
Chapter 5
Analysis of Pedestrian Motion Using
Voronoi Diagrams in Complex
Geometries

Mohcine Chraibi, Bernhard Steffen, and Antoine Tordeux

Abstract Voronoi diagrams are an established method in the analysis of pedestrian
motion for constructing a density from two-dimensional positions. It is in turn used to
give pointwise values for speed, movement direction, flow etc. The method was first
described for high-density situations inside a crowd moving in a simple geometry
without considering the influence of walls. However, more complicated distance
calculations are needed for more complicated geometries where there are several
obstacles or corners. In addition, partially empty spaces also require special treatment
to avoid excessively big cells. These problems can lead to estimation errors when
not handled correctly in subsequent use. In this work, we give details on how to
adapt the calculations of Voronoi diagrams to make them fit for the presence of
walls and obstacles in complex geometries. Furthermore, we show how that for
persons at the edge of a group the personal space can be reasonably restricted. Based
on these modifications, having pointwise values for quantities of interest allows
to give average values for arbitrary geometries, not just for lines or rectangles of
measurements. However, in order to obtain reasonablemeasurement values, different
quantities may need different kind of averages—arithmetic or harmonic, or weighted
with density.
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5.1 Introduction

Only positions of persons can be measured directly, all other values are derived by
more (density) or less (speed) involved computations. The density, quantifying the
spatial proximity of the pedestrians, is in particular a fundamental variable to assess
the safety of a crowd gathering and is considered a classic indicator for the level
of service and safety of pedestrian facilities [1–4]. The density is also central when
analysing the individual fundamental diagram, a characteristic phenomenological
relationship linking the flow rate and the density [5, 6]. Different definitions for
the density for pedestrians can be found in the literature. Some of them are based
on kernels [6, 7], Voronoi diagram [8], Minkowski fractal dimension [9], features
tracks (and the distinction between moving and static features) [7], or background
removal and pattern recognition [10]. See [11–13] for a comprehensive comparison
and survey on techniques used to estimate the density.

The use of Voronoi diagrams for the analysis of pedestrian density was first devel-
oped and described for high density situations in simple geometries without the influ-
ence of walls and inside a crowd. The resulting density distribution was used also to
calculate averages of quantities of interest over certain regions. However, more com-
plicated geometries need more complicated distance calculations. Partially empty
spaces require some modifications, too; an additional mechanism of limiting the
(indifinte) size of the Voronoi cells is needed. These problems are only sketched
in the original paper [8] and therefore subsequently not always handled correctly.
Similarly, the averaging process is not always a trivial choice to make. Depending
on the quantity obtained, different averages have to be used for optimal results. In
this paper we address these issues and propose new methodologies to solve them.

5.2 Voronoi Diagrams in the Presence of Obstacles

It is obvious that obstacles (walls, barriers, gates) do not belong to the personal space
of the person and the Voronoi cell has to be cut with the obstacle. But the effect of an
obstacle is possibly more elaborated than simply cutting off the Voronoi cell—the
shape of the Voronoi cell changes, too. The distance between points in space in the
presence of obstacles should not be the standard Euclidian distance, but the length
of the shortest possible path. For an example let us consider the dividing line for the
cells of two persons, one standing at (−1, 0) and the other at (0,−2) with a wall
between them from (0,0) to (−100,−100), with a cutoff of 4 (see Fig. 5.1). The
normal dividing line (−0.5,−1) + α(1, 2) is correct only for y ≥ 0 (above the end
of the wall), for y ≤ 0 the division line due to the wall is given by the equation

√
x2 + y2 + 1 =

√
x2 + (y + 2)2,

which gives a hyperbola
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Fig. 5.1 Calculation of Voronoi diagram with an obstacle. Left: all area; right: center part. The
black curve is the obstacle while the curve is the dividing line. The green and blue curves are
respectively the equidistance lines for the pedestrian located at (−1,0) and the pedestrian located at
(0,−2)

x =
√
3y2 + 6y + 2.25,

and, above of the wall, all space belongs to the first person or to no one.
This is still a fairly simple situation to compute, where the distance from point

1 is either the Euclidian distance or the Euclidian distance from the endpoint of
the wall plus the distance from the agents to this endpoint. In more complicated
situations—multi corner, rounded or multiple obstacles—the dividing line may be
made up of many pieces of analytic functions or require numerical calculation. This
exact dividing line is much more complicated for computation than the line based
on Euclidean distance. Fortunately, this will usually be needed only for very few
cells. As people have a non-zero extend, it seems appropriate not to allow a path to
touch an obstacle, but keep some distance, for instance half shoulder width. In the
examples used in this work we set this minimal distance to 0cm and 15 cm, although
the proper value depends on many factors. See also Fig. 5.2.

