clustering.
In a search scenario, the data space is large compared with a streaming
scenario. In a clustering scenario, the input and data spaces are the
same. Approximate matching is impractical for large datasets due to its
high latency.

Moia and Henriques [17] have presented steps for developing new ap-
proximate matching functions. Approximate matching functions over-
come the limitations of cryptographic hash functions that cannot detect
non-identical, but similar, data.

The main goal of the research described in this chapter is to compute
digital media image similarity measures for efficient triage. The proposed
methodology does not replace approximate hashing and other methods;
instead, it employs and potentially augments them. Most similarity
methods operate at the file or object levels. In contrast, the proposed
methodology works at the sector level, rendering it robust to deleted
and partially-overwritten data. However, the proposed methodology is
vulnerable to attacks that: (i) selectively delete and overwrite content
that is common with another digital device; (ii) plant false fragments to
mislead the algorithm and practitioners; and (iii) wipe digital media at
a low level.

5. Methodology

The proposed digital media similarity measure uses sector hashes to
compute a Jaccard index, but with three modifications: (i) whitelist for
removing operating system and low-entropy (non-discriminatory) sec-
tors; (ii) frequency weight that reflects content uniqueness; and (iii)

118 ADVANCES IN DIGITAL FORENSICS XVI

Figure 1. Two hard drives with three common sectors.

normalization that accounts for differences in media size. This sec-
tion presents the Jaccard index computation over sector hashes, and the
whitelist that is used to remove non-discriminatory sectors. It discusses
the similarity computations for a single comparison drive and a set of
comparison drives. It proceeds to show how the similarity computations
are modified to account for hash frequency (i.e., sector content unique-
ness). Finally, the section demonstrates the normalization of similarity
computations to account for differences in digital media size.

5.1 Jaccard Index of Similarity

The basic Jaccard index is computed as the number of common sectors
in two sources (e.g., hard drives A and B) divided by the number of
sectors in the two sources minus the number of common sectors in the
two sources. Figure 1 shows hard drives A and B, each with ten sectors.
Each value denotes the hash value of the sector. The two hard drives
have three of the same sectors (shaded). Thus, the Jaccard index is
computed as 3/(10 + 10− 3) = 0.1765.

Each hard drive is divided into sectors. For example, if a hard drive
has 1 terabyte (240 bytes) capacity and the sector size is 512 bytes, then
the drive has 231 sectors. If both hard drives are exactly the same (e.g.,
one hard drive contains the image copied from the other hard drive),
then the Jaccard index is one, indicating perfect similarity. If the two
hard drives have no common sectors, then the Jaccard index is zero,
indicating no similarity.

In order to compute the similarity measure, the sets of sectors in the
basic Jaccard index computation are replaced by the sets of hash values

Lim & Jones 119

Figure 2. Whitelisted sectors (NUL and SPA).

of the sectors. The Jaccard index is thus computed as:

JI(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B|

where A and B are the sets of hash values of the sectors in the first drive
and second drive, respectively.

5.2 Whitelist

Figure 2 shows that the seven non-matching sectors in drive A contain
only NULL bytes and the seven non-matching sectors in drive B contain
only SPACE characters. For convenience, assume that the hash value
of a NULL byte sector is NUL and the hash value of a SPACE sector is
SPA. If the general method for computing the Jaccard index is employed,
then the index value would be the same as in Figure 1 (i.e., 0.1765).

However, the similarity measure in Figure 2 should be higher than that
in Figure 1 because all the meaningful sectors match in Figure 2 (NULL
and SPACE sectors are not meaningful). In fact, the similarity measure
in Figure 2 should have the maximum value of one. If this situation is
considered when computing the Jaccard index, a more realistic similarity
measure would be obtained.

In practice, it is better to report that the two drives match exactly
instead of providing a low similarity level based on the unadjusted Jac-
card index of 0.1765. This is achieved by eliminating the NULL and
SPACE byte sectors from the sets being compared. When these sec-
tors are eliminated from consideration, each drive has three sectors that
match exactly, yielding a Jaccard index of one. Thus, the NULL and

120 ADVANCES IN DIGITAL FORENSICS XVI

SPACE sectors are placed in a whitelist and all the members of the
whitelist are removed before computing the Jaccard index.

In addition to the NULL and SPACE byte sectors, low entropy sectors
are candidates for the whitelist. Other candidates are the sectors in a
clean operating system installation. This is because, when an operating
system is installed on a clean machine, sectors that are written during the
installation should not contribute to the similarity measure computation.

Sector hashes corresponding to the operating systems on test drives
may be saved in a database for pre-filtering (exclusion) purposes. In
practice, an inventory of operating system sector hashes could be main-
tained and updated when new versions of the operating systems are
installed. The Known File Filter (KFF) or similar tools may be used for
filtering.

5.3 Similarity between Two Drives

Computing a similarity measure between two drives is straightfor-
ward, but it relies on the construction of a good whitelist. This is be-
cause the Jaccard index is computed after the sectors in the whitelist are
filtered. The term “target drive” refers to the drive that is triaged using
a similarity measure against a known and established “source drive.”

5.4 Similarity against a Cluster of Drives

During triage, the focus is on the similarity of one target drive against
multiple groups of sources that might represent different priorities, levels
of interest, or specific staff members and organizations. The drives in
a cluster may have been confiscated from terrorist groups or could be
collections of hard drives containing malicious programs of interest. In
other words, multiple different groups of source media would typically
exist. After the whitelist is created and saved in a database, the sectors
of the target drive and clusters of interest can be scanned and ignored
based on the database. This procedure enhances the speed and accuracy
of the similarity measure computations.

Given an image of interest and cluster of labeled drives, one approach
to assess the image of interest is to first compute the Jaccard index values
between pairs of drives in the cluster. Table 1 shows the comparison
chart for a cluster of k drives. Note that JI(i, j) = JI(j, i) in the table.

The image of interest may be compared against each drive in the
cluster and the Jaccard index values may be computed. Table 2 shows
the corresponding comparison chart. The last row dt may be compared
against the rows di. Examining the values in these two sets yields a
statistically meaningful assessment.

Lim & Jones 121

Table 1. Comparison of a cluster of drives.

d1 d2 ... dk

d1 1 JI(1, 2) ... JI(1, k)
d2 JI(2, 1) 1 ... JI(2, k)
... 1 ...
dk JI(k, 1) JI(k, 2) ... 1

Table 2. Comparison of a target drive against a cluster of drives.

d1 d2 ... dk

d1 1 JI(1, 2) ... JI(1, k)
d2 JI(2, 1) 1 JI(2, k)
... 1 ...
dk JI(k, 1) JI(k, 2) ... 1

dt JI(t, 1) JI(t, 2) ... JI(t, k)

Table 3. Comparison of a target drive against an imaginary drive.

Imaginary Drive

d1 JI(1, I)
d2 JI(2, I)
... ...
dk JI(k, I)

dt JI(t, I)

Another approach is to create an imaginary drive that contains all
the sectors in the cluster of drives. This imaginary drive is merely the
union of all the sectors in all the drives in the cluster. However, sectors
that are shared by multiple drives are only counted once. The Jaccard
index values are computed between the target sectors and the imaginary
drive. Table 3 shows the corresponding comparison chart.

5.5 Similarity with Frequency

To simplify the analysis, an imaginary drive I is used as the source
drive. The imaginary drive I is created by combining three drives C1, C2
and C3 in a cluster. Table 4 shows the sectors in the three cluster drives.
Table 5 shows the imaginary drive sectors along with their frequencies.

122 ADVANCES IN DIGITAL FORENSICS XVI

Table 4. Sectors in cluster drives C1, C2 and C3.

C1 C2 C3

A A A
B B C
C E E
D F G

Table 5. Sectors and frequencies in imaginary drive I.

Imaginary Drive I

A 3
B 2
C 1
D 1
E 2
F 1
G 1

Total 11

Now consider two target drives TA and TF , each with a single sector,
A and F, respectively. Sector A in the imaginary drive I is present in
every cluster drive whereas sector F is present in only one cluster drive
(C2). Clearly, target drive TA should have more similarity than TF in
a cluster comparison because sector A is present in every cluster drive.
Therefore, the frequency of each sector must be used as an adjusting
factor when computing the Jaccard index.

In order to illustrate the modified Jaccard index computations, two
target drives T1 and T2 are compared against the imaginary drive I (and,
by extension cluster drives C1, C2 and C3). Table 6 shows the sectors
in the two target drives along with their frequencies in the imaginary
drive.

The standard Jaccard index values for JI(T1, I) and JI(T2, I) are
computed as 4/8 = 0.5. However, T1 is more similar to I than T2
because T1 has sector A, which is shared by all three cluster drives (C1,
C2 and C3), and it has sector E, which is shared by two cluster drives
(C2 and C3).

Thus, the modified Jaccard index with frequency JIWF between two
drives, D1 and D2, is computed as:

Lim & Jones 123

Table 6. Sectors and frequencies in target drives T1 and T2.

T1 T2

A 3 C 1
E 2 D 1
F 1 F 1
G 1 G 1
H 1 H 1

Total 8 Total 5

JIWF(D1, D2) =
Nunber of Common Sectors with Frequency in D1 and D2

Nunber of All Sectors with Frequency in D1 and D2

When computing JIWF, if a sector is shared by n drives, then the
sector is counted n times. The numerator of JIWF(T1, I) is 7 because
there are four common sectors (A, E, F and G) and sector A is counted
three times and sector E is counted twice. The denominator of JIWF(T1,
I) is 12 because there are a total of eight sectors (A, B, C, D, E, F, G and
H) and A is counted three times and sectors B and E are each counted
twice. Thus, JIWF(T1, I) is computed as 7/12 = 0.583. JIWF(T2, I)
is computed in a similar manner as 4/12 = 0.333. The incorporation
of sector frequencies in the JIWF computations yields a better result
because T1 (0.583) is more similar to the cluster (source) drives than
T2 (0.333).

5.6 Similarity with Normalized Frequency

The JIWF similarity measure is computed under the assumption that
the sizes of the target and cluster drives are similar. However, if the
target and cluster drives are significantly different in size – for example,
the target is a thumb drive and the cluster drive is several terabytes –
then, considering sector frequencies alone is inadequate when computing
a good measure of similarity.

The standard Jaccard index computation employs intersection and
union. The new Jaccard index computation employs modified defini-
tions, Intersection∗ (I∗) and Union∗ (U∗), which are given by:

Intersection∗(N1, N2) = Min(|N1|, |N2|)

Union∗(N1, N2) = Max(|N1|, |N2|)
where N1 and N2 are normalized frequencies.

124 ADVANCES IN DIGITAL FORENSICS XVI

Table 7. Hash values and frequencies of source drive S and target drive T.

Source Drive S Target Drive T
Hash Frequency Normalized Hash Frequency Normalized
Value Frequency Value Frequency

A 5 0.3333 A 1 0.0667
B 4 0.2667 B 2 0.1333
C 3 0.2 C 3 0.2
D 2 0.1333 D 4 0.2667
E 1 0.0667 E 5 0.3333

Total 15 1 Total 15 1

The new Jaccard index computation employs the normalized fre-
quency to account for the difference in the sizes of the target and cluster
drives. The normalized frequency Nf is given by:

Nf =
Fi

ST

where Fi is the frequency of a sector hash value i and ST is the total
number of sectors in a drive.

The resulting Jaccard index with normalized frequency JINF requires
two normalized values to be computed for each distinct hash value, one
for the source and the other for the target. In general, the JINF simi-
larity value is computed as:

JINF(S, T) =
Sum of all Intersection∗(S, T)

Sum of all Union∗(S, T)

where S and T are the source and target drives, respectively.
Table 7 shows the hash values, sector frequencies and normalized sec-

tor frequencies for hypothetical source and target drives.
Table 8 shows the Intersection∗ and Union∗ values computed for the

hypothetical source and target drives using the normalized frequency
values in Table 7. The sum of Intersection∗ values over all the hashes is
0.6. Likewise, the sum of all Union∗ values is 1.4. The resulting JINF
value is 0.6/1.4 = 0.4286. Note that the JINF value is one for identical
drives because the Intersection∗ and Union∗ values computed using the
normalized frequency of each sector hash are identical.

Table 9 shows how the JINF values change when the frequency of
sector hash A is successively increased by one in target drives T2, T3
and T4 (the normalized frequencies of the drives are not shown). As
the frequency of the first block A in the target drive moves toward the

Lim & Jones 125

Table 8. Intersection∗ and Union∗ of two normalized frequency values.

Hash Normalized Normalized Intersection∗ Union∗

Value Frequency Frequency
of Source of Target

A 0.3333 0.0667 0.0667 0.3333
B 0.2667 0.1333 0.1333 0.2667
C 0.2 0.2 0.2 0.2
D 0.1333 0.2667 0.1333 0.2667
E 0.0667 0.3333 0.0667 0.3333

Total 0.6 1.4

JINF 0.4286

Table 9. JINF values of target drives T2, T3 and T4.

T2 T3 T4
Hash Freq I∗ U∗ Freq I∗ U∗ Freq I∗ U∗

A 2 0.125 0.3333 3 0.1764 0.3333 4 0.2222 0.3333
B 2 0.125 0.2667 2 0.1176 0.2667 2 0.1111 0.2667
C 3 0.1875 0.2 3 0.1764 0.2 3 0.1667 0.2
D 4 0.1333 0.25 4 0.1333 0.2352 4 0.1333 0.2222
E 5 0.0667 0.3125 5 0.0666 0.2941 5 0.0667 0.2778

Sum 16 0.6375 1.3625 17 0.6705 1.3294 18 0.7 1.3

JINF 0.4678 0.5044 0.5384

frequency of the same sector hash A in the source drive, the similarity
should increase. Each block is essentially a new target drive that is being
checked against the source drive. For each block, the JINF similarity
increases when the frequency of sector hash A increases. Note also that
the total number of blocks increases by one as the frequency of sector
hash A is increased by one. This increase in the total number of blocks
reduces the similarity because the portion of each block against the total
number of blocks decreases. In contrast, the positive effect of increasing
the frequency of sector hash A is greater than the negative effect of
increasing the total number of blocks.

Table 10 shows how the similarity levels increase when the frequencies
of sector hash A are considered. T6 is a new target drive created from
target drive T5, where the frequency of sector hash E in drive T6 is
reduced by one (= 4) from 5 in drive T5. Target drive T6 has a JINF

126 ADVANCES IN DIGITAL FORENSICS XVI

Table 10. JINF values of target drives T5, T6 and T7.

T5 T6 T7
Hash Freq I∗ U∗ Freq I∗ U∗ Freq I∗ U∗

A 5 0.2631 0.3333 5 0.2778 0.3333 10 0.0667 0.3333
B 2 0.1052 0.2667 2 0.1111 0.2667 20 0.1333 0.2667
C 3 0.1578 0.2 3 0.1667 0.2 30 0.2 0.2
D 4 0.1333 0.2106 4 0.1333 0.2222 40 0.1333 0.2667
E 5 0.0667 0.2631 4 0.0667 0.2222 50 0.0667 0.3333

Sum 19 0.7263 1.2736 18 0.7556 1.2444 150 0.6 1.4

JINF 0.5702 0.6071 0.4286

value of 0.6071, which is higher than the JINF value of 0.5702 of target
T5. This is because the total number of blocks in target drive T6 is
closer to the number in the source drive and has less negative impact on
the JINF value computation compared with target drive T5.

Target drive T7 in Table 10 demonstrates how well the methodol-
ogy copes when the target and source drives have different sizes. The
frequency of each block is copied from target drive T shown in the right-
hand side of Table 7 and multiplied by 10. The JINF values of target
drives T and T7 are the same because the normalized frequency of each
hash block is the same for both drives. Therefore, the proposed method-
ology does not require the sizes of the drives to be measured.

6. Validation

The proposed similarity measure was validated using the 2009 M57-
Patents Scenario dataset [13], which comprises 68 hard drive images
with known similarity. The images were taken from four distinct systems
(named after four users, Pat, Terry, Jo and Charlie) over a 25-day period.
Each system was imaged 17 times during the 25-day experiment.

For the purposes of this validation, each of the four systems represents
a similar set of images. This is because they are, in fact, the same
source systems with the only differences arising from normal use during
the experiment. For the validation, sets of similar images were created
using a subset of one user’s images, following which one of the user’s
other images was compared with the set. High similarity was anticipated,
which, in fact, occurred.

The validation was intended to serve as a preliminary confirmation
that the proposed similarity measure is computationally correct, and
not as a scalability test. Additional testing is planned against the Real

Lim & Jones 127

Data Corpus, which contains thousands of disparate media sources with
no ground truth [10].

6.1 Initial Validation

The initial validation employed sequential snapshots of a single drive.
On a clean drive, the following sequence of actions was performed after
the Windows operating system was installed:

(a) An application was installed.

(b) An application was opened.

(c) An application was closed.

(d) An application was uninstalled.

(e) The system was rebooted.

The procedure was repeated for three clean drives with three applica-
tions, Wireshark, Firefox and Safari, whose generic drives were labeled,
WS, FF and SA, respectively. A snapshot of the hard drive image were
saved for each drive after each step in the sequence. In the case of drive
WS, the snapshots were named WSa, WSb, WSc, WSd and WSe. For
example, WSc denotes the snapshot of drive WS after Wireshark was
closed, corresponding to action (c) in the sequence. The snapshots of
the other two drives were named in a similar manner. Note that all the
snapshots corresponding to a generic drive (e.g., WS) were designated
as belonging to the same category, and different from the categories
corresponding to the other generic drives (FF and SA).

6.2 Whitelist Sector Removal

As described above, sectors collected after the installation action (a)
correspond to whitelist candidates. Therefore, sectors from snapshots
WSa, FFa, SAa were added to the whitelist database. The elimination
of these sectors from consideration reduces the computational effort and
enhances the accuracy of the Jaccard index.

6.3 JIWF Computation

The hashdb tool [14] was employed in this research. In order to com-
pute the Jaccard index between two drives, A and B, the Windows
operating system sectors from each drive were removed. Following this,
the hash values h-A and h-B, were computed for the slimmed drives.
The intersection of the hash values Int(h-A, h-B) was created using the

128 ADVANCES IN DIGITAL FORENSICS XVI

hashdb command: intersect hash(h-A, h-B). Similarly, the union of
the hash values Un(h-A, h-B) was created using the hashdb command:
add multiple(h-A, h-B).

The size command provides the number of entries in the LMDB
database [7]. In particular, it returns two values – hash data store value
and hash store value. The LMDB hash store is a highly compressed
optimized store of all the block hashes in the database. When scanning
for a hash, if it is not in this store, then it is not in the database. Because
of the degree of optimization, there can be false positives. To compensate
for this, when a hash is found in the LMDB hash store, hashdb reads
the LMDB hash data store to check that the hash actually exists. The
LMDB hash data store is a multi-map store of all the hashes and their
associated data and source information [8].

The hash store value was used in the Jaccard index computations.
The Jaccard index JI was computed as follows:

JI(A, B) =
hash store value of Int(h-A, h-B)

hash store value of Un(h-A, h-B)

This Jaccard index JI was used to approximate the Jaccard index with
frequency JIWF.

The add multiple command in hashdb was used to create an imagi-
nary drive I(h-A, h-B, h-C) from hard drive images A, B and C:

I(h-A, h-B, h-C) = add multiple(h-A, h-B, h-C)

Next, the Jaccard index values for all pairs of snapshots – JI(WSb,
WSc), JI(WSb, WSd), JI(WSb, WSe), JI(WSc, WSd), JI(WSc, WSe)
and JI(WSd, WSe) – were computed. The Jaccard index values between
WSb and other instances became smaller after each sequence of actions.
This was expected because a drive with an installed application and
a drive with the same application uninstalled are less similar. After
uninstallation and system rebooting, the previously matching sectors
were overwritten and no longer matched. A similar trend was observed
between WSc and other instances.

The Jaccard index values of any two drives in different categories were
very low compared with the Jaccard index values for any two drives in
the same category.

The next set of tests employed realistic datasets, including the 2009
M57-Patents Scenario dataset [9]. The 2009 M57-Patents Scenario was
created by modeling actions at a fictitious small company named M57
that was engaged in prior art searches involving patents. The dataset
records actions by four employees – (i) Pat (CEO); (ii) Charlie (patent

Lim & Jones 129

researcher); (iii) Jo (patent researcher); and (iv) Terry (IT administra-
tor) – over a 17-day period in November-December 2009. The hard drive
in each employee’s workstation was imaged daily, except for weekends
and holidays. Terry’s workstation ran Windows Vista Business 32-bit
whereas the other three workstations ran Windows XP.

A hashdb instance was created for each drive. A hashdb instance
was also created for a clean hard drive with only a Windows operating
system (XP and 7). The subtract command in hashdb was used to
remove Windows operating system sectors from the hashdb instance as-
sociated with each employee. These are referred to as “slimmed” hashdb
instances. A imaginary drive was created by randomly choosing five
random slimmed hashdb instances from among all the slimmed hashdb

instances.
An imaginary hashdb instance I S Charlie.hdb was created from

Charlie’s Nov-11, Nov-20, Nov-30, Dec-04 and Dec-10 slimmed hashdb

instances. This imaginary drive corresponded to a cluster of drives
against which the similarity of a target drive would be assessed. A
Jaccard index value was computed for each target drive hashdb instance
against I S Charlie.hdb. When the target drive and cluster drives are
from different categories, the similarity values would be expected to be
much lower. Imaginary cluster drives were also created for the other
three employees and the Jaccard index values were computed.

Figure 3 shows the JIWF results. Each sub-figure in Figure 3 shows
the similarity values between the target drives of the four employees and
the imaginary cluster drive created from an employee’s daily images.
Note that the daily images (along the x-axis) used to generate the imag-
inary drive associated with an employee are marked with @ symbols.
Figure 3(a) shows the similarity values between the target drives of the
four employees and Charlie’s imaginary cluster drive. As days go by, the
similarity values of Charlie’s daily hard drives to Charlie’s imaginary
drive are higher than those of the other employees. Similar patterns are
seen for Jo, Pat and Terry in Figures 3(b), 3(c) and 3(d), respectively.
In the case of Figure 3(d), all the similarity values are lower compared
with the similarity values in other three figures because Terry’s hard
drive was much larger than the hard drives of the other three employees.

6.4 JINF Computation

The JINF results shown in Figure 4 also involve the 2009 M57-Patents
dataset. After creating a hashdb instance for each day for each employee,
the subtract command was used to remove operating system blocks
from each hashdb instance. An imaginary source drive was created for

130 ADVANCES IN DIGITAL FORENSICS XVI

Figure 3. JIWF results for the 2009 M57-Patents Scenario dataset.

each employee by combining five random hashdb instances from the
employee’s daily drive image list. The daily images used to generate
the imaginary drive associated with each employee are marked with @
symbols.

As expected, the target drives of the employees have higher similar-
ity values when they are compared against their own imaginary source
drives. In general, the similarity values of each employee’s daily target
drives against his/her own imaginary drive increase steadily for the first
ten days, stabilize and then drop during the last few days. This is be-
cause the similarity values increase each successive day until a certain
usage level is reached, after which the similarity values during successive
days are about the same. The similarity values drop during the last
few days because files were deleted and sector contents were overwrit-
ten, reducing the number of sectors that matched the static imaginary
drives.

Lim & Jones 131

Figure 4. JINF results for the 2009 M57-Patents Scenario dataset.

In this test, a total of 305 hard drive images were compared against
four imaginary drive images. Except for the first five target images be-
longing to Jo in Figure 4(b), all the other images yielded correct results,
which is greater than 98% accuracy. The five incorrect results are for
images that were taken before the images in the imaginary cluster drive;
even so, they are still near the top candidates on the same day.

The experiments used a personal computer with an Intel(R) Core i7
2.30GHz CPU and 2TB SSD memory. It took an average of 90 minutes
to compute the JINF value for a daily 40-gigabyte hard drive image.

6.5 JIWF and JINF Comparison

The JIWF and JINF methods applied to the 2009 M57-Patents Sce-
nario dataset produce accurate results that could support triage deci-

132 ADVANCES IN DIGITAL FORENSICS XVI

Table 11. Comparison of JIWF and JINF performance.

JIWF JINF

Charlie 0.229789 0.265333
Jo 0.085746 0.139794
Pat 0.146044 0.279771
Terry 0.244807 0.283844

Average 0.176597 0.242186

sions. However, JINF yields larger gaps between the correct results and
the next highest similarity score. Consider Pat’s graphs in Figures 3
and 4. Both the graphs show similarity values between every drive in
the dataset against Pat’s imaginary drive. Therefore, high similarity val-
ues are expected for all of Pat’s target drives. In Figure 4, where JINF
values are plotted, Pat’s drive on December 4 has a similarity value of 0.7
whereas Charlie’s and Jo’s drives have similarity values of 0.3. On the
other hand, in Figure 3, where non-normalized JIWF values are plotted,
Pat’s drive has a similarity value of 0.8 and Charlie’s and Jo’s drives
have similarity values of 0.55. The gap of 0.4 (= 0.7 – 0.3) obtained by
the JINF method is larger than the gap of 0.25 (= 0.8 – 0.55) obtained
by the non-normalized JIWF method.

Table 11 shows that JINF produces larger gaps than JIWF for all four
employees. Note that the elimination of high frequency sector hashes in
the JINF method yielded higher similarity values. As the cut-off value of
high frequency sector hashes was gradually lowered from 5,000 to 50, the
similarity values increased accordingly, which is to be expected. In other
words, lowering the sector hash frequency cutoff reduces “noise” hashes
and concentrates the computations on the most significant matches.

7. Conclusions

The digital media similarity measure presented in this chapter is based
on a modified Jaccard index using sector hash values. The three modi-
fications to the basic Jaccard index computation are the exclusion of a
whitelist of low-entropy sectors, the incorporation of a hash frequency
weight to account for content uniqueness (JIWF similarity) and the in-
clusion of a normalization factor to allow for accurate comparisons of
media of different sizes (JINF similarity). The methodology was vali-
dated using drive images with known similarity and the highest accuracy
and discrimination were obtained using the full JINF computation. The
results also reveal that sector content comparisons, when appropriately

Lim & Jones 133

computed, can provide accurate and rapid measures of digital media
similarity that support digital image triage decisions and link discovery
across sources and entities.

Future research will employ a larger validation dataset to confirm the
utility of the normalization factor. Additionally, it will evaluate statisti-
cal sampling instead of processing all the sectors of digital media sources
to help strike the right balance between accuracy and speed. Other re-
finements include giving more weight to important feature sectors and
considering the relative positions of matching sectors. Future work will
also consider using matching sectors to direct practitioners to specific
files or file remnants on digital media.

References

[1] R. Beverly, S. Garfinkel and G. Cardwell, Forensic carving of net-
work packets and associated data structures, Digital Investigation,
vol. 8(S), pp. S78–S89, 2011.

[2] P. Bjelland, K. Franke and A. Arnes, Practical use of approximate
hash-based matching in digital investigations, Digital Investigation,
vol. 11(S1), pp. S18–S26, 2014.

[3] B. Bloom, Space/time trade-offs in hash coding with allowable er-
rors, Communications of the ACM, vol. 13, pp. 422–426, 1970.

[4] F. Breitinger and H. Baier, Performance issues about context-
triggered piecewise hashing, Proceedings of the International Con-
ference on Digital Forensics and Cyber Crime, pp. 141–155, 2012.

[5] F. Breitinger, B. Guttman, M. McCarrin, V. Roussev and D. White,
Approximate Matching: Definition and Terminology, NIST Special
Publication 800-168, National Institute of Standards and Technolo-
gies, Gaithersburg, Maryland, 2014.

[6] S. Bunting and W. Wei, EnCase Computer Forensics: The Official
EnCE: EnCase Certified Examiner Study Guide, Wiley Publishing,
Indianapolis, Indiana, 2006.

[7] H. Chu, Lightning Memory-Mapped Database Manager (LMDB),
Symas Corporation, Grand Junction, Colorado (www.lmdb.tech/
doc), 2011.

[8] Digital Corpora, hashdb 3.1.0 Users Manual (downloads.digi
talcorpora.org/downloads/hashdb/hashdb_um.pdf), 2017.

[9] Digital Corpora, 2009 M57-Patents Scenario (digitalcorpora.
org/corpora/scenarios/m57-patents-scenario), 2019.

[10] Digital Corpora, Real Data Corpus (digitalcorpora.org/corpo
ra/disk-images/real-data-corpus), 2019.

134 ADVANCES IN DIGITAL FORENSICS XVI

[11] S. Garfinkel, Forensic feature extraction and cross-drive analysis,
Digital Investigation, vol. 3(S), pp. S71–S81, 2006.

[12] S. Garfinkel, Digital media triage with bulk data analysis and
bulk extractor, Computers and Security, vol. 32, pp. 56–72, 2013.

[13] S. Garfinkel, P. Farrell, V. Roussev and G. Dinolt, Bringing sci-
ence to digital forensics with standardized forensic corpora, Digital
Investigation, vol. 6(S), pp. S2–S11, 2009.

[14] S. Garfinkel and M. McCarrin, Hash-based carving: Searching media
for complete files and file fragments with sector hashing and hashdb,
Digital Investigation, vol. 14(S1), pp. S95–S105, 2015.

[15] S. Garfinkel, A. Nelson, D. White and R. Roussev, Using purpose-
built functions and block hashes to enable small block and sub-file
forensics, Digital Investigation, vol. 7(S), pp. S13–S23, 2010.

[16] J. Kornblum, Identifying almost identical files using context-
triggered piecewise hashing, Digital Investigation, vol. 3(S), pp. 91–
97, 2006.

[17] V. Moia and M. Henriques, A comparative analysis about similarity
search strategies for digital forensic investigations, Proceedings of
the Thirty-Fifth Brazilian Symposium on Telecommunications and
Signal Processing, pp. 462–466, 2017.

[18] National Institute of Standards and Technology, National Software
Reference Library (NSRL), Gaithersburg, Maryland (www.nsrl.
nist.gov), 2019.

[19] J. Oliver, C. Cheng and Y. Chen, TLSH – A locality sensitive hash,
Proceedings of the Fourth Cybercrime and Trustworthy Computing
Workshop, pp. 7–13, 2013.

[20] J. Oliver, S. Forman and C. Cheng, Using randomization to attack
similarity digests, Proceedings of the International Conference on
Applications and Techniques in Information Security, pp. 199–210,
2014.

[21] H. Parsonage, Computer Forensics Case Assessment and Triage –
Some Ideas for Discussion (computerforensics.parsonage.co.
uk/triage/ComputerForensicsCaseAssessmentANDTriageDiscu

ssionPaper.pdf), 2009.

[22] P. Penrose, W. Buchanan and R. Macfarlane, Fast contraband
detection in large capacity disk drives, Digital Investigation, vol.
12(S1), pp. S22–S29, 2015.

Lim & Jones 135

[23] RCFL National Program Office, Regional Computer Forensics
Laboratory Annual Report for Fiscal Year 2017, Quantico, Vir-
ginia (www.rcfl.gov/file-repository/09-rcfl-annual-2017-
190130-print-1.pdf/view), 2017.

[24] R. Real and J. Vargas, The probability basis of Jaccard’s index of
similarity, Systematic Biology, vol. 45(30), pp. 380–385, 1996.

[25] V. Roussev, Building a better similarity trap with statistically im-
probable features, Proceedings of the Forty-Second Hawaii Interna-
tional Conference on System Sciences, 2009.

[26] V. Roussev, Data fingerprinting with similarity digests, in Advances
in Digital Forensics VI, K. Chow and S. Shenoi (Eds.), Springer,
Berlin Heidelberg, Germany, pp. 207–226, 2010.

[27] V. Roussev, Y. Chen, T. Bourg and G. Richard, md5bloom: Foren-
sic filesystem hashing revisited, Digital Investigation, vol. 3(S), pp.
S82–S90, 2006.

[28] W. Stallings and L. Brown, Computer Security: Principles and
Practice, Pearson Education, Upper Saddle River, New Jersey, 2015.

[29] J. Taguchi, Optimal Sector Sampling for Drive Triage, M.S. The-
sis, Department of Computer Science, Naval Postgraduate School,
Monterey, California, 2013.

[30] A. Tridgell, spamsum (samba.org/ftp/unpacked/junkcode/spam
sum/README), 2002.

[31] R. Walls, E. Learned-Miller and B. Levine, Forensic triage for mo-
bile phones with DECoDE, Proceedings of the Twentieth USENIX
Security Symposium, 2011.

[32] J. Young, K. Foster, S. Garfinkel and K. Fairbanks, Distinct sector
hashes for target file detection, IEEE Computer, vol. 45(12), pp.
28–35, 2012.

Chapter 8

RESIDENT DATA PATTERN ANALYSIS
USING SECTOR CLUSTERING FOR
STORAGE DRIVE FORENSICS

Nitesh Bharadwaj, Upasna Singh and Gaurav Gupta

Abstract Storage drives are huge reservoirs of digital evidence. The acquisition
and examination of storage drives for evidentiary artifacts require enor-
mous amounts of manual effort and computing resources, leading to
huge case backlogs. This chapter describes a forensic triage method-
ology that leverages random sampling and unsupervised clustering to
provide insights about the regions of interest on a storage drive. The
number of sector samples to be evaluated during triage for legitimate in-
ferences to be drawn about drive content is also discussed. Experiments
involving storage drives of various capacities illustrate the effectiveness
and utility of the extracted patterns for rapid drive triage.

Keywords: Large storage drives, random sector sampling, unsupervised clustering

1. Introduction

The rapid growth of storage capacity in computers and electronic de-
vices has severely affected the timeliness of digital forensic investigations.
The volume of data encountered in investigations is relentlessly advanc-
ing beyond the processing capabilities of digital forensic practitioners
and traditional forensic tools [17]. As a result, huge backlogs of cases
exist in forensic laboratories around the world. The immediate solution
is not to modify well-defined digital forensic procedures, but to make
evidence processing strategies more efficient and effective.

This research leverages random sector sampling and unsupervised
clustering in the first step of a forensic examination, namely triage, to
render evidence processing more efficient and effective. The idea is to
perform a quick forensic survey that provides insights about resident
data and data patterns on storage media. The data patterns assist in

c© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XVI, IFIP AICT 589, pp. 137–157, 2020.

https://doi.org/10.1007/978-3-030-56223-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56223-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-56223-6_8

138 ADVANCES IN DIGITAL FORENSICS XVI

rapidly identifying forensically-significant and insignificant regions on
the media. A region is a collection of similar types of contiguous sectors
on a storage drive, which can be broadly classified based on their non-
null (significant) or null (insignificant) content. The significant regions
include human-readable, executable, compressed and encrypted content,
as well as non-null sectors, all of which are important in investigations.
The insignificant regions include negligibly-important null, empty and
unallocated sectors. Clearly, the identification, preservation and exami-
nation of significant regions and the elimination of insignificant regions
from further processing can save enormous amounts of resources.

This chapter describes a forensic triage methodology that leverages
random sector sampling and unsupervised clustering to provide insights
about the regions of interest on a storage drive. The methodology
rapidly explores media for resident data patterns, identifies forensically-
significant and insignificant regions and makes inferences about the res-
ident data content. The number of sector samples that need to be eval-
uated to make legitimate inferences about drive content is discussed.
Experiments involving storage drives of various capacities illustrate the
effectiveness and utility of the extracted patterns for rapid drive triage.

2. Background and Related Work

Richard and Roussev [15] have discussed the difficulties involved in
processing large volumes of digital evidence. They highlighted the need
for novel techniques for evidence acquisition and analysis. Garfinkel [7]
notes that the massive capacity of storage devices, diversity of hardware
interfaces, operating systems and file formats, large quantities of devices
per case, use of anti-forensic strategies, proliferation of remote cloud
storage and legal challenges are contributing to a “coming digital forensic
crisis.” He also discusses research directions that could help mitigate the
coming crisis.

Beebe [1] emphasizes the need to address data volume and scalability
issues in digital forensics using selective acquisition and effective com-
putational and analytical approaches (e.g., data-mining-based search,
file classification and graphical processing units). Quick and Choo [13]
have identified the need to leverage data reduction, data mining and
intelligence analysis to advance digital forensic capabilities.

Bharadwaj and Singh [3] have highlighted the key challenges and gaps
(e.g., evidence examination delays, resource constraints, data hetero-
geneity, preservation costs, and methods and tool development) that im-
pact digital forensics. It is imperative to develop advanced forensically-

Bharadwaj, Singh & Gupta 139

sound techniques and tools that can support the rapid and efficient pro-
cessing of large volumes of digital evidence.

2.1 Triage

Triage refers to a partial forensic examination conducted under limited
time and resource constraints [17].

Garfinkel [8] has advocated the use of random sector sampling in a
triage method to achieve fast drive analysis. He demonstrated its effec-
tiveness at identifying digital media content and detecting whether or
not a drive was wiped properly. Random sampling has been utilized very
effectively by the New South Wales Police Force in discovery processes
involving child abuse material; the application of random sampling sig-
nificantly reduced case backlogs [10].

Random sampling has been used to rapidly assess storage media and
identify 4KiB blocks identical to target data [5, 21]. Taguchi [21] has
developed a confidence model to handle situations where no traces of
target data are identified using a sector sampling approach. Canceill [5]
has provided insights on how sector sampling can assist in storage drive
analysis. He demonstrates that random sampling is an adaptive and
scalable method for fast drive analysis. Since the selected 4KiB blocks
were evaluated in an overlapping manner, most of the sectors (512 bytes)
had to be processed multiple times. Additional sector processing intro-
duces computational loads that result in evidence processing delays.

Bharadwaj and Singh [3] have identified the number of sector samples
that needs to be analyzed on an entire drive or in regions of storage to
identify sectors with content identical to the target data. In these and
other triaging methodologies, information about the desired target files
must be available. However, the methodology proposed in this chapter
does not have this constraint. The methodology leverages random sector
sampling and clustering to gain insights about the regions of interest
on a drive. Prioritizing the consideration of significant regions realizes
substantial savings in evidence processing resources.

2.2 Data Reduction

An alternative approach to triage is data reduction. Roussev and
Quates [16] have employed similarity digests for forensic triage. They
show that the scope of an investigation can be narrowed by ignoring
known excludable files during the acquisition and examination phases.
Quick and Choo [14] have presented an approach that enhances the
traditional forensic process by imaging a selection of key files such as
registry, Internet history, log, picture and video files.

