
Chapter 5
Combinatorics Encoding Geometry:
The Legacy of Bill Thurston in the Story
of One Theorem

Philip L. Bowers

Abstract This chapter presents a whirlwind tour of some results surrounding
the Koebe–Andre’ev–Thurston Theorem, Bill Thurston’s seminal circle packing
theorem that appears in Chapter 13 of The Geometry and Topology of Three-
Manifolds.
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5.1 Introduction

Bill Thurston was the most original and influential topologist of the last half-century.
His impact on the discipline of geometric topology during that time is unsurpassed,
and his insights in the topology and geometry of three-manifolds led finally to the
resolution of the most celebrated problem of topology over the last century—The
Poincaré Conjecture. He made fundamental contributions to many sub-disciplines
within geometric topology, from the theory of foliations on manifolds to the
combinatorial structure of rational maps on the two-sphere, and from geometric and
automatic group theory to classical polyhedral geometry. Of course his foundational
work on three-manifolds, first laid out in his courses at Princeton in the late 1970s,
compiled initially as a Princeton paper-back monograph inscribed by Bill Floyd
and available upon request as The Geometry and Topology of Three-Manifolds
(GTTM) [73], and maturing as the famous Thurston Geometrization Conjecture of
the early 1980s, was the driving force behind the development of geometric topology
for the next thirty years. The final confirmation of the Geometrization Conjecture
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by Giorgi Perelman using the flow of Ricci curvature, following a program that
had been introduced by Richard Hamilton, is one of the crown jewels of twentieth
century mathematics.

Thurston marks a watershed in the short history of topology,1 a signpost, demar-
cating topology before Thurston, and topology after Thurston. This is evidenced not
only in the fabulous results he proved, explained, and inspired, but even more so
in how he taught us to do mathematics. Topology before Thurston was dominated
by the general and the abstract, entrapped in the rarified heights that captured the
mathematical world in general, and topology in particular, in the period from the
1930s until the 1970s. Topology after Thurston is dominated by the particular and
the geometric, a throwback to the nineteenth-century, having much in common with
the highly geometric landscape that inspired Felix Klein and Max Dehn, who walked
around and within Riemann surfaces, knew them intimately, and understood them
in their particularity. Thurston’s vision gave a generation of topologists permission
to get their collective hands dirty by examining in great depth specific structures on
specific examples.

One of the organizing principles that lies behind Thurston’s vision is that
geometry informs topology, and that the non-Euclidean geometry of Lobachevski,
Bolyai, and Beltrami in particular is systemic to the study of topology. Hyperbolic
geometry permeates topology after Thurston, and it is hyperbolic geometry that
becomes the common thread of the present chapter. This will be seen in the
interrelated studies presented here. All to varying degrees are due to the direct
influence of Bill Thurston and his generalization of the earlier results of Koebe
and Andre’ev. All involve hyperbolic geometry in some form or influence, and even
further all illustrate how combinatorics encodes geometry, another of the principles
that underlies Thurston’s vision. To my mind, the proposition that combinatorics
encodes geometry, which in turn informs topology has become a fundamental
guiding motif for topology after Thurston. I offer this chapter as a celebration of
Bill Thurston’s vision and his immense influence over our discipline.

5.1.1 An Introductory Overview

The Koebe–Andre’ev–Thurston Theorem represents a rediscovery and broad gen-
eralization of a curiosity of Paul Koebe’s from 1936, and has an interpretation
that recovers a characterization of certain three-dimensional hyperbolic polyhedra
due to E.M. Andre’ev in two papers from 1970. This theorem is the foundation
stone of the discipline that has been dubbed as discrete conformal geometry, which
itself has been developed extensively by many mathematicians in many different
directions over the last thirty years. Discrete conformal geometry in its purest form
is geometry born of combinatorics, but it has theoretical and practical applications.

1I will use the term topology henceforth to mean geometric topology. By dropping the adjective
geometric I certainly mean no slight of general, set-theoretic, or algebraic topology.
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In the theoretical realm, it produces a discrete analytic function theory that is faithful
to its continuous cousin, a quantum theory of complex analysis from which the
classical theory emerges in the limit of large scales. In the realm of applications,
it has been developed in a variety of directions, for practical applications in areas
as diverse as biomedical imaging and 3D print head guidance. This rather large
body of work flows from simple insights that Thurston presented in his lecture at
Purdue University in 1985 on how to use the most elementary case of his circle
packing theorem to provide a practical algorithm for approximating the Riemann
mapping from a proper, simply-connected planar domain to the unit disk. A personal
accounting of this development can be found in the author’s own review [14] of the
bible of circle packing theory, Ken Stephenson’s Introduction to Circle Packing: The
Theory of Discrete Analytic Functions [71].

A perusal of the section and subsection headings of this chapter will give the
reader a clue as to where I am going in this survey. I primarily stick with the
theoretical results for which there are fairly direct lines from the Koebe–Andre’ev–
Thurston Theorem to those results. This means in particular that I almost totally
ignore the really vast array of practical applications that circle packing has found,
especially in the last two decades as discrete differential geometry has become
of primary importance in so many applications among computer scientists and
computational geometers. A survey of applications will have to wait as space
constraints preclude a discussion that does justice to the topic.

5.1.2 Dedication and Appreciation

This chapter is dedicated to the memory of Bill Thurston and his student Oded
Schramm, and to an appreciation of Jim Cannon and Ken Stephenson. I have
spoken already of Bill Thurston’s legacy. Oded Schramm was one of the first
to press Thurston’s ideas on circle packings to a high level of development and
application, and his great originality in approaching these problems has bequeathed
to us a treasure trove of beautiful gems of mathematics. Most of Oded’s work
on circle packing and discrete geometry was accomplished in the decade of the
1990s. As Bill is a demarcation point in the history of topology, Oded is one in the
history of probability theory. In the late nineties, Oded became interested in some
classical open problems in probability theory generated by physicists, in percolation
theory and in random planar triangulations in particular. Physicists had much
theoretical and computational evidence for the veracity of their conjectures, but
little mathematical proof, or even mathematical tools to approach their verifications.
In Oded’s hands these venerable conjectures and problems began to yield to
mathematical proof, using ingenious tools developed or refined by Oded and
his collaborators, chief among which are SLEκ , originally Stochastic-Loewner
Evolution, now renamed as Schramm–Loewner Evolution, and UIPT’s, or Uniform
Infinite Planar Triangulations. For a wonderful biographical commentary on Oded’s
contributions to mathematics, see Steffen Rohde’s article Oded Schramm: From
Circle Packing to SLE in [58].
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The two individuals who have had the greatest impact on my mathematical
work are Jim Cannon and Ken Stephenson, the one a mathematical hero of mine,
the other my stalwart collaborator for three decades. Jim’s work has influenced
mine significantly, and I greatly admire his mathematical tastes and contributions.
Pre-Thurston, Jim had made a name for himself in geometric topology in the
flavor of Bing and Milnor, having solved the famous double suspension problem
and having made seminal contributions to cell-like decomposition theory and the
characterization of manifolds. In the beginning of the Thurston era, his influential
paper The combinatorial structure of cocompact discrete hyperbolic groups [24]
anticipated many of the later developments of geometric group theory, presaging
Gromov’s thin triangle condition and, à la Dehn, the importance of negative
curvature in solving the classical word and conjugacy problems of combinatorial
group theory. He with Thurston invented automatic group theory and then Jim
settled upon the conjecture that bears his name as the work that for three decades
has consumed his attention. Ken has been a joy with whom to collaborate over the
past three decades. He was inspired upon attending Thurston’s Purdue lecture in
1985 to change his mathematical attentions from a successful career as a complex
function theorist, to a geometer exploring this new idea of circle packing using both
traditional mathematical proof and the power of computations for mathematical
experimentation. I began my foray into Thurston-style geometry and topology by
answering in [17] a question of Ken and Alan Beardon from one of the first research
papers [7] to appear on circle packings after Rodin and Sullivan’s 1987 paper [62]
confirming the conjecture of Thurston from the Purdue lecture. Ken and I are co-
authors on a number of research articles and his down-to-earth approach to the
understanding of mathematics has been a constant check on my tendency toward
flights of fancy. I have learned from him how to tell a good story of a mathematical
topic. For Ken’s warm friendship and collaboration I am grateful.

5.2 The Koebe–Andre’ev–Thurston Theorem, Part I

5.2.1 Koebe Uniformization and Circle Packing

In the early years of the twentieth century, rigorous proofs of the Riemann
Mapping Theorem and the more general Uniformization Theorem were given by
such eminent mathematicians as Osgood, Carathéodory, Poincaré, and Koebe, and
refinements and re-workings would continue to be made by others, even up to
the present.2 The generalization of the Riemann Mapping Theorem to multiply-

2The author recommends rather highly the article On the history of the Riemann mapping
theorem [38] by Jeremy Gray and the monograph Uniformization of Riemann Surfaces: Revisiting
a Hundred-Year-Old Theorem [32]. These two works give insightful historical accountings of
the discovery, articulation, understanding, and finally rigorous proofs of the Riemann Mapping
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connected domains fell to the hands of Paul Koebe, who in 1920 in [49] proved that
every finitely-connected domain in the Riemann sphere is conformally equivalent to
a circle domain, a connected open set all of whose complementary components are
points or closed round disks. Of course for a 1-connected, or simply-connected,
domain this is nothing more than the Riemann Mapping Theorem. He proved
also a rigidity result, that any conformal homeomorphism between any two circle
domains with finitely many complementary components is in fact the restriction
of a Möbius transformation.3 Koebe’s real goal was what is known by its German
name as Koebe’s Kreisnormierungsproblem and by its English equivalent as Koebe’s
Uniformization Conjecture, which he posed in 1908.

Koebe Uniformization Conjecture ([48]) Every domain in the Riemann sphere is
conformally homeomorphic to a circle domain.

This of course includes those domains with infinitely many, whether countably or
uncountably many, complementary components. The general Koebe Uniformization
Conjecture remains open to this day. More on this later.

In a paper of 1936, Koebe obtained the following circle packing theorem as a
limiting case of his uniformization theorem of 1920. This went unnoticed by the
circle packing community until sometime in the early 1990s.

Koebe Circle Packing Theorem ([50]) Every oriented simplicial triangulation K

of the 2-sphere S
2 determines a univalent circle packing K(C) for K , unique up to

Möbius transformations of the sphere.

Here the circle packing K(C) is a collection C = {Cv : v ∈ V (K)} of circles Cv

in the sphere S
2 indexed by the vertex set V (K) of K such that Cu and Cv are

tangent whenever uv is an edge of K , and for which circles Cu, Cv , and Cw bound
a positively oriented interstice whenever uvw is a positively oriented face of K .
The circle packing is univalent if there is a collection D = {Dv : v ∈ V (K)} of
disks with Cv = ∂Dv whose interiors are pairwise disjoint.4 Connecting the centers
of the adjacent circles by appropriate great circular arcs then produces a geodesic
triangulation of S2 isomorphic to K . Figure 5.1 shows a circle packing of the sphere
determined by an abstract triangulation K , and the realization of K as a geodesic
triangulation. Of course the circle packings for a fixed K are Möbius equivalent,
while the corresponding geodesic triangulations are not, simply because neither
circle centers nor great circles are Möbius-invariant. I will look at a proof of the
Koebe Circle Packing Theorem later, but first I’ll present Thurston’s generalization.

Theorem and the Uniformization Theorem. The narratives are at once engaging and perceptive,
illustrating wonderfully the fact that mathematics is generally a common endeavor of a community
of folks rather than the singular achievement of an enlightened few.
3Beware! This is not true in general. Two domains with uncountably many complementary
components may be conformally equivalent yet fail to be Möbius equivalent.
4Without univalence, packings with branching would be allowed, where the sequence of circles
tangent to a single circle C may wrap around C multiple times before closing up. See Sect. 5.3.3.
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Fig. 5.1 An abstract triangulation K of the 2-sphere determines (a) a circle packing, which in turn
determines a realization of K as (b) a geodesic triangulation of the 2-sphere.

5.2.2 Koebe–Andre’ev–Thurston, or KAT for Short

In his Princeton course of 1978–79, Thurston greatly generalized the Koebe Circle
Packing Theorem, though at the time he was unaware of Koebe’s result. He
generalized in two ways, first by allowing adjacent circles to overlap and second by
extending the theorem to arbitrary compact orientable surfaces. Thurston realized
that his version of the theorem on the sphere S

2 in fact encodes information about
convex hyperbolic polyhedra, the connection of course through the fact that the
sphere S

2 serves as the space at infinity of the Beltrami–Klein and Poincaré ball
versions of hyperbolic three-spaceH3 with circles on the sphere the ideal boundaries
of hyperbolic planes in H

3. These polyhedra had been characterized in two papers of
Andre’ev from 1970, whose results can be interpreted in terms of the existence and
uniqueness of the circle packings Thurston examined in his generalization of Koebe.
Thurston’s generalization to overlapping packings on the sphere is now known as
the Koebe–Andre’ev–Thurston Theorem, honoring its three principle protagonists.

Koebe–Andre’ev–Thurston Theorem I (for the sphere) Let K be an oriented
simplicial triangulation of S2, different from the tetrahedral triangulation, and let
� : E(K) → [0, π/2] be a map assigning angle values to each edge of K . Assume
that the following two conditions hold.

(i) If e1, e2, e3 form a closed loop of edges from K with
∑3

i=1 �(ei) ≥ π , then e1,
e2, and e3 form the boundary of a face of K .

(ii) If e1, e2, e3, e4 form a closed loop of edges from K with
∑4

i=1 �(ei) = 2π ,
then e1, e2, e3, and e4 form the boundary of the union of two adjacent faces
of K .
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Then there is a realization of K as a geodesic triangulation of S2 and a family
C = {Cv : v ∈ V (K)} of circles centered at the vertices of the triangulation so that
the two circles Cv and Cw meet at angle �(e) whenever e = vw is an edge of K .
The circle packing C is unique up to Möbius transformations.

Now I want to point out that exactly what is called the Koebe–Andre’ev–Thurston
Theorem is not at all settled. Some references use the term to mean the tangency
case of the theorem (� ≡ 0), which is nothing more than the Koebe Circle Packing
Theorem, while others use the term to mean Thurston’s full generalization of the
theorem to arbitrary closed surfaces that is presented in Sect. 5.3.2. Exactly what
Thurston proved in GTTM also often is misreported. In fact my introduction to this
section is a bit of a misreporting, so let me take a little time to say exactly what
Thurston does in Chapter 13 of GTTM.

In terms of circle packings on the 2-sphere, Thurston does not allow overlaps
of adjacent circles, only tangencies. His version of the tangency case appears as
Corollary 13.6.2 in Chapter 13 of GTTM, and appears as a corollary of Theorem
13.6.1, which he attributes to Andre’ev. This theorem concerns hyperbolic structures
on orbifolds and, as it was Thurston who invented the notion of orbifold in his
course at Princeton during 1976–77 as recorded in the footnote on page 13.5 of
Chapter 13 of GTTM itself, this theorem is an interpretation of Andre’ev’s in the
context of orbifolds. Thurston does not give a proof of Theorem 13.6.1, but uses
its result ensuring the existence of a hyperbolic structure on a suitable orbifold
to prove Koebe’s Theorem of 1936, Corollary 13.6.2. He does this by using the
triangulation K to define an associated polyhedron P by cutting off vertices by
planes that pass through midpoints of edges. He then uses the Andre’ev result to
realize P as a right-angled ideal polyhedron in H

3. The faces of this polyhedron then
lie in planes whose ideal circular boundaries are the circles of the desired tangency
packing complemented by the orthogonal circles through three mutually adjacent
points of tangency. He then invokes Mostow rigidity for uniqueness.

It isn’t until he presents Theorem 13.7.1 that Thurston allows for adjacent circles
to overlap with angle between zero and π/2, and that only for surfaces other than
the sphere, those surfaces with nonpositive Euler characteristic. Thurston proves
this by assigning polyhedral metrics with curvature concentrated at the vertices
v1, . . . , vn by assigning a radius ri at vertex vi . Defining the mapping c : Rn → R

n

that measures the curvature via c(r)i = 2π − (the angle sum at vertex vi), he then
argues in nine pages that the origin 0 is in the image of c, which implies the desired
result. It is the case that the version Thurston presents on the sphere, Corollary
13.6.2, is Koebe’s result, and uses Andre’ev’s ideas for the proof. It is only with
this positive genus version, Theorem 13.7.1, that Thurston puts forth new geometric
ideas, fertile enough to spawn an industry dedicated to understanding polyhedral
metrics on surfaces and their induced circle packings.

Thurston’s approach to circle packing is rather entwined with his overall concern,
that of hyperbolic structures on three-dimensional manifolds and orbifolds. Since
this work of the 1970s, Thurston’s circle packing results have spawned a rather
extensive theory that is more combinatorial and geometric, and related more
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to classical complex function theory and Riemann surfaces, and less to three-
manifolds. It is related intimately to hyperbolic polyhedra and their generalizations,
this the subject of Sect. 5.7, and has found several scientific applications. In the
hands of folks like Ken Stephenson and his students and collaborators, it has
spawned a discrete theory of complex analytic functions, laid out ever so elegantly in
Stephenson’s Introduction to Circle Packing [71]. It has yielded beautiful results on,
for example, discrete minimal surfaces in the hands of the Berlin school of Bobenko,
Hoffman, Springborn, Pinkall, and Polthier; see for example [11] and [56]. Though
the theory now is rather mature, it continues to interact in new and interesting ways
with new areas, for instance lying in the background in conformal tilings [21, 22], or
in the foreground with its interaction with the classical rigidity theory of Euclidean
frameworks [23]. There is an immense literature here, and so much of it owes a great
debt of gratitude to the insights of Bill Thurston.

5.2.3 A Proof of the Koebe Circle Packing Theorem

Rather than proving the whole of KAT I, I will address the case where � is iden-
tically zero and prove Koebe’s result. The proof presented here can be modified to
give a complete proof of KAT I, which is done in [18] in proving a generalization.5

Koebe’s original proof of his namesake theorem uses a limiting process on circle
domains and classical analytic arguments on convergence of analytic families of
maps, very much in the flavor of what we now teach as classical techniques in our
complex analysis courses. There are now many proofs of the Koebe Circle Packing
Theorem. To name a few, besides Koebe’s, there is Thurston’s in GTTM already
outlined above based on Andre’ev’s results on hyperbolic polyhedra, Al Marden
and Burt Rodin’s using piecewise flat polyhedral metrics, Alan Beardon and Ken
Stephenson’s [7] that adapts the classical Perron method for constructing harmonic
maps as an upper envelope of subharmonic maps, Colin de Verdière’s [33] based on
a variational principle, Igor Rivins’s hidden in his paper [60] on Euclidean structures
on triangulated surfaces, the author’s [12] that turns the Beardon–Stephenson proof
upside down to address packings on punctured surfaces, and Alexandre Bobenko
and Boris Springborn’s [10] that uses a minimal principle on integrable systems.
Here I present a geometric and combinatorial proof where hyperbolic geometry is
the crucial ingredient. The proof is a twist on the Perron method used by Beardon
and Stephenson in [7] and is specialized from a more general version that applies
to arbitrary surfaces of finite conformal type that appears in [12]. We will see that it
has the advantage of generalizing in interesting ways.

Proof of the Koebe Circle Packing Theorem By removing one vertex v0 from K

and its adjacent edges and faces, one obtains a triangulation T of a closed disk.

5See Sect. 5.3.3.
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Place a piecewise hyperbolic metric on T as follows. For any positive function r :
V (T ) → (0,∞), let |T (r)| be the metric space obtained by identifying the face
v1v2v3 of T with the hyperbolic triangle of side lengths r(vi) + r(vj ) for i �= j ∈
{1, 2, 3}. This places a piecewise hyperbolic metric on T with cone-like singularities
at the interior vertices. This structure often now is called a piecewise hyperbolic
polyhedral metric, and the function r is called variously a radius vector or label.
For any vertex v, one can measure the angle sum θr(v) of the angles at v in all the
faces incident to v. I will say that r is a superpacking label for T if the angle sums
of all interior vertices are at most 2π , and a packing label6 if all are equal to 2π .

