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Abstract. Studies in socio-technical aspects of security often rely on
user studies and statistical inferences on investigated relations to make
their case. They, thereby, enable practitioners and scientists alike to judge
on the validity and reliability of the research undertaken.

To ascertain this capacity, we investigated the reporting fidelity of
security user studies.

Based on a systematic literature review of 114 user studies in cyber
security from selected venues in the 10 years 2006–2016, we evaluated
fidelity of the reporting of 1775 statistical inferences using the R package
statcheck. We conducted a systematic classification of incomplete report-
ing, reporting inconsistencies and decision errors, leading to multinomial
logistic regression (MLR) on the impact of publication venue/year as
well as a comparison to a compatible field of psychology.

We found that half the cyber security user studies considered reported
incomplete results, in stark difference to comparable results in a field of
psychology. Our MLR on analysis outcomes yielded a slight increase of
likelihood of incomplete tests over time, while SOUPS yielded a few per-
cent greater likelihood to report statistics correctly than other venues.

In this study, we offer the first fully quantitative analysis of the state-
of-play of socio-technical studies in security. While we highlight the
impact and prevalence of incomplete reporting, we also offer fine-grained
diagnostics and recommendations on how to respond to the situation.
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1 Introduction

Statistical inference is the predominant method to ascertain that effects observed
in socio-technical aspects of security are no mere random flukes, but considered
to be “the real McCoy.”

In general, statistical inference sets out to evaluate a statistical hypothesis
stated a priori. It employs observations made in studies to establish the likeli-
hood as extreme as or more extreme than the observations made, assuming the
statistical hypothesis not to be true. This likelihood is colloquially referred to as
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a p-value. Alternatively to Null Hypothesis Significance Testing (NHST)—and
often used complementarily—studies may estimate the magnitude of effects in
reality and confidence intervals thereon [5].

The onus of proof is generally on the authors of a study. There are numerous
factors influencing whether a study’s results can be trusted—a) sound research
questions and hypotheses, b) vetted and reliable constructs and instruments,
c) documentation favoring reproducibility, d) sound experiment design, yield-
ing internal and external validity, e) randomization and blinding, f) systematic
structured and standardized reporting—in the end, it is the outcomes of the
statistical inference that often render a final verdict.

These outcomes do not only indicate whether an effect is likely present in
reality or not. They also yield what magnitude the effect is estimated at. Thereby,
they are the raw ingredient for (i) establishing whether an effect is practically
relevant, (ii) evaluating its potential for reuse, and (iii) including it further quan-
titative research synthesis.

While there have been a number of publications in socio-technical aspects
of security offering guidance to the community to that end [2,4,11,15,17] as
well as proposals in other communities [1,10,12], the evidence of the state-of-
play of the field has been largely anecdotal [17] or in human-coded analysis [3].
While this field is arguably quite young, we argue that it would benefit greatly
from attention to statistical reporting, from attaining fault tolerance through
reporting fidelity and from preparing for research synthesis (cf. Sect. 2.1).

In this study, we aim at systematically evaluating the fidelity of statistical
reporting in socio-technical aspects of security. We analyze (i) whether statisti-
cal inferences are fault-tolerant, in the sense of their internal consistency being
publicly verifiable, and (ii) whether the reported p-values are correct. Through
the semi-automated empirical analysis of 114 publications in the field from 2006–
2016, we offer a wealth of information including meta-aspects. We compare sta-
tistical reporting fidelity of this field with a related field of psychology as well as
analyze the trajectory of the field, that is, the trends found over time. We sub-
stantiate the these results with qualitative coding of errors observed to elucidate
what to watch out for.

Contributions. We are the first to subject our own field to a systematic empirical
analysis of statistical reporting fidelity. In that, we offer a well-founded intro-
spection in the field of socio-technical aspects of security that can serve program
committees and authors alike to inform their research practice.

2 Background

2.1 Importance and Impact of Statistical Reporting

Null Hypothesis Significance Testing (NHST) establishes statistical inference by
stating a priori statistical hypotheses, which are then tested based on observa-
tions made in studies. Such statistical inference results in a p-value, which gives
the conditional probability of finding data as extreme as or more extreme than
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the observations made, assuming the null hypothesis being true. Many fields
combine NHST with point and interval estimation, that is, establishing an esti-
mate of the magnitude of the effect in the population and the confidence interval
thereon.

Table 1. Degrees of fidelity in statistical reporting for the same two-tailed independent-
samples t-test on a relation with a large effect size (ES). Note: � = impossible �� =
can be estimated � = supported

Incomplete triplet Complete triplet

Sig. p-Value ES inferrable ES explicit

Example p < .05 p = .019 t(24) = 2.52 , t(24) = 2.52, p = .019,

p = .019 Hedges’ g = 0.96,

CI [0.14, 1.76]

p quantifiable � � � �
Cross-checkable � � � �
ES quantifiable � � �� �
Synthesizable � � �� �

Reporting Fidelity and Fault Tolerance. Different reporting practices yield
different degrees of information and fidelity. It goes without saying that a simple
comparison with the significance level α, e.g., by stating that p < .05, yields the
least information and the least fidelity. Reporting the actual p-value observed
offers more information as well as a means to quantify the likelihood of the effect.

To gain further reporting fidelity and fault tolerance, one would not only
report the exact p-value, but also the chosen test parameters (e.g., independent-
samples or one-tailed), the test statistic itself (e.g., the t-value) and the degrees of
freedom (df ) of the test. We, then, obtain a consistent triplet (test statistic, df ,
p-value) along with the test parameters. Table 1 exemplifies degrees of fidelity.

The upshot of a diligent reporting procedure including full triplets is that it
enables cross-checks on their internal consistency and, thereby, a degree of fault
tolerance. Vice versa, if only the p-value or a comparison with a significance level
is reported, the capacity to validate inferences is impaired.

