
Chapter 12
Big Mapping Class Groups: An Overview

Javier Aramayona and Nicholas G. Vlamis

A Domingo, in memoriam.

Abstract We survey recent developments on mapping class groups of surfaces of
infinite topological type.

12.1 Introduction

In the blogpost [30], D. Calegari proposed the study of the mapping class group
Map(R2 \C), where C denotes a Cantor set. More concretely, he posed the question
of whether this group has an infinite-dimensional space of quasimorphisms, as is
the case with the mapping class group of a surface of finite topological type, after a
celebrated result of Bestvina–Fujiwara [19]. In addition, Calegari suggested a line of
attack on the problem, in analogy with Bestvina–Fujiwara’s original argument; in a
nutshell, the first idea is to prove that a certain complex of arcs on which Map(R2\C)

acts is hyperbolic and has infinite diameter, and then exhibit elements which act
weakly properly discontinously [19] on this complex.

This strategy was successfully implemented by J. Bavard in her thesis [13]
(English translation: [14]), and has since caused a surge of interest in mapping class
groups of infinite-type surfaces (or big mapping class groups, in the terminology
coined by Calegari) among the geometric group theory and low-dimensional
topology communities. Most of the results to date have focused on the basic
structure of big mapping class groups, as well as on the similarities and differences
with mapping class groups of finite-type surfaces.
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Fig. 12.1 Infinite-type deer, by Juan Pablo Díaz González, UNAM

This said, big mapping class groups made their appearance in other related areas
of mathematics quite a long time ago. For instance, big mapping class groups arise
naturally in the context of stable properties of mapping class groups [84]; infinite-
type surfaces are intimately related to the study of quasiconformal maps [18]; the so-
called braided Thompson’s group BV of Brin [28] and Dehornoy [35] is naturally a
subgroup of the mapping class group of a sphere minus a Cantor set; etc.

The aim of this survey is to give an overview of the recent developments around
big mapping class groups, mainly from the point of view of geometric group theory,
and to describe some of the connections to other areas of mathematics, such as
Polish groups and Thompson’s groups. Along the way, we will offer open problems
related to the topics covered.



12 Big Mapping Class Groups: An Overview 461

Plan of the Chapter All the objects and definitions needed in the exposition are
introduced in Sect. 12.2. In Sect. 12.3, we present two results which are crucial to a
large number of the results discussed in subsequent sections. Section 12.4 deals with
topological aspects of big mapping class groups: generation, Polish structure, etc.
Section 12.5 concerns algebraic results: automorphisms, homology, relation with
Thompson’s groups, etc. Finally, in Sect. 12.6 we will concentrate on the action of
big mapping class groups on various hyperbolic complexes constructed from arcs
and/or curves on the surface.

Big Absences There are a number of interesting topics related to big mapping
class groups which are not covered in this survey. Notably, the relation between
mapping class groups and dynamics [29], the theory of Teichmüller spaces of
infinite-type surfaces (see [73, 81] and the references therein), and the theory of
infinite translation surfaces (see for instance [91] and the references therein).

12.2 Preliminaries

In this section we introduce the background material needed for the rest of the
chapter.

12.2.1 Surfaces and Their Classification

Throughout this chapter, all surfaces considered will be assumed to be second
countable, connected, orientable, and have compact (possibly empty) boundary. If
the fundamental group of S is finitely generated, we will say that S is of finite type;
otherwise, we will say that S is of infinite type.

It is well-known that the homeomorphism type of a finite-type surface is
determined by the triple (g, p, b), where g ≥ 0 is the genus, and p, b ≥ 0 are,
respectively, the number of punctures and boundary components of the surface.
Because of this fact, we will use the standard notation Sb

g,p for the surface specified
by these data; as usual, we will drop p and b from the notation whenever they are
equal to zero.

There is also a similar classification for infinite-type surfaces [69, 96], in terms
of genus, number of boundary components, and the topology of the space of ends,
which we now define. First, an exiting sequence is a sequence {Un}n∈N of connected
open subsets of S with the following properties:

1. Un ⊂ Um whenever m < n,
2. Un is not relatively compact for any n ∈ N,
3. Un has compact boundary for all n ∈ N, and
4. any relatively compact subset of S is disjoint from all but finitely many Un’s.
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Two exiting sequences are equivalent if every element of the first is eventually
contained in some element of the second, and vice versa. We denote by Ends(S)

the set of all equivalence classes of exiting sequences of S; an element of
Ends(S) is referred to as an end of S. The set Ends(S) becomes a topological
space, called the space of ends of S, by specifying the following basis: given
a subset U ⊂ S with compact boundary, consider the set U∗ of all ends
represented by an exiting sequence eventually contained in U ; the set {U∗ :
U ⊂ S open with compact boundary} is the desired basis. If U is an open set with
compact boundary and e ∈ U∗, then we say that U is a neighborhood of the end e.

Given the above basis, it is not difficult to see that Ends(S) is Hausdorff,
totally disconnected, and second countable. Moreover, the definition above can be
reframed to describe Ends(S) in terms of an inverse limit of compact spaces; in
particular, Tychonoff’s theorem implies Ends(S) is compact. (For a reference, see
[3, Chapter 1].)

Theorem 12.2.1 For any surface S, the space Ends(S) is totally disconnected,
second countable, and compact. In particular, Ends(S) is homeomorphic to a closed
subset of a Cantor set.

We now proceed to describe the classification of infinite-type surfaces up to
homeomorphism. To this end, we will say that an end is planar if it admits a
neighborhood that is embeddable in the plane; otherwise an end is non-planar
(or accumulated by genus) and every neighborhood of the end has infinite genus.
Denote by Endsnp(S) the subspace of Ends(S) consisting of non-planar ends, noting
that it is closed in the subspace topology. The following result was proved by
Kerékjártó [69] and Richards [96].

Theorem 12.2.2 (Classification, [69, 96]) Let S1, S2 be surfaces, and write gi and
bi , respectively, for the genus and number of boundary components of Si . Then
S1 ∼= S2 if and only if g1 = g2, b1 = b2 and there is a homeomorphism

Ends(S1) → Ends(S2)

that restricts to a homeomorphism

Endsnp(S1) → Endsnp(S2).

In light of the above result, an obvious question is: given two closed subsets X,Y

of a Cantor set, with Y ⊂ X, can they be realized as the spaces of ends (resp. ends
accumulated by genus) of some surface? The following theorem, due to Richards
[96], states that the answer is “yes”:

Theorem 12.2.3 (Realization, [96]) Let X,Y be closed subsets of a Cantor set
with Y ⊂ X. Then there exists a surface S such that Ends(S) ∼= X and
Endsnp(S) ∼= Y .
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With the classification and realization theorems at hand, we make a quick note
about cardinality: there are exactly ℵ0 many homeomorphism classes of compact
surfaces, but 2ℵ0 many homeomorphism classes of second-countable surfaces. The
second statement follows from a count on the homeomorphism classes of closed
subsets of the Cantor set [95]. Interestingly, if one drops the condition of second
countability, then there are 2ℵ1 many homeomorphism classes of surfaces [49].

12.2.1.1 Some Important Examples

Several infinite-type surfaces have standard names, which makes them easy to
identify; these are as follows:

• The Loch Ness monster surface: the infinite-genus surface with exactly one end
(which is necessarily non-planar).

• Jacob’s ladder surface: the infinite-genus surface with exactly two ends, both
non-planar.

• The Cantor tree surface: the planar surface whose space of ends is a Cantor space.
Hence, this surface is homeomorphic to a sphere minus a Cantor set.

• The blooming Cantor tree surface: the infinite-genus surface whose space of ends
is a Cantor space, and such that every end is non-planar.

• The flute surface: the planar surface whose space of ends has a unique accumu-
lation point. Hence, this surface is homeomorphic to C�Z (and the end space is
homeomorphic to {0} ∪ { 1

n
: n ∈ N}, viewed as a subset of R).

The Loch Ness monster surface, Jacob’s ladder surface, and the blooming Cantor
tree surface are shown in Fig. 12.2; the Cantor tree surface can be seen in Fig. 12.4.

Fig. 12.2 From left to right: Loch Ness monster surface, Jacob’s ladder surface, and the blooming
Cantor tree surface



464 J. Aramayona and N. G. Vlamis

To the authors’ knowledge, the first two of these names were introduced by Phillips–
Sullivan [88], the second two by Ghys [51], and the last by Basmajian [12]. It
is worth noting that in [51], Ghys shows that a generic non-compact leaf of 2-
dimensional lamination of a metric space is either the plane, the cylinder, or one
of the first four surfaces above.

12.2.2 Arcs and Curves

By an arc on S we mean the homotopy class of a properly embedded copy of R.
Abusing notation, we will not distinguish between arcs and their representatives.
Two arcs are disjoint if they have disjoint representatives; otherwise we say that they
intersect. The intersection number, denoted i(·, ·), between two arcs is the minimum
(possibly infinite) number of points of intersection between representatives.

