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Preface

This book gathers the extended versions of a selection of the best contributions
presented in the sixth edition of the International Conference on Time Series and
Forecasting, ITISE 2019, held in Granada (Spain) in September 2019. Since its first
edition, the main objective of this conference is none other than to provide a friendly
discussion forum for scientists, engineers, educators and students to debate about the
latest ideas and realizations in the foundations, theory, models and applications in
the field of time series analysis and forecasting. This is a strong multidisciplinary
field since it is essentially about collecting information, analysing it to try to
understand the reason for these collected values and, once this is achieved, to be able
to anticipate its future evolution. And even in cases where this prediction is not very
accurate, the fact of having at least one can be a substantial advantage, for example,
in stock markets. As the brilliant Danish philosopher and poet Soren Kiergegaard put
in a much more elegant way “Life can only be understood backwards; but it must be
lived forwards”. In our case, the way to understand life is through the collection of
ordered sets of samples that we call time series.

The main topics in the last edition of the Conference were:

1. Time series analysis and forecasting

• Nonparametric and functional methods
• Vector processes
• Probabilistic approaches to modelling macroeconomic uncertainties
• Uncertainties in forecasting processes
• Nonstationarity
• Forecasting with Many Models. Model integration
• Forecasting theory and adjustment
• Ensemble forecasting
• Forecasting performance evaluation
• Interval forecasting
• Data preprocessing methods: Data decomposition, seasonal adjustment,

singular
• Spectrum analysis, detrending methods, etc.
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2. Econometrics and forecasting

• Econometric models
• Economic and econometric forecasting
• Real macroeconomic monitoring and forecasting
• Advanced econometric methods.

3. Advanced methods and online learning in time series

• Adaptivity for stochastic models
• Online machine learning for forecasting
• Aggregation of predictors
• Hierarchical forecasting
• Forecasting with computational intelligence
• Time series analysis with computational intelligence
• Integration of system dynamics and forecasting models.

4. High dimension and complex/big data

• Local versus global forecasts
• Dimension reduction techniques
• Multiscaling
• Forecasting Complex/Big data.

5. Forecasting in real problems

• Health forecasting
• Atmospheric science forecasting
• Telecommunication forecasting
• Hydrological forecasting
• Traffic forecasting
• Tourism forecasting
• Marketing forecasting
• Modelling and forecasting in power markets
• Energy forecasting
• Climate forecasting
• Financial forecasting and risk analysis
• Forecasting electricity load and prices
• Forecasting and planning systems
• Applications in real problem (finance, transportation, networks, meteorol-

ogy, e-health, environment, etc.).

High-quality candidate papers from the Conference ITISE 2019 (29 contribu-
tions) were invited to submit an extended version of their conference paper to be
considered for this special publication in the book series of Springer: Contributions
to Statistics. For the selection procedure, the information/evaluation of the chair of
every session, in conjunction with the review comments and the summary of
reviews, were taken into account.
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So, now we are pleased to have reached the end of the whole process and present
the readers with these final contributions that we hope will provide a clear overview
of the thematic areas covered by the ITISE 2019 conference ranging from theo-
retical aspects to real-world applications.

For the sake of readability, the contributions presented in this book have been
classified into different chapters according to their content. Some chapters of the
book contain pure theoretical contributions. On the other hand, there are chapters
with more practical contributions with the intention of providing the readers with a
more real-world view of the field. As is common in these editions, a specific chapter
of the book has been dedicated to a specific application field. In this case, a whole
chapter is devoted to energy-related applications of time series analysis and
forecasting.

In the following, we will make a short summary of what the reader may find in
every chapter of the book:

• Advanced statistical and Mathematical Methods for Time Series Analysis.
The main objective of this chapter is to present advanced statistical method-
ologies and theories that could be used to extract information from time series
data. In the first contribution selected for this chapter, the authors propose the
utilization of random forest techniques, commonly used in machine learning
methods, for learning the subset of significant relationships for vector autore-
gressive models. The second contribution covers the description of the covari-
ance function for general Laplacian autoregressive models in higher dimensions.
In the third contribution, the authors study how a one-to-one correspondence
between discrete-time autoregressive moving-average models and their
continuous-time counterparts can be elicited. Finally, this chapter includes one
last contribution that proposes a new statistical test for a random walk detection
based on the arcsine law.

• Econometric models and Forecasting. One of the most prominent applications
of time series modelling and forecasting lies within the field of Econometrics.
This chapter aims at presenting some recent developments of time series
research applied to financial and future data with the original idea of focusing on
studies that develop and apply recent non-linear econometric models to repro-
duce financial market dynamics and to capture financial data properties with the
hope of eventually predict the next economic bubble. Six contributions have
been selected to that end. The first one deals with the problem of the automatic
identification of unobserved component models, demonstrating the usefulness of
information criteria to that end. The second contribution tries to investigate the
temporal development of the spatial network of price relationships between the
pig meat markets of 24 European countries and draws insights about the hori-
zontal agricultural market integration process in the EU. The third contribution
makes a comparative study of different models for forecasting Nigerian Stock
Exchange Market Capitalization for both short and long horizons. The next
paper in this chapter focuses on scoring methods to predict corporate default by
specifically examining whether belonging to an industry branch influences the
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results of the models. The fifth contribution builds and implements multifactor
stochastic volatility models, where the main objective is the one-step ahead
volatility prediction and to describe its relevance for the equity markets and,
finally, this chapter concludes with a final paper aiming at investigating the
validity of the Balassa–Samuelson effect in some selected African countries.

• Energy time series forecasting. This chapter makes particular emphasis on the
application of time series analysis, modelling and forecasting applied to
energy-related data. By energy, we refer to any kind of energy, such as elec-
trical, solar, microwave, wind and so on. The first contribution proposes a new
criterion for detecting the end of charging process of rechargeable batteries.
Next, we present a paper which analyses the impact of adopting Daylight Saving
Time on power consumption in the Spanish Electric System. The third contri-
bution deals with 1-hour to 24-hour ahead wind speed forecasting using kernel
ridge regression. The next paper presents how convolutional neural networks,
commonly used in the first layers of deep neural networks when the input data
are images, can be used in mid-term electricity load forecasting problems. And
finally, the last paper deals with long- and short-term forecasting of power
consumption using modified Long Short-Term Memory Neural Networks.

• Forecasting Complex/Big data problems. In the past few years, mechanisms
to automate data extraction have proliferated so much that the amount of data
that have to be analysed for a specific problem is starting to be one of the biggest
difficulties. In addition to this, the type of data extracted can be of very different
nature, thus making the integration of this information from these heterogeneous
data sources another of the main difficulties to tackle. In this chapter, we give
some insights into how to deal with such difficulties in the case of time series
data. In the first contribution, an info-metrics approach based on normalized
entropy is presented to measure the relationships between the dependent vari-
able and each of the potential explanatory variables. In the next contribution, the
authors show how the ability of text mining to convert large collections of text
from unstructured to structured form can be used for in-depth quantitative
analysis of online news data. In the third contribution, the author shows how the
application of Big Data technologies can help us to extract knowledge about
hotel tourism demand in Spain from data collected from the Google Data
Mining tools. In the fourth and last contribution, several neural network models
are trained using specific time series data created from traffic camera images
with the final aim at optimizing traffic signal timing sequences in order to reduce
congestion based on anticipated demand.

• Time Series Analysis with Computational Intelligence. Although time series
analysis can be considered a discipline originated within the statistical area, in
the past decades many computational intelligence methods or machine learning
approaches have been proposed to solve time series-related problems. In fact,
research in new computational intelligence approaches, their efficiency and their
comparison to statistical methods and other fact-checked computational intel-
ligence methods, is a significant topic in academic and professional projects. It is
not uncommon for the existence of time series forecasting competitions which
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try to elucidate which of the two main research streams is better. Within this
topic, five contributions have been selected for this book. The first contribution
makes a comparative study of how different machine learning techniques
ranging from support vector machines to random forests perform in the fore-
casting of intense convective rainfall events. The next contribution deals with
the prediction of transformer temperature in smart grids. To that end, the authors
make use of long-term memory networks that use data from the previous 100
minutes to predict the transformer temperature for the next 100 minutes. The
third contribution proposes the use of the KnoX method, developed to extract
information from a neural network model, in the Gardon de Mialet flash floods
modelling. In this way, it can be understood how the variables are handled by
the neural network to approximate the modelled phenomenon. The next paper
makes an experimental comparison of the performance of two well-known
paradigms, namely artificial neural networks and fuzzy time series models. The
authors select different types of models of every paradigm and compare them
using short- and medium-term predictions of several time series. Finally, the last
contribution is related to how to combine forecasts obtained from several dif-
ferent models using the Extreme Learning Machine method.

• Time Series Analysis and Prediction in Other Real Problems. The last
chapter of the book is dedicated to other real applications of time series analysis,
modelling and forecasting different from those especially mentioned before. The
idea is to state explicitly that applications of time series analysis reach practi-
cally any scientific discipline imaginable. Five very different contributions were
selected for this last chapter. The first presents a case study targeting the recent
Brazilian load changes to illustrate how it is possible to combine data from three
different distribution companies, creating a learning network and yielding reli-
able results where all other models failed. The second contribution presents a
non-linear autoregressive neural network with exogenous inputs for time series
forecasting and power transformers monitoring. As a non-linear model, the
authors make use of a multilayer perceptron neural network. The next paper
presents a method which takes into account calendar effects for short-term
forecasting of the visits to the emergency department of a hospital. This method
combines a calendar selection rule with a slightly modified version of the
k-nearest neighbour classifier to predict the incoming visit volume for a tunable
number of days ahead. The fourth contribution deals with the classification of
textual messages from a log file to understand the type of messages being
recorded. The method is based on both ARIMA and a hybrid ARIMA-GARCH
model. The last contribution of this chapter and therefore of this book compares
different time series models and some hybridizations of them to fit bivariate time
series with a special aim at forecasting the unemployment rate in the USA.

Last but not least, we would like to point out that this edition of ITISE was
organized by the University of Granada (UGR), Spain, together with the Spanish
Chapter of the IEEE Computational Intelligence Society. The Guest Editors would
also like to express their gratitude to all the people who supported them in the
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compilation of the book, and especially to the contributing authors for their sub-
missions, the chairs of the different sessions and to the anonymous reviewers for
their comments and useful suggestions in order to improve the quality of the papers.

We wish to thank our main sponsors as well: the Department of Computer
Architecture and Technology of the UGR, the Faculty of Science of the UGR, the
Research Center for Information and Communications Technologies (CITIC-UGR),
the Spanish Network on Time Series (RESeT) and the Ministry of Science and
Innovation for their support and grants. Finally, we wish also to thank Prof. Alfred
Hofmann, Vice President Publishing—Computer Science, Springer-Verlag and Dr.
Veronika Rosteck, Springer Editor, for their interest in editing a book series of
Springer based on the best papers of ITISE 2019.

We hope the readers of this book find these contributions interesting and helpful.

Granada, Spain Olga Valenzuela
Fernando Rojas

Luis Javier Herrera
Héctor Pomares

January 2020

Ignacio Rojas
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Random Forest Variable Selection
for Sparse Vector Autoregressive Models

Dmitry Pavlyuk

Abstract Vector autoregressive (VAR)models are widely used for multivariate time
series forecasting in many applied areas like transportation, finance, economics and
brain sciences. The main advantages of a VAR model are its flexibility and ability to
learn a structure of relationships from data, but the number of parameters is rapidly
growing for the increasing dimensionality of themodelled time series. Thus, for high-
dimensional time series estimation ofVARmodel’s parameters becomes complicated
or even infeasible. In this study, we propose the utilization of random forest (RF)
techniques for learning the subset of significant relationships (feature filtering) for
VAR models. The proposed approach allows determining a parsimonious specifica-
tion of the VAR model, and as a result, obtains better forecasting performance. We
present equation-wise and system-wise strategies for RF-based feature selection and
discuss their advantages. We test properties of the proposed approach empirically by
applying it to spatiotemporal urban traffic forecasting problem, which is emerging
in the field of transportation and requires modelling of a large number of related
time series, collected from thousands of sensors within a citywide road network.
The RF-based approach is compared to the unrestricted model and to other popular
variable selection methods for VAR models: the penalized VAR estimator and the
refined VAR variable selection strategy. Obtained results demonstrate the advantages
of the proposed RF-based approach: better forecasting accuracy, higher stability of
estimates and good computational performance for high-dimensional time series.

Keywords Urban traffic forecasting · Spatiotemporal model · Feature selection ·
Big data · Multivariate time series
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1 Introduction

Number of real-timedata sources is rapidly growing in all appliedfields of science and
technology. Thousands of sensors generate high-frequency time series in transporta-
tion, finances, brain sciences and other emerging scientific areas. The key feature of
the resultingmultivariate time series is extensive interdependencies of its components
distributed over time.Urban trafficflows at distant road segments are related to a delay
of several hours; shocks in stock markets propagate with a varying speed between
industries; electroencephalography electrodes register sequences of brain areas’ acti-
vation. Often the structure of these relationships is unknown and highly dynamic.
Modern models of multivariate time series like vector autoregressive models have a
flexible structure and allow discovering of these relationships from data. The cost of
this flexibility is the large number of parameters that grow fast with increasing indi-
mensionality of the time series. Such multi-parameter models suffer from overfitting
and, as a consequence, often demonstrate bad out-of-sample forecasting accuracy. In
addition, the problem is complicated by the dynamics of the relationship structure—
some links could appear for a short period of time only. Thus, the strict definition of
this structure is usually infeasible and researchers widely utilize data-driven feature
selection methods for learning active relationships and excluding non-informative
ones.

In this study, we contribute to the methodology of feature selection in multivariate
time series models by application of the random forest (RF) technique. The method-
ology represents a special case of feature filtering and is applied to popular vector
autoregressive (VAR) models.

The proposedmethodology is approbated for the problem of spatiotemporal urban
traffic forecasting, which is emerging in the transportation research area. Data sets of
a traffic management system include information from thousands of sensors (induc-
tive loop, cameras, etc.), deployed within a citywide road network, and perfectly
demonstrate the problem of feature learning for high-dimensional multivariate time
series. Spatiotemporal traffic flow relationships are caused both by physical reasons
(movement of cars from one spatial location to another) and by latent reasons (simul-
taneous traffic flows to a city centre during morning rush hours). A structure of these
relationships is highly dynamic and depends on traffic conditions, e.g. some rela-
tionships appear in a congested regime only for a short period of time. Using the
large real-world data set, we demonstrate the utility of the proposed methodology
for high-dimensional time series forecasting.

This paper is an extension of the work presented at the International Conference
on Time Series and Forecasting (ITISE-2019) [1]. Comparing to the publication
in conference proceedings, this paper has several crucial improvements: literature
review was enhanced by the description of recent advances in RF-based feature
selection algorithms; the research methodology was extended by the system-wise
strategy of RF-based feature selection and presented in a more detailed manner;
empirical resultswere obtained for the extended researchmethodology and additional
hyperparameter tuning; finally, the conclusions were refactored.
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2 State of the Art

VAR models [2], are the popular tool of multivariate time series forecasting. Orig-
inally developed for macroeconomic processes, nowadays VAR models are inten-
sively applied in many areas like health research, video stream control, traffic engi-
neering, among many others. Many real-world time series are high-dimensional in
its nature and include data for hundreds or thousands of indicators. Although the
application of VAR models for multivariate time series is straightforward and devel-
oped estimation algorithms are efficient, number of parameters explosively grows
with increasing time series dimensionality. A large number of parameters lead to the
lower forecasting performance of VARmodels and creates difficulties for interpreta-
tion (the famous “curse of dimensionality” problem). Thus, the application of unre-
strictedVARmodels for high-dimensional data is impractical. Severalmethodologies
are suggested in the literature to deal with the curse of dimensionality. Following the
terminology of feature engineering, we divide all methodologies into two classes:
feature extraction and feature selection methods. Feature extraction corresponds to a
reduction of the dimensionality by transforming of the high-dimensional data set into
a derivative feature set of a smaller dimension. Dynamic factor models [3], which
combine time series into linear factors, are the popular representatives of this class
of methods. Feature selection techniques reduce the number of VARmodel’s param-
eters by setting restrictions on many model coefficients. Such limited specifications
of VARmodels are called sparse VAR. Comparatively, to feature extraction method-
ologies, sparse VAR models keep an initial set of features and discover relationships
between them, which is advantageous for interpretation and further management of
the analyzedprocess. This research is focusedon the sparseVARmodel specifications
and corresponding feature selection methods.

2.1 Feature Selection in Vector Autoregressive Models

Feature selection techniques are conventionally subdivided [4] to filter methods,
wrapper methods and embedded methods. Filter methods use preliminary feature
ranking for selecting the most valuable features. In the context of VAR models,
Davis et al. [5], applied a partial spectral coherence, based on conditional correlation,
for feature selection in their two-step sparse model specification procedure. Other
correlation-based VAR feature filtering approaches are proposed by Yang et al.
[6, 7], Tanizawa et al. [8] and Yuen et al. [9]. Popular Bayesian VAR models also
shrink complete VAR models towards a parsimonious specification by applying
informative prior distributions of model parameters. Among several recent studies
on Bayesian VAR [10, 11], Billio et al. [12] suggested Bayesian nonparametric prior
distributions for VAR that combines clustering and shrinking restrictions.

The second class of feature selection techniques, wrapper methods, utilize infor-
mation about VAR model performance in their iterative procedure of parsimonious
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specification search. Popular search strategies include stepwise-eliminationof regres-
sors and application of heuristic routines (genetic algorithms, particle swarm opti-
mization). Classical wrapper strategies to model reduction are presented by Brügge-
mann [13]. Despite the good theoretical background and several promising evidences
of wrapper technique application (e.g. PcGets algorithm and software [14]), this
approach to a sparse VARmodel specification is related to significant computational
complexity and rarely used for high-dimensional time series.

The third class of feature selection techniques, embedded methods, incorporate
feature selection into themodel estimation process.Most popular embeddedmethods
utilize different types of regularization penalties in VAR model estimators: L1 (least
absolute shrinkage and selection operator, LASSO) or elastic net (combination of
L1 and L2 (Tikhonov) penalties). Penalties could be applied to all VAR parameters
separately or by grouping parameters by a lag or by time series (to force the sparsity in
the temporal dimension or in the indicator interrelationship structure, respectively).
Regularization of high-dimensional VAR models is an emerging topic in literature:
recently it was addressed by Basu and Michailidis [15], Barigozzi and Brownlees
[16] and Nicholson et al. [17].

In addition to different classes of feature selection methods, discussed above, it
should be mentioned that two general strategies are available: system-wise strategy
and equation-wise strategy [13]. The system-wise strategy implements feature selec-
tion jointly for all VAR equations, while the equation-wise equation strategy deals
with each equation independently. As VARmodels are the special case of seemingly
unrelated regressions and deleting features from one equation affects the estimates of
others, the system strategy is more natural. At the same time, in case of the absence
of instantaneous causality, equation-wise strategies also lead to optimal results [13],
and could demonstrate better computational performance.

This study is focused on the development of a feature filtering method, while
representatives of two other approaches (wrapper and embedded feature selection)
are used for performance comparison. Regarding the strategy, we consider both
system-wise and equation-wise strategies.

2.2 Random Forest for Feature Filtering

We propose to apply a random forest as a feature selection tool for controlling the
sparsity of VAR models. The random forest [18], is a popular statistical learning
approach, widely used for feature selection and forecasting [19]. Advantages of
random forests include: ability to learn under the extremely large number of candidate
features; the low computational complexity and easy parallelization of the learning
algorithm; embedded estimation of feature importance; resistance to overfitting and
data preprocessing problems (scaling, outliers, missing data).

A large variety of methods are developed for finding the optimal subset of features
for random forest models [20]. Mainly these methods are based on backward elim-
ination of unimportant features [21, 22], backward-forward stepwise selection [23]
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or permutation tests [24, 25]. Although these approaches demonstrate good fore-
casting performance, they are computationally intensive and does not work well for
high-dimensional data. Degenhardt et al. [26] argued that although modern feature
selection algorithms for random forests (like Boruta and Vita) are feasible for high-
dimensional data sets, their computational complexity is high and detection power
is questionable.

In contrast to optimal subset search algorithms, feature filtering for sparse VAR
models is usually focused on finding potentially important features and exclusion
of other ones. For example, cross-correlation-based approaches [6–8] and spectral
coherence-based approaches [5, 9], use a predefined threshold for cross-correlation
function or partial coherence to select candidate features. These approaches are not
oriented to discovering the optimal subset of features under the assumption that
estimates and forecasting power of VARmodels will be adequate even with a limited
number of insignificant features. Further, the VARmodel specification can be refined
by other methods (backward elimination or regularization). We follow this approach
and use feature importance values, calculated using random forests, for the selection
of potentially important features.

To the best of our knowledge, random forests are not previously applied to
learning the sparsity structure of VAR models. Recently random forests were
applied by Furqan and Siyal [27], Papagiannopoulou et al. [28] and Chikahara and
Fujino [29], for efficient and stable learning of Granger causalities in multivariate
time series, but without further application of discovered relationships. Tyralis and
Papacharalampous [30] applied the random forest for feature selection in univariate
autoregressive moving average models and demonstrate its preferable forecasting
performance.

The point of our contribution to the hierarchy of feature selection methods for
VAR models is presented in Fig. 1.

We apply the proposed random forest-based sparse VAR models to a spatiotem-
poral urban traffic forecasting problem and demonstrate its good computational
complexity and forecasting performance. Thus, the study contributes both to the
methodology of high-dimensional time series modelling and to the applied area of
traffic forecasting.

3 Methodology and Data

This section presents the used notation, briefly summarizes vector autoregressive
models and popular feature selection techniques, and introduces the proposed RF-
based approach for feature filtering in VAR models.
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Fig. 1 Place of the study

3.1 Methods

Amultivariate time series in discrete time is defined as a sequence of T observations

of k-dimensional vector Yt = (
y1,t , y2,t , . . . , yk,t

)′
, t = 1, . . . , T . The complete

(unrestricted) vector autoregressive model of order p, VAR(p), is conventionally
written as:

Yt = μ +
p∑

l=1

Φ(l)Yt−l + εt , (1)

where Φ(l) =
{
φ

(l)
i, j

}
are k × k coefficient matrixes (l = 1, . . . , p; i, j = 1, . . . , k),

μ = {μi } is an optional k × 1 vector of constant terms, εt = {
εi,t

}
is a k × 1 vector

of unobservable zero mean disturbances and non-singular covariance matrix
∑

ε.
The sparsity of VAR(p) models corresponds to setting elements of coefficient

matrixes Φ(l) to zero to reduce the number of model parameters. In this study, we
consider the filter approach to controlling the model sparsity, which is based on
the selection of non-zero coefficient before model estimation. Thus, we formulate
the sparse VAR(p) model, introducing a set of binary matrixes S(l) =

{
s(l)
i, j

}
that

represents relationships in VAR(p)

Yt = μ +
p∑

l=1

S(l)Φ(l)Yt−l + εt . (2)
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We will refer S = [
S(1), S(2), . . . , S(p)

]
and Φ = [

Φ(1), Φ(2), . . . , Φ(p)
]
.

VAR(p) model can be fit by the ordinary least squares (OLS) estimator, but the
number of estimated parameters equals to

(
pk2 + k

)
and becomes extremely large

for high-dimensional time series. Regularization is a usual way to overcome the curse
of dimensionality, which introduces a penalty function P(Φ) with a regularization
multiplier λ into the estimator objective function.

As an alternative approach, we propose to use random forests for feature filtering.
Random forest is a popularmachine learning technique, proposed byBreiman in 2001
[18]. This technique is widely used for feature selection and includes the following
steps [19]:

1. Sample with the replacement of n training sets {Yts}, ts ⊆ {1, . . . , T }
2. Training of a regression tree for Eq. (4), for every training set, randomly selecting

features for every tree node
3. Estimating of the importance of each feature in every regression tree
4. Combining the obtained feature importance values (e.g. by averaging over

training sets).

The key component for RF-based feature filtering is a selected metric of feature
importance. In this study, we apply an increase of mean squared error (MSE) for
these purposes. The metric is calculated as follows:

– Out-of-bag MSE is calculated for the random forest for VAR equation i (MSEi,0);
– Values of the variable j are randomly permuted, the new random forest model is

estimated, and its MSE is calculated as (MSEi,j). If the variable j improves the
forecasting performance, MSEi,j will be larger than MSEi,0;

– Increase of MSE is calculated as (MSEi,j—MSEi,0)/MSEi,0.

The parsimony of the resulting model specification plays an important role in
high-dimensional models of tightly coupled time series. In practice, the model with
simpler specification is frequently preferred over the model with slightly higher
forecasting accuracy due to easier interpretation and further usage of the results for
operational and strategic decision-making. Thus, a trade-off between the number of
selected features and the model forecasting performance needs to be defined within
the methodology. We control this trade-off their direct specification of the resulting
sparsity of the VAR model. Similar to cross-correlation and partial coherence-based
approaches, we are focused on finding the subset of potentially important features
instead of the optimal subset. Thus, we do not utilize more advanced algorithms for
RF feature selection (like Boruta [25]) and select features using the obtained increase
of MSE values directly. For this selection, we utilize a threshold (IncreaseMSELB)
that is a lower bound for the metric values, so only features with higher values are
included in the resulting subset. Analyzed IncreaseMSELB values are non-negative
(IncreaseMSELB = 0 corresponds to exclusion of feature that have the negative effect
of model forecasting performance) and case-specific, so the optimal value could be
defined by cross-validation. Note that the distribution of the increase of MSE values
is not normal (due to the correlation between errors in random trees), so classical
tests for significance could be misleading.
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Further, we have two strategies for the utilization of equation-wise feature impor-
tance values. The first strategy is the equation-wise, where the resulting feature set is
determined for every equation independently. We directly utilize the IncreaseMSELB

threshold to implement this strategy. The second strategy is system-wise, where the
resulting feature set is simultaneously determined for all equations. To implement
this strategy, we aggregate feature importance metrics, obtained from the equation-
wise RFmodels, and execute feature filtering of the joint results. Potentially, scales of
dependent variables in different equations could be different, so a percentage increase
ofMSE is inappropriate for feature filtering (increase by 1% for one variable could be
more beneficial than increase by 10% for another one). So, instead of the percentage
increase of MSE, we use raw MSEi,j the system strategy. All other routines that
presented above (including the IncreaseMSELB threshold) are used without changes.

The resulting feature set is used for sparse VAR model specification and esti-
mation. Summarizing the methodologies, stated above, we formulate 4 alternative
model specifications:

• Unrestricted VAR model.
• Refined VAR (amodel with excluded insignificant coefficients by backward elim-

ination procedure, the system-wise strategy)—a representative of wrapper feature
selection.

• Penalized VAR (LASSO penalties; the system-wise strategy)—a representative
of the embedded feature selection.

• Random forest-based (RF-based) sparse VAR (separately for equation-wise and
system-wise strategies)—the proposed representative of feature filtering.

The primary research question lies in a comparative forecasting performance of
the candidate models. We applied the rolling analysis [31], with a constant window
size (look-back interval) for tuning of hyperparameters and estimation of models’
out-of-sample forecasting accuracy. Parameters of every model specification were
tuned independently:

• Complete VAR model: look-back interval; maximal lag p.
• Refined VAR model: look-back interval; maximal lag p.
• Penalized VAR: look-back interval; regularization parameter λ; maximal lag p.
• RF-based sparse VAR: look-back interval; maximal lag p; strategy: system or

equation-wise; threshold for feature importance, IncreaseMSELB.

The out-of-sample mean absolute error (MAE), averaged by time series, is used
as the primary forecasting accuracy metric

MAEt = 1

k

k∑

i=1

∣
∣yi,t − ŷi,t

∣
∣ (3)

where ŷi,t is a predicted value for a spatial location i and time point t.
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In addition to MAE, forecasting accuracy of the candidate models is estimated by
the mean absolute scaled error (MASE), which is a ratio of model MAE values and
one-step ahead naïve forecast.

3.2 Data: Urban Traffic Forecasting

We applied the proposed methodology to a multivariate time series of urban traffic
volume values, obtained from 103 stations on arterial roads in Minneapolis, USA.
All stations are located within 6 min of travel time in uncongested traffic condi-
tions from the city centre. We collected the data for 40 weeks (01 Jan 2017–07 Oct
2017) and temporally aggregated them in 1 min time frames. The first 30 weeks of
data were used for learning of historical patterns and the last 10 weeks—for model
validation. Historical patterns are learned independently for every univariate time
series as median values, specific to a day of the week and time of the day. Data
for 10 weeks, designed for model validation was detrended by subtracting histor-
ical patterns. In addition, we implemented standard data preprocessing procedures:
removal of outliers (based on the physical capacity of roads); imputing missed data
(by linear interpolation), and winsorization (by lower and upper bounds, identified
by the interquartile range technique of outlier detection).

4 Results

Dimensionality of modelled time series is a key input for the sparse model
specification. We tested all candidate models for two data sets:

• Random sample of 10 stations (k = 10) that referred to as the low-dimensional
data set.

• Complete set of 103 sensors (k = 103) that are referred to as the high-dimensional
data set.

We assume that the dimensionality of the first multivariate time series is small
enough to keep stable estimates of the complete VAR model, while for the second
data set sparse VAR specification will be beneficial.

Hyperparameter tuning was executed by a grid search, where every combination
of hyperparameter values is tested by rolling window cross-validation. The rolling
windowwas shifted over 69 days (10weeksminus the first day that is used for a look-
back window) every 4 h, which resulted in 414 model estimates per hyperparameter
combination. Look-back interval is 16 h for all models (T = 960 min)—a minimal
length of time series that ensure stabilized results on model forecasting performance.

The resulting hyperparameters values were selected as
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• Optimal order of VAR models is 3 (p = 3), which was expected due to a limited
spatial area of analysis (maximum travel time between sensors is 6 min in normal
traffic conditions).

• Regularization parameter λ for the penalizedVARmodel was selected in a flexible
manner for every cross-validation subsample. The time-specific optimal value is
obtained by splitting the data set into two equal parts and using the second part
for the local cross-validation of the regularization parameter λ [17].

• Sparsity (IncreaseMSELB threshold) for the RF-based sparse VAR model is
selected from a set of corresponding quartiles for non-negative values—0, 20, 50
and 100% (exclude only variables with negative effects on forecasting accuracy).
Optimal sparsity for low-dimensional data set was selected as 50% (5 explana-
tory variables of 10 per time lag), for high-dimensional data set—as 20% (20
explanatory variables of 103 per time lag). Optimal values for system-wise and
equation-wise strategies are discovered as identical.

The penalized VAR and RF-controlled sparse VAR model specifications allow
tuning of parameters for a specific forecasting horizon. In this study, we arbitrary
trained both models to optimize the one-step ahead MAE.

The resulting forecasting performance of the candidate models with optimally
selected hyperparameters is presented in Table 1 (for low-dimensional data set) and
Table 2 (for high-dimensional data set). The obtained one-step ahead forecast average
MAE values are almost identical for all candidate models for the low-dimensional
data set, while differ significantly for the high-dimensional one. In addition to
average MAE andMASE values, we provide their 95th percentiles to explore spatial
and temporal stability of obtained forecasts. Discussion of the presented results is
provided in the next paper section.

Another point of our interest is the stability of model forecasting performance for
longer forecasting horizons. We constructed h-step ahead forecasts for all models (h
is a forecasting horizon, h = 1,…, 12) using the iterative one-step ahead strategy (so
forecasts for the next step were calculated using values, forecasted for the previous
steps) and combined them into aggregated forecasts for longer intervals (from 1 to

Table 1 One-step ahead forecasting performance (low-dimensional data set)

Model Average MAE 95th percentile of
MAE

Average MASE 95th percentile of
MASE

Complete VAR 4.14 6.37 0.521 0.613

Penalized VAR 4.15 6.33 0.516 0.619

Refined VAR 4.15 6.31 0.527 0.626

RF-based sparse
VAR
(equation-wise)

4.13 6.31 0.513 0.603

RF-based sparse
VAR
(system-wise)

4.14 6.34 0.520 0.622
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Table 2 One-step ahead forecasting performance (high-dimensional data set)

Model Average
MAE

95th percentile
of MAE

Average
MASE

95th percentile
of MASE

Complexity*,
seconds

Complete VAR 4.53 8.47 0.592 0.878 0

Penalized VAR 4.69 6.89 0.539 0.682 682

Refined VAR 3.99 7.31 0.515 0.750 1169

RF-based sparse
VAR
(equation-wise)

4.06 6.57 0.503 0.675 871

RF-based sparse
VAR
(system-wise)

4.07 6.45 0.508 0.690 871

*Computation complexity, average seconds per model for feature selection

h min). Further, average MAE values were calculated for aggregated forecasts. A
comparison of the obtained results is presented in Fig. 2 (for the low-dimensional
data set) and Fig. 3 (for the high-dimensional data set).

Fig. 2 Accuracy of the candidate models (mean and 95th percentile of MAE values) by forecasting
horizon: low-dimensional data set

Fig. 3 Accuracy of the candidate models (mean and 95th percentile of MAE values) by forecasting
horizon: high-dimensional data set
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Note that the h-step ahead forecasting accuracy is almost identical for all models,
except the penalized VAR, for low-dimensional data, but differ significantly for
high-dimensional ones.

We provide open-source codes (R) for all developed procedures in the public
repository http://bit.ly/ITISE2019 to ensure the reproducibility of the obtained
results.

5 Discussion

The primary research interest is the comparison of the forecasting performance of the
proposedRF-based sparseVARmodel specification against other alternatives. For the
low-dimensional data set, theRF-based sparseVARmodel’s forecasting performance
is almost identical to the completeVARmodel (averageMAE is 4.14 for bothmodels,
Table 1). While the forecasting performance of models is similar, the parsimonious
specification of theRF-based sparseVARmodel could be considered as an advantage,
because it provides an easier understanding of existing relationships and leads tomore
interpretable and manageable results. These results become more important under
the observed stability of the RF-based sparse VAR model’s forecasting performance
for longer time intervals (Fig. 2). Performance of RF-based sparse VAR model is
degrading almost with the same speed as the complete VAR model, while average
MAE of the competitor penalized VAR is growing much faster (note that both RF-
basedVARand penalizedVARare trained to optimize one-step ahead forecasts, so no
model has a prespecified advantage). Thus, we conclude the good performance of the
RF-based sparse VAR model for low-dimensional data sets, where the unrestricted
VAR is widely considered as a primary model specification.

For larger dimensionality, the proposedRF-based sparseVARmodel demonstrates
a clear advantage in forecasting performance over complete and penalized VAR
models. Its average one-step ahead forecast MAE value is 4.06 against 4.53 of the
complete VAR model (Table 1), which is a statistically significant difference for the
utilized number of cross-validation subsamples. This advantage keeps stable over
longer forecasting intervals (Fig. 3), while forecasting accuracies of the complete
and penalized VAR are degraded faster. Forecasting performance of the RF-based
sparse VARmodel is similar to the refined VAR, but its computational complexity is
much lower (Table 2 contains average computation times for feature selection on the
identical environment). Another comparative advantage of the RF-based sparse VAR
model against all competitor specifications is demonstrated by the 95th percentile
values of MAE—6.57 for the RF-based VAR model against 8.47 for the complete
VAR (Table 2). This fact is considered as an evidence of improvement of the stability
of the forecasting performance over space and time and supports our hypothesis about
the general advantage of the proposed approach.

Regarding the equation-wise and system-wise RF-based strategies, our empirical
results demonstrate almost the identical forecasting performance of the resulting
VAR model’s specifications. The absence of significant differences is also observed

http://bit.ly/ITISE2019
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for the stability of forecasting accuracy over spatial and temporal dimensions (in
terms of 95th percentile of MAE values), parsimony of the model specification (the
sparsity level) and accuracy for longer forecasting horizons (Fig. 3). This fact can be
case-specific—urban traffic flows at different road segments have the same nature
and usually similar in terms of time series features. In this special case, equation-wise
MAEvalues are comparable and their joint filtering does not overcome equation-wise
selection.Another potential reason for the similarity of the equation-wise and system-
wise results could be related to data preprocessing—traffic flow time series were
detrended, so the model is used to forecast deviations from the historical averages.
A comparison of the equation-wise and system-wise strategies has a case-specific
character and requires additional empirical evidences.

In addition to the primary research interest, we should mention several observa-
tions from the obtained results:

1. Forecasting performance of the refined VAR model overcomes the complete
VAR specification both for low-dimensional and high-dimensional data sets, but
requires intensive computations;

2. Penalized VAR model’s performance strictly depends on the prespecified target
forecasting horizon (one-step ahead in our experiments), so this model should
be separately tuned for every forecasting horizon;

3. Computational complexity of the proposed RF-based sparse VAR model is
growing fast with increasing dimensionality of the time series, but keepsmanage-
able (at least for several hundreds of dimensions) and the related algorithm is
easily parallelized.

6 Conclusions

In this paper, we propose a new random forest-based approach to variable selec-
tion for vector autoregressive models. Within the proposed approach, we utilize
the random forest for equation-wise feature selection and further apply the most
important features for sparse VAR model specification.

The proposed approach was applied to the real-world urban traffic data set and
tested against alternative model specifications: unrestricted VAR; refined VAR with
excluded insignificant coefficients; and LASSO-penalized VAR. Obtained experi-
mental results demonstrated the advantage of the proposed RF-based sparse VAR
model in several aspects.

1. Forecasting performance of the RF-based sparse VAR model overcomes the
performance of analyzed competitive models for high-dimensional data.

2. Parsimonious specification of the RF-based sparse VAR is also appropriate for
low-dimensional data, which is an advantage in terms of model interpretability.

3. The proposed approach inherits advantages of random forests such as the ability
to learn under an extremely large number of candidate features; low computa-
tional complexity, easy parallelization; resistance to overfitting, which makes it
appropriate for high-dimensional modelling of big data.



16 D. Pavlyuk

Finally, we should mention a wide area for the future research in this direction.
The system-wise strategy, described in this paper, should be extended to simulta-
neous learning of feature importance in all equations. This improvement requires the
methodological development of multi-output random forests and their application
for multivariate time series. In addition, obtained empirical results are case-specific,
so deeper validation of the proposed approach for other data sets is highly required.
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Covariance Functions for Gaussian
Laplacian Fields in Higher Dimension

Gyorgy H. Terdik

Abstract In this paper, we describe the covariance function of a general Laplacian
AR(p)model in the higher dimension. The speed of decay is considered also showing
that the exponential decay is also possible in higher dimensions at particular values
of the order p, which is not necessarily an integer. Vecchia’s method is applied for
getting covariance functions corresponding rational spectra of stochastic Laplacian
fields in three and higher dimensions.

Keywords Stochastic Laplacian fields · Stationary ARMA fields · Covariance
function · Rational spectrum

1 Introduction

Modelling spatial data has become an important subject in diverse application areas
including environmental and geophysical sciences, astrophysics, renewable energies,
etc. [1–4]. Among these models, the dynamical processes are of utmost importance,
since they describe the data through stochastic partial differential equations having a
small number of parameters to be estimated. Assuming Gaussianity, the covariance
function contains all the information necessary for modelling.Whittle [5] considered
a model using first-order stochastic Laplacian equation on the plane, which corre-
sponds to an AR(1) model in time series analysis having a simple rational spectrum
and a corresponding covariance function. More general rational spectra and covari-
ance functions have been considered by Vecchia [6] and those have been used for
model-identification Vecchia [7], and fitting continuous ARMAmodels to unequally
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spaced spatial data, Jones [8, 9], on the plane. On this line, a particular covariance
function has been used for modelling three-dimensional flows in hydrology by [10].

In this paper, we describe the covariance function for a general Laplacian AR(p)
model in higher dimensions. The speed of decay is considered also showing that the
exponential decay is also possible in higher dimensions at some particular values
of the order p, which is not necessarily a integer. Vecchia’s method is applied for
getting covariance functions corresponding rational spectra of stochastic Laplacian
fields in three and four dimensions. These results allow further development of the
covariance structure for spatio-temporal dynamical models given by Subba Rao and
Terdik [11–13].

2 Frequency Domain Treatment of Stationary Fields in
Higher Dimensions

As we shall see later, a stochastic Laplacian equation under some natural assumption
provides a stationary solution, i.e., a stationary real-valued field onR

d . We call a ran-
domfieldX

(
x
)
, x ∈ R

d , (second-order) stationary if it is homogeneous and isotropic,
namely if the mean of X

(
x
)
is constant and the covariance function is invariant under

translations, i.e., it is homogeneous, more over the covariance function is invariant
under group of rotations, i.e., it is isotropic, [14–16].

We consider stationary fields X
(
x
)
, with EX

(
x
) = 0, the covariance function of

a stationary field X
(
x
)
depends on the distance of locations only

C (r) = Cov
(
X

(
x1

)
,X

(
x2

))
,

where r = ∣∣x1 − x2
∣∣. The spectral representation of a homogeneous fieldX

(
x
)
writes

X
(
x
) =

∫

Rd

eix·λZ
(
dλ

)
, λ, x ∈ R

d ,

where x · λ =
d∑

i=1
xiλi, and Z

(
dλ

)
is a stochastic spectral measure, [16].

Fromnowon, let x,λ ∈ R
d , and denote r = ∣

∣x
∣
∣,ρ = ∣

∣λ
∣
∣, such that x = r̃x,λ = ρ̃λ,

where x̃, λ̃ are unit vectors from the unit sphere Sd−1, in R
d . Let us assume further

that d ≥ 3. Now, we rewrite the spectral representation in spherical polar coordinates

X
(
r, x̃

) =
∫ ∞

0

∫

Sd−1

eiρrλ̃·̃xZ
(
Ω

(
d λ̃

)
ρd−1dρ

)
, (1)

where Ω
(
d λ̃

)
is the Lebesgue element of the surface area on Sd−1. The Jacobi–

Anger expansions of the exponent, see 14, provides the decomposition of X
(
x
)
in

terms of polar coordinates
(
r, x̃

)
:
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X
(
r, x̃

) = sd−1

∞∑

�=0

h(�,d)∑

m=1

i�Ym
�

(
x̃
) ∫ ∞

0
jd ,� (rρ)Zm

�

(
ρd−1dρ

)
, (2)

where sd−1 = 2πd/2/Γ (d/2) is the surface area of the sphere Sd−1, Ym
� and jd ,�

denote the Orthonormal Spherical Harmonics, see Appendix, item 1, and the Spher-
ical Bessel function of the first kind, see (12), respectively.

Remark 1 We notice at this point that the case d = 2 is a slightly different. The rea-
son is that ifd = 2 the expansion (2)writes in terms of cos �ϑ, and sin �ϑ traditionally,
instead of the normed versions Y 1

�

(
x̃
) = cos �ϑ/

√
2π, and Y 2

�

(
x̃
) = sin �ϑ/

√
2π.

The decomposition (2) contains countable number of uncorrelated stationary pro-
cesses since the stationarity of X implies and implied by that the spectral measure

F
(
dλ

) = E
∣∣Z

(
dλ

)∣∣2 = E
∣∣Z

(
Ω

(
d λ̃

)
ρ2dρ

)∣∣2 = F
(
Ω

(
d λ̃

)
ρ2dρ

)
,

is separated in space according to the direction λ̃ and wave number ρ, i.e.,
F

(
Ω

(
d λ̃

)
ρ2dρ

) = Ω
(
d λ̃

)
F

(
ρ2dρ

)
, therefore the stochastic spectral measures

Zm
�

(
ρd−1dρ

) = i�
∫

Sd−1

Ym
�

(̃
λ
)∗
Z

(
Ω

(
d λ̃

)
ρd−1dρ

)

in (2) are orthogonal

Cov
(
Zm1
�1

(ρ1dρ1) , Zm2
�2

(ρ2dρ2)
∗)

= i(�1−�2)

∫

S2

Ym1
�1

(̃
λ
)
Ym2
�2

(̃
λ
)
F

(
Ω

(
d λ̃

)
ρd−1dρ

)

= i(�1−�2)δ�1,�2δm1,m2F
(
ρd−1dρ

)
.

In case of absolute continuity of the spectral measure we have

F
(
ρd−1dρ

) = f (ρ) ρd−1dρ,

where f (ρ) denotes the spectral density, the spectrum for short.

2.1 Covariance Functions of Laplacian Fields

First we consider the connection between the spectrum and covariance function in
general. One uses formulae (15) and (16) and arrives at the following form of the
covariance function:
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C (r) = Cov
(
X

(
r1, x̃1

)
,X

(
r2, x̃2

))

= sd−1

∫ ∞

0
jd ,0 (ρr)F

(
ρd−1dρ

)
,

and in case of absolute continuity of F we replace the spectral measure by the
spectrum

C (r) = sd−1

∫ ∞

0
jd ,0 (ρr) f (ρ) ρd−1dρ.

The spectrum is also expressed by the inverse Fourier transform

f (ρ) = sd−1

(2π)d

∫ ∞

0
jd ,0 (ρr) C (r) rd−1dr,

as usual.

2.2 AR(p)

The most important model for a stationary field X
(
x
)
is a solution of stochastic

Laplacian equation (� − c2
)p
X

(
x
) = ∂W

(
x
)
, (3)

where p > d/4, c is a nonzero real constant and ∂W
(
x
)
denotes the Gaussian white

noise, see Appendix, item 6, for the Laplacian operator �. Here X
(
x
)
is a linear

transform of the white noise. In general when X
(
x
)
is the result of a linear filter

A (ρ) on the white noise then the spectral density f (ρ) has the form

f (ρ) = σ2

(2π)d
|A (ρ)|2 , (4)

in particular the spectral density of the solution of the equation (3) is given by

f (ρ) = 1

(2π)d
σ2

(
ρ2 + c2

)2p , (5)

which shows readily that f (ρ) depends only on the wave number ρ = ∣∣λ
∣∣, the dis-

tance between two points in frequency domain, and therefore the solution X
(
x
)
is

stationary. The spectrum f (ρ) is a rational function, hence it can be considered as
an analogue of the spectrum of an autoregressive time series, so it looks reasonable
calling X

(
x
)
to an AR(p) field. The corresponding covariance function follows from

known integrals of Bessel functions, see [17], 11.4.44,
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C (r) = sd−1

(2π)d
σ2

∫ ∞

0
jd ,0 (rρ)

ρd−1dρ
(
ρ2 + c2

)2p (6)

= σ2 Γ (d/2)

Γ (2p)

( r

2c

)2p−d/2
K2p−d/2 (cr) ,

where K2p−d/2 denotes the modified Bessel function, see Appendix, item 7. Some
broader assumption for the existence of the above integral is d < 8p + 1, nevertheless
having a covariance function we need a finite positive limit at zero, and therefore we
should assume d/4 < p, see (19).

Whittle [5] has experienced that for the case d = 2, p = 1, i.e. for an AR(1) field
on the plane, the rate of decay of the correlation function is slower than exponential,
which does not happen for an AR(p) model in time series analysis. Indeed we use
(6), and obtain the correlation function

R (r) = 2

Γ (2p − d/2)

(cr
2

)2p−d/2
K2p−d/2 (cr) ,

with the rate of decay

R (r) ∼
√

π

Γ (2p − d/2)

(cr
2

)2p−d/2−1/2
e−cr, z → ∞, (7)

see (18). In fact R (r) ∼ O (
r2p−d/2−1/2e−cr

)
, z → ∞. We conclude that one can

have a valid correlation function with exponential rate of decay in higher dimension
easily, it happens if d = 3, p = 1, for instance, see row 3/1 in the Table1. Let us
generalize the order of the autoregression to a positive real number p, and assume
2p − d/2 − 1/2 = 0, while d/2 < 2p, then by the asymptotic formula (7) the rate
of decay of the correlation function is exponential. We give some more examples in
Table1.

Table 1 Correlation functions with rate of decays

d/p R (r) R (r) , r → ∞ C (0)

1/1 e−cr e−cr 1

2/1 crK1 (cr)
√

πcr/2e−cr 1/2c2

2/2 (cr)3 K3 (cr) /2
√

π/2 (cr)5/2 e−cr/2 1/24c6

3/1 e−cr e−cr √
π/23/2c

3/ 3
2 e−cr (cr + 1) cre−cr √

π/27/2c3

3/2 e−cr
(
(cr)2 /3 + cr + 1

)
(cr)2 e−cr/3

√
π/2/24c5
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2.3 ARMA Fields

A further possible generalization of the spectrum (5) is changing the AR spectrum to
an ARMA one, namely into a rational function. Consider the following polynomials:

Q (z) =
q∑

k=0

qkz
k , P (z) =

p∑

k=0

pkz
k ,

Q (z) =
N∏

j=1

(
z − bj

)nj/2
, P (z) =

M∏

j=1

(
z − aj

)mj/2 (8)

and the stochastic equation

P
(∇2

)
X

(
x
) = Q

(∇2
)
W

(
x
)
, (9)

by generalized sense. We have, see [15], p. 24, Theorem 11, that if p − q > d/4, and
P (z) is nonzero on [−∞, 0], then

f (ρ) = σ2

(2π)d

Q2
(−ρ2

)

P2
(−ρ2

) , (10)

is a valid spectral density where ρ2 = ∣∣λ
∣∣2, and the solution X

(
x
)
, is stationary.

Vecchia (1988), [7], has considered the case d = 2, and derived the covariance
function according to the spectrum (10). Vecchia’s method is based on the existence
of the integral

∫ ∞

0
jd ,0 (rρ)

1

ρ2 + c2
ρd−1dρ = Γ (d/2)

( r

2c

)1−d/2
Kd/2−1 (cr) ,

actually this integral is a particular case of (6), and it exists if d < 5, otherwise it is
not necessarily a covariance function. The consequence of d < 5 is that Vecchia’s
method is valid for d = 2, 3, 4. We simplify the general result of Vecchia for the
case of real roots of polynomials P (z) and Q (z).

Theorem 1 Consider the stochastic Laplacian equation (9) for d = 2, 3, 4, with
polynomials P (z) and Q (z) given by (8). Let

{
aj, 1 ≤ j ≤ M

}
, satisfying aj > 0,

and
{
bj, 1 ≤ j ≤ N

}
be distinct real numbers, moreover mj, nj be positive integers.

Then the covariance function of the ARMA filed (9) is given by

Cd (r) = (−1)2p−1 σ2 sd−1

(2π)d

M∑

j=1

1
(
mj − 1

)!
∂mj−1

∂a
mj−1
j

WjGd
(√

ajr
)
, (11)
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where 2p = ∑M
j=1 mj ≥ ∑N

j=1 nj + 2, r > 0, Wj = ∏N
k=1

(
bk − aj

)nj
�

∏M
k=1�=j(

ak − aj
)mj , and

G
(√

ar
) =

⎧
⎨

⎩

K0
(√

ar
)
, d = 2,

π exp
(−√

ar
)
/2r, d = 3,

2
√
aK1

(√
ar

)
/r, d = 4.

The proof is analogue to the case of d = 2, in [7], and therefore it is omitted.
We give some examples.

Example 1 The covariance function for an AR(p) model in dimension d = 3. There
are three ways having the same results. One can use either formula (6)

C3 (r) = σ2

2π2

√
π

4

( r

2c

)2p−d/2
K2p−3/2 (cr) ,

or formula (11) with a = c2, m1 = 2p, M = 1,

C3 (r) = σ2

2π2

π

2r

1

(2p − 1)!
∂2p−1

∂a2p−1
exp

(−√
ar

)
,

or using the spatial form of j3,0 (ρ) = sin ρ/ρ, and formula (21),

C3 (r) = σ2

2π2

π exp
(−√

ar
)

24p−2 (2p − 1)! (√a
)4p−3

2p−2∑

k=0

(4p − k − 4)! (2r√a
)k

k! (2p − k − 2)! .

Each of them gives the same result.
Let us consider an instantwhen d = 3, p = 2, andM = 1, thenwe have theLaplacian
model AR(2) by the equation

(∇2 − c2
)2
X

(
x
) = ∂W

(
x
)
,

with covariance function

C3 (r) = σ2 1

26π

1

|c|5
(
1 + r |c| + r2 |c|

3

)
exp (−r |c|) .

An other example is the following.

Example 2 The covariance function for an AR(2,1) when d = 3. Consider the
stochastic Laplacian equation

(∇2 − a1
) (∇2 − a2

)
X

(
x
) = ∂W

(
x
) (∇2 − b1

)
∂W

(
x
)
,
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the spectrum writes as

f (ρ) = σ2

(2π)3

(
ρ2 + b1

)2
(
ρ2 + a1

)2 (
ρ2 + a2

)2 ,

Now W1 = (b1 − a1) � (a2 − a1), W2 = (b1 − a2) � (a1 − a2), and the covariance
function is

C3 (r) = σ2

8π

(
b1 − a1
a2 − a1

1√
a1

exp
(−√

a1r
) + b1 − a2

a1 − a2

1√
a2

exp
(−√

a2r
))

.

Conclusion Fitting a stochastic stationary model on the data makes necessary
estimating the rate of decay of the covariance function first. We have shown that the
rate of decay of covariance functions of ARMA fields is given clearly and depends
on some parameters only, and therefore its estimation is possible.

3 Appendix

1. Orthonormal Spherical Harmonics with complex values are denoted by
Ym

�

(̃
λ
)
, λ̃ ∈ Sd−1, � = 0, 1, 2, . . ., m = 1, . . . , h (�, d), where h (�, d) =

(2� + d − 2) (� + d − 3)!/�! (d − 2)!, Ym
�

(̃
λ
)
is of degree � and order m (rank

� and projection m), see [18], [15, 19, 20].
2. Spherical Bessel function jd ,�, d ≥ 3, of the first kind,

jd ,� (z) = Γ (d/2)

(z/2)d2
Jd2+� (z) = d2Γ (d2)

(z/2)d2
Jd2+� (z) , (12)

where J�+1/2 is the Bessel function of the first kind, see DLMF, [21], 10.47.3,
and d2 = (d − 2) /2

3. Jacobi–Anger expansions:

exp
(
ix · λ

) = Γ (ν)

(rρ/2)ν

∞∑

k=0

(ν + k) ikJν+k (rρ)C(ν)

k

(
x̃ · λ̃

)
,

ν �= 0,−1, . . ., see DLMF, [21], 10.23.9, let d2 = (d/2 − 2) /2,

exp
(
ix · λ

) = 1

d2

∞∑

k=0

(� + d2) i
�jd ,� (rρ)C(d2)

�

(
x̃ · λ̃

)
, (13)

see DLMF, [21], 18.3.1.
Jacobi-Anger expansion, see [22], t. 2, 7.2.4 (27),
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exp
(
ix · λ

) = sd−1

∞∑

�=0

h(�,d)∑

m=1

Ym
�

(
x̃
)
Ym

�

(̃
λ
)
i�jd ,� (rρ) ,λ ∈ R

d , (14)

Note, if d = 2, h (�, d) = 2, and Y 1
�

(̃
λ
) = cos �ϑ/

√
2π, and Y 2

�

(̃
λ
) = sin �ϑ/√

2π, see [23], Ch. IV., [19], Ch. 1.
4. Addition Theorem:

h(�,d)∑

m=1

Ym
�

(
x̃
)
Ym∗

�

(
ỹ
)

= h (�, d)

sd−1C
d2
� (1)

Cd2
�

(
x̃ · ỹ

)

= � + d2
sd−1d2

Cd2
�

(
x̃ · ỹ

)
, (15)

see [22], t. 2, 11.4 Theorem 4.
5. Graf’s and Gegenbauer’s Addition Theorem:

jd ,0 (ρr) = 1

d2

∞∑

�=0

(� + d2)C
d2
�

(
x̃ · ỹ

)
jd ,� (r1ρ) jd ,� (ρr2) , (16)

see DLMF [21], 10.23.8.
6. The Laplacian ∇2 in spherical coordinates is given by

∇2 = 1

r2
�Sd−1 +d − 1

r

∂

∂r
+ ∂2

∂r2
,

where �Sd−1 denotes the Laplace-Beltrami operator

�Sd−1 = 1

sind−2 ϑd−1

∂

∂ϑd−1

(
sind−2 ϑd−1

∂

∂ϑd−1

)

+
d−2∑

j=1

1

sin2 ϑd−1 · · · sin2 ϑj+1 sinj−1 ϑj

∂

∂ϑj

(
sinj−1 ϑj

∂

∂ϑj

)
, (17)

on Sd−1. The angles ϑj are defined by the spherical polar coordinates: λ̃d =[
sin ϑd−1λ̃d−1, cosϑd−1

]
, λ̃d ∈ Sd−1 λ̃d−1 ∈ Sd−2, see [19].

7. The Modified Bessel function of the second kind Kν is the solution of the
Modified Bessel’s Equation, see [21] 10.25.
Limiting forms:

Kν (z) ∼
√

π

2z
e−z, z → ∞, (18)

Kν (z) ∼ 1

2
Γ (ν)

(
1

2
z

)−ν

, z → 0. (19)
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Special forms of Modified Bessel functions of the second kind:

K1/2 (z) =
√

π

2z
e−z, (20)

K3/2 (z) =
√

π

2z
e−z

(
1 + 1

z

)
,

K5/2 (z) =
√

π

2z
e−z

(
1 + 3

z
+ 3

z2

)
,

see [17], 10.2.17.
8. Integral

∫ ∞

0
j3,0 (ρr)

ρ2dρ
(
ρ2 + a

)2p

=
∫ ∞

0

sin (ρr) ρ

r
(
ρ2 + a

)2p dρ

= πr exp
(−√

ar
)

r22(2p−1) (2p − 1)! (√a
)2(2p−1)−1

2p−2∑

k=0

(2 (2p − 1) − k − 2)! (2r√a
)k

k! (2p − k − 2)!

= π exp
(−√

ar
)

24p−2 (2p − 1)! (√a
)4p−3

2p−2∑

k=0

(4p − k − 4)! (2r√a
)k

k! (2p − k − 2)! , (21)

see [24], 3.737.2.
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The Correspondence Between Stochastic
Linear Difference and Differential
Equations

D. Stephen G. Pollock

Abstract An autoregressive moving-average model in discrete time is driven by a
forcing function that is necessarily limited in frequency to theNyquist value ofπ radi-
ans per sampling interval. The linear stochastic model that is commonly regarded as
the counterpart in the continuous time of the autoregressivemoving-averagemodel is
driven by a forcing function that consists of the increments of aWiener process. This
function is unbounded in frequency. The disparity in the frequency contents of the
two forcing functions creates difficulties in defining a correspondence between the
discrete-time and continuous-time models. These difficulties are alleviated when the
continuous-time forcing function is limited in frequency by the Nyquist value. Then,
there is an immediate one-to-one correspondence been the discrete-time autore-
gressive moving-average model and its continuous-time counterpart, of which the
parameters can be readily inferred from those of the discrete-time model.

Keywords Stochastic differential equations · Frequency-limited stochastic
processes · Oversampling

1 Introduction: The Discrete–Continuous Correspondence

Modern communications technology relies on the correspondence between continu-
ous signals and the discrete sequences that come from sampling the signals rapidly at
regular intervals. Familiar examples of the technology are the analog–digital conver-
sions of digital radio, digital sound recordings and digital television; but the domain
of this technology is much wider.

The basis of digital technology is the sampling theorem of Nyquist [6, 7] and of
Shannon [9], which indicates that if a signal is sampled with sufficient rapidity, then
it can be reconstituted with complete accuracy from the sampled sequence.
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The theorem is a commonplace amongst electrical engineers. It ought to be equally
familiar to econometricians and statisticians and, in particular, to time-series analysts,
but it has been widely ignored.

This discrete–continuous equivalence began to be widely recognised at the end
of the nineteenth century with the advent of the cinema. The cinema creates moving
pictures from a sequence of fixed images projected in rapid succession. In the early
days of the cinema, the succession of images was insufficiently rapid to convey an
impression of smoothmotion. The pictures tended to flicker; and, in popular parlance,
we still refer to visiting the cinema as ‘going to the flicks’.

There is a revealing picture by Marcel Duchamp, exhibited in the Paris Salon des
Independents of 1912, which is titled A Nude Descending a Staircase. It exposes the
paradox of the discrete–continuous correspondence; and it makes an allusion to the
jerky motion of the early cinema.

Occasionally, the true nature of motion pictures is revealed by an odd quirk that
occurs when the rate of sampling is insufficient to convey a convincing impression
of a rapid motion. Those of a certain age will have seen a depiction of a stagecoach
fleeing its pursuers. They will have noticed the blurred impression of the wagon
wheels. At times, these appear to be rotating slowly in the direction of travel. At
other times, they seem to be stationary, and they may even, on occasion, appear to
be moving backwards.

These are instances of the so-called problem of aliasing, whereby a motion that is
too rapid to be captured by the sampling process is proxied by amuch slower motion.

The Shannon–Nyquist sampling theorem is an adjunct of a Fourier analysis, which
depicts a temporal trajectory as a weighted combination of trigonometric functions.
The theorem indicates that if the sampled sequence is fully to capture a continuous
motion, then it is necessary that at least two observations should be made in the time
that it takes for the trigonometric element of highest frequency to complete a single
cycle. This rate of sampling, which corresponds to a signal frequency of π radians
per sampling interval, is the so-called Nyquist relative frequency.

If the frequencies within the signal exceed the Nyquist value of π, then there will
be an irremediable loss of information and it will not be possible fully to reconstitute
the signal from the sampled data. Conversely, if the maximum frequency within
the signal is less than the Nyquist value, then the sampling is over-rapid and other
problems can arise; but these problems ought, in principle, to be remediable.

2 ARMA Estimation and the Effects of Over-Rapid
Sampling

A problem can arise in the estimation of an ARMAmodel when the rate of sampling
exceeds the maximum frequency within the signal. The problem can be illustrated
with the deseasonalised quarterly data on the U.S. gross domestic product (GDP)
from which a trend has been extracted with the filter of Leser [4] and of Hodrick
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Fig. 1 The deviations of the logarithmic quarterly index of real USGDP from an interpolated trend.
The observations are from 1968 to 2007. The trend is determined by a Hodrick–Prescott (Leser)
filter with a smoothing parameter of 1600

and Prescott [2, 3]—see Fig. 1. The problem, which has been highlighted by Pollock
[8], is revealed by examining the periodogram of the data, which is a product of its
Fourier transform.

The Fourier analysis expresses the detrended data sequence y(t) = {yt ; t =
0, 1, . . . , T − 1} as

y(t) =
[T/2]∑

j=0

{
α j cos(ω j t) + β j sin(ω j t)

} =
T−1∑

j=0

ξ j e
iω j t , (1)

where ω j = 2π j/T ; j = 0, . . . , [T/2] are the Fourier frequencies, which are placed
at regular intervals running from zero up to the Nyquist frequency π, or just short
of it by a half interval. Here, [T/2] denotes the integer quotient of the division of
T by 2.

The second expression, which employs complex exponential functions, arises
from Euler’s equations, whereby

cos(ω j t) = eiω j t + e−iω j t

2
and sin(ω j t) = −i

2
(eiω j t − e−iω j t ). (2)

Conversely, there are

eiω j t = cos(ω j t) + i sin(ω j t) and e−iω j t = cos(ω j t) − i sin(ω j t), (3)

and it follows that exp{−iω j t} = exp{iωT− j t}. Also, ξ j = (α j − iβ j )/2 and ξT− j =
(α j + iβ j )/2 for j = 0, 1, . . . , [T/2]. These results enable the two expressions of
(1) to be reconciled.

The coefficients α j ,β j are obtained by regressing the data on the ordinates of the
trigonometric functions cos(ω j t), sin(ω j t), where t = 0, 1, . . . , T − 1. It should be
observed that if the maximum frequency in the signal is less than π, then some of
these coefficients will be zero valued.
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The periodogram is the plot of the squared amplitudes ρ2j = α2
j + β2

j , and it con-
veys a frequency-specific analysis of variance. That is to say

V (y) = 1

T

∑

t

(yt − ȳ)2 = 1

2

∑

j

{α2
j + β2

j } = 1

2

∑

j

ρ2j . (4)

The periodogram of the detrended logarithmic quarterly index of real US GDP is
depicted in Figs. 2 and 3.

An attempt can be made to capture the business cycle dynamics by fitting an
AR(2) model to the detrended data. The expectation is that the poles of the model,
i.e. its autoregressive roots, will be a conjugate complex pair. The modulus of the
roots should represent the damping characteristics of the business cycle and their
argument should represent an angular velocity, which would indicate the average
duration of the business cycle. The parametric spectrum of the fitted ARMA model
shouldmimic the shape of the periodogram,with its peak in roughly the sameposition
as that of the periodogram.

0
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0.0004

0.0006

0 π/4 π/2 3π/4 π

Fig. 2 The periodogram of the data points of Fig. 1 overlaid by the parametric spectral density
function of an estimated regular AR(2) model
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0.0005

0.001

0 π/4 π/2 3π/4 π

Fig. 3 The periodogram of the data points of Fig. 1 overlaid by the spectral density function of an
AR(2) model estimated from de-noised frequency-limited data
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When the parametric spectrum of the estimated AR(2) model is superimposed on
the periodogram in Fig. 2, it becomes clear that, in place of the expected complex
roots, there are two real-valued roots.

In diagnosing the problem, it is recognised that there are minor elements of noise
affecting the data throughout the frequency interval running for the cut-off point of
the spectral signature of the business cycle at ωc = π/4 up to the Nyquist frequency
ofπ. This noise ismaking a significant contribution to the variance of the datawithout
greatly affecting the autocovariance at positive lags. As a result, the initial values,
which determine the estimates of the autoregressive parameters, show an exaggerated
rate of decline, or damping, which gives rise to the real-valued poles.

The appropriate recourse would seem to be to remove the noise from the data by
suppressing the associated periodogram ordinates in the interval (π/4,π]. When this
is done, the estimation does deliver a pair of conjugate complex poles. However, in
this case, the parametric spectrum in Fig. 3 misrepresents the periodogram in another
way.

The poles are too close to the unit circle, i.e. their modulus is close to unity. The
effect is to exaggerate the prominence of the spectral spike and to underestimate the
rate of damping. Also, it can be seen that the peak is displaced to the right, implying
that the argument is an overestimate, which exaggerates the frequency of the cycles.
In consequence of the excessive rate of sampling, the initial autocovariances, which
are too close to the origin, where the variance is to be found, are declining too slowly.
Thus, the rate of damping is underestimated.

The spectral support of an ARMA process is the full Nyquist frequency interval
[0,π]. Therefore, it is appropriate to dilate the spectral signature of the business cycle
so that it fills the entire interval. This entails associating to each of the periodogram
ordinates a higher frequency value. The frequencies are measured relative to the
sampling interval. Therefore, they can be increased by increasing the length of the
sampling interval.

In order to resample the data, it is usually necessary to reconstitute the underlying
continuous trajectory. This can be achieved by a method of Fourier synthesis based
on a version of equation (1) in which the coefficients associated with noisy elements,
with frequencies in excess of the upper limit of the business cycle, have been set to
zero.

The discrete temporal index, which is t = 0, 1, . . . , T − 1, can be replaced within
Eq. (1) by a continuous variable t ∈ [0, T ) to create the continuous trajectory. This
can be resampled at intervals of π/ωc units of time. In the present example, wherein
ωc = π/4, the appropriate sampling interval is 4 units, which implies that only one in
4 of the points from the de-noised data is required; and there is no need to reconstitute
the continuous trajectory in order to resample it. The effect of estimating an ARMA
model with the de-noised and resampled data is shown in Fig. 4.
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Fig. 4 The periodogram of the de-noised data that have been filtered and subsampled at the rate of
1 observation in 4, overlaid by the parametric spectrum of an estimated ARMA(2, 1) model

3 Sinc Function Interpolation and Fourier Interpolation

The procedure for resampling the data has implicitly defined a continuous ARMA
process poweredbya continuous frequency-limitedwhite-noise process.The stochas-
tic differential equations that are commonly supposed to be the continuous-time
analogs of the ARMA models are driven by the increments of a Wiener process.
The latter is an accumulation of a continuous steam of infinitesimal impulses. Such
impulses are unbounded in frequency. The Wiener process has the characteristic
that, whatever the rate of sampling, the accumulations that occur within the sam-
pling intervals will constitute a discrete-time white-noise process.

In proposing a frequency-limited white noise, we resort to the sampling theorem.
The theorem is commonly defined for square-integrable functions of time, defined
of the real lineR = (−∞,∞), and limited in frequency to the interval [−π,π].

The Fourier integral transform has the following expression in the time domain
and the frequency domain:

x(t) = 1

2π

∫ ∞

−∞
ξ(ω)eiωt dω ←→ ξ(ω) =

∫ ∞

−∞
x(t)e−iωt dt. (5)

However, with the frequency limitation, this becomes

x(t) = 1

2π

∫ π

−π

ξS(ω)e
iωt dω ←→ ξS(ω) =

∞∑

k=−∞
xke

−ikω, (6)

where {xk; k = 0,±1,±2, . . .} is sampled at unit intervals from x(t). Putting the
RHS of (6) into the LHS and interchanging the order of integration and summation
gives

x(t) = 1

2π

∞∑

k=−∞
xk

{∫ π

−π

eiω(t−k)

}
dω =

∞∑

k=−∞
xkϕ(t − k), (7)
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where

ϕ(t − k) = sin{π(t − k)}
π(t − k)

(8)

is the so-call sinc function. The RHS of Eq. (7) defines a sinc function interpolation.
The sinc function centred on k = 0, which is illustrated in Fig. 5, is formed by

applying abi-directional hyperbolic taper to anordinary sine function.The succession
of displaced sinc functions provides an orthonormal basis for the set of continuous
functions that are limited in frequency to the Nyquist interval [−π,π].

Equation (7) implies a simple prescription for converting a data sequence into a
continuous function that is limited in frequency to the Nyquist interval. Sinc function
kernels are attached to each of the discrete-time ordinates, and the sum is taken of the
scaled kernels. The values at the integer points are those of their associated kernels;
and these values are not affected by the kernels at the other integer points. This
feature is illustrated by Fig. 6.

A continuous-time white-noise forcing function can be formed by replacing the
impulses of a discrete-time white-noise process by sinc functions scaled by the val-
ues of those impulses. If εt = ε(t) and εs = ε(s) are elements sampled at arbitrary

0
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Fig. 5 The sinc function wave-packet ϕ(t) = sin(πt)/πt comprising frequencies in the interval
[0,π]
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Fig. 6 The wave packets ϕ(t − k), which are bounded in frequency by π, suffer no mutual inter-
ference when k ∈ {0,±1,±2,±3, . . .}
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points from the continuous frequency-limitedwhite-noise forcing function, then their
covariance is the sinc function

C(εt , εs) = σ2
εϕ(t − s) = σ2

εϕ(τ ), τ = t − s, (9)

where σ2
ε is the variance parameter. This result follows from recognising that εs =

ε(τ )εt + η, where η is uncorrelated with εt , and from the fact that ϕ2(τ ) = ϕ(τ ).
The practicality of a sinc function synthesis is prejudiced by the fact that the

support of the kernel functions is the entire real line R = (−∞,∞). A practical
synthesis replaces the sinc function by the so-called Dirichlet kernel, which is a
periodic or circular function formed by wrapping the sinc function around a circle of
a circumference T , equal to the number of data points, and by adding the overlying
ordinates. In this context, the data points to which the kernels are to be fixed are also
to be regarded as a periodic or circular sequence.

Consider the discrete Fourier transform expressed as follows:

xt =
T−1∑

j=0

ξ j e
iω j t ←→ ξ j = 1

T

T−1∑

t=0

xte
−iω j t with ω j = 2π j

T
. (10)

By putting the RHS of the latter into the LHS and commuting the two summations
and allowing t ∈ [0, T ) to vary continuously, we get

x(t) = 1

T

T−1∑

k=0

xk

⎧
⎨

⎩

T−1∑

j=0

eiω j (t−k)

⎫
⎬

⎭ =
T−1∑

k=0

xkϕ
◦(t − k). (11)

where

ϕ◦(t) = 1

T

n∑

j=−n

eiω j t = sin({T/2}ω1t)

T sin(ω1t/2)
with n = T − 1

2
. (12)

is the periodic Dirichlet Kernel. An example is provided by Fig. 7.

0 10 20 300−10−20−30

Fig. 7 The Dirichlet function sin(πt)/ sin(2πt/M) obtained from the inverse Fourier transform of
a frequency-domain rectangle sampled at M = 21 points
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Equation (11) implies that a sinc function interpolation of a finite data sequence
that employs a sequence of Dirichelet kernels is equivalent to an interpolation based
on a Fourier synthesis.

4 Discrete-Time and Continuous-Time Models

Whereas it is straightforward to derive a continuous version of anARMAprocess (i.e.
a CARMA process) by sinc function interpolation, we also require to represent it via
a linear stochastic differential equation (an LSDE). The correspondence between dif-
ference equations and differential equations can be established by focusing, initially,
on the first-order equations.

(In this paper, the acronym CARMA is reserved for the continuous-time linear
stochastic differential equations that have the same frequency limitation as their
corresponding discrete-time ARMA models. This is in spite of the common use of
the acronym to denote continuous processes of unlimited frequency that are derived
from ARMA models.)

The first-order autoregressive difference equation takes the form of

y(t) = μy(t − 1) + ε(t) or y(t) = ε(t)

1 − μL
=

∞∑

τ=0

μτε(t − τ ). (13)

Here, y(t) = {yt ; t = 0 ± 1,±2. . . .} denotes a sequence, and L is the lag operator
such that Ly(t) = y(t − 1). (However, y(t)will be used, equally, to denote a function
of a continuous-time index.) Also, the forcing function ε(t) is a white-noise sequence
of independent and identically distributed random elements.

The corresponding first-order stochastic differential equation is denoted by

dy

dt
= κy(t) + ζ(t) or

y(t) = ζ(t)

D − κ
=

∫ ∞

0
eκτ ζ(t − τ )dτ =

∫ t

−∞
eκ(t−τ )ζ(τ )dτ , (14)

where D is the derivative operator such that Dx(t) = dx/dt . Here, the forcing func-
tion ζ(t) is a continuous white-noise process. It is either the derivative of a Wiener
process or else it is a frequency-limited process formed by associating sinc functions
to the elements of a discrete white-noise sequence. It can be seen that μτ and eκτ play
the same role in the two equations, which is to diminish or to ‘dampen’ the effect of
the impulses of the forcing functions as time elapses.

To convert the differential equation of (14) to the difference equation of (13),
the integral on the interval (−∞, t] may be separated into two parts, which are the
integrals over (−∞, t − 1] and (t − 1, t]:
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y(t) = eκ

∫ t−1

−∞
eκ(t−1−τ )ζ(τ )dτ +

∫ t

t−1
eκ(t−τ )ζ(τ )dτ

= μy(t − 1) + ε(t). (15)

We are interested, of course, in equations of higher orders. The ARMA(p, q)
equation is denoted by

(1 + α1L + · · · + αpL
p)y(t) = (β0 + β1L + · · · + βpL

q)ε(t)

or α(L)y(t) = β(L)ε(t). (16)

Given that p > q and that there are no repeated roots of α(z) = 0, the rational
function β(z)/α(z) is amenable to a partial-fraction decomposition, which gives rise
to the equation

y(t) = β(L)

α(L)
ε(t) =

{
d1

1 − μ1L
+ d2

1 − μ2L
+ · · · + dp

1 − μpL

}
ε(t)

=
∞∑

τ=0

{
d1μ

τ
1 + d2μ

τ
2 + · · · + dpμ

τ
p

}
ε(t − τ ). (17)

The linear stochastic differential equation of orders p and q < p, denoted by
LSDE(p, q), is specified by the equation

(φ0D
p + φ1D

p−1 + · · · + φp)y(t) = (θ0D
q + θ1D

q−1 + · · · + θq)ζ(t)

or φ(D)y(t) = θ(D)ζ(t). (18)

On the assumption that there are no repeated roots, it has the following partial-fraction
decomposition:

y(t) = θ(D)

φ(D)
ζ(t) =

{
c1

D − κ1
+ c2

D − κ2
+ · · · + cp

D − κp

}
ζ(t)

=
∫ ∞

0

{
c1e

κ1τ + c2e
κ2τ + · · · + cpe

κpτ
}
ζ(t − τ )dτ . (19)

5 ARMAModel and Its Continuous-Time CARMA
Counterpart

Acorrespondence can be established between the discrete and continuous systems by
invoking the principle of impulse invariance. This indicates that a sequence sampled
at unit intervals from the impulse response function of the continuous system should
be equal to the impulse response of the discrete-time system. This is possible only



The Correspondence Between Stochastic Linear Difference and Differential Equations 41

if the continuous system has the same frequency limitation as the discrete system,
which is the present assumption.

Thus, at the integer values of τ , the functions

ψ(τ ) = c1e
κ1τ + c2e

κ2τ + · · · + cpe
κpτ (20)

and
φ(τ ) = d1μ

τ
1 + d2μ

τ
2 + · · · + dpμ

τ
2 (21)

should be equal. The equality can be achieved by setting eκ j = μ j and c j = d j , for
all j . The discrete-time ARMA model is driven by a white-noise process that is
limited in frequency by the Nyquist value of π radians per sample interval. Its direct
continuous-time counterpart is a CARMAmodel, driven by a continuous frequency-
limited white-noise process.

It is appropriate to adopt a CARMA model when there is clear evidence that the
spectral density of the process is limited in frequency by the Nyquist value of π
radians per sample interval, at which point the function should be zero valued. The
evidence will be provided by the periodogram of the data. In cases where the limiting
frequency of the process is less than the π, the resampling procedures outlined in
Sect. 2 should be pursued before estimating the ARMA model.

Example 1 To illustrate the mapping from the discrete-time ARMA model to a
continuous frequency-limited CARMA model, an ARMA(2, 1) model is chosen
with conjugate complex poles α ± iβ = ρ exp{±iθ}, where ρ = √

α2 + β2 = 0.9
and θ = tan−1(β/α) = π/4 = 45◦. The moving-average component has a zero of
0.5.TheARMAprocess generates prominent cycles of an averagedurationof roughly
8 periods.

The parameters of the resulting continuous-time CARMA model are displayed
below, beside those of the ARMA model:

ARMA CARMA

α0 = 1.0 φ0 = 1.0
α1 = −1.272 φ1 = 0.2107
α2 = 0.8100 φ2 = 0.6280

β0 = 1.0 θ0 = 1.0
β1 = −0.5 θ1 = 0.2737

The spectral density function of the ARMA process is illustrated in Fig. 8. Here, it
will be observed that the function is virtually zero at the limiting Nyquist frequency
of π. Therefore, it is reasonable to propose that the corresponding continuous-time
model should be driven by a white-noise forcing function that is bounded by the
Nyquist frequency.

The spectral density function of the CARMA process is the integral Fourier trans-
form of the continuous autocovariance function, whereas the spectral density func-
tion of the ARMA process is the discrete Fourier transform of the autocovariance



42 D. S. G. Pollock

0

10

20

30

0 π/4 π/2 3π/4 π

Fig. 8 The spectrum of the ARMA(2, 1) process (1.0 − 1.273L + 0.81L2)y(t) = (1 − 0.5L)e(t)
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Fig. 9 The discrete autocovariance sequence of the ARMA(2, 1) process and the continuous auto-
covariance function of the corresponding CARMA(2, 1) process

sequence. The frequency limitation of the CARMA process means that there is no
aliasing in the sampling process. Therefore, the two spectra are identical.

In Fig. 9, the discrete autocovariance function of the ARMA process is super-
imposed on the continuous autocovariance function of the CARMA process. The
former has been generated by a recursive procedure. The latter has been generated
by an analytic equation, to be presented below as Eq. (22), wherein the index τ of
the lags varies continuously.

A principle of autocovariance equivalence is also satisfied, whereby the values
sampled at the integer points from the continuous-time autocovariance function are
equal to those of the discrete-time function.

6 Stochastic Differential Equations Driven by Wiener
Processes

Thewhite-noise forcing function of a conventional linear stochastic differential equa-
tion (LSDE) is the derivative of a Wiener process. The latter process consists of a
continuous steam of infinitesimal impulses. Since a pure impulse is unbounded in
frequency, so too is the forcing function.
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The concept of a pure impulse is problematic from a physical point of view,
since it implies a discrete and instantaneous change in momentum. The problem of
unbounded frequencies can be mitigated, if not completely overcome, in the context
of an LSDE, since its transfer function may impose a sufficient attenuation on the
higher frequencies for the effect to be a virtual frequency limitation.

Whenever the spectral density function of an ARMA model has a significant
value at the Nyquist frequency of π, there can be a reasonable supposition that the
underlying continuous process has a frequency range that extends beyond theNyquist
limit. Therefore, it may be appropriate to adopt an LSDE with an unbounded forcing
function as the continuous-time counterpart of the ARMA model.

In translating from an ARMAmodel to such an LSDE, it is no longer appropriate
to invoke the principle of impulse invariance. Instead, the principle of autocovariance
equivalence thatwas enunciated byBartlett [1]must be adopted. The principle asserts
that the parameters of the LSDE should be chosen so that its autocovariance function
matches the autocovariance function of the ARMA model at the integer lags.

The autocovariance function of an ARMAmodel can be derived from its impulse
response function, represented by Eq. (21). It takes the form of

γd(τ ) = σ2
ε

∞∑

j=0

(
p∑

k=1

dkμ
j
k

) (
p∑

k=1

dkμ
j+τ
k

)

= σ2
ε

p∑

i=1

⎧
⎨

⎩

p∑

j=1

did j

1 − μiμ j

⎫
⎬

⎭ μτ
i . (22)

The autocovariance function γc(τ ) of the continuous-time LSDE process is also
found via its impulse response function. It is assumed that the autocovariance of the
white-noise forcing function at lag τ is

E{ζ(t)ζ(t − τ )} = δ(τ )σ2
ζ , (23)

where δ(τ ) is Dirac’s delta function. Then,

γc(τ ) = E{y(t)y(t − τ )}
= E

{∫ ∞

0
ψ(u)ζ(t − u)du

∫ ∞

0
ψ(v)ζ(t − τ − v)dv

}

= σ2
ζ

∫ ∞

0
ψ(v)ψ(v + τ )dv. (24)

Substituting the expression of (20) for the continuous-time impulse response function
ψ(t) into Eq. (24) gives
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γc(τ ) = σ2
ζ

∫ ∞

0
ψ(t)ψ(t + τ )dt = σ2

ζ

∑

i

∑

j

{
ci c j

∫ ∞

0
e(κi+κ j )t+κi τdt

}

= σ2
ζ

∑

i

⎧
⎨

⎩
∑

j

ci c j
−eκi τ

κi + κ j

⎫
⎬

⎭ . (25)

This expression, which is liable to contain complex-valued terms, may be rendered
in real terms by coupling the various conjugate complex terms.

In translating from the ARMA model to the LSDE, there continues to be a one-
to-one correspondence between the poles of the two systems. If a complex pole of
the ARMA model takes the form of

μ = α + iβ = ρ{cos(ω) + i sin(ω)} = ρeiω, (26)

with

ρ =
√

α2 + β2 and ω = tan−1

(
β

α

)
, (27)

then the corresponding pole of the LSDE and of the CARMA differential equation
is

κ = ln(μ) = ln(ρ) + iω = δ + iω, (28)

with δ ∈ (−∞, 0), which puts it in the left half of the s-plane, as it is necessary for
the stability of the system.

The principle of autocovariance equivalence can be expressed via the equation

γc
τ {κ(μ), c} = γd

τ (μ, d) for τ ∈ {0,±1,±2, . . .}. (29)

Then, the parameters of the LSDE can be derived once a value of c = [c1, c2, . . . , cp]
of the vector of the numerator parameters of (19) has been found that satisfies this
equation. The value of c can be found by using an optimisation procedure to find the
zeros of the function

z(c) =
p∑

τ=0

{γc
τ (c) − γd

τ }2. (30)

As Söderström [10, 11], and others have noted, there areARMAmodels for which
there are no corresponding LSDE’s. The present procedure for translating from an
ARMA model to an LSDE reveals such cases by its failure to find a zero-valued
minimum of the criterion function. However, it can be relied upon to find the LSDE
most closely related to the ARMA model.

The principle of autocovariance equivalence also indicates a way in which an
ARMA model can be found to correspond to a given LSDE. The ARMA model is
commonly described as the exact or equivalent discrete linear model (EDLM).
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The autocovariance generating function of an ARMA model is

γd(z) = σ2
ε

β(z)β(z−1)

α(z)α(z−1)
, (31)

whereas the z-transform of the elements γc
τ ; τ ∈ {0,±1,±2, . . .} sampled from the

autocovariance function of the LSDE may be denoted by γc(z). Putting the latter in
place of γd(z) and rearranging the equation gives

σ2
εβ(z)β(z

−1) = α(z)γc(z)α(z−1). (32)

Since the discrete-time autoregressive parameters within α(z) can be inferred
from those of the LSDE, only the moving-average parameters within β(z) and the
variance σ2

ε needs to be derived from Eq. (32). They can be obtained via a Cramér–
Wold factorisation of the LHS.

Example 2 Themapping from the discrete-timeARMAmodel to a continuous-time
LSDE model can be illustrated, in the first instance, with the ARMA(2, 1) model of
Example 1.

The parameters of the corresponding LSDE(2, 1) model are obtained by using
the procedure of Nelder and Mead [5] to find the minimum of the criterion function
of (30), where it is assumed that the variance of the forcing function is σ2

ζ = 1. The
minimands a, b of the criterion function are from the numerator coefficients c, c∗ =
a ± ib of the partial-fraction decomposition of the LSDE(2, 1) transfer function.

There are four points that correspond to zero-valued minima, where the ordinates
of the discrete and continuous autocovariance functions coincide at the integer lags.
These points, together with the corresponding moving-average parameters, are as
follows:

a b θ0 θ1
(i) −0.4544 0.2956 −0.9088 0.5601
(ii) 0.4544 0.4175 0.9088 0.5601
(iii) −0.4544 −0.4174 −0.9088 −0.5601
(iv) 0.4544 −0.2956 0.9088 −0.5601

Here, the parameter values of (i) and (iv) are equivalent, as are those of (ii) and
(iii). Their difference is a change of sign, which can be eliminated by normalising θ0
at unity and by adjusting variance of the forcing function accordingly.

