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Abstract. Even though the introduction of ICT in transportation sys-
tems leads to several advantages in terms of efficiency of transport, mobil-
ity, traffic management, and in improved interfaces between different
transport modes, it also brings some drawbacks in terms of increasing
security challenges, also related to human behavior. For this reason, in
the last decades, attempts to characterize drivers’ behavior have been
mostly targeted towards risk assessment and, more recently, to the train-
ing of machine learning software for autonomous driving. In this paper,
we propose, for the first time, to use driver behavioral characterization to
build a general reputation profile, that can be used to create innovative,
reputation-aware automotive services. As a first step towards realizing
this vision, we present guidelines for the design of a privacy preserving
vehicular infrastructure that is capable of collecting information gener-
ated from vehicles sensors and the environment, and to compose the
collected information into driver reputation profiles. In turn, these pro-
files are exchanged in a privacy preserving way within the infrastruc-
ture to realize reputation-aware automotive services, a sample of which
are described in the paper. As a fundamental component of the infras-
tructure, we show that: i) multi-dimensional reputation profiles can be
formed building upon the recently introduced notion of driver DNA; ii)
multi-dimensional comparison of profiles can be achieved by means of a
reputation lattice rooted in the notion of algebraic c-semiring; and iii)
a secure two-party mechanism can used to provide services to drivers on
the basis of their reputation and/or DNA’s parameters.

Keywords: Drivers’ reputation profile · Privacy preserving
infrastructure · Vehicular network · Reputation-aware services

1 Introduction

Recalling the directive of the European Union 2010/40/EU, made on the 7th of
July 2010 [20], Intelligent Transportation Systems (ITS) are “advanced applica-
tions, which [. . . ] aim to provide innovative services relating to different modes of
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transport and traffic management and enable various users to be better informed
and make safer, more coordinated and ‘smarter’ use of transport networks”. In
particular, the directive defines an ITS as a system in which Information and
Communications Technology (ICT) is applied in the field of road transport,
including infrastructures, like tunnels and vehicles. In fact, advances in both
vehicle and personal communication technologies are creating increasing oppor-
tunities for collecting data within and around the car. With thousands of signals
customarily generated by today’s vehicles, a car can be considered a veritable
mobile sensing platform that produces a few Gigabytes of data per hour [19].

Besides creating potential privacy and security issues when this immense
amount of data is connected to the Internet, as implied by the transition to con-
nected and autonomous vehicles, opportunities for unprecedented understanding
and optimization of what happens in vehicular infrastructure arise. Within this
context, a problem of particular interest is how to leverage vehicular and/or
smartphone data to characterize driver behavior. Its characterization is espe-
cially interesting for the auto insurance industry, since it can be used to produce
accurate risk profiles and personalized policy rates [22]. Characterizing driver
behavior finds application also in the development of autonomous driving tech-
nologies, where “good” driving styles can be used to train the car control software
and give a human feeling to autonomous driving.

This paper suggests a possible use of driver behavior characterization that
substantially evolves its role beyond what currently considered in the insurance
and autonomous vehicle industry. Building upon the recently proposed notion of
Driver DNA [12], we herein propose that vehicle-collected data can be used to
compute a “driver reputation” profile that synthetically summarizes a driver’s
reputation within the vehicular ecosystem. Reputation profiles of circulating
drivers can, then, be exchanged in a privacy preserving way with surrounding
vehicles or infrastructure to enable innovative management of road infrastructure
and driver-aware ITS services, as described in Sect. 5. A key component of
the envisioned notion of driver reputation is a framework that enables secure
and private exchange of driver reputation profiles between vehicles and between
a vehicle and the road infrastructure. The initial design of such a framework
is the focus of the present paper, in which we introduce a privacy-preserving
infrastructure able to evaluate the reputation of drivers and to provide them
with customized services based on their reputation evaluation.

