
Ken’ichi Ohshika
Athanase Papadopoulos   Editors

In the Tradition 
of Thurston
Geometry and Topology



In the Tradition of Thurston



Ken’ichi Ohshika • Athanase Papadopoulos
Editors

In the Tradition of Thurston
Geometry and Topology



Editors
Ken’ichi Ohshika
Department of Mathematics
Gakushuin University
Tokyo, Japan

Athanase Papadopoulos
Institut de Recherche Mathématique
Avancée
CNRS et Université de Strasbourg
Strasbourg, France

ISBN 978-3-030-55927-4 ISBN 978-3-030-55928-1 (eBook)
https://doi.org/10.1007/978-3-030-55928-1

Mathematics Subject Classification: 32G15, 30G60, 57M25, 57M50, 57M60, 57M07

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-55928-1


Preface

This is the first of a series of three volumes consisting of essays on Thurston’s
contribution to mathematics, its development and its impact.

The present volume contains 16 chapters. Some of them are surveys of Thurston’s
works on several topics, including knot theory, geometrization of 3-manifolds,
Kleinian groups, circle packings, the complex projective geometry of surfaces, and
laminar groups. Other chapters are overviews of works that are directly inspired
by Thurston’s ideas. They include topics such as the dynamical and counting
problems for curves on hyperbolic surfaces, the study of surfaces of infinite type and
their mapping class groups, the complex-analytic geometry of Teichmüller space, a
stratification of moduli spaces of polynomials, and there are two chapters dedicated
to the recent activity on anti-de Sitter geometry and quasi-Fuchsian co-Minkowski
manifolds, two theories whose development follows closely Thurston’s ideas that
he introduced in his study of hyperbolic geometry.

All the chapters in this volume are self-contained and peer-reviewed. They are
intended to be references for students and researchers who want to learn Thurston’s
works and ideas.

We take this opportunity to thank the various colleagues and friends who
participated in the preparation of this volume, in particular the authors of the various
chapters and those who read and refereed them. We are especially grateful to
Vincent Alberge for his enthusiasm and help at an early stage of this project. We
also thank Elena Griniari for her kind editorial support.

Whereas the present volume carries the subtitle “Geometry and Topology,” those
of the two forthcoming volumes will be “Geometry and Dynamics” and “Geometry
and Groups.”

v



vi Preface

These three volumes are above all a tribute to Bill Thurston, for his unique way
of perceiving forms and patterns and of communicating, writing mathematics, and
sharing it with others. They are an expression of our gratitude for him and our
fascination for his work; he is one of the greatest (if not the greatest) geometers
of modern times.

Tokyo, Japan Ken’ichi Ohshika
Strasbourg, France Athanase Papadopoulos
June 2020
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Introduction

A casual mathematician reading the title of this book may ask: “What is the tradition
of Thurston?” He may also ask: “In what field is there a tradition of Thurston?”

Let us start by commenting on these questions.
The second question is easier to answer than the first. In fact, with his personal

style, Thurston marked indelibly geometry, topology, group theory, and dynamics.
His work also had a strong impact on ergodic theory, complex analysis, and discrete
geometry. It also influenced combinatorics, algebraic geometry, computer science,
and mathematics education. It is not that Thurston passed from one topic to another,
but he considered all these topics as a single one; he was able to see the unity
of mathematics. Above all, Thurston inaugurated a new way of understanding,
communicating mental images, sharing ideas, and writing mathematics. He had a
personal and unconventional opinion on what is mathematics about, and on why we
do mathematics. He liked to share his mathematics and also his ideas on all sorts of
questions. In response to a person asking on MathOverflow: “What can one (such
as myself) contribute to mathematics?” Thurston responded:

It’s not mathematics that you need to contribute to. It’s deeper than that: how might you
contribute to humanity, and even deeper, to the well-being of the world, by pursuing
mathematics? Such a question is not possible to answer in a purely intellectual way, because
the effects of our actions go far beyond our understanding. We are deeply social and deeply
instinctual animals, so much that our well-being depends on many things we do that are
hard to explain in an intellectual way. That is why you do well to follow your heart and your
passion. [. . . ] The product of mathematics is clarity and understanding. Not theorems, by
themselves. [. . . ] The world does not suffer from an oversupply of clarity and understanding
(to put it mildly). How and whether specific mathematics might lead to improving the
world (whatever that means) is usually impossible to tease out, but mathematics collectively
is extremely important. [. . . ] In short, mathematics only exists in a living community of
mathematicians that spreads understanding and breathes life into ideas both old and new.
The real satisfaction from mathematics is in learning from others and sharing with others.
All of us have clear understanding of a few things and murky concepts of many more. There
is no way to run out of ideas in need of clarification. The question of who is the first person
to ever set foot on some square meter of land is really secondary. Revolutionary change does
matter, but revolutions are few, and they are not self-sustaining—they depend very heavily
on the community of mathematicians.

ix



x Introduction

Giving an answer to the first question, on what is the tradition of Thurston, is
not easy. Skimming the various chapters of the present volume will hopefully give
a good idea of what the mathematics underlying this tradition is about. Our wish in
publishing this book and the sequel is to contribute to the perpetuation of Thurston’s
ideas.

The present volume is divided into 16 chapters, of which we now give an outline.
Chapter 1, by Ken’ichi Ohshika and Athanase Papadopoulos, titled A Glimpse

into Thurston’s Work, consists of two parts. The first part is an overview of a
portion (but definitely not all) of Thurston’s work. The topics considered include
foliations, contact structures, symplectic structures, 1-dimensional dynamics, 3-
manifolds, geometric structures, geometrization of cone-manifolds, Dehn surgery,
Kleinian groups, the Thurston norm, holomorphic dynamics, complex projective
geometry, circle packings and discrete conformal geometry, word processing in
groups, automata, tilings, computer science, mapping class groups, Teichmüller
spaces, and fashion design.

The second part of this chapter is a glimpse into some development and
impact of Thurston’s work. We start by a short report on the proofs of several
conjectures which were either formulated by Thurston or in which Thurston’s
works played a crucial role. This includes the proofs of the Smith conjecture, of
Ahlfors’s measure-0 conjecture, of Marden’s tameness conjecture, of the ending
lamination conjecture, of the density conjecture, of the geometrization conjecture,
of Waldhausen’s conjecture on the structure of fundamental groups of closed
irreducible 3-manifolds, on the virtual-Haken conjecture, of the virtual fibering
conjecture, and of the Ehrenpreis conjecture. We then report on other topics whose
development used Thurston’s ideas in an essential way. They include works on
the Cannon–Thurston maps, on Anti-de Sitter geometry, on linkages, on higher
Teichmüller theory, and on the Grothendieck–Thurston theory.

Chapter 2, by Ken’ichi Ohshika, titled Thurston’s Influence on Japanese Topolo-
gists up to the 1980s, is a report on the impact of Thurston’s work on Japanese school
of topology and geometry, in particular on foliations and on hyperbolic manifolds.

Chapter 3, by Makoto Sakuma, titled A Survey of the Impact of Thurston’s Work
on Knot Theory is a survey of the impact of Thurston’s work on knot theory.
The author chose, as a general theme for this chapter, the rigidity and flexibility
in 3-manifolds, a reference to Chapter 5 of Thurston’s Princeton lecture notes,
titled “Flexibility and Rigidity of Geometric Structures.” Hyperbolic structures on
knot complements constitute the central object of this theory. This is motivated by
the fact that, by Thurston’s geometrization theorem for Haken manifolds, almost
every knot in the 3-sphere is hyperbolic. In this context, the term “rigidity” refers
to the Mostow–Prasad theorem saying that a complete finite-volume hyperbolic
structure on any manifold of dimension ≥ 3 is a topological invariant, whereas the
term “flexibility” refers to the deformation theory of incomplete or infinite-volume
hyperbolic structures.

In his survey, Sakuma reviews successively the main tools that were known
before Thurston started working on knot theory, then Thurston’s contribution to the
subject, then some of the major developments which arose from Thurston’s ideas.
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Among the classical notions that are mentioned, one can find the Alexander poly-
nomial, tools from finite group theory, ideas arising from works of Reidemeister,
Schubert, Conway, and others on knots, as well as some important theorems in 3-
manifold topology. Sakuma then reviews Thurston’s extensive use of hyperbolic
geometry and the associated rigidity theorem, the notions of hyperbolic Dehn
filling and orbifold fundamental group, deformation spaces of hyperbolic structures
equipped with various topologies, character varieties, the classification of mapping
classes, the eight 3-dimensional geometries, Thurston’s uniformization theorem for
Haken manifolds which led to the proof of the Smith conjecture, group actions
on trees, the Thurston norm, Thurston’s geometrization theorem for orbifolds, his
geometrization conjecture for manifolds which became Perelman’s theorem, his
virtual fibering conjecture proved by Agol, McMullen’s Teichmüller polynomial
and its relation with the Alexander polynomial, the use of the homology of finite
coverings of knot complements, the use of profinite completions of knot groups as
knot invariants, and other notions.

At the same time, Sakuma’s article constitutes a survey of the growth and
development of knot theory in Japan.

Chapter 4 by Sadayoshi Kojima, titled Thurston’s Theory of 3-Manifolds, is a
survey of Thurston’s work on the geometry and topology of 3-manifolds. After
mentioning some landmarks from the pre-Thurston era on this subject, in partic-
ular, the works of Waldhausen and Jaco–Shalen–Johansson, the review focuses
on Thurston’s hyperbolic Dehn surgery theorem, his uniformization theorem for
Haken manifolds and his work towards the virtual fiber and the virtual-Haken
conjectures. The last section of the chapter is a short report on the solution of several
conjectures formulated by Thurston, including the geometrization and the virtual
fiber conjectures.

Chapter 5, by Philip Bowers, is titled Combinatorics Encoding Geometry:
The Legacy of Bill Thurston in the Story of One Theorem. The author gives a
comprehensive historical and geometrical survey of the so-called Koebe–Andreev–
Thurston theorem on circle packings and its impact. This theorem is the main result
proved in Chapter 13 of Thurston’s Princeton lecture notes. Thurston’s work on
circle packings turned out to be at the foundations of the field which became known
as discrete conformal geometry, now an extremely active field.

After a detailed presentation of the Koebe–Andreev–Thurston theorem, Bowers
develops the theory of infinite circle packings on non-compact surfaces, reviewing
several related topics and results, including the Rodin–Sullivan discrete approach
to the Riemann mapping theorem based on circle packings (a result they obtained
based on an idea of Thurston) and the characterization of hyperbolic polyhedra using
circle packings, a theory which also originates in Thurston’s work, leading to the
works of several authors, including Hodgson–Rivin, Schramm, Bao–Bonahon, J.
Bowers, K. Pratt, the author himself, and others.

In Chap. 6, titled On Thurston’s Parameterization of CP 1-Structures, Shinpei
Baba surveys some ideas of Thurston on complex projective structures on surfaces
and their moduli spaces. He reviews in particular Thurston’s parametrization of
the moduli spaces of marked projective structures by the product of measured
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lamination space with Teichmüller space. Interestingly, this parametrization of a
space of 2-dimensional geometric structures involves a passage to dimension 3,
namely the convex hull construction for subsets of the projective plane seen as the
boundary of hyperbolic 3-space, in which the theory of pleated surfaces appears as
a central object. The author also surveys Goldman’s parametrization of the space
of marked projective structures with Fuchsian holonomies as well as other notions
inspired by Thurston’s ideas on complex projective structures.

The convex hull construction mentioned in Chap. 6 is reviewed again in Chap. 7,
titled A Short Proof of an Assertion of Thurston Concerning Convex Hulls. In this
chapter, Graham Smith provides a short proof of the result of Thurston saying
that if X is a closed subset of the Riemann sphere considered as the boundary of
3-dimensional hyperbolic space, then the intrinsic metric of the boundary of the
convex hull of X is hyperbolic. Thurston stated his result and gave a heuristic proof
in Chapter 8 of his Princeton lecture notes. The proof proposed by Smith is clear
and short.

Chapter 8 by Cyril Lecuire is titled The Double Limit Theorem and Its Legacy.
It is a survey of a series of results on deformation spaces of Kleinian groups
inspired by two theorems of Thurston: the double limit theorem and the compactness
theorem for hyperbolic structures on acylindrical 3-manifolds. These two theorems
are used as important steps in Thurston’s proof of his uniformization theorem for
Haken manifolds. While outlining the proofs of these two theorems, the author
reviews several key tools introduced by Thurston in his work on deformation spaces
of Kleinian groups (laminations, train tracks, pleated surfaces, etc.) and at the same
time he surveys Thurston’s theorems known under the names of “Broken windows
only theorem” and “Window frame bounded theorem.”

Besides reviewing this work of Thurston, the author reports on some histor-
ical background, including the classical works of Ahlfors and Bers on quasi-
conformal deformations which led to the so-called Ahlfors–Bers coordinates on
quasi-conformal deformation spaces. He then reviews several results that are
inspired by Thurston’s ideas, including works of Culler, Morgan, and Shalen on
deformations of hyperbolic manifolds and compactifications of deformation spaces
using actions of �-trees, Otal’s alternative proof of Thurston’s double limit theorem,
works of Ohshika on deformation spaces of Kleinian groups and their boundaries,
and others.

Chapter 9, by Ken’ichi Ohshika and Teruhiko Soma, titled Geometry and
Topology of Geometric Limits I, is an answer to a question asked by Thurston.
More precisely, the authors provide a complete classification of isometry classes
of hyperbolic 3-manifolds corresponding to geometric limits of Kleinian surface
groups which are isomorphic to the fundamental group of a finite-type hyperbolic
surface. They introduce some invariants for hyperbolic 3-manifolds which are geo-
metric limits of Kleinian surface groups, and they prove that the homeomorphism
type and the end invariants of such manifolds determine the isometry type. This
result is an analogue of the ending lamination theorem for the case of finitely
generated Kleinian groups. It gives a possible solution to problem No. 8 in the
list of 24 problems raised by Thurston in his paper Three Dimensional Manifolds,
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Kleinian Groups and Hyperbolic Geometry (1982),1 which he formulated as
follows: “Analyze limits of quasi-Fuchsian groups with accidental parabolic.” As
a matter of fact, the result by Ohshika and Soma gives a complete answer to this
question in the form it is interpreted by Otal in his survey of Thurston’s paper which
appeared in 2014,2 in which he provides an update of Thurston’s 24 problems.

Chapter 10, by Hyungryul Baik and Keyeongro Kim, titled Laminar Groups
and 3-Manifolds, is concerned with a theory that Thurston developed in his
1998 preprint Three-Manifolds, Foliations and Circles, I, where he associates to
a transversely oriented taut foliation on a closed atoroidal 3-manifold a faithful
map from the fundamental group of the manifold to the group of orientation-
preserving homeomorphisms of the circle, equipped with an invariant lamination.
Here, a lamination on the circle is a collection of pairs of points on this circle
with an unlinkedness condition. If one realizes these pairs by straight lines in the
disc (or, equivalently, by hyperbolic geodesics, if the circle is seen as the boundary
of the Poincaré model of the hyperbolic plane), then one gets a lamination in the
usual sense. The authors study more generally the notion of laminar groups, that
is, groups acting on the circle with invariant laminations. An elementary example
of such a group is a surface group, and some fundamental groups of 3-manifold
groups are also laminar. Baik and Kim review Thurston’s work on this topic and its
development by several authors. They give a condition which insures that a laminar
group is not virtually abelian.

Chapter 11, by Viveka Erlandsson and Caglar Uyanik, is titled Length Functions
on Currents and Applications to Dynamics and Counting. It is concerned with
geodesic currents on closed orientable surfaces of finite type. In this setting,
geodesic currents are measure-theoretic objects which generalize closed curves. The
authors survey various functions on these spaces, for which they use the generic term
“length functions.” The definitions are motivated by analogously defined functions
on spaces of closed curves on surfaces, including the length of a closed geodesic
for a given Riemannian (possibly singular) metric, the geometric intersection with
a fixed filling closed curve or a collection of curves, the word length in the
fundamental group, the stable length, etc. The authors then present an overview
of the applications of these length functions to counting problems. In particular,
they show how to generalize Mirzakhani’s formulae on the asymptotic growth rate
of the number of curves of bounded length to the other notions of length. They also
study actions of pseudo-Anosov mapping classes on spaces of geodesic currents,
showing that such an action has a uniform North-South dynamics, like the one on
Teichmüller space equipped with Thurston’s boundary.

Chapter 12, by Javier Aramayona and Nicholas Vlamis, titled Big Mapping Class
Groups: An Overview, is a survey of certain mapping class groups of surfaces of

1W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull.
Amer. Math. Soc. 6 (1982), 357–381.
2J.-P. Otal, William P. Thurston: “Three-dimensional manifolds, Kleinian groups and hyperbolic
Geometry,” Jahresber. Dtsch. Math.-Ver. 116 (2014), 3–20.



xiv Introduction

infinite type (which the authors call “big mapping class groups”). This includes the
group of compactly supported mapping classes, the Torelli groups, the Teichmüller
modular groups (or quasi-conformal mapping class groups), and the asymptotic
mapping class groups. The authors address questions related to curve graphs
and other complexes associated to infinite-type surfaces, surveying several known
results on these complexes, and they study their simplicial automorphism groups,
reviewing recent works by several authors on these questions, and formulating an
extensive number of open questions, on the algebraic and geometric properties of
big mapping class groups. They also mention relations with Thompson groups, a
subject which was dear to Thurston.

The questions, techniques, and results surveyed in this chapter are all motivated
by analogous techniques and results which are known in the context of mapping
class groups of surfaces of finite type. The study is based on tools introduced by
Thurston on mapping class groups of surfaces of finite type, adapted to this setting.

Chapter 13, by Hideki Miyachi, titled Teichmüller Theory, Thurston Theory,
Extremal Length Geometry, and Complex Analysis is an exposition of some
complex-analytical aspects of Teichmüller space, including extremal length and
the Bers boundary, and the Gardiner–Masur boundary, with applications to end
invariants and the ending lamination conjecture. One topic discussed in some
detail is the use of extremal length geometry in the elaboration of a Poisson
integral formula for holomorphic functions and pluriharmonic functions on the Bers
compactification that the author developed in his recent works. He emphasizes the
fact that this Poisson formula strengthens the connection between the topological
and the complex-analytic aspects of Teichmüller theory, promoting a framework in
which the combination of these methods sheds a new unified light on this space.

In Chap. 14, titled Signatures of Monic Polynomials, Norbert A’Campo con-
structs a real semi-algebraic cell-decomposition of the space of monic real poly-
nomials of fixed degree. The face operators of this cell-decomposition are explicitly
given. The classical discriminant of degree-d polynomials, as well as its comple-
ment, appears as a union of cells. Since this complement is a classifying space for
the braid group, this work provides a finite complex from which we can compute
the group cohomology of the braid group with integral coefficients. The work in this
chapter is inspired by Thurston’s ideas.

Chapters 15 and 16 concern the impact in pseudo-Riemannian geometry of
techniques and tools introduced by Thurston.