Now modify this a little by allowing r to take infinite values at the boundary
vertices. This causes some ambiguity only if there is a separating edge in T that
disconnects T when removed. This will be taken care of later, so for now assume
no separating edge exists. The goal is to find a packing label r with r(w) = ∞
whenever w is a boundary vertex. Assuming that such an r exists, we may glue on
hyperbolic half planes along the faces with two boundary vertices to give a complete
hyperbolic metric on a topological disk, which must be isometric to the hyperbolic
plane. This implies that the metric space |T (r)| is isometric to an ideal polygon
in the hyperbolic plane whose sides are hyperbolic lines connecting adjacent ideal
vertices that correspond to the boundary vertices of T . Now placing hyperbolic
circles of radii r(v) centered at interior vertices v and horocycles centered at ideal
vertices determined by the boundary vertices gives a univalent circle packing of
the hyperbolic plane realized as, say, the Poincaré disk, the unit disk D in the
complex plane with Poincaré metric ds = 2|dz|/(1−|z|2). The boundary circles are
horocycles in the hyperbolic metric on the disk and are therefore circles internally
tangent to the unit circle. Stereographic projection to the sphere S

2 and addition of
the equator as the circle corresponding to the vertex v0 removed initially produces
a univalent circle packing of the sphere in the pattern of K as desired. Uniqueness
follows from uniqueness of the packing label r with infinite boundary values, which
follows from the construction of r explained next.

Define the function r as

r(v) = inf {r(v) : r ∈ R} (5.2.1)

where

R = {r : V (T ) → (0, ∞] : r is a superpacking label for T with infinite boundary values}.

The claim is that this is the desired packing label. The first observation is that R �= ∅
so that we are not taking the infimum of the empty set. This is because one may
choose label values so large on the interior vertices that all of the faces become
hyperbolic triangles whose interior angles are no more than 2π/d , where d is the

6For emphasis one sometimes calls this a hyperbolic packing label to distinguish it from flat or
Euclidean packing labels that also find their use in this discipline.
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maximum degree of all the vertices of T . It follows that r is a non-negative function
with infinite boundary values. To verify that r is a packing label, I show that

(i) r cannot take a zero value on any interior vertex, which then implies that r ∈ R,
and,

(ii) the angle sum at any interior vertex is 2π , meaning further that r is a packing
label.

We need two preliminary observations.

(iii) Hyperbolic area is bounded away from zero. The hyperbolic area of the
singular hyperbolic surface |T (r)| is ≥ π for all superpacking labels r ∈ R.

(iv) Monotonicity of angles. For a face f = v0v1v2 of T , let αr(i), for i = 0, 1, 2,
be the angle that the label r ∈ R gives to f at vertex vi . Then αr (0) ↑ π ,
αr(1) ↓ 0, and αr(2) ↓ 0 monotonically as r(v0) ↓ 0 when r(v1) and r(v2)

are held fixed.

In calculating the hyperbolic area to confirm item (iii), let V (T ) and F(T ) be
the respective vertex and face sets of T of respective cardinalities V and F. The
sum of the angles of a face when given its metric by r is denoted αr(f ) so that
its hyperbolic area is Ar(f ) = π − αr(f ). Finally, with Vint and Vbd denoting the
numbers of interior and boundary vertices of T so that V = Vint + Vbd, one has

hyp-area (|T (r)|) = π F −
∑

f∈F(T )

αr (f ) = π F −
∑

v∈V (T )

θr (v) ≥ π(F − 2Vint),

(5.2.2)

since θr(v) ≤ 2π at interior vertices and θr(v) = 0 at boundary ones. An Euler
characteristic exercise then shows that F − 2Vint = Vbd − 2 ≥ 1, the inequality
holding since K is simplicial. It follows that every superpacking label with infinite
boundary values produces a metric on T with hyperbolic area at least π . Item (iv) is
almost obvious from drawing examples, but can be given a rigorous proof using the
hyperbolic law of cosines from hyperbolic trigonometry.

I now address item (i). First the claim is that the label r cannot be identically
zero on the set of interior vertices. Indeed, if r is identically zero, one may choose
a sequence of superpacking labels ri with infinite boundary values such that, for
each interior vertex v, ri (v) → 0 as i → ∞. This latter fact in turn follows from
the observation that the minimum label min{r1, r2} is in R whenever r1 and r2 are
labels in R, which in turn is a consequence of the monotonicity of angles (iv). Recall
that we are under the assumption that there are no separating edges so that at least
one vertex of any face f of T is interior. Any such interior vertex has ri -values
converging to zero, and any boundary one is fixed at infinity, and with this it is easy
to see that the hyperbolic area Ari (f ) → 0 as i → ∞. But this implies that the
hyperbolic area of |T (ri)| converges to zero as i → ∞, which contradicts item (iii).

Now could it be that r takes a zero value at some interior vertex, but not at all?
The argument that this in fact does not happen is a generalization of what I have
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argued thus far. I will but give an indication of how it goes, referring the reader
to [12] for details. Let T ′ be the subcomplex of T determined by those faces of T

that have a vertex in r−1(0). An argument using Euler characteristic similar to that
already given implies that the hyperbolic area of |T ′(r)| is positive and bounded
away from zero for every superpacking label r with fixed non-negative boundary
values. But an argument as in the preceding paragraph shows that the hyperbolic
areas of |T ′(ri )| converge to zero for a sequence of superpacking labels with fixed
boundary values and interior vertex values converging to zero. This contradiction
implies that r is a positive function on the interior vertex set, and continuity of angles
of a triangle with respect to edge lengths implies that θr(v) = limi→∞ θri (v) ≤ 2π

at any interior vertex, since θri (v) ≤ 2π for all i. This shows that r ∈ R and
completes the verification of item (i).

Item (ii) follows quickly from item (iv). Indeed, if (ii) fails, then there is an
interior vertex v of T such that θr(v) < 2π . By the monotonicity properties (iv),
varying r by slightly decreasing its value at v without changing any other values
increases θr(v) while decreasing θr(w) for any vertex w incident to v. By making
that decrease of r(v) small enough to keep the angle sum at v below 2π , we obtain a
superpacking label r with infinite boundary values that satisfies r(v) < r(v), which
contradicts the definition of r in Eq. 5.2.1.

At this point I have shown that r is a packing label with infinite boundary values,
and I now claim that it is the only one. Suppose there is a packing label r in R
that differs from the infimum label r defined in Eq. 5.2.1. Then r(v) ≤ r(v) for all
vertices v, but there must be some interior vertex w with r(w) < r(w). This implies
that the hyperbolic area of the surface |T (r)| is strictly less than that of |T (r)|. But
this is impossible since r and r are packing labels with infinite boundary values,
and as argued above, both |T (r)| and |T (r)| are ideal hyperbolic polygons with
VBd sides. An easy exercise shows that the hyperbolic area of any such hyperbolic
polygon is equal to (VBd − 2)π .

This completes the proof modulo the assumption that T has no separating edge.
This is handled by induction on the number of such edges. If there is one separating
edge uv, cut T into T1 and T2 along that edge, circle pack each in the unit disk with
horocyclic boundary circles, and then using Möbius transformations, place the T1
packing in the upper half disk with the horocycles for u and v circles tangent at
the origin and centered on the real axis, and place the T2 packing in the lower half
of the disk with those same horocylic circles for u and v. This is possible since T

is oriented, and this gives an appropriate packing label of T with infinite boundary
values. �

5.2.4 Maximal Packings and the Boundary Value Problem

This proof actually proves the following extremely useful fact, which Beardon and
Stephenson [7] exploited to give the first extension of the Koebe Circle Packing
Theorem to infinite packings of the disk and the plane. The infinite theory is
presented in Sect. 5.4.
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Maximal Disk Packing Theorem Every oriented simplicial triangulation T of a
closed disk determines a univalent circle packing T (C) for T in the unit disk D in
the complex plane C, unique up to Möbius transformations of the disk, with the
circles corresponding to boundary vertices of T internally tangent to the unit circle
boundary ∂D = S

1. Moreover, when given its canonical hyperbolic metric making
D into the Poincaré disk model of the hyperbolic plane H

2, the circle radii of the
packing are uniquely determined by T .

The circle packing guaranteed by this theorem is called the maximal packing for
T . This theorem is in fact a special case of the more general result of Beardon and
Stephenson [8] that solves the discrete version of the classical Dirichlet boundary
value problem of harmonic analysis. In that paper, the authors also prove a discrete
version of the classical Schwarz-Pick Lemma of complex analysis. These two
theorems finish up the present section.

Discrete Boundary Value Theorem (Beardon and Stephenson [8]) Let T be an
oriented simplicial triangulation of a closed disk and f : VBd(T ) → (0,∞]
a function assigning positive or infinite values to the boundary vertices. Then
there exists a unique hyperbolic packing label r : V (T ) → (0,∞] extending
f . The resulting circle packing T (Cr) of the unit disk D is unique up to Möbius
transformations of D.

Proof The proof is a straightforward modification of that of the Koebe Circle
Packing Theorem already presented. Again r = infR is the desired packing label,
provided that

R = {r : r is a superpacking label for T with r(w) ≥ f (w) when w ∈ VBd(T )}.

Of course, f ≡ ∞ gives the maximal packing of the preceding theorem. �
This proof is a modification of the Beardon–Stephenson proof, which uses

subpacking rather than superpacking labels. In a subpacking label, the interior angle
sums are greater than or equal to 2π and one obtains the packing label as an upper
envelope of subpacking labels, with the packing label given by r = supR′ where
R′ is the set of subpacking labels with boundary values given by f . The advantage
of approaching the desired packing label r from above using superpackings (infR)
rather than from below using subpackings (supR′) is that this upper Perron method
readily generalizes to include cusp type singularities and cone type singularities at
interior vertices.7 This is presented in Sect. 5.3.4.

A word of warning here. When the boundary values are allowed to be finite,
the resulting packing, though locally univalent, may not be globally univalent. This
means that the disks bounded by the circles of the packing may overlap non-trivially,
though ones neighboring the same interior vertex never do; this is the meaning of

7Another not insignificant advantage is that it is easy to show that R �= ∅ while proving that
R′ �= ∅ generally is difficult.
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Fig. 5.2 A locally univalent circle packing that is not globally univalent

locally univalent. Figure 5.2 shows a locally univalent packing that is not globally
univalent.

The second theorem of Beardon and Stephenson follows partly from the proof of
the first (item (i)), and the rest of the theorem follows from a careful analysis of paths
and angles in piecewise hyperbolic surfaces. The details of course appear in [8]. The
theorem I state here is the generalization of what the reference [8] calls the Discrete
Schwarz-Pick Lemma, which in turn is obtained by setting the boundary values of
r identically to infinity.

Discrete Schwarz-Pick Lemma (Beardon and Stephenson [8]) Let r, r ′; V (T )

→ (0,∞] be packing labels for the oriented simplicial triangulation T of a closed
disk. Suppose that r(w) ≥ r ′(w) at every boundary vertex w ∈ VBd(T ). Then

(i) r ≥ r ′; i.e., r(v) ≥ r ′(v) at every vertex v of T ;
(ii) ρr(u, v) ≥ ρr ′(u, v) for any two vertices u and v, where ρr is the distance

function on the metric surface |T (r)|, and similarly for ρr ′ ;
(iii) Ar(f ) ≥ Ar ′(f ) for any face f of T . (Recall that Ar(f ) is the hyperbolic area

of the face f .)

Moreover, if a single instance of finite equality occurs at an interior vertex in (i), or
at vertices u and v at least one of which is interior in (ii), or at any face in (iii), then
r = r ′.
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5.3 The Koebe–Andre’ev–Thurston Theorem, Part II

5.3.1 Circle Packings of Compact Surfaces

Thurston’s other avenue of generalization of Koebe, indeed the more far-reaching
one, is his extension of KAT to arbitrary orientable closed surfaces. Here there
are striking illustrations of how purely combinatorial information encodes precise
geometry. I will start with Thurston’s tangency case of packings before presenting
his version with overlaps.

Theorem 5.3.1 Let K be an oriented simplicial triangulation of a closed surface Sg

of positive genus. Then there is a metric of constant curvature, unique up to scaling,
on Sg that supports a univalent, tangency circle packing C = {Cv : v ∈ V (K)}
modeled on K . In particular, Cu and Cv are tangent whenever uv is an edge of
K . The packing C is unique up to isometries of Sg in this metric when g ≥ 2, and
up to scaling when g = 1. Connecting the centers of adjacent circles by geodesic
shortest paths produces a geodesic triangulation of the surface in the pattern of K .
The metric is locally Euclidean when g = 1 and locally hyperbolic otherwise.

Just in case the reader blinked and missed it, I aim to emphasize the extent to
which combinatorics determines geometry in this theorem. The simplicial complex
K provides purely combinatorial data with topological overtones. Yet hidden inside
of the combinatorics is precise geometry. For example in the hyperbolic case where
g > 1, among the uncountably many possible pairwise distinct hyperbolic metrics
of constant curvature −1 as tabulated in the (6g − 6)-dimensional moduli space
M(Sg) ∼= R

6g−6, the complex K chooses exactly one of these metrics, and in
that metric, determines a univalent circle packing unique up to isometry! For none
of the other metrics that Sg supports is there a univalent tangency packing of
circles in the pattern of K! Since there are only countably many pairwise distinct
simplicial triangulations of the fixed surface Sg , only countably many of the metrics
parameterized by M(Sg) support any univalent tangency packing at all, though the
set of metrics that do support such circle packings does form a dense subset of the
moduli space.

I present a Proof of Theorem 5.3.1 based on the upper Perron method used to
prove the Koebe Circle Packing Theorem.

Proof Let R = {r : V (K) → (0,∞) : θr(v) ≤ 2π for all v ∈ V (K)}, the set of
superpacking labels for K . Here again, exactly as in the proof of the Koebe Circle
Packing Theorem, the label r determines a hyperbolic polyhedral metric surface
|K(r)|. A unique packing label for which the angle sum at every vertex is equal to
2π would give all the claims of the theorem in the hyperbolic case. My claim is
that when g ≥ 2, the function r = infR is the unique packing label for K , and
when g = 1, then r = infR is identically zero, but provides a way to place a flat
polyhedral metric on K that meets the packing condition.
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Exactly the calculation of Inequality 5.2.2 gives hyp-area(|K(r)|) ≥ (F − 2V)π

for any superpacking label r ∈ R, and an Euler characteristic argument gives

F − 2V = −2χ(Sg) = 4g − 4. (5.3.1)

When g ≥ 2 so that F − 2V is positive and hence hyp-area(|K(r)|) is positive, the
same argument used in the proof of the Koebe Circle Packing Theorem shows that
items (i) and (ii) of that proof hold, so that r is a packing label. Uniqueness follows
exactly as in that proof.

The remaining case is when g = 1 so that Sg is a topological torus. Here are the
steps in proving that S1 supports a flat metric that supports a univalent circle packing
in the pattern of K , both the packing and the metric unique up to scaling.

(i) When g = 1, F− 2V = 0 and this implies that r = infR is identically zero on
V (K).

(ii) Fix a vertex v† in K and let R† = {r† : r ∈ R}, where r† is the normalized
label defined by r†(v) = r(v)/r(v†).

(iii) Show that r† = infR† takes only positive values.
(iv) Let |K(r†)|flat be the flat polyhedral surface with cone type singularities

obtained by identifying a face v1v2v3 with the Euclidean triangle of side-
lengths r†(vi) + r†(vj ) for i �= j ∈ {1, 2, 3}.

(v) Show that |K(r†)|flat is non-singular; i.e., r† is a flat packing label with
Euclidean angle sums θflat

r† (v) = 2π at every vertex v.

(vi) Show that r† is the unique flat packing label with value 1 at v†.

The details of the argument appear in [7], but I will give an indication of why this
outline works to prove the desired result. Let A(r) be the hyperbolic area of the
singular hyperbolic surface |K(r)| when r ∈ R and observe that

A(r) − s(r) = (F − 2V)π, where s(r) =
∑

v∈V (K)

(2π − θr (v)). (5.3.2)

Here s(r) is the total angle shortage.8 In the genus 1 case, F − 2V = 0 so
A(r) = s(r) for all superpacking labels r ∈ R. Now assuming that item (i) has
been verified, any superpacking label r that is close to the infimum infR = 0
has area A(r) close to zero and hence so too is the shortage s(r) close to zero.
In the limit as r → infR = 0, the shortages s(r) → 0 and this implies that
the singular hyperbolic surfaces |K(r)| have angle sums θr (v) → 2π for every
vertex v. Since Euclidean geometry is the small scale limit of hyperbolic geometry,
this implies that the Euclidean angle sums θflat

r (v) → 2π as r → 0. Thus the
collection {|K(r)|flat}r∈R is a collection of singular flat surfaces whose singularities
are removed in the limit as r → 0. Of course there is no limiting surface since

8Also called the discrete curvature.
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r → 0. Whereas this cannot be remedied in hyperbolic geometry, it can be remedied
in Euclidean geometry by rescaling the labels r as described in item (ii). With item
(iii) confirmed so that the flat polyhedral surface |K(r†)|flat of item (iv) exists, since
similarity transformations exist in Euclidean geometry, these rescalings preserve the
Euclidean angles and imply that the limit surface |K(r†)|flat is non-singular. Items
(v) and (vi) just state formally the result of making this imprecise but rather accurate
discussion rigorous. �

5.3.2 KAT for Compact Surfaces

Thurston’s Theorem 13.7.1 of GTTM combines the introduction of surfaces of
genus greater than zero in Theorem 5.3.1 with the overlap conditions of the KAT
Circle Packing Theorem.

Koebe–Andre’ev–Thurston Theorem II (for compact surfaces) (Theorem
13.7.1, GTTM) Let K be an oriented simplicial triangulation of a surface Sg of
genus g ≥ 1, and let � : E(K) → [0, π/2] be a map assigning angle values to
each edge of K . Assume that the following two conditions hold.

(i) If e1, e2, e3 form a closed loop of edges from K with
∑3

i=1 �(ei) ≥ π , then e1,
e2, and e3 form the boundary of a face of K .

(ii) If e1, e2, e3, e4 form a closed loop of edges from K with
∑4

i=1 �(ei) = 2π ,
then e1, e2, e3, and e4 form the boundary of the union of two adjacent faces
of K .

Then there is a metric of constant curvature on Sg , unique up to scaling, and a
realization of K as a geodesic triangulation in that metric, as well as a family C =
{Cv : v ∈ V (K)} of circles centered at the vertices of the triangulation so that the
two circles Cv and Cw meet at angle �(e) whenever e = vw is an edge of K . The
circle packing C is unique up to isometry.

I already have discussed the proof in GTTM. Let me say further that it was in
this proof that Thurston introduced the idea of using labels, or radii assignments
to vertices, to build a polyhedral surface with cone type singularities, and then to
vary the labels until the packing condition is met. This is still the basic idea for
proving many packing results, though the way in which one varies the labels and the
choice of initial labels changes from researcher to researcher and from application
to application. The Perron method used in this chapter is a modification of the
method of Beardon and Stephenson [7]. This idea also led to a practical algorithm
for producing the packing labels that was the starting point for Ken Stephenson’s
CirclePack. This sophisticated software package for computing circle packings
has enjoyed extensive development over the past 30 years and is freely available at
Ken’s webpage.

Before I introduce infinite circle packings and their really interesting and novel
features in Sect. 5.4, I’ll discuss two generalizations of the KAT Theorems. The first
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is presented in Sect. 5.3.3 and generalizes KAT I to certain branched packings of
the 2-sphere where circles tangent to a given one wrap around that one more than
once. These packings of course fail to be univalent, but provide a rich family of
packings that model the behavior of polynomial mappings of the Riemann sphere.
The ultimate goal is to model arbitrary rational mappings of the sphere, which would
require the theory to extend to more general branch structures, this a topic of current
research; see for example [5]. The second is presented in Sect. 5.3.4 and examines
how to include both cusps with ideal vertices as well as prescribed discrete curvature
at pre-chosen vertices.

5.3.3 A Branched KAT Theorem and Polynomial Branching

Ken Stephenson and I generalized KAT I by allowing for polynomial branching to
occur in the circle packing. Branching means that we allow for the angle sums at
predetermined vertices to be a positive integer multiple of 2π rather than just 2π ,
or stated differently, we allow the circles tangent to a given one to wrap around that
given circle multiple times before closing up; see Fig. 5.3. Polynomial means that
half the branching is concentrated at one vertex. The terminology comes from the
classical theory of rational maps. Indeed, rational mappings may be thought of as

Fig. 5.3 Branching of multiplicity m = 2 or order o = 1. Starting with the grey disk on the left
and moving counterclockwise, four sequentially tangent grey disks wrap around the blue central
disk nearly one full turn, at which point the sequentially tangent transparent (or white) disks take
over to wrap around slightly more than one full turn to close up the flower of circles with angle
sum θ = 4π
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branched self-mappings of the 2-sphere, and the polynomial mappings are precisely
those in which there is an even amount of branching with half the branching
occurring at a single point. Taken together, a circle packing promised by the next
theorem mimics the behavior of a polynomial mapping of the Riemann sphere.

Our proof of the theorem as presented in [18] offers an independent proof of KAT
I, which the branched version reduces to when the branch structure β is empty. In
fact as far as I know, it was the first full direct proof of KAT I given that Thurston
proves only the tangency case (the Koebe Circle Packing Theorem) and Marden-
Rodin [54], though allowing overlapping circles, has more restrictive hypotheses.
KAT I is implied by Igor Rivin’s earlier work, which bears the same resemblance
to KAT I as does Andre’ev’s in that it is a result on the existence of hyperbolic
polyhedra.