The paper is organized as following: Section 2 reports some literature about
driver behavior characterization through vehicles parameters and possible appli-
cations and services designed accordingly. Section 3 presents a possible approach
to profile a driver, estimate her reputation, and eventually compare different
drivers’ profile. Section 4 describes our proposed infrastructure able to collect
information and to exchange reputation profiles in a privacy-preserving way.
Section 5 proposes some ideas of possible services that the infrastructure can
provide to “good ” drivers, i.e., drivers with a high reputation while Sect. 6
describes our prototype of privacy preserving comparison functions with exper-
imental results. Finally, Sect. 7 analyse the presented work and discuss some
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points regarding it while Sect. 8 draws the conclusion of the paper and outlines
future research directions.

2 Related Work

In the last few years, interest about the characterization of driver behavior
according to information collected from the vehicle has consistently increased.
However, to the best of our knowledge, none of the existing work attempts to
link driver behavior to the notion of reputation and trust as proposed herein.

One of the early works in this field is presented in [4], where the authors
proposed a traffic simulation model incorporating assumptions about what a safe
drivers’ behavior should be. The main outcome of the paper is the comparison
between results obtained in the simulation and the real world.

Other recent works [9,26] present approaches to identify reckless drivers
based on a combination of speed and acceleration. Both measures are retrieved
from different ICT systems present in the vehicle itself. Indeed, in [9], the
authors used GPS-enabled mobile phones as a low-cost opportunity for collect-
ing instantaneous vehicle speed and other information. In [26], the information
was retrieved from SD Card and GPS on vehicle.

In [10], the driver is considered as part of the vehicle system (driver-in-the-
loop), more specifically as the control unit of the entire system. In this way,
the authors described three methods to identify driver behavior as a comparison
with the actual and the expected behavior of the system by considering different
aspects of the drive-in-the-loop vehicle system.

Works about how to link the driver behavior with traffic accidents, safety
on roadside network, and possible rewarding are mostly related to the insurance
world. For instance, reference [22] is about the risk of reckless drivers and how
insurance reward can depend on the driver behavior. Adapting insurance fee to
driver behavior is promoted as a method to incentivize drivers to drive more
carefully and reduce accidents.

To our best knowledge, the idea of characterizing driver’s behavior with the
final aim of computing a comprehensive driver’s reputation profile and to realize
reputation-aware vehicular services is novel to this paper.

About reputation-aware vehicle service, several services for ITS have been
introduced in the literature. Following the standardization work of European
Telecommunications Standards Institute (ETSI), ITS applications (or service)
have been categorized in a number of classes. While their requirements and oper-
ational constraints have been defined in ETSI, security specifications are not fully
defined and mostly left to the single developers. For instance, secure and pri-
vacy aware versions of two representative classes of ITS applications are Driver
Assistance – Road Hazard Warning, and Community Services. In case of road
hazard warning, there is ample literature that studies under what conditions the
communication network (V2V and V2I communication) is able to provide the
adequate level of responsiveness necessary to enable early hazard detection [11].
Since security and privacy requirements as mandated by the proposed architec-
ture will introduce significant communication/computational overhead, there is
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a need of carefully analyzing and testing the interplay between security level,
communication performance, and achieved effectiveness in providing secure and
early warning to the drivers.

3 Defining Driver Reputation

This section describes a possible way of defining the notion of driver reputation.
We start by observing how to objectively quantify driver reputation starting
from vehicle collected data is a very challenging problem by itself. While intu-
itively understandable by the human mind – it is relatively easy, when you sit
beside a driver, to judge if she is “good” or “bad” at driving –, the notion of
“good” driving style, which should be the basis for establishing a driver’s repu-
tation, is evasive from a quantitative viewpoint.

Fig. 1. Radar graph representation of a Driver’s DNA.

