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nn Learning Objectives
By the end of the chapter, the reader will:

55 Have learned the meaning of bioinformatic pipe-
line for next-generation sequencing and its key 
steps

55 Have learned the differences among the most im-
portant output of a pipeline

55 Have reached the knowledge of variant annotation 
and guidelines helpful for clinical reporting

17.1   �Introduction

Cancer is a complex class of diseases affecting the 
genome. Thus, which is a better way to study it if  not 
through the comprehension of DNA complexity? 
Revolutionary technological advances have been made 
since the completion of the first genome sequencing to 
date. High-throughput technologies pose many steps 
forward since the identification of tumor suppressor 
genes and oncogenes to the uncovering of the genomic 
landscape of many tumors. In particular, the advent of 
next-generation sequencing (NGS) platforms in the first 
decade of 2000 made possible to shed light in the tax-
onomy of cancers. Nevertheless, many questions arise 
from deeper knowledge deriving from these advances, 
starting from technical issues, e.g., depth/breadth of 
sequencing, to biological interpretation, e.g., how to dis-
tinguish variants with pathological significance from 
biological neutral ones, and ethical problems, e.g., man-
agement of incidental findings.

Precision oncology and genome-driven clinical trials 
[1] are the direct consequences of the introduction of 
NGS in the routine laboratory activity. Moreover, we 
are now able to exploit the tumor heterogeneity and 
acquired tumor resistance. However, we are still far from 
the real patient-tailored therapies [2]. To gain such a 
knowledge, the creation of consortia, e.g., The Cancer 
Genome Atlas, with the aim of data sharing and the cre-
ation of bioinformatic algorithms able to handle and 
integrate such amount of data, are mandatory.

17.2   �A Brief History of Sequencing: 
From Sanger to Third-Generation 
Sequencing Platforms

A step forward in molecular biology was the develop-
ment in 1983 of polymerase chain reaction (PCR) by 
Kary Mullis, awarded with Nobel Prize in Chemistry in 
1993. Such a method, which seems to be very far from 
the present technologies, is still fundamental in the new 
sequencing platforms. Indeed, Sanger DNA sequencing, 
also known as chain terminator sequencing, developed 

in 1997, relies on PCR. It was automated through the 
introduction of capillary electrophoresis and was con-
sidered the gold standard until almost the first decade of 
2000 [3]. In the meantime, human genome project was 
launched in 1990, and it requires 13 years to complete 
the first almost-complete sequence of human genome. 
However, different technological advances started to be 
implemented. During 1996, the first NGS platform was 
developed, and in 2004 it was commercialized: Roche 
454. Thus, the possibility to fully sequence an individu-
al’s genome at the cost of $1000 dollars was not consid-
ered so utopistic [4]. Roche 454 was just the beginning 
because since then, new platforms continued to be 
implemented with different chemistries, lowering, by 
late 2015, the cost to obtain a high-quality human 
genome to $1500 dollars.

To date, two major companies, Illumina and Thermo 
Fisher, are the vendor of the most important NGS plat-
forms. Both of them are short-read sequencer producing 
reads shorter than 300 bp. Both Illumina protocols and 
Thermo Fisher ion semiconductor sequencing (Ion 
Torrent) are cheap sequencing methods extensively used 
in clinical laboratory. The last-born sequencer from 
Qiagen also produces short reads: 100–150  bp length. 
Two new platforms are available only for research pur-
poses, also known as third-generation sequencing plat-
forms. They are able to produce long reads. The PacBio 
SMRT (single-molecule real time) technology could 
sequence reads longer than 2.5 Kb, while the Oxford 
Nanopore Technologies MinION, through the use of 
single-stranded pore technology, is able to sequence 
molecules >10 Kb.

Despite the possibility of sequencing the whole 
genome or the whole exome, the most used approach in 
molecular testing is targeted gene panels, including a 
discrete number of genes both as coding regions and 
hotspots, that are very small regions to detect a single-
specific mutation. Gene panels are cost-effective and 
allow to obtain data with very high depth. Whole 
genome/exome sequencing are not routinely used in lab-
oratories being time-consuming and with still elevated 
costs. Moreover, they pose ethical problems regarding 
incidental findings and their management.