The miniphase condition, which corresponds to the invertibility condition of a
discrete-time model, requires the zeros to be in the left half of the s-plane. Therefore,
(ii) and (iii) on the NE–SW axes on the graphs of Fig. 11 are the chosen pair.
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These estimates of the LSDE(2, 1) are juxtaposed below with those of the
CARMA(2, 1) model derived from the same ARMA model:

CARMA LSDE

φ0 = 1.0 φ0 = 1.0
φ1 = 0.2107 φ1 = 0.2107
φ2 = 0.6280 φ2 = 0.6280

θ0 = 1.0 θ0 = 0.9088
θ1 = 0.2737 θ1 = 0.5601

The autoregressive parameters of the CARMAmodel and of the LSDEmodel are,
of course, identical. However, there is a surprising disparity between the two sets
of moving-average parameters. Nevertheless, when they are superimposed on the
same diagram—which is Fig. 10—the spectra of the two models are seen virtually to
coincide. Moreover, the parameters of the ARMA model can be recovered exactly
from those of the LSDE by an inverse transformation.

The explanation for this outcome is to be found in the remarkable flatness of
the criterion function in the vicinity of the minimising points, which are marked on
both sides of Fig. 11 by black dots. The flatness implies that a wide spectrum of
the parameter values of the LSDE will give rise to almost identical autocovariance
functions and spectra.

The left side of Fig. 11 shows some equally spaced contours of the z-surface of
the criterion function, which are rising from an annulus that contains the minima.
The minima resemble small indentations in the broad brim of a hat.

The right side of Fig. 11, which is intended to provide more evidence of the nature
of the criterion function in the vicinity of the minima, shows the contours of the
function q = 1/(z + d), where d is a small positive number that prevents a division
by zero. We set d = (X − RM)/(R − 1), where M = min(z), X = max(z) and
where R = max(q)/min(q) = 60. The extended lenticular contours surrounding

0
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20

30

0 π/2 π 3π/2 2π

Fig. 10 The spectrum of the LSDE(2, 1) corresponding to the ARMA(2, 1) model of Example 1
plotted on top of the spectrum of that model represented by the thick grey line. The two spectra
virtually coincide over the interval [0,π]
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Fig. 11 Left The contours of the criterion function z = z(a, b) together with theminimising values,
marked by black dots. Right The contours of the function q = 1/(z + d)

the minimising points of the criterion function, which have become maxima in this
diagram, are a testimony to the virtual equivalence of a wide spectrum of parameter
values.

Example 3 A variant to the ARMA(2, 1) model is one that has a pair of complex
conjugate poles ρ exp{±iθ} with the same argument as before, which is θ = π/4 =
45◦, and with a modulus that has been reduced to ρ = 0.5. The model retains the zero
of 0.5. The ARMA parameters and those of the corresponding LSDE are as follows:

ARMA LSDE

α0 = 1.0 φ0 = 1.0
α1 = −0.7071 φ1 = 1.3868
α2 = 0.2500 φ2 = 1.0973

β0 = 1.0 θ0 = 1.5012
β1 = −05 θ1 = 0.8905

Figure12 shows the spectral density functions of the LSDE and of the ARMA
model superimposed on samediagram.The spectrumof theLSDEextends far beyond
the Nyquist frequency of π, which is the limiting ARMA frequency.

The ARMA process, which is to be regarded as a sampled version of the LSDE,
is seen to suffer from a high degree of aliasing, whereby the spectral power of the
LSDE that lies beyond the Nyquist frequency is mapped into the Nyquist interval
[−π,π], with the effect that the profile of theARMA spectrum is raised considerably.
On this basis, it can be asserted that the ARMA model significantly misrepresents
the underlying continuous-time process.
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Fig. 12 The spectrum of the revised ARMA model superimposed on the spectrum of the derived
LSDE, described by the heavier line

7 Summary and Conclusions

The intention of this paper has been to clarify the relationship between uncondi-
tional linear stochastic models in discrete and continuous time, and to provide secure
means of computing the continuous models. The importance of an awareness of the
frequency-domain characteristics of the forcing functions has been emphasised.

Example 1 has demonstrated a straightforward way of deriving a frequency-
limited stochastic differential equation that corresponds to a discrete-time ARMA
model. This has been described as a continuous-time CARMA model.

Thismodel is a valid representation of the underlying process only if themaximum
frequency of that process corresponds to the limiting frequency of the ARMAmodel,
which is π radians per sampling interval. To ensure that this is the case, it may be
necessary to reconstitute the continuous trajectory and to resample it at a reduced
rate.

The forcing function of a conventional linear stochastic differential equation,
or LSDE, which consists of the increments of a Wiener process, is unbounded in
frequency. This seems to be inappropriate to a model of a frequency-limited process.
Nevertheless, the transfer function of the LSDE may impose a radical attenuation
on the higher frequencies that implies a virtual frequency limitation. Example 2 has
illustrated such a case.

Example 3 has shown the aliasing effects that occur when the forcing function
has no frequency limit and when the ARMA transfer function imposes only a weak
attenuation on the high-frequency elements. This provides a ready justification for
adopting an LSDE as the continuous-time counterpart of the ARMA model.

The spectral density function of the ARMA model will be formed by wrapping
the spectrum of the LSDE around a circle of circumference 2π and by adding the
overlying ordinates. In this way, the spectral component of frequencies in excess of
the Nyquist value are mapped into the interval [−π,π] to produce a discrete-time
spectrum that may depart significantly from the continuous-time parent spectrum, as
represented by the derived LSDE. This is seen in Fig. 12.
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The methods for translating from an ARMA model to a continuous-time model,
which may be a frequency-limited CARMA model or an LSDE model that is with-
out an ostensible frequency restriction, have been realised in the computer program
CONCRETE.PAS, which is available at the author’s website, where both the com-
piled program and its code can be found.

An associated program CONTEXT.PAS, which plots the contour map of the
surface of the criterion function that is employed in matching the autocovariance
function of the LSDE(2, 1) to that of the ARMA(2, 1) model, is also available.
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New Test for a Random Walk Detection
Based on the Arcsine Law

Marcin Dudziński , Konrad Furmańczyk , and Arkadiusz Orłowski

Abstract In ourwork,we construct a newstatistical test for a randomwalk detection,
which is based on the arcsine law. Additionally, we consider a version of the unit
root test for an autoregressive process of order 1, which is also related to the arcsine
law. Furthermore, we conduct some simulation study in order to check the quality
of the proposed test.

Keywords Random walk · Arcsine law · Test for a random walk detection

1 Introduction

Our objective is to introduce some proposal of a new test for a randomwalk detection.
To the best of our knowledge, the main tools that have been applied in this context
so far are the two celebrated tests—an Augmented Dickey–Fuller (ADF) test ([10])
and the Runs test ([13])—and through our work, we attempt to fill in a gap related
to this field of investigations. The presented approach is a certain extension and a
generalization of the research conducted in [2]. We also compare the quality of the
proposed test with the efficiency and the power of the mentioned ADF and Runs
test. The readers who are closely interested in the field of tests devoted to a random
walk identification or to the existence of unit root are encouraged to refer to [6–9]
and [11].
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Our paper is organized as follows. In Sect. 1, we present a general idea leading to
the construction of our test for a random walk identification, as well as we describe
the construction of this test. In Sects. 2 and 3, we check the efficiency and the power
of the introduced test, whereas we summarize our study in Sect. 4. The presented
research and its results are an extension of the research and the results from [3].

1.1 Random Walk

Random walk theory states that the price of financial instrument in the subsequent
time point is the sum of its price in the previous time point and some random variable
with a finite variance, i.e. it is modelled with the use of a stochastic process called a
random walk.

We say that a stochastic process S0, S1, S2, . . . , Sn is a random walk, if the fol-
lowing relations hold:

S0 = s0,

S1 = s0 + Y1,

S2 = s0 + Y1 + Y2,
...

Sn = s0 + Y1 + Y2 + · · · + Yn,

where Y1,Y2, . . . ,Yn form an iid sequence of symmetric r.v.’s.
In our considerations, we assume that s0 = 0. Then,

St =
t∑

i=1

Yi , t = 1, 2, . . . , n.

1.2 Ordinary Random Walk Test

Let

�n = |1 ≤ i ≤ n : Si > 0|.

Then, obviously: �n—the number of those among the sums S1, . . . , Sn , which are
positive, �n/n—its frequency.

From the first arcsine law ([4, 10]), we have

lim
n→∞ P(�n < nx) =

∫ x

0

1

π
√
t (1 − t)

dt = 2

π
arcsin(

√
x),

for all x ∈ (0; 1).
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Conclusion above may practically be used for n ≥ 20, which means that

P

(
�n

n
< x) ≈ 2

π
arcsin(

√
x

)
for n ≥ 20,

where obviously

�n

n
= |1 ≤ i ≤ n : Si > 0|

n
.

From Fig. 1–depicting the density of the arcsine distribution—we observe that the
values of�n/n in the close neighbourhood of 0.5 are the least probable and the most
probable values for �n/n are close to 0 or 1 ([4]).

Thus, if we denote by α the significance level of the test H0: Sn is a random walk
process, we look for a critical area (a set of rejections) of the form

Kc(α) = (0.5 − c(α); 0.5 + c(α)),

where 0 < c(α) < 0.5 satisfies the condition

∫ 0.5+c(α)

0.5−c(α)

1

π
√
x(1 − x)

dx = 2

π
arcsin(

√
x)

∣∣∣
0.5+c(α)

0.5−c(α)
= α.

Hence, for 0 < c(α) < 0.5,

Fig. 1 Density of the
arcsine distribution
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54 M. Dudziński et al.

Table 1 Values of c(α)

α 0.01 0.05 0.1

c(α) 0.008 0.039 0.078

arcsin(
√
0.5 + c(α)) − arcsin(

√
0.5 − c(α)) = πα

2
.

The values of c(α), calculated numerically for the chosen significance levels accord-
ing to the last formula, are collected in Table1.

For α = 0.05, we obtain c(α) = c(0.05) = 0.039 and hence, the corresponding
critical area is Kc(0.05) = (0.5 − 0.039; 0.5 + 0.039) = (0.461; 0.539).

1.3 Random Walk Test for an AR(1) Process

Recall that an AR(1) process is defined as follows: Xn = ρXn−1 + εn , where (εn)
stands for the white noise with a mean zero and the variance σ2. Observe that assum-
ing the starting point x0 = 0, we have:

X1 = ε1,

X2 = ρX1 + ε2 = ρε1 + ε2,

X3 = ρX2 + ε3 = ρ2ε1 + ρε2 + ε3,

...

Xn = ρXn−1 + εn = ρn−1ε1 + ρn−2ε2 + ρn−3ε3 + · · · + ρεn−1 + εn.

Therefore, the hypothesis H0: (Xn) forms a randomwalk, is equivalent to the hypoth-
esis that ρ = 1 (in this case (Xn) is a RW process, since then Xn = ε1 + ε2 + ε3 +
. . . + εn−1 + εn).

2 Efficiency Evaluation of the Proposed Test

2.1 Gaussian Random Walk

The efficiency of our test has firstly been checked for a Gaussian random walk, i.e.
in the case when Yi ∼ N (0; 1), for M = 1000 generations of samples of the size
n = 1000 or n = 2000:
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(y(1)
1 , y(1)

2 , . . . , y(1)
n ),

(y(2)
1 , y(2)

2 , . . . , y(2)
n ),

...

(y(1000)
1 , y(1000)

2 , . . . , y(1000)
n ).

For every sample above, we calculated the values of the test statistic �n/n:

(�n/n)(1)emp = |1 ≤ i ≤ n : y(1)
1 + y(1)

2 + · · · + y(1)
i > 0|

n
,

(�n/n)(2)emp = |1 ≤ i ≤ n : y(2)
1 + y(2)

2 + · · · + y(2)
i > 0|

n
,

...

(�n/n)(1000)emp = |1 ≤ i ≤ n : y(1000)
1 + y(1000)

2 + · · · + y(1000)
i > 0|

n
.

We calculated the number of those among �n/n, which belonged to the critical
area Kc(0.05) = (0.461; 0.539), i.e. we computed the number of rejections of H0. We
repeated this procedure 6 times and obtained the following numbers of rejections
(out of 1000 possible rejections): 53, 44, 54, 33, 55, 50 (if n = 1000) or 44, 48,
43, 45, 50, 56 (if n = 2000). The small numbers of rejections may give an evidence
about a good efficiency of the proposed test.

2.2 Gaussian Mixture Model

Secondly, the efficiency of our test has been checked for the case when (Yi ) is a
Gaussian mixture model of the form

Yi ∼ 1/8N (0;σ1) + 1/8N (0;σ2) + 1/4N (0;σ3) + 1/2N (0;σ4),

where: σ1 = 0.2,σ2 = 1,σ3 = 0.5,σ4 = 2.
In this case, we generated M = 1000 samples from the distribution od Yi , of the
sizes: n = 20, 30, 50, 100, 1000, 2000. As previously, we calculated the number of
those among�n/n, which belonged to the critical area Kc(0.05) = (0.461; 0.539), i.e.
we computed the number of rejections of H0. We have collected the obtained results
in Table2, where, additionally, the corresponding results received by application of
an Augmented Dickey–Fuller (ADF) test have also been included.

From Table2, we may observe that the numbers of rejections obtained with the
use of our test are small, which indicates that the efficiency of the proposed test is
quite acceptable with comparison to the efficiency of the ADF test, for which the
numbers of rejections are too large.
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Table 2 Numbers of rejections

n 20 30 50 100 1000 2000

ADF_test 134 173 566 950 1000 1000

Proposed_test 41 57 38 46 40 42

3 Power Evaluation of the Proposed Test

3.1 An AR(1) Process with the Gaussian Innovations

We have checked here the power of our test by generating M = 1000 samples of the
size n = 30, n = 1000 or n = 2000, of the corresponding AR(1) process with the
Gaussian innovations and σ = 3:

(x (1)
1 , x (1)

2 , . . . , x (1)
n ),

(x (2)
1 , x (2)

2 , . . . , x (2)
n ),

...

(x (1000)
1 , x (1000)

2 , . . . , x (1000)
n ).

We calculated the values of the test statistic �n/n:

(�n/n)(1)emp = |1 ≤ i ≤ n : x (1)
1 + x (1)

2 + · · · + x (1)
i > 0|

n
,

(�n/n)(2)emp = |1 ≤ i ≤ n : x (2)
1 + x (2)

2 + · · · + x (2)
i > 0|

n
,

...

(�n/n)(1000)emp = |1 ≤ i ≤ n : x (1000)
1 + x (1000)

2 + · · · + x (1000)
i > 0|

n
.

As previously, we calculated the numbers of those among �n/n, which belonged
to the critical area Kc(0.05) = (0.461; 0.539). We obtained the following results (the
numbers of rejections of H0 among 1000 realizations) for the chosen values of ρ,
after the 3 repetitions of the described procedure (see Table3).

For the positive values of ρ, the results are quite promising—the larger ρ is, the
smaller number of rejections of H0 is obtained. Additionally, in case of the negative
values of ρ, we get that the number of rejections is large and that these numbers
increase if the sample size increases.
Next, we compare the test procedure from this subsection with the ADF and Runs
tests for randomness of binary data series (we obtain them by putting +1, if the first
differences are positive and −1, if otherwise).
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3.1.1 Comparison with the ADF Test

For the chosen values of ρ, we obtained the following numbers of rejections of
H0 among 1000 realizations, after the 3 repetitions of the described procedure (see
Table4).

From Tables3–4, we observe that—for the positive values of ρ—our test has a
lower power than the ADF test for ρ = 0.8 and ρ = 0.6, but for the remaining cases,
the powers of our test and the ADF test are comparable. Furthermore, in case of the
negative values of ρ, we get that the numbers of rejections are large and that these
numbers increase if the sample size increases. It may also be seen from the given
tables that in the case of small samples (n = 30), the power of our proposed test is
greater than the power of the ADF test.

Table 3 Numbers of rejections (n = 30, n = 1000, n = 2000, 3 replications). The proposed test
for an AR(1) process with the Gaussian innovations

ρ n = 30 n = 1000 n = 2000

0.99 28 35 36 172 170 154 232 246 246

0.8 165 174 175 682 659 667 845 845 813

0.6 235 242 265 844 841 839 951 954 958

0.4 296 313 323 934 935 925 988 985 985

0.2 360 385 355 968 953 954 997 997 999

−0.2 470 505 480 996 996 996 1000 1000 1000

−0.4 499 508 483 999 997 999 1000 1000 1000

−0.6 570 563 553 999 1000 1000 1000 1000 1000

−0.8 631 648 691 1000 1000 1000 1000 1000 1000

−0.99 923 926 936 1000 1000 1000 1000 1000 1000

Table 4 Numbers of rejections (n = 30, n = 1000, n = 2000, 3 replications). The ADF test for
an AR(1) process with the Gaussian innovations

ρ n = 30 n = 1000 n = 2000

0.99 54 46 43 179 148 156 546 533 552

0.8 73 59 63 1000 1000 1000 1000 1000 1000

0.6 81 107 88 1000 1000 1000 1000 1000 1000

0.4 138 121 139 1000 1000 1000 1000 1000 1000

0.2 143 146 148 1000 1000 1000 1000 1000 1000

−0.2 204 239 222 1000 1000 1000 1000 1000 1000

−0.4 245 265 261 1000 1000 1000 1000 1000 1000

−0.6 243 239 258 1000 1000 1000 1000 1000 1000

−0.8 287 274 262 1000 1000 1000 1000 1000 1000

−0.99 279 261 255 1000 1000 1000 1000 1000 1000
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Table 5 Numbers of rejections (n = 30, n = 1000, n = 2000, 3 replications). The Runs test for
an AR(1) process with the Gaussian innovations

ρ n = 30 n = 1000 n = 2000

0.99 71 64 52 50 55 53 58 61 44

0.8 47 58 55 503 482 502 798 840 827

0.6 73 63 74 991 989 992 1000 1000 1000

0.4 122 127 137 1000 1000 1000 1000 1000 1000

0.2 217 219 250 1000 1000 1000 1000 1000 1000

−0.2 569 571 563 1000 1000 1000 1000 1000 1000

−0.4 745 765 775 1000 1000 1000 1000 1000 1000

−0.6 901 908 902 1000 1000 1000 1000 1000 1000

−0.8 980 991 971 1000 1000 1000 1000 1000 1000

−0.99 1000 1000 999 1000 1000 1000 1000 1000 1000

3.1.2 Comparison with the Runs Test

For the chosen values of ρ, we obtained the following numbers of rejections of
H0 among 1000 realizations, after the 3 repetitions of the described procedure (see
Table5).

From Tables3 and 5, we may see that—for the positive values of ρ—our test has a
lower power than the Runs test for ρ = 0.6. However, for ρ = 0.99 and ρ = 0.8 our
test has a better power than the Runs test. For the remaining cases, the powers of our
test and the Runs test are comparable. Additionally, in case of the negative values of
ρ, we get that the number of rejections is large and that these numbers increase if the
sample size increases.

3.2 An AR(1) Process with the Student-T Innovations

In this subsection, we have checked the power of our test by generating M = 1000
samples, of the size n = 30, n = 1000 or n = 2000, of the AR(1) process with the
Student-t innovations (for degrees of freedom 4) and σ = 3.

We proceeded as in the earlier subsections and calculated the numbers of those
among �n/n, which belonged to the critical area Kc(0.05) = (0.461; 0.539). We
obtained the following results (the numbers of rejections of H0 among 1000 realiza-
tions) for the chosen values of ρ, after the 3 repetitions of the described procedure
(see Table6).

From Tables3 and 6, we can observe that our test works similarly in the case of
an AR(1) process with the Gaussian innovations and in the case of an AR(1) process
with the Student-t innovations.
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3.2.1 Comparison with the ADF Test

For the chosen values of ρ, we obtained the following number of rejections of H0

among 1000 realizations, after the 3 repetitions of the described procedure (see
Table7).

From Tables6 and 7, we observe that—for the positive values of ρ—our test has a
lower power than the ADF test for ρ = 0.8 and ρ = 0.6, but for the remaining cases
of positive ρ, the powers of our test and the ADF test are comparable. Conclusions
concerning the negative values of ρ are identical as in the previous examples.

Table 6 Numbers of rejections (n = 30, n = 1000, n = 2000, 3 replications). The proposed test
for an AR(1) process with the Student-t innovations

ρ n = 30 n = 1000 n = 2000

0.99 38 36 35 165 166 155 225 242 218

0.8 152 155 164 696 638 649 822 828 838

0.6 236 231 267 843 845 832 965 955 944

0.4 315 299 302 929 930 941 983 989 989

0.2 367 363 343 966 958 970 998 996 997

−0.2 452 465 465 996 990 993 1000 1000 1000

−0.4 499 514 539 998 994 1000 1000 1000 1000

−0.6 573 575 557 1000 1000 1000 1000 1000 1000

−0.8 681 683 694 1000 1000 1000 1000 1000 1000

−0.99 921 918 930 1000 1000 1000 1000 1000 1000

Table 7 Numbers of rejections (n = 30, n = 1000, n = 2000, 3 replications). The ADF test for
an AR(1) process with the Student-t innovations

ρ n = 30 n = 1000 n = 2000

0.99 47 47 42 149 133 157 560 545 542

0.8 67 61 69 1000 1000 1000 1000 1000 1000

0.6 84 98 97 1000 1000 1000 1000 1000 1000

0.4 118 116 130 1000 1000 1000 1000 1000 1000

0.2 152 165 153 1000 1000 1000 1000 1000 1000

−0.2 209 220 193 1000 1000 1000 1000 1000 1000

−0.4 249 252 234 1000 1000 1000 1000 1000 1000

−0.6 227 260 270 1000 1000 1000 1000 1000 1000

−0.8 267 264 251 1000 1000 1000 1000 1000 1000

−0.99 265 257 263 1000 1000 1000 1000 1000 1000



60 M. Dudziński et al.

Table 8 Numbers of rejections (n = 30, n = 1000, n = 2000, 3 replications). The Runs test for
an AR(1) process with the Student-t innovations

ρ n = 30 n = 1000 n = 2000

0.99 58 51 47 52 43 40 53 62 51

0.8 42 39 53 512 535 517 797 814 803

0.6 68 62 70 988 985 982 1000 1000 1000

0.4 138 124 148 1000 1000 1000 1000 1000 1000

0.2 218 234 219 1000 1000 1000 1000 1000 1000

−0.2 548 542 560 1000 1000 1000 1000 1000 1000

−0.4 764 756 731 1000 1000 1000 1000 1000 1000

−0.6 918 910 913 1000 1000 1000 1000 1000 1000

−0.8 984 984 979 1000 1000 1000 1000 1000 1000

−0.99 1000 1000 999 1000 1000 1000 1000 1000 1000

3.2.2 Comparison with the Runs Test

For the chosen values of ρ, we obtained the following number of rejections of H0

among 1000 realizations, after the 3 repetitions of the described procedure (see
Table8).

From Tables6 and 8, we may see that—for the positive values of ρ—our test has
a lower power than the Runs test for ρ = 0.6, but for ρ = 0.99 and ρ = 0.8, our test
has a better power than the Runs test and for the remaining cases of positive ρ, the
powers of our test and the Runs test are comparable. Conclusions concerning the
negative values of ρ are very similar as in the previous examples.

4 Conclusions

The principal goal of our study was to construct a new test for a random walk
detection. The main idea of our approach was based on the first arcsine law. Apart
from the construction of a new test, we examined its efficiency and power by using
1000 replications of the Monte Carlo simulation and computing the numbers of
rejections of the null hypothesis that the given process forms a random walk. The
corresponding qualities of the proposed test have been checked for the following
types of processes: (i) the Gaussian random walk, (ii) the Gaussian mixture model,
(iii) an AR(1) process with the Gaussian innovations, (iv) an AR(1) processes with
the Student-t innovations. Moreover, the powers of our test have been compared with
the powers of the two well-known tests used for the random walk identification, i.e.
with the powers of the ADF and Runs tests. In particular, it is also worth to mention
that: (1) the efficiency of our test for the Gaussian mixture model is reasonably good
with comparison to the ADF test for this model, (2) in the case of small samples
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(n = 30), the power of our new test is greater than the power of the ADF test, (3)
the powers of all the considered tests increase if the sample sizes are larger, (4) for
the negative values of the correlation coefficient ρ, the powers of all the investigated
tests are nearly the same, (5) the proposed test gives similar results both in the case of
an AR(1) process with the Gaussian innovations and in the case of an AR(1) process
with the Student-t innovations. The obtained results and comparisons indicate that
the introduced test provides quite effective and relatively powerful tool leading to a
random walk identification.
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3. Dudziński, M., Furmańczyk, K., Orłowski, A.: New test for a random walk detection based
on the arcsine law. In: ITISE 2019 International Conference on Time Series and Forecasting,
Proceedings ofPapers 25–27September 2019, vol. 1, pp. 236–243.Godel ImpresionesDigitales
S.L., Granada (Spain) (2019)

4. Feller,W.: An Introduction to Probability Theory and its Applications.Wiley, NewYork (1968)
5. Maddala, G.S.: Introduction to Econometrics. Morgan Kaufmann, Wiley, New York (2001)
6. Mankiw, N.G., Shapiro, M.D.: Trends, random walks, and tests of the permanent

income hypothesis. J. Monet. Econ. 16(2), 165–174 (1985). https://doi.org/10.1016/0304-
3932(85)90028-5

7. Pantula, S.G., Farias-Gonzales, G., Fuller, W.A.: A comparison of unit-root test criteria. J. Bus.
Econ. Stat. 12, 449–459 (1994). https://doi.org/10.1080/07350015.1994.10524567

8. Phillips, P.C.B.: Time series regression with a unit root. Econometrica 55, 277–301 (1987).
https://doi.org/10.2307/1913237

9. Phillips, P.C.B., Perron, P.: Testing for a unit root in time series regression. Biometrika 75,
335–346 (1988). https://doi.org/10.1093/biomet/75.2.335

10. Qiang, L., Jiajin, L.: Arcsine laws and its simulation and application. http://individual.utoronto.
ca/normand/Documents/MATH5501/Project-3/Arcsine_laws_and_simu.pdf

11. Said, E.S., Dickey, D.A.: Testing for unit roots in autoregressive-moving average models of
unknown order. Biometrika 71, 599–607 (1984). https://doi.org/10.1093/biomet/71.3.599

12. Shiller, R.J., Perron, P.: Testing the random walk hypothesis: power versus frequency of obser-
vation. Econ. Lett. 18, 381–386 (1985). https://doi.org/10.1016/0165-1765(85)90058-8

13. Siegel, S., Castellan, N.J.: Nonparametric Statistics for the Behavioural Sciences. McGraw-
Hill, New York (1988)

https://doi.org/10.2307/2286348
https://doi.org/10.22630/MIBE.2018.19.4.32
https://doi.org/10.1016/0304-3932(85)90028-5
https://doi.org/10.1016/0304-3932(85)90028-5
https://doi.org/10.1080/07350015.1994.10524567
https://doi.org/10.2307/1913237
https://doi.org/10.1093/biomet/75.2.335
http://individual.utoronto.ca/normand/Documents/MATH5501/Project-3/Arcsine_laws_and_simu.pdf
http://individual.utoronto.ca/normand/Documents/MATH5501/Project-3/Arcsine_laws_and_simu.pdf
https://doi.org/10.1093/biomet/71.3.599
https://doi.org/10.1016/0165-1765(85)90058-8


Econometric Models and Forecasting



On the Automatic Identification
of Unobserved Components Models

Diego J. Pedregal and Juan R. Trapero

Abstract Automatic identification of time series models is a necessity once the big
data era has come and is staying among us. This has become obvious for many com-
panies and public entities that have passed from a crafted analysis of each individual
problem to handle a tsunami of information that has to be processed efficiently, online
and in record time. Automatic identification tools have never been tried out on Unob-
served Components models (UC). This chapter shows how information criteria, such
as Akaike’s or Schwarz’s, are rather useful for model selection within the UC family.
The difficulty lies, however, on choosing an appropriate and as general as possible
set of models to search in. A set too narrow would render poor forecast accuracy,
while a set toowidewould be highly time consuming. The forecasting results suggest
that UC models are powerful potential forecasting competitors to other well-known
methods. Though there are several pieces of software available for UC modeling,
this is the first implementation of an automatic algorithm for this class of models, to
the best of the author’s knowledge.

Keywords Unobserved components models · State-space systems · Kalman
filter · Smoother algorithm · Maximum likelihood

1 Introduction

The era of big data is provoking a revolution in many research areas. Indeed, it can
be said that in the area of time series forecasting the effect is particularly dramatic.
Nowadays, big masses of time series ought to be forecast in short periods of time.
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Take as an example Walmart with 5,000 stores throughout the US whose forecasting
needs amounts to 10 millions per second! ([24], p. 828). Therefore, at least in such
contexts, the traditional crafted approach to identification one time series at a time
must be replaced by automatic identification alternatives.

Automatic selection of models has received a great deal of attention in the time
series literature. This interest extends from classical modeling techniques such as
regression analysis, exponential smoothing, ARIMA, transfer functions, etc. ([6, 13,
15, 27]), to modern Big Data techniques such as Artificial Neural Networks, Support
Vector Machines, etc. ([11, 12, 29]).

Though it is almost impossible to make an exhaustive list of all the proposed
forecasting methods in the literature, a good guidance to this variety may be found in
the results of predictive competitions [21]. The most common forecasting methods
to today are Exponential Smoothing (ETS) and ARIMA methods.

– Exponential Smoothingmethods remain themost widely usedmodeling technique
in day-to-day business and industry since the 50s [5]. Given the success and the fact
that it was proposed initially as a heuristicmethod, amajor revision has taken place
in the past 20 years that has dramatically changed the vision of these techniques
[3, 16].

– The second method mostly used is ARIMA. ARIMAmodels have expanded since
the 70s after the publication of the influential book by Box and Jenkins [2]. Var-
ious methods have been proposed for automatic identification [6, 16], TRAMO
(together with SEATS) being probably the ARIMA automatic identification pro-
cedure most used worldwide in official statistical agencies.

In all this scientific landscape, there is a family ofmodelswith applications inmany
branches of science with rather good results, which has been conspicuously ignored,
namely, the Unobserved Components models (UC, [4, 10, 23, 28]). UC models aim
explicitly at decomposing a vector of time series on components with economic
meaning, normal trend, seasonal and irregular, although it may also include other
components, typically cycles and exogenous variables modeled as linear regressions,
transfer functions, or nonlinear relationships.

The UC models have not been tested yet in automatic modeling settings for many
reasons. First, UC models were developed by engineers and brought into economics
by academics, with little interest in disseminating them among practitioners [22].
Second, UC methods are rarely taught at the undergraduate level, limiting access to
the wide public. Third, there is a widespread intuition that UC models have nothing
to add to other methods (especially Exponential Smoothing, [7]). Fourth, UCmodels
are generally identified by hand, without any attempt to develop any automatic iden-
tification procedure. Finally, software packages are scarcer than packages for other
more standard techniques. Some complete alternatives are, for example, STAMP
[18], SSfpack [19], and SSpace [26].

The methods described in this chapter fill this gap by introducing a procedure
to automatically select optimal UC models among a wide range of possibilities.
The methods are useful in forecasting terms, but other byproducts are the estimated
optimal components (trend, seasonal, irregular) that may be useful for other common
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and useful operations in time series analysis such as smoothing, signal extraction,
seasonal adjustment, detrending, etc.

The chapter is organized as follows. Section2 presents briefly the UC models in
general and the range of possibilities for each component. Section3 shows how the
UCs are inserted in the general State-Space framework. The automatic identification
procedure is presented in Sect. 4. Section5 shows the method of working in practice
on three real-life case studies and compared to other alternatives. Finally, Sect. 6
concludes.

2 Unobserved Components Models

The UCmodels aims at decomposing a time series into meaningful components. The
most common decomposition is shown in Eq. (1), where Tt , St , and It stand for the
trend, seasonal and irregular components, respectively.

zt = Tt + St + It (1)

There have beenmany approaches to dealwith this decomposition, fromwhich the
structural approach set up in a State-Space (SS) framework is the most widespread.

Structural methods specify directly the particular dynamical models for each
component involved, for which an ample range of possibilities exists. In general, all
components are assumed stochastic, trends should be nonstationary by definition,
seasonal components should show some sinusoidal behavior, and irregular compo-
nents are usually considered either white or colored noise. The particular models
chosen in this chapter for each component steam from a long tradition (see, among
others, [4, 9, 10, 28]).

2.1 Trend Components

All trends considered are particular cases of the Generalized Random Walk (or
Damped Trend, DT) model shown in Eq. (2), where T ∗

t is referred to as the trend
‘slope’, 0 < α ≤ 1, ηT ,t , and η∗

T ,t are independent white noise sequences with vari-
ances σ 2

ηT
and σ 2

η∗
T
, respectively.

[
Tt+1

T ∗
t+1

]
=

[
1 1
0 α

] [
Tt
T ∗
t

]
+

[
ηT ,t

η∗
T ,t

]
(2)

This model subsumes the following particular cases: (i) Random Walk (RW),
by eliminating the second equation (i.e., Tt+1 = Tt + ηT ,t or setting α = 0, σ 2

η∗ = 0
and T ∗

1 = 0); (ii) Integrated Random Walk (IRW) with α = 1 and σ 2
ηT

= 0, (it is
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equivalent to the well-known Hodrick–Prescott filter, [14, 28]); (iii) Local Linear
Trend (LLT) with α = 1, see e.g., [4, 10, 25]. All these trends are stochastic and
have at least one unit root ensuring they are not stationary.

2.2 Seasonal Components

From all possibilities available in the literature (e.g., [9, 10, 28]), seasonal compo-
nents used in this chapter take a stochastic trigonometric form. The seasonal com-
ponent is built as the sum of individual sinusoidal terms for the fundamental period
s and its harmonics. The number of harmonics in general is [s/2] = s/2 for even s
numbers, and [s/2] = (s − 1)/2 for uneven s numbers.

The overall seasonal component is the sum of all the sinusoidal harmonics Sj,t in
Eq. (3), where ωj = 2π j/s is the frequency of each harmonic, S∗

j,t is an additional
state necessary for the specification, and ηj,t and η∗

j,t are independent white noises
with common variance σ 2

j .

St = ∑[s/2]
j=1 Sj,t[

Sj,t+1

S∗
j,t+1

]
=

[
cosωj sinωj

− sinωj cosωj

] [
Sj,t
S∗
j,t

]
+

[
ηj,t
η∗
j,t

]
(3)

An usual assumption regarding the seasonal component is to make all the variance
noises equal to each other, i.e.,σ 2

j = σ 2, j = 1, 2, . . . , [s/2]. This is indeed the case of
the popular Basic StructuralModel (BSM) of [10], but also of exponential smoothing
models [15].Amuchmoreflexible assumption is allowing all variances to be different
(strictly as they are specified in Eq. (3)), an option that, though increasing the number
of parameters, it renders models that are still feasible for most time series.

2.3 Irregular Components

The empirical evidence in many cases is that, after taking into account trends
and seasonal components, the remainder is just white noise. Therefore, the stan-
dard irregular component is just a Gaussian white noise with zero mean and con-
stant variance σ 2

I . However, for the cases where a serial correlation problem still
remains, colored irregular components may be considered in the form of stationary
ARMA(p, q) models, in general of low orders.

An ARMA(p, q) model is of the form

It = φ1It−1 + φ2It−2 + · · · + φpIt−p + ηI ,t + θ1ηI ,t−1 + θ2ηI ,t−2 + θqηI ,t−q
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where ηI ,t is a Gaussian white noise with constant variance σ 2
I , and φi (i =

1, 2, . . . , p) and θk (k = 1, 2, . . . , q) are unknown parameters that ought to be esti-
mated from the data.

3 State-Space Systems

Once the model for all the components is specified, the structural UC approach
proceeds by assembling all of them in a single linear Gaussian SS system by block
concatenation of the individual models, in which Eq. (1) plays the role of the obser-
vation equation. Then, all the statistical theory applicable to SS systems apply to the
UC models straight away.

The minimum linear Gaussian SS system to deal with the whole set of models
implemented in this chapter is shown in Eq. (4).

Transition equation: αt+1 = 	αt + Rηt, ηt ∼ N (0,Q)

Observation equation: zt = Zαt + εt, εt ∼ N (0,H )
(4)

In these equations zt is a univariate time series; αt is a non-observable state vector
of length n; ηt and εt are the state and observational independent noises with zero-
meanGaussian noises, with dimensions r × 1 and 1 × 1, respectively; the initial state
vector is assumed to be stochastic with Gaussian distribution, i.e., α1 ∼ N (a1,P1),
and independent of all data and noises involved in the system; the remaining elements
in (4) are the so-called system matrices with appropriate dimensions.

Muchmore complicated systems are possible, i.e., multivariate systemswith time-
varying system matrices, nonlinear, non-Gaussian, etc., but are not necessary for the
present chapter, and therefore are not considered here. For another toolboxwithmany
of such capabilities, see [26].

The main objective of SS systems is to obtain optimal estimations of the state
vector and their covariances, in the sense of minimizing the mean square error,
conditional on the particular model specified and all information available. Two
sorts of estimates are most common in practice:

– Filtered output by the well-known Kalman Filter. It provides the optimal state
vector estimation using all the information available up to any point in time.

– Smoothed output by Fixed Interval Smoother algorithms that renders the optimal
estimates of the state vector based on the whole sample (past and future values),
in a similar way to moving averages.

There are many issues related to state and parameter estimation in SS systems.
The main ones concerning this chapter are

– Missing data: they are naturally interpolated by the Kalman Filter and Smoother
algorithms, because of their inherent recursive nature. Forecasts are also naturally
produced by signaling the future values as missing data.
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– The typical problem of initial conditions common to all dynamic systems is solved
by using the exact initialization proposed by [4], known as diffuse filtering and
smoothing.

– Model parameters scattered along the system matrices are estimated by maximiz-
ing the diffuse log-likelihood [4].

– Maximization of the log-likelihood function requires optimization algorithms,
which are usually Quasi-Newton type. Such algorithms take advantage of gra-
dients of the likelihood surface, which may be computed either numerically or
analytically [4]. Analytical gradients are possible for models that depend only on
variance parameters in matrices Q and H in Eq. (4).

4 Automatic Forecasting Algorithm for UC

The automatic forecasting algorithm proposed below is based on information criteria
(similar to [6, 16]) and performs remarkablywell in practice, as will be shown in later
worked examples. This is the first time that an algorithm of this nature is proposed
in the literature about UCs.

The algorithm proceeds along the following steps:

– Step 1: Variance transformation. Decide whether to use the Box-Cox transforma-
tion or not [1]. This step is left to the user discretion because its benefits in terms
in forecasting accuracy are not clear [15]. The approach by [8] is preferred here
because it is not model dependent.

– Step 2: Model selection. A battery of models are estimated and the best is chosen
according to the minimization of any information criterion, either the Akaike’s
(AIC) or Schwarz’s (SBC), i.e.,

AIC = −2 ln(L∗) + 2k

SBC = −2 ln(L∗) + ln(T )k

where L∗ is the likelihood value at the optimum, T is the length of the time series,
and k the number of parameters in the model.
The set of models to search for are 23 and are all the possible combinations of
trends (none, RW, LLT, DT), seasonal components (none, all harmonics with equal
variance, all harmonics with different variances), and irregulars (none or Gaussian
noise). The none trend/none seasonal/none irregular is excluded from the models
set.

– Step 3: ARMA model selection. A low-order ARMA model is then identified by
AIC or SBC, on the innovations of the previous model estimated in step 2. The
algorithm used is a simplified version of [16] for full nonstationary and seasonal
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ARIMAmodels. The simplification consists of searching exclusively on stationary
and nonseasonal models, since both non-stationarity and seasonality are already
captured by the trend and seasonal component.

– Step 4: Joint final estimation. If an ARMA model is detected in the previous step,
then the full UC model with the ARMA irregular component embedded should be
estimated.

– Step 5: Forecasting step. Final forecasts are produced with the best of models in
steps 2 or 4, depending on which one exhibits the smallest information criterion
value.

5 Case Studies

The case studies considered below show how the UC automatic methods described in
previous sections performwith respect to ARIMA and exponential smoothing (ETS)
as implemented in the package forecast in R (functions auto.arima and ets
were used, respectively) [16]. This package has gained the role of a standard to
which any new method may be confronted. Two further methods are added to make
comparisons more comprehensive, namely, a seasonal naïve method as a benchmark
and the mean of the UC, ETS and ARIMA (see e.g., [20] about the importance of
forecast combinations). Another dimension added to the case studies is checking
whether the variance Box-Cox transformation improves forecast accuracy [1].

The case studies have been selected to be as varied as possible, they comprise
a weather time series, another from macroeconomics and a demand database of a
retail business typical of supply chain applications. The sampling intervals of the
time series are also varied, ranging from quarterly to daily.

Comparisons are carried out on the basis of two errormetrics, the symmetricMean
Absolute Percentage Error (sMAPE) and the Mean Absolute Scaled Error (MASE),
see Eqs. (5), (6) and [17, 20]. zt and ẑt are the actual and forecast values at time t,
respectively; T is the forecast origin; h is the forecast horizon; and n is the number
of observations in the fitting sample

sMAPEh = h−1
h∑

i=1

2 | zT+i − ẑT+i |
| zT+i | + | ẑT+i | × 100 (5)

MASEh = h−1
h∑

i=1

| zT+i − ẑT+i |
(n − 1)−1

∑n
r=2 | zr − zr−1 | (6)
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5.1 Monthly Average Temperatures in Madrid at El Retiro
Weather Station

Monthly average temperatures in Madrid from 1988 are shown in Fig. 1. Data is
compiled from the El Retiro weather station and are publicly available at www-2.
munimadrid.es/CSE6/control/seleccionDatos?numSerie=14020000020.

The series is dominated by the seasonal pattern.Maybe some noise is also present,
but the trend, if any at all, is rather mild. All the methods are applied in a forecasting
exercise consisting of a rolling out experiment in which the initial forecasting origin
is set in December 2002 and the forecasting horizon is fixed at 12 months ahead.
Then, one monthly observation is added at each iteration and the whole process is
repeated until the end of the sample is reached. Therefore, 181 total rounds of 12
months-ahead forecasts from all models are produced and averaged along all the
rounds to make final comparisons.

The models selected by the automatic identification of UCs confirm the initial
intuitions based on Fig. 1: trends are always either nonexistent or damped with very
small damping factors that effectively are very close to a nonexistent trend (i.e., the
α parameter in Eq. (2) always estimated smaller than 0.3); seasonal components are
very strong, about half of the runs with common variance for all harmonics and a half
with different variances; the irregulars are identified either as nonexistent (74% of all
runs) or white noise (26%). The λ parameter of the Box-Cox variance transformation
is in general close to 1, implying that the series does not exhibit heteroskedasticity
problems.

The average forecasting performance of all models used is shown in Table1,
sMAPE at the left-hand side and MASE at the right. Several conclusions may be
extracted from this table: (i) forecasts deteriorate with the horizon for all models,
as expected; (ii) all models show significant performance improvements over the
Naïve, implying that they are really capturing the structure of the data beyond a
naïve seasonal pattern; (iii) the ordering of models from best to worst according to

10

20

30

1990 1995 2000 2005 2010 2015 2020
Year

º C
el

si
us

Fig. 1 Average temperatures in Madrid central
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Table 1 Error metrics for Madrid average temperatures error forecasts for several models and
forecasting horizons. sMAPE is on the left part of the table and MASE on the right part. Minimum
of each row is emphasized both for sMAPE and MASE

sMAPE MASE

h Naïve ETS ARIMA UC Mean Naïve ETS ARIMA UC Mean

1 12.649 9.171 8.688 8.560 8.736 1.083 0.799 0.740 0.742 0.753

2 12.706 9.247 9.009 8.876 8.976 1.086 0.803 0.770 0.768 0.774

3 12.732 9.321 9.104 9.004 9.084 1.088 0.809 0.779 0.779 0.784

4 12.755 9.357 9.153 9.073 9.140 1.091 0.812 0.784 0.785 0.789

5 12.784 9.384 9.192 9.111 9.177 1.094 0.814 0.788 0.789 0.792

6 12.804 9.393 9.213 9.146 9.200 1.097 0.815 0.790 0.792 0.794

7 12.814 9.382 9.224 9.161 9.208 1.098 0.814 0.791 0.793 0.795

8 12.821 9.376 9.233 9.171 9.216 1.100 0.813 0.792 0.794 0.795

9 12.825 9.387 9.233 9.176 9.224 1.100 0.814 0.792 0.794 0.796

10 12.833 9.387 9.239 9.180 9.229 1.101 0.813 0.792 0.794 0.796

11 12.837 9.387 9.249 9.187 9.237 1.101 0.813 0.792 0.795 0.796

12 12.844 9.384 9.250 9.197 9.240 1.102 0.813 0.792 0.795 0.796

sMAPE is UC-Mean-ARIMA-ETS; (iv) almost the same classification is produced
with the MASE, except that ARIMA is the best and UC is relegated to the second
position, even though ARIMA, UC and Mean look actually very close to each other.

5.2 Spanish Gross Domestic Product (GDP)

Figure2 shows the Spanish quarterly GDP between the first quarter of 1995 and the
third quarter of 2019 in real terms (chain-linked volume index). It follows a pattern
similar to many Western economies with a strong trend and seasonality and a big
drop due to the 2008 recession followed by a final recovery.

The rolling out exercise in this case starts in the last quarter of 2009 and the
forecasting horizon is fixed at 8 quarters ahead, i.e., the total number of 8 quarters-
ahead forecast rounds is 32.

The UC model selected for most of the forecasting origins consists of a damped
trend (with a damping parameter oscillating between 0.89 and 0.95), a seasonal
component with equal variance for all harmonics, and no irregular component. The
estimated components for the whole sample may be seen in Fig. 3.

The average forecasting performance of all models used is shown in Table2. The
table is divided into four quadrants reporting the average SMAPE andMASEmetrics
for each model with and without the variance Box-Cox transformation for horizons
ranging from 1 to 12 months.
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Fig. 3 Spanish real quarterly GDP between 1995 and 2019

Table2 offers some interesting insights into this forecasting exercise, some in
common with the previous case study. Firstly, forecasts deteriorate with the horizon
for allmodels. Secondly, allmodels showsignificant performance improvements over
the Naïve. Thirdly, the absolute winner in this case regardless of the error metric is
the UC method, followed by Mean, ETS, and ARIMA. Finally, this classification,
with just a few exceptions, is independent of whether the Box-Cox transformation
is used or not, the error metric, and the forecasting horizon.
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Table 2 Error measurements on Spanish GDP forecasts for several models and forecasting hori-
zons. sMAPE is on top half and MASE at bottom. Results with Box-Cox variance transformation
at the right side. Minimum of each row are emphasized

sMAPE sMAPE Box-Cox

h Naïve ETS ARIMA UC Mean ETS ARIMA UC Mean

1 2.059 0.666 0.677 0.576 0.584 0.658 0.664 0.585 0.600

2 2.099 0.781 0.785 0.666 0.688 0.754 0.788 0.665 0.699

3 2.134 0.937 0.968 0.798 0.836 0.904 0.957 0.806 0.847

4 2.164 1.112 1.134 0.943 0.995 1.066 1.128 0.954 1.000

5 2.560 1.339 1.378 1.148 1.209 1.288 1.359 1.166 1.216

6 2.848 1.562 1.613 1.353 1.414 1.499 1.593 1.381 1.417

7 3.072 1.777 1.865 1.572 1.640 1.707 1.844 1.591 1.638

8 3.255 1.990 2.086 1.781 1.842 1.915 2.075 1.803 1.844

MASE MASE Box-Cox

h Naïve ETS ARIMA UC Mean ETS ARIMA UC Mean

1 0.773 0.245 0.246 0.210 0.214 0.241 0.241 0.213 0.219

2 0.789 0.288 0.285 0.244 0.252 0.276 0.286 0.243 0.256

3 0.803 0.344 0.352 0.293 0.307 0.331 0.349 0.296 0.310

4 0.815 0.408 0.412 0.346 0.364 0.390 0.411 0.349 0.366

5 0.965 0.491 0.499 0.422 0.442 0.471 0.494 0.427 0.445

6 1.075 0.573 0.585 0.497 0.517 0.547 0.579 0.505 0.517

7 1.160 0.651 0.675 0.578 0.598 0.622 0.670 0.582 0.597

8 1.229 0.729 0.755 0.655 0.671 0.698 0.754 0.659 0.671

5.3 Demand Database

The last case study is more complex than the previous ones, because it consists of
all the daily demand time series, 142 in total, collected from a Spanish fresh food
franchise. The series are available for the last 200 days and have a variety of properties
in terms of predominance of components, volatility, etc. Two typical examples are
shown in Fig. 4. The bottom panel shows a time series dominated by the weekly
pattern with a more or less stable mean, while the series at the top exhibits both a
seasonal component and a decreasing trend much less stable.

The rolling experiment in this example consists of 48 runs for each of the 142
time series starting at day 140 and choosing a forecasting horizon of 14 days.

The heterogeneity of this bunch of time series is reflected in the variety of UC
models automatically identified: trends are either damped (with damping factor vary-
ing between values close to 0 and 0.83) or RandomWalks in equal parts (with a few
of them nonexistent); 11% of seasonal components are identified with different vari-
ances for each of the three harmonics, 23% of the series are estimated without any
seasonal component and the rest are chosen as seasonal components with common
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Fig. 4 Two examples of daily sales of a retailer in Spain

Table 3 Error measurements on demand time series for several models and selected forecasting
horizons. sMAPE is on top half andMASEat bottom.ResultswithBox-Cox variance transformation
at the right side. Minimum of each row are emphasized

sMAPE sMAPE Box-Cox

h Naïve ETS ARIMA UC Mean ETS ARIMA UC Mean

1 6.016 4.717 4.914 4.710 4.634 4.684 4.865 4.696 4.619

3 5.927 4.865 5.049 4.857 4.779 4.844 4.992 4.841 4.752

5 5.911 4.947 5.084 4.931 4.841 4.942 5.041 4.926 4.825

7 5.857 4.927 5.054 4.900 4.819 4.937 5.022 4.911 4.815

9 5.833 4.927 5.051 4.887 4.813 4.940 5.022 4.909 4.812

11 5.817 4.935 5.053 4.888 4.813 4.949 5.030 4.913 4.817

13 5.814 4.940 5.059 4.891 4.818 4.959 5.038 4.920 4.826

14 5.813 4.939 5.060 4.886 4.817 4.958 5.043 4.919 4.829

MASE MASE Box-Cox

h Naïve ETS ARIMA UC Mean ETS ARIMA UC Mean

1 1.136 0.838 0.893 0.840 0.828 0.827 0.897 0.835 0.828

3 1.115 0.871 0.924 0.873 0.860 0.858 0.922 0.866 0.856

5 1.109 0.890 0.938 0.891 0.877 0.881 0.936 0.887 0.875

7 1.097 0.894 0.939 0.894 0.880 0.890 0.939 0.894 0.881

9 1.098 0.902 0.948 0.900 0.887 0.900 0.948 0.903 0.890

11 1.094 0.906 0.951 0.902 0.890 0.910 0.952 0.909 0.896

13 1.092 0.910 0.954 0.905 0.893 0.960 0.955 0.911 0.914

14 1.092 0.912 0.956 0.906 0.894 0.962 0.958 0.913 0.916
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variances; the irregular is nonexistent in 22% of cases, while the rest are just white
noise. Heterogeneity is also detected on the Box-Cox transformation that oscillates
between −0.35 and 1, with only 9 cases above 0.88.

Table3 summarizes the values of the error metrics in a similar format to previous
tables. In this case, only some selected forecasting horizons are shown to make the
table shorter and the averages are calculated along time series and forecast origins,
i.e., each value on the table is the average of 48 × 142 = 6816 forecast errors.

Table3 shows that all methods outperform the Naïve method. Forecasts roughly
worsen for longer forecasting horizons (not so clear as in previous case studies). The
winner method is unambiguously the combination of methods (Mean), followed by
UC, ETS, and ARIMA. There is an interesting distinct behavior of error depending
on the horizon, because for horizons up to 7 days ahead (there are some variations
depending on the method) the Box-Cox transformation gives lower errors that fore-
cast with no transformation. There is only one exception to the previous rule, the
sMAPE metric for the ARIMA method, for which forecasts are always better with
Box-Cox transformation.

6 Conclusions

This chapter presents a novel automatic identification procedure for UC models,
consisting of estimating a wide range of possible models and selecting the best
according to any information criterion, like Akaike’s or Schwarz’s. This sort of
algorithm is pretty useful in Big Data contexts, where many time series ought to be
processed reliably in rather fast times.

The most important point is choosing an appropriate set of UC models, wide
enough to be able to represent efficiently as many time series as possible. In that
regard, the trend components available are either none, RandomWalk, Local Linear
Trend, or Damped Trend (see Eq. (2)). The seasonal component is either none, sea-
sonal harmonics with equal variances, or with different variances. Finally, irregulars
are allowed to select among none, white noise or ARMA processes. As far as the
authors are concerned, this is the widest set of UC models available in the literature.

The previous algorithm is assessed on three case studies in comparison with other
well-known methods, namely ARIMA and ETS as implemented in the forecast
package in R.

The results show that the proposed identification algorithm is strongly competitive
with the rest, being the best very often. Apart from this general conclusion that is
the most important, there are other findings that were not specifically pursued, and
therefore should be considered only partial to the particular case studies included.
Firstly, there is little disagreement between both error metrics (sMAPE and MASE)
when ordering the forecasting methods. Secondly, there are not clear improvements
in forecasting accuracy when the Box-Cox variance transformation is used. Finally,
combination of forecasts (at least the mean used in this chapter) does not imply better
forecasts, only in the last case study the combination outperformed the rest.
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To sum up, UC models automatically identified provides a nice tool that may
enter the forecaster’s toolbox, with some nice byproducts consisting of the optimal
decomposition of time series in trend, seasonal component, and irregular, that often
are required for detrending, signal extraction, seasonal adjustment, etc.
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Spatial Integration of Pig Meat Markets
in the EU: Complex Network Analysis
of Non-linear Price Relationships

Christos J. Emmanouilides and Alexej Proskynitopoulos

Abstract We analyze the spatial price causality structure between the pig meat
markets of 24 European countries using weekly time-series data from 2007 to 2018
and non-linear Granger causality. The EU pig meat market is studied as a dynamic
complex network of linkages between prices in member states. We investigate the
temporal development of the spatial network of price relationships, and through the
dynamics of its major structural characteristics we draw insights about the horizontal
agricultural market integration process in the EU. Of interest is the evolution of the
degree of market inter-connectedness, the strength and reciprocity of price relation-
ships, the development of influential markets (hubs) and of market clusters with
strongly interacting components.

Keywords Price relationships · Non-linear Granger causality · Complex
networks · Spatial market integration · Generalized additive model

1 Introduction

Spatial price relationships are commonly studied in economics to provide empirical
insights about the integration of geographically separated markets. In efficient, well-
integratedmarkets, price dependencies tend to be strong, reciprocal, diffuse, andmore
homogeneous. On the other hand, in more segregated markets, price relationships
may be clustered and exhibit a high degree of heterogeneity. Since its foundation,
a major goal of EU’s economic policy has been the establishment of a frictionless,
more homogeneous common market of commodities and services.
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Several authors have studied empirically the horizontal integration of national
EU agricultural markets; e.g., Serra et al. [25], Emmanouilides and Fousekis
[7, 9] employed tests for long-run price convergence (Law of One Price), while
Emmanouilides et al. [8] and Grigoriadis et al. [12] used copulas to study price
co-movements. All these works have considered small subsets of national markets.
Studies of long-run price convergence did not assess the causal structure of price
dependence between markets. On the other hand, the copula-based dependence
measures employed in the latter works do not reveal any information about the
origin of price shocks that give rise to the observed price dependencies and their
dynamics. As such, they treat each market in a pair as equi-important in determining
the relationship.

To provide a more thorough look into the integration of EU primary commodity
markets we include in our study 24 out of the 28 EU member states, excluding
three countries having very small size (Malta, Cyprus, and Luxemburg) and Croatia
that joined EU very recently (in 2013). In this paper, that extents the work of
Emmanouilides and Proskynitopoulos [10], we gain insights into the dynamics of
price relationships by employing a non-linear Granger causality framework and
analyze the whole EU pig meat market as a complex network of bipartite price link-
ages. These causal linkages are directional and generally asymmetric, in contrast to
copula-based measures that are agnostic about price shocks’ origins and directional
asymmetries.

Causal networks have been used recently to study linkages between financial
markets (e.g., [2, 5, 26]) but not, to the best of our knowledge, to agricultural markets.
Our network construction is based on the use of a non-parametric non-linear gener-
alized additive modeling (GAM) framework for testing non-causality. Simulation
results show that for finite samples our test performs better not only than the linear
causality test that is commonly adopted in studies of causal network, but also than
the widely used Hiemstra-Jones [16] and Diks-Panchenko [6] tests of non-linear
causality. Below we describe briefly our work, together with some of our findings;
Sect. 2 discusses the data and methods, Sect. 3 presents the test performance in
finite samples, Sect. 4 provides the empirical analysis and results, Sect. 5 provides
conclusions.

2 Data and Methods

2.1 Data

The data are complete series ofweeklywholesale prices for pig animals (euro/100 kg)
in 24 EU member states from January 1, 2007 to October 29, 2018, obtained by
the European Commission. The series are positively correlated, mostly to a high
degree (Pearson correlation coefficients range from 0.28 to 0.98, with a mean of
0.74), indicating that price changes are transmitted between market pairs. As is
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common empirical practice in studies of market integration, we analyze logarithmic
price returns ri,t = dlnpi,t that de-trend the series from deterministic and stochastic
components. pi,t denotes price at country i, i = 1, … 24, in week t, t = 1, … 618.

2.2 Filtering

Inference on causality can be sensitive to autocorrelation and ARCH effects that are
typically present in price returns series; Autocorrelation might spuriously result in
significant Granger causality between markets and distort the direction of causality
(e.g., [26]). Neglected non-stationarities, such as ARCH dependence, any associated
volatility clustering or other structural changes, may be manifested as spurious non-
linearities in the series of returns (e.g., [1, 16, 18, 19]), and consequently may bias
inference.

To deal with these potential problems we filtered each series with an ARMA(m,
n)-GARCH(p, q) model, using several alternative error distributions that allow for
a variety of shape and skewness specifications. With the BIC criterion, we selected
parsimoniousmodels with ordersm, n, p, q ∈ {1, 2, 3, 4, 5}. Optimal models with any
ARandARCHeffects removed from the residualswere retained.1 Several conditional
error distributions were tested and selected on grounds of parameter significance and
parsimony, again via BIC.

2.3 Non-linear Granger Causality Networks

Denote with si,t the standardized innovations of the ARMA-GARCH filtered price
returns of market i. Causal price linkages between two markets i and j are then
established through testing for Granger non-causality in conditional means in the
following form

H0 : E

(
s j,t+1|sL j

j,t , s
Li
i,t

)
= E

(
s j,t+1|sL j

j,t

)
, H1 : E

(
s j,t+1|sL j

j,t , s
Li
i,t

)
�= E

(
s j,t+1|sL j

j,t

)
(1)

where Li, Lj indicate finite lags of the series of the two markets, respectively. Then,
two equations for the conditional expectations are involved in testing non-causality,
one for each hypothesis in (1)

H0 : E
(
s j,t+1|sL j

j,t , s
Li
i,t

)
= f j

(
s
L j

j,t

)
, H1 : E

(
s j,t+1|sL j

j,t , s
Li
i,t

)
= f ji

(
s
L j

j,t , s
Li
i,t

)
(2)

1Residuals were tested for the presence of AR and ARCH effects with the Ljung–Box test [20] and
the ARCH test of Engle [11].
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f j(.) and f ji(.) can be arbitrary, smooth functions of their arguments. In linear non-
causality testing, they assume the standard additive linear form. Péguin-Feissolle
and Teräsvirta [23] suggested a linear form including a potentially large number of
cross-lag interaction terms as Taylor approximations of f j(.) and f ji(.).

Here, we implement a more flexible non-linear specification of functions f j(.) and
f ji(.) introduced by Hastie and Tibshirani [15] and further developed by others (e.g.,
[28]) in the context of generalized additive models (GAMs). Under this specification,
and assuming a gaussian link function relating the conditional mean with the lagged
series, (2) becomes

E
(
s j,t+1|sL j

j,t

)
= a0 j +

L j∑
r=1

fr (s j,t−r ) + u j,t , u j,t ∼ i id N
(
0, σ 2

u, j

)
(3a)

E
(
s j,t+1|sL j

j,t , s
Li
i,t

)
= a0 j i +

L j∑
p=1

f p(s j,t−p) +
Li∑
q=1

fq(si,t−q)

+ η j,t , η j,t ∼ i id N
(
0, σ 2

η, j

)
(3b)

Functions {f p, f q, f r} are usually specified as non-parametric smooth functions
of a single lagged variable. Typical choices are local scatter smoothers (loess),
smoothing splines or, as more recently developed, smooth expansions of basis func-
tions chosen froma range of alternative families.Note that Eqs. (3a, 3b) can be readily
amended to include smooth cross-lag interaction terms to capture more delicate non-
linear dependencies, if needed. Expansion coefficients are estimated together with
a set of penalty parameters that regulate over-fitting using a penalized maximum
likelihood iterative estimation method such as IRLS with the smoothing parame-
ters determined at each iteration step via cross-validation. The estimation algorithm
minimizes the penalized deviance

D(a) +
∑

m∈{p,q},l=i, j

λm

∫
f ′′
m(sl,t−m)2dsl,t−m = D(a) +

∑
m∈{p,q},l=i, j

λmaTSma (4)

where {p, q} indicates the full set of lags (p = 1, …, Lj and q = 1, …, Li), a is the
vector of coefficients to be estimated,D is the deviance, λm are the penalties and Sm is
a matrix of known parameters calculated by the basis functions and the penalties (for
details see [27, 28]). Selection of optimal lags Li, Lj ∈ {1, 2, …, 10} is done with the
use of some information criterion, such aBIC. If the computational burden is too high,
penalties can be set to a fixed value, but at the possible cost of not fully explaining
non-linearity in dependence. However, to safeguard against this possibility, tests for
neglected non-linearity (e.g., the BDS test [4]) can be applied on the residuals of (3a,
3b) and accordingly re-adjust the degree of smoothing. Alternatively, the simpler
and faster “backfitting” estimation method of Hastie and Tibshirani [14, 15] may be
preferred.
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In the GAM framework, testing for Granger non-causality can be performed with
a generalized likelihood ratio test on the estimated models (3a, 3b); Denote with
L(âH0) and L(âH1) the likelihoods of the models (3a) and (3b), respectively, and with
âH0 , âH1 the corresponding sets of estimated parameters. Then, under the null of
non-causality and the usual regularity conditions, the log-likelihood ratio follows
asymptotically an approximate chi-square distribution, 2(logL(âH1) − log L(âH0)) ~
χ2
v , with ν = d f H1

− d f H0

After performing the non-causality test and estimating the error variances of (3a,
3b), the Granger Causality Index (GCI) is computed as

GC Ii→ j =
(
1 − σ

∧2
η, j

/
σ
∧2
u, j

)
(5)

This index is based on the Granger–Wald test (e.g., [13, 17]), and quantifies the
strength of causal influence market i exerts on market j. A significant test result
indicates the presence of a directional link {i → j} between the two markets with
a weight GCIi→j. Price relationships can be bi-directional, if {j → i} is statistically
significant, or not (otherwise), and generally asymmetric as it is expected thatGCIi→j

�= GCIj→i.
The causal network at any time t is defined as a graphGt = (V,Et), consisting of a

set V of vertices (nodes/markets) and a set Et of directed weighted edges (links). Set
Et contains all directional weighted links {i → j} between markets (i, j) for which
the causality test gives a significant result.

2.4 Network Measures

We consider two kinds of measures of network characteristics: measures that charac-
terize (a) the connectivity of individual nodes, and (b) the cohesiveness of the global
network.

Individual Node Connectivity

For a directed weighted network, the in-strength (or in-degree), din(i), and the out-
strength (or out-degree), dout(i), of a node i are defined correspondingly as

din(i) =
∑

j∈V;{ j→i}∈Et

GC I j→i (6a)

dout (i) =
∑

j∈V;{i→ j}∈Et

GC Ii→ j (6b)

A node’s in-strength is the sum of the weights of all incoming links to the node;
In our context, it represents the total causal influence exerted to market i from all
markets with a statistically significant causal influence on it. A node’s out-strength is
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the sum of the weights of all links originating from the node; It quantifies the overall
magnitude of a market’s causal influence on the whole market system, and as such
it may be viewed as a measure of a market’s importance in driving other markets’
price dynamics.

Another aspect of individual node connectivity refers to the “importance” of a
node with respect to other nodes in the network. A common measure is closeness
centrality, that is, determined using the shortest path (sequence of edges) or geodesic
distance d(i, j) between nodes (i, j). Closeness centrality quantifies how “close” a
node is to the other nodes in the network. It is defined as the inverse of the total
distance of the node from the other nodes,

cCL(i) = 1

/∑
j∈V

d(i, j) (7)

It can be readily normalized to range in [0, 1] by multiplying with |V| − 1, where
|.| indicates set cardinality. In our context, a high value of closeness centrality would
indicate a market that has a high degree of causal relationships (i.e., is “close”) with
each of several other markets in the system. These relationships can be direct (one-
to-one) or indirect (through short causal flow paths). Markets with high closeness
centrality are typically more connected than markets with low closeness centrality.

Global Network Cohesiveness

We employ four measures of global network structure; network density, average
strength, average shortest path length, and reciprocity. Network density is the
frequency of realized edges (causal links, E) relative to the total number of possible
edges. For a directed graph it is calculated as

D = |E|/ (|V| − 1)|V| (8)

The higher its value, the more densely inter-connected the market system is. The
average strength, i.e., the mean total strength (both “in” and “out”) of all network
nodes, calculated as

d̄ =
∑
i∈V

(
din(i) + dout (i)

)/ |V| (9)

reflects the average strength of price linkages at the system level. The higher its value,
the stronger on average the price relationships between the markets are. The average
shortest path length is the mean of the shortest path lengths between all market pairs,

l̄ =
∑

i, j∈V d(i, j)
/

(|V| − 1)|V| (10)
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an indicator of the system’s price transmission efficiency; the smaller its value, the
faster is the diffusion of price shocks in the system. Reciprocity is a measure of
bidirectionality in causal price relationships.We calculate it as the ratio of the number
of bi-directional edges over the total number of edges in the directed graph,

r = |[{i → j} ∧ { j → i}] ∈ Et |
/ |[{i → j} ∨ { j → i}] ∈ Et | (11)

Higher values correspond to a higher degree of mutual interactions between
markets, indicating higher efficiency in the flows of price shocks and a higher level
of market integration.

2.5 Temporal Network Evolution

The dynamics of the network of price relationships are assessed by estimating causal
networks andnetworkmeasures for 359 consecutive rollingwindowsof 5-yearswidth
(5× 52= 260 observations per window) in order to maintain sufficient sample sizes
for the causality tests. Other plausible width options were also explored without
noticing important qualitative differences in the results.

To empirically test for possible significant structural changes in the series of
estimated global network measures we employed generalized M-fluctuation tests
(e.g., [29]). Sequences of such breaks, if present, may indicate the onset of different
stages/regimes in the market integration process, characterized by distinct network
market structures.

3 Finite Sample Properties of the GAM-Test

In this section, we presentMonte-Carlo simulation results on the comparative perfor-
mance of the proposed GAM-based test of Granger non-causality in the conditional
mean (Eq. (3a, 3b); henceforth GAMG) against the standard linear OLS-based test
(LG) and the correlation integral-based non-linear Hiemstra-Jones ([16]; HJ) and
Diks-Panchenko ([6]; DP) tests. Due to space restrictions, we incorporate only a
brief part of an extensive comparison study that will be presented elsewhere.

To assess the performance of the tests we use simulated data from three alternative
bivariate data-generating processes (DGPs) of time series {Xt, Y t}, t = 1, …, T,
between which a one-directional non-linear Granger causality exists, from Yt to
Xt , both in the mean and the variance. DGPs exhibit non-linear AR(1) or AR(2)
dependence in the first moment and ARCH(1) dependence in the second moment,
as follows:

DGP1 : Xt = 0.3Xt−1 + 0.1Y 2
t−1 + εX,t ,Yt = 0.3Yt−1 + εY,t
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DGP2 : Xt = 0.2Y 2
t−2 + εX,t ,Yt = 0.1Yt−1 + 0.1Y 2

t−2 + εY,t

DGP3 : Xt = −1.2Yt−1 exp
(−Y 2

t−1

) + εX,t ,Yt = −1.2Yt−1 exp
(−Y 2

t−1

) + εY,t

where εX,t, εY,t ~ iid N(0, σ 2
t = 1 + 0.1Y 2

t ). Such an ARCH specification was used
by [6]. Inclusion of causal dependence in the variance gives some advantage to the
HJ and DP tests over the LG and GAMG tests, as in their standard form (Sect. 2.3)
the latter may detect causality only in the mean.

Size and power are estimated by the empirical rejection rates of the true null that
Xt does not cause Yt and of the false null that Yt does not cause Xt , respectively.
Calculations are performed over 1000 simulated bivariate series of length T ∈ [500,
1000] per DGP, for two nominal sizes α ∈ [0.05, 0.10]. After ARMA-GARCH
filtering, the series are subjected to the tests for non-causality. To mimic real testing,
in which actual DGPs are unknown, we select lag lengths for the LG and GAMG
tests via the BIC criterion. For the GAMG test, they typically coincide with the actual
lag lengths of the numerous different DGPs studied, indicating that GAMmodels are
capable of correctly identifying the lag structure of non-linear time series processes.2

For the HJ and DP tests, literature is non-conclusive on optimal lag length choice.
Extensive experimentation provided strong evidence that the use of GAM-selected
lag lengths results in improved performance of the HJ and DP tests, an additional
benefit that the proposedGAMapproach can offer in non-linear non-causality testing.
Table 1 presents empirical performance results.

As expected, due to misspecification, the LG test has low power against non-
linear alternatives (except when a strong linear causal component is present, as in
DGP3), and its size is sensitive to the degree of non-linearity in the data (e.g., is
markedly oversized for DGP3). All non-linear tests suffer from size distortions that
diminish as the sample size increases; a result that is indicative of the consistency of
the associated test statistics. The GAMG test is oversized for smaller samples, while
the HJ and DP tests are undersized. For the GAMG test, empirical size converges
to the nominal value when a stationary bootstrap is used to overcome finite sample
deviations from asymptotic theory assumptions.3 GAMG has clearly better power
than the other tests in all cases (nearly 1). However, a fair power comparison should
adjust for the different actual sizes of the tests in finite samples. For this purpose,
we employ the receiver operating characteristic curve (ROC) of the estimated power
against test size. As also suggested by Lloyd [21], we estimate the partial area under
the ROC curve (pAUC) for plausible test sizes that range between 0.001 and 0.1.
The values of pAUC for each test provide size-adjusted power estimates and are
reported in Table 1. Bootstrap tests for correlated ROCs provide strong evidence
that GAMG has indeed better size-adjusted power (i.e., higher pAUC) than the other
non-causality tests included in the comparison, for all studied DGPs and sample
sizes.

2Results are available upon request.
3For the HJ and DP tests, bootstrap does not appear to improve finite sample performance.



Spatial Integration of Pig Meat Markets in the EU … 89

Ta
bl
e
1

Fi
ni
te
sa
m
pl
e
pe
rf
or
m
an
ce

of
no

n-
ca
us
al
ity

te
st
s

G
A
M
G

L
G

H
J

D
P

D
G
P

T
α

Si
ze

B
.S
.a

Po
w
er

pA
U
C

Si
ze

Po
w
er

pA
U
C

Si
ze

Po
w
er

pA
U
C

Si
ze

Po
w
er

pA
U
C

1
50
0

0.
05

0.
08
8

0.
06
8

0.
99
8

0.
99
6

0.
06
2

0.
17
8

0.
55
1

0.
01
6

0.
78
2

0.
89
5

0.
02
0

0.
81
0

0.
91
4

0.
10

0.
16
4

0.
12
8

1.
00
0

0.
11
0

0.
27
0

0.
06
6

0.
86
0

0.
05
2

0.
87
6

10
00

0.
05

0.
06
4

0.
04
5

1.
00
0

1.
00
0

0.
06
8

0.
18
0

0.
55
3

0.
06
0

0.
97
0

0.
96
3

0.
06
6

0.
97
6

0.
97
5

0.
10

0.
11
8

0.
08
0

1.
00
0

0.
11
0

0.
27
8

0.
09
6

0.
98
6

0.
09
2

0.
99
2

2
50
0

0.
05

0.
11
8

0.
09
0

0.
99
0

0.
99
6

0.
05
8

0.
28
8

0.
59
9

0.
02
8

0.
85
4

0.
93
9

0.
01
0

0.
85
2

0.
95
1

0.
10

0.
19
8

0.
15
6

0.
99
6

0.
11
8

0.
37
2

0.
06
6

0.
93
8

0.
05
0

0.
93
0

10
00

0.
05

0.
08
2

0.
05
6

1.
00
0

1.
00
0

0.
06
2

0.
34
4

0.
63
0

0.
02
9

0.
99
6

0.
99
7

0.
02
6

0.
99
4

0.
99
7

0.
10

0.
15
4

0.
10
4

1.
00
0

0.
12
6

0.
43
4

0.
07
8

1.
00
0

0.
06
6

1.
00
0

3
50
0

0.
05

0.
07
4

0.
06
0

1.
00
0

1.
00
0

0.
07
4

0.
98
0

0.
97
3

0.
02
0

0.
58
2

0.
78
5

0.
02
8

0.
65
2

0.
83
7

0.
10

0.
13
6

0.
09
0

1.
00
0

0.
15
2

0.
98
4

0.
10
0

0.
70
0

0.
08
0

0.
76
0

10
00

0.
05

0.
06
6

0.
04
4

1.
00
0

1.
00
0

0.
07
2

1.
00
0

1.
00
0

0.
02
6

0.
84
2

0.
92
8

0.
02
9

0.
91
2

0.
96
1

0.
10

0.
12
6

0.
09
4

1.
00
0

0.
15
2

1.
00
0

0.
10
0

0.
91
4

0.
08
4

0.
94
8

a E
m
pi
ri
ca
ls
iz
e
fr
om

50
0
st
at
io
na
ry

bo
ot
st
ra
p
re
pl
ic
at
io
ns

(e
.g
.,
se
e
[2
4]
)



90 C. J. Emmanouilides and A. Proskynitopoulos

4 Empirical Analysis and Results

First, logarithmic price returns were tested for unit roots on the unconditional mean
with standard ADF and KPSS tests, along with the spectral wavelet test of Nason
[22] that is shown to have good size properties for heavy-tailed series such as price
returns. In all cases, the tests did not provide evidence against weak stationarity.

Then, we applied an ARMA-GARCH filter to all series of returns. Models were
estimated bymaximizing the joint log-likelihood of the systemof equations involved.
In most cases, a skewed t-Student distribution was adequate for the conditional error.
Ljung-Box and Engle’s ARCH tests did not indicate any residual AR or ARCH
effects.

In the next step, we used the filtered series to (a) estimate for each rolling
window and for each market pair the GAM models in Eq. (3a, 3b), (b) conduct the
Granger non-causality tests, (c) construct the networks, and (d) calculate the network
measures. As we perform a large number (24 × 23 = 552) of simultaneous tests to
construct a single rolling window network of statistically significant causal links,
we apply a Benjamini–Hochberg [3] adjustment to the p-values from the likelihood
ratio tests by controlling the false discovery rate (FDR) for our chosen significance
level (we use a = 0.05).

4.1 Network Measures of Individual Node Connectivity

Statistics for the rolling windows estimates of the individual market connectivity
measures are shown in Table 2. Values of closeness are normalized. To summarize
coarsely the temporal evolution of connectivity measures for each market we esti-
mated a linear trend and calculated the coefficient of determination R2. Insignificant
trends (α = 0.05, HAC corrected) are marked as “ns”. Overall, the most influen-
tial market appears to be Germany, followed by Austria, Netherlands, Belgium,
and Poland with average out-strength values exceeding 2.00. Most linear trends are
positive; Poland, Portugal, Lithuania, and France have the highest average annual
(linear) growth rate, ranging from 0.17 to 0.39, while Slovenia and Belgium had a
marked decline in out-strength in the period of study. Figure 1 shows the out-strength
evolution for a subset of markets.

Slovakia, Estonia, Czech Republic, and Denmark appear to have the highest
average in-strength values (2.02 or more), indicating that price shocks in these
markets were rather driven externally. As might be expected, high out-strength
markets tend to have small in-strength and vice versa, indicating a grouping into
markets with high power (“hubs”; Germany, Austria, Netherlands, Poland, Belgium)
driving price dynamics of lower power markets (Estonia, Slovakia, Czech Republic,
Latvia, Denmark, Greece, Ireland, Bulgaria), while the remaining markets appear to
interact less strongly as they have low average values of both in- and out-strength.
In-strength trends are mostly positive, but smaller in magnitude than the out-strength
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Table 2 Measures of individual node connectivity

Market Out-strength In-strength Closeness

Mean SD Trend R2 Mean SD Trend R2 Mean SD Trend R2

BE 2.38 0.41 −0.15 0.55 1.07 0.25 0.11 0.76 0.83 0.05 −0.02 0.43

CZ 0.74 0.16 0.06 0.56 2.24 0.15 0.01ns 0.02 0.65 0.05 0.02 0.60

DK 0.77 0.10 0.01ns 0.02 2.02 0.33 0.15 0.79 0.63 0.03 0.00ns 0.00

DE 5.45 0.35 0.12 0.50 0.85 0.16 −0.04 0.22 0.84 0.04 −0.01 0.50

EE 0.16 0.08 −0.01ns 0.08 2.25 0.40 0.03ns 0.03 0.50 0.07 0.01 0.15

GR 0.30 0.19 −0.05ns 0.27 0.83 0.37 0.14 0.57 0.56 0.05 0.00ns 0.02

ES 0.90 0.22 0.08 0.52 1.06 0.56 0.26 0.88 0.65 0.05 0.01ns 0.07

FR 0.96 0.35 0.17 0.94 0.89 0.20 0.07 0.49 0.70 0.08 0.04 0.91

IE 0.39 0.34 −0.14 0.70 0.91 0.31 0.14 0.75 0.55 0.13 −0.05 0.60

IT 0.30 0.14 0.03 0.21 0.36 0.15 0.05 0.36 0.55 0.04 0.01 0.42

LV 0.51 0.13 0.03ns 0.21 1.55 0.28 −0.04 0.09 0.61 0.06 0.03 0.78

LT 1.08 0.44 0.20 0.85 1.33 0.15 −0.03ns 0.17 0.70 0.05 0.02 0.72

HU 1.30 0.30 0.14 0.84 1.45 0.24 0.03ns 0.05 0.73 0.08 0.03 0.84

NL 2.47 0.24 −0.08 0.42 0.92 0.10 0.04 0.49 0.87 0.04 −0.01 0.31

AT 2.71 0.30 0.11 0.60 0.97 0.16 −0.04 0.27 0.82 0.03 0.00ns 0.00

PL 2.04 0.82 0.39 0.91 0.86 0.35 −0.13 0.55 0.80 0.08 0.02 0.33

PT 0.91 0.41 0.20 0.93 1.09 0.30 0.12 0.59 0.64 0.08 0.04 0.84

SI 1.29 0.34 −0.15 0.79 1.37 0.16 0.05 0.41 0.70 0.05 −0.01 0.32

SK 0.68 0.10 0.00ns 0.00 2.42 0.22 0.03ns 0.07 0.64 0.03 0.01 0.12

FI 0.28 0.21 0.08 0.60 0.34 0.20 0.08 0.55 0.46 0.09 0.02 0.17

SE 0.58 0.15 −0.01ns 0.01 0.29 0.14 0.05 0.60 0.57 0.04 0.00ns 0.04

UK 0.24 0.17 −0.04ns 0.20 0.31 0.12 −0.03 0.24 0.52 0.06 −0.02 0.22

BG 0.38 0.14 −0.05 0.62 1.16 0.14 −0.01ns 0.03 0.55 0.09 −0.04 0.77

RO 0.55 0.22 0.09 0.72 0.82 0.17 0.03ns 0.10 0.62 0.07 0.03 0.74

trends. Table 3 summarizes key characteristics of the causal interactions between the
three market groups that are related to market power; Using the temporally averaged
network of price relationships, for every pair (k, l) of groups, k, l = 1, 2, 3, we
compute the density, Dout

kl , of causal out-links directed from group k to l, the average
out-strength from k to l per link, <doutkl >L, and the average out-strength from k to l
per k-group market (k-market), <doutkl >M , as follows:

Dout
kl = |Ekl |

/(|Vk | − 1{k=l}(k, l)
)|Vl | (12)

〈
dout
kl

〉
L =

∑
i∈Vk ; j∈Vl

GC Ii→ j
/((|Vk | − 1{k=l}(k, l)

)|Vl |
)

(13)



92 C. J. Emmanouilides and A. Proskynitopoulos

Time

O
ut

-S
tre

ng
th

2010 2012 2014 2016

5.
0

5.
4

5.
8

6.
2

Germany

Time

O
ut

-S
tre

ng
th

2010 2012 2014 2016

2.
0

2.
4

2.
8

3.
2

Austria

Time

O
ut

-S
tre

ng
th

2010 2012 2014 2016

1.
8

2.
2

2.
6

3.
0

Netherlands

Time

O
ut

-S
tre

ng
th

2010 2012 2014 2016

2.
0

2.
5

3.
0

Belgium

Time

O
ut

-S
tre

ng
th

2010 2012 2014 2016
0.

5
1.

5
2.

5

Poland

Time

O
ut

-S
tre

ng
th

2010 2012 2014 2016

0.
6

1.
0

1.
4

1.
8

Slovenia

Time

O
ut

-S
tre

ng
th

2010 2012 2014 2016

0.
5

1.
0

1.
5

Portugal

Time

O
ut

-S
tre

ng
th

2010 2012 2014 2016

0.
4

0.
8

1.
2

1.
6

France

Time

O
ut

-S
tre

ng
th

2010 2012 2014 2016

0.
5

1.
0

1.
5

Lithuania

Fig. 1 Out-strength temporal evolution for selected markets

Table 3 Summary of interactions between market groups of varying market power

Market group
(k)

Density, Dout
kl Average out-strength

per
k-link, <doutkl >L

Average out-strength per
k-market, <doutkl >M

k = 1
BE, DE, NL,
AT, PL

Dout =⎡
⎢⎢⎣
0.95 0.80 0.82

0.18 0.52 0.25

0.22 0.59 0.38

⎤
⎥⎥⎦

〈
dout

〉
L =⎡

⎢⎢⎣
0.18 0.15 0.10

0.03 0.07 0.04

0.05 0.09 0.05

⎤
⎥⎥⎦

〈
dout

〉
M =⎡

⎢⎢⎣
0.67 1.20 1.07

0.03 0.24 0.10

0.05 0.42 0.18

⎤
⎥⎥⎦k = 2

CZ, DK, EE,
LV, SK, GR,
IE, BG

k = 3
ES, FR, IT, LT,
HU, PT, SI, FI,
SE, UK, RO

Average
strength per

link

k = 1 k = 2 k = 3 Average strength per
k-market

k = 1 k = 2 k = 3

Within group 0.18 0.07 0.05 Within group 0.67 0.24 0.18

Out-strength 0.15 0.03 0.08 Out-strength 2.27 0.13 0.47

In-strength 0.04 0.13 0.09 In-strength 0.16 1.33 0.56
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〈
doutkl

〉
M =

∑
i∈Vk ; j∈Vl

GC Ii→ j
/ |Vk | (14)

Ekl denotes the set of links directed from k to l, Vk the set of k-group markets,
1{k=l}(k, l) an indicator function assuming value 1 if k = l and 0 otherwise. Dout

kl
quantifies the degree of “outward-directed” connectivity from market group k to
l; values closer to 1 indicate a high degree of causal flows from k to l. <doutkl >L

and <doutkl >M are complementary strength measures of the average influence market
groups exert to each other, normalized by group sizes. The diagonal elements of the
matrices correspond to within group connectivity and average interaction strengths.
The lower part of Table 3 provides for each market group the average strengths (both
per link and per k-market) of outward-directed (out-strength) and inward-directed
(in-strength) causal price linkages; Group 1markets are the most strongly connected,
both with each other (Dout

11 = 0.95) and with other groups (Dout
12 = 0.80, Dout

13 = 0.82).
They interact strongly with each other (<dout11 >L = 0.18, <dout11 >M = 0.67), exert the
highest average influence on other groups (average out-strength per link is 0.15 and
per 1-market is 2.27) and are not significantly

influenced by other groups (average in-strength per link is 0.04 and per k-market
is 0.16). Prices in group 2 markets are driven by 1-markets (<dout12 >L = 0.15, <dout12 >M

= 1.20), and to a lesser degree by 3-markets (<dout32 >L = 0.09, <dout32 >M = 0.42). 2-
markets have on average the least causal influence on other groups. Group 3 market
prices are strongly influenced by 1-markets and influence 2-markets. On average,
inwards and outwards directed price interactions for 3-markets tend to balance out
as their average magnitudes are 0.08 (0.47) and 0.09 (0.56) per link (per market),
respectively.

It is also worth noting the evolution of interaction strengths in somemarkets; Over
the observation period, Belgium and Ireland appear to have lost power (negative
out- and positive in-strength trends), while Denmark and Spain show an increasing
exposure to external price shocks (both have dominant-negative out-strength trends).
On the other hand, the power of Germany and Poland has increased over time (the
latter experienced a strong positive out-strength trend with a sizeable negative in-
strength trend).