Chapter 15 by Francesco Bonsante and Andrea Seppi, titled Anti-de Sitter Geom-
etry and Teichmüller Theory, is a survey of n-dimensional anti-de Sitter geometry,
with a special emphasis on dimension 3 and on its relation with Teichmüller theory
and hyperbolic geometry. This subject was inaugurated in 1990 by G. Mess, who
introduced in the study of anti-de Sitter geometry Thurston’s ideas and tools that
he used in the study of hyperbolic manifolds and Teichmüller spaces. Bonsante
and Seppi start by giving a comprehensive introduction to anti-de Sitter geometry.
This includes the Klein and quadric models, a study of isometries, geodesics, the
universal cover, the boundary at infinity equipped with its conformal structure
and Lorentzian metric, polarity, group actions, and Dirichlet domains. The authors
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emphasize the properties of the special case of dimension 2+1 with the ruling of the
boundary surface, surveying Cauchy surfaces and globally hyperbolic timespaces,
convexity and convex hull constructions, holonomy and developing maps, and
several other notions of anti-de Sitter geometry. They present a self-contained
exposition of the results of Mess on the classification of globally hyperbolic anti-de
Sitter 3-manifolds containing a Cauchy compact surface and the construction of the
Gauss map associated with spacelike surfaces in anti-de Sitter space. They survey
the relation between pleated surfaces and the earthquake map, and they recover
Mess’s proof of Thurston’s earthquake theorem. They review recent results on anti-
de Sitter 3-dimensional geometry in relation with Teichmüller theory, following
the ideas of Mess. They show that the Gauss map is conformal and harmonic. In
particular, its image is a minimal surface. They survey the notion of volume in the
setting of maximal globally hyperbolic Cauchy compact manifolds, comparing it
to the volume of the associated convex core. They describe parameters for various
deformation spaces in anti-de Sitter geometry in terms of holomorphic objects, and
they apply them to the study of the universal Teichmüller space. They address the
question of investigating anti-de Sitter theory with timelike cone singularities and its
relation with the Teichmüller theory of hyperbolic surfaces with cone singularities.
Some of the results in the last section answer questions raised in the list Some open
questions in anti-de Sitter geometry (2012).3

Chapter 16, by Thierry Barbot and François Fillastre, titled Quasi-Fuchsian co-
Minkowski Manifolds, is concerned with the geometry of co-Minkowski space,
that is, the space of spacelike hyperplanes of Minkowski space. The authors study
the geometry of this space equipped with the action of affine deformations of co-
compact lattices of hyperbolic isometries, highlighting several facets of an analogy
between this geometry and that of hyperbolic space equipped with the action of
quasi-Fuchsian groups. The authors survey the known results, and at the same time
they present new contributions to the theory.

Let us make a short review of these results.
The authors start by introducing a cylindrical affine model of co-Minkowski

space which is analogous to the Klein ball model of hyperbolic space. They
survey a convex core construction and the definition of a traceless fundamental
form giving rise to a unique mean hypersurface (i.e. a surface with a traceless
second fundamental form) contained in the convex core. They show that the mean
distance between the lower boundary component of the convex core and this mean
hypersurface gives rise to an asymmetric norm defined on the space of affine
deformations of a certain lattice. By symmetrization, this asymmetric norm leads
to a notion of volume of the convex core and to a “mean distance” between the
future complete and the past complete flat globally hyperbolic maximal Cauchy
compact spacetimes having the same holonomy. In dimension 2+1, this asymmetric
norm turns out to be the earthquake norm defined by Thurston, and it is also the

3T. Barbot, F. Bonsante, J. Danciger, W. M. Goldman, F. Guéritaud, F. Kassel, K.Krasnov, J.-M.
Schlenker, and A. Zeghib. Some open questions in anti-de Sitter geometry. 2012. arXiv:1205.6103.
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total length of the bending lamination of the lower boundary component of the
convex core. This allows the authors to give a new proof and a generalization to an
arbitrary dimension of a theorem of Thurston saying that the total length function of
measured geodesic laminations leads to an asymmetric norm, after identification of
a measured lamination with a tangent vector to Teichmüller space using infinitesimal
earthquakes. Furthermore, the volume of the convex core turns out to be the sum of
the total length of the bending lamination of its boundary, a result which the authors
compare with its analogues in hyperbolic and anti-de Sitter spaces.

Finally, Barbot and Fillastre describe a relation between the geometry of co-
Minkowski space and the theory of Anosov representations. In particular, they
investigate the Anosov character (in the sense of Labourie) of certain representations
of hyperbolic groups of isometries of Minkowski space into the isometry group of
this space.

We hope that the essays that constitute the various chapters of this volume,
besides giving an idea of what Thurston’s tradition is, will contribute in keeping
it alive. Let us conclude with some words of Thurston, extracted from a brief essay
that he wrote on beauty, mathematics, and creativity:4

Many people think of mathematics as austere and self-contained. On the contrary, mathe-
matics is a very rich and very human subject, an art that enables us to see and understand
deep interconnections in the world. The best mathematics uses the whole mind, embraces
human sensibility, and is not at all limited to the small portion of our brains that calculates
and manipulates with symbols. Through pursuing beauty we find truth, and where we find
truth, we discover incredible beauty.

Tokyo, Japan Ken’ichi Ohshika
Strasbourg, France Athanase Papadopoulos

4The essay was distributed on the occasion of a fashion show that took place at the Salon du
Carrousel du Louvre in Paris, in March 2010, in which a collection of the Japanese fashion designer
Issey Miyake was presented, a collection whose conception was based on Thurston’s vision on the
eight 3-dimensional geometries.
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Chapter 1
A Glimpse into Thurston’s Work

Ken’ichi Ohshika and Athanase Papadopoulos

Abstract We present an overview of some significant results of Thurston and their
impact on mathematics.

Keywords Foliation · Contact structure · Symplectic structure · Conformal
geometry · Holomorphic motion · Kleinian groups · Circle packing · Automatic
groups · Tiling · Mapping class groups · Teichmüller space · Fashion design ·
Linkage · Anti-de Sitter geometry · Higher Teichmüller theory ·
Grothendieck–Thurston theory · Asymmetric metric · Schwarzian derivative ·
Computer science · Ehrenpreis conjecture · Transitional geometry ·
3-Manifolds · Geometric structures · (G,X)-structures · Dehn surgery ·
Hyperbolic geometry · Thurston norm · Smith conjecture · Cannon–Thurston
map · Discrete conformal geometry · Discrete Riemann mapping theorem

AMS Codes 57N10, 57M50, 20F34, 20F65, 22E40, 30F20, 32G15, 30F60,
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68Q70, 57M05, 57M07, 57Q15, 57D15, 58A10, 58F10, 65Y25

1.1 Introduction

In this chapter, we present an overview of some significant results of Thurston and
their impact on mathematics.

The chapter consists of two parts. In the first part, we review some works of
Thurston, grouped in topics. The choice of the topics reflects our own taste and our
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degree of knowledge. The choice of the order of these topics was almost random.
Indeed, it is not clear whether a given topic is more important than another one,
and there are interconnections and mutual influences between most of these topics.
Furthermore, it was not possible to follow a chronological order because Thurston
was thinking about all these subjects simultaneously.

In the second part of this chapter, we report briefly on the proofs of some
conjectures which were either formulated by Thurston or whose solution depended
in a crucial way on his work. We also discuss a few topics whose development was
directly or intellectually influenced by ideas of Thurston.

We have included at some places remarks and quotations which give an idea of
Thurston’s approach to science in general and to the aesthetics of mathematics.

Our exposition will certainly be too short at some places, for some readers who
know little about Thurston’s work on the topic discussed, and it will be redundant
for readers familiar with this topic (and even more for the experts). We apologize in
advance to both categories of readers. We have added here and there some historical
notes, whenever we felt this was useful. These notes will probably be beneficial to
both groups of readers.

1.2 On Thurston’s Works

1.2.1 Foliations and Groups of Homeomorphisms

The first time the word “foliation” was used in a mathematical sense (in its French
version, feuilletage) took place by the end of the 1940s by Georges Reeb and Charles
Ehresmann (who was Reeb’s advisor).1 Reeb, in his dissertation [189], gave the first
example of a foliation on the 3-sphere.2

When Thurston came into the subject, examples and constructions of foliations
on special manifolds were available. To describe the situation in short, one can say
that in a lapse of time of 5 years, he obtained all the general existence results that
were hoped for. In this section, we briefly review his work on the subject.

1In their first papers on the subject, Ehresmann and Reeb used the expression éléments de contact
de dimension p complètement intégrables (“completely integrable contact elements of dimension
p.”).
2The question of the existence of a foliation on the 3-sphere was asked by Heinz Hopf in 1935,
who certainly did not use the word “foliation”. The first example was given in a joint paper by
Ehresmann and Reeb, but Ehresmann always attributed this construction to Reeb.
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Thurston’s first published paper on foliations3 is a short note titled Noncobordant
foliations of S3 [206], which appeared in 1972. In this note, Thurston proved that
any closed 3-manifold carries a family of foliations whose Godbillon–Vey invariant
takes all possible real values. This invariant (an element of the real 3-cohomology
of the manifold) was discovered the year before, by C. Godbillon and J. Vey, who
came across it by manipulating differential forms. The question of whether there
exist foliations with non-zero Godbillon–Vey invariant was soon raised, together
with the problem of giving it a geometrical interpretation. Thurston’s result closed
both problems. It is interesting to note that Thurston’s existence proof has a strong
hyperbolic geometry flavor: he constructed a family of foliations of the 3-sphere
which depend on convex polygons in the hyperbolic plane whose area is equal to
the Godbillon–Vey invariant of the foliation. Besides hyperbolic geometry, we can
find in this proof another ingredient which was soon to become fundamental in
Thurston’s work, namely, the notion of singular hyperbolic surface. In his paper
on foliations, Thurston described these surfaces as “surfaces having a number of
isolated corners, with metrics of constant negative curvature everywhere else.”

Thurston formulated his result on the Godbillon–Vey invariant as the surjectivity
of a certain homomorphism from the group of cobordism classes of foliations
onto R. As a corollary, he proved the existence of an uncountable family of non-
cobordant foliations on S3. The precise results are stated in terms of Haefliger’s
classifying spaces of �-structures. These objects, also called Haefliger structures,
were introduced by André Haefliger in his thesis published in 1958 [95], as a
generalization of the notion of foliation.4 In short, Haefliger structures, which
may be interpreted as singular Cr foliations, are R

k-bundles over n-dimensional
manifolds equipped with foliations transverse to the fibers. (Such a Haefliger
structure is said to be of codimension k). A natural example of a Haefliger structure
is the normal bundle to a foliation. Haefliger structures are the natural setting
for the theories of classifying spaces and of characteristic classes of foliations,
and Haefliger’s theory reduces the question of the existence of certain classes of

3With the exception of his PhD thesis, which was defended the same year and which remained
unpublished. The thesis, whose title is foliations of 3-manifolds which fiber over a surface. was
submitted to the Swiss journal Inventiones. The referee asked for modifications; Thurston did not
comply and withdrew the paper. Haefliger, in the collective Thurston memorial article [85], writes:
“The referee suggested that the author should give more explanations. As a consequence, Thurston,
who was busy proving more theorems, decided not to publish it.”
4A posteriori, it is interesting to read Richard Palais’ comments on this notion, in his MathSciNet
review of Haefliger’s paper: “The first four chapters of the paper are concerned with an extreme,
Bourbaki-like generalization of the notion of foliation. After some 25 pages and several hundred
preliminary definitions, the reader finds that a foliation of X is to be an element of the zeroth
cohomology space of X with coefficients in a certain sheaf of groupoids. While such generalization
has its place and may in fact prove useful in the future, it seems unfortunate to the reviewer that
the author has so materially reduced the accessibility of the results, mentioned above, of Chapter
V, by couching them in a ponderous formalism that will undoubtedly discourage many otherwise
interested readers.” In fact, the notion that Haefliger introduced turned out to be of paramount
importance.
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foliations to that of certain maps between manifolds and classifying spaces. A
consequence of Thurston’s work on Haefliger structures is that in some sense (up
to a natural condition on normal bundles) the class of �-structures is not different
from that of foliations.

Two years later, Thurston published three papers in which he proved a series of
breakthrough results on foliations. In the paper [210], titled The theory of foliations
of codimension greater than one, working in the setting of codimension-k Haefliger
structures for k > 1, he showed the existence of a large class of completely
integrable plane fields on manifolds which led to the construction of new classes
of foliations. In particular, he obtained that any plane field of codimension greater
than one is homotopic to a completely integrable C0 field. He also proved that for
any n ≥ 3 and any 1 < k ≤ n/2, if the sphere Sn carries a k-plane field then it
carries also a C∞ foliation of dimension k. These results are wide generalizations
of existence results obtained in special cases by Reeb, Tamura, Lawson, Phillips,
Haefliger, and others.

The second paper by Thurston published in 1974 [208] is titled A generalization
of the Reeb stability theorem. The theorem, obtained by Reeb in his thesis [189]
which we already mentioned, says that if a transversely oriented codimension-
1 foliation on a compact manifold has a two-sided compact leaf with finite
fundamental group, then all the leaves of this foliation are diffeomorphic. Thurston
obtained a much stronger result under the hypothesis that the foliation is of class
C1, namely, he proved that one can replace the hypothesis that the compact leaf has
finite fundamental group by the one saying that the first real cohomology group of
the leaf is zero. At the same time, he showed that, under the same conditions, the
leaves of this foliation are the fibers of a fibration of the manifold over the circle or
the interval. Furthermore, he showed by an example that this result does not hold
in the C0 case. Thurston approached the problem by studying the linear holonomy
around the compact leaf, and he gave an interpretation of the result in terms of the
linearity properties at a fixed point for a topological group acting continuously in
the C1 topology, as a group of C1 diffeomorphisms of a manifold.

The relation between foliations and groups of diffeomorphisms is announced in
the title of the third paper published in the same year [209]: Foliations and groups
of diffeomorphisms. In this paper, Thurston studied higher codimension Haefliger
structures in relation with groups of diffeomorphisms of arbitrary manifolds,
generalizing a relation discovered by John Mather between the group of compactly
supported diffeomorphisms of the real line and framed codimension-one Haefliger
structures. Using the techniques of classifying spaces, Thurston proved that any two
C∞ foliations of a manifold arising from nonsingular vector fields are homotopic
as Haefliger structures if and only if their normal bundles are isotopic. At the same
time, he announced a result giving a precise relationship between the classifying
space of codimension-k Haefliger structures and that of the diffeomorphism group
of compact manifolds of dimension k as a discrete group. He used this result to
prove that the diffeomorphism group of a compact manifold is perfect (that is, equal
to its commutator subgroup), generalizing a result obtained by Mather in the case of
1-dimensional manifolds.
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One may recall here that at the time Thurston was working on these topics, the
study of the algebraic structure of groups of diffeomorphisms and homeomorphisms
of compact manifolds was a very active subject of research, involving mathemati-
cians such as John Mather, David Epstein, Michel Herman, Jean Cerf and others.

In the same year, Thurston gave a talk at the Vancouver ICM (1974) whose title
was On the construction and classification of foliations [211]. In the paper published
in the proceedings of the congress, Thurston reviewed some of the major results he
had obtained and he announced the results of his forthcoming paper [213], Existence
of codimension-one foliations, which appeared in 1976. In this paper, he proved
the existence of a C∞ codimension-one foliation on any closed manifold whose
Euler characteristic is zero. This result may be contrasted with a result of Haefliger
[95] stating that there is no codimension-one real-analytic foliation on a sphere of
any dimension. This displays a striking difference between the C∞ and the real-
analytic cases. In the same paper, Thurston proved that on any closed manifold
without boundary, every hyperplane field is homotopic to the tangent plane field of
a C∞-foliation.

Naturally, the ICM paper, which is only 3 pages long, is written in the pure
Thurston style, warm, unconventional and appealing to the reader’s imagination.
It starts with the following:

Given a large supply of some sort of fabric, what kinds of manifolds can be made from it,
in a way that the patterns match up along the seams? This is a very general question, which
has been studied by diverse means in differential topology and differential geometry.

It is also not surprising that the definition of a foliation that Thurston gives in this
paper is informal and unusual:

A foliation is a manifold made out of a striped fabric—with infinitely thin stripes, having no
space between them. The complete stripes, or “leaves,” of the foliation are submanifolds; if
the leaves have codimension k, the foliation is called a codimension-k foliation.

ICM talks are intended for a general audience, but very few mathematicians were
able, like Thurston was, to describe the objects they were studying in simple words,
avoiding notation and formulae.

Thurston’s paper [219] which appeared in 1986 and which is titled A norm for
the homology of 3-manifolds, is the foundational paper on the so-called Thurston
norm, and it also contains results and conjectures on foliations of 3-manifolds. The
results include a classification of codimension-1 foliations without holonomy that
are transverse to the boundary, in terms of the top-dimensional faces of the unit
ball of Thurston’s norm on homology. We shall talk about this in Sect. 1.2.9 below.
Thurston showed that if such a foliation has no Reeb component, then any compact
leaf is norm-minimizing in its homology class. A converse was obtained by D.
Gabai soon after, who also obtained a general existence result for codimension-1
transversely oriented foliations transverse to the boundary with no Reeb components
[84]. In the same paper, Gabai proved several conjectures of Thurston.

In 1976, Thurston published a paper with Joseph Plante on the growth of germs
of diffeomorphisms [185]. The study of such germs was motivated by the theory
of foliations (the germs appear in the holonomy groups of foliations). The question
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that Plante and Thurston studied was motivated by the work of Milnor [148] who
introduced the notion of growth of a finitely generated group. It was conjectured
that a group has polynomial growth if and only if it contains a nilpotent subgroup of
finite index. The conjecture was proved by Gromov in a paper which was a major
breakthrough [89]. In their article, Plante and Thurston showed that the conjecture
is true for germs of diffeomorphisms, and they gave applications of this result to
foliations. One of the consequences they obtained is that if a compact manifold with
fundamental group of polynomial growth carries a transversely oriented and real-
analytic codimension-1 foliation, then its first real homology group is nontrivial.
This generalized a result of Haefliger [95].

One should also talk about Thurston’s mostly unpublished work on extending the
theory of foliations to that of laminations and essential laminations in 3-manifolds
which was developed by several authors, following his ideas.

We mention Thurston’s manuscript [231] on taut foliations, that is, codimension-
1 foliations for which there exists an embedded closed curve that is transverse to
the foliation and intersects every leaf.5 In this paper, Thurston associates to every
transversely orientable taut foliation on a closed atoroidal 3-manifold a faithful
homomorphism from the fundamental group of the manifold onto the group of
orientation-preserving homeomorphisms of the circle which preserves a pair of
dense invariant laminations of the circle (in an appropriate sense), and which is
universal in some precise sense. This theory gave rise to developments by several
authors, see in particular the paper [49] by Calegari and Dunfield in which the
authors give a new proof of Thurston’s result and where Thurston’s ideas are made
more precise. In the same paper, the authors show that there are other classes of
essential foliations and laminations than those which were considered by Thurston
that give rise to faithful actions on the circle. We also refer the reader to the
exposition in Chap. 10 by Baik and Kim in the present volume [16]. See also the
book [48] by Calegari on foliations which contains several sections explaining
Thurston’s homomorphism to the group of orientation-preserving homeomorphisms
of the circle. As a matter of fact, this books is a valuable reference for many
aspects of Thurston’s theory of foliations and laminations, including his work on the
cohomology of the group of orientation-preserving homeomorphisms of the circle,
his stability result for the group of orientation-preserving homeomorphisms of the
interval, his construction of foliations on 3-manifolds using a triangulation of the
manifold, the Thurston norm in relation with foliations, and several other topics.

Talking about Thurston’s work on foliations, one should also mention measured
foliations on surfaces and his construction of the space of measured foliations, a
space equipped with a topology which makes it homeomorphic to a Euclidean
space of the same dimension as Teichmüller space. The space of measured foliations

5The terminology taut foliation is also used for a foliation such that the ambient manifold admits a
Riemannian metric for which the leaves are minimal surfaces. In his paper [201], Sullivan showed
that for a C2 taut foliation (in the above sense) on a closed orientable 3-manifold, there exists a
Riemannian metric on the ambient manifold that is taut in this Riemannian sense.
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became a central object in low-dimensional geometry and topology. We review this
in Sect. 1.2.15 below.

1.2.2 Contact and Symplectic Geometry

A contact structure on a differentiable manifold is a field of hyperplanes in the
tangent bundle satisfying a “complete non-integrability” condition that makes it,
locally, unrealizable as a hyperplane field tangent to a foliation. (Note that the non-
integrability property of these hyperplanes is in contrast with the dimension-1 case:
vector fields are locally always integrable.) It is easy, although not trivial, to produce
examples of contact structures. Several examples are discussed in Thurston’s book
on the geometry and topology of 3-manifolds [224].

Contact geometry, like symplectic geometry which we shall discuss below,
originates in classical mechanics, and it has applications in geometric optics,
thermodynamics and other domains of physics. In fact, this notion can be traced
back to the work of Gaston Darboux. One of his results is often quoted, viz. the fact
that a contact structure is always locally equivalent to a standard contact structure
[67].