I state the result and then backtrack to fill in definitions and discuss the proof.

Polynomially Branched KAT Theorem (Bowers and Stephenson [18]) Let K be
an oriented simplicial triangulation of S2, different from the tetrahedral triangula-
tion, and let � : E(K) → [0, π/2] be a map assigning angle values to each edge
of K . Assume that the following two conditions hold.

(i) If e1, e2, e3 form a closed loop of edges from K with
∑3

i=1 �(ei) ≥ π , then e1,
e2, and e3 form the boundary of a face of K .

(ii) If e1, e2, e3, e4 form a closed loop of edges from K with
∑4

i=1 �(ei) = 2π ,
then e1, e2, e3, and e4 form the boundary of the union of two adjacent faces
of K .

If β is a polynomial branch structure for the edge-labeled triangulation (K,�),
then there exists a circle packing C = {Cv : v ∈ V (K)} for (K,�), a family
of circles in S

2 so that the two circles Cv and Cw meet at angle �(e) whenever
e = vw is an edge of K , with br(C) = β. The circle packing C is unique up to
Möbius transformations.

A branch structure essentially is a listing of some of the vertices of K , each
paired with an integer ≥ 2 that indicates how many times the circles adjacent to the
ones corresponding to the selected vertices wrap around before closing up. Before
making this precise, let’s observe that there must be further combinatorial conditions
to ensure that a branched circle packing exists for the branch structure. Indeed, note
that when there is no branching, the fact that K is a simplicial triangulation implies
that the degree of each vertex is at least three, and this local condition guarantees
that there are enough circles adjacent to a given circle to wrap around once, with
angle sum 2π , at least in the tangency case. A moment’s thought will show that if
the desire is that there be branching of multiplicity m ≥ 2 at a circle Cv , meaning
that the circles adjacent to Cv wrap around m times before closing up, there had
better be at least 1 + 2m adjacent ones to achieve the angle sum of 2πm. This may
not be sufficient but certainly is necessary, and the definition of a polynomial branch
structure includes enough combinatorial conditions to ensure sufficiency.

To clothe this discussion in a bit of flesh, suppose that C = {Cv : v ∈ V (K)} is
a circle packing for the pair (K,�). For each vertex v ∈ V (K), identify v with the
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center of its corresponding circle Cv . Fixing a vertex v, let v1, . . . , vn be the list of
neighbors of v forming the consecutive vertices in a walk around the boundary of
the star st(v) of v, and let αi be the measure of the spherical angle � vivvi+1. Then v

is said to be a branch point of order o = m− 1, or of multiplicity m, if θ(v) = 2πm

for some integer m ≥ 2, where θ(v) = α1 + · · · + αn is the angle sum at v; again,
see Fig. 5.3. The branch set br(C) of the circle packing is the set of ordered pairs
(v, o(v)) as v ranges over the branch points and o(v) is the order of v. It is clear that
the combinatorics of K as well as the values of � restrict the branch orders.

My aim is to construct circle packings of S2 in the pattern of K with overlaps
given by � with a given, predetermined branch set. Toward this end, I will define
a branch structure on the complex T = K \ Int[st(v∞)] that triangulates the closed
disk one obtains by deleting one vertex, v∞, and its incident open cells from K . I
will use �T to mean the restriction of � to the vertices of T .

Definition (Branch Structure) A set β = {(v1, o1, ), . . . , (v�, o�)}, where
vi, . . . , v� is a pairwise distinct list of interior vertices of T and each oi is a positive
integer, is a branch structure for the pair (T ,�T ) if the following condition holds:
for each simple closed edge path γ = e1 · · · en in T that bounds a combinatorial
disk D that contains at least one of the vertices vi , the inequality

n∑

i=1

[π − �T (ei)] > 2π(o(D) + 1) (5.3.3)

holds, where o(D) = ∑
oi , the sum taken over all indices i for which vi ∈ Int(D).

We will see that this condition on the combinatorics of T and the values of �T

ensures that there are no local obstructions to the existence of a circle packing for
(T ,�T ) whose branch set is β, and in fact is enough to ensure that there are no
global ones.

Definition (Polynomial Branch Structure) Let K be a simplicial triangulation of
S

2 with edge function � : V (K) → [0, π/2]. A collection

β = {(v∞, o∞), (v1, o1), . . . (v�, o�)}

is a polynomial branch structure for (K,�) if the following conditions prevail.

(1) o∞ = o1 + · · · + o�.
(2) The vertices v1, . . . , v� are all interior vertices of the complex T = K \

Int[st(v∞)].
(3) βT = {(v1, o1), . . . (v�, o�)} is a branch structure for (T ,�T ).
(4) No �-edge labeled subgraph of the type given in Fig. 5.4 occurs in K where v

is one of the branch vertices v1, . . . , v�.

A few comments concerning this definition are in order. Item (1) says that there
is an even amount of branching and half of it occurs at vertex v∞; item (2) says that
no branch vertex from the list v1, . . . , v� is adjacent to the vertex v∞; item (3) in



192 P. L. Bowers

Fig. 5.4 A forbidden
edge-labeled subgraph for a
polynomial branch structure

particular says that Inequality Eq. 5.3.3 holds for (T ,�T ); item (4) is a technical
condition that avoids impossible configurations.

Discussion of Proof How do we put all of this together to prove the Polynomially
Branched KAT Theorem? Letting β = {(v∞, o∞), (v1, o1), . . . (v�, o�)} be a
polynomial branch structure for (K,�), we remove the vertex v∞ and work with
hyperbolic polyhedral metrics on the disk triangulation T as in the proof of the
Koebe Circle Packing Theorem. The idea is the same as there in that we want to use
vertex labels on T to describe hyperbolic triangles that then are identified with faces
to form a singular hyperbolic surface, and then vary the labels to meet angle targets
at the vertices. There are three new difficulties that appear.

(i) Target overlap angles are given by �T for adjacent circles rather than
tangencies.

(ii) Rather that 2π , the target angle sums at branch vertices are 2πmi for integers
mi = oi + 1 ≥ 2.

(iii) As the boundary ∂D ultimately will serve as the circle corresponding to v∞ in
the desired circle packing, the overlaps of the boundary circles of the packing
for T must intersect the unit circle at the angles demanded by �.

Now items (i) and (ii) are really no problem as superpacking labels can be described
that allow for prescribed overlap angles for adjacent circles and target angles
prescribed by the branch structure. The real difficulty is item (iii). If we use radius
labels, the best we can do is, as in the proof of the Koebe Theorem, get boundary
circles that meet the unit circle at single points with intersection angle zero. The
hint for resolving this difficulty is found in thinking a bit more about the role of
circles in hyperbolic geometry, and in particular in the Poincaré disk model where
H

2 is identified with the unit disk D, and the ideal boundary of H
2 is identified

with ∂D = S
1. Euclidean circles that meet the Poincaré disk D not only serve as

hyperbolic circles, but also as horocycles and hypercycles. Those that lie entirely
within D are hyperbolic circles, those internally tangent to the ideal boundary S1 are
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horocycles, and those that meet the boundary in two points a and b are hypercycles
whose points in D lie equidistant to the hyperbolic line with ideal endpoints a

and b. This latter case includes the hyperbolic geodesic lines. What proves fruitful
here is the fact that, when oriented, these Euclidean circles and circular arcs are
precisely the curves of constant geodetic curvature in the hyperbolic plane. This
is implied immediately by the fact that these are the flow lines of 1-parameter
groups of hyperbolic isometries, the hyperbolic circles the flow lines of elliptic
flows, horocycles of parabolic flows, and hypercycles of hyperbolic flows.

Here are the salient facts about the geodetic curvature κ of an arc of an oriented
Euclidean circle that lies in the Poincaré disk D. Call an arc c = C ∩ D, where
C is a Euclidean circle that meets D, a cycle with parent circle C. There is a
normalized setting in which the curvature can be read off easily. Apply a conformal
automorphism of the disk so that c passes through the origin and its parent circle C

is centered on the positive real axis. Orient c counterclockwise and let t , 0 < t ≤ ∞
denote the point of intersection of C with the interval (0,∞]. Then the curvature
satisfies κ = κ(c) = 1/t . In terms of intrinsic parameters, for counterclockwise-
oriented hypercycles when t > 1, κ(c) = cos α where α is the acute angle of
intersection of C with the unit circle. This includes the case of a hyperbolic geodesic
where α = π/2 and κ = 0. Assuming still the counterclockwise orientation, when
t = 1, c is a horocycle with κ(c) = 1, and when t < 1, c = C is a hyperbolic circle
of some hyperbolic radius r with κ(c) = coth r .

For our purposes it is quite fortuitous that monotone curvature parameters for
cycles can be used as vertex labels on T in place of radii labels to encode a singular
hyperbolic metric on a disk that T triangulates. The curvature is inversely related
to the radii, but the really important feature is that, unlike radii labels, the curvature
label can be used to identify faces of T , not only with hyperbolic triangles with
both finite and ideal vertices, but also triangles with “hyperideal vertices.”9 This
means that when curvatures κ1, κ2, and κ3 label the vertices of the face f and
values �T (ei) for i = 1, 2, 3 label the opposite edges, the face f may be identified
with the region of the hyperbolic plane determined by cycles of curvatures κ1, κ2,
and κ3 overlapping with angles �T (ei) for i = 1, 2, 3. This accomplishes two
things. First, the overlaps of cycles are given by the edge function �T . Second,
and very importantly, if the vertex w of f is a boundary vertex and the value
κ = cos �T (wv∞) is used for the curvature, then the boundary cycle corresponding
to w overlaps with the unit circle by an angle of �T (wv∞).

The important point is that the set K of curvature labels, ones whose boundary
values are given by g(w) = cos �(wv∞) for the boundary vertex w, and that
produce superpackings where the angle sums at interior vertices are no more than
2π at non-branch points and no more than 2πmi at branch point vi , may be varied
to obtain a β-packing label, this time as supK, the supremum instead of the infimum

9When the Klein disk is used as the model for the hyperbolic plane these are in fact Euclidean
triangles that meet the disk, but whose vertices may lie within the disk, on the ideal boundary, or
outside the closed disk. The hyperideal vertices are the latter ones.
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since curvatures are inversely related to radii. Of course by β-packing label I mean
that the angle sum at any interior vertex that is not a branch vertex is 2π , and at
vi is 2πmi . The argument is akin to that of the proof of the Koebe Circle Packing
Theorem, but, though still elementary, is much more intricate and involved. The full
detailed proof appears in [18] where the key proposition, stated below, generalizes
the Discrete Boundary Value Theorem of Beardon and Stephenson. Setting up this
result with appropriate definitions and analysis of hyperideal hyperbolic triangles,
as well as the proof itself, takes up most of the content of the paper.

Proposition 5.3.2 (Bowers and Stephenson [18]) Let g be a proper boundary
label for T and β a branch structure for (T ,�T ). Then there exists a unique β-
packing label k for (T ,�T ) such that k(w) = g(w) for every boundary vertex of T .

This then is used to complete the proof of the Polynomially Branched KAT
Theorem by using the circle packing produced by Proposition 5.3.2, augmented
by the unit circle corresponding to the removed vertex v∞ to define C. Much of
this becomes routine at this point, except that one still must confirm that half the
branching occurs at v∞. This turns out to be nontrivial. Again the details are rather
involved and can be found in [18]. �

5.3.4 Cusps and Cone Type Singularities

In this section I offer a generalization of KAT II where prescribed target angle
sums at vertices are assigned, and necessary and sufficient conditions are sought
to guarantee existence of such packings. This is the discrete version of the classical
Schwarz-Picard problem of the existence of hyperbolic metrics on Riemann surfaces
with prescribed cone type singularities. For simplicity I am going to restrict to the
tangency case where � is identically zero.

To set up the problem, let K be a simplicial triangulation of a compact surface,
possibly with boundary, with F faces, E edges, and V vertices. The vertex set V (K)

is partitioned into three sets: two disjoint subsets of interior vertices denoted as VInt
and Vcusps, and the set VBd of boundary vertices, with respective cardinalities VInt,
Vcusps, and VBd. Elements of VInt are called interior vertices and of Vcusps are called
cusp vertices. Two functions are given, the first f : VBd → (0,∞] giving target
radii for the boundary vertices and the second θ : VInt → (0,∞) giving target angle
sums at interior vertices. The target angle sums at the cusp vertices in Vcusps are
zero. The task is to give necessary and sufficient conditions on K to guarantee the
existence of a packing label r : V (K) → (0,∞] for this data such that r = f on
VBd, r = ∞ on Vcusps, and θr(v) = θ(v) for every interior vertex v ∈ VInt.

To describe a solution to this problem, for any set V of vertices, let FV denote
the number of faces of K that meet V , and let θ(V ) = ∑

v∈V θ(v) denote the total
angle sum of the vertices of V . Let

R = {r : V (K) → (0,∞] : r = f on VBd, r = ∞ on Vcusps, θr (v) ≤ θ(v) for all v ∈ Vint}.
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This describes the set of superpacking labels for the data θ with boundary values
given by f and cusp set Vcusps. A packing label for this data is a superpacking label
where, in addition, the target angle sums given by θ are met, so that θr (v) = θ(v) for
all v ∈ VInt. For any superpacking label r and vertex set V , let θr(V ) = ∑

v∈V θr(v).
The next theorem gives necessary and sufficient conditions for a solution to the
discrete Schwarz-Picard boundary value problem. The proof is a generalization
of the proof presented herein for the Koebe Circle Packing Theorem. There the
important invariant is F − 2VInt. In the borderless case of Theorem 5.3.1, the
important invariant is F − 2V. These arise from writing the hyperbolic area of the
surface determined by a packing label, provided one exits, in terms of combinatorial
invariants. The corresponding fact in this setting is that, for any packing label r for
the data f , θ , and Vcusps,

hyp-area(K(r)) + θr(VBd) = π F − θr(VInt) = π F − θ(VInt).

The right hand side of this equation is an invariant of K and θ and must be positive
since the left hand side is positive. Also, for every interior vertex v,

θ(v) = θr(v) < π deg v

These give two necessary conditions for a desired label to exist, but these are not
sufficient. Nonetheless, these two conditions are the extreme cases of the sufficient
condition that appears as item (i) of the theorem.

Discrete Schwarz-Picard Boundary Value Theorem (Bowers [12]) The follow-
ing are equivalent.

(i) For every edge-path connected set V ⊂ VInt of interior vertices, the invariant
π FV − θ(V ) is positive.

(ii) The function r = infR does not take a zero value at any vertex.
(iii) The function r = infR is the unique packing label for K with data f , θ , and

Vcusps.
(iv) There exist a packing label for K for the data f , θ , and Vcusps.

A word of caution is in order. Though this does solve the discrete Schwarz-
Picard problem, the combinatorial condition of item (i), that π FV − θ(V ) > 0
for every path connected subset V of interior vertices, is a very difficult condition to
check once the size of K becomes in any way substantial. This pure mathematician
has learnt to appreciate the difficulties our computational geometer cousins face
when trying to make the elegant output of our theorems practical tools for
performing geometric computations. This difficulty often is unrecognized or left
unacknowledged by my pure mathematician siblings.
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5.4 Infinite Packings of Non-compact Surfaces

I now turn our attention to infinite packings of non-compact surfaces. Here new and
interesting phenomena arise, fraught with their own peculiar difficulties. To keep
the conversation manageable, I am restricting attention to tangency circle packings
of simply connected domains and will concentrate on one very interesting problem
that arises in this setting—the type problem—and one great success in attacking the
Koebe Uniformization Conjecture.

5.4.1 The Discrete Uniformization Theorem

Does every simplicial triangulation K of every topological surface S, compact or
not, admit a circle packing in some geometric structure on S? By passing to the
universal covering surface S̃ and lifting the triangulation to a triangulation K̃ of
S̃, the question may be approached by asking whether any G-invariant simplicial
triangulation of a simply connected surface admits a G-invariant circle packing in
some geometric structure, where G is a group of symmetries of the complex. There
are only two simply connected surfaces up to homeomorphism, the sphere and the
plane. The former case is addressed by the Koebe Circle Packing Theorem. In this
section I will address the latter case.

Let T be a plane triangulation graph, by which I mean that T is the 1-skeleton
of a simplicial triangulation K of the topological plane. There are precisely two
inequivalent conformal structures on the plane, the one conformally equivalent to
the complex plane C and the other to the open unit disk D. There are precisely
two complete metrics of constant curvature up to scaling on the plane, the one
isometric to Euclidean 2-spaceE2 and of constant zero curvature, the other isometric
to the hyperbolic plane H

2 and of constant negative curvature. Fortunately, the
conformal and the geometric structures mesh nicely in that the complex plane C

is a conformal model of plane Euclidean geometry via its standard Euclidean metric
dsC = |dz|, and the disk D is a conformal model of plane hyperbolic geometry via
the Poincaré metric dsD = 2|dz|/(1 − |z|2). Metric circles in these two geometries
are precisely the Euclidean circles contained in their point sets, so circle packings in
these geometric surfaces can be identified with Euclidean circle packings of C and
D. I will use G

10 to mean either C or D with the intrinsic Euclidean or hyperbolic
geometry determined by either dsC or dsD when referring to geometric quantities
like geodesics and angles, etc. Here is the foundational result in this setting.

Discrete Uniformization Theorem (Beardon and Stephenson [7], He and
Schramm [42]) Every plane triangulation graph T can be realized as the contacts
graph of a univalent circle packing T(C) that fills exactly one of the complex plane

10G means Geometry.
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C or the disk D. The packing is unique up to conformal automorphisms of either C
or D.

The contacts graph of a collection is a graph with a vertex for each element of
the collection and an edge between two vertices if an only if the corresponding
elements meet. The carrier of the circle packing C in the geometry G is the union of
the geodesic triangles formed by connecting centers of triples of mutually adjacent
circles with geodesic segments, and C fills G whenever its carrier is all of G. When
C is univalent and fills G, C is said to be a maximal packing for T or K , and K may
be realized as a geodesic triangulation of G whose vertices are the centers of the
circles of C with geodesic edges connecting adjacent centers.

Once this theorem is in place, the whole of the theory of tangency circle packings
on non-compact surfaces comes into play. As already indicated, in a thoroughly
classical way packing questions on surfaces can be transferred to questions of
packings on simply connected surfaces, this by passing to covering spaces acted
upon by groups of deck transformations. Any combinatorial symmetries of the
complex K are realized as automorphic symmetries of G, this from the uniqueness
of the Discrete Uniformization Theorem, and this offers an alternate Proof of
Theorem 5.3.1, and an extension of that theorem to triangulations of arbitrary, non-
compact surfaces.

Beardon and Stephenson [7] proved the Discrete Uniformization Theorem when
T has bounded degree, a global bound on the degrees of all the vertices of T. In this
foundational paper as well as in their subsequent one [8], Beardon and Stephenson
laid out a beautiful theory of circle packings on arbitrary surfaces, gave a blueprint
for developing a theory of discrete analytic functions, and articulated one of the most
interesting problems in the discipline, that of the circle packing type problem for
non-compact surfaces, this latter the subject of the section following. The bounded
degree assumption was needed both to verify that the packing fills G and for the
uniqueness, and He and Schramm [42] removed the bounded degree hypothesis
and proved the general case where there is no global bound on the degrees of
vertices. Earlier, Schramm [65] had proved a very general rigidity theorem for
infinite packings of planar domains whose complementary domains are a countable
collection of points, and He and Schramm [42] extended this to general countably
connected domains.

Discussion of Proof The full proof is scattered throughout several articles pub-
lished in the 1990s. In what constitutes a significant service to the discipline, Ken
Stephenson has laid out a complete proof in roughly fifty pages of his wonderful
text Introduction to Circle Packing [71]. I have not the space here to do justice to
the argument, but I will make some comments.

Beardon and Stephenson’s proof of existence relies on the Maximal Disk Packing
Theorem and uses a diagonal argument on a sequence of finite subcomplexes of K

that exhausts K . It does not depend on any bounded degree assumption and is quite
straightforward. The proof of existence goes like this. Write K = ∪∞

i=1Ki as a
nested, increasing union of finite subcomplexes Ki , each a simplicial triangulation
of a closed disk. Apply the Maximal Disk Packing Theorem to obtain a sequence
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Ci of univalent, maximal circle packings for the complexes Ki in the unit disk
D realized as the Poincaré disk model of hyperbolic geometry. Fix a base vertex
v0 of K1 and let Ci be the circle of Ci that corresponds to v0. By applying an
automorphism of the disk if needed, assume that Ci is centered at the origin and
of hyperbolic radius ri (v0). Now the Discrete Schwarz-Pick Lemma implies that
the sequence ri (v0) of hyperbolic radii is non-increasing, hence has a limit, say
r(v0) ≥ 0, as i → ∞. There are two cases.