17.3   �From Wet-to-Dry Methods

17.3.1   �NGS Intrinsic Errors

NGS technologies lead to the spread of bioinformatic 
efforts to appropriately analyze and manage data. 
Indeed, a clear separation between wet phase, namely 
the bench procedures, and data analysis exists. However, 
to be able to be appropriate in such a purpose, it is man-
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datory to deeply know intrinsic errors related to sequenc-
ing methods. All NGS technologies primary consist of 
preparing a “library,” which is the creation of a collec-
tion of small fragments of DNA which in turn will be 
sequenced. During library preparation, the fragments of 
DNA are linked to molecular barcodes to perform mul-
tiple sample sequencing, PCR primers and linkers which 
binds molecules to surface where molecules have to be 
sequenced. Then library have to be enriched for targeted 
sequencing (e.g., gene panels or whole exome sequenc-
ing). Enrichment could be performed through sequence 
capture which uses hybridization to complementary 
sequences (capture-based approach) or by PCR (ampli-
con-based approach). After these steps, sequencing 
could be performed. Illumina (e.g., HiSeq, MiSeq, 
NextSeq) and Ion Torrent (e.g., IonPGM, IonProton, 
S5) have different chemistries and thus biases. In detail, 
each DNA fragment is immobilized to a flow cell for 
Illumina and to a bead for Ion Torrent in order to clon-
ally amplify each fragment. Sequencing by synthesis is 
the methods of Illumina sequencer, which uses fluores-
cently labelled reversible terminator-bound dNTPs. At 
each step, before to be washed way, the fluorophore 
bound to the added base is illuminated by a laser. The 
issue regards the similar emission spectra of fluoro-
phores of A and C as well as G and T (red and green 
light, respectively, and separated by filters). Moreover, 
phasing (incomplete 3′ terminator removal due to erro-
neous enzyme kinetics) and pre-phasing (the skipping of 
incorporation of 3′ terminator caused by too fast syn-
thesis) are further problems, which makes miscalls the 
type of error typical of Illumina platforms.

Ion Torrent chemistry is related to variation of pH 
due to H+ release after base incorporation, sensed by a 
solid-state pH sensor. When a stretch of homopolymers 
has to be sequenced, it was observed that AA stretch 
corresponds to a twofold increase in the pH with respect 
to single A. AAA stretch reaches only 1.5-fold increase 
of AA stretch and so on. Thus, reduction of increase of 
pH changes with the increase of the number of bases in 
homopolymers stretch results in incorrectly called 
homopolymer regions.

17.3.2	 �Alignment and Coverage Evaluation

Notwithstanding all the issues depicted above, sequenc-
ing run ended and data have to be correctly analyzed 
(.  Fig. 17.1).

At the end of sequencing, raw data, namely the DNA 
short fragment amplified, are in the format of FASTQ 
files, which include not only the sequences of the frag-
ments (reads) but also quality scores of each base. They 
are used to check quality of FASTQ files (e.g., FASTQC), 

which in turn could be trimmed to maintain only high-
quality bases (e.g., Trimmomatic, CutAdapt). Trimming 
is a bioinformatic step which allows to cut low-quality 
bases.

A typical bioinformatic pipeline (namely, the series of 
steps to perform a bioinformatic analysis) includes the 
alignment of reads against a reference genome whose ver-
sion has to be always specified to contextualize the 
genomic coordinate (e.g., hg19/Grch37). Different algo-
rithms are used to perform this step. BWA [5] and Bowtie 
[6] are considered the best algorithms to manage short 
reads coming from Illumina platform. Ion Torrent has 
developed a “proprietary” aligner, TMAP, which is able to 
perform alignment for reads including also information of 
the flows that are the pH changes due to the incorporation 
of a specific base. The output is a SAM or BAM file.

