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Abstract Classical nucleation theory is till now the major tool in the interpretation
of crystal nucleation and growth processes in a variety of liquids. For its applica-
tion, the knowledge of the thermodynamic driving force and the dependence of the
surface tension on pressure and temperature, respectively, the knowledge of rela-
tions describing the curvature dependence of the surface tension is required. New
developments in this direction are summarized in the first part of the present chapter.
Based on these results, in a second part, the interplay of stress evolution and stress
relaxation and its effect on nucleation and growth are analyzed. It is shown then in a
third part, in which directions classical nucleation theory has to be extended possibly
in the future development in order to arrive at a satisfactory description of experi-
mental data in the whole range of temperature and/or pressure. Particular attention
is directed here, in this respect, to deviations of the properties of critical clusters as
compared to the properties of the evolving macroscopic phases and different aspects
of the interplay of glass transition and crystallization. These general considerations
are supplemented by an analysis of some specific features of polymer crystallization
completing the present chapter.
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Abbreviations

kB Boltzmann constant
�g(T, p) Change of the Gibbs free energy in crystallization per unit volume of

the newly evolving crystalline phase
μi Chemical potential of the i = 1, 2, …, k components
�v Differences of the volumes between liquid and crystal phases per unit

volume of the crystal phase
D Diffusion coefficient
�(ε) Energy of elastic deformation caused by the formation of a crystallite of

volume V in a liquid
αp Isobaric thermal expansion coefficient
κT Isothermal compressibility
τR Maxwell’s relaxation time
�sm, �hm Melting entropy and melting enthalpy per unit volume of the crystal

phase
xi Molar fraction of the i = 1, 2, …, k components
η Newtonian viscosity
c Number of nucleation centers per unit volume of the liquid
nc, Vc Number of particles and volume of a critical crystal cluster
ε, ε0 Parameters determining the elastic effects caused by crystal evolution

in the liquid (ε) and in a Hookean solid (ε0)
J0 Pre-factor in the expression for the steady-steady-state nucleation rate

determined by the kinetics of crystal evolution
p, pm Pressure, melting pressure
R, A, V Radius, volume, and surface area of a crystal cluster
d0 Size parameter of the particles of the liquid
cp Specific heat per unit volume of the crystal phase
J Steady-state nucleation rate
σ Surface tension referred to the surface of tension
T, Tm Temperature, melting temperature
t Time
τ ns Time-lag in nucleation
δ Tolman parameter
Wc Work of critical cluster formation

1 Introduction

Classical nucleation theory (CNT) is till now the major tool for the interpretation of
experimental data onnucleation in awide spectrumof phase transformation processes
like condensation and boiling, segregation in solid and liquid solutions, melting or
crystallization [1–6]. In a variety of applications, it allows one not only a qualitative
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treatment of experimental data of nucleation and growth kinetics but even a quantita-
tively correct description, in other cases, it may fail even dramatically. Consequently,
the question arises on how these problems can be explained and overcome, what the
origin is for the success of CNT in some and its failure in other cases. These prob-
lems are considered here in detail starting with some recently obtained results and
directing then the attention to problems we consider as highly perspective in the
further development of theoretical and experimental analysis of crystal nucleation
and growth. The general considerations are supplemented by a section dealing with
selected specific features of polymer crystallization.

2 Classical Nucleation Theory

2.1 Thermodynamic Driving Force of Crystallization
in Dependence on Temperature and Pressure

One of the basic ingredients in the application of classical nucleation theory to the
description of experimental data consists of the appropriate specification of the work,
Wc, of critical cluster formation in nucleation:

Wc = 1

3
σ A, A = 4πR2,

(
pβ − pα

) + σ
dA

dV
= 0 (1)

where σ is the surface tension, A is the surface area of a critical cluster supposed to
be of spherical shape with a radius R corresponding to the surface of tension, p is the
pressure andV is the volume, the indicesα andβ specify the parameters of the critical
crystal clusters (α), respectively, the parameters of the ambient phase (β) where the
aggregates of the new phase are formed. Wc determines widely the probability of
formation of a supercritical cluster of the newly evolving phase capable to a further
deterministic growth, respectively, the steady-state nucleation rate, J:

J = J0 exp

[
− Wc

kBT

]
(2)

The steady-state nucleation rate is equal to the number of critical clusters formed
per unit time in a unit volume of the ambient phase. Here kB is the Boltzmann
constant, T is the absolute temperature.

Critical crystallites are, in general, not of spherical but of different shapes, anyway,
also crystallization can be described in terms of the above given simplified model
as explained in detail in [7]. In brief, for any state of the ambient phase the pressure
in the critical cluster is determined by the equilibrium conditions. It follows that for
any value of the work of critical cluster formation, it is always possible to determine
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via Eq. 1 the value of the surface tension and the radius of the critical model cluster
leading to this particular value of Wc. We will utilize this simplified model here.