(I) The limit radius r(v0) �= 0;
(II) The limit radius r(v0) = 0.

The first claim is that if v is any other vertex of K whose corresponding circle of
Ci , for large enough i, has hyperbolic radius ri (v), then limi→∞ ri (v) is not zero
when case (I) occurs and is equal to zero when case (II) occurs. This means that
the limit radius function r : V (K) → [0,∞) never takes a zero value in case (I)
and is identically zero in case (II). The proof of this claim uses the Ring Lemma
of Burt Rodin and Dennis Sullivan that was crucial in [62] in their confirmation of
Thurston’s outlined proof of the Discrete Riemann Mapping Theorem presented in
his 1985 Purdue lecture; see Sect. 5.5.1. The Ring Lemma guarantees the existence
of a sequence of positive constants cd such that, when d ≥ 3 disks form a cycle
of sequentially tangent disks all tangent to a central disk of Euclidean radius R,
and the disks have pairwise disjoint interiors, then the smallest disk has Euclidean
radius ≥ cdR. The Ring Lemma is applied as follows. Let v0 v1 · · · vn = v

be a path of vertices in K from v0 to v and choose N so large that this path
of vertices is contained in the interior of Ki , for all i ≥ N . The Ring Lemma
applied sequentially to the chain of pairwise tangent circles in Ci corresponding
to the path v0 v1 · · · vn = v implies that there is a positive constant c such that
Ri(v) ≥ cRi(v0), where Ri is the Euclidean radius function on Ci . This holds for
all i ≥ N and the constant c is independent of i. As hyperbolic and Euclidean radii
of circles in the disk are comparable in the small, this implies the claim.

Now order the vertex set V (K) as v0, v1, . . . . In case (I), choose a subsequence ij
so that the hyperbolic centers of the circles of the sequence Cij all corresponding to

the vertex v1 converge in the closed disk D to a point c1. An application of item (ii)
of the Discrete Schwarz Pick Lemma implies that c1 is contained in the open disk
D. Repeat to find a subsequence of ij for which the hyperbolic centers of the circles
corresponding to v2 converge to a point c2 in D. Iterating and applying a diagonal
argument gives a subsequence of the sequence of circle packings Ci for which the
hyperbolic centers of the circles corresponding to the vertex vn of K converges to
a point cn in D for all positive integers n. Centering a circle of hyperbolic radius
r(vn) at the point cn produces a circle packing in the Poincaré disk in the pattern of
K . In case (II) when r is identically zero, a diagonal argument applied to the scaled
packing 1

Ri
Ci , where Ri is the Euclidean radius of Ci , produces a circle packing in

the plane C in the pattern of K . Call the limit circle packing in either case C.
There are three facts left to prove: first, that C is univalent; second, that C

fills the disk in case (I) and the plane in case (II); third, that C is unique up
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to automorphisms. The first claim of univalence follows from the fact that each
circle packing Ci is univalent and the convergent subsequence of radii and centers
described above essentially describes geometric convergence of circle packings.
Beardon and Stephenson’s original proof of the second claim that the packing fills
G relied critically on the bounded degree assumption. It was used to ensure that
piecewise linear maps from the complexes Ki into the geometry G defined using
the convergent sequence of circle packings are uniformly quasiconformal so that
the Carathéodory Kernel Theorem [27] applies to ensure that the image of the limit
function is the kernel of the image sets, which is the whole of G. The third claim
of uniqueness in the hyperbolic case (I) follows from the uniqueness of the limiting
radius function, but in the Euclidean case (II), uniqueness uses the bounded degree
assumption. Later He and Schramm removed the bounded degree assumption. Their
proof of uniqueness in case (II) is particularly elegant. It is a topological proof based
on the winding numbers of mappings defined on the boundaries of corresponding
intersticial regions in two circle packings for the same complex K , both of which
fill C. All of this is rather nicely laid out in Stephenson’s Introduction to Circle
Packing [71]. �

5.4.2 Types of Type

The dichotomy between hyperbolic and Euclidean behavior is evident in the
Discrete Uniformization Theorem. Indeed, the combinatorial complex K , or its 1-
skeleton T, determines uniquely its geometry in that the maximal circle packing
T(C) fills either the disk D or the complex plane C, but forbids two packings where
one fills the disk and the other the plane. This leads to the next definition.

Definition (CP-Type) A simplicial triagulation K of the plane, and its 1-skeleton
plane triangulation graph T = K(1), are said to CP-parabolic or CP-hyperbolic
when the maximal circle packing T(C) fills respectively the complex plane C or
the disk D. The CP-type problem is the problem of determining whether a given
complex K or plane triangulation graph T is CP-parabolic or CP-hyperbolic. One
seeks conditions or invariants on the complex K or the graph T, reasonably checked
or computed, that can determine which of the two CP-types adheres. See Fig. 5.5.

This is a discrete version of the classical conformal type problem, or just
type problem for short, that of determining whether, à la classical Uniformization
Theorem, a given non-compact simply connected Riemann surface is parabolic
and conformally equivalent to the complex plane C, or hyperbolic and conformally
equivalent to the disk D.

Historically this is not the first discrete type problem. That honor probably goes
to the problem of determining the random walk type, or RW-type for short, of an
infinite graph. My aim in this section is to review this and several other species
of discrete type problems and explore their interactions in the context of plane
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(a) (b)

Fig. 5.5 The CP-type of a plane triangulation graph is determined by the corresponding maximal
circle packing and whether it fills the plane or the disk. (a) The penny packing, the maximal
circle packing for the constant 6◦ plane triangulation graph G6, fills the plane C. The graph G6
is parabolic. (b) The maximal circle packing for the constant 7◦ plane triangulation graph G7 fills
the disk D. The graph G7 is hyperbolic, as are the graphs Gd for all d ≥ 7

triangulation graphs. In all I will examine six different species of discrete type that
go under the abbreviations CP, RW, EL, EEL, VEL, and EQ-type.

Consider the standard simple random walk on a simple, connected, locally finite
graph G where the probability of walking across a particular edge uv from vertex
u to vertex v is 1/ deg u. The graph G is said to be random walk parabolic, or
RW-parabolic, if a walker almost surely returns to a fixed base vertex, and random
walk hyperbolic or RW-hyperbolic otherwise. More common terminology is that
the graph is recurrent when RW-parabolic and transient when RW-hyperbolic.
In a transient graph, a random walker has a positive probability for escaping to
infinity whereas in a recurrent one, the escape probability vanishes and, in fact,
the walker almost surely returns to every vertex infinitely often. Woess [74] is a
fantastic reference for the classical theory of random walks on graphs and Lawler
and Limic [51] is an up-to-date reference with many recent results.

Early on in the development of circle packing theory, Ken Stephenson made a
connection between the CP- and RW-type problems. The intuition for the connection
arises from the close connection in classical complex function theory between the
conformal type problem and brownian motion on a Riemann surface. Stephen-
son [70] proved that the CP- and RW-types of bounded degree plane triangulation
graphs always coincide. Later in [43], He and Schramm gave an example of a
plane triangulation graph, necessarily of unbounded degree, that is CP-parabolic but
RW-hyperbolic. There the authors focused more sharply on the distinction between
these two species of type and recalled Duffin’s EEL-type from [35] and developed
Cannon’s VEL-type inspired by Cannon [25] in articulating the distinction.
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Before continuing with the discussion of CP-type, let’s review a bit of history.
The story of discrete type really begins in the 1920s with Póyla’s study [57] of the
RW-type of the integer grid in R

d where he proved that the integer grid in R
2 is RW-

parabolic while the grid in higher-dimensional Euclidean spaces is RW-hyperbolic.
In 1959, Nash–Williams in [55] used a method of Lord Rayleigh to link the RW-
type of a locally finite graph with its resistance to electric flow when each edge is
thought of as a wire with a unit of electrical resistance, giving rise to EL-type. To
be a bit less cryptic, when an infinite graph is thought of as an electric network with
each edge representing a wire of unit resistance, the question is whether electricity
will flow from a base vertex to infinity when a unit potential is applied to the base
vertex and infinity is grounded. This is made a bit more precise by asking what the
effective resistance is from the base vertex to infinity for the network. When the
effective resistance to infinity is infinite, no current flows and the network is EL-
parabolic, and when the resistance is finite so that current does flow, the network is
EL-hyperbolic. In the beautiful 1984 Carus Mathematical Monograph [34] entitled
Random Walks and Electric networks, Peter Doyle and J. Laurie Snell present an
accessible proof that the RW- and EL-type of an infinite graph coincide. In 1962,
Duffin [35] gave a combinatorial invariant of a graph, the edge extremal length, that
characterizes the RW- or EL-type according to whether the edge extremal length of
the set of transient edge-paths is infinite or not.

What is the edge extremal length of a path family? It is a discrete version of
the classical conformal extremal length of a path family in a Riemann surface in
quasiconformal analysis. For a graph G, let  be any family of edge-paths, infinite or
not. The edge extremal length is obtained by measuring the minimal length-squared
of the curves in  divided by the area, this maximized over all metric assignments.
This is the same as the classical definition, only what changes is how the admissible
metrics are assigned. Here are the details. An edge-path in G is a finite or infinite
sequence e = e1, e2, . . . of directed edges of G with the terminal vertex of ei equal
to the initial vertex of ei+1. An edge metric on G is a function m : E(G) → [0,∞]
that assigns a non-negative value to each edge, and the area of m is defined as
area(m) = ∑

e∈E(G) m(e)2. An edge metric is admissible if its area is finite and I
will let ME(G) denote the collection of admissible edge metrics. The m-length of
the edge-path e is �m(e) = ∑

i=1 m(ei). Finally, the edge extremal length of the
family  of edge-paths is

EEL() = sup
m∈ME(G)

infe∈ �m(e)2

area(m)
.

The notation EEL(G) is reserved for the case where  is the set of paths to infinity
that start at a given base vertex v0. These are called the transient edge-paths in G

based at v0, and any such transient edge-path e ∈  has initial vertex v0 at its first
edge e1 and is not contained in any finite collection of edges. One says that the
graph G is EEL-parabolic if EEL(G) = ∞ and EEL-hyperbolic otherwise. It is an
easy exercise to confirm that EEL-type does not depend on which base vertex is
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chosen. Duffin’s result of [35] already mentioned is that both the RW- and EL-type
of a graph coincides with the EEL-type. This was the state of the art in discrete type
in the early 1990s when Stephenson connected CP-type with RW-type for bounded
degree plane triangulation graphs.

In 1995, He and Schramm [43] in a remarkable article clarified the role of the
bounded degree assumption. There, after constructing a plane triangulation graph
that, though CP-parabolic, is RW-hyperbolic, they applied Cannon’s vertex extremal
length to characterize CP-type combinatorially in the way that edge extremal
length characterizes RW-type. Cannon [25] introduced the vertex extremal length
of a discrete curve family made of shinglings and used it as a tool for assigning
combinatorial moduli to ring domains in the space at infinity of a negatively curved
group. He and Schramm adapted Cannon’s vertex extremal length to Duffin’s
development of EEL-type to create VEL-type. The adjustment merely replaces
edge-paths by vertex-paths and edge metrics by vertex metrics. The vertex extremal
length of a family � of vertex paths is

VEL(�) = sup
m∈MV (G)

infv∈� �m(v)2

area(m)
. (5.4.1)

Here, a vertex-path is a sequence v = v1, v2, . . . where each vi is incident with
its successor vi+1, and a vertex metric is a non-negative function m : V (G) →
[0,∞] with area area(m) = ∑

v∈V (G) m(v)2. The m-length of the vertex-path v is
�m(v) = ∑

i=1 m(vi) and the set of admissible metrics, the ones of finite area, is
denoted as MV (G). The VEL-type of G now is defined analogously to EEL-type.
Indeed, VEL(G) means VEL(�), where � is the set of transient vertex-paths based
at v0, those that meet infinitely many vertices. The graph G is VEL-parabolic if
VEL(G) = ∞ and VEL-hyperbolic otherwise, and again it is an easy exercise
to confirm that VEL-type does not depend on which base vertex is chosen. This
seemingly innocuous adjustment to the definition of EEL-type turns out to be
precisely the tool needed to characterize CP-type.

Though, easily, the EEL- and VEL-types of a bounded degree graph coincide,
they may differ for a graph of unbounded degree. The relationships between the
four types—RW, EL, EEL, VEL—are summarized in the next theorem.

Discrete Type Theorem for Graphs Let G be a connected, infinite, locally finite
graph.

(i) [Nash–Willliams [55], Duffin [35]] The three types—RW, EL, EEL—coincide
for G.

(ii) [He–Schramm [43]] If G is EEL-parabolic then it is VEL-parabolic. If G has
bounded degree and is VEL-parabolic, then it is EEL-parabolic.

(iii) [He–Schramm [43]] There is a VEL-parabolic plane triangulation graph that
is EEL-hyperbolic, necessarily of unbounded degree.

For a plane triangulation graph T, all five types—RW, EL, EEL, VEL, CP—
coincide provided T has bounded degree. As stated above, it was Stephenson who
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first proved this for RW- and CP-types. He and Schramm clarified the need for the
bounded degree hypothesis, and the relationship between discrete types for plane
triangulation graphs is summarized next.

Discrete Type Theorem for Plane Triangulation Graphs (He–Schramm [43])
Let T be a plane triangulation graph. Then T is CP-parabolic if and only if it is
VEL-parabolic.

The proofs of these theorems are quite difficult and involved, though still
elementary, and space forbids any sort of discussion of the proofs that would do
justice to the subject. Suffice it to say that the interested reader can do no better than
to consult the references cited in this section to fill in gaps in the desired detail of
proofs.

The Discrete Type Theorem for Plane Triangulation Graphs reduces the very
difficult problem of determining whether the maximal circle packing for T is
parabolic or hyperbolic to a combinatorial computation on the graph T. The
disappointment comes when one actually tries to do the computation of VEL(T)

from Eq. 5.4.1 for almost any given plane triangulation graph. One then finds out
just how difficult it is to perform this computation; nonetheless, this development is
useful for some theoretical considerations. For example, He and Schramm use the
theorem to extend Stephenson’s result on RW- and CP-type. Here is an interesting
result of the author that uses the computation of Eq. 5.4.1 for the proof of item (ii)
of the theorem.

Theorem 5.4.1 (Bowers [13]) Let G be a connected, infinite, locally finite graph
and T a plane triangulation graph.

(i) IfG is Gromov negatively curved and its Gromov boundary contains a nontrivial
continuum, then G is RW-hyperbolic.

(ii) If T is Gromov negatively curved, then T is CP-parabolic if and only if its
Gromov boundary is a singleton; alternately, it is CP-hyperbolic if and only if
its Gromov boundary is a topological circle.

I refer the reader to the appendix of the article [13] for definitions and basic
theorems on Gromov negatively curved graphs and metric spaces. To show how the
computation from Eq. 5.4.1 may proceed, I’ll prove the lemma used in [13] to prove
the first assertion of item (ii) of Theorem 5.4.1.

Lemma 5.4.2 Let v0 be a vertex in the connected, infinite, locally finite graphG and
let {Vn} be a sequence of pairwise disjoint sets of vertices, each of which separates
v0 from infinity. Suppose there exist positive constants C and ε such that, for n ≥ N ,

Card(Vn) ≤ Cn.

Then the graph G is VEL-parabolic.
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Proof Define the vertex metric m by m(v) = 1/(n log n) for any v ∈ Vn when
n ≥ N , and m(v) = 0 otherwise. Then m is admissible since

area(m) =
∞∑

n=N

Card(Vn)

(n log n)2 ≤
∞∑

n=N

C

n(log n)2 < ∞.

For any transient vertex-path v, the m-length satisfies �m(v) ≥ ∑∞
n=N 1/(n log n) =

∞, hence every transient vertex-path has infinite m-length. This implies that
VEL(G) = ∞ and G is VEL-parabolic. �

I’ll end this section with a sixth version of discrete type that is of recent interest
in several settings. It arose first for me when Ken Stephenson and I constructed
expansion complexes of finite subdivision rules, for the first time in [19] when
examining the pentagonal subdivision rule of Cannon, Floyd, and Parry [26]. More
recently it arises in our examination of hierarchical conformal tilings [21, 22], and
in Gill and Rohde’s [37] examination of random planar maps. I name this version of
discrete type EQ-type with EQ an abbreviation for equilateral. A plane triangulation
graph T = K(1) can be used to build a piecewise equilateral surface by setting each
edge to unit length and isometrically gluing unit-sided equilateral triangles along
their boundaries to the boundaries of the faces of K . This produces a piecewise flat
surface |T|eq that has a natural conformal atlas obtained as follows. Each edge e of
T indexes a chart map ϕe defined on the interior of the union of the faces incident
with e. These have been identified with unit equilateral triangles and the chart map
ϕe is an orientation-preserving isometry to the plane C. Each vertex v also indexes
a chart map ϕv defined on the metric neighborhood of v in |T|eq of radius 1/2,
and uses an appropriate complex power mapping to flatten that neighborhood to a
disk in the plane C. The overlap maps are conformal homeomorphisms between
the appropriate domains. The chart family A = {ϕx : x ∈ V (T) ∪ E(T)} forms a
complex atlas making |T|eq into a non-compact simply connected Riemann surface
S(T). The type problem now is manifest. Is S(T) conformally the plane C or the
disk D? In the former case, T and K are said to be EQ-parabolic, in the latter EQ-
hyperbolic.

Notice that the question of the EQ-type of a plane triangulation graph is the
classical question of the conformal type of a simply connected Riemann surface.
It bares the moniker discrete because of how the surface is built—using discrete
building blocks, the equilateral triangles, glued in a combinatorial pattern encoded
in T. The desire is for a combinatorial invariant of T or K that will determine its EQ-
type. So, what relationship exists between the discrete types already discussed and
EQ-type? For plane triangulation graphs of bounded degree, easy arguments using
quasiconformal mappings show that EQ-type coincides with CP-type—just map the
equilateral triangle in |T|eq at face f to the corresponding geodesic triangle in G.
When T has bounded degree, this map is uniformly quasiconformal and so the EQ-
type agrees with the conformal type of G. For unbounded degree plane triangulation
graphs, it remains an open question as to whether the EQ-type coincides with,
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say, the EEL- or the VEL-type, or perhaps neither. I am bold enough to offer the
following conjecture.

Conjecture 5.4.3 For any plane triangulation graph, EQ-type coincides with VEL-
type, and therefore with CP-type.

A great reference for various expressions of discrete type and their stability under
subdivision is Bill Wood’s doctoral thesis [75] and the subsequent article [76]. I now
turn our attention to Koebe’s original inspiration for his circle packing theorem, his
interest in circle domains, uniformization, and the Kreisnormierungsproblem.

5.4.3 Koebe Uniformization for Countably-Connected
Domains

Zheng-Xu He and Oded Schramm’s work on circle packing in the late 1980s and
early 1990s led them to a study of Koebe’s Uniformization Conjecture. Though
the discrete circle packing tools they developed and used did not directly apply
to Koebe’s problem, the perspective they had gained turned out to be useful.
By 1992–1993, they had made the greatest advance on Koebe’s problem since
its articulation and had proved a circle packing version that greatly generalized
the Discrete Uniformization Theorem. Their work is detailed in the Annals of
Mathematics article Fixed points, Koebe uniformization, and circle packings. The
proofs are rather intricate and so I am content to state the two main results without
any indication of the proofs, leaving it to the interested reader to peruse [42] for
details.

He–Schramm Uniformization Theorem (He and Schramm [42], Schramm [67])
Every countably connected domain in the Riemann sphere is conformally
homeomorphic to a circle domain. Moreover, the circle domain is unique up to
Möbius transformations and every conformal automorphism of the circle domain is
the restriction of a Möbius transformation.

A domain triangulation graph is the 1-skeleton of a simplicial triangulation of a
planar domain.

He–Schramm Discrete Uniformization Theorem (He and Schramm [42])
Every domain triangulation graph with at most countably many ends has a univalent
circle packing in the plane C whose carrier is a circle domain. Moreover, the circle
packing is unique up to Möbius transformations.

He and Schramm prove a theorem that generalizes their Uniformization The-
orem to generaized domains and generalized circle domains. This more general
unifomization theorem then is used to give a quick proof of their Discrete Uni-
formization Theorem.
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I’ll close this section by mentioning that Schramm in a 1995 paper [67]
introduced the notion of transboundary extremal length that generalizes the classical
extremal length of curve families. Transboundary extremal length is more suited
to path families in multiply connected domains that allow for the curves of the
family to pass through the complementary components of the domain. Using this
tool, Schramm gives a short proof of Koebe uniformization of countably connected
domains and generalizes it in two ways. First, he shows that circle domains as the
target of uniformization may be replaced by more general domains, namely, those
where the complementary components are what he calls τ -fat sets. Second, he shows
that some domains with uncountably many complementary components may be
uniformized to circle domains, namely those where the complementary components
are uniformly fat. This includes for example domains whose boundary components
are points and μ-quasicircles for a fixed constant μ ≥ 1.