Sequencing
Output: FASTQ �les

Alignment
Output: SAM/BAM �les

Variant calling
Output: VCF �les

Variant annotation
Output: clinical report

Coverage
analysis

.      . Fig. 17.1  Description of  a typical bioinformatic pipeline for 
next-generation sequencing variant calling
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To evaluate the performance of a sequencing run to 
be confident on results, coverage should be checked. The 
term “coverage” often is misinterpreted. It is important 
to be able to distinguish two aspects: per-base coverage 
and breadth of coverage (.  Fig. 17.2).

Their definitions, as reported in 7  http://www.
metagenomics.wiki/, are:

“Per-base coverage is the average number of times a 
base of a genome is sequenced. The coverage depth of a 
genome is calculated as the number of bases of all short 
reads that match a genome divided by the length of this 
genome. It is often expressed as 1X, 2X, 3X,... (1, 2, or, 
3 times coverage).”

“Breadth of coverage is the percentage of bases of a 
reference genome that are covered with a certain depth. 
For example: 90% of a genome is covered at 1X depth; 
and still 70% is covered at 5X depth.”

Practically, in clinical reports coverage could be 
reported as average indicating percentage of targeted 
bases covered over the cutoff  (e.g., average coverage 
panel of 2.5X with 99% of targeted bases covered 
>200X). For germline mutations, a coverage of 80X 
could be sufficient to confidently call variants; somatic 
alterations, often present at subclonal level, require 
higher coverage (at least 500X).

17.3.3	 �Variant Calling

The crucial step is variant calling, which is the identifi-
cation of  DNA alterations. Ion Torrent has an inte-
grated plugin to call variants (Torrent Variant Caller). 
Regarding Illumina platforms, many variant caller 
algorithms have been implemented, as GATK 
HaplotypeCaller or VarScan2, each of  them with dif-
ferent performances and with tunable options to gain 

confidence in variant calling process. In oncology test-
ing, somatic variants, the so-called actionable variants, 
have to be reported to clinicians. Somatic alteration 
calling could be performed by the “tumor-normal” 
pipelines (e.g., MuTect, Strelka), referring to algo-
rithms which analyze tumor samples coupled to germ-
line control. In such a way, confounding factors related 
to the noise present in the germline samples are used to 
handle variants identified in tumor sample. Results 
coming from this type of  approach are more reliable in 
particular regarding specificity.

The output is a variant call format (VCF) file, which 
includes not only the genomic coordinates and the type 
of called variants but also information about quality. In 
particular, variant read number, strand bias and variant 
allele frequency are important values to be taken into 
consideration when raw VCF variant filtering has to be 
performed to retain as much as possible true positive 
variants.

Variant reads are the number of reads supporting 
the presence of a variant. Generally, calls supported by 
fewer than five variant reads are typically considered to 
be likely false-positive calls.

Strand bias is a statistics measure of the deviation of 
the probability of a variant to be sequenced both on 
minus and plus strands. Higher values are associated 
with a probable sequencing artifact [7].

Variant allele frequency (VAF) is the number of 
reads linked to a variant divided by the overall coverage 
at the same locus. For germline testing, VAF is a mea-
sure of zygosity (50% VAF indicates heterozygous alter-
ations, while 100% VAF is associated with homozygous 
alterations). For somatic testing, which is the most fre-
quent in an oncology setting, VAFs are related to clonal-
ity that is the number of clones carrying a mutation. 
Somatic VAFs show a very high variability. For example, 
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.      . Fig. 17.2  Representation of 
the concept of  breadth and 
depth of  coverage
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in mutation related to resistance, e.g. EGFR T790M in 
non-small cell lung cancer patients, even very low VAF 
variants are reported in order to set a correct therapeutic 
approach.

Moreover, visual inspection of variants is allowed by 
the Integrative Genome Viewer [7], which works in a 
desktop-friendly manner (.  Fig. 17.3).