Impact on Research Synthesis. Published studies usually do not stand on
their own. To learn what relations are actually true in reality and to what degree,
we commonly need to synthesize the results of multiple studies investigating the
same relations. More mature fields (such as evidence-based medicine or psychol-
ogy) engage in systematic reviews and meta analyses to that end.

For these down-stream analyses to be viable, the original studies need to
contain sufficient data for subsequent meta-analyses. If the original studies omit
the actual test statistics and degrees of freedom, the synthesis in meta analyses
is hamstringed or rendered impossible altogether.
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2.2 Reporting and Methodology Guidelines

Reporting fidelity is usually one of the goals of reporting standards. Given that
the field of socio-technical research in cyber security is a young and does not
have its own established reporting standards, it is worthwhile to consider ones
of other fields. Psychology seems a sound candidate to consider as a guiding
example in this study. Other fields, such as behavioral economics, are equally
viable.

The publication guidelines of the American Psychology Association (APA) [1]
require that inferences are reported with their full test statistics and degrees of
freedom. Exact p-values are preferred. The APA guidelines require to report
appropriate effect sizes and their confidence intervals.

Of course, there are also methodological guidelines that go far beyond report-
ing statistical tests. For instance, the CONSORT guidelines [12] cover reporting
for randomized trials. Furthermore, recently LeBel et al. [10] proposed a unified
framework to quantify and support credibility of scientific findings.

Even though socio-technical aspects of security is a young field, there have
been initiatives to advance research methodology, considered in chronological
order: (i) In 2007, Peisert and Bishop [15] offered a short position paper scien-
tific design of security experiments. (ii) Maxion [11] focused on making experi-
ments dependable, focusing on the hallmarks of good experiments with an eye on
validity. (iii) In 2013, Schechter [17] considered common pitfalls seen in SOUPS
submissions and made recommendation on avoiding them, incl. statistical report-
ing and multiple-comparison corrections. (iv) Coopamootoo and Groß proposed
an introduction for evidence-based methods [4], incl. sound statistical inference
and structured reporting. (v) The same authors published an experiment design
and reporting toolset [2], considering nine areas with reporting considerations,
incl. test statistics and effect sizes.

2.3 Analysis of Statistical Reporting

We analyze statistical reporting of publications with the R package statcheck [7].
The statcheck tool extracts Strings of the form ts(df ) = x, p op y, where ts is the
test statistic, df the degrees of freedom, and op a infix relation, such as, <. It
recognizes t, F , r, χ2, and z as test statistics and recomputes the corresponding
p-values from them. It, hence, enables a consistency check of reported triplets of
test statistic, degrees of freedom and p-values.

In this analysis, statcheck recognizes one-tailed tests to some extent from
searching keywords and computing if a test were valid if considered one-tailed.
It adheres to the rounding guidelines of the American Psychology Association
(APA) [1]. Nuijten et al. [13] concede that statcheck does not recognize p-values
adjusted for multiple-comparison corrections.

While the creators of statcheck have argued for its validity and reliability
[13,14], the tool faced scrutiny and controversy [18] over its false positive and
false negative rates. Schmidt [18], for example, criticized that statcheck’s inability
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to recognize corrected p-values, such as from Greenhouse-Geisser corrections.
Lakens [9] found reported errors typically to be minor.

For this study, we prepare to mitigate possible statcheck mis-classifications
by manually checking and coding its outcomes.

2.4 Related Works

In 2016/17 Coopamootoo and Groß [3] conducted a Systematic Literature
Review (SLR) on cyber security user studies published in the years between
2006–2016. This research was first presented at a 2017 community meeting of
the UK Research Institute in the Science of Cyber Security (RISCS). Their study
contained three parts: (i) the SLR itself, yielding a sample of 146 cyber security
papers, (ii) a qualitative coding of nine “completeness indicators,” based on an a
priori codebook. (iii) a quantitative analysis on a sub-sample using parametric
tests on differences between means (e.g., t-tests).

While this study uses the same set of papers as a sample to enable a compar-
ison of results, this study takes an entirely different approach to the analysis: (i)
Instead of manual coding of reporting completeness, we focus on the automated
analysis reporting fidelity on extracted p-values, (ii) we evaluate quantitative
properties on inconsistencies and decision errors of a large part of the sample,
and (iii) we obtain a fine-grained understanding of “things going wrong” through
grounded coding,

3 Aims

We define the classes of statcheck outcomes for test statistics and papers.

Definition 1 (SC Outcome Categories)

Individual Tests: SCOutcome has the following cases for individual tests:

1. CorrectNHST: The NHST is reported with its test statistic triplet. The given
triplet is correct, where “correct” is defined as matching triplet of test statistic,
degrees of freedom and corresponding re-computed p-value.

2. Inconsistency: The reported triplet (test statistic, df , p-value) is inconsistent.
3. DecisionError: The reported triplet (test statistic, df , p-value) is grossly incon-

sistent, that is, the re-computed p-value leads to a different decision on reject-
ing the null hypothesis.

4. Incomplete: A p-values is reported without sufficient data for an evaluation of
the triplet (test statistic, df , p-value).

Entire Papers: SCOutcome has the following cases for aggregated over papers:

1. CorrectNHST: There exist one or more NHSTs reported with correct test
statistic triplets. The given complete triplets are correct throughout, where
“correct” is defined as matching triplet of test statistic, degrees of freedom and
corresponding re-computed p-value. A paper can be classified as CorrectNHST
even if there exist incomplete test statistics.
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2. Inconsistency: There exists an inconsistent triplet (test statistic, df , p-value).
3. DecisionError: There exists a gross inconsistency in any reported triplet (test

statistic, df , p-value), in which a re-computed p-value leads to a different
decision on rejecting the null hypothesis.