Recently, the notion of Driver DNA [12] has been proposed to concisely rep-
resent a driver’s driving style starting from car-collected data analysis, integra-
tion with road and weather information, and comparison with peer drivers. The
Driver DNA, as defined in [12], is composed of four parameters which cannot
be directly compared with each other. Individually, each parameter is measured
with a rank ranging between 0 (lowest score) and 5 (highest score). The four
parameters are: braking (b), turning (t), speeding (s), and RPM (rpm) (revo-
lutions per minute). The first parameter (braking intensity) is used to quantify
a driver’s aggressiveness, the second (steering wheel angle) is used to quantify
comfort in driving, the third parameter (driving above speed limit), which is also
combined with weather information, is directly related to accident risk, while the
fourth parameter (engine RPM) is used, when compared with values obtained
by peer drivers, as a proxy of a driver’s fuel efficiency.
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Following [12], we represent the profile of each driver as a tuple of four ele-
ments (bi, ti, si, rpmi), with bi, ti, si, rpmi ∈ [0, 5], one for each parameter we are
going to consider to identify the driver’s DNA. Using the profile, we associate
to each driver a reputation value.

As the four parameters composing driver DNA cannot be directly compared
– i.e., a score of 4 in braking cannot be compared to a score of 4 in speeding –
the authors of [12] suggests graphically representing a driver’s driving style as a
radar graph of the four dimensions, where a relatively larger area of the radar
graph indicates a relatively better driver.

Starting from this idea, we enhance the driver’s characterization by adding
the notion of driver’s reputation as a unique value that identifies the goodness or
recklessness of the driver. In fact, we consider as driver reputation score RDi

the
internal area identified by the radar graph derived by the four parameters of the
driver’s DNA. As seen from Fig. 1, the area of a radar graph can be calculated
as the sum of the areas of the four triangles composing the graph, each having
two of the parameters composing the profile as perpendicular sides. Hence, given
the 4-tuple PDi

= (bi, ti, si, rpmi) associated with driver Di, her reputation RDi

can be computed as follows:

RDi
=

(bi × ti) + (ti × si) + (si × rpmi) + (rpmi × bi)
2

Note that the order of parameters in the graph influenced the result of the
area. Thus, considering the 4-tuple (b, t, s, rpm), we label the graph starting
from the right-hand side with the first element of the tuple, i.e., b, and then
we proceed counterclockwise to label the other directions with the remaining
parameters, as in Fig. 1. To ensure consistency, the same order of parameters is
used to compare different driver’s profile.

As it will become clear later on, a single reputation score associated to a
driver might not be sufficient to enable reputation-aware automotive services as
described in the following. For this reason, we set forth the notion of reputation
profile for a driver, which we define as:

RPDi
= ((bi, ti, si, rpmi), RDi

)

i.e., the profile and the synthetic reputation score.
According to this definition of reputation, we have to characterize “good” and

“bad” driver behavior. Different strategies may be followed, e.g., the median
value of each measure, i.e., 2.5, as threshold value to distinguish between good
and bad. Hence, a driver has a good behavior when her reputation score is higher
than 12.5, and a bad behavior, otherwise.

Once it has been calculated, the reputation score becomes part of the driver
profile in addition to the other information in the profile. Hence, keeping also the
information in the profile, that is richer than the single score RDi

it is possible
to allow services responsive to specific aspects of driving, such as, fuel-efficiency,
accident-risk, etc.
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Moreover, two drivers could be directly compared through their reputation
score. However, it is possible that two drivers have the same reputation scores
but for very different reasons. Indeed, being the parameters values independent
and not comparable to one another, the results of the ordering of driver’s profiles
is a lattice as the one in Fig. 2. We refer to it as reputational lattice in which all
the driver with the same reputation score are at the same level of the lattice.
Having the same reputation score, are classified in the same way with respect
to the ITS. In this case, we use the driver’s information to distinguish among
drivers. In fact, a better assessment of driver reputation can be achieved by
accounting for the individual parameters that compose a driver’s DNA.

Fig. 2. Reputational lattice.

Using the lexicographic order on tuples of values, it is possible to prioritize
one parameter over another (depending on the order of the components in the
lexicographic order itself), and to compare different driver profiles to customize
transportation services according to their reputation.