17.3.4	 �Variant Annotation

Filtered VCFs, containing as much as possible reliable 
variants, have to be annotated. Variant annotation, gen-
erally speaking, gives sense to the list of mutations pres-
ent in VCF file in terms of biological impact in the 
transcription and translation of the gene. It is an impor-

a

b

.      . Fig. 17.3  Visual inspection 
of  (a) a pathogenic deletion in 
EGFR gene indicating 
responsiveness to tyrosine kinase 
inhibitors in non-small cell lung 
cancer patients and (b) a 
pathogenic single-nucleotide 
variation in KRAS for patients 
affected by colorectal cancer 
which could benefit of  targeted 
therapy
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tant step to filter germline variants and to retain only 
somatic ones when it is required to set a therapeutic 
strategy (e.g., KRAS alteration in codons 12, 13 and 
61 in colon cancer; BRAF V600 alteration in melanoma, 
etc.) or for diagnostic or prognostic purpose. Indeed, in 
clinical setting tumor-normal pipelines, considering 
tumor and healthy genetic cell assessment in each indi-
viduous, generally could not be applied due to the lack 
of blood specimens. In detail, this step involves the use 
of several databases (.  Table 17.1):

55 Database helpful in the prediction of deleteriousness 
of variants, including several in silico algorithms, 
e.g., SIFT and Polyphen. These tools allow to predict 
pathogenicity of a variants through the analysis of 
conserved amino acids in homologous proteins.

55 Genetic population databases, reporting allele 
frequency of variants detected in general population 
or in specific-population, e.g., Caucasian. Population 
databases reports allele frequencies of alternative 
alleles in healthy individuals. In such a way, it could 
be possible to infer a biological impact because low 
frequencies could be associated to a pathology;

55 Somatic databases, reporting allele frequency and, 
eventually, pathogenicity of cancer alterations. In 
such a way, it could be possible to know the 
penetrance of a somatic alteration in the onset of a 
malignancy.

17.3.5	 �CNV Detection

Detection of copy number variations (CNVs) is a clini-
cal need for some malignancies (e.g., HERB2 amplifica-
tion in breast cancer). NGS allows to detect CNVs, even 
if  it is still challenging for amplicon-based panels. CNV 
calling requires algorithms different from tools used for 
variant calling. Generally laboratory confirms results 

through an alternative wet (e.g., MLPA) or bioinfor-
matic method. Three main classes of method are at the 
basis of the algorithms.

55 Depth of coverage method: bioinformatic tools 
detect increase or decrease of coverage in genomic 
region. The miscalling is due to the nonuniformity of 
coverage between samples or runs. The advantage is 
the possibility to identify large CNV (e.g., using 
EXCAVATOR2 tool [8]).

55 Read pair analysis: this method requires paired-end 
sequencing and can detect only small CNV (e.g., 
using BreakDancer tool [9]).

55 Split read: similarly, to read pair analysis, this analysis 
requires paired-end sequencing, but it is also able to 
detect breakpoint because it uses reads failing or 
partially failing to map (e.g., using Pindel tool [10]).

Ion Torrent platforms use a proprietary algorithm. The 
core of such a method is the creation of Variability 
Correction Informatics Baseline, including at least 48 
samples. The baseline allows to perform correction on 
log2 ratio of amplicons. Moreover, baseline includes 
information about sex of samples (important for X 
chromosome because only a copy is present in male sub-
jects) and tumor cellularity.

17.4   �Liquid Biopsy

In 1869, the first evidence of circulating tumor cells in 
the blood of metastatic patients has been provided by 
Thomas Ashworth. Circulating tumor cells and cell-free 
DNA could be analyzed in all liquid compartment of 
the body (e.g., blood serum and plasma, urine, liquor, 
sputum, etc.). For diagnostic purpose, plasma is still the 
most used [11]. The concept underlying liquid biopsy is 
the monitoring of disease (e.g., minimal residual dis-

.      . Table 17.1  Important databases used in variant annotation

Annotation databases

Prediction databases dbNSFP 7  http://varianttools.sourceforge.net/Annotation/dbNSFP

Population databases ExAC
1000genomes
Exome sequencing project

7  http://exac.broadinstitute.org/
7  http://www.internationalgenome.org/
7  http://evs.gs.washington.edu/EVS/

Oncology databases COSMIC
TCGA
My cancer genome

7  https://cancer.sanger.ac.uk/cosmic
7  https://portal.gdc.cancer.gov/
7  https://www.mycancergenome.org/
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ease) and of the response to treatment (e.g., detection of 
resistance mutation T790M in EGFR gene to tyrosine 
kinase inhibitors in NSCLC patients) in a cost-effective 
and noninvasive fashion.