The pre-factor, J0, in the expression for the steady-state nucleation rate, Eq. 2, is
determined by the kinetic mechanism of aggregation. For one-component systems,
it can be expressed via the diffusion coefficients, D, of the particles in the melt or—
employing the Stokes–Einstein–Eyring relation connecting diffusion coefficient and
the inverse of the viscosity—via the Newtonian viscosity, η. One of the standard
expressions for this kinetic pre-factor widely equivalent to other formulations is [6]:

J0 = c

√
σ

kBT

(
D

d0

)
∼= c

√
σkBT

ηd2
0

(3)

where d0 is a parameter specifying the size of the particles and c is the number of
centers of nucleation per unit volume or the particle number density in the liquid. In
the applicationof above relations to crystallization inmulti-component systems, these
kinetic parameters have to be replaced by effective diffusion coefficients, respec-
tively, effective size parameters [6, 10]. Similarly to nucleation rates, also the growth
rates are determined via the thermodynamic driving force and the kinetic parameters
as discussed above. To some extent, the description of growth processes is easier
since size effects in the bulk properties can be frequently neglected and also the
surface tension plays, at least, in a variety of cases a minor role.

Here, we concentrate the attention to thermodynamic aspects of nucleation theory
connectedwith the determination of thework of critical cluster formation. According
to Eq. 1, we have to have at our disposal the thermodynamic driving force of crys-
tallization, expressed by the difference of pressures, pα − pβ , in the critical cluster
and the ambient phase (or widely equivalent to it and more easily accessible expres-
sions) and the surface tension, σ . Employing the basic assumptions of CNT, we will
formulate below first the dependencies for both quantities on external pressure and
temperature.

Equation 1 is a consequence of Gibbs classical thermodynamic theory of surface
phenomena [8]. In line with his approach, it is supposed in CNT that the bulk proper-
ties of the critical clusters are widely identical to the properties of the newly evolving
macroscopic phases [5, 6, 9]. This statement is a conclusion from the analysis of
consequences of a subset of Gibbs’ equilibrium conditions (equality of chemical
potentials, μi, of the different components and temperature, T ):

μiα
(
Tα, pα,

{
x jα

}) = μiβ
(
Tβ, pα,

{
x jβ

})
, i = 1, 2, . . . , k

Tα = Tβ (4)

In such treatment, the thermodynamic driving force of crystallization can be
expressed via the change of the Gibbs free energy per unit volume of the newly
evolving crystalline phase as:
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pα − pβ
∼= �g(T, p)

�g(T, p) =
k∑

i=1

ρiα
(
μiβ

(
T, p,

{
xiβ

}) − μiα(T, p, {xiα})) (5)

Accounting in addition to the assumed independence of the properties of the
critical clusters on pressure and temperature, for both stoichiometric and non-
stoichiometric crystallization, the thermodynamic driving force can be written then
as:

�g(T, p) ∼= �hm

(
Tm − T

Tm

)[
1 − γT (Tm, pm)

(Tm − T )

2Tm

]

+ pm�vm

(
p − pm
pm

)[
1 − γp(Tm, pm)

(pm − p)

2pm

]
(6)

Here (Tm, pm) are temperature and pressure at a particular equilibrium state along
the melting curve. Specific properties of the system under consideration are reflected
here by the melting entropy, �sm, or the melting enthalpy, �hm, and the differences
of the volumes between liquid and crystal phases per unit volume of the crystal phase:

�s(T, p) = Sliquid
(
T, p,

{
xiβ

}) − Scrystal(T, p, {xiα})
Vcrystal(T, p, {xiα})

�v(T, p) = Vliquid
(
T, p,

{
xiβ

}) − Vcrystal(T, p, {xiα})
Vcrystal(T, p, {xiα}) (7)

The parameters γ T , and γ p are defined via:

γT (Tm, pm) = �cp(Tm, pm)

�sm
, γT p(Tm, pm) = pm�κT (Tm, pm)

�vm
(8)

Here cp is the specific heat per unit volume and κT is the isothermal compress-
ibility, given by:

cp = T

(
ds

dT

)

p

, �cp(Tm, pm) = c(liquid)
p (Tm, pm) − c(crystal)

p (Tm, pm)

κT = − 1

V

(
dV

dp

)

T

, �κT (Tm, pm) = κ
(liquid)
T (Tm, pm) − κ

(crystal)
T (Tm, pm)

(9)

Employing these results and the basic relations utilized in their derivation, it has
been shown by us that at the Kauzmann temperature [11], corresponding to states
where the specific entropies of glass-forming melt and crystal coincide, the thermo-
dynamic driving force has a maximum in dependence on temperature. In addition,
similarly to the mentioned well-known notation of a Kauzmann temperature, the
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concept of a Kauzmann pressure [12] can be introduced for crystallization induced
by variations of pressure. It is shown that the thermodynamic driving force of crystal
nucleation has similarlymaxima also at the Kauzmann pressure. Further, it is demon-
strated that—as far as mentioned basic assumptions of CNT are fulfilled—in melt
crystallization, a spinodal curve does not exist. In addition, it is shown that—in
contrast to some recent statements—Kauzmann’s suggestion of a pseudo-spinodal
in melt crystallization characterized by intensive nucleation has no foundation [13–
15]. Finally, setting in Eq. 6 the thermodynamic driving force equal to zero, we obtain
an analytic expressions for the dependence of pressure on temperature or vice versa
along the melting curve.