The usual definition of a contact structure is algebraic, formulated in terms of
differential forms. In fact, a foliation and a contact structure are both defined locally
by a differential form α, but in the case of a foliation, α satisfies α∧dα ≡ 0 whereas
in the case of a contact function, it satisfies α ∧ dα �= 0 at every point (and if the
relation is replaced by α ∧ dα > 0, with respect to a given orientation, we say that
we have a “positive” contact form). The problem of classifying contact structures on
manifolds arose naturally. Thurston writes in his monograph [224, p. 168]: “[contact
structures] give an interesting example of a widely occurring pattern for manifolds
that is hard to see until your mind and eyes have been attuned.” Several pages of his
book [224] are dedicated to the effort of sharing with the reader an intuitive picture
of contact structures. On p. 172 of this book, to give a physical sense of the contact
structure on the tangent circle bundle of a surface, he uses models related to ice
skating and bicycling, dedicating several paragraphs to these images.

Thurston obtained a number of important results on contact structures. His first
paper on this subject is a joint paper with H. E. Winkelnkemper [212], titled On
the existence of contact forms, published in 1975. It contains a very short proof
of a result, which was already obtained by Robert Lutz and by Jean Martinet in
1971 [132, 138], saying that every closed orientable 3-manifold carries a contact
structure. Thurston and Winkelnkemper deduced this result from a classical result,
namely, the so-called “open-book decomposition theorem” of Alexander [9].

Even though, in some sense, a contact structure is the complete opposite of a
foliation, the two subjects are related. With Yakov Eliashberg, Thurston introduced
the notion of confoliation in dimension 3, and he developed a theory which gives
a hybrid setting for codimension-1 foliations and contact structures on 3-manifolds
[73, 74]. A confoliation in this sense interpolates between a codimension-1 foliation
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and a contact structure. The techniques that Eliashberg and Thurston developed
allowed them to prove that any C2 codimension-1 foliation on a 3-manifold, except
for the product foliation S1 × S2, can be approximated in the C0 sense by positive
contact structures. Confoliations appear in a crucial manner in the proof of this
result, since the main step consists in the modification of the plane field tangent
to a foliation so that it becomes integrable (tangent to a foliation) in some part of
the manifold and a positive contact structure in the complement. It is interesting to
note that at the same time he was developing confoliations, Thurston developed a
theory of foliations of three-manifolds that are hybrids of fibrations over the circle
and foliated circle bundles over surfaces, see his 1997 preprint [231].

Contact structures are defined on odd-dimensional manifolds, and their ana-
logues on even-dimensional manifolds are symplectic structures.

This brings us to Thurston’s work on symplectic geometry.
When Thurston started working in this field, the questions of the existence of

symplectic structures on closed manifolds and that of Kähler metrics on symplectic
manifolds were the main problems. In 1976, Thurston gave the first examples of
compact symplectic manifolds that do not admit any Kähler metric. He presented
his examples in a short note titled Some simple examples of symplectic manifolds
[214]. The examples were later called Kodaira–Thurston manifolds, since it turned
out that the manifolds described by Thurston were already known to Kodaira (who
used them for other purposes). At the same time, Thurston gave a counter-example
to a claim made by Heinrich Guggenheimer, saying that the odd-dimensional Betti
numbers of symplectic manifolds are necessarily even. The examples that Thurston
gave have odd first Betti numbers. The odd-dimensional Betti numbers of Kähler
manifolds are all even. After Thurston’s discovery, the question of characterizing
the symplectic manifolds which admit no Kähler structure became a very active
research field (works of Robert Gompf, Dusa McDuff, etc.).

One may also mention here a result of Thurston on volume-preserving diffeomor-
phisms of differentiable manifolds. This theory is related to symplectic geometry,
since a symplectomorphism of a 2n-dimensional manifold preserves the volume
form obtained as the n-th power of the symplectic form. In a preprint titled On
the structure of the group of volume preserving diffeomorphisms, first circulated in
1972 [207], Thurston proved that the group of volume-preserving diffeomorphisms
of a manifold is perfect provided the first homology group of the manifold is zero,
and he introduced at the same time a certain number of ideas that became later very
useful in symplectic geometry. Although Thurston’s preprint remained unpublished,
the techniques it contains and the questions it raises had a profound impact in
symplectic geometry (works of Augustin Banyaga, of Dusa McDuff, etc.). Banyaga,
in his paper [17] and in his book [18, p. 125ff], developed many ideas of Thurston
and gave detailed proofs of several of his results in symplectic geometry.
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1.2.3 One-Dimensional Dynamics

The first published work by Thurston on dynamics is his paper with Milnor On
iterated maps of the interval, which appeared in 1988 [150]. An early version of the
paper, containing more material, was circulated in 1977.6 Some results stated as a
conjecture in the preprint version became theorems in the published version.

In this paper, Milnor and Thurston studied the dynamics of continuous piecewise
(strictly) monotone maps of the interval, to which they associated a certain number
of naturally and very simply defined invariants. These invariants became at the basis
of kneading theory, an important element in the theory of dynamics of unimodal
maps of the interval. Let us recall some of the notions they introduced.

Given a map f of an interval I , a lap of f is a maximal sub-interval of I on which
f is monotone. This leads to the notion of lap number � = �(f ) of f . Milnor and
Thurston studied the growth of the lap number of the iterates of f , that is, the limit
limk→∞ �(f k)1/k. By a theorem of Misiurewicz and Szlenk, this limit is equal to
the topological entropy of f . Milnor and Thurston introduced an invariantly defined
“formal coordinate function” θ(x) which is given for x in I , as a formal power series∑

θk(x)t
k , where if f k(x) belongs to the interior of the j -th lap Ij , the coefficient

θk(x) is the formal symbol Ij multiplied by ±1 or 0 according as to whether f k

is increasing or decreasing, or has a turning point at x. This led them to a basic
invariant called the kneading matrix of f , an (� + 1)× � matrix with entries in the
ring Z[[t]] of integer formal power series, with its associated kneading determinant,
a power series with odd integer coefficients, D(t) = 1 + D1(t) + D2(t) + . . ..
There is a close relation between the kneading determinant and the behavior of
the periodic points of the map. In the simplest case where f has only one turning
point (which is the critical point of the map), the coefficients of D(t) are either
+1, −1 or 0 according to whether the iterate f k+1 has a local minimum or a local
maximum at c. In the same paper, Milnor and Thurston gave a method for computing
the sequence of lap numbers of the iterates of f in terms of the kneading matrix.
They studied the convergence of the kneading determinant, showing for example
that for s > 1, this power series is holomorphic in the unit disc, and has a smallest
zero at t = 1/s where s = s(f ) is the growth number of the map. Under the
same hypothesis (s > 1), they showed that f is topologically semi-conjugate to a
piecewise linear map having slope ±s everywhere. The Artin–Mazur zeta function
encodes the periodic orbits of f .

Milnor and Thurston used methods of Julia and Fatou, before these methods
found their place in the revival of holomorphic dynamics that took place a few years
later. They proved what they call their main theorem, which allows a computation
of the Artin–Mazur zeta function in terms of the kneading determinant. They gave
several applications of their theory.

6Leo Jonker, in his Mathscinet review of this paper writes: “If there were a prize for the paper most
widely circulated and cited before its publication, this would surely be a strong contender. An early
handwritten version of parts of it was in the reviewer’s possession as long ago as 1977”.
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A particularly important class of examples of maps to which the Milnor–
Thurston applies is the one of maps of lap number two, unimodal real maps. A
typical family of such maps is the family of quadratic polynomials x 	→ x2 + c.
Each map in this family has a unique critical point, and the kneading sequence
describes the location of the sequence of images of this critical point, to the left
or right of this critical point. For the family of quadratic polynomials, Milnor and
Thurston gave a characterization of power series that can occur as a kneading
determinant, they discussed continuity properties of the growth number s(f ), and
they obtained a monotonicity result for the entropy. Furthermore, the paper contains
several algorithms to compute the entropy of a piecewise monotone map.

This is now the occasion for us to quote Milnor from the preface and the
dedication to Thurston that he wrote, in Volume VI of his Collected Works [149].7

In the preface, Milnor writes: “I was introduced to Dynamical Systems by Bill
Thurston in the late 1970s and found the field so engaging that it was hard to escape
from.” In the dedication, Milnor writes:

My interactions with Bill followed a consistent pattern. He would propose a mathematical
statement which I found amazing, but extremely unlikely. However, the evidence would
accumulate, and sooner or later I would have to concede that he was completely right. My
introduction to the field of dynamics proceeded in exactly this way. Bill had been intrigued
by the work of Robert May in theoretical ecology. May had proposed that the population of
some insect species in successive years behaved in a chaotic way, which could be described
by a very simple mathematical model, in which next years population is expressed as a
universal modal function of this years population. Bill developed this idea by constructing
symbol sequences associated with unimodal maps. He claimed that many quite different
looking one-parameter families of unimodal maps would give rise to the same family of
symbol sequences. I didn’t believe a word of this, but couldn’t find a counter-example.
Eventually, I was convinced, and we collaborated on the paper “On iterated maps of the
interval.”

The notions that Milnor and Thurston introduced in their paper remain until
now part of the most important tools for the study of the dynamics of maps of the
interval. Their paper continues to be a source of inspiration for the works done in
this field. A large volume of literature is devoted to the generalization of their results
for unimodal maps to maps with a larger number of laps. Furthermore, kneading
sequence theory, as a way of encoding combinatorial information, was applied in
the study of complex dynamics, by Milnor and others.

Thurston’s last published paper [228]8 is on dynamics. He wrote it before his
death, a period where, according to Milnor, “Bill was entering a period of renewed
creativity, full of ideas and eager to communicate them.” [149, p. IX] The paper is
titled Entropy in dimension one, and it contains new ideas and results in this field.
One of the results that Thurston obtained is a characterization of positive numbers
that arise as the topological entropy of postcritically finite self-maps of the interval.
Precisely he proved that these are exactly the numbers h such that exp(h) is an

7The volume is dedicated to Thurston.
8The paper was published posthumously in 2014.
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algebraic integer that is at least equal to the absolute value of any conjugate of
exp(h). He also showed that the map can be chosen to be a polynomial whose critical
points are all in the open interval (0, 1). At the same time, the paper makes it clear
what are the phenomena of 1-dimensional dynamics that are relevant for entropy.

Thurston used in this paper a number of ideas and notions from his previous
works: the central role played by postcritically finite maps, train tracks for graphs
together with train track maps and the operations of zipping and splitting of train
tracks (ideas originating in his theory of surface dynamics, under the version adapted
by Bestvina and Handel in their study of outer automorphism groups of free groups),
a generalization of the notion of pseudo-Anosov maps, Perron–Frobenius matrices
and Pisot and Salem numbers, notions that appear in Thurston’s theory of surface
automorphisms.

1.2.4 The Topology of 3-Manifolds

We start with a few words on the pre-Thurston era.
In the 1960s, a new direction of research in 3-manifolds was started by Haken

and Waldhausen [97, 238]. Among the objects of their research is the class of
compact irreducible 3-manifolds containing incompressible surfaces. These mani-
folds were called by Waldhausen sufficiently large 3-manifolds; now they are called
Haken manifolds. In particular, Waldhausen proved that any homotopy equivalence
between two closed Haken manifolds is homotopic to a homeomorphism. In the
1970s, Jaco, Shalen and Johannson developed a theory of decomposing Haken 3-
manifolds along incompressible tori and annuli, setting the basis of a theory now
called Jaco–Shalen–Johannson theory [106, 107]. They showed that any Haken
manifold can be decomposed along (a possibly empty) union of disjoint incom-
pressible tori in such a way that each piece is either a Seifert fibered manifold or
an atoroidal manifold, i.e. a 3-manifold which contains no non-peripheral immersed
incompressible tori. (Here an immersed surface is said to be incompressible when
the map induces a monomorphism between the fundamental groups.)

Through the work of Andreev, Riley and Jørgensen, Thurston already noticed
that there are many 3-manifolds that admit complete hyperbolic metrics. He
considered that this should be the case in much more generality. Indeed he
proved a “uniformization theorem for Haken manifolds,” stating that any atoroidal
Haken manifold which is closed or which has torus boundaries carries a complete
hyperbolic metric of finite volume. His proof of this theorem is very intricate and
long. The argument is divided, at a large scale, into two cases: the first is when
the manifold is not a surface bundle over the circle and the second is when it is.
The first case is proved by induction involving Maskit’s combination theorem. The
second case is proved using his own theorem called the “double limit theorem,”
which is itself an important contribution to the theory of Kleinian groups, and
which we describe in Sect. 1.2.8. One of the remarkable consequences of the
uniformization theorem is the resolution of the Smith conjecture, which we shall
review in Sect. 1.3.1.
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Thurston conjectured that the same kind of uniformization theorem should hold
for all closed 3-manifolds, and not only for Haken ones. This conjecture was
formulated in the form of a “geometrization conjecture” which includes the Poincaré
conjecture as a very special case. The geometric structures to which Thurston
referred are locally homogeneous metrics. He gave the list of eight kinds of three-
dimensional geometric structures. Six among them can be carried only by Seifert
fibered manifolds. The two remaining ones are the hyperbolic geometry and the
solvable geometry. Only torus bundles over the circle can carry a solvable geometry.
The geometrization conjecture says that every compact 3-manifold is decomposed
along incompressible tori into 3-manifolds having geometric structures. In the case
of a homotopy sphere, this is equivalent to the Poincaré conjecture.

At the end of his the expository paper [216], Thurston gave a list of problems on
3-manifolds and Kleinian groups. The problems on 3-manifolds contain the above-
mentioned geometrization conjecture (and in particular the Poincaré conjecture),
and the virtual-Haken conjecture, which says that every closed irreducible 3-
manifold has a finite cover which is Haken. This question was first posed by
Waldhausen (see [239]). The list also contains quite a new and unexpected
conjecture, now called the “virtual fibering conjecture,” which was proved by Agol
more than a quarter of a century later.

The list as a whole has been the driving force of all research in 3-manifolds and
Kleinian groups for more than 30 years after its appearance.

1.2.5 (G,X)-Structures and Geometric Structures

In the Erlangen programme, Klein proposed a new way of thinking geometry.
According to him, geometry consists of a base space and a group acting on it.
Although he did not think of general manifolds (the notion of manifold did not exist
yet), we can regard his work as the origin of (G,X)-structures. A formal definition
of a (G,X)-structure first appeared in Ehresmann’s work. For a geometrico-
historical exposition, we refer the reader to Goldman’s article [88].

Given a space X and a group G acting on X by homeomorphisms, a manifold
is said to have a (G,X)-structure when it is equipped with an atlas whose charts
are maps into X with transition maps being restrictions of elements of G. Thurston
made this notion central in low-dimensional topology by giving many important and
interesting examples of (G,X)-structures on manifolds. By his work, this notion
moved to the forefront of research.

Geometric structures are typical (G,X) structures, where X is a homogeneous
space and G is its isometry group. As we mention in Sect. 1.2.4, Thurston showed
that there are eight kinds of geometric structures in dimension 3, and conjectured
that every compact 3-manifold can be decomposed along incompressible tori into
submanifolds having geometric structures.

Geometric structures are Riemannian structures, i.e., the stabilizer of G at a point
in X is compact. Thurston also studied non-Riemannian (G,X)-structures, above all



1 A Glimpse into Thurston’s Work 13

complex projective structures on surfaces. This is the case where X = CP 2 and G =
PSL(2,C). The space of (marked) complex projective structures modulo isotopies
on a closed surface � had been studied from the viewpoint of complex analysis
using Schwarzian derivatives by Bers, Kra and Marden among others. Thurston gave
a new parametrization for this space based on a more geometric approach, which has
the form of a homeomorphism between this space and the product T(�)×ML(�),
where T(�) denotes the Teichmüller space of � and ML(�) the space of measured
laminations on �. This more geometric approach to the space of complex projective
structures opened up a new flourishing field, which should be called a topological
study of projective structures. The reader is referred to Sect. 1.2.11 of the present
chapter.

1.2.6 Geometrization of Cone-Manifolds

After proving the uniformization theorem for Haken manifolds, Thurston tackled
the general geometrization problem by a quite different approach. Since non-Haken
manifolds do not contain incompressible surfaces, there is no way to cut them
into simpler ones. Instead, Thurston introduced the technique of deforming the
structure of a cone manifold by increasing its cone angle. For instance, to prove
that a non-Haken atoroidal 3-manifold M has a hyperbolic structure, we would
take a hyperbolic knot K in M (i.e. a knot K such that M \ K has a complete
hyperbolic metric, which is guaranteed to exist by virtue of the uniformization
theorem for Haken manifolds combined with Myers’ theorem [166]), and consider
a deformation of the complete hyperbolic structure on M \ K to a cone hyperbolic
structure whose singular locus is the knot K , with cone angle θ . If we could deform
the cone-hyperbolic structure until the cone angle becomes 2π , then we would be
able to show that M is hyperbolic. Of course, this strategy should break down in
general, for K may not be isotopic to a closed geodesic in a hyperbolic 3-manifold.

What Thurston really proved can be expressed as follows, if we only consider
the case where the singularity is a knot and there is no incompressible torus disjoint
from the singularity. Suppose that M is a closed irreducible 3-manifold containing
a prime knot K , and that we are given an angle θ = π/n on K . We consider a 3-
orbifold (M,K(θ)) whose underlying space is M and whose singular set is K with
cone angle θ . Thurston proved that in this situation (M,K(θ)) has some (possibly
empty) disjoint incompressible Euclidean 2-sub-orbifolds which decompose M into
geometric 3-orbifolds. For simplicity, we consider the case where M\K is atoroidal.
To prove the theorem (in this case), Thurston considered a deformation of the
hyperbolic cone structure by increasing the cone angle on K , starting from the
complete hyperbolic metric on M , which is regarded as the cone angle 0. If the
angle reaches θ without degeneration, then (M,K(θ)) is a hyperbolic orbifold.
Thurston showed that if the degeneration occurs, then (M,K(θ)) admits either a
decomposition along an incompressible Euclidean 2-sub-manifold or a geometric
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structure other than the hyperbolic one. To prove the last step, in a special case,
Thurston made use of the Ricci flow and of Hamilton’s theorem [98] to get a
spherical structure in the limit. Thurston’s geometrization conjecture, including the
Poincaré conjecture, was solved later by Perelman using precisely these Ricci flows,
based on the idea of Hamilton. It is noteworthy that Thurston already noticed the
usefulness of Ricci flows back in the 1980s.

The geometrization theorem of 3-orbifolds implies that if a closed prime 3-
manifold has a finite group action with one-dimensional fixed point set then it has
a geometric structure which is invariant under the action. This is (quite a huge)
generalization of the Smith conjecture.

1.2.7 Dehn Surgery

Besides the Smith conjecture which we mentioned above, Thurston’s work had a
great impact on knot theory, through his theory of hyperbolic Dehn surgery. Dehn
surgery is a classical tool in knot theory. The definition is simple: performing a Dehn
surgery along a knot means that we take a tubular neighborhood of the knot and
glue back the removed solid torus in such a way that the boundary of the meridian
is in a homotopy class (called the meridian slope) on the boundary of the tubular
neighborhood different from the original. In this way, we get a new 3-manifold.
Lickorish [128] proved that if we consider a link instead of a knot, we can get any
3-manifold from the 3-sphere in this way. This tool has been heavily used in both
knot theory and 3-manifold topology.

Thurston introduced hyperbolic geometry into the theory of Dehn surgery. First
of all, his uniformization theorem for Haken manifolds implies that any knot that
is neither a satellite knot nor a torus knot has a complement which has a complete
hyperbolic metric. Such knots are called hyperbolic knots. For a hyperbolic knot
K , Thurston considered Dehn surgeries along K , and proved that except for finitely
many slopes, the manifolds obtained by surgeries are all hyperbolic. (This theorem
is called the hyperbolic Dehn surgery theorem.) An interesting feature in the
proof of this result is that it does not use the uniformization theorem, once we
know the complement of K has a complete hyperbolic metric. Also among those
manifolds obtained by hyperbolic Dehn surgery, there are non-Haken manifolds,
whose hyperbolicity cannot be shown by the uniformization theorem.