140 ADVANCES IN DIGITAL FORENSICS XVI

Digital forensic practitioners typically have complete access to sus-
pects’ data during investigations. However, Verma et al. [22, 23] argue
that privacy preservation and completeness of investigations are incom-
patible with each other. They proposed a method for finding the most
relevant pieces of evidence while preserving data privacy in a manner
that increases investigative efficiency without negatively impacting evi-
dence integrity and admissibility.

Beebe and Clark [2] discuss the benefits of applying data mining in
digital forensic investigations. However, limited published work incor-
porates data mining and other techniques to reduce the effort involved
in preserving and examining large volumes of digital evidence [12].

In contrast, the methodology proposed in this chapter does not rely
on the collection of essential files; instead, regions of interest are iden-
tified by intelligently evaluating randomly-selected sector samples from
a drive. The evaluation draws on clustering techniques that determine
the significant regions based on the features selected for each random
sector. These significant regions are targeted for selective acquisition
and examination instead of processing all the drive sectors.

2.3 Clustering

Clustering has been employed in data mining and unsupervised learn-
ing applications to identify and understand data patterns in unlabeled,
high-dimensional data. Clustering groups data using similarity measures
based on centroid, hierarchical, expectation maximization and density
techniques. Each clustering technique has its own advantages and disad-
vantages in terms of cluster quality, efficiency in handling noisy data and
computational complexity. The efficiency and effectiveness of clustering
techniques are dependent on the features selected for evaluation. This
work employs simple centroid and density based clustering techniques
to determine forensically-significant regions on evidentiary drives.

Centroid-BasedClustering. The k-means clustering technique com-
putes the centroid of a cluster as the mean of the feature vectors assigned
to the cluster. The technique requires the number of clusters to be spec-
ified in advance. It divides W samples into k disjoint clusters such that
a distance function computed as the sum of squares of the intra-cluster
distances to the centroid of the cluster is minimized. The distance func-
tion is given by:

Distance Function =
k

∑

j=1

W
∑

i=1

‖w(j)
i − cj‖2 (1)

Bharadwaj, Singh & Gupta 141

where cj is the centroid of cluster j and wi ∈ W .
In this work, the distinction between the significant and insignificant

regions on a drive is formulated by considering three clusters (k = 3)
that broadly represent three distinct types of data.

Density-Based Clustering. The density-based spatial clustering of
applications with noise (DBSCAN) technique considers a cluster to be
an area of high density separated by low-density samples. The clusters
identified using this technique can be of any shape (non-linear bound-
aries), yielding different results compared with k-means and other linear
clustering algorithms.

Two user-defined parameters minimum samples and eps determine
the density of samples needed to form a cluster. Higher minimum sam-
ples and lower eps values indicate higher densities while lower mini-
mum samples and higher eps values indicate lower densities.

A sample in a dataset is called a core sample when other neighboring
samples (minimum samples) exist within a radius or distance of eps.
Thus, prior information about the number of clusters is not required.
The number of clusters is estimated based on the minimum samples
and eps parameter values.

2.4 Extracted Features

Extracted features or metrics can provide valuable insights about digi-
tal evidence. In this work, insights about forensically-significant regions
on storage media are obtained using two derived metrics: (i) ASCII
score; and (ii) entropy value.

ASCII Score. The greater the amount of text or human-readable
ASCII bytes contained in a data unit, the greater the probability of it
containing directly understandable information [19]. A sector is consid-
ered to be the smallest data unit on a drive. It is recommended that
small sectors or blocks (e.g., 512 bytes) be considered because file blocks
should efficiently map to drive sectors [24]. Hence, the standard size of
a data unit (sector) considered in this research is 512 bytes.

Traditionally, the ASCII score is the ratio of the number of ASCII
bytes to the total number of bytes in a file [19]. However, in this work, the
ASCII score is evaluated for every randomly-selected sector instead of a
specific file. This may assist a digital forensic practitioner in examining
even minute details instantaneously from the drive, such as keywords,
credit card details, email, phone numbers and other information that
can be directly recorded and understood by the practitioner. Moreover,
the ASCII score can help exclude sectors containing little or no human-

142 ADVANCES IN DIGITAL FORENSICS XVI

readable information. If an investigative scenario requires the analysis of
plaintext or directly-readable information, then sectors with high ASCII
scores should be analyzed first (highest priority) because it becomes
much easier to extract useful information that could provide important
leads when dealing with a large volume of data.

Entropy Value. Entropy specifies the amount of uncertainty of an un-
known or random quantity. It is computed by summing the frequency
of each observed byte value in a fixed-length data block and then com-
puting an entropy value. Lyda and Hamrock [11] compute the entropy
value based on bytes (00 to FF) in a file using bintropy, a binary-file en-
tropy analysis tool that enables practitioners to conveniently and quickly
identify encrypted and packed malware.

In this work, an entropy value is computed for bytes in every randomly-
selected sector on a drive. The entropy value is low for sectors that
are less compressed (e.g., text files) and high for compressed file frag-
ments [19]. Encrypted data also has a high entropy value.

The entropy value E(s of a randomly-selected sector s is given by:

E(s) = −
m
∑

b=1

P (b) log2 P (b) (2)

where P (b) is the probability of the frequency of the bth byte information
in sector s that consists of a series of m bytes. Alternatively, the entropy
value can be viewed as considering all the values that a byte b in a sector
s can take, and P (b) is the probability of the frequency of each occurring
byte in the randomly-selected sector s.

Randomly-selected sectors are easily classified as null or non-null sec-
tors based on their content [4]. In this work, the entropy metric is used
to identify sectors with human-readable, multimedia (images, audio and
video), encoded, compressed, encrypted or executable content. Hence,
the entropy value is used in addition to the ASCII score in sector eval-
uations.

A sector that contains only zero or null bytes is referred to as a null-
sector. A null-sector has the lowest entropy value of zero. The ASCII
score for a null-sector would be high. However, in this work, a null
sector is considered to have an ASCII score of zero due to the absence of
relevant information. A sector that contains information other than null
bytes is referred to as a non-null sector. Non-null sectors have plaintext
(direct human readable), multimedia, encoded, compressed, encrypted
or executable content.

Bharadwaj, Singh & Gupta 143

Table 1. Random sector categories based on the ASCII scores and entropy values.

Range of ASCII Range of Entropy Assumed Sector Category
Score (x) Value (y)

0 0 Null data
0.6 ≤x≤ 1.0 0 <y≤ 4.8 Plaintext data
0 <x< 0.6 4.8 <y≤ 8.0 Compressed/encrypted data

Lyda and Hamrock [11] statistically evaluated a large set of packed
and encrypted malware files based on the entropy of their bytes. They
classified them into four categories of files: (i) plaintext; (ii) native; (iii)
packed; and (iv) encrypted executable.

2.5 Assumptions

The proposed methodology assumes that three categories of data ex-
ist: (i) null data; (ii) plaintext data; and (iii) compressed/encrypted
data. In general, it is easy to discriminate between null and non-null
sectors. However, it is difficult to differentiate between resident and
deleted data in the absence of the original filesystem or prior informa-
tion.

The proposed methodology employs two metrics, ASCII score and
entropy value, to determine forensically-significant regions on storage
media. Storage media is considered to correspond to a bulk data volume,
possibly without a legitimate filesystem and metadata, as in the case of
deleted, altered or corrupted filesystem information or a formatted drive.
The methodology is also applicable to forensic images with raw formats
such as DD, IMG and RAW.

Table 1 shows how ASCII scores and entropy values are used to cate-
gorize randomly-selected sectors as containing null, plaintext and com-
pressed/encrypted (encoded) data [11, 19]. As mentioned above, null
data has an ASCII score of zero and an entropy value of zero. Since
readable (plaintext) file fragments always have high ASCII scores and
low entropy values, the ranges for this category are set to [0.6, 1.0] and
(0, 4.8], respectively. Finally, the ASCII score and entropy value ranges
for compressed/encrypted data are set to (0.0, 0.6) and (4.8, 8.0], re-
spectively.

Many clustering algorithms, including k-means, require the number
of clusters to be known a priori. Therefore, the proposed methodology
assumes that the maximum number of clusters is three. DBSCAN clus-
tering is highly dependent on the minimum samples and eps parameter

144 ADVANCES IN DIGITAL FORENSICS XVI

Figure 1. Proposed methodology for efficient evidence analysis.

values. The proposed methodology typically uses minimum samples =
10 and eps = 0.5. However, explicit mentions are made when different
values of these parameters are employed.

3. Proposed Methodology

Figure 1 presents the proposed methodology for efficient evidence
analysis. The storage media drive is assumed to be mounted on the
investigator’s computer.

The process begins with the random extraction of a specified num-
ber of sector samples from across the drive. Important features such as
the ASCII score, entropy value and sector category are computed and

Bharadwaj, Singh & Gupta 145

recorded for each extracted sample. The sector versus feature map is
examined using k-means and DBSCAN clustering to gain insights about
the significant and insignificant regions on the drive. Although fewer
sector samples are examined, it is still possible to obtain a good idea
of the distribution and characteristics of data on the drive. When a
reasonable quantity of insignificant sectors exist on the drive, their elim-
ination from consideration reduces the subsequent analysis effort. When
the drive data patterns reveal that the number of significant sectors is
large or the drive is completely filled with data, it is advisable to proceed
with a full forensic acquisition followed by the exhaustive examination
of artifacts.

The random sector samples are selected based on the accessible sector
count. This information can be obtained using utilities such as fdisk

and hdparm. In random sampling, an arbitrary number between the first
and last sector number is generated, which is then recorded for further
evaluation. During analysis, care is taken care to ensure that the random
samples are fetched without replacement. Specifically, no sector should
be selected multiple times; this is accomplished by maintaining a record
of the previously-selected sectors. When a previously-selected sector is
identified, it is dropped in favor of a new sector despite an increase in
the evaluation load. Therefore, it is important to determine the sample
size that provides good outcomes in a timely manner while eliminating
the need to conduct an exhaustive examination of the drive.

Sampling theory is engaged to determine the number of sector samples
for random extraction. Specifically, random sector sampling without
replacement is employed.

Sample Size Determination. Bharadwaj and Singh [3] have speci-
fied the numbers of random samples that need to be evaluated to identify
sectors that are identical to target file fragments on storage media with
different probabilities, regardless of the presence or absence of filesystem
metadata. However, when the target data of interest is not known, it
is difficult to determine the number of random samples that need to be
examined.

The determination of the number of sector samples that can pro-
vide adequate insights about the resident sectors on a drive resembles
the problem of determining the adequate sample size for a finite pop-
ulation [9]. Four parameters are needed to determine the sample size:
(i) population size (total number of accessible sectors on a drive); (ii)
precision (user-specified); (iii) confidence level (user-specified); and (iv)
degree of variability (user-specified).

146 ADVANCES IN DIGITAL FORENSICS XVI

Precision (sampling error) is the range in which the true value of a
population is estimated to reside [9]. Precision has an inverse relation-
ship with the number of samples – the lower the specified precision, the
greater the number of samples required [20]. In general, precision is ex-
pressed as a percentage (e.g., ±3%, ±5%, ±10%). For example, if 60%
of the sector samples were determined to be unallocated with a preci-
sion of ±3%, then between 57% and 63% of the sectors on the drive are
actually unallocated.

The confidence level, which originates from the central limit theo-
rem, provides the probability that the sample contains the value being
estimated. It is expressed as a percentage (e.g., 90%, 95%, 99%). The
confidence level generally corresponds to the standard (constant) z-score
value [20]. Different z-scores based on different confidence levels must
be employed when deriving the sample size.

Finally, the degree of variability expresses the distribution of attributes
in a population. A more heterogeneous population requires a larger num-
ber of samples whereas a more homogeneous population requires fewer
samples. A safe decision is to use 0.5 (50%) as the degree of variabil-
ity because it balances a large sample size against maximal population
variability.

According to Cochran [6], the following equation can be used to obtain
a representative sample size n0 as a proportion of a population:

n0 =
Z2pq

e2
(3)

where Z2 is the abscissa of the normal curve that cuts off the area of the
desired confidence level, e is the desired precision or sampling error, p
is the estimated proportion of attributes present in the population and
q = (1− p).

When the population is finite, the desired sample size n is given by:

n =
n0

1 + (n0−1)
N

(4)

where N is the population size.
Equations 3 and (4) are used to determine the number of sector sam-

ples that need to be processed in order to estimate the characteristics of
the sectors residing on storage media.

4. Experiments and Analysis

Experiments were conducted to evaluate the efficacy of the proposed
significant region identification methodology for drive triage. A generic

Bharadwaj, Singh & Gupta 147

Table 2. Minimum sample sizes for various drive capacities.

Confidence Precision Drive Capacity Sample
4GB 8GB 16GB 1TB Size

99%

±1% 16,558 16,574 16,582 16,590 17,000
±2% 4,146 4,147 4,148 4,148 4,500
±3% 1,844 1,844 1,844 1,844 2,000
±5% 664 664 664 664 700
±10% 166 166 166 166 200

95%

±1% 9,594 9,599 9,602 9,604 10,000
±2% 2,401 2,401 2,401 2,401 2,500
±3% 1,068 1,068 1,068 1,068 1,100
±5% 385 385 385 385 400
±10% 97 97 97 97 100

90%

±1% 6,761 6,764 6,765 6,766 7,000
±2% 1,692 1,692 1,692 1,692 1,800
±3% 752 752 752 752 800
±5% 271 271 271 271 300
±10% 68 68 68 68 80

eight-core computing system with 4GB RAM running Kali Linux 2.0 was
employed in the experiments. The implementation is available at GitHub
(github.com/niteshdiat2014/Resident_Data_Pattern_Analysis).

The experiments were conducted on four storage drives, D1, D2, D3

and D4, with capacities, 4GB, 8GB, 16GB and 1TB, respectively.
Drive D1 was completely filled with data whereas D2, D3 and D4 were
partially filled with data. The analysis was performed using a custom
Python 2.7 script. Clustering was implemented as described in the scikit-
learn documentation [18].

4.1 Sector Sample Size

Equations (3) and (4) were used to estimate the numbers of samples
necessary for drive analyses. Table 2 shows the numbers of sector sam-
ples for various drive capacities at precision (sampling error) values of
±1%, ±2%, ±3%, ±5% and ±10%, where the estimated proportion of
attributes present in the population p = 0.5. The sample sizes in the
last column of the table are the upper bounds on the sample sizes used
to analyze evidence.

The computed sample sizes are valid for the considered scenario; how-
ever, the sample sizes would vary when Equations (3) and (4) are com-
puted with different parameter values depending on the scenario require-

148 ADVANCES IN DIGITAL FORENSICS XVI

ments. The sample size does not change much for populations larger
than 20,000, which implies that the total number of samples should be
considered at least during data pattern analysis. Similarly, the computed
sample sizes are not very different for different storage media with dif-
ferent numbers of sectors for a particular precision and confidence level.

The computed sample size should guarantee well-distributed sectors
from a drive. However, forensic practitioners may use arbitrarily large
numbers of samples according to their investigative needs. Obviously,
the larger the sample size, the better the ability to make precise decisions
about a drive, but this comes with increased analysis effort.

4.2 Significant Region Analysis

In order to identify the important regions on the drives, features were
recorded for every randomly-selected sector in the retrieved sample set.
The features, ASCII score and entropy value, were clustered separately
using k-means and DBSCAN. This enabled the sectors with similar fea-
ture values to be segregated from sector groups with completely distinct
feature values. Finally, the sector samples were mapped based on the
computed cluster labels to make inferences about the important regions
on the drives.

It was observed that the resident data patterns obtained using the two
clustering approaches were very similar. In general, k-means provided
better results when drives had fewer null sectors. However, k-means
sometimes misclassified sectors because it produces clusters with linear
structures; this was mitigated by DBSCAN clustering that handles clus-
ters of arbitrary (non-linear) shapes.

In order to measure the efficacy of the proposed methodology, anal-
ysis was performed using the computed number of sector samples (e.g.,
17,000 with 99% confidence and ±1% precision).

The k-means clustering technique was first used to segregate the sam-
ple set into three clusters. Figure 2 shows the clusters obtained by
k-means on the 16GB drive based on the ASCII scores and entropy val-
ues. The three clusters correspond to the different types of data on the
drive: (i) null sectors with ASCII scores and entropy values of zero; (ii)
sectors with moderate ASCII scores and high entropy values; and (iii)
sectors with high ASCII scores and medium entropy values.

The cluster labels were utilized to map the sector numbers with their
corresponding feature values from the sample set. Figures 3(a) and 3(b)
show the resident data pattern analysis using k-means clustering on
the 16GB drive. Figure 3(a) shows the feature maps based on sector
samples and ASCII scores. Figure 3(b) shows the feature map based on

Bharadwaj, Singh & Gupta 149

Figure 2. Clusters obtained using k-means clustering (16GB drive).

(a) Feature map based on sector numbers and ASCII scores.

(b) Feature map based on sector samples and entropy values.

Figure 3. Resident data pattern analysis using k-means clustering (16GB drive).

150 ADVANCES IN DIGITAL FORENSICS XVI

sector samples and entropy values. The two figures clearly illustrate the
resident data pattern, revealing the regions on the drive that contain
data for a forensic practitioner to prioritize for further analysis. The
figures also reveal that the drive contains a reasonable amount of null
sectors at the beginning and end whereas a large proportion of implicit
information resides between sectors 0.4× 107 and 2× 107.

The implicit sectors may contain images, videos and other encoded
information that are directly understood by a forensic practitioner. Tar-
geting these high entropy regions to analyze multimedia and other files
that are usually encoded is more effective than examining the entire
drive. Figures 3(a) and 3(b) also indicate that considerable amounts of
human-readable plaintext information (with high ASCII scores and low
entropy values) exist in the sector range 1.5 × 107 to 2 × 107; these re-
gions can be directly interpreted by a forensic practitioner. Selective file
carving and recovery approaches can be used to improve the overall effi-
ciency. On the other hand, regions with large amounts of null data, such
as those in the sector range 1.5×107 to 2×107 in Figures 3(a) and 3(b),
should be excluded from further analysis to enhance performance.

As discussed above, the centroid-based k-means clustering technique
causes some misclassifications. Figure 3(a) shows that fewer sectors are
labeled incorrectly (e.g., sectors with high ASCII scores labeled as null
data and sectors with low ASCII scores labeled as human-readable).
However, despite the misclassifications, the extracted data pattern can
still provide a digital forensic practitioner with valuable insights that
would enhance the efficiency and effectiveness of the analysis.

Figure 4 shows the clusters obtained by DBSCAN on the 16GB drive
based on the ASCII scores and entropy values. The clustering is based
on the densities (closeness) of features regardless of the mean values of
the clusters. Note that the sectors with similar features are in the same
clusters. Although the number of clusters is not required for DBSCAN
clustering, the technique still yielded three clusters based on the feature
values and the related parameters (minimum samples = 10 and eps =
0.5).

Figures 5(a) and 5(b) show the resident data pattern analysis using
DBSCAN clustering on the 16GB drive.

Figures 6(a) through 6(d) show the resident data pattern analyses
using k-means and DBSCAN clustering on the partially-filled 8GB drive.
A total of 8,000 random samples were selected. Note that different
DBSCAN parameter values minimum samples = 8 and eps = 0.18 were
employed for the 8GB drive.

Bharadwaj, Singh & Gupta 151

Figure 4. Clusters obtained using DBSCAN clustering (16GB drive).

(a) Feature map based on sector numbers and ASCII scores.

(b) Feature map based on sector samples and entropy values.

Figure 5. Resident data pattern analysis using DBSCAN clustering (16GB drive).

152 ADVANCES IN DIGITAL FORENSICS XVI

k-means (ASCII scores). k-means(entropy values).

DBSCAN (ASCII scores). DBSCAN (entropy values).

Figure 6. Resident data pattern analyses using k-means and DBSCAN (8GB drive).

4.3 Performance Metrics

It is important for forensic practitioners to assess the performance of
the proposed methodology to satisfy the scientific testing criterion [7].
The performance measures employed are the true positive rate (TPR)
and false positive rate (FPR), along with the receiver operating charac-
teristic (ROC) curve.

The TPR and FPR values associated with each clustering technique
were computed by comparing the actual labels against the observed out-
comes for arbitrary numbers of samples (e.g., 1,000, 5,000, 10,000, 50,000
and 100,000). Arbitrary sample sizes were chosen to evaluate the efficacy
of the proposed methodology in situations where it is needed to evaluate
a range of sector samples (few samples to a considerably large number
of samples). The sample sizes cover the minimum number of samples
(up to 17,000) required to provide a general pattern of the contents of
an entire drive.

The computed TPR and FPR values obtained with k-means and DB-
SCAN clustering on drives D1, D2, D3 and D4 are plotted as ROC
curves in Figure 7. Since drive D1 (4GB) was completely filled, the
assumed number of clusters and the minimum samples and eps values
do not provide satisfactory outcomes (low TPR and high FPR values).
This is due to the very small number of unallocated or null sectors on

Bharadwaj, Singh & Gupta 153

Figure 7. ROC plots for k-means and DBSCAN based pattern analyses.

the drive. However, acceptable results – high TPR and low FPR values
– are obtained for drives D2 (8GB), D3 (16GB) and D4 (1TB) because
they were partially filled with data.

4.4 Evaluation Delay

Increasing the sample size increases the evaluation delay. The eval-
uation delay is also affected by the input/output performance of the
storage media and computing system, efficiency of feature value deriva-
tion and computational effort associated with the clustering techniques.
Increasing the number of features also increases the computational effort.

Figure 8 shows the evaluation delays for various proportions of random
sector samples. Increasing the number of random samples increases the
evaluation delay. In contrast, the input/output rate is platform centric,
implying that different outcomes are expected for different scenarios and
computing environments. A small number of samples can be examined at
a high input/output rate whereas a large number of samples significantly
reduces the input/output rate.

4.5 Error Rate

Although random sector sampling is effective for rapid drive analysis,
it is difficult to ignore its associated error rate (i.e., evaluation of repeated
sectors) in the absence of a perfect random number generator. In order
to assess the error rate related to significant region determination and
resident pattern analysis, different proportions (0.1% to 50%) of random

154 ADVANCES IN DIGITAL FORENSICS XVI

Figure 8. Evaluation delays for various proportions of random sector samples.

samples from the four drives were analyzed to measure the extent of
repeated sector evaluation.

Figure 9. Error rates for various proportions of random sector samples.

Figure 9 presents the error rates for various proportions of random
sector samples. The error rate increases at an average rate of approxi-
mately 20% as the proportion of random sectors increases. The error rate
can be managed by keeping track of previously-generated sector samples.

Bharadwaj, Singh & Gupta 155

If a previously-generated sector sample is selected, it is dropped from
consideration and a new random sector sample is selected in its place.

5. Conclusions

The proposed triage methodology assists digital forensic practitioners
in rapidly evaluating resident data patterns on storage media to nar-
row the scope of evidence acquisition and examination to forensically-
relevant data. It leverages random sector sampling and unsupervised
clustering to provide insights about the regions of interest on storage
media. The proposed methodology is applicable when metadata infor-
mation or resident data content are not readily available, for example,
when filesystem metadata is corrupted, altered, deleted or overwrit-
ten, or when drives are formatted, deleted or overwritten. Without the
methodology, the only alternative in these situations would be to exhaus-
tively examine every sector for evidentiary artifacts. The methodology
is not intended to replace full evidence examination. Instead, it is most
effective for conducting visual examinations of drive content layout, in-
telligence analyses, resident data pattern analyses, rapid reviews, quick
forensic surveys, pre-seizure media analyses, drive triage, and partial or
selective evidence processing.

Experiments involving storage drives of various capacities illustrate
the effectiveness and usability of the extracted patterns for rapid drive
triage. However, the performance degrades when large numbers of ran-
dom sector samples have to be evaluated when processing large-capacity
storage media. The methodology is designed to handle three types
of clusters corresponding to null, plaintext and compressed/encrypted
data; however, the results are negatively impacted when insufficient data
is associated with the clusters. The methodology is unable to handle
completely encrypted drives where sectors have low ASCII scores and
high entropy values; in such cases, it is necessary to decrypt the storage
media before applying the methodology. Additionally, the methodol-
ogy cannot handle advanced and compressed file formats such as the
Advanced Forensic Format (AFF) and Encase image file format (E01).

Future research will focus on extending the types of data that can be
handled. Also, it will focus on enhancing the efficiency of the method-
ology and reducing error rates.

References

[1] N. Beebe, Digital forensic research: The good, the bad and the un-
addressed, in Advances in Digital Forensics V, G. Peterson and S.
Shenoi (Eds.), Springer, Heidelberg, Germany, pp. 17–36, 2009.

156 ADVANCES IN DIGITAL FORENSICS XVI

[2] N. Beebe and J. Clark, Dealing with terabyte data sets in digital
investigations, in Advances in Digital Forensics, M. Pollitt and S.
Shenoi (Eds.), Springer, Boston, Massachusetts, pp. 3–16, 2006.

[3] N. Bharadwaj and U. Singh, Efficiently searching for target data
traces in storage devices with region-based random sector sampling,
Digital Investigation, vol. 24, pp. 128–141, 2018.

[4] N. Bharadwaj and U. Singh, Significant data region identification
and analysis using k-means in large storage drive forensics, Security
and Privacy, vol. 1(4), paper no. e40, 2018.

[5] N. Canceill, Random Sampling Applied to Rapid Disk Analy-
sis, Master’s Research Project Report, Department of System and
Network Engineering, University of Amsterdam, Amsterdam, The
Netherlands, 2013.

[6] W. Cochran, Sampling Techniques, JohnWiley and Sons, New York,
1977.

[7] S. Garfinkel, Digital forensics research: The next 10 years, Digital
Investigation, vol. 7(S), pp. S64–S73, 2010.

[8] S. Garfinkel, Fast disk analysis with random sampling, presented at
the Annual CENIC Conference, 2010.

[9] G. Israel, Determining Sample Size, Fact Sheet PEOD-6, Florida
Cooperative Extension Service, University of Florida, Gainesville,
Florida, 1992.

[10] B. Jones, S. Pleno and M. Wilkinson, The use of random sampling in
investigations involving child abuse material, Digital Investigation,
vol. 9(S), pp. S99–S107, 2012.

[11] R. Lyda and J. Hamrock, Using entropy analysis to find encrypted
and packed malware, IEEE Security and Privacy, vol. 5(2), pp. 40–
45, 2007.

[12] D. Quick and K. Choo, Data reduction and data mining frame-
work for digital forensic evidence: Storage, intelligence, review and
archival, Trends and Issues in Crime and Criminal Justice, no. 480,
2014.

[13] D. Quick and K. Choo, Impacts of the increasing volume of digi-
tal forensic data: A survey and future research challenges, Digital
Investigation, vol. 11(4), pp. 273–294, 2014.

[14] D. Quick and K. Choo, Big forensic data reduction: Digital forensic
images and electronic evidence, Cluster Computing, vol. 19(2), pp.
723–740, 2016.

[15] G. Richard and V. Roussev, Next-generation digital forensics, Com-
munications of the ACM, vol. 49(2), pp. 76–80, 2006.

Bharadwaj, Singh & Gupta 157

[16] V. Roussev and C. Quates, Content triage with similarity digests:
The M57 case study, Digital Investigation, vol. 9(S), pp. S60–S68,
2012.

[17] V. Roussev, C. Quates and R. Martell, Real-time digital forensics
and triage, Digital Investigation, vol. 10(2), pp. 158–167, 2013.

[18] scikit-learn, Machine learning in Python (scikit-learn.org),
2019.

[19] M. Shannon, Forensic relative strength scoring: ASCII and entropy
scoring, International Journal of Digital Evidence, vol. 2(4), 2004.

[20] A. Singh and M Masuku, Sampling techniques and determination
of sample size in applied statistics research: An overview, Inter-
national Journal of Economics, Commerce and Management, vol.
II(11), 2014.

[21] J. Taguchi, Optimal Sector Sampling for Drive Triage, M.S. The-
sis, Department of Computer Science, Naval Postgraduate School,
Monterey, California, 2013.

[22] R. Verma, J. Govindaraj and G. Gupta, Data privacy perceptions
about digital forensic investigations in India, in Advances in Digital
Forensics XII, G. Peterson and S. Shenoi (Eds.), Springer, Cham,
Switzerland, pp. 25–45, 2016.

[23] R. Verma, J. Govindaraj and G. Gupta, DF 2.0: Designing an auto-
mated, privacy preserving and efficient digital forensic framework,
Proceedings of the Annual ADFSL Conference on Digital Forensics,
Security and Law, pp. 127–150, 2018.

[24] J. Young, K. Foster, S. Garfinkel and K. Fairbanks, Distinct sector
hashes for target file detection, IEEE Computer, vol. 45(12), pp.
28–35, 2012.

IV

CLOUD FORENSICS

Chapter 9

FORENSIC ANALYSIS OF ADVANCED
PERSISTENT THREAT ATTACKS IN
CLOUD ENVIRONMENTS

Changwei Liu, Anoop Singhal and Duminda Wijesekera

Abstract Cloud forensic investigations involve large volumes of diverse devices
and data. Investigations involving advanced persistent threat attacks
involve filtering noisy data and using expert knowledge to identify the
missing steps in the attacks that typically have long time spans. Under
such circumstances, obtaining timely and credible forensic results is a
challenge.

This chapter engages a case study to demonstrate how MITRE’s
ATT&CK knowledge base and Lockheed Martin’s Cyber Kill Chain
methodology can be used in conjunction to perform forensic analyses
of advanced persistent threat attacks in cloud environments. ATT&CK
is a globally-accessible knowledge base of adversary tactics and tech-
niques developed from real-world observations of attacks. The Cyber
Kill Chain methodology describes a series of steps that trace a cyber
attack from its early reconnaissance stage to the later data exfiltration
stage. Because advanced persistent threat attacks on cloud systems in-
volve the key Cyber Kill Chain phases of reconnaissance, command and
control communications, privilege escalation, lateral movement through
a network and exfiltration of confidential information, it is beneficial to
combine the ATT&CK knowledge base and Cyber Kill Chain methodol-
ogy to identify and aggregate evidence, and automate the construction
of the attack steps.

Keywords: Cloud forensics, advanced persistent threat, ATT&CK, CyberKill Chain

1. Introduction

Digital forensics is the application of scientific theories and method-
ologies to the identification, collection, examination and analysis of ev-
identiary data while preserving its integrity and maintaining a strict

c© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XVI, IFIP AICT 589, pp. 161–180, 2020.

https://doi.org/10.1007/978-3-030-56223-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56223-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-56223-6_9

162 ADVANCES IN DIGITAL FORENSICS XVI

chain of custody [8]. Due to the volume and diversity of cyber activi-
ties and devices in a cloud environment, the scope of post-attack cloud
forensic investigations has expanded in two dimensions. The first is the
attack surfaces of cloud devices that may not have undergone rigorous
security checks. The second is the analysis of diverse data. A key con-
cern is that servers running on virtual machines (VMs) in the cloud are
monitored by hypervisors that lack warnings, procedures and tools for
forensic investigations. Current computer forensic techniques are not de-
signed for cloud environments and it is challenging to use existing tools
to perform forensic analyses of cloud environments. Moreover, in the
case of advanced persistent threat (APT) attacks that stretch over long
periods of time (e.g., one year or more), the timestamps of evidence from
different sources may not be indicators of a single attack. Investigating
cloud environment attacks involves filtering noisy data and using expert
knowledge and experience to speculate about the attack steps. These
tasks are challenging and make it difficult to obtain credible forensic
results.

Several researchers have proposed methodologies for collecting evi-
dence from multiple sources and correlating them during forensic anal-
yses of cloud attacks. These include collecting data from hypervisors
and virtual machines [9, 12], and leveraging graphical frameworks to
reconstruct cloud attack scenarios [10, 13]. However, the research is
based on strong assumptions that the forensic data can be manually ag-
gregated and pre-processed to produce evidence representing pre-attack
conditions and post-attack conditions, and the forensic investigator can
construct the attack steps when the associated evidence is incomplete
or compromised.

The Adversarial Tactics and Common Knowledge Base (ATT&CK)
developed by MITRE [16] is a globally-accessible knowledge base of ad-
versary tactics and techniques based on real-world observations that
assists in emulating cyber attacks. It has been used in recent years to
create a taxonomy of attacks on enterprise information technology envi-
ronments that enable defenders to understand which attacks are being
used in the wild and to apply methods for detecting the attacks, includ-
ing certain APT attacks.

Lockheed Martin’s Intrusion Kill Chain (also called Cyber Kill Chain)
methodology considers seven distinct phases that include reconnaissance,
weaponization, delivery, exploitation, installation, command and con-
trol, and actions on objectives. Because most APT attacks involve suc-
cessful reconnaissance, command and control communications, privilege
escalation, lateral movement in a network and exfiltration of sensitive in-
formation, the Cyber Kill Chain has been used to analyze security logs,

Liu, Singhal & Wijesekera 163

develop attack detection and defense systems, and aggregate evidence in
analyses of APT attacks [1, 15].

Inspired by these works, the research described in this chapter lever-
ages the ATT&CK knowledge base and Cyber Kill Chain methodology
to identify evidence of cloud APT attacks from various sources, aggre-
gate the evidence and subsequently correlate the evidence to construct
the attack steps. The research advances previous work on cloud foren-
sics [10, 13] that relies on digital forensic investigators’ knowledge and
experience to identify evidence and construct attack steps when the as-
sociated evidence is incomplete or compromised. Although researchers
have used ATT&CK and the Cyber Kill Chain independently to de-
tect cyber attacks and aggregate/correlate evidence [1, 3, 15, 18], no
published work combines the two frameworks for attack evidence identi-
fication and correlation, which is the main contribution of this research.
Sample advanced persistent threat attacks on an experimental cloud en-
vironment are employed to demonstrate how the combined frameworks
can be used to identify forensic data in a cloud environment and convert
it to pre-attack and post-attack conditions, which are processed by a
Prolog-based forensic tool to automatically construct the attack steps.

2. Background and Related Work

This section describes MITRE’s ATT&CK knowledge base, Lockheed
Martin’s Cyber Kill Chain methodology and related work.

2.1 ATT&CK Knowledge Base

MITRE’s well-known Adversarial Tactics and Common Knowledge
Base (ATT&CK) is a behavioral model that is based on real-world ob-
servations [16, 18]. Unlike other threat models that were constructed
by analyzing available threat/vulnerability reports, ATT&CK describes
the behaviors of real adversaries. All the attack techniques in ATT&CK
correspond to real-world examples employed by malware and red teams.
In addition, ATT&CK has public descriptions of attack techniques, how
they are leveraged and why cyber defenders should pay attention to
them. Therefore, it is useful for cyber defenders and forensic investiga-
tors to decide what should be monitored and investigated, respectively,
in order to construct the attack steps and mitigate the risks.

2.2 Cyber Kill Chain Methodology

Figure 1 shows the seven attack phases in Lockheed Martin’s Kill
Chain methodology, which cover all the steps involved in a successful
cyber attack. In the first “reconnaissance” phase, the adversary iden-

164 ADVANCES IN DIGITAL FORENSICS XVI

F
igu

re
1
.

C
y
b
er

K
ill

C
h
a
in

m
eth

o
d
o
lo
g
y.

Liu, Singhal & Wijesekera 165

tifies the targets by researching which targets can meet the attack ob-
jectives and collects information needed to launch the attack. In the
second “weaponization” phase, the adversary prepares for the operation
by coupling malware and exploits in a deliverable payload, and selecting
backdoors/implants and an appropriate command and control infras-
tructure for the cyber operation. In the third “delivery” phase, the
adversary conveys the malware to the target to launch the attack. In
the fourth “exploitation” phase, the adversary triggers exploits to gain
access to the target. In the fifth “installation” phase, the adversary
installs a persistent backdoor or an implant in the target to maintain
access for an extended period of time. In the sixth “command and con-
trol” phase, the adversary remotely controls a backdoor or implant to
open a command channel so that the adversary can control the target.
In the seventh and final “actions on objectives” phase, the adversary
achieves the attack objectives, which include collecting user credentials,
escalating privileges, destroying the system and overwriting, corrupting
or modifying data [14]. According to Milajerdi at el. [15], most APT at-
tacks are accomplished via steps that conform to the Cyber Kill Chain
methodology and have the goal of obtaining and exfiltrating highly con-
fidential information.

Cyber Reboot [2] has reexamined the seven phases and argued that
there are three fundamental phases to most cyber attacks: (i) pre-attack;
(ii) attack; and (iii) post-attack (Figure 1). During the pre-attack phase,
the attacker is tasked with the attack objectives and performs recon-
naissance of the target. During the attack phase, the attack is executed,
enabling the attacker to break through the target’s defense and set up
communications with the target. During the post-attack phase, further
exploitation and access of the target occur, which enable the attacker to
escalate his/her privileges, destroy the victim system, steal confidential
information, etc.

2.3 Related Work

Techniques such as remote data acquisition, management plane ac-
quisition, live forensics and snapshot analysis have been proposed to
collect evidence from cloud environments [17]. Dykstra and Sherman [5]
have retrieved volatile and non-volatile data from an active Amazon EC2
cloud user instance platform using traditional forensic tools such as En-
Case and FTK. In order to validate the integrity of the collected data,
they subsequently developed the FROST toolkit that can be integrated
in OpenStack to collect logs from an operating system that runs virtual
machines [6]; however, this technique assumes that the cloud provider is

166 ADVANCES IN DIGITAL FORENSICS XVI

trustworthy. Zawoad and Hasan [19] recently eliminated this assumption
by designing a forensics-enabled cloud.

Hay and Nance [7] have conducted live digital forensic analyses of
cloud environments with virtual introspection, a process that enables
the hypervisor or any other virtual machine to observe the state of a
chosen virtual machine. Dolan-Gavitt et al. [4] have bridged the seman-
tic gap between high-level state information and low-level sources such
as physical memory and CPU registers, and have developed a suite of
virtual introspection tools for Xen and KVM. Several hypervisors, in-
cluding Xen, VMware, ESX and Hyper-V, support snapshot features
that can be used to obtain information about the running states of vir-
tual machines.

In order to reduce the time and effort involved in forensic investiga-
tions, researchers have automated evidence correlation and attack re-
construction by leveraging rule-based tools and business process dia-
grams [13]. However, these approaches rely on forensic experts when
the evidence is missing, disjointed or compromised. To help investigate
attacks in a methodical manner and detect real-time APT attacks, the
Cyber Kill Chain methodology has been modified to facilitate data ag-
gregation in a relational database [1, 15].