Example 1. Let us consider three drivers profiles:

PDA
= (

b
2,

t
3,

s
4,

rpm

5 )

PDB
= (

b
5,

t
4,

s
3,

rpm

2 )

PDC
= (

b
3,

t
1,

s
2,

rpm

3 )

represented in Fig. 1. The reputation score of the three drivers is calculated as
follows:

RDA
=

(2 × 3 + 3 × 4 + 4 × 5 + 5 × 2)
2

= 24
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RDB
=

(5 × 4 + 4 × 3 + 3 × 2 + 2 × 5)
2

= 24

RDC
=

(3 × 1 + 1 × 2 + 2 × 3 + 3 × 3)
2

= 10

Hence, driver DA and driver DB have the same reputation higher than 12,5, so
they are considered as good drivers. Driver DC is a reckless driver, since her
reputation is less than 12,5, and consequently, less than the reputation of the
other two drivers. However, if we want to compare the three drivers with respect
to the braking parameter, we note that, the worst driver is DA. Moreover, DA

is a good driver but the value of the braking parameter is less than 2.5 (it is 2),
hence with respect to this parameter, it is considered an “aggressive” driver.

4 Our Privacy Preserving Infrastructure

We assume to work in an Intelligent Transportation Systems as the one depicted
in Fig. 3. It is composed of three layers Ground, Fog, and Cloud. The infras-
tructure we have in mind is based on Fog [23–25] and Cloud computing. The
Ground layer involves all vehicles that interact with the fog layer to manage and
share in-vehicle information. Vehicles contain a large number of internal sensors,
e.g., photonic sensors, LiDARs, and communication systems, that can be used,
among other things, to sense the quality of the road, traffic, vehicle trajectories,
weather conditions, and so on. The Fog layer is composed by fog nodes, that are
smart components of the road infrastructure, and can be located, for instance,
at a gas station, a smart traffic light, a pay toll station, and so on. The fog node
is able to collect and exchange data with vehicles and other components of the
infrastructure in a safe and secure way. In the same way, fog nodes communicate
with the cloud to perform more complex calculation, in case there are required
to provide a better service to the drivers. Once smart devices at the fog layer
collect information from vehicles, the data can be forwarded to the Cloud layer.
In this layer, all data coming from the different devices at the fog layer are col-
lected, where upon some analytic operations are executed to obtain both new
derived information able to improve the safety of the stakeholders, or to provide
customized applications to the infrastructure nodes. The Cloud layer will also
contribute to implement the security and privacy aspects [15].

We also assume that each driver in the ITS reported in Fig. 3 is character-
ized by a multi-dimensional reputation profile, which should be considered as
a valuable and private information to the driver. Reputation profiles of drivers
become a sort of passport in the infrastructure. Thus, they can be exchanged in
a secure and private way with surrounding vehicles and roadside infrastructure
to realize innovative reputation-aware vehicular services, a sample of which are
described in Sect. 5.

4.1 Secure Two Party Computation

Given the importance of a driver’s reputation profile in the envisioned scenario,
the proposed infrastructure shall guarantee that such profiles are exchanged in a
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Fig. 3. The proposed three-layers infrastructure.

privacy preserving way. To this aim, we enhance each fog node with the ability
of performing a simple algorithm for secure two party computation (2PC). The
algorithm allows drivers to discover whether they fulfill the conditions to obtain a
certain service provided by the fog layer of the infrastructure, without disclosing
their profiles. The 2PC technique was first presented in [1] with the goal of
solving the Millionaires’ problem: two parties, Alice and Bob, each holding some
private data x and y, want to discover whom of them is richer, i.e., whether
x > y or x < y, without disclosing out to the other party the amount of money
and without using a Trusted Third Tarty (TTP).