Cell-free DNA could be detected in many body fluids 
as a consequence of release from dying cells and circu-
lating tumor DNA (ctDNA) is a part of the total 
amount, spanning from 0.01% to 90% in relation to 
stage of disease, tumor burden, and vascularity [12]. 
ctDNA could be deep sequenced with bias introduced 
during library preparation (e.g., 8-oxoG pairing with 
adenine and not citosine) and sequencing with 0.1–1% 
of miscalling depending of the platform used for 
NGS. Bioinformatic analyses are responsible in particu-
lar for false-positive calling in repetitive sequences, but 
the development of appropriate tools is overcoming 
such a problem.

The major issue is the very low allele frequency of 
alterations to be detected from experimental noise.

The bioinformatic pipelines are similar to those 
illustrated above, but some steps are performed by 
algorithms optimized for ctDNA (AfterQC [13], MrBam 
(7   https://github.com/OpenGene/MrBam) and 
MutScan (7  https://github.com/OpenGene/MutScan)).

In detail:
55 AfterQC allows a better preprocessing of FASTQ 

files.
55 MrBam improve supporting read number counting 

for mutations.
55 MutScan is a visualization tool for interactive 

analysis.

Molecular barcoding sequencing [14] and CAPP-Seq 
[15] methods improve variant identification in 
ctDNA. Molecular barcodes (Unique Identifiers, UID, 
or Unique Molecular Identifier, UMI) are strings of 
complete random nucleotides, ligated to templates 
through ligation or through primers during PCR. Data 
analysis could be summarized into three steps:
	1.	 UID extraction: the advantage of molecular tagging 

is the introduction of a fixed short sequence (five to 
seven nucleotides) between UID and DNA sequence, 
avoiding issues related to synthesis errors which 
could be responsible for alterations in the length of 
the barcode (FASTQ files).

	2.	 Clustering of the reads with the same UID from 
BAM files.

	3.	 Generation of a consensus read for each cluster and 
scoring of each position to call mutations.

CAPP-Seq is another approach for the detection of 
alterations in ctDNA. Basically, it is based on the defini-
tion of a “selector” from bioinformatic analyses of pub-

licly available data to determine the most frequent 
mutations, ranked by their recurrence in samples. 
Selector is used to design biotinylated probes to reduce 
library to the region of interest. Then, variant calling is 
performed through different statistical approaches 
against the background of other ctDNA mutations 
through Bonferroni-adjusted Z-test.

17.5   �Bioinformatic Pipeline Validation

Validation of an NGS process is critical because it 
involves both the wet methods and the subsequent bio-
informatic analyses. Validation of wet procedures could 
be performed through the use of other laboratory tech-
niques (e.g., Sanger sequencing, fluorescent-based 
method, or droplet digital PCR) or by samples with 
known genotype. Institutions as the National Institute 
of Standards and Technology (NIST) are able to certify 
reference standards. Their main feature is commutabil-
ity, which is the “ability of a reference standard to per-
form comparably to treated samples” [16] in library 
preparation, sequencing, and analysis (e.g., FFPE sam-
ples could reduce commutability of a reference). In one 
established reference standards, the uncertainty could be 
established from the differences from the expected and 
the observed values. NA12878, that is the genome of a 
healthy European female, is one of the most used refer-
ence standard in many clinical laboratories. In detail, 
reference standards offer a “truth set” to evaluate NGS 
performance in terms of sensitivity, specificity, accuracy, 
and precision. Bioinformatic analyses are also a com-
plex step to be evaluated and validated, and they require 
also a “ground truth.” Generally, in silico datasets are 
generated through several available tools. FASTQ or 
BAM files could be easily created, providing not only 
datasets with known genotype but also with profile error 
of the used platform, and some algorithms could simu-
late heterogeneity in tumor samples. Of note, simulated 
datasets are able to validate bioinformatic step, but they 
could not replace the complexity of real samples and 
could not control wet phase of NGS testing.