4. Incomplete: For all p-values reported, it holds that there is insufficient data for
a correct triplet (test statistic, df , p-value). For a paper classified as Incom-
plete, there is not a single p-value with complete test statistic found.

We call Complete the complement of Incomplete.

RQ 1 (Prevalence). How many papers report on Null Hypothesis Significance
Testing (NHST) and fall into one of the defined SC outcome categories according
to Definition 1 1. CorrectNHST, 2. Inconsistency, 3. DecisionError, 4. Incomplete.
Which papers use 1. multiple-comparison corrections (MCC), 2. effect sizes.

While we originally investigated the use of Amazon Mechanical Turk (AMT)
and similar recruiting services, we have declared this aim out of scope for this
publication. MCCs and effect sizes are also relevant in relation to power and
Positive Predictive Value (PPV) of the studies in question, however, we will
consider these inquiries in future work.

We intend to compare the statcheck results in this field with analyses that
have been conducted in other fields that seem related. We are most interested
in fields at the intersection of human behavior and technology, such as HCI.
Granted that statcheck surveys have not been that widely conducted yet, we
consider the Journal of Media Psychology (JMP) [6] as a primary candidate.
This choice is made because of similarities

(i) media psychology is concerned with human subjects and socio-technical
aspects,

(ii) media psychology includes topics that might also have been published in
user studies in cyber security, such as adversarial behavior (e.g., violence)
vis-à-vis of HCI, cyber bullying, behavior on social media,

(iii) media psychology is a relatively young field, JMP having been founded in
1989 and gained its current name 2008.

The distinct difference we are interested in is that JMP is subject to reporting
standards (APA). We note that the selection of JMP as comparison sample may
be controversial and that—at the same time—comparisons to further fields are
easily done, yet out of the scope for this study.

RQ 2 (Comparison). To what extent do the statcheck SCOutcomes differ
between our sample in this field and a comparable field in psychology?
HC,0: The distribution of the SCOutcomes in cyber security user studies is the
same as the distribution in the comparison field. HC,1: There is a systematic
difference of SCOutcome in cyber security user studies to the comparison field.

RQ 3 (Influence of Venue and Year). Considering outcome categories SC-
Outcome from Definition 1 as response variable, what is the influence of predic-
tors publication Venue and Year?



Fidelity of Statistical Reporting in 10 Years of Cyber Security User Studies 9

1. HV,0: There is no influence of the publication Venue on the occurrence of the
statcheck outcome SCOutcome. HV,1: There is a systematic influence of the
publication Venue on the occurrence of the statcheck outcome SCOutcome.

2. HY,0: There is no influence of the publication Year on the occurrence of the
statcheck outcome SCOutcome. HY,1: There is a systematic influence of the
publication Year on the occurrence of the statcheck outcome SCOutcome.

As an exploratory inquiry, we employ the statcheck analysis to the submis-
sions of STAST 2019, testing its usefulness in supporting PC members.

4 Method

The study has been pre-registered at the Open Science Framework (OSF)1, which
also contains Online Supplementary Materials, such as a summary of the SLR
specification and the sample itself. All analyses, graphs and tables are computed
directly from the data with the R package knitr, where the statcheck output was
cached in csv files.

All statistical tests are computed at a significance level of α = .05. The Fisher
Exact Tests (FETs) for cases with low expected cell frequency are computed with
simulated p-values with 105 replicates.

4.1 Ethics

This study followed the guidelines of the ethical boards of its institution. While
we make the entire list of analyzed papers available for reproducibility, we
decided not to single out individual papers. We are aware that the descriptive
statistics presented allow making a link to the respective papers; we accept that
residual privacy risk. Full disclosure: one of the sample’s papers belongs to the
author of this study; statcheck flagged it.

4.2 Sample

The target population of this study was cyber security user studies. The sampling
frame for this study is derived from a 2016/17 Systematic Literature Review
(SLR) conducted by Coopamootoo and Groß [3] whose results were first pub-
lished at a 2017 Community Meeting of the Research Institute in the Science
of Cyber Security (RISCS). This source SLR’s search, inclusion and exclusion
criteria are reported in Online Supplementary Materials.

We have chosen this sample to gain comparability to earlier qualitative and
quantitative analyses on it [3]. This sample restricts the venues considered to
retain statistical power for a regression analysis. We stress that the automated
the analysis methodology can be easily applied to other samples.

1 osf.io/549qn/.

https://osf.io/549qn/
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Fig. 1. Flow chart of the study’s procedure with two interlinked analyses.

4.3 Procedure

Our procedure, as depicted in Fig. 1, constituted a mixed-methods approach that
fusing two interlinked analysis processes: (i) Statistical Validity Analysis and (ii)
Grounded Coding of paper properties and errors detected. Our analysis script
received as input the PDFs of studies included from the source SLR.

Statistical Validity Analysis. We computed two iterations of statcheck, one only
considering statistical statements in standard format and one including all p-
values found. The statcheck results were subjected to a manual cross-check, pos-
sibly resulting the reshaping of papers that statcheck could not parse out of the
box. Subsequently, we merged the results of both analyses and aggregated their
events (counting number of correct tests, inconsistencies, decision errors and p-
values without parseable test statistics). We, thereby, established the dependent
variable SCOutput per statistical test and per paper.

Grounded Coding. We coded paper properties in NVivo. We evaluated the
statcheck results in a second lane of grounded coding, classifying errors of
statcheck as well as errors committed by authors of the papers.

As a part of this analysis, we “reshape” papers that could not be parsed by
statcheck for reasons outside of the research aims of this study. For instance, if a
paper embedded statistical tests as image rather than text, we would transcribe
the images to text and re-run statcheck on the “reshaped” input.

Once these results are coded, we amend the statcheck outcomes recorded in
SCOutcome to ensure that this variable reflects an accurate representation of the
sample.