5.5 Some Theoretical Applications

The theoretical work in circle packing has grown up hand-in-hand with various
applications. In the past score of years, the needs of computer imaging have added
a practical bent to the applications with the use of the theory for everything from
medical imaging to 3D-printer head guidance. This has been one of the impetuses
for the development of the discipline of discrete differential geometry with discrete
conformal geometry as but one of its chapters. Circle packing theory à la Thurston
as described in this chapter is one flavor of this, but several groups of computational
geometers and computer scientists have developed discrete conformal geometry in
a great variety of ways, with new techniques designed to solve both practical and
theoretical problems. The discipline has grown to a vast enterprise too large and
complicated for a review of this type. Rather than attempt a thorough discussion of
these applications, I’ll only mention a couple of the theoretical applications. The
first stands as one of the linchpins of the discipline, and the second generalizes the
first. I’ll leave it for the interested reader to peruse the many resources available to
learn of the state of the art today in practical applications.

5.5.1 Approximating the Riemann Mapping

The event that really got circle packing launched, piquing the interest of a small
group of research mathematicians from as diverse fields as complex function theory,
combinatorial and computational geometry, geometric topology, and the classical
theory of polyhedra, was Bill Thurston’s address entitled The Finite Riemann
Mapping Theorem at Purdue University in 1985. He presented there an algorithm
for computing discrete versions of the Riemann mapping of a fixed, proper, simply
connected domain in the complex plane C to the unit disk D, with an indication
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of why the discrete mappings should converge to a conformal homeomorphism of
the domain onto D. Burt Rodin and Dennis Sullivan published in [62] a proof of
Thurston’s claims in 1987, and this began a steady output of published research on
circle packings that continues today. Here I review the content of Thurston’s 1985
talk and explain the Rodin-Sullivan verification of Thurston’s claims.

Thurston’s algorithm is illustrated nicely in the graphics of Fig. 5.6. The scheme
is rather simple. Overlay a domain D with a hexagonal circle packingHε of constant
circle radii ε, a ‘penny packing.’ Use the domain D as a cookie cutter to cut out a
portion of the packing, say Pε , whose combinatorics are given by the simplicial
complex Tε . Apply the Maximal Disk Packing Theorem to obtain a maximal circle
packingQε of the diskD. Choosing two points x and y in the domain D, let uε and vε

be the vertices of Tε whose corresponding circles are closest to the respective points
x and y. From the uniqueness of the Maximal Disk Packing Theorem, one may
assume that the packings Qε have been normalized so that the circle corresponding
to uε is centered at the origin and the one corresponding to vε is centered on the
positive real axis. Define the discrete Riemann mapping fε : carr(Pε) → carr(Qε)

as the piecewise linear mapping that takes centers of circles of Pε to corresponding
centers of circles of Qε . Thurston’s claim of his 1985 lecture that Rodin and Sullivan
verified in 1987 is the content of the next theorem.

Discrete Riemann Mapping Theorem (Rodin and Sullivan [62]) The mappings
fε converge as ε ↓ 0, uniformly on compact subsets of D, to the Riemann mapping
f of D onto D with f (x) = 0 and f (y) > 0.

Before I discuss the proof, I should say that there is nothing special about
the hexagonal combinatorics. He and Schramm [44] verified that the particular
combinatorics of the overlay packings are irrelevant as long as the maximum circle
radii approach zero.

Sketch of Proof The proof applies classical tools from quasiconformal analysis to
confirm convergence of the discrete mappings to the Riemann mapping. There are
three parts. First, the Ring Lemma, already used on page 198 in the proof of the
Discrete Uniformization Theorem, is used to observe that the discrete Riemann
mappings fε for ε > 0 form a family of uniformly quasiconformal mappings
with, say, dilatation of all maps bounded by μ ≥ 1. Second, standard results of
quasiconformal analysis imply that the mappings converge to a μ-quasiconformal
mapping f of D onto D. Third, the limit mapping is proved to be 1-quasiconformal,
or just conformal, so that it is a Riemann mapping of the domain D onto the disk D.
Allow me to fill in each of the three parts of the argument a bit.

The first part, that the discrete Riemann mappings have quasiconformal dis-
tortion uniformly bounded, uses the fact that simplicial homeomorphisms are
μ-quasiconformal with the distortion constant μ depending only on the shapes of the
triangles involved. In particular, because the complexes Tε have constant degree six
on interior vertices, the Ring Lemma implies that there is a minimum possible angle
ω > 0 for any of the triangles in the Euclidean carrier carr(Qε), this independent of
ε. This implies that the discrete maps fε are uniformly μ-quasiconformal since the
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Fig. 5.6 Discrete Riemann mappings with finer and finer hexagonal circle packings
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images of the equilateral triangles of carr(Pε) are triangles of carr(Qε) of uniformly
bounded distortion.

The second part now follows from standard tools of quasiconformal analysis. The
uniformly quasiconformal maps fε are equicontinuous on compact subsets of D, as
are the maps f −1

ε on compact subsets of D. It follows that the family {fε}ε>0 is a
normal family and any limit mapping f is bijective between D and D. This latter
claim uses the fact that any limit mapping is necessarily μ-quasiconformal, and the
Carathéodory Kernel Theorem implies that f takes D onto D.

Finally, that any limit mapping f is conformal follows from the Hexagonal
Packing Lemma. This says that in a packing with hexagonal combinatorics, any
two adjacent circles buried deeply within the packing have nearly equal radii. Here
is the exact statement.

Hexagonal Packing Lemma (Rodin and Sullivan [62]) There is a sequence cn

decreasing to zero as n → ∞ such that in any packing with n generations of the
regular hexagonal combinatorics surrounding circle C, the ratio of radii of C and
any adjacent circle differs from unity by less than cn.

This lemma shows that as ε ↓ 0, the mappings fε restricted to a fixed compact
subset of D maps equilateral triangles to triangles of carr(Qε) that become arbitrarily
close to equilateral, and this implies that any limit mapping is conformal.

This completes the proof modulo the proof of the Hexagonal Packing Lemma.
This is proved as follows. Let Hn be any packing of circles in the plane with
combinatorics given by greater than or equal to n generations of the hexagonal
packing and whose central circle is the circle C0 of unit radius centered at the origin.
The Ring Lemma implies that the radii of the circles n generations removed from C0
in the packings Hm for m ≥ n are bounded away from zero and infinity. A diagonal
argument implies that there is a subsequence Hni that geometrically converges to a
packing H , which necessarily has hexagonal combinatorics. But the uniqueness of
the Discrete Uniformization Theorem implies that H = H1, the penny packing of
unit radius. If the lemma were not true, one could choose the sequence Hn in such
a way that the ratio of the center circle of Hn to at least one of its neighbors differs
from unity by at least a fixed constant δ > 0. This would imply that the limit packing
H has a circle adjacent to C0 of non-unit radius, contradicting uniqueness. �

I should mention that Rodin and Sullivan did not have access to the Discrete
Uniformization Theorem in 1987 as it was published only in 1990. They had to
prove uniqueness of the penny packing of the plane, which they did by invoking
results of Dennis Sullivan [72] extending the Mostow Rigidity Theorem to non-
compact three-manifolds whose volumes grow slowly enough. This initiated an
attempt to prove the Hexagonal Packing Lemma using only elementary means,
which ultimately led to a better understanding of the rigidity of infinite circle
packings over the next decade. This paper of Rodin and Sullivan was highly
influential and can claim to be the genesis of the serious study of circle packings that
now includes in its accomplishments hundreds of articles, thousands of citations,
and a huge reservoir of applications in a great variety of different settings.
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5.5.2 Uniformizing Equilateral Surfaces

I already have defined piecewise equilateral metrics determined by plane trian-
gulation graphs in the context of the type problem. Of course there is nothing
special about plane triangulation graphs. Any triangulation T of a surface may
be endowed with a piecewise equilateral metric by identifying faces with unit
equilateral triangles. Exactly as explained in Sect. 5.4.2, this endows the surface
with a complex atlas of conformal charts indexed by the vertices and edges of
the triangulation. Equilateral surfaces have become important in several different
areas of mathematics. They arise for example in Grothendieck’s theory of dessins
d’enfants and their corresponding Belyı̆ maps, see [20], in Angel and Schramm’s
theory of uniform infinite planar triangulations [4], in Gill and Rohde’s study of
random planar maps [37], in Bowers and Stephenson’s theory of conformal tilings
and especially those that arise from expansion complexes [21, 22], and in discrete
conformal flattening of surfaces in R

3 [16]. In this section I introduce a method of
uniformizing these surfaces using the tools of Rodin-Sullivan [62] and basic surface
theory.

Let T be a triangulation of the topological surface S. The notation |T |eq is used
to denote the piecewise equilateral metric space determined by the triangulation T

and ST to denote the Riemann surface determined by the atlas A = {ϕx : x ∈
V (T ) ∪ E(T )}. Note that T need not be a simplicial triangulation for this to make
sense. A face f of T first is identified as an equilateral triangle in |T |eq and then as a
curvilinear triangle in the canonical metric of constant curvature on the surface ST .
What is the shape of f in ST ? One fact about the shape of this curvilinear triangle
is that the angle that two of its sides makes that emanate from the same vertex is
2π/d , where d is the degree of the vertex. Another fact is that the sides are analytic
arcs, and in fact any such arc is the fixed point set of an anti-conformal reflection
that exchanges the two triangles incident with that arc. In the case ST is parabolic
or hyperbolic, f can be lifted to the plane C or the Poincaré disk D and so this
shape may be displayed as a curvilinear triangle in the plane. In case ST is elliptic,
this shape may be stereographically projected from the 2-sphere to the plane. How
does one get at this shape? The answer Ken Stephenson and I supplied in [20] is the
content of this section.

For simplicity, let’s restrict our attention to closed surfaces. The scheme for
approximating a uniformizing map is to use the triangulation T as a pattern
for a circle packing, and then refine iteratively using so-called hex-refinement to
obtain a sequence Pn of finer and finer circle packings, after an initial barycentric
subdivision. Hex-refinement applied to a triangular face just adds a vertex to each
existing edge and then connects the three new vertices on the three edges of the
face by a 3-cycle of edges, thus subdividing the face into four smaller triangles.
Thus barycentric subdivision followed by hex-refinement produces T1, and iteration
of hex-refinement then produces the sequence Tn with Pn the corresponding circle
packing in the surface Sn in the pattern of Tn. There is an added layer of difficulty
here in that, unlike with the use of the hexagonal packing in the Discrete Riemann
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Mapping Theorem, the circle packings in this setting do not occupy the same
surface. The surfaces Sn are determined by the triangulations Tn according to
Theorem 5.3.1, and these need not be conformally equivalent to one another. Also,
any face f of T with nth hex-subdivision fn in Tn determines a sequence Pn(f ) of
circle packings, those circles in Pn corresponding to the vertices of fn.

Discrete Uniformization Theorem for Equilateral Surfaces (Bowers and Step-
henson [20]) The surfaces Sn converge in moduli as n → ∞ to a surface S that is
conformally homeomorphic to the surface ST , the Riemann surface determined by
the equilateral surface |T |eq. For any face f of T , the carriers of Pn(f ) converge
geometrically to the shape of f in ST when given its canonical constant curvature
metric.

The latter statement of the theorem may be understood to mean that when one
lifts the carriers to the universal cover, the sphere S2, the plane C, or the disk D, and
normalizes appropriately, the carriers converge in the Hausdorff metric on compacta
to the appropriate lift of f in ST .

Sketch of Proof Note that the realizations of the triangulation T in the metric
surface |T |eq and in the Riemann surface ST are reflective, meaning that each edge
e is the fixed point set of an anti-conformal reflection that exchanges the two faces
contiguous to e.11 Rather than the canonical constant curvature metric, I shall use
the piecewise equilateral metric ρT on ST throughout the proof. Here is a key
observation. Hex-subdivision may be performed metrically in ST by adding new
vertices v(e) as the mid-points of the edges e ∈ E(T ) and connecting v(e) to
v(e′) by a Euclidean straight line segment in the metric ρT in the face bounded
by edges e, e′ and e′′. This realizes the hex-refined triangulation T1 as a reflective
triangulation in ST .12 Iterating, Tn may be realized as a reflective triangulation of
ST that metrically hex-subdivides Tn−1.

Define homeomorphisms hn : ST → Sn so that the image of vertex v of Tn under
hn is the center of the circle that corresponds to v in the circle packing Pn, extend
linearly along edges and then with minimum quasiconformal distortion across faces.
By the Ring Lemma, each mapping hn is quasiconformal, and since hex-refinement
does not increase degree, any bound ≥ 6 on the degrees of the vertices of T also
bounds the degrees of the vertices of Tn, for all n ≥ 1. This implies that the
homeomorphisms hn have uniformly bounded dilatations, and this implies that a
subsequence of the surfaces Sn converges in moduli to a Riemann surface S.

My claim is that S is conformally equivalent to ST . This would be confirmed
were the maximum dilatations of the homeomorphisms hn shown to limit to unity as
n → ∞, but unfortunately this does not occur. In fact these dilatations are bounded
away from unity with large dilatations concentrated near the original vertices of T .

11To be clear, the reflection is anti-conformal on the interior of the union of the two faces incident
at e, but not at the vertices.
12Technically, this is after the initial barycentric subdivision, which also is performed in the metric
ρT and yields a reflective triangulation.
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To get around this, let D be a compact domain in ST disjoint from the vertex set
V (T ). Note that the combinatorics of Tn away from the vertices of T is hexagonal,
and this implies that as n → ∞, the compact set D is surrounded by a number
of generations of the hexagonal combinatorics that increases without bound. The
Hexagonal Packing Lemma applies to confirm that the maximum dilatations of
the restrictions of the homeomorphisms hn to D converge to unity. This works
for every compact domain that misses the vertex set V (T ), and this implies that
the limit mapping h : ST → S is conformal on the complement of the vertex set
V (T ). Now the removability of isolated singularities comes into play and implies
that the homeomorphism h is conformal at the vertices, and so is a conformal
homeomorphism of ST onto S. �

Figure 5.7 shows an example of an approximation to a portion of an equilateral
surface uniformized in the plane. In this figure each edge is the fixed point set of an
anti-conformal reflection that exchanges the grey-white pair of triangles sharing that
edge. This is an approximation of the conformally correct shapes of the equilateral
triangles forming the equilateral surface being imaged.

Fig. 5.7 Conformal shapes of equilateral triangles in a planar equilateral surface approximated
with the circle packing of the twice hex-refined barycentric subdivision of the original triangulation
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5.6 Inversive Distance Circle Packings

Around 2001, Ken Stephenson and I began thinking about inversive distance
circle packings and how they could be used to uniformize piecewise flat surfaces,
those surfaces in which each face is identified with a flat Euclidean triangle, not
necessarily equilateral. There is a tentative discussion of this in [20] and further
discussion in [16] of the difficulties in proving convergence of discrete mappings to
the uniformization mapping, though the method does seem to work well in practice;
again see [16]. The first theoretical questions concern (1) the existence of circle
packings with prescribed inversive distances between adjacent circles and (2) the
rigidity and uniqueness of these packings.

When all inversive distances lie in the unit interval, adjacent circles overlap with
specified angle 0 ≤ θ ≤ π/2. This is covered by the Koebe–Andre’ev–Thurston
Theorems. When inversive distance is greater than unity, the circles do not overlap
and the inversive distance is a Möbius-invariant measure of how separated the
circles are. In this case Problems (1) and (2) seem much more difficult to approach.
Problem (1) is especially difficult in that there are local assignments of inversive
distances that must be avoided as there are no circle configurations that realize those
distances. These are difficult to catalogue, but even if there are no local obstructions
to the existence of a packing, it is not at all clear whether still there may be global
obstructions. Little progress has been made on Problem (1), but the situation for
Problem (2) has enjoyed some progress, initially in 2011 and more recently in the
past couple of years. It is these recent successes in approaching Problem (2) that
occupies this section. My contention is that a change of viewpoint can be effective
in approaching inversive distance circle packings, and a hint as to how to proceed
comes from the classical rigidity theory of bar-and-joint linkages. After a brief
review of inversive distance, I will explore this new framework for circle packings
and discuss some recent successes.

5.6.1 A Quick Introduction to Inversive Distance

There are a number of ways to define the inversive distance between two circles in
the Riemann sphere. I will present several of these below, starting with the most
mundane that gives a Euclidean formula for the inversive distance between two
planar circles.13 Let C1 and C2 be distinct circles in the complex plane C centered
at the respective points p1 and p2, of respective radii r1 and r2, and bounding the
respective companion disks D1 and D2.

13This easily can be extended to the inversive distance between a circle and a line, or two lines. I
will forgo this development since the next definition is completely general.



214 P. L. Bowers

Definition (Inversive Distance in the Euclidean Metric) The inversive distance
〈C1, C2〉 between C1 and C2 is

〈C1, C2〉 = |p1 − p2|2 − r2
1 − r2

2

2r1r2
. (5.6.1)

The absolute inversive distance between distinct circles is the absolute value of the
inversive distance.

The absolute inversive distance is a Möbius invariant of the placement of two
circles in the plane. This means that there is a Möbius transformation of C taking
one circle pair to another if and only if the absolute inversive distances of the two
pairs agree. The important geometric facts that make the inversive distance useful
in inversive geometry and circle packing are as follows. When 〈C1, C2〉 > 1, D1 ∩
D2 = ∅ and 〈C1, C2〉 = cosh δ, where δ is the hyperbolic distance between the
totally geodesic hyperbolic planes in the upper-half-space model C × (0,∞) of
H

3 whose ideal boundaries are C1 and C2. When 〈C1, C2〉 = 1, D1 and D2 are
tangent at their single point of intersection. When 1 > 〈C1, C2〉 ≥ 0, D1 and D2
overlap with angle 0 < θ ≤ π/2 with 〈C1, C2〉 = cos θ . In particular, 〈C1, C2〉 = 0
precisely when θ = π/2. When 〈C1, C2〉 < 0, then D1 and D2 overlap by an angle
greater than π/2. This includes the case where one of D1 or D2 is contained in the
other, this when 〈C1, C2〉 ≤ −1. In fact, when 〈C1, C2〉 < −1 then 〈C1, C2〉 =
− cosh δ where δ has the same meaning as above, and when 〈C1, C2〉 = −1 then C1
and C2 are ‘internally’ tangent. When −1 < 〈C1, C2〉 < 0, then the overlap angle
of D1 and D2 satisfies π > θ > π/2 and again 〈C1, C2〉 = cos θ .

The more general definition measures the inversive distance between oriented
circles. Note that an oriented circle determines a unique closed companion or
spanning disk that the circle bounds. Indeed, assuming fixed orientations for S2 and
Ĉ that are compatible via stereographic projection, the companion disk determined
by the oriented circle C is the closed complementary disk D (of the two available)
whose positively oriented boundary ∂+D = C, where of course the orientation of
D is inherited from that of S2 or Ĉ. This is described colloquially by saying that D

lies to the left of C as one traverses C along the direction of its orientation.

Definition (General Inversive Distance) Let C1 and C2 be oriented circles in the
extended plane Ĉ bounding their respective companion disks D1 and D2, and let
C be any oriented circle mutually orthogonal to C1 and C2. Denote the points of
intersection of C with C1 as z1, z2 ordered so that the oriented sub-arc of C from
z1 to z2 lies in the disk D1. Similarly denote the ordered points of intersection of C

with D2 as w1, w2. The general inversive distance between C1 and C2, denoted as
〈C1, C2〉, is defined in terms of the cross ratio

[z1, z2; w1, w2] = (z1 − w1)(z2 − w2)

(z1 − z2)(w1 − w2)
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Fig. 5.8 Inversive distances
d = 〈C1, C2〉. The shaded
regions are the intersections
D1 ∩ D2, the points common
to the spanning disks D1 and
D2 for both circles C1 and C2

by

〈C1, C2〉 = 2[z1, z2; w1, w2] − 1.