More generally, by using the same techniques as those used in the proof of
the hyperbolic Dehn surgery theorem, Thurston showed that for any complete
hyperbolic 3-manifold of finite volume having a torus cusp, one can obtain a
hyperbolic 3-manifold by attaching a solid torus to a cusp. Such an operation gives
a hyperbolic 3-manifold except for finitely many homotopy classes of the attaching
disc. Combining this theorem with his result on the Gromov invariant, which we
shall present in Sect. 1.2.9, he obtained the fact that the set of the volumes of
hyperbolic 3-manifolds constitutes an ordered subset of R isomorphic to ωω. The
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volumes of hyperbolic 3-manifolds are important objects in 3-manifold topology
and there is still a large amount of activity taking place on this topic.

Hyperbolic Dehn surgery gives a better framework to understand deformations
of hyperbolic cone structures. The homotopy classes of simple closed curves on
a torus can be regarded as co-prime lattice points on R2. Therefore, the set of
Dehn surgeries on a hyperbolic knot K can be identified with such lattice points.
In this picture hyperbolic cone structures on S3 whose singularities are isotopic to
K can be identified with a subset of the x-axis. In this respect, Thurston considered
a hyperbolic Dehn surgery space which contains both hyperbolic cone structures
and hyperbolic Dehn surgeries.

1.2.8 Kleinian Groups

The notion of Kleinian group was first introduced by Poincaré as a generalization
of the notion of Fuchsian group. Kleinian groups were extensively studied from
the viewpoint of complex analysis in 1960–1975 by Ahlfors, Bers, Kra, Maskit,
Marden among others. In particular, Bers considered the compactification of a
slice in quasi-Fuchisan space, which is now called the Bers compactification of
Teichmüller space [26], and Marden considered the deformation space of convex
cocompact representations [134].

In the process of proving the uniformization theorem for Haken manifolds,
Thurston needed to develop the theory of deformation spaces of Kleinain groups and
ends of hyperbolic 3-manifolds. Thurston’s proof of the uniformization theorem is
largely divided into two cases, the one where the manifold is fibered over the circle
and the other when it is not. In the first case, treated in [232], he proved what is called
the double limit theorem. In the second case, he showed the compactness theorem
for deformation spaces of hyperbolic structures on acylindrical 3-manifolds, proved
in [226], and its relative version, proved in [233]. All these theorems are very
important in the study of deformation spaces. They were generalized and became
the fundamental tools in Kleinian group theory. The reader may refer to Chap. 8 of
the present volume, by Lecuire [127].

Another important part in Thurston’s proof is the analysis of geometrically
infinite Kleinian groups, in which Thurston introduced the notion of geometric
tameness using pleated surfaces. A geometrically infinite (torsion-free and finitely
generated) Kleinian group is said to be geometrically tame when every geomet-
rically infinite end of the corresponding hyperbolic 3-manifold has a sequence of
pleated surfaces tending to it. Thurston showed that if a Kleinian group is geo-
metrically tame, then the corresponding hyperbolic 3-manifold can be compactified
by adding a boundary component to each of its ends. This property is called the
topological tameness.

Thurston considered that one can prove Marden’s tameness conjecture [134] say-
ing that every complete hyperbolic 3-manifold with finitely generated fundamental
group is topologically tame, by showing that every Kleinain group is geometrically
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tame. He gave a proof of this conjecture in the special case of groups that are
algebraic limits of quasi-Fuchsian groups.

In [216], Thurston gave a list of 13 problems on Kleinian groups, one of which
is Marden’s tameness conjecture described above. We shall say more about these
problems in Sect. 1.3.2.

1.2.9 The Thurston Norm, the Gromov Norm and the Gromov
Invariant

As the work of Waldhansen, Haken, Jaco, Shalen and Johannson show, incom-
pressible surfaces are important tools to study 3-manifolds. In the same vein,
understanding Seifert surfaces is essential for knot theory. For every knot in the 3-
sphere, the complement has first homology group isomorphic to Z, and its Poincaé
dual is represented by a Seifert surface.

Thurston introduced in [219] a pseudo-norm on the second homology groups (or
on the first cohomology groups) of 3-manifolds, which is called today the Thurston
norm. Given a second homology class c of the manifold, its Thurston norm is
defined to be x(c) = max{minS(−χ(S)), 0}, where S ranges over all surfaces
representing this homology class. (In the case of 3-manifolds with boundary, it is
more reasonable to consider their relative homology groups.) It should be noted that
a surface realizing the Thurston norm is always incompressible, but the converse
does not hold in general.

This simple idea led to very interesting results. The norm can be extended
first to the second homology with rational coefficient by defining x(c/r) to be
x(c)/r for any integral homology class c, and by continuity to homology with
real coefficients. The unit ball in the second (relative) homology group with real
coefficients constitutes a convex polytope with vertices on lattice points when the
manifold is irreducible, atoroidal, and acylindrical. This is called the Thurston norm
polytope.

In a 3-manifold which fibers over the circle with fibers having negative Euler
characteristic, the Euler class of the bundle of planes tangent to the fibers defines a
second cohomology class. Thurston proved that the Thurston dual norm of such
an Euler class is always equal to 1. This implies that for any fibering over the
circle, the second homology class represented by a fiber lies in the interior of a
facet of the Thurston norm polytope. As a corollary, this implies that a 3-manifold
fibered over the circle (whose fibers have negative Euler characteristic) contains an
incompressible surface which cannot be a fiber for any fibering over the circle. More
generally, if a 3-manifold has a transversely oriented codimension-one foliation, we
can consider the Euler class of the bundle of planes tangent to the leaves. Thurston
showed that if this foliation does not have Reeb components, then the Thurston dual
norm of the Euler class is less than or equal to 1, and that in particular if such a
foliation has a compact leaf, then the dual norm is equal to 1. He also showed that a
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compact leaf of such a foliation realizes the Thurston norm of its second homology
class. The notion of Thurston norm and these results gave the foundation of further
studies of fibrations and foliations in 3-manifolds.

We now consider the Gromov norm.
To introduce the notion of bounded cohomology in [90], Gromov defined a

pseudo-norm on homology groups as follows. Given a singular chain s = ∑
aici

with real coefficients, define its norm ‖s‖ to be
∑

i |ai |. Then for any homology class
σ , its Gromov norm is defined to be inf{‖s‖ | [s] = σ }. The same definition works
also for relative homology groups. In particular, for a closed manifold, the Gromov
norm of its fundamental class is called its Gromov invariant. Gromov proved that
for a closed manifold of dimension n, its Gromov invariant is equal to its volume
divided by a constant vn depending only on n, where vn is equal to the supremum
of the volumes of n-dimensional hyperbolic simplices.

Thurston took up Gromov’s invariant as the topic of Section 6 of his lecture
notes [215]. (This was before the publication of Gromov’s paper [90], in which we
can find Thurston’s influence, both explicitly and implicitly.) Thurston generalized
Gromov’s result to negatively curved manifolds, where the Gromov norm is
bounded below by the volume divided by a constant depending only on n, and
to manifolds with geometric structures, where equality between the Gromov norm
and volume holds, but with a constant depending on the geometry. Thurston also
considered a relative version of the Gromov invariant for manifolds with boundary.
Using this in the case of hyperbolic 3-manifolds with torus cusps, he showed that
the operation of hyperbolic Dehn surgery decreases the volume. He also proved that
a torus cusp corresponds to an accumulation point of the distribution of volume, and
that this is the only way for volumes of hyperbolic 3-manifolds to accumulate.

The Gromov norm for the second homology group of a 3-manifold is related to
the Thurston norm. Thurston conjectured that if we change embedded surfaces in
the definition of the Thurston norm to immersed surfaces, then the norm obtained
should coincide with the Gromov norm. Gabai proved in [84] that this is indeed the
case.

1.2.10 Conformal Geometry and Holomorphic Dynamics

Conformal geometry, since its birth, is intertwined with topology. The relation
between the two subjects started in Riemann’s doctoral dissertation (1851) [190]
in which he introduced the concept of Riemann surface (as we call it today), as a
branched coverings of the complex plane or of the Riemann sphere. His work was
partly motivated by the problem of describing a general method for finding domains
of definitions for multivalued functions w(z) of a complex variable z defined by
algebraic equations of the form f (w, z) = 0, so that a multi-valued function
becomes single-valued. (This is the original meaning of the word “uniformization”.)
Thanks to the work of Riemann, analytic functions became objects that are no more
necessarily defined on the complex plane or on subsets of it. With him, the concept
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of Riemann surface, with the closely related notion of analytic continuation, were
born. Riemann further developed his ideas on this topic in his paper on Abelian
functions [191]. At the same time, he introduced a number of topological notions
that he used in the theory of functions of a complex variable: connectedness, degree
of connectivity, genus, the classification of closed orientable surfaces, etc. One
should also remember that there was still no notion of manifold in those times, and
a surface could not be simply defined as a 2-manifold. Riemann also studied moduli
of Riemann surfaces. He discovered that the number of such moduli, for a surface
of genus g, is 3g−3. He also proved the famous Riemann mapping theorem, saying
that any simply connected open subset of the complex plane, provided it is not the
whole plane, is biholomorphically equivalent to the open unit disc. The problem of
characterizing topologically analytic functions arose (this was called later on the
“Brouwer problem”). This problem was also a motivation for the development of
quasiconformal mappings. Indeed, Grötzsch, Lavrentieff and Teichmüller, the three
founders of the theory, tried to prove for quasiconformal mappings some results
that were known to hold for conformal mappings, with the idea that it was only the
topological form of the mapping that matters and not the fact that it was conformal.

It was natural that Thurston got attracted by this field. One of the first problems
that he asked, when he joined the community of MathOverflow is related to Riemann
surfaces and rational functions on the Riemann sphere. He wrote the following
(posted on September 10, 2010): “I would like to understand and compute the shapes
of rational functions, or equivalently, ratios of two polynomials, up to Moebius
transformations in both domain and range.” He also formulated the following more
precise problem: “Given a set of points to be the critical values [in the range], along
with a covering space of the complement homeomorphic to a punctured sphere,
the uniformization theorem says this Riemann surface can be parametrized by S2,
thereby defining a rational function. Is there a reasonable way to compute such a
rational map?”

On holomorphic dynamics, we shall mention two results of Thurston. The first
one has a discrete character; it is Thurston’s topological characterization of rational
maps among branched coverings of the sphere. The second one has a continuous
character; it is his result with Sullivan on holomorphic motions.

Thurston’s theorem on the characterization of rational maps, that he proved at
the beginning of the 1980s was a preliminary (but huge) step towards the program
he formulated 30 years later on MathOverflow. It gives a necessary and sufficient
condition for a branched covering of the sphere which is postcritically finite, that
is, such that the union of the forward orbits of the critical points is finite, to be
homotopy equivalent to a rational map. Here, homotopy equivalence is defined in
an appropriate and natural sense; the relation is called now Thurston’s equivalence.
Thurston’s criterion is given in terms of the action of the covering map (by taking
inverse images) on systems of homotopy classes of essential simple closed curves
on the sphere with the postcritical set deleted. The necessary and sufficient condition
refers to this action, and it now carries the name “absence of a Thurston obstruction.”

Thurston obtained this theorem in 1982. He lectured on it on several occasions
and he wrote notes that were widely circulated [218]. Although it was announced
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at some point that a final version of these notes will be published in the CBMS
conference series of the AMS, the notes remained unpublished. Adrien Douady and
John Hubbard wrote a proof of Thurston’s theorem, following his outline, and they
circulated it in preprint form in 1984. Their paper was eventually published in 1993
[68].

The proof of Thurston’s theorem, like the proofs of some others of his geometri-
cal important results, involves the construction of a weakly contracting self-map of a
certain Teichmüller space (which in the case at hand is the one of the sphere with the
post-critical set deleted). The main step in this proof is to show that in the absence
of a Thurston obstruction, this map has a unique fixed point. The fixed point, when
it exists, is the desired rational function.

There are several analogies between this theory of Thurston and his classification
theory of surface homeomorphisms: the use of hyperbolic geometry, the construc-
tion of an action on Teichmüller space, the study of an action on the collection of
homotopy classes of simple closed curves, the existence of invariant laminations, the
use of quasiconformal mappings, the utilization of linear algebra in the study of the
action on curves, and in particular the Perron–Frobenius theorem for nonnegative
matrices, etc.

Many applications of Thurston’s theorem were obtained by various authors. We
mention as an example its use in the theory of mating of two polynomials (getting a
rational map whose Julia set is obtained by gluing those of two postcritically finite
polynomials). We refer the reader to the paper [47] by Xavier Buff, Guizhen Cui,
and Lei Tan for a survey of Thurston’s theorem, including a self-contained proof of
a slightly generalized version of this theorem and an overview of its applications.

As another aspect of holomorphic dynamics that was touched upon by Thurston,
we review now his result with Sullivan on holomorphic motions.

A holomorphic motion of a subset X of the complex plane C is a family of
mappings ft : X → C parametrized by a complex number t (considered as a
complex time parameter) varying in a domain T containing the origin and satisfying
the following three properties: (1) for each fixed x, ft (x) is holomorphic in t ; (2)
for each fixed t , ft (x) is injective in x; (3) f0 is the identity mapping of X. The
motivation behind this definition is the wish to adapt the topological notion of
isotopy to a holomorphic context. The main question addressed is to know whether
a holomorphic motion of the subset X extends to a holomorphic motion of the
complex plane C. (This is a holomorphic analogue of the topological problem of
extending an isotopy to an ambient isotopy.) Holomorphic motions were introduced
by Mañé, Sad and Sullivan in [133].

The main result of the paper [204] by Sullivan and Thurston says that there exists
a universal constant a > 0 such that any holomorphic motion of any subset X of
C parameterized by the unit disk {t: |t| < 1} can be extended to a holomorphic
motion of the complex plane with time parameter the disc {t: |t| < a}. With his
logician bias, Thurston did not fail to notice a close relation between the problem of
extending holomorphic motions and a “holomorphic axiom of choice”. This result
was later improved by Slodowski [198], who showed in particular that one may take
a = 1 in the above statement, answering a question raised by Sullivan and Thurston
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in their paper, and proving a conjecture they formulated, precisely, related to the
holomorphic axiom of choice.

In the same paper, Thurston and Sullivan introduced the notion of quasiconformal
motion. They noticed that the map ft in the above definition is necessarily
quasiconformal and extends to a quasiconformal map of C. They also proved a
general extension theorem for quasiconformal motions over an interval. In proving
their results, Sullivan and Thurston introduced an averaging procedure for pairs of
probability measures defined on the Riemann sphere.

It was known, since the work of Grötzsch, Lavrentieff and Teichmüller that
quasiconformal mappings are useful in the study of conformal mappings. From the
work of Sullivan and Thurston, the notion of quasiconformal motion became useful
in the study of holomorphic motion.

There are applications of holomorphic motion to the theory of Kleinian groups,
where the subset X in the above definition of holomorphic motion is the limit set of
the group action. There are also applications in the theory of iterations of rational
maps (where X is taken to be the Julia set of the map), in the theory of invariant
metrics in complex geometry, in the study of holomorphic families of Riemann
surfaces, in the theory of quasiconformal mappings and in the study of Teichmüller
spaces.

1.2.11 Complex Projective Geometry

Complex projective geometry is a classical topic, rooted in the nineteenth-century
work of Klein, Poincaré and their contemporaries. One must add that in the 1960s,
Bers and his collaborators were thoroughly involved in the relation between the
complex projective geometry of surfaces and Teichmüller theory. In particular, the
Bers embedding of Teichmüller space is defined in the setting of complex projective
structures.

In the late 1970s, Thurston reconsidered this theory. He did not publish any
paper on this topic, but many authors wrote on it, following Thurston’s outline.
He highlighted a profound analogy between the complex projective geometry of
surfaces and the theory of Kleinian groups, opening a new perspective in 3-manifold
topology, and motivating important later works by Sullivan, Epstein, Marden and
others.

Thurston introduced metrics that are conformal to the complex structures on
complex projective surfaces. In the simplest case, such a metric is obtained by
grafting a Euclidean annulus on a hyperbolic surface, after cutting it along a simple
closed geodesic. (In fact, it is the projective structure underlying the annulus, and
not its Euclidean structure, which matters.) The general definition needs Thurston’s
theory of projective laminations, and the metric is obtained as a limit of metrics
when a sequence of simple closed curves along which the grafting is made
converges, in Thurston’s topology, to a measured lamination. This metric is now
called Thurston’s metric on the complex projective surface. Thurston also gave a
description of this metric as a Finsler metric, in fact, as a solution of an extremal
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problem, in the spirit of the Kobayashi metric on a complex space: the distance
between two points is the infimum of the length of piecewise C1 paths joining
them. Here, the length of a C1 path is computed as the integral of the norms of
vectors tangent to this path, the norm of a vector v being the infimum of the norms
of vectors v′ in the tangent space of the unit disc equipped with the hyperbolic
structure, such that there exists a projective map from the unit disc to the surface
whose differential sends v′ to v.

Before Thurston came into the subject, grafting, in its simplest form, was studied
by Bers [26], Maskit [139] and Hejhal [102]. There are also relations with the theory
of harmonic maps between surfaces, in particular, between the extremal length of a
grafted surface and the energy of a harmonic map, see [205]. The grafting operation
makes connections between projective structures and hyperbolic geometry. Such
connections were already known to Cayley, Klein, Study and others, and traces of
the elementary grafting operation can be found in the work of Klein.

Using the notion generalized grafting, Thurston discovered a geometric
parametrization of the moduli space of marked projective structures on a surface,
establishing a precise relationship between this moduli space and the Teichmüller
space of the surface. The parametrization takes the form of a homeomorphism
between the moduli space of projective structures and the product of measured
lamination space with Teichmüller space. The result says that the fiber at each
point of the natural forgetful map from the moduli space of projective structures to
Teichmüller space is naturally identified with the space of measured laminations on
the surface.

There are several surveys of Thurston’s work on complex projective geometry,
and they give complementary points of view on the subject. The paper [111] by
Kamishima and Tan is concerned with grafting and Thurston’s parametrization in
the setting of the theory of geometric structures and locally homogeneous spaces.
Goldman, in his paper [87], sets the foundations of the theory of complex projective
structures on surfaces as geometric structures, using the notions of holonomy and
developing map, in the tradition of Thurston, and with ideas originating in the
work of Ehresmann [72]. He refers, for Thurston’s parametrization of the moduli
space of projective structures by the product of measured lamination space with
Teichmüller space, to a course given by Thurston at Princeton University in 1976–
1977 (Goldman was an undergraduate student there). We also refer the reader to
the paper [70] by Dumas, and to his survey [71], for the parametrization of the
moduli space of complex projective structures on surfaces. Chapter 6 in the present
volume, by Shinpei Baba [15], is a survey of Thurston’s work on complex projective
structures on surfaces, and it contains other references.

We also mention the paper [203] by Sullivan and Thurston, in which these authors
provide a series of examples that show the subtleties of higher-dimensional real
and complex projective structures, together with other kinds of geometric structures
(inversive and affine).

Now we wish to talk about a classical parametrization of the moduli space of
complex projective structures on surfaces based on the Schwarzian derivative, a
differential operator invariant under Möbius transformations. This parametrization
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first appeared in the nineteenth century in the works of Schwarz, Klein and others.
Thurston used it in his study of projective geometry, and we briefly discuss this.

In his paper [225] published in a special volume of the AMS at the occasion
of the proof of the Bieberbach conjecture, Thurston introduced a topology on the
set of univalent mappings from the unit disk into the Riemann sphere using the
topology of uniform convergence of Schwarzian derivatives. The uniformity refers
to the hyperbolic metric of the disk. To see that this is a natural object of study, one
may recall that the Schwarzian derivative was classically used to obtain Riemann
mappings of some special domains of the complex plane: regular polygons, domains
with circular edges, etc.; generalizing, this makes the set of Schwarzian derivatives
is a candidate for a natural parameter space for projective structures.