In literature, there are several 2PC frameworks. Some examples are listed
below:

– FairPlay [18] can be considered the first influential 2PC framework. It allows
users to write functions using a high level language, called SFDL, and to
compile SFDL functions into garbled boolean circuit. A limit of Fairplay is
given by the limited number of commands and operations that is possible to
express through SFDL. FairPlay has strong security properties in the context
of two-party computation. The framework is shown to be secure against a
malicious party; in particular i) a malicious party cannot learn more infor-
mation about the other party’s input than it can learn from a TTP that
computes the function; and ii) a malicious party cannot change the output
of the computed function.

– A few years later, the same researchers have released FairplayMP [3], which
is the extension of Fairplay that works with more than two parties.

– MobileFairplay [8] ports Fairplay to Android Smart-phones. In particular,
MobileFairplay takes as input functions written and complied using the SFDL
language and extends the application domains also to Android devices.

– MightBeEvil [14] and CBMC-GC [13], similarly to Fairplay, take as input
functions written in high-level language, that can be run in a private way. In
case of CBMC-GC, functions are written using the C language, then trans-
formed into boolean circuits by the CBMC-GC compiler, and executed as
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illustrated in [16]. A version for Android Smart-phones of CMCG-GC was
presented in [7], showing much better performances compared with Fairplay
for Android Smart-phones.

– CBMC-GC v2.0 [5,6] is a new optimized compiler to generate circuits for 2PC
and Multi-Party Computation MPC) starting from ANSI-C source code.

5 Privacy-Preserving Reputation-Aware Vehicular
Services

Vehicles in the considered infrastructure can ask for services, getting different
quality and or prices depending on their driver’s reputation profile. Typically,
we can assume that to obtain, say, a special discount on a service, a driver
must provide her profile to be compared with an access threshold used by the
service provider. This comparison function hits the driver’s privacy since the
service provider will be able to know the entire profile in case of full profile
disclosure, or at least a single parameter in the reputation profile. To protect
the privacy of the drivers, we implemented the comparison function in a privacy-
preserving manner that make use of the 2PC technique CBMC-GC v1.0. The
presented method allows drivers to discover whether they meet the conditions
for obtaining a certain service level without disclosing their profile (Fig. 4).

Secure-Two Party Computation 

int compare(int x, int y)
{
   if (x > y)
      return 1;
   else if (x == y)
      return 2;
   else 
      return 0;
}

Vehicle

Profilevehicle Thesholds

Infrastructure

Fig. 4. 2PC flow for profile comparison
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Examples of innovative “reputation-aware” services enabled by the proposed
infrastructure are described below:

Reputation-Aware Fuel Cost. Currently, fuel cost is decided at the level of
the single gas station, and it is applied independently of the driver’s attitude to
save or waste fuel while driving. In an effort to incentivize fuel-efficient driving
style, one might think of a scenario where fuel cost is personalized to reflect a
driver’s fuel efficiency. When entering a gas station, the vehicle onboard software
sends driver’s reputation information – in this specific case, both her reputation
score and her fuel efficiency score – to the fog node installed at the gas station.
After proper authentication, the driver will be offered a personalized fuel price:
a relatively lower price for drivers with relatively higher reputation, and vice
versa.

Reputation-Aware Tolling. Similarly to the case of fuel price, also access
to road infrastructure is currently oblivious to driving style, and is typically
done based on the type of vehicle. However, a driver with a relatively higher
risk profile (e.g., more aggressive, or speeding more frequently) might pose a
relatively higher prospect cost to the infrastructure manager than a relatively
more cautious driver, due to the higher risk of incurring accidents, damage road
components, etc. One can then envision a scenario in which the price to access
road infrastructure (highways, bridges, etc.) is personalized based on a driver’s
reputation profile. Similarly to the gas station scenario, the vehicle onboard
software shares driver’s reputation information with the fog node interfacing
with the tolling system, and a driver is charged a variable amount that reflects
her accident and damage risk profile.