4.4 Grounded Coding

Grounded coding refers to the code being grounded in properties found in the
data, instead of being based on an a priori codebook.
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Paper Properties. We conducted a systematic coding in NVivo with the pur-
pose to establish overall properties of all papers. We were extracting espe-
cially: (i) sample size, (ii) use of multiple-comparison corrections, and (iii) use
of dependent-samples tests.

Analysis Outcomes. After having run statcheck on the sample, we first conducted
a grounded coding of statistical tests marked as inconsistency or decision error.
We re-computed the p-values from the test statistics ourselves and interpreted
the results in the context of the reporting of the paper. We took into account the
formulation around the test as well as overall specification of hypotheses, test
parameters (e.g., one-tailed) and multiple-comparison corrections. We include
the resulting emergent codebook presented in Table 2.

Secondly, we analyzed the outcomes statcheck marked as neither inconsis-
tency nor decision error. For those results, we compared the raw text with
statcheck’s parsed version as well as recomputed p-value. We ignored small round-
ing differences as statcheck as authors rounding test statistics for reporting will
naturally cause small differences. In cases of a mismatch between raw text and
interpretation (e.g., in degrees of freedom accounted for), we re-computed the
statistics manually.

Finally, we coded whether a mistake by statcheck would be considered a
FalsePositive or FalseNegative. After this evaluation, we adjusted the SCOutcome
to ensure that the subsequent analysis is based on a correct representation of
the sample.

Table 2. Codebook of the grounded coding of error types.

Errors of statcheck Errors of authors

Code Definition Code Definition

scParsedOK parsed the PDF correctly Typo Likely mis-typed

scCorrect statcheck result validated RoundingError incorrect rounding rules

scMisclassified misclassified test OneTailedUS unspecified one-tailed test

scMissedMC missed multiple-
comparison corrections
specified paper

Miscalculation miscalculated the
statistics, wrong p-value
for statistic

4.5 Evaluation of statcheck

AppendixA contains the details of the corresponding qualitative coding.

Reshaping of Unparseable Papers. There were eight of papers for which
statcheck could neither extract p-values nor test statistics due to encoding issues
(e.g., embedding statistics as images). For all of those, we recorded them as
unparseable, yet transformed them into parseable text files for further analysis.
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Table 3. Confusion matrix for statcheck evaluating tests.

Predicted Reference

Positive Negative

Positive 29 5

Negative 0 218

Accuracy: .98, 95% CI [.95, .99],
Acc > NIR(.88), < .001***,
Sensitivity = 1.00, Specificity =
.98, PPV = .85, F1 = .92

Errors Committed by statcheck . Of the total 252 parsed tests, 34 contained an
error, 10 of which a decision error. We compared those outcomes against the
grounded coding of results and our re-computation of the statistics.

We found that (i) statcheck parsed papers that were correctly reported with-
out fail, (ii) it misclassified two tests, (iii) it detected one-tailed tests largely
correctly, (iv) it treated dependent-samples tests correctly, (v) it did not recog-
nize the specified multiple-comparison corrections in three cases. This leaves us
with 5 false positives and no false negatives, marked in Sub-Fig. 8a.

Detection Performance of statcheck . For the analysis of complete test triplets,
we analyzed the confusion matrix of statcheck results vs. our coding (Table 3).
The Positive Predictive Value (PPV) of 85.3% indicates a decent likelihood of a
positive statcheck report being true.

4.6 Multinomial Logistic Regression

We conducted multinomial logistic regressions with the R package nnet [16], rely-
ing on Fox’s work [8] for visualization. The models were null, year-only, venue-
only and year and venue combined. The dependent variables was SCOutput. The
independent variables were Year (interval) and Venue (factor).

5 Results

5.1 Sample

We have refined the inputted sample of 146 publications by excluding publi-
cations that do neither contain empirical data nor significance tests (p-value),
retaining 114 publications for further analysis. We illustrate the sample refine-
ment in Table 4. We include the final sample in the Online Supplementary Mate-
rials and outline its distribution by publication venue and year in Table 5. We
note that the sample is skewed towards SOUPS and more recent publications.
We note that the sample was drawn only from 10 specific venues in an effort to
retain power in a logistic regression with venue as a categorical factor.
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Table 4. Sample refinement and final composition

Phase Excluded Retained sample

Source SLR [3] (Google Scholar) – 1157

Inclusion/exclusion 1011 146

This study

Studies with empirical data 24 122

Studies with NHST/p-value 8 114 → Final sample

Table 5. Sample composition by venue and year.

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Sum

SOUPS 6 3 4 6 8 4 10 8 13 9 6 77

USEC 0 0 0 0 0 0 0 0 4 0 0 4

CCS 0 0 0 0 0 0 0 0 4 1 3 8

USENIX 0 0 0 1 0 0 4 1 1 0 0 7

PETS 1 0 0 0 0 1 1 0 0 1 2 6

TISSEC 0 0 0 0 0 1 0 0 0 0 2 3

LASER 0 0 0 0 0 0 1 0 0 0 1 2

S&P 0 0 0 0 0 0 0 0 1 1 0 2

TDSC 0 1 0 0 0 0 1 0 1 0 1 4

WEIS 0 0 0 0 0 0 0 0 0 1 0 1

Sum 7 4 4 7 8 6 17 9 24 13 15 114

5.2 Exploration of the Distribution

Distribution of Qualitative Properties. We visualize the presence of qualitative
properties of papers over time in Fig. 2. We observe (i) Mutliple-Comparison
Corrections seeing adoption from 2009 (Fig. 2a), (ii) Effect sizes being on and
off over the years (Fig. 2b).