Subsequently, I’ll drop the adjective general and refer to the inversive distance
〈C1, C2〉 with its absolute value |〈C1, C2〉| the absolute inversive distance.14

Recall that cross ratios of ordered 4-tuples of points in Ĉ are invariant under
Möbius transformations and that there is a Möbius transformation taking an ordered
set of four points of Ĉ to another ordered set of four if and only if the cross ratios of
the sets agree. This implies that which circle C orthogonal to both C1 and C2 is used
in the definition is irrelevant as a Möbius transformation that set-wise fixes C1 and
C2 can be used to move any one orthogonal circle to another. Which one of the two
orientations on the orthogonal circle C is used is irrelevant as the cross ratio satisfies
[z1, z2; w1, w2] = [z2, z1; w2, w1]. This equation also shows that the inversive
distance is preserved when the orientation of both circles is reversed so that it is
only the relative orientation of the two circles that is important for the definition. In
fact, the general inversive distance is a relative conformal measure of the placement
of an oriented circle pair on the Riemann sphere. By this I mean that two oriented
circle pairs are inversive equivalent if and only if their inversive distances agree. All
of this should cause one to pause to develop some intuition about how companion
disks may overlap with various values of inversive distances. See Fig. 5.8 for some

14The author first learned of defining inversive distance in this way from his student, Roger Vogeler.
He has looked for this in the literature and, unable to find it, can only surmise that it is original
with Prof. Vogeler. The definition appeared in [16] in 2003.
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corrections to possible misconceptions. Finally, the inversive distance is symmetric
with 〈C1, C2〉 = 〈C2, C1〉 since [z1, z2; w1, w2] = [w1, w2; z1, z2].

The inversive distance is real since the cross ratio of points lying on a common
circle is real and, in fact, every real value is realized as the inversive distance of
some oriented circle pair. Notice that if the orientation of only one member of a
circle pair is reversed, the inversive distance merely changes sign. This follows from
the immediate relation [z1, z2; w2, w1] = 1−[z1, z2; w1, w2]. Despite its name, the
inversive distance is not a metric as it fails to be non-negative and fails to satisfy the
triangle inequality.15

The third definition is entirely in terms of the spherical metric.

Definition (Inversive Distance in the Spherical Metric) In the 2-sphere S
2, the

inversive distance may be expressed as

〈C1, C2〉 = − cos�(p1, p2) + cos(r1) cos(r2)

sin(r1) sin(r2)
= −p1 · p2 + cos(r1) cos(r2)

sin(r1) sin(r2)
.

(5.6.2)

Here, �(p1, p2) = cos−1(p1 · p2) denotes the spherical distance between the
centers, p1 and p2, of the respective companion disks, p1 · p2 the usual Euclidean
inner product between the unit vectors p1 and p2, and r1 and r2 the respective
spherical radii of the companion disks. Note that ri = cos−1(pi · qi) for any point
qi on the circle Ci , for i = 1, 2.

Verifying the equivalence of this with the general definition is an exercise in
the use of trigonometric identities after a standard placement of C1 and C2 on
S

2 followed by stereographic projection. This standard placement is obtained by
finding the unique great circle C orthogonal to both C1 and C2 and then rotating the
sphere so that this great circle is the equator, which then stereographically projects
to the unit circle in the complex plane. The details are left to the reader.

Here are two more quick descriptions of inversive distance. For those conversant
with the representation of circles in S

2 by vectors in de Sitter space, the inversive
distance is the Minkowski inner product between the two points of de Sitter space
that represent the two oriented circles. This is, perhaps, the most elegant formulation
of the product. The final way I’ll describe the inversive distance is a neat little
curiosity. Let C1 = ∂D = S

1 be the unit circle oriented clockwise and C2 a
circle oriented counterclockwise that meets the open unit disk non-trivially. Then,
as explained on page 193, the intersection c2 of C2 with the open disk is a curve of
constant geodetic curvature in the Poincaré disk D ∼= H

2. The inversive distance is
〈C1, C2〉 = curv(c2), the geodetic curvature of the cycle c2 in the Poincaré metric
on D. This includes all three cases for the cycle c2—a hyperbolic circle in D, a

15Some authors, perhaps more aptly, call the inversive distance the inversive product of C1 and C2.
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horocycle that meets ∂D at a single point, or a hypercycle that meets ∂D at two
points.16

5.6.2 Some Advances on the Rigidity Question

In [20], inversive distance circle packings were introduced. Rather than preassigned
overlap angles labeling edges of a triangulation of a surface as in the Koebe–
Andre’ev–Thurston Theorems, preassigned inversive distances label the edges.
As stated already, questions of interest are of the existence and uniqueness of
circle configurations in geometric structures on surfaces that realize the inversive
distance data. Though the existence question is wide open, in 2011–2012 there
were three advances on the uniqueness question for inversive distance packings.
First, Guo [41] proved that inversive distance packings of closed surfaces of
positive genus, ones supporting flat or hyperbolic metrics, are locally rigid whenever
the inversive distances are non-negative. Shortly after that, Luo [52] improved
this to global rigidity, or uniqueness of the packings in the cases considered by
Guo. Then in a surprising result of the year following, Ma and Schlenker [53]
produced a counterexample to global uniqueness for packings of the 2-sphere. They
gave examples of pairs of circle packings of S

2 in the pattern of the octahedral
triangulation with six circles that satisfy the same inversive distance data, but that
are not Möbius equivalent.

The ingredients of Ma and Schlenker’s example are Schönhardt’s twisted
octahedron, which is an infinitesimally flexible polyhedron in Euclidean space E

3,
embeddings in de Sitter space S

3
1, and special properties of the Pogorelov map

between different geometries. In 2017, John Bowers and I [15] constructed a large
family of Ma–Schlenker–like examples using only inversive geometry, producing
many counterexamples to the uniqueness of inversive distance circle packings in the
2-sphere.

The Schönhardt octahedron is an example of a bar-and-joint linkage important in
the rigidity theory of Euclidean frameworks, and its use in the Ma–Schlenker exam-
ple hinted at a way forward in understanding the rigidity theory of inversive distance
circle packings in the 2-sphere. This led to a fruitful change in viewpoint and a
reformatting of the question of uniqueness of inversive distance circle packings
to the question of the rigidity—local, global, and infinitesimal—of more general
circle frameworks. These are analogues in Möbius geometry of the Euclidean
frameworks in Euclidean geometry with point configurations in E

3 replaced by
circle configurations in S

2 and the Euclidean metric replaced by the non-metric
inversive distance. The analogy is not exact, but the theory of linkages in E

3 has
been found to be a good guide for understanding some of the rigidity theory of circle

16My student, Opal Graham, noticed, then proved this when I was lecturing on the curves of
constant geodetic curvature in the hyperbolic plane.
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frameworks. Part of why this works so well is because the space of circles in the 2-
sphere is a three-dimensional incidence geometry that has much in common with the
space of points in Euclidean 3-space. The lines of this geometry are coaxial circle
families and the planes are what Carathéodory in [28] called bundles of circles.
This allows one to define what is meant by a convex collection of circles, planar
collections of circles, circle polyhedra, bounded circle configurations, etc. Space
constraints in this chapter interfere with even a cursory account of these issues, so
I am content with listing a couple of recent successes of the theory without all the
definitions needed for a precise understanding, and then taking some time to set up
the language of this change of viewpoint.

The two theorems following are the result, both the statements and the proofs,
of an engagement between circle packing theory and the classical rigidity theory of
Euclidean frameworks in E

3.

Theorem 5.6.1 (Bowers et al. [23]) Let C and C′ be two non-unitary, inversive
distance circle packings with ortho-circles for the same oriented edge-labeled
triangulation of the 2-sphere S

2. If C and C′ are convex and proper, then there is
a Möbius transformation T : S2 → S

2 such that T (C) = C′.

The edge-label refers to prescribed inversive distances labeling each edge. Non-
unitary means that the inversive distance between any pair of adjacent circles
is not unity; in fact, these inversive distances are in the set (−1, 1) ∪ (1,∞).
Having ortho-circles means that each triple of mutually adjacent circles have
an orthogonal circle. This generalizes to a global rigidity theorem about circle
polyhedra, circle configurations in the pattern of three-dimensional polyhedra
whose faces correspond to circle configurations that are planar in the incidence
geometry of circle space; see [23] for details.

Theorem 5.6.2 (Bowers et al. [23]) Any two convex and proper non-unitary circle
polyhedra with Möbius-congruent faces that are based on the same oriented
abstract spherical polyhedron and are consistently oriented are Möbius-congruent.

Theorem 5.6.1 coupled with the Ma–Schlenker example of [53] and the examples
of [15] show that the uniqueness of inversive distance circle packings, and more
generally, of circle polyhedra is exactly analogous to that of Euclidean polyhedra—
convex and bounded polyhedra in E

3 are prescribed uniquely by their edge lengths
and face angles whereas non-convex or unbounded polyhedra are not. The proof of
this for convex and bounded Euclidean polyhedra is Cauchy’s celebrated rigidity
theorem [29], which is reviewed in Sect. 5.7.5. The Proof of Theorem 5.6.2
follows Cauchy’s original argument, which splits the proof into two components—a
combinatorial lemma and a geometric lemma. Cauchy’s combinatorial lemma deals
with a certain labeling of the edges of any graph on a sphere, and applies to the
present setting. The geometric lemma, known as Cauchy’s Arm Lemma, requires
that a polygon with certain properties be defined for each vertex of the polyhedron,
and fails to apply here. The main work of the proof is in describing and analyzing
a family of hyperbolic polygons called green-black polygons that are defined for
each vertex of a circle polyhedron in a Möbius-invariant manner. An analogue of
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Cauchy’s Arm Lemma for convex green-black polygons is developed and used to
prove these theorems.

5.6.3 Circle Frameworks and Möbius Rigidity

I’ll close out this section with a description of the change in viewpoint from circle
packings to circle frameworks. This can be done using only absolute inversive
distance, but I find it advantageous to remain as general as possible in setting up
the viewpoint. The goal is to generalize the language of circle packings and patterns
of triangulations and quadrangulations of the 2-sphere to that of circle realizations
of oriented circle frameworks. Let G be a graph, by which I mean a set of vertices
V = V (G) and simple edges E = E(G). Both loops and multiple edges are
disallowed. An oriented edge incident to the initial vertex u and terminal vertex
v is denoted as uv, and −uv means the oppositely oriented edge vu. I will use
the same notation, uv, to denote an un-oriented edge, context making the meaning
clear. A circle framework with adjacency graph G, or c-framework for short, is a
collection C = {Cu : u ∈ V (G)} of oriented circles in S

2 indexed by the vertex set
of G. This is denoted by G(C). Two c-frameworks G(C) and G(C′) are equivalent
if 〈Cu,Cv〉 = 〈C′

u, C′
v〉 whenever uv is an edge of G. Let H be a subgroup of

the inversive group Inv(S2) of the 2-sphere. Two collections C and C′ of oriented
circles indexed by the same set are H -equivalent or H -congruent provided there is
a mapping T ∈ H such that T (C) = C′, respecting the common indexing and the
orientations of the circles. When H is not so important they are inversive-equivalent
or inversive-congruent, and when T can be chosen to be a Möbius transformation,
they are Möbius-equivalent or Möbius-congruent. The global rigidity theory of c-
frameworks concerns conditions on G or G(C) that ensure that the equivalence
of the c-frameworks G(C) and G(C′) guarantees their H -equivalence. Often one
restricts attention to c-frameworks in a restricted collection F of c-frameworks. In
Theorem 5.6.2, F is the collection of non-unitary, convex and proper c-polyhedra
and the interest is in Möbius equivalence.

Definition (Labeled Graph and Circle Realization) An edge-label is a real-
valued function β : E(G) → R defined on the edge set of G, and G together
with an edge-label β is denoted as Gβ and called an edge-labeled graph. The
c-framework G(C) is a circle realization of the edge-labeled graph Gβ provided
〈Cu,Cv〉 = β(uv) for every edge uv of G, which henceforth is denoted as Gβ(C).
See Fig. 5.9.

Circle packings are circle realizations of edge-labeled graphs that arise as the
1-skeletons of oriented triangulations of the 2-sphere that also satisfy certain prop-
erties that ensure that the realizations of the triangular boundaries of faces respect
orientation. The general definition allows for branch vertices and configurations
of circles in which the open geodesic triangles cut out by connecting centers of
adjacent circles overlap. There are subtleties in which I have no interest, so I am
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(a) (b)

Fig. 5.9 An edge-labeled octahedral graph and its circle realization. The labels are proposed inver-
sive distances between the circles corresponding to the vertices. (a) An edge-labeled octahedral
graph Oβ . Labels < 1 imply overlapping circles, > 1 separated ones. (b) A corresponding c-
framework realizing Oβ . Circle A is hidden on the back side of the sphere

going to adapt a restricted definition that corresponds to the circle packings that
arise from spherical polyhedral metrics on triangulated surfaces. These are circle
realizations of the edge-labeled 1-skeleton Gβ = K

(1)
β of an oriented triangulation

K of S
2 that produce oriented geodesic triangulations17 of the 2-sphere when

adjacent circle centers are connected by geodesic arcs. The assumption here is
that the centers of no two adjacent circles are antipodal, so that there is a unique
geodesic arc connecting them, and that the centers of three circles corresponding to
the vertices of a face of K do not lie on a great circle. Now this causes no particular
problems when all adjacent circles overlap nontrivially, the traditional playing field
of circle packing, but does cause some real concern when adjacent circles may have
inversive distance greater than unity. For example, a circle realization may produce a
geodesic triangulation of the sphere by connecting adjacent centers while its Möbius
image may not. This is traced directly to the fact that neither circle centers nor radii,
nor geodesic arcs, are Möbius invariants in the inversive geometry of the sphere.
This behavior does not occur for inversive distance circle packings of the Euclidean
or hyperbolic planes (and surfaces), precisely because circle centers and geodesics
are invariant under automorphisms and radii are invariant up to scale in Euclidean
geometry and invariant in hyperbolic geometry. My belief is that using centers and
radii of circles in inversive geometry should be avoided except where these can be
used to simplify computations (as in the use of the spherical definition of inversive
distance). The shift then is from inversive distance circle packings to inversive

17By this I mean that the orientation of the geodesic triangulation determined by the packing is
consistent with the orientation on K .
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distance circle realizations. One is less concerned with possible underlying geodesic
triangulations and more concerned with Möbius-invariant quantities. For example,
rather than working with a geodesic face formed by connecting the centers of three
mutually adjacent circles, one is more interested in the existence of an ortho-circle,
a circle mutually orthogonal to the three, which is a Möbius invariant. Though the
initial motivation was circle packing as reflected in Theorem 5.6.1, the real interest
has evolved to circle realizations as reflected in the more general version represented
by Theorem 5.6.2.

It turns out that Theorem 5.6.2 has implications for the rigidity of generalized
hyperbolic polyhedra in H

3. Thurston was the first to exploit this connection
between circle configurations on S

2 and hyperbolic polyhedra in H
3 in really

significant ways, and his observations inspired several avenues of clarification and
generalization. It is to this that I turn in the penultimate section of this chapter.

5.7 Polyhedra—From Steiner (1832) to Rivin (1996),
and Beyond

In this section I survey the rich mathematical vein that has been mined in the geo-
metric theory of polyhedra, particularly of three-dimensional hyperbolic polyhedra,
that has its origins in Thurston’s insights on using his circle packing theorem to
characterize certain hyperbolic polyhedra. The initial observation of Thurston was
that the study of polyhedra in hyperbolic three-space can be transferred to the study
of overlapping circle packings in the two-sphere by realizing the Riemann sphere
as the boundary of the Beltrami–Klein model of H3 sitting as the unit ball B3 in
the real projective three-space. Theorems in one of these venues correspond to
theorems in the other. Later Thurston’s students, Oded Schramm and Igor Rivin,
made great strides in the theory of both three-dimensional Euclidean and hyperbolic
polyhedra, not so much using the techniques of circle packing but instead using
very intricate and clever geometric arguments, often times in this classical setting
of H3 ∼= B

3 ⊂ E
3 ⊂ RP

3. There is here a beautiful interplay among the classical
geometries illustrating Arthur Cayley’s aphorism that “All geometry is projective
geometry.” Here one sees the Beltrami–Klein model of hyperbolic three-space as
a sub-geometry of the real projective three-space, with its orientation-preserving
isometry group naturally identified with the Lorentz group of Minkowski space-
time, which itself restricts to the two-sphere boundary of hyperbolic space as the
group of circle-preserving transformations of the two-sphere, the group of Möbius
transformations. This one geometry, the real projective geometry of dimension
three, presents a playing field for studying three-dimensional polyhedra—classical
Euclidean polyhedra, hyperbolic polyhedra of various types and generalizations,
projective polyhedra, and circle polyhedra of Möbius geometry.

I will begin with an application of Thurston’s circle packing theorem on using
polyhedra to cage a sphere, and move then to Schramm’s generalization. From there
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I will discuss the characterization of certain hyperbolic polyhedra—compact by
Hodgson and Rivin, ideal by Rivin, and hyper-ideal by Bao and Bonahon—and will
finish with very recent work by Chen and Schlenker that characterizes those convex
projective polyhedra all of whose vertices lie on the ideal boundary of hyperbolic
space. I include a bonus final section on Cauchy’s 1813 Rigidity Theorem for the
reader who is approaching this subject as a novice. This is the fundamental theorem
of rigidity theory, and the techniques and tools Cauchy developed have been used
time and again in proofs of rigidity in the past 200 years. Both Schramm and Rivin
make use of Cauchy’s toolbox in their theorems on convex hyperbolic and Euclidean
polyhedra, as do Bao and Bonahon as well as Bowers, Pratt and the author. Before
these recent developments, previous generations of mathematicians who delved
into the study of polyhedra made use of Cauchy’s toolbox—Dehn in his proof of
infinitesimal rigidity, Aleksandrov in his rigidity results, Gluck in his examination
of generic rigidity, and Connelly in various of his contributions.

5.7.1 Caging Eggs—Thurston and Schramm

In 1832, Jakob Steiner [69] asked

In which cases does a convex polyhedron have a combinatorial equivalent which is inscribed
in, or circumscribed about, a sphere?

When a convex polyhedron P is inscribed in the sphere S so that its vertices
lie on S, then its polar dual circumscribes the sphere S, so that each face of the
dual P ∗ meets S in a single point. It wasn’t until 1928 that Ernst Steinitz found
families of non-inscribable polyhedral types with the example of a cube truncated at
one vertex being the simplest. Marcel Berger [9, p. 532] takes this long duration
of time between Steiner and Steinitz as evidence that the theory of polyhedra
in the years intervening had fallen into disrespect among mathematicians, being
a subject of the old-fashioned mathematics of synthetic geometry.18 One would
be hard pressed to say that the study of polyhedra in the time between Steinitz
and Thurston was anything but a curiosity to many a mathematician schooled in
the rarified heights of abstraction that had captured the mathematical mind of the
time. The sort of “pedestrian geometry” offered by the study of polyhedra captured
the imagination of a select few. There has been a healthy development of the
rigidity theory of polyhedra, notably by Aleksandrov in the 1950s, and Gluck and
Connelly in the 1970s. Aleksandrov’s work was largely ignored in the West until the
1980s. Coxeter had done truly foundational work in the combinatorial structure of
polyhedra in the 1940s and 1950s, and Victor Klee and Branko Grünbaum began
their foundational studies a bit later. Coxeter’s work in geometry was routinely
dismissed by much of mainstream mathematics as old-fashioned nineteenth century

18Berger [9] uses the word disdain to describe the prevailing opinion of the study of polyhedra.
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mathematics, uninteresting and pedestrian. Both Aleksandrov and Coxeter were
“rehabilitated” by the larger community of geometers and topologists when their
work of the forties and fifties—Aleksandrov’s on metric geometry and Coxeter’s
on reflection groups—became important to the development of geometric group
theory after Gromov’s publication of his hyperbolic groups essay [39] in 1987. With
apologies to Aleksandrov, Coxeter, Klee, and Grünbaum, it has taken the attention of
Thurston and his students Schramm and especially Rivin to resurrect more intense
interest among topologists in this venerable old subject of classical geometry.19

Steinitz’s basic tool for attacking the Steiner question is the following observa-
tion. Suppose the polyhedron P circumscribes the sphere S. Let e = uv be an edge
of P with adjacent faces f and g. Since P circumscribes S, the face f is tangent
to S at a point p and g is tangent at a point q . Then the angle � upv = � uqv in
measure and we let �(e) denote this common value. It is immediate that summing
these edge labels for the edges of any face yields an angle sum of 2π . The reader
might want to use this observation to see why a dodecahedron truncated at every
vertex admits no inscribed sphere as there is no edge labeling � for this polyhedron
that satisfies this property.

According to Steinitz then, the condition that an edge label � : E(P) → (0, π)

exists for the polyhedron P whose sum for the edges of each face is 2π is a necessary
condition that P have a combinatorially equivalent realization that circumscribes
a sphere, but it is not sufficient. It was not until Rivin’s study of hyperbolic
polyhedra in the late 1980s and early—1990s that a characterization of polyhedra
of circumscribable type, ones combinatorially equivalent to polyhedra that may
circumscribe a sphere, was found. The definitive result is due to Rivin and reported
in Hodgson, Rivin, and Smith [47], and follows from his characterization of ideal
convex hyperbolic polyhedra that is presented in a later section.