6 Prototype of Privacy-Preserving Functions

To evaluate the feasibility of privacy-preserving, reputation-aware services as
described in Sect. 5, we built a test-bed with a client-server paradigm where an
Android Radio unit (Fig. 5) acts as client and represents the onboard computa-
tional unit of a vehicle, and a server that mimics as node of the infrastructure, i.e.,
a fog node. To achieve privacy-preserving comparison, we leveraged CBMC-GC
on the fog node, while for the vehicles we use the Android porting of CBMC-GC.
In our test-bed, the fog node runs on a Ubuntu 16.04.5 virtual machine with a
dual core and 2 Gbyte of RAM, and the client on a Radio with Android 6.0,
Quad-core at 1.2 GHZ and 1 Gbyte of RAM.

Security Consideration of CBMC-GC. The authors claim that their frame-
work provides security in the honest-but-curious attacker model in which an
attacker follows all the steps of the protocol as per specifications. However,
attacker’s goal is to get information on the other party during the message
exchanging phase, with the purpose of acquiring at least part of the private
profile.

Another situation to point out is that there is an asymmetry on the provided
security guarantees as customary in 2PC. This makes very difficult to prevent one
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Fig. 5. Our android radio used in the test-bed.

party from terminating the protocol prematurely, and not sending the outcome
of the computation to the other party. This situation can be discovered by the
weak party, but cannot be recovered from.

6.1 Evaluation

As first step, we compare the driver reputation with the reputation threshold
fixed on the fog node to discriminate between “good” and “bad” drivers. If the
value of the vehicle reputation is larger than the threshold, the vehicle gets 1,
otherwise 0. In case of equal values, the output is 2. The source code for this
function is reported in Listing 1.1.

Listing 1.1. C function to compare driver’s reputation

int compare(int x, int y) {

if (x > y)

return 0;

else if (x == y)

return 2;

else

return 1;

}

void comparerep(int INPUT_A_thr, int INPUT_B_rep) {

int OUTPUT_rep = compare(INPUT_A_thr, INPUT_B_rep);

}

Figure 6a shows the time needed to execute the function listed in the code 1.1
using CBMC-GC and grouped in the table represented in Fig. 6b. In particular,
we compare the running time when executing the vehicle part on the Android
Radio, and when executing it on the same place of the fog node. This comparison
is labelled as Radio and Localhost on the figure and table. The reported times
are obtained by running the code in Listing 1.1 ten times. The two lines in the
figure represent the average calculated for each of the ten executions. So, the
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Fig. 6. Global reputation comparison function

average time to execute the function in the privacy-preserving manner using the
radio is of 2, 354 s. Instead, when the STC protocol is run in localhost the average
time is of ∼1s.

If the driver is considered “good”, then, a finer comparison on parameter is
made. In fact, the code in Listing 1.2 illustrates the C function written to make
the comparison for each of the considered parameters:

Listing 1.2. C function to compare driver’s parameters

int compare(int x, int y) {

if (x > y)

return 1;

else if (x == y)

return 2;

else

return 0;

}

void profile(int INPUT_A_brake, int INPUT_B_brake, int INPUT_A_turn, int

INPUT_B_turn, int INPUT_A_speed, int INPUT_B_speed, int INPUT_A_rpm,

int INPUT_B_rpm) {

int OUTPUT_brake = compare(INPUT_A_brake, INPUT_B_brake);

int OUTPUT_turn = compare(INPUT_A_turn, INPUT_B_turn);

int OUTPUT_speed = compare(INPUT_A_speed, INPUT_B_speed);

int OUTPUT_rpm = compare(INPUT_A_rpm, INPUT_B_rpm);

}

The main function profile takes as input the driver’s profile and four different
thresholds of each service provided by the infrastructure. The driver’s input has
as prefix INPUT A , instead the thresholds have as prefix INPUT B . These
numbers are simple integer and in the profile are numbers that range from 0 to
5. Same interval is given to the threshold number.
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Fig. 7. Paramater comparison function

Then, the code contains a single function that simply compares each repu-
tation parameter with the corresponding threshold. In particular, the compare
function provides as output three different states, which are:

– 1 : if the value of the driver is higher than the threshold;
– 0 : if the value of the driver is lower than the threshold;
– 2 : if the values are the same.