By a curve on S we mean the homotopy class of a simple closed curve on S

which does not bound a disk, a punctured disk, or an annulus whose other boundary
component is contained in ∂S. As was the case with arcs, we will use the same
notation for curves and their representatives. We say that a curve α is non-separating
if S � α is connected; otherwise we say that α is separating. Again, we may talk
about when two curves are disjoint or intersect, and define their intersection number
as we did with arcs and use the same notation. Note, however, that the intersection
number between two curves is necessarily a finite number.

A multicurve is a set of pairwise-distinct and pairwise-disjoint curves. A pants
decomposition is a multicurve P that is maximal with respect to inclusion, and such
that any compact set on S is intersected by only finitely many elements of P . As
such, the interior of every connected component of the complement of P in S is
homeomorphic to a sphere with three points removed, commonly referred to as a
pair of pants.

12.2.3 Mapping Class Group

Consider the group Homeo(S, ∂S) of homeomorphisms of S that restrict to the
identity on the boundary of S, equipped with the compact-open topology, and the
subgroup Homeo+(S, ∂S) consisting of those elements that preserve orientation.
Let Homeo0(S, ∂S) denote the path component of the identity in Homeo(S, ∂S),
and note that Homeo0(S, ∂S) ⊂ Homeo+(S, ∂S). The extended mapping class
group is

Map±(S) := Homeo(S, ∂S)/ Homeo0(S, ∂S),
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and the mapping class group is the subgroup

Map(S) := Homeo+(S, ∂S)/ Homeo0(S, ∂S).

The extended mapping class group becomes a topological group with the quotient
topology coming from the compact-open topology on Homeo(S, ∂S). Combining
[39, Theorem 6.4] and [44, Theorem 1], we see that the elements of Map(S) are
exactly the isotopy classes of orientation-preserving homeomorphisms of S (see the
appendix in [103] for a more detailed discussion).

(Note that is not clear or obvious that the mapping class group is Hausdorff,
since—a priori—path components are not closed subsets. Being Hausdorff is a
condition that is often required in the definition of topological group. We will deal
with this in Sect. 12.4.)

12.2.4 Several Natural Subgroups

Throughout the survey, several natural subgroups of mapping class groups will
appear: we provide their definition here.

12.2.4.1 Pure Mapping Class Group

Observe that every homeomorphism of S induces a type-preserving homeomor-
phism of its space of ends. In other words, there is a natural map

Homeo+(S, ∂S) → Homeo(Ends(S), Endsnp(S)), (12.1)

where the latter group denotes the subgroup of the homeomorphism group of
Ends(S) whose elements preserve Endsnp(S) setwise. One checks this is a con-
tinuous homomorphism when Homeo(Ends(S), Endsnp(S)) is equipped with the
(subgroup topology coming from the) compact-open topology.

Richards’s proof of the classification of surfaces can readily be adapted to
establish the surjectivity of the homomorphism given in (12.1). As an isotopy fixes
every end of a surface, the homomorphism (12.1) factors through Map(S) yielding
a surjective homomorphism

Map(S) → Homeo(Ends(S), Endsnp(S)). (12.2)

The pure mapping class group, written PMap(S), is the kernel of the above
homomorphism. In particular, we have a short exact sequence

1 → PMap(S) → Map(S) → Homeo(Ends(S), Endsnp(S)) → 1 (12.3)
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It is worth noting that by Stone’s representation theorem, there is a one-to-one
correspondence (or, technically, a contravariant functor) between closed subsets
of the Cantor set and countable Boolean algebras. There is a large amount of
literature about automorphism groups of boolean algebras, which can be translated
to homeomorphism groups of end spaces of surfaces (and vice versa).

We also note that, by the definition of the mapping class groups, Map(S) =
PMap(S) if and only if either | Ends(S)| ≤ 1 or | Ends(S)| = 2 and S has exactly
one planar end.

12.2.4.2 Compactly Supported Mapping Class Group

An element of Map(S) is compactly supported if it has a representative homeomor-
phism that is the identity outside of a compact subset. The compactly supported
mapping class group, denoted Mapc(S), is the subgroup of Map(S) consisting of
the compactly supported elements. Observe that, in fact, Mapc(S) < PMap(S).

We say a compact subsurface X of a surface S is essential if no component of
S � X is a disk or annulus. If X is an essential compact subsurface of S, then
Map(X) < Mapc(S). Note that for any two essential compact subsurfaces X and
Y of S, we have Map(X) < Map(Y ) whenever X ⊂ Y . Moreover, the union of all
compact subsurfaces of S is equal to S; hence, we have:

Proposition 12.2.4 For any surface S,

Mapc(S) = lim→ Map(X),

where the direct limit is taken over all essential compact subsurfacesX of S, ordered
by inclusion.

12.2.4.3 Torelli Group

Observe that every element of Map(S) acts on the homology group H1(S,Z) by
automorphisms. In other words, there is a homomorphism

Map(S) → Aut(H1(S,Z)). (12.4)

We remark that if S is a finite-type surface of genus g and with at most one
puncture, then Aut(H1(S,Z)) is isomorphic to the symplectic group Sp(2g,Z),
although this is not true in general. The Torelli group I(S) is the kernel of the
homomorphism (12.4); in other words, it is the subgroup of Map(S) whose elements
act trivially on homology. Observe that I(S) is a subgroup of PMap(S).
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12.2.5 Modular Groups

Naturally associated to a Riemann surface is the subgroup QC(X) of Homeo+(X)

consisting of the quasi-conformal homeomorphisms. The image of QC(X) in
Map(X), denoted Mod(X), is commonly referred to as either the Teichmüller
modular group of X or the quasi-conformal mapping class group of X. In the case
that X is of finite topological type, Mod(X) and Map(X) agree and are routinely
interchanged in the literature; however, this fails to be the case for infinite-type
surfaces.

In the infinite-type setting, unlike mapping class groups, modular groups have
a long history of being studied, especially from the theory of Riemann surfaces
and Teichmüller theory. As such, discussing the modular group would be a survey
in-of-itself and we will make no further mention of it. But, we note that there are
surely many interesting questions and problems related to how Mod(X) sits as a
subgroup of Map(S), where X is a Riemann surface homeomorphic to an infinite-
type surface S.

12.3 Two Important Results

In this section we present two results that underpin a large number of the topics
discussed in latter sections. Throughout this section, every surface is assumed to
have empty boundary.

12.3.1 Alexander Method

As mentioned in the introduction, Map(S) inherits a natural topology when
viewed as a quotient of Homeo+(S), equipped with the compact-open topology.
It is standard to require that a topological group be Hausdorff, and so it is not
immediately obvious that Map(S) in this topology is in fact a topological group.
However, we can use the extension of Alexander’s method to infinite-type surfaces
given in [61]. Here, we state the corollary we require:

Theorem 12.3.1 ([61, Corollary 1.2]) Let S be an infinite-type surface. If f ∈
Homeo+(S) fixes the isotopy class of every simple closed curve, then f is isotopic
to the identity.

Theorem 12.3.1 can used to separate the identity from any other element in
Map(S) by an open set and, for topological groups, this is enough to guarantee
the group is Hausdorff; hence, Map(S) is a topological group.



468 J. Aramayona and N. G. Vlamis

12.3.2 Automorphisms of the Curve Graph

The curve graph C(S) of S is the simplicial graph whose vertex set is the set
of curves on S, and where two vertices are adjacent in C(S) if and only if the
corresponding curves on S are disjoint. From now on we will not distinguish
between vertices of C(S) and the curves they represent.

Observe that Map±(S) acts on C(S) by simplicial automorphisms. In fact, the
combined work of Ivanov [63], Korkmaz [71], and Luo [74] shows that, with the
exception of the twice-holed torus, there are no other automorphisms of C(S) when
S is of finite type. In the infinite-type setting, the analogous result was proved
independently by Hernández–Morales–Valdez [60] and Bavard–Dowdall–Rafi [17]:

Theorem 12.3.2 If S is an infinite-type surface, then the group of simplicial
automorphisms of C(S) is naturally isomorphic to Map±(S).

Note that, in particular, Theorem 12.3.1 is required to show that the action of
Map(S) on C(S) has no kernel.

12.4 Topological Aspects

We will see in this section that big mapping class groups are interesting topological
groups—a divergence from the finite-type setting. This offers exciting new connec-
tions for mapping class groups, some of which we explore below.

It follows from the Alexander method for finite-type surfaces (see [43, Proposi-
tion 2.8]) that Map(S) is discrete when S is of finite-type. However, this is far from
true for big mapping class groups: to see this, let S be an infinite-type surface and let
{cn}n∈N be a sequence of simple closed curves such that, for every compact subset
K of S, there is an integer N such that K ∩ cn = ∅ for all n > N . If Tn is the Dehn
twist about cn, then the sequence {Tn}n∈N limits to the identity in Map(S).

12.4.1 The Permutation Topology

In order to investigate the topology of Map(S) in more depth, it is convenient to
have a more combinatorial description of its topology.

Let � be a simplicial graph with a countable set of vertices, and let Aut(�) be
the group of simplicial automorphisms of �. Given a subset A of �, let

U(A) := {g ∈ Aut(�) | g(a) = a for all a ∈ A}.