Circumscribable Type Characterization (Rivin) A polyhedron P is of circum-
scribable type if and only if there exists a label � : E(P) → (0, π) such that the
sum of the labels �(e) as e ranges over any circuit bounding a face is 2π , while the
sum as e ranges over any simple circuit not bounding a face is strictly greater than
2π .

A polyhedron is of inscribable type if it is combinatorially equivalent to one that
may be inscribed in a sphere.

Incsribable Type Characterization (Rivin) A polyhedron P is of inscribable type
if and only if its dual P ∗ is of circumscribable type.

The proofs will be discussed later, but first I want to generalize this discussion a
bit. Inscription and circumscription are the respective cases, m = 0 and m = d − 1,
of the question of whether a d-dimensional convex polytope has a realization in

19Grünbaum [40] addresses the disinterest of the mathematical community in the combinatorial
theory of polytopes in the preface to his book.
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E
d each of whose m-dimensional faces meets a fixed (d − 1)-dimensional sphere

in a single point. One says that the polytope is (m, d)-scribable in this case. Egon
Shulte [68] proved in the mid-1980s that when 0 ≤ m < d and d > 2, then there
are combinatorial types of d-dimensional polytopes that are not (m, d)-scribable,
except for the single exceptional case when (m, d) = (1, 3). The exceptional case
then is when a convex polyhedron in E

3 midscribes a sphere S, so that each edge of
P is tangent to S, meeting S in exactly one point.

In light of Shulte’s result it perhaps is surprising that in his exceptional case,
every convex polyhedron in E

3 has a combinatorially equivalent realization that is
midscribable about, say, the unit sphere S2. Thurston in Chapter 13 of GTTM states
that this is a consequence of Andre’ev’s theorems in [2, 3]. The proof I give merely
applies the Koebe–Andre’ev–Thurston Theorem to an appropriately edge-labeled
graph.

Midscribability of Convex Polyhedra (Thurston [73]) Every convex polyhedron
in E

3 has a combinatorially equivalent realization that is midscribable about the
unit sphere S

2. Considering E
3 ⊂ RP

3, any such realization is unique up to
projective transformations of RP3 that set-wise fix the unit sphere S2.20

Proof Let P be a convex polyhedron in E
3 and let K be the simplicial 2-complex

obtained by adding a vertex to each open face of P and starring to the vertices.
Precisely, the vertices of K are those of P along with a new vertex vf for each face
f of P . The edges are the edges of P along with edges of the form vvf , where
v is a vertex of f . The faces are the 2-simplices of the form uvvf where uv is an
edge of f . Write the edge-set of K as E(K) = E(P) ∪ E′, where E′ are the new
edges of the form vvf . Define an angle map � : E(K) → [0, π/2] by �(e) = 0
when e ∈ E(P) and �(e) = π/2 when e ∈ E′. An application of the Koebe–
Andre’ev–Thurston Theorem I produces a circle packing K(C) on the 2-sphere S

2

and a geodesic triangulation in the pattern of K with overlap angles of adjacent
circles given by �. For each face f of P , let Hf be the half-space in E

3 that meets
all the circles of K(C) and whose bounding plane ∂Hf contains Cvf . My claim is
that the convex polyhedron Q = ∩f ∈F(P )Hf midscribes S2 and is combinatorially
equivalent to P .

For any vertex v of P , let v∗ be the apex of the cone in E
3 that is tangent to

S
2 along the circle Cv , and when e = uv is an edge of P , let e∗ = u∗v∗ be the

segment with endpoints u∗ and v∗. Let f be a face of the polyhedron P with vertices
v1, . . . , vn written in cyclic order. Since the circle Cvf is orthogonal to the circles
Cvi , the apexes v∗

i all lie on the bounding plane ∂Hf , for i = 1, . . . , n. Let f ∗
denote the convex hull of the points v∗

1 , . . . , v∗
n in ∂Hf . A moment’s thought should

convince the reader that the convex polyhedron Q may be described as the convex
hull of the set V (Q) = {v∗ : v ∈ V (P)}. It follows that the vertex set of Q is V (Q),
edge set is E(Q) = {e∗ : e ∈ E(P)}, and face set is F(Q) = {f ∗ : f ∈ F(P)}. This
verifies that P and Q are combinatorially equivalent. Moreover, the edge e∗ = u∗v∗

20The projective transformations that fix S2 act as Möbius transformations on S2.
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Fig. 5.10 A midscribed polyhedron. Each face meets the sphere S
2 in a red circle and each vertex

is the cone point of a black circle. Each edge e∗ meets S2 in exactly one point, at the intersection
of the two red circles determined by the faces incident to e∗, or at the intersection of the two black
circles determined by the endpoints of e∗

is tangent to the sphere S2 at the point of intersection of the circles Cu and Cv , which
are tangent since �(e) = 0. Hence Q midscribes the sphere S2. See Fig. 5.10.

Uniqueness up to projective transformations that fix the unit sphere follows from
the Möbius uniqueness of the circle packing K(C) with edge angle data � and the
fact that the Möbius group extends its action on S

2 to a projective action of RP3

set-wise fixing S
2. �

Schulte introduced in [68] the question of whether the sphere can be replaced
by other convex bodies. Schramm [64] proved that when the convex polyhedron
P is simplicial, then for any smooth convex body S, a combinatorially equivalent
polyhedron Q exists that midscribes S. Of course this means that each edge of Q

is tangent to the boundary ∂S. Shortly thereafter, Schramm improved his result by
removing the requirement that P be simplicial. A convex body S is strictly convex
if its boundary contains no non-degenerate line segment, and is smooth if each point
of the boundary has a unique supporting plane. This latter condition is equivalent to
the boundary being C1-smooth. Schramm’s definitive result on midscription is the
main theorem of his Inventiones article [66] whimsically entitled How to cage an
egg.
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Convex Body Midscription (Schramm [66]) Let P be a convex polyhedron and
S a smooth strictly convex body in E

3. Then there exists a convex polyhedron Q

combinatorially equivalent to P that midscribes S.

Discussion of Proof The proof is rather involved and so I am content to give the
briefest of indication of its method. Schramm defines the configuration space Z =
(E3)V (P ) × G(2, 3)F (P ), where V (P) and F(P) are the respective sets of vertices
and faces of P , and G(2, 3) is the manifold of oriented affine planes in E

3. In this
way P is identified with a single point of Z, and the combinatorial type of P defines
a submanifold ZP of Z corresponding to various convex polyhedra in E

3 that are
combinatorially equivalent to P . Schramm then shows that there is a C2 convex
body S0 with positively curved boundary that P midscribes. Let St , 0 ≤ t ≤ 1, be
a C2-path of convex bodies with positively curved boundaries with S1 = S. The
idea now is to flow S0 to S1 along this path and drag combinatorial realizations
of P along as midscribing polyhedra. The proof relies on a fine analysis of the
configuration space Z and its submanifold ZP , and the method is to show that when
St is midscribed by a realization of P , then so is St ′ for all t ′ in an open interval about
t . Then a delicate argument shows also that the set of parameter values for which
St is midscribable by a realization of P is a closed set. Being open and closed, and
nonempty since P midscribes S0, this set of parameter values must be the whole of
the unit interval, hence S = S1 is midscribed by a realization of P . �

The remaining discussion on hyperbolic polyhedra has little to do, at least
directly, with the Koebe–Andre’ev–Thurston Theorem. The arguments tend to be
clever and technical, but ultimately involve the elementary geometry of hyperbolic
space, often times realized as the unit ball in projective 3-space where the machinery
of the Minkowski inner product and of de Sitter space is available. I include the
discussion in order to complete for the reader the current state of affairs in the study
of convex hyperbolic polyhedra, a study which I view as having been revitalized by
Thurston’s articulation of KAT I and pushed forward into the broader mathematical
consciousness by the seminal work of Thurston’s students, Oded Schramm and
especially Igor Rivin.

5.7.2 Compact and Convex Hyperbolic Polyhedra—Hodgson
and Rivin

In his doctoral thesis of 1986, Igor Rivin studied convex hyperbolic polyhedra.
Therein he gave a characterization of compact, convex hyperbolic polyhedra that
generalizes the Andre’ev results of [2],21 and in articles in the early 1990s, extended
his characterization to ideal polyhedra, generalizing Andre’ev’s results in [3]. He

21See Roeder, Hubbard, and Dunbar’s paper [63] for a readable proof of Andre’ev’s classification
of compact hyperbolic polyhedra with non-obtuse exterior dihedral angles.
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used this latter generalization to answer definitively Steiner’s question of 1832
asking for a characterization of those polyhedra that circumscribe a sphere. This of
course is the content of the Circumscribable Type Characterization Theorem of the
preceding section. In this section, I present an overview of Rivin’s characterization
of compact and convex hyperbolic polyhedra in terms of a generalized Gauss map.
The overview embellishes Hodgson’s outline presented in [45] (and repeated in
[46]). In the section following, I outline Rivin’s characterization of ideal polyhedra
and make his observation that the Circumscribable Type Characterization Theorem
is an immediate corollary of his characterization of ideal polyhedra.

To lay the groundwork, let’s review the Gauss map G of a compact and convex
Euclidean polyhedron P to the unit sphere S

2. This is a set-valued map from the
2-complex forming the boundary of P that assigns to the point p of ∂P the set of
outward pointing unit normals to support planes to P at p. Thus when p is a point
of an open face f , G(p) = G(f ) is a single point determined by the outward unit
normal to f . When p is in the open edge e incident to faces f and g, G(p) = G(e) is
the great circular arc connectingG(f ) to G(g) of length equal to the exterior dihedral
angle between f and g. Finally, for a vertex p of P , G(p) is the convex spherical
polygon bounded by the arcs G(e) for edges e incident with p. When edges e and e′
of the face f are incident at p, the interior angle of the polygon G(p) at the vertex
G(f ) is π −α, where α is the interior angle of the face f at p. In this way the Gauss
map realizes the Poincaré dual P ∗ of P as a geodesic cellular decomposition of the
2-sphere S2. Notice that the Gauss map does not encode all the information needed
to reconstruct the polyhedron P . It encodes the interior angles of all the faces and
the dihedral angles of all adjacent faces, but there is no encoding of side-lengths of
the edges of P . For example, all rectangular boxes have the same image under the
Gauss map, namely, a regular right-angled octahedral decomposition of the sphere
S

2.
Another way to describe the convex spherical polygon G(p) for a vertex p of

P is as the polar dual L∗(p) of the infinitesimal link L(p) of p in P .22 Note that
L(p) is a convex spherical polygon with internal angles equal to the dihedral angles
of the faces of P incident with p, and edge-lengths equal to the internal angles
at the vertex p in the faces of P incident with p. Recall that an oriented great
circle in S

2 and its spherical center are polar duals of one another. The polar dual
L∗(p) is obtained by replacing the edges of L(p) by the polar dual centers of their
supporting great circles, and the vertices by appropriate arcs of the polar dual great
circles. A nice exercise in spherical geometry verifies that L∗(p) is isometric to
G(p). This gives an alternate construction of the Poincaré dual P ∗ as a geodesic,
cellular decomposition of the 2-sphere—just isometrically glue the polar duals
L∗(p) together as p ranges over the vertices of P along corresponding edges, L∗(p)

22For a Euclidean polyhedron, L(p) is the intersection of P with a small sphere centered at p, one
whose radius is smaller than the lengths of edges incident with p, rescaled to unit radius, and is
oriented so that its interior is “to the left” as one traverses the polygon in its positive direction.
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glued to L∗(q) whenever pq is an edge of P .23 Obviously this gluing produces a
2-sphere, not only homeomorphic, but also isometric to the standard 2-sphere S

2,
and reproduces the cellular decomposition determined by the Gauss map.

It is this latter construction of the Poincaré dual P ∗ as a cellular decomposition of
the 2-sphere that readily generalizes to convex and compact hyperbolic polyhedra.
Indeed, let P now be a convex and compact hyperbolic polyhedron in H

3 and
for each vertex p, let L∗(p) be the polar dual of the infinitesimal link L(p) of p

in P .24 The link L(p), as in the Euclidean case, is an oriented convex spherical
polygon in S

2 with internal angles equal to the dihedral angles of the faces of P

incident with p, and edge-lengths equal to the internal angles at the vertex p in
the faces of P incident with p. The polar dual L∗(p) then encodes the exterior
dihedral angles at the edges of P incident with p as the lengths of its edges, and
the interior angles α of the faces incident with p as its interior angles in the form
π − α. This construction acts as a local Gauss map in a small neighborhood of the
vertex p. Now exactly as before, isometrically glue the polar duals L∗(p) together
as p ranges over the vertices of P along corresponding edges. The result is again
a 2-sphere topologically, which is called the Gaussian image of P and denoted as
G(P ), with a spherical metric of constant unit curvature, except at the vertices. The
vertices have cone type singularities with concentrated negative curvature. Indeed,
at the vertex corresponding to the face f = p1 · · · pn of P , the angle sum is
θ(f ) = nπ − ∑n

i=1 αi , where αi is the internal angle of f at the vertex pi . In
the hyperbolic plane, the compact and convex polygon f always has interior angle
sum strictly less than (n − 2)π so that θ(f ) > 2π .

This brings us to Rivin’s characterization of compact and convex hyperbolic
polyhedra.

Compact Convex Hyperbolic Polyhedra Characterization (Rivin) A metric
space (M, g) homeomorphic to S

2 can arise as the Gaussian image G(P ) of a
compact and convex polyhedron P in H

3 if and only if these three conditions
adhere.

(i) The metric g has constant curvature +1 except at a finite number of cone
points.

(ii) The cone angle at each cone point is greater than 2π .
(iii) The lengths of the nontrivial closed geodesics of (M, g) are all strictly greater

than 2π .

Moreover, the metric g determines P uniquely up to hyperbolic congruence.

Recall that the Gauss map does not determine Euclidean polyhedra up to
congruence since it contains no information about side lengths. In contrast, a

23The edge pq determines respective vertices u and v of L(p) and L(q) whose respective polar
edges u∗ and v∗ have the same lengths, namely the exterior dihedral angle of P at edge pq.
24This is the link in the tangent space of H3 of the pre-image of the intersection of P with a small
neighborhood of p under the exponential map.
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hyperbolic polyhedron is determined up to a global hyperbolic isometry by its
Gaussian image. The proof of this uniqueness uses Cauchy’s toolbox that is
reviewed in Addendum Sect. 5.7.5, wherein I recall the tools Cauchy used to prove
his celebrated rigidity theorem of 1813. The necessity of items (i) and (ii) follows
from the previous discussion and that of (iii) uses the fact that the total geodedic
curvature of a non-trivial closed hyperbolic space curve is greater than 2π , a
hyperbolic version of Fenchel’s Theorem on Euclidean space curves. The proof of
sufficiency is based on Aleksandrov’s Invariance of Domain method used in his
study of Euclidean polyhedra in [1].

Rivin also uses Cauchy’s toolbox to prove this rather interesting theorem that
illustrates again the enhanced rigidity of hyperbolic polyhedra vis-à-vis Euclidean
ones.

Face Angle Rigidity (Rivin) The face angles of a compact and convex polyhedron
in H

3 determine it up to congruence.

The characterization of compact and convex hyperbolic polyhedra in terms of the
Gaussian image surveyed here suffers from the same defect as Aleksandrov’s char-
acterization of compact and convex Euclidean polyhedra. Both characterizations
posit a singular positively curved metric on a 2-sphere, but neither provides a way
to decode from this metric space (M, g) the combinatorial type of the polyhedron
P encoded in (M, g). The proof is not constructive, but depends on a topological
analysis within the space of admissible metrics on the 2-sphere satisfying the three
conditions of the characterization and yields, finally, the abstract fact of existence
of an appropriate polyhedron, without describing its combinatorial type.

5.7.3 Convex Ideal Hyperbolic Polyhedra—Rivin

Rivin turns his attention to convex ideal polyhedra in H
3 in [61] where he gives a

full characterization in terms of exterior dihedral angles. The characterization begins
with an analysis of the exterior dihedral angles of such a polyhedron reported in [47]
with details in [59] that goes as follows. Label each edge e∗ of the polyhedron P ∗
dual to the ideal convex polyhedron P by the exterior dihedral angle θ(e∗) of the
corresponding edge e of P . Rivin’s argument that these labels satisfy the following
conditions is reproduced in the next two theorems.

(i) 0 < θ(e∗) < π for all edges e of P .
(ii) If the edges e∗

1, . . . , e∗
n are the edges bounding a face of P ∗, then θ(e∗

1) + · · ·+
θ(e∗

n) = 2π .
(iii) If e∗

1, . . . , e∗
n forms a simple nontrivial circuit that does not bound a face of P ∗,

then θ(e∗
1) + · · · + θ(e∗

n) > 2π .

Compare these conditions with the hypotheses of the Circumscribable Type Char-
acterization on page 223. Now Condition (i) is a requirement of convexity and
Condition (ii) is seen easily in the upper-half-space model by placing one of the
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ideal vertices v of P at infinity and observing that the link of v is a convex Euclidean
polygon. Indeed, the faces incident with v lie on vertical Euclidean planes whose
intersections with the xy-plane cut out a convex Euclidean polygon L(v), and quite
easily the sum θ(e∗

1) + · · · + θ(e∗
n) is precisely the sum of the turning angles of

L(v). Condition (iii) is a consequence of the following discrete, hyperbolic version
of Fenchel’s Theorem, in this case for closed polygonal curves in H

3.

Discrete Total Curvature for Polygonal Hyperbolic Loops (Rivin [61]) The
total discrete geodesic curvature of a closed, polygonal, hyperbolic space curve is
greater than 2π , unless the vertices are collinear, in which case the total curvature
is 2π .

Proof The total discrete geodesic curvature of the polygonal hyperbolic space curve
γ with vertices p1, . . . , pk, pk+1 = p1 is

∑k
i=1 αi , where αi is the turning angle of

γ at pi . The angle αi is just the exterior angle at pi of the triangle τi = pi−1pipi+1.
For 2 ≤ i ≤ k − 1, let Ti be the triangle Ti = p1pipi+1 with internal angles ai ,
bi , and ci at the respective vertices p1, pi , and pi+1. Note that by considering the
triangles τi , Ti−1 and Ti with common vertex pi , the spherical triangle inequality
gives

ci−1 + bi ≥ π − αi for 3 ≤ i ≤ k − 1,

and

b2 = π − α2, ck−1 = π − αk, and
k−1∑

i=2

ai ≥ π − α1.

Recalling that π ≥ ai + bi + ci with equality only when p1, pi , and pi+1 are
collinear, and then summing, one has

(k − 2)π ≥
k−1∑

i=2

(ai + bi + ci) ≥ kπ −
k∑

i=1

αi,

with equality only when p1, . . . , pk are collinear. �
Theorem 5.7.1 (Rivin [59]) The edge label θ(e∗) of the polyhedron P ∗ dual to the
ideal convex polyhedron P defined above satisfies Conditions (i)–(iii).

Proof Conditions (i) and (ii) already are verified. For Condition (iii), the circuit e∗
1,

. . . , e∗
n that does not bound a face of P ∗ corresponds to a chain of contiguous faces

f1, . . . , fn in P with fi ∩ fi+1 = ei . F = ∪n
i=1fi is a hyperbolic surface with

boundary and cusps, and can be completed by extending geodesically across the
boundary components to a complete immersed surface F̃ in H

3 without boundary.
The surface F̃ is an immersed hyperbolic cylinder with both ends of infinite-area.
This observation uses the fact that the circuit e∗

1, . . . , e∗
n does not bound a face of P ∗.

Let γ be the unique closed geodesic path on the surface F̃ that is freely homotopic
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to the meridian. The curve γ is immersed in H
3 as a polygonal curve lying on F̃

with turning angles at the edges ei . But it is easy to see that the turning angle of γ at
edge ei is no more than the exterior dihedral angle of the faces fi and fi+1 that meet
along ei . This implies that the sum, θ(e∗

1) + · · · + θ(e∗
n), which is the sum of these

dihedral angles, is at least as large as the discrete geodesic curvature of γ , which in
turn is greater than 2π by an application of the preceding theorem. �

Rivin was able to turn this around and prove a converse to the theorem, which
gives the following characterization of convex, ideal hyperbolic polyhedra. The
existence is proved in [61], uniqueness in [60], and necessity of the three conditions
in [59].

Characterization of Convex Ideal Polyhedra (Rivin [61]) Let P ∗ be an abstract
polyhedron. Then for any label θ : E(P ∗) → (0, π) that satisfies Conditions
(i)–(iii), there is a convex, ideal hyperbolic polyhedron P in H

3 whose Poincaré
dual is P ∗, and whose exterior dihedral angles at edges e are given by the values
θ(e∗). Moreover, P is unique up to hyperbolic congruence. Conversely, every such
polyhedron P satisfies Conditions (i)–(iii) as shown in Theorem 5.7.1.