Distribution of p-Values. We analyze the distribution of p-values per paper.
Therein we distinguish incomplete and complete triplets including test statistic
and degrees of freedom. In Fig. 3, we depict this p-value distribution; Fig. 3a
is ordered by number of the tests reported on, distinguishing between com-
plete/incomplete triplets while annotating the presence of multiple comparison
corrections (MCC); Fig. 3b is organized by publication year. The included linear
regression lines indicate little to no change over time.

5.3 Prevalence of Statistical Misreporting

For RQ1, we compare statistical misreporting by venue and year, considering
individual tests as well as entire papers (cf. contingency tables in the Online
Supplementary Materials).
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Fig. 2. Properties of SLR papers by year.

Misreported Tests. For individual tests, there is a statistically significant associ-
ation between the statcheck outcomes and the publication venue, FET p = .034,
as well as the publication year, FET p < .001. This offers first evidence to reject
the null hypotheses HV,0 and HY,0.

Table 6 contains the corresponding contingency table.

Table 6. Contingency table of individual test statcheck outcomes by venue, FET p =
.034.

SOUPS USEC CCS USENIX PETS TISSEC LASER S&P TDSC WEIS

CorrectNHST 170 1 9 4 11 6 5 0 12 0

Inconsistency 19 1 3 0 0 0 1 0 0 0

DecisionError 9 0 0 0 0 0 1 0 0 0

Incomplete 1028 33 122 100 72 71 19 11 60 7

Papers with Misreporting. Sub-Figure 6a on p. 15 shows a hierarchical waffle
plot of the statcheck outcomes. For aggregated outcomes per paper displayed in
Fig. 4, the associations per venue and year are not statistically significant, FET
p = .963 and FET p = .455 respectively. A likely reason for this result is visible
in the histograms of Fig. 5: errors are at times clustered, in that, some papers
contain multiple errors.
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Fig. 3. Distribution of statistical reporting of papers, that is, how many p-values per
paper are reported Incomplete or Complete. MCC = Multiple-Comparison Corrections.

5.4 Comparison with JMP

With respect to RQ2, the statcheck outcomes of the included SLR and Jour-
nal of Media Psychology (JMP) are statistically significantly different, χ2(3) =
88.803, p < .001. Hence, we reject the null hypothesis HC,0 and conclude that
there is a systematic difference between fields. We find an effect of Cramér’s
V = 0.646, 95% CI [0.503, 0.773].

If we restrict the analysis to the papers containing Complete tests and,
thereby, exclude papers marked Incomplete, we find that the difference between
fields is not statistically significant any longer, χ2(2) = 0.197, p = .906, Cramér’s
V = 0.037, 95% CI [0, 0.139].
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Fig. 4. Proportions of per-paper aggregated statcheck outcomes by venue and year. The
results by year are shown as area plot to highlight development over time.

Fig. 5. Number of errors per paper.

5.5 Reporting Test Outcomes by Venue and Year

While we analyzed tests and aggregated paper SCOutcome by venue and year,
we found that these multinomial logistic regressions were not stable. Even if
the models were statistically significant, this missing stability was evidenced in
extreme odds-ratios, which was likely rooted in the sparsity of the dataset. (We
report all MLR conducted in the Online Supplementary Materials for reference).
To overcome the sparsity, we chose to collapse the venue factor into SOUPS and
OTHER levels, called venue’ (and the corresponding null hypothesis HV′,0).

A multinomial logistic regression on individual tests with SCOutcome ∼
venue’+year with Incomplete as reference level is statistically significant, LR,
χ2(6) = 15.417, p = .017. Because the model explains McFadden R2= .01 of the
variance, we expect little predictive power.
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(a) This Study (SLR) (b) JMP

Fig. 6. Hierarchical Waffle plots comparing user studies (SLR) in cyber security and
the Journal of Media Psychology (JMP) (One square represents one paper).
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Fig. 7. Per-teststatcheck outcomes by venue and year. Note: The multinomial logistic
regression (MLR) is statistically significant, LR Test, χ2(6) = 15.417, p = .017.

The corresponding predictors are statistically significant as well. Hence, we
reject the null hypotheses HV′,0 and HY,0. Figure 7 contains an overview of the
scatter plot vs. the predicted probabilities from the MLR.

While we find that there is an effect of year in increasing likelihood of Incom-
plete outcomes, this only accounts for an increase of 0.2% per year, barely percep-
tible in the graph. Everything else being equal, a transition from venue SOUPS
to OTHER yields an increase of likelihood of the Incomplete outcomes, by a fac-
tor of roughly 2. However, these changes are dwarfed by the overall intercept of
tests being correct (in comparison to Incomplete).

In absolute terms, the expected likelihood of tests being Incomplete is 80%,
with OTHER venues having a few percent greater Incomplete likehood. SOUPS
exhibits an expected likelihood of 13% of being CorrectNHST, while OTHER
venues yield a few percent lower likelihood.
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Fig. 8. Classification of reported statcheck outcomes.

5.6 Qualitative Analysis

We offer a summary of the analysis here, a detailed account is included in
AppendixA.

Composition of Incomplete p-Values. Sub-Figure 8b contains an overview of the
classes of incompletely reported p-values. Less than half the cases of incomplete
triplets contain an actual p-values (half of them, in turn, significant or not signif-
icant). 31% of the incomplete cases compared to lower significance bound than
α = .05. 9% of the tests are simply declared non-significant, another 7% reported
as significant wrt. p < .05.

Distribution of p-Values. Figure 9 shows the difference between reported and
computed p-values. When comparing reported and re-computed p-values, we
found that in 22 out of 34 cases, the reported p-value was more significant than
the computed one (65%).

5.7 Significance Detection Performance

We analyzed the decision making of authors on statistical significance of reported
results vis-à-vis of recomputed p-values (Table 7). We observe a somewhat low
specificity of 79.7%. Note that this analysis only refers to a reported significance
decision is valid with respect to a corresponding correct p-value, and not whether
a positive reported result is true.
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Fig. 9. Histogram of difference reported p-values minus statcheck-computed p-values.