The usual definition of the Schwarzian derivative, involving third-order complex
derivatives, makes it at first sight quite obscure. It is interesting to see how this
object was described by Thurston in his paper. He writes: “For the benefit of people
to whom the Schwarzian derivative may seem a mystery, we will set the stage
by discussing the Schwarzian derivative.” He continues a few lines below: “The
Schwarzian derivative is very much like a kind of curvature: the various kinds of
curvature in differential geometry measure deviation of curves or manifolds from
being flat, while the Schwarzian derivative measures the deviation of a conformal
map from being a Möbius transformation.” Then, after a page of explanations, he
writes: “A formula for the Schwarzian derivative can be readily determined from
the information above, or it may be looked up—someplace else. Like the formula
for the curvature of a curve in the plane, the formula looks somewhat mystical at
first, and in a quantitative discussion the formula tends to be a distraction from the
real issue.” Reading Thurston’s paper gives a clear intuition of what the Schwarzian
derivative is.

Responding to a question by Paul Siegel on MathOverflow, on September 9,
2010, asking: “Is there an underlying explanation for the magical powers of the
Schwarzian derivative?”, Thurston writes, on the next day: “Like many people
(but not all people), I have trouble thinking in terms of formulas such as that for
the Schwarzian. For me, a geometric image works much better [. . . ]”. He then
gives a nice description based on hyperbolic geometry and quadratic differentials
and measured foliations. On the next day (September 11, 2010), Thurston writes
to Siegel who thanked him for his response: “I appreciated the question, which
resonated with my thoughts. I’m new to MO, but it seems like a rich environment. I
understand MO is not intended for extended threads, but I’d like to leave a pointer
forward to my first question, which I posted partly as a followup to this, since it
indicates the immediate source for my interest in Schwarzians.” In this follow up,
Thurston asks several questions, including the following:

Given a set of 2d − 2 points on CP 1 to be critical points [in the domain], it has been known
since Schubert that there are Catalan rational functions with those critical points.

– Is there a conceptual way to describe and identify them?
– Is there a complete characterization of the Schwarzian derivative for a rational map,

starting with the generic case of 2d − 2 distinct critical points?
– What planar graphs occur for Schwarzian derivatives of rational functions? What convex

(or other) inequalities do they satisfy?
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1.2.12 Circle Packings and Discrete Conformal Geometry

The study of circle packings, that is, configurations of circles that are tangent to
each other, is classical and can be traced back to the work of Apollonius of Perga
(third century B.C.), see [14].9 In the nineteenth century, Paul Koebe proved the
existence of some circle packings, and considered the idea of using them to prove the
Riemann Mapping Theorem [120]. For a review of the work of Koebe, we refer the
reader to the chapter by Philip Bowers in the present volume [40]. One may recall
in passing that Koebe (and independently Poincaré) proved a wide generalization of
the Riemann Mapping Theorem, namely, the uniformization theorem.

Thurston’s work on circle packings inaugurated the notion of discrete Riemann
mapping theorem, and more generally, the study of discrete conformal mappings.
At the same time, it shed a new light on several geometric ideas that are rooted in
classical mathematics.

Let us first recall that the (classical) Riemann mapping theorem, proved by
Riemann in his doctoral dissertation [190], says that an arbitrary simply connected
open subset of the complex plane which is not the whole plane is conformally
equivalent to the unit disc by a mapping which is unique up to composition by a
Möbius transformation.

Thurston conjectured the existence of a discrete version of the Riemann mapping
theorem as a limit of a sequence of circle packings. The intuition behind this is that
a conformal mapping between two open subsets of the plane is characterized by
the fact that it sends infinitesimal circles to infinitesimal circles (recall that at the
level of tangent planes, it sends circles centered at the origin to circles centered at
the origin). Therefore one might hope that finding circle packings with smaller and
smaller radii on a given domain and a sequence of homeomorphisms that send them
to circle packings of the unit disc leads, by taking limits, to a Riemann mapping.
A “discrete Riemann mapping” is one of these mappings used in the approximating
sequence.

Thurston’s conjecture was proved by Rodin and Sullivan in their paper The
convergence of circle packings to the Riemann mapping [194]. In their introduction,
the authors recall the setting:

In his address,10 The finite Riemann Mapping Theorem, Bill Thurston discussed his
elementary approach to Andreev’s theorem and gave a provocative, constructive, geometric
approach to the Riemann mapping theorem. This method is quite beautiful and easy to
implement on a computer.

9For Apollonius’ works, the main reference is Rashed’s critical edition of the Arabic manuscripts
(many Greek texts do not survive), published by de Gruyter in 5 volumes (more than 2500 pages)
between 2008 and 2010. Apollonius’ problems are discussed in the volume [14].
10International symposium in Celebration of the Proof of the Bieberbach Conjecture. Purdue
University, March 1985.
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They then recall Thurston’s strategy of the proof:

Almost fill a simply connected region R with small circles from a regular hexagonal circle
packing. Surround these circles by a Jordan curve. Use Andreev’s theorem to produce
a combinatorially equivalent packing of the unit disc—the unit circle corresponding to
the Jordan curve. The correspondence between the circles of the two packings ought to
approximate the Riemann mapping.

Following Thurston’s ideas, Rodin and Sullivan develop in an appendix to their
paper an algorithm to obtain the discrete Riemann mapping.

In his Princeton lectures, Thurston studied circle packings in the midst of a
discussion of orbifolds and of an existence theorem for hyperbolic polyhedra.
When he started lecturing on the subject, he was aware neither of Koebe’s nor of
Andreev’s work; see the interesting historical remarks in Bowers’ review [39]. He
realized at some point that some of the results he obtained were generalizations of
results contained in two papers by Andreev [12, 13]. He then called the existence
theorem for circle packings that is contained in Chapter 13 of his Princeton notes
[215] Andreev’s Theorem. The result is now called the Koebe–Andreev–Thurston
theorem. This theorem states that for any triangulation of a closed surface (of
any genus) which lifts to a simple triangulation of the universal cover (that is, a
triangulation which has no pair of edges connecting the same vertices, and no edge
connecting the same vertex), there exists a unique metric of constant curvature on
the surface with a circle packing that is modeled on it. Furthermore, the packing
is unique up to a conformal map isotopic to the identity (which implies, in the
hyperbolic case, that the map is the identity). Thurston deduced the uniqueness
result from Mostow’s rigidity theorem. In his notes, he considered in detail the genus
1 and ≥2 cases. The genus 0 case was treated by Andreev and was attributed to him
by Thurston. Marden and Rodin wrote a paper showing that Thurston’s method also
gives a proof for the genus 0 case [135].

Thurston also proved an existence theorem for patterns of circles that generalizes
a result of Koebe, allowing an overlap among the pattern of circles (and not only
tangency), and he used this result in his proof of the generalized Andreev theorem.
In §13.4 of his notes [215], he gave algorithms for constructing circle packings and
more general circle patterns. His algorithms allow computations.

For an overview of Thurston’s discrete Riemann mapping theorem and its impact,
we refer the reader to the comprehensive survey by Bowers in the present volume
[40]. We also refer to Luo’s paper [131] and to Kojima’s survey [121].

1.2.13 Word Processing in Groups, Automata and Tilings

Besides the name of Thurston, two names will be highlighted in this section: Jim
Cannon and John Conway.

We start with groups and automata, to which the name of Cannon is attached.
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In 1984, Cannon published a paper in which he showed that Cayley graphs of
cocompact discrete groups of isometries of n-dimensional hyperbolic space can be
given finite recursive descriptions [53]. He wrote in the introduction that he was
inspired by Thurston, who showed that a large number of groups that are of interest
to topologists cannot be dealt with using the standard methods of combinatorial
group theory, but can be attacked by “a return to geometric consideration”, that
is, the classical methods of Dehn and Cayley. It is significant that Cannon’s paper
contains an appendix on elementary properties of hyperbolic space, for which, at
that time, no modern exposition was available, except for Thurston’s unpublished
notes [215].

Thurston noticed that Cannon’s results can be formulated in the language of finite
state automata, and may be applied to a wider class of groups. This led him to
the introduction of the notion of automatic group. This is a group equipped with
a simple algorithm for the word problem, that is, an automaton can tell when two
words (in a given system of generators) represent the same element in this group.

After their discovery by Thurston, automatic groups found applications in a
wide class of domains including low-dimensional topology and geometry, geo-
metric and combinatorial group theory, algorithmics, decision theory, computer
vision, mathematical logic, etc. Furthermore, the theory of automatic groups is
closely related to that of finite state automata, which has applications in computer
science. Thurston was interested in all these applications. He developed with his
collaborators computer programs to carry out what he called “word processing on
groups.” There is also a relation with self-similar tilings. Thurston writes in [230]:
“An automatic structure for a group in general produces a kind of self-similar tiling
of a certain ‘sphere at infinity’ for the group; in particular examples, this space is
actually a 2-sphere.”

Soon after their discovery, automatic groups became a central part of geometric
group theory. Thurston collaborated with Cannon and others on this theory in
connection to his eight geometries of 3-manifolds. In the paper [55] written with
Cannon, Floyd end Grayson, he showed that no cocompact discrete group based on
solvgometry, Sol, is almost convex. As a consequence, the Cayley graph of such
a group cannot be efficiently constructed by finitely local replacement rules. After
recalling Thurston’s geometrization conjecture, the authors write that “any package
of decision algorithms designed to compute within the fundamental groups of low-
dimensional manifolds and orbifolds must be able to deal with the groups from
each of the standard geometries.” The theory of automatic groups is developed in
the comprehensive textbook [75] that Thurston wrote with Epstein, Cannon, Holt,
Levy and Paterson, which appeared several years after he started working on this
topic.

We now pass to tilings.
The study of tilings is closely related to discrete group actions, a theory that plays

an essential role in Thurston’s work on 3-manifolds. Thurston was fascinated not
only by tilings in dimension 3, but also by the theory of plane tilings, in particular
by the theory of quasiperiodic tilings. These are tilings where finite patters appear
regularly, without being necessarily periodic. Let us quote an excerpt from a set of
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questions that Thurston distributed at the beginning of his course on “Geometric
topology” at Princeton, during the Spring Semester of 1983 [217, Question 9]:

Is there a general mathematical theory for Penrose-like tilings, where one specifies certain
combinatorial relationship and then deduces that certain shapes of tiles exist which satisfy
these relations? Are there many essentially different such tilings, or just few?

Thurston was stimulated on this subject by ideas of Conway, who was working
at the same university and who made major contributions to group theory, sphere
packings, tilings and cellular automata. The latter, together with Jeffrey Lagarias,
developed a method, based on combinatorial group theory, to tackle the problem
of tiling some finite region of the plane using a certain number of regular tiles [58].
This method involved the encoding of the edges of the tiles by elements of a finitely-
presented group in such a way that a tile can be interpreted as a relator in the group.
The problem was then reduced to that of deciding whether some group element,
describing the boundary of the plane region, is the trivial element.

In 1990, Thurston published a paper in the American Mathematical Monthly
[223] in which he re-interpreted Conway’s construction using the tools of geometric
group theory. In the same paper, he gave a necessary and sufficient condition for a
simply-connected region of the plane which is the union of unit squares, to have a
tiling by dominos, that is, rectangles which are the union of two squares. He also
gave several constructions of tessellations of planar regions by given tiles.

In the same year, Thurston and Conway, together with Peter Doyle, started a new
course at Princeton, called “Geometry and the imagination.” Thurston writes [222]:
“The course came alive, qualitatively more than any course we had taught before.
Students learned a lot of mathematics and solved problems we wouldn’t have dared
ask in a conventional college class.”

Thurston’s collaboration with Conway includes the paper [59] by Conway,
Delgado Friedrichs, Huson and Thurston in which these authors gave a new
enumeration of n-dimensional crystallographic groups, that is, cocompact discrete
subgroup of the isometry group of Euclidean 3-space. The enumeration is based on
a description of these groups as fibrations over the plane crystallographic groups,
when the enumeration is possible. The “old” enumeration, due to Barlow, Fedorov,
and Schönflies, dates back to the 1890s.

We mention another paper on tilings (although this word is used in a slightly dif-
ferent meaning), namely, the paper [63], by Coven, Geller, Silberger and Thurston,
concerned with the symbolic dynamics of tiling the integers. Here, a finite collection
of finite sets of integers is said to “tile the integers” if the set of all integers can be
written as a disjoint union of translates of elements of this finite set. These elements
are called tiles. To such a set of tiles, the authors associate a bi-infinite sequence of
elements of tiles. They show that the set of all such sequences is a sofic system, and
that every shift of finite type can be realized (up to a power) as a tiling system.

The paper [230] contains results on self-similar tilings, in particular, construc-
tions of such tilings from algebraic integers λ whose Galois conjugates, except
λ and λ, are smaller. More generally, Thurston introduced the notion of complex
expansion constants for self-similar tilings, and he gave a characterization of these
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constants. He obtained a characterization of the set of similarities for self-similar
tilings of the plane or of higher-dimensional spaces, making an analogy with the
construction of Markov partitions from classical dynamical systems. Beyond the
results he obtained, Thurston emphasized the aesthetical side of the topic. He writes:
“What is interesting about this subject is the particular constructions—at issue is
how simple and how nice can a self-similar tiling can be.”

Automata and tilings were part of the subject of a series of lectures which
Thurston gave at a summer AMS colloquium in the summer of 1989. The title of the
series was Groups, tilings and finite state automata. A preprint carrying the same
title [230] was distributed at the meeting, and it was later included in the Research
Reports of the Geometry Center preprint of the University of Minnesota, a center
co-founded by Thurston. The paper, which may be considered as semi-expository,
remained in a preprint form. In this domain, and like many other topics which he
considered, Thurston had a huge amount of ideas bubbling in his brain, and it was
certainly difficult for him to sort out what was new and what was known in some
sort or another.

1.2.14 Computers

In the preceding section, we were led to mentioning computers quite a few times.
We give here a quick overview on other works of Thurston on this subject, and of
his collaboration with computer scientists. We highlight the fact that Thurston’s
collaboration with computer scientists was twofold. On the one hand, he used
methods of geometry, in particular 3-dimensional hyperbolic geometry, to solve
problems in computer science, and on the other hand, motivated by questions that
arose from computer science, he developed new topics and opened up new ways of
research in geometry.

Thurston was heavily involved in computing and computer graphics since the
1980s. Let us quote a question from his list addressed to his students that we already
mentioned [217, Question 18]:

What is the information content of text? How well can one model the sequence of letters in
a novel as a dynamical system? That is, suppose you forget that you know anything about
language and meaning, and just try to analyse it from a statistical point of view; how could
you do in automatically guessing what the next letter would be?

This relates to the question of how much space it takes to store such a string of text in a
computer. Given a model process, one could make up a coding scheme. In one direction, it
would be possible to feed in a random set of bits and have the code produce a more-or-less
plausible stream of text (depending on the complexity of the process which one allows);
and in the other direction, one would feed in a text and have it compressed into a much
shorter stream of symbols. One would try not to be prejudiced too much by the meaning of
the words, but still use knowledge of English (or whatever language) to figure out a good
reasonably small set of data which are useful in predicting what next occurs.

Similar questions can be asked about many other human-generated processes (e.g.,
music), many of them with obvious applications (e.g., the stock market, sequences of
answers to multiple choice texts, . . . ). How much entropy do these processes have? Are
there families of dynamical systems which do well the modeling?
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Thurston collaborated with computer scientists on geometric problems he formu-
lated, but also on problems that were asked by computer scientists themselves. We
mention first his paper with Sleator and Tarjan, Rotation distance, triangulations,
and hyperbolic geometry [197], published in 1988, in which a distance, called
rotation distance, is defined on the set of binary trees, as the minimal number of
rotations that may be used to convert one of these trees into the other. The term
“rotation” denotes here the operation of collapsing an internal edge of a binary
tree to a point and expanding the node, obtaining a new binary tree. The authors
show in this paper that for binary trees with n nodes with n ≥ 11, the maximum
rotation distance is at most 2n − 6. The motivation for this problem comes from a
problem used in data structuring and network algorithms, and more precisely, from
a conjecture called the splaying conjecture. The authors explain this conjecture as
follows: “Splaying is a heuristic for modifying the structure of a binary search tree
in such a way that repeatedly accessing and updating the information in the tree is
efficient.” The methods used in this paper are based on hyperbolic geometry, in the
pure Thurston tradition. The rotation operation between binary trees is converted
to an equivalent operation of flipping a diagonal in a polygon then passing one
dimension higher which permits the rotation distance problem to be reduced to
a 3-dimensional problem of dissecting hyperbolic polyhedra into tetrahedra. The
volume of hyperbolic polyhedra appears in various forms as a fundamental object in
this study. The last section of the paper contains open questions, asking in particular
for more calculations of triangulations and volumes for polyhedra. A relation with
the Gromov norm, as a measure of how efficiently a homology class in a hyperbolic
manifold can be represented by simplices (Chapter 6 of Thurston’s Princeton notes
[215]) is also mentioned in this section on open problems.

There are other papers of Thurston on computer science and algorithmic
problems in which Thurston’s geometrical methods are used as en essential tool.
We mention the three papers in collaboration with Gary Miller, Shang-Hua Teng
and Stephen Vavasis [146], Automatic mesh partitioning [145], Separators for
sphere-packings and nearest neighborhood graphs and Geometric separators for
finite-element meshes [147], and his paper with Bob Riley, The absence of efficient
dual pairs of spanning trees in planar graphs [192].

Finally, we mention Thurston’s paper Shapes of polyhedra and triangulations of
the sphere [227] motivated by the question of classifying the combinatorial classes
of triangulations of the sphere with at most 6 triangles at a vertex, in which he
was led to endow the moduli space of polyhedra with n vertices with given total
angles less than 2π at each vertex (that is, Euclidean cone metrics of nonnegative
curvature) with a Kähler metric which is locally isometric to complex hyperbolic
space CHn−3. This paper had an enormous influence and several generalizations of
the results were attempted by many authors.

Regarding his collaboration with computer scientists, Thurston writes his 1987
Notices article [220]:

Recently, through circumstances, I have spent time with computer scientists. I find myself
talking and thinking about computer science problems, and analyzing them with modes of
thought sometimes foreign to the culture of computer science. I enjoy this. My experience



1 A Glimpse into Thurston’s Work 29

would be similar if I were to spend time with physicists, biologists, economists, chemists,
engineers . . . .

One should emphasize the fact that Thurston since the 1970s has been constantly
programing, computing, implementing lists of knots, of 3-manifolds, of volumes of
hyperbolic manifolds, of tilings, etc.

1.2.15 Surfaces, Mapping Class Groups and Teichmüller
Spaces

In 1975–1976, Thurston gave a course at Princeton on the geometry and dynamics
of homeomorphisms of surfaces. He presented there a complete theory which
had to have a major and everlasting impact on low-dimensional topology and
geometry. A major role in this theory was given to Teichmüller space, the space
of isotopy classes of metrics of constant curvature −1 on a surface. Thurston’s
results included a compactification of this space by the space of projective classes
of measured foliations, the latter seen as a completion of the set of homotopy
classes of simple closed curves on the surface. The results also included a natural
action of the mapping class group on this compactified Teichmüller space, and
the classification of mapping classes into periodic, reducible and pseudo-Anosov,
obtained by analyzing the fixed point set of the action of a mapping class on this
compactified space.

Copies of a set of notes on Thurston’s course, taken by Bill Floyd and Mike
Handel, were circulated, and in particular they arrived to Orsay where they gave rise
to the famous seminar Travaux de Thurston sur les surfaces which took place during
the year 1976–1977; see the paper [126] for the history of this seminar. It appears
that Thurston was already thinking about surfaces, and in particular how simple
closed curves approach a foliation, at the time he was a PhD student in Berkeley,
see Sullivan’s account in [126].

A couple of years after the Orsay seminar, the book [77] was written and became
the major reference on Thurston’s theory on surfaces. In the meanwhile, Thurston
wrote a research announcement of his results, which he submitted without success
to a few journals. The research announcement eventually appeared in the Bulletin
of the AMS, in 1988 [221], 12 years after Thurston wrote it. The paper contains new
bibliographical references and a new preface in which Thurston gives a few notes
on the history of the manuscript and of the subject.