2.2 Surface Tension in Dependence on Temperature
and Pressure

In the application of CNT tomelt crystallization one very serious problem consists in
the limitations caused by the fact that the surface tensionmelt-crystal cannot be deter-
mined directly experimentally with the accuracy required in nucleation theory. By
this reason, in applications of CNT frequently the Stefan-Skapski-Turnbull relation
is employed for its determination [5, 6]. In its standard so far application, it involves
the assumption of the capillarity approximation, i.e., that the surface tension of crit-
ical clusters is equal to the respective value of equilibrium coexistence of both phases
at a planar interface. However, the application of the capillarity approximation leads
to serious problems in CNT [16]. They can be overcome by introducing a curvature
dependence of the surface tension as suggested already by Gibbs [8] and widely
employed in CNT. Based on a generalization of the Stefan–Skapski–Turnbull equa-
tion, a relation for the dependence of the surface tension on pressure and temperature
has been derived by us [12, 17, 18]. Here we reproduce the basic results.

According to cited analysis, the dependence of the surface tension on temperature
and pressure can be expressed as:

σ(T, p)

σ (Tm, pm)
∼= T

Tm

(
1 − γT (Tm, pm)

Tm − T

Tm
− �αp(Tm, pm)

�sm
(p − pm)

)
(10)

where αp is the isobaric thermal expansion coefficient:

αp = 1

V

(
dV

dT

)

p

, �αp(Tm, pm) = α
(liquid)
T (Tm, pm) − α

(crystal)
T (Tm, pm) (11)

It follows that in crystallization caused by variation of temperature, the surface
tension decreases with decreasing temperature. A similar behavior is found for crys-
tallization caused by variations of pressure. These theoretical predictions are in excel-
lent agreement with a variety of experimental investigations andmolecular dynamics
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studies as discussed in detail in [7, 12, 17–19]. Again, employing the relation for the
dependence of pressure on temperature along themelting curve obtained as described
above based on Eq. 6, Eq. 10 results in an expression for the determination of the
surface tension along the melting curve.

Quite frequently, the dependence of the surface tension of critical clusters is treated
not in terms of its dependence on pressure and temperature as expressed by above
given relation but in dependence on the size of the critical clusters or its curvature.
A first relation in this respect has been derived already by Gibbs [8] in application to
condensation. It was advanced later by Tolman [20] resulting in an equation of the
form:

σ(R) = σ∞
1 + 2δ

R

, σ∞ = σ∞(Tm, pm), δ = δ∞(Tm, pm) (12)

Here δ is the Tolman parameter. In accordance with its original definition by
Tolman, it has to be considered as a property of the interface liquid-solid for an
equilibrium coexistence of both phases at a planar interface, i.e., δ = δ∞(Tm, pm) is
a function of melting pressure and temperature, σ = σ∞(Tm, pm) is the value of the
surface tension for the respective state. However, both Gibbs [8] and Tolman [20] did
not consider phase formation caused by variation of temperature but by variation of
pressure. Asmentioned by Tolman: “We shall be concerned with the effect of changes
in radius on surface tension in the case of droplets and vapor composed of a single
substance maintained at some given constant temperature.” Consequently, strictly
speaking, it was not clear so far whether the Tolman equation can be really utilized
at all for the description of melt crystallization if the process is caused by variations
of temperature. This open problem was resolved by us in two recent publications
[7, 19].

It was shown that the Tolman equation can be employed for the description of the
curvature dependence of the surface tension of critical crystallites in one-component
systems if either pressure or temperature is varied. This relation holds also for crys-
tallization in multi-component systems provided the composition and shape of the
critical crystal clusters do not change in dependence on pressure and temperature.
As discussed here earlier this independence of the properties of critical clusters on
pressure and temperature is a basic assumption of CNT. Consequently, employing
basic ideas of CNT, the Tolman equation is a quite appropriate tool for the descrip-
tion of the curvature dependence of the surface tension of critical crystallites if either
pressure or temperature is changed. However, the values of the Tolman parameter
differ for both cases and are given by:

δ(T )
∞ ∼= σ∞

{
1 + γT (Tm, pm)

�hm

}
at p = pm (13)

respectively:
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δ(p)
∞ ∼= σ∞

{
Tm�αp(Tm, pm)

�vm�hm

}
at T = Tm (14)

As shown in [7, 19], these estimates are in good quantitative agreement with data
obtained via a fit of experimental results on steady-state nucleation rates for a variety
of systems. However, as demonstrated there as well, if both temperature and pressure
are varied, then the Tolman equation cannot be employed for the description of the
curvature dependence of the surface tension.

Above relations for the thermodynamic driving force and the surface tension are
formulated here for multi-component systems. For one-component systems, similar
but slightly more precise relations can be derived avoiding one assumption required
in the analysis of multi-component systems (for the details see [19]).

The application of CNT to the description of crystal nucleation shows that the
classical concepts as described above and supplemented by the account of a curvature
dependence of the surface tension allow one an accurate description of nucleation
rates down to temperatures corresponding to the maximum of the steady-state nucle-
ation rates. However, they fail at temperatures lower this maximum. In the next
subsection, we will discuss another topic where a quite similar situation is observed.