Hence, each reputation-based service will apply the discount on the basis of the
comparison results. For instance, the Reputation-aware fuel cost service will
apply the discount when the result of the comparison function is 1 for the RPM
parameter, while the service Reputation-aware tolling will apply the discount
when the comparison function output is 1 for the speed parameter.

So, each time that the compare function is called, the output of the compari-
son is given to the OUTPUT * variable that can be read at the end of the STC
execution.

Figure 7a shows the time needed to execute the function listed in the code
1.2 using the CBMC-GC framework. Times are reported in the table in Fig. 7b.
Also in this case, we compare the running time when executing the vehicle part
on the Android Radio, and when executing it on the same place of the server.
The average time to execute the function in the privacy-preserving manner using
the radio is of 2, 736 s. Instead, when the STC protocol is run in localhost the
average time is of 1, 278 s.

Summarizing, the results of our prototype evaluation clearly shows the fea-
sibility of the proposed privacy-preserving framework, as the running times of
the related secure functions are below 3 s in all the considered scenarios and
hardware configurations.

7 Discussion

In the current paper, we based on the driver DNA on the radar graph intro-
duced in [12] and we considered it as initial starting and studying step for our
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reputation calculations. However, the type of parameters as well as the number
of those considered in the reputation formula may be extended or replaced with
others. In addition, parameters selection depends on the support of the vehicles
architecture. In fact, values are gathered from the internal network of a vehicle,
for instance the CAN bus, and, to properly read this information, a hardware
support may be needed to get accurate values for each parameter involved in the
reputation formula. In our experiments, the adoption of our Android Infotain-
ment system allowed us to get the needed parameters that were directly decoded
from the information derived from the CAN bus of the vehicle.

Another aspect that can be considered but it is not part of the present work,
is the manipulation of the information coming from the vehicle internal network
to calculate the reputation formula. The presence of a physical attacker on the
vehicle is not taken under consideration and this will not alter the calculus of
the driver’s reputation. To prevent this issue, different actions should be taken
under consideration. However, it is not in the scope of this paper. For instance,
the adoption of a secure internal vehicular protocol may reduce or avoid the
presence of attacks on the physical bus to alter the transmitted content. Works
on this topic are [2,17,21].

8 Conclusion and Future Work

In this paper, the notion of driver’s reputation profile is introduced as a unique,
multi-dimensional information associated to a driver’s behavior. As an exam-
ple, we have described how reputation profiles can be built starting from the
driver DNA and a synthetic reputation score, respectively. Moreover, we pro-
pose a private vehicular infrastructure based on both fog and cloud networks,
which is able to both collect the information needed to compute driver reputa-
tion profiles, and to provide reputation-aware services to the driver themselves.
The proposed infrastructure and related reputation-aware automotive services
have the potential to stimulate drivers to behave correctly to a much larger
extent than what achieved by current practice based on risk profiling and per-
sonalized insurance rates. Through prototype implementation, we have tested
and positively assessed the feasibility of a privacy-preserving implementation of
the framework.

This work is intended to open more avenues for future research, rather than
to present a fully developed system. In particular, we plan to assess the proposed
framework on real test cases considering design and development of vehicles’ evo-
lution. This may require a more complex calculation of the reputation formulas
that, for instance, consider benefits from the adoption of an hybrid engine that
gets the support of the electric power. It could also require to move form a secure
two party computation approach to a multi-party one in which reputation values
are exchanged among more than two entities.

Another interesting points that we will investigate as future work is the
multi-user driving scenario. Nowadays, modern vehicles support different driving
styles that come out from different drivers. So, based on the current management
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of multiple-users, like traditional computers that supports different logins, the
reputation of a user may be more accurate considering this additional feature.
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