Themarketswith themost central role in the networkof price causalityflows, those
with the highest closeness centrality, include markets with high values of interaction
strengths and appear to be spatially located in central Europe and to be contiguous;
Netherlands, Germany, Belgium, Austria, Poland, Hungary, France, Slovenia, but
also Lithuania (average values from 0.7 to 0.87). Markets spatially located to the
periphery of Europe have smaller closeness centralities (below 0.60, e.g., Finland,
Estonia, UK, Bulgaria, Italy, Ireland, Greece, and Sweden). Linear time trends in
centrality appear mixed in sign and small in magnitude.
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4.2 Measures of Global Network Cohesiveness and Their
Evolution

Summaries about the estimated distributions of network cohesiveness measures over
all 5-years rolling windows are given in Table 4. Again, as a rough indicator for their
temporal evolution, we estimated a linear trend and the corresponding R2. All trends
are significant (α = 0.05, HACcorrected). HACconsistent generalizedM-fluctuation
tests (e.g., see [29]) detected the presence of breaks in all four series. The time series
of the rolling windows estimates are plotted in Fig. 2. The estimated break points are
shown with dashed lines.

The estimated values of the cohesiveness measures and their temporal evolution
indicate that the total market inter-connectedness increases over time as the density
(proportion of connected market pairs over the total) increases from around 0.40 to
a plateau near 0.51. At the same time, the interaction strengths between markets also
increase on average, by about 40 % from 1.79 to 2.61. The average shortest path
length, as might be expected, exhibits reversed time trends relative to the density
and average strength, and its value shows an overall decrease (from about 1.68 to a
plateau around 1.55), consistent with a shortening of the distance between markets
and a more efficient, faster system-wise spread of price shocks. Reciprocity, the
proportion of price links that are mutual (two-way causal), is fluctuating initially
(mid-2009 to mid-2013) from 0.20 to 0.30, with a local average of about 0.25, and
then increases rapidly to reach 0.39 at its maximum. Overall, the evidence points
toward higher levels of market integration.

The number of identified breaks is five for average strength and four for the other
measures. The first break occurs almost simultaneously for all measures in June/July
2010. It coincides with the leveling of a rapid increase phase for network density,
average strength, and reciprocity that occurs together with a rapid decline of average
shortest path length.The second, third, and fourth breaks for density, average strength,
and average shortest path length occur very close to one another around the start of
2012, 2013, and 2014, respectively. The third break for reciprocity occurs also around
the start of 2014, and the last one in the beginning of 2015, shortly before the last

Table 4 Measures of network cohesiveness

Statistics Density Average strength Average shortest path length Reciprocity

Min 0.40 1.79 1.50 0.20

Mean 0.47 2.28 1.59 0.28

Median 0.47 2.28 1.58 0.26

Max 0.51 2.61 1.72 0.39

Std. dev. 0.03 0.20 0.04 0.05

Skewness −0.69 −0.51 0.84 0.61

Trend 0.01 0.09 −0.01 0.02

R2 0.54 0.78 0.22 0.56
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Fig. 2 Temporal evolution of estimated network cohesiveness measures

estimated break for average strength. It seems that there is a considerable degree of
consistency in the appearance of breaks in the four network cohesiveness measures.
These empirical findings provide evidence that the integration process in the EU
pig meat market during the study period is rather a staged process, characterized
by regimes within which the network of price relationships has distinct structural
characteristics.

5 Conclusion

We present a part of an on-going research project on the study of price linkages
between spatially separated primary commodity markets in Europe. Our analysis
focuses on some structural aspects of temporally evolving complex networks of
causal relationships in wholesale pig meat prices. The networks are constructed with
the use of GAM-based non-linear models for testing and quantifying the strength and
directionality of causal price relationships in the Granger sense. Simulation results
indicate that the GAM-test has clearly better finite sample properties than the linear
OLS test and the most widely used non-linear non-causality tests of Hiemstra-Jones
and Diks-Panchenko.

The application of network analysis methods provides insights about key char-
acteristics of the complex system of price interactions in the common EU market;
Measures of individual connectedness are used to identify groups of markets with
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high powerwhich have been leading the price transmission process during the studied
period. Temporal analysis of these measures also offers insights on the changing role
of individual markets in the price transmission process. The data provide evidence
not only for a large degree of heterogeneity in market power between countries,
but also for the existence of market segregation into high and low power groups
(clubs) that are strongly connected to each other. The presence of such groups is an
inefficiency of the market system in the European Union.

The analysis of system-level measures of cohesiveness sheds some light into the
aggregate market integration process; Results are suggestive of temporal increase
in (a) system inter-connectedness, (b) overall strength of price interactions, and (c)
prevalence of bi-directional price relationships. Also, the length of price transmission
paths connecting markets together had been decreasing over time. However slow
these changes may be, they all point to an increasing degree of market integration in
the EU pigmeat market. The presence and timings of breaks in the structural network
connectivity measures are indicative of a staged integration process that deserves to
be studied further in order to identify possible driving market mechanisms.
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Comparative Study of Models
for Forecasting Nigerian Stock Exchange
Market Capitalization

Isah Nura, Sani I. S. Doguwa, and Yusuf Basiru

Abstract This paper proposes two forecasting models for the Nigerian Stock
Exchange Market Capitalization using the Autoregressive Integrated Moving
Average (ARIMA) process and an Autoregressive Distributed Lag (ARDL) process.
A better model was selected by comparing the forecast evaluation for the estimated
models using pseudo out-of-sample forecasting procedure over 2016q2 to 2019q1.
The statistical loss functions MAEt,RMSEt and MAPEt for the t forecast horizon
(t = 1, 2, …, 12) are used to compare the forecast performance of the two estimated
models. The results show that ARIMA model outperforms ARDL model in three to
four quarters forecast horizon. On the other hand, ARDLmodel outperformsARIMA
in one to two quarters, five to seven quarters aswell as nine to twelve quarters forecast
horizon. Therefore, in forecasting Nigerian Stock Exchange Market Capitalization
in both short and long horizons, it can be concluded that ARDL is better model to
be used.

Keywords Nigerian stock exchange market capitalization · ARIMA · ARDL ·
Statistical loss functions

1 Introduction

Time series modeling is a dynamic research area which has attracted attention of
researcher’s community over the last few decades. Time series forecasting thus can
be termed as the act of predicting the future by understanding the past. It is applicable
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to the fields such as business, economic, finance, sciences, engineering, and so on.
It is obvious that a successful time series forecasting depends on an appropriate
model fitting. A lot of efforts have been made by researchers over the years for
the development of efficient models to improve the forecasting accuracy. As a result,
various important time series forecastingmodels have evolved in the literature. Some
of the most popular and frequently used stochastic time series models are ARIMA,
Vector Autoregressive (VAR) models, and ARDL.

Kapil and Hanuman [7] define “Market Capitalization” of a company as a current
market price per stock multiplied by the number of outstanding shares. Market Capi-
talization is the universal benchmark for quantifying the value of a givingfirm.Capital
structure is an essential part of economic growth and development, and it plays a
significant role in the economic premise of manufacturing and distribution. This
implies that capital growth may facilitate faster rate of economic development. The
growth of any stockmarket is measured by its total market capitalization. An Investor
invests in financial securities for competitive and satisfactory returns. Before making
any investment decision the generally considers the ex-post and ex-ante returns of
the securities. This is because the investment in financial assets is always associated
with different types of risks which are associated with different factors. The objective
of this paper is to construct models of the Nigerian Stock Exchange Market Capi-
talization (NSEC) using the ARIMA process and ARDL process and evaluate the
pseudo out-of-sample forecast performance of these models using some statistical
loss functions to choose the bestmodel for forecastingNSEC.The contribution of this
paper are (a) construction/section of the best model for forecasting NSEC between
ARIMA and ARDL (b) analyzing the NSEC involves four important variables real
GDP (RGDP), official exchange rate (Naira to Dollar), Money Supply and Liquidity
ratio (c) analyzing the prediction accuracy based on pseudo out-of-sample forecast
technique on MAE, RMSE, and MAPE methods.

This paper is sectioned as follows: the introduction and overview of the study are
presented in the first section, Sect. 2 provides the related works (literature review)
that highlights empirical studies of forecast performance. Section 3 presents the
methodology and material used in the study, while empirical results, model fitting,
and performance evaluation of NSC are presented in Sect. 4, and finally, Sect. 5
concludes on the findings.

2 Literature Review

From the empirical studies, a number of studies have applied different methodolo-
gies to assess the forecast performance of different statistical modes among others:
Jansen and Wang [6] investigate the forecasting performance of the error correction
model using co-integration test and non-linear error correction model using equity
yield on the 500 indices; the result shows that non-linear vector error correction
model outperforms its linear version, based on ten years forecast horizon. Adebiyi
et al. [1] examine the different types of inflation forecasting models using ARIMA,
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VAR, and Vector Error Correction Models (VECM). The empirical results show that
ARIMAmodelsmodestly explain inflation dynamics inNigeria. Iqbal andUddin [10]
compare the forecast performance of ARIMA, VAR, and VEC model, using some
macroeconomic variables of USA, UK, and the G-7 Countries. The results in short-
term forecast performance show that ARIMA and VAR models are superior, while
in long term forecast, ECM outperformed other techniques. For the co-integration
technique, ARDL is superior in forecasting performance. Taiwo and Olatayo [9]
investigate the relationship between someNigerian economic variables (Government
Revenue and Expenditure, Inflation Rates, and Investment) and examine the fore-
cast performance of VAR model and Time series regression model. The model and
forecast performance is measured using Root Mean Square Forecast Error (RMSFE)
and Mean Absolute Percentage Forecast Error (MAPFE). The result indicates that
VAR model is better than time series regression model. Prapanna et al. [11] studied
the effectiveness of autoregressive integrated moving average (ARIMA) model in
forecasting stock prices of fifty-six Indian stocks; the research concluded to have
found ARIMA 85% accurate for the prediction of all the stocks for sectors taken
at a time. The research, however, uncovered that for specific sector independently,
ARIMA model for fast-moving consumer goods (FMCG) outperform other sectors
while that of banking and automobile sector had a lower prediction accuracy to other
sectors. The forecast values from theVARmodel are more realistic and closely reflect
the current economic reality in Nigeria. Doguwa and Alade [4], employed the three
short-term forecasting models for the adjusted external reserves using the seasonal
autoregressive integrated moving average (SARIMA), seasonal autoregressive inte-
grated moving average with an exogenous input (SARIMA-X), and an autoregres-
sive distributed lag (ARDL) processes, using the pseudo out-of-sample forecasting
procedure.

3 Methodology/Material

In this research two different statistical models are considered, namely ARIMA
model and ARDL. Both ARIMA and ARDL models are estimated with data on
Nigerian Stock Market Capitalization (NSEC), and other exogenous variables such
as Real Gross Domestic Product (RGDP), official Exchange Rate of Naira to Dollar
(EXR), Money Supply (MS), and liquidity Ratio (LR) in the case of ARDL model.
The sample for the estimation and forecast evaluation spans the period from 1985q1
to 2019q1 and is divided into two parts. The first part is the training sample from
1985q1 to 2016q1 and the second part is the forecasting sample from 2016q2 to
2019q1 for forecast evaluation.
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3.1 ARIMA Process

One of the methods of analysis adopted in this study is the Box-Jenkins (ARIMA)
which is an econometric model used to forecast without considering other indepen-
dent variables in making forecast.

An ARIMA (p, d, q) can be defined as follows:

∅(L)(1 − L)d yt = θ(L)et (1)

where L is the standard backward shift operator, function ∅, and θ are the standard
autoregressive (AR) and moving average (MA) polynomial of order p and q.

∅(L) = 1 − ∅1L − ∅2L
2 − . . . − φpL

p

θ(L) = 1 + θ1L + θ2L
2 + . . . + θqL

q.

And d is the degree of differencing. d = 1 => the time series differencing once,
d = 2 => the time series difference twice.

Also, as an illustration, the ARIMA (1, 1, 0) is of the form:

(1 − ∅1L)�yt = et (2)

And the ARIMA (1, 1, 1) model is of the form:

(1 − ∅1L)�yt = (1 + θ1L)et (3)

Since d = 1

(1 − L)yt = yt − yt−1 = �yt

Using the properties of operator L, it follows that (3) are be expressed as follows:

�yt = ∅1�yt−1 + θ1et−1 + et (4)

where � is the difference operator. Also, d is order of integration and et is a Gausian
white noise with zero mean and constant variance. The details of ARIMA modeling
procedure are contained in Box and Jenkins [2]. For the NSEC series under study,
the estimates of the parameters which meet the stationarity conditions are obtained
using the Eviews software.
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3.2 The ARDL Process

Pesaran et al. [8] proposed Autoregressive Distributed Lag (ARDL) approach to
identify whether a long-run relationship exist, irrespective of whether the variables
are I(0), I(1) or a combination of both. In such situation, the application of ARDL
technique to co-integrationwill provide realistic and efficient estimates. Using bound
test approach, the ARDL (p, q1, q2, q3, q4) representation of the statistical model of
LNSEC is specified as

d(LNSECt) = β1 + β2
(
LRGDPt−1

) + β3
(
EXRt−1

) + β4
(
LRt−1

) + β5(LMS)t−1

+
∑p

i=1
γ1i�LNSECt−j +

∑q1−1

j=0
γ2j�RGDPt−j +

∑q2−1

j=0
γ3j�EXRt−j

+
∑q3−1

j=1
γ4j�LRt−j +

∑q4−1

j=1
γ5j�LMSt−j + γECt−1 + et (5)

where β1 is a constant, β2, β3 . . . β7 . . . are the long-run parameters of the model, and
γ1j, γ2j . . . γ7j are the short-run co-efficients. The error term is expected to be white
noise. The letters p, q1, q2, . . . q4 are the optimum lag lengths that define the ARDL
(p, q1, q2, . . . q4) model. The ARDL bound test for no co-integration among the
variables against the presence of co-integration involves testing the null hypotheses
of the absence of co-integration:

Ho : β2 = β3 = . . . = β5 = 0VSH1 : β2 �= β3 �= . . . �= β5 �= 0

The hypothesis is tested by using F-statistic (Wald test). The distribution of this
F-statistics is non-standard, irrespective of whether the variables in the system are
I(0) or I(1) or both. If the computed F-statistic falls outside the bound, a conclusive
decision can bemade, without the need to knowwhether the variables are I(0) or I(1).
That is, when the computed F-statistic is greater than the upper critical value, the
H0 is rejected (the variables are co-integrated). If the F-statistic is below the lower
critical value, then H0 cannot be rejected (i.e., there is no co-integration between the
variables).

The long-run model is represented as

(LNSECt) = β1 + β2(LGDPt−1) + β3(EXRt−1) + β4(LRt−1) + β5(LMS)t−1 + et
(6)

Once the presence of co-integration exists, an appropriate distributed lag error
correction model of equation is specified as follows:

d(LNSECt) =
∑p

i=1
γ1i�LNSECt−j +

∑q1−1

j=0
γ2j�RGDPt−j +

∑q2−1

j=0
γ3j�EXRt−j

+
∑q3−1

j=1
γ4j�LRt−j +

∑q4−1

j=1
γ5j�LMSt−j + γECt−1 + et (7)
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where� the first is difference operator andγ1j, γ2j . . . γ7j are the short-run co-efficient
of the dynamic model, and γECt−1 measures the speed of adjustment.

3.3 Test of Adequacy of Fitted Model

To test the adequacy of any selected model, residual analysis is employed. Jacque-
Bera normality test, Breusch-Godfrey serial correlation LM test (BG LM F-
statistic), and autoregressive conditional heteroskedasticity (ARCH LM) test would
be adopted.

To test the normality of the residual, Jarque-Bera normality test procedure is
applied; which sets the null hypothesis that the residuals are normally distributed.
The null hypothesis would be rejected if the p-value is less than the significant level
and can be concluded that the residuals are not normally distributed.

Evidence of serial correlation is past investigated on the residuals before using the
parsimonious model for statistical inference. The Breusch-Godfrey serial correlation
LM test (BG LMF-statistic) is used to test the null hypothesis of no serial correlation
in the residuals up to a specific order.

Autoregressive conditional heteroskedasticity effects in the residuals are inves-
tigated. ARCH LM test is employed and tests the null hypothesis that there is no
autoregressive conditional heteroskedasticity effect in the residuals. Accepting the
null hypothesis will indicate that there is no ARCH effect in the residuals.

3.4 Performance Evaluation

The precision of the various forecasts model will be determined by selecting themost
appropriate model by the use of some measures of performance, Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE), defined as

MAE = 1

h

∑h

t=1

∣∣x̂t − xt
∣∣ (8)

RMSE =
√
1

h

∑h

t=1
(X̂t − Xt)2 (9)

MAPE = 1

h

∑h

t=1

∣∣∣∣∣
100
∧

(Xt − Xt)

X̂t

∣∣∣∣∣
(10)

where X̂t is the predicted value at time t andXt is the actual value at time t, respectively.
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The smaller the value of RMSE, MAE, and MAPE, the better is the forecasting
performance of the model.

4 Results

4.1 Exploratory Data Analysis

The quarterly trend for the actual data of NSEC at end period was illustrated in Fig. 1,
the line graph indicates that there is no stationarity in the time series data.

The line graph for LOG(NSEC) indicates that the nature of the trends was
improved after taking the log transformation of the variable compare to Fig. 2.

4.2 Unit Roots Test

A stationary series must be obtained before it can be used to specify and estimate a
model. The unit roots test will help us to determine the stationary of a series. The
Augmented Dickey–Fuller test was used to test the stationary of the Log(NSEC),
RGDP, EXR, Log(MS), and LR series. The unit root test results are presented in
Table 1. The results indicate that Log(NSEC), EXR, and log(LMS) are non-stationary
at level but stationary after taking afirst difference,whileRGDPandLRare stationary
at level. The decision rule states that if p-value is greater than the significant level
leading to non-rejection of the null hypothesis, otherwise rejects the null hypothesis,
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Fig. 1 Line graph for NSEC
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Fig. 2 Line graph for LOG(NSEC)

Table 1 Augmented Dickey–Fuller unit root test

Variables At level At first differencing Order of integration

ADF p-value ADF p-value

Log(NSEC) −1.8935 0.3346 −9.0786 0.0000*** 1(1)

RGDP −2.9342 0.0442** −7.8845 0.0000*** I(0)

EXR −0.9404 0.6894 −11.5909 0.0012*** I(1)

LR −11.5903 0.0000*** −7.8532 0.0000*** I(0)

Log(MS) −0.9012 0.7853 −8.5173 0.0000*** I(1)

Note ***and ** indicate the variables are significant at 1% and 5% significant level, at automatic
maximum lags of 12

hence all the three variables are integrated at order one 1(1) and remaining two
variables are stationary at I(0).

4.3 The ARIMA Process Result

Firstly, by plotting the correlogram of the stationary Log(NSEC), that is
�Log(NSEC), the patterns of the ACF and PACF could be observed, and the value
of parameter p and q for ARIMAmodel would be determined. From Fig. 3, the graph
indicates that the ACF(MA) and PACF(AR) all died out after lag 1. Thus, the p and
q values for the ARIMA (p, 1, q) model were set at 2, respectively. From different
possible ARIMA combinations, the Akaike Information Criterion (AIC) is used to
select the most desirable ARIMA model for � Log(NSEC).
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Fig. 3 ACF and PACF plot of dlog(NSEC)

The results from Table 2 show that ARIMA (1, 1, 0) is preferred to other models
since it has the lowest values of AIC.

After identifying the ARIMA model, the next step was to estimate the parameter
co-efficients. The parameter estimation of the model was conducted using classical
least square method.

Table 3 shows the estimated result. OfARIMA (1, 1, 0), the results indicate that the
co-efficients of AR (1) were significant at 5% levels. Again, based on parsimonious
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Table 2 Postulated model
and performance evaluation

Model AIC Adj. R2 No. of sig. terms

1, 1, 1 −1.2978 0.0539 2 terms are significant

1, 1, 0 −1.2992 0.0611 All 2 terms are significant

0, 1, 1 −1.2931 0.0402 All 2 term are significant

2, 1, 1 −1.2766 0.0542 Only 1 term is significant

1, 1, 2 −1.2886 0.0581 Only 1 term is significant

0, 1, 2 −1.2961 0.0594 2 terms are significant

2, 1, 2 −1.2913 0.0753 3 terms are significant

Table 3 Estimation of
parameter of ARIMA (1, 1, 0)

Dependent variable: D(LNSEC)

Estimated models

Parameters Co-efficients Stand error Prob.

C 0.059535 0.017020 0.0007

Ø1 0.247911 0.049846 0.0000

Adjusted R-squared 0.0611

AIC −1.2992

Jarque-Bera normality test 2.4737 0.2903

ARCH LM test

LM test 1.1911 0.3075

ARIMA (1, 1, 0) was selected for forecasting NSEC. From the t-statistics for the
co-efficient variables AR (1) in Table 3, the null hypothesis said that the co-efficients
are equal to zero is rejected. Thus, the model equation was presented as

�(LNSECt) = 0.059535 + 0.247911�(LNSECt−1) (11)

To verify the suitability of the model, we plot the histogram and the ACF and
PACF of the residuals. From the graph, it indicates that there is no spike at any lag
indicating that all the residual autocorrelations are not significantly different from
zero, at various lags points.Moreover, the test normality using Jarque-Bera shows that
the NSEC is normally distributed at 10% significant level with Jaque-Bera statistics
of 2.4737 an asymptotic probability of 0.2903.

4.4 The ARDL Model Result

The unit root test conducted on the variables suggests the use of the ARDL approach
to estimate the parameters of themodel. Using quarterly data from1985q1 to 2013q3,
the estimatedorder of anARDL(p,q1,q2,q3,q4)model in the sevenvariables (LNSEC,
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Table 4 Estimated of
long-run co-efficient

Long-run co-efficient

Variables Co-efficient Std. error P-value

RGDP −0.005115 0.020114 0.7997

EXR 0.009927 0.005330 0.0653

LR −0.009100 0.008666 0.2960

LOG(MS) 0.880536 0.152576 0.0000

C 0.608767 0.753805 0.4211

Table 5 Estimated error
correction model

Dependent variable: D(LNSEC)

Estimated model ARDL 40203

Variables Co-efficients Stand error Prob.

DLOG(NSEC(-1)) 0.1262 0.0908 0.1626

DLOG(NSEC(-2)) 0.1795 0.0883 0.0453

DLOG(NSEC(-3)) 0.2078 0.0928 0.0255

D(RGDP) −0.0017 0.0033 0.8014

D(EXR) −0.0056 0.0028 0.0002

D(EXR(-1)) −0.004 0.0021 0.0198

D(LR) −0.0023 0.0013 0.2645

DLOG(MS) 0.3991 0.2515 0.1158

DLOG(MS(-1)) −0.0541 0.358 0.8814

DLOG(MS(-2)) 0.3944 0.252 0.1203

CointEq(-1) −0.1524 0.0407 0.0003

Adjusted R-squared 0.3325

AIC −1.426

F-statistics 3.9525

LRGDP, INF, LEXR,MLRC,LR, andLMS)were selected using automatic searching
across the 62,500 ARDL models, this result in the choice of ARDL (4, 0, 2, 0, 3)
specification for D(LNSEC) with estimates of the levels relationships given by

(LNSECt) = −7.83 + 2.4(RGDP) + 0.52(EXR) − 0.04(MLRC)

(2.352) (3.261) (−2.299) (12)

From Table 4, indicates that, EXR and Log(MS) have a significant impact to
NSEC, and RGDP and LR are insignificant to NSEC. In other words, EXR is posi-
tively related to NSEC. Any 1-unit increase of EXR will induce 0.009927 unit of
NSEC. Moreover, MS is positively related to NSEC, where by 1-unit increase in MS
will induce 0.880536 unit of the NSEC.

Table 5, the result of bound test indicates that the value of F-statistics is 3.952451
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Table 6 Breusch-Godfrey
serial correlation LM test

F-statistic 0.023584 Prob. F(2, 89) 0.9767

Obs * R-squared 0.058797 Prob. Chi-square(2) 0.971

which is greater than upper critical value of 3.52 at 5% significant level, the H0 is
rejected (the variables are co-integrated).

According to Engle and Granger [5], when variables are co-integrated there must
be an Error CorrectionMode (ECM)whichwill describe the short-run relationship of
co-integrated variables toward their equilibrium values. The result of the ECM was
presented in Table 5, the one lagged of error term is negative and highly significant
at 1% significant level, the co-efficient of −0.151984 indicates that about 15.20%
disequilibrium is corrected on quarterly bases by change in NSEC.

The short-run equation (VECM) for ARDL model is represented as

�(LNSECt) =
∑3

i=1
γ1i�LNSECt−j +

∑1

j=0
γ2j�RGDPt−j +

∑1

j=0
γ3j�ELXRt−j

+
∑0

j=0
γ4j�LRt−j +

∑0

j=0
γ5j�LMSt−j − 0.15198ECt−1 (13)

Serial Correlation Test

Result in Table 6 indicates that there is no presence of serial correlation in ARDL
Error Correction Mode (ECM) using Breusch-Godfrey test.

4.5 Performance Evaluations of the Fitted Models

A pseudo out-of-sample forecast technique is used to evaluate the forecasting perfor-
mance of a proposed model. The paper uses the training sample to estimate the
parameters of the forecasting models and as a first step in our forecasting practice
obtains one to 12 a head forecasts horizon starting from 2013q4 up to 2016q3 from
these models. The actual data for 2013q3 is added to the training sample after which
the parameters of the models are re-estimated.

Using the re-estimated models, we forecast the values from 2013q4 up to 2016q3.
We then stored these forecasts by putting the first forecast (2013q4) as the second
entry in the series 1 step ahead, the second forecast (2014q1) as the second entry in
the series 2 steps ahead, and so on to the 12th forecast (2016q3) as the second entry
in the series 12 steps ahead. We then test the quality of the obtained forecasts using
three classical statistical loss functions:MeanAbsolute Error (MAE),MeanAbsolute
Percent Error (MAPE), and Root Mean Squared Error (RMSE). The statistical loss
functionsMAEt andRMSEt andMAPEt for the t forecast horizon (t= 1, 2…, 12) are
used to compare the forecast performances of the estimated short-term forecasting
models. We computed MAE, RMSE, and MAPE defined in Eqs. (8), (9), and (10)
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Table 7 Forecast evaluation for ARIMA and ARDL model

Forecast horizon RMSE MAE MAPE

ARIMA ARDL ARIMA ARDL ARIMA ARDL

1 0.0319 0.0270 0.0271 0.0194 0.2587 0.1855

2 0.0418 0.0339 0.0370 0.0315 0.3518 0.2992

3 0.0362 0.0416 0.0280 0.0358 0.2666 0.3398

4 0.0383 0.0461 0.0316 0.0408 0.2993 0.3864

5 0.0915 0.0627 0.0632 0.0530 0.6040 0.5031

6 0.1058 0.0728 0.0759 0.0620 0.7259 0.5919

7 0.1063 0.0848 0.0801 0.0722 0.7664 0.6890

8 0.1198 0.1555 0.0931 0.1346 0.8928 1.2883

9 0.1167 0.0826 0.0923 0.0724 0.8853 0.6930

10 0.1246 0.0935 0.1007 0.0809 0.9717 0.7794

11 0.1220 0.0921 0.997 0.0805 0.9626 0.7764

12 0.1184 0.0885 0.0966 0.0747 0.9324 0.7200

for NSEC by choosing models (11) and (13). The results of the computations are
presented in Table 7.

Table 7 indicates that ARDL model would be better and outperform ARIMA
model in forecasting one to two quarters, five to seven quarters, and nine to twelve
quarters for forecasting NSEC and ARIMA models should be better in forecasting
three to four quarters for NSEC.

5 Conclusion

This paper proposes two-time seriesmodels forNSECdata usingARDLandARIMA
models and evaluates the pseudo out-of-sample forecast performance of the models
using three statistical loss functions: mean absolute error and root mean squared
error. The result indicates that ARDL has the least forecast error in one to two,
five to seven, and nine to twelve quarters for forecasting NSEC and ARIMA model
have the least forecast error only in three to four and five to six-quarters forecast
horizons. In conclusion, this suggests that, choosing ARDL would be better and
could outperform ARIMA model in forecasting one to two quarters, five to seven
quarters, and nine to twelve quarters for forecastingNSEC andARIMAmodel would
be better in forecasting three to four quarters for forecasting NSEC, hence ARDL
model is the best model in short and long term forecasting of NSEC.
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Industry Specifics of Models Predicting
Financial Distress

Dagmar Camska

Abstract This paper focuses on scoringmethods predicting corporate default. There
exist many tools for the estimation of future distress or bankruptcy. Traditional
research usually analyzes the accuracy of the methods and recommends which tools
should be used. Although this paper examines existing scoring models, the research
idea is different. The aim of the paper is to examine whether belonging to an industry
branch influences the results of the models. The models are mainly used gener-
ally, without respect to the industry branches. However, companies belonging to
different industries can reach different performance. Scoring approaches are based
on performance expressed by financial ratios such as profitability, activity, liquidity,
and leverage. Therefore, it could be assumed that the final values of themodels would
be affected. The paper focuses on three industry branches—construction, manufac-
ture of fabricated metal products, and manufacture of machinery. The research idea
is tested on four data subsamples consisting of healthy and insolvent companies and
describing different time periods. The final values of the models for the individual
companies are summed up by descriptive statistics. The gained results show that in
specific economic circumstances there are significant differences for the different
industries.

Keywords Corporate financial health · Possibilities of prediction · Czech Republic

1 Introduction

Scoring methods predicting corporate default have become a serious research area
as well as a topic for practitioners since the 1960s. Altman [2] and Beaver [5] can be
identified as pioneers in this area. The users of these prediction models appreciate
ate quickness, low cost, transparency, and interpretability when they analyze the
financial situation of one particular company. The users’ aim is to mitigate business
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risk and avoid making business with potentially defaulted entity. The users’ positions
in a business transaction can differ. They can be suppliers, customers, governmental
bodies, or financial institutions. It does not matter in which position they are because
potential default of their business partner can affect their own activities. Rational
persons forecast possible future development and the models predicting corporate
financial distress or default enable these forecasts.

In the research area of the predictionmodels there have been solved several issues.
First of all, the primary researches have constructed these prediction tools which
should be able to separate healthy and unhealthy business entities. The secondary
researches focus on the explanatory power of already existingmodels. They conclude
if the previous models are still sufficient or if there is a need of new tools providing
higher explanatory power for current conditions. The primary contributions will
be discussed in the section dedicated to literature review. There can be mentioned
following examples [8, 18, 20, 25] or [31] of secondary papers focusing on explana-
tory power testing in the Czech Republic. The secondary research works do not
include only accuracy testing but also discussions of economic conditions influence
as [4, 21] or [24]. The question which could seem underdeveloped is an industry
sector influence.

Themodels predicting financial distress are used in general. On one hand, it is their
general advantage, on the other hand, it serves as their limitation too. It seems that
enterprises belonging to different industries do not achieve comparable performance.
Examples can be found in relevant literature. According Vlachý [33] industry sector
affects value and structure of working capital and therefore corporate liquidity. It
was proved by [13] or [29] that corporate leverage is determined by the industry
branch. Financial forecasting performance depends on the belonging to the industry
sector [12] or [23]. Industry performance is an important determinant of a company’s
profitability [15]. These findings lead to a statement financial ratios influenced by
industry specifics entering the prediction models can cause significant differences in
the final values. This research work highlights the importance of the industry sector
belonging. The carried out analysis will prove or disprove if industry specifics should
be respected in the case of the models predicting financial distress usage.

2 Literature Review in the Area of the Prediction Models

Ever since 1960s, numerous tools focusing on corporate financial situation fore-
casting have been created. Although some of them still maintain high explanatory
power, many lack sufficient accuracy necessary for making important decisions. This
explains why already existing prediction models are often so reexamine. As a rule,
researchers subject one or several prediction tools to examination. However, the
studies showing a broader perspective are exceptional. The exception providing the
rule is Čámská [7, 8], who examined almost 4 dozens of the bankruptcy models, or
precedent study of this article [9]. Conclusions of [7, 8] prove that although some of
the tools maintain high accuracy, some others show a high error rate.
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The prediction models used for this analysis have high explanatory power exploit
Czech data. It seems, from what was discussed previously [25, 31], that the Czech
predictionmodels aremost appropriate for the Czech corporate financial data. Never-
theless the conclusions of [8] or [7] do not correspond with just mentioned statement.
The prediction models have high accuracy relevant to the Czech data and it does
not matter if they are originally Czech or they come from post-transitive European
economies as well as from developed economies. The same applies the tools which
have already lost their accuracy. The analysis is based on the models maintaining
high explanatory power, with no regard where they were built.

Since the Czech data is analyzed, the emphasis is placed on Czech approaches as
IN01 [28], IN05 [27] and Balance Analysis System by Rudolf Doucha [11]. Prede-
cessors of these models are mainly considered to be Altman Z-Score [3], Bonita
Index (in the German original Bonitätsanalyse) [34], Kralicek [22] or Taffler [1].
Their approaches were created in the developed economies facing different histor-
ical, political, and economic circumstances. They were transmitted into the Czech
environment during the transition period and, surprisingly, they still maintain their
popularity and accuracy [8]. The results of Kralicek [22] and Taffler [1] will not be
displayed graphically, the reasons will be provided later.

Different historical, political, and economic conditions of the Czech Republic
from those of the developed economies support testing of models created in previous
transition and current post-transition economies. Therefore the prediction models
designed in Poland, Hungary, Lithuania, and Latvia will also be used for the purpose
of this study analysis. The models include Prusak, PAN-E, PAN-F, PAN-G, D2, D3
(all previously discussed in [19]) originated in Poland, Hungarian tool was designed
by Hajdu and Virág [14], and Baltic prediction tools are attributed to Šorins and
Voronova [16], Merkevicius [26], and R model [10]. Models’ formulas can be found
in relevant literature. This paper, according to cited references, is based on original
models’ versions.

3 Research Idea and Data

This chapter is mainly focused on the paper’s idea explanation and used data descrip-
tion. The first subpart introduces the solved research issue and explains methods
applied. The second part describes the data sample, its source, extraction, and size.

3.1 Paper’s Idea and Used Methods

The idea of the research is based on the general usage of the prediction models.
The models predicting financial distress usually do not reflect any specifics, such
as belonging to the industry branch, companies’ size, ownership structure and other
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factors. The enterprise belonging to the various industry sectors may perform differ-
ently. The achieved performance influences items included in financial statements
and therefore values of financial indicators may be affected. The financial indicators
can be represented by financial ratios describing profitability, liquidity, activity, or
leverage. It stays an unsolved question if this influence is significant or not. Tradeoffs
between the indicators can be observed. The value of the first ratio is worse, contrary,
the value of the second ratio is better. At the end the final values are similar without
a respect to industry branch.

The prediction models introduced in the preceding chapter will be applied to
financial data. The results for individual business entities are summed up by main
descriptive statistics, such as mean, median, quartiles etc. The comparison of these
statistical characteristics for different industries will be conducted. This comparison
can prove or disprove significant differences of the final scores of the bankruptcy
formulas. It could lead to serious consequences that prediction models’ users should
be aware of industry specifics and the models predicting financial distress should not
be used in general.

3.2 Data Sample

The data sample has to consist of different industry sectors, otherwise it is impossible
to verify differences amongparticular industry branches.Being the largest production
sectors in the CzechRepublic, three industries create a backbone of this research. The
analysis is based on the following sectors: Construction (CZ-NACE F), Manufacture
of fabricated metal products, except machinery and equipment (CZ-NACE 25), and
Manufacture of machinery and equipment (CZ-NACE 28). These branches were
also focused on in the papers [7–9]. The advantage of these sectors is the largest data
samples in respect of the healthy as well as the insolvent enterprises. The common
feature of all these industries is their aim to manufacture final tangible products. In
spite of the similarity in their aims, they can differ in terms of financial ratios’ values
mentioned in the introduction.

The sample contains data describing not only various industries but also different
kinds of entities and different time periods. The first two parts describe the insolvent
and healthy companies of the year 2012, as analyzed in previous papers [7] or [8].
The insolvent companies declared their insolvency according to theCzech Insolvency
Act. The criterion used for the selection of the healthy entities was their performance
of positive economic value added (respecting [17]). The third and fourth parts of the
data sample are the largest in size. These subsamples are considered general, since
no restriction has been applied to them. Each subsample respects belonging to the
selected industry branches.

The third and fourth parts describe the latest data available for the years 2016
and 2017. The financial data have not been reported yet for the year 2019 and those
for the year 2018 are still not fully publicly available. Despite the obligatory rule
to report the financial statements, not all the Czech companies fulfill this duty or
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Table 1 Size of the analyzed sample

Industry branch Healthy 2012 Insolvent 2012 General 2016 General 2017

CZ-NACE 25 383 36 1,981 1,525

CZ-NACE 28 33 10 1,017 789

CZ-NACE F 229 38 4,499 3,564

publish their results on time [32]. This particularly concerns insolvent companies
which are not willing to publish their statements [6]. It should also be emphasized
that some managers do not consider accounting data to be relevant and transparent
[30] and therefore they tend not to report.

Table 1 demonstrates the size of each subsample in respect to the selected industry
sectors. The accounting data for the individual enterprises were extracted from
the prepaid corporate database Albertina. The issue relating to financial statement
reporting has been already explained. The comparison of the data samples for 2016
and 2017 proves that the companies do not publish on time. Some observations
(enterprises) were excluded from this research, since their financial statements were
incomplete or some values were zero; these shortcomings made the calculation of
financial ratios and the evaluation by the prediction models impossible.

It should, however be emphasized that the preceding and current data samples are
not compatible. The samples from 2016 and 2017 describe just general situation and
as such cannot be polarized as the preceding data from 2012. The oldest data show
the most ailing companies and on also companies with the strongest performance
resulting from their positive economic value added.

4 Results

Section 2 introduced selected models predicting financial distress for which final
values relating to each particular enterprise were calculated. The results of the indi-
vidualmodels can be presented by descriptive statistics. The example of this approach
is shown in Table 2 demonstrating the results for Altman Z-Score. Altman Z-Score
was selected due to its international coverage. The main descriptive statistics are
at disposal for each analyzed industry branch (CZ-NACE F, CZ-NACE 25, and
CZ-NACE 28) in each data subsample.

Table 2 demonstrates significant differences between final Altman Z-Score values
in different industry branches. The highest values were measured in the field of
Construction and the lowest values in the field of Manufacture of machinery and
equipment. The mean difference is 1.55 (also the median difference over 1.00). This
difference almost equals the range of the grey zone [3]. The evidence provided even
shows that many enterprises listed under the category of Construction (CZ-NACE F)
were, according to Altman Z-Score, classified in the grey zone according to Altman
Z-Score although their bankruptcy has already been declared. The results observed
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Table 2 Altman Z-Score and its descriptive statistics for insolvent companies 2012

Healthy companies 2012 Manufacture of
machinery and equipment

Manufacture of fabricated
metal products

Construction

Mean 0.15 1.17 1.70

Median 0.92 1.17 1.98

Minimum −8.63 −2.66 −8.79

Maximum 2.68 6.85 4.77

1st quartile 0.21 −0.003 1.15

3rd quartile 1.64 2.15 2.61

St. deviation 3.04 1.84 2.22

Trim mean 0.15 1.12 1.90

provide the evidence that placement within a particular industry plays a significant
role in the area of bankruptcy prediction.

Table 2 presents the results obtained for only one model and one of four subsam-
ples. The question suggesting itself is how to present the results obtained in a more
complex way. Here the idea of visualization seems to serve this purpose. Figures 1, 2,
3 and 4 display one of the data subsamples with the results in all tested models. The
models predicting financial distress are sorted by numbers as follows: 1—Altman,
2—IN01, 3—IN05, 4—Doucha, 5—Bonita, 6—Prusak 1, 7—Prusak 2, 8—PAN-E,
9—PAN-F, 10—PAN_G, 11—D2, 12—D3, 13—Hajdu and Virág, 14—Šorins and
Voronova, 15—Merkevicus, 16—Rmodel. The same approach is applied in paper
[9]. The Kralicek’s [22] and Taffler’s [1] results will not be displayed graphically.
The reasons are not the same for each model. Kralicek Quick Test is based on the
different metrics, since higher values mean worse situation. For the other models the

Fig. 1 Prediction models and their final values for insolvent companies 2012. Source [9]
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Fig. 2 Prediction models and their final values for healthy companies 2012. Source [9]

Fig. 3 Prediction models and their final values for general sample 2016

values desired are the highest because they present a strong performance. Taffler has
not been visualized because its final scores are twice as high as those for the other
models. Taffler’s inclusion would cause a figure distortion.

The results are visualized in 4 figures. Each of them displays final scores of the
tested predictionmodels for one subpart of the aforementioned described data sample
(healthy entities 2012, insolvent entities 2012, general entities of the years 2016 and
2017). Since it is necessary to summarize the results for all analysed companies
subjected to analysis, figure lines show trimmean for a particular group of businesses.
The advantage of the trim mean is the possibility of outliers’ separation. Dashed line
represents the industry sector Manufacture of machinery and equipment (CZ-NACE
28), dotted line shows the industry sector Construction (CZ-NACE F) and finally
solid one displays the results for Manufacture of fabricated metal products, except
machinery and equipment (CZ-NACE 25).
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Fig. 4 Prediction models and their final values for general sample 2017. Source [9]

Figure 1 provides evidence corresponding with Table 2. It confirms existence
of the differences among particular industries in the case of the insolvent enter-
prises. The construction industry (CZ-NACE F) reports the highest values, followed
by Manufacture of fabricated metal products, except machinery and equipment
(CZ-NACE 25) and the lowest values are reached in Manufacture of machinery and
equipment (CZ-NACE 28). It should be said that not all prediction approaches show
the same results because figure curves sometimes intersect. It has a consequence that
the final ranking could not be generalized.

Figure 2 displays the results for the healthy companies from the year 2012. Differ-
ences are again visible. The highest values are measured in the field of CZ-NACE 25,
than CZ-NACE F and the lowest valued are measured in the field of CZ-NACE 28.
All not verified models provide the same results because of the curves intersections
or curves closeness. Divergent conclusions arise from the indicators included in the
individual prediction models. The prediction tools are based on different financial
ratios and tradeoffs between their values cause difference in the final values of the
models predicting financial distress.

It should be noted that the year 2012 cannot be considered stable. In that time the
Czech economy still coped with the consequences of the last global economic crisis.
The third and fourth parts of the data sample consists of the financial statements
describing the stable time period of the years 2016 and 2017. The Czech economy
was stable and growing. Figures 3 and 4 display the results for this time period.

Despite the same approach applied in the Figs. 3 and 4, none significant differences
between the industry sectors subjected to the analysis were observed. The models
predicting financial distress provide comparable results which are not influenced by
industry sectors. It cannot be specified inwhich field the highest and the lowest values
were measured. It is, however, evident that Figs. 1 and 2 show different results from
those in Figs. 3 and 4. In spite of belonging to the various industries accompanied
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by different sales volumes, property composition, or financial structure, the final
values of the prediction models are similar. These results do not confirm the research
hypothesis. The possible reasons causing these discrepancies among the time periods
will be described later.

Taffler’s approach and Kralicek Quick Test were excluded from the visualization.
It is necessary to emphasize that both approaches reached similar results as presented
in the Figs. 1, 2, 3 and 4. This refers to the significant differences in the year 2012
but almost no differences in the years 2016 and 2017. Kralicek Quick Test shows
the limited differences for the year 2012. This is caused by the inherent model’s
nature, due to its discrete versus continuous basis used by all the other tested models
predicting financial distress.

5 Conclusion

The research dealt with the bankruptcy predictionmodels constructed in the past. The
selected approaches are still applied in corporate predictions and their accuracy seems
to be sufficient. Almost 20 models were analyzed and compared to fulfill the aim of
this research. In addition to a generally required accuracy and explanatory power,
this research was focused on industry specifics. The analyzed models predicting
financial distress are used in general although the companies belonging to different
industries can have different sales volumes, property and financial structure. These
differences may influence financial ratios’ values entering the prediction models. It
is also a reason why the final values of the prediction models were subjected to the
analysis. The verification was carried out on a sample of three industry sectors,
such as Construction (CZ-NACE F), Manufacture of machinery and equipment
(CZ-NACE 28), and Manufacture of fabricated metal products, except machinery
and equipment (CZ-NACE 25).

The significant differenceswere observed in the data subparts describing the insol-
vent and the healthy companies of the year 2012. The lowest values weremeasured in
the field of CZ-NACE 28. On the contrary, the highest values—among the insolvent
entities—were measured in the field of CZ-NACE F and among the healthy busi-
nesses in the field of CZ-NACE 25. These findings are not supported by the third and
fourth subparts of the data sample. The companies included in the general samples of
the years 2016 and 2017 reached comparable results. No differences were observed
between the selected industry branches. In other words, it was not confirmed that the
industry specifics have a serious impact on the models predicting financial distress.
Although industry branches influence reported financial statements, such as income
statement and balance sheet, their effect on the final scores of the prediction models
was not observed. As several financial ratios enter into the prediction tools, there are
some tradeoffs between the ratios which results on similar final prediction scores.
Owing to several discrepancies which occurred in the area of profitability, activity,
leverage, or liquidity between different industry sectors, individual indicators should
be subjected to further analysis.
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The results confirmed the hypothesis of the research conducted on the subsam-
ples from the year 2012. These subsamples represent financial consequences caused
by the latest global economic crisis. First, the period of overall economic insta-
bility influences industry reactions. Some industries are more flexible than the others
and therefore their financial statements and the financial indicators derived are less
affected. Secondly, the economic crisis affected various industry sectors differently.
Some of them experienced a deeper slump visible on the results observed. What has
just been said, can be confirmed by the combination of financial ratios for individual
companies and further information such as price movements, production slumps, or
changes in payment conditions in different industry sectors.

Acknowledgements The paper is one of the outputs of the research project “Financial charac-
teristics of enterprise in bankruptcy” registered at Grant Agency of Academic Alliance under the
registration No. GAAA 10/2018.
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Stochastic Volatility Models Predictive
Relevance for Equity Markets

Per Bjarte Solibakke

Abstract This paper builds and implements multifactor stochastic volatility models
where the main objective is step ahead volatility prediction and to describe its rele-
vance for the equity markets. The paper outlines stylised facts from the volatility
literature showing density tails, persistence, mean reversion, asymmetry and long
memory, all contributing to systematic data dependencies. As a by-product of the
multifactor stochastic volatility model estimation, a long-simulated realization of
the state vectors is available. The realization establishes a functional form of the
conditional distribution, which is evaluated on observed data convenient for step
ahead predictions. The paper uses European equity for relevance arguments and
illustrational prediction purposes. Multifactor SV models empower volatility visi-
bility and predictability enriching the amount of information available for equity
market participants.

Keywords Stochastic volatility · Markov chain monte carlo (MCMC)
simulations · Projection-reprojection

1 Introduction

This paper builds and assessesmultifactor scientific stochastic volatility (SV)models
for the prediction of equity market volatility. Volatility is a measure of dispersion
around the mean return of an asset. When the price returns are tightly bunched
together (or spread apart), the volatility is small (large). The use of all volatility
models entails prediction characteristics for future returns. A volatility model has
been used internationally to predict the absolute magnitude of returns, quantiles and
entire densities. A special feature of asset volatility is that it is not directly observ-
able. The unobservability of volatility makes it difficult to evaluate the forecasting
performance of volatility models. However, knowledge of the empirical properties
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of future prices is important when constructing risk management strategies, i.e. d
portfolio selection, derivatives and hedging, market making and market timing. For
all these activities, the predictability of volatility is essential for success. Modern
portfolio theory (MPT) suggests that volatility creates risk. Portfolio studies have
shown that when volatility increases, risk increases, and portfolio returns decreases.
An equity risk manager therefore would want to know the likelihood of future asset
and portfolio movements. If a portfolio manager addsmore assets to his portfolio, the
additional assets diversify the portfolio if they do not covary (correlation less than 1)
with other assets in the portfolio. Hence, generally, portfolios imply risk reduction
through diversification suggesting asset allocation importance. Mean-variance
analysis and the Capital Asset Pricing Model are natural extensions of the portfolio
analysis. An equity derivative trader wants to know the volatility that can be expected
as contractsmature for both pricing and general riskmanagement activities. Themost
important use of derivatives is a risk-reduction technique known as hedging, which
requires a sound understanding of how to value derivatives and an understanding of
which risks should and should not be hedged. Generally, for hedging, an equity risk
manager will want to know the contract volatility approaching maturity. The only
parameter that requires estimation in the Black-Scholes Model is the volatility. This
volatility estimate alsomay be of use in estimating parameters (u and d) in a binomial
model. Ceteris paribus, higher (lower) volatility increases (decreases) derivative
prices. Therefore, market participants will sell (buy) both call and put option contract
positions that are not part of speculative or hedge positions, if predicted volatility is
declining (increasing). In contrast, a portfolio manager maywant to buy (sell) a stock
or a portfolio before its volatility falls (rises). Finally, a market maker can change
his bid-ask spread believing future volatility changes. Normally, the equity markets
show that the bid-ask spread increases (decreases) when volatility rises (falls).

Stochastic volatility models have an intuitive and simple structure and can explain
the major stylized facts of asset, currency and commodity price changes. The moti-
vation for stochastic volatility is the observed non-constant and frequently changing
volatility. Time-varying volatility is endemic in financial markets and market partic-
ipants who understand the dynamic behaviour of volatility are more likely to have
realistic expectations about future prices and the risks to which they are exposed.
The SV implementation is an attempt to specify how the volatility changes over
time. Bearing in mind that volatility is a non-traded instrument, which suggests
imperfect estimates, the volatility can be interpreted as a latent variable that can
be modelled and predicted through its direct influence on the magnitude of returns.
Risks may change through time in complicated ways, and it is natural to build multi-
factor stochastic models for the temporal evolution in volatility. The implementation
adapts the MCMC estimator proposed by Chernozhukov and Hong [9], claimed to
be substantially superior to conventional derivative based hill climbing optimizers
for this stochastic class of problems. Moreover, under correct specification of the
structural models the normalized value of the objective function is asymptotically
χ2 distributed (and the degrees of freedom is specified). The paper focuses on the
Bayesian Markov Chain Monte Carlo (MCMC) modelling strategy used by Gallant
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and McCulloch [18] and Gallant and Tauchen1 [14], [19] implementing multivariate
statistical models derived from scientific considerations. The method is a systematic
approach to generate moment conditions for the generalized method of moments
(GMM) estimator [24] of the parameters of a structural model. Moreover, the imple-
mented Chernozhukov and Hong [9] estimator keeps model parameters in the region
where predicted shares are positive for every observed price/expenditure vector.
Moreover, the methodology supports restrictions, inequality restrictions, and infor-
mative prior information (on model parameters and functionals of the model). This
article is organized as follows. Section 2 describes the SV methodology. Section 3
presents stylized facts and Sect. 4 concretizes these facts from stochastic volatility
models showing two examples, one index and one asset. Section 5 summarizes and
concludes.

2 Theory and Methodology

2.1 Stochastic Volatility Models

The SV approach specifies the predictive distribution of price returns indirectly,
via the structure of the model, rather than directly. The SV model has its own
stochastic process without worries about the implied one-step-ahead distribution of
returns recorded over an arbitrary time interval convenient for the econometrician.
The starting point is the application of Andersen et al. [2] considering the familiar
stochastic volatility diffusion for an observed stock price St given by

dSt
St

= (
μ + c

(
V1,t + V2,t

))
dt + √

V1,tdW1,t +
√
V2,tdW2,t (1)

where the unobserved volatility processes Vi,t , i = 1,2, is either log linear or square
root (affine). The W1,t and W2,t are standard Brownian motions that are possibly
correlated with corr(dW1,t , dW2,t) = ρ. Andersen et al. [2] estimate both versions of
the stochastic volatility model with daily S&P500 stock index data, 1953-December
31, 1996. Both SV model versions are sharply rejected. However, adding a jump
component to a basic SV model greatly improves the fit, reflecting two familiar
characteristics: thick non-Gaussian tails and persistent time-varying volatility. A SV
model with two stochastic volatility factors show encouraging results in Chernov
et al. [8]. The authors consider two broad classes of setups for the volatility index
functions and factor dynamics: an affine setup and a logarithmic setup. The models

1The methodology is designed for estimation and inference for models where (1) the likelihood is
not available, (2) some variables are latent (unobservable), (3) the variables can be simulated and (4)
there exist a well-specified and adequate statistical model for the simulations. The methodologies
(General Scientific Models (GSM) and Efficient Method of Moments (EMM)) are general-purpose
implementation of the Chernozhukov and Hong [9] estimator.
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are estimated using daily data on the Dow Index, January 2, 1953–July 16, 1999.
They find that models with two volatility factors do much better than do models with
only a single volatility factor. They also find that the logarithmic two-volatility factor
models outperform affine jump diffusion models and provide acceptable fit to the
data. One of the volatility factors is extremely persistent and the other strongly mean
reverting.

This paper’s SVmodel applies the logarithmicmodelwith two stochastic volatility
factors [8]. The model is extended to facilitate correlation between the mean and the
stochastic volatility factors. The correlation applies the Cholesky decomposition for
consistence. The main argument for the correlation modelling is to introduce asym-
metry effects (correlation between return innovations and volatility innovations). The
formulation of a general SVmodel for price change processes (yt) therefore becomes

yt = a0 + a1(yt−1 − a0) + exp(V1t + V2t) · u1t
V1t = b0 + b1

(
V1,t−1 − b0

) + u2t

V2t = c0 + c1
(
V2,t−1 − c0

) + u3t
u1t = dW1t

u2t = s1

(
r1 · dW1t +

√
1 − r21 · dW2t

)

u3t = s2

⎛

⎜⎜
⎜
⎝

r2 · dW1t +
(

(r3 − (r2 · r1))/
√
1 − r21

)
· dW2t+

√

1 − r22 −
(

(r3 − (r2 · r1))/
√
1 − r21

)2

· dW3t

⎞

⎟⎟
⎟
⎠

(2)

where Wi.t ,i = 1, 2 and 3 are standard Brownian motions (random variables). The
parameter vector is θ. The r’s are correlation coefficients from a Cholesky decom-
position2; enforcing an internally consistent variance/covariance matrix. Early refer-
ences are Rosenberg [31], Clark [10], Taylor [35] and Tauchen and Pitts [34]. Refer-
ences that are more recent are Gallant et al. [15, 18, 20], Andersen [1], Durham
[12], Shephard [33], Taylor [36], and Chernov et al. [8]. The model above has three
stochastic factors. Even jumpswith the use of Poisson distributions for jump intensity
are applicable (complicates estimations considerably). The paper applies a compu-
tational methodology proposed by Gallant and McCulloch [17] and Gallant and
Tauchen [19], [20] for statistical analysis of a stochastic volatility model derived
from a scientific process3. Intuitively, the approach may be explained as follows.
First, a reduced-form auxiliary model is estimated to have a tractable likelihood
function (generous parameterization). The estimated set of score moment functions
encodes important information regarding the probabilistic structure of the raw data

2For the Cholesky decomposition methodology see [4].
3See www.econ.duke.edu/webfiles/arg for software and applications of the MCMC Bayesian
methodology. All models are coded in C/C++ and executable in both serial and parallel versions
(OpenMPI).

http://www.econ.duke.edu/webfiles/arg
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sample. Second, a long sample is simulated from the continuous time SV model.
Using the Metropolis-Hastings algorithm and parallel computing, parameters are
varied in order to produce the best possible fit to the quasi-score moment functions
evaluated on the simulated data. An extensive set ofmodel diagnostics and an explicit
metric for measuring the extent of SV model failure are useful side-products. The
scientific stochastic volatility model cannot generate likelihoods, but it can be easily
simulated.

2.2 The Unobserved State Vector Using the Nonlinear
Kalman Filter

From the prior SV model estimation, a by-product is a long simulated realization of

the state vector
{
V̂i,t

}N

t=1
, i = 1, 2 and the corresponding

{
ŷt

}N
t=1 for θ = θ̂ Hence,

by calibrating the functional form of the conditional distribution of functions given{
ŷτ

}t
τ=1; evaluating the result on observed data {ỹt}nt=1; generating predictions for

Vi,t, i = 1, 2 through Kalman filtering yt, very general functions of {yτ }tτ=1 can be
used and a huge dataset is available. An SNP model is estimated on the ŷt . The
model represents a one-step ahead conditional variance σ̂ 2

t of ŷt+1 given {ỹτ }tτ=1.
Regressions are run of V̂i,t on σ̂ 2

t , ŷt and
∣∣ŷt

∣∣ and lags (generously long) of these
series. These functions are evaluated on the observed data series {ỹτ }tτ=1, which give
values Ṽi,t, i = 1, 2 for the volatility factors at the original data points.

3 Stylized Facts of Volatility

Modelling and forecasting market volatility have been the subject of vast empirical
and theoretical investigation over the past two decades by academics and practi-
tioners. Volatility, as measured by the standard deviation or variance of returns, is
often used as a crude measure of total risk. The volatility is not directly observable
making it difficult to evaluate the forecasting performance. A good volatility model
must be able to capture and reflect the stylized facts. Moreover, a good volatility
model should predict volatility for success. The task of forecasting volatility condi-
tional on previously observed data is akin to filtering in Markov-Chained Monte-
Carlo (MCMC) analyses4. Eliciting dynamics from observables are the one-step-
ahead conditional volatility Var(y0|x−1), where x−1 = (y−L, . . . , y−1). The volatility
can be obtained from standard recursions for themoments of the normal [26]. Filtered
volatility is one-step-ahead conditional standard deviation evaluated at data values√
Var

(
yk0 |x−1

)|x−1=(ỹt−L,...,ỹ−1) t = 0, . . . , n, where yt denotes data and yk0 denotes

4Filtered volatility is a data-dependent concept and the dynamic system must be sampled at the
name frequency as the data to determine the density.



130 P. B. Solibakke

the kth element of the vector y0, k = 1,…,M. The volatility application involves
estimating an unobserved state variable conditional on all past and present observ-
ables. Hence, filtering obtains [16], where y* is the contemporaneous unobserved
variable and x* is the contemporaneous and lagged observed variables. Applications
are portfolio optimization/minimization, option pricing and hedging.

3.1 Tail Probabilities, the Power Law and Extreme Values

The distribution of financial time series (returns) exhibits fatter tails than those of
a normal distribution. The distribution for the latent volatility is more lognormal
than normal. Hence, financial variables are four times more likely to experience big
moves than the normal distribution would suggest. The power law, as an alternative
to assuming normal distributions, asserts that it is approximately true that the value
of a variable, υ, has the property that when y is large Prob(υ > y) = Ky−α where K
and α are constants. A quick test is a plot of ln

[
Prob(υ > y)

]
against ln y. Evidence

that the power law to hold is that this logarithm of the probability of the series
changing more than y standard deviations is approximately linearly dependent on ln
y for y ≥ 3. Furthermore, the extreme value theory (EVT) estimates the tails of the
volatility distributions [21]. EVT is a way of smoothing the tails of the probability
distribution of daily changes. Value at Risk (VaR) and Expected Shortfall (ES) can
be calculated and reflect the shape of the tail of the distribution. High confidence
levels VaR and ES are available from EVT.

3.2 Volatility Clustering

Volatility show clustering of periods of volatility, i.e. large (small) movements
followed by further large (small) movements (shock persistence). In the financial
literature, the lumpiness is called volatility clustering. Hence, a turbulent (tranquil)
trading day (period) tends to be followed by another turbulent day (period). The
implication is that volatility shocks today will influence the expectation of volatility
for many periods in the future (shock persistence) and there are time varying return
fluctuations in the markets.

3.3 Volatility Exhibits Persistence

The clustering of large and small movements (of either sign) from price movement
processes is a well-documented feature in equity markets. To make a precise defini-
tion of volatility persistence let the expected value of the variance of returns k periods
in the future be defined as Et(rt+k − μt+k)

2 where r is the return and μ is the mean.
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The forecast of future volatility then depends upon information in today’s informa-
tion set such as today’s return. Volatility is said to be persistent if today’s return has
a large effect on the forecast variance for many periods in the future. A measure of
the persistence of volatility is the half-life. That is, the time it takes for the volatility
to move half way back towards its unconditional mean following a deviation from
it and can be expressed as τ = k : ∣∣ht+k|t − σ 2

∣∣ = 1
2

∣∣ht+1|t − σ 2
∣∣. Alternatively,

SV model volatility persistence can be studied by inspection of correlograms (Q-
statistics) or the Breusch-Godfrey Lagrange multiplier test. Significant Q-statistics
and χ2 statistics suggest persistence.

3.4 Volatility Is Mean Reverting

Mean reversion in volatility is generally interpreted as meaning that there is a normal
level of volatility to which volatility will eventually return. In contrast, volatility
clustering (persistence) implies that volatility comes andgoes.Hence,mean reversion
in volatilitymeans that very long forecasts of volatility should all converge to the same
normal level of volatility, no matter when they are made. The implicit interpretation
is that mean reversion in volatility shows that current information has no effect on
the long run forecast. Hence, periods of high volatility will eventually give way to
more normal volatility, and similarly, periods of low volatility will be followed by a
rise in volatility. More precisely, mean reversion implies that current information has
no effect on the long run forecast. Hence, p lim

k→∞
θt+k|t = 0, for all t, and which is

also expressed as p lim
k→∞

ht+k|t = σ 2 < ∞, for all t. Furthermore, note that option

prices are generally viewed as consistent with mean reversion. That is, under simple
assumptions of option pricing, the implied volatilities of long maturity options are
less volatile than short maturity options (loser to long run average volatility).

3.5 Volatility Asymmetry (Leverage)

For equity market returns, it is plausible that positive and negative shocks have a
different impact on volatility. This asymmetry is sometimes ascribed to a leverage
effect and sometimes to a risk premium effect. For the leverage effect, as the price
of a stock rises, its debt-to-equity ratio decreases, lowering the volatility of returns
to equity holders. For the risk premium effect, news of increasing volatility reduces
the demand for a stock because of general risk aversion among market participants.
Hence, the stock value decline is normally followed by an increase in volatility as
forecasted by news. Alternatively, price movements are negatively correlated with
volatility suggesting that volatility increases (decreases) if the previous day returns
are negative (positive) [6, 11]. Moreover, these authors also state that leverage effect
happens because the fall (rise) in stock price causes leverage and the financial risk
of the firm to increase (decrease).
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3.6 Long Memory in Volatility

Financial time series exhibit long memory or persistence for volatility. Bailie et al.
[3] states “The presence of long memory can be defined in terms of the persistence is
consistent with an essentially stationary process, but where the autocorrelation takes
far longer to decay than the exponential rate associated with the ARMA process”.
The stochastic volatility (SV) models use long memory for modelling persistence.
The autocorrelations for squared returns provide insights into the long memory char-
acteristics of volatility measures. If the autocorrelations remain positive for very long
lags, the long memory effect is present [22]. Moreover, explicit SV model volatility
must exhibit the characteristics of long memory.

4 European Examples: FTSE100 Index and Equinor Asset

The daily analyses cover the period from the end of 2010 until November 2019, a total
of 9 years and 110 consecutive months giving 2,325 returns for the two series. Price
series are non-stationary and stationary logarithmic returns from all three series are
therefore used in the analysis. Any signs of successful SV-model implementations
for the markets indicate non-predictive market features and a minimum of weak-
form market efficiency. Consequently, the markets are applicable for enhanced risk
management activities.

4.1 Equity Summaries

Summary statistics for the two time-series are presented inTable 1.Both theFTSE100
spot index and the Equinor spot price series have small positive average returns (posi-
tive drift). The standard deviation for the index (portfolio) 0.928 is naturally lower
than the single asset Equinor asset 1.587 (the index elements have a positive corre-
lation less than 1), reporting lower risk. The maximum (3.9) and minimum (−6.2)
numbers confirm lower risk for the FTSE100 index relative to the asset Equinor
(a maximum of 8,7 and a minimum of −7.6). The FTSE index reports a negative
skewness coefficient indicating that the return distributions are negatively skewed.
In contrast, the asset Equinor reports a positive skewness suggesting a positively
skewed distribution (more extreme positive price movements). The kurtosis coeffi-
cients are relatively high positive for both series (>0), indicating a relatively peaked
distributions with heavy tails. The FTSE100 series is peakier than the Equinor series
suggesting that the FTSE100 index has more observations close to the unconditional
mean. The JB normal test statistics [25] suggest non-normal return distributions. In
contrast, the quantile normal test statistics suggest more normal distributed returns.
Serial correlation in the mean equation is strong and the Ljung-BoxQ-statistic [28] is
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Fig. 1 FTSE100 Index (London) and Equinor Asset Prices (Oslo) for the period 2010–2019

significant for both series. Volatility clustering using the Ljung-Box test statistic for
squared returns (Q2) and ARCH statistics seems to be present. The ADF [13] and the
Phillips-Person test statistics reject non-stationary series and the KPSS [27] statistic
(12 lags) cannot reject stationary series. The RESET [30] test statistic, covering any
departure from the assumptions of themaintainedmodel, is not significant (stability).
Finally, the BDS [7] test statistics report highly significant data dependence for all
integrals (m). Figure 1 reports prices and returns and correlogram for the returns
and squared/absolute returns. The correlogram for returns show only weak depen-
dence while the correlogram for squared and absolute returns indicate substantial
data dependence. The price change (log returns) data series (top), show that the level
of volatility seems to change randomly but shows a time varying nature typically for
financial markets.

4.2 The Stochastic Volatility Models for the European
Equities

The yt is the percentage change (logarithmic) over a short time interval (day) of the
price of a financial asset traded on an active financial market. The SV model imple-
mentation establishes a mapping between the statistical and the scientific models.
The adjustment for actual number of observations and number of simulations is
carefully logged for final model assessment. The SV model from Eq. 1 is estimated
using efficient method of moments (EMM). The BIC [32] optimal SV model from
parallel runs are reported in Table 2. The mode, mean and standard deviation are
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Table 2 Scientific stochastic volatility characteristics: θ-parameters

FTSE100 index scientific model Equinor asset price scientific model

Parameter values scientific
model.

Standard Parameter values Scientific
Model.

Standard

0 Mode Mean errors 0 Mode Mean errors

a0 0.01758 0.02295 0.01339 a0 −0.02344 −0.01610 0.03525

a1 0.01172 0.00212 0.02107 a1 −0.05469 −0.06244 0.02330

b0 −0.32422 −0.34477 0.05670 b0 0.48438 0.30863 0.19913

b1 0.93945 0.93423 0.01544 b1 0.82812 0.80279 0.08810

c1 0 0 0 c1 0 0 0

si 0.13477 0.12925 0.01518 s1 0.17969 0.16723 0.03999

s2 0.13672 0.13055 0.04115 s2 0.14844 0.13971 0.05961

r1 −0.78516 −0.73125 0.06691 r1 −0.53125 −0.37728 0.20364

r2 0.51172 0.44628 0.13944 r2 0.65625 0.51334 0.25609

Distributed Chi-square (no. of
freedom)

χ2 (4) Distributed Chi-square (no. of
freedom)

χ2 (3)

Posterior at the mode −5.2477 Posterior at the mode −4.6865

Chi-square test statistic {0.2628} Chi-square test statistic {0.1962}

reported. For the two equity markets, a factor SV model produces acceptable model
test statistics, reported at the bottom of Table 2. The objective function accuracy
is −5.2 and −4.7 for the FTSE100 index and the Equinor asset, respectively, with
associated ·2 test statistics of 0.26 (4 df ) and 0.20 (3 df ). The MCMC log-posterior
are reported in Fig. 2. The model does not fail the test of over identified restrictions
at the level of 10%, the chains are choppy, and the densities are close to normal,
all factors suggesting that the SV model is appropriate for the two equity markets.
The long-simulated realization of the state vector, as a-by product of the estimated
SV model, establishes a functional form of the conditional distribution. The SNP
methodology obtains a convenient representation of one-step ahead conditional vari-
ance σ̂ 2

t of ŷt+1 given
{
ŷτ

}t
τ=1. Running regressions for Vi on σ̂ 2

t , ŷt and | ŷτ | and
a generous number of lags of theses series, we obtain calibrated functions that give
predicted values of Vit|{yτ }tτ=1, t = 1, 2 on the observed data series. Figure 3,

Fig. 2 MCMC posterior chain from 250 k optimal SV model (R = 75.000)
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Fig. 3 Conditional volatility from observables and Kalman filtered volatility (daily)

reporting the last 60 days in 2019, shows the two latent volatility factors for the
observed data points. The plots indicate that V1 is slowly moving while V2 is moving
considerably faster. It is quite clear that the slowly persistent factor V1, leads the
re-projected yearly volatility for both series. Figure 3 also reports the ordinary least
square number for R2 for FTSE100 index (Equinor asset) at a level of Vi, where i =
1,2 of 96.2% (82%) and 46.8% (51.3%), respectively. Obviously, the slowly moving
V1 factor, showing persistence, is the main contributor to yearly volatility. V2 moves
much faster showing strong mean reversion, absorbing shocks.

4.3 Volatility Characteristics for the European Equities

The volatility factors in Figs. 3 and 4 seem tomodel two different flows of information
to the equitymarkets.One slowlymean reverting factor provides volatility persistence
and one rapidly mean reverting factor provides for the tails [8]. The factor for the
FTSE100 index is clearly moving slower than for the Equinor asset. In contrast to
the crash of 1987 which was attributed to a large realization of the mean reverting
factor V2, the period 2011 to 2019 does not show large realization of V2, but rather
much more to the slowly moving factor V1. In accordance with the plots, the period

Fig. 4 FTSE100 index (top) and Equinor stock (bottom) factor volatility paths (last 60 days)
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from 2011 to 2019 seems to show slow and persistent changes to volatility. However,
for the Equinor asset oil shocks have shown some major contributions to volatility.
For example, the shock in May 2019 is only temporary and the volatility from the
shock, show strong mean reversion (V2).

Comparing Figs. 1 and 3, the two synchronous plots show that when returns
become wider (narrower) volatility increases (decreases). Moreover, turbulent (wide
returns) days tend to be followed by other turbulent days, while tranquil (narrow
returns) tend to follow other tranquil days (clustering). As should be expected, the
volatility is clearly higher for the Equinor asset than for the FTSE100 index. Further-
more, the volatility seems to increase more from negative returns than from posi-
tive returns. Volatility densities for the FTSE100 index and the Equinor asset series
suggest lognormal densities. As suggested above, the density for Equinor shows
both narrower and higher volatility density than the FTSE100 index. Furthermore,
the power law

(
Prob(υ > x) = Kx−α

)
providing an alternative to the normal distri-

butions, seems approximately true for the volatility. Finally, Fig. 5 reports the correl-
ogram for the FTSE100 index and the Equinor asset. The correlograms indicates
substantial dependence suggesting both clustering and persistence as well as making
volatility predictions more relevant.

Tail properties, the Power law and Extreme values. The power law, an alternative
to assuming normal distributions, is applied to the reprojected volatility

(
e(V1+V2)

)

for the FTSE100 Index and Equinor asset. The power law asserts that, for many
variables, it is approximately true that the value of the variable, · , has the property
that when x is large Prob(υ > x) = Kx−α whereK and α are constants. The relation-
ship implies that ln[Prob(υ > x)] = lnK − α ln x, and a test of whether it holds by
plotting ln[Prob(υ > x)] against ln x. The values for ln(x) and ln[Prob(v > x)] for the
FTSE100 index and the Equinor asset show that the logarithm of the probability of
a change by more than x standard deviations is approximately linearly dependent in
ln(x) for x ≥ 3. Hence, for both the FTSE100 index and the Equinor asset the power
law holds for the re-projected volatility. Regressions show the estimates of K and α

are as follows: for FTSE100 (Equinor) K = e−2.274 and α = 2.147 (K = e−0.379 and

Fig. 5 Conditional volatility from observables and Kalman filtered volatility (daily)
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α = 3.369). A probability estimate of a volatility greater than 3 (6) standard devi-
ations is 0.103 · 3−2.147 = 0.0097 (0.97%)

(
0.103 · 6−2.147 = 0.0022 (0.22%)

)

and 0.685 · 3−3.369 = 0.0169 (1.69%)
(
0.685 · 6−3.5369 = 0.0016 (0.16%)

)
for the

FTSE100 index and the Equinor asset, respectively. The extreme value theory takes
us a bit further. Setting the u to the 90 percentiles of the filtered volatility series of
FTSE100 (u = 15.55) and Equinor (u = 21.65). The FTSE100 index reports optimal
β = 1.648 and ζ = 0.119 with an associated maximum value for the log-likelihood
function of −341.6. The Equinor series reports optimal β = 1.3067 and ζ = 0.0514
with an associated maximum value for the log-likelihood function of −278.3. The
probability that the FTSE100 index re-projected volatility will be greater than 20
(30) is 0.9634% (0.025%). The VaR with 99% (99.9%) confidence limit is 19.92
(25.67). Hence, the 99.9% VaR estimate is about 0.892 times lower than the highest
historic re-projected volatility. The 99% (99.9%) expected shortfall (ES) estimate is
22.38 (28.92). Furthermore, for the FTSE100 index, the unconditional probability
for a volatility greater than 15.5356 (u) is equal to 0.46%. Similarly, the probability
that the Equinor asset re-projected volatility will be greater than 20 (30) is 37.07%
(0.9%). The VaR with 99% (99.9%) confidence limit is 24.85 (28.45). Hence, the
99.9% VaR estimate is about 1.005 times higher than the highest historic filtered
volatility for the Equinor asset. The 99% (99.9%) ES estimate is 26.265 (30.068).
Finally, for the Equinor asset, the unconditional probability for volatility greater than
21.798 (u) is equal to 0.68%. As Var and ES are attempts to provide a single number
that summarizes the volatility tails giving the market participants an indication of
the risk to which they are exposed. The FTSE100 index shows that a daily volatility
greater than 20 is only 0.9634% while the Equinor asset, as a single asset, shows
that a daily volatility greater than 20 is 37.06%. Hence, EVT and the power law,
reporting VaR and ES values, summarises tail properties that indicate the risk for the
market participants. For market participants, inverting the unconditional probability
for volatility and setting a 1% limit for the change of unconditional probability, will
list associated investments alternatives.

Volatility clustering. The BDS independence test statistic [7] is a portmanteau test
for time-based independence in a series. The probability of the distance between a
pair of points being less or equal to epsilon (ε) should be constant (cm(ε)). The BDS
test statistics, where ε is one standard deviation and the number of dimensions is
10, reports that for both the FTSE100 index and the Equinor asset, the data strongly
rejects the hypothesis that the observations are independent. The FTSE100 index
shows a higher BDS dependence than the Equinor asset. Moreover, the SV model
reports volatility serial correlationwith the SV coefficient b1. The correlation ismuch
stronger for the FTSE100 index (b1 = 0.94) then for the Equinor asset (b1 = 0.83).
The b1 > 0.8 will accommodate volatility clustering. This is also visible in the above
Fig. 3 showing longer periods of high/low volatility for the FTSE100 index than for
the Equinor asset (choppier).

Persistence in volatility. Figure 4 reports the autocorrelation and partial autocor-
relation functions up to 20 lags for the FTSE100 Index and the Equinor asset. The
pattern of temporal dependence is different for the two volatility factors, V1 and



Stochastic Volatility Models Predictive Relevance … 139

V2. V1 shows strong temporal dependence while V2 shows close to zero temporal
dependence. The re-projected volatility

(
e(V1+V2)

)
has inherited the temporal depen-

dence from V1, suggesting strong persistence in volatility. The correlograms show
that FTSE100 index show higher correlation for the first lags, 0.940 versus 0.824
for the Equinor asset. However, from lag nine and higher the Equinor asset show
higher serial correlations. Running the Breusch-Godfrey serial correlation LM test
(Godfrey 1988) also report strong serial correlation up to lag 20 of 1869.76 (χ2(20)
= {0.000}) and 1399.42 (χ2(20)= {0.000}) for the FTSE100 index and the Equinor
asset, respectively. Hence, the re-projected volatility for both the FTSE100 index and
the Equinor asset, show strong volatility persistence.

Volatility ismean reverting. A battery of unit root tests togetherwith a variance ratio
test (martingales) are used to test for mean reversion for the re-projected volatility.
For example, the FTSE100 index (Equinor) report an ADF statistic of −9.4 (−7.7).
Hence, the ADF statistics report significant mean reversion at the 1% level. Further-
more, all unit-root test statistics suggest stationary and mean reverting series. The
overlapping variance ratio test [29], examines the predictability of time series data
by comparing variances of differences in the data (returns) calculated over different
intervals. If we assume the data follow a randomwalk, the variance of a period differ-
ence should be times the variance of the one-period difference. The FTSE100 index
(4.399) and the Equinor asset (5.588) both reject that the volatility is a martingale,
suggesting mean reversion.

Asymmetry in volatility. The asymmetry and the leverage effects are the nega-
tive correlation between the shocks of return and the subsequent shocks on volatility.
Hence, after a negative return shock,we expect volatility to increasewhile after a posi-
tive shock on returnswe should observe a decrease in volatility. Studying the volatility
changes following return shocks gives some information regarding this proposition.
Dividing the volatility from positive and negative returns show for the FTSE100
index (Equinor asset) an average increase in volatility from negative shocks of 2.057
(1.912) and from positive shocks of−1.875 (−1.897). Hence, negative return shocks
increase average volatility while positive return shocks decrease average volatility.
To statistically test for the change in volatility from negative and positive returns,
we run an OLS regression on the change in daily volatility on returns and lagged
returns. For the FTSE100 index (Equinor asset) the regression reports a coefficient
from the returns equal to −2.206 (−0.071) and −2.823 (−1.671) for lagged returns,
all significant at the 5% level. That is, the two series show that negative returns seem
to increase volatilitywhile positive returns seem to reduce volatility. Furthermore, the
correlation coefficients between returns and synchronous (and lagged) re-projected
volatility is −0.541 (−0.683), and −0.0164 (−0.6831) for the FTSE100 index and
the Equinor asset, respectively, suggesting negative return asymmetry for both series.

Long memory. Long memory is associated with both clustering and persistence. By
using fractional differencing with traditional ARMA specifications, the ARFIMA
model allows for flexible dynamic patterns for the re-projected volatility. For the
FTSE100 index, the ARFIMA (2,d,0) model specification estimate d = 0.3043
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Fig. 6 Static forecasts for the FTSE100 index and the Equinor asset 2019

suggests slow autocorrelations and partial autocorrelations decay (hyperbolically).
For the Equinor asset, the ARFIMA (2,d,0) model specification estimate d =
0.3571 suggests the same slow autocorrelations and partial autocorrelations decay.
The ARFIMA model therefore specifies two slowly decaying series with long-run
dependence (long memory).

4.4 Step Ahead Volatility Predictions for European Equities

The SNP methodology obtains a convenient representation of one-step ahead
conditional variance σ̂ 2

t of ŷt+1 given
{
ŷτ

}t
τ=1. Running regressions for Vit on

σ̂ 2
t , ŷt and | ŷτ | and a generous number of lags of theses series, we obtain cali-

brated functions that give step ahead predicted values of Vit|{yτ }tτ=1, t = 1, 2 at the
data points. A static forecast for the FTSE100 index and the Equinor asset is done in
Fig. 6. The estimation period is from 2010 to January 1st, 2019 and the static fore-
casting period from January 1st, 2019 to November 8th 2019. For a “good” measure
of fit, using the Theil inequality coefficient (bias, variance and covariance portions)
the bias and variance should be small so that most of the bias is concentrated on
the covariance proportion. The covariance proportion for re-projected volatility for
the FTSE100 index (Equinor asset) is 0.966 (0.918). For the main contributor to
re-projected volatility for both series, factor V1, the covariance portion of the Theil
inequality coefficient is even higher.

5 Summary and Conclusions

Themain objective of this paper has been to characterize a good volatilitymodel by its
ability to forecast and capture the commonly held stylized facts about equity market
volatility. The stylized facts include such things as heavy tails, persistence, mean
reversion, asymmetry (negative return innovations suggest higher volatility), and long
memory. The characteristics indicate substantial data dependence in the volatility.
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The paper shows that the re-projected volatility contains all these characteristics and
that this data dependence suggests an ability for volatility predictions to enhance risk
management, portfolio timing and selection, market making and derivative pricing
for speculation and hedging in equity markets.

The paper has used the Bayesian M-H estimator and a stochastic volatility repre-
sentation for European financial equity markets. The methodology is based on the
simple rule: compute the conditional distribution of unobserved variables given
observed data. The observables are the asset prices and the un-observables are
a parameter vector, and latent variables. The inference problem is solved by the
posterior distribution. Based on the Hammersley-Clifford [23] theorem, p(θ ,x|y) is
completely characterized by p(θ |x,y) and p(x|θ ,y). The distribution p(θ |x,y) is the
posterior distribution of the parameters, conditional on the observed data and the
latent variables. Similarly, the distribution p(x|θ ,y) is the smoothing distribution of
the latent variables given the parameters. The MCMC approach therefore extends
model findings relative to non-linear optimizers by breaking the “curse of dimension-
ality” by transforming a higher dimensional problem, sampling from p(θ1,θ2), into
easier problems, sampling from p(θ1|θ2) and p(θ2|θ1) (using the Besag [5] formula).

Although price processes are hardly predictable, the variance of the forecast error
is clearly time dependent and can be estimated by means of observed past varia-
tions. The results suggest that volatility can be forecast. The stochastic volatility
models are therefore an area in empirical financial data modelling that is fruitful
as a practical descriptive and forecasting device for all participants/managers in
the financial services sector, together with a special emphasis on risk management
(forecasting/re-projections and VaR/ES), portfolio management and derivative inno-
vations. Irrespective of markets and contracts, Monte Carlo Simulations should lead
us to more insight into the nature of the price processes describable from stochastic
volatility models. Finally, static predictions of the re-projected volatility suggest a
relatively good fit.
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Empirical Test of the Balassa–Samuelson
Effect in Selected African Countries

Joel Hinaunye Eita , Zitsile Zamantungwa Khumalo, and Ireen Choga

Abstract The purpose of this study investigates the validity of the Balassa–
Samuelson effect in selectedAfrican countries. The kernel of theBalassa–Samuelson
(BS) effect is the relationship between productivity and real exchange rate. The study,
therefore, estimates the equilibrium real exchangewith total factor productivity as the
main explanatory variable. The results revealed that Balassa–Samuelson effect holds
in the selected African countries. The results show a positive relationship between
real exchange rate and productivity. An increase in total factor productivity causes
real exchange rate appreciation. An improvement in productivity can cause countries
to experience an increase in prices of their products relative to trading partners. The
study recommends that the selected African countries should pursue policies that
maintain competitive real exchange rate.

Keywords Real exchange rate · Productivity · Balassa–Samuelson effect

1 Introduction

One of the most important hypotheses with respect to the equilibrium real exchange
rate level is the so-called Balassa–Samuelson hypothesis (see [1] and Samuelson,
[2]); that is, the real exchange rate level is positively correlated with the development
degree of the economy because of differential productivity growth between tradable
and non-tradable sectors. The real exchange rate is influenced bymany factors as stip-
ulated in theories such as the Balassa–Samuelson theorem. The Balassa–Samuelson
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theory postulates the incidence of a positive correlation connecting the real exchange
rate and the development of the economy because of differential productivity growth
between tradable and non-tradable sectors.

The Balassa–Samuelson (BS) effect results from an extension of the purchasing
power parity (PPP). Balassa [1] questioned the validity of the PPP as a theory that
explained the determination of the equilibrium exchange rate [3]. The BS postulates
that differentials in labour productivity between tradable and non-tradable sectors
result in fluctuations of real costs. It also results in fluctuation of relative prices
and cause divergences in the real exchange rate [4]. A country with more relative
productivity advantage in tradable goods than in non-tradable goods ought to possess
a higher real exchange rate [5].According to [6], theBS effect defines volatility of real
exchange rate through differences in productivity between tradable and non-tradable
sectors of the economy.

The focus of the BS effect is on productivity difference between the economy
and its trading partners. It postulates that productivity growth is generally biased in
favour of the tradable goods sector. That means economies that experience relatively
more productivity than other economies tend to have higher productivity in tradable
compared to the non-tradable sector. According to Montiel [7], if there is higher
productivity in the tradable sector, labour will move away from the non-tradable
sector. This will increase costs in the non-tradable sector. This implies that in order to
sustain profitability in the non-tradable sector, a higher relative price (of non-tradable
goods) will be required.

The hypothesis emerged because of the difference in productivity growth among
sectors andwages that are generally less differentiated. Normally, productivity grows
rapidly in the tradable goods sector than in the non-tradable goods sector. Rapid
productivity growth in the tradable goods sector raiseswages in all sectors. The prices
of non-tradable goods relative to the prices of tradable goods increase resulting in the
growth of the overall price level.Moreover, the speed of productivity is faster in devel-
oping countries because of their attempt to catch up with developed countries [8].

The Balassa–Samuelson model employs the decomposition of the price level into
tradable and non-tradable prices. Hence, the real exchange rate combines the real
exchange rate for tradable goods and the ratio of the relative prices of tradable to
non-tradable goods in two economies. Higher productivity growth in the tradable
sector in one country implies that the relative non-tradable to tradable prices will
increase more rapidly [9].

According to Montiel [7], agriculture and manufacturing are normally included
in the tradable sector, while service sector is included in the non-tradable sector. The
BS effect predicts that countries that have low productivity in the tradable compared
to non-tradable goods tend to have lower prices than other countries. This is generally
the case for many developing countries. This is the opposite of advanced economies,
which tend to have productivity in the tradable sector. An increase in the prices
of tradable goods causes a rise in the general price level (including the price of
non-tradable goods). The price of non-tradable goods generally rises faster than that
of tradable goods. The real exchange rate will appreciate. Poor and low-income
countries tend to have low productivity in the tradable sector and this generally tends
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to reduce the general price level. The real exchange rate will then depreciate. This
view is supported byCoudert [10] andMartinez-Hernandez [11]. Under the BS effect
or hypothesis, higher profitability in the tradable division of rich nations raises the
general level of costs and the genuine trade rates. Low efficiency in the tradable
sector of poor nations is normally maintained or reduced to the general level of costs
and more devaluated/deteriorated trade rates [11].