Then Aut(�) may be endowed with a natural topology, called the permutation
topology, defined by declaring the Aut(�)-translates of U(A), for every finite subset
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A of �, a basis for the topology. Equivalently, the permutation topology is the
coarsest topology in which, for every v ∈ C(S), the function ωv : Aut(�) → �

defined by ωv(g) = g(v) is continuous.
With respect to the permutation topology, Aut(�) becomes a second-countable

(and in particular, separable) topological group. Moreover, it is a standard exercise
in descriptive set theory texts to show that Aut(�) supports a complete metric
(which—usually—fails to be Aut(�)-invariant).

In particular, Aut(�) is an example of a Polish group, that is, a separable and
completely metrizable group. Polish groups are a well-studied class of groups and
we will make use of their theory.

For an infinite-type surface S with empty boundary, let � = C(S), then,
by Theorem 12.3.2, we can identify Map±(S) with Aut(�) and equip Map±(S)

with the associated permutation topology. It is an exercise in definitions and the
Alexander method to show that this permutation topology agrees with the compact-
open topology. Recall that a Gδ subset of a topological space is a subset that can
be written as the intersection of countably many open sets (note that in a metrizable
space, every closed set is a Gδ subset). As a consequence of this discussion, we
have:

Proposition 12.4.1 Let S be a infinite-type surface, possibly with non-empty
boundary. Then, Map±(S) and all its Gδ-subgroups, including Map(S) and
PMap(S), are Polish.

Note that, unlike the preceding discussion, Proposition 12.4.1 does not require
S to have empty boundary: this is because the mapping class group of a bordered
surface can be embedded in a borderless surface as a closed subgroup.

12.4.2 Basic Properties

Now that we have an understanding of the topology of mapping class groups, we can
investigate their basic properties. First, note that the sets in the basis defined above
for Map(S) are in fact clopen and hence mapping class groups are zero-dimensional.

Now, let S be of infinite type. Observe that if A ⊂ C(S) and c ∈ C(S) such
that c ∩ a = ∅ for all a ∈ A, then the sequence {T n

c }n∈N has no limit point
and is contained in U(A); in particular, again by homogeneity, we can conclude
that every compact subset of Map(S) is nowhere dense. This also establishes the
weaker fact that Map(S) fails to be locally compact. Moreover, as a Polish space
cannot be the countable union of nowhere dense subsets, we can conclude that
Map(S) is not compactly generated.1 Lastly, the Alexandrov–Urysohn Theorem

1There are two standard meanings for compactly generated, one algebraic and one topological.
For clarity, we are referring to the algebraic setting: specifically, we mean that if a set S generates
Map(S), as a group, then S cannot be compact.
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(see [66, Theorem 7.7]) establishes NN as the unique space, up to homeomorphism,
that is non-empty, Polish, zero-dimensional, and in which every compact subset
has non-empty interior; hence, Map(S) is homeomorphic to N

N. We record these
observations in the following theorem:

Theorem 12.4.2 For every infinite-type surface S,

(1) Map(S) is not locally compact,
(2) Map(S) is not compactly generated,
(3) Map(S) is homeomorphic to the Baire space NN (which in turn is homeomor-

phic to R �Q).

Theorem 12.4.2 establishes big mapping class groups as large topological
groups. It is often the case that the tools developed for studying finitely-generated
groups have natural analogs in the setting of locally-compact compactly-generated
topological groups. The failure of big mapping class groups to fall into this category
will generally complicate matters, but simultaneously offers big mapping class
groups as potential fertile ground for applying the rapidly developing and exciting
theory and tools of non-locally-compact topological groups. We will see this below
when we discuss the geometry of mapping class groups.

12.4.3 Topological Generation

Since big mapping class groups are separable, they are necessarily topologically
generated by a countable set, that is, there exists a countable set that generates
a dense subgroup. The goal of this subsection is to produce such a topological
generating set whose elements are relatively simple. Recall that for a connected
finite-type surface S, its pure mapping class group PMap(S) is generated by—a
finite set of—Dehn twists. In order to generate the full mapping class group, it is
necessary to add half-twists, which correspond to transpositions in the symmetric
group isomorphic to Map(S)/ PMap(S).

In the infinite-type setting, Eq. (12.3) tells us that Map(S)/ PMap(S) is iso-
morphic to Homeo(Ends(S), Endsnp(S)), so in order to understand topological
generating sets for Map(S), we would also have to do so for the latter homeomor-
phism groups; this will take us too far afield and so we will focus on generating
PMap(S).

Using the fact that the mapping class group of a compact surface is generated
by Dehn twists, we see that the group Mapc(S) consisting of compactly supported
mapping classes is generated by Dehn twists. It is natural to ask if the closure of this
group is all of PMap(S). The next result, proved by Patel and the second author in
[87], shows that this is true only in certain cases:

Theorem 12.4.3 ([87]) The set of Dehn twists topologically generate PMap(S) if
and only if S has at most one non-planar end.
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α σ(α)

x σ(x)

Fig. 12.3 The circles are identified vertically to obtain �

The only impediment to Dehn twists topologically generating is the existence of
a homeomorphism f : S → S and a separating curve γ non-trivial in homology
such that f (γ ) ∩ γ = ∅. As it turns out, this can only be done—while fixing the
ends—if there are at least two non-planar ends. Let us give an example of such a
homeomorphism, known as a handle shift, which was introduced in [87].

For n ∈ Z, let B±
n be the open Euclidean disks of radius 1 in R

2 centered
at (n,±2), respectively. Let � be the (infinite-genus) surface obtained from
R × [−4, 4] by, for each n ∈ Z, removing B±

n and identifying ∂B+
n and ∂B−

n

via an orientation-reversing homeomorphism. Up to isotopy, there is a unique
homeomorphism σ : � → � determined by requiring

1. σ((x, y)) = (x + 1, y) for all (x, y) ∈ � with |y| ≤ 3, and
2. σ((x,±4)) = (x,±4) for all x ∈ R.

See Fig. 12.3 to see the behavior of σ on a vertical arc. Now, for an infinite-genus
surface S, we say a homeomorphism h : S → S is a handle shift if there exists a
proper embedding ι : � → S such that

h =
{

ι ◦ σ ◦ ι−1(x) x ∈ ι(�)

x otherwise

We will also refer to a mapping class containing a handle shift as a handle shift
itself. Identifying � with its image under ι, we say that h is supported on �. Since
the embedding ι is required to be proper, there is an induced map ι∞ : Ends(�) →
Ends(S). It follows that h has an attracting and a repelling end, which we label h+
and h− respectively, and that satisfy

lim
n→±∞ hn(x) = h±

for every x in the interior of � (the limit is formally taken in the Freudenthal
compactification of S). Note that if h1 and h2 are isotopic handle shifts, then
h±

1 = h±
2 ; therefore, we can talk about the attracting and repelling ends of a mapping

class associated to a handle shift.
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Let h be a handle shift supported on � in an infinite-genus surface S with at
least two non-planar ends and such that h+ �= h−. Now observe that if we take a
separating curve γ that is non-trivial in homology and such that γ ∩ � is connected
and isotopic to a vertical arc, then γ is non-trivial in homology, γ is not homotopic
to h(γ ), and i(γ, h(γ )) = 0. As described in [87], these conditions guarantee that
h is not a limit of compactly supported mapping classes.

It was shown in [87] that the set of Dehn twists together with the set of handle
shifts topologically generate PMap(S). But, the set of handle shifts is uncountable
and we want a countable dense subset. As a corollary of a—much stronger—result
in [11], we can reduce to a countable collection:

Theorem 12.4.4 ([11]) If S is an infinite-genus surface with at least two non-
planar ends, then there exists a countable set consisting of Dehn twists and handle
shifts topologically generating PMap(S).

The handle shifts obtained from [11] will pairwise commute; however, for a
weaker, but direct version, it would suffice to choose a countable dense subset
{(e+

n , e−
n )}n∈N in Endsnp(S) × Endsnp(S) and handle shifts hn ∈ PMap(S) such

that h±
n = e±

n . It can be checked that these handle shifts along with Dehn twists will
topologically generate PMap(S).

Adapting an argument presented in [43, Theorem 7.16] showing that the mapping
class group of a finite-type surface is generated by torsion elements, Afton–
Freedman–Lanier–Yin [1] observed:

Theorem 12.4.5 ([1]) If S is an infinite-genus surface, then PMap(S) is topologi-
cally generated by handle shifts.

12.4.3.1 Torelli Group

As noted previously, I(S) is contained in PMap(S); moreover, handle shifts act
non-trivially on homology and hence I(S) contains no handle shifts. This is enough
to imply that I(S) is contained in the closure of Mapc(S) (this follows from
Corollary 12.5.18 below). Letting Ic(S) denote the intersection I(S) ∩ Mapc(S),
it is natural to ask if the closure of Ic(S) is all of I(S). The answer is yes:

Theorem 12.4.6 ([10]) If S is an infinite-type surface, then Ic(S) is dense in I(S).