Shortly after Thurston obtained his classification theorem for mapping classes,
Lipman Bers gave a new proof of that theorem in a complex analysis setting, and
using the techniques of quasiconformal mappings [27]. Bers’s proof also uses the
action of the mapping class group on Teichmüller space, but unlike Thurston’s proof,
it is based on an analysis of the translation length of an element of the mapping class
group with respect to Teichmüller’s metric. In fact, in Bers’ classification, there are
four sorts of mapping classes, according to whether the translation length is zero
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or positive, and in each case, according to whether this translation length (which is
defined as an infimum) is attained or not by a point in Teichmüller space.

The book Travaux de Thurston sur les surfaces did not include Thurston’s theory
of geodesic laminations and train tracks, which turned out to be very efficient tools
in low-dimensional topology. These notions were expanded on in the courses that
Thurston gave the following years at Princeton, and they are included in his notes
[215]. Several books appeared on the subject, see e.g. the notes by Casson and
Bleiler that arose from a course that Casson gave on Thurston’s theory of surfaces
at the University of Texas at Austin, [56] and the book [181] by Penner and Harer
on train tracks.

One consequence of Thurston’s work was the revival of nineteenth-century
hyperbolic geometry, a subject which was almost forgotten. Thurston’s notes [215],
together with the books [77] and [56], were for some time the main references
on this topic. (In particular, [77] contains all the hyperbolic trigonometry formulae
that are useful in the theory). At the time Thurston started working on the subject,
there were practically no modern treatments of the subject. Of course, one could
look into Lobachevsky’s works, but this was very unlikely. The textbooks by
Beardon, Ratcliffe, Anderson and others appeared several years later. The classical
books Elementary geometry in hyperbolic space [78] by Fenchel and Discontinuous
groups of isometries in the hyperbolic plane [79] by Fenchel and Nielsen, which
existed in the form of lecture notes and had trouble in being published, appeared in
1989 and 2003, after Thurston’s work made them famous. The so-called Fenchel–
Nielsen parameters for hyperbolic surfaces, associated with geodesic pairs of pants
decompositions, acquired all their strength after Thurston used them in his work.
Works of Abikoff [1], Wolpert [240] and others on this deformation appeared after
Thurston revived the subject.

Pseudo-Anosov homeomorphisms, which appeared in Thurston’s classification,
turned out to be a major ingredient in the geometry and topology of 3-manifolds;
we mention for instance their role in the construction of hyperbolic manifolds which
fiber over the circle, explained in Sect. 1.2.4.

Before continuing on Thurston’s theory of surfaces, we make a small digression
concerning Nielsen’s contribution to this subject.

Jakob Nielsen, in several long papers published between 1927 and 1944 [168–
171], studied questions related to automorphisms of surfaces, using hyperbolic
geometry. Thurston writes in the introduction of his paper [221]:

At the time I originally discovered the classification of diffeomorphism of surfaces, I
was unfamiliar with two bodies of mathematics which were quite relevant: first, Riemann
surfaces, quasiconformal maps and Teichmüller’s theory; and second, Nielsen’s theory
of the dynamical behavior of surface at infinity, and his near-understanding of geodesic
laminations.

In the same preface, Thurston writes: “Dennis Sullivan first told me of some
neglected articles by Nielsen which might be relevant.” In a paper he wrote with
M. Handel, titled New proofs of some results of Nielsen [99], Thurston gave a new
proof of his classification theorem using techniques from Nielsen’s program. The
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relationship between the works of Thurston and Nielsen is also examined in the
papers by Jane Gilman [86], Richard Miller [144] and Joan Birman [28].

Talking about Nielsen, we are led to Nielsen’s realization problem and the use of
earthquakes in its solution.

Earthquakes generalize the Fenchel–Nielsen deformation operation of cutting a
hyperbolic surface along a simple closed geodesic and gluing it again after a twist.
They are limits of sequences of such operations when the sequence of simple closed
geodesics converges in Thurston’s topology to a measured geodesic lamination.
They became the canonical deformations between two hyperbolic structures after
Thurston proved that for any two hyperbolic structures on a given surface, there is a
unique left earthquake joining them. His proof is contained as an appendix in Steve
Kerckhoff’s paper [114]. They were the essential ingredient in Kerckhoff’s proof of
the Nielsen realization problem, which we review below.

Thurston wrote a paper on earthquakes on the hyperbolic plane [234]. In this
paper, earthquakes are more naturally defined by cutting the hyperbolic plane along
geodesics, taking limits of such operations, and studying the action on the unit circle
at infinity. Considering this action on the universal covering and on the circle at
infinity solves the problems caused by the discontinuities of the map. At the same
time, Thurston placed his theory in the setting of the universal Teichmüller space,
the natural setting for deformations of the hyperbolic disc. He obtained a new and
elementary proof of the earthquake theorem. He described this fact by the expression
“geology is transitive.” In a set of notes he distributed in October 1987 on this new
proof of the earthquake theorem, while he constructs the earthquake map using a
homeomorphism of the circle at infinity of the hyperbolic plane, he writes:

This is closely connected to basic properties of convex hulls of sets in 3-space. Intuitively,
imagine having disks with rubber arrows representing the identifications. Imagine some
physical device which forces all the arrows to point counterclockwise: they bump against
some barrier if you try to rotate them too far. You are allowed to move one of the disks by
any isometry of the hyperbolic plane. You can kind of roll the disk around on the barriers
through many different positions. This is very much like rocking a plane around on top of
a wire which projects to a circle on a table. In the latter case, pushing straight down above
one point finds the flat of the convex hull lying above a point inside the circle; in the former
case, twisting at one point finds the stratum of the earthquake.

The earthquake theorem can be proven by formalizing this argument.

One of the first applications of Thurston’s earthquake theorem was the proof
of the Nielsen realization problem in 1980 by Kerckhoff [114, 115]. The problem,
formulated by Nielsen in 1932, asked whether any finite subgroup of the mapping
class group of a surface can be realized as a group of homeomorphisms of this
surface. In 1942, Nielsen gave an affirmative answer in the case of finite cyclic
groups.11 Fenchel extended Nielsen’s result to the case of finite solvable groups.

11Thurston and Handel note in their paper [99] that there should be a gap in Nielsen’s proof of the
fact that if a mapping class is periodic, then it contains a periodic homeomorphism of the surface.
For the fact that Nielsen’s proof is incorrect, they refer to Zieschang [242], and they declare that
the known proofs of this fact use more sophisticated methods than those of Nielsen, e.g. actions
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There were several failed attempts to solve the Nielsen realization problem, namely,
by Kravetz in 1959, based on the false assumption that the Teichmüller metric is
negatively curved. But this failed proof had the advantage of putting the action of
mapping classes on Teichmüller space at the center of the discussion. Kerckhoff’s
proof is based on a convexity argument and a result of Thurston saying that any
two points in Teichmüller space can be joined by a left earthquake. In Sect. 1.3.7
of this chapter, we shall talk about the work of Geoffrey Mess in the early 1990s,
who established a profound relation between earthquakes and the geometry of the
convex core in anti-de Sitter manifolds. Besides the realization of finite subgroups,
it was natural to address the same question for arbitrary subgroups. Thurston asked
the question of the lift of the whole group (see Problem 2.6 in Kirby’s list [118]),
and he conjectured that the answer is no. The conjecture was proved by Markovic,
for closed surfaces of genus ≥ 5, in his paper [136], after Morita [165] obtained the
same result for diffeomorphisms, using a more algebraic approach (cohomological
obstructions). A year later, Markovic and Šarić completed the proof of Thurston’s
conjecture for the cases of genus 2 to 4 [137].

Talking about Thurston’s work on Teichmüller space, we mention now his
approach to the Weil–Petersson metric.

Thurston introduced a Riemannian metric on Teichmüller space where the scalar
product of two tangent vectors at a point represented by a hyperbolic surface is
the second derivative of the length of a uniformly distributed sequence of closed
geodesics on the surface. Thurston was motivated by the wish to have a metric
defined using only the hyperbolic geometry of the surface, in contrast to the
Teichmüller metric, which is based on quasiconformal theory, and to the Weil–
Petersson metric, whose definition used the Petersson Hermitian product, defined
in the context of modular forms and used by number theorists.

Wolpert showed that Thurston’s metric coincides with the Weil–Petersson metric
[241]. The consequence is that Thurston gave a purely hyperbolic-geometric
interpretation of the Weil–Petersson Riemannian metric on Teichmüller space.

We now pass to Thurston’s asymmetric metric.
In 1985–1986, Thurston circulated a preprint titled Minimal stretch maps

between hyperbolic surfaces [229] in which he introduced a non-symmetric metric
on Teichmüller space which now bears the name Thurston metric. The distance
between two hyperbolic structures on a given surface is taken to be the logarithm of
the infimum of the Lipschitz constants of homeomorphisms that are homotopic to
the identity, where the distances used for the computation of the Lipschitz constant
are the one of the first metric in the domain and the second metric in the range.
Thurston’s paper is based on first principles (there is no appeal to any theory or any
theorem except basic hyperbolic geometry). The paper was submitted to the journal
Topology. The referee sent a long report asking for clarifications and references, and

on Teichmüller space or Smith theory. Thus, they consider Nielsen’s proof of the cyclic case as
incomplete.
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Thurston withdrew the paper. In 1998, Thurston posted the article on the arXiv, and
it remained unpublished.

Thurston’s motivation was to develop a theory of Teichmüller space which is
purely geometric, and which, like in his approach to the Weil–Petersson metric,
does not rely on quasiconformal mappings and quadratic differentials, but only on
elementary hyperbolic geometry. He described a class of distinguished geodesics
for this metric which he called stretch lines, he showed that any pair of points in the
Teichmüller space can be joined by a concatenation of such lines, he showed that
the metric is Finsler, and he described the dual unit sphere of the associated norm
at each point of the cotangent space as an embedding in this space of projective
lamination space. In the same paper, Thurston introduced his shear coordinates for
a surface decomposed into ideal triangles, coordinates which have had an enormous
impact, in the so-called higher Teichmüller theory and elsewhere, see e.g. [123]; see
also the generalization of these coordinates to the context of decorated Teichmüller
theory [180]. Thurston’s paper [229] also contains the definition of an asymmetric
norm on the tangent space to Teichmüller space which he called the earthquake
norm, which leads to another asymmetric metric on Teichmüller space. This norm
is considered in the chapter by Barbot and Fillastre in the present volume [20].

In the first years after the preprint was released, little progress was made on this
topic, one reason being that it took some time for the geometers to understand the
ideas and the proofs contained in it. A survey of the results obtained in the first
20 years after Thurston’s preprint was circulated, appeared in 2007, see [177]. A set
of open problems on Thurston’s metric appeared in 2015 [200], after a conference
held on this topic at the American Institute American Institute for mathematics in
Palo Alto. We also mention the recent survey [176].

Thurston’s metric led to the definition and study of analogous metrics in
other settings: surfaces with boundary [129], Euclidean structures on surfaces,
[23], the Culler–Vogtmann outer space [82], geometrically finite representations of
fundamental groups of surfaces in higher-dimensional Lie groups [94], and there are
many others developments, see e.g. [8, 105].

The next section, on fashion design, could have been included in the present one;
it is also about Thurston’s work on surfaces.

1.2.16 Fashion Design

Let us start this section by mentioning a paper by Thurston and Kelly Delp titled
Playing with surfaces: Spheres, monkey pants, and zippergons [69], one of the last
papers of Thurston, written in 2011. In this paper, the authors describe a process,
inspired by clothing design, of smoothing an octahedron to form a round sphere.
They mention in the introduction several workshops and series of encounters they
organized on devising schemes for designing pattern pieces to fit arbitrary shapes,
including the human body. They declare: “It was a very interesting but humbling
experience, because our initial assumption that familiar theoretical principles of
differential geometry would do most of the work was misleading.”
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Thurston was interested in the geometrical theory of clothes and the fitting of
garments since his early work on surfaces. In the introduction to his paper [229], he
writes, after giving the definition of the best Lipschitz constant of maps in a given
homotopy class:

This is closely related to the canonical problem that arises when a person on the standard
American diet digs into his or her wardrobe of a few years earlier. The difference is that
in the wardrobe problem, one does not really care to know the value of the best Lipschitz
constant—one is mainly concerned that the Lipschitz constant not be significantly greater
than 1. We shall see that, just as cloth which is stretched tight develops stress wrinkles, the
least Lipschitz constant for a homeomorphism between two surfaces is dictated by a certain
geodesic lamination which is maximally stretched.

Thurston was not the first mathematician to think of the mathematical question of
fitting a piece of fabric to some surface. Pafnuty Chebyshev, back in the nineteenth
century, thoroughly investigated the problem of fitting garments to a part of the
human body. In particular, he thought about questions regarding the flexibility for a
piece of fabric in order for it to approximate in the best exact form the part of body
to which it is designated and he established relations between this problem and other
mechanical problems he was studying, including the theory of linkages. He wrote an
article on this topic, [57]. A review of Chebyshev’s work, making relations with his
work and Euler’s on geography and other problems related to surfaces, is contained
in the paper [175].

Thurston became eventually involved in fashion design. He worked with Dai
Fujiwara, the creative director of the Japanese fashion designer Issey Miyake,
creating in 2010 a beautiful collection inspired by his eight geometries. On the
occasion of the fashion show that took place at the Salon du Carrousel du Louvre in
Paris, in March 2010, in which this collection was exhibited, Thurston wrote a brief
essay, distributed during the show, on beauty, mathematics and creativity. Here is an
excerpt:

Many people think of mathematics as austere and self-contained. To the contrary, mathe-
matics is a very rich and very human subject, an art that enables us to see and understand
deep interconnections in the world. The best mathematics uses the whole mind, embraces
human sensibility, and is not at all limited to the small portion of our brains that calculates
and manipulates with symbols. Through pursuing beauty we find truth, and where we find
truth, we discover incredible beauty.

The roots of creativity tap deep within to a place we all share, and I was thrilled that
Dai Fujiwara recognized the deep commonality underlying his efforts and mine. Despite
literally and figuratively training and working on opposite ends of the earth, we had a
wonderful exchange of ideas when he visited me at Cornell. I feel both humbled and
honored that he has taken up the challenge to create beautiful clothing inspired by the
beautiful theory which is dear to my heart.

In another article written on that occasion for the fashion magazine Idoménée,
Thurston made the following comment about the collection:

The design team took these drawings as their starting theme and developed from there with
their own vision and imagination. Of course it would have been foolish to attempt to literally
illustrate the mathematical theory— in this setting, it’s neither possible nor desirable. What
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they attempted was to capture the underlying spirit and beauty. All I can say is that it
resonated with me.

Fashion design was for Thurston a ground for the combination of mathematics,
art and practical applications, where the aesthetic component is pre-dominant. In
an interview released on the occasion of that fashion show, in which Thurston
recounted how he came to contribute to the collection, he declared: “Mathematics
and design are both expressions of human creative spirit.” About the aesthetical
aspect of mathematics, Thurston had already written, in this 1990 Notices article
[222]:

My experience as a mathematician has convinced me that the aesthetic goals and the
utilitarian goals for mathematics turn out, in the end, to be quite close. Our aesthetic instincts
draw us to mathematics of a certain depth and connectivity. The very depth and beauty of
the patterns makes them likely to be manifested, in unexpected ways, in other parts of
mathematics, science, and the world.

1.3 On Thurston’s Impact

1.3.1 The Proof of the Smith Conjecture

The resolution of the Smith conjecture was the occasion for the first major appli-
cation of Thurston’s uniformization theorem for Haken manifolds. This conjecture
says that if a cyclic group acts on S3 by diffeomorphisms with one-dimensional
fixed points, then it is topologically conjugate to the standard orthogonal action.
The conjecture can be paraphrased as follows: a branched cyclic cover of a closed
3-manifold M along a knot K can be homeomorphic to the 3-sphere only if M is
also homeomorphic to the 3-sphere and K is unknotted.

The proof of the Smith conjecture was published as a book [161], which also
contains a very comprehensive survey of Thurston’s uniformization theorem written
by Morgan. The proof is divided into two cases depending on whether M \ K

contains a closed incompressible surface or not. When it does, then results of
Meeks–Yau and Gordon–Litherland, contained in the book, show that the branched
cover must also contain an incompressible surface, and hence cannot be the 3-
sphere. When it does not, then by the uniformization theorem, M \ K is either a
Seifert fibered manifold or hyperbolic. In the former case, it is easy to see that the
only possibility is that M \ K is homeomorphic to S1 × R

2. In the latter case,
an algebraic argument due to Bass implies that the holonomy representation of
π1(M \ K) can be taken to lie in a ring consisting of algebraic integers. Then
an argument of commutative algebra shows that the only possibility is that K is
unknotted.

After the publication of this book, Culler and Shalen [64] gave an alternative,
more geometric approach to the algebraic argument in the last part of the proof.
They considered the algebraic set of characters of representations of the fundamental
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group of a hyperbolic manifold into SL2C, called the character variety. Their
alternative proof is obtained by considering the points at infinity of the character
variety of M \K , which gives a decomposition of π1(M \K) by way of Bass–Serre
theory. This work of Culler–Shalen was generalized to a theory of compactification
of character varieties by Morgan–Shalen [162–164], which also gives an alternative
proof of Thurston’s compactness theorem for deformation spaces of acylindrical
manifolds.

1.3.2 The Proofs of Ahlfors’ Conjecture, Marden’s Tameness
Conjecture, the Ending Lamination Conjecture, and the
Density Conjecture

The following four conjectures on Kleinian groups are contained in Thurston’s list
of unsolved problems [216].

1. For any finitely generated Kleinian group, its limit set in the Riemann sphere
either has measure 0 or coincides with the entire sphere. This conjecture is
originally due to Ahlfors [7], and therefore called Ahlfors’ conjecture.

2. Any hyperbolic 3-manifold with finitely generated fundamental group is homeo-
morphic to the interior of a compact 3-manifold. This appeared first in Marden’s
paper [134]. The property is called the topological tameness for the hyperbolic 3-
manifold and also for the corresponding Kleinian group. The conjecture is called
Marden’s tameness conjecture.

3. If two hyperbolic 3-manifolds are homeomorphic and have the same parabolic
locus, the same conformal structures at infinity, and the same ending laminations,
then they are isometric. This is called the ending lamination conjecture.

4. Any finitely generated Kleinian group is an algebraic limit of geometrically finite
Kleinian groups. This is called the (Bers–Sullivan–Thurston) density conjecture.

The resolutions of these four conjectures proceeded in an intertwined way.
Thurston himself showed that algebraic limits of quasi-Fuchsian groups are geo-
metrically tame. Geometric tameness implies topological tameness, but is a stronger
condition. Thurston also showed that for geometrically tame Kleinian groups,
Ahlfors’ conjecture is true. Bonahon [31] clarified Thurston’s notion of geometric
tameness, and proved that any finitely generated Kleinian group that is not
decomposed into a free product (i.e. any freely indecomposable Kleinian group)
is geometrically and topologically tame, implying that Ahlfors’ conjecture is also
true for such Kleinian groups.

For freely decomposable Kleinian groups, Canary [51] proved that topological
tameness implies geometric tameness, and hence that Ahlfors’ conjecture holds for
topologically tame Kleinian groups. Ohshika [173] showed that any purely loxo-
dromic algebraic limit of geometrically finite Kleinian groups is topologically tame
unless the limit set is the entire sphere, and hence that Ahlfors’ conjecture holds
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for any such algebraic limit. Canary–Minsky [52] proved topological tameness
for strong limits of topologically tame Kleinian groups. Brock–Bromberg–Evans–
Souto [44] proved that every algebraic limit of geometrically finite Kleinian groups
is topologically tame. Finally, Agol [5] and Calegari–Gabai [50] resolved Marden’s
tameness conjecture completely.

The ending lamination conjecture was proved by Minsky [151] for freely
indecomposable Kleinian groups having a positive lower bound for the translation
lengths (Kleinian groups are then said to have bounded geometry). Ohshika [172]
proved that the assumption of free indecomposability can be removed still under
the assumption of bounded geometry. Minsky [152] proved the ending lamination
conjecture for once-punctured torus Kleinian groups. The general ending lamination
conjecture was resolved by Minsky [153] and Brock–Canary–Minsky [45] using the
work of Masur–Minsky [140, 141] on the geometry of curve complexes. The proof
relies on Thurston’s idea of approximating the geometry of a neighborhood of an
end by pleated surfaces. The point is that how pleated surfaces tend to the end is
governed by a hierarchical structure of the curve complex, which was investigated
in [141].