There aremany studieswhich investigate theBSeffect in advanced anddeveloping
economies (such as [12, 13]). Some other studies (such asKakkar andYan) computed
the resulting real exchange rate misalignment. Others went further to test the effect of
misalignment on economic performance [14, 15]. These previous studies examined
the BS effect using inappropriate measure of technology or productivity. Relative
GDP was used in many of these studies to proxy productivity and technology. The
problem with relative GDP is that an increase in this variable should not necessarily
be interpreted as a measure of technology.

Hence, it is important to use an appropriate measure of technology or total factor
productivity. Contrary to previous studies, this study tests the Balassa–Samuelson
effect using a different and appropriate proxy for total factor productivity or tech-
nology. This study computes total factor productivity by using the Cobb–Douglas
production function. In linewithTintin [16], total factor productivity (TFP) computed
using theCobb–Douglas production function is a better representation of productivity
or technology.Thiswas supported byEita et al. [17]who computed productivity using
the production function for African countries. The rest of the study is organised as
follows. Section 2 presents the literature review. Section 3 presents the methodology.
Section 4 presents the empirical results, while the conclusion and recommendations
are presented in Sect. 5.

2 Literature Review

2.1 Introduction

This section presents the theoretical foundations and empirical literature related to the
Balassa–Samuelson effect. The empirical literature includes studies from developed
and developing countries.

2.2 The Balassa–Samuelson Model

The Balassa–Samuelson model hypothesises that higher productivity differential in
production of tradable goods between countries causes great differences inwages and
in the prices of services. It also accounts for the pronounced differences between the
purchasing power parity and equilibrium real exchange rate. TheBalassa–Samuelson
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model is based on productivity differentials influencing the domestic relative price
of non-tradable goods while divergences from PPP display disparities in the relative
price of non-tradable goods [18]. Asea and Corden [18] provided an overview of the
Balassa–Samuelson model as follows. The Balassa–Samuelson model comprises
a small open economy consisting of capital and labour to produce tradable goods
(T) which are priced in the world markets and non-tradable goods (NT) priced in
the domestic market. Perfect mobility is presumed for capital and labour across all
domestic sectors while labour is presumed to be immobile between countries and
capital is not restricted internationally. The model also assumes that there is full
employment in the economy. The model is presented as follows.

L = LT + LN (1)

where the labour in the tradable sector is represented by LT , while LN is labour
in the non-tradable sectors. To produce tradable and non-tradable goods, inputs of
capital (KT , KN ) and labour (LT , LN ) are necessary. Linear homogenous functions
describe technology in each sector:

YT = θT K
βT
T LαT

T ≡ θT LT f (kT ) and YN = θN K
βN
N LαN

N ≡ θN LN f (kN ) (2)

where YT ,YN represent the output in the tradable and non-tradable sectors while
kT ≡ KT /LT and kN ≡ KN/LN and θT , θN are stochastic productivity parameters.

The world interest rate i is used as given. The presence of perfect competition
equates the world interest rate to the value of the marginal product of capital in each
sector:

i = θTβT k
(βT−1)
T and i = sθNβNk

(βN−1)
N (3)

where s = PN/PT is the relative price of non-tradable goods (the real exchange
rate).

i = θTβT k
(βT−1)
T determines capital-labour in tradable goods sector (kT ). The two

factors of production are utilised to obtain the factor price frontier by maximising
profit (F(K , L) − wL − rk) which in turn creates factor demand function in each
sector. The notion of linear homogeneity allows the wage rate in the tradable sector
to be represented by

w = θT [ f (kT ) − f ′(kT )kT ]
= θT (1 − βT )kβT

T (4)

where f ′′(k) < 0 is an increasing function of k, meaning that i = f ′(k) is a
decreasing function of w and i , therefore, decrease to the factor price frontier, a
downward locus on the (w, i) plane with parameter k. Solving for kT from (i =
sθNβNk

(βN−1)
N ) and substituting in (w = θT (1 − βT )(θTβT / i)

βT
1−βT ) yields the wage

equation:
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w = (1 − βT )(θTβT/ i )
βT

1−βT (5)

In a small economy, the determination of the wage (w) is reliant on factor produc-
tivity in tradable sector. The capital-labour ratio as derived from i = sθNβNk

(βN−1)
N

and results in

kN = (sθNβN/ i)
1

1−βN (6)

For perfect competition in the non-tradable sector, the following condition should
hold

s = θN f (kN ) = ikN + w

(7)

From (YN = θN K
βN
N LαN

N ≡ θN LN f (kN ),w = θT (1 − βT )(θTβT / i)
βT

1−βT and

kN = (sθNβN/ i)
1

1−βN ) for given i the relative price of non-tradable goods is

�

s = αN
�

w − �

θ N (8)

s = αN

αT

�

θT − �

θ N (9)

where a hat signals the rate of percentage change. The relative price of non-tradable
goods is dependent on the productivity differential in the tradable and non-tradable
sectors.

Although theBalassa–Samuelson theory is employed to decipher economic issues
by economists and policymakers, it is not without weaknesses. Bergin et al. [19] cited
that productivity gainswere not only limited tomanufactured goods but also included
gains from information technology and retail as assumed by the theory. The theory
also overlooks services such as information sectors that are now becoming increas-
ingly tradable due to technological advancements. Genius and Tzouvelekas [20]
remonstrated the neglect of time-specific factors that potentially influenced the rela-
tionship between productivity and real exchange rates. They further mentioned that
the assumption of unobservable country-specific factors impartially influencing the
projected connection between labour productivity and real exchange rateswas restric-
tive. However, the Balassa–Samuelson theory remains a popular choice amongst
economists and policymakers to interpret various applied economic issues.
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2.3 Empirical Literature

There is an extensive literature on the Balassa–Samuelson effect or hypothesis. There
is a group of empirical studies conducted in developed economies. Ito et al. [21] inves-
tigated the Balassa–Samuelson hypothesis in high-growth Asian countries. A gener-
ally pronouncedBalassa–Samuelson effectwas observed in Japan,Korea andTaiwan.
The study further suggested that the validity of Balassa–Samuelson hypothesis to an
economy depended on the stage of development of that economy. The hypothesis
is particularly suited for a rapidly expanding under resourced open economy. The
expansion must entail a move from an industrial structure and export composition.
However, a growing economy does not imply applicability of theBalassa–Samuelson
if the economy has recently emerged from the primary goods exporter or planned
economy phase.

Macdonald and Ricci [22] investigated the impact of the distribution sector on
the real exchange rate, including the Balassa–Samuelson effect and other macroe-
conomic variables such interest rates, size of net foreign assets to GDP ratios for
ten developed countries (Belgium, Denmark, Finland, France, Italy, Japan, Norway,
Sweden, Germany and USA). A panel dynamic ordinary least squares estimator was
employed to estimate long-run coefficients. The results revealed growth in produc-
tivity and competitiveness of the distribution sector caused an appreciation of the
real exchange rate. Using ARDL estimation technique, Chowdhury [23] also found
evidence of the Balassa–Samuelson effect in Australia for the period 1990–2003.
Égert et al. [24] investigated theBalassa–Samuelson effect in nineCentral andEastern
European countries. Panel cointegration techniques were employed and evidence of
internal transmission mechanism was found. It was attributed to non-tradable infla-
tion in the open sector because of productivity growth. The results indicated that
an increase in productivity causes real exchange rate to appreciate. Kakkar and Yan
[25] examined the Balassa–Samuelson effect for six Asian economies. The results
indicated further that there was real exchange rate misalignment. The real exchange
rate was misaligned.

Sallenave [14] investigated the Balassa–Samuelson effect in a study about the
growth effects of real effective exchange rate misalignments for the G20 coun-
tries. Similarly, Vieira and MacDonald [15] studied the impact of real exchange
rate misalignment on long-run growth for a set of ninety countries with adjustments
for the Balassa–Samuelson effect by using real GDP per capita to account for the
Balassa–Samuelson effect. They found that exchange rate misalignment impacted
economic growth.

Egert et al. [24] explored the hypothesis in the Czech Republic, Hungary, Poland,
Slovakia and Slovenia using time series and panel cointegration approaches. The
results of the study presented a good application of the hypothesis in these transition
economies for the period of 1991Q1–2001Q2.However, the study found that produc-
tivity growth did not entirely lead to price increments because of the construction
of the CPI indexes. DeLoach [26] conducted a study to uncover evidence in support
of the Balassa–Samuelson hypothesis. The results revealed a relationship consistent
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with the Balassa–Samuelson hypothesis, that of a significant long-run relationship
between the relative price of non-tradable goods and real output.

Drine and Rault [12] conducted an empirical investigation and tested the validity
of the Balassa–Samuelson effect or hypothesis in six Asian countries. A panel
data cointegration procedure developed by Pedroni [27, 28] was used and further
compared to the traditional Johansen cointegration test. A long-run relationship
between real exchange rate and productivity differential was observed under the
traditional time series model. However, advanced dynamic panel techniques showed
contrary results. This was attributed to the absence of a positive long-run relationship
between productivity differential and relative prices.

Tintin [16] investigated theBalassa–Samuelson hypothesis in tenOECDcountries
for the period 1975 and 2007. A country-specific analysis was conducted through
the Johansen cointegration techniques and findings suggested that the BS hypothesis
was valid in OECD countries. Gubler and Sax [13] investigated the robustness of the
Balassa–Samuelson hypothesis for panel of OECD countries for the period of 1970–
2008. The real exchange rate was conditioned on the measures of productivity for
both the tradable and the non-tradable sector in addition to control variables such as
the terms of trade and government spending share. The DOLS model specifications
and the between-dimension group-mean panel FMOLS estimator from Pedroni were
employed. The study did not find evidence of the Balassa–Samuelsson hypothesis.

There is also an extensive empirical literature on the relationship between real
exchange rate in developing and emerging economies. Choudhri and Khan [29]
tested for the Balassa–Samuelson in sixteen developing countries including African
countries such as Kenya, Morocco, South Africa and Cameroon. The study showed
that traded-non-traded productivity differentials were vital because they impact rela-
tive price of nontraded goods, and that the relative price applied a substantial effect
on the real exchange rate. Likewise, the terms of trade influence the real exchange
rate.

Omojimite and Oriavwote [30] examined the relationship between the Naira real
exchange rate andmacroeconomic performance and the Balassa–Samuelson hypoth-
esis in Nigeria. The time-series data covered the period 1970–2009 and the Johansen
cointegration procedure was employed. The parsimonious error correction model
(ECM) results revealed a negative sign and a statistically significant one-period lag
value of technological productivity. These results, therefore, implied the existence of
the Balassa–Samuelson hypothesis in Nigeria. Increase in productivity causes real
exchange rate appreciation in Nigeria.

Tica and Družić [31] investigated the Harrod–Balassa–Samuelson (HBS) effect
on fifty-eight empirical papers. The evidence supported the HBSmodel, these results
were influenced by the types of tests applied and set of investigated countries. Funda
et al. [32] examined the Balassa–Samuelson effect in Croatia for the period 1998
Q1–2006 Q3. No evidence of the Balassa–Samuelson effect in Croatia was found.

Suleiman and Muhammad [33] conducted a study estimating the long-run effects
of real oil price on real exchange rate by means of the Johansen procedure from 1980
to 2010 inNigeria. The empirical analysis examined the effect of oil price fluctuations
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and productivity differentials (embodies the Balassa–Samuelson) on the real effec-
tive exchange. The result suggested that real oil price had a significant positive effect
on the real exchange rate in the long run whilst productivity differentials had a signif-
icant negative influence on the real exchange rate. The productivity differentials were
expressed against the trading partners of Nigeria. Contrary to Omojimite and Oriav-
wote’s [30] results, this study found no evidence of the Balassa–Samuelson effect in
Nigeria shown by the negative and significant coefficient on the productivity differ-
ential. The appreciation of the real exchange rate was attributed to improvements in
oil prices, not the Balassa–Samuelson effect.

There is a group of studies which use a combination of developed and devel-
oping countries to test for Balassa–Samuelson effect. Bahmani-Oskooee and Nasir
[34] estimated a random coefficients model permitting country and time-specific
productivity effects. They employed an analytic framework expressing an individual
country’s productivity and real exchange rates relative to the United States (US).
The study was for the period 1965–1992 and results revealed an invalid Balassa–
Samuelson hypothesis for most African countries and some Latin American coun-
tries while it was valid for OECD countries and Asia. In an analysis of the long-run
determination of exchange rates using sectoral data in twenty-four developing coun-
tries and fourteen OECD economies, Giacomelli [35] found results in support of the
Balassa–Samuelson effect. While Faria and León-Ledesma’s [36] revealed results
unsupportive of the Balassa–Samuelson effect in the long run between two countries
(the UK and US, German and Japan and Japan and the US). Genius and Tzouvelekas
[20] tested for the Balassa–Samuelson hypothesis on fifty-nine industrialised and
developing countries (including African countries such as Rwanda and Ivory Coast
amongst others). Results of the study revealed that the hypothesis was invalid in most
African countries and some Latin American countries. The hypothesis was held for
OECD countries and Asia.

Based on the empirical inconclusiveness established in previous studies, this study
investigated the Balassa–Samuelson effect in five African countries. A review of the
empirical studies from both developed, emerging and developing economies most of
them did not use proper proxies of technology or productivity. Most of these studies
used relative real GDP or real GDP growth as a measure of productivity. Contrary
to these previous researches, this study computes total factor productivity using the
Cobb–Douglass production function as an appropriate measure of productivity.

3 Methodology

3.1 Model Specification

Following an extensive review of the literature, the empirical model is expressed as
follows:
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reit = α0 + α1 pr + α2t t + α3 f a + εt (10)

where re is real exchange rate, pr is productivity, tt is terms of trade and fa is net
foreign assets. The weighted average of a country’s currency is relative to basket of
major currencies as a proxy for re. An increase in re is appreciation while a decrease
will be interpreted as depreciation. An increase in productivity is expected to lead
to real exchange rate appreciation. The variable of interest, pr captures the Balassa–
Samuelson effect, which hypothesises that rapid economic growth is associated with
real exchange rate appreciation because of differential productivity growth between
tradable and non-tradable sectors. Tintin [16] argues that total factor productivity is
a better proxy for technology.

The effect of terms of trade on real exchange rate is ambiguous due to income and
substitution effects. If income effect dominates, a rise in terms of trade permits an
expansion of absorption and consequently an appreciation of the real exchange rate.
However, if the substitution effect dominates, an increase in terms of trade causes real
exchange rate depreciation. According to Lane and Milesi-Ferretti [37], net foreign
assets are generally taken as cumulative current account of net capital transfers. The
transfers are adjusted in order to take into account of capital gains and losses that
result from inward and outward foreign direct investment. This also includes portfolio
equity holdings. The effect of this variable is expected to be positive. According to
Bleaney and Tian [38], the real exchange rate will appreciate if there is an increase
in net foreign asset.

3.2 Data Description

The study uses annual data for the period 1991–2016. Five African countries are
included in the study. These areDemocratic Republic of Congo,Mauritius,Morocco,
South Africa and Tunisia obtained from Quantec database. The data in Quantec are
sourced from the IMF’s International Financial Statistics, World Bank Develop-
ment Indicators, central banks and statistics organisations of individual countries.
The sample period and the countries were selected on the basis of consistent data
availability. Real effective exchange rate, terms of trade, net foreign assets, labour,
capital are directly available in the Quantec database. Total factor productivity is
computed using the Cobb–Douglass production function as previously explained. It
is computed as follows:

y = AK δLγ

A = y

K δLγ
(11)
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where y, A, K, L, δ, γ are total output, technology, labour, capital, output elastici-
ties of capital, output elasticities of labour. Total factor productivity is taken as an
appropriate proxy for technology.

3.3 Estimation Technique

The Fully Modified OLS Model
The fully modified ordinary least squares (FMOLS) is employed to estimate the
equilibrium real exchange rate (BS effect). The FMOLS estimator was developed to
estimate directly cointegrating relationships. This is done throughmaking adjustment
to the traditional ordinary least squares. It corrects for endogeneity and serial correla-
tion that normally occurs when using the traditional ordinary least squares. Previous
studies confirmed that FMOLS is superior compared to other methods of estimating
cointegrating relations. Studies such as Cappucio and Lubian and Hagreaves as well
as Phillips [39] confirmed the advantages of FMOLS in estimating cointegrating
relations and correcting serial correlations and endogeneity. Maddala and Kim [40]
outlined the course of the FMOLS. It is important to have cointegration before esti-
mation of the long and short-run empirical results. It is important to mention that the
use of FMOLS suggests or implies that it is not necessary for the short run or error
correction model.

Unit root test
It is important to mention that the univariate characteristics of the data is the first
step before estimation of the empirical model. This involves panel unit root test. The
study uses the Levin, Lin and Chu test (LLC Test), Im, Pesaran and Shin test (IPS)
to test for unit root. Detailed discussion of these panel unit tests is not available due
to space limitation, but can be obtained from the authors on request. If variables are
non-stationary, it is important to test whether they are cointegrated. This study uses
Kao test in order to establish if there is cointegration.

The Kao Cointegration Test
This study applies Chaiboonsri et al. [41] to test for panel cointegration. The variables
as presented in Eq. (10) are assumed to be non-stationary. The detailed discussion of
Kao cointegration are presented here because of space limitation, but can be obtained
from the authors on request.

If there is cointegration, the real exchange rate model as presented in Eq. (10)
will be estimated. The FMOLS as proposed by Hansen and Phillips [42] is estimated
and it provides proper cointegration results that correct for endogeneity and serial
correlation.
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Table 1 Kao Cointegration
Test Results

Cointegration test t-statistic Probability

Kao Test −4.050 0.000*

The ADF is the residual-based ADF statistic. The null hypothesis
is no cointegration. *Indicates that the estimated parameters are
significant at the 5% level

4 Estimation Results

This section presents the empirical results of the stationarity tests, the real exchange
rate cointegration test, long-run coefficient, fully modified OLS estimates (FMOLS)
and real exchange rate misalignment and macroeconomic performance estimation.

4.1 Panel Unit Root (Stationarity) Tests

The variables were subjected to the LLC and the IPS stationarity tests. The results for
panel unit roots are not presented here because of space limitation, but can be obtained
from the authors on request. The results show that some variables are stationary
while others are non-stationary. Since majority of the variables are non-stationary,
it is decided that the next step should be to test for cointegration. Since there is
cointegration, the next step is to estimated long-run results using FMOLS.

4.2 Cointegration Test Results

Table 1 presents the Kao panel cointegration test results. The decision rule of this
test is rejecting the null hypothesis of no cointegration when the probability value is
less than 5%. The results in this study are consistent with this rule, therefore, there
is cointegration amongst the variables.

4.3 Long-Run Coefficient

The results in Table 1 indicate the presence of a cointegration relationship amongst
the variables. The FMOLS is applied to estimate the long-run re model. The results
are presented in Table 2.

Table 2 presents the long-run coefficients results of the FMOLS estimator. The
results reveal that pr is statistically significant and consistent with economic theory.
The variable tt is statistically significant and consistent with economic theory. The
variable fa is not statistically significant and is in defiance of economic theory.
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Table 2 FMOLS long
run—estimation results.
Dependent variable: re

Explanatory variables Coefficients

pr 0.138 (0.094)*

tt −0.665 (0.001)*

fa −0.001 (0.542)

R-squared 0.920

S. E. of regression 0.200

*p-values are in parentheses (); *10% statistically significant level;
**5% statistically significant level; ***1% statistically significant
level. An earlier version of these results in Table 2 was presented
by Eita et al. [17]

A 1% increase in pr will appreciate the real exchange rate by 0.1% thereby
indicating a positive relationship between the two variables as stipulated by economic
theory. This indicates that there is evidence of BS effect in these countries. A 1%
increase in tt will cause the real exchange rate to depreciate by 0.7%.

4.4 Real Exchange Rate Misalignment

Figure 1 presents actual and equilibrium real exchange rate. The computed real
exchange rate misalignment is presented in Fig. 2. Figure 1 shows that there were
moreperiodswhere the real exchange ratewasundervalued.This iswhencompared to
periodswhen the real exchange ratewas overvalued. Overvaluation is not appropriate
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Fig. 1 Actual and equilibrium real exchange rate Note DRC, MAU, MOR, SA, TUN denote
democratic republic of Congo, Morocco, South Africa and Tunisia. ERER is the equilibrium real
exchange rate and RER is the actual real exchange rate. The earlier version of this figure was
presented in Eita et al. [17]
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Fig. 2 Real exchange rate misalignment Note MISA denotes real exchange rate misalignment.
DRC, MAU, MOR, SA, TUN denote Democratic Republic of Congo, Morocco, South Africa and
Tunisia. The earlier version of this Figure was presented in Eita et al. [17]

because it has a negative effect on economic growth. This suggests that countries
should come up with policies that minimise overvaluation of real exchange rate.
This is supported by Gylfason [43] who argues that overvaluation worsens the trade
balance. It also causes speculative attacks, increased foreign debt and discourages
foreign direct investment (Fig. 2).

5 Conclusion

The study investigates whether the Balassa–Samuelson effect or hypothesis holds for
selected African countries. If the hypothesis holds, then there should be a positive
relationship between real exchange rate and productivity. This study differs from
previous studies in the sense that it uses appropriate measure of productivity. It
computed productivity using the Cobb–Douglass production function. The Balassa–
Samuelson effect was tested for five selected African countries. The countries are
Democratic Republic of Congo, Mauritius, Morocco, South Africa and Tunisia. The
relationship between total factor productivity and the real exchange rate is positive.
This confirms the validity of the Balassa–Samuelson effect. An increase in produc-
tivity in these economies is associated with an appreciation of the real exchange rate
in these selected economies.

Undervaluation of the real exchange rate is appropriate for promoting economic
growth and development in the selected African countries. These countries need to
pursue economic policies in order to promote development and competitiveness of
the economy. These countries should come up with policies that help to achieve and
maintain a competitive exchange rate.



158 J. H. Eita et al.

References

1. Balassa, B.: The purchasing power parity doctrine: a reappraisal. J. Polit. Econ. 72(6), 584–596
(1964)

2. Samuelson, P. A.: Theoretical notes on trade problems. Rev. Econom. Stat. 46(2), 145–154
(1964)

3. Moosa, I.: The US-China trade dispute: facts, figures and myths. Edward Elgar Publishing,
Cheltenham (2012)

4. Asea, P.K., Mendoza, E.G.: The Balassa-Samuelson model: a general-equilibrium appraisal.
Rev. Int. Econ. 2(3), 244–267 (1994)

5. Mercereau, B.: Real exchange rate in an inter-temporal N-country-model with incomplete
markets. ECB Working Paper No. 205 (2003)

6. Romanov, D.: The real exchange rate and the Balassa-Samuelson hypothesis: an appraisal of
Israel’s case since 1986. Bank of Israel Discussion Paper, No. 2003.09. Bank. Yiśra’el,Mah. lak. at
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End of Charge Detection by Processing
Impedance Spectra of Batteries

Andre Loechte, Ole Gebert, and Peter Gloesekoetter

Abstract During the development of new battery technologies, high production
tolerances are likely to occur due to the number of manual manufacturing steps.
When putting these prototypes into operation, one of the most critical parameters is
the reliable state of charge detection. This can be challenging when parameters like
the capacity or the end of charge voltage are not precisely known due to the above-
mentioned tolerances. In the majority of cases overcharging should be avoided as it
harms the battery. This paper proposes a new criterion for detecting the end of the
charging process that is based on the rate of change of electrochemical impedance
spectra of the examined batteries. Device parameter fluctuations influence every
measurement. Therefore, using the rate of change offers the advantage of using
relative values instead of absolute values.

Keywords Electrochemical impedance spectroscopy · Battery analysis · State of
charge

1 Introduction

As part of the EFRE-0801585 research project, a battery system was developed that
uses rechargeable zinc-air batteries. An important research topic is the end of charge
detection, because the battery voltage is not suitable for the state of charge and end
of charge detection. The problem is intensified by the fact that the tolerances of the
manufactured batteries are still very large due to the novelty of the technology. This
publication describes a new procedure for the end of charge detection that works for
zinc-air batteries and can also be applied to other cell technologies.
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MotivationManufacturers usually have large tolerances during the break-in process
of a new technology. Frequently, the situation is tightened by the lack of process
automation. The resulting technological cell properties such as the porosity of the
electrodes, the resistance of the contacts or the amount of active materials are there-
fore not constant and to a greater or less extend unknown [1–3].

These tolerances are particularly problematic when they can lead to dangerous
situations. One of the most important exercises is finding a criterion which detects
the end of the charging process of the battery. This can be challenging when param-
eters like the capacity or the end of charge voltage are not precisely known due to
the tolerances. Furthermore, new battery types do not necessarily rely on the same
stopping criteria. For example, zinc-air secondary batteries do not offer an end of
charging voltage. Its charging current is not going to decrease when the battery is
completely charged and the charging voltage is held at a fixed value. But instead of
de-oxidising zinc oxide, hydrogen is produced [4].

In the majority of cases overcharging should be avoided as it harms the battery
[5]. Another even more dangerous consequence is the possibility of an explosion.
Especially, lithium-based batteries are known for their need for compatible ambient
and charging parameters [6].

Problem There are two problems for detecting the end of charge when working with
zinc-air secondary cells. On the one hand, the internal resistance of the batteries is
still relatively high compared to other battery technologies, so that manufacturing
tolerances and the charging current itself have a high influence on the measured
cell voltage [1]. On the other hand, alkaline electrolyte, which has a tendency to
electrolyse, is commonly used. The required voltage for activating the electrolysis
process is in the range of the cell voltage at the end of a charging process. Therefore, a
voltagemeasurement does not indicatewhether the applied current is used to increase
the state of charge of the battery or whether it performs an electrolysis [7].

Existing methods generally use fixed voltage limits to determine the state of
charge. During operation, however, they are difficult to apply due to fluctuating
tolerances. For example, an unknown internal resistance means that the internal cell
voltage cannot be determined either. Here, electrochemical impedance spectroscopy
is a promising measurement method.

Idea The idea behind the new end of charge criterion is to use the rate of change for
electrochemical impedance spectra. Impedance spectra are multiple measurements
of the impedance, that is, the AC resistance, at different frequencies. These differ-
ent measurements can be combined to form a spectrum. The spectra describe the
chemical processes within the cell and depend, for example, on the state of charge
or the state of health [8]. Of course, the spectra are also influenced by parameter
tolerances. Therefore, not the absolute impedance values are evaluated, but their rate
of change. Then, absolute parameter fluctuations are less dominant when subtracting
one spectrum from another.
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2 Data Generation

2.1 Equipment

Themeasurement setup is shown in Fig. 1. A computer withMATLAB is used to con-
trol a PC oscilloscope with a built-in arbitrary waveform generator and two voltage
measurement units (In 1 and In 2). During measurement, the waveform generator
outputs a sine wave that works as input signal for the current controller [9]. The
resulting alternating current component is applied to the battery under test (BUT)
and the voltage of a shunt resistor that is equivalent to the current is measured by
one of the voltage measuring units. The resulting alternating voltage response of
the battery is also measured at once. Then a Discrete Fourier Transform is used to
calculate the impedance at the given frequency. This procedure is repeated for a
logarithmically distributed set of frequencies between 100mHz and 5kHz. In order
to increase the precision of the voltage measurement, a microcontroller eliminates
the constant component of the battery voltage by a successive approximation. With-
out this compensation, the alternating component could barely be measured as its
amplitude of about 10mV is quite small compared to the direct component of about
2.45V. As the minimal voltage range of the 8-bit voltage measuring unit is ±50mV,
this results in an effective number of 5.67bits to measure the alternating component
of the voltage response. In a practical implementation, a microcontroller with built-in
ADC and DAC will later replace the computer and the oscilloscope, respectively.

Figure2 shows the circuit of the current controller that is based on the picoEIS
impedance analyser introduced by Martin Kiel. The actual current is measured by a
shunt resistor and an instrumentation amplifier that references the differential voltage
to Ground potential. The output of the instrumentation amplifier is also used by the
oscilloscope for measuring the current. An analogue PID controller compensates for
the difference between the desired current and the actual current. Since series resis-
tances of batteries are quite small, high stimuli are necessary. Therefore, the OPA549
operational amplifier is used to amplify the current output of the controller [9].

Matlab

USB

Serial
PC

sc
op

e

AWG

In 1

In 2

µC
with ADC

V

I

Offset

BUT
offset

Fig. 1 Structure of measurement equipment
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Power OpAmp

Shunt

Instr. Amp

PID Controller

Fig. 2 Schematic diagram of current amplifier

Fig. 3 Schematic diagram of measurement preprocessing

Figure3 illustrates the offset compensation of the battery voltage signal. An instru-
mentation amplifier provides high-impedance inputs that are separately connected
to the battery electrodes. Furthermore, the amplifier features a reference input that
is used to shift the output voltage. The output of the amplifier is connected to a
comparator that compares the shifted signal with Ground potential. First, the micro-
controller sets the most significant bit of the DAC value which drives the reference
signal. Then, it checks whether an overcompensation occurred by monitoring the
output of the comparator. If the output signal of the amplifier is still above Ground
potential the bit stays set, otherwise it is reset. Then the second most significant bit
of the ADC is set and these steps are repeated until all bits have been configured.
Finally, a low-pass filter implements an anti-aliasing filter.

2.2 Software

The software for generating data is implemented in MATLAB. A state machine is
used for periodically measuring impedance spectra while cycling the battery. Its state
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EIS

Qcharge > QlimitError
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Vbat < Vlimit

Error tstate > 30 min

tstate > tlimit

Error

Fig. 4 State diagram of cycling algorithm

diagram is shown in Fig. 4. Themachine starts with the charging process (CH).While
charging the cell, the charge current and the cell voltage are logged. By disabling
the offset compensation of the voltage signal, the oscilloscope is able to measure
both signals. Furthermore, impedance measurements are performed every 30min
(EIS). Since the generated data is used to develop a new end of charge criteria, the
impressed charge Qcharge is evaluated as the end of charge detection during data
generation by integrating the charge current. The charging process is stopped when
the estimated battery capacity is reached. The discharging process (DIS) starts after
a small recovery break (Pause CH). Once again, impedance measurements (EIS)
are performed every 30min and the battery current and voltage are logged. When
discharging the battery, the cell voltage Vbat can be used as a stopping criteria since
a major voltage drop occurs at the end of the discharging process. Then, after a
short break (Pause DIS), the charging process starts again. During all these described
states, the battery voltage, current and the communication to the hardware equipment
is evaluated. In case of an improper behaviour or a communication error, the error
state (Error) is executed and the stimulation of the battery is stopped.

The EIS measurement consists of several independent impedance measurements
at different frequencies. Each of these measurements starts with compensating the
voltage offset. Then, the alternating current is applied to the cell. Now, the sampling
of the current and the voltage signal starts for at least 3periods or 1 s depending on
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what takes longer. Finally, the alternating stimulus and the offset compensation are
stopped. These steps are repeated for a set of different frequencies. The stored results
comprise the time, state, transferred charge since start of state, frequencies that were
measured and voltage as well as the raw data of momentary current.

3 Data Processing

3.1 Processing of Raw Data

The first step of the data processing is the calculation of impedance values from
the raw data of the measured voltage and current signals. Due to the fact that the
measuring time of small frequencies lasts up to 30 s, the direct component of the
voltage measurement might change during the measurement. The voltage change is
particularly large at the beginning of charging or discharging processes due to the
initially high chemical diffusion processes. Figure5 shows exemplarily the voltage
signal of such a case.

The error that arises by this reason is minimised by subtracting a linear function
that models the development of the direct voltage component. Linear functions are
determined by two points. Therefore, the mean values of the first sine period (p1)
and the last sine period (p2) of a voltage signal is determined. Since the average of
both half-waves of one period zeros out, the remaining average value gives the offset
value pi,v of that period. The corresponding time component pi,t of the centre point
is the mid time point of that period. Therefore, the point (p1) of the first period is
given by its components:
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Fig. 5 Measured voltage signal whose direct component increases during the charging process



End of Charge Detection by Processing Impedance Spectra of Batteries 169

pi,v =
sp∑

s=0

vs

sp
,

pi,t =
sp∑

s=0

ts
sp

= 1

2 · f
.

Here, s implements a control variable that steps through the voltage measurement
samples vs and their corresponding time points ts . The number of values that cor-
respond to the period is given by sp and the frequency that is measured is given by
fk . The equation of a line that is described by p1 and p2 is then subtracted from
the raw measurement data. As one can see in Fig. 6, the error is almost completely
eliminated.

Then, the corrected voltage signal and the measured current signal are being
Fourier transformed to the transformed signals V and I . Since only the impressed
frequency is evaluated, the Goertzel algorithm is used in order to save computational
effort [10]. Finally, the actual impedance Z of frequency k is calculated by

Zk = V k

I k
.

Several impedances for a set of different frequencies are measured quickly one
after the other and can be connected to a spectrum. The resulting spectra of one
charging cycle are shown in Fig. 7. The colour of each characteristic specifies the
time point of the impedance measurement. Since a constant charging current is used,
the colour also represents the state of charge of the battery. Red spectra indicate an
empty battery (SoC = 0%) while red spectra belong to a fully charged or even an
overcharging battery (SoC = 100%). Each data point of a spectrum corresponds to
one measured frequency.

Typically, impedance spectra of batteries consist of several semicircles that are
produced by resistance and capacity combinations that model chemical reactions
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Fig. 6 Adjusted data after subtracting linear error function
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Fig. 7 Impedance spectrum colour weighted from red (SOC = 0) to blue (SOC = 100)

such as the diffusion process and double layer capacities [11–13]. The resulting
spectra do not alone depend on the state of charge, but on other parameters like the
working point, state of health, temperature, or the oxygen content as well. But the
current work focuses on the state of charge. While the differences of the spectra
between a full and an empty battery become small for high frequencies (left part
of the Nyquist plot), most variation can be found for impedance values building the
semicircle on the right-hand side. Therefore, the proposed method generates circle
models of the right semicircles and uses the development of their radii [14].

3.2 Processing of Spectra Data

There are two challenges when creating a circle model based on a spectrum. Firstly,
the semicircle on the right-hand side needs to be separated from the rest of the spec-
trum. For this type of battery, the development of the angle φ between the impedance
values and the real axis is a good feature for determining the splitting point. The
development is shown in Fig. 8. The first frequency index k = 0 corresponds to the
lowestmeasured frequency. Therefore, the values on the left-hand side in Fig. 8 corre-
spond to values on the right-hand side of Fig. 7. Since the radii of the high-frequency
circles tend to be much bigger than the radii of the important semicircles, the angle
values decrease strongly when reaching the frequencies of the left-hand semicircle.

The developed criterion is supposed to be robust to new battery prototypes and
independent from absolute values. That is why the derivative of the development
with respect to the frequency is used. Since a set of fixed frequencies is measured,
the derivative can be specified as a difference quotient of two following impedance
values with an interval of 1 (diff function). Furthermore, the threshold for finding
the index of the splitting point is based on the mean value of the spectrum itself. The
index of the splitting point is chosen to be

kspli t = ∂φ(Zk)

∂k
>

[
5 · RMS(

∂φ(Zk)

∂k
),

]
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Fig. 9 Resulting spectrum after cutting process

more specifically

kspli t = φ(Zk) − φ(Zk−1) >
[
5 · RMS(φ(Zk) − φ(Zk−1))

]
.

Figure9 shows one separated spectrum after the cutting process. As one can see
the cutting algorithm works quite well. However, the data is interfered with a lot
of noise due to the low-cost measuring setup. Therefore, the second challenge is
removing outliers from the spectrum before modelling the circles.
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Fig. 10 Visualisation of RANSAC algorithm

Here, the RANSAC (random sample consensus) algorithm gives good results
by finding outliers that are not used to calculate the circle model [15]. Figure10
illustrates the algorithm. First, three impedance points are selected randomly and
used to create an initial circle model. These three pints can either lead to a good
model (blue points) or to a bad model (red points). Then, all other impedance values
are tested against that model. If the distance between an impedance value and the
circle model is lower than 2% of the maximum absolute value of that spectrum, it
is considered as an inlier and the number of inliers is summed up. Good models
are characterised by a high number of inliers. These steps are repeated for 15 sets
of randomly chosen starting values. Finally, the algorithm picks the model with the
highest number of inliers.

After this, an optimised circle model is determined that uses all the impedance
values that are supposed to be inlier. Here, the optimised circle optimises the mean
squared error according to Bucher [16]. The relation of a circle is given by

(x − xc)
2 + (y − yc)

2 = r2

where xc and yc denote the centre of the circle and r the radius. Substituting

A = x2c + y2c ,

B = 2 · xc,

C = 2 · yc
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results in a linear system of equations:

⎡

⎢⎢⎢⎣

1 −x1 −y1
1 −x2 −y2
1 −x3 −y3
...

...
...

⎤

⎥⎥⎥⎦ ·
⎡

⎣
A
B
C

⎤

⎦ =

⎡

⎢⎢⎢⎣

x21 + y21
x22 + y22
x23 + y23

...

⎤

⎥⎥⎥⎦

that is solved using the least-squares solution of the system. Finally, the actual radius
is determined by inserting the solution into the equations above.

4 Evaluation

The idea of the algorithm is to detect the transition of chemical processes during
charging and processes during overcharging. Separately, the spectra of these pro-
cesses probably do not change that much. During the first phase, zinc is being de-
oxidisedwhich increases the state of charge of the battery.When the charging process
is close to finishing, an attending electrolysis process takes place which decomposes
the electrolyte. Since they are completely different reactions, there is perhaps a
detectable transition when the overcharging ratio increases. During this phase, the
ratio of de-oxidising zinc becomes smaller while the electrolysis process becomes
stronger. For that reason, the derivative of the radii with respect to the charged energy
is analysed. Since the impedance spectra measurements were time discretely taken
with a fixed charging current and a fixed sampling interval of 30min, the difference
between two following radii at measurement index n is used as derivative:

r ′(n) = ∂r(n)

∂Qcharged(n)
= rn − rn−1

Qcharged,n − Qcharged,n−1
.

The development of the absolute of the derivative during one charging cycle
is shown in Fig. 11. It is rather small at the beginning of the charging cycle which
means that the variation of the radii during the charging process is indeed quite small.
Then, it increases rapidly when 60A h has been charged. This behaviour probably
corresponds to the change of process types that leads to an increased variation of
the impedance spectra resulting in a higher derivative of the radii. After 85A h of
charging the variation becomes smaller once again. Here, the de-oxidising process
stops completely and only the electrolysis process takes place. Since the ratio of the
two processes is not changing anymore, the derivative becomes smaller.

The algorithmdetermines a threshold value that is based on the derivative values at
the beginning of the charging cycle. Even if the examined battery got big tolerances,
it is possible to act on the assumption that at least 33% of the aspired capacity
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Fig. 11 Development of gradient of radius of the circle models. The characteristic is divided into
several chemical processes

is reached. Thus, derivative values from the first third of the number of charging
cycles N are used to calculate the threshold Δrlimit . More precisely, the algorithm
uses the mean of the absolute values in that period. This also has the advantage of
independence from absolute values.

Δrlimit =
√√√√ 3

N

N/3∑

n=1

∣∣∣r ′(n)

∣∣∣ · 8

The resulting threshold value is also included in Fig. 11. Now, a battery is consid-
ered to be full if the absolute derivative of the radius is greater than the comparison
value: ∣∣∣

∂r(Qcharged)

∂Qcharged

∣∣∣> Δrlimit →
{
True Battery is full
False Battery is not full

In the case of this example battery, the target capacity of the produced cell is
100A h. However, although the battery was charged for 60h at 2A resulting in a
charged charge of 120A h, only 60A h could be taken during the subsequent dis-
charging cycle. Thus, the criterion withstands practical measurements. Figure12
shows the classification of each spectrum of the charging cycle. As expected the
spectra of a charging battery are located densely in a small area. In contrast, the
spectra of the overcharging battery vary greatly. The reason for this is that the spec-
tra during the transition are also assigned to this class.
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Fig. 12 Classification of impedance spectra into charging (green) and overcharging (red)

5 Conclusion and Outlook

A new criterion that is based on the rate of change of electrochemical impedance
spectra for detecting the end of charge of batteries has been proposed. The radius of
themost significant diffusion process in the spectrum is used as the decision criterion.
For this purpose, the key semicircle is separated and the noise of the measurement
data has been removed. By using the rate of change, absolute parameter fluctuations
of the batteries can be shortened out. These parameter fluctuations occur mainly in
the prototyping phase of development. The criterionwas successfully applied to zinc-
air battery prototypes. Here, the intended capacity was missed by a large amount.
Nevertheless, the algorithm managed to determine the end of charge correctly. This
could successfully be verified by massively overcharging a battery and comparing
the estimated end of charge point to the actual drawn energy during the following
discharge cycle.

Until now, the criterion has only been tested on rechargeable zinc-air batteries.
Due to the increased measuring effort, the presented procedure is mainly worthwhile
for battery technologies that cannot deduce the state of charge by a simple voltage
measurement. Crucial for the application in other cell technologies is the finding and
cutting out of decisive diffusion processes in the impedance spectra. Further testing
and research are needed here.

The process is also planned to be integrated into a battery management system
for rechargeable zinc-air batteries. This requires that both the hardware and the
software are integrated into an embedded system. Since the expected impedances and
frequencies are now known, we also hope to significantly increase the accuracy of the
impedance measurement. If possible, this can reduce the necessary computational
effort during preprocessing of the data and, for example, the use of the RANSAC
algorithm can be dropped.
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The Effect of Daylight Saving Time
on Spanish Electrical Consumption

Eduardo Caro, Jesús Juan, Marta Maña, Jesús Rupérez, Carlos Rodríguez,
Ana Rodríguez, and Juan José Abellán

Abstract In this work, two analyses are conducted to assess the impact of adopting
Daylight Saving Time (DST) on power consumption in the Spanish Electric System.
This study was carried out using the short-term electric load forecasting software
currently in use in the Spanish Transmission SystemOperator (TSO). The forecasting
software will simulate the case of electrical load in Spain without DST. The results
obtained denote that DST may have a positive impact on reducing electric energy
demand.

Keywords Electricity demand forecasting · Daylight saving clock change ·
Spanish electric power system

1 Introduction

Daylight Saving Time (DST) is the practice adopted by many countries worldwide
of advancing clocks during summer months (usually from March until October) so
that evening sunlight has a longer duration, while sacrificing normal sunrise times.
Consequently, DST is a measure to improve the use of available daylight during the
summer months, which results in a change in energy consumption.

Technical literature is rich in references concerning the effect of daylight-saving
time change on electricity consumption [1, 2]. The effect has been analyzed in several
countries and regions, such as Great Britain [3], Indiana [4], Ontario [5], Chile [6],
Turkey [7], Southern Norway and Sweden [8], Jordan [9], Kuwait [10], Australia
[11], Argentina [12], among others.

E. Caro (B) · J. Juan (B) · M. Maña
Universidad Politécnica de Madrid, Madrid, Spain
e-mail: eduardo.caro@upm.es

J. Juan
e-mail: jesus.juan@upm.es

J. Rupérez · C. Rodríguez · A. Rodríguez · J. J. Abellán
Red Eléctrica de España, Madrid, Spain

© The Editor(s) (if applicable) and The Author(s), under exclusive licence
to Springer Nature Switzerland AG 2020
O. Valenzuela et al. (eds.), Theory and Applications of Time Series Analysis,
Contributions to Statistics, https://doi.org/10.1007/978-3-030-56219-9_12

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-56219-9_12&domain=pdf
mailto:eduardo.caro@upm.es
mailto:jesus.juan@upm.es
https://doi.org/10.1007/978-3-030-56219-9_12


178 E. Caro et al.

Most of the above works indicate that the implementation of DST results in a
small reduction of electric energy consumption [1, 2]. In some studies, this effect
has been quantified: in Jordan, the load decreases 0.2% in general (reductions for
lighting, but increases for heating and cooling purposes) [9]; in Great Britain, in
Chile and in Turkey, the reduction is estimated around 0.3% [3], 0.55% [6], and 0.7%
[7], respectively. A higher reduction is reported in Southern Norway and Sweden,
indicating a decrease at least 1% in both countries [8]. In Ontario, for the evening
period, this reduction has been estimated to be 1.5%, approximately [5]. On the
other hand, other studies indicate that although the effect on total consumption is
negligible, it has a significant impact on the redistribution effect among hours; this
is the case of Australia [11]. Finally, other works indicates that this reduction is
not clear, or even mixed. This is the case of Argentina, observing an increment of
total electric demand between 0.4 and 0.6%, but a decrease in the peak consumption
between 2.4 and 2.9% [12].

Some analyses even show that DST implementation results in an increase in
energy consumption. This is the case of Kuwait, reporting an increment of 0.07%
[10]. In Indiana, an estimated 2–4% increase during the fall season, leads to a 1%
increment considering the whole year.

To the best of the Authors’ knowledge, not many works have been focused on
the Spanish case. In this work, the impact of adopting Daylight Saving Time on
consumption in the Spanish electric power system is assessed, using a detailed
simulation-based analysis. The simulation has been performed using the short-term
electric demand forecasting software currently used by Red Eléctrica de España,
REE (the Spanish transmission system operator) [13], estimating the most-likely
electric consumption without DST in Spain. Obtained results indicate that DST may
have a positive impact on reducing electricity demand.

The study conducted in this article is limited to measuring changes in electricity
demand on the days immediately following the time change. Firstly, using a demand
prediction model, which predicts the hourly demand values for the ten days imme-
diately following the case of DST removal in Spain. Secondly, by studying energy
demand in the weeks immediately before and after the time change. If DST favors
the saving of electrical energy, a significant reduction should be observed in March
when comparing the weeks before and after the change of time. And vice versa, in
October.

2 DST Effects on Consumption: Simulation-Based Analysis

In this section, the short-term electric load forecasting software is modified in order
to consider the sunlight effect. Then a simulation is performed, comparing the case
of (i) DST clock change, which is the real case, and (ii) disregarding the DST effect.
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2.1 Procedure

In order to perform the simulation, the load forecasting model must be slightly
modified first, to consider the daylight effect in a more realistic way. This procedure
comprises two steps: first, the sunset/sunrise times must be computed for Spain.
Second, the daylight duration information must be included in the model as an
exogenous variable (regressor).

Step (1) Computation of sunset and sunrise times

To obtain the exact time of sunrise and sunset hours, we have made use of the
Excel file created by the Department “Earth System Research Laboratory” (web
www.esrl.noaa.gov) pertaining to the agency “National Oceanic and Atmospheric
Administration” [14]. This datafile computes the sunrise/sunset moments given any
geographical location determined by its latitude and longitude.

In this study, three Spanish cities are considered: Madrid (located in the central
zone of the mainland), Barcelona (located in the Western region of the country) and
Santiago de Compostela (located in the Eastern region of Spain). The sunrise and
sunset times for the aforementioned three cities are provided in Fig. 1, for all de days
of the year, considering UTC time.

As it can be observed in Fig. 1, daylength varies throughout the year, and there
is a significant difference of sunrise/sunset times for the three selected cities: almost
45 min of difference between Barcelona and Santiago de Compostela. It should be
noted that the curves in Fig. 1 are always valid, no matter which year is considered.

In order to validate the previous values, we have accessed to the webpage of the
“SpanishNational Astronomical Observatory -National Geographic Institute”, from
the SpanishMinistry of Development. In theweb [15], a text file can be automatically
generated containing the sunrise and sunset times for a specific year of any of the
Spanish regions, considering local time. Figure 2 provides the sunrise (“Ort” column)
and sunset (“Ocas” column) local time for Madrid during the year 2018.

Fig. 1 Sunrise and sunset times for Madrid (MAD), Barcelona (BCN) and Santiago (SNT)

http://www.esrl.noaa.gov
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Fig. 2 Extract from the text file containing the sunrise and sunset times, from the Spanish National
Astronomical Observatory (Web page: www.fomento.gob.es/salidapuestasol/2018/Madrid-2018.
txt (accessed: 2019 June))

Since this database uses local time, and considering that the daylight-saving
change day varies depending on the year, the text files downloaded from [15] are only
valid for the specific year considered. In Fig. 2 it can be observed that the daylight
saving changes occur in March 25th and October 28th, causing one hour difference
of the sunrise/sunset time compared with the previous day.

Step (2) Implementation of the daytime regressor

The short-term electric load forecaster has been modified to include the daytime
information. According to the previous plot, depending on the day of the year, the
set of hours 6–7–8 a.m. and 6–7–8 p.m. may have sunlight or not. In other words, in
Spain, there is always sunlight from 9 a.m. to 5 p.m., no matter the period of the year.
Likewise, from 9 p.m. to 5 a.m., there are no sunlight in any day of the year. However,
the rest of the hours, depending on the period of the year, may have sunlight or not.

A set of 24 dummy variables (one for each hour) has been created, modeling the
daytime effect: lh,d ∈ [0, 1], where indexes h and d indicate the hour and the day.
For each hour h, the parameter lh,d is set to one if the h-th hour for the d-th day
has sunlight, lh,d = 0 otherwise. Figure 3 provides the values for the parameter lh,d

for a whole year and for hours comprised between 6 a.m. and 8 p.m., for the UTC
time and local time cases. Parameter lh,d is included in the forecasting model as an
exogenous variable (regressor).

http://www.fomento.gob.es/salidapuestasol/2018/Madrid-2018.txt


The Effect of Daylight Saving Time … 181

Fig. 3 Values for the parameters lh,d for hours h ∈ [6, 22], for UTC and local times. Yellow and
green color indicate lh,d = 1 and lh,d = 0, respectively

2.2 Case Study

Once the daytime information is included in the model, and considering the actual
implementation of the DST effect in the algorithm [13], the Spanish load short-term
forecasting software can be used to simulate the effect of considering/disregarding
DST. In the following subsections the cases of March and October are studied, for
year 2017.

Considering that the predicting model has been designed and created for short-
term forecasts (from one to ten days ahead), this study analyzes the effect of DST
on the local period close the clock-change day.

DST effect on March

Considering that the clock-change day took place on March 26th, 2017, the Spanish
load forecasting model has been used to predict the load behavior in case of: (i) the
DST effect and (ii) disregarding this effect. Both cases have been simulated at 0.00 h
on March 26th, 2017, generating forecasts from one to ten days ahead.

Figures 4 and 5 provide the forecasted load values for cases considering DST
(labeled as ‘DST ’) and neglecting DST (labeled as ‘no DST ’), and the observed
load. The difference between curves ‘DST ’ and ‘no DST ’ corresponds to the effect
of DST removal.

The effect of removing DST can be observed in Fig. 5: electric consumption
during 8 p.m. and 9 p.m. increases significantly.

From the daily consumption perspective, Table 1 provides the forecasted daily
electric load for both cases (fourth and fifth columns), and the increment of daily
demand in case of neglecting DST (sixth column). It can be observed that DST
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Fig. 4 Observed and forecasted electric load for the period: 25/03/2017–05/04/2017
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Fig. 5 Observed and forecasted electric load for DST on March 2017

Table 1 Forecasted daily load considering/neglecting DST: March 2017

March Daily electric load
(GWh)

Increment (%)

DST no DST DST versus no DST

Sunday 29/10/2017 d + 1 603.0 606.9 0.64

Monday 30/10/2017 d + 2 711.2 715.2 0.55

Tuesday 31/10/2017 d + 3 708.0 712.4 0.62

Wednesday 01/11/2017 d + 4 696.0 699.2 0.46

Thursday 02/11/2017 d + 5 687.9 694.4 0.95

Friday 03/11/2017 d + 6 675.6 685.7 1.49

Saturday 04/11/2017 d + 7 604.2 612.5 1.38

Sunday 05/11/2017 d + 8 559.0 566.8 1.40

Monday 06/11/2017 d + 9 663.5 673.8 1.55

Tuesday 07/11/2017 d + 10 680.4 690.9 1.54

Average (first five days) 681.2 685.6 0.65

Average (first ten days) 658.9 665.8 1.06
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Table 2 Effect of considering/neglecting the DST on hourly load: March 2017
MARCH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Sunday d+1 0.5 0.6 -3.5 -3.5 -2.0 -0.9 -0.7 2.7 0.9 3.9 3.0 0.9 -0.9 -0.6 -1.1 -1.3 -0.7 0.4 1.2 8.2 7.9 -0.3 -0.5 0.0
Monday d+2 -2.0 -1.7 -1.2 -0.6 -0.2 0.4 0.6 3.5 -1.2 0.0 -0.3 -0.5 -0.6 0.1 -0.1 0.1 0.5 0.9 1.1 6.8 6.4 -0.8 -0.3 0.8
Tuesday d+3 -1.3 -1.3 -0.8 -0.5 0.0 0.5 0.2 2.9 -1.6 -0.5 -0.4 -0.2 -0.2 0.4 0.4 0.4 0.6 1.0 1.3 6.7 6.5 -0.5 -0.2 0.6

Wednesday d+4 -1.0 -1.1 -1.0 -0.8 -0.5 0.0 -0.2 2.7 -1.7 -0.7 -0.7 -0.7 -0.5 0.2 0.6 0.4 0.3 0.6 1.1 6.3 5.8 -0.5 0.2 1.4
Thursday d+5 -0.4 -0.5 -0.3 -0.1 0.2 0.7 0.4 2.9 -1.3 -0.5 -0.5 -0.3 -0.1 0.6 0.6 0.8 0.6 1.0 2.1 7.3 6.7 0.1 0.5 1.6

Friday d+6 0.7 0.5 0.7 0.9 1.3 1.9 1.5 3.6 -0.9 0.4 0.3 0.5 0.7 1.2 1.1 1.0 0.7 1.0 2.2 7.0 6.4 0.4 1.1 1.9
Saturday d+7 0.7 0.4 0.5 0.7 0.7 1.4 0.9 3.4 0.1 0.8 0.5 0.1 -0.1 0.5 0.4 0.7 0.9 1.3 2.7 7.5 6.7 0.4 0.9 1.5
Sunday d+8 0.4 0.3 0.1 0.4 0.8 1.3 1.0 3.1 0.4 1.4 0.7 0.3 -0.3 0.3 0.7 0.9 1.1 1.5 3.1 7.3 5.7 -0.2 1.0 2.3
Monday d+9 0.8 0.7 0.7 0.7 1.1 1.6 1.3 3.2 -0.6 0.5 0.7 0.7 0.7 1.1 1.2 1.3 1.3 1.8 3.5 6.4 4.6 0.0 1.3 2.4
Tuesday d+10 0.8 0.7 0.7 0.7 1.1 1.6 1.3 3.2 -0.6 0.5 0.7 0.7 0.7 1.1 1.2 1.3 1.3 1.8 3.5 6.4 4.6 0.0 1.3 2.4

Average (first five days) -0.8 -0.8 -1.4 -1.1 -0.5 0.2 0.1 2.9 -1.0 0.4 0.2 -0.2 -0.5 0.1 0.1 0.1 0.3 0.8 1.4 7.0 6.7 -0.4 -0.1 0.9
Average (first ten days) -0.1 -0.1 -0.4 -0.2 0.2 0.9 0.6 3.1 -0.6 0.6 0.4 0.2 -0.1 0.5 0.5 0.6 0.6 1.1 2.2 7.0 6.1 -0.2 0.5 1.5

reduces electricity consumption around 0.65–1.06% for the days following the clock-
change day in March.

Table 2 shows the effect of DST on Spanish hourly load, for the period around
the clock-change day of March 2017. As it can be observed, there is an increment
of 6–7% at 8.00–9.00 p.m. Additionally, note that there is a redistribution of loads
between 8.00 a.m. and 9.00 a.m.

DST effect on October

As in the previous subsection, the Spanish load forecasting model has been used
to predict the load behavior with/without DST. During year 2017, the clock-change
day took place on October 29th, 2017. Both cases have been simulated at 0.00 h on
October 29th, 2017, generating forecasts from one to ten days ahead.

Figures 6 and 7 provides the forecasted load values for cases considering DST
(labeled as ‘DST ’) and neglecting the DST (labeled as ‘no DST ’), and the observed
load. The difference between curves ‘DST ’ and ‘no DST ’ corresponds to the effect
of not changing the clock on October 29th, 2017.

The effect of the clock change can be observed in Fig. 7: electric consumption
during 8 p.m. increases significantly. It should be noted that the sunset time changes
from 7.20 p.m. (28/10/2017) to 8.20 p.m. (28/10/2017). Consequently, public and
private lighting electric consumption commences one hour before.

H
ou

rly
 lo

ad
 (G

W
h)

Real
DST
no DST

Fig. 6 Observed and forecasted electric load for the period: 27/10/2017–07/11/2017
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Fig. 7 Observed and forecasted electric load for the DST on October 2017

From the daily consumption perspective, Table 3 provides the forecasted daily
electric load for both cases (fourth and fifth columns), and the increment of daily
demand in case of removing the clock change in October (sixth column). It can be
observed that the clock change increases electricity consumption around 0.65–1.06%
for the following days after the clock-change day.

Table 4 provides the local effect of removing the clock change in October 2017
on the hourly demand. As it can be observed, there is a decrement −6% at 8.00 pm.
Additionally, note that there is a redistribution of loads between 8.00 a.m. and 9.00
a.m.

Table 3 Forecasted load considering/neglecting the clock change: October 2017

October Daily electric load
(GWh)

Increment (%)

DST no DST DST versus no DST

Sunday 29/10/2017 d + 1 546.2 548.1 0.35

Monday 30/10/2017 d + 2 658.6 655.9 −0.41

Tuesday 31/10/2017 d + 3 671.6 667.1 −0.67

Wednesday 01/11/2017 d + 4 557.0 553.9 −0.55

Thursday 02/11/2017 d + 5 663.9 657.9 −0.90

Friday 03/11/2017 d + 6 679.5 672.1 −1.10

Saturday 04/11/2017 d + 7 607.1 603.3 −0.63

Sunday 05/11/2017 d + 8 554.0 552.7 −0.24

Monday 06/11/2017 d + 9 676.5 665.9 −1.57

Tuesday 07/11/2017 d + 10 698.9 688.0 −1.55

Average (first five days) 619.4 616.6 −0.44

Average (first ten days) 631.3 626.5 −0.73
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Table 4 Effect of clock change on hourly load: October 2017
OCTOBER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Sunday d+1 0.2 1.1 2.8 3.3 2.1 1.1 0.2 -3.6 -1.4 -3.5 -1.2 0.7 1.4 1.4 2.3 2.0 1.1 0.1 -3.5 -6.3 0.2 2.7 3.0 3.0
Monday d+2 2.2 1.2 0.7 0.3 -0.5 -0.9 -1.3 -4.1 1.4 0.4 0.4 0.2 -0.1 -0.5 -0.3 -0.5 -0.5 -0.6 -2.5 -5.4 -0.7 1.5 1.1 0.3
Tuesday d+3 0.6 0.5 0.3 0.1 -0.2 -0.7 -1.0 -3.8 1.4 -0.1 -0.1 -0.3 -0.4 -0.7 -0.9 -0.9 -0.9 -1.3 -2.5 -5.2 -0.9 1.4 0.7 0.1

Wednesday d+4 0.9 0.5 0.5 0.4 -0.3 -0.8 -0.7 -3.4 1.8 0.5 0.2 0.2 0.0 -0.3 -0.2 -0.6 -0.6 -1.0 -2.8 -5.7 -1.8 0.7 0.2 -0.6
Thursday d+5 0.3 0.3 0.5 0.3 -0.1 -0.5 -0.5 -3.0 1.5 0.1 -0.2 -0.4 -0.7 -1.2 -1.3 -1.5 -1.6 -1.7 -3.2 -5.3 -1.6 0.9 0.0 -0.7

Friday d+6 -0.3 -0.2 -0.2 -0.1 -0.7 -1.1 -0.8 -3.1 1.4 -0.4 -0.9 -1.2 -1.3 -1.8 -1.9 -1.4 -1.2 -1.3 -2.7 -4.8 -1.4 1.1 -0.1 -0.9
Saturday d+7 -0.3 -0.5 -0.7 -0.7 -1.0 -1.1 -0.6 -2.4 1.3 0.2 0.3 0.6 0.7 0.6 0.3 0.0 -0.2 -1.0 -3.4 -5.3 -2.1 0.8 -0.2 -0.8
Sunday d+8 0.2 0.5 0.5 0.5 0.2 -0.1 0.5 -1.6 2.0 0.5 0.5 0.8 1.1 0.7 0.9 0.8 0.4 -0.6 -3.4 -6.0 -3.2 0.8 0.4 -0.5
Monday d+9 -0.8 -0.7 -0.7 -0.7 -1.1 -1.6 -1.3 -3.2 0.6 -0.5 -0.7 -0.7 -0.7 -1.1 -1.2 -1.3 -1.3 -1.8 -3.4 -6.0 -4.4 0.0 -1.3 -2.4
Tuesday d+10 -0.8 -0.7 -0.7 -0.7 -1.1 -1.6 -1.3 -3.2 0.6 -0.5 -0.7 -0.7 -0.7 -1.1 -1.2 -1.3 -1.3 -1.8 -3.4 -6.0 -4.4 0.0 -1.3 -2.4

Average (first five days) 0.9 0.7 0.9 0.9 0.2 -0.4 -0.6 -3.6 0.9 -0.5 -0.2 0.1 0.0 -0.2 -0.1 -0.3 -0.5 -0.9 -2.9 -5.6 -1.0 1.5 1.0 0.4
Average (first ten days) 0.2 0.2 0.3 0.3 -0.3 -0.7 -0.7 -3.1 1.1 -0.3 -0.2 -0.1 -0.1 -0.4 -0.3 -0.5 -0.6 -1.1 -3.1 -5.6 -2.0 1.0 0.3 -0.5

3 Randomized Block Design and Paired Data Analysis

To further complement the previous analysis, another study has been carried out
regarding the daylight-saving time effect on the Spanish electric load. The focus of
this study has been the analysis of historical data and two different models have
been implemented, based on the well-established statistical techniques Randomized
Block Design and Paired Data Analysis [16].

3.1 Period of Study

Since DST has been implemented in Spain every year since 1974, there is no data
available of the electric load when this policy was not applied and, consequently,
it is not possible to compare real data of applying and not applying this policy. For
this reason, it has been decided to focus the study on a period surrounding both
dates of the year in which the clocks are changed, analyzing the data from the days
immediately before and after DST was applied.

A period of two weeks prior and two weeks after the implementation of the DST
clock change has been considered (see Fig. 8), in order to locally evaluate its potential
effect on the electric load.

The reason behind the selection of only four weeks for this analysis is due to
some external variables that affect the data during such a period. The comparison
between only two weeks would have disregarded important information surrounding
the desired date, however, a period of six weeks would have meant studying dates

Fig. 8 Four-week period of data used to study DST locally
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almost one month prior and after the DST, therefore implying an excessive variation
in exogenous factors which could interfere with the obtained results.

3.2 Exogenous Factors Removal

The electric load is highly dependent on the temperature. With higher temperatures
the electric consumption increases due to the use of air conditioners, similarly to
what happens during the colder months with heating systems. As a consequence,
peak consumption is found in summer and winter and a decrease during the rest of
the year with milder temperatures.

As shown in Fig. 9, both clock-changes happen when the electric load is adjusting
to the varying temperature. In March, the electric consumption diminishes as the
temperature rises and, in October, it grows as winter approaches.

In addition to the temperature effect, holidays also play an important role in
explaining the daily electric load. National, regional and local holidays reduce
economic activity as service and industrial sectors cease their operations. Conse-
quently, a reduction in consumption is observed on holidays and on the days around
them.

It should be noted that two national holidays fall on both analyzed four-week
periods. Easter is usually celebrated in a week at the end of March or the beginning
of April, so, for most years considered, one of the four weeks around the March
clock-change would be affected. In addition, November the 1st is All Saints’ Day,
which coincides with the third week studied for the October clock-change every year.

Fig. 9 Monthly load evolution during 2018. Seasonality and clock-changes
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3.3 Data Used in This Study

As a result of the previously explained contamination of the historical data due to the
effects of temperature variation and holidays, the historical data used for this study
has been slightly modified to take these effects into account.

The previously mentioned short-term electric demand forecaster considers both
effects of temperature and holidays. The temperature is modeled using the daily
average maximum temperature for the ten highest populated cities in the Spanish
mainland. For holidays, several variables are used to include the scale, day of the
week, affected population, among others. Using this forecaster, the most-likely elec-
tricity consumption for the studied eight weeks without these external effects is
obtained, providing a dataset of the electric load from 2006 to 2018 free of these
external effects, which results in an easier estimation of the DST effect in those
periods.

3.4 Implemented Models

If applying the DST policy did contribute to energy savings, an expected decrease in
demand should take place after setting the clocks forwardon the last Sunday inMarch,
and a consequent increase should take place after setting the clocks back in October.
Twomodels have been implemented to evaluate this hypothesis: a RandomizedBlock
Design and a Paired Data Analysis [13].

The Randomized Block Design can be represented with the following general
form:

Yi j = μ + αi + β j + εi j

where Yi j represents the electricity consumption in the i-th period (before or after
DST) and on the j-th day of the week, parameter μ accounts for the average global
effect, αi picks up the effect for being in the i-th treatment, and β j is the effect for
being in block j.

This generic form was modified to include four levels in factor αi (one for each
week) instead of only two treatments (before DST, after DST). This way, the hypoth-
esis testing will also reveal fluctuations in demand, and the inferences will be more
robust.

For the Paired Data Analysis, the samemethodology has been applied, but instead
of separating the electric demand into two samples, four samples have been consid-
ered to conform four groups from which to create comparisons, for each year and
day of the week, amongst the paired data (see Fig. 10).
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Fig. 10 Paired data analysis comparisons

3.5 Case Study

The electric load has been presented in Tables 5 and 6 to back up the inferences. These
include the daily demand for each day of the week during the four-week periods.

The implementation of both models and the hypothesis testing of this data have
concluded in the following findings:

• The variation in electric load between the first two weeks before DST is
insignificant, it is concluded that there is not any significant difference between
them.

• Significant differences have been noted betweenweeks 2–3; and 3–4, respectively.
These are shown in Table 7; and Fig. 11 shows daily load values for these weeks.

In Fig. 11 it can be observed that right after the application of the DST policy—
when passing from the second to the third week—there is a change in the behavior
of electricity consumption after both the March and October clock-changes.

Table 5 Daily demand (GWh) 2006–2018. Four weeks around March DST

Week/Day Mon Tue Wed Thu Fri Sat Sun

1 739.2 752.6 747.1 746.0 741.9 668.7 611.9

2 729.7 753.5 753.3 749.2 744.2 671.2 612.4

3 730.9 746.7 749.3 737.5 736.8 661.8 605.7

4 723.0 738.9 742.7 735.5 732.2 656.7 599.1

Table 6 Daily demand (GWh) 2006–2018. Four weeks around October DST

Week/Day Mon Tue Wed Thu Fri Sat Sun

1 700.2 726.1 730.9 730.1 727.0 654.9 594.2

2 710.9 731.2 732.1 730.1 724.0 650.2 592.8

3 714.2 735.5 734.7 737.2 734.5 657.8 598.8

4 721.4 739.6 745.9 746.4 742.6 668.2 614.6
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Table 7 Increment (%) in
electric demand among the
four weeks

Increment among weeks 2–1 3–2 4–3

March DST (%) 0.12 −0.89 −0.82

October DST (%) 0.16 0.85 1.35

Fig. 11 Average daily demand for each week (GWh)

Both changes have been noted as almost identical in value (decrease of 0.89%
by the March clock-change and increase of 0.85% by October’s) which could be
seen as two symmetrical movements. This is also in accordance with the hypothesis
previously stated: the potential energy savings would translate into a reduction of
the electric load when clocks go forward for summertime, as opposed to an increase
when clocks go back.

Having removed the influence of exogenous factors that could have affected elec-
tricity demand during the weeks of the study (temperature and holiday effects), and
considering the above results, these variations in demand can be attributed to the
application of DST policy on those dates.

4 Conclusions

In this work, the short-term Spanish load forecast model has been slightly modified
to consider the daylight duration, and it has been used to simulate the effect of
disregarding DST on March 2017, and the effect of disregarding DST in October,
2017.

According to the performed numerical simulations, the DST change in March
produces a decrement of electric daily load consumption around 0.6–1.0% in 2017
(decrement of 6–7% between 8.00 p.m. and 9.00 p.m.). On the other hand, the DST
change in October causes an increment of daily demand about 0.4–0.7% (increment
of 5% at 8 p.m. due to public and private lighting demand).

Additionally, a statistical analysis has been performed during the period 2006–
2018, using the techniques of randomized block design and paired data analysis. The
obtained results from the analysis report a variation of almost 0.9% in the electric
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demand after both clock-changes.When setting the clocks forward, the electric power
consumption decreases 0.89% and setting them back increases it in 0.85%. Both
values are in accordance with what was observed in the numerical simulations.

The above results refer exclusively to the variations in demand observed on the
days immediately before and after the time change. It appears that the time shift
causes a slight reduction in electricity demand of around 1% during summer time,
although with the information available it is not possible to ensure that this reduction
is maintained for the whole summer period.

Acknowledgements This work has been funded by Red Eléctrica de España (REE) as a R&D
project.
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Wind Speed Forecasting Using Kernel
Ridge Regression with Different Time
Horizons

Mohammad Amjad Alalami, Maher Maalouf, and Tarek H. M. EL-Fouly

Abstract Wind speed forecasting is a challenging task due to the high variability of
wind data. Thus, advanced forecasting tools and models are required for predicting
wind speed and wind power. In this chapter, a powerful non-linear regression method
known as Kernel Ridge Regression (KRR) is proposed and adopted for wind speed
forecasting. Themodel performance accuracy is comparedwith two reference predic-
tion models, namely, the Least Squares (LS) model and the persistent model. For
the KRR and LS models, the moving window cross-validation was used. Cross-
validation aims to validate whether the model is heading to the right direction or
not. A historical wind speed data from East Point, Prince Edward Island, Canadian
weather stations was used to validate the models performance for three different
forecasting horizons (1 h, 12 h, and 24 h ahead). Results show that forecasts made
with the KRR produced the highest accuracy compared to the LS and the persistent
models.

Keywords Wind speed forecasting · Kernel ridge regression · Least squares model
and persistent model

1 Introduction

Nowadays, the interest in using renewable energy is increasing to mitigate the nega-
tive impact of conventional energy resources on the environment. Wind power is
considered as one of themost rapidly growing renewable energy resourceworldwide.
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In 2018, renewable power capacity grew to approximately 2,378 GW globally. For
four consecutive years, additions of renewable power generation capacity outpaced
net installations of fossil fuel and nuclear power combined. 55% of the renewable
capacity was utilized by the installation of solar Photovoltaics (PV), followed by
wind power (28%) and hydropower (11%). Overall, renewable energy has grown to
account for more than 33% of the world’s total installed power generating capacity
[1]. Also, the usage of wind power is growing by 30% every year [2]. According
to wind energy and green peace organization vision, almost 12% of the electricity
generated will be through wind power by 2020 [3].

Energy generated through wind is mainly depended on its speed. Wind speed
varies from one site to another depending on various factors. Therefore, wind power
is intermittent in nature. This presents a great challenge for power systems opera-
tors when large wind power installations are being integrated into their electricity
network. Therefore, as the penetration of wind power through the power system
increases, the system’s operations will be influenced such as generation dispatch and
identifying generation reserve needs. This requires accurate forecasting of available
wind generation [4]. As the usage of wind power grows dramatically, and due to
the fact that the wind speed data is highly variable, multiple obstacles raise such as
power system stability and reliability and transmission capacity upgrade. Therefore,
many forecasting models were introduced to overcome these challenges [5].

Many methods have been developed for wind speed forecasting that are divided
into two categories. The first category is the physical method which aims to find
the highest forecast precision via many physical considerations. The other method
is the statistical, with the help of machine learning, it focuses on finding the relation
with the real time measured wind speed data. Physical method has been known in
reflecting better results in long-term forecasts compared to the statistical method that
does well in short-term [6]. In order to precisely predict wind speed, powerful models
are required. In this chapter, a Kernel Ridge Regression (KRR)model is proposed for
the wind speed forecasting procedure. The model performance accuracy, for wind
speed forecasting, is compared with two reference prediction models, namely, the
persistent (naïve) model and the least squares model [7].

Each forecasting model is examined in three different time horizons reflecting
short-term, medium-term, and long-term forecasts. Table 1 shows the time horizons,
category and the application for each forecasting time horizon [8].

This chapter is organized as follows: Sect. 2 presents the forecastingmodels under
investigation. Section 3 describes the assessment methodology followed throughout
the research. Results and analysis of the three forecasting models with different time
horizons are presented in Sect. 4. Finally, conclusion is drawn in Sect. 5.
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Table 1 Application of
forecasting for different time
horizons

Time horizon Category Purpose

One hour Short term • Planning capacity
dispatch

• Load increment or
decrement actions

Twelve hours Medium term • Generator on/off line
choices

• Operational daily
security

• Ahead time electricity
market

Twenty-four hours Long term • Unit commitment
decisions

• Requirement reserve
actions

• Obtain a schedule for
maintenance

• Reduce cost of operation

2 Forecasting Models

2.1 Persistent Model

The persistent model is based on the theory that there is a high correlation between
the present and future values of the wind speed. The model uses a simple technique
to predict the wind speed of the next hour (next time step). It states that the predicted
wind speed of the next hour is the same value as the current observation. This can
be modeled using the following generalized linear equation.

Yt+b = yt (1)

where Yt+b is the predicted wind speed at time t+ b, and yt is wind speed observation
at time t. This method is widely used by meteorologists as a reference to predict the
next hour wind speed. When using a time horizon of 12 h, the model will predict that
the wind speed of the upcoming 12 h is all equal to the current wind speed value.
Thus, the accuracy of this model reduces with the increase of prediction horizon due
to the high fluctuation of wind speed data [9, 10].

2.2 Least Squares Model

The Least Squares (LS) model aims for reducing the squared errors between
the forecasted and actual value. As a result, the model finds the best-fit line. Similar
to a straight line equation, the mathematical formula of the LS model is as follows
[11, 12]:
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y = Xβ + ε (2)

The β is estimated by minimizing the following equation:

n∑

i=1

ε2n = εT ε = (y − Xβ)T (y − Xβ) (3)

where ε = (ε1, ε2, ε3… , εn)T is the error, given that the errors have a constant variance,
normally distributed, and linearly independent. The Eq. (3) is known as the objective
function. Assuming that the (XTX) is a non-singular matrix, the solution is [13]:

β = (
XTX

)−1
XTy (4)

2.3 Kernel Ridge Regression

Unlike the LS model, the Kernel Ridge Regression (KRR) model does not assume
linearity of the data but it takes the data into another dimensional space by including
a non-linear map φ(.). The mapping φ(.) is based on the dot product. The kernel
function uses the dot product such that the K matrix is equal to the following [14]:

K
(
xi, xj

) = (
φ(xi), φ

(
xj

))
(5)

Regression focuses on producing a model y = f(x) that optimally connects
independent variables x and dependent variable y. Linear regression assumes the
following equation:

y = f(x) = xTβ + ε = y1 + ε (6)

Gathering all inputs in matrixX and all outputs in y, the linear regression equation
is given by

y = f(X) = Xβ + ε = y1 + ε (7)

In order to minimize the error (ε), the β needs to be optimized

β = argmin (M(β)) (8)

The total error is minimized by

M(β) = 1

2
Σε2 = εεT = 1

2
(y − y1)

T(y − y1) = 1

2
( y − Xβ)T( y − Xβ) (9)
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The solution of the optimization problem, ∇β M = 0, is given by the inverse of the
data matrix X, as shown below

β = (
XTX

)−1
XTy (10)

To avoid inaccurate estimation of the regression coefficients due to the instability
of the outcome of Eq. 10, regularization is used by addingλwhich adjusts the penalty
term. Thus, ridge regression minimizes the adjusted objective function:

M(β) = 1

2
εTε = 1

2
(y − Xβ)T(y − Xβ) + 1

2
λβTβ (11)

After the optimization process:

β = (XTX + λId)
−1XTy (12)

where the Id is a d by d identity matrix.
The dual form is introduced to spread to non-linear relations. By expressing β as

linear combination of the data points:

β = XTα (13)

Substituting Eq. 13 back to the regression model in Eq. 7, the following equation
is obtained

y = XTXα + ε = Gα + ε (14)

where G is Garmain matrix which equals to XTX.
The objective function is minimized to terms of α, the new coefficient vector:

f(α) = 1

2
(y − Gα)T(y − Gα) + 1

2
λαTα (15)

The solution is then expressed by

α = (G + λIN)−1y (16)

KRR is a powerful model when the data is assumed to be non-linear [15, 16].

3 Methodology

In order to examine each model, historical wind data from East Point, Prince Edward
Island, Canadian weather stations was used with the following variables wind speed,
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wind pressure, humidity, and wind direction. Also, each model is tested for three
different forecast time horizons (1 h, 12 h, and 24 h ahead). The models were
compared using five Key Performance Indicators (KPIs), the Mean Square Error
(MSE), the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), the
Mean Absolute Percentage Error (MAPE), and the coefficient of determination (R2).
The KPIs helped to shed a light on the best model as a predictor of the East Point
Canadian Wind data.

For the KRR and LS models, the data is divided into two sets, the training, and
testing sets. For example,whenpredicting thenext hour of thewind speed, the training
set consists of only 24 h and the testing is 720 data points which are equivalent to
30 days. As each data point represents an hour, a day will consist of 24 consecutive
data points. Also, the moving window cross-validation is used in order to update the
training set [17]. If the training set consists of 24 h, after predicting the next hour,
the training set will drop its oldest data point by replacing it with the actual wind
speed value. The independent variables for each model are different depending on
the R2 value. All the possible combinations of the independent variables were tested
and only the variables with the highest R2 are selected. The models are developed
and the results were generated using MATLAB-R-2017B.

4 Results and Discussion

4.1 One-Hour Ahead Time Horizon

When using one-hour time horizon, the training and testing sets update once every
hour. The training set consists of 48 h and the testing set is the proceeding data
point. Table 2 shows the coefficient of determination known as the R2 value and the
independent (input) variables for each model when the time horizon is set as one
step (hour). The KRR scores the highest R2 value compared to the persistent and LS
models. Therefore, the KRR predictions are closer to the actual value.

Figures 1, 2, and 3 show the relation between the actual and forecasted values
of the original data set using the KRR, Persistent, and LS models, respectively, for
one-hour time horizon. The closer the data points are toward the linear (red) line,
the more accurate the model is. Those figures reveal better predictions of 1-h ahead
wind speed data when using KRR model compared to other models.

Table 2 Models accuracy—time horizon = 1

Model Input variable(s) R2 value

KRR Wind speed, direction, pressure, and humidity 0.97

Persistent Wind speed 0.89

LS Wind speed, direction, pressure, and humidity 0.88
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Fig. 1 Actual versus forecasted KRR values

Fig. 2 Actual versus forecasted persistent values

Fig. 3 Actual versus forecasted LS values

The averageMSE, MAPE, RMSE, andMAE values of each hour is calculated for
eachmodel and averaged for the whole test data. The lower these values are, themore
accurate the model is. Table 3 shows the average of all the 720 forecasted values,
when testing the three models. The KRR generates the lowest averages of MSE,
RMSE, MAE, and MAPE. The second-best model is the persistent model according
to the averages of the measurements of error. Figure 4 shows the forecasted values
by the three models against the actual data points for four tested days reveal that
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Table 3 Average measurements of error—time horizon = 1

Model MSE RMSE MAE MAPE

KRR 5.00 2.24 1.00 0.07

Persistent 15.53 3.94 2.89 0.22

LS 15.82 3.98 3.00 0.24

Fig. 4 Sample of actual versus forecasted wind speed—time horizon = 1

the predicted values generated by the KRR model are the closest to the actual wind
speed data as the KRR model accurately traces the actual data point.

4.2 Twelve-Hours Ahead Time Horizon

When applying twelve-hours ahead time horizon, the training and testing sets update
after predicting twelve hours (once every 12 h or twice daily). Hence, the influence of
the fluctuation of the wind speed data on prediction accuracy increases. The training
set consists of 168 h and the testing set contains the 12 consecutive proceeding data
points. Table 4 presents the R2 value and input variables for each model when the
forecasting time horizon is twelve hours ahead. The KRR generates the highest R2

value compared to the persistent and LS models. Therefore, the KRR predictions are
closer to the actual value compared to the other models.

Figures 5, 6, and 7 present the relation between the actual and forecasted values
of the original data set using the KRR, persistent, and LS models, respectively, for

Table 4 Models accuracy—time horizon = 1

Model Input variable(s) R2 value

KRR Wind speed, direction, pressure, and humidity 0.71

Persistent Wind speed 0.47

LS Wind speed, direction, pressure, and humidity 0.29
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Fig. 5 Actual versus forecasted KRR values

Fig. 6 Actual versus forecasted Persistent values

Fig. 7 Actual versus forecasted LS values

twelve-hours ahead time horizon. Once again those figures reveal better predictions
of 12-h ahead wind speed data when using KRR model compared to other models.

TheMSE,MAPE,RMSE,MAE, andMAPEvalues of each hour are calculated for
each model and averaged for the whole test data. Table 5 shows those average values
for all the 720 forecasted points using the three models where the KRR generates
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Table 5 Average measurements of error—time horizon = 12

Model MSE RMSE MAE MAPE

KRR 39.32 6.27 4.85 0.39

Persistent 83.10 9.11 7.16 0.56

LS 126.54 11.25 8.65 0.70

Fig. 8 Sample of the actual versus forecasted wind speed—time horizon = 12

the lowest averages of MSE, RMSE, MAE, and MAP the measurements of error E
followed by the persistent model.

Figure 8 presents a sample of the forecasted against the actual wind speed for
four days. The forecasted values by the KRRmodel are the closest to the actual wind
speed.

4.3 Day-Ahead (Twenty-Four Hours Ahead) Time Horizon

When using twenty-four-hours ahead time horizon, the training and testing sets
update after predicting 24-h points (once every day). Table 6 shows the coefficient
of determination value and input variables (independent variables) for each model
when the time horizon is twenty-four. The KRR scores the highest value of R2 value
compared to the LS and persistent models. Thus, the KRR predictions are closer to
the actual value.

Similar to the previous analyses, Figs. 9, 10, and 11 present the relation between

Table 6 Models’ accuracy—time horizon = 24

Model Input variable(s) R2 value

KRR Wind speed, direction, pressure, and humidity 0.54

Persistent Wind speed 0.27

LS Wind speed, direction, pressure, and humidity 0.08
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Fig. 9 Actual versus forecasted KRR values

Fig. 10 Actual versus forecasted persistent values

Fig. 11 Actual versus forecasted LS values

the actual and forecasted values of the original data set using the three models for
24-h ahead time horizon. Moreover, Table 7 shows the average values for the MSE,
MAPE, RMSE, MAE, and MAPE over the whole test data set of 720 forecasted
values using the three models. The results reveal better predictions of 24-h ahead
wind speed data when using KRR model compared to other models. Furthermore,
KRR generates the lowest averages of MSE, RMSE, MAE, and MAPE. Finally,
Fig. 12 presents a sample of the forecasted against the actual wind speed for four
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Table 7 Average measurements of error—time horizon = 24

Model MSE RMSE MAE MAPE

KRR 62.56 7.91 6.42 0.54

Persistent 129.67 11.39 8.80 0.65

LS 131.24 11.46 9.49 0.83

Fig. 12 A sample of actual versus forecasted wind speed—time horizon = 24

days which shows that the forecasted values by the KRR model are the closest to the
actual wind speed.

5 Conclusion

Predicting wind speed and wind power is essential to enable high penetration levels
of wind energy resources into power systems. Wind speed data is highly variable
and requires powerful methods for forecasting purposes. In this chapter, wind speed
forecasting based on using the Kernel Ridge Regression (KRR) has been presented
and evaluated. The MSE, RMSE, MAE, MAPE, and the R2 value were set as Key
Performance Indicators (KPIs) to compare the forecasting accuracy of the proposed
KRR model and two reference models, namely, the least square and persistence
models. The accuracy of the proposed forecasting methods is compared for three
different time horizons (1 h, 12 h, and 24 h ahead). As expected, it was observed that
with the increase of the lead time (horizon), the accuracy of each model decreases.
The KRR model generated the highest accuracy compared to the persistence and LS
models in all the given time horizons. Thus, KRR models can accurately be used for
wind speed prediction.
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Applying a 1D-CNN Network
to Electricity Load Forecasting

Christian Lang, Florian Steinborn, Oliver Steffens, and Elmar W. Lang

Abstract This paper presents a convolutional neural network (CNN) which can be
used for forecasting electricity load profiles 36 hours into the future. In contrast to
well established CNN architectures, the input data is one-dimensional. A parameter
scanning of network parameters is conducted in order to gain information about the
influence of the kernel size, number of filters and number of nodes. Furthermore,
different dropoutmethods are applied to theCNNand are evaluated. The results show
that a good forecast quality can already be achieved with basic CNN architectures,
the dropout improves the forecast. The method works not only for smooth sum loads
of many hundred consumers, but also for the load of single apartment buildings.