Table 7. Confusion matrix for researchers determining significance.

Predicted Reference

Significant NS

Significant 191 12

NS 1 47

Accuracy: .95, 95% CI [.91, .97],
Acc > NIR(.76), < .001***,
Sensitivity = .99, Specificity = .80,
PPV = .94, F1 = .97

5.8 Supporting the STAST 2019 PC in Checking Statistics

Aligned with Recommendation 2 in Sect. 7, we offered a statcheck analysis to
the STAST PC members to support the workshop’s discussion phase. Of 28
submitted papers, 9 papers (32%) included a statistical inference.

Let us consider these 9 papers in detail as an exploratory analysis. One paper
contained a major error in terms of statistics being invalid, two papers used the
wrong statistical method for the experiment design at hand (e.g., independent-
samples statistics in a dependent-samples design). Two of those three papers
were also flagged by statcheck. These errors themselves, however, were detected
by program committee members, not by the statcheck analysis.

On third of the papers reported statistics in an APA compliant format.
6 papers (66%) reported exact p-values, 4 papers (44%) reported effect sizes
as required by the STAST submission guidelines. Of the 9 papers, 7 needed
multiple-comparison corrections, which only two provided in their initial sub-
mission.

In terms of statcheck evaluation with the methodology of this study, we
found 5 papers (56%) to be Incomplete, one paper Inconsistent, three papers
(33%) CorrectNHST. This distribution is not significantly different from the SLR
sample shown in Fig. 6a, χ2(3) = 0.829, p = .843, Cramér’s V = 0.082, 95% CI
[0, 0.188].
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6 Discussion

Incomplete reporting holds back the field. Nearly two thirds of the papers
with p-values did not report a single complete test triplet (cf. Fig. 6a). This
impairs the ability to cross-check internal consistency of tests and, thereby,
undermines fault-tolerance. Hence, such papers have limited credibility and
fidelity of statistical information.

The incomplete reporting observed in this study is in stark contrast to the
analysis of the Journal of Media Psychology (JMP), in which not a single paper
was Incomplete. Hence, we conclude that mandated reporting standards are an
effective tool.

It is further troubling that the likelihood of incomplete reporting did not
seem to decrease over time (cf. Fig. 7b).

In terms of research reuse and synthesis, the situation is aggravated, because
effect sizes are vastly under-reported in this field. Only a small minority reports
them explicitly; one third of the papers allows to infer them (cf. Fig. 2b).

There are three consequences to this phenomenon: (i) It is exceedingly dif-
ficult for practitioners to ascertain the magnitude of effects and, thereby, their
practical significance. (ii) It is near-impossible to compare research results in
meta-analyses and to synthesize well-founded summary effects. (iii) Hence, dis-
putes over differences between original studies and replications are hard to settle
satisfactorily.

While some errors are minor, we caution against clustered errors and
miscalculations. Of the 44 papers with complete test statistic triplets analyzed,
60% were deemed correct; more than one quarter had at least one inconsistency;
14% had at least one decision error. Of all tests with complete triplets analyzed
14% were erroneous. Here, the socio-technical security sample showed similar
error rates as the psychology sample.

Especially the 26 papers with complete test triplets and correct reporting—
one quarter of the sample—stand testament to efforts of authors and program
committees “get it right.”

The errors observed by statcheck were often minor typos and rounding errors
that could have been easily avoided, however nearly 40% seemed to be serious
miscalculations. We found that these errors were at times clustered: there are a
few papers with a number of errors.

There is a dark figure of decision errors lurking in the underuse of
multiple-comparison corrections. This study leaves the detailed analysis of
power and multiple-comparison corrections (MCCs) to future work. Still, we do
not want to withhold insights already apparent from Fig. 3a: There is a Damocles
sword hanging over many papers: Multiple-Comparison Corrections (MCCs).

We have seen in Fig. 2a that even though MCCs came in use from year 2009,
only about one third of the papers employed them. From Fig. 3a, we observe
that there are papers with a considerable number of reported p-values without
MCCs. Hence, there may well be a sizable dark figure of papers with decision
errors in store once adequate MCCs are employed.
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These observations inform Recommendation 3 in that observing studies with
many comparisons but without corrections can be an indication of the number
of comparisons, multiple-comparison corrections as well as the power needed to
sustain them only being considered as an afterthought.

Automated checking of statistical reporting is viable. The statcheck
detection rates were very good and comparable to the rates reported by Nui-
jten et al. [13]. We note, however, that statcheck did not operate completely
autonomously, but was complemented with human coding to overcome pars-
ing issues. We find the approach viable for the use in socio-technical aspects of
security.

6.1 Limitations

Generalizability. The study is based on an existing SLR sample that largely
consists of SOUPS publications and only contains few cases for other venues.
Dealing with a sparse matrix, the likelihoods computed for non-SOUPS venues
as well as overall logistic regressions suffer from more uncertainty.

Syntactic Validity Checks. While we have made good experiences with
statcheck and only found few false positives and negatives, we observe that
statcheck results can suffer from hidden errors. While we complemented the auto-
mated analysis with a human review and coding of reported errors, we observe
that statcheck could have missed or misinterpreted individual tests. However,
based our inspection of the 114 analyzed papers, we expect that the number of
statcheck errors is small compared to the 1775 tests analyzed. In the end, an
automated tool cannot replace the trained eye of a knowledgable reviewer. How-
ever, this study is about the overall distribution of errors, which will be hardly
skewed by rare false positives or negatives.

Deviations from the Pre-registration. We deviated from the OSF pre-
registration by 1. not attempting the exploratory analysis of the impact of
authors, 2. not attempting an exploratory logistic regression on completeness
indicators, 3. abandoning the planned ordinal logistic regression in favor of the
MLR, because SCOutcome did not yield an ordinal scale, 4. merging non-SOUPS
venue levels to overcome the sparsity of the dataset, 5. not attempting further
cross-validation due to low variance explained.