17.6   �Variant Interpretation and Clinical 
Reporting of Bioinformatic-Related 
Information

Clinical interpretation of variants is the most important 
step in the workflow of a molecular testing, even if  it 
could be time-consuming due to the difficulty in its 
automation. Due to the large use of multigene targeted 
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sequencing panels, many variants could be detected and 
the reporting of results is not so simple. Variants need to 
be prioritized and logically interpreted in a clinical sense. 
For instance, it could be possible to identify variants 
which could be targeted by a drug not specific for the 
malignancy under evaluation or mutations whose conse-
quences do not fit with the mechanism of action of a 
drug.

Regarding germline variants, the American College 
of Medical Genetics and Genomics, the Association of 
Molecular Pathologists, and the College of American 
Pathologists [16] wrote guidelines to assign clinical rele-
vance of variants combining different approaches. 
Criteria include minor allele frequency reported in data-
bases, frequency in affected individuals, prediction of 
the effect of the mutations, segregation, and inheritance 
information. Population-specific minor allele frequency 
(e.g., European-specific minor allele frequency) is 
another important factor to be taken into consideration. 
Minor allele frequency is the frequency observed in 
healthy population of the alternative allele. Population 
database reports data from almost 12,000 individuals, 
generally not affected by severe diseases; thus rare vari-
ants have great probability to have been detected and 
then reported. It is clear that without automation, fol-
lowing these recommendations could be influenced by 
operators. Indeed, it has been measured that the applica-
tion of these guidelines to the same group of alterations 
reached 71% of consensus between different laborato-
ries.

Similarly, in 2017 guidelines for somatic alterations 
have been drafted by American Society of Clinical 
Oncology, Association for Molecular Pathology, and 
College of American Pathologists (ASCO/AMP/CAP) 
[17]. They suggested to group variants into four catego-
ries based on four levels of evidence (.  Table  17.2). 
Guidelines are helpful to better know a variant compar-
ing them with knowledge-based databases, even if  a 
deep know-how is requested to be able to manage this 
particular step. To date, many research groups and com-
panies focused on the implementation of knowledge-
based databases (e.g., OncoKB). Generally, they are 
developed by a group of specialists, from molecular 
biologists to clinicians, also known as curator, that 
“enrich” variants with information. Curators link to a 
variant several levels of information regarding the biol-
ogy of the gene, the prediction of pathogenicity, and all 
detail regarding its involvement in prognosis and/or 
therapeutic approach.

ASCO/AMP/CAP guidelines recommend to report 
methodology details in the report, such as limit of 

detection and minimal coverage. Moreover, sequenced 
genomic regions (e.g., full gene or codon position) 
have to be clearly specified at the end of  the clinical 
report.

More specific recommendations regarding bioinfor-
matic analyses should be drafted, and, to date, many 
tools are available and under development. Thus, it 
would require more time to gain a consensus on bioin-
formatic algorithms.

17.7   �Reproducibility in Bioinformatics

Given the acquired importance of bioinformatics in the 
last years, issues related to reproducibility regard also 
the analysis steps. The presence of several algorithms, 
each of them with different versions, to perform each 
part of a bioinformatic pipeline, changes in the library 
used to compile and install packages are responsible for 
such an issue. Moreover, it has been observed that only 
10 papers out of 50 selected reported BWA parameters 
used to perform alignment, and only 11% of studies 
made available source code and data of simulated data-
sets.

Sandve [18] proposed ten rules for good practice in 
bioinformatic analyses (.  Table 17.3). Many solutions 
are available to deal with reproducibility. For instance, 
Galaxy (7  https://galaxyproject.org/) are cloud solu-
tions that do not completely fulfill the suggested rules 
because pipelines are not customizable and privacy and 
ethical issues exist. To date the most promising approach 
is the container technology that is the virtualization, the 
so-called image of a bioinformatic pipeline. Softwares 
and dependencies are packed together avoiding prob-
lems related to versions and upgrading of operating sys-
tem. To date, Docker (7  http://www.docker.com) is 
considered the best environment to fit the rules of good 
practice. However, the use of such environment requires 
programming skills to be able to customize bioinfor-
matic workflows. To make it easier, recently the 
Reproducible Bioinformatics Project (7  http://
reproducible-bioinformatics.org) has been proposed 
not only for the distribution of docker images but also 
for the implementation of a framework to build up pipe-
lines fulfilling the ten rules.