Keywords Energy load forecasting · STLF · Neural networks · CNN ·
Convolutional networks

1 Introduction

There is no dispute in the scientific community that human-induced climate change
is real. The effects of climate change are, for example, rising sea levels, an increasing
CO2 concentration in the atmosphere, and more regularly occurring extreme weather
events, to name only a few of them[1, 2]. To slow down and stop the global warm-
ing, it is crucial to reduce the generation of greenhouse gases, especially in energy
production. One of the keys to accomplish a reduction is to establish more renewable
energies in the energy market. By doing so, power plants that produce high levels of
CO2, like coal power plants, can in the long term be substituted by renewable energy
sources. Another key to minimise the emission of greenhouse gases is to decrease
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Fig. 1 Schematic of the new heating system. The red lines symbolise heat transport using water
and the green lines symbolise electricity transport

the total energy consumption and to increase energy efficiency in consumption and
production.

In the research project MAGGIE [3, 4], we try to address all of the above men-
tioned challenges. The goal of the research project is to energetically modernise
existing historic apartment buildings and draft a concept for sector coupling in city
districts. In the first step, one exemplary building will be modernised and evaluated.
Afterwards, the whole city district will be modernised in a similar manner. In order
to decrease the heat consumption of the building the thermal insulation is renewed
and in the course of the research project new insulations are in development. In
addition, a new heating system (see Fig. 1), with an innovative control system is
implemented. This heating system allows increase in energy efficiency and can help
integrate renewable energy sources into the power market. The core of the system
is a combined heat and power plant (CHP), and a heat pump. All of them generate
thermal energy, the heat pump from electricity and the CHP from fuel. The thermal
energy is used to heat the water of a buffer storage, which is then, in combination
with a heat exchanger, used as process and drinking water. In addition, the CHP
generates electricity, as does a photovoltaic system (PV system) installed on the roof
of the building, which can then be used to either power the heat pump or supply the
habitants with electricity. A connection to the power grid receives surplus electricity
and ensures there is always enough electricity available [5].

By utilising both forms of generated energy, the total energy efficiency of the
system is nowadays higher than that of a conventional heating system, for example,
a gas-fired boiler, in combination with electricity from the power grid [6].
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All parts of the energy system are monitored continuously and can be controlled
independently and remotely by the control system, which allows one to shift the pro-
duction and consumption of heat and electricity in time and between the participants
of the system by heating and using the water at the needed times. This allows for
optimisation of the machine schedules depending on an optimisation target. Those
targets can, for example, be self-sufficiency or cost-reduction.

After the modernisation of the entire city district, the energy systems of all houses
in the district or even of several districts can act as a virtual power plant (VPP). This
VPP can then work as a baseload power plant using electricity from the PV system
during the day, from the CHP during the night, and reduce the volatility of the
produced electricity from the PV system with the CHP and heat pump. The VPP
can thereby integrate photovoltaics in the power grid without the drawback of its
volatility. The VPP can also help to stabilise the power grid by using surplus or
supplying lacking electricity to the power grid, and therefore, assist with integrating
renewable energies into the power market.

The main challenge of the system consists of knowing the electric and heat load
of the building and its inhabitants. The loads are crucial for schedule optimisation,
as the feed-in into the power grid and the consumption from the power grid have to
be reported to the power grid operator in a 15min grid one day in advance at noon.
Deviations in the heat load can be buffered with the heat buffer, deviations in the
electric load, however, cannot be buffered in any way. Therefore, the focus of this
paper is on forecasting electricity loads.

2 Smart Meter Data

In twodirectives [7, 8], theEUoutlined their decision to establishSmartMeter devices
in the energy sector throughout the entire European Union with the aim to enable
customers to better monitor and manage their consumptional behaviour. A Smart-
Meter, in contrast with a conventional electric meter, records the energy consumption
at least every 15min or in even shorter periods. In this paper, the data of the CER
Smart Metering project [9] is used. The dataset consists of individual SmartMeter
data from over 5000 Irish homes and businesses recorded for 18months. In that
project, the electricity consumption was measured every 30min. However, it should
be easy to apply the results of our research to data recorded in a 15min grid.

As the electric load of a single household is highly volatile, and therefore, impos-
sible to predict, sum load time series of 15, 40 and 350 randomly picked households
were created. Those time series correspond to a small apartment building, a big
apartment building, and a whole city district. Figure2 shows an exemplary day of
the mentioned time series.
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(a) Load of a single household (b) Combined load 15 households

(c) Combined load 40 households (d) Combined load 350 households

Fig. 2 a Shows a load time series of a single household. b–d Show each an exemplary day of the
combined load time series. The different extracts display how volatile the load of a single household
is and that the volatility decreases when households are combined

3 Importance of Time Series Forecasting

The electric load forecast is crucial in order to fully utilise the possibilities of the
implemented heating system and similar systems. Without a good forecast, a part of
the heat buffer capacity has to be withheld in order to balance the deviation in the
electric load by the CHP. The prediction horizon in our case is h = 72 samples as
36 h have to be predicted in a 30min grid.

There are already several publications about time series forecasting and short-term
load forecasting (STLF) [10, 11]. However, most of the methods predict either only
one or very few time steps in the future, or are applied on load time series of whole
cities/states which are, due to the properties of statistics, way smoother than the load
time series of one building. Those smooth time series can be described properly with
statistical methods when external factors (e.g. the weather) are taken into account.
Therefore, their shape and features are also easy for neural networks to learn. None
of the methods mentioned in recent publications, however, are designed to predict
the electric load of only one building.

In the next chapter, we propose the use of Convolutional Neural Networks (CNN)
for time series prediction that can predict several time steps and can handle a volatile
input. We report the first results of different network structures and discuss their
parameters. Then, we optimise those parameters for forecasting our electricity load
time series.
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4 Convolutional Neural Networks

Convolutional Networks, in the way they are used nowadays, were first introduced
by LeCun et al. [12] for zip code recognition. Since then, they were further developed
and are now the standard for image and pattern recognition.

CNNs usually consist of convolutional layers, pooling layers, and fully-connected
layers. In the convolutional layers, a set of feature maps, also called activation maps,
are created. Each neuron in the feature map is only connected to a subset of neurons
in its input layer. All neurons of the feature map share the same weights, thereby
reducing the number of parameters significantly compared to a fully-connected neu-
ral network. In the most common CNN architectures, pooling layers alternate with
convolutional layers. The pooling layer reduces the spatial dimension of the feature
maps for the next computational steps in order to minimise the computational load
and to avoid overfitting. At the end of the network, after an arbitrary number of the
prior layers, fully-connected layers combine the resulting feature maps and return a
classification measure. [5, 12, 13].

5 Forecasting with CNNs

CNNs are traditionally used for image and pattern recognition by extracting features
from two-dimensional data. In our research, we use a similar architecture for the
forecasting of one-dimensional time series. The basic idea is that the convolutional
layers extract features. These features are then combined by one or more fully-
connected layers, and finally, a forecast is created based on the classification of the
last fully-connected layer (see Fig. 3). The pooling layers are omitted because an
excessive amount of parameters is not a problem for one-dimensional data and the
necessity of pooling layers is questioned in recent research [14].

A forecast can be created in two different ways, either directly or recursively. A
direct forecast means the network generates the desired forecast at once. Thus, the
number of neurons in the output layer equals the prediction horizon h. When the
forecast is generated recursively, only one-time step is predicted by the network.
Then, the predicted point is appended to the input data and the first data point of the
input is cut off, so that the new input has the required shape. Based on the new input,
which is fed back into the neural network, the next point is predicted. This procedure
is repeated until h data points are predicted [5].
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Fig. 3 Principle architecture of the used neural network

6 Evalution of Different Network Structures and Training
Parameters

6.1 Development and Analysis of a Basic Forecaster

In order to get a better understanding of how the 1D-CNNs process data and how
the network architecture influences the results, are the first tests conducted with
very basic networks. They are built from one convolutional layer followed by one
fully-connected layer which directly calculates the output. The evaluation of these
networks yield the basic training parameters that are used throughout the rest of this
work.

The data from the SmartMeter Trial is split into a training, a validation, and a test
set. The training data set contains data of an entire year. The validation and test set
each contains half of the residual data that has about 6months of data. All the error
measures presented are calculated on the test set and represent the error across the
whole forecast horizon.

The best results were obtained with mini-batch of size b = 128 and epochs
e = 40. Nadam [15] is used as optimiser and the mean squared error (MSE) as
loss-function. When using bigger mini-batch-sizes, unwanted jumps in the train-
ing loss were observed regularly, and when using smaller batch-sizes, overfitting
occurred early during training.

In the next trials, an additional fully-connected layer was added in between the
convolutional layer and the fully-connected output layer (see network architecture in
Fig. 3). All output nodes of the new layer are connected to all nodes in every feature
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map. The additional fully-connected layer improved the forecast quality indepen-
dently from other network and training parameters. As this simple network already
produces promising results, the convolutional layer is varied to further improve the
forecasts.

The parameters that were varied are the kernel size, and thereby the receptive
field, and the number of filters. They describe how big the filters are, that sample
over the time series, and how many filters (each of them creates a feature map)
are trained. The used stride length is one. In addition, the number of output nodes
of the first fully-connected layer is varied as well to identify how many significant
features, from which the forecast is composed, exist. When the number of neurons is
chosen too large, the network is prone to overfitting as there are too many trainable
variables. When there are not enough neurons, it is not capable of representing all
critical features, and therefore, the results deteriorate.

(a) MSE dependent on the number of
nodes and the number of filters.

(b) MSE dependent on the number of
nodes and the kernel size

(c) MSE dependent on the kernel size
and the number of filter.

(d) An exemplary forecast of the 15
households load on the validation data.

Fig. 4 Heatmaps a–c Show the MSE of the 15 household forecasts. The MSE values are a mean
values across the third parameter. d Shows a forecast using the trained CNN
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(a) MSE dependent on number of
nodes and the number of filters.

(b) MSE dependent on the number of
nodes and the kernel size

(c) MSE dependent on the kernel size
and the number of filter.

(d) An exemplary forecast of the 350
households load on the validation data.

Fig. 5 Heatmaps a–c Show the MSE of the 40 household forecasts. The MSE values are a mean
values across the third parameter. d Shows a forecast using the trained CNN

As is apparent from the different heatmaps (see Figs. 4, 5, and 6), the three param-
eters have a crucial influence on the performance.

On the heatmap plots (b) for 15 households (Fig. 4) and for 40 households (Fig. 5),
it can be seen that the best results can be achievedwith a rather small number of output
nodes of the fully-connected (also called dense) layer between the convolutional and
the output layer. With an increasing number of nodes, the forecast results become
unreliable, probably overfitting occurs. The heatmaps (a) of both aggregation levels
indicate that a large fully-connected layer compensates partially a too small number
of filters and vice-versa. This seems to be in particular the case for the 40 household
load series. However, when both parameters that are chosen are too big, the MSE
increases. Due to the high amount of trainable parameters in the network that come
with a large amount of neurons (large dense size) it is preferable to use a small fully-
connected layerwith a larger number of filters, in order tominimise the computational
load. There is no obvious conclusion regarding the kernel size. It seems that a kernel
size which is too big or too small has a negative influence on the forecast quality.
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(a) MSE dependent on the number of
nodes and the number of filters.

(b) MSE dependent on the number of
nodes and the kernel size

(c) MSE dependent on the kernel size
and the number of filter.

(d) An exemplary forecast of the 350
households load on the validation data.

Fig. 6 Heatmaps a–c Show the MSE of the 350 household forecasts. The MSE values are a mean
values across the third parameter. d Shows a forecast using the trained CNN

Those impressions are supported when the effect of only one parameter is inspected
(see Fig. 7a–f). In addition, the earlier conclusion that an additional fully-connected
layer enhances the forecast quality is confirmed for the load series of 40 households
by the significantly worse performance of the network when dense_si ze = 1. This
basically equals a network with only one fully-connected layer.

The heatmaps of MSE of the 350 household load are illustrated in Fig. 6. The
influence of the network parameters differs from the 40 household load. In addition
to the confirmation that the additional fully-connected layer increases the forecast
quality, it also becomes apparent that only with more than two neurons in the fully-
connected layer good forecasts are possible. Furthermore, it seems that the number
of filters and the kernel size only have a minor influence on the MSE. On heatmap
(c), however, it appears that the most accurate forecasts are the ones with smaller
kernel sizes. Figure7g–i supports this assumption.

The heatmaps and the Figs. 7a, d and g suggest that the less volatile the time series,
the greater the benefit of an additional fully-connected layer.



214 C. Lang et al.

(a) MSE relative to number
of nodes; 15 households.

(b) MSE relative to kernel
size; 15 households.

(c) MSE realtive to number
of filters; 15 households.

(d) MSE relative to number
of nodes; 40 households.

(e) MSE relative to kernel
size; 40 households.

(f) MSE realtive to number
of filters; 40 households.

(g) MSE relative to number
of nodes; 350 households.

(h) MSE relative to kernel
size; 350 households.

(i) MSE relative to number
of filters; 350 households.

Fig. 7 The MSE averaged across the other two parameters for the 15 household load in (a)–(c),
for the 40 household load in (d)–(f), and for the 350 household load in (g)–(i)

6.2 Improvements to the Basic Forecaster

After obtaining an understanding of the behaviour of the convolutional network,
promising combinations of the number of filters, the filter size, and the number of
neurons in the first fully-connected layer were further investigated. After running 50
iterations of each combination and analysing the mean squared error, the variance,
and the error evolution of the forecast depending on the time-lag to the last known
value, the following combinations of kernel size k, number of filters f and dense
size d produced the best results

• 15 households: k = 3, f = 8, d = 6
• 40 households: k = 6, f = 8, d = 6
• 350 households: k = 6, f = 8, d = 6

The analysis of the error evolution revealed that the error increases with an increased
lag to the last known value. That is to be expected as the larger the time-lag, the more
values of the input are already itself predicted by the neural network, and therefore,
afflicted with the error.
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To further improve the network performance, different types of dropouts were
implemented and tested on the best performing neural networks. 20 iterations were
computed with each dropout rate. Using dropout means some units of the neural
network and their connections are dropped (temporarily removed) from the network
during training. It is equivalent to sample a thinned network and train that network
with the weights being shared between all possible thinned networks. This reduces
overfitting by preventing co-adaption of units [16].

Firstly, spatial dropout was tested. When spatial dropout is applied, complete fea-
ture maps are randomly dropped during the training in order to prevent the feature
maps from co-adapting [17]. Two different layouts were tested—one where the num-
ber of filters, and therefore, the number of feature maps, is held constant and a second
one where the number of filters is varied according to the dropout rate. That means,
if the dropout rate is, for example, 50%, the number of filters doubles. Secondly, a
dropout of random units throughout all feature maps was applied. Again, two differ-
ent layouts were tested—one where the number of units in the first fully-connected
layer was kept at 6 independently of the dropout rate and a second one where the
number of units was varied the same way the filters were before. The following
dropout rates dr were applied to all tests: dr = [0.2, 0.4, 0.6, 0.8].

The results using spatial dropout with an unchanged number of filters were sober-
ing. The MSE of all networks are larger than without dropout. In addition, it is
noticeable that the MSE increased with an increasing dropout rate. When the num-
ber of filters is varied according to the dropout rate, the networks with a large dropout
rate perform slightly better than without dropout, the other networks still perform
worse. In conclusion, spatial dropout does not improve the forecast performance
significantly. In contrast, the results using a random dropout were way better. As
shown in Table1, the MSE decreases substantially for all three aggregation levels
using dropout. When the number of units in the fully-connected layer is changed
according to the dropout rate, the quality of the forecasts improves even more. As
one can see from Fig. 8, the networks perform the best with a high dropout rate.

Table 1 MSE of the respectively best networks when using a random dropout

No dropout Constant dropout Variable dropout

IRE 15 6.35 4.59 5.42

IRE 40 19.0 15.6 15.2

IRE 350 335 284 263
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(a) Average MSE depending on dropout
for 15 households.

(b) Average MSE depending on dropout
for 40 households.

(c) Average MSE depending on dropout
350 households.

Fig. 8 Evaluation of the effect of different dropout rates on the forecast performance. A medium
to large dropout rate gives the best results for all aggregation levels

7 Conclusion

The network parameters number of nodes, number of filters, and kernel size were
varied in a wide range. It can be concluded that the right set of parameters depends
on the type of time series that is to be predicted.

The 350 household load time series can be forecasted properly with a CNN (see
Fig. 6d). When the size of the fully-connected layer chosen is larger than two, the
network is quite robust against changes in the number of filters and kernel sizes.

A reliable forecast of the load time series of 40 households is possible with a rather
simple CNN when the parameters are chosen correctly (see Fig. 5d). It appears the
time series can be described properly with 4–6 features as the best results were
obtained with dense size d = 4 . . . 6. Furthermore, it became apparent that with too
many training parameters the forecast quality decreases, probably due to overfitting.

Creating a good forecast for the load time series of 15 households is challenging
due to the high volatility in the load (see Fig. 4d). Networks with a small number of
filters create the best forecast. The benefit of a second fully-connected layer in the
neural network is minimal when the volatility is high.

Adding a random dropout to the models improved the forecast quality substan-
tially. The networks performed best with large dropout rates, which implies that
without dropout co-adaption between the units is an issue.
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The forecasters for the three time series can already outperform the standard load
profile, even though the network architecture is quite simple and no external factors
have been taken into account yet. For volatile load profiles, simplicity in the network
architecture seems to be the key to good forecasting results.
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Long- and Short-Term Approaches for
Power Consumption Prediction Using
Neural Networks

Juan Carlos Morales, Salvador Moreno, Carlos Bailón, Héctor Pomares,
Ignacio Rojas, and Luis Javier Herrera

Abstract This work reviews the challenge of power consumption prediction,
approaching both short-term and long-term prediction problems using neural net-
works. A number of improvements are introduced for both problems using two types
of neural nets. For short-term prediction, a modified LSTM network based on direct
prediction of four hours horizon is presented, also an alternative model based on
Convolutional Neural Networks is also introduced. Different improvements in the
short-termpredictionby theuseof external inputs, and the concatenationof theLSTM
sub-net outputs for the prediction, among others, are shown. Finally, long-term fore-
casting is considered and a modified LSTM model is proposed and trained for that
purpose, achieving notable improvements with respect to non-dedicated models.

Keywords Power consumption · Time series prediction · Long-term prediction ·
Short-term prediction · LSTM networks · Convolutional neural networks

1 Introduction and Problem Description

Neural Networks underwent a terrific revolution with the advent of Deep Learning at
the early years of this decade. Feed Forward Neural Networks, Convolutional Neu-
ral Networks, and Recurrent Neural Networks and among the most popular types of
networks when dealing with a data modeling or pattern recognition tasks. Specifi-
cally, for time series prediction, among other problems, Recurrent Neural Networks
and their specific forms LSTM and GRU networks, have shown a great performance
in their operation [1–3]. Nonetheless, also Convolutional Neural Networks have
shown to present interesting capabilities in the extraction of specific patterns from
the sequences of data helpful in the prediction of the future [4, 5].

Many works related to GRU and LSTM networks have appeared in the recent lit-
erature for power consumption forecasting [1, 4]. Several works deal with household
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power management and prediction [6]; however, this work deals with a power con-
sumption at a national level. In this regard, the use of additional information for
power consumption prediction in the literature [7, 8] has shown to be essential. It
can include data such as GDP and other macroeconomic measurements, as well as
weather conditions.

Short-term forecasting is usually the most tackled problem in power consump-
tion forecasting. To our knowledge, it is the most critical issue at national power
management politics. However, long-term forecasting can help improving long-term
decision-making, and perform thorough analyses depending on weather changing
conditions for instance. Long-term prediction implies the construction of a model
which is able to learn from its own inputs and be robustly accurate in the further
horizon. Experience has shown the fact that optimized models for short-term pre-
diction noisily fail in the long term, and additional techniques are needed to attain
reasonable models for the long term. To our knowledge few works have dealt with
the optimization of models for both objectives short- and long-term forecasting of
power consumption.

This work deals with the Iberian Peninsula Power Demand series, specifically
the data from January 2009 to June 2016 [9, 10]. It extends a previous conference
work [11], and presents improved short- and long-term approaches for the prediction
of power consumption. Specifically, a novel LSTM model for short-term prediction
of 24 complete values is presented and compared with previous approaches. Also a
CNN model for the same problem is presented. Finally an enhanced LSTM network
training method is presented for long-term forecasting.

The rest of this work is organized as follows. Section2 presents the Spanish power
consumption dataset. Section3 presents a brief introduction to Neural Networks and
Sect. 4 describes the specific methods proposed for power consumption forecasting.
Section5 presents the results obtained, comparing themwith previousworks. Finally,
in Sect. 6 the conclusions of this work are presented.

2 Data Description

2.1 Power Consumption Dataset

The dataset contains information on the electrical power consumption of the country
of Spain at a national level. The evolution of the current Spanish power consumption
can be observed at [12]. In this dataset, data consumption is sampled each 10min.
The data available for this study is from the period of January 1, 2009 until June
30, 2016, making for a total of more than 350.000 data points. The specific period
considered for this study was the same as that used in previous works [9, 10] . The
shape of the series can be seen in Fig. 1, where the whole dataset and a close-up over
a winter week and a summer week are shown.
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Fig. 1 a Power consumption of Spain series from January 1, 2009 to June 30, 2016 measured in
MW. b Temperature evolution over the full dataset for a single city (Barcelona). c Detailed view of
the consumption over a winter week (second week of 2009). d Detailed view of the consumption
over a summer week (27th week of 2019): different daily patterns can be observed depending on
the day of the week (lower power consumption in weekends)

The series presents a noticeable daily periodicity, with large minimum over the
night and other minimum in the early afternoon. Weekend always presents a lower
consumption than usual weekdays. Being this the case, we can also talk about a
weekly periodicity. The consumption is also affected by multiple other factors than
the day of the week and the time of the day. Whether the day is a holiday or not leads
to similar behavior that in weekends. Also, the season show to play an important
role, being the consumption higher in winter than in summer. This effect could be
due to weather conditions, but also for the fact that in winter there are less sun hours
than in summer.
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2.2 External Data

Apart from the power consumption, the dataset was extended to consider further
information with multiple external variables per day. Each day is marked with the
day number within the year, whether the day is a weekend or not and whether the day
is a holiday or not. Moreover, daily temperature information (mean, minimum, and
maximum temperatures) and precipitation information were collected. Specifically,
as mean country values were considered could be misleading due to differences in
the weather behavior along the country, 10 of the most inhabited cities of Spain were
taken into account. The geographical distribution along the territory was a condi-
tioning criterion for this selection. The cities used are Madrid, Barcelona, Valencia,
Sevilla, Coruña, Bilbao, Vizcaya, Málaga, Murcia, and Alicante.

Then, in total for each day, 144 values for the power consumption were collected,
plus 43 values as external data: day of the year, day of the week, national holi-
day, min, mean, and max temperature level and precipitation level for each of the
aforementioned 10 cities.

3 Introduction to Neural Networks

Neural networks are computational architectures that try tomodel connected neurons
able to learn from input data. They have shown the ability to solve a large variety
of problems within the pattern recognition and prediction areas, with applications
in all sciences, such as image classification and processing, signal processing, lan-
guage processing and synthesis, time series prediction, etc. In their origin, they are
built using very small units connected in a particular way that are called neurons or
perceptrons.

While artificial neurons are inspired by their biological counterpart, they are far
simpler. In brief, a perceptron is modeled using a very basic formula as shown in
Eq.1.

y = f

(∑
i

wi xi + b

)
(1)

where wi are the trainable weights, b is the trainable bias, and xi are the inputs. f is
a non-linear function called the activation function. A single perceptron is shown in
Fig. 2. The most used activation function is the Rectified Linear Unit (ReLU). The
ReLU function is written as f (x) = max(x, 0).

Summing up, neural networks are essentially combinations of perceptrons rear-
ranged and trained in a particular way that makes the model being able to learn com-
plex information. The most simple neural network architecture is a fully connected
feedforward neural network, often called multilayered perceptron. A schematic of
the connections is shown in Fig. 3. A classic neural network is trained using the
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Fig. 2 Single perceptron

Fig. 3 Multilayered
perceptron. In the case of
having many layers, we can
also talk about Deep Neural
Networks

backpropagation of gradients. This works by first defining an error metric for the
output and then trying to minimize that error metric using the chain rule, making the
derivative with respect to the parameters (weights and biases). After computing the
gradients, the parameters are updated using them to minimize the error.

Although neural networks have existed for decades (since 1970, with the intro-
duction to backpropagation), their peak interest has arisen very recently, when our
computers became powerful enough to run Deep Neural Networks using very large
datasets. Nowadays, neural networks have become the most used machine learning
technique and many different architectures have been created that are able to out-
perform humans in very complex tasks, which for instance is the case of AlphaGo
Zero [13] (in the Chinese game of Go) or, more recently, AlphaStar [14] (in the
video-game Starcraft). Other architectures such as FaceNet [15] (face recognition
model), or the recently released GPT-2 language model [16] present a performance
that, in many cases, makes them almost indistinguishable from a human.

Despite Feedforward Neural Networks have shown great performance for count-
less simple and complex tasks, many different architectures have been created to
approach specific complex problems. Two such models are Recurrent Networks
(RNNs), being the most well-known model the Long Short-Term Memory Neural
Networks (LSTM) and Convolutional Neural Networks (CNNs). Both are summa-
rized next.
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3.1 Long Short-Term Memory Neural Networks

Recurrent Neural Networks differ from the previously explained neural networks in
that they have an internal memory (hidden state) that evolves after each time step
depending on the input received. LSTMs are the evolution of RNNs, being the main
difference between LSTMs and RNNs, the existence of a second internal memory
that controls in a more precise way how the hidden state changes at a certain time
step (see Fig. 4). The existence of the cell state helps in learning not only short-term
time dependencies, but long-term ones as well. Thanks to this evolving states, these
networks perform really well when learning data with time dependencies. Another
advantage of this type of network over other RNN architectures is that they avoid
the vanishing gradient problem.

3.2 Convolutional Neural Networks

Convolutional Neural Networks are the state of the art in image and video processing,
among other disciplines, due to their ability to learn and extract specific complex
patterns from multi-dimensional data (for instance, images and video) with spacial
dependencies. Their efficacy is also tested in one-dimensional data, for instance, for
signal processing (medical data such as EEG, etc.). For image processing, CNNs
traditionally take as input a three-dimensional matrix and produce another three-
dimensional matrix as output. This is achieved by applying a convolution operation
between the original matrix and a set of filters (see Fig. 5. For example, for an initial
(U × V ×W) (height, width, depth) matrix, we can apply a set of T filters with size
(R × S × W) to obtain an output matrix with size (U × V × T). It is common to

Fig. 4 Basic LSTM architecture, (taken from Colah’s blog https://colah.github.io/posts/2015-08-
Understanding-LSTMs/). The X and h are the inputs and outputs at each time step. The upper line
that connects each time step with the following is the cell state, whereas the bottom one is the hidden
state

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Fig. 5 Simple sketch of a convolutional operation [17]. The input data (left) is multiplied by a
filter (middle) number by number. The results of all products are added to form a single output digit
(right). The empty cells in the input data are considered here as 0s (zero padding). This is used to
have an output with the same size as the input. The filter slides through the whole input matrix to
compute all outputs

use small filters (R and S are usually 3, 5 or 7), and pooling layers (down-sampling)
after the convolution operations, in order to reduce the number of parameters of the
network and improve the training and operation speeds.

4 Methodology

As aforementioned, we have divided the prediction problem in two different sub-
problems of high interest: the short-term prediction and the long-term prediction.
For the short-term prediction, we have designed two different types of models,
LSTM-based models and CNN-based models. For the long-term prediction, we have
designed an LSTM-based model.

For all of the design and training processes, the power consumption data has been
normalized to get an N(0,1) normal distribution since normalization of the data is
highly important for a good performance of the network. Furthermore, the external
data (temperature and precipitation data) has also similarly been normalized.
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4.1 Proposed Short-Term LSTM Network

The first methodology used to approach the problem of short-term power consump-
tion prediction is an LSTM neural network.

A first model was designed to take as inputs the 240 values, i.e., 40 h, previous
to the starting point of the prediction and predicts the next 24 values, i.e., 4 h. The
information was processed in the following way: the 240 input values were split into
packets of 4 h (24 values), which were sequentially fed to the LSTM at each time
step. But for the last packet of 4 h, none of the previous outputs of the LSTM were
collected. This process acts like an encoder and allows the LSTM to build up its
hidden state for the prediction of each time step. An approach similar to this one has
been used in other areas such as machine translation [18].

After the 10 packets of input data have been fed to the network, the output of the
LSTM (the hidden state, 400 values) is collected and concatenated with the external
data. Two sets of external data are provided; one corresponding to the start of the
prediction and one corresponding to the end of the prediction, making for a total of
88 values. Each set of external data consists of the 43 values previously explained
plus the hour at which the data point was taken. The resultant vector is then passed
through three fully connected layers to get the final prediction. After this process,
the hidden state of the LSTM is reset to the default state (all zeros) for the next
prediction. The model has been trained with and without the use of external data to
test the improvement in performance.

The training process is performed for 23 epochs, using a batch size of 128 and
Adam optimizer. The learning rate used was 5e-3 for the first two epochs. After that,
it was diminished to 2.5e-5. Additionally, L2 regularization with weight 1e-5 was
used to avoid overfitting.

A sketch of this first LSTM network designed is shown in Fig. 6. Results on this
network were provided in [11].

Then, some improvements on this first designed LSTM network were provided
and assessed. First, the length of the input was extended, and tests were performed
by multiplying the amount of previous data fed to the network. Preliminary test on
the train data showed small but significant improvements by doubling the data size to
20 time steps to predict the next step. Second, the approach presented in [6] was used
to concatenate not only the LSTM output of the last step, but also the output from all
the input steps with the external data to be input to the dense layers. This technique
showed to improve the performance of the prediction in the aforementioned work
and was also assessed here. Finally, due to the large dimensionality at the output of
the LSTM, we decided to use a normalization layer as in [19] to allow the FNN stage
to have normalized inputs.

It is to highlight that these modifications imply an increase of the dimensionality
of the input of the network and of the input of the dense part of the network, thus
making the model slower to train and needing more memory, which can make this
specific architecture more difficult to run in slower machines. The extended short-
term LSTMmodel was trained using the same hyperparameters as the ones exposed
above.
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Fig. 6 Proposed LSTM network for short-term forecasting of 24 values (4 h). The sketch corre-
sponds to the extended model that concatenates all outputs

4.2 Proposed Convolutional Neural Network

As explained in Sect. 3.2, CNNs perform especially well when dealing with spatially
correlated data. In our case, the power consumption can be stored as a 1D vector
where close points have a high correlation. However, it can be also noted that the form
of the consumption is correlated between close days. To take advantage of this extra
correlation it was decided to distribute the training data in a 2D matrix resembling
an image.

Days of the consumption data were stacked in several rows of a matrix. Each row
was created by concatenating the m previous values to the hour we want to start the
prediction (but corresponding to past days) and the n following values, being n the
number of values we want to predict. For the last row, only the m previous values
are known, so for the following n a placeholder value (all zeros) is used. In this way,
at each column the time stamp of the day for all rows is the same. By organizing the
data like this, it is expected that the network is able to use the spatial information
not only between close datapoints, but also between close days, to fill the all zeros
region with an actual prediction.

This two-dimensional input is then processed by a convolutional layer with kernel
size (3× 11), followed by another two convolutional layers using the same kernel
size. Since the dimensionality of the data is not very high, no pooling layers were
used between the convolutional layers. The result is then flattened into a vector
and, in the same way as in the LSTM model, it is concatenated with 88 values of
external data. Finally, the result is processed by three fully connected layers to get
the prediction of the n values. The value of n has been set to 24 and the value of
m to 120, to cover a full day per row. The number of rows was initially set to three
[11]. However, further tests were performed by increasing the size of the previous
data window taken. Assessment on these alternatives was performed, and an optimal
model taking five rows was selected, as it will be presented in the results section.
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Fig. 7 Proposed CNN network for short-term forecasting of 24 values (4 h)

As in the LSTMmodel, the network has been trainedwith andwithout the external
data, to measure the increase in performance. The network was trained for 17 epochs
using a batch size of 64 andAdam optimizer. During the first two epochs, the learning
rate used was 2e-3 and from there onwards, the learning rate was 5e-5. As in the
LSTM model, a L2 regularization with a regularization strength of 1e-5 was used to
avoid overfitting.

A sketch of the network is shown below in Fig. 7.

4.3 Improvements over the LSTM Network for Long-Term
Time Series Forecasting

The two previous model designs have been trained for short-term forecasting; there-
fore, they are expected to performproperly for predictions in the short term.However,
they do not assure a good generalization capability when applying them recursively
(that is, using the previous prediction to get the next one) for long-term prediction
[20].

A modified long-term LSTM model was designed, still predicting 24 values at
each time step. However, the input data consists of the 168 previous values (28 h)
instead of 240 and it is not split into different packets, but fed in a single time step.
Furthermore, the hidden state of the LSTM is not reset after a prediction, but carried
over for the next prediction. Additionally, the network is trained in a recursive way.
The 24 predicted values are incorporated as a part of the 168 input values for the
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Fig. 8 Proposed LSTM network for long-term forecasting (recursive prediction)

next prediction. In this way, after seven predictions, no true data is being fed into the
network (aside from the external data), only the predictions. However, to avoid the
training to get very noisy, true data is fed again each 11 time steps.

The rest of the architecture is very similar to the short-term LSTM model. The
output of the LSTM (this time of dimension 200 for the sake of lower computational
cost) is concatenated with 88 points of the external data and passed through three
fully connected layers to get the final 24 value prediction. Unlike the short-term
models, this one has not been trained without the external data, since that is the only
data it can truly rely upon. The architecture of the network is shown in Fig. 8.

The training process was carried out for 31 epochs using a batch size of 24 and
Adam optimizer (the batch size is fixed to be the same as the number of outputs since
we only have that number of possible starting points without repeating outputs).
During the first 9 epochs, the learning rate used was 5e-4 and from there onwards,
the learning rate was reducend to 1e-4. An L2 regularization with a regularization
strength of 3e-4 was used to avoid overfitting.

Final tests were performed by multiplying the number of inputs, leading to a
very noticeable boost of performance for the long-term prediction when considering
double inputs (336 instead of 168). Results on this will be shown and discussed in
the results section.

5 Results

All experiments were carried out on a PC with GPU Nvidia GeForce GTX 760M.
Codes were implemented under Python 3.6.8 and Tensor Flow 9.0. The performance
measure used for the simulations was the Root Mean Square Error (RMSE), as it is
considered a standard performance measure for time series prediction, and for the
sake of fair comparison with previous works on the same dataset.
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A training-val-test subdivision was performed on the dataset using a 80%–10%–
10% ratio. Thus, the test set comprised the last 346 daily values of the series, i.e.,
from the 12 of July 2015 to the 21 of Jun 2016.

Even though the first two models have been trained for short-term prediction and
the third one for long-term prediction, we have tested each model for both types of
predictions to compare results (adapting the short-termmodels to predict recursively
and disabling the recursive prediction for the long-term model).

5.1 Short-Term Time Series Forecasting

The results obtained for short-term prediction for 4 h (24 values) ahead using the
basic LSTM network presented in subsection 4.1 using 10 previous time steps to
predict, reached 325.36 and 337.04 of test RMSE, with and without external vari-
ables, respectively (see Table 1). The extended LSTMmodel using 20 previous time
steps reached a test RMSE of 315.15. Finally enhanced model by the method pro-
vided in [6] finally provided a relevant improved test RMSE of 272.16. CNN model
presented in Sect. 4.2 stacing three previous days data reached 346.90 and 328.32 of
test RMSE, with and without external variables, respectively. CNN model stacking
five days of input data lead to a slight improvement (RMSE 321.94). The long-term
model was tested using 28 and 56 h of previous data for each time steps—see next
subsection 5.2— with the second case winning by a noticeable margin.

As it can be observed, results show that the base LSTM and base CNN models
perform very similar, with a slight advantage of the base LSTMmodel. The improve-
ments tested in the different networks have led to noticeable increases of performance
in the short-term prediction. Moreover, there is also a clear improvement of the mod-

Table 1 4 h prediction

Short term prediction

Method Training RMSE Test RMSE

LSTM(10 prev values) 317.28 337.04

LSTM(10 prev values) + external features (ext.) 301.44 325.36

LSTM(20 prev values) + ext. 297.82 315.15

LSTM(20 prev values) + ext + all outputs 256.58 272.16

CNN (3 rows) 345.96 346.90

CNN (3 rows) + external features 314.68 328.32

CNN (5 rows) + external features 296.82 321.94

Long term LSTM (28 h) − 718.82

Long term LSTM (56 h) − 655.31

DFFNN [9] − 501.14

Deep Learning approach [10] − 587.47
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Fig. 9 Short-term LSTMmodel over the test set. The dashed red line is the real data while the blue
line is the prediction

Fig. 10 Close up of the short-term LSTM model (using all outputs) prediction for the first week
of the test set. The dashed red line is the real data while the blue line is the prediction

els when using the external data. Finally, results show an improvement over the ones
obtained in previous works [9, 10], which consider 24 different feedforward mod-
els to predict each of the 24 values. It is to be highlighted that the application of
the long-term LSTM model to short-term forecasting led to a RMSE in the test set
of 655.31, making it the worst of all of them for short-term prediction, which was
expectable as it was not specifically optimized to predict short-term behaviors.

Figures. 9, 10, and 11 show examples of the prediction obtained by the optimized
LSTM model using all outputs of the LSTM sub-network.

5.2 Long-Term Time Series Forecasting

Three models were considered for the assessment of neural network architectures
for long-term prediction: base short-term LSTM model (see Table 1), base CNN
short-term model, and two versions of long-term LSTM model (base and optimized
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Fig. 11 Close up of the prediction of the short-term LSTM model using all outputs for ten 4 h
segments. The dashed red line is the real data while the blue line is the prediction. It is important to
notice that the scale is not the same in all graphs

Table 2 Comparison for long-term prediction on the test dataset, among the long-term LSTM, the
short-term LSTM, and the CNN short-term prediction models

Long term prediction

Horizon Short-term model
mean RMSE
(std.)

CNN model mean
RMSE (std.)

Long-term model
(28 h) mean
RMSE (std.)

Long-term model
(56 h) mean
RMSE (std.)

One-week-ahead 1366.91 (733.61) 1020.06 (635.74) 925.08 (435.47) 805.29 (149.79)

One-month-ahead 1999.79 (634.33) 1500.14
(1063.10)

1127.46 (400.77) 826.23 (39.53)

Ten-months-
ahead

2359.24 (18.06) 2351.03 (933.13) 1286.49 (17.46) 1268.18 (35.58)

according to Sect. 4.3). For the four of them, the external data have been used since
trying to predict recursively using no other informationwould lead to poor results. For
long-term prediction, Table 2 shows the results obtained over the test set for one full
week ahead (7 days * 6 periods of 4 h = 42 following predictions), one month (+1200
following predictions) ahead and ten months ahead (+12000 following predictions).
The RMSE of both the one week ahead and the one month ahead, are averaged by
using 310 different days of the test set as the starting point of the prediction. In the
case of the ten months ahead, only 40days have been used as the starting point. Both,
the mean RMSE and the standard deviation are shown for each prediction.

As we can be seen in Table 2, the Long-term models are able to outperform the
other two models, especially when the prediction horizon gets longer. The CNN
model seems to perform better that the Short-term LSTM model for lower horizon
predictions, although they get similar results in the ten months ahead prediction.
However, we can say that the Short-term LSTM model presents a much higher
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consistency (reduced std.) than the CNN model when the prediction window gets
bigger. It is important to notice that the small value for the deviation of the LSTM
models in the ten months prediction is due to the overlapping of the 40 ten-months
predictions in almost nine months. This overlapping also happens in the CNNmodel,
but the deviation is still very high because of its bad consistency.We can also see that
the 56 h long-term model is much more accurate and consistent than the 28 h one for
the one-week-ahead and one-month-ahead predictions, although they perform very
similar for the ten-months-ahead prediction.

Regarding these results, one could argue that we are using external data that we
cannot possibly know, since they are in the future. While that is true, there is some
external data that we know for sure (such as the time of the day or whether the
day is a holyday or not). Moreover, for the temperature and precipitation data, we
could use the meteorological forecast, which should be accurate enough for, at least,
an one week ahead prediction. The ten months ahead prediction is merely here for
comparison purposes, since we cannot have a ten months ahead forecast. Moreover,
this type of models could be used to assess future long-term consumption under
different or varying future weather conditions.

Figure12 shows a close up of the recursive prediction over the first week of the
test set for all the alternatives. Figure13 shows the worst prediction for the long-term
approach on the test dataset.

The long-term recursive prediction is clearly not as good as the normal short-term
prediction (see Tables 1 and 2.2), which is to be expected. Nevertheless, the model
presents a reasonably good performance since no true consumption data has been
fed to the network during the pass through the whole test set (aside from the starting
point). This shows that the network is able to learn a lot from the external data when

Fig. 12 Close up of the prediction over the first week of the test dataset. The base models for the
three alternatives long-term trained LSTM model, short-term LSTM model, and CNN short-term
model are compared with the true data



234 J. C. Morales et al.

Fig. 13 Long-term LSTMmodel (56 h) prediction over the worst case on a week ahead prediction.
The dashed red line is the real data while the blue line is the prediction

it cannot perfectly rely on the previous consumption data, which is very important
since it implies that having an accurate weather forecast can imply a reasonable
power consumption prediction.

6 Conclusions

In this work, we have shown multiple deep learning approaches to solve the problem
of power consumption prediction. We have presented an LSTM-based and a CNN-
basedmodels that focus in predicting the consumption in the short term (4 h), yielding
promising results, and improving results on the same series on previous published
works. We have also tested the improvement of the networks after adding external
data and the improvement of the LSTMwhen collecting all outputs of the LSTM sub-
network tomake the final prediction. To address the problem of long-term prediction,
we have built an alternative LSTM-based model with a very similar architecture to
the short-term-based LSTM but trained in a very different way, showing important
improvements over the previously short-term LSTM. Finally, all of the networks,
regardless of how they have been trained, have been tested for short- and long-term
prediction. Results highlight the importance of the way a network architecture is
trained. While the two LSTM models share the same data and almost the same
architecture, the way they are trained leads to very different results in each of the
two sub-problems, short-term and long-term, presented.
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Freedman’s Paradox: A Solution Based
on Normalized Entropy

Pedro Macedo

Abstract In linear regression models where there are no relationships between the
dependent variable and each of the potential explanatory variables-a usual scenario in
real-world problems-some of them can be identified as relevant by standard statistical
procedures. This incorrect identification is usually known as Freedman’s paradox.
To avoid this disturbing effect in regression analysis, an info-metrics approach based
on normalized entropy is discussed and illustrated in this work. As an alternative to
traditional statistical methodologies currently used by practitioners, the simulation
results suggest that normalized entropy is a powerful procedure to identify pure noise
models.

Keywords Big data · Info-metrics · Regression · Variable selection

1 Introduction

Freedman [2, p. 152] alerts for a potential problem in regression analysis when stat-
ing “[…] in a world with a large number of unrelated variables and no clear a priori
specifications, uncritical use of standard methods will lead to models that appear
to have a lot of explanatory power.” Through simulation studies and asymptotic
theory it is demonstrated some technical features of this misleading interpretation,
including the behavior of the t-test, the F-test, and the coefficient of determina-
tion, R2. In a regression model where does not exist relationships between indepen-
dent/explanatory variables and the dependent variable, Freedman [2] shows that, if
there are many explanatory variables in the model, the R2 will be high and some
explanatory variables can be easily considered relevant variables through common
significance tests.
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The concept of normalized entropy belongs to info-metrics [4], a research area
at the intersection of statistics, computer science, and decision theory, where the
maximum entropy principle established by Jaynes [8, 9] plays a central role. Maxi-
mum entropy provides a simple tool to make the best prediction (i.e., the one that is
the most strongly indicated) from the available information and it can be seen as an
extension of the Bernoulli’s principle of insufficient reason. Jaynes [8, pp. 622–623]
recognizes the importance of the Shannon [13] entropy measure as a criterion for
the “amount of uncertainty” and presents a magnificent statement: “[…] in making
inferences on the basis of partial information we must use that probability distri-
bution which has maximum entropy subject to whatever is known. This is the only
unbiased assignment we can make […].” The merit of the maximum entropy princi-
ple is unquestionable, although perhaps not yet fully recognized; see, for example,
Soofi [14, p. 1244].

Although there aremany othermethodologies for variable selection (e.g., stepwise
family, best subsets, Bayesian model averaging, cross-validation, lasso and its gener-
alizations like elastic net and oscar), usually requiring a lot of computation effort, this
work is intended only to illustrate the use of normalized entropy, which requires just
one (and simple) analysis of the sample, in the context defined by Freedman [2] (pure
noise models). Even though subsequent estimation and validation procedures will
depend on the characteristics of the resulting models (e.g., influential observations,
collinearity, heteroscedasticity) and the criteria of the researcher (e.g., interpretation,
prediction accuracy, precision), different maximum entropy estimation procedures
along with variable selection can be easily implemented in more general regression
models; see, for example, Golan [3] and Golan et al. [5].

To illustrate how normalized entropy can be used to avoid the abovementioned
disturbing effect in regression analysis, the generalized maximum entropy (GME)
and generalized cross entropy (GCE) estimators are briefly presented in Sect. 2,
along with the definition of normalized entropy. The remaining article is organized
as follows: in Sect. 3 the simulation studies are implemented; some conclusions and
topics for future research are given in Sect. 4.1

2 Maximum Entropy Estimators and Normalized Entropy

Consider a linear regression model defined as

y = Xβ + e, (1)

where y denotes a (N × 1) vector of noisy observations, β is a (K × 1) vector of
unknown parameters to be estimated, X is a known (N × K ) matrix of explanatory
variables, and e is the (N × 1) vector of random disturbances, typically assumed to
have a conditional expected value of zero and representing spherical disturbances.

1This work is an extension of the conference paper [11].
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Golan et al. [5, pp. 86–93] proposed a reformulation of the linear regressionmodel
in (1) as

y = XZp + Vw, (2)

where

β = Zp =

⎡
⎢⎢⎢⎣

z′
1 0 · · · 0
0 z′

2 · · · 0
...

...
. . .

...

0 0 · · · z′
K

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

p1
p2
...

pK

⎤
⎥⎥⎥⎦ , (3)

with Z a (K × KM)matrix of support spaces and p a (KM × 1) vector of unknown
probabilities to be estimated, and

e = Vw =

⎡
⎢⎢⎢⎣

v′
1 0 · · · 0
0 v′

2 · · · 0
...

...
. . .

...

0 0 · · · v′
N

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

w1

w2
...

wN

⎤
⎥⎥⎥⎦ , (4)

with V a (N × N J ) matrix of support spaces and w a (N J × 1) vector of unknown
probabilities to be estimated. In this reformulation, each βk , k = 1, 2, . . . , K , and
each en , n = 1, 2, . . . , N , are viewed as expected values of discrete random variables
zk and vn , respectively, with M ≥ 2 and J ≥ 2 possible outcomes, within the lower
and upper bounds of the corresponding support spaces. Additional details can be
found in Golan [4], Chap. 13.

To illustrate reparameterizations (3) and (4), suppose a simple linear regression
model (K = 2), only four observations (N = 4), and consider the support spaces
as [−10, 10] and [−1, 1], respectively, for all the parameters and all the errors, with
M = 5 and J = 3. Thus, with symmetric supports centered on zero and equally
spaced points,

Zp =
[−10 −5 0 5 10 0 0 0 0 0

0 0 0 0 0 −10 −5 0 5 10

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11
p12
p13
p14
p15
p21
p22
p23
p24
p25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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and

Vw =

⎡
⎢⎢⎣

−1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w11

w12

w13

w21

w22

w23

w31

w32

w33

w41

w42

w43

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For the linear regressionmodel expressed in (1), the generalizedmaximumentropy
(GME) estimator is given by

argmax
p,w

{− p′ ln p − w′ lnw
}
, (5)

subject to the model constraints,

y = XZp + Vw, (6)

and the additivity constraints for p and w, respectively,

1K = (IK ⊗ 1′
M) p,

1N = (I N ⊗ 1′
J )w,

(7)

where⊗ represents the Kronecker product. On the other hand, with the same restric-
tions, the generalized cross entropy (GCE) estimator is given by

argmin
p,w

{
p′ ln

(
p
q1

)
+ w′ ln

(
w

q2

)}
, (8)

where q1 and q2 are vectors with prior information concerning the parameters and
the errors of the model, respectively.

The estimators generate the optimal probability vectors p̂ and ŵ that can be used
to form point estimates of the unknown parameters and the unknown errors, through
the reparameterizations (3) and (4) defined previously. It is important to note that the
GME estimator is a particular case of the GCE estimator, when the prior information
is expressed as a uniform distribution (vectors q1 and q2). In view of the fact that
ill-posed real-world problems seem to be the rule rather than the exception, these
estimators have acquired special importance in the set of statistical techniques, by
allowing statistical formulations free of restrictive and unnecessary assumptions.
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Additionally, to measure the information content of the signal component in a
particular model, Golan et al. [5, p. 93, p. 165] defined normalized entropy as

S( p̂) = − p̂′ ln p̂
K lnM

(9)

in the GME estimator, and

S( p̂) = − p̂′ ln p̂
−q ′

1 ln q1
(10)

in the GCE estimator context. This measure lies between zero (no uncertainty) and
one (perfect uncertainty). Concerning variable selection, it is interesting to note that if
all the zk in Z are defined uniformly and symmetrically around zero, then S( p̂k) ≈ 1
implies βk ≈ 0, because p̂k is uniformly distributed. Thus, a variable corresponding
to S( p̂k) ≈ 1 has no information content and should be excluded from the model.

Some advantages of this procedure are presented by Golan et al. [5, p. 176]:
it is simple to perform, even for a large number of variables (just one analysis of
the sample is needed, which represent important computational advantages; it does
not require the evaluation of 2K models); allows the use of non-sample information
(through the supports in GME or the vectors with prior information in GCE); is free
of asymptotic requirements; involves a shrinkage rule that reduces mean squared
error; allows to account for model misspecifications and model uncertainty; and it
can be implemented for well- and ill-posed models.

Additional details on maximum entropy estimation, normalized entropy, simula-
tion studies, properties, and asymptotic theory can be found in Conceição Costa and
Macedo [1], Golan [4], Golan et al. [5] and Mittelhammer et al. [12].

3 Simulation Studies and Discussion

For comparison purposes, the simulation studies conducted in this work follow the
same structure of the ones performed by Freedman [2]. Different matrices are created
with 100 rows and 51 columns.All the entries are independent observations generated
from the standard normal distribution. To establish a multiple regression model, the
first 50 columns are considered as the explanatory variables and the last column as the
dependent variable. Given this construction, all the regression coefficients should be
considered statistically not significant by the standard t-test. However, as expected,
this won’t be the case.

Freedman [2] performed two successive model estimations: in the first one are
identified the number of coefficients that are statistically significant at the 25% (rep-
resenting an exploratory analysis) and the 5% (representing a confirmatory analysis)
levels; in the second one, only the variables whose coefficients are significant at the
25% level enter to the regression model and the number of coefficients that are statis-
tically significant at the 25% and the 5% levels are identified again. All the results are



244 P. Macedo

misleading, in particular on the second stage, where are identified between one and
nine statistically significant coefficients in the models (depending on the simulation),
at the 5% significance level.2

To illustrate variable selection using normalized entropy, the GME and GCE esti-
mators are performed with four different supports: [−100, 100], [−10, 10], [−5, 5],
and [−2, 2] for all the parameters. The supports are defined as closed and bounded
intervals in which each parameter is restricted to belong. Since there is empirical
evidence that different supports provide different results in terms of variable selec-
tion, four supports (with five points each) are tested in this work, reflecting different
levels of prior information about the parameters.

For each error support, the three-sigma rule is used, considering the standard
deviation of the noisy observations (usual procedure in GME literature by using a
sample scale statistic), with three points. The number of points in the supports is
usually between three and seven, since there is likely no significant improvement in
the estimation with more points in the supports.

Regarding the GCE estimator, and following Golan et al. [5, p. 166], which state
that “If we believe that potential extraneous variables with zero coefficients exist in
the linear statistical model specifications, it would seem reasonable to shrink those
close to zero more than others […],” a vector with prior information is defined as
q1 = [0.1, 0.2, 0.4, 0.2, 0.1] for all the parameters, which will accomplish the idea
of additional shrinkage. As mentioned by Golan et al. [5], the priors take over as the
solution when they are consistent with the data (this feature of the GCE estimator is
revealed in the results).

Due to space limitations, only three models are discussed next.3 Taking into
account the number of regression coefficients that are considered statistically signif-
icant at the 25% significance level in the first stage, in the second stage, the three
models will have only 18, 14, and 14 variables, respectively. Table1 presents the
number of regression coefficients statistically significant, at different significance
levels, in the first stage, for the three models.

Considering the three usual significance levels evaluated in literature, in the first
stage, with models including 50 variables each, six, seven, and eight coefficients are
considered statistically significant at 10% level, respectively, in Model 1, Model 2,
and Model 3. Additionally, four coefficients are considered statistically significant
at 5% and none of them is considered statistically significant at 1% level, in Model
1 and Model 2. Regarding Model 3, seven coefficients are considered statistically
significant at 5%and two are considered statistically significant at the 1%significance
level.

Table2 presents the number of regression coefficients statistically significant, at
different significance levels, in the second stage. Is this second estimation, between
seven and eight coefficients are considered statistically significant at 5% and between

2The term“statistically significant” is usedhere following theworkofFreedman [2]. For a discussion
concerning the use of this expression, see Hurlbert et al. [7].
3As will be noted later, the conclusions are qualitatively similar among the several simulatedmodels
conducted in this work.
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Table 1 Number of coefficients statistically significant (first stage)

Significance levels

1% 2% 3% 4% 5% 10% 25%

Model 1 (50 variables) 0 2 3 4 4 6 18

Model 2 (50 variables) 0 2 2 2 4 7 14

Model 3 (50 variables) 2 4 5 5 7 8 14

Table 2 Number of coefficients statistically significant (second stage)

Significance levels

1% 2% 3% 4% 5% 10% 25%

Model 1 (18 variables) 2 3 5 5 7 11 16

Model 2 (14 variables) 2 3 6 7 7 7 12

Model 3 (14 variables) 5 7 7 8 8 8 12

two and five coefficients are considered statistically significant at 1% level. The
worst scenarios occur is Model 1, where 11 coefficients are considered statistically
significant at the 10% level, and in Model 3 with five coefficients that are considered
statistically significant at the 1% significance level.

Since the models are pure noise, the results are disturbing because they suggest
relationships that do not exist between explanatory variables and the dependent vari-
able. Considering that this is an usual procedure adopted by practitioners and some
recent alternatives in the literature require a lot of computation effort (e.g., lasso
family, cross-validation, glmulti R Package), the following part of the work intends
to illustrate how normalized entropy can easily avoid Freedman’s paradox with one
(and simple) analysis of the sample.

Table3 presents the normalized entropy (truncated to four decimals) of themodels,
S( p̂), considering different supports for GME and GCE estimators. It is interesting
to see that all values are near one, indicating no information content of the signal
in the models (in both stages). This information clearly contradicts the information
of R2 that always presents high values, particularly in the first stage, indicating the
presence of models with explanatory power.

Now, and to investigate the information content of each variable, a more detailed
analysis is developed and all the S( p̂k) for eachmodel are also computed. The results
are reported through boxplots, from Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

Although in some scenarios, especially in the ones with supports of lower ampli-
tude, slightly lower normalized entropy values are obtained, the values are always
very high. Note that the y-axis in versions B are defined just between 0.97 and 1.00,
and normalized entropy values range between zero and one, as represented in ver-
sions A. The performance of the normalized entropy procedure in terms of variable
selection, which is observed in Table3, as well as in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, is also achieved in all the other simulated models conducted in this work. The
results are qualitatively the same.
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Table 3 Normalized entropy for the three models

Supports

[−100, 100] [−10, 10] [−5, 5] [−2, 2]
GME Model 1 50 variables 0.9999 0.9998 0.9994 0.9972

18 variables 0.9999 0.9997 0.9991 0.9954

Model 2 50 variables 0.9999 0.9998 0.9994 0.9972

14 variables 0.9999 0.9997 0.9991 0.9951

Model 3 50 variables 0.9999 0.9998 0.9993 0.9969

14 variables 0.9999 0.9996 0.9987 0.9929

GCE Model 1 50 variables 0.9999 0.9998 0.9995 0.9982

18 variables 0.9999 0.9998 0.9994 0.9969

Model 2 50 variables 0.9999 0.9998 0.9995 0.9982

14 variables 0.9999 0.9998 0.9993 0.9967

Model 3 50 variables 0.9999 0.9998 0.9995 0.9981

14 variables 0.9999 0.9997 0.9991 0.9951

Fig. 1 S(̂pk) with GME (left) and GCE (right) in Model 1 (50 variables)—A

Fig. 2 S(̂pk) with GME (left) and GCE (right) in Model 1 (50 variables)—B
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Fig. 3 S(̂pk) with GME (left) and GCE (right) in Model 1 (18 variables)—A

Fig. 4 S(̂pk) with GME (left) and GCE (right) in Model 1 (18 variables)—B

Fig. 5 S(̂pk) with GME (left) and GCE (right) in Model 2 (50 variables)—A
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Fig. 6 S(̂pk) with GME (left) and GCE (right) in Model 2 (50 variables)—B

Fig. 7 S(̂pk) with GME (left) and GCE (right) in Model 2 (14 variables)—A

Fig. 8 S(̂pk) with GME (left) and GCE (right) in Model 2 (14 variables)—B
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Fig. 9 S(̂pk) with GME (left) and GCE (right) in Model 3 (50 variables)—A

Fig. 10 S(̂pk) with GME (left) and GCE (right) in Model 3 (50 variables)—B

Fig. 11 S(̂pk) with GME (left) and GCE (right) in Model 3 (14 variables)—A
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Fig. 12 S(̂pk) with GME (left) and GCE (right) in Model 3 (14 variables)—B

The results in Table3 suggest no information content of the signal in the models,
regardless the supports considered or the maximum entropy estimator used. This is
an interesting result because, under the conditions of the previous models, in the
first stage, when N → ∞ and K → ∞, so that K/N → ρ, where 0 < ρ < 1, then
the R2, a standard procedure usually evaluated by practitioners, tends to ρ, and the
ratio of the number of relevant variables by N tends to αρ, where α represents the
significance level considered; see Freedman [2].

Taking into account that a variable corresponding to S( p̂k) ≈ 1 has no information
content (it is considered irrelevant) and should be removed from the model, the
analysis of Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 suggests the exclusion of all the
variables, in both stages. Although in some scenarios, namely, in the one with the
support defined as [−2, 2], lower normalized entropy values are obtained, almost
all of them are greater than 0.98.4 Indeed, if the criterion of inclusion considered
by Golan et al. [5, p. 165] is applied, S( p̂k) ≤ 0.99, a few variables are considered
relevantwhen the support [−2, 2] is used, although the number of incorrect inclusions
is lower when the GCE estimator is applied, as expected given the prior information
considered. As mentioned previously, the priors take over as the solution when they
are consistent with the data.

Naturally, without a formal rule to define a cutoff value, the identification of “rel-
evant” variables (with “relevant” information content) can be considered difficult in
the cases with normalized entropy values “near” one. Nevertheless, regarding this
possible concern, is it really necessary a cutoff value? Is it not sufficient the eval-
uation of the information embodied in the normalized entropy? Possible answers
to these open questions should always take into account, although in a different
perspective, the theoretical discussions provided by Hurlbert et al. [7] and Wasser-
stein and Lazar [15], where some recommendations to statisticians are provided,

4There are only two exceptions (0.13% of the total), with values 0.971 and 0.974, approximately.
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namely, to eliminate the choice of specific significance levels or to abolish the use
of the terms “statistically significant,” when p-values are interpreted in hypothesis
testing.5

4 Conclusions and Future Research

The results in this work suggest that the evaluation of normalized entropy is a
promising approach to avoid the disturbing effect in regression analysis described
by the Freedman’s paradox. Future research on the definition of the supports and
in the amount of pressure around zero, established by the prior information vector
for the GCE estimator, should be accomplished, along with the comparison with
recent methodologies (e.g., lasso and its generalizations). Future research should
also include an optimization procedure to cope with large-scale data, using the con-
ditional maximum entropy formulation proposed by Mittelhammer et al. [12]. As a
final remark, a MATLAB code to compute normalized entropy using the GME esti-
mator can be easily obtained from the code available in Macedo [10]; see Appendix.

Acknowledgements This work is supported by The Center for Research and Development in
Mathematics and Applications (CIDMA) through the Portuguese Foundation for Science and
Technology (FCT—Fundação para a Ciência e a Tecnologia), references UIDB/04106/2020 and
UIDP/04106/2020.

Appendix: MATLAB code

To adapt the code available in Macedo [10], the first line of the original code can be
replaced, for example, by

function [b3,nep,nepk]=nentropy(Y,X)

Suppose now a model, for example, with K = 6 and consider all the supports in Z,
for example, as [−10, 10]. Lines 38–71 are replaced by

intg=[-10,10;-10,10;-10,10;-10,10;-10,10;-10,10];

Lines 116–132 are replaced by

5It is important to note that s-values can be much more useful than p-values; e.g., Greenland [6].
Information measures based on Shannon’s work [13] are very attractive in statistical inference.
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p=a(1:dp)’;

b3=Z*p;

nep=(-p’*log(p))/(k*log(m));

nepk=zeros(k,1);

for i=1:k

pos=(i-1)*m+1;

nepk(i,1)=-p(pos:pos+m-1)’*log(p(pos:pos+m-1))/log(m);

end

All lineswith comments and features related to theoriginal code shouldbe eliminated.
Other changes can be made; e.g., the number of points in the supports, which are 5
and 3, by default; lines 74 (m=5) and 86 (j=3).6
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Mining News Data for the Measurement
and Prediction of Inflation Expectations

Diana Gabrielyan, Jaan Masso, and Lenno Uusküla

Abstract In this chapter, we use high frequency multidimensional textual news
data and propose an index of inflation news. We utilize the power of text mining and
its ability to convert large collections of text from unstructured to structured form
for in-depth quantitative analysis of online news data. The significant relationship
between the household’s inflation expectations and news topics is documented and
the forecasting performance of news-based indices is evaluated for different horizons
and model variations. Results suggest that with optimal number of topics a machine
learning model is able to forecast the inflation expectations with greater accuracy
than the simple autoregressive models. Additional results from forecasting headline
inflation indicate that the overall forecasting accuracy is at a good level. Findings
in this chapter support the view in the literature that the news is good indicators of
inflation and are able to capture inflation expectations well.

Keywords Inflation · Inflation expectations · News data · Machine learning · Text
mining · Topic modelling

1 Introduction

Household surveys of inflation often indicate that the perception of the current infla-
tion differs substantially from the actual values of inflation. Similarly, expectations
about the future expectations differ strongly from the surveys of professional fore-
casters and the implied inflation rates of financial markets (for evidence see, e.g.
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Coibion et al. [1]). Potential reason for the difference is that households and firms
obtain only very partial information while doing everyday purchases and aggre-
gating the information is very costly. Imperfect information in turn affects adversely
the formation of expectations.

Subjective inflation now casts and expectations are built through personal expe-
riences, prior memories of inflation, and various other sources of information.
One primary source of information is public media, and it is well established that
consumers rely largely on it when thinking about overall price changes [2, 3]. Media
covers a lot of news on prices and price developments.

In this chapter, we explore online news as a novel data source for capturing
and measuring inflation perceptions by utilizing the power of text mining and its
ability to convert large collections of text from unstructured to structured form. We
propose a novel index of inflation news that provides a real-time indication of the
price developments. Such index of inflation news captures and summarizes well the
information used in the formation of expectations.1 The delay in the publishing of
official statistics, frequency of available survey-based inflation expectations and risks
contained in the high frequency market-based forecasts2 highlight the importance
and need for such an indicator. Our main contribution is, therefore, using the novel
source of information to prove that online news can provide a real-time and accurate
indication of consumer’s expectations on inflation.

Machine learning is considered to be a very promising avenue for academic and
applied research. Although its applications are already actively used in many disci-
plines and research areas, it is still relatively new to economics. One modern strand
of machine learning is text mining—the computational approach to processing and
summarizing large amounts of text, which would be far more difficult to read, even
impossible, for any single person. Extracting information from novel sources of data,
such as socialmedia (e.g. Twitter, Google) or publicmedia (e.g. online news, commu-
nication reports) allows analysis and different kind of understanding of economic
relationships (e.g. consumer behaviour), therefore, contributing to policymaking and
forecasting. See for, example, Tuhkuri [5], D’Amuri and Marcucci [6], Yu et al. [7],
Nyman et al. [8].

Another contribution of this work is to forecast the inflation in real-time using
machine learning methods. The importance of inflation forecasting for rational
decision-making is well established in the literature along with the common knowl-
edge that improving upon simplemodels is quite challenging. According toMedeiros
et al. [9], most of this literature, however, ignores the recent machine learning
advances. In their work, they show that with machine leaning and data-rich models

1As Nimark and Pitschner [4] note, since no agent has resources to monitor all events potentially
relevant for his decisions, news is preferred delegates for information choice to monitor the world
on their behalf. And since news mainly reports selection of events, typically major ones, coverage
becomes more homogenous across different outlets.
2Market-based expectations are available daily but include risk premia. Survey-based expectations
are published monthly. For example, for the United Kingdom, the quarterly Consumer trends data
are typically published around 90 days after the end of the quarter. See https://www.ons.gov.uk/eco
nomy/nationalaccounts/satelliteaccounts/bulletins/consumertrends/apriltojune2019.

https://www.ons.gov.uk/economy/nationalaccounts/satelliteaccounts/bulletins/consumertrends/apriltojune2019
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improving inflation forecasts is possible. Their LASSO and Random Forest models
are able to produce more accurate forecasts than the standard benchmark models,
e.g. autoregressive models. Similarly, Garcia et al. [10] find that high dimensional
models perform very well in inflation forecasting in data-rich environments. Our
findings from LASSO regressions support these findings: for inflation expectations,
the short-term forecast errors are smaller than those of the autoregressive models.
The analysis also identifies the optimal number of news topics for predicting up to
five quarters ahead inflation expectations to be either four or five, thus suggesting
that the LASSO regression using optimal number of topics and best value of regu-
larization parameter results in simpler model, which doesn’t compromise the model
performance. These results are, however, not robust for longer forecasting horizons
and for different values of the regularization parameter. In additional results, when
forecasting headline inflation, we find that the LASSO models fail to improve upon
the benchmark models but demonstrate similar forecasting accuracy.

The rest of the chapter is organized as follows. Section 2 describes the data sources
and methodology. Sections 3 and 4 provide results and an application in forecasting
respectively. Section 5 concludes.

2 Methodology

2.1 Data

The process of building the inflation expectations index can be divided into data
collection part and analysis of the data. This section describes both the data collection
and its analysis by means of text mining. Our inflation news indicator is built from
the article data of one of the UK leading newspapers,3 Guardian, business section
over the last 15 years. The choice of the news outlet is due relevance to our research
in terms of content and readership, as well as the availability of open-source data. In
May 2013, Guardian was the most popular UK newspaper website with 8.2 million
unique visitors per month and in April 2011, it was the fifth most popular newspaper
in the world.4

Any news in Guardian is public and readable by anyone by default. The Guardian
API is a public web service for accessing all the content the Guardian creates, cate-
gorized by tags and sections. Users can query content database for articles with full
content by tags and sections. The data comes in unstructured form, that is, the data
is in a text form and does not have a given structure. Overall, we collected around
20,000 documents and 32million terms from January 2004 to January 2019, which is
sufficient amount of data to conduct our analysis.We only fetch articles from the busi-
ness section, since this is the most relevant section for economic topics in general. In

3See https://www.pressgazette.co.uk/uk-newspaper-and-website-readership-2018-pamco/. In addi-
tion, see https://pamco.co.uk/pamco-data/latest-results/ for comparison among UK newspapers.
4Guardian.co.uk most read newspaper site in UK in March. www.journalism.co.uk.

https://www.pressgazette.co.uk/uk-newspaper-and-website-readership-2018-pamco/
https://pamco.co.uk/pamco-data/latest-results/
http://Guardian.co.uk
http://www.journalism.co.uk
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Fig. 1 Next 12-month inflation expectations, quarterly, growth from the previous period

addition, articles were also filtered based on subjectively chosen keywords, which in
our opinion are relevant to inflation expectations topic. Namely, they are price, price
increase, expensive, cheaper, cost, expense, bill, payment, oil, petrol, gas, diesel.

In addition to the novel data source, we also use the official inflation expectations
data, which is taken from the Bank of England Inflation Attitude Surveys and reflects
public’s attitude towards the inflation for the next 12 months.5 Figure 1 plots the
results of this survey, that is, the quarterly inflation expectations for the UK from
2014 until 2019. Augmented Dickey–Fuller test is used to determine the presence
of unit root and hence to understand whether the series are stationary or not. As
such, we find that inflation expectations data is non-stationary and is transformed to
stationary by first differencing.

Lastly, for robustness analysis, we also use actual inflation statistics from the UK
National Office for Statistics, which reflect the Consumer Price Index including
owner occupiers’ housing costs (CPIH). In the analysis, we use both the annual
12-month rate, as well as the quarterly 3-month rate.

2.2 Text Pre-processing

We start with pre-processing, which a set of activities performed on the corpus. This
way, the unstructured text is transformed into structured form, the dimensionality
of the data is reduced, noise is eliminated, and we get more understandable data.
Below are the text mining steps applied in this analysis. We follow text mining’s
bag-of-words6 approach, which means all words are analyzed as a single token and

5Survey respondents were asked the question ‘Q.1Which of these options best describes how prices
have changed over the last 12 months’? and their results of inflation attitude were summarized by
the median response.
6In text mining, vector representations of text are called bag-of-words representations.
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their structure, grammar or order is not used in the analysis.7 We mostly follow
suggestions for pre-processing by Bholat et al. [12], at the same time adding more
steps and more advanced methods.

First step when extracting the data from news database is to remove any images
and links contained in the articles and convert any information contained in the article
into an appropriate format. Duplicate and empty entries should also be accounted for
and such documents are removed. This can be done either manually or using Echkely
[13] method. In our analysis, we use R language’s built-in commands for duplicate
and empty documents removal.We then break down the document into tokens, that is,
we split the documents into words, numbers, symbols, etc. This is called tokenization
and is done by using blank spaces or punctuation marks as delimiters. Next, all the
words are converted into lower case and punctuation is removed. This is an important
step, otherwise same words, such as Price and price, which are written in upper and
lowercase, respectively, will be interpreted as different words. The downside is,
however, because when written in uppercase, Price may refer to an individual with
the last name Price and the lowercase may refer to the cost of something.We assume,
though, that across all articles and words, it is more likely that the article’s message
is about prices as costs, rather than a person with last name Price.

Next crucial step is removing the stop words, otherwise these words will appear
in the frequently used words and will give incorrect picture of the core meaning of
the document. The list of these words is provided in the beginning of the analysis and
includes common words in the English language that do not contain any information
relating to the article. Examples of such words are the, like, can, I, also, are, in, on,
this, that, gmt, pm, etc. To reduce the dimensionality further, we use word stemming,
which involves cutting off affixes and suffixes and reducing all words to their respec-
tive word stems. This is a form of linguistic normalization, where part-of-speech of
each word is identified, and each word is converted into its base form, e.g. nouns,
verbs, pronouns with same base into base word (e.g. reporting, reported and reporter
will be reduced to report).

The last step of the pre-processing is defining the Document-TermMatrix (DTM)
based on the cleaned text and computing the most common words across all the
documents. DTM lists all occurrences of words in the corpus by document. In the
DTM, the documents are represented by rows and the terms (or words) by columns.
This step also includes calculation of Term Frequency Inverse Document Frequency
or Term Document Frequency (TDM), which allows reducing the dimension of
DTM by removing all words which are less frequent, since the TDM measures how
important are all the words in the full corpus in explaining single articles by assigning
scores to eachword.We, therefore, remove the sparse terms, i.e. terms occurring only
in very few documents. These are the tokens which are missing from more than 90%
of the documents in the corpus.8 The remaining 900 000 stems with the highest TDM

7Comparison between bag-of word approach and other techniques is given in Cambria and White
[11].
8Maximal allowed sparsity is in the range from 0 to 1. For this paper, the sparsity was chosen
equal to 0.9, which means the token must appear in at least 10% of the documents to be retained.
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Fig. 2 Top frequent words and their counts. The words are presented in stemmed form

score are used in the final analysis. Frequency counts of the top 31 words in their
stemmed form, that is the number of times those words appear in the final sample,
are plotted in Fig. 2.

2.3 Topic Modelling

The pre-processing results in a data framewhich consists of the words used in the text
and their frequencies. These words consist of a document-term matrix, where each
row of the matrix is a unique term and each column is a unique document. To proceed
to building the index, topics need to be extracted from the DTM. Topic modelling is
the statistical approach for discovering topics from the collection of text documents.
In other words, it is the process of looking into a large collection of documents and
identifying clusters of words based on similarity, patterns and multitude. Since any
document can be assigned to several topics at a time, the probability distribution
across topics for each document is, therefore, needed.

Latent Dirichlet Allocation (LDA)9 is a statistical model that identifies each docu-
ment as amixture of topics (related tomultiple topics) and attributes eachword to one
of the document’s topics, therefore, clustering words into topics. With LDAmethod,
it is possible to derive their probability distribution by assigning probabilities to each

The sparsity value can be modified to higher or lower value, but that affects the number of terms
remained in the corpus.
9Detailed description of the LDA approach is provided in Blei et al. [14].
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word and document. Assigning words and documents to multiple topics also has the
advantage of semantic flexibility (ex. the word ‘rate’ can relate both to inflation and
unemployment topic). The term ‘latent’ is used because the words are intended to
communicate latent structure, the topic of the article, while the Dirichlet term is used
because the topic mixture is drawn from a conjugate Dirichlet prior in order to ensure
sparsity in the underlying multinomial distribution. Thorsrud [15] notes that LDA
shares many features with Gaussian factor models, with the difference being that
factors here are topics and are fed through a multinomial likelihood. In LDA, each
document is given a probability distribution and for each word in each document, a
topic assignment is made. The joint distribution of topic mixture θ, a set of N words
w is given by

p(θ, z,w|α , β) = p(θ |α ) ∗
∏N

n=1
p(zn|θ ) ∗ p(wn|zn, α ) (1)

where parameters α and β are k-vectors with components greater than zero, with k
being the dimensionality of Dirichlet distribution, that is the directionality of topic
variable z. In addition, the topic distribution of each document is as θ ~Dirichlet (α)
and term distribution is modelled by zn~ Dirichlet (β), while N ~ Poisson (ξ ).

LDA model’s goal is, therefore, to estimate θ and ϕ in order to define which
words are important for which topic and which topics are important for a given
document. For α and β, the higher they are, the more likely each document will
contain a mixture of several topics instead of a single topic and the more likely
each topic will contain a mixture of several of the words and not just single words.
More technical specifications on the LDA model and topic modelling in general in
Blei [16] and Griffiths and Steyvers [17]. In our research, we used LDA model with
Gibbs sampling. To choose the number of topics, that provide the best statistical
decomposition of the Guardian corpus, we use maximum likelihood method and
find the model with the best score. To note, different model iterations and different
parameters for α and β result in different document clustering. The goal is finding
unknown patterns, therefore, there is no perfect value for topic number and the
solutionwill most likely differ for different values. The best solution is to try different
values of topics to find the optimal topic distribution across the documents that will
match our intuition. As such, we classified 50 topics.

One other characteristic of LDA procedure is that it does not assign names to
the topics. We do so ourselves, based on the most frequent words computed for the
given topic and based on our subjective understanding of the topics, the economy and
perceived economic relationships among them. Exact name, however, plays minor
role in the actual analysis or results. LDA results in a vector indicating the distribution
of topics in each document and most popular/relevant words within them. The topics
resulting from LDA modelling along with the top 10 frequent words are provided in
Appendix 1.
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3 Results

For each document within a day, five most popular words are identified, and their
daily frequency is calculated. This allows counting also the frequency of each topic
for a given day. At this step, our results of topic decompositions and distribution are
used to build the new high-frequency index that will capture the intensity of inflation
expectations. The index is built for every day, that is, we build daily time series
using Guardian’s business articles for each day. To do so, we first collect together
all articles for a given day into one document, grouping them into one plain text for
each day. Next, based on the first ten most frequent words in each topic the article’s
daily frequency is calculated. In other words, the frequency is calculated for the
given day as the raw count of frequencies with which the most common words in
each topic appear on that day. For example, to understand the intensity of how many
times the word ‘vote’ has been used on 22 June 2016 (the day of the Brexit vote), we
will aggregate all the Guardian articles for that day as one big text document, then
calculate the number of times the word ‘vote’ appears in the text. Here the Brexit
can be our topic and the ‘vote’ is the term.

The news volume I(t) of given topic z is given by

Iz(t) =
∑

d∈I (t)
∑

w
N (d,w, z), (2)

where N (d,w, z) is the frequency with which the wordw tagged with topic z appears
in document d. These time series Iz(t) are measures of volume, that is, they measure
the intensity of given topic for given time period, that is, for given day. Figure 3

Fig. 3 Frequency time evolution for all topics
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illustrates our main results, that is, the 50 news topics identified from the Guardian
news dataset and their frequencies over the period from 2004 to 2019.

We find that some of index series are non-stationary and consequently transform
them to stationary series by differencing. Augmented Dickey–Fuller test is used to
determine the presence of unit root and hence understand if the series are stationary or
not. As such, some of the indices are evaluated as non-stationary and are transformed
to by differencing.

4 Application in Forecasting

The first task is to filter information from the list of variables and select more relevant
components. It is highly inefficient to use all the topic indices for predicting in such
a rich dataset, as some of the regressors may be imparting redundant information.
Therefore, number of topics N is too high and there is a definite multicollinearity
present among the topic indices, as can also be observed from Fig. 3. To reduce
dimensionality and tackle the issue of multicollinearity,10 we use another machine
learningmethod for variable selection. LeastAbsolute Shrinkage andSelectionOper-
ator (LASSO) method automates variable selection by reducing the coefficients of
some features to zero, while keeping those that have the most impact on the depen-
dent variable. LASSO’s main goal is finding β that minimizes (3) with constraint∑p

j=1 |βi | � t .

∑N

i=1

(
π t+h

t −
∑p

j=1
βi xi j

)2 + λ
∑p

j=1
|βi | (3)

π t+h
t is the inflation (expectations) for the next h quarter, N is the simple linear

mapping of p indices built using (2) and xi, j are the lagged indices built from the
news data. λ is the shrinkage parameter and controls the strength of penalty finding
the model with the smallest number of predictors that also gives a good accuracy.
Therefore, the number of variables to be removed is decided by the shrinkage param-
eter λ, which is chosen using cross-validation. Once the topic indices are selected,
we forecast the inflation expectations by building a model using a direct forecast
approach as given below

π t+h
t = α + a ∗ π t−1+h−1

t−1 +
∑N

n=1
bn ∗ xn,t−1 + ut , (4)

π t−1+h−1
t−1 the lagged value for the same horizon as for the inflation expectations

π t+h
t . N is the number of indices built from news data, bn are vectors of unknown

parameters, xn,t are the lagged indices and ut is the forecasting error. We call the
Eq. (4) a News-Based Model (NBM). It is common practice to fit a model using
training data, and then to evaluate its performance on a test data set. Forecast horizon

10LASSO is very robust against multicollinearity, see Friedman et al. [18].
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h is also the length of the out-of-sample period (i.e. fitted values on the training set)
and will be varied from 1 to 12 to compare the forecasts at different horizons and find
the ‘optimal’ horizon defined by the lowest forecasting error. Since all of the data in
this analysis is quarterly, h is measured in quarters. For benchmarking, we use naïve
AR (1) model on inflation expectations and compare the Root Mean Squared Errors
(RMSE).

Table 1 reports the normalized results of estimating (5) and anAR(2)with different
forecast horizons relative to simpleAR (1)model. The first column of the table shows
the forecast horizon, the second column (n_min) shows the number of variables
(topics) selected by LASSO regression and the last two columns show the Root
Mean Squared Errors (RMSE) for each of the applied models. It can be seen that
generally, the RMSEs are small, varying from 0.02 to 0.76, while the forecast errors
are the lowest when forecasting the next one or two period expectations using the
news data. In this case, the LASSO model outperforms both the naïve AR (1) and
AR (2) forecasts in terms of accuracy.

Several interesting observations can bemade fromTable 1. Firstly, LASSOmodels
select different number of topics that are relevant for inflation expectations prediction
for different forecast horizons. Out of our fifty topics compiled by the LDA method,
LASSO selects three to six topics depending on the forecast horizon. Lagged value of
the inflation expectations is always included among selected regressors and is always
significant. The adjusted R-squared statistic is informative and for some horizons is
as high as 70%. Thus, the selected news topic, as well as the past values of inflation
expectations, explain a relatively large fraction of the variation in the households’
inflation expectations. One to two quarters ahead expectations can be forecasted
with five topic indices as regressors, while the longer forecasts of eleven and twelve
quarters can be forecasted with the best accuracy when only three relevant topics
are employed in the regression. It can also be observed that the longer the forecast
horizon, the lower the forecast accuracy, which is intuitive. Figure 4 visualizes the

Table 1 RMSEs of h-period
inflation expectations
forecasts using LASSO and
AR (2) models. Errors are
normalized relative to AR (1)
benchmark

h n_min RMSE_LASSO_MIN RMSE_AR2

1 5 0.6 6

2 5 0.7 1.9

3 6 0.9 1.8

4 5 0.8 1.8

5 5 0.8 1.8

6 5 1.0 1.6

7 5 1.1 1.7

8 5 1.0 2.1

9 5 1.2 2.9

10 4 1.6 1.9

11 3 1.3 1.8

12 3 1.5 1.8
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Fig. 4 One year (h= 4) ahead inflation expectations (IE) with the fitted values from LASSO (NBM
IE) and AR (1)

results for one year ahead inflation expectations with the fitted values from NBN and
AR (1).

Our results were not robust when controlling and comparing different values
of regularization parameter in the LASSO regression. There are different ways to
choose the optimal value of lambda by cross-validation. Our results, in Table 1, weere
based on the smallest value of lambda from the cross-validation results. Table 2
compares the accuracy obtained with LASSO regression using different values of
lambda shrinkage parameters against the benchmark autoregressive models. First
column is the forecast horizon, while following three columns report the number of
regressors selected by LASSO for different values of lambda. Among selected topics
for all three variations of lambda, first lag of inflation expectations is selected.Column
RMSE_LASSO_MIN uses the value of lambda that is equal to the minimum value of
lambda chosen by cross-validation, while column RMSE_LASSO_LSE is based on
the model where lambda is within one standard error. Column RMSE_LASSO_BIC
is based on the lambda which is chosen using information criterion, while last two
columns show the errors for benchmark AR (1) model AR (2) model. All errors
are normalized relative to AR (1). Given the sparsity across normalized errors for
different forecast horizons, as well as in the number of topics selected by LASSO,
it can be noted that LASSO models other than that based on its minimum value are
less accurate and fail to outperform the naïve models.

The model obtained from RMSE_LASSO_LSE includes less topics but shows
poor forecasting performance. Similarly, the model from RMSE_LASSO_BIC
includes even more predictors, particularly in the intermediate horizons, however,
shows worse performance. In the shorter forecasting horizons, the number of chosen
topics is four, which is closer to five from the minimum lambda model, and the
forecast accuracy improves. These analyses demonstrate that the optimal number
of topics to predict inflation expectations up to five quarters ahead is between four
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and five. This also suggests that the LASSO regression, using minimum lambda as
the best lambda, results to simpler model without compromising much the model
performance on the test data.

It is also of interest to look how the same news data and model can be used to
predict the headline inflation.We computed forecast errors for different horizons and
models compared to benchmark AR (1) for annual rate of inflation and its quarterly
rate. Results, not included in this chapter, but available from authors upon request
suggest that while the LASSO model built using pre-selected news topics does not
outperform the benchmark models, it can, however, be used as a forecasting model
with similar forecast accuracy as those naïve models. This means that the model
obtained with LASSO regression does at least as good a job fitting the information
in the data as the more complicated one.

5 Conclusions

In this chapter, we proposed a novel index of inflation news that provides a real-
time indication of the price developments. Such index of inflation news captures
and summarizes well the information used in the formation of expectations. We then
document the significant relationship between the households’ inflation expectations
and news topics and evaluate the news’ forecasting performance using out-of-sample
validation.We use machine learning’s LASSOmodel and different values of regular-
ization parameters to find the optimal number of topics that provide the best accuracy
for the inflation expectations forecasts. Our results suggest that when using the best
value for lambda and the optimal number of topics, the LASSO models are able to
forecast the inflation expectations with greater accuracy than the simple benchmark
models, such as AR (1) and AR (2). However, the predictive relationship between
the headline inflation and the news topics is not as strong. Yet, both for the quar-
terly and annual rates of actual inflation, we find similar forecasting accuracy as the
benchmark models. The obtained accuracy remains good enough, and the LASSO
regression does at least as good a job fitting the information in the data.

These findings are in accordance with our main hypothesis that the news is good
indicators of inflation and inflation expectations and are able to capture them well.
Our results also support the view of Medeiros et al. [9] and Garcia et al. 10, that high
dimensional models have better forecasting power than the simple naïve models,
hence confirming that our methodology results in a model with as good forecasting
power as existing simple models, if not better. This also highlights the importance
of media as an information source for households’ expectation formation.
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Big Data: Forecasting and Control
for Tourism Demand

Miguel Ángel Ruiz Reina

Abstract In this study, innovative forecasting techniques and data sources from Big
Data are used for the study of Hotel Overnight Stays for Spain, from January 2018 to
June 2019. The unstoppable development of the Tourism sector with the application
of Big Data technologies, allow to make efficient decisions by economic agents. In
this work, the use of the data collected from the Google Data Mining tools allows
to obtain knowledge about Hotel Tourism Demand in Spain. The analysis carried
out meets the four basic principles of Big Data analysis: volume, velocity, variety
and veracity. In this setting, the methodology used corresponds to ARDL models,
and ECM models being developed Granger-Causality extended to seasonality. The
first one explains easily when economic agents will make their decisions; while the
second one allows forecasting for short-term and long-term. This fact means that
tourist offers and demands can be perfectly adjusted at every moment of the year. As
a criterion for the selection ofmodels, the innovativeMatrixU1Theil is proposed, this
allows to quantify how much a model is better than another in terms of forecasting.