7 Recommendations

The recommendations made here need to be seen as part of a greater paradigm
shift. Instead of focusing on single publications, one may consider that a study
does not stand on its own. Truly advancing the knowledge of a field calls for
creating robust studies that prepare the ground for systematic replications, reuse
and research synthesis.
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1. Establish sound reporting standards. Sound and generally accepted
reporting standards could greatly improve the credibility of the field. This
could either mean developing systematic reporting standards for socio-
technical aspects of security or adopting existing standards.
Developing systematic reporting standards would involve a stable coalition
of program committee chairs and members as well as journal editors forming
a working group to that effect. Such a working group would likely take into
account requirements for this field as well as examples of mature reporting
standards from other fields.
Given that considerable thought has gone into APA standards [1] and that
these standards apply to human dimensions, they are a viable and sufficiently
mature candidate, at least when it comes to statistical reporting. Our analysis
showed that the majority of papers reporting complete test statistics triplets
were actually compliant to APA requirements.
While not perfect, their recommendations on statistical reporting could have
considerable benefits for reporting fidelity, research reusability and synthesis.
One option in this context would be to only adopt a subset of recommenda-
tions directly benefiting reporting fidelity.
In any case, one would consider sound reporting for test statistics themselves,
effect sizes and their confidence intervals, as well as essential information on
the sample, design and procedure. Again, this field can well take into account
more comprehensive initiatives from other fields [10].
2. Support PCs in checking statistics. From our experience researching
this study, we can attest that checking statistics can be a tedious affair. Even
with all their failings, tools like statcheck can support program committee
members in detecting incorrect results. Such an approach certainly requires
human mediation to avoid false positives, yet can offer insights at low cost.
As reported in Sect. 5.8, we tested this recommendation on the STAST 2019
program committee. While statcheck correctly identified reporting issues and
did not produce a false positive, major errors were discovered by program
committee members in the analysis of experiment designs vis-à-vis their sta-
tistical inferences. This yields an indication that an automated tool, such as
statcheck, will only support but never replace the expert judgment of the
reviewers.
There are organizational methods, such as pre-registrations or registered
reports, that can support a PC further in ascertaining the integrity of results.
3. Embrace a priori power and multiple-comparison corrections.
We make this recommendation with a grain of salt, as we have not reported
on a dedicated study on power, yet. However, even this study on reporting
fidelity shows that this consideration would benefit the community.
Low power and missing adequate MCCs can well undermine the results of
a good study and increase the likelihood of a positive result being a false
positive. We encourage researchers to plan in advance for the power required,
accounting for the MCCs necessary for the planned tests.
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8 Conclusion

This study is the first systematic analysis of a large sample of security user
studies with respect to their statistical reporting fidelity. For the first time, we
offer a comprehensive, quantitative, and empirical analysis of the state-of-play
of the field of socio-technical aspects of security. We offer a wealth of different
perspectives on the sample, enabling us to obtain a fine-grained analysis as well
as broad recommendations for authors and program committees alike.

We stress that the research and reviewing process for security user studies
constitutes a socio-technical system in itself that impacts the decision making
in security and privacy. Because scientists and practitioners alike seek to re-
use research results, the fidelity or uncertainty of those results—especially their
statistical inferences—plays a major role in the credibility of the field and the
confidence of its audience. Hence, self-reflection of the field will ultimately impact
the decision making by users in security and privacy, as well.

As future work, we consider expanding the sample, including further venues,
such as CHI, as well as offering a dedicated analysis of statistical power and
Positive Predictive Value (PPV) present in the field.
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A Details on Qualitative Analysis

A.1 Errors Committed by statcheck

Parsing Accuracy. In all 34 error cases, statcheck parsed the PDF file cor-
rectly, and its raw test representation corresponded to the PDF. In all but two
tests, statcheck recognized the test correctly. In said two cases, it mistook a
non-standard-reported Shapiro-Wilk test as χ2 test, creating two false positives.
There was one case in which the statcheck computed p-value for an independent-
samples t-test differed slightly from our own calculation, yet only marginally so,
presumably because of a unreported Welch correction.

One-Tailed Tests. In seven cases, statcheck recognized one-tailed tests correctly.
For three of those tests, the authors framed the hypotheses as one-tailed. In
three other tests, the authors used one-tailed test results without declaring their
use. There was one additional case in which the authors seemed to have used a
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one-tailed test, yet the rounding was so far off the one-tailed result that statcheck
did not accept it as “valid if one-tailed” any longer. There was one test marked
as “one-tail” which statcheck did not recognize as one-tailed, yet that test also
suffered from rounding errors.

Dependent-Samples Tests. There were 7 papers using dependent-samples meth-
ods (such as matched-pair tests or mixed-methods regressions). We found that
statcheck treated the corresponding dependent-samples statistics correctly.

Multiple Comparison Corrections. In three cases, statcheck did not recognize p-
values that were correctly Bonferroni-corrected, counting as three false positives.
It is an open point, however, how many paper should have employed multiple-
comparison corrections, but have not done so, an analysis statcheck does not
perform.

A.2 Errors Committed by Authors

Typos. We considered 6 to be typos or transcription errors (18%). Another 1
error seemed to be a copy-paste error (3%)

Rounding Errors. Of all 34 reported errors, we found 8 to be rounding errors
(24%).

Miscalculations. We found 13 cases to be erroneous calculations (38%).

A.3 Composition of Incomplete p-Values

Of 1523 incomplete cases, 134 were declared “non-significant” without giving
the actual p-value (8.8%). Further, 6 were shown as p > .05. (0.394%).

Of the incomplete cases, 102 were reported statistically significant at a .05
significance level (6.7%).