Combining results of Birman [23], Powell [90] and an argument due to Justin
Malestein, the above theorem implies the following (see [10] for details and
definitions):

Theorem 12.4.7 ([10]) Let S be any surface of infinite type. Then I(S) is topolog-
ically generated by separating twists and bounding-pair maps.
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12.4.4 Coarse Boundedness

Before we begin, we note that all the general theory about Polish groups discussed
here is developed in Rosendal’s forthcoming book [99].

The theories of finitely-generated groups and locally-compact compactly-
generated topological groups have many analogies, especially from the viewpoint
of geometric group theory. This is naturally due to compactness being a natural
generalization of finiteness; however, as noticed by Rosendal, there is a weaker
condition on topological groups that allows one to still capture many of the key
aspects of the theory of locally-compact compactly-generated groups.

The key observations is to note that a compact subset of a (pseudo-)metric
space always has finite diameter; it turns out this is the property to focus on. In
a Polish group G, a subset A of G is coarsely bounded, or CB for short, if it has
finite diameter in every continuous pseudo-metric on G (in fact, it is sufficient to
only consider left-invariant continuous pseudo-metrics). A Polish group is coarsely
bounded, or CB, if it is coarsely bounded as a subset; it is locally coarsely bounded,
or locally CB, if there exists a coarsely-bounded open neighborhood of the identity;
it is CB generated if there exists a coarsely bounded set algebraically generating the
group.

One should naturally think of CB as a generalization of compact, locally CB
as a generalization of locally compact, and CB generated as a generalization of
compactly generated. Conveniently, every CB generated Polish group is locally CB
[99, Theorem 2.30] (note: it is not the case that every compactly-generated group is
locally compact, e.g. (Q,+) is compactly generated but not locally compact).

From the point of view of this survey, the main result of the theory of CB-
generated Polish groups is that, up to quasi-isometry, they have a well-defined
metric. In particular, CB-generated Polish groups have a well-defined geometry and
they can be studied through the lens of geometric group theory. Let us now describe
this result.

A left-invariant continuous pseudo-metric d is maximal if for any other left-
invariant continuous pseudo-metric d ′ there exits constants K,L ≥ 0 such that
d ′ < K · d + L. In particular, up to quasi-isometry, if a maximal pseudo-metric
exists, then it is unique. Before stating the theorem, a subset of a Polish space is
analytic if it is the continuous image of a Polish space. Now, combining pieces of
Theorem 1.2, Proposition 2.52, Theorem 2.53, and Example 2.54 from [99], we
have:

Theorem 12.4.8 ([99]) Let G be a CB-generated Polish group. Then:

(1) G admits a left-invariant continuous maximal metric d .
(2) G has an analytic symmetric coarsely-bounded generated set; moreover, G

equipped with the word metric associated to any such generating set is quasi-
isometric to (G, d).

Note that the metric topology associated to a word metric is always discrete and
hence cannot be continuous on a non-discrete topological group. However, the above
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theorem tells us that (non-continuous) word metrics capture the geometry of the
group.

In recent work, Mann–Rafi [77] classify the CB, locally CB, and CB-generated
mapping class groups. The most general version of their result is a bit technical to
state, so we will state a specific case that captures the main flavor. It is a classical
result of Mazurkiewicz and Sierpinski [80] that every countable compact Hausdorff
topological space is homeomorphic to an ordinal space of the form ωαn + 1, where
α is a countable ordinal, n is a natural number, and ω is the first infinite ordinal.

Theorem 12.4.9 ([77]) Let S be an infinite-type surface so that either every end of
S is planar or every end of S is non-planar. If the end space of S is countable and
homeomorphic to ωαn + 1, then

(1) Map(S) is CB if and only if n = 1.
(2) If n ≥ 2 and α is a successor ordinal, then Map(S) is CB generated, but not

CB.
(3) If n ≥ 2 and α is a limit ordinal, then Map(S) is locally CB, but not CB

generated.

The full statement of Mann–Rafi’s theorem involves generalizing the trichotomy
above to uncountable end spaces; they do this by introducing a partial order on the
ends. We encourage the interested reader to see their paper for details; we believe
the various cases described will be essential for researchers interested in proving
results about all big mapping class groups.

For examples, the mapping class group of the Loch Ness monster surface is CB
as is the mapping class group of the flute surface. Also, though it does not fit into the
countable version of the Mann–Rafi theorem given above, the mapping class group
of the Cantor tree surface is CB. For n ∈ N, let �n denote the infinite-genus surface
with n ends, all of which are non-planar. If n ≥ 2, then Map(�n) is CB generated,
but not CB; in particular, Map(�n) is not quasi-isometric to Map(�1) if n ≥ 2.
Therefore, we ask:

Question 12.4.10 Are Map(�n) and Map(�m) quasi-isometric if and only if
n = m?

As a complementary question, we propose:

Question 12.4.11 Are there computable quasi-isometry invariants of CB-generated
big mapping class groups (e.g. geometric rank)?

12.4.5 Automatic Continuity

A topological group G has the automatic continuity property if every abstract group
homomorphism from G to a separable topological group is continuous. There is a
beautiful history to studying automatic continuity given in [98]; however, we only
discuss several relevant examples (and non-examples).
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For a non-example, consider the following: the real line R and the real plane
R

2, each equipped with the standard Euclidean topology and the group operation of
(vector) addition, are isomorphic as groups. To see this, observe that both R and R

2

are infinite-dimensional vector spaces over the rationals Q with bases of cardinality
2ℵ0 and hence they are isomorphic. However, R and R

2 are not homeomorphic and
hence this group isomorphism cannot be continuous.

For examples, none of which are trivial, the homeomorphism group of the
Cantor set [67] as well as the homeomorphism group of any closed manifold
[75, 97] has the automatic continuity property. The automatic continuity property
for homeomorphism groups (and some diffeomorphism groups) has been key to
recent developments in approaches to the dimension growth question of Ghys
[50] regarding actions of infinite groups on compact manifolds (e.g. Chen–Mann
[33], Hurtado [62]). The application of automatic continuity in understanding the
rigidity of homeomorphism groups of compact manifolds motivates us to ask about
automatic continuity in mapping class groups, where there are also open rigidity
questions (see Sect. 12.5).

Question 12.4.12 Classify the surfaces S for which the groups Homeo(S) and/or
Map(S) have the automatic continuity property.

Recently, building on her previous work [75], Mann proved that the homeo-
morphism group of any manifold that can be realized as the interior of a compact
manifold with boundary has the automatic continuity property [76]. In the same
article, Mann gave the first examples of infinite-type surfaces (e.g. the sphere
minus a Cantor set) whose homeomorphism groups have the automatic continuity
property. Mann’s result actually shows these groups have a stronger property (they
are Steinhaus), which passes to quotients and hence yields:

Theorem 12.4.13 ([76, Corollary 2.1]) Let S be an infinite-type surface of finite
genus whose space of ends is of the form C � F , where C is a Cantor space and F

is a finite discrete space. Then, Map(S) has the automatic continuity property.

In [76, Example 2.3], Mann also gives an example of an infinite-type surface
whose homeomorphism group and mapping class group do not have the automatic
continuity property.

All the arguments establishing automatic continuity for the homeomorphism
groups mentioned above rely on the same core technique, which unfortunately does
not readily extend to non-compact surfaces with infinite-genus nor finite-genus with
non-perfect end space.
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12.5 Algebraic Aspects

12.5.1 Algebraic Rigidity

In this subsection, all surfaces are assumed to have empty boundary. A classical
result of Ivanov [64] asserts that, with several well-understood exceptions, every
automorphism of the mapping class group of a finite-type surface S is induced by a
homeomorphism of S. Ivanov gave a simplified proof of this result using the curve
complex in [63]; however, in this case, he assumes the underlying surface has genus
at least two. This simplified proof was adapted to the remaining cases by Korkmaz
[71] and Luo [74] independently. In the infinite-type setting, the analogous result
was established by Bavard–Dowdall–Rafi [17]; namely, one has:

Theorem 12.5.1 ([17]) For any infinite-type surface S,

Aut(Map(S)) ∼= Map±(S).

The idea of the proof of Theorem 12.5.1 is similar in spirit to that of Ivanov,
adapted to the context of infinite-type surfaces. First, the authors prove that an
element of Map(S) is supported on a finite-type subsurface of S if and only if its
conjugacy class is countable, and from this they obtain an algebraic characterization
of Dehn twists, similar to Ivanov’s original one, which is preserved by automor-
phisms. As a consequence, any given automorphism of Map(S) induces a simplicial
automorphism of the curve complex C(S) which in turn, by Theorem 12.3.2, is
induced by an element of Map±(S). At this point, the mapping class obtained this
way coincides with the original automorphism on every Dehn twist, from which one
quickly deduces that they are equal.

12.5.1.1 Injective and Surjective Homomorphisms

Ivanov’s theorem gave rise to a large number of stronger rigidity results about
mapping class groups. For instance, a result of Ivanov–McCarthy [65] asserts that
mapping class groups of surfaces of genus at least three are co-Hopfian, that is, every
injective endomorphism is an automorphism. Hence, every injective endomorphism
is induced by a homeomorphism of the underlying surface. The analog in the
infinite-type setting is not known:

Question 12.5.2 Are mapping class groups of infinite-type surfaces co-Hopfian?