Keywords Big data · Forecasting · Google trends

1 Introduction

The use of massive data in a digital environment has led to a disruptive change in the
developed economies of the world. Before the appearance of the Big Data concept,
the amount of data collected already exceeded the ability to process and analyze data.
The generation of massive data by the millions of device users and data analysis have
created an unsuspected digital economy decades ago [1].

The “Tourism Industry” [2], generates a quantity of data to be analyzed. This
sector increasingly has a greater weight in the Gross Domestic Products (GDP) and
turn generates externalities in economic agents [3].
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This paper introduces a modern unexplored analysis of the data generated on
the internet network for the Spanish tourism accommodation market by country of
origin. Innovative modelling of data processing from primary data sources (official
sources) with secondary sources from Big Data (Google Trends—GT) is introduced
following four basic principles of analysis: volume, velocity, variety and veracity. GT
analyzes the shift of searches throughout the time and reveal consumer intentions.

The main objective of this paper is to obtain forecasting on Hotel Overnight
Demand in Spain (HODS) from January 2018 to June 2019, by establishing a
causality model for monthly data. The multivariate method developed of Autore-
gressive Distributed Lags with seasonal variables (ARDL + seasonality) uses as an
explanatory variable for HODS a search interest rate (generated by GT) and seasonal
dummies variables for monthly data by country of origin. This second contribution
is a very relevant fact since tourism agents will be able to make efficient deci-
sions in the tourism market. To explain causation relations, the Granger-Causality
test extended with seasonality is developed and modelling we will be able to iden-
tify when consumer interest occurs. Ultimately, a criterion for the selection of new
models, such as Matrix U1 Theil, has been developed, and it will be applied in this
paper [4]. The forecasting is compared with univariate techniques such as Seasonal
Autoregressive Moving Average (SARIMA) and the relatively new non-parametric
technique Singular Spectrum Analysis (SSA).

The remainder of this research is as follows: Sect. 2 provides a review of the
existing literature on the forecasting of Tourism Demand, influenced by the tech-
niques of every epoch; in Sects. 3 and 4, data analysis is initially carried out along
with the methodological development and information criteria. The use of the crite-
rion for the selection of predictivemodels based on Theil’s index is considered a great
contribution to the literature. In Sect. 5 an empirical analysis is carried out verifying
the application of the proposed methodology. Section 6 shows the conclusions and
future lines of research for Data Scientists and some economic implications. Finally,
there is a section for the bibliographical references used.

2 Literature Review

Data science is a fundamental field for the exploitation and generation of knowledge
to make decisions in efficiency. In the bibliographic research carried out the appear-
ance of these new datasets from open data such as Google could modify the culture
and business in the Tourism field [5].

Tourism Demand is caused by multiple exogenous factors and techniques have
focused on obtaining robustness and dynamic modelling, scalability and granularity
[6]. The variety of Big Data studies has been applied to Tourism research, making a
great improvement in the area [7]. Traditionally these studies have been influenced
by the techniques of the moment [8–11]. However, researchers have found the need
for greater integration between computational and scientific fields [12].
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In our study, we will carry out an analysis with novel techniques and will be
compared with most used techniques, a contribution of this study is the use of Big
Data [13], tools summarized in an index of relevance provided by GT.

2.1 Forecasting Methods Using Google Search Engines
(Google Trends)

Previous researchers such as Lu and Liu [14], found correlations between Internet
search behaviour and the flows produced by tourists. Shimshoni et al. [15] concluded
that 90% of the categories analyzed are predictable, making a great contribution to
the scientific literature (categories: Socio-Economics fields).

Using the R programming and developing several examples in which the GT
tool is used, it is worth mentioning the study of Choi and Varian [16], to analyze
the tourism demand in Hong Kong. They obtained models with high explanatory
capacity (on average R2 = 73%) using ARDL. Gawlik et al. [17] concluded that the
GT search popularity evolution offers a useful predictor of tourism rates for a series
of arrivals of Hong Kong. For the Charleston region (USA), practical and interesting
applications were found on the use of search engine data. The main limitation is that
it was done only in one city [18].

To carry out Chinese Tourists’ forecasting, Yang, Pan et al. [19], proposed and
demonstrated the valence of the use of search engines based on web searches
comparing Baidu search engines with those of GT. In this sense, with data obtained
through GT, comparing purely autoregressive models with ARDL models with
seasonal dummy variables, short-term results were obtained for the case of Vienna
with data from images, words search or videos on YouTube [20].

Studies from the use of GT have meant an improvement in predictions for the
Caribbean area. AutoregressiveMixed-Data Sampling models represent an improve-
ment over SARIMA (Seasonal Autoregressive Integrated Moving Average) and AR
for 12-months predictions [21].

The study of the tourist flows from Japan to South Korea has been examined with
the construction of the Google variable combining the lowest Mean Square Error
(MSE) or the absolute average of forecast errors for monthly data. Finding the best
results for the model that uses Google data [22].

In the case of tourist flows fromSpain, Germany, UK and France, Google data was
usedwith the construction of indicators throughDynamic and SARIMAmodels [23].
For tourist arrivals in the city of Vienna [24], Google Analytics data was extracted
using Bayesian methods. In the case of Puerto Rico, the volume of searches has been
studied to predict the hotel demand of non-residents with a Dynamic Linear Model.
The results showed improvements in forecasting time horizons greater than 6months
[25]. Google data has been used for the flow of tourists in Portugal [26] and tourists
flow in Spain [27].
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Irem Önder [28] compared forecasting models with web and/or image search
indices regarding two cities (Vienna and Barcelona) and two countries (Austria and
Belgium). Tourist Arrivals in Prague was analyzed by Zeynalov [29], with the objec-
tive to assess whether GT were useful for forecasting tourists’ arrivals and overnight
stays in Prague with weekly data. The results confirm that predictions based on
Google searches are advantageous for policymakers and businesses operating in the
Tourism sector.

The online behaviour of hotel consumers for the United States of America was
researched with Discrete Fourier Transformation using data fromGT, with empirical
evidence for its use in marketing strategies [30].

In the case of Amsterdam, it has been investigated by Rödel [31], on forecasting
Tourism Demand using keywords related to “Amsterdam” in GT. With the develop-
ment of BigData technology in the last decades have emerged collaborative economy
companies [32]. They have carried out studies on a vacation rental company that oper-
ates worldwide but reducing it to results from the Iberian Peninsula. In 2018, a study
was published on the online and offline behaviour of consumers, for US restaurants
with Google and Baidu search engine data. [33].

The data provided by Google use an index that summarizes the interest of the
search words, in the case of data from Baidu. Li et al. [34], developed an index of
interest with data from Baidu. Demonstrating the forecasting capacity of Dynamic
FactorModel (GDFM) to forecast tourist demand in a destination forMonthlyBeijing
tourist volumes from January 2011 to July 2015. A relevant study using Machine
Learning algorithms is the one developed by Sun et al. [35], using criteria for the
selection of models such as Normalized Root Squared Error (NRMSE) and MAPE,
in addition to using the Diebold-Mariano criterion to determine if the prediction
differences are significant.

Measures of forecasting. As observed above, the Tourist Industry has had an
interest in the past, in the present and in the future, and it will continue to have it.
Mainly because it is an industry signal of the evolution of the service economy. So,
the modelling used is very diverse, one aspect to be taken into account has been the
criteria of information on the selection ofmodels. It has been observed in the literature
review the use of Mean Absolute Percentage Error (MAPE) and Root Mean Square
Error (RMSE); Theil’s index [36–39]; Symmetric Mean Percentage Error (SMAPE)
[40]. Some authors developed the RMSE ratio [41, 42], and in this article, we will
develop the Matrix U1 Theil as a criterion for the selection of forecasting models
[4]. This method allows quantifying the gain of the use of one methodology versus
another.

To summarize the review of the literature, we can say that new models have
been used in Data Science. In this work, new methodologies are developed, such as
the improved Ganger causality test for seasonal data. Dynamic models have been
developed to analyze the forecasting capacity in the short and long-term. Big Data
tools have been used fromone of the largest search engines in theworld and a decision
matrix on predictive capacity has been developed for different time horizons.
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Data Warehouse

Modelling and Forecasting

Stakeholders: Take decissions in 
efficiency

Touristic Offer

Potential Customers: Google 
Queries

Tourism Demand

Fig. 1 Data life cycle and efficiency decision scheme. Own elaboration

3 Methodology

In this section, the scheme (see Fig. 1), of the cycle between offer and demand in
tourism has been developed under four basic principles of Big Data. Specifically, in
our paper, the objective is modelling and forecasting, however, we will suppose ad
hoc the data from the Data Warehouse [43]. In this sense, the data will come from
official sources of the INE1 and Google2. So, all of the Extraction, Transformation
and Loading—ETL [44], work will come from the data engineering of these entities.
Themain objective is tomake efficiencies predictions based on knowledge to improve
the user experiences of Tourism Demand and the offers of the stakeholders.

3.1 Modelling and Forecasting Evaluation

In this paper, ARDL + seasonality model is proposed and its application with data
from Big Data architectures is analyzed. This modelling allows to know how HODS
is generated through the searches of Google users (by country of origin). The purpose
of this model is to know the causality relationship and to be able to make forecasts.
To analyze the relationship between Granger causality and seasonality a test is devel-
oped. To evaluate the forecasting capacity is developedMatrixU1Theil by country of
origin. This matrix is developed to evaluate forecasting capabilities in order to obtain
a comparative dimensionless measure among models. For a more in-depth detail of
the predictions made, the reader can refer to the references of SARIMA [45] and
Singular Spectrum Analysis [46]. All models are made for different scenarios and
forecast comparisons are made for different time horizons h = 3, 6, 12, 18.

Granger causality and seasonality testing: ARDL and ECM. We develop the
test proposed by Granger [47] and discussed byMontero [48], to detect the causality,
since it is not observed with the simple analysis of correlation.

1INE: Instituto Nacional de Estadística (Spain). The National Statistics Institute (Spain).
2www.google.com.

http://www.google.com
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The model considered by Granger is for two variables (yt , xt). Due to the
great influence of seasonality [49], in the Tourism sector, the following equation
is proposed with HAC covariance method which determines the robust standard
error for parameters estimated

ln(yt) = β0 ln(xt) +
m∑

j=1

βj ln
(
xt−j

) +
m∑

j=1

αj ln
(
yt−j

) +
12∑

i=1

δiwi + ε′
t (1)

where wi is a deterministic seasonal dummy (i = 1, …, 12) component and for
monthly data is defined as follows:

w1 = −1, for others wi = 0

w1 = −1,w2 = 1 for others wi = 0

w1 = −1,w3 = 1 for others wi = 0

...

w1 = −1,w12 = 1 for others wi = 0

The use of HAC covariance method guarantees the efficiency of the parameters
estimated. Once obtained ε′

t , this will be distributed as white noise.
The decision of causality with seasonal effects (Testing linear restrictions for

parameters of xt−j and wi) is asymptotically (T ≥ 60) as Chi-squared [50].
The most general expression of a dynamic model named ARDL3 (m, n) with

seasonal components is as follows [51, 52]:

γ (L) ln(yt) = δ(L) ln(xt) +
12∑

i=1

αiwi + εt (2)

With the interest of evaluating the dynamic persistence of an effect on the exoge-
nous variable at a certain moment, the Error Correction Model (ECM regression
or ARDL Error Correction Regression) is constructed. The ECM4 regression is as
follows:

� ln(yt) =δ0� ln(xt) +
n∑

j=1

λj� ln
(
xt−j

) +
m∑

j=1

δj� ln
(
yt−j

)

3m is the number of endogenous variables yt(HODS); n is the number of exogenous variables
xt(Google Queries). ln is the Natural Logarithm. (L) is the Lag operator. Stability conditions: if
inverted roots are |γ (L)| < 1.
4Granger-Engle representation theorem and parameters are estimated in two stages. Consistency
and Efficiency of estimators are fulfilled.
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− γ (L)
[
ln(yt−1) − β ln(xt−1)

] +
12∑

i=1

αiwi + εt (3)

In this model, short-term effect is represented by parameters of first variables
differentiated, while long-term effects |γ (L)| < 1 are represented by Correction
Error term. According to Zivot [53], if long-term effect is not statically significant,
cointegration does not exist. The long-run multiplier is defined as β = δ(L)

γ (L)

Forecasting Evaluation: Theil’s measures. To verify the forecasting accuracy of
different models, we adopted an evaluation criterion to compare the out-sample
forecasting performance. We will work with the inequality index of Theil [36]

U1 =

[
1
h

18∑
h=1

(
yT+h − ŷT+h

)2
]1/2

[
1
h

18∑
h=1

(yT+h)
2

]1/2

+
[
1
h

18∑
h=1

(
ŷT+h

)2
]1/2 (4)

Ratio Theil’s (RT’s) is designed to comparisons between predicted variables with
horizons h = 3, 6, 12,18.

RT ′syit ,yjt = Uyit
1

U
yjt
1

(5)

In the mathematical interpretation of the RT’s, three situations are described
according to the predictive capacity of models: if the RT’s is equal to one, both
models have the same explanatory capacity; if the ratio is greater than one, this
would indicate that the denominator’s model has a better explanatory capacity than
that of the numerator; if the ratio is less than one, the numerator’s model has better
predictive results than the denominator.

4 Data

The Data of the number of HODS has been collected by INE. For the number of
tourists in Spain, by country of origin, the dataset from the first month of 2010 to
June of 2019, was obtained. In the grouping of nationalities, the name of “Resident
abroad” should be noted. This includes all foreign nationalities except for the 5 main
nationalities described in the table (Germany, France, Italy, Netherlands, UK, USA).

According to the data represented in Fig. 2, the average of Residents Abroad was
16,180,005.75 in the period cited. The maximum number of hotel occupancy was
recorded in August 2017, with 29,594,071 and the minimum 11.887.105 in January
2010.
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Fig. 2 number of HODS and keyword “visit Spain” for Resident abroad (Jan. 2010–June 2019).
Own elaboration

To obtain data fromGoogle, the BigData tool calledGT has been used. Previously
GT tools have been used to make forecasts as is cited in the literature review. The
lowest interest occurred inDecember of the year 2010.Analyzing the data obtained of
interest for the keyword or Google Query (GQ) “visit Spain”, the greatest worldwide
interest of the word was in May 2017, just with three periods of advance to the
maximum historical overnight stays in Spain.

With the observation of the maximum and minimum values of both series
analyzed, it is observed graphically that searches on the Internet are made with
at least one period in advance.

Table 1 displays a summary of variables selected by nationalities: Hotel demand
and GQ. According to the two series selected, it is worth mentioning that only
the variable “Google Queries” in the case of Residents abroad (and USA HODS)
meets the hypothesis of normality at 95% confidence (Jarque-Bera). As for stochastic
trends (ADF test), all nationalities have unitary roots in Hotel demand and only three
cases have been found in which there is evidence of unit root: they are the Google
Queries of the Residents abroad, UK andUSA. Regarding the stationarity in variance
(KPSS), a more stationary behaviour is observed in the Hotel Demand variable for
all nationalities including Residents abroad. On the other hand, in the Google queries
variable, there is a clearly non-stationary behaviour in the series of Residents Abroad,
UK and USA.

5 Empirical Results

The empirical results obtained from the application of the previously proposed
methodology section are briefly summarized in the following text. In this paper of
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Table 1 Mean and stationary analysis of HODS and keyword “visit Spain” sample period Jan.
2010–December 2017. P-values in brackets. Own elaboration

Mean Jarque-Bera ADF KPSS

Hotel demand

Residents abroad 16,180,005.75 10.03 (0.01) −1.50 (0.52) 0.49

Germany 3,846,629.63 13.23 (0.00) −2.35 (0.15) 0.08

France 1,231,000.87 16.41 (0.00) −1.36 (0.59) 0.51

Italy 711,484.83 76.14 (0.00) −1.01 (0.74) 0.10

Netherlands 645,451.61 8.25 (0.02) −0.60 (0.86) 0.43

UK 4,113,511.96 11.72 (0.01) −1.55 (0.50) 0.35

USA 437,373.41 5.22 (0.07) 1.19 (0.99) 0.67

Google queries (GQ)

Residents abroad 62.62 4.98 (0.08) 1.53 (0.99) 1.07

Germany 47.02 7.71 (0.02) −3.70 (0.00) 0.53

France 44.29 8.41 (0.01) −10.67 (0.00) 0.65

Italy 28.28 29.93 (0.00) −9.51 (0.00) 0.49

Netherlands 38.04 25.15 (0.00) −9.16 (0.00) 0.49

UK 41.54 11.38 (0.00) −0.76 (0.81) 1.14

USA 57.11 8.23 (0.01) 1.29 (0.99) 0.95

predictive techniques, we will focus expressly on the dynamic model with explana-
tory variables of Internet searches (“visit Spain”) and seasonal factors. The Granger-
Causality test extended to seasonality confirms this hypothesis at least within 95%
of confidence. As usual in the literature, the forecasting is carried out for time hori-
zons h= 3, 6,12,18 months. Moreover, this article considers the training period from
January 2010–December 2017 and out-sample period from January 2018–June 2019.

The results obtained through the Granger causality test including seasonal factors
have determined that the number of HODS could be explained by the number of
searches generated on the internet and by a systematic seasonality (Fig. 3).

The ECM with seasonality obtained for residents abroad is as follows (lags
selected under Akaike Info Criterion):

� ln
(
ŷt

) = −0.28
(0.00)

� ln(xt) − 0.13
(0.03)

[
ln(yt−1) − 0.55

(0.00)
ln(xt)

]
+

12∑

i=1

α̂iwi + ε̂t

Sample : 2010M 1 2017M 12R2 = 0.9888

12∑

i=1

α̂iwi = −22.41
(0.03)

w1 +1.86
(0.02)

w2 + 2.05
(0.01)

w3 + 2.08
(0.01)

w4 + 2.23
(0.00)

w5 + 2.13
(0.01)

w6

+ 2.11
(0.01)

w7 + 2.01
(0.02)

w8 + 1.81
(0.04)

w9 + 1.65
(0.06)

w10 + 1.16
(0.18)

w11 + 1.48
(0.08)

w12
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Fig. 3 Out-sample forecast HODS h = 18 (Jan. 2018–Jun. 2019). Own elaboration

In the model defined for the HODS resident abroad variable, two aspects stand out
(p-values in brackets): firstly, the existence of a cointegration relationship; second,
the strong influence of seasonality. Table 2 shows models and results for HODS by
country of origin.

It emphasizes, on the one hand, that all models show a long-term relationship
(except for the UK) with a 95% confidence level (USA with 90%). On the other
hand, all models are affected by the monthly seasonality, highlighting the fact that
the German country of origin every month is significantly different from zero.

Once the results of the three forecasting models cited in the methodology section
have been obtained by nationalities of tourists who visit Spain, the RT’s can be
applied to quantify which model is better in predictive terms.

The results of the forecasting accuracy (see Table 3), depend on the time horizon
used and the country of origin analyzed.

In general, we can say that SARIMAmodels have obtained better results than SSA
models (except theNetherlands with h= 12, 18). On the other hand, when comparing
with the ARDL causal models with seasonality, the diversity of the results does not

Table 2 Summary of ARDL + seasonality models by country of origin for HODS. Sample Jan.
2010–December 2017. The table shows no relevant seasonality (months). Own elaboration

Hotel demand ARDL EC term (Prob) Seasonality R2

Germany (2,0) −0.34 (0.00) – 0.97

France (4,0) −0.06 (0.03) 2, 10,11, 12 0.97

Italy (2,1) −0.11 (0.01) 9, 10, 11 0.97

Netherlands (4,2) −0.12 (0.01) 11, 12 0.96

UK (1,1) −0.07 (0.09) 7, 8,9,10,11, 12 0.99

USA (3,0) −0.10 (0.05) 2, 8, 10, 11, 12 0.97
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Table 3 Matrix U1 Theil forecasting evaluation (Jan. 2018–June 2019): RT’s by country of origin.
Own elaboration

h Ratio theil Residents Ab. Ger. France Italy Net. UK USA

3 SSA/SARIMA 236.84 5.57 5.08 2.33 9.86 5.88 3.48

ARDL/SARIMA 2.44 0.83 0.98 1.51 1.41 0.84 0.88

6 SSA/SARIMA 76.62 1.47 2.71 1.73 1.75 4.64 2.92

ARDL/SARIMA 1.46 1.01 0.74 1.30 0.48 1.47 0.85

12 SSA/SARIMA 33.45 1.55 3.53 4.10 0.73 1.58 1.39

ARDL/SARIMA 1.66 0.79 1.14 2.24 0.43 1.15 0.63

18 SSA/SARIMA 33.50 1.33 3.79 1.96 0.69 1.79 1.00

ARDL/SARIMA 1.57 0.67 1.11 1.71 0.38 1.05 0.37

allow us to conclude which model has the best forecasting capacity. With a time
horizon of 3 months, SARIMA presents the best results in three nationalities of
origin (Residents abroad, France, UK), for the rest they have obtained better results
of forecasting with ARDL seasonally. For a 6-month time horizon, the best results of
ARDL with seasonality have been obtained for France and the Netherlands, against
SARIMA.For the 12-month and18-month timehorizons, the gains fromusingARDL
models with seasonality are observed in the German and Netherlands nationalities.
For the rest of the cases, the SARIMA models are superior to those analyzed in this
paper.

6 Conclusions

In this paper, the importance of Forecasting modelling and historical analysis carried
out in the literature review has been highlighted. The four dimensions of Big Data
have been discussed: volume, the technologies coming from Google tools for data
ETL have allowed analyzing the main markets of origin tourism in Spain; velocity,
related to the volume of data, the data engineering provided by Google technologies
allow us to monitor the Tourism Demand search intentions of the main nationalities
who visit Spain; variety, the use of primary data source (INE) and secondary (Google)
have allowed build knowledge based on the data. This last one is a novel aspect in
the analysis since the users show their interest through the search of information on
the Internet; veracity of the data verified through the cointegration contrasts carried
out. They have allowed modelling the forecasts of Spanish hotel demand by country
of origin.

In addition, this article has used more common techniques (SARIMA or ARDL)
with a novel technique named SSA. The contribution, in particular, can be divided
into the following points:
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1. A Granger causality test extended to seasonality has been developed. In the
literature, it was usual to perform only the contrast between endogenous and
exogenous variables.

2. A criterion of themodel’s selection based on the predictive capacity of themodels
has been developed (RT´s). In previous literature work, the gain in the use of
models has not been quantified. Theil ratio quantifies the gain between pairs of
models.

3. Related to the previous point, Econometric modelling with data from Big Data
technologies does not guarantee an improvement in forecasting capacity. It has
been demonstrated by the main nationalities who visit Spain.

4. Concerning the dynamic models with seasonality, we have empirically demon-
strated that hotel demand decisions are made with at least a period in advance.

5. Cointegration relationship has been revealed expressed in the ECM model.

We can conclude that the models used in this work improve the explanatory
capacity of causality (R2 close to 1) and cointegration relationships have been demon-
strated, provide seasonal knowledge in decision making for the Spanish Tourism
Demand. According to the results obtained, it is not possible to conclude that there
is a gain in terms of forecasting by the use of tools from Big Data engineering; in
contrast to what some authors claim [35]. The econometric interpretation of causality
models and the economic interpretation can facilitate an adjustment of the offer in
terms of prices or even advertising to the agents interested in visiting Spain. This
article has been the basis of future research in which data fromBig Data technologies
are used to make efficient decisions. The theoretical framework could be developed
in fields where online markets are relevant. The preferred frameworks for this type
of analysis could be Finance, Automotive, Insurance or any sort of market which
implies searches on the internet network and this is translated into a quantification
of the final decision of the consumer.
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Traffic Networks via Neural Networks:
Description and Evolution

Alexandros Sopasakis

Abstract We optimize traffic signal timing sequences for a section of a traffic net-
work in order to reduce congestion based on anticipated demand. The system relies
on the accuracy of the predicted traffic demand in time and space which is carried
out by a neural network. Specifically, we design, train, and evaluate three different
neural network models and assert their capability to describe demand from traffic
cameras. To train these neural networks we create location specific time series data
by approximating vehicle densities from camera images. Each image passes through
a cascade of filtering methods and provides a traffic density estimate corresponding
to the camera location at that specific time. The system is showcased using real-time
camera images from the traffic network of Goteborg. We specifically test this system
in reducing congestion for a small section of the traffic network. To facilitate the
learning and resulting prediction we collected images from cameras in that network
over a couple ofmonths.We then use the neural network to produce forecasts of traffic
demand and adjust the traffic signals within that section. To simulate how congestion
will evolve once the traffic signals are adjusted we implement an advanced stochastic
model.

Keywords Neural network · Traffic signals · LSTM · GRU · SAE · Filter.

1 Traffic Networks and Their Diverse Impact

Continued economic growth and urbanization trends represent an overarching chal-
lenge for cities. Rising traffic congestion is an inescapable reality for large and
developing metropolitan areas across the world typically costing between 1 and 4%
of their respective national GDP. Surprisingly, 11 of the top 15 cities in 2018, with
the highest number of hours spent in congestion globally are in Europe as can be
seen in Fig. 1.
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Fig. 1 (Left) Number of hours spent in traffic congestion per driver per year. Top 15 cities in the
world. Table computed using the Inrix dashboard. (Right) Typical morning commute congestion
as seen from one of our cameras in the city of Goteborg

Traffic congestion imposes massive costs on governments, transportation compa-
nies, and drivers due to time loss, increased pollution rates, and higher incidence of
accidents. Each year, congestion costs in Europe amount to 100 billion euros or about
1% of the EU’s GDP. Similar costs are shared for cities in the USA and the world.
Without effective action, the problem will worsen. An average size taxi company,
with 500 vehicles, spends around 197.000 euros per year while idling in congestion
and lose approximately 94.000 h of its driver’s productivity per year. It is estimated
that traffic congestion contributes up to 20% of total CO2 emissions. Traffic related
air pollution has been associated with asthma and respiratory diseases and cardio-
vascular diseases. This air pollution is the cause behind millions of premature deaths
each year.

Traffic is a chaotic phenomenon and as such very hard to predict. Traffic scientists
agree [1–3] that there is a gap in theory related to the formation and appearance of
traffic congestion and resulting jam. Errors in classical modeling methods [2, 4] are
known [3, 5], to increase to levels that render predictions useless, when the number
of vehicles is 35% (150 veh/lane/km) dense or higher. It is well accepted [1, 2] and
demonstrated in [6], that the state of the art methods involve huge errors. In fact, it
is shown that the larger the number of vehicles involved, the larger the error will be
for the currently used state of the art methods [2, 3]. Specifically, it is found [6] that
the state of the art solution is approximately 22% wrong when the traffic is dense;
e.g., when it matters the most.

Describing traffic interactions is intrinsically a multi-scale problem making a
description of the resulting evolution difficult. In essence, information at very small
spatial and temporal scales can profoundly impact intermediate- and large-scale
behavior. Fluctuations in the dynamics can play a dominant role [7] in the system
evolution as is evident in long time simulations [8] and asymptotic analysis in a
linearized stochastic PDE limit [9]. As a result, resolving the microscopic dynamics
is critical. The most widely used methods to produce detailed solutions of traffic
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Fig. 2 (Left) Overview of a part of the traffic network and locations of (multiple) cameras where
some of the images and data are collected from. Example from Goteborg downtown. Data provided
by Trafikverket. (Right) Filtering one of the images for processing and counting (see Sect. 3 for
details.)

models are lattice-based methods involving stochastic Monte Carlo [8, 10] or Cel-
lular Automaton [1–3] techniques. However, not all such methods have a systematic
mathematical methodology to model stochasticity.

We present an end to end system which uses images arriving in real time from
traffic cameras which through filtering and machine learning methods can produce
predictions of yet to appear congestion at different locations and time instances for a
city network. Aswith anymachine learningmethodology, the process partly relies on
amassing a large amount of data fromwhich to train our specialized neural networks.
Specifically, we process images, such as the one shown in Fig. 1, from the city of
Goteborg, with a series of fast filtering methods in order to remove uninteresting
features and focus information. Each such estimate of vehicular density is used to
create a time series record of densities. A step in that cascading filtering process can
be seen in Fig. 2. The resulting time series are then used to train our neural networks.
In return, the neural networks will eventually be asked to produce forecasts of traffic
densities into the future.

We begin in Sect. 2, by providing an overview of how neural networks (NN) can be
used for describing complex dynamics from data. We focus our presentation on NN
architectures most suited for time series data such as the ones we collected for this
work. We discuss in Sect. 3, our data collection approach, processing, and specific
filtering methods used. In Sect. 4, we present results from training and forecasting
for each of the three neural networks chosen. Finally, in Sect. 5, we propose an
application of this system into congestion management via dynamic traffic signal
control based on real-time forecasts of this neural network. We end with a discussion
of the results in that same section.
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2 Neural Networks for Time Series Analysis

Neural Networks (NN) are collections of nodes or neurons within a given layer
which are connected with neurons from other layers. A NN is nothing more than
a collection of all such layers including an input layer, as well as an output layer.
The importance of these connections between the neurons is described by unknown
parameters called weights. Computing the values for those weights is achieved by
using input data for which the resulting output is typically known. This is called
training. The main purpose of machine learning algorithms is to compute the values
of these weights, and therefore, reduce the error between prediction and reality. The
number of layers within a network constitutes how deep that network is.

There are many different types of neural networks which are designed to learn
from time series data. Most but not all of those go under the name of recurrent NN
(RNN). RNNs consist of a design architecture which has a clear time component.
Specifically, each of the connections between layers and respective nodes in a RNN
canbe thought as a next iteration or a time step. This iswhatmakesRNNs so amenable
to time series data and eventual pattern analysis once the network is trained. RNNs
are known to suffer from a number of shortcomings [11, 12]. In general, RNNs suffer
from short memory. In other words, RNNs cannot remember data information which
they learned many time steps previously.

One of the most popular improvements of RNN type networks which does not
suffer from the vanishing or exploding gradient problem is the Long Short-Term
Memory (LSTM). So an LSTM is a recurrent type NN with improved functionality.
A schematic of an LSTM network can be found in Fig. 5 of [13]. In the next section,
we discuss LSTMs, as well as a number of other relevant adaptations of RNNs.

2.1 The Three Neural Networks Chosen

In this study, we employ three diverse NN: Long Short-Term Memory NN (LSTM),
GatedRecurrentUnits (GRU), andStackedAutoEncoders (SAEs).We refer tofigures
in [13], for relevant schematics of their architecture.

A SAEs network is able to filter information by breaking down data into its essen-
tial elements. Once the network learns which are the elements which best describe
the data, then it can easily reproduce that data. A SAEs is a reverse version of an
autoencoder (AE) network. The way a AE network works is by reducing the number
of nodes within successive hidden layers. AEs essentially create a bottleneck within
their hidden layers. Effectively, AEs are forced to learn a compressed version of
the data containing only the most important of its features. After repeated feeding
of many such time series the network would eventually learn which are the most
important features in the data set and use only those to describe the data.
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A SAE on the other hand is the opposite of an AE [14, 15]. So instead we now ask
the network to understand the data by finding representations of its patterns through
many more nodes within each of its hidden layers. This allows us to account for
every feature within the dataset through a direct representation of its importance in
the SAEs hidden layers. A relevant schematic in Fig. 5 of [13], shows a single hidden
layer with a larger number of nodes than the input (or the output) layer.

An issue for SAEs, however, is that after training such a network the obvious
solution is the identity. An identity would imply that for any input data we would get
back as output the same input data. Clearly, such training is useless since the network
did not learn any important features for our data. This is actually what would happen
if we teach the network by simply feeding it the input data. So, how do we avoid
getting an identity network back through the training? We achieve this by requiring
that the network activates only a subset of its hidden cells during each of its training
sessions [15, 16]. So, in the essence, we teach a sparse set of our network at a time.
We furthermore supplement the training by minimizing a corresponding sparse set
of the feedback error [15].

Finally, the third NN we implement is a gated recurrent unit (GRU) which is
a variation of the LSTM type network. The main difference is that GRUs have
one less gate than LSTM networks do. Specifically, as we discussed above, LSTM
networks control information proliferation by using an input, an output, and a forget
gate. Instead, GRUs have a reset and an update gate. The reset gate has a similar
functionality as the forget gate in LSTMs although it is located in a different place
within the GRU architecture. The update gate, however, is the one determining how
much information to input from the previous layer. Since GRUs lack an output gate
they are, in theory, able to proliferate their full information state between successive
cells.

2.2 Network Design Specifics

We tested a large number of different designs for each of the above networks [13].
We experimented with the number of layers, number of nodes per layer, as well as
how the data is fed in batches, in order to improve learning for each of the networks.
The best of these designs are presented below in Tables1 and 2, for each of the
LSTM, GRU, and the SAEs networks, respectively. In these designs, the parameters
chosen (or otherwise called hyper-parameters) for each network are considered to
be optimal. In the final dense layer used in each network, we implement a Sigmoid
[13] activation function.
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Table 1 (Left) This LSTM network consists of 16896 + 33024 + 65 = 49985 parameters.
Dropout layers are also implemented between the hidden layers. (Right)ThisGRUnetwork consists
of a total of 37505 parameters

Network LSTM GRU

Layers First Second Dense First Second Dense

Nodes 64 64 1 64 64 1

Input 288 64×288 64 288 64×288 64

Output 64×288 64 1 64×288 64 1

Parameters 16896 33024 65 12672 24768 65

Table 2 This SAEs network ended up with more than 800,000 parameters and is the largest of the
three networks implemented in this work

SAEs Dense 1 Dense 2 Dense 3 Dense 4 Dense 5 Dense 6

Nodes 400 400 400 400 400 400

Parameters 116,001 160,801 160,801 160,801 160,801 116,001

3 Data Filtering, Training and Simulations

All neural networks require vast amounts of data for training. It is well established
that some of the best neural networks will fail if insufficient amounts of data are
used for training. In contrast, an average network could produce great results if vast
amounts of data is available to train it. So the amount of data is paramount toward
the success or failure of any neural network model.

In that respect, we have collected a large amount of still images from several
fixed camera locations in the traffic network at the city of Goteborg, in Sweden.
There are hundreds of cameras overlooking the traffic network of Goteborg, as can
be seen in Figs. 2 and 3. Some of those record videos while others record still images
taken every minute. We collected and used for training all such still images for a
number of months. There have been several instances, however, where some of the
images were lost due to temporary camera malfunction at a specific location or other
hardware/software issues. Overall, however, the data size was sufficiently large to
allow our NN to succeed in training at several of those camera locations.

3.1 Images and Processing

Image processing is needed in order to ascertain vehicle density for each road section
overlooked by the cameras. This is achieved by fast filtering methods. The reason
that these methods need to be fast is that images from hundreds of cameras arrive
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Fig. 3 Viewpoints from cameras in the city of Goteborg during day and night

at one minute intervals, and therefore, the algorithms counting density must be both
accurate and speedy.

We process each image by imposing four different procedures in sequence: mask-
ing, sharpening, blurring, and finally using a threshold. The last step, involving the
threshold, produces a binary output over each pixel in an image thus making it pos-
sible to estimate traffic density by simply counting zeros and ones.

We use a mask to focus our density estimation methods into a specific region of
the nonmoving camera image. Such a mask can be seen in green in the left part of
Fig. 4. Our algorithms, therefore, disregard all other information in the image and
only process the pixels within that green region.

3.2 Filtering Cascade

We begin processing by performing edge detection for the masked region of the
image. One of the fastest such algorithms is the well-known Canny edge detection
by Canny [17]. However, the method is prone to errors if the image is not clear
enough. Thus, we preprocess each image by first performing a low-pass denoising
procedure. The method consists of applying a Gaussian function [13] on each 5 × 5
pixel square region of the image. This results in a smoothing effect which makes
Canny edge detection later produce much more accurate results. Such a procedure
is typically called low-pass filtering in contrast to the high pass filter imposed by
Canny edge detection which we discuss below.

Edge detection is responsible for finding the outlines of objects in the image.
Accurate edge detection is critical for accurate density counting—occurring at the
end of the image processing cascade of treatments each image must undergo. An
efficient method to achieve both of the above objectives, accuracy, and efficiency
is to compute gradients between neighboring pixels in the image. Image gradients
for an image F are computed through the function

√
Fx + Fy . We then verify the

existence of edges or remove them by providing a threshold. If the gradient is below
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Fig. 4 Original image (left) and corresponding Canny edge detection analysis (right) in real time
from a camera in Goteborg

Fig. 5 Further processing of image from Fig. 4 above in order to produce the resulting density
estimate for this camera location. Image undergoes blur and threshold analysis for the area masked
in green of the original image in Fig. 4

the threshold we eliminate the edge, otherwise, if it is above the threshold, we keep
the edge. We refer to [13, 17], for more details. An example of such a detection is
also seen in the right part of Fig. 4.

The next step in the cascade is to fill-in the pixels between edges in order to allow
more accurate density counting. This is effectively donewith a procedure introducing
blur into the image. This is equivalent to a low-pass filtering of the image. To achieve
this, we reuse the Gaussian filter which we have applied in the beginning of the
procedure in order to de-noise the image. The result of this blur procedure can be
seen in the left part of Fig. 5. Although blurring an image helps, it is also clear from
that image that there still exists much variation in pixels colors. As a result, the final
step in the procedure uses a threshold in order to decide which pixels are actually
part of the object and which are not. The result is a binary type of image where each
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pixel can only have one of two possible values. This makes it easier to count the
density of objects within the masked region of the image as can be seen in the right
part of Fig. 5.

4 Training and Simulations

We use images from each of our camera locations in order to built time series traffic
densities for each such location based on the filtering methodologies outlined in the
previous section. In this section, we train each of our three machine learning NN
using the time series data created from those cameras.

Training and validation results are similar to those presented in Fig. 7 of [13],
where the networks are trained under similar conditions. Overall the loss function
quickly achieves values below 0.005 for all three networks. In the cases of LSTM
and SAEs, the training loss is in fact lower than the validation loss rather quickly in
the learning process while the GRU reaches this value a lot later in the process.

4.1 Traffic Density Forecasting

There are a number of ways to produce forecasts at different future time instances.
We chose to train a neural network for each such future time instance. Alternatively,
we could have also trained one neural network for only one short time prediction and
then use that to produce forecasts further along in time. For example, it is possible to
train a network to predict traffic density in 5min and then reuse that network together
with the 5min prediction in order to also predict the traffic density in 10min. The
reason we did not do that is that errors can quickly accumulate in such forecasts.
Instead, therefore, we train different networks for each of our time predictions. We,
therefore, trained networks which can provide predictions at 5, 10, 15, 30, 60, and
120min for a number of the camera locations. We present some of those in Fig. 6.

A number of similar results are also available in [13] where the real-time capabil-
ities of such a system are also evident. In particular, the capabilities of this system
are put to the test there since they are shown to be able to also predict rare events
such as for instance an unusual once a year traffic commute such as a Black Friday
(see Fig. 10 in [13]).

5 Traffic Signal Timings and Applications

In this section, we explore applications of such a neural network-based real-time
forecasting system towards traffic congestion reduction by adjusting existing traffic
signal timing sequences in real time based on camera input.
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Fig. 6 Traffic density forecasts (green) versus reality (blue) for 10 (LSTMbased), 15 (GRU based),
30 (SAEs), and 60 (GRU based) minutes, respectively. Flow vs time. In the last case, we present the
real-time capabilities of the methodology. Specifically, we produce 1 h predictions continuously in
real time over a period of 6 different days

Specifically, we explore here whether it is possible to use such a trained neural
network system in order to dynamically adjust traffic light switching. The system
will allow the signals to adapt to upcoming traffic conditions in order to avoid or
reduce expected congestion phenomena for the monitoring region. The monitoring
region consists of a sequence of traffic lights in a section of the traffic network of the
city of Goteborg. Changing the actual timing for the traffic lights in that part of the
network is not feasible at this stage. As a result, we instead simulate how traffic flow
will be affected due to the proposed adjustment of the traffic light timings.

5.1 Stochastic Markov Model

To measure and visualize the ensuing traffic evolution once the traffic lights have
changed, we implement advanced stochastic simulations such as those in [18]. The
models within these works have been shown [18, 19], to faithfully represent a com-
plicated vehicle to vehicle interactions, lane changing, flow, and velocity fluctuations,
etc.

We outline here a two-dimensional microscopic lattice-free stochastic process
which will set the foundation for the Monte Carlo simulations which we carry out in
the next section. We referred [18], for more details.
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We define domain D := T
2 = [0, 1)2 representing a multi-lane roadway. We

assume for now that all vehicles have the same size and occupy a space Vi = Vr (xi )
with radius r around their centers xi ∈ D. We split the spatial domain D = O ∪ E
into an empty set E and an occupied set O . Set O is comprised of the disjoint union
of all sets occupied by vehicles in our domain O = ∪k

i=1Vi . Set E = ∪k+l
i=k+1Ei is

simply the complement of O . We let IO and IE represent the index sets for O
and E , respectively. Assuming that k vehicles interact on the spatial domain then
D = O ∪ E = V1 ∪ V2 ∪ V3 ∪ . . . Vk ∪ Ek+1 + · · · + Ek+l .

We now construct the microscopic stochastic process {σ }t≥0 on D. We can define
a spin-like variable σt (i) ≡ σ(i) on those sets as follows:

σ(i) =
{
1 if Vi , i.e., vehicle exists at index set i ∈ IO ,

0 if Ei , i.e., there is no vehicle at index set i, e.g., i ∈ IE ,
(1)

where 1 ≤ i ≤ k + l < M assuming k vehicles and l empty sets. Note the although
the number of sets can change over time there will always exist an upper bound M
for that number.

We denote the configuration of spins on the lattice by σ = {σ(i)|1 ≤ i ≤ k +
l < M}. Note that a spin configuration σ is an element of the configuration space
� = {0, 1}k+l and that the size of this space can change in time as vehicles enter or
exit the roadway.

We follow the classical development [7–9] of a stochastic process in defining the
corresponding inter-particle potential J . Using our set infrastructure, local interac-
tions between vehicles are described from

J (i − j) = 1

(2L + 1)d
F

(
1

2L + 1
|xi − x j |

)
, i, j ∈ IO (2)

where IO is the index set for O . We let F : R → Rwith F(r) = F(−r) and F(r) =
0 if |r | ≥ 1. For simplicity, we assume uniform potentials and take F(r) = J0 =
constant for |r | ≤ 1. For now, we assume uniform potentials and let J0 to be a
constant. The interaction radius for these dynamics is denoted by L .

Cylinder functions {c(x,±1, ·); x ∈ T
2} are implemented to describe the rates of

evolution for the lattice-free (LF) stochastic process σt in a two-dimensional space
T
2. Following ideas from lattice-based (LB) particle interactions [8, 18], we propose

the rate by which vehicles enter or exit at location i on the roadway to be given by,

c(i, σ ) = cdσ(i) exp(−βU (i, σ )) + caw(i)(1 − σ(i)), (3)

where the potential functionU is provided below in (5). One of the important differ-
ences, however, is the inclusion of the weight function w(i). This function is related
to the empty space still available in the domain/roadway for vehicles to enter.
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Similarly, in order to allow a vehicle to move and interact with other vehicles
within the roadway, we equip our microscopic stochastic process with diffusion
dynamics [8, 18],

c(i, j, σ ) = csew( j)(1 − σ( j))σ (i)e−βU (i,σ ) + csew(i)(1 − σ(i))σ ( j)e−βU ( j,σ ).

(4)
The potential functionU implemented in both (3) and (4) describes the length of the
vehicle to vehicle interactions [8] and is described by

U (i, σ ) =
k∑

j=1

J (i − j)σ ( j), (5)

with J from (2).
Here ca, cd , and cse are adsorption, desorption, and diffusion constants, respec-

tively, and involve the inverse of the characteristic time of the stochastic process.
These constants are usually calibrated from actual data and are based on car veloc-
ities, driver reaction times, etc. We use data from camera images to calibrate these
constants following the ideas in [18].

5.2 Stochastic Model to Simulate Traffic Dynamics

The model presented in Sect. 5.1, has been extensively tested against real data and
shown to effectively reproduce a number of important multi-lane road features. We
present some such comparisons here in Fig. 7, and refer to [18, 19], for more exam-
ples.
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Fig. 7 Comparisons between real and stochastic model simulations of flow and speed over time,
location, and number of lanes. Agreement is shown in all cases. The stochastic simulation model
from [18], is implemented to produce the predicted quantities
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The simulations overflows and vehicle speeds produced by the stochasticmodel in
Fig. 7, seem to produce acceptable results over short periods of time when compared
against actual traffic. In [18, 19], comparisons are also included against other well-
known simulationpackages such asVISIM.The stochasticmodel is shown toperform
better than VISIM there as well when compared against reality.

Based on these tests, we choose this microscopic stochastic model for the sim-
ulations which we undertake in the next Sect. 5.3. Our aim in the next section is to
compare traffic congestion before and after adjusting timing sequences for traffic
lights in a small part of the traffic network which we monitor. Specifically, we use
the stochastic model in order to simulate traffic evolution after adjusting the traffic
light timings for that part of the traffic network and compare it against reality.

5.3 Traffic Signal Assignment and Heat Map

In all simulations presented in this section, we use the trained GRU neural network.
This network has produced reasonable estimates of the number of vehicles expected
to arrive at each of the camera locations. An effective time horizon for use of this
forecasting system can range from a few minutes and up to 2 h. Even rare traffic
events, such as an unusual Black Friday commute, are possible to predict in advance
as shown in [13].

We specifically train our neural network model to produce 30min predictions of
traffic density for the region of Haga, in Goteborg, as shown in Fig. 8. We train the
neural network to anticipate traffic density on each of the locations where cameras
are placed for the region presented in Fig. 8. We present in the left part of that figure
a 10min average of the actual traffic density between the hours of 7:30 and 7:40 a.m.
Using the stochastic model from Sect. 5.2, we then simulate a 10min evolution of
density and present its average in the right part of that same figure.

Although this is only a first test case, it is sufficient to convey the question of the
study: is it possible to improve traffic congestion, at least for a small part of a traffic
network, given sufficiently accurate predictions of expected traffic demand? These
first positive results seem to suggest that it is worth investigating this further. In other
words, if the neural network can produce a reasonable expectation of the number of
vehicles which will arrive on the monitoring roads of that part of the network we
might be able to adjust the traffic lights in order to improve traffic characteristics
of interest such as flow, velocity, fuel consumption, etc. Clearly, we do not expect
that all of those quantities can be optimized at once. In some cases, optimizing one
of them may be detrimental to another. The main message, however, here is that it
should at least be possible to choose one such quantity and optimize it based on the
methodology outlined above for a limited time window. A longer study is needed in
order to understand the extent of our estimation errors, as well as the sensitivity of
other quantities of interest, such as the length of the time windows for prediction and
simulation.
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Fig. 8 A heat map which displays the traffic density based on information from cameras for a
section of theGoteborg traffic network. Colors indicate different vehicle densities and corresponding
velocities. Red is used for stopped vehicles, yellow for reduced velocities, and green for free-flowing
vehicles. On the left actual traffic density averages over a 10min window between the hours of 7:30
and 7:40 a.m. On the right simulated traffic density averages over the same 10min after adjusting
traffic light timings in order to reduce anticipated road congestion. We implemented the stochastic
model from [13], as discussed in Sect. 5.2, to simulate traffic evolution for that section of the network
based on new traffic light timings. This dynamic signal adjustment based on the predicted traffic
demand seems to alleviate the stop and go traffic waves (left) as shown in our simulation (right)

References

1. Helbing, D., Hennecke, A., Shvetsov, V., Treiber, M.: Micro and macro simulation of freeway
traffic. Math. Comp. Modell. 35, 517 (2002)

2. Schadschneider, A.: Traffic flow: a statistical physics point of view. Physica A 312, 153 (2002)
3. Schreckenberg, M., Wolf, D.E.: Traffic and Granular Flow. Springer, Singapore (1998)
4. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I 2,

2221 (1992)
5. Tossavainen, O., Work, D.: Markov chain Monte Carlo based inverse modeling of traffic flows

using GPS data. Netw. Heterogen. Media 8(3), 803–824 (2013)
6. Sopasakis, A., Katsoulakis, M.A.: Stochastic modeling and simulation of traffic flow: ASEP

with Arrhenius look-ahead dynamics. SIAM J. Appl. Math. 66(2), 921–944 (2005)
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Abstract In the last decades, the great availability of data and computing power
drove the development of powerful machine learning techniques in many research
areas, including the ones, as the meteorology, where traditional conceptual models
were usually adopted. In this work, we analyze the performance obtained by different
techniques in the forecasting of intense rainfall events. A linear classifier, the logistic
regression, is used as a benchmark in order to fairly evaluate more complex nonlinear
tools: a support vector machine, a deep neural network, and a random forest. Our
analysis focuses on both the accuracy and computing effort necessary to identify
these models. The nonlinear predictors are proved to outperform the linear baseline
model. Under a computational perspective, both neural network and random forest
turn out to be more efficient than the support vector machine. The study area we
considered is composed of the catchments of four rivers (Lambro, Seveso, Groane,
and Olona) in the Lombardy region, Northern Italy, just upstream from the highly
urbanizedmetropolitan area ofMilan. Data of intense convective rainfall events from
2010 up to 2017 (more than 600 events) have been used to identify and test the four
considered predictors.
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1 Introduction

In recent years, researchers have adopted novel machine learning tools to a wide
range of different applications. Among these, a challenging task is to try to improve
the performances of traditional physically based models in weather forecasting
[1–5]. A huge advantage of the black-box models is that they well fit the need for
fast real-time algorithms for nowcasting applications and early-warning systems
for natural hazards. Moreover, the computational effort needed to run a Numerical
Weather Prediction (NWP) model is much higher than the one required by a machine
learning algorithm.

Intense rain events develop locally and are difficult to be predicted because of
the coarse spatial resolution of NWP models compared to the area interested by the
single convective cell. This kind of rainfall events is characterized by peculiar local
environmental conditions and requires solving physical andmeteorological equations
at a fine spatial and temporal scale, easily becoming a hard task both in terms of time
and computational power. The scope of this work is to implement different machine
learning techniques to forecast these local, intense rain events, and to compare their
performances.

The considered area, located in the Lombardy region, Northern Italy, is composed
of the hydrological basins of four torrential rivers (Lambro, Seveso, Groane, and
Olona). The latitudes of the considered basin span from45.37N to 45.93N, longitude
from 8.77 E to 9.40 E, and the extension is almost 1400 km2. This is a high-risk
territory due to the high frequency of severe and short thunderstorms [6, 7], which
usually trigger flash floods. The situation is even more critical due to the presence of
the highly urbanized metropolitan area of Milan, where the flows coming from the
four rivers are drained, causing severe damage. In 2014, for instance, floods produced
damages evaluated in several tens of million euros in the Milan municipality.

In thiswork, themachine learning tools that have been implemented and compared
areLogisticRegression (LR), SupportVectorMachine (SVM),DeepNeuralNetwork
(DNN), and Random Forest (RF). In order to fairly compare these models, we feed
each of them with the same set of input variables. Each model returns the prediction
about the occurrence of an intense rain event as output.

In addition to the classical meteorological variables (temperature, pressure,
humidity, wind speed), we also included within the input variables the Zenith Tropo-
spheric Delay (ZTD), which is a proxy of water vapor in the atmosphere, a funda-
mental variable in rain events genesis [8–11] and storm development [12, 13]. Some
recent works showed that this variable could be effectively used to boost the perfor-
mance of black-box models trained for weather forecasting related tasks [14–23]. It
is important to specify that ZTD is a commonly available side result of the calibration
procedure of global positioning systems.

First, we briefly describe the functioning of the considered machine learning
techniques with a special focus on the differences between them. We then evaluate
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their performances in terms of accuracy and the computational effort required in the
training and inference phase.

2 Materials and Methods

2.1 Dataset Description

The input dataset consists of meteorological variable values with a temporal
resolution of 10 min. Temperature, atmospheric pressure, wind (intensity and
direction), and relative humidity are used to feed the prediction algorithm together
with the ZTD retrieved by Como GNSS station (45.8021 N, 9.0953 E, 246 m
a.s.l.), that belongs to the European Permanent Network. GNSS raw observations
have been post-processed with the precise point positioning technique [24], an
approach that allows processing a single station without the need for relying on a
network of receivers. Intuitively, the ZTD is the delay introduced in the GNSS signal
propagation due to the presence of the atmosphere [25]. A component of this delay
is caused by gases in hydrostatic equilibrium, i.e., Zenith Hydrostatic Delay (ZHD),
and a component caused by atmospheric water vapor, i.e., ZenithWet Delay (ZWD).
Since the first term, mainly affected by the orography of the region of interest, has
very small fluctuations in time, the ZTD could be considered a proxy of the content
of water vapor along the vertical direction of the GNSS receiver [26]. Although the
ZTD is referred to the zenith direction, it depends on the delay introduced along each
single line of sight between the receiver and the satellites in view. Several studies
have shown that there is a strong correlation between ZTD and the occurrence of
rain events [8, 27, 28], and between the atmospheric integrated water vapor and
intense storms [29, 30, 13]: the condensation of water vapor leads to the formation
of raindrops. Figure 1 shows an intense convective thunderstorm on the study area
(left) and the damages generated by this event in the north of Milan (right).

Each sample of our dataset is composed of an input vector that reports the meteo-
rological variables and the corresponding binary output: “1” for the occurrence of an
intense rainfall event and “0” otherwise. For this specific case study, a rainfall event
has been classified as intense if it persists on the study area for more than 25 min and
its radar reflectivity is greater than 50 dBZ, as recorded by the Thunderstorm Radar
Tracking (TRT) algorithm [31–33] (a radar-based tool able to track convective cells
inside a thunderstorm system). The dataset spans from 2010 to 2017, eight years of
data that have been used to identify and evaluate the machine learning algorithms.
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Fig. 1 Convective rainfall events occurring on the May 11, 2017, 10:45 p.m. (left), and causing an
overflow of the Seveso river at Niguarda, North of Milan, starting from 11:30 p.m. A picture of the
following morning (www.milano.corriere.it) (right)

2.2 Machine Learning Techniques

The problem considered here is usually known as binary classification. At each time
step, the future occurrence of an intense rainfall event is predicted, given the current
atmospheric conditions. Following a traditional supervised learning approach, the
classifiers are trained using a dataset where each sample is qualified by its features
(input) and is already categorized with the actual occurrence of a critical rainfall
event (output).

First, we implemented a logistic regression: a linear classifier that splits the input
space with a hyperplane and classifies each sample based on its position relative to
this linear decision boundary [34], as shown in Fig. 2 (top row). Due to its simplicity,
linear regression is usually used as a benchmark to evaluate the performance of more
complex classifiers.

Given the complexity of the processes taking place in the atmosphere, which are
well known for their nonlinear behavior, an advanced model able to deal with the
nonlinearity of the physical systemmay provide better results as reported in previous
works (for a review of the topic, see [35–37] and the references mentioned there).

In the machine learning literature, there are three main strategies to separate cate-
gories in a nonlinear way. The first strategy we consider is a kernel-based classifier,
so-called since it makes use of the kernel trick [38]. Themost popular of thesemodels
is the support vector machines [39], which project the data from the input space to
a new high-dimensional space applying kernels (usually Gaussian) and then search
for the linear manifold maximizing the margin [40] between the classes, as shown
in Fig. 2 (second row). Note that this linear boundary can be mapped back to the

http://www.milano.corriere.it
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Fig. 2 Schematic representation of how the different machine learning techniques divide the input
space. The grey row on top is dedicated to LR. The second and the third to SVM and DNN,
respectively. The last represents the processes of random sampling and majority voting which
characterize the RF

input space obtaining the corresponding nonlinear one. The main drawback of this
approach is that the kernel trick becomes expensive under a computational point of
view when the dataset is composed of numerous samples.

An alternative to kernel-based classifiers is deep learning [41], which became
widely used in the last decade.Deep learningmakes use ofmulti-layer (deep) artificial
neural networks. These architectures are inspired by the structure of the human brain
and are made of nodes (called neurons), organized in layers. The first hidden layer
performs a nonlinear transformation of the input space, and the same procedure is
repeated between subsequent hidden layers. In the end, the output layer computes
the Boolean output through a normalized exponential activation function (softmax),
which performs the actual classification [42]. In the network described above, the
information flows from the input layer through the hidden layers to the output layer,
without any loop. Such neural architecture is traditionally named feed-forward neural
network. The layers composing the DNN considered in this work are fully connected
(or dense): every neuron in one layer is connected to every neuron in the previous
layer. The design of a DNN is not trivial due to the high number of hyper-parameters
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that define its structure (nonlinear activation functions shape, number of hidden
layers, number of neurons for each layer) and the characteristics of the training
process (learning rate, batch size, regularization rate). Since we are dealing with a
classification task, we considered the binary cross-entropy as loss function and the
overall classification accuracy as validation metrics. Early stopping and L2 norm
weight regularization have been used to avoid overfitting on training data. As it
happens for SVMs, one can map the linear hyperplane of the last layer to the input
space, obtaining a nonlinear decision boundary (see Fig. 2, third row).

The third alternative exploits decision tree-based algorithms, a random forest
classifier [43]. A RF is an ensemble of classification trees: each tree recursively
divides the input space using thresholds. For this reason, the feature space in each tree
is separated by orthogonal hyperplanes,which results in a box-like decision boundary
[44–46]. A single classification tree is not trained on the whole training set; it is built
considering a random (both on instances and features) subset of the training dataset.
The algorithm that builds the tree operates with a top-down procedure, choosing at
each step the variable that performs the best split of the data. Once all the trees have
been identified, the final output of the RF is computed adopting a majority voting
system, as reported in the last row of Fig. 2.

As it is common practice in the identification of machine learning models, the
dataset has been split into training (years from 2010 to 2015), validation (2016), and
test (2017) sets. The first subset, the training set, is used to compute the optimal values
of the parameters. The second, the validation set, serves to tune the hyper-parameters
and to define the complexity of the model structure. To find the best combination
of hyper-parameter values, we implemented a traditional grid search approach. The
third, the test set, is not involved in the identification process, and is employed
to fairly evaluate the performances of the model only once all the parameters and
hyper-parameters have been definitively fixed.

We adopted the Scikit-learn library [47] implementation for LR, SVM, and RF.
The code for the DNN has been written in Keras [48] with TensorFlow backend [49].

3 Results

During the training process, the classifiers do not return a Boolean output directly,
but a value in the range from 0 to 1. After the training, it is necessary to investigate
which is the proper value of the threshold delimiting the two classes. The default
value for the threshold is 0.5, meaning that if the output is below 0.5, the sample
is classified as “No Thunderstorm”, while if it is greater than 0.5, the predicted
category will be “Thunderstorm”. Unluckily, many times this is not the best choice
and it is necessary to perform an analysis of the result obtained plotting the Receiver
Operating Characteristic (ROC) curve of the model [50]. Each model’s curve is
obtained changing the value of the threshold separating the two classes from 0 to
1 with a certain step size. The curve relative to a random classifier would be the
bisector as reported in Fig. 3. The one of a perfect model would be a step-wise linear
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Fig. 3 ROC curves of the four considered predictors. The x-axis reports the false positive rate, the
y-axis the true positive rate (also called sensitivity)

function connecting the points (0, 0), (0, 1), and (1,1).
The analysis of theROCcurves allows comparing themodels removing the depen-

dence on the value of the threshold and selecting a proper value of the threshold
considering the tradeoff between true positive rate and false-positive rate. The tradi-
tional criteria to fairly compare different models basing on their ROC curves consist
of evaluating the Area Under the Curve (AUC) [51]. When the AUC is close to 0.5,
the classifier behaves on average as a random classification [52]. Conversely, when
the AUC is close to one, the model has performance similar to a perfect classifier.
In the case here considered, the LR has an AUC equal to 0.83. Adopting a nonlinear
classifier, the AUC increases to 0.89 for the SVM, and 0.91 for DNN and RF.

Figure 3 is also useful to visualize the tradeoff between the fractionof true positives
and the fraction of false positives.

The analysis of the ROC curves allows selecting a value of the threshold which
is appropriate for the considered application. For instance, it is possible to select
the threshold which balances the true negative and true positive rate. As it is easy
to demonstrate with basic arithmetic computation, these points are those at the
intersection between the ROC curve and the line connecting (0, 1) and (1, 0).

The LR we used as baseline guarantees an overall accuracy of 74.1 %, and the
corresponding confusion matrix is reported in Fig. 4.

As already stated in the previous section, due to the nonlinear nature of the
processes which take place in the atmosphere, it is really unlikely that a simple linear
classifier, as LR, turns out to be the best approach to deal with the thunderstorm
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Fig. 4 Confusion matrix
obtained with the LR

forecasting. The idea expressed above is confirmed by the performances obtained
with the nonlinear models we implemented. The overall accuracy of these models
increases by 6–8 % with respect to the LR. Figures 5, 6, and 7 report the confusion
matrices for SVM, DNN, and RF, respectively.

In the last analysis, we couple the accuracy in the classification task with
the computational effort required by the training process, expressed in terms of
computing time. The technical specification of the computer used for the case study
was, respectively, Intel(R) Core (TM) 17-4770 CPU @ 3.40 GHz and Intel(R) HD
Graphics 4600. Figure 8 reports the training time on the logarithmic horizontal axis
(lower values are better), and the overall accuracy on the vertical axis (values close
to 1 are better). As expected, the model that requires the lower computational effort
is the LR (0.03 min). The three nonlinear models have a more complex structure and

Fig. 5 Confusion matrix
obtained with the SVM
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Fig. 6 Confusion matrix
obtained with the DNN

Fig. 7 Confusion matrix
obtained with the RF

they require to adopt demanding identification algorithms. The training time is still
limited for RF (0.66 min), and DNN (2.10 min), while it increases dramatically for
the SVM (23.51 min), due to the well-known issue when applying the kernel trick on
thousands of samples. The SVM is critical also when we switch to inference mode
(i.e., predicting the outcome of a new sample); it takes more than 5 min to produce
a new output. This issue is particularly critical in real-time applications, as the alert
system that will be built starting from the model implemented in this work. Under
this perspective, the other models (LR, DNN, and RF) are much more suitable for
real-time applications, because they can predict a new output almost instantly.
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Fig. 8 Evaluation of the performances of the four algorithms in terms of overall accuracy (higher
is better) and training time (lower is better). The four points are relative to the four considered
algorithms

4 Conclusion

In this work, we showed how different machine learning techniques perform in the
prediction of severe rain events. First, we briefly described the processes which occur
behind the scenes in different techniques: a linear model, a kernel-based classifier,
an artificial neural network, and a tree-based architecture. We then analyzed the
performance of such models in terms of predictive power (using the ROC curves and
the confusion matrices) and of computational effort required by the identification
process.

The results showed that the accuracy of the three nonlinear models is definitely
superior to that of the LR, reaching the maximum with DNN and RF. The fastest
model to be calibrated is the LR, confirming again its benchmark capabilities in
terms of velocity and easiness of implementation. LR predictive accuracy is lower
than the one provided by the nonlinear competitors. This trend is due to the fact
that the complex physical and chemical phenomena taking place in the atmosphere
usually exhibit nonlinear behaviors.

The analysis that combines both the accuracy and the computational effort demon-
strated that the SVM is a dominated solution: both the DNN and RF provide greater
predictive power and require less time for the training process. The issue relative
to the time required by the SVM is not limited to the training phase, but it strongly
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affects also the inference phase, and would probably limit the application of this
technique for alert systems and other tasks which require to use it in real-time.

We can conclude that the most promising machine learning models to be used
in the considered nowcasting meteorological application are the RF and the DNN.
It should be pointed out that, among these two, the DNN shows higher capabilities
in terms of customization (different architectures and hyper-parameters). In partic-
ular, implementing recurrent neural architectures would allow to explicitly take into
account the temporal dimension of the process, further boosting the DNN predicting
power.
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Abstract The near future of energy is shaped by a plethora of heterogeneous sources
and growing demand. This poses new challenges for energy production and distri-
bution, in which it will be essential that Medium Voltage/Low Voltage (MV/LV)
distribution networks are planned, operated and monitored in a manner analogous
to what transmission networks have been doing for decades. In this context, a pre-
cise tool for anticipating transformer overload and potential network problems is of
paramount importance. Here, a system that can predict transformer temperature—a
critical indicator of potential problems in a transformer—is key to the develop-
ment of versatile and autonomous grid control strategies that enable more intelligent
energy distribution. Understanding how this and other transformer measures relate
is of fundamental importance to predict and prevent possible network failure. In this
paper, we propose a transformer temperature prediction system based on long-term
memory network (LSTM) that uses data from the previous 100 min to predict the
transformer temperature for the next 100 min. The system is able to predict with a
low error the temperature value using only the active power of the three transformer
lines along with the ambient temperature. This makes it possible to discover trends
towards anomalous temperature values in different transformers and act accordingly
by planning a redistribution of the workload, avoiding possible incidents or service
interruptions.
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1 Introduction

The future of energy is evolving towards a very heterogeneous scenario, inwhich new
energy consumption and production patterns will emerge. In contrast to the tradi-
tional “one-size-fits-all” approach, new concepts in energy generation and transmis-
sion need to be designed towork in a diverse set of different scenarios and demand for
energy will be increasingly diverse in its sources and uses, requiring new approaches
to the transmission and distribution of electricity [1]. The wayMedium Voltage/Low
Voltage (MV/LV) distribution networks are planned, operated and monitored will
evolve in an analogous way to what transport networks have been doing for decades.
Here, the distributor goes from a mere distribution asset manager to being the oper-
ator of the network. This inevitably implies that the voltage levels are provided with
much more intelligence than hitherto [2], involving a whole spectrum of digital tech-
nologies: sensors, local controllers, devices, supervision, smart metres, broadband
communications, Control and Data Acquisition (SCADA) devices and Energy Man-
agementCentres (EMCs) that implement advanced data processing software, optimal
control or workload prediction, among others.

Within this context, the Monitoring and Advanced Control (MONICA) initiative
provided solutions forMVandLVdistribution networks such a new state estimator of
MV/LVnetworks. New initiatives like the Spanish Preventive Analysis of Smart Grid
with real Time Operation and Renewable Assets Integration (PASTORA) project—a
follow-up to MONICA—are key in order to advance in the development of flexi-
ble, reliable and efficient networks capable of absorbing the maximum renewable
generation at the lowest cost. For this purpose, the project proposes, among others,
the development of real-time information processing tools and analysis of historical
series for prediction of possible device overload. In this context, a system capable of
identifying patterns of anomalous behaviour of the network could act preventively
with regard to incidents and breakdowns, improving the quality of service of the
energy supplier.

Particularly, the treatment of historical data of the MONICA project could allow
the system to predict anomalies in the distribution network, especially with regard to
the temperature of transformers, one major key indicator of malfunctioning. The pre-
diction of possible anomalies in the temperature of the transformers could help pre-
dict network failure, triggering a series of security containment protocols to prevent
overload and optimize energy distribution in this context of heterogeneous power
generation and demand. Thus, a series of actions have been directed towards the
construction of an anomalous temperature early warning system (SATTA).

To do so, it is important to correctly characterize the variables that affect the
network, especially the transformer temperature. Here, theWiener-Granger causality
(G-causality) [3–5] could provide relevant information about the flow of information
between time-series variables that operate in the transformer. The G-causality is
defined by two assumptions: (i) a cause occurs before its effect and (ii) the knowledge
of a cause improves the prediction of its effect. It was originally developed for
Auto-Regressive (AR) modelling of stochastic processes by means of a statistical
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description of fused observed responses. This could help us to identify the perfect
candidate variable that G-cause the variations in transformer temperature, allowing
for a better modelling.

In this regard, there exist a vast literature of time-series prediction algorithms,
ranging from classical Auto-Regressive (AR) [6]methods to complexmachine learn-
ing regression techniques like Support Vector Machines (SVM) [7, 8]. The current
wave of neural network architectures has revolutionized the classification and regres-
sion paradigm [9, 10], with many applications in fields such as image recognition
[10], generativemodels [11] or biomedical image analysis [12], among others.Within
this context, the recent advances in recurrent neural networks—networks with feed-
back links—have paved the way for newer applications in time-series analysis and
prediction using either Convolutional Neural Networks (CNNs) [13] or the Long
Short-Term Memory (LSTM) [14] cells, which have experienced a major growth in
the last years with many applications in, among others, stock market prediction [15],
speech recognition [16, 17] or even music composition [18].

In this paper, we propose a recurrent neural network architecture based on LSTMs
in order to predict temperature levels of a transformer from a series of power and
temperature variables. In Sect. 2, we propose the methodology that combines feature
selection via covariance matrices and LSTM networks for prediction, as well as the
dataset used. In Sect. 3, we describe the evaluation procedure and present and analyse
the results. Finally in Sect. 4, we draw some conclusions about the proposed system.

2 Data and Methodology

2.1 Data Acquisition

Data used in the preparation of this article was provided by ENDESA, the largest
electric utility company in Spain. It was obtained during the MONICA (acronym
for Advanced Monitoring and Control) project, with the fundamental objective of
developing a technology that allows real-time monitoring and diagnosis of medium
and low voltage distribution networks, with an approach similar to that which has
traditionally existed in transmission networks (high voltage). The data consists of
yearly acquisitions of different variables at the transformation centres in southern
Spain. It comprises a large and variable number of measures, including active and
reactive power delivered by the transformer, reactive, capacitive and inductive energy,
intensity, phase, voltage and temperatures.

In this work, we use the 16 transformers which provide information about
Transformer Temperature (TT), a critical variable to measure potential incidences
and anomalous behaviour, including transformer overload. Since the signals were
recorded with non-uniform period, the data was subsequently resampled to 12 sam-
ples/hour (or a time-step τ of 5 min), corresponding to the mode of the data distri-
bution. A simple linear interpolation between consecutive samples was used for this
procedure.
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2.2 Wiener-Granger Causality Analysis

The Wiener-Granger causality [3] is used in this work to model the G-causal rela-
tionships between different transformer variables, following the methodology in [5].
It is based on the principles of cause-before-effect and that the addition of a cause
improves the prediction ability of an outcome. In a nutshell, a variable X is said to
G-cause a variable Y if the past of X fused with the one of Y helps predict the future
of Y more accurately than only using the past of Y.

Let us noteX = [X1, X2, . . .] andY = [Y1,Y2, . . .], two jointly distributed vector
stochastic processes. Y G-causes X if and only if X, conditional on its own past, is
dependent of the past of Y. This can be easily interpreted if the prediction of future
values of X based on its on past can be improved when using past values of Y. That
is what we will consider “causality”, as in many other examples on the bibliography
[19].

The G-causality assumes a p-th order VAR model for the underlying processes,
fromwhichuof lengthm is a realization of a discrete-time stationary vector stochastic
process U1,U2, . . .. The model can be therefore defined as

Ut =
p∑

k=1

AkUt−k + εt (1)

where the real-valued matrices Ak , of size n × n, are the regression coefficients, and
εt are the error terms, a n-dimensional iid stochastic process. Ak and εt are assumed
to be time-independent (stationarity).

The time-domain unconditional G-causality is based on the VARmodel described
before. There, the G-causality from one to another jointly distributed multivariate
processes U1,t to U2,t can be defined as the improvement in the prediction of U1,t

when the past of U2,t is included by early information fusion in the VAR model. We
can note this causality as FU2,t→U1,t . This causality uses the restricted VAR model of
Eq.1 [4] and evaluates it on the process U1,t with an extended model:

U1,t =
p∑

k=1

A′
1,kU1,t−k +

p∑

k=1

A′
21,kU2,t−k + ε′

1,t (2)

where the residuals of the covariance matrix are

Σ(ε′
1,t ) ≡ Cov

(
ε′
1,t

)
(3)

and A21,k contains the dependence of U1,t on the past of U2,t given its own past.
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2.3 Recursive Neural Networks

Although there exist many examples of time-series processing using neural networks
such as Restricted Boltzmann Machines or CNNs [13, 20], Recursive Neural Net-
works (RNNs) are the state of the art for time-series prediction and analysis. RNNs
are a subtype of neural architectures specially designed for temporal processing, in
which some type of memory or “state” is held within the network. Recursive means
that unlike typical feedforward networks [12, 21], it has feedback connections. They
are usually arranged in “cells” that hold some memory of the past events in order to
provide activations. Network architectures based on Long Short-TermMemory cells
(LSTM) or Gated Recurrent Units (GRU) are becoming commonplace in applica-
tions such as stock market prediction [15], speech recognition [16, 17] or even music
composition [18].

2.3.1 Long Short-Term Memory Cell

The Long Short-Term Memory (LSTM) [14] is a recurrent architecture. The archi-
tecture contains a memory activated via a “forget” gate that, together with an input
and output gates, regulates the flow of the information and whether they are relevant
for the output or not. A schema of an LSTM cell is shown in Fig. 1.

LSTM networks are particularly good for the analysis and prediction of time-
series data. Within the architecture proposed in Fig. 1, the equations that govern the
behaviour of the unit can be summarized as follows:

Fig. 1 Structure of a Long Short-TermMemory (LSTM) cell. Refer to the legend for understanding
the layers and operations applied
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ft = σg(W f xt +U f ht−1 + b f ) (4)

it = σg(Wi xt +Uiht−1 + bi ) (5)

ot = σg(Woxt +Uoht−1 + bo) (6)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt +Ucht−1 + bc) (7)

ht = ot ◦ σh(ct ) (8)

where σg(x) and σc(x) are the sigmoid and hyperbolic tangent activation functions.
xt ∈ R

d and ht ∈ R
h are the input and output (also known as hidden state) vectors of

the LSTM unit, of length d and h, respectively, ft ∈ R
h the forget gate’s activation

vector, it ∈ R
h the input gate’s activation vector, ot ∈ R

h the output gate’s activation
vector, ct ∈ R

h the cell state vector andW ∈ R
h×d ,U ∈ R

h×h and b ∈ R
h the weight

and bias parameters of the different layers implemented in each gate.

2.3.2 Network Architecture

In this work, we used an LSTM network composed of two LSTM cells of 100 and
50 units connected to a dense layer of 20 units. The network is trained with different
combinations of the candidate variables in the last τ , and the output is intended to
predict TT with a maximum lapse of 20τ . The predicted TT is therefore in a range
between 5 and 100 min from the current instant, fed by the variable data of the 100
min previous to the current instant.

3 Results and Discussion

3.1 Evaluation

Our system is trained with the data of each of the 15 available transformers, using
the selected variables over the 20 previous time steps. The trained system is then
tested with two different approaches:

– Predictive ability on the training transformer: A time-series cross-validation
(CV) [22, 23], in which the time series is divided into progressive sequential
batches (see Fig. 2) and all previous batches are used to predict the next one, is
used to estimate the performance.

– Generalization ability over other transformers (GEN): In this case, the system
is trained with one transformer, and then the predictive ability over other trans-
former’s data is tested.

As for the transformer variables used, we provide a new set of candidate variables
in Sect. 2.2, according to criteria of G-causality. We always use the values between
−1 and −20 ts from t = 0 for the prediction at t = 0. The Root-Squared Mean
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Fig. 2 Example of a time-series fourfold cross-validation split

Error (RMSE) and its standard deviation (when several values are aggregated, e.g.
within folds or over different transformers) are provided as to measure the quality of
prediction of the model.

3.2 Candidate Variables

In order to estimate a new set of candidate variables for the prediction of TT, we
estimate theG-causality in the different transformer datasets. By doing this,we obtain
the results shown in Fig. 3. There we see that the TT is mainly related to the reactive

Fig. 3 Granger causality analysis for the variables of interest related to Transformer Temperature
(TT)
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inductive energy. However, this variable is not present in all the transformers on the
database. However, this variable is strongly dependent on the reactive and active
powers (PR and PA), and in the active energy (EA). When looking at the available
variables in all transformers of the dataset, we reduced the candidate variables to two:
reactive power (PR) and active power (PA), because not in all cases we obtained the
three-line powers separately and the active energy is not always provided.

We also included the Ambient Temperature (TA) present in the subset of trans-
formers used in this article, given that they help inmodelling the low-frequency (days
or even month) variations of the TT. Since this can only be obtained through a more
complete measurement of ambient temperatures, it is important to include this in our
modelling. So the final set of candidate variables is composed of PR, PA and TA.

3.3 Prediction Results

Using different combinations of the candidate variables, we trained a temperature
LSTM model using each of the 16 transformers. We used the last 20τ to predict the
next 20τ , equivalent to a period that ranges from 5 to 100 min. The performance,
within the two experiments described in Sect. 3.1 (cross-validation and generalization
ability), is shown in Table1.

Two main trends can be shown in this table. First, the tendency that the general-
ization error is always higher than the CV error. This is coherent which what was
expected, since there are differences in the location of the different transformers, and
there exists also a high heterogeneity in the equipment used to measure, something
that is to be unified in the PASTORAproject. TRF-1 and TRF-3 are clearly outliers in
both experiments, as it can be seen for an extremely low or high CV error (for TRF-3
and TRF-1, respectively) and an anomalous GEN error over the rest of transformers.

When comparing the models that use TA and those that do not, there is a clear
improvement in the former. The TA prediction models achieved a significantly better
performance when compared to the baseline, suggesting that TA is indeed enhancing
its performance. This is even more clear when looking at the AVG* performance. A
closer look at the predictions of the model (see Fig. 4) reveals a possible explanation.
Whereas the PAor PR is enough tomodel the high-frequency (day-level) variations of
temperature in the transformers, and possible peaks due to malfunctioning, a major,
long-term contribution to the temperature of the transformer seems to be the weather
conditions at the specific location of the transformer. Thatmay explainwhy the higher
frequency variations are correctly modelled in the left figure (only PA), but the lower
frequency trends of the TA allow our system to provide amuch better prediction, even
when generalizing to another transformer (trained with TRF-9, predicting TRF-2).

There is almost no difference in the prediction error when varying the prediction
steps. Figure5 shows that the error increaseswith τ within theCVexperiment (above)
as itmay be expected, but this effect is far less evident in theGENexperiment (below).
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Table 1 RMSE and average RMSE (AVG) results for all the experiment and transformers, using
different combinations of the input features (PA, PR and TA)

Exp. TRF PA PA + TA PR PR + TA PA + PR PA + PR +
TA

CV TRF-0 3.76 (1.09) 1.14 (0.59) 3.78 (0.85) 1.36 (0.69) 3.77 (0.78) 1.23 (0.60)

TRF-1 5.56 (6.33) 4.78 (5.59) 5.74 (6.76) 4.49 (5.14) 5.69 (6.68) 4.95 (5.77)

TRF-2 3.40 (0.66) 1.22 (0.74) 2.97 (0.63) 1.34 (0.64) 2.81 (0.52) 1.38 (0.82)

TRF-3 0.76 (1.41) 0.80 (1.40) 0.73
(1.43)

0.72 (1.43) 0.74
(1.42)

0.74 (1.42)

TRF-4 3.70 (0.79) 1.10 (0.68) 2.97 (0.53) 1.54 (0.75) 3.32 (0.71) 1.57 (1.28)

TRF-5 3.84 (1.25) 1.83 (1.25) 4.11 (1.25) 2.37 (0.77) 3.88 (1.14) 2.36 (1.25)

TRF-6 4.88 (1.71) 2.67 (1.33) 4.06 (0.57) 2.67 (1.07) 4.33 (1.18) 2.95 (1.45)

TRF-7 3.45 (1.01) 2.08 (1.13) 3.25 (0.95) 2.15 (1.14) 3.15 (1.17) 2.26 (1.24)

TRF-8 4.16 (0.99) 1.78 (0.89) 4.15 (0.86) 1.76 (0.69) 3.97 (0.94) 1.92 (0.97)

TRF-9 4.00 (1.10) 1.47 (1.01) 4.42 (1.02) 1.40 (1.00) 4.15 (0.86) 1.56 (1.04)

TRF-10 3.73 (1.12) 1.76 (1.29) 3.01 (1.06) 1.98 (1.11) 2.97 (0.99) 1.82 (1.36)

TRF-11 3.89 (1.12) 1.68 (1.04) 3.87 (1.23) 2.11 (0.78) 3.75 (1.21) 1.83 (1.24)

TRF-12 3.56 (1.17) 2.04 (1.02) 3.70 (1.40) 2.70 (0.67) 3.65 (1.32) 2.51 (1.39)

TRF-13 3.34 (0.90) 1.40 (0.68) 3.51 (0.84) 1.81 (0.51) 3.06 (0.88) 1.70 (0.81)

TRF-14 3.91 (0.98) 2.13 (1.29) 3.77 (1.28) 2.17 (1.33) 3.66 (1.19) 2.17 (1.41)

TRF-15 3.93 (1.13) 2.15 (1.22) 3.48 (0.54) 2.18 (1.19) 3.43 (0.68) 2.41 (1.28)

AVG* 3.82 (1.15) 1.75 (1.12) 3.65 (1.07) 1.97 (1.01) 3.56 (1.08) 1.98 (1.26)

GEN TRF-0 7.49 (3.59) 4.11 (2.60) 7.25 (3.05) 4.15 (3.25) 7.48 (4.04) 4.19 (2.63)

TRF-1 13.87
(4.20)

8.04 (2.18) 14.10
(4.32)

6.41 (1.90) 14.09
(4.29)

10.29
(2.56)

TRF-2 7.21 (4.44) 4.28 (3.78) 6.95 (4.40) 4.38 (3.49) 7.38 (4.68) 5.56 (4.34)

TRF-3 16.08
(3.36)

13.73
(2.69)

10.97
(7.48)

10.15
(6.64)

14.27
(3.48)

10.71
(4.13)

TRF-4 7.41 (5.02) 4.20 (3.67) 7.06 (5.17) 4.20 (2.52) 7.55 (5.26) 4.42 (3.94)

TRF-5 8.20 (5.97) 6.18 (5.72) 8.72 (6.06) 4.69 (4.36) 9.08 (5.91) 7.66 (6.06)

TRF-6 7.15 (2.98) 5.54 (1.64) 7.49 (2.99) 6.06 (1.55) 7.05 (2.92) 5.69 (1.63)

TRF-7 8.48 (5.84) 7.60 (5.93) 8.42 (6.32) 8.35 (6.34) 8.89 (7.26) 8.45 (6.38)

TRF-8 7.58 (5.25) 4.93 (4.26) 7.35 (5.50) 4.55 (4.02) 7.47 (5.38) 5.11 (4.43)

TRF-9 6.97 (4.17) 4.09 (3.22) 6.94 (4.80) 4.07 (3.00) 7.02 (5.36) 4.15 (3.20)

TRF-10 8.10 (5.79) 4.93 (4.89) 8.36 (6.99) 5.65 (5.38) 8.49 (6.81) 5.35 (4.91)

TRF-11 8.39 (6.01) 5.79 (5.35) 8.38 (6.68) 4.65 (4.22) 8.44 (6.24) 6.76 (5.59)

TRF-12 9.57 (6.97) 7.18 (6.05) 8.74 (6.49) 6.54 (5.40) 9.36 (6.71) 8.31 (6.23)

TRF-13 7.70 (5.26) 5.66 (5.50) 7.71 (5.58) 5.76 (5.18) 7.88 (5.57) 6.16 (5.55)

TRF-14 8.38 (2.48) 5.98 (1.70) 9.36 (2.59) 5.91 (1.73) 8.94 (2.56) 5.89 (1.69)

TRF-15 7.60 (5.23) 5.07 (4.56) 7.27 (5.57) 5.18 (4.81) 7.49 (6.01) 5.54 (5.05)

AVG* 7.87 (5.11) 5.40 (4.56) 7.86 (5.38) 5.30 (4.33) 8.04 (5.55) 5.95 (4.85)

*AVG: Average RMSE excluding TRF-1 and TRF-3
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Fig. 4 Prediction of the time series of transformer 0 test set and extrapolation of the model to
TRF-2, when using a time-step prediction of 10 (50 min)

Fig. 5 RMSE error for the different prediction steps when trained and tested in transformer 9
(above, using TS-CV) and when extrapolating the model fitted with TRF = 9 to all remaining
transformers (below)
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Furthermore, the differences between the estimation error between more and less τ
are far smaller than the differences between the choice of variables, especially when
taking into account the TA.

From Fig. 5 and Table1, and once we have used TA to correct general temperature
trends related to climate conditions, PA and PR are both useful for modelling high-
frequency components. However, there are evidence that these two variables can be
correlated, as it could also be observed in Fig. 3. It is also supported by the fact that
the PA + TA seems to provide the best results. PR + TA for its part, and PR + PA + TA
perform similarly, however, but there seems to be no further advantage in including
these variables. It could therefore be concluded that it would be indistinct to use PR
or PA in order to model the high-frequency components, and it would be enough to
use one of these two variables without any loss of accuracy in the predictions.

Regarding the prediction interval, we can observe that those performed in an
interval smaller than 10τ are accurate enough, which is equivalent to 50 min. This
confirms that in the case of an abnormal temperature rise caused by abnormal power
functioning, our system could provide early warnings that could help reconfigure the
energy distribution network in order to avoid a transformer overload and subsequent
problems.

This model makes it possible to predict with a low error the temperature value
using only the PA variables of the three lines, together with the ambient temperature
at this time, at least 50min in advance. This wouldmake it possible to discover trends
towards anomalous temperature values in different transformers and act accordingly
by planning a redistribution of the workload, avoiding possible incidents or service
interruptions.