2.3 Stress Evolution and Stress Relaxation
and the Crystallization of Glass-Forming Melts

In cooling and/or at variation of pressure, liquids may undergo a glass transition, i.e.,
go over from a liquid to a solid state. This transformation can be expected to have
also a significant effect both on crystal nucleation and growth.

One of the factors affecting crystallization and varying in the course of the glass
transition is connected with the evolution of elastic stresses. This effect of elastic
stresses in crystallization is caused frequently by differences of the specific volumes
in the crystal and liquid phases. While in liquids elastic stresses cannot have any
effect on nucleation due to its fast relaxation, they are expected to occur in the
glass transition region and, in particular, below the glass transition temperature with
magnitudes corresponding to the respective values for phase formation in Hookean
solids. In [21, 22], it was shown for a variety of glass-forming melts that in latter
case elastic stresses may considerably reduce the thermodynamic driving force of
crystallization and even prevent crystallization at all. Itwas demonstrated, in addition,
that such inhibiting nucleation elastic stress effects are considerably smaller near
interfaces giving immediately a new general key to the understanding of the observed
often preferential surface crystallization of glasses.
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Elastic stresses evolving as the result of crystal nucleation and growth are reduced
by relaxationprocesses.Consequently, the proper description of the interplay of stress
evolution and stress relaxation is of outstanding significance for the understanding
of crystal nucleation and growth. An overview of different results in this respect is
given in [6]. Here we concentrate on the effect of the interplay of stress evolution
and stress relaxation in crystal nucleation in the form as advanced first in [23, 24].
Below we present the basic ideas of this approach.

Accounting for the evolution of elastic stresses in crystallization, the change of
the Gibbs free energy is given approximately by:

�G ∼= −V�g + σ A + �(ε), �(ε) = εV (15)

The radius of the critical crystal cluster and the work of critical cluster formation
have then the form:

R = 2σ

�g − ε
, Wc = 16π

3

σ 3

(�g − ε)2
(16)

Accounting in the simplest approach for relaxation via Maxwell’s law (general-
izations are studied in cited papers) with a relaxation time, τR, the change of the total
energy of elastic deformation connected with the formation of a crystal of volume V
in the liquid is given by:

d�(ε)

dt
= − 1

τR
�(ε) + ε0

dV

dt
(17)

Here ε0 describes the parameters for stress evolution in aHookean solid neglecting
stress relaxation. Supplementing this relation by an appropriate expression for the
crystal growth rate, one can then immediately analyze the effect of the interplay of
evolution of elastic stresses and stress relaxation on this process.

However, in application of these ideas to nucleation, an additional question arises:
Howcanone express the rate of growthof a cluster in its approach to the critical cluster
size taking into account that this type of evolution is a stochastic process proceeding
against macroscopic thermodynamic evolution laws. In [23, 24], we suggested to
replace the growth rate via the relation (dV /dt) ≈ (Vc/τ ns) resulting in:

dV

dt
∼= Vc

τns
⇒ d�(ε)

dt
∼= − 1

τR
�(ε) + ε

Vc

τns
(18)

Here τ ns is the so-called time-lag in nucleation [6]. It is a measure of the time
required to establish steady-state nucleation in a system consisting originally only of
monomers. This quantitywas introduced byZeldovich [25] expressing the nucleation
rate in the form:
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J = J0 exp
(
−τns

t

)
exp

(
− Wc

kBT

)
(19)

The solution of Eq. 18 leads the following relation for the parameter ε(nc) being
the result of the interplay of stress evolution and stress relaxation:

ε(nc)

ε0

∼= τR

τns

(
1 − exp

(
τns

τR

))
(20)

Here nc is the number of particles in a critical crystallite. Consequently, the effect
of elastic stresses on crystal nucleation is essentially determined by the parameter θ

= (τ ns/τR).
Employing the standardmodel of aggregation kinetics resulting in Eq. 3, we arrive

at the following relation for the time-lag and the Maxwellian relaxation time:

τns ∼= ω
kBT

σD
n2/3c

∼= ω
ηd0
σ

n2/3c , τR ∼= ηd3
0

kBT
(21)

Here ω is a parameter of the order ω ≈ 1–4 in dependence on the assumptions
made in the derivation of Eq. 21. Equation 21 yields:

θ = τns

τR

∼= ω
kBT

σd2
0

n2/3c (22)

Utilizing the capillarity approximation in the interpretation of experimental data
on crystal nucleation, i.e., assuming that the surface tension is equal to its value for
a planar interface melt-crystal, it turns out that this ratio is of the order θ = (102–
103)nc2/3 [6, 26]. Provided this result would be true, then the relaxation time would
be always much smaller as compared with the time-lag in nucleation and elastic
stress effects would be always eliminated by relaxation. Such kind of behavior is in
conflictwith the general considerations on stress effects in glass transition formulated
above. Moreover, as also already noted, the capillarity approximation leads to severe
problems in application of CNT to crystallization, consequently, it has to bemodified
by a more correct approach involving a curvature dependence of the surface tension.