One of the main hurdles in this direction is that, for infinite-type surfaces,
simplicial injections of the curve complex into itself need not come from mapping
classes, in stark contrast to the case of finite-type surfaces (see [58] for the strongest
result of this type). An example of this, for surfaces of infinite genus, may be found
in [59, Lemma 5.3]. We now present another instance of this phenomenon, which
can be easily generalized to other punctured surfaces:
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Example (Non-surjective Simplicial Injections Between Curve Graphs) Let S

be the flute surface. As such, we may realize S as the surface obtained by removing
from S

2 a convergent sequence together with its limit point.
Fix a hyperbolic structure on S, and realize every simple closed curve on S by its

unique geodesic representative. Since there are only countably many simple closed
curves on S, we may pick a point p in the complement of the union of all the simple
closed geodesics. Therefore we obtain a map h : C(S) → C(S \ {p}) which is easily
seen to be injective, since two curves that are disjoint on S remain disjoint after
puncturing. Finally, observe that S \{p} is homeomorphic to S, but that the map h is
not induced by a homeomorphism, as it is not surjective. This finishes the example.

With respect to surjective homomorphisms, a group is Hopfian if every surjective
endomorphism is an automorphism. It is an exercise to show that every finitely-
generated residually-finite group is Hopfian; hence, mapping class groups of finite-
type surfaces are Hopfian. It is therefore natural to ask if big mapping class groups
are Hopfian. But, we quickly find a counterexample:

Example (Non-Hopfian Mapping Class Group) Let E be a closed subset of the
Cantor set such that the set E′ of accumulation points of E satisfies E′ �= E and
E′ is homeomorphic to E. For example, the ordinal space ωω + 1 has this property.
Embed E into the 2-sphere S2. We then have that the embedding S2

�E ↪→ S
2
�E′

induces a forgetful homomorphism Map(S2
�E) → Map(S2

�E′) that is surjective,
but not injective. Now, S2

�E is homeomorphic to S
2
�E′ and hence we see there

exists a surjective endomorphism of Map(S2
�E) that fails to be an automorphism.

Note that the forgetful map exists only because E � E′—the set of isolated points
of E—is invariant under the action of Map(S2

� E).

Question 12.5.3 If a surjective endomorphism of a mapping class group fails to be
an automorphism, is it necessarily a forgetful homomorphism?

12.5.1.2 General Homomorphisms

A result of Souto and the first author [7] describes all non-trivial homomorphisms
PMap(S) → PMap(S′), where the genus of S is at least six and the genus of
S′ is less than twice the genus of S, showing that they arise as combinations of
subsurface inclusions, forgetting punctures, and deleting boundary components. A
homomorphism between mapping class groups that comes from a manipulation at
the level of the underlying surfaces is called geometric.

Other than Theorem 12.5.1, there are no results of this kind in the context of
infinite-type surfaces. In fact, as a consequence of Theorem 12.5.15 below, if S

has at least two non-planar ends then there are non-geometric endomorphisms of
PMap(S). However, all these examples factor through the (non-trivial) abelianiza-
tion of PMap(S). An ambitious question is to ask if this is the only way to produce
non-geometric endomorphisms:
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Question 12.5.4 Let S be a surface of infinite type with no boundary. Does every
non-geometric endomorphism of PMap(S) factor through its abelianization?

A much more humble question to which we do not know the answer (although
we expect it to be negative) is:

Question 12.5.5 Let S be Jacob’s ladder surface and let S′ be the Loch Ness
monster. Are there any homomorphisms PMap(S) → PMap(S′) with non-abelian
image?

12.5.1.3 Rigidity of Subgroups

In fact, the aforementioned result of Ivanov [63] applies to injections between finite-
index subgroups of mapping class groups. In other words, it asserts that the abstract
commensurator Comm(Map(S)) of Map(S) is equal to Map±(S), provided the
genus of S is large enough. For infinite-type surfaces, the analog is due to Bavard–
Dowdall–Rafi [17] (the proof is the same as for Theorem 12.5.1):

Theorem 12.5.6 ([17]) For any infinite-type surface S,

Comm(Map(S)) ∼= Map±(S).

In [10], it is shown that I(S) is also algebraically rigid; more concretely:

Theorem 12.5.7 ([10]) For any infinite-type surface S,

Aut(I(S)) ∼= Comm(I(S)) ∼= Map±(S).

The equivalent statement for finite-type surfaces was proved by Farb–Ivanov [42]
for automorphisms, and by Brendle–Margalit [26] for commensurations.

We remark that it is not known whether I(S) has any finite-index subgroups at
all; hence we ask:

Question 12.5.8 Does I(S) have any proper finite-index subgroups?

Note that if the answer to the above question were negative, then Comm(I(S))

would be equal to Aut(I(S)) a priori.
Finally, we should mention a recent theorem of Brendle–Margalit [27] (for closed

surfaces) and McLeay [82] (for surfaces with punctures) which vastly generalizes
the theorems above, proving that every normal subgroup which contains elements of
sufficiently small support has the extended mapping class group as its automorphism
and abstract commensurator group. In the setting of infinite-type surfaces one
expects fewer necessary conditions, as the following result of McLeay [83] shows:

Theorem 12.5.9 ([83]) Let S be the Cantor tree surface. If N is any normal
subgroup of Map(S), then

Aut(N) ∼= Map±(S).
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Though not directly a rigidity result, we finish this subsection by recalling a result
of Lanier–Loving [72] that fits with the discussion:

Theorem 12.5.10 ([72]) If S is an infinite-type surface, then every normal sub-
group has trivial center.

12.5.2 Abelianization

A classical result of Powell [90], building up on previous work of Mumford [86] and
Birman [23], shows that the abelianization of the mapping class group of a closed
surface of genus at least three is trivial. Moreover, the lantern relation can be used
to establish the same result for all finite-type surfaces:

Theorem 12.5.11 (See [43, Theorem 5.2]) Let S be a finite-type surface of genus
at least 3. Then PMap(S) has trivial abelianization.

By Proposition 12.2.4, Mapc(S) is a direct limit of finite-type mapping class
groups, and hence:

Corollary 12.5.12 Let S be a surface of genus at least 3. Then Mapc(S) has trivial
abelianization.

We would like to promote the above corollary to a statement about the pure
mapping class group, and here is one instance where automatic continuity is
incredibly useful. Indeed, a result of Dudley [38] asserts that if G is a Polish
group, then any homomorphism G → Z is continuous. Combining this with
Corollary 12.5.12, we have:

Theorem 12.5.13 Let S be a surface of genus at least 3. Then, every homomor-
phism

Mapc(S) → Z

is trivial. In other words,

H 1(Mapc(S),Z) = {1}.

In light of Theorem 12.4.3 above, this has the following consequence:

Corollary 12.5.14 Let S be a surface with at most one non-planar end. Then
H 1(PMap(S),Z) = {1}.

However, in [11] it was shown that the situation for general infinite-type surfaces
is rather different. Namely, one has:
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Theorem 12.5.15 ([11]) Let S be a surface of genus at least two, and let Ŝ denote
the result of filling every planar end of S. Then

H 1(PMap(S),Z) ∼= H
sep
1 (Ŝ,Z),

where the latter group is the subgroup of H1(Ŝ,Z) generated by homology classes
with separating representatives.

In particular, H 1(PMap(S),Z) is not trivial as soon as S has at least two non-
planar ends. A natural problem is:

Problem 12.5.16 Compute the low-dimensional (co-)homology groups of Map(S)

and PMap(S).

In his original blogpost, Calegari [30] showed that the mapping class group of
the Cantor tree surface is uniformly perfect, which implies that both H1 and H 1

are trivial (with integer coefficients). Recently, Calegari–Chen have computed the
second homology; we record both results below:

Theorem 12.5.17 ([30, 31]) Let � denote the mapping class group of the Cantor
tree surface. Then H 1(�,Z), H1(�,Z) and H 2(�,Z) are trivial, and H2(�,Z) =
Z/2Z.

The following structural result about pure mapping class groups provides the
core piece in the proof of Theorem 12.5.15; compare with Theorem 12.4.4 above:

Theorem 12.5.18 For any surface S, we have

PMap(S) = Mapc(S) �
∏
s∈S

〈hs〉,

where the rightmost group is a direct product of cyclic groups generated by
pairwise-commuting handle shifts hs , where s ranges over a free basis of
H

sep
1 (Ŝ,Z).

Theorem 12.5.15 leaves out some low-genus cases, which were subsequently
settled by Domat–Plummer [37]. More concretely, they proved the following result
for genus-one surfaces:

Theorem 12.5.19 ([37]) Let S be an infinite-type surface of genus one. Then

H 1(PMap(S),Z) = 0.