4 Conclusions

The near future of energy is confirmed by a plethora of heterogeneous sources as well
as an increasing demand, with the main focus being on the possibility of solar energy
and renewable energy generation with new technologies, for example, electric cars,
smart grids, etc. This poses a challenge for the supply, transmission and utilization of
energy in a flexible and competitive environment. Energy efficiency, environmental
sustainability and economic viability are some of the considerations when building
energy efficiency technologies and services, and in that context, it will be essential
that Medium Voltage/Low Voltage (MV/LV) become smart distribution grids. This
work tackles the problem of predicting the transformer temperature at each node of
these energy networks, a fundamental tool in the development of reliable and sus-
tainable energy systems. In this work, we have taken advantage of LSTM networks,
a very recent advance in the neural network field, fromwhich we could predict with a
low error the temperature value using only the active power of the three lines at each
transformer, together with the ambient temperature at every instant. A prediction
up to 100 min—using the last 100 min—was possible with a small RMSE, proving
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the ability of this architecture that can discover trends towards anomalous tempera-
ture values in different transformers and act accordingly by planning a redistribution
of the workload, avoiding possible incidents or service interruptions.
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Deep Multilayer Perceptron
for Knowledge Extraction:
Understanding the Gardon de Mialet
Flash Floods Modeling

Bob E. Saint Fleur, Guillaume Artigue, Anne Johannet, and Séverin Pistre

Abstract Flash floods frequently hit Southern France and cause heavy damages and
fatalities. To enhance persons and goods safety, official flood forecasting services in
France need accurate information and efficientmodels to optimize their decisions and
policy in crisismanagement. Their forecasting is a serious challenge as heavy rainfalls
that cause such floods are very heterogeneous in time and space. Such phenomena
are typically nonlinear and more complex than classical flood events. This analysis
had led to consider complementary alternatives to enhance the management of such
situations. For decades, artificial neural networks have been proved very efficient to
model nonlinear phenomena, particularly rainfall-discharge relations in various types
of basins. They are applied in this study with two main goals: first, modeling flash
floods on the Gardon de Mialet basin (Southern France); second, extract internal
information from the model by using the KnoX: knowledge extraction method to
provide new ways to improve models. The first analysis shows that the kind of
nonlinear predictor strongly influences the representation of information, e.g., the
main influent variable (rainfall) is more important in the recurrent and static models
than in the feed-forward one. For understanding “long-term” flash floods genesis,
recurrent and static models appear thus as better candidates, despite their lower
performance. Besides, the distribution of weights linking the exogenous variables to
the first layer of neurons is consistent with the physical considerations about spatial
distribution of rainfall and response time of the hydrological system.
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1 Introduction

In theMediterranean regions, flash floods due to heavy rainfalls frequently occur and
cause numerous fatalities and costly damages. During the last few years, Southern
France has been particularly exposed to these catastrophic events. In such cases,
in only one event, there can be more than 20 fatalities and damages that can reach
more than one billion euros, in only one event [1]. Facing these issues, authorities
need reliable forecasts for earlywarning purposes. Unfortunately, both the short-term
rainfall forecasts and the processes leading to the discharge response remain poorly
known at the space and time scales required. It is thus difficult to provide forecasts
using the traditional coupling between ameteorologicalmodel and a physically based
hydrological model.

Artificial neural networks therefore appear as an alternative paradigm as they
are able to provide forecasts of an output (discharge) without making any other
hypothesis on the system than the causality between rainfall and discharge. Artificial
neural networks have been applied in awide variety of domains, as they are essentially
based on data and training [2]. They appear as particularly suitable for identifying
the generating processes in hydrological time series because of their ability to model
nonlinear dynamic systems [3, 4]. However, due to their statistical origin, it is difficult
to associate meaning to their internal parameters, and they are rightly considered as
black-box models. For this reason and to enhance the understanding of the behavior
of both the model and the physical processes, several works have been done to bring
more transparency in the operating mode and introduced concepts of gray-box and
transparent-boxmodels [5, 6]. Some otherworks have been conducted tomake neural
network models more hydrologically meaningful [6–8].

2 Materials and Methods

2.1 Study Area: Location and General Description

The Gardon de Mialet basin covers 220 km2 in Southern France. It is part of the
Cévennes range, which is known as a preferential location for the well-known mete-
orological phenomenon named “cevenols episodes” (Fig. 1). These episodes consist
in short duration (less than 2 days) very heavy rainfall events.

The elevation of the Gardon de Mialet basin ranges from 150 to 1170 m.a.s.l.,
and its mean slope is about 33%. As for the most of basins of the Cévennes, these
characteristics lead to limited deep infiltration or deep underground flow, and thus
to a high drainage density. Its response time is relatively short: between 2 and 4 h
[4]. The area is dominated by a metamorphic formation with 95% of mica-schist and
gneiss, which leads to a poorly porous and impermeable rocky sub-soil. The land use
is almost homogeneous while covered by natural vegetation (chestnut trees, conifers,
mixed forest, and bush) for 92%. The rest is shared between rocks and urban areas.
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Fig. 1 The study area (Artigue 2012)

Typically, inMediterranean regions, heavy rainfalls sometimes exceed 500mm in
only 24 h, to be compared to the 600mm that falls on Paris annually. They are mainly
produced by convective events, triggered either by relief, by a wind convergence,
or by both. For example, in September 2002, the Gard (France) department has
registered 687 mm of rainfall in 24 h with 137 mm in only one hour at Anduze (a
few kilometers distant fromMialet).

2.2 Database

The database used in this study is essentially compounded with hourly observations
from 1992 to 2002, and 5min time-step observations from 2002 to 2008, on three rain
gauges and one hydrometric station at the outlet at Mialet (Fig. 1). From upstream
to downstream, these stations are BDC (Barre-des-Cévennes), SRDT (Saint-Roman
de Tousque), and Mialet which coincides with the discharge station. They are all
managed by the local Flood Forecasting Service (SPC Grand Delta). 58 events were
extracted at 30 min time step (based on rainfall events having at least 100 mm
accumulation in 48 h on any of the rain gauges). Data description is synthesized in
Tables 1 and 2.
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Table 1 Data description

Rainfall (mm) Discharge

BDC SRDT Mialet (m3 s−1) (m3 s−1 km−2)

Maximum (30 min) 33.3 41.8 62.0 819.3 3.72

Median (30 min) 0.3 0.3 0.2 29.3 0.13

Moy 1.0 1.3 1.2 43.4 0.20

Min 0 0 0 2.13 0.010

Table 2 Test event description

Event Date Duration Maximum of
discharge (m3

s−1)

Mean
discharge (m3

s−1)

Cumulative
rainfall (mm)

Intensity
(mm h−1)

13 Sept. 00 26 h 454 70 230 40

2.3 Artificial Neural Networks

As widely explained in [4, 9], three kinds of neural network models have been used
in this study: a static model, a recurrent model, and a feed-forward model. The same
references should provide the reader guidance about the implemented methods for
the control of the bias-variance dilemma and of overtraining (early stopping, cross-
validation, ensemble model) and about the performance criteria used (R2 criterion
and peak analysis). Only the part about knowledge extraction is reminded here, due
to its important role in the study.

2.4 Extracting Information: KnoX Method

First, the KnoX method is applied to a specific architecture, based on multilayer
perceptron, which represents the behavior of the physical process, in order to
constrain the model to represent this physical behavior [7]. As the rain is essen-
tially added in the first step of the rainfall-runoff transformation, we have introduced
one layer of linear neurons implementing the addition of rains fallen at different time
steps (delayed rains). This supplementary layer is called “i” (linear hidden neurons)
as shown in Fig. 2. The second hidden layer (nonlinear hidden layer) calculates a
nonlinear combination of the “locally added” rains.

The KnoX method [7–9] allows calculating a “simplified” contribution of each
input to the model output. This method is described for the general deep model (two
hidden layers) shown in Fig. 2. The principle of the method is that a contribution
of an individual input variable can be quantified, after training, by the product of
the parameter’s chain linking this input to the output. The considered parameters are
(i) “normalized” by the sum of the parameters linked to the same targeted neuron
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Fig. 2 Application of the KnoX method on the deep multilayer perceptron

and (ii) made independent from the model initialization by calculating the median of
absolute values of their values for 20 different random initializations. This regularized
value is noted as M

∣
∣Ci j

∣
∣ for the parameter Cij linking the neuron (or input) j to the

neuron i.
As the value of the sigmoid is not taken into account in Eq. 2, this contribution

can be seen as the contribution of the “linearized” model. Nevertheless, the model is
really a nonlinear model.

Regarding the model shown in Fig. 2, it appears that inputs are applied in several
groups, for example, A, B, etc. Each group corresponds to a variable, for example,
the rain gauge of Mialet, or the previous discharge (D). As the output depends
dynamically on these inputs, following a complex and unknownmulti-scale relation,
these inputs are applied at several time steps in order to allow the model to estimate
these multi-scale relations. Thus, the contribution (PA) of the grouped inputs A
(including several delayed inputs) is the sum of the contributions of each individual
delayed input of the group A. The equation calculating the contribution for just one
element (the value for the delay j) of the input A is provided in Eq. (1). Unhopefully,
it is not possible to explain more comprehensively the method in the short present
paper, so we suggest to the reader to refer to [7, 8].

PA( j) =
M

∣
∣Ci j

∣
∣

∑nA
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∣
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M |Chi | + ∑nd
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M |Chd | + bh

)(
M |Coh |
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M |Coh | + co

)

,

(1)
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and

PA =
∑nA

j=1

(

PA( j)
)

, (2)

where the categories of parameters Cij, Chi, Coh, and Chd are shown in Fig. 2; nA is
the number of inputs in the group A; H is the number of hidden nonlinear neurons;
nj is the number of hidden linear neurons (first hidden layer); nd is the number of
delayed inputs of the group and D; bh is the bias inputted to the nonlinear hidden
input; and co is the bias parameter inputted to the output neuron.

3 Results

3.1 Choice of Variables

Starting from previous works of [4], we chose the following exogenous variables:
(i) Barre-des-Cevennes rain gauge, Saint-Roman de Tousque rain gauge, andMialet
rain gauge, each onewith a slidingwindow length {k,… k − nr + 1}; and (ii) the sum
of the mean rain (mean calculated over the three gauges) fallen from the beginning
of the event. Of course, a bias input is used; several values were tried in order to
evaluate the sensitivity of the KnoX method to its value.

Depending on the kind of considered model, state variables can be added: previ-
ously observed discharges for the feed-forward model, and previously estimated
discharges for the recurrent one. The static model only takes rains and mean rains
into account [9].

3.2 Model Selection

Model selection is a key issue of machine learning. The goal is to define accurately
the architecture of the model managing the bias-variance tradeoff. This was done in
this following work [10] using cross-correlation, cross-validation, and early stopping
using the following rules.

– Hyper-parameters are adjusted for each one of the three kinds of model (static,
feed-forward, and recurrent), input sliding windows width (nA, nB, nC, nD), and
number of nonlinear hidden neurons (h).

– Widths of the rainfall windows applied to the model, {nA, nB, nC}, are selected,
thanks to cross-correlation [11]. Initially proposed by [12, 13] generalizes the
application of cross-correlation in hydrology. The used equation in this study is
presented in Eq. (3).
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Table 3 Correlation analysis of the data

Rain gauge Mialet (h) SRDT (h) BDC (h)

Average response time 2 3 4.5

Response time range 1–3.5 2.5–4.5 4–5.5

Rainfall-discharge average cross-correlation 0.40 0.455 0.44

Rain gauge cross-correlation Mialet – 0.58 0.45

SRDT – – 0.61

Cxy(k) = Cov(xi , yi+k)

σxσy
=

1
n

∑n−k
i=1 (xi − x̄)(yi+k − ȳ)

σxσy
(3)

With k ∈ N
+; the truncationm, which is themaximumvalue of k, is recommended

to be m = n/3. [12] indicated that two hydrological variables can be considered as
statistically independent if their cross-correlation is superior to 0.2. Starting from
this work, we selected three possible lengths for the sliding windows of rain gauges
inputs: (i) the number of time step between Cxy = 0 and Cxy = 0.2 that defines the
memory effect (called memory window); (ii) the sliding window between Cxy = 0.2
(positive slope) and Cxy = 0.2 (negative slope) (called strong correlation window);
and (iii) all the m positive values of Cxy (called full correlation window). Based on
[12], the correlations between gauges and response times are indicated in Table 3.

– The partial cross-validation score was operated on a subset of K events, the 17
most intense events in the database [3].

– The number of hidden neurons was increased from 1 to 10. The best model was
chosen according to the highest cross-validation score Sv estimated as follows:

Sv = 1

K

√
√
√
√

K
∑

i=1

|Ei |2 (4)

where Ei is the validation error of the subset i used in partial cross-validation.
– An ensemble model is used in order to regularize on the initialization of parame-

ters; moreover, the output values are the result of the median of the outputs of an
ensemble of 20 members differing only by their initialization before training [8].

– Three bias values were considered (0.01; 0.1; 1), three depths of sliding windows,
and three kinds of models (see Sect. 2.3), i.e., 27 different models have been
designed following the procedure indicated in [9]. The best one in each kind of
models has been chosen, regarding the test event, in order to have themost efficient
models to analyze.

Architectures presented in Table 4 were thus selected.
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Table 4 Selected models

Input variables Static Recurrent Feed-Forward

Rain gauge window width (nr) (BDC/SRDT/Mialet) 32/32/23 27/28/20 32/32/23

Cumulative rainfall window width 3 3 3

Order (r)/Previously observed outputs x 3 3

Number of hidden nonlinear neurons 2 10 5

Bias value 1 0.01 0.01

3.3 Discharge Estimation

As shown in [4, 9], the best results are provided by the feed-forward model. This is
usual because the feed-forward model uses the previously observed output as a state
variable. The recurrent model is not as efficient but exhibits better dynamics, which
is also frequently observed [4]. The static model presents an acceptable performance,
being able to generate 63% of the peak discharge (Table 5; Fig. 3).

3.4 Contributions of Input Variables

After having verified that the models are convenient, it is possible to apply the KnoX
method. The extracted contributions are presented in Table 6 [9].

It is interesting to compare the relative weights of the three rain gauges with a
classic method dedicated to distribute rainfall on a watershed and widely used in
hydrology: the Thiessen polygons method (or Voronoï polygons). This comparison
is presented in Fig. 4.

AsMialet (MIA) is at the outlet of the basin andBarre-des-Cévennes (BDC) at the
top of the basin, they are both represented with less contribution than Saint-Roman
de Tousque (SRDT, near the middle of the basin) by the Thiessen polygon method.
It is more or less also the case for the neural network models, with a very similar
distribution to Thiessen distribution for the static model, being a little more different
for the recurrent model and even more for the feed-forward model (providing the
best results).

Table 5 Models
performances on the test set

Model R2 SPPD % PD (0.5 h)

Static 0.83 63.3 1

Recurrent 0.89 78.5 0

Feed-forward 0.99 99.3 1
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Fig. 3 Hydrographs for the test set. Min_sim and Max_sim correspond to the minimum and
maximum values of the ensemble model. Q is the median of the 20 members of the ensemble

Table 6 Contributions (Px)
for the variables, from each
model, expressed in %

Name of variable X Static Recurrent Feed-forward

BDC 11% 10% 9%

SRDT 31% 17% 22%

Mialet 13% 12% 5%

Cumulated rainfall 31% 20% 12%

Previous Q. obs – – 45%

Previous Q. calc – 25% –

bias 14% 16% 7%

Total 100% 100% 100%



342 B. E. Saint Fleur et al.

Fig. 4 Thiessen method weights (a) and relative weights form the models of the three rain gauges
(b, c, d)

3.5 Results: Contributions as a Function of Time Windows

Here, we have considered the distribution of contributions among the time delay in
the first layer of parameters (arriving at the linear neurons in Fig. 2). We compare
the sum of these contributions (for the three rain gauges) to the cross-correlogram
of the average rainfall (average of the three rain gauges) and the discharge. This
comparison involves the three selected models presented in Sect. 3.1 (Fig. 5).

The static model shows the greatest similarity with the cross-correlogram, for the
total contributions and for the relative contributions of each rain gauge. Regarding the
response time (time corresponding to the peak of the cross-correlogram), the static
model seems also to be the best. This result is logical because the variables taken into
account by the staticmodels are similar to those considered by the cross-correlogram:
only rains.

For the three models, the SRDT rain gauge is the most represented in most of the
time lags considered and not only in general, as shown in Sect. 3.4.
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Fig. 5 Cross-correlogram (mean rainfall-Mialet discharge) and distribution of contributions
calculated as indicated in Sect. 2.4

3.6 Results: Effects of the Bias

Before obtaining the selectedmodels, many different combinations were tried during
optimization. Among these combinations, three values of bias have been experi-
mented, each separated by an order of magnitude: 0.01, 0.1, and 1. Figure 6 shows
the contributions of Saint-Roman de Tousque among the delays of the input time
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Fig. 6 Saint-Roman de Tousque contributions calculated as indicated in Sect. 2.4 with different
bias and in different modeling configurations: a, b, and c are for static models; d, e, and f are
for recurrent models; g, h, and i are for feed-forward models, whereas (a), (d), and (g) are for
memory windows; (b), (e), and (h) are for strong correlation windows and (c), (f), and (i) are for
full correlation windows

window, for the three types of models (static, recurrent, and feed-forward) and for
the three time windows defined in Sect. 3.2 (memory, strong correlation, and full
correlation windows). The other rain gauges have not been presented here due to the
large number of figures it would have produced, but the Saint-Roman de Tousque
station is representative of the three rain gauges from this point of view.

It can be noticed that the bias value does not deeply impact the contributions
of the input variables. In particular, it does not change the general shape of these
contributions even if in some cases, moderate amplitude differences appear.
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4 Discussion

These results show how the kind ofmodel takes into account explanatory variables on
an observed phenomenon. Even if they use the same exogenous variables in the same
context, their performances and behaviors are different due to their configuration and
architecture.

4.1 Selecting a Model Type for Physical Knowledge
Extraction

Analyzing the contributions assigned to each input variable (Table 6), it appears that

– The static model strongly uses exogenous variables (total contribution of 55%)
and uses an important contribution (31%) to the cumulated rainfall that is useful
to represent the soil saturation and could thus be considered as a substitute to a
state variable.

– The recurrent model uses mostly previously estimated discharge (25%), whereas
the total contribution of cumulated rainfall (20%) and of exogenous variables
(40%) is lower than for the static model.

– The feed-forward model uses a smaller contribution for rains (12% for cumulated
rainfall and 36% for exogenous variables), whereas previously observed values
of discharge contribution are predominant (45%).

As foreseen by [14], the optimal type of model is strongly linked to the quality of
explanatory information that is given to the model during the training phase. Here,
we show that, despite its low performance, the static model is forced to represent
the physical relationship between exogenous variables and the output, whereas the
recurrentmodel and the feed-forwardmodel are helped in this task respectively by the
previously estimated or observed discharge. Consequently, the total use of the exoge-
nous variables decreases when state variable information increases. If we compare
the relative contributions of the three rain gauges with the Thiessen polygons, we
observe a decrease of the similarity while state variables are added.

Finally, in this study, the best tradeoff betweenmodel performance and knowledge
extraction capacities seems to be provided by the recurrent model. Nevertheless, this
conclusion is based on one test set, and it should be confirmed by further studies.

4.2 Response Time and Contributions

The cross-correlation provides a simple linear representation of the behavior of the
modeled system and allows estimating the response time. Here again, while the
contributions of state variables appear, the similarity with the correlogram decreases.
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This could be interpreted as a confirmation that recurrent and feed-forward models
represent well the behavior that takes profit of the rich information provided by the
previous discharge input (estimated or simulated): the accumulation of previously
fallen rains. The less themodel is helped by the previous discharge input, themore it is
forced to representwell the role of recent and ancient rainfalls. This appears in Fig. 6d,
g with great values of recent rains contributions; on the equivalent contributions in
Fig. 6e and the “noisy” contribution in Fig. 6i (feed-forward with the maximum
window width).

4.3 Bias Input Importance

The bias input plays a role that is usually interpreted in hydrology as the base flow
(remaining dischargewhen there is no rainfall). In this case, its contribution is consis-
tent: it is significantly less involved in the calculation of the output when the previ-
ously observed discharges are used as input (the previous base flow is thus applied
by the inputs). In other cases, it seems to guide the models to acceptably approximate
the discharge information when necessary.

If the bias input seems necessary to guide the model, its value does not deeply
change the distribution of the contribution of the rain gauges as a function of the
instant of the time window. One could suppose that changing an order of magnitude
in the bias input value can easily be counterbalanced during the training step by
applying a proportional modification to the weights applied to this input.

5 Conclusions and Perspectives

Flash flood forecasting is a very challenging task, especially in the Cévennes range.
Several examples of robust forecasts using neural networks have been published
but the results did not always allow understanding how close the model was to the
physical behavior of the basin, in addition of being close to the observed output.
The obtained results prove again that when using relevant and properly combined
variables on any of the networks used here, an efficient model can be implemented.

Nevertheless, enhancing these models and applying them to an increasing number
of basins, in a context of climate change, and with various characteristics, require a
better understanding of the processes involved in their operation as well as in such
flood events. For this purpose, the KnoX method, developed to extract information
fromaneural networkmodel,was applied to theGardondeMialet basin. Thismethod
allows anunderstandingof how thevariables are handledby themodel to approximate
the modeled phenomenon. First, it appears that the bias input was consistently used
to model the base flow. Then, interestingly, there has been evidence that the variables
do not express themselves in the same way depending on the different models used.
It was known that the choice of a model must be driven by the modeling goal (for
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example a recurrent model for a long-term prediction). Besides being driven by the
modeling goal, it appears that the choice for amodelmight be guided by the situation:
availability (real-time and historical) of data, quality and explanatory nature of the
data. In this study, this results in three kinds of model: static, recurrent, and feed-
forward, showing increasing performances while taking into account more realistic
state variables. On the other hand, if assess the performance of a kind of model by
the ability to extract physical information from it, the ranking is reversed and the less
the model considers state variables, the more the design of its estimator will adopt
behaviors that mimic the physical processes.

Finally, it appears that the KnoX method shows very interesting capabilities; the
next steps will consist in generalizing this method to other sites and other rainfall
events in theCévennes range, with an increasing complexity in the physical processes
to extract (dams and/or karst systems for example).
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Forecasting Short-Term
and Medium-Term Time Series:
A Comparison of Artificial Neural
Networks and Fuzzy Models

T. V. Afanasieva and P. V. Platov

Abstract The study is focused on experimental comparison of time series models
of two classes, namely, artificial neural networks and fuzzy time series models. In
each class, three basic models of the time series were selected to compare their
predictive abilities, which were evaluated by the MAPE criterion. To the class of
models using artificial neural networks, multilayer perceptron networks, as well as
RNNs, containing LSTM or GRU blocks in the hidden layer, were investigated. In
this study, three basic fuzzy time series models were used: the model with fuzzified
time series values, the model with fuzzified first differences of time series values,
and the model based on the elementary fuzzy tendency. A comparative study was
conducted based ondataset of time series,whichwere divided into twogroups relative
to the length of time series. An experimental study showed that for medium-term
time series on the test interval, the RNNs based on LSTM showed the smallest error
on average (MAPE= 3.0013%), and for the short-term time series, the fuzzy models
showed the smallest error on average (MAPE= 5.7313%), while models of the ANN
class predicted the short-term time series with MAPE > 9.8% in average.

Keywords Artificial neural networks · RNN · LSTM · GRU · Fuzzy models ·
Time series forecasting · Comparison · Predicting

1 Introduction

To our days, a lot of time series (TS) with different features are stored in databases.
These time series could have different lengths and behaviors. As a kind of effi-
cient nonlinear function approximators, artificial neural networks (ANN) have been
popularly applied to time series forecasting. TS models based on artificial neural
networks are becoming frequently used due to their opportunity to learn data depen-
dencies. One of the problems of ANN models is how to determine the structure of
the network, i.e., the number of layers, the model prediction order, the number, and
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types of neurons in each layer. The amount of related works demonstrates the interest
in the analysis of recurrent neural networks (RNNs) for time series forecasting from
a different point of view. RNNs are defined as a class of supervised machine learning
models, made of artificial neurons with one or more feedback loops [1]. In general,
these networks include nonlinear but simple units, enabled to store, remember, and
process past complex signals for long time periods. In this way, RNNs can learn the
temporal context of input sequences, map an input sequence to the output sequence
at the current time step, and predict the sequence in the next time step. It could be
said that one of the most popular units in hidden layers in RNNs is Long Short-Term
Memory (LSTM) [2]. Since ANN-based models are difficult to interpret, the other
way to solve the problem of TS forecasting came from the theory of fuzzy models
[3]. Unlike traditional TS, the values of fuzzy TS are fuzzy sets, not real numbers of
observations. Fuzzy TS models could be presented in the form of rules that are easy
to interpret, and the forecast results are expressed in both linguistic and numerical
forms. A positive property of fuzzy models is their tolerance concerning random
fluctuations and the length of the TS. Analysis of studies in the field of TS fore-
casting based on ANNmodels shows that they are usually carried out in comparison
with different types of ANNs or in comparison with statistical models, which are
considered as benchmarks. Note that the confirmation of the adequacy and accuracy
of the developed fuzzy TS models is implemented according to the same scenario.
At the same time, the question of comparing the forecasting accuracy of models of
these two different classes (ANNs and fuzzy TS models) over the set of real time
series is still open. Therefore, this article is focused on filling this gap and is aimed
at experimental research and comparison of forecasting accuracy of models based
on ANNs and fuzzy TS, in particular, with respect to short-term and medium-term
TS.

Since a large number of suchmodels have been developed at present, the following
ANN models have been selected for experimental research: multilayer perceptron
network (MLP) [4], RNNbased onLSTM [2], andRNNbased onGRU [5]. TheMLP
was chosen as the simplest ANNmodel, and the choice of RNN based on LSTMwas
determined due to the successful application of LSTM in forecasting: in the TS fore-
casting competition (CIF-2016) [6], the techniques with LSTMs showed very good
results [7]. Compared to LSTM, the GRU is characterized by some simplifications
leading to calculate a smaller number of weights. While the LSTM is commonly
used, the RNN based on GRU is more novel. The accuracy of TS forecasting of these
ANNmodels will be compared with the predictive accuracy of fuzzy TS models. We
focused on testing accuracy of three basic fuzzy TSmodels: the model with fuzzified
TS values [8], the model with fuzzified first differences of TS values [9] and model,
based on the elementary fuzzy tendency [10]. We choose these fuzzy TS models as
they could be considered to our opinion as basic fuzzy TSmodels. Comparison study
of the accuracy in TS forecasting between these classes of models will be held at
the dataset given at competition on Computational Intelligence in Forecasting (CIF-
2016) [6], which was organized within the IEEE World Congress on Computational
Intelligence (IEEE WCCI-2016).
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The structure of the paper includes six sections. In the second section, related
works are considered. The TSmodels based onRNNs used in prediction and compar-
ison are presented in the third section. Section 4 includes the description of basic
fuzzy TS. The results of the comparison of the predicting accuracy of two classes
of TS models, based on ANNs and fuzzy models, are described in Sect. 5. The
conclusions are given in Sect. 6.

2 Related Works

ANNs are data-driven, self-adaptive models with few prior assumptions and could
be very efficient in solving nonlinear problems. This feature is in contrast to many
traditional models for TS predictions, such as ARIMA, which assume that the series
are generated from linear processes and as a result might be inappropriate for most
real-world problems that are nonlinear [11].

In the article [12], the comparison ofANNandARmodelswas derived in the simu-
lation experiment andwas shown that for nonlinear TSmodels the usageANNmodel
outperforms the AR model in terms of both mean and variability of the observed
coverage. For linear and weak nonlinear TS models, the two approaches seem to be
equivalent. Multilayer perceptron network (MLP), FIR neural network, and Elman
neural network were compared in the study [13]. As follows from the paper MLP
network performedwell in one-step predictions for four TS and output more accurate
forecasts for 75% of TS. Currently, various configurations of RNNs are proposed,
e.g., BRNN (a bidirectional NN), LSTM (a long short-term memory), and GRU (a
gated recurrent unit) [2, 14, 15]. The successful implementation of RNNs andLSTMs
as a component of forecasting methods for TS analysis leads to increasing interest
in them [7, 16–18]. In [15], ten LSTM architectures were considered, and their main
disadvantages were mentioned as follows: a higher memory demand and computa-
tional complexity than a simple RNN due to the many memory cells. GRU [2] uses
the same ideas as LSTM, but there are differences between these networks. First, the
GRU does not contain an output gate: there are only reset and update gates that are
similar to the input and forget gates in the LSTM. Second, the network state does
not depend on the state in the previous step as in LSTM that allows us to consider
GRU as simplification of LSTM. While the LSTM is commonly used for time series
forecasting, the RNN based on GRU is more novel. Therefore, the comparative study
of their effectiveness in TS predictions attracts more and more attention.

In the work [19], Laptev et al. studied RNNs in event forecasting and found that
neural networks might be a better choice in comparison with classical TS methods
when the number, the length, and the correlation of the TS are high. Che et al. in the
report [20] described a GRU-based model with a decay mechanism to capture infor-
mative missingness in multivariate TS. A methodology DeepAR for probabilistic
forecasting, based on training an auto-regressive RNN on a large number of related
TS, was proposed in [21]. Instead of forecasting raw TS, the authors focused on esti-
mating the probability distribution of a time series’ future given its past. The accuracy
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improvements of around 15% compared to state-of-the-art models, in particular, ETS
model [22]with automaticmodel selection,were shown through empirical evaluation
on several real-world forecasting datasets.

The comparison of LSTM with ARIMA in the forecasting of financial and
economic TS was provided in [23]. As follows from the work, the LSTM showed
significantly better prediction accuracy than ARIMA according to the RMSE crite-
rion. In the work [24], it was carried out an empirical study in TS forecasting using
both LSTM and GRU networks. To compare LSTM and GRU, the TS set referred to
bike sharingwas used. In this work, the prediction techniquewas proposed, including
bootstrap samples of sequences and preliminary presentation of TS properties such
as cyclicality, seasonality, the beginning of the month, holidays or working days, and
some others. Although the author used many performance indicators, the conclusion
was that two networks produce very similar forecasts.

In the paper [25], the study of prediction accuracy of the LSTM and GRU units in
RNN configurations was held in dependence of TS behavior and regardless of their
behavior. In this study for the 30 simulated TS, the prediction accuracy of RNNs
on average was as follows: MAPE (GRU) = 5.729% compared with LSTM (MAPE
(LSTM) = 5.072%). Each of TS had the same length, which was equal to 200; the
splitting on training and testing parts were established as 90:10. According to this
comparative study, it was difficult to determine the winner in forecasting regardless
of TS behavior because the RNNs results were about the same. In dependence of time
series behavior, the study showed that the forecasts of LSTM were more accurate in
comparison with GRU for TS that included trend with random fluctuations and did
not have the seasonal component.

In parallel with the development of RNN-based models, forecasting techniques,
based on fuzzy TS with different structures, were developed. However, as follows
from numerous works, an accuracy of fuzzy models was tested on one time series
only and frequently for the training part of time series. First, the concept of fuzzy time
series has been put forward by Song i Chissom in 1993 [8]. They proposed fuzzy
models of stationary and non-stationary (time-invariant and time-variant) first-order
TS and used the developed models to predict the number of enrolling students at
the University of Alabama by fuzzifying a numerical TS. Chen [26] believing that
Song i Chissom ‘s method is too complex to apply, proposed some simplification
using arithmetic operations instead of logical Maximin composition. In the work [9],
Hwang, J. R., Chen, S. M., and Lee, C. H. proposed a modification of the Song’s
method, in which instead of fuzzified values of numeric TS, their first differences
were fuzzified and used in fuzzy modeling.

To our days, the fuzzy TS is widely used in forecasting and analysis of real TS
[26–31]. According to the study [32], the fuzzy TS models showed comparable
with ARIMA-model accuracy on average for 53% of given 91 TS of the dataset [6]
and can obtain high accuracy forecasts together (SMAPE < 0.06). The study of the
prediction errors in dependence of the TS length demonstrated that the fuzzy TS
model produced good forecasting accuracy on average for medium-term TS [32].

In the work [33], a comparative study of accuracy of ANN and fuzzy TS for
the prediction of one short-term TS, that is, wheat production, in dependence of
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metrological parameters (average weekly temperature, sunshine, and rainfall) was
carried out. The length of TS was equal to 15. In this study, ANN seems to be MLP
and has three layers. The hidden layer has 5 neurons and ANN is trained for 4000
epochs. In the comparison, fuzzy TS model proposed by S. M. Chen was used [27].
The authors described in detail the technique for constructing the ANN architecture,
but do not provide any information about fuzzy models, the membership functions
used, and the fuzzy inferencemethod. Therefore, the conclusions drawn in this article
about a more accurate prediction made by the ANN in comparison with fuzzy TS
need additional explanation. In the work [34], the similar study was presented with
respect to prediction of one short-term time series, that is, marine fish production
in India. However, the comparison of forecasting accuracy of fuzzy TS models was
derived according to the proposed method that combined ANN and FTS.

The analysis of researchworks shows that there are not enough studies in accuracy
comparison of ANNs and fuzzy TS carried out on the set of short-term and medium-
term TS.

3 Concepts of LSTM and GRU

A recurrent neural network (RNN) is an extension of a conventional feedforward
neural networkwhich is one of the best tools for solving image recognition problems.
In TS analysis, the RNN is focused on learning the function of the input xt and
previous output yt−1. The simplified formof this function can be expressed as follows:

yt = f(xt, yt−1)

Today, there are many architectures for RNNs. The simplest of them is
SimpleRNN, the main disadvantage of which is the inability to store information
about the previous elements of the sequence for a long time because the gradients
tend to vanish. To solve this problem, Hochreiter developed the Long Short-Term
Memory (LSTM) architecture [2], which was subsequently studied and improved
by other researchers and is now used in solving a wide range of problems with very
good results.

3.1 Long Short-Term Memory

The LSTM unit contains three gates: an input gate, a forget gate, and an output
gate. The gates are implemented as a logistic function for calculating the value on
the interval [0; 1]. Multiplication by this value is used to partially allow or prohibit
information from getting into memory and disappearing frommemory. For example,
the input gate controls the degree to which the element being processed is stored in
memory, and the forgetting gate controls the degree to which the value is stored in
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memory. The output gate controls the degree to which the value in memory is used
in calculating the output value. The calculation of the gate vectors, as well as the
state vector and output vector, is as follows:

ft = σ
(
Wxf xt + Wfyyt−1 + bf

)

it = σ
(
Wxixt + Wiyyt−1 + bi

)

ot = σ
(
Wxoxt + Woyyt−1 + bo

)

ht = ft ◦ ht−1 + it ◦ tanh
(
Wxhxt + Whyyt−1 + bh

)

yt = ot ◦ tanh(ht)

where ft—vector of the forgetting gate at time t, showing the degree of memorization
of old information, it—vector of the input gate at time t, showing the degree of receipt
of new information, ot—vector of the output gate—“candidate for the output value”
at time t, W, b—corresponding weight matrices and displacement vectors, and ◦ is
the Hadamard product (elementwise multiplication).

So, at each time LSTM updates two variables, the output yt , and the state ht ,
using controlled by gates’ composition of functions on previous values of these
variables and learned weights. Thus, the output at a given time is calculated not only
based on the previous output and input, but also using the previous state. Including
the additional variable and function to modify it makes the architecture of RNN
with LSTM more complex for understanding in comparison to simple RNN. The
architectures of LSTM and comparison of their advantages are described in [15],
which was noted that for the identical size of hidden layers, a typical LSTM has
about four times more parameters than a simple RNN but can model long-term
sequential dependencies and is more robustness to vanishing gradients.

3.2 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) architecture is another solution to the vanishing
gradient problem critical to SimpleRNN [35]. GRU was developed by Cho [5] and
used the same ideas as LSTM, but there are differences between these networks.
First, the GRU does not contain an output gate: there are only reset and update gates
that are similar to the input and forget gates in the LSTM. Second, the network state
does not depend on the state in the previous step and does not store explicitly, as
in LSTM. Like to major unit of RNN, the GRU computes the output as a function
of the input xt and previous output yt−1, but using gates that modulate the flow of
information inside the unit:

zt = σ
(
Wxzxt + Wzyyt−1 + bz

)

rt = σ
(
Wxrxt + Wryyt−1 + br

)

ht = tanh
(
Wxyxt + Wry(rt ◦ yt−1) + bh

)
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yt = zt ◦ yt−1 + (1 − zt) ◦ (ht)

where zt—vector of the update gate at time t, rt—vector of the reset gate at time
t. Thus, this type of network has fewer parameters and performs fewer operations
compared to LSTM; therefore, the implementation of this network will consume less
memory compared to LSTM, and forward and reverse distribution will be faster.

4 Fuzzy Time Series Models

There are many modifications of fuzzy TS models (FTS); in this study, three FTS
models were used: model with fuzzified TS values [8], model with fuzzified first
differences of TS values [9], and model, based on the elementary fuzzy tendency
[10]. We choose these FTS models as they could be considered as the basic FTS
models.

4.1 Fuzzy TS Model, Based on Fuzzified TS Values

Let X = {xt,∀xt ∈ R|t = 1, 2, . . .} be a numerical TS and R is the set of all real
numbers. Let for TS X a fuzzy TS X̃ = {X̃t|t = 1, 2, . . .} is defined, such that
each X̃t is a fuzzy set in R for corresponding xt . We assume that each X̃t satisfies
the properties of normality and convexity. The FTS model, based on fuzzified TS
values, according to [8, 32], is defined as a time-invariant model:

X̃t =
(
X̃t−1 × X̃t−2 × . . . × X̃t−p

)
◦ R(t, . . . , t − p),

where “×” is the Cartesian product, R(t, . . . , t − p) is the FTS model as fuzzy rela-
tion, which can be calculated by Mamdani’s algorithm, p is the order of the model
(usually, p= 1, 2, 3, 4, 5, 6), “z” is the max-min composition. Further, for simplicity,
this FTS model will be designated as an S-model.

4.2 Fuzzy TS Model, Based on Fuzzified First Differences
of TS Values

In this TS model instead of TS values xt their first differences �xt = (xt − xt−1) are
fuzzified to obtain fuzzy sets �X̃t [9], and fuzzy TS �X̃ = {�X̃t|t = 2, 3, . . .} has
to be forecasted. It is necessary to notice that each �X̃t is a fuzzy set in the set R of
all real numbers and satisfies the same properties as X̃t : normality and convexity. So,
the FTS model based on fuzzified first differences of TS values in the form of the
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p-th order time-invariant TS forecasting model in accordance with [32] is presented
as

�X̃t =
(
�X̃t−1 × �X̃t−2 × . . . × �X̃t−p

)
◦ R(t, . . . , t − p).

For simplicity, the fuzzy TS model, based on fuzzified first differences of TS
values, will be indicated in the study as a D-model.

4.3 Fuzzy TS Model, Based on Elementary Fuzzy Tendencies

The notion of fuzzy tendency was introduced in [30], as a linguistic characteristic of
a TS behavior (Increase, Decrease, Fluctuation), expressed in fuzzy terms, which can
be obtained for any numerical TSX= {xt,∀xt ∈ R|t = 1, 2, . . .}. Further, the notion
of elementary fuzzy tendency TS for a numerical TS was done and successfully used
in fuzzy forecasting techniques [36]. FTS model, based on elementary fuzzy tenden-

cies, is presented as two fuzzy TS: V =
{
Ṽt|t = 2, 3, . . .

}
, which characterizes the

type changing of elementary fuzzy tendencies, and TSA =
{
Ãt|t = 2, 3, . . .

}
, repre-

senting their intensities. Here each Ṽt and Ãt are the fuzzy sets, which are defined
in the set of real numbers R and satisfy the normality and convexity properties. The
FTSmodel, based on elementary fuzzy tendencies, is represented in accordance with
[32] as

Ṽt =
(
Ṽt−1 × Ṽt−2 × . . . × Ṽt−p

)
◦ Rϑ̃ (t, . . . , t − p),

Ãt =
(
Ãt−1 × Ãt−2 × . . . × Ãt−q

)
◦ Rã(t, . . . , t − q).

Further for simplicity the FTS model, based on the elementary fuzzy tendencies,
will be called briefly as a T-model.

5 Experiments and Results

To conduct the comparative study of the accuracy in TS forecasting for two classes
of models (namely, ANN and FTS), the software tools were developed.

EachANNmodel in the experimental study had three-layer architecture. In ANNs
the output layer included 1 neuron, the input layer contained from1 to 20 neurons, and
the hidden layer had 10 ones in each type of configurations: RNN based on LSTM,
RNN based on GRU and MLP. For each ANN, backpropagation training algorithm,
the loss function MSE, optimizer Adam, activation function ReLU for RNNs, and
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Sigmoid function for MLP were used. A maximum of 200 epochs has been estab-
lished for training each neural network on TS dataset, and the parameter lookback
was varied from one to ten. In software for TS forecasting by ANNs, the Python 2.7
was used with the Keras library for building a neural network under the TensorFlow
library for automatic differentiation [37]. The Pandas library for data processing and
the library scikit-learn mainly for time series normalization/denormalization were
implemented as well. The developed software includes the set of modules grouped
by features: TS pre-processing and normalization, building and training models for
TS prediction, TS post-processing and denormalization, calculating the accuracy of
prediction by criterion MAPE, and output the results of prediction in graph and text
forms. For more details, please see the paper [25].

The software for TS forecasting using FTS models includes S-model, D-model,
and T-model, considered in the previous section. For all FTS, the linguistic variables
were constructed on TS universe and the orders of the FTS models varied from one
to five to choose the best model for each time series. To obtain a fuzzy representation
of each numerical TS, ten linguistic terms were built on intervals of equal length of
universe, and correspondingmembership functions having the same symmetrical and
triangular shape were used for automatic generation of fuzzy models. There are six
major components that were developed in the software: fuzzification tools, tool for
FTS models creation, fuzzy inference system based on Mamdani technique, library
of FTS models, component for selection of the best FTS among three basic fuzzy
models, calculating the accuracy criterion MAPE and outputs component in graph
and text forms. All the components of the library of FTS models are developed by
C# using .Net Framework 4.5.1.

The developed software tools were applied to perform real forecasts on the TS
set of the competition CIF-2016 [6]. The CIF-2016 competition dataset consists of
monthly time series, composed of TS related to the banking industry. A sample of 20
time series was used from this dataset of different lengths and different behaviors,
divided into two groups, short-term time series (from 32 to 90 points) and medium-
term ones (from 90 to 200 points). We focused on the study of two groups of time
series according to their length not to their behavior for two reasons. First, often time
series are monthly or weekly observations. Such time series have different lengths
and can be considered as short-term time series andmedium-termones. Second, in the
studies [25, 32], the comparison of forecasting accuracywas carried out depending on
thebehavior of time series. That iswhy in this study,we are interested in answering the
question of whether there is a difference in the forecasting accuracy of the considered
TS models depending on their length. The obtained information would be useful in
the rational choice of a suitable TS model in the forecasting problem. It is necessary
to note that before prediction each time series was divided into two parts: a train part
and a test part. The train part was used to construct and to identify time series model.
The test part of a time series was used to test the identified time series model and to
calculate the errors for the comparison using criterion MAPE:

MAPE = 100%

n

∑n

t=1

|Ft − xt|
|xt|
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where Ft is the predicted values, produced by the model for the given TS; n is the
number of predicted points in the test part of TS; xt is the real values of test part of the
TS unknown for model. Pre-defined length of a test part for each TS was determined
as 10% of a time series length as for ANN models.

For each TS, the adequate and accurate model from the set of described TS model
(ANNs and FTSs) was identified. The identification means the process, where the
order, parameters and the type of the best forecasting model for each TS are defined
on the train part of time series. The errors for investigated models, estimated by
MAPE, obtained on the test part of the medium-term time series are presented in
Table 1, and for short-term time series they are shown in Table 2.

In these tables, three columns for ANNs are presented and in one column depicts
the errors for oneFTSmodel that showed theminimal error for correspondingTS.The
last column contains the designation of model winner. When comparing the results
of TS forecasting by the considered models, we used the concept of a minimum
difference in accuracy equal to 0.05% of MAPE. If for the compared models, for
instance, Model1 and Model2, the errors calculated by criterion MAPE differ by no
more than 0.05%, then these models will be considered as models predicting the TS
with approximately the same accuracy. In the last columns of Tables 1 and 2, these
models will be designated as Model1 = Model2. A model with a minimum MAPE
value is considered to be the winner if its MAPE error is less than theMAPE value of
other models by more than 0.05%, then the designation of this model will be shown
in the last column of Tables 1 and 2. If the MAPE value of the winner model is more
than double the MAPE values of any other compared models, then in the last column
of Tables 1 and 2 the model winner will be indicated with the plus sign.

As follows from Table 1 for the ten medium-term TS on average, RNN based on
LSTM is the winner model, and for one TS, this model showed the error less than
twice the error of any other models in terms of MAPE. A comparison of the average

Table 1 Prediction errors estimating by criterion MAPE in percentage for medium-term TS

Num. of TS RNN with GRU RNN with LSTM MLP Best FTS Model winner

1 3.1562 2.9594 4.9185 2.401 FTS

2 1.3317 1.2125 3.1733 1.9027 LSTM

4 3.2957 3.1674 6.5034 4.0993 LSTM

7 2.2713 2.2537 4.2778 2.4879 LSTM = GRU

12 2.5570 2.6014 4.4378 3.2748 LSTM = GRU

13 4.6007 4.0631 5.9157 11.5820 LSTM

14 2.4874 2.4293 5.6953 5.7363 LSTM

17 3.3280 2.5986 4.9044 5.0004 LSTM

19 5.4248 5.9477 11.3940 9.3373 GRU

24 6.2833 2.7805 10.2709 12.7698 LSTM+

Mean 3.4736 3.0013 6.1491 5.8592 LSTM

Std. dev. 1.5265 1.2603 2.6507 3.9737 LSTM
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Table 2 Prediction errors estimating by criterion MAPE in percentage for short-term TS

Num. of TS RNN with GRU RNN with LSTM MLP Best FTS Model winner

49 1.9988 2.7382 2.3802 2.3647 GRU

50 1.3078 1.3201 1.7499 2.0406 LSTM = GRU

55 0.0389 0.0151 0.0317 0.0406 LSTM = GRU =
FTS = MLP

58 0.0403 8.0309 22.2175 11.5488 GRU+

63 11.5221 11.4313 9.2555 6.2155 FTS

67 43.8490 33.7121 27.1040 13.2705 FTS+

68 23.0603 25.8134 12.2089 4.2096 FTS+

70 7.7692 8.3351 8.6787 6.4127 FTS

71 24.7122 21.9804 7.2232 5.1433 FTS

72 13.9993 14.5189 7.5981 6.0668 FTS

Mean 12.8298 12.7896 9.8448 5.7313 FTS

Std.dev. 14.1969 11.2296 8.7415 4.1028 FTS

values in the forecast errors for ten medium-term TS shows that behind the RNN
based on LSTM, the RNN based on GRU follows by a small margin, then by a large
margin MLP. The largest error, but in principle acceptable in practical forecasting
of the time series, was shown by the class of fuzzy TS models (MAPE = 3.974%).
If we consider the percentage of cases when RNN based on LSTM predicted more
accurately, then they were the winners only for 60% of the considered medium-term
TS. For the rest medium-term TS, the competing models (that is, FTS and RNN
based on GRU) were more accurate or showed approximately the same accuracy.
Figure 1 shows the forecast graph obtained by the winner model, RNN based on
LSTM for the test part of TS 4. Figure 2 shows the forecast graph obtained on the

Fig. 1 TS 4 prediction based on RNN with LSTM model
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Fig. 2 TS 4 prediction based on two order D-model

basis of the fuzzy D-model [9], the accuracy of which was not the best for the TS 4.
Nevertheless, as can be seen from Fig. 2, the predicted values obtained by the fuzzy
D-model adequately reflect the behavior of TS 4.

In accordance with Table 2, for the short-term time series, fuzzy TS models won
in the average accuracy on the test interval and they showed the best accuracy for
60% of short-term TS. The fuzzy TS models are followed by MLP; the last place is
shared bymodels of the RNN class. In general, the accuracy for the short-term TS for
all models under consideration is lower than for the medium-term time series, due to
the insufficient number of observations. Note that the greatest decrease in accuracy
(almost four times) was shown by the RNN class models; their error in the MAPE
criterion averaged 12%. Interestingly, for one short-term time series, the RNN based
on the GRU showed a prediction error lower by 2 orders of magnitude compared to
other models, and the FTS prediction errors for two TS were half that of competing
models. It should be noted that the MLP showed forecasting accuracy better for 40%
short-term TS in comparison with the RNNs as can be seen from Table 2.

6 Conclusion

Based on the CIF-2016 TS set, the accuracy of the forecasting models of two classes,
based on ANNs and FTS, using the MAPE criterion, was investigated. Models of
the ANN class were represented by RNN based on LSTM, RNN based on GRU, and
MLP. Models of the fuzzy time series class were presented by model with fuzzified
TS values, model with fuzzified first differences of TS values and model, based on
the elementary fuzzy tendency. The study was conducted separately for short-term
time series and for medium-term time series. For medium-term TS, the smallest error
on average was shown by the RNN based on LSTM models, presented by MAPE
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= 3.0013% and for the short-term TS, the smallest error, MAPE = 5.7313%, on
average was shown by FTS.

The further work will be focused on investigation TS models of ANNs and FTS
with respect to time consumption and on their comparative study on forecasting
accuracy for more wide variating of TS length.
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number 19-47-730001 and was funded by RFBR, project number 20-07-00672.
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Systems Symposium (FUZZYSS’15), At İstanbul, vol. 4, pp. 166–170 (2015)

32. Afanasieva, T., Yarushkina, N., Gyskov, G.: The study of basic fuzzy time series Forecasting
models. In: World Scientific Proceedings on Computer Engineering and Information Science,
vol. 10. Uncertainty Modelling in Knowledge Engineering and Decision Making. Proceedings
of the 12th International FLINS Conference ENSAIT (FLINS 2016), pp. 295–300 (2016).
https://doi.org/10.1142/9789813146976_0049

33. Pandey, A.K., Sinha, A.K., Srivastava, V.K.: A comparative study of neural-network & fuzzy
time series forecasting techniques—case study: wheat production forecasting. IJCSNS Int. J.
Comput. Sci. Netw. Secur. 8(9), 382–387 (2008). https://www.researchgate.net/publication/
254027822_A_Comparative_Study_of_Neural-Network_Fuzzy_Time_Series_Forecasting_
Techniques_-_Case_Study_Wheat_Production_Forecasting. Accessed 10 Nov 2019

34. Yadov, V.K., et al.: A comparative study of neural-network & fuzzy time series fore-
casting techniques—case study: marine fish production forecasting. Indian J. Geo-marine
Sci. 42(6), 707–716 (2013). https://pdfs.semanticscholar.org/2a13/49e68f1b3208bf7997c71
748f053a082ac28.pdf. Accessed 10 Nov 2019

https://doi.org/10.1109/colcaci.2019.8781984
https://arxiv.org/pdf/1606.01865.pdf
https://arxiv.org/pdf/1704.04110.pdf
https://doi.org/10.1109/icmla.2018.00227
https://arxiv.org/pdf/1901.00069
https://doi.org/10.1109/ifsa-scis.2017.8023356
https://doi.org/10.1142/9789813146976_0049
https://www.researchgate.net/publication/254027822_A_Comparative_Study_of_Neural-Network_Fuzzy_Time_Series_Forecasting_Techniques_-_Case_Study_Wheat_Production_Forecasting
https://pdfs.semanticscholar.org/2a13/49e68f1b3208bf7997c71748f053a082ac28.pdf


Forecasting Short-Term and Medium-Term Time Series … 363

35. Chung, J., Gulcehre, C., Cho, K.H., Bengio, Y.: Empirical evaluation of gated recurrent neural
networks on sequence modeling (2014). https://arxiv.org/pdf/1412.3555.pdf. Accessed 10 Nov
2019

36. Afanasieva, T., Yarushkina, N., Toneryan, M., Zavarzin, D., Sapunkov, A., Sibirev, I.: Time
series forecasting using fuzzy techniques. In: Proceeding of International Joint Conference
IFSA-EUSFLAT (16thWorldCongress of the International FuzzySystemsAssociation (IFSA),
9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT)), June
30th–July 3rd, Gijon (Asturias) Spain), 2015, pp. 1068–1075 (2015)

37. Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras:
(2016). https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-net
works-python-keras/. Accessed 10 Nov 2019

https://arxiv.org/pdf/1412.3555.pdf
https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/


Inflation Rate Forecasting: Extreme
Learning Machine as a Model
Combination Method

Jeronymo Marcondes Pinto and Emerson Fernandes Marçal

Abstract Inflation rate forecasting is one most discussed topics on time-series anal-
ysis due to its importance on macroeconomic policy. The majority of these papers’
findings point out that forecasting combination methods usually outperform individ-
ual models. In this sense, we evaluate a novel method to combine forecasts based
on Extreme Learning Machine Method [15], which is becoming very popular but, to
the best of our knowledge, has not been used to this purpose. We test Inflation Rate
forecasting for a set of American countries, for one, two, three, ten, eleven and twelve
steps ahead. The models to be combined are automatically estimated by R forecast
package, as SARIMA, Exponential Smoothing, ARFIMA, Spline Regression, and
Artificial Neural Networks. Another goal of our paper is to test our model against
classical combination methods such Granger Bates, Linear Regression, and Average
Mean of models as benchmarks, but also test it against basic forms of new models in
the literature, like [8, 10, 26]. Therefore, our paper also contributes to the discussion
of forecast combination by comparing versions of some methods that have not been
tested against each other. Our results indicate that none of these methods have an
indisputable superiority against the others, however, the Extreme Learning Method
proved to be the most efficient of all, with the smaller Mean Absolute Error and
Mean Squared Error for its predictions.
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1 Introduction

The inflation rate is a core indicator of economic activity. This indicator is closely
monitored by policy-makers, practitioners, portfolio managers, and economic
researchers owing to its importance in macroeconomic policy. Therefore, inflation
rate time-series forecasting is a trending topic in forecasting literature.

For example, inflation rate forecasting has been discussed in several classical
papers such as [6, 21, 23, 27], which remain relevant even today.

One of the main discussions in inflation forecasting literature centers on the role
of forecasting combinations in improving the predictions of models. Most papers
indicate that a combination of models usually increases forecasting performance.

The seminal work of [1] suggested that a simple forecast combination, such as
simple or rolling weighted averages, can outperform individual models. The impor-
tance of model combinations has been highlighted in recent papers such as [4, 14].

Reference [24] reviews classical methods to combine forecasts, such as by gener-
ating prediction weights based on a linear regression or by giving equal weights to all
methods, similar to taking the average mean of all models. Reference [1] proposed
combining forecasts based on a weighted average of each model’s mean squared
errors.

However, the discussion of which is the best way to combine forecasts is still
open to debate, with several papers suggesting new methods to obtain higher fore-
cast accuracy. Reference [8] proposes a forecast ensemble based on LASSO (Lasso)
that selects and shrinks toward equal combining weights. Reference [10] develops a
method based on the model confidence set (MCS) of [12], which allows the user to
equally combine forecasts selected by the MCS. Reference [26] evaluates the per-
formance of a forecast combination with weights calculated by an Artificial Neural
Network (ANN), using a multilayer perceptron architecture (Mlp). All these papers
develop their proposed methods against some classical benchmarks. This is increas-
ingly linked to the actual research on machine learning literature and its possibilities
to improve forecasts.

Based on the work of [15], we propose a new way to combine forecasts, with
weights estimated using Extreme Learning Machine method (Elm). This method has
proved to be a very efficient machine learning approach to forecasting, with good
accuracy results, as discussed in [2, 25], and excellent algorithm performance. In this
sense, this paper contributes to the forecasting literature by evaluating a new method
to combine forecasts.

The following time-series models are used to generate forecasts to be combined
or selected: exponential smoothing, SARIMA, artificial neural networks (ANNs),
ARFIMA, and Spline Regression. All of these models’ functional specifications are
automatically provided by forecast R package.

Through this work, we extend our previous work presented at the 6th International
Conference on Time Series and Forecasting [19]. We run a pseudo-real-time forecast
exercise to evaluate the forecasting performance of our strategy by applying it to the
inflation growth rates of a set of American countries: Brazil, Mexico, Chile, Peru,
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Canada, and theUnited States. The data aremonthly andwere obtained from theBank
of International Settlements (BIS) (https://www.bis.org/). We forecast this series for
one, two, three, ten, eleven, and twelve steps ahead.

We compare our forecast results to forecasts produced using classical bench-
marks, such as random walk (RandomWalk), average mean (AverageMean), and
linear regression (LinearRegression), as discussed in [24] as well as [1] (GB).

Another goal of this paper is to test some of the new combination methods that
have been published in the forecasting literature, focusing on the machine learning
aggregating models. Our method is compared to versions of the recent models pro-
posed by [8, 10, 26]. To the best of our knowledge, no one has tried to compare the
accuracy of these approaches. In addition to these models, we test a combination
method based on ridge regression (Ridge), as an extension of [8].

The reader must be attentive over the approach in this study regarding the use of
these methods. We do not necessarily use the algorithm used by the original author,
but rather, one that is based on their central idea. For example, in the case of [26],
the author uses a network architecture and a backpropagation schema specific to his
problem, which we do not replicate here; instead, we only borrow the central idea of
using an Mlp to estimate the weights in the combination.

Therefore, our paper contributes to the discussion of new forecasting methods
combined with machine learning techniques, by proposing a new method based on
Extreme Learning Machine. Our paper also contributes to the evaluation of some
new methods that have not previously been tested against each other.

This paper is organized as follows. Section1 discusses our proposed strategy to
generate forecasts. Section2 reports our forecasting strategy. Section3 shows our
results and discusses the merits and pitfalls of our strategy. Finally, some concluding
remarks are drawn.

2 Extreme Learning Machine Method

The Elm algorithm was proposed by [15] and is based on a single hidden layer
feedforward neural network (SLNN); it is designed to address the usual problems in
the artificial neural networks literature, such as the method’s speed.

For M arbitrary samples (xi , ti ), with x ∈ Rn being the input and t ∈ Rm the
output of a given econometric problem, a standard way to model an SLNN with an
activation function given by g(x) is

M∑

i=1

βi gi (xi ) =
M∑

i=1

βi gi (wi xi + bi ) = o j , j = 1, . . . , N , (1)

where wi = [wi1, wi2, . . . , win]T is the vector of weights that connects the input
layer to a hidden layer, βi = [βi1, βi2, . . . , βim]T is the set of weights between the
output and hidden nodes, o j is the tested output, and bi is the threshold of the ith
hidden neuron.

https://www.bis.org/
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The SLNN with N hidden neurons and g(x) activation function can approximate
these N samples with zero error, as

∑n
j=1 ||o j − t j || = 0, and there exist βi , wi , and

bi such that
M∑

i=1

βi gi (wi xi + bi ) = t j , j = 1, . . . , N . (2)

This equation can be written as follows:

Hβ = T, (3)

where H =

⎛

⎜⎝
g(w1x1 + b1) . . . g(wN x1 + bN )

... . . .
...

g(w1xN + b1) . . . g(wN xN + bN )

⎞

⎟⎠,

β =

⎛

⎜⎝
βT
1
...

βT
N

⎞

⎟⎠ and T =

⎛

⎜⎝
t1T

...

t N T

⎞

⎟⎠.

According to [15], contrary to the common understanding that all parameters of
SLNNmust be tuned, experiments show that they can be arbitrarily given. Reference
[15] indicates that for small parameter values in the activation function, training an
SLNN is simply equivalent to finding the least-squares solutionβ of the linear system
Hβ = T :

minβ ||H(w1, . . . , wn, b1, . . . , bn)β − T ||. (4)

Based on this method, our paper proposes solving the problem given by (4) to
obtain the weights for combining different forecast models. Therefore, our inputs are
the forecasts of different models while the output is the actual value of the predicted
variable. To the best of our knowledge, no paper has used this approach.

TheElm architecture is defined by a process of cross-validation applied to different
sets of networks.Ourmethod chooses the number of hiddennodes through an analysis
of the least mean absolute error generated on the training set. For our purposes, we
tested five, ten, fifteen, twenty, twenty-five, and thirty possible hidden nodes.

3 Proposed Benchmarks and Forecasting Strategy

3.1 Benchmarks

In this subsection, we expose newmethods that use the machine learning framework,
which were used to combine forecasts in recent studies. Essentially, in all of these
methods, the explanatory variable is given by each forecast to be combined while
the dependent variable is the series value to be predicted.
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LASSO and Ridge Regression
Reference [8] proposed using a LASSO-based procedure that selects and shrinks
toward equal combining weights (Lasso). They aim to find a method that can select
the best predictors to combine forecasts. In this study, we use a basic form of LASSO
regression to develop a forecast ensemble.

LASSO estimates are given by

βLasso = argminβ

N∑

i=1

(yi − β0 −
p∑

j=1

xi jβ j )
2. (5)

subject to
∑p

j=1 |β j | ≤ t .
Based on this maximization problem, it is possible to establish the weights for

each forecast (xi j ), even zero.
In the same way, the ridge regression estimate (Ridge) is given by

βLasso = argminβ

N∑

i=1

(yi − β0 −
p∑

j=1

xi jβ j )
2. (6)

subject to
∑p

j=1 β2
j ≤ t . Here, xi j refers to each of the forecasts that will be combined

in our experiment.
It is possible to infer that the basic difference between Lasso and Ridge is the

maximization restriction, which is given by the absolute value of β in the former
case and it’s square in the case of the ridge regression. In our study, we use LASSO
and the ridge regression with a basic framework, without some of the specifications
discussed in [8].

Artificial Neural Network
Reference [26] used artificial neural network as part of a framework of forecast
combination. Basically, they use a multilayer perceptron artificial neural network
(Mlp) given by

yi =
m∑

j=1

f (wi j x j + bi ). (7)

In this study, we use a feedforward neural network, where each input x j feeds its
value to a hidden neuron, known as hidden layers, until the final output is obtained
from the neural network. During its passage by each neuron, the input value is
multiplied for its respective weight wi j . For more details about this method andMlp
architecture, see [9].

In this study, we use a simple Mlp architecture with three layers and a logistic
activation function, which was defined by experimentation based on the best results.
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MCS
Reference [12] introduced the concept of a model confidence set (MCS). MCS is a
set of models that is constructed such that it contains the best model with a given
level of confidence. The MCS is analogous to a confidence interval for a parameter.
Reference [10] evaluated the use ofMCS for selecting the best combination ofmodels
to generate a forecast ensemble.

Classical Methods to Forecast Combination as Benchmarks
To evaluate any strategy, it is important to choose proper benchmarks. If a strategy
is unable to outperform forecasts obtained from simple benchmarks, it should be
abandoned. Simple benchmarks serve as a lower bound to assess any strategy. For
example, if the analyst wants to forecast an exchange rate, random walk is a difficult
benchmark to be beaten [18, 20]. An autoregressive model of order 1 is a difficult
benchmark to surpass when forecasting a consumer price index [3, 22]. A forecast
obtained from a double differencemodel can be difficult to outperform for datawhere
the data generation process faces structural breaks [5].

We use the following classic benchmarks:

– Average forecast combination [24];
– Linear regression of forecasts [24];
– Granger Bates method [1];
– Random walk [24].

3.2 Forecasting Strategy

We test our models on inflation growth rate data for a set of American countries:
Brazil, Peru, Mexico, Chile, Canada, and the United States.

The strategy in our forecasting exercise is based on the following schema:

– Training set equals 50% of data;
– Validation set equals 40%—“number of steps ahead to forecast” + 1 of data;
– Test set equals the total data minus (Training Set + Validation Set).

All series were tested with the Augmented Dickey-Fuller test and the results indi-
cated that there is a unit root with 1% of confidence. Therefore, all of our experiments
are based on the inflation growth rate, which is stationary at 1% confidence.

The experiment was developed by applying all cited models and methods to the
inflation growth rate series. All of the tested combination methods aim to select the
best ensemble ofmodels from a set of possible choices. Specifications for eachmodel
are selected using algorithms from forecast R package:

– SARIMA,
– Exponential Smoothing (Ets),
– Artificial Neural Network (ANN),
– ARFIMA,
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– Spline Regression (Spline).

All models generated are univariate, based on the use of only the lags of the
inflation rate as the information set, and no other variables.

The forecast package is described in detail in [16]. For more details regarding
the aforementioned methodologies, see [11, 17]. This package chooses a particu-
lar specification based on the information available. Model performance may vary
throughout the sample.

4 Findings

4.1 Pseudo-Real-Time Experiment

The data gathered for the countries is used to create many variations of models to
forecast the inflation growth rate. The sample is split into three parts. The first part of
the sample is used to estimate the individual models, the second is used to train and
combine the estimates, while the third is used to evaluate the forecast performance
of the various methods over various horizons. In our exercise, we attempt to simulate
a real-time operation. We use an information set that reflects, as closely as possible,
the one available to agents at the time of the forecast.

For eachmodel, forecasts are generated for one, two, three, ten, eleven, and twelve
steps ahead. Therefore, our initial training set includes the first 228 observations. The
values we use to run our projections are not the same as those that were available
to agents at that time. We run projections in our pseudo-real-time experiment with a
slightly better information set. This may result in better forecasting accuracy com-
pared to the projections generated in real-time. To assess the predictive performance
of the proposed models, a comparison of Mean Absolute Error (MAE) and Mean
Squared Error (MSQE) is generated for each method. Tables1 and 2 present a sum-
mary of the best models in terms of MAE and MSQE from one up to twelve steps
ahead forecasts. All tables show the first and second models in terms of forecasting
performance and if the first models have statistical dominance over the second.

It is possible to infer that Elmmechanisms show good performance in comparison
to the others achieving, approximately, 72% of the best results in terms ofMAE and
MSQE in all experiments. Additionally, even in the cases where the Elmmethod was
not the best model, it had good performance being one of the two best models in
almost all cases. The tables with detailed results are shown in the Appendix section.

To compute the statistical significance of these results, we use the method in [7].
We apply the Diebold-Mariano method to the pair of all models tested against our
Elm strategy. We intend to analyze whether a model has statistically lesser MAE
and/orMSQE than the other. Our statistical test analyzes the null hypothesis that the
second model is less accurate than the first. Detailed results are available by request
to the author.
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Table 1 Models with the lowest mean absolute error for 1, 2, 3, 10, 11, and 12 steps ahead forecasts

Brazil Chile Peru Mexico USA Canada

1 Step Ahead
1o Elm*
2o Lasso

1o Lasso
2o Ridge

1o Lasso
2o Ridge

1o Elm
2o Ridge

1o Elm
2o Lasso

1o Elm
2o Lasso

2 Steps Ahead
1o Elm*
2o Gb

1o Ridge
2o Lasso

1o Ridge
2o Elm

1o Lasso
2o Elm

1o Elm
2o Lasso

1o Elm
2o Lasso

3 Steps Ahead
1o Elm
2o Gb

1o Ridge
2o Elm

1o Elm**
2o Ridge

1o Lasso
2o Ridge

1o Elm
2o Lasso

1o Elm
2o Lasso

10 Steps Ahead
1o Gb

2o Elm***
1o Elm
2o Ridge

1o Elm**
2o Gb

1o Elm***
2o Lasso

1o Elm
2o Lasso

1o Elm**
2o Lasso

11 Steps Ahead
1o Gb

2o Elm**
1o Elm
2o Ridge

1o Elm***
2o Gb

1o Elm**
2o Lasso

1o Elm
2o Lasso

1o Elm
2o Lasso

12 Steps Ahead
1o Gb

2o Elm**
1o Elm
2o Gb

1o Elm***
2o Gb

1o Elm**
2o Lasso

1o Elm
2o Lasso

1o Elm
2o Lasso

Significances: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

Table 2 Models with the lowest mean squared error for 1, 2, 3, 10, 11, and 12 steps ahead forecasts
Brazil Chile Peru Mexico USA Canada

1 Step Ahead
1o Elm*
2o Lasso

1o Lasso
2o Ridge

1o Lasso
2o Ridge

1o Elm
2o Ridge

1o Elm
2o Ridge

1o Ridge
2o Lasso

2 Steps Ahead
1o Elm*
2o Lasso

1o Ridge
2o Gb

1o Ridge
2o Elm

1o Lasso
2o Elm

1o Elm
2o Lasso

1o Elm
2o Lasso

3 Steps Ahead
1o Elm
2o Gb

1o Ridge
2o Gb

1o Elm**
2o Ridge

1o Lasso
2o Ridge

1o Elm
2o Lasso

1o Elm
2o Lasso

10 Steps Ahead
1o Elm***

2o Gb
1o Elm
2o Ridge

1o Elm**
2oGb

1o Elm***
2o Lasso

1o Elm
2o Lasso

1o Elm**
2o Ridge

11 Steps Ahead
1o Elm**
2o Gb

1o Elm
2o Ridge

1o Elm***
2o Gb

1o Elm**
2o Lasso

1o Elm
2o Lasso

1o Elm
2o Ridge

12 Steps Ahead
1o Elm**
2o Gb

1o Elm
2o Ridge

1o Elm***
2o Gb

1o Elm**
2o Lasso

1o Elm
2o Lasso

1o Elm
2o Ridge

Significances: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

To compare the forecast accuracy of the two different methods, we use the alterna-
tive version of the Diebold-Mariano test as proposed in [13]. We test the alternative
hypothesis that a second method is less accurate than the Elm strategy.

Exercises performed with the Brazilian data show outstanding results for Extreme
Learning Machine combination. Based on one up to the twelve ahead forecasts, the
Elm strategy does not only statistically outperformed Gb model with three steps
ahead forecast. This performance can be seen in Fig. 1 in our Appendix.
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TheElm combination had theworst forecast performance in the case of theChilean
data. We can only reject the null that Gb performed better than Elm at 15% for the
twelve steps ahead forecast. However, Elm outperformed the AverageMean for all
steps from ten to twelve at 7%, 12%, and 14%, respectively. The MAE and MSQE
dynamic can be seen in Fig. 2 in the appendix section.

Our results on the Mexican data show that the Elm method outperformed all
models for two, three, ten, eleven, and twelve steps ahead forecasts with statistical
dominance dictated by the test results of [13]. However, the model did not show
satisfactory performance in the short run, as evident from the results of the one step
ahead forecast.

In the Peruvian case, Elm presented a result very similar to that of the Mexican
case. Our model statistically outperformed all models, for three, ten, eleven, and
twelve steps ahead forecasts. Detailed results are in the Table. The results for the
Mexican and Peruvian cases can be inferred by a graphical analysis in Figs. 3 and 4,
respectively.

North American countries, the USA and Canada, showed very similar results. In
both cases, Elm was the model with the lowest MAE and MSQE in all experiments.
However, Diebold-Mariano’s test was only able to reject the null of equal perfor-
mances for ten steps ahead forecasts in the Canadian case. A graphical analysis of
those results allows us to infer that besides Diebold-Mariano’s results, it seems that
the Elm model has dominance over all other models during the training and test
phase. It is possible that this inability to reject the null was driven by a very stable
series, with low variance, which is typical of North American countries’ inflation
rates, but further experiments should be conducted for a more conclusive inference.
These graphics can be seen in our Appendix.

It is also possible to evaluate the adjustment during the training and testing period.
All graphical adjustment analyses are described in the Appendix. It is very useful to
evaluate the dynamics of the method; however, for this exercise, we opted to show
only the one and twelve steps ahead forecasts, focusing on the short and long runs.

Our results follow the same pattern of the findings of [15]. In our tests,Elm showed
satisfactory performance in terms of computation time. All experiments took less
than three seconds to compute. This result shows Extreme Learning Machine as a
fast algorithmwithout losing in terms of performance. It is worth noting that all of our
proposed Elm architectures statistically surpassed theMlp combination approach.

5 Concluding Remarks

Inflation rate is one of the most important economic indicators to forecast. As a
result, inflation rate forecasting was and still is one of the most discussed topics in
time-series forecasting.
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Our work analyzed a new forecast combination framework based on Extreme
Learning Machine framework proposed by [15] to forecast the inflation rate. We
tested our model against some recent proposed combination methods and classical
benchmarks. To perform this exercise, we used a time series of the price index growth
rate for a set of American countries: Brazil, Chile, Mexico, Peru, Canada, and the
United States.

It is possible to infer that the Elm mechanisms show good performance in com-
parison to the others, achieving, approximately, 72% of the best results in terms of
MAE and MSQE in all experiments. Additionally, even in the cases where the Elm
method was not the best model, it had good performance, being one out of the two
best models in almost all cases. All of these results were statistically validated by the
use of the testing method in [13] to test the null whether the compared benchmark
has better performance than Elm.

It is also important to consider the algorithm speed, one of the main advantages
of the Elm over other artificial neural network architectures. All of our experiments
were performed in less than 10 seconds.

Our results proved that Extreme LearningMachine combination method has great
potential, which raises the research question of what kind of different architectures
could be applied to this model to obtain even better performance. In this sense,
future work on this machine learning technique can improve our actual forecasting
combination methods.

It is worth noting that our conclusions are not a general theory, with results only
applicable to the cases analyzed here. In this sense, it is possible to overcome some
of this work’s limitations by extending the analysis to more and different countries,
as by using different benchmarks.

Appendix

See Figs. 5, 6, 7, 8, 9, 10, 11, 12.
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Fig. 1 Mean absolute error and mean squared error for Brazilian forecasting exercise
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Fig. 2 Mean absolute error and mean squared error for Chilean forecasting exercise
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Fig. 3 Mean absolute error and mean squared error for Mexican forecasting exercise

Fig. 4 Mean absolute error and mean squared error for Peruvian forecasting exercise
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Fig. 5 Mean absolute error and mean squared error for USA forecasting exercise

Fig. 6 Mean absolute error and mean squared error for Canada forecasting exercise
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Fig. 7 Statistical adjustment of Elmmethod for Brazil, from one up to twelve steps ahead forecasts
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Fig. 8 Statistical adjustment of Elmmethod for Chile, from one up to twelve steps ahead forecasts
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Fig. 9 Statistical adjustment ofElmmethod forMexico, fromone up to twelve steps ahead forecasts



382 J. M. Pinto and E. F. Marçal

Fig. 10 Statistical adjustment of Elmmethod for Peru, from one up to twelve steps ahead forecasts
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Fig. 11 Statistical adjustment of Elm method for Canada, from one up to twelve steps ahead
forecasts
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Fig. 12 Statistical adjustment of Elmmethod for USA, from one up to twelve steps ahead forecasts
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Time Series Analysis and Prediction
in Other Real Problems



Load Forecast by Multi-Task Learning
Models: Designed for a New
Collaborative World

Leontina Pinto, Jacques Szczupak, and Robinson Semolini

Abstract This paper proposes a forecasting model designed for lack of data prob-
lems based on Multi-Task Learning techniques (MTL). It is especially useful for
evolutionary markets and systems, where new paradigms (like renewable penetra-
tion or prosumers) significantly impact behavior and dynamics, creating unforeseen
responses that would be unpredictable frompast (possibly obsolete) historical data. A
case study targeting the recent Brazilian load changes illustrates the approach perfor-
mance: it was possible to combine data from three different distribution companies,
creating a learning network, yielding reliable results where all other models failed.

Keywords Load forecast · Lack of data · Multi-tasking learning · Collaborative
learning

1 Introduction

Energy demand is perhaps the market’s most important pillar: all institutions, agents,
and processes—from planning and operation to marketing and management—are
essentially organized to serve it. However, although projecting load future evolution
is crucial for an economical and secure supply, it is still one of our major challenges.
The behavior of the consumer changes continuously, offering unpredictable reactions
to various stimuli, as prices, economic indicators, expectations, and perceptions not
always based on reality.

Brazilian load offers an interesting case study. The year 2018 experienced
an anomalous increase in consumption throughout Brazil, almost always without
connection to any of the classical explaining triggers: GDP experienced a sharp fall,
as did income and all economic activities’ indicators. We currently face a major
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challenge: consumer behavior has changed, old dynamics no longer represent the
present and wemust predict the future without any past basis. In fact, in this context,
the longer the history, the worse is the prediction.

This behavior almost lies within the concepts proposed by [1, 2], where income
raise yields a sensible behavior change, breaking the previous classical correlations
between consumption and economy indicators.

However, the Brazilian case steps further: even without a significant income
raise, popular expectations lead to new apparel acquisitions (specially climatiza-
tion) and thus to consumption increase. Correlations are broken, and only behavioral
economics can explain this anomaly.

It is necessary to develop mathematical models and computational tools as agile
as the consumer, able to understand, follow and maybe anticipate its behavior, with
the speed of our new times.

2 Objective

This paper describes a model able to accommodate more than just lack of data:
we deal with extreme scarcity, where forecast needs to be performed from very few
observations—for example, one year (twelve months). In this case, historical records
are not even enough to allow a backtracking test (identification/prediction): it will
be necessary to start from scratch.

It is necessary to “populate” the load history with valid information—and it is
important to distinguish information from numbers: it would be possible to create
synthetic samples from the available data, but they would contain the same poor
information—anything else could even lead us to distorted results.

However, although it is not possible to extract more information from a history
beyond the availability limits, it is feasible to combine similar experiences: observa-
tions from different agents that exhibit similar behaviors. For example, it is possible
that distributors in neighboring regions share the same dynamics of consumption. In
this case, it might be interesting to “blend the knowledge” of each company into a
single richer, more complete history.

This is the proposal of collaborative learning (MTL) [3–5]. By joining forces,
information is shared without losing individuality. The model should select the
common dynamics and point specificities, leading to a more consistent and reliable
projection.

The advantages of the proposed model are highlighted through a comparison
between the new model and a Hilbert Space approach, previously used in many
Brazilian companies, also designed for lack of data forecast problems.
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3 Multi-Task Learning Approach

Considering space limitations, this article summarizes the applied collaborative
learning model. More details, including alternative implementations, may be found
in [3].

The proposed approach establishes a set of outputs or tasks t (in our case, the
target variables, loads, or consumption). Each of these tasks is associated to a set of
explanatory variables (inputs) x (in our case, economic, climatic, behavioral activi-
ties, etc.). The successful collaborative learning model requires that outputs t react
similarly to inputs x.

The function that “maps” the input x to the output t is written as

f t(x) =
∑d

i=1
aitui(x) : ∀t ∈ T; ait ∈ R; x ∈ R

d (1)

where
x is the vector of input variables
f t(x) is the output associated to task t.
function ui(x) expresses the shared responses of all inputs x and different tasks t.
coefficients ait measure the “coupling” between different tasks.

For the sake of simplicity, this work assumes linear functions (non-linear
extensions are possible and relatively straightforward). In this case, function f(t)
corresponds to a vector product which may be written as

wt =
∑d

i=1
aitui (2)

and therefore

f t(x) = wt(x) : ∀t ∈ T; x ∈ R
d (3)

where wt(x) combines the individual task coefficients a to the shared u.
Finally, for concision

W = UA : W ∈ R
d×T (4)

These coefficients are obtained from the historical observations among all agents
(even if scarce).Amongothermethods, themost intuitive is thewell-known technique
of function fitting to the available history

min
{∑m

i=1
L
(
yti,

〈
ati,UTxti

〉)} : at ∈ R
d (5)

where L(.,.) measures the empirical deviation between the model outputs and the
available data.
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Fig. 1 Classic, individual approach

Fig. 2 Collaborative approach

4 Architecture Differences

Figures 1 and 2 illustrate the conceptual difference between the classical and collabo-
rative approaches. While the classical approaches use each set of observations inde-
pendently, collaborative approach combines all observations, creating a common
pattern without losing each agent’s uniqueness.

5 The Classical Hilbert Space Approach

The classical Hilbert approach was previously designed to handle the lack of data,
aiming to adapt to the ever-changing Brazilian consumer’s behavior is described in
[6, 7] and will be summarized here.
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5.1 Projection Theorem

Functional Analysis has been extensively applied to optimization processes [8]. It
might be used on a statistical basis, as it is often found in communications, or on a
deterministic point of view, the latter usually associated to Hilbert Spaces.

Hilbert Space elements may be seen as vectors, or, in our computerized world,
data sequences representing loads, temperatures, economy index, etc. The Hilbert
Space is a complete metric space [9], being able to approximate any given vector,
always satisfying the Projection Theorem and the Orthogonality Condition [10].

This is shown in Fig. 3, where a given load vector is approximated by the vector
sum of three “explaining variable” vectors, Ve1, Ve2, and Ve3 (for instance, GDP,
income, and temperature).

Figure 4 illustrates the decomposition process for just one “explaining variable”.
The original vector is projected (using the Projection Theorem) over the “explaining
variable” (say, Ve1), yielding the “explained component”. The remaining orthogonal
vector corresponds to the unexplained component, or the error vector.

The unexplained component (error) will then be projected over the second
explaining vector (say, Ve2) and the process will continue until the final error is
considered negligible.

Fig. 3 Hilbert space
decompositsion

Fig. 4 Original vector
decomposition over a first
“explaining vector”
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5.2 Parallel Processing Implementation

Let C be the desired vector to be decomposed by the set of “explaining variables-
vectors” S, S2, . . . , SN . Therefore, one should look for the optimum combination of
these “basis” vectors

C ∼= S α = [
S1, S2, . . . , SN

]
α (6)

such as to minimize the error norm

min
∥∥∥C − S α

∥∥∥
︸ ︷︷ ︸

α‖ε‖
(7)

The Projection Theorem states the optimum approximation error is orthogonal to
the space of “explaining vectors” and, therefore, to any of its elements, such as

εtSi = CtSi − αtStSi = 0 for i = 1, 2, . . . ,N (8)

or, for all “explaining vectors”

Ct
[
S1, S2, . . . , SN

]
︸ ︷︷ ︸

S

= αt
[
St

] [
S1, S2, . . . , SN

]
︸ ︷︷ ︸

S

(9)

leading finally to the unique [9] optimum set of coefficients

α =
(
StS

)−1
StC (10)

The method is now able to work with large sets of “explaining vectors” in a very
efficientway.Moreover, it solves the “co-integration” problem, automatically accom-
modating inter-correlated explaining variables, finding the best fit while eliminating
possible “double counting” effects due to the interdependencies.

Finally, Hilbert Decomposition does not require a large historical period.
Although, of course, more reliable information yields a more precise result, it will
work at its best within a constrained history, and it suited to a lack of data frame-
work. It has been successfully used in many Brazilian companies, and was able—
until now—to yield a reliable forecast based on a mere 5-year history (60 monthly
observations).
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6 Case Study

6.1 The Challenge

The necessity of a newmodel, able to deal with lack of data, is shown in Fig. 5. After
three years of stagnation, the loadfinally experienced a steep—andunexpected—rise.

The explanation to this phenomenon, however, was unclear. Figures 6, 7, and 8
show the classical model forecast results for a backtracking process (identification
and projection) applied to three neighboring distributors (COELBA, CELPE,
COSERN), based on usual explaining variables (GDP, Income, Temperature). There
is a sensible, abnormal step associated to 2019 summer in all companies (in fact,
all Brazilian distributors exhibited the same behavior, and many different statistical
models led to similar results). No available model was able to predict—even to
explain this response.

Fig. 5 Bahia (COELBA) load growth

Fig. 6 Bahia (COELBA) load dynamics
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Fig. 7 Pernambuco (CELPE) load dynamics

Fig. 8 Rio Grande do Norte (COSERN) load dynamics

More than absorbing the deviations, the main question is should that step be an
anomaly, or should it be a change in consumer’s behavior—in other words, is this
a new permanent pattern? This question is, of course, related to the consumer’s
reactions and the answer requires a deeper—non-statistical—understanding.

Extensive field research [11], based on behavioral economics [12, 13], uncovered
an interesting fact: a disputed election restored the consumer’s belief on a stronger
economy and a change for the better. This faith in the future, associated to an unusual
warmsummer, leads to thehighest level of refrigeration equipment purchaseobserved
in a decade.

It must be noticed that no economy or income growth backed up this trend: it was
a matter of hope and belief. Therefore, no model based on past correlations would
be able to account for this change.

As a consequence, consumers possess a new basis of installed demand, and will
use it fromnowon. There is indeed a new standard, whichwill induce a new response,
that must be predicted based on a few observations.
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Fig. 9 Individual x collaborative learning, Bahia (COELBA)

6.2 The Proposed Solution

The anomalous behavior was detected from May 2018. It would be very difficult,
if not impossible, to apply existing models to as few as 12–18 months for model
identification/validation.

We proceeded to try the collaborative learning technique. As our goal was
predicting 2019 summer, we based our identification phase on the period from
October 2017 to May 2018—where the behavior was still establishing. Of course,
more observations will improve the results andwill be used as they become available.

Figure 9, 10, and 11 compare the results obtained from our best classical Hilbert
Spacemodel (individual learning) and from the collaborative learning. It is interesting
to notice that (as expected) the results show slightly higher errors during springtime
(as consumers were still adapting, taking decisions, buying equipment). However,
projection for summer months is much better.

In any case, the proposed approach offered a clear enhancement on the overall
forecast quality.All deviations are significantly lower, despite the almost non-existing
information. Moreover, the “deviation trend” is broken, offering a more stable and
reliable insight of the future.
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Fig. 10 Individual x collaborative learning, Pernambuco (CELPE)

Fig. 11 Individual x collaborative learning, Rio G. do Norte (COSERN)

7 Conclusions

We live in a changing world, and consumption dynamics is not an exception.
Preparedness for the future requires the forecast of the unknown. It is crucial to
build models that are able to quickly detect modifications—and know the difference
from anomalies. It will be necessary to adapt, adjust, absorb novelties.
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In the context, classical models, that try to repeat the past, will not be able to
foresee the future. The ability to collect and store a huge history may not ensure the
quality of information. Number of observations will not necessarily yield precision.

We propose a model designed for this new reality: a collaborative learning tech-
nique, able to combine information from different agents, identify common and
individual characteristics and build a rich history without traveling back to a distant
past.