The density conjecture was proved for Kleinian surface groups by Bromberg
[46], Brock–Bromberg [43] using Minsky’s resolution of the ending lamination
conjecture in the bounded geometry case. The general density conjecture was solved
by Ohshika [174] and Namazi–Souto [167] relying on the full resolution of the
ending lamination conjecture.

1.3.3 The Proof of the Geometrization Conjecture

The geometrization conjecture says that every closed irreducible 3-manifold can be
decomposed into geometric pieces by (Jaco–Shalen–Johannson) torus decomposi-
tion. Thurston’s uniformization theorem says that this is true for Haken manifolds,
but of course there are non-Haken manifolds: closed 3-manifolds with finite
fundamental groups are clearly non-Haken, but there are also non-Haken manifolds
with infinitely fundamental groups.

The geometrization theorem was resolved by Perelman using the Ricci flow. A
Ricci flow is a deformation of Riemannian metric in the direction to reduce the
variation of its Ricci curvature over the manifold, i.e. to average the Ricci curvature.
Hamilton [98] proved that any closed Riemannian 3-manifold with positive Ricci
curvature is diffeomorphic to the 3-sphere, making use of Ricci flows. Perelman
considered Ricci flows for general closed irreducible 3-manifolds [182–184]. In
contrast to Hamilton’s case, the flow may encounter singularities. Perelman showed
that even in such cases, the deformation can be continued by rescaling and surgeries,
and finally get to either constantly curved manifolds or Seifert fibrations. This
proves the geometrization conjecture, and in particular the Poincaré conjecture
posed by Poincaré in 1904.
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1.3.4 The Waldhausen Conjectures and the Virtual Fibering
Conjecture

In [239], Waldhausen posed the following two long-standing conjectures on 3-
manifolds.

(1) The fundamental group of every closed irreducible 3-manifold either is finite or
contains a closed surface group.

(2) Every closed irreducible 3-manifold with infinite fundamental group is finitely
covered by a Haken manifold. This conjecture is now called the virtual-Haken
conjecture.

The affirmative resolution of the second conjecture implies that of the first.
In his list of open questions in [216], Thurston took up the second conjecture

again and added the following two stronger conjectures.
(3) Every closed irreducible 3-manifold with infinite fundamental group is finitely

covered by a 3-manifold with positive first Betti number.
(4) Every closed hyperbolic 3-manifold is finitely covered by a surface bundle over

the circle.

Since it is easy to see that any Seifert fibered manifold with infinite fundamental
group has a finite cover with positive Betti number, the affirmative resolution of (4)
implies that of (3).

Conjecture (1) was known to hold for Seifert fibered manifolds. Therefore we
have only to consider hyperbolic 3-manifolds. The conjecture was proved in the case
of arithmetic hyperbolic manifolds by Lackenby [125], and was solved in general
form by Kahn and Markovic [108]. Conjectures (2) and (4) (and hence also (3))
were solved by Agol, assuming the result of Kahn–Markovic, after partial results of
Cooper–Long–Reid [60] and Bergeron–Wise [25] among others. These two works
rely on quite different types of mathematics.

The resolution of (1) by Kahn and Markovic took a rather analytic approach.
One first considers a pair of pants with geodesic boundaries in the hyperbolic
manifold, pastes a pair of pants (with geodesic boundaries) to each of the boundary
components, and then goes on pasting a pair of pants to each free boundary. By a
measure-theoretic argument, it is shown that after finitely many steps, the pair of
pants comes back very close to the original one. Pasting up all these pairs of pants,
an immersed incompressible closed surface is obtained.

Agol’s resolution of Conjectures (2) and (4) relies essentially on the study of
CAT(0)-cube complexes started by Wise. A cube complex is a complex made of
finite-dimensional cubes, [0, 1]n, with isometric pasting maps. A cube complex has
a metric induced from the standard metrics on cubes, and is called CAT(0) when it
is non-positively curved in the sense of triangle comparison. Bergeron–Wise [25]
showed, using the work of Sageev [195], that the result of Kahn–Markovic cited
above implies that the fundamental group of every closed hyperbolic 3-manifold
acts freely and cocompactly on a CAT(0)-cube complex by isometries. Haglund–
Wise [96] considered “ hyperplanes” in cube complexes, and introduced the notion
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of “specialness” for CAT(0)-cube complexes. They then proved that if a hyperbolic
group acts freely and cocompactly on a special CAT(0)-cube, then every quasi-
convex subgroup is separable. This implies that Conjecture (2) can be proved once
we can show that every hyperbolic 3-manifold has a finite-sheeted cover whose
fundamental group acts on a special CAT(0)-cube complex freely and cocompactly.
Agol proved that this is indeed the case. Conjecture (4) was also resolved by
combining this line of argument with previous work of Agol [6].

1.3.5 The Ehrenpreis Conjecture

The Ehrenpreis conjecture for Riemann surfaces states that any two compact
Riemann surfaces have finite sheeted unramified covers that are of the same genus
and that are arbitrarily close to each other in the Teichmüller metric. It is not clear to
the authors of this essay where and when exactly this conjecture was formulated for
the first time. In their paper [29], Biswas and Nag refer to it as an “old conjecture
which, we understand, is due to L. Ehrenpreis and C. L. Siegel.”

The conjecture was proved by J. Kahn and V. Markovic in 2011 (the paper [110]
was published in 2015). We mention this here because the proof depends heavily
on the geometric methods introduced by Thurston in the topology of surfaces and
3-manifolds. A crucial step in the proof is the construction of what the authors call a
“good” geodesic pair of pants decomposition of the surface, that is, a decomposition
into pants whose cuff lengths are equal to some fixed large number. Another major
ingredient in the proof is an appeal to the proof of the surface subgroup theorem and
its proof by the same authors, which also makes heavy use of ideas inaugurated
by Thurston. Thurston’s influence on the subject is touched upon in the Kahn–
Markovic ICM talk [109].

Sullivan and Thurston himself tried to prove this conjecture. In his approach to
this question, Sullivan introduced in the early 1990s [202] the notion of solenoid,
the inverse limit of the system of finite-sheeted branched covers of a fixed closed
Riemann surface of negative Euler characteristic. He introduced the Teichmüller
space and the mapping class group of this object, and studied their geometry and
dynamics. The solenoid became an object of study in itself, see the reviews [179,
196].

In a memorial article on Thurston [126], Sullivan recalls the following, from
Milnor’s 80th fest at Banff: “I recall a comment whispered by Bill who sat next to
me during a talk by Jeremy Kahn about the Kahn–Markovic proof of the subsurface
conjecture from decades before. Bill whispered: ‘I missed the offset step’.” (The
“offset step” referred to here is a step in the proof of Kahn–Markovic which
concerns the construction of pairs of pants with large cuffs).
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1.3.6 The Cannon–Thurston Maps

As an important step in the uniformization theorem for Haken manifolds, Thurston
proved that any closed surface (S-)bundle over the circle with a pseudo-Anosov
monodromy has a hyperbolic metric. His proof of this result uses the double limit
theorem, which gives the Kleinian group corresponding to the fiber. The limit set
of such a Kleinian surface group G is the entire sphere, for it is a normal subgroup
of a cocompact Kleinian group. Cannon and Thurston [54] proved that there is a
continuous map from S1, which is the limit set of the Fuchsian group � isomorphic
to π1(S), to the limit set S2 of G which is equivariant under the action of � on S1

and G on S2. Thus what they got is a π1(S)-equivariant Peano map.
Thurston conjectured that such a map, called the Cannon–Thurston map, from

the limit set of a convex cocompact Kleinian group to the limit set of an isomorphic,
possibly geometrically infinite group, which is invariant under the group action
exists in general. The existence of Cannon–Thurston maps was proved for freely
indecomposable Kleinian groups with bounded geometry by Mitra(=Mahan Mj)
[154] and Klarreich [119], based on the work of Minsky [151]. This was generalized
to the case of punctured surface groups, still with the assumption of bounded
geometry outside cusps, by Bowditch [38] and Mahan Mj [155]. McMullen, relying
on [152], proved the existence of Cannon–Thurston maps for once-punctured torus
Kleinian groups [142]. Finally, the general affirmative resolution of the conjecture
was obtained by Manah Mj [156, 157] using the technique of “electrocuting” some
parts of the manifold keeping the Gromov hyperbolicity.

Thurston also asked in the same list of unsolved problems if there is continuity
of movement of Cannon–Thurston maps with respect to the deformation of the
Kleinian group. Mahan–Series [159, 160] proved that when geometrically finite
freely indecomposable Kleinian groups converge to a geometrically finite group
algebraically, Cannon–Thurston maps converge pointwise, but not necessarily
uniformly. They also proved that even if the limit is geometrically infinite, the
uniform convergence is obtained provided that the limit is strong (i.e. it is both
an algebraic and geometric limit). In the case where the convergence is not strong,
they gave an example when even the pointwise convergence fails. Mahan–Ohshika
[158] gave a necessary and sufficient condition for the pointwise convergence in the
case where the sequence consists of quasi-Fuchsian groups.

1.3.7 Anti-de Sitter Geometry and Transitional Geometry

We start by recalling that for every n ≥ 2, the n-dimensional Anti-de Sitter (AdS)
space is a complete Lorentzian space of constant sectional curvature -1. For n ≥ 2,
the model space of Anti-de Sitter space is the vector space Rn+1 equipped with the
bilinear form of signature (n− 1, 2)

< x, y >= −x1y1 − x2y2 + x3y3 + . . .+ xn+1yn+1.
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AdS space is the Lorentzian analogue of hyperbolic space. In 1990, Geoffroy
Mess wrote a breakthrough paper12 in which he gave a completely new approach
to Lorentzian geometry in dimension 2+1 and in which he proved a classification
theorem for AdS spacetimes, that is, complete Lorentzian manifolds of constant
negative curvature, obtained by taking a quotient of anti-de Sitter space by a discrete
group of isometries acting freely. Mess’s theory heavily uses techniques from
Thurston’s theory of low-dimensional geometry and topology, which he adapted to
the Lorentzian setting. This includes a Lorentzian version of the grafting operation
for complex projective surfaces, the parametrization of the moduli space of complex
projective structures as a bundle over the Teichmüller space of a surface whose
fibers are measured laminations space, actions on R-trees, the holonomy map,
convex hull and convex core constructions and a study of the geometry of the
boundary of the convex core, bending and bending laminations, representations of
surface groups, the analogue in AdS geometry of quasi-Fuchsian representations,
the parametrization of moduli spaces of such representations by two copies of
Teichmüller space (an analogue of the Bers double uniformization theorem), and
earthquakes, with a new proof of Thurston’s earthquake theorem.

The notions of Cauchy hypersurface and of globally hyperbolic AdS manifold
turned out to be central in this context: A Cauchy hypersurface is a space-like
hypersurface which intersects all inextendable time-like lines in the manifold in
exactly one point. An AdS manifold (or more generally a Lorentzian manifold) is
said to be globally hyperbolic if it contains a Cauchy hypersurface. The notion of
Cauchy surfaces was first introduced in the context of general relativity.

Mess, in his paper, gave a complete description of globally hyperbolic spacetimes
of constant curvature with compact Cauchy surfaces in dimension 2+1. One of the
results he obtained is the classification of proper isometric actions of discrete groups
on Minkowski space.

The introduction by Mess of Thurston’s techniques in the setting of AdS
geometry had an important impact on later research, and we mention some works
done in this direction.

Bonsante and Schlenker, in their paper [33] studied a space of AdS manifolds
with cone singularities, and showed that this space is parametrized by the product
of two copies of the Teichmüller space of the surface with marked points (corre-
sponding to the cone singularities). From this result they deduced an analogue of
Thurston’s theorem on the transitivity of earthquakes for closed hyperbolic surfaces
with cone singularities with total angle less than π . In the paper [34], the same
authors showed that it is possible to prescribe any two measured laminations filling
a surface, to be the upper and lower measured bending laminations of the convex
core of a globally hyperbolic AdS manifold, answering positively a question raised
by Mess in his paper.

Bonsante in his paper [32] extended the study of globally hyperbolic flat
spacetimes to higher dimensions. Among the tools he introduced is a notion

12The paper was published in 2007 [143]; see also the accompanying notes [11].



42 K. Ohshika and A. Papadopoulos

of measured geodesic stratification which extends to higher dimensions that of
measured geodesic lamination. Fillastre in [80] studied Fuchsian polyhedra in such
spaces, extending to this setting results of A. D. Alexandrov in [10], Rivin–Hodgson
in [193], and Labourie–Schlenker in [124] in which these authors study convex
Fuchsian surfaces in Lorentz spaces of constant curvature.

In the paper [21], Barbot and Mérigot established a relation between quasi-
Fuchsian and AdS representations which are Anosov in the sense of Labourie [122].

The work of Mess and later developments in AdS geometry are surveyed in
Chapter 15 of the present volume, by Bonsante and Seppi [35], and in Chapter 16 by
Barbot and Fillastre [20]. The reader may also refer to the survey [24] by Benedetti
and Bonsante and the works [19, 36, 37].

The list of open questions [22] is another indication of the direction that this field
took in the last few years, motivated by Thurston’s ideas.

Talking about AdS geometry in relation with Thurston’s work, we are led to
transitional geometry, a topic also introduced by Thurston.

A transition between two geometries is a continuous path in the space of metrics
on a manifold, parametrized by an interval, say (−1, 1), where on the sub-interval
(−1, 0) the manifold carries the first geometry (say hyperbolic), on the sub-interval
(0, 1) it carries the other geometry (say AdS), and at 0, the geometry is from a third
type (say Euclidean). Thurston introduced the notion of transition between his eight
3-dimensional geometries in his proof of the orbifold theorem (see the comments by
Cooper, Hodgson and Kerckhoff in [61]),13 and used the technique of Ricci flow in
this process. More details on this topic are given in Sect. 1.2.6 of the present article.

Following Thurston’s ideas, there has been a recent activity in dimension 3,
on a continuous transition between the eight geometries, and also on varying
continuously between Riemannian and Lorentzian geometries on orbifolds. Let us
mention a few works on this subject.

Transitions between spherical and hyperbolic geometry, passing through
Euclidean geometry, were studied by Cooper, Hodgson and Kerckhoff in [61],
Hodgson in [104], Boileau–Porti [30] and Porti in [186]. In the last paper,
Porti investigated the appearance of orbifolds with geometry Nil as limits of
rescaled hyperbolic cone manifolds. In his paper [187], he developed a theory
of degeneration/regeneration between hyperbolic 2-orbifolds and hyperbolic cone
3-orbifolds. In his paper with Weiss [188], he developed a transition theory between
Euclidean cone manifolds and spherical or hyperbolic ones, with applications
to questions of rigidity of Euclidean cone structures. We also mention work on
combinatorial transitions, by Kerckhoff and Storm in [116].

In the more recent paper [62], Cooper, Danciger and Wienhard studied transitions
between Thurston’s geometries in the setting of projective geometry, They gave a

13The authors write in particular: “Thurston outlined his proof on two occasions in courses at
Princeton; in 1982 and again in 1984. On both occasions, due to running out of time, the outline
was incomplete in certain aspects at the end of the proof in the collapsing case. In particular the
Euclidean/spherical transition in the case of vertices was treated in a few sentences.”
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complete classification of limits of three-dimensional hyperbolic geometry inside
projective geometry. They showed that the three Thurston geometries E3, Nil, and
Sol appear among the limits, but the other Thurston geometries do not.

In the papers [65, 66], Danciger studied a smooth transition between the
hyperbolic and AdS geometry of 3-manifolds, passing through a transversely
hyperbolic 1-dimensional foliation of the manifold. In particular, in the first paper,
he introduced, in a study of the transition geometry between hyperbolic and AdS
geometry, a transitional projective geometry he called half-pipe geometry.

Two-dimensional transitional geometry, from a completely different point of
view, based on the notion of “coherent geometry”, is studied by A’Campo and
Papadopoulos [2, Chapter 9] and [3].

1.3.8 Linkages

The theory of linkages is a classical subject that combines topology, real-analytic
geometry and mechanical constructions. It is not surprising that this topic attracted
Thurston’s attention. Although he wrote very little on it, he influenced the works of
several authors, in private conversations and in lectures. Among them, we mention
Henry King, Misha Kapovich, John Millson and Alexei Sossinsky.

In the survey [117] on planar linkages, King recalls that he first heard of the
subject in a talk by Thurston at the Institute for Advanced Study, in the mid-1970s.
He remembers that Thurston gave a proof of what is called now the Thurston
signature theorem.14 The statement can take different forms, one of them being that
for any signature, one can construct a planar linkage that approximates it arbitrarily
closely. In other words, one can find a linkage such that the locus of one of its
vertices (or of a set of vertices), when it runs through all its possible positions, is
arbitrarily close to the signature. Another (related) result of Thurston mentioned
in King’s paper concerns the realization of any compact smooth manifold as a
configuration space of a linkage. King writes:

As far as I can tell, Thurston never wrote these results up, so [the Thurston signature
theorem] must remain vague. Occasionally since then I have been contacted by an engineer
interested in these results, but I could not recall anything about Thurston’s proof so I could
not help them. Then recently, Millson started asking me lots of questions on real algebraic
sets. He and Kapovich were writing up proofs of the results [of Thurston] above. In the
course of doing so, they discovered and solved some problems overlooked by previous
literature.

Kapovich and Millson, in the paper they wrote on the subject [112], make a
reference to the work of the nineteenth century mathematician Alfred Kempe [113]
who studied linkages and obtained weak forms of Thurston’s results. This fact is

14The word “signature” refers here to a person signing her name; this is not to be confused with
notions like Rokhlin’s signature of a manifold.
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recurrent in Thurston’s work: He used to develop theories from scratch, and it
happened that he realized that some of his ideas or results were discovered by others,
in general, several years, and sometimes decades before him. In fact, Thurston
was reviving classical subjects. We already mentioned such instances in the section
concerning his work on surface diffeomorphisms (Sect. 1.2.15) and in that on circle
packings (Sect. 1.2.12). There are many other examples.

Kapovich and Millson write in their paper:

The first precise formulation of a theorem of the above type was given by W. Thurston
who stated a version of Corollary C about 20 years ago and has given lectures on it
since. He realized that such a theorem would follow by combining the 19th century work
on linkages (i.e. Kempe’s theorem) with the work of Seifert, Nash, Palais and Tognoli.
However, Thurston did not write up a proof so we have no way of knowing whether he
overcame the problems discussed above in the 19th century work on linkages. There is also
ambiguity concerning which theorem Thurston formulated in his lectures, we heard three
different versions from three sources.

Sossinsky writes in his survey [199] that he was introduced to the theory of
linkages by Alexander Kirillov, after the latter returned to Moscow from a stay in
the US during which he had heard one of Thurston’s talks on the subject. In turn,
Sossinsky introduced the subject to several Russian mathematicians who started
working on it. He writes that Thurston was mainly interested in the topology
of configuration spaces of planar linkages, and that he considered two types of
problems, which were the main problems in the field: (1) the so-called direct
problem (“configuration”): given a planar linkage (or a class of planar linkages),
to ask for a description of the corresponding configuration space(s); (2) the inverse
problem (“universality”): given a topological space or an algebraic variety (or a class
of such objects), to find a planar linkage whose configuration space is this space (or
a class of linkages whose configuration spaces are in the given class). On problem
(2), Sossinsky mentions a version of Thurston’s signature theorem saying that for
any real-algebraic curve in the plane there exists a planar linkage which draws it.
Sossinsky’s article [199] contains a beautiful historical introduction to the subject.

In a post on MathOverflow, Kevin Walker recalls that as an undergraduate student
of Thurston at Princeton, the latter told him about the strategy of the proof of the
signature theorem. This proof included a use of Nash’s theorem saying that any
smooth manifold is diffeomorphic to a real algebraic set, which reduces the problem
to that of devising planar linkages implementing addition and multiplication of real
numbers and showing how to combine these linkages. Walker wrote his bachelor
thesis on linkages. He posed there a conjecture, about recovering the relative lengths
of the bars of a linkage from intrinsic algebraic properties of the cohomology
algebra of its configuration space. The conjecture was proved several years later
by Farber, Hausmann and Schütz [76].