3. Experimental Cloud Environment Attacks

This section describes an experimental cloud environment that was
targeted by conventional and cloud cyber attacks. The experimental
environment and attacks are used to demonstrate how the ATT&CK
knowledge base and Cyber Kill Chain methodology can be used together
to advance cloud forensic investigations.

Based on the types of vulnerabilities and attacker capabilities, attacks
on cloud environments can be categorized into two groups [10, 12]: (i) at-
tacks from the Internet that exploit conventional cyber vulnerabilities to
attack a virtual machine connected to the Internet; and (ii) attacks from
a virtual machine that exploit vulnerabilities in shared cloud manage-
ment resources to launch attacks on other virtual machines on the same
hypervisor. The attacks include denial of service, information leakage,
privilege escalation and arbitrary code execution, among others.

Figure 2 shows the experimental cloud environment and sample at-
tacks. The environment comprised two Linux (Ubuntu 14.04) virtual
machines, VM1 and VM2, configured on the same hypervisor (Xen 4.6).
Additionally, a Windows machine was configured as a web server from
which a web application could use SQL queries to retrieve database data
stored in VM2, a file server that hosted a database and other files.

Liu, Singhal & Wijesekera 167

Figure 2. Experimental cloud environment and sample attacks.

Two attacks were launched at VM2. One was a conventional SQL
injection attack that exploited the web application vulnerability that
does not sanitize user inputs. The other one was a virtual machine
escape attack, which could be a type of APT attack. The virtual machine
escape attack exploited the CVE-2017-7228 vulnerability in VM1, which
enabled VM1 to control Xen’s privileged domain (domain 0) and then
VM2, so that it could perform local operations such as deleting a file in
VM2.

3.1 Forensic Data Obtained via Forensic Tools

Forensic data was collected by logging web server accesses, deploying
the Snort intrusion detection system to monitor network traffic to the
web server and file server, and installing the LibVMI virtual machine
introspection tool on Xen Dom0 to capture events and running processes
on the guest virtual machines VM1 and VM2. LibVMI is a C library
that can be used to monitor the low-level details of a running Xen virtual
machine by viewing its memory, trapping hardware events and accessing
vCPU registers.

The IP addresses and forensic data captured using the methods/tools
mentioned above are shown in Table 1 and Figures 3, 4 and 5, respec-
tively. According to Table 1, the Snort alert in Figure 3 shows that the
attacker at IP address 129.174.124.122 attempted to launch an SQL
injection attack using the web application deployed on the web server at
IP address 129.174.125.35 (port number 8080).

168 ADVANCES IN DIGITAL FORENSICS XVI

Table 1. IP addresses of machines and virtual machines in Figure 2.

Machine/Virtual Machine IP Address

Attacker 129.174.124.122

Web Server 129.174.125.35

VM1 129.174.124.184

VM2 (File Server) 129.174.124.137

[**] SQL Injection Attempt --1=1 [**]

08/08-14:37:27.818279 129.174.124.122:1715 -> 129.174.124.35:8080

TCP TTL:128 TOS:0x0 ID:380 IpLen:20 DgmLen:48 DF

******S* Seq: 0xDEDBEABF Ack: 0x0 Win: 0xFFFF TcpLen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

...

Figure 3. Sample Snort alert.

129.174.124.122 - - [08/Aug/2019:14:35:34 -0400] "GET /lab/Test

HTTP/1.1" 200 368

129.174.124.122 - - [08/Aug/2019:14:35:39 -0400] "POST /lab/Test

HTTP/1.1" 200 981

...

Figure 4. Sample access log from the web server.

The web access history on the web server in Figure 4 shows that the
attacker machine accessed the web application just before the Snort alert
shown in Figure 3.

Figure 5 shows the SQL database log with the SQL injection query (40
Query select * from profiles where name=‘Alice’ AND password

=‘alice’ or ‘1’=‘1’) that resulted in the information leakage.
Figure 6 shows the forensic data obtained by running LibVMI on

the attacker virtual machine. The data includes the running processes
(Figure 6(a)), injected Linux modules (Figure 6(b)) and CPU (CR3)
register values corresponding to the running processes (Figure 6(c)).
Note that the process identifiers (PIDs) were used to find the process
names.

Liu, Singhal & Wijesekera 169

130808 14:37:29

40 Query SET NAMES latin1

40 Query SET character_set_results = NULL

40 Query SET autocommit=1

40 Query SET GLOBAL general_log = ‘ON’

40 Query select * from profiles where name=‘Alice’ AND

password=‘alice’ or ‘1’=‘1’

40 Quit

Figure 5. Sample SQL database log.

[630] agetty (struct addr:ffff880003c8e200)

[669] systemd (struct addr:ffff880076060000)

[674] (sd-pam) (struct addr:ffff880076104600)

[677] bash (struct addr:ffff880003c8aa00)

[703] sudo (struct addr:ffff880004341c00)

[704] attack (struct addr:ffff880004343800)

(a) Running processes.

test

intel_rapl

x86_pkg_temp_thermal

coretemp

...

(b) Injected Linux modules.

Waiting for events...

PID 0 with CR3=77130000 executing on vcpu 1. Previous CR3=788d1000

Waiting for events...

PID 1246 with CR3=788d1000 executing on vcpu 1. Previous CR3=77130000

(c) CPU register values.

Figure 6. VM2 processes, injected Linux modules and CPU register values.

4. Forensic Investigation

This section shows how ATT&CK and the Cyber Kill Chain method-
ology are used to assist the forensic investigation.

170 ADVANCES IN DIGITAL FORENSICS XVI

4.1 Identifying Forensic Data

MITRE’s ATT&CK includes a knowledge base of 11 tactics and hun-
dreds of techniques that an attacker could leverage when compromising
an enterprise environment. A tactic in ATT&CK is a high-level descrip-
tion of certain types of attack behavior whereas a technique provides a
detailed description of every type of behavior within a tactic class. The
tactics in ATT&CK are not followed in a linear order as in the case of
Lockheed’s Cyber Kill Chain methodology. Additionally, an attacker
may bounce between tactics in order to achieve the final goal.

Forensic data is mapped to the ATT&CK matrix [16] in order to
help identify the evidence in a cloud forensic investigation. The matrix
model covers the phases of the attack lifecycle: “initial access,” “execu-
tion,” “persistence,” “privilege escalation,” “defense evasion,” “creden-
tial access,” “discovery,” “lateral movement,” “collection,” “command
and control,” “exfiltration” and “impact” (first column). Each phase in-
volves the application of various techniques listed in the matrix (second
and third columns). The following are the general descriptions of the
phases:

Initial Access: This phase involves the application of techniques
that use entry vectors to gain an initial foothold in a network,
which may provide the attacker with continued access to external
remote services.

Execution: This phase involves the application of techniques that
cause attacker-controlled code to execute on a local or remote sys-
tem, which can achieve broader goals such as exploring a network
or stealing data by pairing the techniques with other techniques.
Note that this phase may not leave any evidence.

Persistence: This phase involves the application of techniques
that enable an attacker to maintain a foothold on a system, even
after system interruptions cut off attacker access.

Privilege Escalation: This phase involves the application of
techniques that enable an attacker to gain higher-level privileges
in a system or network. Common approaches involve exploiting
system weaknesses, misconfigurations and vulnerabilities.

Defense Evasion: This phase involves the application of tech-
niques that uninstall or disable security software, or obfuscate or
encrypt data and scripts used by an attacker to avoid detection
over the entire attack lifecycle.

Liu, Singhal & Wijesekera 171

Credential Access: This phase involves the application of tech-
niques that enable an attacker to steal credentials to gain system
or network access, providing the opportunity to create multiple
accounts to achieve the attack goals.

Discovery: This phase involves the application of techniques
that enable an attacker to gain knowledge about the system and
network. During this phase, the attacker explores what can be
controlled and obtains knowledge that could advance the post-
compromise information-gathering goals.

Lateral Movement: This phase involves the application of tech-
niques that enable an attacker to enter and control systems in a
network. An attacker might install custom remote access tools to
accomplish lateral movement or use legitimate credentials with the
help of native network and operating system tools.

Collection: This phase involves the application of techniques
that enable an attacker to gather sensitive information. Having
obtained the information, the attacker may proceed to exfiltrate
(steal) the information.

Command and Control: This phase involves the application
of techniques that enable an attacker to communicate with and
control systems in the targeted network.

Exfiltration: This phase involves the application of techniques
that enable an attacker to steal sensitive information from the
targeted network. The attacker often compresses or encrypts the
information to avoid detection. The channels used for exfiltration
typically include the attacker’s command and control channel or
an alternate channel with limited bandwidth.

Impact: This phase involves the application of techniques that
enable an attacker to disrupt availability or compromise integrity
by manipulating business and operational processes, including de-
stroying or tampering with data.

In the experimental cloud environment, evidence of the SQL injection
attack was provided by the Snort alert (Figure 3) along with the SQL
query (Figure 5), which clearly identified it as an SQL injection attack.

In the case of the virtual machine escape attack that exploited the
CVE-2017-7228 vulnerability, although the attack was observed (dele-
tion of a file in VM2), it was difficult to construct the attack from the
data obtained using LibVMI (Figure 6). This is because there was no

172 ADVANCES IN DIGITAL FORENSICS XVI

obvious logged data that could help identify the attack. Clearly, this
step did not leave any evidence.

In such a situation, ATT&CK could be used to narrow the scope of the
search and help find evidence. According to ATT&CK, the initial access
techniques include “drive-by compromise, exploit public facing applica-
tion, external remote services, hardware additions, replication through
removable media, spear phishing attachment and trusted relationship.”

In the experimental cloud environment, except for the facts that the
database in VM2 could be queried by the web application on the web
server and that VM2 shared the same hypervisor (and thus hardware)
with VM1, it did not have any other connected media, remote services
or running applications. Thus, the initial accesses could be narrowed to
the tactics: “exploit public-facing application” from the web server and
“hardware additions” from the hypervisor.

Because the observed attack activities on VM2 included the SQL in-
jection alert and file deletion, according to ATT&CK, the attack exe-
cution techniques fall into two categories “exploitation for client exe-
cution” (corresponding to the web application on the web server) and
“command-line interface” (corresponding to the hardware addition). Ad-
ditionally, the techniques for “privilege escalation” could be narrowed
down to “exploitation for privilege escalation” because the attacker ob-
viously escalated his/her privileges over the Internet or from the other
virtual machine remotely. Other techniques such as “access token ma-
nipulation” and “accessibility features” would not be applicable given
the configuration of the cloud environment.

The SQL injection attack left obvious evidence as shown in Figures 3,
4 and 5. However, in the case of the virtual machine escape attack
that resulted in the file deletion, the data in Figure 6 only show the
running processes (including the normal Linux processes and a suspicious
user process named attack) and injected modules (including normal
Linux modules and a suspicious injected user module named test). No
information was available about the attack process that exploited the
shared hardware vulnerability.

Using the potential attack tactics from ATT&CK, a forensic practi-
tioner could continue to investigate more forensic data related to success-
ful exploitations of “hardware additions” and “command-line interface”
that enabled the attacker to escalate privileges to the hypervisor level
and proceed to delete the file in VM2. Previous papers by the authors
of this chapter [10, 12] have revealed that system calls constitute good
forensic evidence, so a snapshot of VM2 captured during the attack was
used to retrieve the system calls and kernel messages of the suspicious
process attack and suspicious module test.

Liu, Singhal & Wijesekera 173

1. execve("./attack", ["./attack", "rm victim ~/samplefile.txt"],

[/* 30 vars */]) = 0

2. brk(NULL) = 0x8cd000

3. mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,

-1, 0) = 0x7fa3a3022000

4. access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or

directory)

5. open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

... ...

25. open("test.ko", O_RDONLY) = 3

26. finit_module(3, "user_shellcmd_addr=1407334317317"..., 0) = 0

27. fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...}) = 0

28. mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,

-1, 0) = 0x7fa3a3021000

29. mmap(0x600000000000, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|

MAP_FIXED|MAP_ANONYMOUS|MAP_LOCKED, -1, 0) = 0x600000000000

30. delete_module("test", O_NONBLOCK) = 0

31. exit_group(0) = ?

Figure 7. System calls obtained by tracing the attack process.

Figure 7 shows the system calls obtained by tracing the attack pro-
cess. In fact, the arguments following the execve command in Line 1
clearly reveal that the attacker on VM1 used a command line to execute a
programnamed attack and attempted to delete the file samplefile.txt
located in the home folder of VM2 (named victim in the experimental
network). Also, Line 25 clearly shows that the Linux module test.ko

was injected into the Linux kernel of VM1 for some reason.
Figure 8 shows the VM2 kernel activities. The kernel messages be-

tween Lines 1 and 6 reveal that the attacker on VM1 wrote some bytes
to memory after the address ffff88007c723008. The messages between
Lines 8 and 19 show that the attacker controlled the page table in Xen to
execute his/her shellcode by linking the physical memory address where
the shellcode was held to the virtual memory address in the page table.
This clearly shows the attacker used the shared memory to launch the
attack.

Identifying an attack component is not a trivial task due to the na-
ture of APTs. It requires detailed analysis such as looking at all the
processes and process threads that could have altered the state of an
object, even under enhanced super-user privileges. As shown in this
example, identifying some of these missing steps may have to consider
the system call logs. ATT&CK maintains tactics and techniques that

174 ADVANCES IN DIGITAL FORENSICS XVI

1. [127.408066] write_byte_hyper(ffff88007c723008, 0x7)

2. [127.436071] write_byte_hyper(ffff88007c723009, 0x90)

3. [127.460074] write_byte_hyper(ffff88007c72300a, 0xba)

4. [127.484055] write_byte_hyper(ffff88007c72300b, 0x26)

5. [127.512054] write_byte_hyper(ffff88007c72300c, 0x1)

6. [127.548083] write_byte_hyper(ffff88007c72300d, 0x0)

7. [127.628071] write_byte_hyper(ffff88007c723010, 0x0)

8. [127.660074] going to link PMD into target PUD

9. [127.668058] linked PMD into target PUD

10. [127.676046] going to unlink mapping via userspace PUD

11. [127.684077] mapping unlink done

12. [127.692076] copying HV and user shellcode...

13. [127.700077] copied HV and user shellcode

14. [127.708066] int 0x85 returned 0x7331

15. [127.716077] remapping paddr 0x21e8dd000 to vaddr

0xffff880079846800

16. [127.724076] IDT entry for 0x80 should be at 0xffff83021e8dd800

17. [127.732080] remapped IDT entry for 0x80 to 0xffff804000100800

18. [127.740077] IDT entry for 0x80: addr=0xffff82d080229ef0,

selector=0xe008, ist=0x0, p=1, dpl=3, s=0, type=15

19. [127.748085] int 0x85 returned 0x1337

Figure 8. Kernel message from the injected module.

are based on real-world observations, which makes them very helpful for
identifying processes and system calls related to a sub-attack phase of
an APT attack.

4.2 Mapping Log Entries to Attack Steps

After the evidence has been identified by leveraging ATT&CK, the
Cyber Kill Chain model can be used to map the evidence to various
attack phases in order to construct the attack steps.

The evidence shown in Figures 3, 4 and 5 pertain to the SQL in-
jection attack because it is consistent with the timestamps and alerts.
The data in Figures 3 and 4 reveal that the attacker at IP address
129.174.124.122 accessed theweb server at IP address 129.174.124.35
using the SQL injection attempt (‘1’=‘1’), which is considered to be
“initial access” in ATT&CK. This is easily mapped to “weaponization”
in pre-attack phase. The data in Figure 5 shows that, at the same
time, the database was queried using select * from profiles where

name=‘Alice’ AND password=‘alice’ or ‘1’=‘1’, which is clearly an
SQL injection attack on the database. Since the database did not have

Liu, Singhal & Wijesekera 175

any security mechanisms, the implication is that the attack was suc-
cessful. Therefore, the data in Figure 5 can be mapped to the “attack”
phase in the Cyber Kill Chain.

The forensic data in Figure 6 was linked to the same attack by match-
ing the process name attack and injected module name test.ko. Be-
cause the data in Figures 6(a) and 6(b) only show that the attacker from
VM1 ran the process attack and module test to do some work (without
any details), the data could be mapped to the “weaponization” phase
that belongs to the pre-attack stage.

In addition, as described in Section 4.1, the data in Figures 7 and Fig-
ure 8 show that the attacker manipulated the shared memory in the same
hypervisor to execute shellcode on the victim virtual machine, which can
be mapped to the “exploitation” phase in the attack stage. Because the
samplefile.txt file in the victim virtual machine was deleted, the at-
tack succeeded and can be mapped to “actions on objectives” in the
Cyber Kill Chain of the post-attack stage.

4.3 Correlating Attack Steps to APTs

In previous work by the authors [11], a Prolog-based tool was em-
ployed to generate attack steps using evidence (expressed as Prolog pred-
icates) to instantiate rules with the predicates that represented attack
pre-conditions and post-conditions. The rules, which simulated generic
attack techniques, were written in the form: p :- p1, p2, · · · , pn, where
the predicate p represents the post-conditions of an attack and pred-
icates p1, p2, · · · , pn represent the pre-conditions of the attack. The
post-conditions refer to the privileges that the attacker obtained after
the attack and the pre-conditions include the attacker’s initial privileges,
location, system configuration and vulnerability exploited by the attack.

While the Prolog-based tool can be used to generate attack steps,
it requires users to categorize evidence pertaining to the post-attack
conditions, attack techniques and pre-attack conditions. The tool does
not map predicates to the seven Cyber Kill Chain phases. Also, it does
not have corresponding rules that correlate the evidence associated with
the seven phases of the Cyber Kill Chain to pre-attack conditions and
post-attack conditions.

The deficiencies are addressed by making the following changes:

1. Predicates Prr, Prw, Prd, Ae, Ai, Poc and Poa are used to represent
the pre-attack “reconnaissance,” “weaponization” and “delivery”
phases, the attack “exploitation” and “installation” phases, and
the post-attack “command and control” and “actions on objec-
tives” phases, respectively.

176 ADVANCES IN DIGITAL FORENSICS XVI

Table 2. Descriptions of the nodes in Figure 9.

Node Description Node Description

1 ExecCode(VM2, read) 6 networkServiceInfo(database,
httpd, tcp, 3660, user)

2 ExecCode(VM2, modify) 7 vulExists(webServer,
‘CWE89,’ httpd)

3 Through 3 (Remote 8 hasAccount(attacker, VM1,
exploit of server) root)

4 Through 8 (Compromise of 9 vulExists(VM2, ‘CVE-2017-
host via shared hardware) 7228,’ sharedmemory)

5 attackerAccess(publicWebApp) 10 vulProperty(‘CVE-2017-7228,’
localExploit, privEscalation)

2. Techniques in the ATT&CK matrix are converted to the corre-
sponding predicates and mapped to the Cyber Kill Chain phases
as follows: (i) predicates of “initial access” are mapped to Prr;
(ii) predicates of “execution,” “persistence,” “privilege escalation,”
“defense evasion” and “credential access” are mapped to Prw; (iii)
predicates of “discovery” are mapped to Ai; (iv) predicates of “lat-
eral movement” are mapped to Ai; (v) predicates of “command
and control” are mapped to Poc; and (vi) predicates of “collec-
tion,” “exfiltration” and “impact” are mapped to Poa.

Note that symbols Prr, Prw, Prd, Ae, Ai, Poc and Poa are used
to categorize predicates to pre-attack conditions, attack techniques
and post-attack conditions, which are removed when the predicates
are presented to show the constructed attack steps, as illustrated
in Table 2. In the table, Nodes 5, 6, 7, 8, 9, 10 correspond to
pre-attack conditions; Nodes 3, 4 correspond to attack techniques;
and Nodes 1, 2 correspond to post-attack conditions.

The predicates have names and variables that depict facts such
as system configuration, attacker privileges, network topology, op-
erating system permissions and software vulnerability. The “ex-
ploit public-facing application” technique in “initial access” of the
ATT&CK matrix is written to “Prr(attackerAccess(host, pro-
gram))” and the “account manipulation” technique in “credential
access” of the ATT&CK matrix is written to “Prw(hasAccount(-
principal, host, account)),” where the variables (e.g., host, pro-
gram, account) following the predicate names (e.g., “attackerAc-

Liu, Singhal & Wijesekera 177

Figure 9. Constructed attack steps in the experimental cloud environment.

cess” and “hasAccount”) are instantiated using concrete informa-
tion during the execution of the Prolog tool.

3. Rules are added to use the Cyber Kill Chain to correlate the pred-
icates corresponding to different phases to an attack step. The
rules are of the form:

Poc : −(Prr;Prw;Prd), (Ae;Ai).

and

Poa : −(Prr;Prw;Prd), (Ae;Ai).

where “;” denotes logical OR and “,” denotes logical AND.

These rules mean that, if there is evidence found in all the pre-
attack, attack and post-attack phases, then an attack step is con-
structed.

After incorporating these changes in the Prolog-based tool, intuitive
graphical attack steps were constructed for the two attacks as shown in
Figure 9 (Table 2 provides the node descriptions). The left path shows
that the attacker used a publicly-available web application to launch the
SQL injection attack on the database in VM2. The right path shows the
attacker exploited the vulnerability in the shared hardware to attack
VM2 and then deleted a file in VM2.

Note that the miniature example provides an initial example of the
ATT&CK rule model. Although some rules – e.g., lateral movement by
the attacker and passing the hash attacks – are missing, the missing rules
could be generated by machine learning algorithms and incorporated into
the steps of the ATT&CK process.

178 ADVANCES IN DIGITAL FORENSICS XVI

5. Conclusions

Justifying the pre-attack, attack and post-attack phases requires ev-
idence of activities related to the phases. When performing an APT
attack analysis, difficulties are encountered in constructing attack steps
because: (i) APT attacks do not lend themselves to using time as indica-
tors for identifying forensic evidence; and (ii) recognizing the pre-attack
and post-attack phases may require the application of statistical correla-
tion techniques on evidence from multiple sources. As a result, creating
valid arguments for APT attacks becomes more challenging, in particu-
lar, assigning timestamps to APT attacks in a cloud environment.

The ATT&CK knowledge base is readily leveraged to identify the
evidence and build the attack steps by mapping the available evidence to
various phases in the Cyber Kill Chain methodology. The experimental
cloud environment case study validates the benefits of combining the
ATT&CK knowledge base and Cyber Kill Chain methodology to identify
and aggregate evidence, and feed it to a Prolog-based tool that can
automate the construction of the attack steps.

Future research will attempt to extend the relationships between the
Cyber Kill Chain and the evidence gathering and attack-attribution
tasks.

This chapter is not subject to copyright in the United States. Com-
mercial products are identified in order to adequately specify certain pro-
cedures. In no case does such an identification imply a recommendation
or endorsement by the National Institute of Standards and Technology,
nor does it imply that the identified products are necessarily the best
available for the purpose.

References

[1] B. Bryant and H. Saiedian, A novel kill-chain framework for remote
security log analysis with SIEM software, Computers and Security,
vol. 67, pp. 198–210, 2017.

[2] Cyber Reboot, The Cyber Attack Chain, In-Q-Tel, Menlo Park,
California (www.cyberreboot.org), 2020.

[3] A. D’Amico and K. Whitley, The real work of computer network
defense analysts, Proceedings of the Workshop on Visualization for
Computer Security, pp. 19–37, 2007.

[4] B. Dolan-Gavitt, B. Payne and W. Lee, Leveraging Forensic Tools
for Virtual Machine Introspection, Technical Report GT-CS-11-05,
School of Computer Science, Georgia Institute of Technology, At-
lanta, Georgia, 2011.

Liu, Singhal & Wijesekera 179

[5] J. Dykstra and A. Sherman, Acquiring forensic evidence from
infrastructure-as-a-service cloud computing: Exploring and evalu-
ating tools, trust and techniques, Digital Investigation, vol. 9(S),
pp. S90–S98, 2012.

[6] J. Dykstra and A. Sherman, Design and implementation of FROST:
Digital forensic tools for the OpenStack cloud computing platform,
Digital Investigation, vol. 10(S), pp. S87–S95, 2013.

[7] B. Hay and K. Nance, Forensic examination of volatile system data
using virtual introspection, ACM SIGOPS Operating Systems Re-
view, vol. 42(3), pp. 74–82, 2008.

[8] K. Kent, S. Chevalier and T. Grance, Guide to Integrating Forensic
Techniques into Incident Response, NIST Special Publication 800-
86, National Institute of Standards and Technology, Gaithersburg,
Maryland, 2006.

[9] LibVMI Community, LibVMI: LibVMI Virtual Machine Introspec-
tion, LibVMI (libvmi.com), 2020.

[10] C. Liu, A. Singhal, R. Chandramouli and D. Wijesekera, Deter-
mining forensic data requirements for detecting hypervisor attacks,
in Advances in Digital Forensics XV, G. Peterson and S. Shenoi
(Eds.), Springer, Cham, Switzerland, pp. 253–272, 2019.

[11] C. Liu, A. Singhal and D. Wijesekera, A probabilistic network foren-
sic model for evidence analysis, in Advances in Digital Forensics
XII, G. Peterson and S. Shenoi (Eds.), Springer, Cham, Switzer-
land, pp. 189–210, 2016.

[12] C. Liu, A. Singhal and D. Wijesekera, Identifying evidence for cloud
forensic analysis, in Advances in Digital Forensics XIII, G. Peterson
and S. Shenoi (Eds.), Springer, Cham, Switzerland, pp. 111–130,
2017.

[13] C. Liu, A. Singhal and D. Wijesekera, A layered graphical model
for cloud forensic mission attack impact analysis, in Advances in
Digital Forensics XIV, G. Peterson and S. Shenoi (Eds.), Springer,
Cham, Switzerland, pp. 263–289, 2018.

[14] Lockheed Martin Corporation, Gaining the Advantage – Apply-
ing Cyber Kill Chain Methodology to Network Defense, Bethesda,
Maryland, 2015.

[15] S. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar and V. Venkata-
krishnan, HOLMES: Real-time APT detection through correlation
of suspicious information flows, Proceedings of the IEEE Symposium
on Security and Privacy, pp. 1137–1152, 2018.

180 ADVANCES IN DIGITAL FORENSICS XVI

[16] MITRE Corporation, ATT&CK Matrix for Enterprise, Bedford,
Massachusetts (attack.mitre.org), 2020.

[17] A. Pichan, M. Lazarescu and S. Soh, Cloud forensics: Technical
challenges, solutions and comparative analysis, Digital Investiga-
tion, vol. 13, pp. 38–57, 2015.

[18] B. Strom, J. Battaglia, M. Kemmerer, W. Kupersanin, D. Miller,
C. Wampler, S. Whitley and R. Wolf, Finding Cyber Threats with
ATT&CK-Based Analytics, MITRE Technical Report MTR170202,
MITRE Corporation, Annapolis Junction, Maryland, 2017.

[19] S. Zawoad and R. Hasan, A trustworthy cloud forensics environ-
ment, in Advances in Digital Forensics XI, G. Peterson and S.
Shenoi (Eds.), Springer, Cham, Switzerland, pp. 271–285, 2015.

Chapter 10

A TAXONOMY OF HYPERVISOR
FORENSIC TOOLS

Anand Kumar Mishra, Mahesh Govil and Emmanuel Pilli

Abstract Cloud computing models are deployed on a compute server whose hard-
ware resources are virtualized to enable multiple virtual machines to
run on a single physical system. Several types of virtualization such
as bare metal and hosted virtualization are available along with vir-
tualization modes such as full, paravirtualized, hardware-assisted and
paravirtualized-hardware-assisted virtualization. Virtual machines are
inaccessible from each other when the physical server hardware is ab-
stracted in the full virtualization mode. Physical information such as
hard disk drives and server memory are made available in a virtualized
environment as a virtual hard disk, vCPU and guest operating system
state.

Hypervisor operations generate copious amounts of data that are of
value in forensic investigations of virtualized cloud environments. This
chapter presents a taxonomy of hypervisor forensic tools, which provides
a searchable catalog for forensic practitioners to identify specific tools
that fulfill their technical requirements. A case study involving a KVM
hypervisor demonstrates the evidence that can be found in a virtual
machine at the virtual machine manager and host system layers.

Keywords: Cloud computing, hypervisors, forensic tool taxonomy

1. Introduction

In 2003, National Institute of Standards and Technology (NIST) [34]
initiated the Computer Forensic Tool Testing (CFTT) Project to sup-
port the international digital forensics community. The project has clas-
sified computer forensic tools according to their specifications, test pro-
cedures, test criteria, test sets and test hardware. A similar taxonomy
is required for cloud forensic tools.

c© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XVI, IFIP AICT 589, pp. 181–199, 2020.

https://doi.org/10.1007/978-3-030-56223-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56223-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-56223-6_10

182 ADVANCES IN DIGITAL FORENSICS XVI

Previous research has developed a taxonomy of cloud endpoint foren-
sic tools [32]. This chapter extends the previous research by presenting
a taxonomy for hypervisor forensic tools that considers the various lay-
ers of a hypervisor system. The chapter also discusses the potential
data sources in virtual machines (VMs) and virtual machine managers
(VMMs), and discusses the uses of the extracted data in forensic in-
vestigations. A case study using a KVM hypervisor demonstrates the
valuable evidence that can be found in a virtual machine at the virtual
machine manager and host system layers.

2. Hypervisors

A hypervisor is a software system that abstracts the storage, operat-
ing system (OS), network and applications. The software layer is im-
plemented on top of hardware to enable multiple virtual machines to be
created in isolation. The virtual machines incorporate a processor, mem-
ory, secondary storage and networking. The hypervisor also controls the
host processor and assets, dispensing resources to virtual machines and
ensuring that they are isolated from each other.

A virtualized environment has multiple layers. The hardware layer
comprises the processor for computation, network interface card, mem-
ory and secondary storage. The host operating system layer is situated
between the hardware and hypervisor layers. Virtual machines are cre-
ated on top of the hypervisor layer. A guest operating system is installed
in each virtual machine for user interactions and running applications.
The applications execute in a virtualized environment in the guest op-
erating system.

A hypervisor is a software system that virtualizes hardware resources
and manages the resources for virtual machines. There are two types
of hypervisors. In a Type 1 or bare-metal or native-type hypervisor,
the hypervisor software runs directly on the computer system hard-
ware. Example Type 1 hypervisors include VMware ESX and ESXi,
Microsoft Hyper-V, Citrix XenServer and Oracle VM (based on open-
source Xen). In a Type 2 or hosted or application level hypervisor, the
hypervisor software runs on a host operating system that provides vir-
tualization services such as input/output device support and memory
management. Example Type 2 hypervisors include VMware Worksta-
tion/Fusion/Player, VMware Server, Microsoft Virtual PC, Oracle VM
VirtualBox, Red Hat Enterprise Virtualization and KVM.

Depending of their underlying technologies, several types of virtu-
alization techniques have been deployed, including full virtualization,
hardware-assisted virtualization and paravirtualization. In full virtual-

Mishra, Govil & Pilli 183

Figure 1. Attack on the hypervisor layer.

ization, a virtual machine runs in isolation; examples include VMware
Workstation, VirtualBox (32-bit guests) and VMware Server. Hardware-
assisted virtualization is a type of full virtualization that directly inter-
rupts the hardware using virtualization technology, including processors
such as Intel-VTx and AMD-V; examples include VMware ESXi/ESX,
KVM, Hyper-V and Xen. Paravirtualization (operating system assisted
virtualization) is installed on a physical server (host) and a guest oper-
ating system is installed in the environment. Unlike full virtualization,
virtual guests are aware that they are virtualized; examples include Or-
acle VM for SPARC (LDOM) and Oracle VM for x86 (OVM).

3. Hypervisor Attacks and Vulnerabilities

Previous work [31] has discussed the top threats to cloud computing,
including wrapping, malware-injection, flooding and browser attacks,
insecure interfaces and APIs, malicious administrators, data theft and
data leakage. Pearce et al. [37] have conducted a detailed study of vir-
tualization techniques and the accompanying security threats.

When a cloud environment is attacked, the impacts can occur through-
out the environment; this complicates evidence collection. Figure 1
shows an attack on the hypervisor layer of a private cloud. When a
compute node is compromised, changes occur not only at the node, but
also at the cloud controller node, hypervisor level and storage systems.

Forensic investigations of cloud environments are also challenging due
to the movement of data within providers. Attacks on a hypervisor are

184 ADVANCES IN DIGITAL FORENSICS XVI

serious because they may crash the hypervisor and the guest or virtual
machines. A vulnerable hypervisor can render every installed guest ma-
chine vulnerable. The increased asset utilization by a virtual machine
that causes a denial-of-service attack on a service provider server is exac-
erbated when multiple virtual servers are involved. An attacker typically
targets hypervisor services such as created(), delete(), clone() and
migrate() to exploit and expand vulnerabilities.

3.1 System Calls and Hypercalls

System calls enable a user application to perform specific instructions
that maintain the safety of user mode operations and kernel changes
to the execution mode. In a system call. the kernel stack is initialized
and the framework call handler is invoked. After the execution of a
user request, execution returns to the user mode and the unprivileged
register connection is restored. Control then returns to the instruction
after the system call. Because of the discriminating extension between
user applications and the host operating system, system call disruptions
are attractive to malicious entities that have access to cloud services.

Attackers often focus on the hypervisor layer and leverage hyper-
calls, which are software traps from a kernel of a guest virtual ma-
chine to the hypervisor. Milenkoski et al. [30] have listed vulnera-
bilities in several hypercalls: memory op, gnttab op, set debugreg,

physdev op and mmuext op (Table 1). Because cloud computing archi-
tectures are based on virtualization, these hypercall vulnerabilities can
affect cloud services. Due to the ubiquity of cloud computing, forensic
investigations of hypercall-based attacks are on the increase.

Perez-Botero et al. [38] have analyzed vulnerabilities in the Xen and
KVMhypervisors. Their analysis covers hypervisor functionalities, which
are mapped to vulnerabilities and attack vectors.

3.2 Virtual Machine Introspection

Virtual machine introspection (VMI) is used to investigate real-time
events in a virtual machine and to ensure that the virtual system is run-
ning properly. Garfinkel and Rosenblum [11] originally defined virtual
machine introspection as examining a virtual machine from the outside
with the goal of dissecting the software running inside it.

Virtual machine introspection enables an investigation to be con-
ducted without interrupting the monitored virtual machine. Virtual
machine introspection assists in malware collection, malware analysis,
intrusion detection, intrusion prevention, stealthy debugging, cloud se-
curity and mobile security [47].

Mishra, Govil & Pilli 185

Table 1. Hypercall vulnerabilities.

Vulnerability Hypercall Description Post-Attack State

CVE-2012-3496, memory op Management of Hypervisor crash,
CVE-2012-5513 virtual machine overwritten memory

memory

CVE-2012-4539, gnttab op Management of Hypervisor crash,
CVE-2012-5510, shared memory virtual machine
CVE-2013-1964 among virtual hanging, operation

machines disruption

CVE-2012-3494 set Register value Hypervisor crash
debugreg management of

CPU allocated
to a guest
virtual machine

CVE-2012-3495 physdev op Management of Hypervisor crash,
component overwritten memory
requests by a
guest virtual
machine

CVE-2012-5525 mmuext op Management of Hypervisor crash,
memory pages invalid page

information

Figure 2 shows the virtual machine introspection components. The
components are:

Virtual Machine Introspection API: This library module ser-
ves as an interface between a virtual machine introspection appli-
cation and the virtual machine monitor.

Virtual Machine Introspection Application: This applica-
tion observes the monitored guest virtual machine using the vir-
tual machine introspection API functions, which support memory
introspection, data streaming and storage performance evaluation.

Guest OS Symbol Table: This virtual machine introspection
component collects low-level information that is acquired exter-
nally. The low-level information includes the virtual address, sys-
tem call table and interrupt descriptor table (IDT).

Several tools and utilities have been developed to support hypervisor
forensics. These include LibVMI, file carving tools, disk image mounting

186 ADVANCES IN DIGITAL FORENSICS XVI

Hypervisor Core Hypervisor
Functionalities

VM Memory State

Hardware (CPU)

UserProcess

Kernel Symbol

Guest OS
Symbol Table

VMI Application

VMI API
VM Memory State

Translation

Hypercalls

System Call

(vCPU)

{Disk Information}
{Memory Information}
{Network Information}

{Hardware Events}

Hypervisor Specific API

Figure 2. Virtual machine introspection components.

utilities, LiveView, Bitdefender Hypervisor Introspection and Volatility.
Interested readers are referred to [16, 33] for details about virtual ma-
chine introspection techniques and their applications.

4. Taxonomy of Hypervisor Forensic Tools

Hypervisor forensics is the application of digital forensic techniques
and tools to collect and analyze digital evidence for event construction,
interpretation and reporting in order to prove hypervisor usability and
exploitation. The primary goal of the hypervisor forensic tool taxonomy
presented in this section is to provide a searchable catalog of digital
forensic tools. Forensic practitioners can use the taxonomy to identify
tools that meet the technical requirements of hypervisor investigations.

Figure 3 shows the taxonomy of hypervisor forensic tools. Eviden-
tiary data can be extracted from five distinct layers or levels: (i) virtual
machine layer; (ii) virtual machine manager layer; (iii) network layer;
(iv) host operating system layer; and (v) hardware layer.

Mishra, Govil & Pilli 187

H
yp

er
vi

so
r F

or
en

si
c

To
ol

 T
ax

on
om

y

VM
 L

ay
er

 In
fo.

VM
M

 L
ay

er
 In

fo.
H

os
t O

S
La

ye
r I

nf
o

H
ar

dw
ar

e
La

ye
r I

nf
o

N
et

w
or

k
La

ye
r I

nf
o.

vC
PU

vR
AM

vN
IC

vD
is

k

Vi
rtu

al
 H

ar
dw

ar
e

R
un

ni
ng

 P
ro

ce
ss

 L
is

t
VM

 E
ve

nt
s

VM
 D

is
k

VM
 L

og
s

VM
 S

na
ps

ho
t

H
yp

er
vi

so
r L

og
s

H
yp

er
ca

ll

Sy
st

em
 C

al
l

M
em

or
y

In
fo

Pa
ck

et
 C

ap
tu

re

F
ig
u
re

3
.

T
a
x
o
n
o
m
y
o
f
h
y
p
er
v
is
o
r
fo
re
n
si
c
to
o
ls
.