The described approach was applied to a hard challenge: the projection of the
summer load for three Brazilian distributors which broke any known record. A mere
8-month observed data was able to provide much better results for all companies,
paving the path to explain the (previously) unexplainable behavior.

These promising results suggest an interesting way, which will be pursued and
reported in the near future.
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Power Transformer Forecasting in Smart
Grids Using NARX Neural Networks
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Abstract In the next years, with a growing presence of electric vehicles and a mas-
sive penetration of renewable sources and low levels of voltage for self-consumption,
it will be essential that medium- and low-voltage distribution networks be planned,
operated, and supervised as transportation networks have been managed for decades,
from the distributor to be a simple agent of distribution assets to be the operator of the
network. This paper shows a non-linear autoregressive neural network with exoge-
nous inputs (NARX) for time-series forecasting and power transformers monitoring.
The NARX network model provides a description of the system by means of a non-
linear function of lagged inputs, outputs, and prediction errors that can be interpreted
as a recurrent dynamic network, with feedback connections enclosing several layers
of the network. The prediction model consists of a multilayer perceptron (MLP)
in the hidden layer that takes as input a window of past independent (exogenous)
inputs and past outputs followed by an output layer that finally forecast the target
time series. A previous study was carried out in order to select the most important
electrical measurements enabling the prediction of the safe operation of the power
transformer. The selection of the electrical measurements that have more influence
on the transformer temperature was based on the computation of the pairwise Pear-
son’s correlation coefficient, the Kendall’s rank correlation coefficient as well as
the cumulative conditional Granger causalities. The proposed NARX network was
trained and evaluated in open-loop and closed-loop modes showing a high accuracy
when predicting and monitoring the operation of power transformers.
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1 Introduction

Systems identification is a well-defined methodology to identify and evaluate the
response of a dynamic system by defining models based on measurements of the
inputs and outputs thereof [1]. The applications of the system identification problem
extend to any system inwhich the inputs and outputs are known and include industrial
process control, social data analytics, control systems, mechanical and aerospace
engineering, biomedical systems, economical data, financial systems, etc.

Non-linear systemmodeling techniques have significantly evolved during the last
decades.Among them, the non-linear autoregressivemoving averagewith exogenous
inputs (NARMAX) [2–4] model represents a wide class of discrete-time non-linear
systems. The NARMAX model provides a description of the system by means of
a non-linear function of lagged inputs, outputs, and prediction errors. Since the
definition of the NARMAXmodel is independent of the non-linear functional, multi-
layered neural networks offer a powerful alternative in this context for modeling
complex non-linear systems and time-series forecasting [5]. Among these networks,
the non-linear autoregressive neural network with exogenous inputs (NARX) can be
interpreted as a recurrent dynamic network, with feedback connections enclosing
several layers of the network and has found application in many real scenarios for
time-series forecasting [6–11] https://doi.org/10.1016/j.neucom.2020.05.078.

The next generation of low- and medium-voltage distribution networks will
demand to be better planned, operated, and supervised as transportation networks
have been managed for decades. The adaptation of these networks will require
to incorporate much more intelligence, sensorization, broadband communications,
optimal control, and intelligent reporting among other emerging technologies. In
order to accomplish it, the systems have to incorporate much more intelligence than
before, which involves awhole spectrum of digital technologies: sensorization, smart
meters, broadband communications, local electronic device controllers, IoT (Inter-
net of Things), SCADAs (Supervision, Control, and Acquisition of Data), energy
management centers, advanced data processing software (data analytics), optimal
control, intelligent reporting, etc [12, 13].

A large collection of predictive techniques and methods to diagnose the health
of power transformers are available in the literature [14–17]. These techniques are
classified as off-line or on-line methods depending on if the monitoring process
requires to disconnect the transformer or not. Expert knowledge and experienced
engineers are needed to correctly interpret the results of the monitoring process.
This paper shows a power transformer monitoring approach based on a non-linear
autoregressive discrete-time model with exogenous inputs and neural networks.

https://doi.org/10.1016/j.neucom.2020.05.078
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2 System Identification Modeling

Systems identification is a methodology to characterize a dynamic system through
a mathematical model whose definition is based on its inputs and outputs [1]. The
models used in this scenario can be linear and non-linear system identification mod-
els. Linear systems are defined as those that satisfy the superposition principle and
can be broadly classified into nonparametric and parametric methods. The develop-
ment of linear system identification systems started in the early 70s and is still an
open research problem. On the contrary, non-linear system identification systems are
those that do not satisfy with the superposition principle.

Among the non-linear systems’ identification methods, non-linear autoregressive
moving average with exogenous inputs modeling (NARMAX) [2, 18–20], first intro-
duced in 1981, represent a broad class of non-linear system modeling techniques.
The discrete-time NARMAX model is defined by means of

y(t) =F[y(t − 1), y(t − 2), . . . , y(t − ny),

u(t − d), u(t − d − 1), . . . , u(t − d − nu),

e(t − 1), e(t − 2), . . . , e(t − ne)] + e(t)

(1)

where y(t), u(t), and e(t) denote the input, output, and noise sequences of the sys-
tem, respectively, and ny , nu , and ne are the maximum lags for these sequences. F[.]
represents a non-linear function and d a delay that is usually set to 1 [1]. The noise
term e(t) in the model is normally defined as the prediction error. It is included in
the definition in the model to deal with the effects of measurement noise, model-
ing errors, etc. There are numerous forms to approximate the non-linear function
F[.] that is considered in the definition of the NARMAX model. Among them, the
most frequently used are power-form polynomial models, rational models, neural
networks, fuzzy logic-based models, wavelet expansions, and radial basis function
(RBF) networks. In this paper, we will adopt the multilayer perceptron (MLP) neural
network to model the non-linear F[.] function of the NARMAXmodel for predicting
the temperature of the power transformer temperature as a function of a number of
exogenous input variables and past values of the output.

The architecture of a typical dynamically driven recurrent single-layer NARXnet-
work for a single input, single output systems is shown in Fig. 1, where φi (

.) and wi

(i = 1, 2, . . . ,m) in the hidden layer are predetermined non-linear scalar functions,
referred to as activation functions, and the networks weights, respectively. Math-
ematically, the operation of the recurrent NARX neural network can be described
by

y(t) = F[x(t)] = w0 +
m∑

i=1

wiφi (x(t)) (2)
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Fig. 1 A recurrent NARX neural network for a single input, single output system

where the vector x(t) = [x1(t), x2(t), . . . , xn(t)] is defined to be

xm(t) =
{

y(t − m)) 1 ≤ m ≤ ny

u(t − m + ny)) ny + 1 ≤ m ≤ n = ny + nu
(3)

3 NARX Neural Network for Power Transformer
Temperature Prediction

Themain objective of this paper is to show an efficient and accuratemethod formoni-
toring the temperature of the power transformer based on time-series forecasting and
sensorized transformer data. Dynamically driven recurrent NARX neural networks
enabling time-series forecasting are a potentially attractive technology for this chal-
lenging problem since thesemodels can be generalized to incorporatemultiple exoge-
nous inputs. The NARMAX model previously introduced [2–4] is a discrete-time
non-linear system model that can be generalized in order to provide an estimation of
the next value of the dependent output signal y(t) in terms of a non-linear function
of past values of the output signal and previous values of independent (exogenous)
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input signals. A special case of the NARMAX model is the NARX model which
does not include any noise-dependent model terms such as e(t − 1) and e(t − 2),
and can be implicitly formulated as

y(t) =F[y(t − 1), y(t − 2), . . . , y(t − ny),

u(t − 1), u(t − 2), . . . , u(t − nu)] + e(t)
(4)

where the u vector represents the set of exogenous signals that are used to predict the
value of the output signal y(t) while the noise term e(t) is an independent sequence.

Neural networks are widely used for the implementation of the non-linear F[.]
function in Eq.4 leading to an elegant solution for time-series forecasting based on
multiple exogenous inputs. Figure2 shows the architecture of open-loop and closed-
loop non-linear autoregressive neural networks with exogenous inputs. These consist
of a multilayer perceptron (MLP) in the hidden layer that takes as input a window of
past independent (exogenous) inputs {u(t − 1), u(t − 2), . . . , u(t − nu)} and past

Fig. 2 Architecture of open-loop and closed-loop non-linear autoregressive neural networks with
exogenous inputs
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outputs {y(t − 1), y(t − 2), . . . , y(t − ny)}, and calculates the current output y(t),
followed by an output layer. These networks are usually trained in open-loop mode
based on past values of the exogenous signals and the output to predict the next
sample. Once the network is trained, the time-series forecasting problem can be
accomplished without using past values of the output signal and based only on the
exogenous inputs. This step requires to introduce a feedback from the output layer
to the input of the hidden layer so that the past values of y(t) are replaced by their
predictions as shown in Fig. 2.

4 Power Transformation Center Datasets

Data used in this study was provided by Endesa Distribución company through the
Open Innovation Living Lab SmartcityMálaga (Málaga, Spain). The objective of the
project MONICA is the deployment of sensors and measurement, automation and
control equipment in medium and low-voltage transformation centers. The challenge
is to implement an electrical network integrating artificial intelligence technology
not only to the newmonitoring and tracking elements, but also to the built-in network
analysis techniques that deal with all the input information, including its uncertainty.

TheOpen InnovationLivingLabSmartcityMálaga includes 17 power transforma-
tion centers. For each of them, a total of 20 variables were recorded at a sample rate of
12 samples/hour for the whole 2018year. These signals include the ‘Phase Imbalance
(PI)’, ‘Active Energy Exported (AEE)’, ‘Active Energy Imported (AEI)’, ‘Capacitive
Reactive Energy Exported (CREE)’, ‘Capacitive Reactive Energy Imported (CREI)’,
‘Inductive Reactive Energy Exported (IREE)’, ‘Inductive Reactive Energy Imported
(IREI)’, ‘Intensity R (IR)’, ‘Intensity S (IS)’, ‘Intensity T (IT)’, ‘Active Power R
(APR)’, ‘Active Power S (APS)’, ‘Active Power T (APT)’, ‘Active Power (AP)’,
‘Reactive Power R (RPR)’, ‘Reactive Power S (RPS)’, ‘Reactive Power T (RPT)’,
‘Reactive Power (RP)’, ‘Room Temperature (RTemp)’, ‘Transformer Temperature
(TTemp)’, ‘Tension R (TR)’, ‘Tension S (TS)’, and ‘Tension T (TT)’.

In this paper, a new method to monitor the operation of the power transformer,
fault diagnosis, and rapid intervention based on a NARX neural network is shown.
In this scenario, the increase in the temperature of the power transformer is the
main consequence of electrical failure and then, the target of the time-series predic-
tion problem. Time-series forecasting assumes the use of an accurate autoregressive
model of the power transformer that is able to predict future values of the target
signal based on previously observed values of electrical magnitudes recorded at the
power transformation center.
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5 Electrical Measurement Analysis from Power
Transformers

Prior to the implementation and evaluation of the NARX neural network, a study was
carried out to select themost relevant electricalmeasurements to predict the operation
of the power transformer. The analysis was based on the computation of the pairwise
Pearson’s correlation coefficient, the Kendall’s rank correlation coefficient as well
as the cumulative conditional Granger causalities.

5.1 Correlation Analysis

Acorrelation analysis was conducted in order to determine the Pearson’s correlations
among pairs of variables for each of the power transformer electrical measurements
in the dataset. This informationwill be used to identify the exogenous inputs enabling
forecasting the temperature of the power transformers. Figure3a provides a matrix of
plots showing the correlations among pairs of variables that are highly correlatedwith
the TTemp target. Note that, histograms of the variables are shown along the diagonal
of the matrix plot while scatter plots of variable pairs appear in the off-diagonal.
The slopes of the least-squares linear regression problem are equal to the displayed
correlation coefficients. It can be concluded that several electrical measurements are
strongly correlated. Finally, the correlation coefficients are summarized in Fig. 3b
for a given power transformer in the dataset.

In addition to Pearson’s correlation analysis, Kendall’s rank correlation analy-
sis [21] between the power transformer time series was carried out. Kendall’s Tau
coefficient is a nonparametric measure of relationships between time series. The Tau
correlation coefficient returns a value between 0 and 1, where 0 means no relation-
ship and 1 a perfect relationship. Figure4 shows Kendall’s correlation coefficients
between pairs of highly correlated electricalmeasurement. A hypothesis test was also
performed in order to determine which correlations are significantly different from
zero. The correlation coefficients highlighted in red in Fig. 4 indicate which pairs
of variables have correlations significantly different from zero. It can be concluded
that all the pairs of variables shown in Fig. 4 have correlations significantly different
from zero.

5.2 Granger Causality-Based Analysis

In order to justify the selectionof the aforementioned exogenousvariables for improv-
ing the prediction of TTemp variable, we conducted a similar analysis as in [12] to
assess the ensemble connectivity maps. In this sense, we computed the cumulative
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Fig. 3 Correlation analysis. a Correlation plots between multiple electrical measurements of the
power transformer, b Correlation matrix between transformer data time series
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Fig. 4 Kendall’s rank correlation coefficients.Hypothesis test to determine electricalmeasurements
that have correlations significantly different from zero

conditional pairwise Granger causalities and generated the circular graphs accord-
ingly. In addition, we calculated the occurrences of the corresponding (weak or
strong) connections focusing on the ones causing the target variable (TTemp). As
shown in Fig. 5, there are persistent weak connections which suggest the possibility
of improving the prediction of some variables by including exogenous information,
i.e., RTemp, AR, APR, APS, and APT variables could help in the prediction of
TTemp. Indeed, the current explains the power transformer (PT) temperature except
for a particular lag that depends on the thermal inertia of the PT, crucial for detecting
PT failures. This is shown in Fig. 5, where the connections between the variables
under assessment were highlighted. From this figure, we see how these variables are
weighting factors, in the sense of causal notion, of the target variable with the same
relevance.
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Fig. 5 Ensemble connectivity maps obtained after computing the cumulative conditional pairwise
Granger causalities and generated the circular graphs accordingly

6 NARX Implementation and Evaluation Experiments

Before carrying out the training process of the NARX network, the transformed
signals that were digitized were resampled with a uniform sampling rate of 12 sam-
ples/hour. This process is necessary since the signals stored in the cloud are not
registered with a uniform period in all the cases and the NARX networks are based
on a uniform sample rate discrete-timemodel. The corresponding resampling process
was based on a simple linear interpolation between consecutive samples.

Once the resampling procedure was carried out, an analysis of the variables
recorded in the transformer that could have influenced the variation of the trans-
former temperature was carried out. In this way, an experiment was conducted in
which the TTemp time series was predicted based on other transformer variables
such as RTemp, AP, APR, APS, and APT, through a two-delay element NARX net-
work consisting of a 10-neuron single MLP-based hidden layer. In the first phase,
75,000 data samples were used for cross-validation (70% for training, 15% for vali-
dation, and 15% for testing). Figure6 shows the training and evaluation experiments
that were carried out in order to analyze the performance of the NARX network for
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Fig. 6 NARX training: aMSEas a function of the number of epochs,bHistogramof the time-series
forecast error, cOutput-target linear regression, dAutocorrelation of the time-series prediction error
and correlation among the input and the prediction error, e Response on unseen data (output, target
and error) of the NARX network, and f Detail (zoom) of the response on unseen data of the NARX
network
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Fig. 7 Closed-loop NARX response (output and target) on unseen data

time-series forecasting and power transformer monitoring. Figure6a analyzes the
learning curve and the convergence of the network in terms of the mean squared
error (MSE) as a function of the number of training epochs. It is concluded that the
MSE converges to 0.01 in about 10 training epochs. Figure6b shows the histogram of
the prediction error. It is centered at zero mean and has a reduced variance. Figure6c
shows the linear output-objective regression analysis where a good fit between both
variables is obtained with a regression coefficient close to unity. Figure6d analyzes
the autocorrelation of the error and the correlation between the input and the pre-
diction error. Finally, Fig. 6e plots the response of the model and the prediction of
the temperature of the transformer (TTemp) for training, validation, and test targets
showing high accuracy in cross-validation experiments.

Once the open-loop NARX network was trained, the closed-loop network model
shown in Fig. 2 was built in order to formulate a prediction of the temperature of the
transformer (TTemp) without using previous values of the target. Thus, the closed-
loop NARX network only uses values of the exogenous variables RTemp, AP, APR,
APS, and APT to predict the temperature of the transformer. To evaluate this second
model, 25,000 samples not used previously for trainingwere used. Figure7 shows the
output of the NARX network in closed loop and the target. It can be concluded that
the NARX network model used for monitoring the temperature of the transformer
effectively tracking its variation in time yielding a high prediction accuracy.
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7 Conclusion

This paper explores machine learning technologies for the next generation of power
distribution networks that will demand to be better planned, operated, and supervised
in a similar way as transportation networks have been managed for decades. The
adaptation of these networks will require to incorporate much more intelligence,
sensorization, broadband communications, optimal control, and intelligent reporting
among other emerging technologies.

A power transformer monitoring approach based on a non-linear autoregressive
discrete-time neural network with exogenous inputs was proposed in this paper. The
proposed NARX network predicted the temperature of the transformer as a function
of past values of outputs and exogenous inputs. The system was then described by
a non-linear function of lagged inputs, outputs, and prediction errors that can be
interpreted as a recurrent dynamic network, with feedback connections enclosing
several layers of the network.

Data used in this studywas provided by EndesaDistribución company through the
Open Innovation Living Lab SmartcityMálaga (Málaga, Spain). The objective of the
project PASTORA is the deployment of sensors and measurement, automation and
control equipment in medium and low-voltage transformation centers. The challenge
is to implement an electrical network integrating artificial intelligence technology
not only to the newmonitoring and tracking elements, but also to the built-in network
analysis techniques that deal with all the input information, including its uncertainty.
The Open Innovation Living Lab Smartcity Málaga includes seventeen power trans-
formation centers. For each of them, a total of 20 variables were recorded at a sample
rate of 12 samples/hour for the whole 2018year.

Prior to the implementation and evaluation of the NARX neural network, a study
was carried out in order to select the most relevant electrical measurements to predict
the operation of the power transformer. The analysis was based on the computation of
the pairwise Pearson’s correlation coefficient, Kendall’s rank correlation coefficient
as well as the cumulative conditional Granger causalities. Finally, the NARX net-
works were trained and evaluated by cross-validation showing high accuracy when
operated in open-loop and closed-loop modes.
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Short-Term Forecast of Emergency
Departments Visits Through Calendar
Selection

Cosimo Lovecchio, Mauro Tucci, Sami Barmada, Andrea Serafini,
Luigi Bechi, Mauro Breggia, Simona Dei, and Daniela Matarrese

Abstract Emergency Departments (ED) overcrowding is a common and well-
known problem, associated with decreased patient safety, increased mortality rates,
and which leads to staff burning out. The ability to predict the ED hourly visits can
then relieve overcrowding’s consequences. In this paper (The content of this paper is
a contribution to the International Conference on Time Series and Forecasting 2019
(ITISE2019), held in Granada [1].), we present a method which takes into account
calendar effects for short-term forecasting of ED visits is presented. Our approach
combines a calendar selection rule with a well-known machine learning algorithm
belonging to the class of similar shape algorithms, to predict the incoming visit
volume for a tunable number of days ahead.

Keywords Emergency department · Hospital · Forecasting · Time-series
prediction

1 Introduction

Overcrowding of Emergency Department (ED) is defined as “the situation in which
ED function is in a difficult situation primarily because of the excessive number
of patients waiting to be taken in charge, undergoing assessment and treatment, or
waiting for departure compared to the capacity of the ED” [2]. This must not be
confused with major emergencies that are due to clearly different causes, and require
different solutions. Overcrowding is a condition that is strongly associated with the
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risk of impairment of the quality of care provided: latency in taking charge, delay in
carrying out diagnostic tests and in starting treatment, increase in errors and adverse
events [3]. According to the Joint Commission on the Accreditation of Healthcare
Organizations, one third of sentinel events in the EDs are caused by an overcome of
the ED capacities. Overcrowding in the EDs leads to many negative consequences,
such as an increase in mortality [4, 5], negative perception by patients [6–8] often
resulting from prolonged stay on stretchers without privacy or adequate responses to
basic needs, and a higher probability of ED staff “burn-out”, that causes a further loss
of efficiency and a worsening of the shelters filter function with an increase in overall
hospitalization times. It is a widespread problem that has been addressed in recent
years with targeted interventions in several countries with universal access health
systems, such as United Kingdom, Canada, Australia, and New Zealand [9–13].
Trends of ED visits are quite predictable throughout the year and during the different
moments of the day, based on seasonal epidemiology and circadian distribution of
accesses. The correct management of these trends allows to avoid critical situations,
in particular during periods of influenza epidemics [14]. Several factors have been
recognized, often acting simultaneously,whether at the presenting of the patient at the
ED (“input” factors), along the internal path to the PS (“throughput”) or at the patient
discharge/transfer (“output” factors). Input factors refer to the numerous ED visits
mainly due to seasonal epidemiology, while throughput factors indicate the length
of the patient’s stay in ED. Finally, output factors are influenced by the difficulty of
hospitalization, due to lack of available beds and the difficulty of discharge, especially
for patients with social problems. It has been widely demonstrated that throughput
and output factors contribute themost to the systemoverload and, unlike input factors,
can be significantly modified by adopting appropriate organizing strategies [15]. The
overcrowding of ED depends on two factors: – Crowding: the critical increase in
both the admissions and permanence within ED of patients who are completing the
diagnostic-therapeutic process; – Boarding: the accumulation in ED of patients who
have already completed the care process but who, for various reasons, cannot be
discharged from ED [16].

1.1 Crowding and Boarding

The analysis of the level of ED crowding is mainly addressed to 2 areas: the access
phase (how many patients arrive, how, by whom, at what time of day, etc.) and the
“process” phase, i.e., the whole clinical and therapeutic path within ED. In Tuscany,
the analysis of data on the trend of time bands, especially with reference to color
codes, confirms an inappropriate use of ED instead of other settings (70–75% 8–20
vs. 30% 20–8, usually <10% of the admissions of 24–8) [17]. In the population,
there is the belief that ED is the starting point of many of the diagnostic-therapeutic
pathways ‘subjectively’ considered urgent, while family doctors are considered for
the continuation of the pathway and follow-up. It is necessary to redistribute the
inappropriate share of demand through an intervention strategy that crosses sev-
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eral treatment processes. Another contribution to crowding is represented by people
affected by chronic diseases, already followed by other services both at the local
and hospital level, which experience a high percentage of repeated admissions for
the same disease (heart failure, complicated diabetes, etc.). Investigation of these
patients involves repetitions of laboratory and instrumental tests that unnecessarily
absorb a large number of resources, and which would not be necessary if the patients
had addressed the doctors who treat them. Countermeasures to the phenomenon of
crowding include the redistribution of tasks within the assigned staff, the activa-
tion of available staff, and the detention in service of “disassembly” staff. This also
applies when crowding has been largely generated by boarding, which absorbs time
and staff work, contributing to the progressive increase in waiting time. In this case,
the actions must be supplemented by those necessary for the proper management of
boarding [17, 18].

The accumulation in ED of patients who have already completed the care process
is largely due to the waiting for the bed, mainly in the medical area. These are mainly
elderly people with comorbidities with high absorption of resources who remain for a
long time in unsuitable environments. In many cases, the demand for hospitalization
is generated by the hospital facilities themselves, where these patients are already
being treated, reaching, in some cases, about 10–15%of hospitalizations. In addition,
there are chronic patients with repeated hospitalizations for the same disease (heart
failure, COPD, complicated diabetes, etc.), mainly intended for themedical area. The
clinical evolution of these patients is in many cases gradual and progressive and this
could have allowed the organization of hospitalization, when appropriate, without
the need to access the ED that, in fact, becomes only the place of waiting for the bed.
The number of these admissions can also represent 20–25% of admissions in the
medical area and often involves more admissions during the year, always through
the ED. This “avoidable boarding” is about 30 and 40% of the phenomenon. To
solve the problem of boarding, the whole hospital must work together to ensure the
balance between supply and demand at various stages of the treatment process. For
this reason, it is necessary to effectively manage the flows of incoming and outgoing
patients, to optimize the emergency and planned routes and to make more efficient
use of the hospital beds [17].

1.2 Forecast Motivation

If on one hand the internal queues and patient flowmanagement is a crucial aspect to
consider in order to reduce overcrowding, improve the quality of service, and reduce
operating costs, on the other by an accurate forecast of the ED services demand
enable proper planning of the clinical resources amount to activate. Nevertheless,
the identification of a feasible forecast tool rises some challenges. A first aspect to
consider is the quality and quantity of historical informations about a specific sce-
nario. Onemight be tempted to claim that collecting a large amount of data describing
the present, we could be able to predict the immediate future visits volume. Actually,
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it often turns out that the most accurate source of information which can be used to
predict the future behavior of a physical quantity is the past behavior of the quantity
itself. Another important aspect to undertake is the selection of a predictive model.
Once the ED patient volumes in a sufficiently long time window have been col-
lected, this type of forecast can be enclosed in the time-series prediction framework,
one of the most transversal research topic. In fact, a plethora of analytical tools are
available to describe temporal dynamics, ranging from classical statistical models
[19–26], to more recent artificial intelligence based algorithm. Each of these tools
has features which make it more suitable or reliable than the others in a particu-
lar application. In many time-series forecasting problems, where human and social
activities are predicted, environmental factors affect the resulting collective behavior
to a different extent, but among all the external sources of influence, calendar pat-
terns play a crucial role [27]. It is well known how, for different calendar day types
(working day, holidays, special holidays), different human dynamics (e.g., shopping
behavior of buyers, traffic patterns, crowding effects in places of entertainment, etc.)
can be observed. In this work, we use a variation of a popular and well-established
time-series forecasting model belonging to the class of “similar shape” algorithms
(K-nearest neighbors, or knn), to predict several days ahead hourly patient volumes
in 13 ED facilities of a local health center of Tuscany. Our model (C-knn in the fol-
lowing) includes a control mechanism on the calendar condition for the prediction
provided. We evaluate the forecast accuracy by means of two performance indica-
tors, the mean absolute percentage error, MAPE, and variance of absolute percentage
error, VAPE, estimators.

2 Methodology

We apply our model to a dataset of aggregated informations, extracted from the
accesses records in the EDs facilities. The facilities analyzed have different charac-
teristics, such as size, services provided (depending on the hospital equipments), or
dimension of areas served. Each record of the databases extracted from the servers
contain all the data related to a single ED access, such as date and time of admission,
priority code (color code), ED infrastructure, age, sex, and other specific informa-
tions.Among these,we focus ondate, time, and color code, calculating the aggregated
time series (Fig. 1). The data cover a timewindow starting on 2014-01-01, and ending
on 2018-11-14. Performance analysis of our algorithm was carried out by exploiting
the last available year of information (test set), while the remaining data (train set)
were used to fit the model metaparameters.

TheC-knn algorithmbelongs to the class of “similar day-based” or “similar shape”
methods [27]. The key idea consists of the research, between the available data, for
historical days that are characterized by intraday dynamics similar to the recent past
(e.g., similar average, maximum values, or peaks positions) in order to predict the
near future. For a more reliable prediction, the set of days in which the search is
performed can be bounded by constraints. In particular, our algorithm automatically
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finds similar profiles in the available database, selecting only those whose weekday
sequence exactly matches the actual one. Let us show in detail how the algorithm
works. Supposewe are in the day d0 ∈ R

24, and our goal is the prediction of the hourly
accesses in the future N days fN = {d1, ..., dN } ∈ R

24×N . To calculate the prediction
we exploit the historical database, assuming that the data covers the accesses history
until d0. The steps performed by the C-knn algorithm are

1. Pick out from the database the accesses profile of the consecutive most recent M
days aM = {d−M+1, ..., d0} ∈ R

24×M , and subtract from it itsmean value aM(0) =
aM − 〈aM 〉. The number of days M to select is a metaparameter of the model.

2. Take all the possible sub-series ofM+Nconsecutive days in the historical database
p(i) = {di−M+1, ..., di , ..., di+N } ∈ R

24×(M+N ), i = −N ,−N − 1, ...
For each series p(i), the first M days portion will be denoted as pM(i) ∈ R

24×M ,
the last N days as pN (i) ∈ R

24×N .
3. Discard from the set p(i)|i=−N ,... those elements whose calendar condition on

the pN (i) part is different from the fN one. We will clarify in the following the
“calendar condition” meaning. The remaining “bounded” set will be used for the
reconstruction.

4. Calculate the zero mean profiles p(0)
M (i) = pM(i) − 〈pM(i)〉.

5. Calculate the weighted distances
d(i) = ||p(0)

M (i) − a(0)
M ||W 2 = ||W · (p(0)

M (i) − a(0)
M )||

where W ∈ R
24×M×M is a weight vector giving different importance to different

hours. The coefficient in W are also metaparameters of the model.
6. Select the kmost similar pM(i) (i.e., thosewhose corresponding d(i) isminimum)

and the related pN (i). The value of k is another metaparameter of the model. We
will denote the chosen pM(i)|i=i1,...,ik as the “best profiles” bM( j)| j=1,..,k , and
the related pN (i)|i=i1,...,ik as “best candidates” cN ( j)| j=1,..,k .

7. Compute the similarity scores sj by the Gaussian kernel
s j = e−d2( j)/σ 2

, j = 1, ..., k.
The kernel width value σ in the equation above is defined as proportional to
the smallest distance d( j), σ = λmin{d j }, where λ is a positive constant to be
optimized.

8. Reconstruct the recent past aM by using the similarity scores and the best profiles
aM = ∑

j s j bM( j) and look for the best scaling factor α∗ which minimizes the
distance between the recent past and the reconstructed one, i.e.,
α∗ = argminα||α aM − aM ||.

9. The final forecast is finally given by the scaledweighted sumof the best candidates
f ∗
N = α∗ ∑

j s j cN ( j).

2.1 Calendar Conditions

ED patient volume strongly depends on calendar variables. In addition to seasonal
trends, special days or events occurring during the year appear as anomalies compared
to other days, as shown in Fig. 1. Volume is in average lower on national holidays
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Fig. 1 Weekday dependence of the total patient visits in the 13 ED facilities under study. On the left
side: mean daily patient volume during the year (The average is computed on 4 years). Red points
highlight some of the national holidays, namely New Year’s day, Epiphany, Liberation day, May
Day, Italian Republic Holiday, Assumption day, All Souls’ Day, Christmas, New Year’s Eve. On
the right side: mean hourly visits amount during Christmas holidays. Red line highlight Christmas
day, New Year’s Eve and New Year’s day

Fig. 2 Boxplot of the daily total accesses during weekdays and some of the national holidays (MD
May day, Chr Christmas, NY New Year’s day)

and on Sunday, while appear higher onMonday, as can be noted in Fig. 2. Therefore,
a day parametrization mapping the calendar pattern turns out to improve the quality
of the forecast. In particular, we divide the weekdays into the three following classes:

1. Working Days: days from Monday to Friday, excluding special holidays.
2. Saturdays: all Saturdays excluding holidays.
3. Holidays: all Sundays and special holidays (Easter Monday, Christmas, New

Year’s Day, etc.).
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The third step of the algorithm listed above consists of the elimination of those
sequences whose future calendar condition does not match with the actual future we
aim to predict.

3 Model Evaluation

The goodness of the model was assessed evaluating two performance indexes: mean
absolute error (MAE) and variance of the absolute Error (VAE). Given a time-series
y(n), n ∈ [1, ..., N ] and its reconstruction y(n), MAE is defined as

MAE = 1

N

N∑

n=1

∣
∣
∣y(n) − y(n)

∣
∣
∣ (1)

and VAE as

VAE = 1

N

N∑

n=1

(∣
∣
∣y(n) − y(n)

∣
∣
∣ − MAE

)2
(2)

The first index reflect the model accuracy, while the second one is a measure of the
model stability. We also report the Mean Bias Error (MBE), defined as

MBE = 1

N

N∑

n=1

y(n) − y(n). (3)

The MBE quantifies how the model is biased compared to the true time series.
The model parameters which can be optimized are

1. The number of days in the past M to compare with the historical database.
2. The weight vector W filtering the time sequences.
3. The number of most similar patterns k.
4. The size of the kernel function.

To downsize the computational effort in the parameters tuning, we assume W to
be diagonal with linearly increasing coefficients, reducing its degree of freedom to
only the initial and final values, and λ = 1. The performance indexes landscape was
then obtained by Grid Search over a suitable parameter space, uniformly sampled. In
particular, for every parameter combination p = {M, k}, we simulated a true forecast
using an incrementally expanding historical set, which was performed iteratively
on the last available year accesses. After the forecasts production, MAEi (p) and
VAEi (p), i ∈ [1, ...13] ,were calculated for each ED facility, for a prediction horizon
of 1 day-ahead.

To set a convenient metaparameters combination, we finally calculated the total
MAE and VAE asMAET (p) = ∑

i MAEi (p), VAET (p) = ∑
i VAEi (p). A density
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Fig. 3 Density plot of MAET (left side) and VAET (center) as a function of the optimization
parameters M (number of comparison days in the past), and k (number of nearest neighbors).
As can be noted, no improvements of the total scores are appreciable for M � 6, k � 25. MAE
dependence of VAE (left side) in the parameters grid explored. As can be noted, there is an almost
linear dependence between the two quantities

plot of these two quantities against the M and k is shown in Fig. 3. As can be noted
the algorithm performances monotonically increases for both increasing M and k,
reaching a plateau region for approximately M � 25, k � 6. Moreover, MAE and
VAE are linearly correlated for the set of parameter explored.

The final settings we adopted to perform the forecast thus are M = 6, k = 32.

3.1 Results

The resulting scores calculated in correspondence of the selected metaparameters M
and k, and for all the single ED structures, are summarized in Table 1. In particular,
we report MAE , V AE , and MBE on a daily and hourly aggregated timescale.

In Fig. 4, we show a forecast example of the accesses for the ED 3 in Table 1, in
correspondence of the New Year’s Eve week. As can be observed, the predicted data
(solid red line) adequately resembled the actual data (solid gray line) in the test set.

As can be noted from Table 1, the algorithm performs as better as the average
hourly and daily accesses are higher, since for small volumes of patient income the
daily dynamics are closer to a random process. For the predicted data the hourly
MAE(h) ranges from 87% of the mean hourly accesses in the smaller facility (ED
6), to the 27% in the bigger one (ED 3). On a daily timescale, the prediction quality
appears to improve, since for the same ED (ED 6 and ED 3) MAE(d) are 29% and
8.5%.
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Table 1 Table of resulting forecastMAE,VAE, andMBE, calculated along the last one year of data,
aggregated on daily (MAE(d), VAE(d), and MBE(d)), and hourly (MAE(h), VAE(h) and MBE(h))
timescale

ED Mean
daily
accesses

MAE(d) MBE(d) VAE(d) Mean
hourly
accesses

MAE(h) MBE(h) VAE(h)

1 38.65 8.3 1.02 44.27 1.61 1.03 0.04 1.06

2 39.72 7.43 −1.45 36.06 1.65 0.95 −0.06 1.06

3 203.8 17.35 1.23 214.68 8.49 2.32 0.05 4.49

4 104.08 13.09 −2.23 111.4 4.34 1.62 −0.09 2.15

5 36.05 7.12 −0.07 30.78 1.5 0.91 0 0.88

6 17.42 5.03 −0.64 19.8 0.73 0.56 −0.03 0.49

7 75.83 11.47 −3.18 157.41 3.16 1.35 −0.13 1.66

8 75.1 11.05 −2.12 141.3 3.13 1.23 −0.09 1.42

9 39.51 7.55 −2.97 39.6 1.65 0.93 −0.12 0.95

10 67.71 10.5 −2.13 82.3 2.82 1.31 −0.09 1.73

11 14.82 4.55 −0.26 14.4 0.62 0.54 −0.01 0.44

12 21.69 5.53 −1.18 22.82 0.9 0.68 −0.05 0.58

13 186.71 19.88 −0.77 251.57 7.78 2.25 −0.03 4.14

Fig. 4 Incoming visits forecast in correspondence of the New Year’s Eve week. Black solid line
represents the data portion used to look for similar patterns in the historical dataset, light gray the
true data and red line their forecast
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3.2 Comparison to Other Models

We compared the performance of our forecasting scheme to two alternative predic-
tion systems: a REplication model (RE), and an Artificial Neural Network model
(ANN). In the RE model, the N days ahead prediction is obtained by replicating
the most recent sequence in the historical dataset sharing the same calendar pattern.
In this way, the prediction will always mimic the most recent matching past. The
ANN model consists of a single layer feedforward network composed of 130 hid-
den neurons (as obtained by metaparameter optimization). The hidden and output
neurons activation functions are the rectified linear (ReLU) activation. This model
was trained to reconstruct the pN (i) vectors in the training set in two different ways,
based on the input provided:

– Only the pM(i) vectors (see Model section), thus with no information about any
calendar pattern.

– The concatenation between pM(i) and the calendar condition of the days to recon-
struct, the latter encoded in a vector in R

N .

The models’ performances are listed in Table 2 where we show, for each algorithm,
the average scores for all the ED facilities.

As can be noted, the C-knn outperforms all the competing models, while the RE
algorithm is less biased and second best. On the contrary, both the ANNs do not
perform well, probably because they encode a representation of the full training set,
thus their predictions tend to be an average of the whole past dynamic which lose
some short scale details instead captured by the C-knn, which restrict the set from
which the forecast is built only to the more similar temporal patterns.

Table 2 Performances of the testedmodels.MAE,MBE, andVAE for a singlemodel are calculated
averaging the scores of all EDs, and has to be compared with the averagemean daily accesses 70.85,
and the average mean hourly accesses 2.95 in all EDs

Model MAE(d) MBE(d) VAE(d) MAE(h) MBE(h) VAE(h)

Replica 10.17 0.06 88.06 1.59 0.00 2.73

ANN (no calendar) 15.54 13.22 123.52 1.39 0.55 2.10

ANN (calendar) 14.11 11.56 117.47 1.38 0.48 2.08

C-knn 9.91 −1.13 89.72 1.21 −0.05 1.62
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4 Conclusion

The adverse consequences of ED crowding can be as much severe as clinical staff
and ED administrators are unaware of the incoming situation. The ability to predict
future input demand can relieve the negative effects of a possible disadvantageous
situation, and support structural intervention to maintain performances and help
service improvement. The unsupervised algorithm presented here, belonging to the
“similar shape” algorithm category, is able to automatically provide a short-term
hourly forecast based on calendar condition, without the need of a training phase,
but only exploiting a historical dataset inwhich similar patterns are picked up. Thanks
to these aspects, it is suitable to be directly applied to any specific situation, providing
accurate and reliable predictions.
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Discordant Observation Modelling

Sonya Leech and Bojan Bozic

Abstract Time-series modelling on discordant observations or volatile data needs
careful consideration when choosing the right model. Our approach is to identify
model performance based on time-varying volatility in application log files. A com-
parison will be done on two different modelling techniques, ARIMA and GARCH
whilst extracting a limited understanding of the types of messages sent to the log
files. Different model parameter settings will also aid inmodel performance analysis.
Being able to predict volatile data whilst understanding the context of the data can
help Dev-Ops support teams be more sagacious in their support and control of busi-
ness processes that can help narrow the bandwidth of future occurrences. This paper
presents a comparative analysis into time-series predictions of log events using both
ARIMA and a hybrid model of ARIMA-GARCH that will aid in anomaly detec-
tion. It also takes a simple approach to the classification of the textual messages
of the log data to understand the type of messages being recorded. The findings of
the study conclude that ARIMA is not suitable for modelling volatile data whilst
ARMA-GARCH is a more performant model.

1 Introduction

Anomaly detection has been heavily researched in many domains. It has been written
about as early as 1887 by [1] in which he refers to a discordant observation as an
anomaly. These discordant observations are patterns in data that do not conform to
expected behaviours over a function of time. Anomaly detection has been imple-
mented in many domains including but not limited to cellular cloning [2], credit card
fraud [3], network intrusions [4] and network traffic monitoring [5].
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Anomaly detection is a critical feature in application domains as they can often
identify critical actions that need to occur before a major action has caused a signif-
icant impact on a system [6]. Such is the case that a technical glitch in Amazon’s
landing page cost them a loss of $99 million in revenue based on 1P sales from 2017
[7]. $1.6 million was lost in Zappos due to a pricing error [8].

This research is focused on modelling volatile datasets that aid in supporting
anomaly detection. Our paper explores different models and approaches to address
this problem and is structured as follows: Sect. 2 lists the related work in the field
of anomaly detection and volatility modelling. Section3 describes the approach we
took to anomaly detection on volatile data while Sect. 4 shows the evaluation of our
approach. Section5 gives an overview of future work and conclusions.

2 Related Work

A comparative analysis of collective anomalous events was implemented on non-
volatile datasets [9]. Hodge and Austin [10] classified anomalies into three differ-
ent types: modelling unseen, normal and abnormal data. Markou and Singh [11]
researched novel techniques using statistical methods alongside neural networks.
Singh and Upadhyaya [12] researched outlier detection techniques in multifarious
ways and highlighting the complexities within each application domain. A compre-
hensive review of volatility models was conducted by [13].

3 Volatility Modelling

To detect anomalies some time-series modelling needs to be implemented. These
models are known as Stochastic models which observe continuous data over discrete
points in time [14]. For a time-series model to be effective in anomaly detection, it
needs a fully articulated, well-defined pre- and post-analysis checklist. This will aid
in the support and understanding of the data being modelled which can only then
become a fully calibrated, highly functional, simulatedmodel which results in amore
efficient anomaly detection tool [14].

In time-series modelling, a common approach is the classical white Box-Jenkins
Auto-Regressive Integrated Moving Average (ARIMA) model [15]. ARIMA mod-
elling is suited for time-series stationary data. Aggregation of application log data
normally makes them non-Gaussian and non-stationary. Unless transformed they
can sometimes be quite volatile. If the data displays volatility, one can transform the
data using a log or Box-Cox transform. The Generalized Auto-Regressive Condi-
tional Heteroscedasticity (GARCH) model is heavily used in volatile non-stationary
datasets and widely used in financial data [16].

An ARCH time-series model would be a more appropriate model for volatile
datasets as it can model changes in variance. ARCH understands the difference
between the conditional and unconditional variances in the data, letting the condi-
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Table 1 Collective Event
Counts

Events Value

Total 3 m

Info 2.7 m

Warn 183 k

Error 179 k

tional variance allow for changes over time as a function of residual errors from a
zero-mean process [17]. ARCH relies on previous squared observations and previous
variances to helpmodel current variation. ARCHmodels have amean of zero, and the
time-series data is uncorrelated and contains non-constant variances [17]. AGARCH
model is an extension to the ARCH model. GARCH reduces its forecasting errors
by accounting for errors in prior forecasts which should enhance its model accuracy
for future predictions. GARCH estimates the variance of today as the sum of the
alpha, beta and omega components. As stated previously, the aim of our research is
to model volatile data using ARIMA and hybrid ARIMA-GARCHmodels. ARIMA
modelling brings back a predicted value whilst a hybrid ARIMA-GARCH model
predicts the mean of the time series and the predicted variance. These combined
models have been very successful in forecasting volatile financial datasets.

4 Evaluation

On initial observation of the log data, it was identified that some data points were
missing completely at random (MCAR) observations. A total of twenty-five individ-
ual hours over seven months of data was missing. Different methods can be imple-
mented to support missing data on non-normal data like Robust analysis, Bayesian
estimations and multiple imputations [18]. An imputed mean value was used for
missing observations on the hourly data for the warn type events. Informational and
Error type events were not fully analyzed for time-series modelling.

Table1 displays a breakdown of the events logged for each severity type. It is
noted that a total of just over three million log events were recorded of which 88%
were informational, 6% were warn and 6% were error type events.

4.1 Text Analysis

Topic modelling is the discovery of topics in a collection of documents. This is use-
ful when you want to shrink and group the text into different clusters for further
analysis. A text corpus is a structured set of texts in a document. To support topic
modelling, a Latent Dirichlet Allocation (LDA) method can be used to classify the
text in a document [19]. A subset of the log data was analyzed for topic modelling to
understand what types of messages are being sent to the log files. A simple grep and
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Fig. 1 Text Classification Frequency

data pre-processing approach was used to parse each of the different types of mes-
sage events. 2.3 million messages were classified into ninety-two thousand distinct
messages.

Figure1 shows that eighty-nine thousand distinct messages were classified from
the 2.1 million informational events. Ninety-three thousand of the warn events were
classified into three thousand distinct messages and of the one hundred and fifty-
two thousand error events, these could be broken down into twenty-three distinct
messages. It is quite interesting to identity the minute amount of distinct messages
for the error events. As error events are something of interest to dev-ops people,
Fig. 1 also displays the twenty-three distinct messages for the one hundred fifty-two
thousand error events. 68% of the messages were caused due to an error accepting
a connection to the Kafka network while 18% was related to the Kafka API alive
broker message.

4.2 Volatility

Volatile data can be represented as a series of low values followed by a short sharp
burst in data that then returns to normal. Figure2 shows the warn types events over
the course of seven months from late September 2018 to late April 2019. The chart
to the right displays the daily data and the chart to the left displays the hourly data.
We observe from the time-series charts that the data appears volatile. The dataset
with the highest degree of volatility ideally should be used for further analysis and
anomaly detection.

To identify volatility, we use statistical measures of variance and standard devia-
tions (STD). A STD is a measure of the variability, dispersion in the data. Variability
is a measure of volatility. The smaller the standard deviation lends towards the data
being centred around the mean and less volatile. The larger the standard deviation
the more spread out the data is from the mean and the more volatile it becomes. As
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Fig. 2 Time-Series Volatile Warn Type Events

Table 2 Event Analysis: Split Into Groups

Aggregation type Test Group 1 Group 2 Difference

Hour Variance 4033 415603 411570

Day Variance 1975188 24324812 22349624

Hour STD 63 644 581

Day STD 1405 4932 3526

Table 3 Variance And Standard Deviation

Test Hour Day

Mean 36 877

Variance 210684 13444351

Standard Deviation 459 3666

per Table 2, the data was split into two different groups for each type of aggregation.
Looking at the variance and STD values from the table it shows that the daily warn
dataset has a higher degree of volatility than that of the hourly dataset.

Table3 shows the data over hourly and daily periods, not split into different sub-
groups. The table shows that the mean, variance and standard deviation of the daily
data are quite significant in comparison to the hourly data. The table also shows that
the standard deviation is quite larger compared to the mean value. A standard devia-
tion greater than the mean can imply that there is a significant distance between the
high and low values and that there may be outliers in the data. It is also an indication
that the data is skewed or that there is a wide range of variation amongst the data. A
standard deviation that is greater than the mean fails the null hypothesis at the 95%
confidence level. It is also observed that the variance is also significantly greater than
the mean value, which is quite common in over-dispersed count data.

These results indicate that the dataset for both hourly and daily data is heteroge-
neous. On first glance of our analysis, these datasets may need to be transformed for
ARIMA time-series modelling, and this may not be the case for the hybrid model.
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The results of the analysis indicate that the daily warn dataset will be used for time-
series modelling and anomaly detection. No further analysis will be done on the
hourly dataset.

4.3 Normality

Normality tests were conducted on the data. The “Gaussian” name for the normality
tests is derived from the mathematician Johann Karl Gauss [20]. Normality checks
can be conducted using visual aids or statistical tests. Some of the most common
visual aids to check for normality are histograms, boxplots, probability and quantile
plots. These visual approaches are an aid in an assumption about the data being
Gaussian but more robust normality tests would need to be conducted. Statistical
tests for normality can be implemented using parametric significance tests, which
will compare a sample distribution to that of a normal distribution. Some of these
tests are regression tests, analysis of variance and t-tests [20].

Quantile and probability graphs were created on the daily warn dataset. As we can
see from Fig. 3, outliers are observed. It was noted earlier that the standard deviation
was significantly higher than the mean and a possible cause was outliers in the data.
Although it is quite common to use themean plus orminus a three standard deviation,
these statistical measures are sensitive to outliers and can be problematic. Another
approach would be to use the median absolute deviation for outlier detection [21].
The quantile and probability plots show that the data is not normally distributed as
the data does not fit along the regression line.

A skewness of 0 and a kurtosis of 3 would be an indication of a Gaussian distribu-
tion. Skewness measures the uniformity in a distribution and kurtosis measures the
combined size of the two tails. Shapiro–Wilks (SW) and Anderson–Darling (AD)
are statistical tests that measure normality using test statistics and p values. The den-
sity graph in Fig. 4 is an indication that the data is not Gaussian and has a heavy
right-tailed distribution. We can also see from Tables 4 and 5 that the data is not
Gaussian.

Fig. 3 Quantile and Probability Graphs
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Fig. 4 Warn Type Event Distribution

Table 4 Skewness And
Kurtosis

Test Result

Skewness 7.9

Kurtosis 77.1

Table 5 AD, SW Tests Test Statistic

SW 0.25

AD 58.02

To understand if skewness and kurtosis are affected by sample size, Table 6 shows
the results of different sample size tests. We can see that the best result for skewness
and kurtosis was with a sample size of twenty with the worst sample size being one
hundred and twenty observations There appears to be a lot of variation in the results
based on the sample sizes specified.

4.4 Unit Root Test

Unit root tests were conducted on the data. If a unit root exists, it indicates that a time-
series orderly pattern is unpredictable and would need to be transformed. An Aug-
mentedDickeyFueller (ADF) andKwiatkowski–Phillips–Schmidt–Shin (KPSS) test
was implemented. For an ADF test with a P value (0.00) and test statistic (−9.63),
we reject the null hypothesis (H0), and there is evidence to suggest that the data is
stationary. For a KPSS test which tests for trend stationarity with a p-value (0.07) and
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Table 6 Sample Size Skewness And Kurtosis

Sample size Skewness Kurtosis

20 2.0 2.8

40 4.7 22.5

60 6.8 47.9

80 7.9 63.8

100 5.0 29.4

120 8.4 79.3

140 6.6 53.1

160 6.9 58.8

180 7.5 68.0

200 7.7 73.3

212 7.9 77.1

test statistic (0.40) at 5% critical value (0.46), we fail to reject the null hypothesis,
and the data is trend stationarity. These unit root tests provide evidence to suggest
that the time-series data does not need to be transformed.

4.5 Trend and Seasonality

For trend, one can look for a serial correlation of the time-series data. This can be done
using Auto-Correlation plots. This autocorrelation is also known as an AutoCorre-
lation function or a correlogram. The blue cone represents the confidence intervals
which by default is set to 95%. Any values outside of the cone are considered corre-
lated and not a statistical fluke. A value of 0 indicates no correlation and a value close
to 1 indicates a very high correlation. Figure5 shows the ACF and PACF plots. The
results of the ACF and PACF plot show that p and q values should be (1,1). As the
data implies stationarity, the d value is 0. No trend is detected in the correlograms.

Fig. 5 Auto Correlation, Partial Auto Correlation Graph
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Fig. 6 Seasonal And Trend Observerations

For seasonal identification, a seasonal decomposition test was implemented. Sea-
sonal decomposition decomposes the data into seasonal, trend and random patterns.
An example of seasonality is weekdays versus weekends. An example of a trend is a
linear increase in data over a period of time. A random pattern is also known as white
noise which is the remaining data with the removal of the seasonal and trend data
points. The results of the test as per Fig. 6 indicates evidence that no trend or season-
ality exists on the daily data but on the higher level of monthly dimensional data, and
it does show trend and seasonality. A statistical method to detect seasonality would
be a Canova and Hanson test. There are limitations in this test as the data first needs
to be transformed and the higher levels of seasonality are not detected by the test [9].

4.6 Goodness of Fit

Goodness of fit tests needs to be conducted on the models. Different goodness of fit
tests exist. Those include a portmanteau Ljungbox test. It tests for serial correlation
in the residuals. Engle’s La Grange Multiplier ARCH test assesses the significance
of ARCH effects. It tests for no conditional heteroskedasticity. Statistical significant
scores like root mean squared error (RMSE), mean squared error (MSE), Maximum
likelihood estimation (MLE) and Akaike’s Information Criterion (AIC) are also indi-
cators of goodness of fit tests. AIC is known to asymptotically select a model that
results in a set of forecasts with the lowest mean squared error, although AIC can
suffer from over-fitting.

Both ARIMA and GARCH models need to define either the best p, d, q or best p,
q parameters. An approach to identifying these parameters is to use a best-fit autore-
gressive (AR) model. The next step is to identify the autocorrelations of the error
term.The third step is to test for significance.When choosing theARmodel one needs
to specify how many prior residual error lags to include in the model. For seasonal
data, the recommended lag parameter is twenty and ten for non-seasonal data [22].
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Table 7 AR, MA Check

(AR,MA) (AR,MA) (AR,MA) (AR,MA) AIC

(1,1) (1,2) (1,3) (1,4) 4068

(2,1) (2,2) (2,3) (2,4) 4067

(3,1) (3,2) (3,3) (3,4) 4069

(4,1) (4,2) (4,3) (4,4) 4071

Table 8 ARIMA Model Analysis

Type Result AIC RMSE MSE

Auto Arima (0,0,1) 2840 3672 13487675

Grid search
(p,d,q)

(2,1,1) 4052 3361 11298511

Correlogram (1,0,1) 4049 3391 11499774

Different approaches were taken to identify the ARIMA (p,d,q) parameters. The
first approach was to run an AR, MA checker on the data to identify the best p and q
values. The second approach was to use a statistical auto ARIMAmethod. The third
approach was to use a grid search method with the fourth approach using significant
lags from the correlograms.

For our first approach an AR, MA check was implemented. The results from
Table 7 show that AR(2), MA(1) are the best parameters that have the lowest AIC
score. It appears that when only the AR parameters change, so then does the AIC
score. The simplest model with the lowest AIC score should be chosen.

From Table 8, we observe the results of the rest of our statistical approaches.
All approaches resulted in different (p,d,q) parameters but similar RMSE scores.
Auto Arima had the lowest AIC score but a higher RMSE score than that of the
grid search approach. The manual approach using the correlogram resulted in the
least performant AIC and RSME scores. When choosing models a simpler model is
preferred than that of a more complex model with greater p, d, q parameters.

For GARCH, different approaches were used for detecting the best model. The
first approach was the AR, MA checker to determine the p and q values. The second
approach was the correlograms. The third approach was running a solver test that
identifies the best solver method with the lowest AIC score.

MLE andAIC can be used for goodness of fit tests for GARCH.Different AIC val-
ues were extracted frommultiple GARCH parameters. As per Table 9 GARCH (1,0)
and AR (0,0) had the best AIC score although different measures will be analyzed
to avoid over-fitting.

**Best AIC score
As our data was univariate, an ruGARCH model was chosen. If the data was

multivariate an rmGARCH would have been the preferred model. Other criteria for
the goodness of fit tests were selecting the largest log-likelihood value from the
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Table 9 GARCH Model Analysis

GARCH ARCH AIC

**(1,0) (0,0) 18.16

(1,1) (0,0) 19.47

(1,1) (1,0) 19.48

(1,1) (1,1) 19.06

models whilst defining the best solver name with different omega, alpha and beta
parameter values and analyzing the fitted and forecasted results. With a GARCH
order set to (1,0) and an ARMA order set to (0,0), the default standard GARCH
(sGARCH) model was selected. A test was implemented to identify the best solver
for fitting the models. The test was based on single and combined solvers. Figure10
shows the log-likelihood (LLH) value with the solver choices. The results of the table
show that nloptr and PRAXIS had the highest LLH score.

**Best Solver Engine
For simplicity, the single solver nloptr was chosen instead of the more complex

solvers of nloptr and PRAXIS. Nloptr has then been compared against the default
fitted solver. The results of the tests are listed in Tables 11 and 12.

The second row in each table identifies the ARMA and GARCH orders. The third
row runs the model with no solver or out of sample values defined and returns the
LLH score. The out of sample size was based on a 70–30 split in the data with 30%
having 64 data points. A value of − indicates that no parameter was specified and

Table 10 GARCH Solver AIC Scores

Solver LLH

**nloptr+PRAXIS −2088

nloptr+AUGLAG+PRAXIS −2088

nloptr+BOBYQA −2074

nloptr+AUGLAG+BOBYQA −2074

nloptr+COBYLA −2049

nloptr+AUGLAG+COBYLA −2049

hybrid −2014

solnp −2014

nloptr+NELDERMEAD −1930

nloptr+AUGLAG+NELDERMEAD −1930

nlminb −1917

nloptr+SBPLX −1917

nloptr+AUGLAG+SBPLX −1917

gosolnp −1871
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Table 11 ARMA(1,0)–GARCH(0,0)

Spec Out of sample Log likehood Solver

ARMA(1,0)–GARCH(0,0)

Spec 1– – −2170 –

Spec 2– 64 −1332 –

**Spec 3– – −3207 nloptr

Spec 4– 64 −2200 nloptr

** Represents the best solver engine

Table 12 ARMA(1,1)–GARCH(1,1)

Spec Out of sample Log likehood Solver

ARMA(1,1)–GARCH(1,1)

Spec 1– – −2024 –

Spec 2– 64 −1285 –

Spec 3– – −1918 nloptr

Spec 4– 64 −1228 nloptr

default values were used. It is observed that no alpha, beta or omega parameters were
defined, as when defined the model reported errors on fitting, so they were removed
from the analysis. It is worth noting that using another solver method like solnp did
not result in fitting errors and the models performed better when the default omega,
alpha and beta parameters were not used.

The result of Table 11 indicates that spec 3 was the model with the highest LLH
score and was significantly different from the best score in Table 12. These results
favour with the AR, MA checker for GARCH which also identified the same model
order.

It is important to note that both visual and statistical comparisons were done on
the models. Not one visualization or statistical test was the deciding factor in the
deciding model. A collaborative view of the results was used to decide the best
model. Spec 1 of ARMA(1,1)–GARCH(1,1) did not perform well against that of
spec 3 of ARMA(1,0)–GARCH(0,0). Spec 3 was the accepted model and was the
best model for handling the variance in the data.

A Ljungbox (LB) goodness of fit test on the warn data before modelling with a
p-value (0.04), we reject the null hypothesis, and there is serial correlation in the
data up to lag 10.

The LB test for no autocorrelation on the residuals of the GARCH model with a
p-value(1), we accept that the null hypothesis serial correlation does not exist up to
lag 10. The same result is achieved in the ARIMA residual LB test.

The goodness of fit Engle LaGrange Multiplier test for conditional heteroscedas-
ticity checks to see if coefficients in the regression are zero.With a p-value(0.99) and
a test statistic (0.32), we reject the null hypothesis and ARCH element does exist in
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the data. One or more coefficients are non-zero and is suited for GARCH time-series
modelling.

4.7 Models

ARIMA
Figure7 returns the predictions for both models (0,0,1) and (2,1,1) on the train and
test dataset. We can see from the figures that neither model is a great fit with model
(2,1,1) being the worst performant model for predictions. Neither model appears
to be fully able to capture the volatility in the data but as a visual aid, the most
performant model out of the two models is model (0,0,1). To recap these models
were not transformed as they initially passed unit root and trend tests.

GARCH
Figure8 shows the observed original time-series data on the blue line with the pre-
dicted 2 STD’s on the red line also known as the sigma. The result of the model
does indicate that it can model the variance in the data very well, and there are some
under-predictions but overall the STD is quite close to the observed values.

Fig. 7 ARIMA Prediction Results
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Fig. 8 GARCH Prediction Results

Fig. 9 GARCH Residuals

Figure9 shows the residuals of the fitted GARCHmodel. There does appear to be
some fluctuations above zero and a transformation of the model would be required
to smooth out the errors.

5 Conclusion

Modelling volatile data can be quite complex when not using default parameter
specifications. Using default parameters does not always result in the best performant
model. It is important to understand the difference between automated modelling
tools and the choice of measure used for model selection. As seen in Auto ARIMA,
using AIC for model selection with a Grid Search approach using an MSE value,
the results of both models confirmed that the methods should not be taken at face
value. It has been seen that the grid search approach using the MSE measure was
more fitting than that of the statistical auto ARIMA method. The same can be said
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for GARCH with default parameters set. It was seen that adding the solver method
to the fitted model resulted in a better score than when removed. It was also noted
that when alpha and beta parameters were defined the model also performed better.
Although it was seen that for the solver method the identified model would not fit
with alpha and beta parameters set but would fit for other solver names.

It is evident from the results that ARIMA is not a good fit for modelling volatile
datasets and GARCH is a more appropriate model. As the data was heteroskedastic,
the data for ARIMA needs to be transformed to support better prediction accuracy.
As the residuals of the GARCH model show white noise, a log transform of the data
would be required.

For missing data, a mean imputation implemented would not have been the best
recommendation especially in a volatile dataset but was implemented due to time
constraints. More consideration should be taken for the MCAR observations using
the other methods identified, which were Robust analysis, Bayesian estimations and
multiple imputations.

For topic modelling, a simple approach was used to understand and classify the
data within the log messages. A more hardened modelling approach should be con-
sidered for future analysis using different classification techniques, although it was
quite interesting to see the low amount of distinct messages for the error type events
and to understand the highest consumer of those messages.
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Applying Diebold–Mariano Test
for Performance Evaluation Between
Individual and Hybrid Time-Series
Models for Modeling Bivariate
Time-Series Data and Forecasting
the Unemployment Rate in the USA

Firas Ahmmed Mohammed and Moamen Abbas Mousa

Abstract Unemployment rate forecasting has become a particularly promising
domain of comparative studies in recent years because it is a major issue facing
the economic forecasting process. Since the time-series data are rarely pure linear
or nonlinear, obviously, sometimes contain both components jointly. Therefore, this
study introduces a hybrid model that combines two commonly used models, namely,
the Linear Autoregressive Moving Average with exogenous variable (ARMAX)
model and nonlinear Generalized Autoregressive Conditional Heteroskedasticity
with exogenous variable (GARCHX) model whose conditional variance follows
a General error distribution (GED). That is, build a hybrid (ARMAX-GARCHX-
GED) model employed in modeling bivariate time-series data of the unemployment
rate and exchange rate. Usually, the forecasting performance evaluation based on
the common classical forecast accuracy criteria such as Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and Mean Absolute Percent Error (MAPE)
have some specific limitations in application to choosing the optimal forecasting
model. Therefore, in this paper, we employed a modern evaluation criterion based
on the methodology advocated by Diebold–Mariano (DM) known as (DM test) as a
new criterion for evaluation based on statistical hypothesis tests. This (DM test) has
been applied in this study to distinguish the significant differences in forecasting accu-
racy between hybrid (ARMAX-GARCHX-GED) and individual ARMAX models.
From the case study results and according to DM-test it is observed that the differ-
ences between the forecasting performances of models are significant and the hybrid
model (ARMAX-GARCHX-GED) is more efficient than the individual competitive
ARMAX model for the unemployment rate forecasting.
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1 Introduction and Motivation

Time-series forecasting is an important statistical analysis technique used as a basis
for manual and automatic planning in many application domains [13]. The econo-
metric analysis of economic and business time series is a major field of research
and application. The last few decades have witnessed an increasing interest in both
theoretical and empirical developments in constructing time-series models and in
their important application in forecasting [11]. Time-series forecasting is an impor-
tant area of forecasting in which the observations of the same variable appear as
time series: a monthly sequence, daily sequence, hourly sequence, and so on, which
are collected and analyzed to develop and build a model describing the fundamental
relationship [10]. Forecasting rules can play an important role in many areas such as
business, industry, and intergovernmental organizations.

Apart from several factors such as Gross Domestic Product (GDP) and inflation,
the exchange rate and unemployment are some of themajor factors that are important
in economic growth advancement. For modeling these two factors, the time-series
literature provided one of the major and commonly used approaches for analysis of
the bivariate time-series data, which is the Autoregressive Moving Average with
exogenous variable (ARMAX)model. Comparedwith theARX, theARMAXmodel
is probably the second most popular linear model after the ARX and more flexible
class because it possesses an extended noise model and due to its statistical proper-
ties [19]. ARMAX is a flexible class of models including mixed pure autoregressive
(AR) and moving average (MA) models with additional external input called exoge-
nous variable. But one of the main constraints of ARMAX models is the linearity
structure of the models. This assumption of linearity restricts the application of the
ARMAX model to real time-series data. There are many studies that have discussed
the application of this model such as [1, 25].

Linear models have no possibility to describe any volatility in the actual condi-
tional variance in the real time-series data or in the residuals of ARMAX linear
model. To overcome this problem, Engle [8] proposes the Autoregressive Condi-
tional Heteroskedasticity (ARCH) statistical model, for the purpose of capturing the
volatility in time-series data that describes the variance of the current error term or
innovation as a function of the actual sizes of the previous time periods error terms.
The ARCH model is appropriate when the error variance in a time series follows an
autoregressive (AR) model and has a disadvantagewith a large number of parameters
required in building the forecast model. Therefore, Bollerslev [3] proposes a more
parsimonious technique that is the GeneralizedARCH (GARCH) model appropriate
when the mixed autoregressive moving average (ARMA) model is assumed for the
error variance. There are many empirical studies which confirm that the nonlinear
models have a good performance for long-term forecastingwhereas the linearmodels
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are appropriate for short-term forecasting, as well as the real time-series data often
composed of linear and nonlinearities compound [17, 18]. So there is a necessity of
hybridization of the linear andnonlinearmodels in onehybridmodel in order to obtain
a more efficient forecast. And for the process of building a hybrid model, we use
the nonlinear GARCHX model whose conditional variance follows a General error
distribution (GED), i.e., (GARCHX-GED), which the GED assumes for capturing
heavy-tailed properties in residuals of linear ARMAX model. A number of hybrid
models are tested and the optimummodel is chosen based onmodel selection criteria
such as Akaike information criteria (AIC) and Bayesian information criteria (BIC).
Nevertheless, to deal with the problem of no individual model guaranteed to give the
ideal forecast, different forecastingmodels can bemixed together in one hybridmodel
to increase the chance of capturing different structures and then yield a more effi-
cient forecastingmodel and get the optimum structure of the final hybridized forecast.
Many researchers [15, 21, 27] and others have studied the combined ARMAXmodel
with GARCH and showed the improvement of the hybrid model in forecasting accu-
racy. In the present study, the linearARMAXmodel and hybridARMAX-GARCHX-
GED model according to [26] methodology have been applied to the real dataset.
Subsequently, these two competingmodels are evaluated for the forecasting accuracy
first by using classical statistical evaluation measures, namely, Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE). Though these classical evaluation criteria are simple and easily understand-
able, they have some limitations. On the one hand, they do not provide a statistical
test of the significant difference between the two forecasting models. On the other
hand, forecasting value given by competing forecasting models can be interfered by
stochastic differences. So, for these reasons these measures of forecast accuracy are
useful only for comparing different models [5–7]. In this paper, the second fore-
cast criteria based on a modern evaluation criterion which has been advocated by
Diebold and Mariano [7] is introduced to evaluate forecasting performance between
ARMAX and ARMAX-GARCH-GED competing models, and then choosing the
optimal unemployment rate forecasting model. MATLAB, R, and EViews software
packages have been used for the data analysis.

2 Materials and Methods

In this section,wewill describe forecasting time-seriesmodels, Statistical test, Zhang
hybrid methodology, and Performance Evaluation.

2.1 The Hybrid ARMAX-GARCH-GED Forecasting Model

The hybrid ARMAX-GARCH model combines two time-series models represented
as the following.



446 F. A. Mohammed and M. A. Mousa

2.1.1 Conditional Mean Model

In modeling the mean equation of the hybrid model, one of the most important
linear models for modeling bivariate time series is the single-input–single-output
Autoregressive Moving Average with exogenous variable (SISO-ARMAX). In the
SISO-ARMAX model structure specification, the endogenous variable is modeled
as difference equation in Eqs. (1 and 2) [23, 24]:

yt = μ +
np∑

i=1

ϕiyt−i −
nq∑

j=1

θjεt−j +
nb∑

κ=1

φκxt−nk + εt, (1)

Or in the compact form:

�np(L)yt = φnb
(L)xt−nk + �nq(L)εt, (2)

where
yt: endogenous variable (Model output at time t).
xt−nk : exogenous variable, previous and delayed inputs on which the current

output depends.

The parameters np, nb, and nq are the orders of the ARMAX model (the order of
autoregressive, exogenous variable and moving average, respectively), and nk is the
delay time. �np(L), �nq(L), φnd

(L) are the polynomial of lag operator L of order
np, nq, and nd, respectively, with root outside the unit circle such that

�np(L) = 1 + ϕ1L + ϕ2L2 + · · · + ϕnp Lnp = 1 +
∑np

i=1
ϕiLi, (2a)

�nq(L) = 1 − θ1L1 − θ2L2 − · · · − θnq Lnq = 1 −
∑nq

j=1
θjLj, (2b)

φnd
(L) = φ1L−1 + φ2L−2 + · · · + φnd

Lnd =
∑nd

k=1
φkLk, (2c)

The parameters ϕi, θj and φκ are estimated by Recursive Least Square Method
with Exponential Forgetting Factor (RLS-EF). The detail computational procedure
for this method can be found in [23].

2.1.2 Conditional Variance Model

In Eq. (1), the conditional variance of ARMAX residuals (εt) is analyzed by using the
GARCH (r, s)with exogenous variable, and theGARCH (r, s)model is represented
in the following equations [3, 12]

εt = htηt ,ηt ∼ i.i.dN(0, 1), (3)
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where
εt: represents GARCH innovations.
ηt : The random variable ηt is an innovation term which is typically assumed to

be independent and identically distributed (i.i.d) with mean zero and unit variance.
ht : Conditional variance ht is modeling as GARCH (r, s), as in Eq. (4):

ht =∝o +
∑r

i=1
∝iε

2
t−i +

∑s

j=1
ϑjht−j, (4)

where r, s are the orders of GARCHmodel, and parameters∝i and ϑj estimate for the
ARCH and GARCH effects of ith and jth orders, respectively. The parameters (∝o,
∝1, …, ∝r , ϑ1, …, ϑs) are estimated by Maximum Likelihood Estimation according
to the BHHHoptimization algorithm and restricted such that (ht > 0) for all t , which
is ensured when:

∝o> 0,∝i≥ 0, for i = 1, 2, 3, . . . r,ϑj ≥ 0, for j = 1, 2, 3, . . . , s

From Eq. (4) the simple GARCH (1, 1) model is the most popular for modeling
volatility. We write this model as

εt = htηt ,ηt ∼ i.i.dN (0, 1)

ht =∝o + ∝1 ε2t−1 + ϑ1ht−1, (5)

The conditional variance in Eq. (5) is modeled by the past shock ε2t−1 and its own
lagged value ht−1. For ∝o≥ 0, ∝1> 0, ϑ1 > 0, and ∝1 +ϑ1 < 1 [9].

Expression (5) of GARCH (1, 1) model is typically extended to be more complex
and involves exogenous variable xt in volatility equation. The volatility Eq. (5) can
be extended and rewritten for the GARCHX (1, 1, 1) model and represented as in
Eq. (6) [14, 22]:

(6)

for exogenous variable xt which is squared to ensure that (ht > 0). The including
of the additional exogenous variable xt helps to explain the volatilities of exchange
rate series and tend to lead to improve in-sample fit and out-of-sample forecasting
perform.

2.1.3 GARCHX Model Specified Under Heavy-Tailed Distribution

The mixture of mean Eq. (1) and volatility Eq. (6) will give us a hybrid ARMAX-
GARCHX model whose conditional variance follows a Gaussian distribution;
Normal distribution assumption was found to be not useful in capturing the heavy-
tailed behavior of the series. Therefore, Nelson [20] proposed GED distribution to
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capture the heavy-tailed (leptokurtic) behavior of the process. Thus, to obtain more
forecast efficiency of hybrid ARMAX-GARCH model, the hybrid model has been
applied based on Generalized Error Distribution (GED) proposed by Nelson [20]
represented in the following equations [2, 10].

From Eq. (4) the error term can be rewritten as ηt = εt√
ht

∼ N(0, 1), when
applied Generalized Error Distribution to the GARCH model, the corresponding
density functions of εt are described below:

f (ε t) = vexp
[− 1

2 |z/λ|v]

λ
[
2(1+ 1

v
)�

(
1
v

)] , (−∞ < z < ∞),

where λ is defined as

λ =
[
2(−2/v)�

(
1

v

)
�

(
3

v

)]1/2

v: Tail thickness parameter (0 < v ≤ ∞), �: Gamma function.

2.2 The Zhang Hybrid Methodology

The hybrid method supposes that the time-series process decomposes as a mixture of
both linear and nonlinear components. This follows the Zhang [26] hybrid approach.
Consequently, the relationship between linear and nonlinear components can be
expressed as follows:

yt = Lt︸︷︷︸
ARMAX

+ Nt︸︷︷︸
GARCHX

→ for ARMAX−GARCHX, (7)

where Lt and Nt represent the linear and nonlinear components present in the time-
series data, and these two components are to be estimated forARMAXandGARCHX
models, respectively. This hybrid approach of combining forecasting values for the
hybrid (ARMAX-GARCHX) model has the following steps [17, 26]

1. First, fit a linear ARMAX time-series model for the data.
2. In the second step, the residuals time series are extracted from the fitted ARMAX

linear model. The residuals will contain only the nonlinear components. Let et
denotes the residual at the time t from the linear model, then

et = yt − L̂ t , (8)

where L̂ t : The optimal forecast of the mean Eq. (1) for the ARMAX model.
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Fig. 1 Schematic representation of ARMAX-GARCHX hybrid methodology

3. Tests for nonlinearity: Brock Dechert–Scheinkman (BDS) test: The presence of
nonlinearity pattern in the extracted residuals of the fitted ARMAX model can
be tested using BDS test; the BDS test is used to test the null hypothesis that
the residuals are specific as linearity pattern against the alternative hypothesis
that there exists a nonlinearity pattern in the residuals. The detail computational
procedure and test statistic can be found in Brock et al. [4].

4. If residuals confirm the nonlinearity, then the residuals are modeled using
nonlinear GARCHX models. Subsequently, obtain the optimal forecast N̂t for
the residual series using the optimal GARCHX models.

5. In the final step, the linear L̂ t(�) and nonlinear N̂t(�) forecasted components are
combined to obtain the pooled forecast values for the hybrid model (ARMAX-
GARCHX) as in Eq. (12):

ŷt(�) = L̂t(�)ARMAX + N̂t(�)GARCHX, (9)

The hybrid approach for (ARMAX-GARCHX) model can be graphically
represented as in Fig. 1.

2.3 Forecasts Evaluation

The forecasting performance of competing models is evaluated using two different
procedures.
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2.3.1 Loss Functions Criteria

The common classical forecast accuracy criteria, namely, Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE) are presented in the following equations [12, 24]:

• Mean Square Error (MSE):

RMSE =
√
1

n

∑n

t=1

(
yt − ŷt

)2
, (10)

• Mean Absolute Error (MAE):

MAE = 1

n

∑n

t=1
|et| = 1

n

∑n

t=1

∣∣yt − ŷt
∣∣, (11)

• Mean Absolute Percentage Error (MAPE):

MAPE = 1

n

∑n

t=1

∣∣∣∣
et

yt

∣∣∣∣ ∗ 100%, (12)

2.3.2 Diebold–Mariano Test

The DM test was originally proposed by Diebold and Mariano as a test of fore-
cast accuracy between two sets of forecasts using the MSE. To determine whether
one forecasting model (say, the first model, model A (ARMAX-GARCHX-GED))
predicts more accurately than another (say, the second model, model B (ARMAX)),
we may test the null hypothesis: no difference in the accuracy (equal predictive
ability) of the two competing models is given as [5–7, 16]:

H0 : E
(
dA,t

) = E
(
dB,t

)

Vs The alternative hypothesis that one is better than the other is given as

H1 : E
(
dA,t

) 
= E
(
dB,t

)
, (13)

the DM test is based on the loss differentials dt:

dt = e2A,t − e2B,t, or dt = ∣∣eA,t
∣∣ − ∣∣eB,t

∣∣
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and the DM test statistics is represented in the following equations:

DM = 1
√[

γ 0 + 2
∑h−1

k=1 γ k

]/
n

∼= N(0, 1), (14)

the variable γ k denotes the k-th auto-covariance of dt which is given as

γ̂k = 1

n

n∑

t=k+1

(
dt − d̄t

)(
dt − d̄t−k

)

And d̄t the sample mean loss differential defined as

d̄t = 1

n

n∑

t=1

dt t = 1, 2 . . . ., n

and n, h step forecasts are computed from models A and B. We can reject the null
hypothesis if p-value is less than 0.05, and since the DM statistics converge to a
normal distribution, also we can reject the null hypothesis at the 5% level if (|DM| >
1.96).

3 Case Study (Data Sets in the Experiment)

The data for this study represent a bivariate time-series data of the unemployment
rate and the exchange rate in the USA, as monthly measurements for the period from
January 2000 to December 2017 as a training dataset for parameter estimation and
the last 18 months (observations) (from January 2018 to June 2019) considered as
a testing set is used for obtaining the out-of-sample forecast and also for validation
using classical evaluation criteria and themodernDMtest statistics collected (Source;
fred.stlouisfed.org). Figure 2a and b shows the plot of bivariate time series of the
unemployment rate and the exchange rate.

3.1 Fitting the Hybrid ARMAX−GARCHX−GED Model

The suitable hybrid ARMAX−GARCHX−GED model was selected based on
minimum AIC and BIC criteria, and it is found that ARMAX (2, 1, 1, 0)-GARCHX
(1, 1, 1)-GED is the best model for modeling the dynamic relation between
the unemployment rate and the exchange rate. The parameter estimates of fitted
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Fig. 2 The monthly a Unemployment rate and b The exchange rate for original series from
(January 2000 to December 2017)

Table 1 Significance of ARMAX (2, 1, 1, 0) model parameters using RLS-EF method

Model Par. Values Standard error t-value p-value

Mean equation
ARMAX (2,1,1,0)

AR(1) ϕ̂1 −0.5391 0.00793 67.9823 0.00001

AR(2) ϕ̂2 −0.4329 0.00791 54.7282 0.00001

MA(1) θ̂1 −0.1341 0.01030 13.0194 0.00001

x(1) φ̂1 0.1182 0.00945 12.5079 0.0001

ARMAX(2, 1, 1, 0)1 model using RLS-EF method are furnished in Table 1 along
with their Standard error, t-value, significance level (p-value).

φ̂1 denotes the parameter of exogenous variable. And according to the
(p−value < 0.05), all parameters are significant and have an effect in the model.
The ARMAX (2, 1, 1, 0) model can be written from above table as

yt = 0.5391yt−1 + 0.4329yt−2 + 0.1341εt−1 + 0.1182xt + εt meanequation

1ARMAX model orders were selected based on minimum AIC and BIC criteria and observing
the significance of autocorrelation (ACF), partial autocorrelation (PACF), extended autocorrela-
tion function (EACF) and cross-correlation (CCF) functions to identify the model. From Cross-
correlation functions (CCF), it is found that the delay time equals to zero. Results implemented
using MATLAB (2018a).
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Table 2 BDS test for nonlinearities of ARMAX (2, 1, 1, 0) residuals

H0 = linearity in ε̂t

Test Dimension BDS-statistic p-value

BDS m = 2 0.181994 0.0000

BDS m = 3 0.305099 0.0000

BDS m = 4 0.386709 0.0000

Table 3 Maximum likelihood estimation for GARCHX (1, 1, 1) models with GED distribution

Models Par. Values Stand.error t-value p-value

Variance equation for
GARCHX(1, 1, 1)

∝̂o 0.002267 0.001152 1.967975 0.0491

∝̂1 0.622778 0.129305 4.816344 0.0000

ϑ̂1 0.241299 0.036489 6.613002 0.0000

0.002686 0.001226 2.190962 0.0285

v̂ 4.971380 1.466313 3.390394 0.0007

3.1.1 Testing for Nonlinearity (BDS Test)

BDS test has been used to test the presence of any remaining nonlinearities structure
in the residuals ARMAX(2, 1, 1, 0) model to test the null hypothesis (Ho: linearity
in ε̂t exist). And the result of this test is expressed in Table 2.

According to (p-value), the results of the BDS test indicate to exist a nonlinear
pattern in the residuals of ARMAX(2, 1, 1, 0) model for different dimensions.

3.1.2 Estimation of Hybridization GARCHX (1, 1, 1)-GED Model

For building hybrid models, we use the two-step procedure of estimation. The esti-
mation of the parameters of mean equation for ARMAX (2, 1, 1, 0) model is given
in Sect. 3.1 (Table 1), and the estimation of the parameters of variance equation
for the GARCHX (1, 1, 1)-GED models as mentioned in Eq. (6) using Maximum
Likelihood Estimation according to the BHHH optimization algorithm are furnished
in Table 3 along with their Standard error, t-value, significance level (p-value)2:

All parameters are significant and satisfy the conditions of GARCHX model as
discussed inSect. 2.2.2, v̂ parameter ofGED.Therefore, the hybridmodel (ARMAX-
GARCHX-GED) can be written as in the following equations:

The mean equation follows ARMAX (2, 1, 1, 0) model from the Table 2 as:

yt = 0.5391yt−1 + 0.4329yt−2 + 0.1341εt−1 + 0.1182xt + εt

2Results are implemented using EViews 9.
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Table 4 Comparison of
forecasting performance

Models RMSE MAE MAPE (%)

ARMAX 0.2039 0.1493 3.8680

ARMAX-GARCHX-GED 0.1919 0.1452 3.7681

εt = ηt

√
ht,ηt ∼ GED(v̂ = 4.971)

The variance equations ht followGARCHX (1, 1, 1)-GEDmodels fromTable 3
as:

ht = 0.002267 + 0.622778ε2t−1 + 0.241299ht−1 + 0.002686x2t−1

The above equations represent the hybrid models and employ the forecasting of
the unemployment rate for the period (from January 2018 to June 2019).

4 Evaluation of Forecasting Performance

The prediction abilities of the individual ARMAX model and the hybrid model
ARMAX-GARCHX-GED for the last 18 months (observations) (from January
2018 to June 2019) are compared based on two procedures.

4.1 Loss Function Criteria

Three classical statistical criteria, RMSE, MAE, and MAPE mentioned in
Sect. 2.3.1 are furnished in Table 4 for ARMAX and ARMAX-GARCHX-GED
models.

From Table 2, according to the minimum values of RMSE, MAE, and MAPE,
we can conclude that the forecasting results of the hybrid ARMAX-GARCH-GED
model look more efficient than the individual ARMAX model. And the following
graph shows the actual and forecast values extracted by the hybrid ARMAX (2, 1,
1, 0)-GARCHX (1, 1, 1) model for the last 18 observations for the unemployment
rate (from January 2018 to June 2019) (Fig. 3).3

However, this forecast accuracy measures are reported in Table 4 based on mean
square error (MSE), and the MSE is invalid to determine whether the difference is
due to chance, and is unable to diagnose significant differences. So, it is necessary
to evaluate the forecast accuracy by employing the DM test and then distinguishing
the forecasting performance between the competing forecasting models.

3Results of Table 4 and graph are implemented using MATLAB (2018a).
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Fig. 3 Actual and forecast values using ARMAX (2, 1, 1, 0)-GARCHX (1, 1, 1)-GED for the last
18 observations for the unemployment rate

Table 5 DM test for forecasting performance based on (model A, ARMAX) and (model B,
ARMAX-GARCHX-GED)

H0 : E
(
dA,t

) = E
(
dB,t

)
vs H1 : E

(
dA,t

) 
= E
(
dB,t

)

Absolute-error loss function, |dt| Squared-error loss function, d2
t

DM-test p-value DM-test DM-test

4.0398 8.039e−05 4.0398 2.0341

4.2 Forecasting Evaluation Based on DM Test

In this section, the forecasting performance of the two competing ARMAX and
ARMAX-GARCH-GEDmodels has been compared by employing the DM test. The
DM test employs testing the hypothesis given in Eq. (13) by DM test statistics given
in Eq. (14), The results of the forecasting comparison of two competing models are
furnished in Table 54:

From Table 3, according to the DM test based on the absolute-error loss and
squared-error loss, respectively, since the p-value of DM statistic is less than 0.05,

4Results implemented using R 3.5.2.



456 F. A. Mohammed and M. A. Mousa

the null hypothesis is rejected, i.e., we accepted the alternative hypothesis, that is
to say, the observed differences are significant and the forecasting accuracy of the
hybridARMAX-GARCHX-GEDmodel ismore efficient than that of theARMAX
model.

5 Conclusions

The main purpose of this study is to employ the Diebold–Mariano test for perfor-
mance evaluation between individual and hybrid time-series models for unemploy-
ment rate forecasting. A hybrid method decomposes bivariate time series into its
linearity and nonlinearity pattern and then modeling each part individually before
they are aggregate for getting final forecast using Zhang hybrid methodology. Based
on the practical dataset results, one can conclude the following outcomes:

1. The classical linear time-seriesmodels such as ARMAXare not always sufficient
for modeling bivariate time series that consists of linear and nonlinear structures.
And when the assumption of linearity is violated, the hybrid approach which
combines linear and nonlinear models performs better as compared to classical
time-series models under Heteroscedasticity problem.

2. The residual time series that are extracted from the fitted ARMAX linear
model was tested by BDS test which reveals that nonlinearity pattern exists in
the residual time series. And then based on this residual series, the nonlinear
GARCHX model is build and employed to forecast the volatility and in a
hybridization method with ARMAX model.

3. The individual and hybrid models have been applied in forecasting the unem-
ployment rate in the USA. And the comparison of forecasting performance has
been checked based on minimum values of classical forecast criteria (RMSE,
MAE, and MAPE) as mentioned in Table 4, and it was observed that the hybrid
model looks more efficient than the individual ARMAX model.

4. Apart from classical forecast accuracy criteria, this study adopts the [7] known
as DM test to further evaluate the statistical significance of the two competing
models. The findings from the DM test statistics show that the observed differ-
ences of forecasting values between theARMAXandARMAX-GARCHX-GED
models are significant at the 5% level of significance asmentioned in Table 5, and
indicate that the hybrid model has better forecasting efficiency than individual
ARMAX model.
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