A detailed analysis shows [13–15] that, accounting for the curvature dependence
of the surface tension, (i) in the range, where elastic stresses may affect nucleation,
the average time of formation of a crystallite is determined by the time-lag, τ ns.
Near to the maximum of the steady-state nucleation rate (correlating widely with the
standard glass transition temperature as defined by Tammann), the ratio θ = (τ ns/τR)
approaches typically values of the order of one. Consequently, elastic stresses may
have an effect on crystal nucleation in highly viscous glass-forming melts.

However, extending the computations to temperatures considerably below the
maximumof the steady-state nucleation rate, the parameter θ = (τ ns/τR) does not tend
to zero. Consequently, utilizingCNTand even accounting for a curvature dependence
of the surface tension, we do not arrive at low temperatures in the interplay of stress
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evolution and relaxation at the limiting case of Hookean solids as we did expect it
from above mentioned general considerations. Obviously, some other factors have
to be accounted for if one would like to obtain the correct limiting behavior. We will
return to this problem here somewhat later.

3 Some Other Topics of Current Interest

Utilizing CNT and the described above methods, several other topics have been
addressed in recent years, in particular, (i) the specification of the location of the
maxima of nucleation and growth rates and the rates of overall crystallization both
for temperature and pressure-induced phase formation [27, 28], (ii) the relevance of
fragility concepts and the glass transition temperature for the understanding of crys-
tallization in glass-forming melts [29], (iii) the effects of decoupling of diffusion and
viscosity on crystallization, in general, and crystal growth, in particular [30], (iv) the
analysis of the relation between the average time of formation of the first supercritical
nucleus, the time-lag in nucleation, and the steady-state nucleation rate [31]. In [27,
28], a set of equations for determining temperature or pressure of themaximumnucle-
ation, growth, and overall crystallization rates of glass-forming liquids is derived and
analyzed. In [29], it is shown that the classical fragility concepts can be of relevance
for the understanding of crystallization only if several severe conditions are fulfilled
which are rarely met. However, a modification of the classical definition of fragility
is shown to turn out to be highly useful in application to crystallization. In addition,
general relations are derived correlating the maximum of the crystal nucleation rate
and the glass transition temperature in its conventional definition as proposed long
ago by Tammann (Tg corresponding to a viscosity 1012 Pa s). In [30], a relation is
derived allowing one to correlate the decoupling temperature with the glass transition
temperature and the fragility of the liquid. All results are confirmed by experimental
data. In [31], general expressions are derived for the description of the correlations
between average time of formation of the first supercritical nucleus, time-lag in
nucleation, and the steady-state nucleation rate. The results have been employed by
us in the proof of the absence of a pseudo-spinodal in melt crystallization performed
in [13–15]. The existence of a pseudo-spinodal in melt crystallization characterized
by intensive nucleation processes was suggested by Kauzmann [11] as a possible
way of resolution of the Kauzmann paradox. It is discussed widely up to now and
was recently even denoted as “another vital concept related to supercooled liquids,
which is not known within the glass research community” [32]. Consequently, the
analysis of this topic and the proof of the absence of such pseudo-spinodal curve
with the properties assigned to it by Kauzmann are not merely of historical interest.
The results obtained in [31] have been employed also in the analysis of the interplay
between stress development and stress relaxation in crystallization of highly viscous
glass-forming melts. In particular, it gives a confirmation of the basic assumption,
Eq. 18, utilized in the analysis of the interplay of stress evolution and stress relaxation.
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Thepresent subsectionwewould like to completewith the brief analysis of another
question posed byAdrjanowicz et al. [33, 34] and, as far aswe know, not having found
a definite answer so far. Adrjanowicz et al. [33, 34] made a variety of efforts to study
so-called by them isochronal crystallization. By definition, this notation describes
the procedure of varying pressure and temperature in such a way that the viscosity
remains constant. This approach is a modification of a method used widely in the
analysis of crystal nucleation where by measuring both steady-state nucleation rates
and the time-lag, kinetic coefficients can be eliminated in the theoretical analysis of
nucleation processes (see, e.g., [16]). In the analysis, it has been found by mentioned
authors that for such type of variation of the external control parameters (temperature
and pressure) the thermodynamic driving force remains nearly constant. We would
like to sketch here how this problem can be understood in terms of CNT.

Indeed, in accordance with the definition of isochronal crystallization, the varia-
tion of viscosity caused by the change of temperature and pressure in such process
is equal to zero, i.e.:

dη =
(
dη

dT

)

p

dT +
(
dη

dp

)

T

dp = 0 (23)

It follows that any change of temperature is accompanied by a change of pressure
given by:

dp

dT

∣
∣∣∣
isochronal

= −

(
dη
dT

)

p(
dη
dp

)

T

(24)

The change of the thermodynamic driving force of crystallization in such
isochronal processes is given then by:

d�g

dT

∣∣∣∣
isochronal

=
(
d�g

dT

)

p

+
(
d�g

dp

)

T

dp

dT

∣∣∣∣
isochronal

(25)

With Eq. 24, we obtain:

d�g

dT

∣∣∣∣
isochronal

=
(
d�g

dT

)

p

−
(
d�g

dp

)

T

(
dη
dT

)

p(
dη
dp

)