188 ADVANCES IN DIGITAL FORENSICS XVI

Virtual Machine

vCPU vRAM vNIC vDisk

Application

Guest OS

VMCS

VM Exit

VM Entry

Hypervisor
Data Acquisition

(a)

(b) (c) (d)

Hypervisor (Virtual Machine Monitor)

(e)

(a) Control Data, Guest and Host State Data
(b) Process, Threads, Cache, etc
(c) Kernel Process, Variable Address, Virtual Add Location
(d) Network Packets
(e) VDI, VMDK, VHD, img, etc

Figure 4. Virtual machine evidence acquisition.

4.1 Virtual Machine Layer Data

Virtual machines are the most important sources of evidence, includ-
ing data that can support complete event reconstruction. However, vir-
tual machine data is volatile and is an easy target for attackers.

Virtual machine data includes memory content, register contents, in-
put/output device flags, Ethernet/Internet address changes, process list,
kernel symbol table, virtual machine physical address space, guest page
table, etc. In a virtual machine, vCPU, vRAM, vNIC and vDisk also
provide useful data related to processes, threads and control data. Fig-
ure 4 shows the virtual machine evidence acquisition process.

4.2 Virtual Machine Manager Layer Data

Information residing in the virtual machine manager layer includes
virtual machine logs, disk images, snapshots, configuration files, etc.

Shavers [41] has identified useful types of virtual machine files that
reside in a VMWare hypervisor. These include virtual machine activity
log files (.log), virtual machine disk files (.vmdk), paging files of running
virtual machines (.vmem), virtual machine snapshots (.vmsn), metadata
snapshots (.vmsd), virtual machine BIOS data (.nvram), stored vir-
tual machine configurations (.vmx) and suspended virtual machine data
(.vmss). Other important files are lock files created for configuration
(.lck) and disk files of running virtual machines.

A virtual machine manager supports an interface similar to /dev/kmem
that provides access to the monitored host’s memory in the form of

Mishra, Govil & Pilli 189

a flat file. This enables the capture of virtual machine layer events
such as virtual machine rebooting or powering down. Hypercalls can
also be monitored to enable the analysis of guest machine execution.
Additionally, copies of virtual machine images can be preserved.

Forensic tools such as FTK Imager and OSForensics can be used to
mount a virtual machine on an external drive. The virtual machine
manager needs the virtual machine control structure (VMCS) that holds
all the data pertaining to virtual machine configuration and the rules
that must be obeyed. This control structure contains a shadow indicator,
indicator, guest state area, host state area, virtual machine execution
control fields, virtual machine exit control fields, virtual machine entry
control fields and virtual machine exit information fields. These fields
are very important because the values are stored in registers.

4.3 Network Layer Data

Network layer evidentiary data is crucial when a live acquisition is
performed to investigate an active network intrusion. Network managers
help analyze and manage overall network traffic and performance.

4.4 Host Machine Layer Data

Hypervisor logs, system calls and hypervisor events are maintained
in the host machine layer. An image of a host machine should also
be preserved because it contains all the details of the virtual machine
and virtual machine manager. Files and folders associated with virtual
machines should also collected from the host machine.

4.5 Hardware Layer Data

A RAM capture is one of the most important tasks in live acquisition.
This is because the capture contains the footprints of running processes
that can be analyzed further in the case of malicious events.

5. Related Work

This section summarizes key research in the areas of hypervisor in-
trospection and forensic investigations. Most of the approaches employ
virtual machine introspection techniques for malware detection and/or
vulnerability detection.

Tables 2 through 4 list research published from 2003 to 2018. The first
column presents author-year information, the second column presents
the hypervisor (virtual machine manager) used and the third column
the forensic method or methods used. The fourth and fifth columns list

190 ADVANCES IN DIGITAL FORENSICS XVI

Table 2. Hypervisor introspection and forensic investigation research.

Authors Hypervisor Forensic Layer Extracted Objective
Method Data

Garfinkel et VMware VMI VMM to VM, Guest OS Intrusion
al., 2003 [11] Workstation VM to VM metadata detection

Joshi et User mode VMI Host OS to Guest OS Vuln.
al., 2005 [21] Linux VM processes, detection

kernel
processes

King et al., VMware VM-based VMM to VM Keystrokes, Malware
2006 [22] Workstation rootkit, packets, detection

Windows XP, VM disk state,
Linux detection memory

Kourai et Persona OS VM VMM to VM Processes, Intrusion
al., 2005 [24] FreeBSD monitoring packets, detection

mechanisms disk state

Quynh et Xen Filesystem VMM to VM, System Intrusion
al., 2007 [39] integrity VM to VM calls, log detection,

tools files system
monitoring

Jones et Xen v3.0.3 Cross-view VMM to VM Guest OS Hidden
al., 2008 [20] validation processes

Gu et al., KVM VMI VMM to VM, Process Malware
2011 [13] Ubuntu 10.04 inside VM list tracing

in VM

Dolan-Gavitt QEMU Trace VMM to VM, Process Secure
et al., 2011 [6] logging, VM to VM IDs, VMI

preproc., process
merging list

Thorpe et VMware Log Inside VM VM Event
al., 2011 [42]; ESXi synch. networks reconstrn.
2012 [44]

Harrison et Xen Forensic VM to VM Processes Malicious
al., 2012 [14] VM and via behavior

VM hypervisor

Lim et al., VMware Direct VM Inside VM VM and vDisk VM and
2012 [28] Workstation image config., VM VM state

Kourai et Xen Packet VMM to VM Attack Outbound
al., 2012 [23] filtering source, attack

at VMM log info. detection,
recovery log, etc. recovery

Mishra, Govil & Pilli 191

Table 3. Hypervisor introspection and forensic investigation research (continued).

Authors Hypervisor Forensic Layer Extracted Objective
Method Data

Alarifi et KVM VM host Inside VM VMM system Anomaly
al., 2012 [1] system call calls detection

analysis

Deng et KVM User level VM Log files Dynamic
al., 2012 [5] library malware

call analysis
tracing

Fu et al., OS level, VMM to VM, VM logs, VMI
2012 [8] QEMU binary VM to VM system

v0.15.50 code reuse calls

Wang et Xen VMI VMM to VM Process Virus
al., 2012 [45] list detection

Jin et al., Xen Network VM to VM Packets Anomaly
2013 [19] packet detection,

capture file
integrity

Fu et al., QEMU OS VMM to VM VM details VMI
2013 [9] v0.15.50 kernel

code

Fu et al., QEMU Exterior VMM to VM VM details VMI
2013 [10] v1.0 data acq.

Thorpe et VMware VM log VMM, VM VM events, VM log
al., 2013 [43] ESXi auditing hypervisor auditing

logs,
kernel logs

Graziano et HyperDbg, VM control VMM Hypervisor Memory
al., 2013 [12] KVM, Xen, structure RAM data acq. and

VirtualBox, analysis
VMware

Lamps et Xen WinWizard VMM to VM, VM data, VMI
al., 2014 [26] VM to VM VM layer

info.

Kumara et Xen System call VMM to VM, VM data Malicious
al., 2015 [25] tracing, VM to VM process

LibVMI detection

Xiao et al., QEMU Hyperlink VMM to VM, VM data VMI
2016 [46] VM to VM

192 ADVANCES IN DIGITAL FORENSICS XVI

Table 4. Hypervisor introspection and forensic investigation research (continued).

Authors Hypervisor Forensic Layer Extracted Objective
Method Data

Jia et al., KVM Trusted VMI VMM to VM, VM data VMI
2017 [17] model VM to VM

Riaz et al., VMware VM data VMM to VM VM log files VMI
2018 [40] acquisition and snapshot

the layer or layers containing data and the extracted data, respectively.
The sixth column provides the objective or objectives of the research.

Other research focusing on virtual machines and introspection meth-
ods include ReVirt [7], network attack detection using Collapsar [18],
trustworthy intrusion detection using Psyco-Virt [4], virtual machine
monitoring with XenAccess [35, 36], direct kernel structure manipulation
attack analysis using virtual machine introspection [3], live digital foren-
sic analysis using the Xen VIX tool [15], rootkit detection in Xen using
Patagonix [29], peer-to-peer network monitoring using virtual machine
introspection [2], and virtual machine privacy and integrity protection
using CloudVisor [49] and CryptVMI [48].

6. KVM Hypervisor Forensics

In the KVM hypervisor forensics case study, LibVMI [27] was installed
in a QEMU-KVM hypervisor v2.0.0 on a Linux Ubuntu 14.04.1 operating
system (64-bit, v3.13.0-32 generic kernel). The KVM made it possible to
spin up multiple virtual machines running unmodified Linux or Windows
operating systems with private virtualized hardware, a network card,
disk, graphics adapter, etc.

Figure 5 shows virtual machine data acquisition using hypervisor in-
trospection. In the scenario, an attacker targets the virtualized environ-
ment containing the compute nodes C1, C2 and C3.

The LibVMI C language library provides low-level information about
running virtual machines such as memory, process lists and process IDs.
Using LibVMI, it is possible to examine process records, kernel module
records, system call observations and memory page information. The
core function of virtual machine introspection, specifically vmi read(),
makes it possible to read the virtual machine memory that supports
translation, caching and hypervisor access. The translation of the kernel
virtual address to the physical address is performed by vmi translate

kv2p.

Mishra, Govil & Pilli 193

Storage

Internet

Attacker

C1, C2, C3: Compute Nodes

Cloud Manager

Firewall

Router

Cloud Client

Memory
Introspection

Hardware
Events

vCPU
Registers

C1 C2 C3

Figure 5. Virtual machine data acquisition.

def main(argv):

vmi = pyvmi.init(argv[1], "complete")

print vmi

print vmi.get_name()

print vmi.get_vmid()

print vmi.get_ostype()

print vmi.get_memsize()

for pid,x in list_processes(vmi):

print pid

print x

try:

print vmi.pid_to_dtb(pid)

Figure 6. Process ID to directory table base code snippet.

The code snippet in Figure 6 shows that, if the process ID (PID) is
known, then the vmi pid to dtb function returns the virtual address
of the directory table base (DTB) for the process address space. This
address is effectively in the CR3 control register while the process is exe-

194 ADVANCES IN DIGITAL FORENSICS XVI

cuting. The CR3 register, which indicates the page directory base, holds
the physical address of the initial structure used for address translation.

The following data related to the KVM hypervisor and its virtual
machines was obtained:

Process List: The list of running processes was extracted via
LibVMI using the command: $sudo ./process-list VIRTUAL

MACHINE NAME.

Disk Images and Formats: Virtual machine disk images with
format qcow2 at /var/lib/libvirt/images were obtained. The
image format can be converted using the command: $ sudo qemu-

img convert -O qcow2 vm1.img vm1.qcow2.

Virtual Machine Logs: The log file for each running virtual
machine at /var/log/libvirt/qemu/VM.log was obtained.

SSH Login: SSH login information at /var/log/auth.log along
with the IP addresses and login times were obtained.

Audit Logs: Hypervisor audit logs at /var/log/audit/audit.
log were obtained.

7. Conclusions

Hypervisor operations generate considerable data that is of eviden-
tiary value in forensic investigations of virtualized environments. The
evidence may be extracted from multiple layers – virtual machine layer,
virtual machine manager layer, host operating system layer, network
layer and hardware layer. As such, there is a need for forensic tools
that can extract hypervisor-based native artifacts from virtualized envi-
ronments with minimum effort and time. The taxonomy of hypervisor
forensic tools provides a searchable catalog that assists forensic prac-
titioners in identifying specific tools that fulfill their technical require-
ments. Additionally, the taxonomy could play a vital role in steering the
development of standard forensic tools for virtualized environments.

Future research will enhance the tool taxonomy by incorporating fea-
tures that cover the entire hypervisor forensic process, including acqui-
sition and analysis.

References

[1] S. Alarifi and S. Wolthusen, Detecting anomalies in IaaS environ-
ments through virtual machine host system call analysis, Proceed-
ings of the International Conference on Internet Technology and
Secured Transactions, pp. 211–218, 2012.

Mishra, Govil & Pilli 195

[2] R. Ando, Y. Kadobayashi and Y. Shinoda, Blink: Large-scale P2P
network monitoring and visualization system using VM introspec-
tion, Proceedings of the Sixth International Conference on Net-
worked Computing and Advanced Information Management, pp.
351–358, 2010.

[3] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan, J.
Rhee and D. Xu, DKSM: Subverting virtual machine introspection
for fun and profit, Proceedings of the Twenty-Ninth IEEE Sympo-
sium on Reliable Distributed Systems, pp. 82–91, 2010.

[4] F. Baiardi and D. Sgandurra, Building trustworthy intrusion de-
tection through VM introspection, Proceedings of the Third Inter-
national Symposium on Information Assurance and Security, pp.
209–214, 2007.

[5] Z. Deng, D. Xu, X. Zhang and X. Jiang, IntroLib: Efficient and
transparent library call introspection for malware forensics, Digital
Investigation, vol. 9(S), pp. S13–S23, 2012.

[6] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin and W. Lee, Virtu-
oso: Narrowing the semantic gap in virtual machine introspection,
Proceedings of the IEEE Symposium on Security and Privacy, pp.
297–312, 2011.

[7] G. Dunlap, S. King, S. Cinar, M. Basrai and P. Chen, ReVirt:
Enabling intrusion analysis through virtual-machine logging and
replay, ACM SIGOPS Operating Systems Review, vol. 36(SI), pp.
211–224, 2002.

[8] Y. Fu and Z. Lin, Space traveling across VM: Automatically bridg-
ing the semantic gap in virtual machine introspection via online
kernel data redirection, Proceedings of the IEEE Symposium on Se-
curity and Privacy, pp. 586–600, 2012.

[9] Y. Fu and Z. Lin, Bridging the semantic gap in virtual machine
introspection via online kernel data redirection, ACM Transactions
on Information and System Security, vol. 16(2), article no. 7, 2013.

[10] Y. Fu and Z. Lin, EXTERIOR: Using a dual-VM based external
shell for guest OS introspection, configuration and recovery, ACM
SIGPLAN Notices, vol. 48(7), pp. 97–110, 2013.

[11] T. Garfinkel and M. Rosenblum, A virtual machine introspection
based architecture for intrusion detection, Proceedings of the Net-
work and Distributed Systems Security Symposium, pp. 191–206,
2003.

196 ADVANCES IN DIGITAL FORENSICS XVI

[12] M. Graziano, A. Lanzi and D. Balzarotti, Hypervisor memory foren-
sics, Proceedings of the Sixteenth International Workshop on Recent
Advances in Intrusion Detection, pp. 21–40, 2013.

[13] Z. Gu, Z. Deng, D. Xu and X. Jiang, Process implanting: A new
active introspection framework for virtualization, Proceedings of the
Thirtieth IEEE International Symposium on Reliable Distributed
Systems, pp. 147–156, 2011.

[14] K. Harrison, B. Bordbar, S. Ali, C. Dalton and A. Norman, A
framework for detecting malware in the cloud by identifying symp-
toms, Proceedings of the Sixteenth IEEE International Enterprise
Distributed Object Computing Conference, pp. 164–172, 2012.

[15] B. Hay and K. Nance, Forensic examination of volatile system data
using virtual introspection, ACM SIGOPS Operating Systems Re-
view, vol. 42(3), pp. 74–82, 2008.

[16] Y. Hebbal, S. Laniepce and J. Menaud, Virtual machine introspec-
tion: Techniques and applications, Proceedings of the Tenth Inter-
national Conference on Availability, Reliability and Security, pp.
676–685, 2015.

[17] L. Jia, M. Zhu and B. Tu, T-VMI: Trusted virtual machine in-
trospection in cloud environments, Proceedings of the Seventeenth
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pp. 478–487, 2017.

[18] X. Jiang and D. Xu, Collapsar: A VM-based architecture for a
network attack detention center, Proceedings of the Thirteenth
USENIX Security Symposium, pp. 15–28, 2004.

[19] H. Jin, G. Xiang, D. Zou, S. Wu, F. Zhao, M. Li and W. Zheng,
A VMM-based intrusion prevention system in a cloud computing
environment, Journal of Supercomputing, vol. 66(3), pp. 1133–1151,
2013.

[20] S. Jones, A. Arpaci-Dusseau and R. Arpaci-Dusseau, VMM-based
hidden process detection and identification using Lycosid, Proceed-
ings of the Fourth ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, pp. 91–100, 2008.

[21] A. Joshi, S. King, G. Dunlap and P. Chen, Detecting past and
present intrusions through vulnerability-specific predicates, Pro-
ceedings of the Twentieth ACM Symposium on Operating Systems
Principles, pp. 91–104, 2005.

[22] S. King and P. Chen, SubVirt: Implementing malware with virtual
machines, Proceedings of the IEEE Symposium on Security and Pri-
vacy, pp. 314–327, 2006.

Mishra, Govil & Pilli 197

[23] K. Kourai, T. Azumi and S. Chiba, A self-protection mechanism
against stepping-stone attacks for IaaS clouds, Proceedings of the
Ninth International Conference on Ubiquitous Intelligence and the
Ninth International Conference on Autonomic and Trusted Com-
puting, pp. 539–546, 2012.

[24] K. Kourai and S. Chiba, HyperSpector: Virtual distributed moni-
toring environments for secure intrusion detection, Proceedings of
the First ACM/USENIX International Conference on Virtual Exe-
cution Environments, pp. 197–207, 2005.

[25] M. Kumara and C. Jaidhar, Virtual machine introspection based
spurious process detection in virtualized cloud computing environ-
ments, Proceedings of the International Conference on Futuristic
Trends in Computational Analysis and Knowledge Management, pp.
309–315, 2015.

[26] J. Lamps, I. Palmer and R. Sprabery, WinWizard: Expanding Xen
with a LibVMI intrusion detection tool, Proceedings of the Seventh
IEEE International Conference on Cloud Computing, pp. 849–856,
2014.

[27] LibVMI Community, LibVMI: LibVMI Virtual Machine Introspec-
tion, LibVMI (libvmi.com), 2020.

[28] S. Lim, B. Yoo, J. Park, K. Byun and S. Lee, A research on the
investigation method of digital forensics for a VMware Workstation
virtual machine, Mathematical and Computer Modeling, vol. 55(1-
2), pp. 151–160, 2012.

[29] L. Litty, H. Lagar-Cavilla and D. Lie, Hypervisor support for iden-
tifying covertly executing binaries, Proceedings of the Seventeenth
USENIX Security Symposium, pp. 243–258, 2008.

[30] A. Milenkoski, M. Vieira, B. Payne, N. Antunes and S. Kounev,
Technical Information on Vulnerabilities of Hypercall Handlers,
arXiv: 1410.1158v1, 2014.

[31] A. Mishra, P. Matta, E. Pilli and R. Joshi, Cloud forensics: State-
of-the-art and research challenges, Proceedings of the International
Symposium on Cloud and Services Computing, pp. 164–170, 2012.

[32] A. Mishra, E. Pilli and M. Govil, A taxonomy of cloud endpoint
forensic tools, in Advances in Digital Forensics XIV, G. Peterson
and S. Shenoi (Eds.), Springer, Cham, Switzerland, pp. 243–261,
2018.

[33] A. More and S. Tapaswi, Virtual machine introspection: Towards
bridging the semantic gap, Journal of Cloud Computing, vol. 3,
article no. 16, 2014.

198 ADVANCES IN DIGITAL FORENSICS XVI

[34] National Institute of Standards and Technology, Computer Foren-
sic Tools and Techniques Catalog, Gaithersburg, Maryland (tool
catalog.nist.gov), 2019.

[35] B. Payne, M. Carbone and W. Lee, Secure and flexible monitor-
ing of virtual machines, Proceedings of the Twenty-Third Annual
Computer Security Applications Conference, pp. 385–397, 2007.

[36] B. Payne, M. Carbone, M. Sharif andW. Lee, Lares: An architecture
for secure active monitoring using virtualization, Proceedings of the
IEEE Symposium on Security and Privacy, pp. 233–247, 2008.

[37] M. Pearce, S. Zeadally and R. Hunt, Virtualization: Issues, security
threats and solutions, ACM Computing Surveys, vol. 45(2), article
no. 17, 2013.

[38] D. Perez-Botero, J. Szefer and R. Lee, Characterizing hypervisor
vulnerabilities in cloud computing servers, Proceedings of the In-
ternational Workshop on Security in Cloud Computing, pp. 3–10,
2013.

[39] N. Quynh and Y. Takefuji, A novel approach for a filesystem in-
tegrity monitor tool for a Xen virtual machine, Proceedings of the
Second ACM Symposium on Information, Computer and Commu-
nications Security, pp. 194–202, 2007.

[40] H. Riaz and M. Tahir, Analysis of VMware virtual machine in foren-
sics and anti-forensics paradigms, Proceedings of the Sixth Interna-
tional Symposium on Digital Forensics and Security, 2018.

[41] B. Shavers, A Discussion of Virtual Machines Related to Forensic
Analysis, Forensic Focus, November 2008.

[42] S. Thorpe, I. Ray and T. Grandison, A synchronized log cloud foren-
sic framework, presented at the International Conference on Cyber-
crime, Security and Digital Forensics, 2011.

[43] S. Thorpe, I. Ray, T. Grandison, A. Barbir and R. France, Hyper-
visor event logs as a source of consistent virtual machine evidence
for forensic cloud investigations, Proceedings of the Twenty-Seventh
Annual IFIP WG 11.3 Working Conference on Data and Applica-
tions Security and Privacy, pp. 97–112, 2013.

[44] S. Thorpe, I. Ray, I. Ray, T. Grandison, A. Barbir and R. France,
Formal parameterization of log synchronization events within a dis-
tributed forensic compute cloud database environment, Proceedings
of the Third International ICST Conference on Digital Forensics
and Cyber Crime, pp. 156–171, 2012.

Mishra, Govil & Pilli 199

[45] L. Wang, Y. Peng, W. Liu and H. Gao, VMSecurexec: Transparent
on-access virus detection for virtual machine in the cloud, Proceed-
ings of the Symposium on ICT and Energy Efficiency and Workshop
on Information Theory and Security, pp. 116–121, 2012.

[46] J. Xiao, L. Lu, H. Wang and X. Zhu, HyperLink: Virtual machine
introspection and memory forensic analysis without kernel source
code, Proceedings of the IEEE International Conference on Auto-
nomic Computing, pp. 127–136, 2016.

[47] H. Xiong, Z. Liu, W. Xu and S. Jiao, LibVMI: A library for bridging
the semantic gap between guest OS and VMM, Proceedings of the
Twelfth IEEE International Conference on Computer and Informa-
tion Technology, pp. 549–556, 2012.

[48] F. Yao, R. Sprabery and R. Campbell, CryptVMI: A flexible and
encrypted virtual machine introspection system in the cloud, Pro-
ceedings of the Second International Workshop on Security in Cloud
Computing, pp. 11–18, 2014.

[49] F. Zhang, J. Chen, H. Chen and B. Zang, CloudVisor: Retrofitting
protection of virtual machines in a multi-tenant cloud with nested
virtualization, Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, pp. 203–216, 2011.

V

SOCIAL MEDIA FORENSICS

Chapter 11

PUBLIC OPINION MONITORING FOR
PROACTIVE CRIME DETECTION
USING NAMED ENTITY RECOGNITION

Wencan Wu, Kam-Pui Chow, Yonghao Mai and Jun Zhang

Abstract Public opinion monitoring has been well studied in sociology and infor-
matics. Considerable amounts of crime-related information are available
on social media platforms every day. Current methods for monitoring
public opinion are typically based on rule matching and manual search-
ing instead of automated processing and analysis. However, the extrac-
tion of useful information from large volumes of social media data is a
major challenge in public opinion monitoring.

This chapter describes a methodology for extracting key information
from a large volume of Chinese text using named entity recognition
based on the LSTM-CRF model. Since traditional named entity recog-
nition datasets are small and only contain a few types, a custom crime-
related corpus was created for training. The results demonstrate that
the methodology can automatically extract key attributes such as per-
son, location, organization and crime type with a precision of 87.58%,
recall of 83.22% and F1 score of 85.24%.

Keywords: Public opinion monitoring, named entity recognition, crime alerts

1. Introduction

Public opinion monitoring – or social listening – is a promising ap-
proach for alerting law enforcement about crimes before they occur, be-
cause some crimes are planned using social media [8]. Several such cases
were encountered during the protests against the Hong Kong extradition
bill of 2019. The demonstrations against the bill began in March and
April 2019 and escalated significantly in June 2019 [1]. A significant
number of criminal activities occurred during the protests, including in-
timidation, beatings and looting that seriously impacted public safety

c© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

https://doi.org/10.1007/978-3-030-56223-6_11

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XVI, IFIP AICT 589, pp. 203–214, 2020.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56223-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-56223-6_11

204 ADVANCES IN DIGITAL FORENSICS XVI

and social order. Many of these activities were planned and coordinated
using social media platforms and online discussion groups.

Unfortunately, discovering potential crimes is difficult because of the
need to sift through large volumes of data and interpret the slang terms
used by criminal entities. Current approaches for recognizing criminal
activities, which employ simple rule matching or manual processing, are
inefficient and error-prone.

Named entity recognition is a fundamental component of many nat-
ural language processing applications such as relation extraction, event
extraction, knowledge graphs and question-answering systems. It can
classify specific and useful entities into appropriate semantic classes such
as persons, locations, organizations, dates and times [5].

This chapter describes a named entity recognition methodology for
monitoring public opinion in Chinese language posts and extracting
crime-related features. Specifically, the LSTM-CRF model, an artifi-
cial recurrent neural network [3], is employed to extract key information
from a large volume of Chinese text. Since traditional named entity
recognition datasets are small and contain few types, a custom crime-
related corpus was created for training. Experiments reveal that the
trained LSTM-CRF model was able to recognize special features that
did not exist in the training dataset. The methodology automatically
extracted key attributes such as person, location, organization and crime
type with a precision of 87.58%, recall of 83.22% and F1 score of 85.24%.

2. Named Entity Recognition

Named entity recognition, also known as sequence labeling, is used to
identify special entities in structured or unstructured text. Conventional
named entity recognition methods fall in two categories, one based on
rules or dictionaries and the other based on statistics [2].

Named entity recognition methods based on rules typically employ
finite-state machines to match specific language models. However, the
rule maker needs to have sufficient knowledge of the language to con-
struct the finite-state machine. Methods based on dictionaries rely on
previously-created dictionaries of persons, locations and organizations.
Thus, the methods based on rules and dictionaries require large amounts
of time and resources to prepare the supporting materials. Additionally,
the methods have high error rates.

Statistics-based named entity recognition methods were developed to
address the disadvantages of rule and dictionary based methods. These
methods employ n-gram, hidden Markov, maximum entropy, conditional
random field, support vector machine or decision tree models. All these

Wu, Chow, Mai & Zhang 205

Figure 1. Recurrent neural network structure.

models require training datasets. While creating the datasets is not
difficult, model performance depends significantly on the quality and
quantity of the datasets [15].

The proposed methodology processes large amounts of text using deep
learning and transfer learning. The first step is to create the training
and testing datasets. Since no public corpora containing crime-related
words exist, a custom criminal corpus was created. BIO labels were
added to each word and the resulting corpus was divided into a training
dataset (90% of the data) and a testing dataset (10% of the data).

3. LSTM-CRF Model

A long short-term memory and conditional random field (LSTM-
CRF) model combines a long short-term memory (LSTM) model and
a conditional random field (CRF) model. The LSTM model is a special
type of recurrent neural network that processes long-term dependence
better than conventional recurrent neural networks. The CRF model is
effective at labeling and segmenting serialized data.

A traditional neural network has an input layer, a hidden layer and
an output layer, where all the nodes in each layer are fully connected
to nodes in the next layer. The output values of each layer, which are
computed from the input values of the layer, are passed as input values
to the next layer. Each input value is processed independently and
the process has no memory. For input data that is sequential, such as a
sentence, it is necessary to process the data in sequence, one element at a
time. A recurrent neural network is a special type of neural network that
is geared for processing sequential data. Specifically, it iterates through
the data in sequence and maintains state information while processing.
Figure 1 shows the structure of a recurrent neural network.

206 ADVANCES IN DIGITAL FORENSICS XVI

Figure 2. LSTM memory cell.

The LSTM model is a special type of recurrent neural network where
the neurons are replaced by memory cells, each with input gates, for-
get gates and output gates. This special structure makes the LSTM
model better at processing long-term dependence than a recurrent neural
network; also, it avoids gradient disappearance and gradient expansion
problems [13].

Figure 2 shows an LSTM memory cell. Note that Ct−1 and Xt are
the input values at time t, tanh is a neural layer, ht is the state at time
t and Ct is the output value at time t.

The CRF model is a statistical name entity recognition technique. A
conditional random field defines when a random variable Y , conditioned
on a set of observations X, Prob(Y | X), obeys the Markov property.
In this work, X is a set of words and Y is the corresponding label. The
CRF model can then be used to learn the relationship between labels.
For example, when a word is labeled as B-PER, the label of the next
word is strongly believed to be I-PER. Compared with a conventional
labeling model, the CRF model is better at using sentence-level label
(tag) information and is able to model the transition behavior of different
tags. Also, with CRF, the labeling of one character considers the labels
of neighboring characters to determine the final label [4, 7].

The proposed LSTM-CRF model combines the LSTM and CRF mod-
els. Figure 3 shows the structural graph of the LSTM-CRF model. It
comprises three layers. The first layer is the word embedding layer,
which transforms each word into a corresponding vector so that the en-
tire sentence can be represented as an embedding matrix. The second
layer is the LSTM layer, which uses forward propagation and backward

Wu, Chow, Mai & Zhang 207

Figure 3. LSTM-CRF model.

propagation to extract features automatically. The third layer is the
CRF layer, which uses the output of the second layer to label words
with maximum probability.

4. Related Work

As mentioned above, a significant number of criminal activities oc-
curred during the protests against the Hong Kong extradition bill of
2019, including intimidation, beatings and looting that impacted public
safety and social order. Since many of these activities were planned and
coordinated using social media platforms and online discussion groups,
Hong Kong government authorities were interested in monitoring public
opinion to identify potential crimes and work proactively to mitigate
the hazards. However, very limited research has been done on applying
deep learning techniques to detect potential criminal events by analyzing
Chinese text in social media and online discussion groups.

Wang et al. [12] have employed machine learning for sentimental en-
tity recognition with a precision of 89%. Kleinberg et al. [6] have de-
veloped an automated verbal deception detection system that employs
the spaCy and Stanford NER tools. Motivated by these efforts, the re-
search described in this chapter extracts information from large volumes
of Chinese text using named entity recognition based on the LSTM-CRF
model.

208 ADVANCES IN DIGITAL FORENSICS XVI

Table 1. Named entity recognition corpora.

Corpus Training Data Testing Data
Sentences Tokens Sentences Tokens

Normal Part 36,657 1,595,064 4,360 177,231
Crime Part 4,726 11,670 224 1,295

5. Experiments

This section discusses the experimental setup and the classification of
named entities.

5.1 Experimental Setup

The corpora and LSTM-CRF model are the two key components in
the experiments. The corpora comprise a normal part and a crime
part. The normal part is a portion of the MSRA corpus [9] whereas the
crime part comprising three Chinese dictionaries specializing in crime
was downloaded from the Sougou platform [11].

Table 1 shows the distribution of data in the named entity recognition
corpora. One corpus is the normal part, which contains four types of
entities, i.e., person, location, organization and not a named entity (non-
named entity). The other corpus is the crime part, which only contains
the criminal entity type.

Each entry (sentence) in the corpora was processed to extract a set
of tokens (Chinese characters). The BIO tagging style employed for
labeling uses O, B-PER, I-PER, B-LOC, I-LOC, B-ORG, I-ORG, B-
CRM and I-CRM, where (i) O means that the word is not a named
entity; (ii) B-X means that the word is the beginning of X (e.g., B-PER
means that the word is the beginning of person); and (iii) I-X means
that the word is inside word X. Figure 4 shows examples that use the
BIO tagging style [10].

5.2 Classification of Named Entities

The classification of named entities involves two steps:

Step 1: Data Processing: Based on the corpus, each word is
labeled with a corresponding tag. Next, the corpus is serialized
and a dictionary containing non-replicative words is constructed.
The dictionary has the form: {“first word”: [id1, counts], “second
word”: [id2, counts], ... }, where a raw word is in quotes and the
square brackets contain the identification number of the word and

Wu, Chow, Mai & Zhang 209

 O O O O O O B-
LOC I-LOC

O B-LOC I-LOC O B-ORG
 I-ORG

 I-ORG O B-LOC I-LOC I-
LOC I-LOC

 B-LOC I-LOC I-LOC O B-
LOC I-LOC

 O B-LOC O O O O
O O O

 O O , O O O O O
O O O

 O O O , O O O O
O O O , O

 O O O O B-LOC I-
LOC O O

The survey covers the Forbidden City, Libo, Institute of
antiquity, Tsinghua University Library, beitu, Japanese
and puppet databases and more than 200,000 cultural
relics and 30,000 foreign words, which are precious
historical materials of Beijing.

 B-CRM I-CRM B-CRM I-
CRM I-CRM B-CRM I-CRM I-
CRM B-CRM I-CRM I-CRM
B-CRM I-CRM I-CRM B-CRM

 I-CRM B-CRM I-CRM I-CRM
 B-CRM I-CRM I-CRM B-

CRM I-CRM I-CRM I-CRM B-
CRM I-CRM I-CRM B-CRM I-
CRM I-CRM B-CRM I-CRM I-
CRM B-CRM I-CRM B-CRM
I-CRM I-CRM B-CRM I-CRM
I-CRM B-CRM I-CRM I-CRM
B-CRM I-CRM I-CRM B-CRM

 I-CRM I-CRM B-CRM I-CRM
 I-CRM

Wechat hypnotic water,
aphrodisiac powder,
aphrodisiac drug,
Tulun graduation
certificate,
answer package,
provide invoice,
replace invoice,
sell invoice,
Mongolian sweat drug, psychedelic drug, psychedelic
drug, aphrodisiac drug

Figure 4. BIO tagging style.

the number of occurrences. Based on the counts, words with low
frequencies are eliminated from the dictionary. Figure 5 shows the
data processing step.

Step 2: Model Setup: The LSTM-CRF model was employed
in the experiments – the LSTM layer is located at the bottom
whereas the CRF layer is located on top. The softmax function
was used to compute the probabilities of each target class over all
possible target classes.

The hyper-parameters used in the experiments are shown in Table 2.
The batch size was set to 64, meaning that 64 samples were trained in
each epoch. The epoch value was set to 10, meaning that each sample
was trained ten times over the experiment. The dimension of the hidden

210 ADVANCES IN DIGITAL FORENSICS XVI

Figure 5. Data processing.

Table 2. Hyper-parameter values.

Parameter Value Parameter Value

batch size 64 clip 5
epoch 10 dropout 0.5
hidden dim 300 update embedding TRUE
optimizer Adam embedding dim 300
lr 0.001 pretrain embedding random

state (hidden dim) was 300, the optimizer was Adam, the learning rate
(lr) was 0.001 and the gradient clipping (clip) was 5.

Table 3. Dataset proportions.

Corpus Training Dataset Testing Dataset

Normal Part 1,595,064 177,231
Crime Part 11,670 1,295

Total Number 1,606,734 178,526
Proportion 90% 10%

Table 3 shows the proportions of the training dataset and testing
dataset. The amount of training data was set to 1,606,734 and the
amount of testing data was set to 178,526, corresponding to proportions
of 90% and 10%, respectively. In the experiment, the extracted tokens
were used as the basic unit of processing. After each epoch, the loss
function value, global step, precision, recall and F1 score were recorded.

Wu, Chow, Mai & Zhang 211

The police said demonstrators will
set fire and beat cops at the central station

PERSON: ['' ']
LOCATION: [' ']
ORGANIZATION: [' ']
CRIM: [' ']

PERSON: ['demonstrators']
LOCATION: ['central station']
ORGANIZATION: ['The police']
CRIM: ['beat cops']

/ ()

()

()

If the police want to / lead you to riot and blame you all
over the world, you will all be defeated! They get away
with it! Do you understand? There are Qin Hui and Gao
Qiu in the official, only Yue Jiajun and Shui hujun will
die! Be smart! The violence must be stopped
(immediately)! You can win! When you influence
people's livelihood, the people will only give up on you
and (will not) help you to force the government! To win
must stop!!!

PERSON: [' ' ' ']
LOCATION: [' ']
ORGANIZATION:
[' ' ' ' ' ' ' ' '

']
CRIM: [' ' ' ' ' ']

PERSON: ['Qin Hui' 'Gao Qiu']
LOCATION: ['all over the world']
ORGANIZATION: ['the police' 'Yue Jiajun' 'Shui
Hujun' 'the people' 'the government']
CRIM: ['riot' 'get away with it' 'The violence must be
stopped']

Example 1

Example 2

Figure 6. Two experimental examples.

6. Experimental Results and Discussion

After being trained, the LSTM-CRF model was able to identify the
four entities in a sentence. Figure 6 shows the input sentence: “The po-
lice said demonstrators will set fire and beat cops at the central station.”
The model was able to recognize person as demonstrators, location as
the central station, organization as the police and the crime as set fire
and beat cops.

In the second example in Figure 6, the model was able to identify
person as Qin Hui and Gao Qiu, location as the world, organization as
the police, Yue Jiajun, Shui Hujun, the people and the government, and
crime as riot, get away with it and the violence must be stopped.

Table 4 compares the LSTM-CRF and LSTM models. The LSTM-
CRF model produces better results. The LSTM model is good at learn-
ing the sequential relationships of entities (i.e., words in this study)
automatically, but it ignores the sequential relationships of labels. On
the other hand, the CRF model is good at learning the sequential rela-
tionships of labels. Since the CRF model addresses the LSTM model de-
ficiencies, the LSTM-CRF model performs better than the basic LSTM
model.
As shown in Table 4, when the crime part is eliminated, higher values

for precision of 90.37%, recall of 86.27% and F1 score of 88.27% are

212 ADVANCES IN DIGITAL FORENSICS XVI

Table 4. LSTM and LSTM-CRF model evaluation.

Models Precision Recall F1 Score

LSTM 84.16% 82.07% 83.11%
LSTM-CRF 87.58% 83.22% 85.24%
LSTM-CRF (Without Crime Part) 90.37% 86.27% 88.27%

obtained. This is because the other three parts (person, location and
organization) have been studied in public datasets by other researchers,
but only this research contains the crime part. Also, since the corpus
was created for crimes, it is more difficult to train the model to recognize
crime-related entities.