For an infinite-type surface S of genus-zero the situation is different, for in this
case there is a surjective homomorphism PMap(S) → F2, the free group on two
generators, since the pure mapping class group of a four-times punctured sphere is
isomorphic to F2. Nevertheless, Domat–Plummer prove:
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Theorem 12.5.20 ([37]) Let S be an infinite-type surface of genus zero. Then
H 1(PMap(S),Z) contains uncountably many classes which do not come from
forgetful maps to spheres with finitely many punctures.

12.5.3 Quantifying Rigidity

In Sect. 12.5.1, we saw that automorphisms of mapping class groups are geometric.
In fact, something stronger is true: outside several low-complexity cases, given
two surfaces S1 and S2 any isomorphism Map(S1) → Map(S2) (or PMap(S1) →
PMap(S2)) is induced by a homeomorphism S1 → S2 (this is shown in [17] in the
infinite-type setting and can be deduced in the finite-type setting from [64, 71, 74]).
In particular, in the finite-type setting, using the virtual cohomological dimension
[56] and algebraic rank [21] of Map(S), it is possible to determine the topology of S

from algebraic invariants of Map(S). Given that rigidity holds in big mapping class
groups, it should be possible to do the same:

Question 12.5.21 Is there a list of algebraic invariants of Map(S) that determine
the topology of S?

Let us provide some examples connecting algebraic invariants of Map(S) and the
topology of S. First, we have the following corollary of Theorem 12.5.15:

Corollary 12.5.22 ([11]) The algebraic rank of H 1(PMap(S),Z) is:

• 0 if and only if S has at most one non-planar end.
• n ∈ N if and only if S has n + 1 non-planar ends.
• infinite if and only if S has infinitely many non-planar ends.

Next, recall that a group is residually finite if and only if the intersection of all its
normal subgroups is the identity.

Theorem 12.5.23 ([87]) Let S be any surface.

• PMap(S) is residually finite if and only if S has finite genus.
• Map(S) is residually finite if and only if S is of finite type.

Now, it follows from the work of Bavard–Walker [16] that if S has an isolated
planar end then PMap(S) is circularly orderable (though not equivalent, the reader
can read this as “acts faithfully on the circle”). Moreover, by forthcoming work
of Aougab, Patel, and the second author [5], every finite group can be realized as a
subgroup of PMap(S) whenever S has infinite-genus and no planar ends. Combining
these facts, with the two results mentioned in this subsection and the fact that
Aut(PMap(S)) ∼= Map±(S) when S is of infinite-type [17], we are able to give
a complete answer to Question 12.5.21 for a countably infinite family of surfaces:
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Theorem 12.5.24 ([5]) For n ∈ N, let�n denote the n-ended infinite-genus surface
with no planar ends and let G = PMap(S) for some surface S. The surface S is
homeomorphic to �n if and only if G satisfies each of the following properties:

(1) G is not residually finite,
(2) G is not circularly orderable,
(3) H 1(G,Z) has rank n − 1, and
(4) G is finite index in Aut(G).

12.5.4 Homology Representation

As mentioned in Sect. 12.5.1, there is a homomorphism

ρS : Map(S) → Aut(H1(S,Z)),

given by the action of mapping classes on the homology of the surface. For finite-
type surfaces with at most one puncture or boundary component, the algebraic
intersection pairing of homology classes is a symplectic form, and one shows that
the homomorphism

Map(S) → Sp(2g,Z),

where g is the genus of S, is surjective; see [43, Section 6] for details.
The homology representation for infinite-type surfaces has been studied by

Fanoni, Hensel, and the second author [41]. In the infinite-type setting, there is only
one surface with at most one end, namely the Loch Ness monster surface; in this
case, it turns out an analogous result holds:

Theorem 12.5.25 ([41]) Let S be the Loch Ness monster surface. Then the image
of the homology representation is the subgroup of Aut(H1(S,Z)) consisting of those
elements which preserve the algebraic intersection form. In other words,

Im(φS) = Sp(N,Z).

For surfaces with more than one end (or boundary component), preserving
algebraic intersection is not enough to characterize the image of ρS in H1(S,Z)

(this is true in both the finite-type and infinite-type settings). In the same article
[41], the authors give a characterization of the image of ρS for an arbitrary surface
S in terms of preserving a filtration of the first homology. The full statement is a bit
technical, so we refer the interested reader directly to [41].
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12.5.5 Nielsen Realization

Kerckhoff’s Nielsen Realization Theorem [68] asserts that every finite subgroup of
the mapping class group of a finite-type surface S of negative Euler characteristic
lifts to Homeo(S); moreover, it may be realized as a subgroup of the isometry group
of some hyperbolic metric on S.

In the context of big mapping class groups, the analogous statement has been
obtained by Afton–Calegari–Chen–Lyman [2]:

Theorem 12.5.26 Let S be a surface of infinite type. Then every finite subgroup of
Map(S) lifts to Homeo+(S). Moreover, every finite group can be realized as a group
of isometries of some hyperbolic metric on S.

We should also note that there is analog of Nielsen realization in the setting of
analytically-infinite Riemann surfaces due to Markovic [78]. A hyperbolic Riemann
surface is a complex 1-manifold whose universal cover is isomorphic to the unit
disk.

Theorem 12.5.27 ([78]) Let S be an infinite-type surface and let G be a subgroup
of Map(S). If there exists a hyperbolic Riemann surface X homeomorphic to S and
a constant K > 1 such that every element of G can be realized by a K-quasi-
conformal homeomorphism X → X, then there is a hyperbolic Riemann surface Y

such that Y is quasi-conformally equivalent to X and G < Isom(Y ).

12.5.6 The Relation with Thompson Groups

Thompson’s groups F , T and V constitute prominent examples of discrete sub-
groups of Homeo(C), the homeomorphism group of the Cantor set. Among many
other features, they are infinite groups of type F∞, and which have simple
commutator subgroup (in fact, V itself is simple). We now briefly review the
construction of these groups, referring the reader to the standard reference [32] for
a thorough treatment of Thompson’s groups.

12.5.6.1 Thompson’s Groups

Let T be a rooted binary tree, noting that its space of ends of T is homeomorphic
to the Cantor set C. The tree T has a natural left-to-right orientation once we fix a
realization of T as a subset of the hyperbolic plane. With respect to this orientation,
given a subtree of T with n leaves, we may order its set of leaves using the numbers
1, . . . , n, so that the numbers increase from left to right.

Let τ, τ ′ be subtrees of T with the same number of leaves, and such that both
contain the root of T . If σ is a bijection between the sets of leaves of τ and τ ′, then
the triple (τ, τ ′, σ ) extends in a natural way to a homeomorphism of C. Of course,
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the same homeomorphism may be induced by different such triples (obtained by
expanding and contracting a given finite subtree), and Thompson’s group V is the
group of equivalence classes of such triples. In turn, Thompson’s group T (resp. F )
corresponds to the case when the bijection σ is a cycle (resp. the identity).

12.5.6.2 Asymptotic Mapping Class Groups

We now explain the relation between Thompson’s groups and big mapping class
groups. To this end, let S denote either the Cantor tree surface or the blooming
Cantor tree surface. In these particular cases, the exact sequence (12.3) reads

1 → PMap(S) → Map(S) → Homeo(C) → 1. (12.5)

Over the last two decades, numerous authors have given geometric constructions of
finitely-presented subgroups H of Map(S) for which the sequence (12.5) restricts
to

1 → Mapc(S) → H → G → 1, (12.6)

where G is one of Thompson’s groups F , T or V (or their commutator subgroups).
To the best of our knowledge, the first step in this direction was the paper of

Greenberg–Sergiescu [52], whose objective was to construct an acyclic extension
of F ′, the commutator subgroup of F , by the braid group B∞ on infinitely many
strands. This was later generalized simultaneously by Brin [28] and Dehornoy
[35] to the construction of an extension of V by B∞, the so-called braided
Thompson groups. Funar–Kapoudjian [45, 46], and later Funar and the first author
[6], constructed finitely-generated (and often finitely-presented) extensions of V by
a direct limit of mapping class groups of compact surfaces. Part of the motivation
[46] is to construct a finitely-presented group whose homology agrees with the
stable homology of pure mapping class groups, after a seminal result of Harer [55].

A common feature of all of the above constructions is that they may be expressed
in terms of groups of homeomorphisms of an infinite-type surface which eventually
preserve some topological data; these are the asymptotic mapping class groups
introduced by Funar–Kapoudjian in [45]. We now briefly recall their definition in
the simpler case of a surface of genus zero.

12.5.6.3 The Case of the Cantor Tree Surface

Let S be the Cantor tree surface, that is, a sphere with a Cantor set removed. Fix,
once and for all, a pants decomposition P of S and a set A of pairwise-disjoint,
properly-embedded arcs on S such that S�A has exactly two connected components
ν±, and each connected component of S�P is intersected by exactly three elements
of A; see Fig. 12.4. The triple (P,A, ν+) is called a rigid structure on S.
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Fig. 12.4 The rigid structure on S

We say that a homeomorphism f : S → S is asymptotically rigid if there exists a
compact subsurface X ⊂ S with ∂X ⊂ P , such that ∂f (X) ⊂ P and the restriction
homeomorphism

f : S � X → S � f (X)

setwise preserves (the relevant part of) the rigid structure. The group B is then
defined as the subgroup of Map(S) whose elements have an asymptotically rigid
homeomorphism. In their paper [45], Funar and Kapoudjian showed that the
restriction of the sequence (12.6) yields

1 → Mapc(S) → B → V → 1, (12.7)

As such, B contains the mapping class group of every compact surface of genus zero
with non-empty boundary. In light of this, the main result of [45] is rather striking:

Theorem 12.5.28 ([45]) The group B is finitely presented.