T

(26)

As the rule, the following inequalities hold [35]:

(
d�g

dT

)

p

< 0,

(
dη

dT

)

p

< 0,

(
d�g

dp

)

T

> 0,

(
dη

dp

)

T

> 0 (27)
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It follows that the two terms in the right-hand side of Eq. 26 are of different signs.
Utilizing in addition the relation [36]:

(
dη

dp

)

T

= −κT (T, p)

αT (T, p

(
dη

dT

)

p

(28)

we obtain with Eq. 6:

d�g

dT

∣∣∣
∣
isochronal

= −�hm
Tm

+ �vm
κT (T, p)

αT p(T, p)
(29)

Consequently, if for the systems under consideration Eq. 29 yields values of the
derivative nearly equal to zero, the mentioned result posed by Adrjanowicz et al. [33,
34] is easily understandable in terms of CNT and does not require any assumptions
going beyond it. A detailed analysis of this topic in application to the systems studied
by mentioned authors we consider as highly interesting.

4 Beyond Classical Nucleation Theory: Some Possible
Directions of Its Further Development

In order to describe quantitatively correctly experimental data in the whole range
of pressure and temperature, several generalizations of classical concepts have been
advanced like the decoupling of diffusion and viscosity (or relaxation), the effect of
the size of the “structural units” on crystallization, the possible effect of heteroge-
neous structure of glass-forming liquids on crystal nucleation, the account of devia-
tions of the properties of critical clusters from the properties of the newly evolving
stable or metastable macroscopic phases, the account of deviations of the state of
the glass-forming melt frommetastable equilibrium states. In the present section, we
will discuss some of them in more detail.

4.1 Properties of Critical Clusters Versus Properties
of the Newly Evolving Macroscopic Phases

One of the basic assumptions of CNT supported by Gibbs’ theory consists of the
assumed independence of the properties of critical clusters on the degree of deviation
from equilibrium. This assumption is in a variety of cases in conflict with alternative
theoretical approaches like density functional computations, computer simulations,
and experimental data [37, 38]. It has been questioned immediately after the formu-
lation of CNT and attempted to be overcome inside the framework of Gibbs theory
(Scheil, Hobstetter, see [6, 39, 40]). This critique finally led then to the rediscovery of
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density functional approaches of determination of the properties of critical clusters
by methods originally developed by van der Waals. As it turned out, the proper-
ties of critical clusters and the size of the critical clusters as determined via density
functional computations first by Hillert, Cahn, and Hilliard are quite different as
compared to the results obtained via the classical Gibbs method. Consequently, the
problem arises which of the theories is correct and which one has to be abandoned,
respectively, generalized.

This problem in the theoretical description can be overcome by generalizing the
classical Gibbs’ approach as performed by us in the last two decades [6, 18, 41,
42]. Utilizing the generalized Gibbs approach the thermodynamic driving force of
crystallization is given instead of Eq. 5 by:

pα − pβ = �g
(
Tα, pα, {xiα}; Tβ, pβ,

{
xiβ

})
(30)

The properties of the critical clusters can be determined in this approach by rela-
tions similar to Eq. 4, however, being of much more complex form. It requires,
in addition to Eq. 3, expressions for the dependence of the surface tension on the
state parameters of both coexisting phases. By this reason, the possibility of appli-
cation of the generalized Gibbs approach to a detailed quantitative description of
crystallization has been opened only recently with the development of expressions
for the surface tension utilizing the Stefan-Skapski-Turnbull as formulated first in
[17]. However, already the assumption that the critical crystallites have different as
compared to themacroscopic phases bulk properties allowedus to resolve a number of
problems in the interpretation of experimental which were not possible to understand
in terms of CNT [8, 37, 38].

The generalized Gibbs approach has been employed widely so far by us to the
interpretation of nucleation and growth processes in condensation and boiling and of
segregation in multi-components solutions. It demonstrates that composition and (in
application to crystal nucleation) the shape of the critical crystal clusters may depend
significantly on the degree of metastability caused by variations of pressure and/or
temperature. As shown the results obtained via the generalized Gibbs approach are in
full agreement with predictions of density functional computations. In particular, it is
shown that nucleation for segregation in solutions does not proceed via the classical
scenario but via a scenario resembling widely spinodal decomposition processes. In
addition, it has been proven that the classical Gibbs method involving the capillarity
approximation overestimates the work of critical cluster formation and underesti-
mates the values of the steady-state nucleation rate [41]. Indeed, once there is an
additional freedom in the choice of the bulk properties of critical crystallites, they
will be selected in such a way as to result in the lowest possible values of the work of
critical cluster formation. This idea was the starting point in the development of the
generalized Gibbs approach [6]. Consequently, the proper account of such depen-
dence of the critical cluster properties on the degree of metastability of the liquid
can be considered as one perspective direction of future development of the theory
of crystallization [18, 43, 44]. In advance to such development, we could recom-
mend always to check whether different models of crystal nucleation really refer to
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properties of critical clusters as described in terms of Gibbs theory, Eq. 4, or are
governed by more advanced relations. Such analysis could supply us possibly with
additional suggestions concerning the applicability of CNT, respectively, its limits
in application to crystal nucleation.