As expected, the models produce different results. The named entity
recognition technique is limited in that it only extracts key entities from
text, but does not analyze the entities. As a consequence, the investiga-
tor has to analyze the extracted entities and make manual decisions.

7. Conclusions

Automated monitoring of social media platforms and online discus-
sion groups can provide insights into potential criminal events, enabling
law enforcement to work proactively to mitigate the hazards. The com-
bined LSTM-CRF model described in this chapter is able to extract
key information from large volumes of Chinese text using named entity
recognition. Experiments indicate that the automated extraction of key
attributes such as person, location, organization and crime is accom-
plished with a maximum precision of 87.58%, recall of 83.22% and F1
score of 85.24%. These results demonstrate that the methodology is
effective at discovering potential criminal events.

Due to the absence of crime-related corpora, custom corpora had to be
created for training and testing. Future research will focus on developing
richer and larger corpora with criminal events. Training the model using
these corpora would improve the overall performance.

A limitation of the methodology is that, while it identifies key entities,
it cannot analyze them. Yang and Chow [14] have employed statistical
methods to create relationships between entities. Future research will
pursue this line of inquiry and also focus on relation extraction and
emotional analysis using deep learning techniques.

Wu, Chow, Mai & Zhang 213

References

[1] H. Chan, In pictures: 12,000 Hongkongers march in protest against
“evil” China extradition law, organizers say, Hong Kong Free Press,
March 31, 2019.

[2] N. Greenberg, T. Bansal, P. Verga and A. McCallum, Marginal
likelihood training of BiLSTM-CRF for biomedical named entity
recognition from disjoint label sets, Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, pp.
2824–2829, 2018.

[3] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural
Computation, vol. 9(8), pp. 1735–1780, 1997.

[4] Z. Huang, W. Xu and K. Yu, Bidirectional LSTM-CRF Models for
Sequence Tagging, arXiv: 1508.01991v1, 2015.

[5] A. Katiyar and C. Cardie, Nested named entity recognition revis-
ited, Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, vol. 1 (Long Papers), pp. 861–871, 2018.

[6] B. Kleinberg, M. Mozes and A. Arntz, Using named entities for
computer-automated verbal deception detection, Journal of Foren-
sic Sciences, vol. 63(3), pp. 714–723, 2018.

[7] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami and C.
Dyer, Neural architectures for named entity recognition, Proceed-
ings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, pp. 260–270, 2016.

[8] C. Marcum, Cyber Crime, Wolters Kluwer, Frederick, Maryland,
2014.

[9] Pudn, MSRA (www.pudn.com/Download/item/id/2435241.html),
2020.

[10] C. Santos and V. Guimaraes, Boosting Named Entity Recognition
with Neural Character Embeddings, arXiv: 1505.05008v2, 2015.

[11] Sougou, Sougou Corpus (pinyin.sougou.com), 2020.

[12] Z. Wang, X. Cui, L. Gao, Q. Yin, L. Ke and S. Zhang, A hy-
brid model of sentimental entity recognition on mobile social media,
EURASIP Journal on Wireless Communications and Networking,
vol. 2016, article no. 253, 2016.

[13] D. Xu, R. Ge and Z Niu, Forward-looking element recognition based
on the LSTM-CRF model with the integrity algorithm, Future In-
ternet, vol. 11(1), article no. 17, 2019.

214 ADVANCES IN DIGITAL FORENSICS XVI

[14] M. Yang and K. Chow, An information extraction framework for
digital forensic investigations, in Advances in Digital Forensics XI,
G. Peterson and S. Shenoi (Eds.), Springer, Cham, Switzerland, pp.
61–76, 2015.

[15] J. Zhang and X. Liu, Research on Chinese named entity recogni-
tion based on deep learning, Proceedings of the Fourth IEEE Inter-
national Conference on Computer and Communications, pp. 2142–
2147, 2018.

Chapter 12

RETRIEVING E-DATING APPLICATION
ARTIFACTS FROM iPHONE BACKUPS

Ranul Thantilage and Nhien-An Le-Khac

Abstract Criminal activities are widely facilitated by online means; so are sex
crimes. Online dating, also referred to as e-dating, enables people to
get in touch with potential romantic partners through digital means.
Unfortunately, sex criminals also exploit online dating platforms to find
victims.

Several e-dating applications have been developed for computers and
mobile phones, but few, if any, efforts have focused on retrieving evi-
dence from e-dating applications. This chapter describes forensic meth-
ods for retrieving evidence from two popular e-dating applications –
Tinder and Coffee Meets Bagel – by examining iPhone backups created
via iTunes on Windows and Macintosh personal computers.

Keywords: iPhone forensics, evidence retrieval, e-dating applications

1. Introduction

Many crimes, including sex crimes, are facilitated by online activi-
ties. Online dating applications, also referred to as e-dating applica-
tions, enable people to interact with potential romantic partners via
digital means. Unfortunately, sex criminals also exploit online dating
applications to find victims.

One such application is Tinder, which is widely used by young indi-
viduals. Tinder’s terms of use forbid users below the age of 18 from using
the application [21]. However, it is common for young teens to register
with the application by faking their ages. This makes them vulnerable
to sexual predators.

According to a 2016 report by the National Crime Agency of the
United Kingdom [15], online-dating-related rape increased 450% during
the previous six years. Meanwhile, the number of e-dating application

c© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XVI, IFIP AICT 589, pp. 215–230, 2020.

https://doi.org/10.1007/978-3-030-56223-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56223-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-56223-6_12

ADVANCES IN DIGITAL FORENSICS XVI

users has increased significantly. According to 2020 usage statistics [13],
Tinder has more than 57 million registered users and processes approx-
imately 1.6 billion swipes every day.

Another e-dating application, Coffee Meets Bagel, has more than
seven million installs [19]. The app received international coverage on
Valentine’s Day 2019 after it suffered a data breach affecting around
six million users [6]. The stolen data was offered on the dark web for
$20,000 in Bitcoin [17].

Millennials and post-millennials use smart devices more than any
other population age group, with iPhones being the most popular de-
vices. Therefore, this research focuses on iPhone-based usage of Tinder
and Coffee Meets Bagel. iPhone forensics is a well-established area of
digital forensics, but little work has concentrated on extracting evidence
from iPhone backups. This is a key gap because investigators may not
have access to the smart devices of criminals and/or victims; in fact,
they may only know the names of the individuals.

Since it is common to backup iPhone data on Windows and Macintosh
computers, investigators could access these computers at the criminals’
and/or victims’ homes, and proceed to examine the backups to find evi-
dence of criminal activity. Indeed, iPhone backups on personal comput-
ers contain considerable amounts of data related to e-dating application
usage.

This research concentrates on evidence retrieval from iPhone backups
created by iTunes. The main contributions are forensic acquisition and
analysis of artifacts from Tinder and Coffee Meets Bagel apps in iPhone
backups on personal computers.

2. Related Work

As Internet usage increases around the globe, so does online dating.
A 2002 research study reported that 1,458 of 1,836 (79.4%) of surveyed
Internet users in Sweden used the Internet for sexual purposes [5]. A
factor analysis study in 2010 revealed that online dating application users
were primarily interested in seeking partners and accessing erotica [4].

Van Voorst et al. [22] have discussed the risks associated with using
mobile apps to meet potential partners. They also described the forensic
acquisition and analysis of evidence from an Instant Messaging within a
Virtual Universe (IMVU) 3D application, which has been exploited by
criminal entities to commit a variety of offenses.

Newett et al. [16] researched the intimate lives of Australians aged 18
to 30 years. They also studied how the Tinder platform contributed to
intimate outcomes. Full 91.92% of the respondents were frequent Tinder

216

Thantilage & Le-Khac

users. While sex was the least motivating factor for female respondents,
it was the third most important factor for male respondents. Ranzini
and Lutz [18] noted that women use Tinder more for friendship and self-
validation whereas men use it hooking up/sex, traveling and forming
relationships.

Feltz [11] researched the security of Tinder and demonstrated that it
has significant vulnerabilities as a geosocial mobile app. In particular,
attackers can use methods such as trilateration to pinpoint the exact
physical locations of users. Other security researchers have found vul-
nerabilities in Tinder; many of the vulnerabilities have been addressed,
but some persist.

Farnden et al. [10] have conducted a study of geosocial apps. They
analyzed popular proximity-based dating applications to determine the
types of data that can be recovered. An important result was that 50%
of the apps supported the forensic recovery of chat messages.

Heffernen [12] has described a forensic analysis of an early version of
the Tinder app (version 2.1.0) on an iPhone 4S running iOS 6.1.3. The
iPhone Analyzer tool was used to extract Tinder’s SQLite database file.
Analysis of the database tables revealed that very few artifacts were
present.

Several researchers have focused on mobile device forensics and its im-
portant role in investigations [1, 9]. However, the vast majority of work
has concentrated on extracting data from devices. For example, Cheema
et al. [3] have analyzed the iOS filesystem to identify directories and files
that could be relevant to traditional criminal investigations. Likewise,
the iOS forensics work by Drish [7] deals mainly with data acquisition
from devices. Epifani and Stirparo [8] discuss forensic analyses of iOS
messaging apps; they showed how application data is separated from its
bundles, and also investigated the directory structure and deleted data.

Baggili et al. [2] have developed a tool named LiFE that conducts
forensic analyses of iOS backups. The tool analyzes device informa-
tion, call history, voice messages, GPS locations, conversations, notes,
images, address books, calendar entries, SMS messages, Facebook data
and email.

A review of the literature reveals that research has largely concen-
trated on independent platforms and applications. Very little research
has focused on iPhone backup forensics and what has been done involves
general applications, not e-dating applications. Moreover, research on
e-dating applications has studied vulnerabilities and usage statistics. In
contrast, the research described in this chapter concentrates on the re-
trieval of Tinder and Coffee Meets Bagel artifacts from iPhone backups
created by iTunes on Windows and Macintosh personal computers. This

217

ADVANCES IN DIGITAL FORENSICS XVI

is important because investigators often do not have access to the phys-
ical iPhones, but they could access personal computers at the criminals’
and/or victims’ homes, and conduct forensic analyses of iTunes backups
to find evidence of criminal activity.

3. Challenges

Mobile devices are routinely encountered in criminal investigations.
Lutes and Mislan [14] identify several challenges related to mobile de-
vice forensics. These include diverse carriers and manufacturers, data
preservation, power and data connectors, operating systems, communi-
cations protocols and security mechanisms.

Compared with other mobile device platforms, iOS device forensics
is more challenging because iOS devices employ full drive encryption
as well as protections such as per-file keys and backup encryption (if
enabled). Furthermore, iOS is a proprietary encrypted operating system.

4. Evidence Extraction Methods

This section presents the methods used to extract e-dating applica-
tion artifacts from iPhone backups on Windows and Macintosh personal
computers.

iTunes is used to create iPhone backups on personal computers. Back-
ups are stored at different locations depending on the operating systems
on the personal computers. For example, the Windows 10 operating
system stores the backup at:

%systempartition%\Users\%username%\AppData\Roaming\

AppleComputer\Mobilesync\Backup\

In the case of a Macintosh operating system, the backup is stored as:

Users/%username%/Library/applicationsupport/

MobileSync/backup

The backup folder is identified by a 40-digit SHA-1 hash value that is
created from the unique device identifier (UID) of the iPhone. The file
name is also encoded using a SHA-1 hash of the file path and file name.

The key to analyzing an iPhone backup is to identify the hash value
of the required file. This requires the forensic practitioner to know the
file name and file path (domain). Note that AppDomain is used for
applications that are downloaded from the Apple App Store.

218

Thantilage & Le-Khac

(a) SHA-1 hash value in the Manifest.db file.

(b) Computed SHA-1 hash value.

Figure 1. Verification of Tinder database SHA-1 hash values.

4.1 Tinder

Evidence related to Tinder is stored in an SQLite database. The
database file is located at:

AppDomain-com.cardify.tinder-Library/

ApplicationSupport/Tinder/Tinder2.sqlite

The hash value of the SQLite database file can be obtained by going
through the Manifest.db file available in the root of the backup or by
computing it using a SHA-1 hash generator.

Figures 1(a) and 1(b) confirm that the hash value for the file is:

bd881d082294367de00a97791cbf3741481c3466

Searching for the hash value in the backup folder enables a forensic
practitioner to identify and extract the SQLite file. Note that, at first
glance, the file does not show an extension. However, the file type can
be checked using file tool/command in Linux.

Figures 2(a) and 2(b) show the SQLite files retrieved using the hash
values from Windows and Macintosh iTunes backups, respectively.

The hash values of the files are the same for each application. There-
fore, a forensic practitioner should record the file hash values needed in
investigations to save time by not repeating the steps.

The Tinder database contains more than 30 tables, many of which
could provide important evidence in an investigation. The tables of spe-

219

ADVANCES IN DIGITAL FORENSICS XVI

(a) Windows iTunes backup.

(b) Macintosh iTunes backup.

Figure 2. Searching for the Tinder SQLite.db using the hash value.

cial interest are: ZMATCH, ZMESSAGE, ZPHOTO, ZPROCESSED-
PHOTO, ZPROCESSEDVIDEO and ZUSER. Each table is linked us-
ing a database key (i.e., primary key). By writing appropriate queries, a
forensic practitioner can link the tables to each other and gather a vast
amount of data.

Table 1 shows the evidentiary data that can be retrieved from the
Tinder SQLite database.

4.2 Coffee Meets Bagel

The method for retrieving evidentiary data from Coffee Meets Bagel
(CMB) is similar to that used for Tinder. Coffee Meets Bagel also stores
data in a SQLite database.

The database file is located at:

AppDomainGroup-group.com.coffeemeetsbagel.mainapp-

CMBMobile.sqlite

The hash value of the SQLite database file can be obtained by going
through the Manifest.db file available in the root of the backup or by
computing it using a SHA-1 hash generator.

220

Thantilage & Le-Khac

Table 1. Evidentiary data in the Tinder SQLite database.

Table Evidence

ZMATCH Match Timestamp
Last Activity Timestamp
User ID
Match ID

ZMESSAGE Match ID
Timestamps
From User ID
Message ID
Message Text

ZPHOTO User ID
Photo ID
Image URL

ZPROCESSEDPHOTO Photo ID
Image URL

ZVIDEO Photo ID
Video URL

ZUSER Match ID
Birthdate
Distance in Miles
Tinder Bio
First Name
User ID
Liked

Figures 3(a) and 3(b) confirm that the hash value of the database file
is:

18e36628c588925c485480d0440bbdad0dc2af3d

Figure 4 shows that the hash value can be searched in the backup
folder in Windows to retrieve the SQLite.db file.

The Coffee Meets Bagel database contains more than 10 tables, many
of which could provide important evidence in an investigation. The
tables of special interest are: ZBAGEL, ZCHATMESSAGECACHE and
ZPROFILE. Each table is linked using a database key (i.e., primary
key). By writing appropriate queries, a forensic practitioner can link
the tables to each other and gather a vast amount of data.

Table 2 shows the evidentiary data that can be retrieved from the
Coffee Meets Bagel SQLite database.

221

ADVANCES IN DIGITAL FORENSICS XVI

(a) SHA-1 hash value in the Manifest.db file.

(b) Computed SHA-1 hash value.

Figure 3. Verification of Coffee Meets Bagel database SHA-1 hash values.

Figure 4. Searching for the Coffee Meets Bagel SQLite.db using the hash value.

Tables 1 and 2 demonstrate that timestamps and dates are retrieved in
several instances. The timestamps are stored in the Apple Cocoa Core
Data timestamp format, which corresponds to the number of seconds
elapsed since 00:00, January 1, 2001 GMT. These timestamps should
be converted to a local time format.

222

Thantilage & Le-Khac

Table 2. Evidentiary data in the Coffee Meets Bagel SQLite database.

Table Evidence

ZBAGEL Profile ID
Created Timestamp
Last Updated Timestamp

ZCHATMESSAGECACHE Timestamp
ID
XMPP Message

ZPROFILE User Age
Personal Details (e.g., height)
User Birthdate
Last Updated Timestamp
User Geolocation
User City
User Country
User Bio
User Employment Details
User Ethnicity
User Religion
User First Name

5. Experimental Evaluation

The proposed methods were tested using several iPhone models and
iOS versions to create Windows and Macintosh backup files. The fol-
lowing are the specifications of the iPhones used in the experimental
evaluation:

Device 1: iPhone 6S Plus, iOS 11.4, 64GB capacity.

Device 2: iPhone 6, iOS 11.4, 16GB capacity.

Device 3: iPhone XS Max, iOS 12.3, 64GB capacity.

The following iTunes software versions were employed:

iTunes Version 1 (Windows): Version 12.6.1.25.

iTunes Version 2 (Windows): Version 12.9.2.6.

iTunes Version 3 (Macintosh): Version 12.9.2.5.

223

ADVANCES IN DIGITAL FORENSICS XVI

(a) User birthdate and bio information.

(b) User first name information.

Figure 5. User information extracted from the ZUSER table.

5.1 Tinder Evidence

Table 1 shows that considerable data pertaining to the Tinder appli-
cation is stored in an iPhone backup. Therefore, a forensic practitioner
can examine the personal computer of a suspect or victim to obtain
evidence about online dating activities. This section discusses the evi-
dentiary data that can be retrieved from the Tinder application.

Figure 5 shows the user birthdates, bios and first names that were
extracted from the ZUSER table.

Figure 6 shows the message IDs and texts associated with matched
users that were extracted from the ZMESSAGE table.

224

Thantilage & Le-Khac

Figure 6. Message IDs and texts extracted from the ZMESSAGE table.

Figure 7 shows how the URLs of photographs can be retrieved from
the ZPROCESSEDPHOTOtable, alongwith a sample photograph. Note
that portions of the images are covered or pixelated to preserve privacy.

5.2 Coffee Meets Bagel Evidence

Table 2 shows that considerable data pertaining to the Coffee Meets
Bagel application is stored in an iPhone backup. An important feature
of Coffee Meets Bagel is that geolocation information pertaining to users
of the application can be extracted easily.

Figure 8 shows the personal information of users, including name,
birthday, ethnicity, religion and geolocation data, that was extracted
from the Coffee Meets Bagel backup file.

Figure 9 shows the exact location of a user obtained from geolocation
data in the ZPROFILE table. Once again, portions of the screenshots
are obfuscated for privacy reasons.

6. Conclusions

iPhone forensics is a well-established area of digital forensics, but
little work has concentrated on extracting evidence from iPhone back-
ups. This chapter has described forensic methods for retrieving evi-
dence related to two popular e-dating applications – Tinder and Coffee
Meets Bagel – by examining iPhone backups created via iTunes on Win-
dows and Macintosh personal computers. Since it is common to backup
iPhone data on Windows and Macintosh computers, investigators who

225

ADVANCES IN DIGITAL FORENSICS XVI

(a) Photograph URLs in the ZPROCESSEDPHOTO table.

(b) Photograph retrieved using a URL.

Figure 7. Photograph extracted using data in the ZPROCESSEDPHOTO table.

do not have access to user’s iPhones could examine the backups to find
evidence of criminal activity.

The experiments demonstrate that iPhone backups on personal com-
puters contain considerable amounts of data related to e-dating appli-
cation usage. By carefully analyzing the SQLite database of the backup
folder, a digital forensic practitioner can obtain valuable information
about interpersonal interactions conducted via the e-dating application.
The recoverable evidence includes personal information, photographs,
timestamps and conversation history from the Tinder and Coffee Meets
Bagel apps, and, in the case of Coffee Meets Bagel, valuable geolocation
data about app users as well.

226

Thantilage & Le-Khac

(a) User city, country, employer and ethnicity information.

(b) User birthday and geolocation information.

(c) User first name and religion information.

Figure 8. User information obtained from the ZPROFILE table.

Although they are very popular, Tinder and Coffee Meets Bagel are by
no means the only e-dating applications encountered in investigations.
Future research will employ a new framework [20] to support evidence
retrieval from other e-dating platforms on iPhones and Android devices.

227

ADVANCES IN DIGITAL FORENSICS XVI

Figure 9. Screenshot of user location obtained from data in the ZPROFILE table.

References

[1] L. Aouad, T. Kechadi, J. Trentesaux and N. Le-Khac, An open
framework for smartphone evidence acquisition, in Advances in Dig-
ital Forensics VIII, G. Peterson and S. Shenoi (Eds.), Springer,
Berlin Heidelberg, Germany, pp. 159–166, 2012.

[2] I. Baggili, S. Al Awawdeh and J. Moore, LiFE (Logical iOS Foren-
sics Examiner): An open source iOS backup forensic examination
tool, Proceedings of the Conference on Digital Forensics, Security
and Law, pp. 41–52, 2014.

[3] A. Cheema, M. Iqbal and W. Ali, An open source toolkit for iOS
filesystem forensics, in Advances in Digital Forensics X, G. Peterson
and S. Shenoi (Eds.), Springer, Berlin Heidelberg, Germany, pp.
227–235, 2014.

[4] A. Cooper, S. Mansson, K. Daneback, R. Tikkanen and M. Ross,
Predicting the future of Internet sex: Online sexual activities in
Sweden, Sexual and Relationship Therapy, vol. 18(3), pp. 277–291,
2003.

228

Thantilage & Le-Khac

[5] K. Daneback, S. Mansson and M. Ross, Using the Internet to find
offline sex partners, CyberPsychology and Behavior, vol. 10(1), pp.
100–107, 2007.

[6] C. de Looper, Happy Valentine’s Day! Coffee Meets Bagel dating
app may have been breached, Digital Trends, Portland, Oregon,
February 14, 2019.

[7] L. Drish, iOS Device Forensics, Graduate Project, Department of
Computer Science, Governors State University, University Park, Illi-
nois, 2014.

[8] M. Epifani and P. Stirparo, Learning iOS Forensics, Packt Publish-
ing, Birmingham, United Kingdom, 2015.

[9] F. Faheem, N. Le-Khac and T. Kechadi, Smartphone forensic anal-
ysis: A case study of obtaining root access of an Android Samsung
S3 device and analyzing the image without an expensive commercial
tool, Journal of Information Security, vol. 5(3), pp. 83–90, 2014.

[10] J. Farnden, B. Martini and K. Choo, Privacy risks in mobile dat-
ing apps, Proceedings of the Twenty-First Americas Conference on
Information Systems, 2015.

[11] M. Feltz, The Security of Tinder: A mobile app that may be more
intimate than we thought, Report, Department of Computer Sci-
ence, Tufts University, Medford, Massachusetts (www.cs.tufts.
edu/comp/116/archive/fall2015/mfeltz.pdf), 2015.

[12] N. Heffernen, Analysis of Forensically Significant Artifacts of Tinder
App on iPhones, M.Sc. Dissertation, School of Computer Science
and Informatics, University College Dublin, Dublin, Ireland, 2013.

[13] M. Iqbal, Tinder revenue and usage statistics (2020), Business of
Apps, Staines-upon-Thames, United Kingdom, April 24, 2020.

[14] K. Lutes and R. Mislan, Challenges in mobile phone forensics, Pro-
ceedings of the Fifth International Conference on Cybernetics and
Information Technologies, Systems and Applications, pp. 348–352,
2008.

[15] National Crime Agency, Online first date rapes increase, London,
United Kingdom, February 8, 2016.

[16] L. Newett, B. Churchill and B. Robards, Forming connections in
the digital era: Tinder, a new tool in young Australian intimate
life, Journal of Sociology, vol. 54(3), pp. 346–361, 2017.

[17] P. Paganini, Coffee Meets Bagel dating app confirms data breach,
Security Affairs, February 15, 2019.

229

ADVANCES IN DIGITAL FORENSICS XVI

[18] G. Ranzini and C. Lutz, Love at first swipe? Explaining Tinder self-
presentation and motives, Mobile Media and Communication, vol.
5(1), pp. 80–101, 2017.

[19] K. Seal, Coffee Meets Bagel users get hacked on Valentine’s Day,
Dating Sites Reviews (www.datingsitesreviews.com/article.
php?story=coffee-meets-bagel-users-get-hacked-on-valen

tine-s-day), March 4, 2019.

[20] R. Thantilage and N. Le-Khac, Framework for the retrieval of social
media and instant messaging evidence from volatile memory, Pro-
ceedings of the Eighteenth IEEE International Conference on Trust,
Security and Privacy in Computing and Communications and Thir-
teenth IEEE International Conference on Big Data Science and En-
gineering, pp. 476–482, 2019.

[21] Tinder, Terms of Use, Match Group, Dallas, Texas (policies.
tinder.com/terms/us/en), 2020.

[22] R van Voorst, T. Kechadi and N. Le-Khac, Forensic acquisition
of IMVU: A case study, Journal of Digital Forensics, Security and
Law, vol. 10(4), pp. 69–78, 2015.

230

VI

MULTIMEDIA FORENSICS

Chapter 13

TARGET IDENTITY ATTACKS ON
FACIAL RECOGNITION SYSTEMS

Saheb Chhabra, Naman Banati, Gaurav Gupta and Garima Gupta

Abstract Advancements in digital technology have significantly increased the num-
ber of cases involving the counterfeiting of identity documents. One ex-
ample is exam fraud, where a counterfeiter creates a composite morphed
photograph of the real candidate and an imposter, and attaches it to
the examination admit card. Automated facial recognition systems are
beginning to be deployed at examination centers to match candidates’
faces against their official facial images. While the need to perform
manual matches is eliminated, the vulnerabilities of these automated
systems are a major concern.

This chapter evaluates the vulnerability of an automated facial recog-
nition system to input image manipulation via a target identity attack.
The attack manipulates a facial image so that it looks similar to the
real candidate, but outputs the identity feature representation of the
imposter. This chapter also evaluates the performance of facial recog-
nition models with regard to impersonator recognition. Experiments
using image databases demonstrate the effectiveness of target identity
attacks.

Keywords: Counterfeiting, facial recognition, target identity attacks

1. Introduction

Counterfeiting of identity documents is one of the fastest-growing
frauds worldwide. Advancements in digital technology enable coun-
terfeiters to perpetrate sophisticated frauds by creating fake identity
cards and other related documents. An example is exam fraud, where
a counterfeiter morphs the photograph of a real candidate with that of
an imposter, and creates a tampered examination admit card with the
morphed photograph. The quality of the counterfeit admit card makes
it very difficult for a human examiner to determine that the person who

c© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XVI, IFIP AICT 589, pp. 233–252, 2020.

https://doi.org/10.1007/978-3-030-56223-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56223-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-56223-6_13

ADVANCES IN DIGITAL FORENSICS XVI

Figure 1. Identifying an imposter.

presents the card at an examination center is an imposter. The imposter
then proceeds to take the exam on behalf of the real candidate.

Several instances of exam fraud involving the manipulation of facial
images in admit cards have been reported by the international media. In
2018, law enforcement officers in Jodhpur, India arrested several mem-
bers of a gang involved in a police examination cheating case [21]. The
gang employed a team of 20 subject matter experts to take entry ex-
aminations on behalf of candidates who paid large sums of money. In
another case [23], fifteen Chinese nationals were arrested for using coun-
terfeit Chinese passports to take U.S. college entry tests such as the
SAT, GRE and TOEFL.

Automated facial recognition systems are beginning to be deployed
at examination centers to match candidates’ faces against their official
facial images. These systems perform a two-step verification procedure.
The first step matches the facial image provided at the time of exam reg-
istration against the facial image of the supposed candidate who shows
up at the examination center. The second step matches the photograph

234

Chhabra, Banati, Gupta & Gupta

Figure 2. Successful target identity attack.

on the admit card against the facial image of the candidate that was
provided at the time of exam registration.

Figure 1 shows how an automated facial recognition system identifies
an imposter by comparing the photograph on the presented admit card
against the facial image of the candidate that was provided at the time
of exam registration.

The security of automated facial recognition systems is a major con-
cern. Therefore, this research focuses on the vulnerability of an au-
tomated system to image manipulation using a novel target identity
attack. This attack introduces perturbations in the facial image of the
real candidate such that the manipulated image appears to be of the real
candidate, but it outputs the identity features of an imposter (target).
This manipulated image is submitted at the time of candidate registra-
tion. Thus, the imposter is able to masquerade as the real candidate
and take the examination on his or her behalf. Figure 2 demonstrates a
successful target identity attack.

235

ADVANCES IN DIGITAL FORENSICS XVI

This chapter focuses on the vulnerability of automated facial recogni-
tion systems to target identity attacks. It also evaluates the performance
of facial recognition models with regard to impersonator recognition. Ex-
periments using image databases demonstrate the effectiveness of target
identity attacks.

2. Related Work

Several researchers have proposed morphing techniques that target
facial recognition and other biometric systems [18]. Korshunova et al. [7]
have proposed a morphing technique similar to style-transfer-based deep
neural networks using a novel loss function. Othman and Ross [14] have
used a morphing method to fool gender classifiers. The method morphs
an input image with an image of a subject of the opposite gender; two
parameters are used to control the appearance of the final image with
gender suppression information. Mirjalili et al. [12] have extended the
work of Othman and Ross so that the input candidate image is fused
with another candidate image selected based on a correlation between
facial landmark points. Delaunay triangulation is employed to identify
the pixels to be modified.

Damer et al. [3] have proposed a generative adversarial network
(GAN) method that employs representation loss to create morphed im-
ages. Ferrara et al. [5] have proposed a method that creates double
identity fingerprints; the features of two fingers are combined to yield a
new fingerprint that fools fingerprint recognition systems. Rathgeb and
Busch [16] have developed a stability-based bit substitution method that
morphs two iris codes.

Several researchers have proposed methods for detecting morphed im-
ages. Raghavendra et al. [15] have proposed an approach that employs
fine-tuned deep convolutional neural networks and a probabilistic col-
laborative representation classifier (P-CRC). The approach extracts fea-
tures from fully-connected layers of VGG19 [20] and AlexNet [8] models,
and concatenates them before sending them to the classifier. Seibold et
al. [19] compare the morphing detection performance of pre-trained and
trained-from-scratch AlexNet, GoogLeNet and VGG19 models. They
created a database using the triangle and mesh warping techniques.

Wandzik et al. [22] have proposed a technique for distinguishing be-
tween original and morphed images. The technique employs features
extracted from four facial recognition models and classifies them us-
ing a support vector machine (linear classifier). Batskos et al. [1] have
developed a distance-based approach for detecting morphed images. Eu-
clidean distances are computed for probe and morphed, morphed and

236

Chhabra, Banati, Gupta & Gupta

e-pass, and probe and e-pass facial features, which yield 3D vectors. A
support vector machine is used for linear classification.

Zhang et al. [24] have proposed a source identification scheme for de-
tecting whether an image is bona fide or morphed. Scherhag et al. [17]
have developed a technique for distinguishing morphed images using
facial landmark points; the technique assumes that the intra-subject
variance of landmarks extracted from bona fide images is less than the
variance between landmarks of the morphed image and its contributing
subjects. Debiasi et al. [4] have proposed a photo response non unifor-
mity (PRNU) approach for detecting morphed images. Their approach
assumes that the variance of PRNU signals increases across image cells
when two images are morphed to create a single image.

Damer et al. [2] have employed two scenarios for morphing detection
(i.e., with and without a probe). In the first scenario, facial landmarks
are determined using an ensemble of regression trees, explicit shape re-
gression and regressing local binary features; Euclidean distances are
computed between the landmarks of live and previously-submitted im-
ages. In the second scenario, facial features are extracted using local
binary pattern histograms and transferable deep convolutional neural
networks.

Makrushin et al. [11] have proposed a morph detection algorithm,
which assumes that some blocks in morphed images have undergone
JPEG compression; however, blocks are not compressed in newly mor-
phed images. The algorithm performs JPEG compression on a morphed
image and determines nine Benford features that are used for classifica-
tion. Finally, Neubert et al. [13] have employed frequency and spatial
domain features for morph detection.

The review of the literature reveals that morphing methods have lim-
itations that introduce ghosting artifacts and change the visual appear-
ances. Figure 3 shows the images obtained using four morphing methods
(from left to right): (i) Neubert et al. [13]; (ii) Batskos et al. [1]; (iii)
Scherhag et al. [17]; and (iv) Damer et al. [2]. Note that the first and
second rows show the original images whereas the third row shows the
morphed composite images.

3. Target Identity Attacks

A target identity attack introduces adversarial perturbations in the
facial image of the real candidate (source image) such that the manipu-
lated image appears to be similar to the real candidate, but it outputs
the identity features of the facial image of the imposter (target image).
The manipulated image is submitted at the time of candidate registra-

237

ADVANCES IN DIGITAL FORENSICS XVI

O
rig

in
al

A
M

or
ph

ed
O

rig
in

al
B

Figure 3. Morphed images generated using four methods.

tion. Thus, the imposter can fool an automated facial recognition system
and masquerade as the real candidate.

Figure 4 shows a block diagram of a target identity attack. The ad-
versarial perturbation N is initialized as zero in the first iteration. In
subsequent iterations, the perturbed image obtained by adding pertur-
bations N to the source image S, and the target image T is provided an
input to the facial recognition model. Optimization is performed over
perturbations N until the stopping criterion is satisfied.

The detailed steps involved in the target identity attack are discussed
below. In the following, the terms real candidate image and source can-
didate image are used interchangeably. Likewise, the imposter candidate
image and target candidate image are used interchangeably.

The fundamental problem is to manipulate a source candidate image
so that the manipulated image outputs the identity features of the target
candidate image while appearing to be similar to the source candidate
image.

Let S be the source candidate image and T be the target candidate
image in the range [0, 1]. Let P be the manipulated or perturbed image
generated by adding perturbation N to the source candidate image S.
In order for the perturbed image to be valid, it should be in the range
[0, 1]. Mathematically, this is written as:

238

Chhabra, Banati, Gupta & Gupta

F
ig
u
re

4
.

T
a
rg
et

id
en

ti
ty

a
tt
a
ck
.

239

ADVANCES IN DIGITAL FORENSICS XVI

P = S+N (1)

where P ∈ [0, 1].
To satisfy this constraint, the following transformation is used to gen-

erate a perturbed image P in the range [0, 1]:

P =
1

2
(tanh(S+N) + 1) (2)

Let V and I denote the visual appearance and identity of an image,
respectively. The goal is to generate a perturbed image P such that
its visual appearance is similar to the source candidate image S and
its identity representation is similar to the target candidate T. This is
mathematically formulated as:

VP = VS; IP = IT (3)

where VP and VS are the visual appearances of the perturbed image
P and source candidate image S, respectively; and IP and IT are the
identities of the perturbed image P and source candidate image S, re-
spectively.

Two loss functions f(P)V and f(P)I are specified to incorporate the
constraints mentioned above in the attack. The first loss function f(P)V
deals with the visual appearance of the perturbed image and the sec-
ond loss function f(P)I deals with the identity representation of the
perturbed image. Both the functions have to be minimized as follows:

Min{f(P)V + f(P)I} (4)

In order to make the visual appearance of the perturbed image P
similar to the source candidate image S, the distance between S and P
must be minimized. Thus, the function f(P)V is written as:

f(P)V = D(P,S) (5)

where D is the distance metric.
Since the Euclidean distance is used as the metric, Equation (5) is

written as:
f(P)V = ||P− S||2 (6)

The next task is to make the identity representation of the perturbed
image P similar to the identity representation of the target image T.

Let φ be a pre-trained facial recognition model with weights W and
bias b. This model takes an image as input and outputs its identity
representation. Therefore, the identity representation RT of an input
target candidate image T is computed as:

RT = φ(WT+ b) (7)

240

Chhabra, Banati, Gupta & Gupta

The corresponding identity representation RP of the perturbed image
P is computed as:

RP = φ(WP+ b) (8)

The next task is make the identity representation of the perturbed
image P similar to the identity representation of the target candidate
image T. The distance between the identity representation of the per-
turbed image P and the target candidate image T is minimized. Thus,
the function f(P)I is written as:

f(P)I = D(RP,RT) (9)

The Euclidean and cosine distance metrics are used to minimize the
distance between the identity representations of the perturbed image P
and target candidate image T. Thus, the overall objective function is
written as:

Min{||P− S||2 +D(RP,RT)} (10)

which is optimized over the perturbation variable N.

4. Experiments and Results

Experiments were performed to evaluate the effectiveness of target
identity attacks. One set of experiments was performed under two sce-
narios, one involving white-box attacks and the other involving black-box
attacks. Another set of experiments, involving impersonator recognition
using pre-trained models, was performed to evaluate the performance of
pre-trained facial recognition models in impersonator recognition.

The first set of experiments was performed on the Labeled Faces in the
Wild (LFW) dataset [6]. The second set of experiments was performed
on the Disguised Faces in the Wild (DFW) dataset [9].

The following dataset details and evaluation protocols are pertinent:

Labeled Faces in the Wild (LFW) Dataset: This dataset
contains 13,233 facial images of 5,749 subjects. The evaluation of
target identity attacks in the white-box and black-box scenarios
employed View 2 of the LFW dataset, which comprises 6,000 pairs
of images. Of the 6,000 pairs of images, 3,000 pairs are genuine
images while the remaining 3,000 pairs are imposter images.

The target identity attacks were performed by perturbing one im-
age from each imposter pair so that its identity representation
becomes similar to the other image in the imposter pair.

241

ADVANCES IN DIGITAL FORENSICS XVI

Table 1. Summary of experiments.

Experiment Dataset Model Distance Metric

Target Identity Attacks LFW VGGFace, ResNet50 Euclidean, Cosine

Impersonator Recognition
with Pre-Trained Models

DFW
VGGFace, ResNet50,
LCNN-29

Euclidean, Cosine

Disguised Faces in the Wild (DFW) Dataset: This dataset
contains 11,157 facial images of 1,000 subjects. Four types of im-
ages – normal, validation, disguised and impersonator – are in-
cluded for each subject.

The DFW dataset provides three protocols. This research em-
ployed Protocol 1 (impersonation) to evaluate facial recognition
models. Specifically, Protocol 1 is used to distinguish imperson-
ators from legitimate subjects. In the protocol, the combination
of a normal image with a validation image of the same subject
corresponds to a genuine pair. The combination of an imperson-
ator image with the normal, validation and disguised images of the
same subject corresponds to an imposter pair.

Table 1 provides details about the two sets of experiments. The first
set of experiments employed the VGGFace facial recognition model (pre-
trained with the VGGFace dataset) and the ResNet50 facial recogni-
tion model (pre-trained with the VGGFace2 dataset); target identity
attacks on the two facial recognition models were evaluated using the
LFW dataset. The second set of experiments employed the VGGFace,
ResNet50 and LCNN-29 facial recognition models for impostor recogni-
tion; the DFW dataset was used in the evaluation.