5.3 Cutoff and Construction of a Density Distribution

Basic proxemics rules show that the personal space should not extend too far out,
therefore some kind of a cutoff is necessary to limit the size of the cells. The simplest
case is a constant cutoff, e.g. cutting all the cells at 0.5m from the person. Unfor-
tunately, this distance is variable and depends on the actual situation and density.
While 0.5m is probably sufficient for an evacuation situation with an homogeneous
density, it may be too short for a relaxed waiting situation, where 1m for instance
will be more appropriate. A reasonable adaptive cutoff would be cutting at the min-



42 M. Chraibi et al.

Fig. 5.2 Examples of obstacleswith 15cmdistance required. Left: wall fromFig. 5.1; right: vertical
pole. See Fig. 5.1 for the legends

imal distance to another person, maximal at 1 m. If the cutoff is required to be the
same for all persons, the 25% quantile or the mean of the minimal distance may be
reasonable.

It is possible to use a “soft” cutoff, e.g a linear drop of density at the distance 0.4
to 0.6 m, or even a differentiable density, but this leads to complicated computations
with little benefit. The cutoff proposed in [14]—restricting the whole space to the
convex hull of the persons and additionally for each cell extending beyond the convex
hull cutting out the triangle made of the position of the cells person and the two
intersection points with the convex hull—is not systematically applicable. A density
distribution can also be constructed by attaching a standard density kernel to every
person. The Gaussian is the common choice, but others are possible. These functions
have the same problems with obstacles, and the choice of the size of the kernel needs
the same considerations as the cutoff choice, but is needed everywhere and not just
for the edge of a group. A possible combination would be choosing Gaussians with σ

such that the corresponding circle around a person has the same area as the Voronoi
cell [13].

5.4 Averaging

The density function allows to define pointwise other quantities of interest for the
entire area. These are for instance velocity v, speed v = ||v||, flux J = v · ρ. While
this can lead over time to a rich data set, for most purposes, a drastic reduction in the
amount of data is necessary. This is usually achieved by averaging the obtained data
over time or space. In stationary situations , e.g. the neighbourhood of a bottleneck
for most of the evacuation time, averages over time [15] can give useful insights
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into the system. Similarly, averages over space or space and time may contain most
of the important information of an experiment. However, there are pitfalls. It is
necessary that the averages to allow the same algebra as the initial quantities, at least
approximately. This means that the average speed times average density should be
average flow, length divided by speed should be time needed (space mean speed, see
[16]), etc. In the presence of large fluctuations, this requires care in the choice of the
average.

The simplest problem is averaging density, the formulas for average over space
D, time T2 − T1, and space and time are

1

|D|
∫

ρ(x, t)dx,
1

T2 − T1

∫
ρ(x, t)dt,

1

|D|
1

T2 − T1

∫
ρ(x, t)dxdt.

Some quantities—like speed, direction are defined only where there is a person, and
undefined where ρ(x) = 0. Here two different averages are possible, e.g. for speed,
over the area occupied (5.1) or over (partial) persons (5.2):

∫
v(x)χ(ρ(x))dx
∫

χ(ρ(x))dx
(5.1)

∫
v(x)ρ(x)dx
∫

ρ(x)dx
(5.2)

Here χ(·) is the characteristic function. These averages differ, but both may be used
in different contexts (5.1) may be used to predict behaviour if the speed is mostly
determined by the floor (e.g. uphill, rough, slippery), (5.2) shows the movement of
groups. Using

1

|D|
∫

|v(x)|χ(ρ(x))dx

for an average means setting the undefined speed to zero and is definitely not rea-
sonable. Here the average speed depends on the size of the empty area.

The velocity is important for the calculation of two inherently different
quantities—the flux and the required passing time. These two uses require differ-
ent averages. The average speed along a path is the harmonic average of the local
speed (see (5.3)) ∫

ds
∫
ds/v(s)

(5.3)

∫
< v(s),n(s) > ds

∫
ds

(5.4)

while the average speed across a line is the arithmetic average of the normal compo-
nent (5.4). If (5.3) is useful to predict timings, (5.4) gives fluxes across lines.
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There is a general problemwith the algebra of averages—the average of a product
of two values is the product of the averages only if the values are uncorrelated, a
condition that is definitely not present for the quantities of interest in pedestrian
dynamics unless the dynamics can be mainly described in steady state.
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