4.2 Interplay of Crystallization and Glass Transition

Deviations of the properties of critical clusters as compared with the properties of
the evolving macroscopic phases can be found frequently in different types of phase
transformation processes. Going beyond such general type of behavior, crystalliza-
tion is characterized by an additional particular feature which may be denoted as
interplay of crystallization and glass transition. Here a variety of problems can be
distinguished [45], we will concentrate on only some of them. As the starting point,
we take an experimental fact observed first around 1980 [46] which turned out in the
course of subsequent studies to be a very general phenomenon, an unexpected type
of dependence of the work of critical cluster formation on temperature [16, 18, 44].

Mentioned result is found based on measurements of both steady-state nucleation
rate and time-lag in nucleation. The time-lag can be described theoretically in terms
of CNT by Eq. 21. Utilizing this relation, one can replace it in the pre-exponential
term in Eq. 3 diffusion coefficient or viscosity by the time-lag. Having at one’s
disposal both parameters, steady-state nucleation rate, and time-lag data, one can
then determine via Eq. 2 how the work of critical cluster formation depends on
temperature (or pressure if the respective measurements will be performed). In line
with CNT, it decreases with decreasing temperature starting at themelting or liquidus
temperature but this decrease is observed only down to temperatures corresponding to
the maximum of the steady-state nucleation rate (or the conventional glass transition
temperature). With a further decrease of temperature, the work of critical cluster
formation increases then again in contradiction to expectations based on CNT.

In [46], such behavior was interpreted originally as a consequence of a similar
temperature dependence of the surface tension. This interpretation is followed by
some authors till nowbut can be hardly given a foundation in terms ofGibbs’ classical
theory of capillarity [16–18]. In addition, it contradicts a variety of measurements
showing a decrease of the latent heat of melting with the size of the crystallites and
general rules like the principle of leChatelier-Braun:With an increase of the degree of
metastability, the surface tension is expected to decrease to favor nucleation processes
counteracting the mentioned increase of the level of deviation from equilibrium.

For this reason, other factors have been analyzed with respect to the question
whether they allow one to interpret the described above behavior. In a first such
attempt [16], it was checked whether elastic stresses evolving as the result of critical
cluster formation may be responsible for the observed increase of the work of critical
cluster formation.Utilizing the theoretical concepts derived in terms ofCNTsketched
briefly here earlier it turns out that stresses do have an effect but it is not sufficient
for an explanation of the experimental data. In a next study [47], in order to reconcile
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experimental data and CNT, we assumed an increase of the size, d0, of the structural
units that control nucleation with decreasing temperature for temperatures below the
nucleation rate maximum, T < Tmax. This hypothesis was tested for several glass-
forming liquids, where crystal formation proceeds by bulk homogeneous nucleation.
It can explain also the temperature dependence of the nucleation rate in the range
T < Tmax, where the description of nucleation rate by CNT drastically fails. The
size of the structural units can be correlated either with the size of the cooperatively
rearranging regions (CRR) or connected with an effective size parameter, accounting
for corrections in the theoretical treatment of the kinetics of aggregation in multi-
component systems via a quasi-one-dimensional description.

In a third approach [48], a model for the description of crystal nucleation is
proposed incorporating into classical nucleation theory concepts of spatial hetero-
geneity of glass-forming liquids. It is assumed that nucleation processesmay proceed
with detectable rates only in liquid-like (soft) regions and are suppressed in solid-
like (rigid) parts. Determining appropriately the fraction of liquid-like, respectively,
solid-like regions in dependence on temperature, this approach allows one to achieve
a satisfactory agreement between classical nucleation theory and experiment not
only at relatively high temperatures but also at temperatures lower than that of the
nucleation rate maximum. The model was tested successfully on several silicate and
polymer glasses revealing homogeneous volume nucleation. Some other phenomena
in the interplay of crystallization andglass transition are also discussed in this analysis
giving an independent verification of the validity of our basic assumption.

But there exists also another feature, we consider as so far not appropriately incor-
porated into the theoretical description of crystallization if one would like to account
appropriately for the interplay of crystal phase formation and glass transition. In the
analysis of the theoretical description of stress development and stress relaxation it
has been shown by us that the effect of elastic stresses on crystal nucleation depends
basically on the ratio of the time-lag, the time to establish steady-state conditions
in nucleation, and the Maxwellian relaxation time. For liquids, this ratio has to be
consequently large to prevent the effect of elastic stresses. For glasses as frozen-in
liquids, the opposite situation should be fulfilled, i.e., this ratio should tend to zero in
order to obtain in the theory the limiting cases of a Hookean solid as a special limiting
case. Accounting for a curvature dependence of the surface tension we arrived at the
conclusion that near to the conventional glass transition temperature (corresponding
to a viscosity 1012 Pa s) this ratio is of the order of one and has to tend to zero below
the glass transition temperature.