4.1 Implementation Details

The experiments were performed on an NVIDIA Tesla P100 server
with 96GB RAM and 16GB GPU memory. All the images were resized
to 224× 224 pixels.

The target identity attacks were performed by learning the perturba-
tion corresponding to each image to be attacked. The attacks were im-
plemented in Tensorflow v1.9.0. The learning rate was set to 0.1 during
the training phase. The perturbations were adjusted over 15 iterations.

242

Chhabra, Banati, Gupta & Gupta

Table 2. Imposter mean distance scores for the white-box and black-box scenarios.

Euclidean Distance Cosine Distance
ResNet50 VGGFace ResNet50 VGGFace

Before After Before After Before After Before After

ResNet50 1.20 0.30 0.91 0.77 0.72 0.08 0.42 0.31
VGGFace 1.20 1.06 0.91 0.30 0.72 0.62 0.42 0.08

4.2 Attack Performance Evaluation

This section discusses the performance of target identity attacks. The
Euclidean distance and cosine distance were used as performance met-
rics.

Target Identity Attacks. This set of experiments evaluated a sce-
nario where perturbed images are presented in place of real candidate im-
ages during the exam registration process. The perturbed image would
look similar to the real candidate image, but it would output the im-
poster or target identity representation.

In a real-world scenario, the counterfeiter would not know the fa-
cial recognition model that is used to authenticate supposed candidates.
Therefore, the target identity attacks are evaluated for white-box and
black-box facial recognition scenarios. In a white-box facial recognition
scenario, the counterfeiter knows the facial recognition model used to au-
thenticate candidates and generates perturbed images corresponding to
the same facial recognition model. In a black-box facial recognition sce-
nario, the counterfeiter does not know the facial recognition model used
to authenticate candidates and, therefore, generates perturbed images
corresponding to a different facial recognition model.

As mentioned above, 3,000 imposter pairs were considered when im-
plementing the target identity attacks. One image in each pair was
perturbed to obtain an identity representation similar to that of the
other image (target identity) in the pair. To evaluate the performance,
the distance between the target identity representation and the identity
representation of the perturbed image was computed for each pair. In
the ideal case, this distance should be zero for a successful attack.

Table 2 shows the mean distance scores for 3,000 imposter pairs before
and after performing the target identify attacks. Note that good results
are obtained for the white-box and black-box scenarios. For example,
when perturbed images are generated for the VGGFace model and eval-
uated using the same model and the cosine distance metric, the mean

243

ADVANCES IN DIGITAL FORENSICS XVI

distance is reduced by 0.34 (= 0.42 − 0.08). Similarly, when perturbed
images are generated for the VGGFace model and evaluated using the
ResNet50 model and the Euclidean metric, the mean distance score is
reduced by 0.14 (= 1.20− 1.06).

Figure 5 compares the imposter distance score distributions for 3,000
imposter pairs before and after target identity attacks in the white-
box and black-box scenarios. Figure 5(a) shows the score distributions
obtained using the VGGFace and ResNet50 models when the images
were perturbed based on the ResNet50 model. Figure 5(b) shows the
score distributions obtained using the VGGFace and ResNet50 models
when the images were perturbed based on the VGGFace model.

Figure 5(a) and 5(b) consistently show that the distributions are
shifted towards the left or to zero after the target identity attacks. This
demonstrates that the target identity attacks are effective.

Figures 6 and 7 compare the genuine and imposter distance score
distributions before and after identity target attacks in the white-box
and black-box scenarios. The images in Figure 6 are perturbed based
on the VGGFace model whereas the images in Figure 7 are perturbed
based on the ResNet50 model.

Figures 6 and 7 consistently show that the imposter distance score
distributions are shifted closer towards the genuine distance score distri-
butions in the black-box scenario. Moreover, the overlaps between the
genuine and imposter distance score distributions are increased. These
results demonstrate that the target attacks are effective at fooling the
facial recognition models.

Figure 8 shows three sets of images generated via morphing and via
target identity attacks. The first and second columns in the figure show
the images of two different people, denoted as identity A and identity B,
respectively. The third column shows the images generated via morphing
whereas the fourth column shows the images generated via target image
attacks.

In the case of the morphed images, the visual appearances and the
identities correspond to both A and B. However, in the case of the target
identity attack images, the visual appearances correspond to A whereas
the identities correspond to B. Clearly, the target identity attack images
in the fourth column preserve the original A appearances to a greater
degree than the morphed images in the third column. However, because
their identities correspond to B, the target identity attack images could
be used to successfully perpetrate exam fraud.

244

Chhabra, Banati, Gupta & Gupta

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Score

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Before
After

White Box: ResNet-50 Evaluation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Score

0

0.02

0.04

0.06

0.08

0.1

0.12

Before
After

Black Box: VGGFace Evaluation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Score

0

0.05

0.1

0.15

0.2

0.25

Before
After

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Score

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Before
After

(a) VGGFace and ResNet50 models with ResNet50 model perturbations.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Score

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Before
After

White Box: VGGFace Evaluation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Score

0

0.02

0.04

0.06

0.08

0.1

0.12

Before
After

Black Box: ResNet-50 Evaluation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Score

0

0.02

0.04

0.06

0.08

0.1

0.12

Before
After

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Score

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Before
After

(b) VGGFace and ResNet50 models with VGGFace model perturbations.

Figure 5. Comparison of impostor distance score distributions.

245

ADVANCES IN DIGITAL FORENSICS XVI

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

2
Score

0

0.02

0.04

0.06

0.08

0.1

0.12

G
enuine

Im
poster

N
o A

ttack: VG
G

Face

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

2
Score

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

G
enuine

Im
poster

W
hite B

ox: VG
G

Face

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

2
Score

0

0.02

0.04

0.06

0.08

0.1

0.12

G
enuine

Im
poster

B
lack B

ox: R
esN

et-50

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

2
Score

0

0.02

0.04

0.06

0.08

0.1

0.12

G
enuine

Im
poster

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

2
Score

0

0.02

0.04

0.06

0.08

0.1

0.12

G
enuine

Im
poster

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

2
Score

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

G
enuine

Im
poster

F
igu

re
6
.

C
o
m
p
a
riso

n
o
f
g
en

u
in
e
a
n
d
im

p
o
ster

sco
re

d
istrib

u
tio

n
s
w
ith

V
G
G
F
a
ce

m
o
d
el

p
ertu

rb
a
tio

n
s.

246

Chhabra, Banati, Gupta & Gupta

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

1.
4

1.
6

1.
8

2
Sc

or
e

0

0.
02

0.
04

0.
06

0.
080.
1

0.
12

G
en

ui
ne

Im
po

st
er

N
o

A
tta

ck
: R

es
N

et
-5

0

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

1.
4

1.
6

1.
8

2
Sc

or
e

0

0.
050.
1

0.
150.
2

0.
250.
3

0.
35

G
en

ui
ne

Im
po

st
er

W
hi

te
 B

ox
: R

es
N

et
-5

0

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

1.
4

1.
6

1.
8

2
Sc

or
e

0

0.
02

0.
04

0.
06

0.
080.
1

0.
12

G
en

ui
ne

Im
po

st
er

B
la

ck
 B

ox
: F

ac
eV

G
G

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

1.
4

1.
6

1.
8

2
Sc

or
e

0

0.
02

0.
04

0.
06

0.
080.
1

0.
12

0.
14

G
en

ui
ne

Im
po

st
er

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

1.
4

1.
6

1.
8

2
Sc

or
e

0

0.
050.
1

0.
150.
2

0.
25

G
en

ui
ne

Im
po

st
er

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

1.
4

1.
6

1.
8

2
Sc

or
e

0

0.
02

0.
04

0.
06

0.
080.
1

0.
12

G
en

ui
ne

Im
po

st
er

F
ig
u
re

7
.

C
o
m
p
a
ri
so
n
o
f
g
en

u
in
e
a
n
d
im

p
o
st
er

sc
o
re

d
is
tr
ib
u
ti
o
n
s
w
it
h
R
es
N
et
5
0
m
o
d
el

p
er
tu
rb
a
ti
o
n
s.

247

ADVANCES IN DIGITAL FORENSICS XVI

Figure 8. Images generated via morphing and target identity attacks.

Impersonator Recognition with Pre-Trained Models. This set
of experiments evaluated a scenario where an impersonator uses a tar-
get identity attack image to take an examination on behalf the real
candidate. The target identity attack image would be submitted to the
authorities when the real candidate registers for the examination. By
fooling the automated facial recognition system, the imposter would be
able to masquerade as the real candidate and take the examination on
behalf of the candidate.

Figure 9 shows the receiver operating characteristic (ROC) curves
obtained using pre-trained VGGFace, ResNet50 and LCNN-29 facial
recognition models with the Euclidean and cosine distance metrics. The
experiments used the DFW dataset and Protocol 1. The ROC curves
demonstrate that the three facial recognition models are not effective at
identifying impersonators who use images generated by target identity
attacks.

248

Chhabra, Banati, Gupta & Gupta

(a) ROC plots for Euclidean distance.

(b) ROC plots for cosine distance.

Figure 9. ROC plots for the ResNet50, VGGFace and LCNN-29 models.

5. Conclusions

Advancements in digital technology have significantly increased the
number of cases involving the counterfeiting of exam identity documents.
As a result, automated facial recognition systems are deployed at exami-
nation centers to match the registered facial images of candidates against
the facial images of prospective examinees.

The novel identity target attack described in this chapter introduces
perturbations in the facial image of the real candidate to create a ma-

249

ADVANCES IN DIGITAL FORENSICS XVI

nipulated image that looks just like the real candidate, but tricks an
automated facial recognition system by outputting the identity features
of the imposter who plans to take the exam on behalf of the candidate.
Experiments using 3,000 image pairs from the Labeled Faces in the Wild
(LFW) dataset demonstrate the effectiveness of target identity attacks
in white-box as well as black-box scenarios.

Future research will focus on developing an algorithm that detects
manipulated images and localizes the manipulated regions. Addition-
ally, research will attempt to characterize the properties of manipulated
images in the forensic context to identify the specific technique used for
manipulation. This will help develop advanced facial authentication sys-
tems that are robust to attacks and provide forensically-sound evidence
of manipulation.

References

[1] I. Batskos, A. Macarulla Rodriguez and Z. Geradts, Face morphing
detection, Proceedings of the Twentieth Irish Machine Vision and
Image Processing Conference, pp. 162–172, 2018.

[2] N. Damer, V. Boller, Y. Wainakh, F. Boutros, P. Terhorst, A. Braun
and A. Kuijper, Detecting face morphing attacks by analyzing the
directed distances of facial landmark shifts, Proceedings of the Ger-
man Conference on Pattern Recognition, pp. 518–534, 2018.

[3] N. Damer, A. Saladie, A. Braun and A. Kuijper, MorGAN: Recogni-
tion vulnerability and attack detectability of face morphing attacks
created by generative adversarial networks, Proceedings of the Ninth
IEEE International Conference on Biometrics Theory, Applications
and Systems, 2018.

[4] L. Debiasi, C. Rathgeb, U. Scherhag, A. Uhl and C. Busch, PRNU
variance analysis for morphed face image detection, Proceedings of
the Ninth IEEE International Conference on Biometrics Theory,
Applications and Systems, 2018.

[5] M. Ferrara, R. Cappelli and D. Maltoni, On the feasibility of creat-
ing double-identity fingerprints, IEEE Transactions on Information
Forensics and Security, vol. 12(4), pp. 892–900, 2017.

[6] G. Huang, M. Mattar, T. Berg and E. Learned-Miller, Labeled
faces in the wild: A database for studying face recognition in un-
constrained environments, presented at the Workshop on Faces in
Real-Life Images: Detection, Alignment and Recognition, 2008.

250

Chhabra, Banati, Gupta & Gupta

[7] I. Korshunova, W. Shi, J. Dambre and L. Theis, Fast face-swap
using convolutional neural networks, Proceedings of the IEEE In-
ternational Conference on Computer Vision, pp. 3697–3705, 2017.

[8] A. Krizhevsky, I. Sutskever and G. Hinton, ImageNet classifica-
tion with deep convolutional neural networks, Proceedings of the
Twenty-Sixth Annual Conference on Neural Information Process-
ing Systems, pp. 1106–1114, 2012.

[9] V. Kushwaha, M. Singh, R. Singh, M. Vatsa, N. Ratha and R. Chel-
lappa, Disguised faces in the wild, Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops, pp.
1–9, 2018.

[10] A. Makrushin, C. Kraetzer, T. Neubert and J. Dittmann, Gener-
alized Benford’s law for blind detection of morphed face images,
Proceedings of the Sixth ACM Workshop on Information Hiding
and Multimedia Security, pp. 49–54, 2018.

[11] A. Makrushin, T. Neubert and J. Dittmann, Automatic generation
and detection of visually faultless facial morphs, Proceedings of the
Twelfth International Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications, pp. 39–50,
2017.

[12] V. Mirjalili, S. Raschka and A. Ross, Gender privacy: An ensemble
of semi adversarial networks for confounding arbitrary gender clas-
sifiers, Proceedings of the Ninth IEEE International Conference on
Biometrics Theory, Applications and Systems, 2018.

[13] T. Neubert, C. Kraetzer and J. Dittmann, A face morphing detec-
tion concept with a frequency and spatial domain feature space for
images on eMRTD, Proceedings of the Seventh ACM Workshop on
Information Hiding and Multimedia Security, pp. 95–100, 2019.

[14] A. Othman and A. Ross, Privacy of facial soft biometrics: Suppress-
ing gender but retaining identity, Proceedings of the Computer Vi-
sion – European Conference on Computer Vision 2014 Workshops,
pp. 682–696, 2014.

[15] R. Raghavendra, K. Raja, S. Venkatesh and C. Busch, Transferable
deep-CNN features for detecting digital and print-scanned morphed
face images, Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition Workshops, pp. 1822–1830, 2017.

[16] C. Rathgeb and C. Busch, On the feasibility of creating morphed
iris codes, Proceedings of the IEEE International Joint Conference
on Biometrics, pp. 152–157, 2017.

251

ADVANCES IN DIGITAL FORENSICS XVI

[17] U. Scherhag, D. Budhrani, M. Gomez-Barrero and C. Busch, De-
tecting morphed face images using facial landmarks, Proceedings of
the Eighth International Conference on Image and Signal Process-
ing, pp. 444–452, 2018.

[18] U. Scherhag, C. Rathgeb, J. Merkle, R. Breithaupt and C. Busch,
Face recognition systems under morphing attacks: A survey, IEEE
Access, vol. 7, pp. 23012–23026, 2019.

[19] C. Seibold, W. Samek, A. Hilsmann and P. Eisert, Detection of face
morphing attacks by deep learning, Proceedings of the International
Workshop on Digital Watermarking, pp. 107–120, 2017.

[20] K. Simonyan and A. Zisserman, Very Deep Convolutional Networks
for Large-Scale Image Recognition, arXiv: 1409.1556v6, 2015.

[21] Staff Writer, 11 members of police exam cheating gang arrested in
Jodhpur, The Pink City Post, July 12, 2018.

[22] L. Wandzik, G. Kaeding and R. Vicente-Garcia, Morphing detec-
tion using a general purpose face recognition system, Proceedings of
the Twenty-Sixth European Signal Processing Conference, pp. 1012–
1016, 2018.

[23] A. Yuhas, Chinese nationals charged with cheating by imperson-
ation on US college tests, The Guardian, May 28, 2015.

[24] L. Zhang, F. Peng and M. Long, Face morphing detection using the
Fourier spectrum of sensor pattern noise, Proceedings of the IEEE
International Conference on Multimedia and Expo, 2018.

252

Chapter 14

ELECTRIC NETWORK FREQUENCY
BASED AUDIO FORENSICS USING
CONVOLUTIONAL NEURAL NETWORKS

Maoyu Mao, Zhongcheng Xiao, Xiangui Kang, Xiang Li and Liang Xiao

Abstract Digital media forensics can exploit the electric network frequency of au-
dio signals to detect tampering. However, current electric network based
audio forensic schemes are limited by their inability to obtain concurrent
electric network frequency reference datasets from power grids. In ad-
dition, most forensic algorithms do not provide high detection precision
in adverse signal-to-noise conditions.

This chapter proposes an automated electric network frequency based
audio forensic scheme that monitors abrupt mutations of tampered
frames and discontinuities in the variations of electric network frequency
features. Specifically, the scheme utilizes the multiple signal classifica-
tion, Hilbert linear prediction and Welch algorithms to extract electric
network frequency features from audio signals; the extracted features
are passed to a convolutional neural network classifier to detect audio
tampering. The negative effects of low signal-to-noise ratios on electric
network frequency extraction are addressed by employing extra low-rank
filtering that removes voice activity and noise interference. Simulation
results demonstrate that the proposed scheme provides better audio
tampering detection accuracy compared with a benchmark method, es-
pecially under adverse signal-to-noise conditions.

Keywords: Audio forensics, electric network frequency, neural networks

1. Introduction

Audio editing software is often used by malicious actors to reduce the
reliability of judicial evidence and defeat intellectual property protection.
Audio tampering detection methods mostly rely on fingerprint informa-
tion embedded in audio signals. Since fragile watermarks cannot assist
in detecting private audio signal tampering [1], passive forensic schemes

c© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XVI, IFIP AICT 589, pp. 253–270, 2020.

https://doi.org/10.1007/978-3-030-56223-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56223-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-56223-6_14

ADVANCES IN DIGITAL FORENSICS XVI

based on extracted audio features can provide lightweight solutions. Re-
searchers have developed detection methods based on local noise levels
of audio signals [18] and voice activity detection [10]. The electric net-
work frequency (ENF) of audio signals demonstrates that power grid
features are applicable to digital media forensics [5]. Specifically, elec-
tric network frequency signals can be used to verify recording features
such as time and location [7, 21], detect synchronization between audio
and video data [20] and verify the authenticity of multimedia [14].

Electric network frequency based audio tampering detection tech-
niques can verify if audio recordings have been edited at low compu-
tational cost. Ideally, the grid signal is a real sinusoid that fluctuates
around its nominal value of 50Hz or 60Hz. Given that control mech-
anisms and power supply parameters are different in different parts of
the world, electric network frequency signals display different fluctua-
tions and peak frequency transformations. When signal-to-noise ratio
(SNR) conditions are poor, disturbances near the electric network fre-
quency component may be confused with the peak corresponding to
the true electric network frequency [12]. Furthermore, due to legal re-
strictions, it is difficult to obtain concurrent reference datasets of power
systems [7]. Additionally, many edit detection schemes based on electric
network frequency variations adjust the classification thresholds man-
ually. Although some automated tampering detection schemes do not
rely on concurrent power reference datasets, new techniques are required
to improve detection accuracy and reduce computational costs.

This chapter proposes an electric network frequency based audio foren-
sic scheme that detects tampering. The scheme assumes a signal model
containing the electric network frequency component, where the back-
ground noise is low enough to ensure that the electric network frequency
signal is the energy-dominant signal around the nominal frequency. Au-
dio tampering is detected without using concurrent reference electric
network frequency signals from power networks. The scheme applies
two-stage – low-rank and bandpass – filtering to purify electric network
frequency signals in a narrow spectral vicinity and compensate for time
delays in order to obtain accurate estimates of the real-time edit loca-
tions. Based on the sensitivity of electric network frequency features to
phase discontinuity changes, variations in the electric network frequency
based features extracted from the multiple signal classification, Hilbert
linear prediction and Welch algorithms are combined as eigenvectors and
input to an automatic classifier. A convolutional neural network (CNN)
is employed in the audio tampering detection scheme to improve the
generalization ability in practical situations. Simulation results demon-

254

Mao et al.

strate that the proposed audio tampering detection scheme has good
accuracy and an expanded application scope.

2. Related Work

Hua et al. [8] have discussed the limitations of electric network fre-
quency based tampering detection systems and the challenges posed by
noise and interference. Several electric network frequency extraction al-
gorithms such as the short-time Fourier transform and time recursive it-
erative adaptive algorithms are incorporated in instantaneous frequency
estimation techniques to achieve high-precision extraction by measur-
ing the maximum energy or weighted energy recorded from the average
frequencies of spectrograms [6].

A systematic assessment of parametric and non-parametric extraction
techniques for electric network frequency signals has demonstrated that
time-domain-based extraction algorithms are susceptible to frequency
anomalies caused by sudden changes in noise or speech activity [11]. In
addition, parametric algorithms such as the multiple signal classifica-
tion and Welch algorithms can improve resolution frequency estimation
of sinusoidal signals by using fewer data series than spectrogram-based
extraction algorithms.

An electric network frequency extraction scheme proposed by Lin and
Kang [12] applies robust principle component analysis to remove noise in-
terference and purify the electric network frequency when signal-to-noise
conditions are poor. It adopts the Hilbert linear prediction algorithm
to capture the electric network frequency from fewer audio recordings in
an efficient manner.

Nicolalde Rodriguez and Apolinario [16] have developed a digital au-
dio authenticity evaluation scheme that detects electric network fre-
quency phase transitions and leverages the spectral distance using an
adaptive filter as a linear indicator. An electric network frequency based
edit detection scheme for speech recordings designed by Esquef et al. [3]
yields low equal error rate (EER) values by comparing electric network
frequency variations around the nominal frequency with the upper limit
of the normal variations observed in an unedited signal. Hua et al. [9]
have analyzed the absolute error map between an electric network fre-
quency database and test electric network frequency signals to perform
timestamp verification and detect tampering via insertion, deletion and
splicing attacks with image erosion.

Nicolaide Rodriguez et al. [17] have also developed an automated au-
thenticity detection scheme for audio recordings via phase analysis of
high-order electric network frequency harmonics. Reis et al. [19] have

255

ADVANCES IN DIGITAL FORENSICS XVI

designed an adulteration detection scheme for audio recordings that in-
tegrates the kurtosis features of electric network frequency signals in
rotational invariance techniques and Hilbert linear prediction in poor
signal-to-noise conditions to autonomously classify audio recordings us-
ing a support vector machine. Although kurtosis extraction speeds up
the classification, some characteristic information is lost.

Wang et al. [22] have developed a detection scheme that applies dis-
crete Fourier transforms of audio signals to achieve instantaneous phase
estimation using a support vector machine classifier. However, the ac-
curacy of the scheme is unsatisfactory and the cost of using a support
vector machine to evaluate the decision function is linearly related to the
number of training samples. This results in high computational costs for
large datasets.

Researchers have also applied convolutional neural networks to ana-
lyze audio recapture [13] and perform median filtering [2]. However, no
research has applied convolutional neural networks to electric network
frequency based audio tampering forensics.

3. System Model

Figure 1 shows a schematic diagram of the proposed audio forensic
scheme, which uses a convolutional neural network in conjunction with
the multiple signal classification (MUSIC), Hilbert linear prediction and
Welch algorithms.

The system initially reduces the sampling rate of an audio signal under
test x(m). Let ω0 be the nominal electric network frequency. According
to convention, the new sampling frequency fs is adjusted to 20 times
the nominal frequency ω0. Therefore, the sampled signal xds(n) where
0 < n ≤ m is obtained using a 1,000Hz or 1,200Hz sampling frequency.

The low-rank structure of the electric network frequency signal in
the short-time Fourier transform (STFT) domain is leveraged to sepa-
rate grid signals from interference by robust principal component anal-
ysis (RPCA). Let Xds be the amplitude spectrum of the sampled signal
xds(n). Then, the robust principal component analysis objective is given
by:

min
X̂C ,XE

rank
(

X̂C

)

+ λ
∥

∥

∥
XE

∥

∥

∥

0
s.t. X̂C +XE = Xds (1)

where ‖ · ‖0 is the L0-norm, λ > 0 is a parameter that trades off the

low-rank part with the electric network frequency component X̂C , and
XE is the sparsity part containing the impulse noise and speech activity
signal.

256

Mao et al.

Figure 1. Proposed audio forensic scheme.

Due to the non-convex optimization objective, a relaxation is applied
to Equation (1) according to [23]. Thus, the principal component anal-
ysis objective becomes:

min
X̂C ,XE

∥

∥

∥
X̂C

∥

∥

∥

∗
+ λ

∥

∥

∥
XE

∥

∥

∥

1
s.t. X̂C +XE = Xds (2)

where ‖ · ‖∗ is a nuclear norm and ‖ · ‖1 is the L1-norm.

Next, X̂C is derived by the augmentedLagrangemultiplier method [12]
and the inverse short-time Fourier transform (ISTFT) is employed to
determine the low-rank filtered signal sequence denoted by x̂C(n).

Grid signals with electric network frequency components xC(n) are
insulated from interference falling into the low-order space by filtering
x̂C(n). Instead of a finite impulse response filter, a fourth-order elliptic
filter is adopted with a phase that is approximately linear and adjacent

257

ADVANCES IN DIGITAL FORENSICS XVI

to the bandpass region. This reduces the computational complexity and
computational costs.

The grid signal xkC(n) obtained from the audio recording k after two-
stage filtering is similar to a narrow-band pseudo-sinusoidal signal. To
simplify the presentation, the audio recording index k in the superscript
is omitted. Accordingly, the time-domain representation of the electric
network frequency signal in the interval is modeled as:

xC(n) = a cos

(

2π
xF (n)

fs
n+ φ

)

1 ≤ n ≤ L (3)

where L is the length of time-domain signal, xF (n) is the electrical net-
work frequency to be estimated, fs is the sampling frequency and a and
φ are related to the magnitude and phase, respectively.

4. ENF-Based Forensics with CNN

During electrical network frequency extraction, the captured grid sig-
nal xC(n) is typically divided into Y time frames of fixed-length l con-
taining overlapping portions where Y ∈ {L/l}0≤l≤L. A frequency esti-
mation algorithm is then used to obtain the components of the electrical
network frequency characteristics in frame i where 1 ≤ i ≤ Y .

The MUSIC algorithm is a subspace spectrum estimation algorithm
based on feature structure decomposition. The algorithm decomposes
the covariance matrix of a signal sequence into a singular value. By
constructing the orthogonal signal and noise subspaces, the algorithm
provides spatial spectral functions that can be used to estimate electrical
network frequency features. Since electrical network frequency signals
contain one real sinusoid, two complex frequency sinusoids are embedded
in the white noise P for electrical network frequency signals.

The algorithm first computes the M×N sample data matrix A based

on the power grid signal X
(i)
C of audio frame i:

A =
[

aC(1) aC(2) . . .aC(N − 1)
]T

(4)

where aC(n) = [xC(n), xC(n+ 1), . . . , xC(n+M − 1)]T , M is the order
of the covariance matrix that is chosen to be larger than P and M ∈
[

N
3 ,

2N
3

]

[6].

Next, the eigenvalue decomposition of the auto-covariance matrix
R = 1

N
AHA is computed. Since the signal and noise are indepen-

dent, the covariance can be decomposed and the space comprising the
eigenvectors corresponding to the large eigenvalues (q1 q2 . . .qP) is the

258

Mao et al.

signal subspace S. Also, the space comprising the eigenvectors corre-
sponding to the small eigenvalues

(

qP+1 qP+2 . . .qP+M

)

is the noise
subspace Gn.

The following assumptions are made for the complex form of the ob-
servation model described above:

Different x
(i)
C (n) signals are linearly independent of each other.

The additive noise u(n) is the complex noise with zero mean ad-
ditive, uncorrelated and the same variance σ2

u.

Given the orthogonality property of the white noise eigenvectors and

signal steering vectors v
(

X
(i)
C

)

, the signal steering vectors v
(

X
(i)
C

)

can

be written in complex form as:

v
(

X
(i)
C

)

=
[

1, ej2πX
(i)
C , ej4πX

(i)
C , . . . , ej2(M−1)πX

(i)
C

]H

(5)

where j =
√
−1 and [·]H denotes the conjugate transposition.

The pseudo-spectral function PMU is computed as:

PMU =
1

v∗

(

X
(i)
C

)

Gi
nG

i∗

n v
(

X
(i)
C

) (6)

where ∗ is the element conjugate.
Ultimately, the estimated electrical network frequency XMU is ob-

tained by searching for the spectral peak of the spatial-spectral function
PMU . The MUSIC algorithm estimates a fixed parameter for each frame,
which is the best electrical network frequency value in the least mean
square sense for a given signal sequence.

The Hilbert linear prediction extraction algorithm is more sensitive
to sharp phase changes than the MUSIC algorithm. However, the MU-
SIC algorithm is more robust to noise interference. According to Equa-
tion (3), the electrical network frequency value ĥC(n) can be estimated
by the transient phase change of the Hilbert transform from the real-
valued estimate xC(n) as follows:

ĥC(n) = xC(n) + jH
{

xC(n)
}

(7)

where j =
√
−1 and H is the Hilbert operator.

Since the analytical version of a pseudo-sinusoidal signal is equivalent
to the real-valued signal with respect to xF (n), the linearly predictable
property can be applied to the complex model. This yields:

ĥC(n) = ae

(
j2π

xF (n)

fs
n+φ

)
= β1ĥC(n− 1) (8)

259

ADVANCES IN DIGITAL FORENSICS XVI

where β1 = e

(
j2π

xF (n)

fs

)
is the first-order prediction coefficient.

The signal entry s(n) = xF (n) + u(n) is then obtained by adding the
additive complex noise u(n).

Given the assumption that additive complex noise is always equiv-
alent, the approximation s(n) ≈ β1s(n − 1) is obtained according to
Equation (8). Extending this equation to the entire audio recording
yields: S1 ≈ β1S2 where S1 = [s(n− 1), s(n− 2), . . . , s(n)]0<n≤m and S2

is the sequence with one sample shift from S1.
Therefore, the crux of electrical network frequency estimation is to

minimize the weighted linear prediction error in the minimum squared
sense as follows:

min J(β1) = eTWe = (S2 − β1S1)
H W (S2 − β1S1) (9)

where W is a symmetric weighting matrix, H is the conjugate trans-
position operator and J(β1) is the total cost function denoted by the
weighted squared error e.

The symmetric weighted matrix W, which is obtained by Markov
estimation, is given by:

W=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1+‖β1 ‖2 −β1 0 0 . . . 0
−β∗

1 1+ ‖β1 ‖2 −β1 0 . . . 0
...

...
...

...
...

...
0 . . . 0 −β∗

1 1+ ‖β1 ‖2 −β1

0 0
... 0 −β∗

1 1+ ‖β1 ‖2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−1

(10)
where ∗ and [·]−1 are the element conjugate and matrix inverse, respec-
tively.

Upon setting the differential in Equation (9) to zero, the prediction
coefficient β1 is given by:

β1 =
S1

HWS2

S1
HWS1

(11)

Equations (9) through (11) reveal that the computation of β1 is an
iterative process. Having obtained β1, the Hilbert linear prediction of
the electrical network frequency XL is computed as:

XL = fs
1

2π
∠(β1) (12)

For consistency with other characteristics, XL is divided into frag-
ments and the maximum value of the absolute values is taken as the ith

segment electrical network frequency estimate X
(i)
L .

260

Mao et al.

Figure 2. Electrical network frequency fingerprints in three recording fragments.

The Welch algorithm is an improved periodogram method. The al-
gorithm reduces noise in the estimated power spectrum by enhancing
the frequency resolution, yielding the largest maximum correlation co-
efficient around the nominal frequency compared with the MUSIC algo-
rithm and other methods.

The Welch estimate is obtained from the power spectral density. The
algorithm divides each audio recording into overlapped segments mul-
tiplied by a Hamming window. The frequency sample w, which corre-
sponds to the maximum periodogram value, is extracted as the Welch-

based electrical network frequency estimate denoted by X
(i)
W . Next, a

quadratic interpolation is employed to fit the quadratic model of w. The
Welch algorithm with a Hamming window improves the spectral distor-
tion caused by the large-side lobe of the rectangular window, yielding an
accurate electrical network frequency estimate XW that is not affected
by interference.

Figure 2 clearly shows the electrical network frequency based finger-
prints used to verify the effectiveness of the proposed audio forensic
scheme. The fingerprints are located in three recording fragments named
1p, 2p and 3p at 60Hz with slight offsetting for easy viewing. The three

261

ADVANCES IN DIGITAL FORENSICS XVI

Figure 3. Network architecture of the proposed audio forensic scheme.

recording fragments, all with the same number of samples, are derived
from the MUSIC, Hilbert linear prediction and Welch (MHPW) feature
estimation algorithms.

The forensic fingerprints simultaneously display high stability and
sensitivity to tampering operations. For example, the fingerprints in
recording fragments 1p and 2p show stable pseudo-sinusoidal fluctua-
tions whereas the fingerprints in the tampered fragment 3p show sensi-
tive mutations.

Instead of manually determining the threshold, a novel deep learning
approach is applied to identify tampered audio recordings. The elec-
trical network frequency signals extracted by the three algorithms are
directly modeled as features to avoid information loss when extracting
the representative values of features.

Three-dimensional feature vectors F =
[

Xk
L, X

k
MU , X

k
W

]

0<k≤N
are ob-

tained from the N audio recordings. When the lengths of the recordings
in the audio dataset are different, the nominal frequency of 50Hz or
60Hz is applied to fill the feature vectors to the same length. The three
feature channels with the same length constitute the input layer of the
neural network structure.

Figure 3 shows the network architecture of the audio tampering de-
tection scheme. The convolutional neural network model has four convo-
lution layers, two pooling layers, one full connection layer and an input
layer and output layer. Before processing the features, min-max nor-
malization is used to amplify the differences and variation rules of the
features. Next, given the overlaps of the adjacent electrical network fre-
quency components, convolution is used to refine the energy changes in
the electrical network frequency signals, which improves the detection
accuracy. Finally, the tag distribution obtained by the convolutional
neural network model is used to compute the detection performance
metrics.

262

Mao et al.

5. Experiments and Results

This section describes the simulation experiments and the results ob-
tained.

5.1 Experimental Setup

The experiments were performed on Matlab and Python 3.6 platforms
with the scikit-learn package.

The electrical network frequency based features were extracted from
two classical audio databases. The first was the Carioca 1 database [17],
a telephone recording database of the public switched telephone network
containing 16-bit mono waves at a 44.1 kHz sampling rate and coded by
pulse code modulation with an electrical network frequency component
around 60Hz, The second was the Spanish Speech database [4] sampled
at 16 kHz with a nominal electrical network frequency component around
50Hz. The databases each contain 100 original voice audio recordings
and 100 edited versions of the original voice audio recordings.

Simulations were performed to evaluate the performance of the au-
dio forensic scheme with N = 400 audio recordings. Each recording
was divided into time frames of length l = 1 second with an overlap of
0.5 seconds. In the simulations, 70% of the original audio recordings and
tampered audio recordings were randomly chosen to train the convolu-
tional neural network. The remaining 30% of all the recordings were
randomly-chosen for the testing set. Distributing the data into training
and testing datasets in this manner ensured that every portion of the
data would be more representative. The data randomness had to be
high due to the large number of parameters and strong learning ability
of the convolutional neural network, and so that the random gradient
descent optimization function did not get stuck in a local minimum.

Multiple evaluations were performed to achieve fair comparisons with
the benchmark strategy proposed by Reis et al. [19]. The detection error
tradeoff (DET) curves were obtained by plotting the false negative rate
(FNR) versus false positive rate (FPR) curves for various thresholds [15].
In general, as the false positive rate increases to 100%, the false negative
rate decreases, and vice versa. The equal error rate is the point at which
the false negative rate and false positive rate are equal. The overall error
rate (OER) is computed as the average of the false negative rate and
false positive rate.

263

ADVANCES IN DIGITAL FORENSICS XVI

Table 1. Overall error rates for combinations of fusion features.

Feature Overall Error Rate

MUSIC 7.5%
Hilbert Linear Prediction 5.1%
Welch 6.3%
MUSIC + Hilbert Linear Prediction 6.3%
Hilbert Linear Prediction + Welch 4.4%
MUSIC + Welch 6.5%
MUSIC + Hilbert Linear Prediction + Welch (MHPW) 3.2%

5.2 Detection Performance

Table 1 shows the overall error rates for feature vectors obtained
by combining fusion features. Combining all three features (MUSIC,
Hilbert linear prediction and Welch (MHPW)) yields the lowest overall
error rate of 3.2% compared with using any one feature or any two fea-
tures. When all three features are used together, the overall error rates
fall by 4.3%, 1.9% and 3.1%, respectively, from the overall error rates
when the MUSIC, Hilbert linear prediction and Welch algorithms are
used alone.

However, the overall error rates obtained for the mixed features ex-
tracted by two of the three algorithms may be suboptimal to those ex-
tracted by a single algorithm; this is due to the cancellation of the sharp
peak features of the two algorithms. For example, the overall error rate
for the fusion features extracted by the MUSIC and Welch algorithms
is reduced by 1.0% compared with the overall error rate of the features
extracted by the MUSIC algorithm alone. The proper choice of features
plays an important role in the accurate detection of audio tampering.

Table 2. Overall error rates for various classifiers.

Classifier Overall Error Rate

Neural Network 9.1%
Random Forest 9.1%
Decision Tree 7.3%
Logistic Regression 6.7%
Support Vector Machine 4.2%
Convolutional Neural Network 3.2%

264

Table 2 shows that the proposed scheme using the convolutional neu-
ral network with MUSIC, Hilbert linear prediction and Welch features

Mao et al.

Table 3. Cross-domain evaluations of the audio databases.

Training Database Testing Database Overall Error Rate

Carioca 1 Spanish Speech 4.3%
Spanish Speech Carioca 1 4.5%

265

has the lowest overall error rate compared with the other classifiers. For
example, the overall error rate is 5.9% less than that obtained by the
neural network scheme and is 1.0% less than that obtained by the sup-
port vector machine scheme. Additionally, the detection performance of
the proposed scheme using the convolutional neural network with the
MUSIC, Hilbert linear prediction and Welch features has an overall er-
ror rate that is 1.3% less than that obtained by the benchmark strategy
with a support vector machine described in [19].

Table 3 shows the results of cross-domain evaluations when the Cari-
oca 1 and Spanish Speech databases were used for training and testing,
respectively, and vice versa. Using the combination of MUSIC, Hilbert
linear prediction and Welch features trained with the Carioca 1 data-
base yields slightly better prediction results (4.3%) compared with when
the Spanish Speech database was used for training (4.5%). This could
be because the extracted features of Caricoa 1 are more obvious, which
renders the trained model more representative and the testing results
more accurate.