Thus, many efforts to make reproducible bioinfor-
matics are being made, and, at the very first instance, 
bioinformaticians have to be clear in the description of 
the workflow to allow other scientist to reproduce their 
results.
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.      . Table 17.2  Categories identified by ASCO/AMP/CAP guidelines and their levels of  evidence useful for clinical report of  variants

Categories Evidence Therapy Diagnosis Prognosis

Tier I: Variants 
of  strong 
clinical 
significance

Level A 1. Biomarkers that predict 
response to FDA-approved 
treatments
2. Biomarkers included in 
professional guidelines that 
predict response or resistance 
to therapies for a specific type 
of  tumor

Biomarkers included in 
professional guidelines 
as diagnostic for a 
specific type of  tumor

Biomarkers included in 
professional guidelines as 
prognostic for a specific 
type of  tumor

Level B Biomarkers that predict 
response or resistance to 
therapies for a specific type of 
tumor based on well-powered 
studies with consensus from 
experts in the field

Biomarkers of  diagnostic 
significance for a specific 
type of  tumor based on 
well-powered studies 
with consensus from 
experts in the field

Biomarkers of 
prognostic significance 
for a specific type of 
tumor based on 
well-powered studies 
with consensus from 
experts in the field

Tier II: 
Variants of 
potential 
clinical 
significance

Level C 1. Biomarkers that predict 
response or resistance to 
therapies approved by the FDA 
or professional societies for a 
different type of  tumor 2. 
Biomarkers that serve as 
inclusion criteria for clinical 
trials
2. Biomarkers that serve as 
inclusion criteria for clinical 
trials

Biomarkers of  diagnostic 
significance based on the 
results of  multiple small 
studies

Biomarkers of 
prognostic significance 
based on the results of 
multiple small studies

Level D Biomarkers that show plausible 
therapeutic significance based 
on preclinical studies

Biomarkers that may 
assist disease diagnosis 
themselves or along with 
other biomarkers based 
on small studies or a few 
case reports

Biomarkers that may 
assist disease prognosis 
themselves or along with 
other biomarkers based 
on small studies or a few 
case reports

Tier III: 
Variants of 
unknown 
clinical 
significance

Not observed a 
significant allele 
frequency in 
population databases 
or pan-cancer/
tumor-specific 
databases

Tier IV: Benign 
or likely benign 
variants

Observed at high 
allele frequency in 
population and no 
significant 
association with 
cancer
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17.8   �Conclusions

NGS approaches posed a step forward into the deep 
knowledge of the human genome. The assessment of the 
presence of specific alterations is widely applied in the 
oncological clinical settings. The use of multigenic panel 
is both time- and cost-effective. Thus, the field of clinical 

bioinformatics is going to have a widespread diffusion. 
Data analysis is now considered the dry phase of an 
experimental protocol because of the importance to 
correctly tune parameters linked to sequencing data. A 
pipeline could be considered as validated not only when 
is the best “combination” when compared to “ground 
truth” but also when it is reproducible. In conclusion, 
there is an urgency to draw shared and unique good 
practices to grant “true” and reproducible results.

Key Points
55 The knowledge of the intrinsic bias of the used 

NGS platform is the first step to perform a correct 
data analysis.

55 Quality check of data, alignment, variant calling 
and variant annotation are the key steps of a 
variant calling pipeline.

55 Pipeline has to be validated through “ground 
truth,” which could be a simulated dataset or 
samples with known mutational status.

55 Variant interpretation is the last step involving the 
use of specific databases and specific rules for 
clinical reporting.

55 Reproducibility is an important issue in 
bioinformatics and there is an effort to grant it.
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