Moreover, they observed:

Proposition 12.5.29 The short exact sequence (12.7) splits over Thompson’s group
T . As a consequence, B is not linear and does not have Kazhdan’s Property (T).

We remark that a well-known question about finite-type mapping class groups
asks whether they are linear or have Kazhdan’s Property (T).

12.5.6.4 Other Compact Surfaces with a Cantor Set Removed

The construction of asymptotic mapping class groups makes sense for arbitrary
surfaces. In fact, as commented in [45], the group constructed by Brin [28] and
Dehornoy [35] are asymptotic mapping class groups of a closed disc with a Cantor
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set removed, and as such embeds as a subgroup of B. In addition, Funar and the
first author [6] generalized the construction of B to the surface �g obtained by
removing a Cantor set from a closed surface Sg of finite genus g ≥ 1. Roughly
speaking, a rigid structure on �g is determined by a simple closed curve α ⊂ �g

that cuts off a once-punctured surface of genus g, together with a rigid structure for
the planar component of �g . One then defines the notion of an asymptotically rigid
homeomorphism in an analogous way, and constructs the asymptotic mapping class
group Bg as the subgroup of Map(�g) whose elements have an asymptotically rigid
representative. In this case, the restriction of the short exact sequence (12.5) to the
group Bg reads

1 → Mapc(�g) → Bg → V → 1; (12.8)

in particular,Bg contains the mapping class group of every compact surface of genus
at most g and with non-empty boundary. The following is one of the main results of
[6]:

Theorem 12.5.30 ([6]) For every g ≥ 1, the group Bg is finitely presented. In
addition, it is not linear and does not have Kazhdan’s Property (T).

In addition, in [6] the authors explore the structure of the groupsBg in connection
with mapping class groups of finite-type surfaces. For instance, every automorphism
of Bg is induced by a homeomorphism of �g (compare with Theorems 12.5.1
and 12.5.7).

12.5.6.5 The Case of the Blooming Cantor Tree

In [46], Funar and Kapoudjian constructed an asymptotic mapping class group B∞
for the blooming Cantor tree, which we denote by �∞. In a similar fashion, the
short exact sequence (12.5), when restricted to B∞, yields:

1 → Mapc(�∞) → B∞ → V → 1. (12.9)

The following is the main result of [46]:

Theorem 12.5.31 ([46]) The group B∞ is finitely generated. Moreover, its rational
cohomology coincides with the stable rational cohomology of the mapping class
group.

Note that, while asymptotic mapping class groups of finite genus are finitely
presented, the group B∞ is only known to be finitely generated. In light of this, we
ask:

Question 12.5.32 Determine whether the asymptotic mapping class groups Bn, for
n ∈ N ∪ {∞}, satisfy stronger finiteness properties. Are they F∞?
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A positive answer to the above question, in the case of n = 0, is conjectured in
[45, p. 967]. The question of whether B∞ is finitely presented appears in [48].

12.5.6.6 A Dense Asymptotic Mapping Class Group

In addition, in [6] the authors considered a subgroup Hg with Bg < Hg <

Map(�g). The definition of Hg is similar to that of Bg, without the requirement that
its elements preserve the connected component ν+ appearing in the definition of
rigid structure. In short, the difference between Bg and Hg is that the latter contains
half-twists about separating curves cutting off a disk minus a Cantor set. For this
reason, the group Hg is referred to as the group of half-twists.

A large part of the motivation for consideringHg comes from the study of smooth
mapping class groups, as explained in [47]. Indeed, put a differentiable structure
on the closed surface Sg of genus g, and realize C as the the middle-third Cantor
set on a smoothly embedded interval on Sg . Let Mods (Sg, C) denote the smooth
mapping class group of the pair (Sg, C), namely the group of isotopy classes of
smooth diffeomorphisms of Sg preserving globally the Cantor set C. The following
is a recent result of Funar and Neretin [47]:

Theorem 12.5.33 ([47], Cor. 2) For every g ≥ 0, we haveHg
∼= Mods(Sg, C).

Using the same techniques as with Bg, Funar and the first author [6] proved:

Theorem 12.5.34 ([6]) For every g ≥ 1, the group Hg is finitely presented. In
addition, it is not linear and does not have Kazhdan’s Property (T).

However, a nice extra feature of the group Hg is the following result, which
should be compared with Theorem 12.4.3:

Theorem 12.5.35 For every g ≥ 0 the groupHg is dense in Map(�g).

Finally, the restriction to Hg of the sequence (12.7) reads

1 → Mapc(�g) → Hg → V2[Z2] → 1, (12.10)

where V2[Z2] is the Higman–Thompson group V2[Z2] [22]. A surprising result
of Bleak–Donoven–Jonušas [22] establishes that V and V2[Z2] are conjugate as
subgroups of Homeo(C) through an explicit homeomorphism of C (a cellular
automaton). An obvious questions then is:

Question 12.5.36 Are the groups Bg andHg isomorphic?

It would be surprising if the question above had a positive answer, since
isomorphisms between (sufficiently rich) subgroups of mapping class groups tend
to come from surface homeomorphisms.
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We end this section with the following vague question:

Question 12.5.37 Are there other geometrically-defined subgroups of Map(�g)

which surject to other interesting classes of subgroups of Homeo(C), such as
Higman-Thompson groups, Neretin groups, etc.?

12.6 Geometric Aspects

Mapping class groups of finite-type surfaces have been successfully studied through
their action on various combinatorial complexes, notably the curve graph; a first
instance of this is Ivanov’s Rigidity Theorem mentioned in Sect. 12.5.1. Moreover,
it turns out that the geometric structure of C(S), equipped with its natural path
metric, sheds intense light on the algebraic and geometric structure of Map(S). In
this direction, the following is a seminal theorem of Masur–Minsky [79]:

Theorem 12.6.1 ([79]) Let S be a finite-type surface. If C(S) is connected, then it
is hyperbolic (in the sense of Gromov).

A number of authors have proved analogous results for other combinatorial
complexes associated to surfaces, such as the disk graph [80], the non-separating
curve graph NonSep(S) [54, 80], the arc graph A(S) [57], etc. In fact, a surprising
phenomenon is that the hyperbolicity constant in Theorem 12.6.1, as well as the
those of other complexes, turn out to be independent of the underlying surface;
we say that the corresponding family of complexes are uniformly hyperbolic. The
following theorem is a combination of the results of [4, 25, 34, 57, 93]:

Theorem 12.6.2 Let S be a finite-type surface.

(1) ([57]) A(S) is uniformly hyperbolic.
(2) ([4, 25, 34, 57]) C(S) is uniformly hyperbolic
(3) ([93]) For fixed g, the graph NonSep(Sg,n)) is hyperbolic with respect to a

constant which does not depend on n.

The above result may be regarded as a curiosity at first, but it happens to be of
central importance in the study of big mapping class groups, as we will explain next.

12.6.1 Complexes for Infinite-Type Surfaces

As in the finite-type case, one may be tempted to use interesting geometric
properties of analogous combinatorial models, built from arcs and/or curves, in
order to study mapping class groups. This initial surge of enthusiasm is thwarted
by the following immediate observation; before we state it, we recall that, for an
infinite-type surface S, the arc graph A(S) is defined to be the simplicial graph
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whose vertices are properly embedded arcs on S which join two (not necessarily
distinct) planar ends of S, and where adjacency corresponds to disjointness.

Fact 12.6.3 Let S be a surface of infinite type. Then C(S) has diameter two.
Furthermore, if S has infinitely many planar ends, then A(S) also has diameter
two.

However, as mentioned in the introduction, in [30] Calegari proposed studying
Map(R2 \ C) via its action on a certain subgraph of A(R2 \ C); observe that, by
the above, A(R2 \ C) itself has diameter two. Calegari’s idea was to consider the
subgraph A∞ of A(R2

� C) consisting of arcs with at most one endpoint in C

(hence, necessarily one end of an arc in A∞ is contained in the unique isolated
planar end ofR2

�C). The next result was proved by Juliette Bavard [13, 14] proving
a conjecture posed by Calegari:

Theorem 12.6.4 A∞ is a Gromov-hyperbolic space of infinite diameter.

Based on this result, and with a lot of extra work, she also proved that Map(R2 \
C) has an infinite-dimensional space of quasi-morphisms. This is in stark contrast to
Map(S2

�C), which Calegari shows admits no quasi-morphisms (and even stronger,
we know Map(S2

� C) is CB [77]). We note that the automorphism group of A∞
and related graphs are computed in [101] and shown to be the extended mapping
class group.