However, the difference between the two overall error rates is small
(0.2%), which may be due to the number of training sessions, number
of iterations, final convergence and small differences in only one set of
random values in the convolutional neural network. As observed above,
a mixed training dataset yields better detection performance than using
a single dataset for training. For example, the detection with the mixed
(Carioca 1 and Spanish Speech) training dataset decreases the overall
error rate by 1.3% compared with the single Carioca 1 training dataset
and 1.1% compared with the single Spanish Speech dataset. The key
insight is that the increased data diversity provided by mixed training
increases the generality of the learned model, which improves the detec-
tion performance and reduces the overall error rate.

Figure 4 compares the detection performance of the proposed scheme
using the convolutional neural network with MUSIC, Hilbert linear pre-
diction and Welch features (CNN with MHPW) versus the detection
performance of the benchmark strategy by Reis et al. [19]. The same
Carioca 1 and Spanish Speech databases with N = 400 audio record-

ADVANCES IN DIGITAL FORENSICS XVI

Figure 4. Comparison of detection performance.

ings and l = 1 second were used in the comparison. The DET curve of
the proposed scheme (CNN with MHPW) is much closer to the y-axis
(i.e., lower false negative rates) compared with the benchmark strategy.
Moreover, the proposed scheme has an equal error rate of 3.3%, which
is less than the 4% equal error rate of the benchmark strategy.

5.3 Results for Different SNR Conditions

This section evaluates the performance of the proposed audio foren-
sic scheme under signal-to-noise ratios ranging from 5dB to 30 dB. The
speech activity detector of Esquef et al. [3] was used to separate the
noise from speech signals in the Carioca 1 and Spanish Speech data-
bases, following which various levels of additional background Gaussian
noise were introduced. It is important to note that the results of this
evaluation can be generalized to any audio recording.

Figure 5 shows the performance of the proposed audio forensic scheme
(CNN with MHPW) under various signal-to-noise ratios. The equal er-
ror rates obtained for the datasets corrupted by Gaussian noise decrease
with increasing signal-to-noise ratio because the classifier acquires more
accurate electric network frequency information with less noise. The
performance gap is much wider at lower signal-to-noise ratios, which
validates the effectiveness of low-rank filtering for noise correction. For

266

example, the proposed scheme decreases the equal error rate from 20.8%
to 17.9% for the lowest signal-to-noise ratio of 5 dB. In fact, the proposed

Mao et al.

Figure 5. Performance of the audio forensic scheme under different SNR conditions.

scheme achieves optimal performance faster than the benchmark strat-
egy with less signal information. Specifically, the equal error rate of
the proposed scheme decreases from 17.9% at 5 dB to 4.0% at 25 dB
whereas the benchmark strategy achieves the same equal error rate only
at 30 dB. Moreover, despite showing a consistent performance trend, the
proposed scheme is more effective than the benchmark strategy even for
low signal-to-noise ratios. This demonstrates that the low-rank filtering
incorporated in the proposed scheme improves the accuracy of detecting
audio tampering, especially in poor signal-to-noise conditions.

6. Conclusions

The audio forensic scheme described in this chapter leverages a convo-
lutional neural network classifier to evaluate electric network frequency
features in audio signals to detect tampering without manual regula-
tion or information about the concurrent reference frequency from the
power grid. The experimental results demonstrate that the audio foren-
sic scheme increases the accuracy of tamper detection and is better
adapted to noisy environments than the benchmark strategy of Reis et
al. [19]. For example, the proposed scheme reduces the overall error rate
by 1.3% and increases the equal error rate by 0.7% compared with the
benchmark strategy. Additionally, it increases the equal error rate up
to 2.9% compared with the benchmark strategy under different signal-

267

to-noise conditions. The tamper detection performance and robustness

ADVANCES IN DIGITAL FORENSICS XVI

in noisy environments help ensure the reliability of audio evidence and
protect intellectual property.

Future research will attempt to enhance detection accuracy and ef-
ficiency in more aggressive scenarios, and develop an online detection
system that identifies the specific locations of audio tampering. Addi-
tionally, future research will explore the application of electric network
frequency signals in video forensics.

Acknowledgement

This research was supported by the Natural Science Foundation of
China under Grant nos. 61772571, U1536204, 61971366 and 61671396.

References

268

[1] M. Arnold, Audio watermarking: Features, applications and algo-
rithms, Proceedings of the IEEE International Conference on Mul-
timedia and Exposition – Latest Advances in the Fast-Changing
World of Multimedia, vol. 2, pp. 1013–1016, 2000.

[2] J. Chen, X. Kang, Y. Liu and Z. Wang, Median filtering forensics
based on convolutional neural networks, IEEE Signal Processing
Letters, vol. 22(11), pp. 1849–1853, 2015.

[3] P. Esquef, J. Apolinario and L. Biscainho, Edit detection in speech
recordings via instantaneous electric network frequency variations,
IEEE Transactions on Information Forensics and Security, vol.
9(12), pp. 2314–2326, 2014.

[4] P. Esquef, J. Apolinario and L. Biscainho, Improved edit detection
in speech via ENF patterns, Proceedings of the IEEE International
Workshop on Information Forensics and Security, 2015.

[5] R. Garg, A. Varna, A. Hajj-Ahmad and M. Wu, “Seeing” ENF:
Power-signature-based timestamps for digital multimedia via opti-
cal sensing and signal processing, IEEE Transactions on Informa-
tion Forensics and Security, vol. 8(9), pp. 1417–1432, 2013.

[6] A. Hajj-Ahmad, R. Garg and M. Wu, Instantaneous frequency
estimation and localization for ENF signals, Proceedings of the
Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference, 2012.

[7] A. Hajj-Ahmad, R. Garg and M. Wu, ENF-based region-of-
recording identification for media signals, IEEE Transactions on
Information Forensics and Security, vol. 10(6), pp. 1125–1136, 2015.

Mao et al.

[8] G. Hua, G. Bi and V. Thing, On practical issues of electric network
frequency based audio forensics, IEEE Access, vol. 5, pp. 20640–
20651, 2017.

[9] G. Hua, Y. Zhang, J. Goh and V. Thing, Audio authentication by
exploring the absolute error map of ENF signals, IEEE Transactions
on Information Forensics and Security, vol. 11(5), pp. 1003–1016,
2016.

[10] M. Imran, Z. Ali, S. Bakhsh and S. Akram, Blind detection of copy-
move forgery in digital audio forensics, IEEE Access, vol. 5, pp.
12843–12855, 2017.

[11] G. Karantaidis and C. Kotropoulos, Assessing spectral estimation
methods for electric network frequency extraction, Proceedings of
the Twenty-Second Pan-Hellenic Conference on Informatics, pp.
202–207, 2018.

[12] X. Lin and X. Kang, Robust electric network frequency estima-
tion with rank reduction and linear prediction, ACM Transactions
on Multimedia Computing, Communications and Applications, vol.
14(4), article no. 84, 2018.

[13] X. Lin, J. Liu and X. Kang, Audio recapture detection with con-
volutional neural networks, IEEE Transactions on Multimedia, vol.
18(8), pp. 1480–1487, 2016.

[14] Y. Liu, Z. Yuan, P. Markham, R. Conners and Y. Liu, Application
of power system frequency for digital audio authentication, IEEE
Transactions on Power Delivery, vol. 27(4), pp. 1820–1828, 2012.

[15] A. Martin, G. Doddington, T. Kamm, M. Ordowski and M. Przy-
bocki, The DET curve in assessments of detection task performance,
Proceedings of the Fifth European Conference on Speech Communi-
cation and Technology, 1997.

[16] D. Nicolalde Rodriguez and J. Apolinario, Evaluating digital audio
authenticity with spectral distances and ENF phase change, Pro-
ceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 1417–1420, 2009.

[17] D. Nicolaide Rodriguez, J. Apolinario and L. Biscainho, Audio au-
thenticity: Detecting ENF discontinuity with high precision phase
analysis, IEEE Transactions on Information Forensics and Secu-
rity, vol. 5(3), pp. 534–543, 2010.

[18] X. Pan, X. Zhang and S. Lyu, Detecting splicing in digital audios
using local noise level estimation, Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, pp.
1841–1844, 2012.

269

ADVANCES IN DIGITAL FORENSICS XVI

[19] P. Reis, J. da Costa, R. Miranda and G. Del Galdo, ESPRIT-
Hilbert-based audio tampering detection with SVM classifier for
forensic analysis via electrical network frequency, IEEE Transac-
tions on Information Forensics and Security, vol. 12(4), pp. 853–
864, 2016.

[20] H. Su, A. Hajj-Ahmad, M. Wu and D. Oard, Exploring the use of
ENF for multimedia synchronization, Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing,
pp. 4613–4617, 2014.

[21] S. Vatansever, A. Dirik and N. Memon, Factors affecting ENF-based
time-of-recording estimation for video, Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing,
pp. 2497–2501, 2019.

[22] Z. Wang, J. Wang, C. Zeng, Q. Min, Y. Tian and M. Zuo, Digital
audio tampering detection based on ENF consistency, Proceedings
of the International Conference on Wavelet Analysis and Pattern
Recognition, pp. 209–214, 2018.

[23] Q. Zhao, D. Meng, Z. Xu, W. Zuo and L. Zhang, Robust principal
component analysis with complex noise, Proceedings of the Thirty-
First International Conference on Machine Learning, vol. II, pp.
55–63, 2014.

270

VII

NOVEL APPLICATIONS

Chapter 15

INSIDER THREAT DETECTION USING
MULTI-AUTOENCODER FILTERING
AND UNSUPERVISED LEARNING

Yichen Wei, Kam-Pui Chow and Siu-Ming Yiu

Abstract Insider threat detection and investigation are major challenges in digital
forensics. Unlike external attackers, insiders have privileges to access
resources in their organizations and violations of normal behavior are
difficult to detect.

This chapter describes an unsupervised deep learning framework
for detecting insider threats by analyzing system log files. A typical
deep neural network can capture normal behavior patterns, but not in-
sider threat behavior patterns because of the presence of small, if any,
amounts of insider threat data. For example, the autoencoder unsuper-
vised deep learning model, which is widely used for anomaly detection,
requires a dataset containing labeled normal data for training purposes
and does not work well when the training dataset contains anomalies. In
contrast, the framework proposed in this chapter leverages unsupervised
multi-autoencoder filtering to remove anomalies from a training dataset
and uses the resulting trained Gaussian mixture model to estimate the
distributions of encoded and recognized normal data; data with lower
probabilities is identified as insider threat data by the trained model.
Experiments demonstrate that the multi-autoencoder-filtered unsuper-
vised learning framework has superior detection performance compared
with state-of-the-art baseline models.

Keywords: Insider threat detection, unsupervised deep learning, autoencoders

1. Introduction

The insider threat continues to cause significant losses to governments,
businesses, hospitals and educational institutions. Insiders are masquer-
aders, traitors [22] or unintentional violators whose behaviors are abnor-
mal compared with their organizations’ computer system conventions.

c© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XVI, IFIP AICT 589, pp. 273–290, 2020.

https://doi.org/10.1007/978-3-030-56223-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56223-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-56223-6_15

ADVANCES IN DIGITAL FORENSICS XVI

Malicious insiders are difficult to detect because they are located within
their organizations and have privileges to access resources in their orga-
nizations.

Insider threat detection and investigation are challenging tasks in dig-
ital forensics. Malicious insiders may take actions such as inserting back-
doors in internal systems to launch attacks later, installing keyloggers to
gain credentials and steal sensitive information, even deleting traces of
their unauthorized activities. According to the Breach Level Index [28],
almost 214 sensitive data records are compromised every second in the
world and around 40 percent of the compromises are due to insiders [20].

Digital forensics is a posteriori in nature – investigations are con-
ducted after crimes were committed and the damage has been done.
To address the insider threat, it is necessary to make a priori predic-
tions with the help of deep learning methods that automatically detect
anomalous user behavior and capture evidence of malicious activity.

This chapter presents a novel unsupervised deep learning insider threat
investigation framework that can profile normal user behavior patterns
and prevent data leakage. A synthetic insider threat dataset from the
Software Engineering Institute at Carnegie Mellon University [26] is em-
ployed to evaluate the insider threat detection framework. The original
log files in the dataset are pre-processed to extract daily system opera-
tion features and user metadata [29] that are used to distinguish insider
threat activities from normal activities. Unfortunately, the dataset con-
tains very limited, if any, insider threat data, which makes it difficult
for traditional supervised deep learning models to learn insider threat
behavior patterns.

The proposed framework employs a neoteric unsupervised deep learn-
ing model that is inspired by the basic autoencoder model [10]. The
framework leverages unsupervised learning to solve the detection prob-
lem. It is based on the intuition that an autoencoder may not learn
feature patterns well if it seldom or never observes insider threat behav-
ior patterns; in other words, the reconstruction error of insider threat
data would be large. Therefore, multiple autoencoders are cascaded to
filter out data with large reconstruction errors as potential insider threat
data, leaving the dataset with normal data. Following this, a Gaussian
mixture model is employed to estimate the distribution of the recognized
encoded normal data.

Experiments demonstrate that the proposed framework compares fa-
vorably with state-of-the-art unsupervised insider detection methods.
Specifically, the framework increases the recall and area under the ROC
curve (AUC) metrics by more than 19% and 23%, respectively.

274

Wei, Chow & Yiu

2. Related Work

Insider threat detection has been studied widely by academia and
industry. The Software Engineering Institute at Carnegie Mellon Uni-
versity has done considerable work on detecting insider threats. For
example, researchers have inspected network traffic through the Squid
proxy server [25], set up access control lists and signatures, and tagged
documents to check if data leakage has occurred from within an or-
ganization. Splunk [27] has created mature security products for log
management and anomaly detection.

In general, there are two broad insider threat detection solutions: (i)
traffic inspection; and (ii) behavior profiling. Traffic inspection solu-
tions examine network traffic content to check whether or not sensitive
information leaks outward from an organization. Wei et al. [31, 32] have
developed payload attribution techniques that trace data leaks. An-
other approach is to use steganography or watermarking to ensure that
distributors of the marked files cannot deny their leakage [14],

While traffic inspection solutions perform post mortem detection of
insider threats, behavior profiling solutions are useful for insider threat
prediction. Le and Zincir-Heywood [15] have used a hidden Markov
model to capture normal user behavior sequences; insider threat alarms
are raised when normal sequence violations are observed. Graph-based
anomaly detection methods have been used to discover insider threats [7].
Axelrad et al. [2] have developed a directed acyclic graph representation
of a Bayesian network for insider threat detection. However, graph con-
struction is costly and human experts are required to manually provide
empirical estimates of probabilities.

Machine learning models [9, 15] such as self organizing maps [13] and
C4.5 decision trees [19] have been applied to insider threat detection.
While several well-designed supervised models have been used to detect
anomalies [5], small numbers of insider threat records present in training
datasets prevent supervised models from learning insider threat data
patterns. Additionally, in real-world situations, labeled insider threat
data is generally not available. As a result, unsupervised learning models
should be applied to detect insider threats.

Popular unsupervised learning approaches include the k-means [17]
and isolation forest [16] methods. One-class classification has also been
used for anomaly detection (e.g., one-class kernel Fisher discriminant
analysis [21] and one-class support vector machines [23]). However, these
methods implicitly assume that all the training data is normal, which is
not appropriate in practice. Thus, few, if any, insider threat detection
techniques actually employ unsupervised deep learning.

275

ADVANCES IN DIGITAL FORENSICS XVI

Autoencoders [10] and variants such as denoising autoencoders [30]
and variational autoencoders [12] have been used to detect anomalies.
Although many anomaly detection applications claim that their models
employ unsupervised learning, they still correspond to one-class clas-
sification models because they rely on a priori labeling to select only
normal data for training. The state-of-the-art deep autoencoding Gaus-
sian mixture model [33] also relies on labeled normal data for training,
but its performance is sensitive to contamination by anomalies. In other
words, the model is not well suited to insider threat detection without
labeled data.

In the case of data leakage and intranet attacks, malicious insider ac-
tivities tend to manifest themselves as anomalous behavior or abnormal
network traffic content for the specific insider. For example, it is normal
for a salesman to download price records from a remote sales department
server and abnormal for a human resources specialist to do so, but the
operation itself is normal in the enterprise system. In fact, insider threat
behavior is very complex and it is infeasible to use traditional rule-based
approaches and estimation theory for detection [3]. Moreover, collecting
a large amount of labeled training data manually is difficult and time-
consuming. The state-of-the-art unsupervised insider threat detection
approach proposed by Tuor et al. [29] augments a basic deep neural net-
work with long short-term memory to recognize insider threat data with
high anomaly scores, but the recall rate is not high enough. In contrast,
by relying on multiple autoencoders and true unsupervised learning, the
proposed framework estimates the distribution of normal encoded data
using a Gaussian mixture model and can identify insider threat data.
Indeed, experiments demonstrate that the proposed multi-autoencoder-
filtered unsupervised learning model has superior detection performance
compared with state-of-the-art baseline models.

3. Multi-Autoencoder Detection Framework

A basic autoencoder is a deep neural network with a symmetric struc-
ture (Figure 1). The network comprises two fully-connected-layer parts,
encoder and decoder, that do not require supervisory labels. The ob-
jective of the network is to reconstruct the input in the output layer.
In this feed-forward network, the encoder layers encode the input into
the middle code layer, following which the decoder layers decode the
code layer into the output. The basic loss function is defined as the
reconstruction error between the input and output.

Traditionally, an autoencoder implements a non-linear reduction of
high dimensional data [18]. Most unsupervised anomaly detection ap-

276

Wei, Chow & Yiu

Figure 1. Basic autoencoder structure.

plications that use autoencoders require labeled normal data for training;
their models are essentially semi-supervised because they assume that
no anomalous data exists in their training sets (which is not realistic).
This section presents a true unsupervised learning model that does not
need labeled data at any time during its processing.

3.1 Problem Statement

Given a dataset of system logs about user operations without anno-
tated labels, the objective is to detect potential insider threat activity
within an organization. The assumption is that insider threat events are
rare in system logs. The proposed framework is based on the idea that
a deep neural network can learn the patterns of the majority normal
data, but it would not reconstruct anomalous data patterns due to the
paucity of insider threat data.

Feature aggregation should accommodate five insider threat scenar-
ios [3]: (i) an employee logs in after working hours and uses removable
devices to steal sensitive information; (ii) an employee suddenly visits
job-hunting websites and emails large attachments to competitors; (iii)
an employee masquerades as the employer to send email to employees
and disrupt normal company operations; (iv) an employee logs into an-

277

ADVANCES IN DIGITAL FORENSICS XVI

Table 1. Extracted features.

user, day, role, projects, department, team, supervisor, function,
psychometricScoreO, psychometricScoreC, psychometricScoreE,
psychometricScoreA, psychometricScoreN, officehour logon usualPC,
afterhour logon unusualPC, officehour logon unusualPC,
afterhour logon usualPC, officehour deviceConnect,
officehour deviceDisConnect, afterhour deviceConnect,
afterhour deviceDisconnect, officehour FileOpen,
officehour FileCopy, officehour FileWrite, officehour FileDelete,
afterhour FileOpen, afterhour FileCopy, afterhour FileWrite,
afterhour FileDelete, officehour unusualUrl wwwVisit,
officehour usualUrl wwwVisit, officehour unusualUrl wwwUpload,
officehour usualUrl wwwUpload, officehour unusualUrl wwwDownload,
officehour usualUrl wwwDownload, afterhour unusualUrl wwwVisit,
afterhour usualUrl wwwVisit, afterhour unusualUrl wwwUpload,
afterhour usualUrl wwwUpload, afterhour unusualUrl wwwDownload,
afterhour usualUrl wwwDownload, officehour Logon, officehour Logoff,
afterhour Logon, afterhour Logoff, officehour unusualEmail AttachYes,
officehour usualEmail AttachYes, officehour unusualEmail AttachNo,
officehour usualEmail AttachNo, afterhour unusualEmail AttachYes,
afterhour usualEmail AttachYes, afterhour unusualEmail AttachNo,
afterhour usualEmail AttachNo

other employee’s computer to find sensitive documents and emails the
documents or stores them on a removable device; and (v) an employee
suddenly uploads a large number of files to his/her mailbox.

In order to extract appropriate features to distinguish insider threat
records from normal records, the log files containing device, email, file,
network and login data are combined to aggregate the discriminating
features of each record of each user for each day [29]. Event occurrences
are recorded in the feature columns (e.g., how many times a user sent
email messages with or without large attachments to an unusual third
party after office hours in one day).

Table 1 shows the aggregated data and user metadata features after
the deletion of meaningless columns. A value is deemed to be usual if
it has appeared in more than 5% of the log records before the given log
record.

3.2 Multi-Autoencoder Filtering

After extracting appropriate features from the log files, an aggregated
feature matrix is constructed. Each row of the aggregated feature matrix
corresponds to the operations done by a user during a day and each

278

Wei, Chow & Yiu

Figure 2. Multi-autoencoder filtering structure.

column represents the number of instances of a specific event or user
metadata item. The feature matrix is randomly divided to produce the
training and testing datasets.

In the following, the unlabeled training input and the corresponding

output are denoted by X = (x
(j)
i) and X̂ = (x̂

(j)
i), respectively, where

i = 1, . . . , n; j = 1, . . . , d; x
(j)
i , x̂

(j)
i ∈ R; n is the number of input records;

and d is the dimension of the input and output matrices.
Figure 2 shows the multi-encoder filtering structure. The structure

comprises k cascaded separately-trained autoencoders with the structure
shown in Figure 1. The following steps are involved:

Step 1: Train the first autoencoder (AE1) using the entire training
set.

Step 2: Compute the reconstruction error L(X, X̂) between the

input X and output X̂ according to the following equation:

f
(j)
i =

exp(x̂
(j)
i)

∑d
l=1 exp (x̂

(l)
i)

, Li = −∑d
j=1 x

(j)
i · log (f (j)

i) (1)

where L(X, X̂) is an n-dimensional vector whose ith entry is de-
noted by Li. Following this, filter out r% of the training set with
the largest reconstruction errors.

Step 3: Train the next autoencoder using the remaining training
set. Repeat Step 2 until filtering has been done by all k autoen-
coders.

Assume that the proportion of the insider events in the entire training
set is p0. Then, the probability of randomly selecting an insider event
record is p0. Let c be a coefficient. Furthermore, let cp0 be the probabil-
ity of one autoencoder filtering out one item as an insider threat record.
In other words, the ability of one autoencoder to filter insider threat
data is c times better than random filtering.

279

ADVANCES IN DIGITAL FORENSICS XVI

Using the first autoencoder, the corresponding largest r% of training
data is filtered out according to the reconstruction error metric L(X, X̂).
If the original training dataset contains n total records and s insider
threat records, then the proportion of insider records remaining in the
training set after the kth autoencoder (AEk) is pk.

The remaining proportion of insider threat records in the training set
after the first autoencoder (also the same as the original insider threat
record proportion before training the second autoencoder) is given by:

p1 =
np0 − nrcp0
n(1− r)

=
1− cr

1− r
p0 (2)

where cr ≤ 1.
Mathematical induction yields the following expression:

pk = (
1− cr

1− r
)kp0 (3)

In order to filter out all the insider threat records in the training set, the
following condition must hold:

pkn(1− r)k < 1 ⇒ (1− cr)ks < 1. (4)

The multi-autoencoder filtering process yields data that is almost
completely normal with a negligible number of insider threat records.
The normal data is then encoded to its code layer representation for the
kth autoencoder and the distribution of the recognized encoded normal
records is estimated. This enables insider threat records to be identified
when their encoded feature representations deviate from the distribution
of recognized encoded normal records.

3.3 Insider Threat Prediction

After recognizing the compressed representation of pure normal data,
the data is fitted to a Gaussian mixture model to estimate the distribu-
tion of normal encoded data.

Let Z = (z
(j)
i) be the compressed representation of the normal input to

the code layer, where i = 1, . . . ,m; j = 1 . . . , d; z
(j)
i ∈ R; m is the number

of recognized normal records; and d is the dimension of the compression
representation in the code layer. Then, the probability density function
of the multivariate Gaussian mixture distribution parameterized by θ =
{

(θc = (μc,Σ
2
c), αc)

}C

c=1
is given by:

P (z | θ) = ∑C
c=1 αcΦ(z | θc) (5)

280

Wei, Chow & Yiu

where C is the number of Gaussian components, (μc,Σ
2
c) are the mean

and covariance matrix of the cth Gaussian component, αc is the prob-
ability that a sample belongs to the cth Gaussian component, and the
probability density of the cth Gaussian component Φ(z | θc) is given by:

Φ(z | θc) =
1

(2π)
D
2 |Σ| 12

exp (−(z − μ)TΣ−1(z − μ)

2
) (6)

Maximum likelihood estimation is employed to obtain the Gaussian
mixture model parameters. Given a set of N samples x1, . . . , xN and
assuming independent sampling, the likelihood L(θ) of a fixed parameter
θ is given by:

L(θ) =
∏m

j=1 P (zj | θ) (7)

Hence, the log-likelihood logL(θ) is given by:

logL(θ) =
∑m

j=1 logP (zj | θ) (8)

The expectation-maximization algorithm [6] is used to maximize the
log-likelihood via the following iterative process:

Step 1: Initialize the parameters θ =
{

μc,Σ
2
c , αc

}C

c=1
.

Step 2: Repeat Steps 3 and 4 in sequence to update θ until con-
vergence.

Step 3: Compute the probability γjc that sample j comes from
the cth component as follows:

γjc =
αcΦ(zj | θc)

∑C
c=1 αcΦ(zj | θc)

, j = 1, . . . ,m; c = 1, . . . , C

Step 4: Update the parameters:

μc =

∑m
j (γjczj)
∑m

j γjc
, c = 1, . . . , C

Σc =

∑m
j γjc(zj − μc)(zj − μc)

T

∑m
j γjc

, c = 1, . . . , C

αc =

∑m
j γjc

C
, c = 1, . . . , C

Given a sample input x, it is compressed to z via multi-autoencoder
filtering, after which the negative log probability density, − logP (z | θ),
is computed as its behavior score. All the samples with behavior scores
larger than a threshold ε are predicted to be insider threat records. The
threshold ε is set based on cross-validation.

281

ADVANCES IN DIGITAL FORENSICS XVI

Figure 3. Framework workflow.

3.4 Framework Workflow

Figure 3 shows the overall framework workflow. A total of 53 fea-
tures were aggregated from the log files of user login/logout activities,
operations on devices, files, email and network connections, along with
user metadata. The feature matrix was then used to train the multi-
autoencoder filtering model in an unsupervised manner without labels.
Each row in the matrix corresponded to user behavior on a given day.
Multi-autoencoder filtering was used to recognize a portion of the normal
data. Meanwhile, the code layer in the last autoencoder was treated as
the appropriate low-dimensional representation of normal behavior pro-
filing. Next, the compressed normal data was used to fit a Gaussian
mixture model to estimate the distribution of normal encoded data.
Records with behavior scores larger than the threshold were predicted
to be insider threat records.

4. Framework Evaluation

This section presents the evaluation results obtained when applying
the framework to the Insider Threat Dataset (r6.2) [26].

4.1 Multi-Autoencoder Filtering Performance

Figure 4 shows the theoretical minimum k values for different propor-
tions r = 10%, 20% and 30% for dropping insider threat items from the
training set based on coefficient c (Equation (4)). The number of insider

282

Wei, Chow & Yiu

Figure 4. Minimum k values for eliminating all insider threat items.

records in the synthetic dataset after feature aggregation was s = 73 out
of a total 1,391,247 records.

A key evaluation metric is the purification performance of autoencoder
filtering versus that of random filtering. A coefficient c greater than one
implies that autoencoder filtering of insider threat records is better than
random filtering.

Figure 5 shows the percentages of insider threat records remaining
in the training set after one round of autoencoder filtering and random
filtering over 100 trials.

Figure 6 shows the percentages of insider threat records remaining in
the training set after using five (k = 5) multi-autoencoder filters (MAFs)
and after five random filtering rounds over 100 trials.

Table 2 shows the corresponding average remaining insider record
percentages after multi-autoencoder and random filtering.

Figure 7 shows the filtering performance of five continuous autoen-
coder filters on the Insider Threat Dataset (r6.2) during a single trial.
The graph reveals that the proportion of insider threat records remaining
in the training set continuously decreases from autoencoder to autoen-
coder.

283

ADVANCES IN DIGITAL FORENSICS XVI

Figure 5. Insider threat records after one round of filtering.

Figure 6. Insider threat records after five rounds of filtering.

284

Wei, Chow & Yiu

Table 2. Average percentages of remaining insider threat records after filtering.

Filtering Technique Remaining Insider Threat Records
One Round Five Rounds

Autoencoder Filtering 0.0028301982% 0.0009267764%
Random Filtering 0.0052504669% 0.0052508192%

Figure 7. Multi-autoencoder filtering performance in a single trial.

4.2 Comparison Against Baseline Methods

This section compares the performance of the proposed framework
against state-of-the-art baseline models, specifically, the k-means, one-
class support vector machine, unsupervised deep neural network [29],
one-class autoencoder [8] and deep autoencoding Gaussian mixture [33]
models using the Insider Threat Dataset (r6.2).

Applying feature extraction to the dataset yielded 53 dimensions of
1,391,247 instances that included only 73 insider threat records. The
dataset was randomly split into a training set, cross-validation set and
testing set with percentages of 80%, 10% and 10%, respectively. Note
that the one-class classification models (i.e., one-class support vector ma-
chine, one-class autoencoder and deep autoencoding Gaussian mixture
models) were semi-supervised over the entire anomaly detection process.
The implicit assumption was that they had a high-quality training set

285

ADVANCES IN DIGITAL FORENSICS XVI

Table 3. Comparison of the proposed framework against five baseline models.

Method Recall AUC

k-means model 0 NA
One-class support vector machine model 0.733 0.405
Unsupervised deep neural network model 0.556 0.625
One-class autoencoder model 0.364 0.589
Deep autoencoding Gaussian mixture model 0.476 0.692
Proposed framework 0.923 0.925

containing only normal data, although, in a real unsupervised learning
scenario, it would not be known if any (and how much) anomalous data
existed in the training dataset.

The proposed framework and the other deep learning models were
implemented in Keras [11] running on the TensorFlow [1] backend. The
k-means and one-class support vector machine models were implemented
in scikit-learn [24]. All the experiments were executed on an Intel Core
i5-3570 2.4GHz CPU with 32GB memory.

The framework was configured with five autoencoders and dropping
rate r = 20%. Each autoencoder network executed with Input(53) –
Dense(53, 50, none) – Dense(50, 25, tanh) – Dropout(0.2) – Dense(25,
8, relu) – Dense(8, 25, relu) – Dropout(0.2) – Dense(25, 50, tanh) –
Dense(50, 53, relu), where Input(x) is an input layer with x-dimensional
input, Dense(i, o, g) is a fully connected layer with i input neurons and
o output neurons with activation function g, and Dropout(d) denotes
a drop out of d% of neurons to avoid overfitting. All the autoencoders
were compiled by a stochastic gradient descent optimizer with a learning
rate of 1× 10−4, training epoch number of 500 and batch size of 1,024.

In insider threat detection scenarios, due to the property that ma-
licious insiders are rare and just one overlooked incident could cause
considerable damage, the recall metric is more significant than other
metrics. In other words, it is critical to detect the insider threat even
if the number of false alarms are increased. At the same time, a good
solution would reduce the number of false alarms to the extent possible
while maintaining a high recall value. Because recall (also called the
true positive rate) and the false positive rate constitute a tradeoff, the
area under the ROC curve (AUC) is also used as a metric. Note that the
horizontal and vertical axes of the ROC curve correspond to the false
positive rate and true positive rate (recall), respectively.

Table 3 compares the performance of the proposed framework against
the five baseline models. The proposed framework clearly outperforms
all the baseline models. Indeed, the proposed framework has recall and

286

Wei, Chow & Yiu

AUC scores that are more than 19% and 23% higher, respectively, than
the best scores of the other five models.

5. Conclusions

The proposed unsupervised deep learning framework for insider threat
detection is an advancement over other unsupervised deep learning mod-
els that require a training dataset containing labeled normal data and do
not work well when the training dataset includes anomalous (i.e., insider
threat) data. The framework leverages automated multi-autoencoder
filtering to eliminate anomalies and then estimates the distributions of
encoded and recognized normal data using a Gaussian mixture model.
Data with negative log probability density values larger than a threshold
are identified as insider threat data. Experiments demonstrate that the
multi-autoencoder-filtered unsupervised learning framework has much
better recall and AUC scores compared with five state-of-the-art insider
threat detection models.

The framework is founded on the notion that an autoencoder can re-
construct the majority normal data, but cannot reconstruct rare insider
threat data satisfactorily. Due to the difficulty of detecting insider threat
data using a deep neural network without supervisory labels, the only
option is to filter out potentially anomalous data with larger reconstruc-
tion errors. However, this approach filters out portions of normal data,
which reduces the amount of normal data for estimating the multivariate
Gaussian mixture model distribution, contributing to an elevated false
positive rate [4]. Future research will modify the framework to decrease
the false positive rate.

The current version of the framework is designed for static data. Fu-
ture research will extend the framework to detect anomalies in sequen-
tial and spatial data. Since the encoded non-linear representation of the
input is automatically generated by multi-autoencoder filtering, the re-
search will treat concatenated log files as inputs and use natural language
processing methods to solve the anomaly detection problem.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M.
Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg,
R. Monga, S. Moore, D. Murray, B. Steiner, P. Tucker, V. Vasude-
van, P. Warden, M. Wicke, Y. Yu and X. Zheng, TensorFlow: A
system for large-scale machine learning, Proceedings of the Twelfth
USENIX Symposium on Operating Systems Design and Implemen-
tation, pp. 265–283, 2016.

287

ADVANCES IN DIGITAL FORENSICS XVI

[2] E. Axelrad, P. Sticha, O. Brdiczka and J. Shen, A Bayesian net-
work model for predicting insider threats, Proceedings of the IEEE
Security and Privacy Workshops, pp. 82–89, 2013.

[3] S. Axelsson, A Preliminary Attempt to Apply Detection and Esti-
mation Theory to Intrusion Detection, Technical Report, Depart-
ment of Computer Engineering, Chalmers University of Technology,
Goteborg, Sweden, 2000.

[4] S. Axelsson, The base-rate fallacy and the difficulty of intrusion
detection, ACM Transactions on Information and System Security,
vol. 3(3), pp. 186–205, 2000.

[5] V. Chandola, A. Banerjee and V. Kumar, Anomaly detection: A
survey, ACM Computing Surveys, vol. 41(3), article no. 15, 2009.

[6] A. Dempster, N. Laird and D. Rubin, Maximum likelihood from
incomplete data via the EM algorithm, Journal of the Royal Statis-
tical Society: Series B (Methodological), vol. 39(1), pp. 1–38, 1977.

[7] W. Eberle and L. Holder, Applying graph-based anomaly detection
approaches to the discovery of insider threats, Proceedings of the
IEEE International Conference on Intelligence and Security Infor-
matics, pp. 206–208, 2009.

[8] D. Ellison, Fraud detection using autoencoders in Keras with a Ten-
sorFlow backend, Oracle AI and Data Science Blog, August 9, 2018.

[9] G. Gavai, K. Sricharan, D. Gunning, J. Hanley, M. Singhal and R.
Rolleston, Supervised and unsupervised methods to detect insider
threats from enterprise social and online activity data, Journal of
Wireless Mobile Networks, Ubiquitous Computing and Dependable
Applications, vol. 6(4), pp. 47–63, 2015.

[10] G. Hinton and R. Salakhutdinov, Reducing the dimensionality of
data with neural networks, Science, vol. 313(5786), pp. 504–507,
2006.

[11] Keras, Keras API Reference (keras.io/api), 2020.

[12] D. Kingma and M. Welling, Auto-Encoding Variational Bayes,
arXiv: 1312.6114v10, 2014.

[13] T. Kohonen, Self-organized formation of topologically correct fea-
ture maps, Biological Cybernetics, vol. 43(1), pp. 59–69, 1982.

[14] A. Kumar and K. Pooja, Steganography – A data hiding technique,
International Journal of Computer Applications, vol. 9(7), pp. 19–
23, 2010.

[15] D. Le and A. Zincir-Heywood, Evaluating insider threat detection
workflow using supervised and unsupervised learning, Proceedings
of the IEEE Security and Privacy Workshops, pp. 270–275, 2018.

288

Wei, Chow & Yiu

[16] F. Liu, K. Ting and Z. Zhou, Isolation forest, Proceedings of the
Eighth IEEE International Conference on Data Mining, pp. 413–
422, 2008.

[17] J. MacQueen, Some methods for classification and analysis of mul-
tivariate observations, Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, vol. 1, pp. 281–297,
1967.

[18] K. Pearson, On lines and planes of closest fit to systems of points in
space, The London, Edinburgh and Dublin Philosophical Magazine
and Journal of Science, vol. 2(11), pp. 559–572, 1901.

[19] J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-
mann, Burlington, Massachusetts, 2014.

[20] T. Rashid, I. Agrafiotis and J. Nurse, A new take on detecting
insider threats: Exploring the use of hidden Markov models, Pro-
ceedings of the Eighth ACM International Workshop on Managing
Insider Security Threats, pp. 47–56, 2016.

[21] V. Roth, Kernel Fisher discriminants for outlier detection, Neural
Computation, vol. 18(4), pp. 942–960, 2006.

[22] M. Salem, S. Hershkop and S. Stolfo, A survey of insider attack
detection research, in Insider Attack and Cyber Security, S. Stolfo,
S. Bellovin, A. Keromytis, S. Hershkop, S. Smith and S. Sinclair
(Eds.), Springer, Boston, Massachusetts, pp. 69–90, 2008.

[23] B. Scholkopf, R. Williamson, A. Smola, J. Shawe-Taylor and J.
Platt, Support vector method for novelty detection, Proceedings of
the Twelfth International Conference on Neural Information Pro-
cessing Systems, pp. 582–588, 1999.

[24] scikit-learn, Machine learning in Python (scikit-learn.org),
2019.

[25] G. Silowash, T. Lewellen, J. Burns and D. Costa, Detecting and
Preventing Data Exfiltration Through Encrypted Web Sessions via
Traffic Inspection, Technical Note, CMU/SEI-2013-TN-012, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 2013.

[26] Software Engineering Institute, Insider Threat Test Dataset,
Carnegie Mellon University, Pittsburgh, Pennsylvania (resources.
sei.cmu.edu/library/asset-view.cfm?assetid=508099), 2016.