This characterization also proves the Circumscribable and Inscribable Type
Characterizations, answering Steiner’s question of 1832. This is because a convex,
ideal hyperbolic polyhedron in the Beltrami–Klein projective model of H

3 is
represented by a convex Euclidean polyhedron inscribed in the 2-sphere S2.

Since Rivin’s work of the 1990s, several topologists and geometers have taken
up the mantel and continued to unearth these beautiful gems of discrete geometry.
I’ll close this survey with the mention of two examples in the next section, the first
from the first decade of the new century, and the second of very recent origin.

5.7.4 New Millennium Excavations

Space constraints forbid too much further development of the topic, but I would
be remiss if I didn’t mention at least these two beautiful theorems, the first
characterizing convex hyperideal hyperbolic polyhedra by Bao and Bonahon, and
the second giving a complete answer to Steiner’s original question when interpreted
as broadly as possible, this time by Chen and Schlenker. I develop just enough of
these topics to state the main results, and leave the interested reader the task of
perusing the original articles for details of the proofs.

5.7.4.1 Hyperideal Polyhedra—Bao and Bonahon

A hyperideal polyhedron in H
3 is a non-compact polyhedron that may be described

most easily in the Beltrami–Klein projective model H
3 = B

3 ⊂ RP
3 as the
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intersection with B
3 of a projective polyhedron all of whose vertices lie outside of

B
3 while each edge meets B3. Bao and Bonahon [6] classify hyperideal polyhedra

up to hyperbolic congruence in terms of their dihedral angles and combinatorial type
in much the same vein as Rivin’s classification of ideal hyperbolic polyhedra. Note
that Bao and Bonahon do allow for the vertices to lie on the sphere S

2 = ∂B3 and
hence their characterization reduces to Rivin’s for ideal polyhedra.

I will state the characterization in terms of conditions on the 1-skeletal graph of
the dual polyhedron using Steinitz’s famous characterization of those graphs that
may serve as the dual graph of a convex polyhedron in E

3 as precisely the planar,
3-connected graphs.

Characterization of Convex Hyperideal Polyhedra (Bao and Bonahon [6]) Let
G be a 3-connected graph embedded in S

2 and θ : E(G) → (0, π). There is a
hyperideal polyhedron P in H

3 with dual graph isomorphic with G and exterior
dihedral angles given by θ if and only if the following conditions are satisfied.

(i) If e1, . . . , en forms a simple nontrivial circuit of edges of G, then θ(e1) + · · · +
θ(en) ≥ 2π , with equality possible only if e1, . . . , en bounds a component of
S

2 − G.
(ii) If γ = e1, . . . , en forms a simple path of edges of G that connects two vertices

of G that lie in the closure of a component C of S2 −G, but γ does not lie in the
boundary of C, then θ(e1) + · · · + θ(en) > π .

Moreover if P ′ is the projective polyhedron with P ′ ∩ H
3 = P , a vertex v of P ′ is

located on the sphere at infinity of H3 if and only if equality holds in Condition (i)
for the boundary of the corresponding component of S2 − G.

Finally, the hyperideal polyhedron P is unique up to hyperbolic congruence.

I should mention that Hodgson and Rivin’s [46] characterization of compact
and convex hyperbolic polyhedra can be applied to appropriate truncated polyhedra
associated with those hyperideal polyhedra for which no vertex lies on the sphere at
infinity to characterize them.

Define a strictly hyperideal polyhedron to be the intersection of B
3 with a

projective polyhedron P all of whose vertices lie outside the closed unit ball

B
3 = B

3 ∪ S
2, but all of whose faces meet B3. Note that this definition allows

that an edge of P may lie entirely outside the closed ball B
3
. These are yet to be

characterized, but I mention that the article [23] verifies the rigidity of these that are
bounded and convex, as long as no edges are tangent to the unit sphere. The proof
again uses Cauchy’s toolbox.

5.7.4.2 Weakly Inscribed Polyhedra—Chen and Schlenker

Recall Steiner’s question of which polyhedra inscribe or circumscribe a sphere that
Rivin answered. A more faithful translation of Steiner’s question from the German
is “Does every polyhedron have a combinatorially equivalent realization that is
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inscribed or circumscribed to a sphere, or to another quadratic surface? If not, which
polyhedra have such realizations?” He includes the definition that “A polyhedron P

is inscribed to a quadratic surface S if all the vertices of P lie on S,” and further
defines that P is circumscribed to S if all of its facets are tangent to S. As before I
will concentrate on inscription since polarity relates circumscription to inscription.
In the very recent preprint [30], Chen and Schlenker point out that the apparent
grammar mistake—inscribed to instead of in S—makes a significant distinction.

Generally Steiner’s question has been interpreted to ask about inscription of the
polyhedron P to a quadratic surface S in Euclidean space E

3, and in this setting P

is contained in the bounded component of the complement of S, i.e., P is “inside”
S, hence the change from inscribed “to” to “in”. But Steiner’s question makes sense
in projective space as well, and in this setting a polyhedron may be inscribed to a
surface without being inscribed in the surface. To be a bit more illustrative, consider
the unit sphere S2 sitting in E

3 ⊂ RP
3. Now S

2 usually is thought of as the boundary
of the open unit ball B3 that serves as the projective model of hyperbolic space, and
this is what Rivin exploited in his characterization of those polyhedra inscribable in

S
2. But S2 is also the boundary of the complement RP3 −B

3
, which has a complete

metric making it into a model of de Sitter space dS3. In this setting a projective
polyhedron may have its vertices on the sphere S

2 and yet not lie entirely in the
ball B3 so that it is inscribed to S

2, but not inscribed in S
2 in the usual meaning.

Following Chen and Schlenker, I will revise Steiner’s terminology to emphasize the
difference between inscribed in and inscribed to but not in.

Definition (Strong and Weak Inscription) In the real projective space RP
3, a

polyhedron P inscribed to a quadratic surface S is strongly inscribed in S if the
interior of P is disjoint from S, and weakly inscribed to S otherwise.

Before presenting a characterization of those polyhedra weakly inscribed to a
sphere in RP

3, allow a word about polyhedra inscribed to other quadratic surfaces.
This topic has been neglected until rather recently. There are only three quadratic
surfaces in RP

3 up to projective transformations, and these are the sphere, the one-
sheeted hyperboloid, and the cylinder. Danciger, Maloni, and Schlenker in [31]
characterized the combinatorial types of polyhedra that are strongly inscribable in
a one-sheeted hyperboloid or in a cylinder, and of course Rivin takes care of those
strongly inscribable in a sphere. Chen and Schlenker’s work reported here charac-
terizes those polyhedra weakly inscribable to a sphere, and the characterization of
those weakly inscribable to the remaining two quadratic surfaces is the subject of
current research by Chen and Schlenker.

Weak Inscription Characterization (Chen and Schlenker [30]) A 3-connected
planar graph  is the 1-skeleton of a polyhedron P ⊂ RP

3 weakly inscribed to a
sphere if and only if  admits a vertex-disjoint cycle cover by two cycles C1 and
C2 with the following property. Color edge uv red if u and v both belong to C1
or both belong to C2, and color it blue otherwise. Then there is a weight function
w : E() → R such that
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(i) w > 0 on red edges and w < 0 on blue ones;
(ii) w sums to 0 over the edges adjacent to a vertex v, unless v is the only vertex on

C1 or C2 (trivial cycle), in which case w sums to −2π over the edges adjacent
to v.

I end this survey of progress in the characterization of polyhedra since Thurston’s
observation that every polyhedron type in E

3 has a realization that midscribes a
sphere with a description of the original rigidity theorem of Cauchy that is so
instrumental in many of the proofs of the results surveyed here.

5.7.5 Addendum: Cauchy’s Toolbox

In this bonus section I review Cauchy’s celebrated rigidity theorem [29] of 1813
on the uniqueness of convex, bounded polyhedra in E

3. The theorem concerns
two convex polyhedra with equivalent combinatorics and with corresponding faces
congruent. Cauchy’s Rigidity Theorem states that the two polyhedra must be
congruent globally, meaning that there is a Euclidean isometry of the whole of E3

mapping one to the other. Like many of the great theorems of mathematics, the proof
is of more importance than the theorem itself. As stated earlier in the introduction
to this section, the toolbox Cauchy developed has been instrumental in the past 200
year development of the theory of polyhedra, especially in its rigidity theory. The
proof, though at places clever and even subtle, overall is rather straightforward with
a simplicity that belies its importance.

Cauchy’s proof has two components—the one geometric and the other combina-
torial. The geometric component is the Discrete Four Vertex Lemma, which follows
from an application of Cauchy’s Arm Lemma. Denote a convex planar or spherical
polygon P merely by listing its vertices in cyclic order, say as P = p1 . . . pn. The
Euclidean or spherical length of the side pipi+1 is denoted as |pipi+1| and the
interior angle at pi is denoted as � pi .

Cauchy Arm Lemma Let P = p1 . . . pn and P ′ = p′
1 . . . p′

n be two convex planar
or spherical polygons such that, for 1 ≤ i < n, |pipi+1| = |p′

ip
′
i+1|, and for

1 ≤ i < n − 1, � pi+1 ≤ � p′
i+1. Then |pnp1| ≤ |p′

np
′
1| with equality if and only if

� pi+1 = � p′
i+1 for all 1 ≤ i < n − 1.

Cauchy’s original proof of the lemma had a gap that subsequently was filled by
Ernst Steinitz. A straightforward inductive proof, such as the one in [36], relies on
the law of cosines and the triangle inequality.

Now let P and P ′ be convex planar or spherical polygons with the same number
of sides whose corresponding sides have equal length. Label each vertex of P with a
plus sign + or a minus sign − by comparing its angle with the corresponding angle
in P ′: if the angle at pi is larger than that at p′

i , label it with a +, if smaller, a −, and
if equal, no label at all. Using the Cauchy Arm Lemma, the proof of the following
lemma is straightforward.
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Discrete Four Vertex Lemma Let P and P ′ be as in the preceding paragraph and
label the vertices of P as described. Then either P and P ′ are congruent, or a walk
around P encounters at least four sign changes, from − to + or from + to −.

Proof First note that because a polygon is a cycle, the number of sign changes must
be even. If no vertex is labeled, then the two polygons are congruent. Assume then
that some of the vertices are labeled, but all with the same label. Then Cauchy’s
Arm Lemma implies that there exists a pair of corresponding edges in P and P ′
with different lengths, a contradiction.

Assume now that there are exactly two sign changes of the labels of P . Select
two edges pipi+1 and pjpj+1 (oriented counter-clockwise) of P such that all of
the + signs are along the subchain from pi+1 to pj and all of the − signs are
along the subchain from pj+1 back to pi . Subdivide both edges in two by adding
a vertex at the respective midpoints X and Y of pipi+1 and pjpj+1. Similarly,
subdivide the corresponding edges p′

ip
′
i+1 and p′

j p
′
j+1 in P ′ at midpoints X′ and

Y ′. Denote the subchain of P from X to Y by P+ and the subchain from Y back to
X by P−. Similarly for P ′+ and P ′− in P ′. Applying the arm lemma to P+ and P ′+
implies that |XY | > |X′Y ′|, and, similarly, an application to P− and P ′− implies that
|XY | < |X′Y ′|, a contradiction. �

This brings us to the combinatorial component of Cauchy’s proof. A nice proof
of the following lemma appears in [36] and follows from an argument based on the
Euler characteristic of a sphere.

Cauchy Combinatorial Lemma Let P be an abstract spherical polyhedron. Then
for any labeling of any non-empty subset of the edges of P with + and − signs,
there exists a vertex v that is incident to an edge labeled with a + or a − sign for
which one encounters at most two sign changes in labels on the edges adjacent to v

as one walks around the vertex.

Cauchy Rigidity Theorem If two bounded, combinatorially equivalent, convex
polyhedra in E

3 have congruent corresponding faces, then they are congruent by
a Euclidean isometry of E3.

Proof Assume that bounded, convex polyhedra P and P ′ have the same combina-
torics and congruent corresponding faces. For each edge of P , label its dihedral
angle with a + or a − depending on whether it is larger or smaller than the
corresponding dihedral angle in P ′. If P and P ′ are not congruent, Cauchy’s
Combinatorial Lemma provides a vertex v that is incident to an edge labeled with a
+ or a − sign, and around which there are at most two sign changes. Intersect P with
a small sphere centered at v (one that contains no other vertex of P on its interior)
to obtain a convex spherical polygon, and intersect P ′ with a sphere centered at
the corresponding vertex v′ and of the same radius. By construction both spherical
polygons have the same edge lengths, and the angles between edges are given by the
dihedral angles between faces at v and v′. An application of the Four Vertex Lemma
implies that there are at least four sign changes, contradicting that there are at most
two. It follows that P and P ′ are congruent. �
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Both the bounded and convex requirements are necessary. For example, a
polyhedron Ĥ in the shape of a cubical house with a shallow pyramidal roof has
a cousin Ȟ obtained by inverting the roof. Ĥ is not congruent to Ȟ , though these
are combinatorially equivalent with congruent corresponding faces.

5.8 In Closing, an Open Invitation

This has been a whirlwind tour through the four decade history of the influence
of one theorem brought to prominence by the mathematician we celebrate in
this volume. Any result that has spawned such a great body of significant work
leaves in its wake a bounty of open questions, problems, conjectures, and possible
applications that await the right insights for resolution and explanation. What of
the Koebe Uniformization Conjecture, of the question of where EQ-type sits among
EEL- and VEL-type, of circle packings that mimic rational functions with arbitrary
branching, of the existence and rigidity of inversive distance circle packings, of
characterizations of projective polyhedra up to Möbius equivalence generalizing
Bao-Bonahon, or of combinatorial rather than metric characterizations of hyperbolic
polyhedra of various stripes? I have not covered in this survey the myriad of
applications that circle packing has spawned, particularly in the realm of computer
graphics and imaging, where each month sees more and more new and original
publications. And so I close this tribute to the influence of this one theorem of Bill
Thurston with an invitation to any reader who has been captured by the beauty and
elegance of the results outlined in this survey to explore further on his or her own
the wider discipline of Discrete Conformal Geometry, in both its theoretical and
practical bents, and perhaps to add to our understanding and appreciation of this
beautiful landscape opened up by the imagination of Bill Thurston.
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graphics for Figs. 5.3, 5.4, 5.6, 5.8, 5.9, and 5.10.

References

1. A.D. Aleksandrov, Convex Polyhedra (Translation of 1950 Russian ed.). Springer Monographs
in Mathematics (Springer, Berlin, 2005)

2. E.M. Andre’ev, On convex polyhedra in Lobachevski spaces. Mat. Sbornik 81(123), 445–478
(1970)

3. E.M. Andre’ev, On convex polyhedra of finite volume in Lobachevski spaces. Mat. Sbornik
83(125), 256–260 (1970)

4. O. Angel, O. Schramm, Uniform infinite planar triangulations, Commun. Math. Phys. 241,
191–213 (2003)



5 Combinatorics Encoding Geometry 237

5. J. Ashe, E. Crane, K. Stephenson, Circle packings with generalized branching (2016).
arXiv160703404A

6. X. Bao, F. Bonahon, Hyperideal polyhedra in hyperbolic 3-space. Bull. Soc. Math. France
130(3), 457–491 (2002)

7. A.F. Beardon, K. Stephenson, The uniformization theorem for circle packings. Indiana Univ.
Math. J. 39, 1383–1425 (1990)

8. A.F. Beardon, K. Stephenson, The Schwarz-Pick lemma for circle packings, Ill. J. Math. 35,
577–606 (1991)

9. M. Berger, Geometry Revealed: A Jacob’s Ladder to Modern Higher Geometry (Springer,
Berlin, 2010)

10. A.I. Bobenko, B.A. Springborn, Variational principles for circle patterns and Koebe’s theorem.
Trans. Amer. Math. Soc 356(2), 659–689 (2004)

11. A.I. Bobenko, T. Hoffmann, B.A. Springborn, Minimal surfaces from circle patterns: Geometry
from combinatorics. Ann. Math. 164(1), 231–264 (2006)

12. P.L. Bowers, The upper Perron method for labelled complexes with applications to circle
packings. Proc. Camb. Phil. Soc. 114, 321–345 (1993)

13. P.L. Bowers, Negatively curved graph and planar metrics with applications to type. Mich. Math.
J. 45, 31–53 (1998)

14. P.L. Bowers, Introduction to circle packing: the theory of discrete analytic functions [book
review]. Bull. Amer. Math. Soc. 46(3), 511–525 (2009)

15. J.C. Bowers, P.L. Bowers, Ma–schlenker c-octahedra in the 2-sphere. Discrete Comput.
Geometry 60, 9–26 (2017)

16. P.L. Bowers, M.K. Hurdal, Planar conformal mappings of piecewise flat surfaces, in Visualiza-
tion and Mathematics III, chap. 1, (Springer, Berlin, 2003), pp. 3–34

17. P.L. Bowers, K. Stephenson, The set of circle packing points in the Teichmüller space of a
surface of finite conformal type is dense. Math. Proc. Camb. Phil. Soc. 111, 487–513 (1992)

18. P.L. Bowers, K. Stephenson, A branched Andreev–Thurston theorem for circle packings of the
sphere. Proc. London Math. Soc. 73(3), 185–215 (1996)

19. P.L. Bowers, K. Stephenson, A “regular” pentagonal tiling of the plane. Conform. Geom. Dyn.
1, 58–86 (1997)

20. P.L. Bowers, K. Stephenson, Uniformizing Dessins and Belyı̆ Maps via Circle Packing.
Memoirs of the AMS, vol. 170, no. 805 (American Mathematical Society, Providence, 2004)

21. P.L. Bowers, K. Stephenson, Conformal tilings I: foundations, theory, and practice. Conform.
Geom. Dyn. 21(1), 1–63 (2017)

22. P.L. Bowers, K. Stephenson, Conformal tilings II: local isomorphism, hierarchy, and conformal
type Conform. Geom. Dyn. 23, 60 (2018)

23. J.C. Bowers, P.L. Bowers, K. Pratt, Rigidity of circle polyhedra in the 2-sphere and of
hyperideal polyhedra in hyperbolic 3-space. Trans. Amer. Math. Soc. 371, 4215–4249 (2018)

24. J.W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups. Geome-
triae Dedicata 16(2), 123–148 (1984)

25. J.W. Cannon, The combinatorial Riemann mapping theorem. Acta Math. 173, 155–234 (1994)
26. J.W. Cannon, W.J. Floyd, W.R. Parry, Finite subdivision rules. Conform. Geom. Dyn. 5, 153–

196 (2001)
27. C. Carathéodory, Untersuchungen über die konformen abbildungen von festen und veränder-

lichen gebieten. Math. Annal. 72(1), 107–144 (1912)
28. C. Carathéodory, Conformal Representation. Cambridge Tracts in Mathematics and Mathe-

matical Physics, vol. 28, Reprint of 1952 edn. (Cambridge University Press, Cambridge, 2008)
29. A. Cauchy, Sur les polygones et les polyèdres. J. Ecole Polytechnique XVIe Cahier IX, 87–98

(1813)
30. H. Chen, J.-M. Schlenker, Weakly inscribed polyhedra (2017). arXiv170910389C, to appear in

Trans. Amer. Math. Soc., Series B
31. J. Danciger, S. Maloni, J.-M. Schlenker, Polyhedra inscribed in a quadric. Invent. Math. 221(1),

237–300 (2020)



238 P. L. Bowers

32. H.P. de Saint-Gervais, Uniformization of Riemann Surfaces: Revisiting a Hundred-Year-Old
Theorem. Heritage of European Mathematics, vol. 11 (European Mathematical Society, Zürich,
2016)

33. Y.C. de Verdière, Une principe variationnel pour les empilements de cercles. Invent. Math. 104,
655–669 (1991)

34. P.G. Doyle, J. Laurie Snell, Random Walks and Electric Networks, vol. 22, 1st edn. (Mathe-
matical Association of America, Washington, 1984)

35. R.J. Duffin, The extremal length of a network. J. Math. Anal. Appl. 5, 200–215 (1962)
36. D. Fuchs, S. Tabachnikov, Mathematical Omnibus: Thirty Lectures on Classic Mathematics

(American Mathematical Society, Providence, 2007)
37. J.T. Gill, S. Rohde, On the Riemann surface type of random planar maps. Rev. Math. Iber. 29,

1071–1090 (2013)
38. J. Gray, On the history of the Riemann mapping theorem. Rendiconti del Cir. Math. di Palermo

II(34), 47/94 (1994)
39. M. Gromov, Hyperbolic groups, in Essays in Group Theory, ed. by S.M. Gersten (Springer,

New York, 1987), pp. 75Ű-263
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