The above theorem may be regarded as part of a more general phenomenon,
which we now explain. In order to do so, we need the following terminology due
to Schleimer [102]. Given a graph X(S) built from arcs and/or curves on S, say
that a subsurface Y ⊂ S is a witness for X(S) if every vertex of X intersects Y

non-trivially. For instance, the only non-trivial witness for C(S) is S itself while, in
the case of A(S), any subsurface Y ⊂ S which contains every puncture of S is a
witness.

The following theorem is a reformulated version of [8, Theorem 1] (see also [36,
Section 6] for another formulation). In an intuitive way, it encapsulates the idea of
taking a limit of a family of uniformly hyperbolic spaces:

Theorem 12.6.5 Let X(S) be a connected Map(S)-invariant graph, whose vertices
are defined by finite sets of arcs or curves on S, and where edges correspond to
bounded intersection number. Given a subsurface Y ⊂ S, define X(Y ) to be the full
subgraph of X(S) spanned by those vertices which are entirely contained in Y and
equip X(Y ) with the induced path metric. Suppose that:

(1) For every triangle T in X(S) there exists a finite-type witness Y such that T is
contained in X(Y ) and X(Y ) is connected;

(2) There exists constants δ,K,C > 0 such that for every finite-type witness Y of
S with X(Y ) connected, the following conditions are satisfied:

(a) X(Y ) is a δ-hyperbolic graph of infinite diameter.
(b) The inclusion map X(Y ) ↪→ X(S) is a (K,C)-quasi-isometric embedding.

Then X(S) is hyperbolic and has infinite diameter.
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Given a finite set P of isolated planar ends of S, denote by A(S; P) the subgraph
of A(S) spanned by those arcs which have at least one endpoint in P ; observe that
every subsurface of S which contains P is a witness for A(S; P). The above result
and the uniform hyperbolicity presented in Theorem 12.6.2 are used to prove the
following:

Theorem 12.6.6 Let S be an infinite-type surface.

(1) ([8, 9, 13]) Let P be a non-empty finite set of isolated punctures of S. Then,
A(S; P) is hyperbolic.

(2) ([93]) If S has finite genus at least 2, then the graph NonSep(S) is hyperbolic.

Remark There is a subtlety about Theorem 12.6.6 which is worth mentioning at this
point; see also [8, Theorem 1]. Let P,Q be two finite sets of isolated punctures of
S, with P ∩Q = ∅, and consider the subgraph A(S; P,Q) of A(S) which have one
endpoint in P and one endpoint in Q. Then A(S; P,Q) is not hyperbolic.

Indeed, this is a manifestation of Schleimer’s Disjoint Witness Property [102],
which asserts that if a graph or curves/arcs has two disjoint witnesses of infinite
diameter then it is not hyperbolic, for one may use subsurface projections to
construct a quasi-isometrically embedded copy of Z2 inside the graph.

Finally, observe that the graph A(S; P,Q) contains two disjoint witnesses, since
one can take two finite-type surfaces, one containing P and the other containing Q.
This finishes the remark.

These different phenomena were clarified in subsequent work of Durham, Fanoni
and the second author [36]. The motivation of their work was to find actions of big
mapping class group not relying on isolated planar ends. Before explaining their
result, we need some definitions.

Let Q be a collection of pairwise-disjoint closed subsets of Ends(S). Every
separating curve on S partitions Ends(S); let Sep2(S,Q) denote the subgraph of
C(S) consisting of separating curves on S that partition Q into two sets, each of
cardinality at least 2 (there is a slight modification if |Q| = 4, see [36] for details).

Theorem 12.6.7 ([36]) Let S be an infinite-type surface. Let Q be a collection of
pairwise-disjoint closed subsets of Ends(S) such that, for every ω ∈ Q and every
f ∈ Map(S), there exists ω′ ∈ Q with f (ω) = ω′. Then, Sep2(S,Q) is hyperbolic,
infinite diameter, Map(S)-invariant, and there are infinitely many mapping classes
which act with positive translation length on Sep2(S,Q).

For example, if S = �n (the n-ended infinite-genus surface with no planar ends)
with n ≥ 4, then Q = Ends(S) satisfies the hypothesis of the above theorem.

We note that in the days this survey was being finalized, Fanoni–Ghaswala–
McLeay [40] constructed new examples of hyperbolic infinite-diameter graphs that
admit actions of big mapping class groups with unbounded orbits. We direct the
reader to their article for details.

Klarreich [70] showed that the Gromov boundary of the curve graph is Map(S)-
equivariantly homeomorphic to the space of ending laminations on the surface; see
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also [53] for a different argument, and Pho-On’s thesis [89] for an effective proof of
this using the unicorn machinery of [57]. In unpublished work, Schleimer proved
that the boundary of the arc graph is naturally identified with the space of all ending
laminations supported on witnesses of S; this is also carried out in an effective
manner in Pho-On’s thesis [89].

In light of these results, we ask the following natural question:

Question 12.6.8 Describe the Gromov boundary of the various hyperbolic com-
plexes associated to an infinite-type surface S, ideally in terms of laminations/foli-
ations on S.

For the case when the surface is R
2 \ C, the Gromov boundary of the relative

arc graph A∞ of Theorem 12.6.4 is described by Bavard-Walker [16] in terms of
rays on the surface. Rasmussen [94] has recently reproved a result of Hamenstädt
computing the Gromov boundary of the graph of non-separating curves and points
out that his techniques can be extended to the infinite-type setting; however, the
issue is a lack of understanding of laminations on infinite-type surfaces. We should
note at this point that Šarić [100] recently developed the theory of train tracks for
infinite-type surfaces, which should aid in investigating laminations.

The natural motivation for understanding the Gromov boundary is to gain insight
into a potential classification of big mapping classes akin to that of the Nielsen–
Thurston classification. We should note that there is much research in this direction
for quasi-conformal mapping class groups and their action on Teichmüller space.

12.6.2 Weak Proper Discontinuity and Acylindricity

Let G be a group acting by isometries on a hyperbolic metric space (X, d). We say
that the action is acylindrical if, for every D ≥ 0, there exists R ≥ 0 such that, for
every x, y ∈ X with d(x, y) ≥ D, the cardinality of the set

{g ∈ G | d(x, gx), d(y, gy) ≤ R}

is finite. To exclude uninteresting pathologies, we restrict our attention to actions
where there are infinitely many points on the Gromov boundary of X that are
accumulation points of G-orbits; call such an action non-elementary. We say that a
group is acylindrically hyperbolic if it admits a non-elementary acylindrical action
on some Gromov-hyperbolic space.

A result of Bowditch [24] asserts that, if S has finite type, the action of Map(S)

on C(S) is acylindrical. Bavard–Genevois [15] proved that the analogous statement
does not hold for infinite-type surfaces:

Theorem 12.6.9 ([15]) If S has infinite type, then Map(S) is not acylindrically
hyperbolic.
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Prior to the notion of acylindricity, Bestvina–Fujiwara [19] introduced the
concept of weak proper discontinutity (WPD, for short), and used it to show
that if a group has an interesting WPD action then it has an infinite-dimensional
space of quasimorphisms; equivalently, its second bounded cohomology group is
infinite-dimensional. We briefly recall these ideas. Let G be a group acting on a
Gromov-hyperbolic metric space (X, d), and g ∈ G be a loxodromic element. We
say that g is a WPD element if, for every x ∈ X and every R ≥ 0, there is N ∈ N

such that the set

{h ∈ G | d(x, h(x)) ≤ R, d(gN (x), hgN(x) ≤ R}

is finite. Bestvina–Fujiwara [19] proved that, for a finite-type surface S, any pseudo-
Anosov element of Map(S) is WPD with respect to the natural action on the curve
complex. This notion was further weakened by Bromberg–Bestvina–Fujiwara [20]
to that of a WWPD action: suppose again G acts on a hyperbolic space X, and let g

be a loxodromic element of G with fixed points η± on the Gromov boundary ∂X of
X. We say that g is a WWPD element if, for every sequence {hn}n∈N of elements
of G, with hn(η

+) → η+ and hn(η)− → η−, there exists N ∈ N such that, for all
n ≥ N , one has

hn(g
+) = g+ and hn(g

−) = g−.

The existence of WWPD elements of big mapping class groups has been recently
studied by Rasmussen [92]. Let S be an infinite-type surface with at least one
isolated puncture p, and let A(S, p) be the relative arc graph of S based at p.
Rasmussen proved:

Theorem 12.6.10 ([92]) An element g ∈ Map(S) is WWPD with respect to the
action of Map(S) on A(S, p) if and only if there exists a finite-type g-invariant
subsurface Y ⊂ S, with p ∈ Y , such that the restriction of g to Y is pseudo-Anosov.

As a consequence, he deduces that a class of subgroups of Map(S) have infinite-
dimensional second bounded cohomology.

We finish with mentioning a very recent construction of Morales–Valdez [85],
in which they construct examples of mapping classes which act loxodromically on
A∞ and do not preserve any finite-type subsurface.
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