[27] Splunk Technology, Splunk, San Francisco, California (www.sp
lunk.com), 2020.

289

ADVANCES IN DIGITAL FORENSICS XVI

[28] Thales Digital Identity and Security, Breached records more than
doubled in H1 2018, reveals Breach Level Index, Thales Digital Iden-
tity and Security Blog, October 23, 2018.

[29] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols and S. Robinson,
Deep learning for unsupervised insider threat detection in struc-
tured cybersecurity data streams, presented at the Thirty-First
AAAI Conference on Artificial Intelligence Workshop on AI and
OR for Socal Good, 2017.

[30] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P. Manzagol,
Stacked denoising autoencoders: Learning useful representations in
a deep network with a local denoising criterion, Journal of Machine
Learning Research, vol. 11, pp. 3371–3408, 2010.

[31] Y. Wei, F. Xu, X. Chen, Y. Pu, J. Shi and S. Qing, Winnowing dou-
ble structure for wildcard query in payload attribution, Proceedings
of the Seventeenth International Conference on Information Secu-
rity, pp. 454–464, 2014.

[32] Y. Wei, F. Xu, X. Chen, J. Shi and S. Qing, Winnowing multihash-
ing structure with wildcard query, Proceedings of the Asia-Pacific
Conference on Web Technologies and Applications, pp. 265–281,
2014.

[33] B. Zong, Q. Song, M. Min, W. Cheng, C. Lumezanu, D. Cho and
H. Chen, Deep autoencoding Gaussian mixture model for unsuper-
vised anomaly detection, poster presented at the Sixth International
Conference on Learning Representations, 2018.

290

Chapter 16

DETECTING LOCAL MACHINE DATA
LEAKAGE IN REAL TIME

Jingcheng Liu, Yaping Zhang, Yuze Li, Yongheng Jia, Yao Chen and
Jin Cao

Abstract Data privacy leaks are becoming a serious problem. A large percentage
of privacy leaks are due to inadvertent user errors. Most data leak detec-
tion solutions do not have privacy-preserving functionality. Moreover,
due to the third-party delivery of data in the cloud, it is not possible to
guarantee real-time leak detection.

This chapter proposes a local-side data leakage detection method
that uses a suffix array. The method also employs encryption for data
protection. The method is compared with mature data leak detection
algorithms to demonstrate its effectiveness in real time and that the
additional data protection overhead is acceptable.

Keywords: Real-time data leak detection, suffix array, data privacy

1. Introduction

The mobile Internet has brought great convenience to modern society.
However, massive amounts of data are now transmitted over the Inter-
net, which renders the task of securing sensitive private data extremely
important.

Detecting and stopping privacy leaks are important components of
data security. Private data leaks have three main causes. The first and
most common is leakage during transmission, where a user directly trans-
mits unencrypted or weakly encrypted data over the Internet. HTTPS-
based encryption is a common solution to data leakage during transmis-
sion. The second is data leakage caused by local malware or malicious
users. Since the stolen private data is typically encrypted before trans-
mission, the leakage cannot be detected by examining the transmitted
data. Therefore, these data leaks are detected by monitoring for abnor-

c© IFIP International Federation for Information Processing 2020

Published by Springer Nature Switzerland AG 2020

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XVI, IFIP AICT 589, pp. 291–308, 2020.

https://doi.org/10.1007/978-3-030-56223-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56223-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-56223-6_16

ADVANCES IN DIGITAL FORENSICS XVI

mal transmission behaviors. The third cause is inadvertent data leakage
due to user error or incorrect operations. Examples include erroneously
sending internal email to external entities and uploading sensitive data
to social networking sites. Inadvertent data leaks are difficult to detect
because they are caused by ordinary users who perform normal opera-
tions.

Several researchers have focused on detecting and preventing private
data leaks by users. If the private data is identified in advance, it is
feasible to perform simple plaintext matching or deep packet inspection
of outbound traffic. Strict data access policies should be implemented
on the host, sensitive data should be watermarked and anomalies in
outbound data flows should be detected and investigated. However,
these methods consume significant resources and the private data could
itself be acquired by malware that compromises the matching process [5].

This research focuses on local-side data leakage detection in real time
while protecting the private data. In the proposed data leakage detection
workflow, the user first selects the private data and provides it to the
detection system. The system compares the outbound data flows from
the user against the private data in real time to detect potential leaks.
The system immediately alerts the user to the potential leaks and can
stop the outbound data flows.

The proposed data leakage method employs algorithms that secure
and detect private data in outbound flows while minimizing time and
space consumption. In particular, it employs byte stream encryption to
secure the private data used for matching as well as the outbound flows
themselves. Also, it employs a suffix array technique for local-side leak-
age detection of encrypted flows in real time. The computational time
and memory footprint are optimized for real-time leakage detection. De-
spite providing data security as an additional feature, the overall perfor-
mance of the proposed method is comparable with the performance of
the classical Knuth-Morris-Pratt and finite automaton string matching
algorithms.

2. Related Work

Early data leakage detection was mainly performed on the host side [6,
9]. Several researchers have proposed deep packet inspection of out-
bound flows to detect data leakage [15, 19]. The approaches leverage
efficient string matching algorithms such as finite automaton, heuristic
and filtering based algorithms [8, 10, 16]. Finite automaton based algo-
rithms perform matching in linear time, but this comes with large mem-
ory requirements in the worst case. The heuristic and filtering based

292

Liu et al.

algorithms use less memory, but they are vulnerable to targeted data
attacks that cause surges in the matching time.

Researchers have also proposed methods such as MapReduce, fuzzy
fingerprinting and verifiable search for data leakage detection [3, 11, 14,
20]. However, the time and space requirements can be prohibitive and
the methods do not protect private data.

The advent of cloud computing enables third parties to provide data
leak detection services [1, 13, 17, 18]. However, outsourcing this ser-
vice can result in secondary leaks of private data from the third parties
themselves. It is also important to note that third parties are high-value
targets for attackers because they handle private data from numerous
clients. When third parties cannot be trusted completely, additional pre-
processing and post-processing are required to prevent secondary data
leaks. Moreover, it is not possible for third parties to guarantee leakage
detection in real time.

3. String Matching with a Suffix Array

This section describes string matching using a suffix array. In the
following, a text string submitted by a user is denoted as S and its
length is n. The pattern string (private data) to be matched is denoted
as T and its length ism. The number of strings involved in multi-pattern
matching is k.

The suffix array algorithm has strong stability and versatility prop-
erties. In the worst case, it can maintain processing efficiency and con-
sume little computational time due to special circumstances underlying
its design. Although it takes a long time to pre-process text strings, the
complexity of a single match is only O(m + log n) after pre-processing.
This is better than string matching, which has a general complexity of
O(m+n). The performance can be improved further with multi-pattern
matching if the relative relationships between strings to be matched are
known. Additionally, the matching of a suffix array using binary search
facilitates the use of encryption to maintain data security.

3.1 Suffix Array

A suffix array [12] is commonly used for string processing. At the
core of a suffix array is a series of complex pre-processing procedures.
By pre-processing a series of target strings and making full use of the
relationships between the suffixes of a target string, information about
the target string can be obtained. The pre-processing of target strings
can be performed in O(n) time and a single search can be performed in
O(m+ log n) time.

293

ADVANCES IN DIGITAL FORENSICS XVI

Algorithm 1: String matching using a suffix array.
Data:
T : Pattern string to be matched.
SA: Suffix array of the text string.
Result:
True or False: Matching result.

a ← 0, b ← n− 1
while b− a > 1 do

c ← (a+ b)/2
if Compare(SA[c], T > 0) then

a = c
else

b = c
end
return Compare(SA[b], T = 0)

end

A string of length n has n suffixes of different lengths (i.e., substrings
from the ith character of the string to the nth character). The process
of string matching is expressed as follows:

α = ρ|β (1)

where α and β are two different suffixes, ρ is the string to be matched
and | is a connective operation on strings. After the strings are matched,
there must be two suffixes, α and β, that satisfy Equation (1). Further-
more, if the string to be matched ρ is a substring of the text string S,
there will be at least one suffix of S that makes ρ become its prefix.

The process of string matching using a suffix array involves examining
the applicability of Equation (1) to the text string. Suppose that the n
suffixes have been sorted, then a suffix array SA is obtained by storing
the starting positions of the ith small suffixes, where i ranges from 1 to
n.

Algorithm 1 specifies the process of string matching using a suffix
array.

In order to match a string, binary search can be used to identify the
suffixes that have been sorted at least once. The range of the search
can be halved with each comparison of the matched string and a suffix.
Thus, a single search is performed in O(mlog n) time.

The relationships between suffixes can be leveraged to enhance search
efficiency. Let LCP [i] denote the longest common prefix of two suffixes
beginning with SA[i − 1] and SA[i]. Then, the following relationship
exists between the pth and p− 1th suffixes of the input text T :

294

Liu et al.

Algorithm 2: Creating a longest common prefix array.
Data:
S: Text string.
SA: Suffix array of the text string.
Result:
LCP : Longest common prefix array of the text string.

j ← 0, k ← 0
for i = 0 → n− 1 do

Rank[SA[i]] ← i
end
for i = 0 → n− 2 do

if k > 0 then
k ← k − 1

end
j ← SA[Rank[i]− 1]
while S[i+ k] = S[j + k] do

k ← k + 1
end
LCP [Rank[i]] ← k

end

return LCP

LCP [p] ≥ LCP [p− 1]− 1 (2)

This property can be used to obtain the LCP array in O(n) time [7].
Algorithm 2 specifies the process of creating the LCP array. In the

algorithm, the Rank array and suffix array SA are inverses of each other,
i.e., Rank[i] represents the order of the suffix that starts with the ith

character in all the suffixes.
Having created the LCP array, it is necessary to revisit the search

process with the pattern string. If the comparison is only performed
with the ith small suffix, it would be compared with the jth small suffix.
Let LCP (i, j) denote the longest common prefix of the two suffixes, then
LCP (i, j) corresponds to the minimum value in LCP [i+1], . . . , LCP [j].
If the value of LCP (i, j) could be obtained, then unnecessary matches
during the search would be eliminated. Since the LCP has been created,
the problem of obtaining LCP (i, j) reduces to a problem with the range
of the minimum query, which can be realized in O(1) time after pre-
processing, where the pre-processing complexity is O(n log n). Thus,
the time complexity of a single search is reduced to O(m+ log n).

Algorithm 3 specifies the single search process with the longest com-
mon prefix array LCP . Note that the FastLCP function in the algo-
rithm computes the value of LCP (i, j) for the ith and jth small suffixes
in O(1) time.

295

ADVANCES IN DIGITAL FORENSICS XVI

Algorithm 3: Searching with a longest common prefix array.
Data:
T : Pattern string to be matched.
SA: Suffix array of the text string.
LCP : Longest common prefix array of the text string.
Result:
True or False: Matching result.

last ← 0
a ← 0, b ← n− 1
while b− a > 1 do

c ← (a+ b)/2
if Compare(FastLCP (last, c), SA[c], T > 0) then

a = c
else

b = c
end
last ← c

end

return Compare(FastLCP (last, c), SA[c], T = 0)

The final task is to obtain the suffix array SA. Since the n suffixes
are parts of the original text string, considerable space is required to
store the suffixes when employing the regular O(n log n) sorting method.
Therefore, the algorithm proposed by Manber and Myers [12] is em-
ployed to quickly sort the suffix array.

Figure 1 illustrates the algorithm for creating the suffix array SA.
Assume that the text string is aabaaaab. First, the n substrings of
length one are sorted. This sort corresponds to the size relationship
between the characters, which means that the rank of a is one and the
rank of b is two.

Next, each substring is merged with its subsequent substrings to dou-
ble its length. The rank of the substring is also equivalent to that of the
two substrings, which is an n-ary two-digit number. Note that the last
substring cannot be merged with other substrings, which is equivalent
to the emergence of an empty string with rank zero. The new rank value
is then obtained. Following this, the rank value of each suffix and the
suffix array SA are obtained by repeating the process log n times. Thus,
the complexity of the entire algorithm is O(n log n).

3.2 Multi-Pattern Matching

The following three issues must be considered to implement real-time
data leakage detection while ensuring data security:

296

Liu et al.

a a b a a a a b

1 1 2 1 1 1 1 2

11 12 21 11 11 11 12 20

1 2 4 1 1 1 2 3

14 21 41 11 12 13 20 30

4 6 8 1 2 3 5 7

42 63 85 17 20 30 50 70

4 6 8 1 2 3 5 7

1st
Sort

2nd
Sort

3rd
Sort

4th
Sort

Figure 1. Creating a suffix array.

The efficiency of the suffix array algorithm should be enhanced
when performing multi-pattern matching.

The data security method that protects private data should not
negatively impact data leakage detection.

Improvements should be incorporated that shorten the search time
to ensure good real-time performance.

When a suffix array is used to search for a single string, if the last
search succeeds (i.e., the pattern string is matched), then there must be
two different suffixes α and β such that Equation (1) holds. However, if

297

ADVANCES IN DIGITAL FORENSICS XVI

the last search fails (i.e., the pattern string is not matched), then there
must be two different suffixes α and β such that the pattern string ρ
satisfies α < ρ < β, and α and β are adjacent.

When k pattern strings are present and these pattern strings have
been sorted, then it is possible to start the binary search from the po-
sition of the last match (or mismatch) regardless of whether or not the
previous match was successful. This enhances the efficiency of multi-
pattern matching to some extent.

Private data is protected by transforming the data instead of using
its original plaintext version. The transformation should protect the
data to a certain extent while guaranteeing real-time performance. The
transformation involves the conversion of the text string and all the pat-
tern strings (privacy data) to be matched into byte streams using the
XOR operation. Thus, the text content of the transformed data has the
same representation as the original data, which does not affect subse-
quent string matches. Of course, the XORed byte stream containing the
string to be matched (detected) should be as long as possible to ensure
data protection. The detailed analysis and proof are provided later in
this chapter.

Finally, it is necessary to reorder (i.e., resort) private data every time
it is transformed to enhance the efficiency of multi-pattern matching. If
the O(n log n) sorting algorithm is repeatedly used to sort the data, there
would be an unacceptable negative impact on real-time performance.
Fortunately, the data transformation using the XOR operation preserves
the original data representation. In other words, the privacy data is still
ordered in a relative manner. This order relationship is leveraged to
design a resorting algorithm with O(n) complexity.

Algorithm 4 specifies the process for resorting a multi-pattern string.
If only the initial characters of all the pattern strings to be matched
are considered, then after the XOR operation, the pattern strings with
the same initial characters would be concentrated in the same continuous
interval after reordering. Since there are only 256 possibilities for a single
byte, the starting position of the interval and length of the interval for
each possibility must be recorded, and the 256 intervals are reordered so
that the initial characters of all the strings are already ordered. Next,
the second characters are considered until all the pattern strings are
reordered. This process is repeated for each subsequent character of
each string. Since there is only one traversal, the total time complexity
is O(n).

298

Liu et al.

Algorithm 4: Resorting a multi-pattern string.
Data:
Multi: Pattern string to be resorted.
l: Left border of the resorted range.
r: Right border of the resorted range.
pos: Pending position.
deep: Deep character to be compared.
Result:
Resort: Resorted array.

Resort(Multi, l, r, pos, deep)
if l = r then

Resort[pos] ← Multi[l]
return

end
for i = 0 → 255 do

cnt[i] ← 0 pos1[i] ← −1
end
for i = l → r do

if Multi[i].length = deep then
Resort[pos] ← Multi[i]
pos ← pos+ 1
continue

end
k ← Multi[i][deep]
if pos1[k] = −1 then

pos1[k] ← i
end

end
cnt[k] ← cnt[k] + 1
for i = 0 → 255 do

if cnt[i] > 0 then
Resort(Multi, pos1[i], pos1[i] + cnt[i]− 1, pos, deep+ 1)

end
pos ← pos+ cnt[i]

end
return

4. Implementation and Evaluation

The experimental evaluation used a typical laptop computer with four
2.50GHz CPUs and 12GB RAM. All the algorithms were implemented
in Java.

The performance of each stage of the overall algorithm was assessed
by recording its execution time. The Java system method nanoTime()

was employed to obtain execution times accurately to the nanosecond
level. Although the currentTimeMillis() method could have been
used in theory, it is based on the real time, which means that it does

299

ADVANCES IN DIGITAL FORENSICS XVI

Table 1. Comparison of execution times.

Text String Length Proposed Method KMP Finite Automaton
(bytes) (ns) (ns) (ns)

1,000 161,992 108,457 104,658
2,000 229,878 215,487 174,521
5,000 377,953 522,648 324,758
10,000 750,369 1,054,925 491,358
50,000 4,658,695 5,427,345 2,478,547
10,0000 12,309,142 10,873,483 4,657,857

not provide nanosecond accuracy. The Classmexer instrument agent was
used to obtain the memory requirements. These two metrics enable the
evaluation of the overall algorithm – whether or not the algorithm meets
the real-time standard and whether or not the memory usage is within
an acceptable range to meet the real-time standard.

The Enron Email Corpus [2] was employed in the experimental eval-
uation; email headers as well as email bodies were used in the evalua-
tion. Email is one of the main communication modes and email leaks
occur frequently. Therefore, using email data in the evaluation makes
for an excellent real-world data leakage scenario. The Chromosome04
gene dataset was also used to evaluate algorithm performance and some
extreme cases.

4.1 Comparison with Other Methods

The proposed method incorporates some additional steps to the string
matching algorithm in order to implement data protection. Obviously,
these steps impact the performance of the overall algorithm.

The first set of experiments was conducted to evaluate if the proposed
method meets the real-time standard. The proposed method was evalu-
ated on the local side against two classical string matching algorithms,
Knuth-Morris-Pratt (KMP) and finite automaton. All the algorithms
were implemented in Java and the Chromosome04 gene dataset was used
to evaluate their performance (execution times). Multiple experiments
were conducted by selecting text strings of different lengths and fixing
the number of pattern strings k and length m for multi-pattern matching
to 100 bytes.

Table 1 shows the experimental results. The results reveal that the
proposed method has slightly longer execution times than the two tradi-
tional algorithms, but this is expected because of the additional steps and

300

Liu et al.

the consequent higher time complexity. Nevertheless, the time overhead
is within the acceptable range given that data security is also maintained.

4.2 Enron Email Corpus Experiments

Two sets of experiments were performed using the Enron Email Cor-
pus. One involved single string matching without encryption and the
other involved multi-pattern matching with encryption and resorting.
Each set of experiments involved matches of all the email in the cor-
pus. In the case of single string matching, the matching string length
was set to 10 bytes. In the case of multi-pattern matching, 100 strings
of length 10 bytes were matched. All the strings to be matched were
random substrings selected from the original strings.

Figure 2 shows the results for single string matching without encryp-
tion. Figures 2(a), 2(b) and 2(c) show the setup (pre-processing) times,
search times and storage requirements, respectively, for various text
string lengths. To simplify the presentation, the experimental results
obtained for text string lengths in 500-byte intervals were averaged. In
the figures, the maximum, minimum, mean + standard deviation and
mean − standard deviation for each interval are displayed in the form of
candlestick plots. Intervals with less than five data points were excluded
to ensure data validity and eliminate interference by external factors.

The experimental results reveal that the pre-processing time and stor-
age requirements of the proposed method grow at the rate of n log n
with the length of the string to be matched. With regard to the search
times, it should be noted that the lengths of strings to be matched were
fixed at 10 bytes and the lengths of the text strings ranged from zero
to 200,000 bytes. Thus, the expected time complexity of m + log n is
seen in Figure 2(b). Additionally, when n approaches 200,000 bytes, the
pre-processing time plus the search time is still less than 0.1 s. Thus,
leak detection of text without encryption meets the real-time standard.

The second set of experiments increased the number of strings to be
matched to simulate real-world scenarios and encrypted all the data to
ensure security. The efficient resorting algorithm described above was
employed after the data was encrypted.

Figures 3 and 4 show the results for multi-pattern matching with
encryption and resorting. Figures 3(a), 3(b) and 3(c) show the setup
(pre-processing) times, search times and encryption times, respectively,
for various text string lengths. Figures 4(a) and 4(b) show the resort-
ing times and storage requirements, respectively, for various text string
lengths.

301

ADVANCES IN DIGITAL FORENSICS XVI

(a) Setup times.

Se
ar

ch
Ti

m
e

(n
s)

Length

140,000

120,000

100,000

80,000

60,000

40,000

20,000

0
48,000 51,500 55,000 59,000 63,000 68,500 73,500 79,000 90,000 95,500 103,000 110,500 124,000 141,500 173,000

Test

(b) Search times.

(c) Storage requirements.

Figure 2. Results for single string matching without encryption.

302

Liu et al.

(a) Setup times.

(b) Search times.

(c) Encryption times.

Figure 3. Results for multi-pattern matching with encryption and resorting.

303

ADVANCES IN DIGITAL FORENSICS XVI

(a) Resorting times.

(b) Storage requirements.

Figure 4. Multi-pattern matching results with encryption and resorting.

Figure 3(a) demonstrates that the pre-processing times did not change
too much compared with the first set of experiments. In fact, the maxi-
mum overall time is still within 0.1 s.

The encryption time essentially has a linear relationship with text
string length (Figure 3(b)). Since the XOR operation was used to en-
crypt byte streams, the overall time for encryption is small.

The search time plot in Figure 3(c) shows the largest difference com-
pared with the first set of experiments. This is expected because the
number of strings to be searched was increased from just one in the first
set of experiments to 100, and the corresponding O(log n) time complex-
ity is reflected in the results. However, it is important to note that the
overall search time does not grow rapidly, and is still negligible compared
with the time required for pre-processing.

304

Liu et al.

Figure 4(a) shows that the resorting time and space requirements are
significant. This is expected because resorting is a recursive procedure
with large overhead. The resorting time plot does not reflect the theoret-
ical linear relationship with string length. Nevertheless, the maximum
time requirement of 10−4 s is within the acceptable range.

The results of the two sets of experiments reveal that the time over-
head increased as a result of implementing data security. However, the
time overhead has little impact on real-time performance. In fact, the
overhead is acceptable given the data security requirement.

With regard to the memory overhead in Figure 4(b), it is important to
note that only the recursive resorting procedure has significant memory
usage. Fortunately, since the maximum resorting time is just 10−4 s, the
increased memory is required for a miniscule duration and, therefore,
does not impact local resources in a significant manner.

5. Discussion and Analysis

Gog and Ohlebusch [4] have demonstrated that it is possible to reduce
the time complexity of the suffix array and longest common prefix array
computations. However, it was decided not to implement the enhance-
ments in the proposed model for three reasons:

Data Security: Data security is an important goal of the pro-
posed method for outbound data leakage detection. The encryp-
tion technique, while providing protection, should ensure that the
transformed data can be resorted efficiently. Thus, the proposed
method opted to create the suffix array and longest common prefix
array as discussed above.

Real-Time Performance: While the time complexity is the
principal consideration for real-time data leakage detection, the
memory consumption is also an important issue. Recursion, which
requires significant runtime memory, is restricted to the resorting
stage to minimize the runtime memory consumption and enable
users to perform their normal computing tasks while the real-time
leakage detection system is operational.

Real-World Scenarios: For individual users, the normal out-
bound text data throughput is on the order of 100,000 bytes/s.
Thus, algorithms with O(n log n) or O(n) time complexity have
little effect on the overall execution time. Therefore, the proposed
method opted to use an algorithm with O(n log n) time complexity
to create the longest common prefix array.

305

ADVANCES IN DIGITAL FORENSICS XVI

Table 2. Time and space complexity of the four stages.

Stage Time Complexity Space Complexity

Pre-Processing n log n n log n
Searching m+ log n 1
Encryption n n
Resorting n n

Table 2 shows the time and space complexity of the four stages in
the proposed method for real-time leakage detection with data security.
Since the byte stream length used in the XOR operation is one byte,
there are 256 possibilities for a transformed string. Thus, local mal-
ware would be able to obtain the original string after a maximum of
256 attempts. When the byte stream length is increased to two bytes,
the maximum number of attempts required would be 65,536. When
the strings are long enough, it would be practically impossible for lo-
cal malware to obtain the original strings. The resorting algorithm also
makes it more difficult for local malware to monitor the data transfor-
mations. Indeed, the proposed method achieves data security by making
it computationally infeasible for local malware to defeat the protection
mechanism.

6. Conclusions

Data privacy leaks are a serious problem, especially inadvertent data
leaks caused by user error or incorrect operations. Inadvertent data
leaks are difficult to detect because they are caused by ordinary users
who perform normal operations.

The novel data leakage method presented in this chapter employs al-
gorithms that secure and detect private data in outbound flows while
minimizing time and space consumption. It leverages byte stream en-
cryption for data protection and a suffix array technique for local-side
leakage detection of encrypted flows in real time. The computational
time and memory footprint are optimized for real-time data security
and data leakage detection. Despite providing data security as an ad-
ditional feature, experiments demonstrate that the overall performance
of the proposed method is comparable with that of the classical Knuth-
Morris-Pratt and finite automaton string matching algorithms.

The proposed method requires users to identify private data in ad-
vance, which is undoubtedly a time-consuming task. Moreover, users
may not be able to mark all their sensitive data because of a lack of

306

Liu et al.

understanding about their data. Additionally, the volume and types
of private data are constantly increasing. Future research will attempt
to use machine learning techniques to automate the task of identifying
private data.

References

[1] S. Ananthi, M. Sendil and S. Karthik, Privacy preserving keyword
search over encrypted cloud data, in Advances in Computing and
Communications, A. Abraham, J. Lloret Mauri, J. Buford and S.
Thampi (Eds.), Springer, Berlin Heidelberg, Germany, pp. 480–487,
2011.

[2] CALO Project, Enron Email Dataset, SRI International, Menlo
Park, California (www.cs.cmu.edu/~./enron), 2015.

[3] F. Chen, D. Wang, R. Li, J. Chen, Z. Ming, A. Liu, H. Duan, C.
Wang and J. Qin, Secure hashing based verifiable pattern match-
ing, IEEE Transactions on Information Forensics and Security, vol.
13(11), pp. 2677–2690, 2018.

[4] S. Gog and E. Ohlebusch, Fast and lightweight LCP-array construc-
tion algorithms, Proceedings of the Meeting on Algorithm Engineer-
ing and Experiments, pp. 25–34, 2011.

[5] S. Jha, L. Kruger and V. Shmatikov, Towards practical privacy
for genomic computation, Proceedings of the IEEE Symposium on
Security and Privacy, pp. 216–230, 2008.

[6] C. Kalyan and K. Chandrasekaran, Information leak detection in
financial email using mail pattern analysis under partial informa-
tion, Proceedings of the Seventh WSEAS International Conference
on Applied Informatics and Communications, vol. 7, pp. 104–109,
2007.

[7] T. Kasai, G. Lee, H. Arimura, S. Arikawa and K. Park, Linear-time
longest-common-prefix computation in suffix arrays and its appli-
cations, Proceedings of the Twelfth Annual Symposium on Combi-
natorial Pattern Matching, pp. 181–192, 2001.

[8] H. Kim, H. Hong, H. Kim and S. Kang, Memory-efficient parallel
string matching for intrusion detection systems, IEEE Communi-
cations Letters, vol. 13(12), pp. 1004–1006, 2009.

[9] K. Li, Z. Zhong and L. Ramaswamy, Privacy-aware collaborative
spam filtering, IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 20(5), pp. 725–739, 2009.

[10] P. Lin, Y. Lin, Y. Lai and T. Lee, Using string matching for deep
packet inspection, IEEE Computer, vol. 41(4), pp. 23–28, 2008.

307

ADVANCES IN DIGITAL FORENSICS XVI

[11] F. Liu, X. Shu, D. Yao and A. Butt, Privacy-preserving scanning of
big content for sensitive data exposure with MapReduce, Proceed-
ings of the Fifth ACM Conference on Data and Application Security
and Privacy, pp. 195–206, 2015.

[12] U. Manber and G. Myers, Suffix arrays: A new method for on-line
string searches, SIAM Journal on Computing, vol. 22(5), pp. 935–
948, 1993.

[13] Y. Shi, Z. Jiang and K. Zhang, Policy-based customized privacy pre-
serving mechanism for SaaS applications, Proceedings of the Eighth
International Conference on Grid and Pervasive Computing and
Collocated Workshops, pp. 491–500, 2013.

[14] X. Shu, D. Yao and E. Bertino, Privacy-preserving detection of sen-
sitive data exposure, IEEE Transactions on Information Forensics
and Security, vol. 10(5), pp. 1092–1103, 2015.

[15] X. Shu, J. Zhang, D. Yao and W. Feng, Rapid and parallel content
screening for detecting transformed data exposure, Proceedings of
the IEEE Conference on Computer Communications Workshops,
pp. 191–196, 2015.

[16] X. Shu, J. Zhang, D. Yao and W. Feng, Fast detection of trans-
formed data leaks, IEEE Transactions on Information Forensics
and Security, vol. 11(3), pp. 528–542, 2016.

[17] B. Wang, S. Yu, W. Lou and Y. Hou, Privacy-preserving multi-
keyword fuzzy search over encrypted data in the cloud, Proceedings
of the IEEE Conference on Computer Communications, pp. 2112–
2120, 2014.

[18] D. Wang, X. Jia, C. Wang, K. Yang, S. Fu and M. Xu, Generalized
pattern matching string search on encrypted data in cloud systems,
Proceedings of the IEEE Conference on Computer Communications,
pp. 2101–2109, 2015.

[19] H. Wang, K. Tseng and J. Pan, Deep packet inspection with bit-
reduced DFA for cloud systems, Proceedings of the International
Conference on Computing, Measurement, Control and Sensor Net-
works, pp. 221–224, 2012.

[20] J. Zhou, Z. Cao and X. Dong, PPOPM: More efficient privacy pre-
serving outsourced pattern matching, Proceedings of the Twenty-
First European Symposium on Research in Computer Security, part
I, pp. 135–153, 2016.

308

	Contents
	Contributing Authors
	Preface
	I THEMES AND ISSUES
	Chapter 1 DIGITAL FORENSICS AND THE BIG DATA DELUGE – SOME CONCERNS BASED ON RAMSEY THEORY
	1. Introduction
	2. Patterns and Repetition
	2.1 Small Correlations
	2.2 Patterns and/or Knowledge
	2.3 Big Data

	3. What Constitutes Correlation?
	4. Correlation in Big Data
	5. Ramsey Theory
	5.1 Finite Ramsey Theorem
	5.2 Van der Waerden’s Theorem
	5.3 Logic of Inference

	6. Conclusions
	References

	Chapter 2 IDENTITY AND SUFFICIENCY OF DIGITAL EVIDENCE
	1. Introduction
	2. Background
	3. Sufficient Evidence of the Act
	4. Digital Identity Case Study
	4.1 Electronic Fraud Case
	4.2 Fraud Case Analysis
	4.3 Sufficiency for Identification

	5. Authentication and Hearsay Issues
	6. Identification in Online Environments
	7. Conclusions
	References

	II FORENSIC TECHNIQUES
	Chapter 3 INTERACTIVE TEMPORAL DIGITAL FORENSIC EVENT ANALYSIS
	1. Introduction
	2. Related Work
	3. TAIMA
	3.1 Design Principles
	3.2 GUI Timeline
	3.3 Abstraction Technique

	4. Evaluating User Experience
	4.1 Study Participants
	4.2 Procedure
	4.3 Results

	5. Conclusions
	References

	Chapter 4 ENHANCING THE FEATURE PROFILES OF WEB SHELLS BY ANALYZING THE PERFORMANCE OF MULTIPLE DETECTORS
	1. Introduction
	2. Related Work
	3. Proposed Web Shell Detection Method
	3.1 Web Shell Feature Extraction
	3.2 Learning Model Construction

	4. Experiments and Evaluation
	4.1 Data Sources and Samples
	4.2 Data Processing
	4.3 Evaluation of Feature Sets
	4.4 Evaluation of Text Vectorization Methods
	4.5 Evaluation of Algorithms and Products

	5. Conclusions
	Acknowledgement
	References

	Chapter 5 A NOVEL APPROACH FOR GENERATING SYNTHETIC DATASETS FOR DIGITAL FORENSICS
	1. Introduction
	2. Related Work
	3. Framework Architecture and Functionality
	3.1 Overview
	3.2 Framework Architecture
	3.3 Data Synthesis Procedure
	3.4 Supported Features
	3.5 Network Traffic Synthesizer
	3.6 Disk Image Generator

	4. Generator and Reporter
	4.1 Generator
	4.2 Reporter

	5. Framework Validation
	5.1 Web Traffic and Mail Traffic Generation
	5.2 Framework Extensions

	6. Future Work
	7. Conclusions
	Acknowledgements
	References

	Chapter 6 DETECTING ATTACKS ON A WATER TREATMENT SYSTEM USING ONE-CLASS SUPPORT VECTOR MACHINES
	1. Introduction
	2. Related Work
	3. Secure Water Treatment Testbed
	4. Data Collection
	5. One-Class Support Vector Machine
	6. Methodology
	7. Evaluation and Experimental Results
	7.1 Evaluation
	7.2 Experimental Results

	8. Conclusions
	Acknowledgement
	References

	III FILESYSTEM FORENSICS
	Chapter 7 A DIGITAL MEDIA SIMILARITY MEASURE FOR TRIAGE OF DIGITAL FORENSIC EVIDENCE
	1. Introduction
	2. Background
	3. Use Cases
	4. Previous Work
	5. Methodology
	5.1 Jaccard Index of Similarity
	5.2 Whitelist
	5.3 Similarity between Two Drives
	5.4 Similarity against a Cluster of Drives
	5.5 Similarity with Frequency
	5.6 Similarity with Normalized Frequency

	6. Validation
	6.1 Initial Validation
	6.2 Whitelist Sector Removal
	6.3 JIWF Computation
	6.4 JINF Computation
	6.5 JIWF and JINF Comparison

	7. Conclusions
	References

	Chapter 8 RESIDENT DATA PATTERN ANALYSIS USING SECTOR CLUSTERING FOR STORAGE DRIVE FORENSICS
	1. Introduction
	2. Background and Related Work
	2.1 Triage
	2.2 Data Reduction
	2.3 Clustering
	2.4 Extracted Features
	2.5 Assumptions

	3. Proposed Methodology
	4. Experiments and Analysis
	4.1 Sector Sample Size
	4.2 Significant Region Analysis
	4.3 Performance Metrics
	4.4 Evaluation Delay
	4.5 Error Rate

	5. Conclusions
	References

	IV CLOUD FORENSICS
	Chapter 9 FORENSIC ANALYSIS OF ADVANCED PERSISTENT THREAT ATTACKS IN CLOUD ENVIRONMENTS
	1. Introduction
	2. Background and Related Work
	2.1 ATT&CK Knowledge Base
	2.2 Cyber Kill Chain Methodology
	2.3 Related Work

	3. Experimental Cloud Environment Attacks
	3.1 Forensic Data Obtained via Forensic Tools

	4. Forensic Investigation
	4.1 Identifying Forensic Data
	4.2 Mapping Log Entries to Attack Steps
	4.3 Correlating Attack Steps to APTs

	5. Conclusions
	References

	Chapter 10 A TAXONOMY OF HYPERVISOR FORENSIC TOOLS
	1. Introduction
	2. Hypervisors
	3. Hypervisor Attacks and Vulnerabilities
	3.1 System Calls and Hypercalls
	3.2 Virtual Machine Introspection

	4. Taxonomy of Hypervisor Forensic Tools
	4.1 Virtual Machine Layer Data
	4.2 Virtual Machine Manager Layer Data
	4.3 Network Layer Data
	4.4 Host Machine Layer Data
	4.5 Hardware Layer Data

	5. Related Work
	6. KVM Hypervisor Forensics
	7. Conclusions
	References

	V SOCIAL MEDIA FORENSICS
	Chapter 11 PUBLIC OPINION MONITORING FOR PROACTIVE CRIME DETECTION USING NAMED ENTITY RECOGNITION
	1. Introduction
	2. Named Entity Recognition
	3. LSTM-CRF Model
	4. Related Work
	5. Experiments
	5.1 Experimental Setup
	5.2 Classification of Named Entities

	6. Experimental Results and Discussion
	7. Conclusions
	References

	Chapter 12 RETRIEVING E-DATING APPLICATION ARTIFACTS FROM iPHONE BACKUPS
	1. Introduction
	2. Related Work
	3. Challenges
	4. Evidence Extraction Methods
	4.1 Tinder
	4.2 Coffee Meets Bagel

	5. Experimental Evaluation
	5.1 Tinder Evidence
	5.2 Coffee Meets Bagel Evidence

	6. Conclusions
	References

	VI MULTIMEDIA FORENSICS
	Chapter 13 TARGET IDENTITY ATTACKS ON FACIAL RECOGNITION SYSTEMS
	1. Introduction
	2. Related Work
	3. Target Identity Attacks
	4. Experiments and Results
	4.1 Implementation Details
	4.2 Attack Performance Evaluation

	5. Conclusions
	References

	Chapter 14 ELECTRIC NETWORK FREQUENCY BASED AUDIO FORENSICS USING CONVOLUTIONAL NEURAL NETWORKS
	1. Introduction
	2. Related Work
	3. System Model
	4. ENF-Based Forensics with CNN
	5. Experiments and Results
	5.1 Experimental Setup
	5.2 Detection Performance
	5.3 Results for Different SNR Conditions

	6. Conclusions
	Acknowledgement
	References

	VII NOVEL APPLICATIONS
	Chapter 15 INSIDER THREAT DETECTION USING MULTI-AUTOENCODER FILTERING AND UNSUPERVISED LEARNING
	Introduction
	2. Related Work
	3. Multi-Autoencoder Detection Framework
	3.1 Problem Statement
	3.2 Multi-Autoencoder Filtering
	3.3 Insider Threat Prediction
	3.4 Framework Workflow

	4. Framework Evaluation
	4.1 Multi-Autoencoder Filtering Performance
	4.2 Comparison Against Baseline Methods

	5. Conclusions
	References

	Chapter 16 DETECTING LOCAL MACHINE DATA LEAKAGE IN REAL TIME
	1. Introduction
	2. Related Work
	3. String Matching with a Suffix Array
	3.1 Suffix Array
	3.2 Multi-Pattern Matching

	4. Implementation and Evaluation
	4.1 Comparison with Other Methods
	4.2 Enron Email Corpus Experiments

	5. Discussion and Analysis
	6. Conclusions
	References