Of the incomplete cases, 477 were reported statistically significant at a lower
significance level of .01, .001, or .0001 (31.3%).

Of 1523 incomplete p-values, 680 gave an exact p-value (44.6%). Of those
exactly reported p-values, half (367) were claimed statistically significant at a
significance level of α = .05 (54%). Of those exatly reported p-values, 19 claimed
an impossible p-value of p = 0 (2.79%).
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Online Supplementary Materials

We made the materials of the study (specification of the inputted SLR, included
sample, contingency tables) publicly available at its Open Science Framework
Repository (see Footnote 1).
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Raab, C. (eds.) Privacy and Identity 2016. IAICT, vol. 498, pp. 105–121. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-55783-0 9

5. Cumming, G.: Understanding the New Statistics: Effect Sizes, Confidence Intervals,
and Meta-Analysis. Routledge, New York (2013)

6. Elson, M., Przybylski, A.K.: The science of technology and human behavior -
standards old and new. J. Media Psychol. 29(1), 1–7 (2017). https://doi.org/10.
1027/1864-1105/a000212

7. Epskamp, S., Nuijten, M.B.: statcheck: extract statistics from articles and recom-
pute p values (v1.3.0), May 2018. https://CRAN.R-project.org/package=statcheck

8. Fox, J., Andersen, R.: Effect displays for multinomial and proportional-odds logit
models. Sociol. Methodol. 36(1), 225–255 (2006)

9. Lakens, D.: Checking your stats, and some errors we make, October 2015. http://
daniellakens.blogspot.com/2015/10/checking-your-stats-and-some-errors-we.html

10. LeBel, E.P., McCarthy, R.J., Earp, B.D., Elson, M., Vanpaemel, W.: A unified
framework to quantify the credibility of scientific findings. Adv. Methods Pract.
Psychol. Sci. 1(3), 389–402 (2018)

11. Maxion, R.: Making experiments dependable. In: Jones, C.B., Lloyd, J.L. (eds.)
Dependable and Historic Computing. LNCS, vol. 6875, pp. 344–357. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24541-1 26

12. Moher, D., et al.: CONSORT 2010 explanation and elaboration: updated guidelines
for reporting parallel group randomised trials. J. Clin. Epidemiol. 63(8), e1–e37
(2010)

13. Nuijten, M.B., van Assen, M.A., Hartgerink, C.H., Epskamp, S., Wicherts, J.: The
validity of the tool “statcheck” in discovering statistical reporting inconsistencies
(2017). https://psyarxiv.com/tcxaj/

14. Nuijten, M.B., Hartgerink, C.H.J., van Assen, M.A.L.M., Epskamp, S., Wicherts,
J.M.: The prevalence of statistical reporting errors in psychology (1985–2013).
Behav. Res. Methods 48(4), 1205–1226 (2015). https://doi.org/10.3758/s13428-
015-0664-2

https://doi.org/10.1007/978-3-319-92925-5_17
https://doi.org/10.1007/978-3-319-55783-0_9
https://doi.org/10.1027/1864-1105/a000212
https://doi.org/10.1027/1864-1105/a000212
https://CRAN.R-project.org/package=statcheck
http://daniellakens.blogspot.com/2015/10/checking-your-stats-and-some-errors-we.html
http://daniellakens.blogspot.com/2015/10/checking-your-stats-and-some-errors-we.html
https://doi.org/10.1007/978-3-642-24541-1_26
https://psyarxiv.com/tcxaj/
https://doi.org/10.3758/s13428-015-0664-2
https://doi.org/10.3758/s13428-015-0664-2


26 T. Groß

15. Peisert, S., Bishop, M.: How to design computer security experiments. In: Futcher,
L., Dodge, R. (eds.) WISE 2007. IAICT, vol. 237, pp. 141–148. Springer, New York
(2007). https://doi.org/10.1007/978-0-387-73269-5 19

16. Ripley, B., Venables, W.: nnet: feed-forward neural networks and multinomial log-
linear models, February 2016. https://CRAN.R-project.org/package=nnet

17. Schechter, S.: Common pitfalls in writing about security and privacy human sub-
jects experiments, and how to avoid them (2013). https://www.microsoft.com/en-
us/research/wp-content/uploads/2016/02/commonpitfalls.pdf

18. Schmidt, T.: Sources of false positives and false negatives in the STATCHECK
algorithm: reply to Nuijten et al. (2016). https://arxiv.org/abs/1610.01010

https://doi.org/10.1007/978-0-387-73269-5_19
https://CRAN.R-project.org/package=nnet
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/commonpitfalls.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/commonpitfalls.pdf
https://arxiv.org/abs/1610.01010

	Fidelity of Statistical Reporting in 10 Years of Cyber Security User Studies
	1 Introduction
	2 Background
	2.1 Importance and Impact of Statistical Reporting
	2.2 Reporting and Methodology Guidelines
	2.3 Analysis of Statistical Reporting
	2.4 Related Works

	3 Aims
	4 Method
	4.1 Ethics
	4.2 Sample
	4.3 Procedure
	4.4 Grounded Coding
	4.5 Evaluation of statcheck
	4.6 Multinomial Logistic Regression

	5 Results
	5.1 Sample
	5.2 Exploration of the Distribution
	5.3 Prevalence of Statistical Misreporting
	5.4 Comparison with JMP
	5.5 Reporting Test Outcomes by Venue and Year
	5.6 Qualitative Analysis
	5.7 Significance Detection Performance
	5.8 Supporting the STAST 2019 PC in Checking Statistics

	6 Discussion
	6.1 Limitations

	7 Recommendations
	8 Conclusion
	A  Details on Qualitative Analysis
	A.1  Errors Committed by statcheck
	A.2  Errors Committed by Authors
	A.3  Composition of Incomplete p-Values

	References