However, once this is the case, another problemarises. InCNT, the thermodynamic
driving force is computed as the difference between the bulk states of the system both
in the crystalline states and the metastable liquid. As already mentioned, the critical
crystal cluster may have, however, different properties as compared to the respective
macroscopic crystal phase. But, in addition, once the mentioned ratio tends to zero,
the initial state of the liquid will not refer to the metastable equilibrium state but to
a particular non-equilibrium state realized in the course of cooling. Both the ther-
modynamic driving force for crystal nucleation and the surface tension will depend
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on such cases also on the degree of deviation of the liquid state from the respec-
tive metastable equilibrium state. The principal features how such dependence can
be incorporated into the theory have been described in [49–51]. However, its imple-
mentation as a regular tool into the theory of crystal nucleation and growth is very far
from a comprehensive realization. Accounting for the dependence of the relaxation
time on the structural order parameter, in [50, 51] a possible origin of stretched expo-
nential relaxation was described. In addition, it is shown that particular relaxation
mechanisms distinguished already by Kauzmann [11] and recently reconfirmed to
be of particular significance for dielectric relaxation can be explained in such model
terms. Some more information and the discussion of some other topics related to
crystallization of oxide glasses can be found in monographs [5, 6] and reviews [40,
52]. A detailed theoretical analysis of the effects of interplay of deviations of the
liquid from metastable equilibrium and stress development and stress relaxation in
crystal nucleation is presently in preparation.

5 Polymer Crystallization: Some Specific Features

Above described spectrumof achievements and problems is of interest independently
on the particular system where crystallization is studied. Some specific problems of
polymer crystallization will be described below. Generally, also polymer crystal-
lization can be subdivided in primary nucleation and growth, similar to the systems
described above. But due to the chain structure of the polymer molecules, partic-
ular situations exist for nucleation, growth, and for the crystalline morphologies
developing.

From a thermodynamic point of view, the equilibrium configuration of a polymer
chain in the crystalline state should be the extended chain. Commonly, this configu-
ration is not realized for long-chain polymers because of entropic penalties. Polymer
crystals generally represent non-equilibrium states usually referred to as folded chain
crystals [53–56]. Only crystals containing fully stretched chains can be regarded as an
equilibrium thermodynamic state. The occurrence of non-equilibrium folded states
has its origin in the high internal conformational entropy of individual chains in
the melt. Sommer et al. [57] made an estimate for the time needed to create a fully
stretched chain made of 100 monomers by spontaneous fluctuations. The required
time of 1058 s is obviously behind any practical relevance. As a consequence of chain
folding lamellar, plate-like crystals with thickness of the order of 10 nm and lateral
dimensions up to several ten µm are often formed. The lamellae are further arranged
in lamellae stacks where the crystals are separated by amorphous layers of a few nm
thickness and the stacks may form 100 µm sized spherulites.

Regarding the dielectric relaxation behavior, the lamellae stack morphology is
of particular interest. Lamellae stacks comprise crystalline lamellae and amorphous
layers in between [58]. The amorphous layer is often subdivided into a fraction
participating in the segmental relaxation (glass transition) and another fraction not
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participating in segmental relaxation even if is non-crystalline. The latter is called
rigid amorphous fraction (RAF) [59, 60]. The RAF does not contribute to the glass
transition (segmental relaxation) but to the secondary relaxations like the ß-relaxation
in polyethylene terephthalate [61].

Primary crystal nucleation in polymers shows somepeculiarities as described, e.g.,
byMuthukumar [62]. Along one polymer chain (onemolecule) several crystal nuclei
may evolve. Due to their coupling through the polymer chain, these nuclei are not
independent and there will be some competition between them.With the introduction
of fast scanning calorimetry (FSC) [63] detailed kinetic studies of homogeneous
nucleation in many polymers became feasible [38] and the often resulting nodular
morphology (crystal size in the order of 10 nm) became accessible for relaxation
studies [64].

Until now, there is a strong controversy regarding the question on how a polymer
crystal lamella is growing. Several models were proposed. An early, widely applied
model is theHoffman-Lauritzen theory of polymer crystallization [65]. Nevertheless,
the Hoffman-Lauritzen approach was frequently challenged and several competing
theories were developed (for recent reviews see references [55–57, 66–70]). Conse-
quently, also in this respect a broad spectrum of problems remains not finally
settled.

6 Concluding Remarks

Once one is dealing with the theory of different phenomena in nature, one has also
to realize for which purposes the respective analysis is made. The basic desire of
experimenters attempting to apply the theory is that the theory should be as simple
as possible. In contrast, theoreticians always recognize a variety of effects which
may also be of importance tending to advance the theory making it more and more
complex and, consequently, harder to apply. Albert Einstein suggested to make a
compromise in this connection proposing that “everything should be done as simple
as possible but not simpler”. A foundation of the possibility to proceed in such way
was also given by him stating “subtle is the Lord but malicious he is not”. With
respect to the description of crystallization, CNT with its basic assumptions and
its development in different directions can be considered possibly as a realization
of such compromise. However, thinking once again about these problems Einstein
revised his opinion: “I have thought about once again. Quite it could be that God
is malicious”. Consequently, not the theoreticians are responsible for the trouble
they sometimes cause the experimenters demanding and trying to advance a variety
of partly principal improvements of CNT. Hopefully, these developments can be
brought into a form similarly tractable in application to experiment as CNT provides
it now but at a higher level.
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