Thurston’s popular science article with Jeff Weeks [235], published in 1984,
contains several passages on linkages. In particular, we find there the description of a
simply defined linkage (which was studied later by several authors under the name
Thurston–Weeks triple linkage) whose configuration space has a very interesting
topology.
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In a correspondence with the second author of this chapter, Bill Abikoff wrote:
“Thurston was characteristically terse in his discussion of spaces formed by flexible
linkages. His response to the question of which topological spaces appear as the
configuration space of a flexible linkage was: all.”

1.3.9 Higher Teichmüller Theory

Thurston is a forerunner of higher Teichmüller theory. He was the first to emphasize
the importance of the study of connected components of the representation variety
of the fundamental groups surfaces into Lie groups other than the group PSL(2,R).
He was also the first to revive ideas of Ehresmann from the mid 1930s, highlighting
the holonomy as a map from the deformation space of geometric structures into the
representation variety, making this a general guiding principle for the classification
of locally homogeneous structures. We refer the reader to Goldman’s article [88] in
which he talks about an Ehresmann–Weil–Thurston holonomy principle. Labourie
and McShane use the expression “Higher Teichmüller–Thurston theory” for the
study of a specific component of the representation space of a surface group of
genus in PSL(n,R). In their paper [123], they extend Thurston’s shear coordinates
to the setting of Hitchin representations of fundamental groups of surfaces and
they prove a McShane–Mirzakhani identity in that setting. Vlamis and Yarmola use
the same expression in the paper where they prove a Basmajian identity in higher
Teichmüller–Thurston theory [237]. Among the large number of results in higher
Teichmüller theory that are inspired by Thurston’s work on surfaces, we mention
Labourie’s work on representations of surface fundamental groups into PSL(n,R),
and in particular his discovery of a curve which is the limit set of the quasi-
Fuchsian representation in this setting [122]. We also mention the generalization
of Thurston’s shear coordinates to the context of decorated representations into
split real Lie groups by Fock and Goncharov [81], and the generalization of
Thurston’s compactification of Teichmüller space to compactifications of spaces
of various sorts of representations of finitely generated groups (see e.g. [178] for
representations into reductive Lie groups). One should also mention the recasting
of Thurston’s compactification of Teichmüller space from the point of view of the
character variety, in terms of group actions on �-trees, by Morgan and Shalen, see
[162]. Finally, we mention the work done on the pressure metric on higher Teich-
müller spaces (in particular for Anosov representation) a higher-generalization of
Thurston’s version of the Weil–Petersson metric on Teichmüller space, see [41, 42].

1.3.10 The Grothendieck–Thurston Theory

Alexander Grothendieck, at several places of his manuscript Esquisse d’un pro-
gramme [92] (released in 1984), in which he introduced the theory of dessins
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d’enfants and where he set out the basis of the theory that later on became known as
Grothendieck–Teichmüller theory, mentions Thurston’s work as a source of inspi-
ration. On p. 12 of his manuscript, Grothendieck writes: “The lego-Teichmüller toy
which I am trying to describe, arising from motivations and reflections of absolute
algebraic geometry on the field Q, is very close to Thurston’s hyperbolic geodesic
surgery.” Grothendieck drew a parallel between his own algebraic constructions in
the field Q of rational numbers and what he calls Thurston’s “hyperbolic geodesic
surgery” of a surface by pairs of pants decompositions. He outlined in this paper
a principle which today bears the name “Grothendieck reconstruction principle,”
or the “two-level principle.” In broad terms, the principle says that some important
geometric, algebraic and topological objects that are associated with a surface S (e.g.
the Teichmüller space, the mapping class group, the space of measured foliations,
spaces of representations of its fundamental group, etc.) can be reconstructed from
the “small” corresponding spaces associated with the (generally infinite) set of level-
zero, level-one and level-two essential subsurfaces of S. Here, the “level” of a
surface is the number of simple closed curves that are needed to decompose it into
pairs of pants. Thus, level-zero surfaces are pairs of pants, level-one surfaces are
tori with one hole or spheres with four holes, level-two surfaces are the 2-holed tori
and 5-holed spheres etc. The geometric structures on the level-zero spaces are the
building blocks of the general structures, and the structures on the level-one and the
level-two spaces are the objects that encode the gluing. There is a group-theoretic
flavor where the level-one surfaces play the role of generators and the level-two sur-
faces are the corresponding relators. Paraphrasing Grothendieck from his Esquisse
d’un programme, “the Teichmüller tower can be reconstructed from level zero to
level two, and in this reconstruction, level-one gives a complete set of generators
and level-two gives a complete set of relations.” Grothendieck made a comparison
with analogous situations in algebraic geometry, in particular in reductive group
theory, where the semi-simple rank of a reductive group plays the role of “level.”

The reconstruction principle was used (without the name) in the paper by Hatcher
and Thurston, A presentation for the mapping class group of a closed orientable
surface [101], published in 1980. In this paper, the authors find a presentation of the
mapping class group in which the generators and the relations, which correspond
to moves in the pants decomposition complex, are all supported on the level-two
surfaces of the given topological surface. The reconstruction principle appears in
the same paper at the level of functions: the authors use Cerf theory (the study
singularities in the space of smooth functions on the surface) in a construction
which is also limited to the level-one and level-two subsurfaces. The analogy
between Grothendieck’s and Thurston’s theories is expanded in Feng Luo’s paper
Grothendieck’s reconstruction principle and 2-dimensional topology and geometry
[130].

On p. 41 of his manuscript [92], Grothendieck formulates and discusses a
conjecture concerning the canonical realization of conformal structures on surfaces
by complex algebraic curves. He then declares: “An elementary familiarization with
Thurston’s beautiful ideas on the construction of Teichmüller space in terms of a
very simple game of Riemannian hyperbolic surgery reinforces my premonition.”
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Grothendieck also used ideas of Thurston in his works on the actions of the
absolute Galois group and in profinite constructions in Teichmüller’s theory. The
author may refer to the surveys [4, 236]. The same ideas are also developed in his
manuscript Longue marche à travers la théorie de Galois [91], written around the
same period.

At the University of Montpellier, where he worked for the last 15 years of
his academical life, Grothendieck conducted a seminar on Thurston’s theory on
surfaces.

Grothendieck again mentions Thurston’s work on surfaces in his mathematical
autobiography, Récoltes et semailles [93, §6.1]. In that manuscript he singles out
twelve themes that dominate his work and which he describes as “great ideas”
(grandes idées). Among the two themes he considers as being the most important is
what he calls the “Galois–Teichmüller yoga”, which is precisely the topic that now
bears the name Grothendieck–Teichmüller theory [93, §2.8, Note 23].

Grothendieck and Thurston had different approaches to Teichmüller space,
because the motivations were different (algebraic geometry and low-dimensional
topology), but reuniting the two approaches is still now a challenging field of
research. Mapping class groups of surfaces occur in the Grothendieck setting in
the form of the so-called Grothendieck–Teichmüller group and in the Teichmüller
tower, built out of finite type surfaces. The curve complexes and other simplicial
complexes from low-dimensional topology have their analogues in this theory. In
fact, some of the tools in Grothendick’s theory are profinite versions of notions
discovered by Thurston. The interested reader may refer to the surveys [83, 236].
Conversely, Grothendieck’s dessins d’enfants were studied by several authors in the
setting of Thurston’s theory; we refer to the surveys [100, 103].

To close this section, let us recall that both Grothendieck and Thurston cam-
paigned against military funding of mathematics. In France, Grothendieck resigned
abruptly from his position at IHÉS after he learned that the institute was run partially
by military funds. Ten years later, in the US, Thurston was thoroughly involved in
a campaign against military funding of mathematics. He wrote several letters to the
editors of the Notices of the AMS, see e.g. his article Military funding in mathematics
[220].

1.4 In Guise of a Conclusion

A description of Thurston’s work would be incomplete without a few words on his
personality.

Thurston valued the notion of mathematical community, and he was pleased to
see that he could share his ideas with more and more people. Beyond mathematics,
his militancy for a good educational system, for the protection of nature and for
a clean environment, his search for beauty, his gentleness, his humbleness, his
honesty, and his care for people around him and for humanity in general were
exceptionally high. He was a rebel in every sense of the word.
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Clay conference in Paris, Oceanographic Institute, June 2010. @ Atelier EcoutezVoir
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Chapter 2
Thurston’s Influence on Japanese
Topologists up to the 1980s

Ken’ichi Ohshika

Abstract In this chapter, I describe how Thurston’s work influenced Japanese
topologists, focusing on the period 1970s–1980s.

Keywords Foliation · Hyperbolic manifold · Japan · 01A27 · 01A60 · 57K32 ·
57R30

2.1 Introduction

Although mathematics is an international discipline by its nature, the way for
mathematicians to communicate with each other has enormously changed even
during recent 50 years. Electronic mailing system appeared in the community of
mathematicians as an indispensable tool only in the mid 1980s. I remember that
when I was a young research associate at Tokyo Metropolitan University, the
only way to send an electronic mail was to get access to a big computer called
Tansei installed in the University of Tokyo. This was the only machine in Japanese
academia working also as a mail server. Mathematicians got to know the WWW
only around 1993–1994. During the years which we are talking about in this essay,
the only way to communicate with foreign mathematicians was to go to meet
them physically, which was possible for Japanese mathematicians only during their
sabbatical years, or by airmail.

Still, Thurston’s work was widely known to Japanese topologists soon after he
gave talks or wrote preprints through letters written by the Japanese audience who
happened to be present there, or by photocopies of preprints sent by airmails. (To
be more precise, photocopies were rather expensive in Japan back in the 1970s.
Preprints were mostly disseminated in the form of blueprints at that time.) This
fact shows how important Thurston’s work was to Japanese topologists those
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days, and was thought of as something very important which you should learn
with great effort. In this chapter, I shall describe how Thurston’s work influenced
Japanese topologists, focusing on the period between the 1970s and the 1980s, the
period when Thurston worked mainly on foliations and hyperbolic structures on
3-manifolds.

I am greatly indebted to Takashi Tsuboi for the description of Sect. 2.2 and
Sadayoshi Kojima for that of Sect. 2.3, both of whom brought me very precious
information.

2.2 Foliations

The study of foliations within Japan started around 1970 by Itiro Tamura, who was
a professor in Department of Mathematics of University of Tokyo at that time, and
who is the founder of the Japanese school of foliations. The years 1968–1970 are
known for the upheaval of the student movement all over the world, which raised
many issues ranging from the anti-Vietnam-war campaign to a reform of the old-
fashioned university system. In the case of the University of Tokyo (or more broadly
in Japanese universities in general), the student movement in this period is often
epitomised by two events: one is the occupation of the Yasuda Hall by radical (or
far-left depending on one’s political standpoint) students from July 1968 to January
1969, and the other is the cancellation of the entrance examination in 1969, for the
first time since the foundation the University of Tokyo. Still, behind these scenes
which were known to the public, there was a pain-staking effort of both faculties
and students to make a concrete and fruitful reform plan for the university. The
meeting (a kind of collective bargaining) between delegates of professors and those
of students of the Faculty of Science took place in January, as is recorded in the
first issue of the monthly report of the Faculty of Science [7]. We can see in the
report that Itiro Tamura was a delegate representing the professors of Department
of Mathematics. It can be readily imagined that this made him very busy, and it is
astonishing that his research in topology could be continued in this situation. Over
the Pacific Ocean, there was also a strong student anti-war movement in the USA,
which was in the midst of the long Vietnam war. Berkeley, where Thurston was a
graduate student, was its epicentre, and anti-war demonstrations took place everyday
there. Thurston, who was a convinced antimilitarist for life, was naturally involved
in this movement. His anti-military standing did not change all though his life, as his
opposition to military funding within mathematics departments, expressed in [19],
eloquently tells.

Tamura’s first paper on foliation [12] was published in 1972, but apparently
was written in 1970–1971. He shows there, generalising the result of Lawson [5],
that every odd-dimensional homotopy sphere admits a codimension-one foliation.
This paper was the first one on the topic of foliation written by a Japanese
mathematician. Reading this paper now, we can see that Tamura’s argument relies
on his familiarity with the techniques of higher-dimensional differential topology.
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In fact, Tamura’s work up to this point had mainly dealt with topics in higher-
dimensional differentiable manifolds.

Around the same time, Thurston proved a striking result on foliations on the
3-sphere while he was still a graduate student of Berkeley, which appeared in
the Bulletin of the AMS [13]. In this paper he shows that there are uncountably
many cobordism classes of codimension-1 foliations of the 3-sphere, making use
of the Godbillon-Vey invariant, which is a cobordism invariant of codimension-one
foliations. Several Japanese topologists remember that they were really impressed
with this early work of Thurston. The paper uses arguments and techniques
which were quite unfamiliar to them at that time. In 1976, Tamura wrote a book
on foliations entitled “Topology of Foliations” [15]. This was the first book on
foliations ever published in the world (excepting Reeb’s thesis published in the
form of a book [10]). The book appeared in the series of mathematical monographs
dealing with selected topics in several fields of mathematics which were published
by Iwanami Bookstore, regarded as one of the most prestigious publishers for
academic books in Japan. The original was written in Japanese, but it was later
translated into Russian and English. The last section of this book is devoted to
Thurston’s result on codimension-one foliations on the 3-sphere, where Tamura
described the theorem with a detailed proof. In the postscript of the book, we can
see that Thurston’s paper was closely studied in Tamura’s seminar which included
his graduate students at that time, Tadayoshi Mizutani and Toshiyuki Nishimori. It
is noteworthy that throughout this book, we can feel much more flavours of low-
dimensional topology than Tamura’s previous papers, which we can also regard
as an influence of Thurston’s work. This book served as a textbook for younger
Japanese topologists interested in foliations such as Takashi Tsuboi, who read the
book when he was the first year student of the graduate school. As his first paper
[23] shows, we can find an influence of Thurston’s low-dimensional approach on
Tsuboi’s work both directly or indirectly.

Copies of Thurston’s PhD thesis “Foliations of three-manifolds which are circle
bundles” [14], which was never published, were widely distributed to Japanese
topologists studying foliations, above all by Tamura’s students, and the paper was
fastidiously studied in seminars. In 1973, the first international conference in Japan
in the field of topology/geometry, entitled “Manifolds Tokyo 1973”, took place in
Tokyo (see [3]). Thurston did not participate in the conference, but his impressive
work in Haefliger’s classifying space was presented in Mather’s talk “Loops and
foliations” [6]. Tamura travelled to the USA after the conference, and met Thurston
for the first time there. Thurston explained to Tamura his idea to prove the existence
of codimension-1 foliations on any closed manifold with zero Euler characteristic,
which was later published in 1976 [16]. Tamura later told us that Thurston’s
explanation was very intuitive and that it was very hard to follow its details.

In the following year, 1974, Thurston went to Princeton as a professor. Shigeyuki
Morita stayed at Princeton in the academic year 1974–1975 and attended Thurston’s
inaugural lecture there, whose topic was foliations. Morita found that the style of
Thurston’s lecture was quite different from the others and was greatly impressed
with it. Thurston drew figures on the blackboard and continued to explain his ideas
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with a quiet voice for a long time without writing down statements of his theorems.
Thurston’s interest would move to hyperbolic manifolds in the following years,
although he went on writing very original papers in the field of foliations, including
those related to what is now called the Thurston norm.

2.3 Hyperbolic Manifolds

Thurston gave a course on hyperbolic manifolds for several years since 1976. Yukio
Matsumoto, who stayed at the IAS from 1976 to 1978, attended his lectures. The
notes taken by Thurston’s students, with the title of “The geometry and topology of
3-manifolds”, were widely disseminated, and they inspired many topologists all over
the world. Matsumoto sent photocopies of the notes back to the University of Tokyo
immediately after they became available, chapter by chapter. Sadayoshi Kojima
remembers that he read the notes with great interest but also with some difficulties
in the seminar directed by his advisor, Mistuyoshi Kato. The notes contain so many
ideas in a very condensed way that some could write a paper, even a thesis, based on
what is written in a few pages in the notes. The first five sections of the lecture notes
were revised substantially and appeared as a book later [20]. Still the parts which
remain unpublished, especially Sections 9 and 10, contain much more inspiring
material, in particular for those studying Kleinian groups.

The main purpose of these lectures was to present a proof of his uniformisation
theorem for Haken manifolds. The Japanese topologists got to know this great
theorem for the first time through an announcement of the resolution of the Smith
conjecture (see [8]). This conjecture, which says that every orientation-preserving
cyclic group action on the three-sphere with one-dimensional fixed point set is
topologically conjugate to an orthogonal action, was very famous among knot
theorists. In fact, it was regarded as one of the most important unsolved problems
in knot theory along with the Property P conjecture and the Property R conjecture.
The news that the Smith conjecture was solved essentially making use of Thurston’s
uniformisation theorem, which was still under a veil at that time for most of Japanese
topologists, was received with awe and amazement. Although Thurston presented
his idea of proof in several occasions, including his lectures at Princeton, most
people started to understand the overall argument only after John Morgan’s seminar
which took place at Columbia University in 1980–1981, and whose summary was
later published in [8]. Sadayoshi Kojima, who was writing a PhD thesis under
Morgan at Columbia then, participated in this seminar, and wrote an expository
paper in Japanese on Thurston’s uniformisation theorem, making use of what he
learnt from this seminar [4]. This was before the publication of [8] or [18], and
Kojima’s exposition was the only published source from which younger Japanese
topologists learnt the uniformisation theorem.

Thurston announced in [17] that he would give a complete proof of his
uniformisation theorem in a series of seven papers. In the early 1980s he wrote
parts I and II [18, 21], and part III [22] a bit later. Preprints of these papers
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reached the University of Tokyo, and were widely distributed among Japanese
topologists. There are seminars in Japan where a proof of Thurston’s uniformisation
was studied based on these preprints combined with Kojima’s survey. There were
not many people in Japan who really understood the proof. Still techniques and tools
which Thurston invented there turned out to be very strong and useful for studying
hyperbolic 3-manifolds and Kleinian groups, especially if the papers were read with
Sections 9 and 10 of the lecture notes. For instance, Soma and myself, who were
graduate students at that time took much benefit of them.

In 1982 and 1984, Thurston gave courses on deformations of hyperbolic cone
structures, which led to a proof of the geometrisation for 3-manifolds with sym-
metries (with one-dimensional fixed points), or equivalently the geometrisation of
3-orbifolds. Teruhiko Soma, who was staying at Princeton in 1983–1984, attended
these courses, took notes, and brought them back to Japan. In Tokyo, based on his
notes, a seminar on deformation of hyperbolic cone structures was held in 1984–
1985, whose contents was published in RIMS Kokyuroku [11]. Although it was
impossible to recover all the arguments that Thurston had given, in particular the
last part where spherical structures are obtained making use of Hamilton’s theorem,
we could at least present the overall logic and the proofs for the cases where no
degeneration occurs and where a Seifert fibration is obtained by degeneration.

In July 1998 an international conference entitled “Cone-Manifolds and Hyper-
bolic Geometry” was held at the Tokyo Institute of Technology, which Steven
Kerckhoff, Sadayoshi Kojima, Tomoyoshi Yoshida and myself organised. A series
of talks on Thurston’s geometrisation theorem for 3-orbifolds was given there
by Cooper, Hodgson and Kerckhoff, in which a detailed proof of the theorem
in the case when the singularity is a link (i.e. does not have a vertex) was
given. Thurston himself participated in the conference, and this was his first and
last visit to Japan for an academic purpose. This talk was later published as a
monograph from the Mathematical Society of Japan [2]. Since Thurston himself
has not published the proof, this constituted the first piece of literature containing a
proof of Thurston’s geometrisation theorem of 3-orbifolds, although with an extra
hypothesis. A complete proof containing also the case when the singularity contains
vertices was finally given by Boileau–Leeb–Porti [1].

2.4 Conclusion

As an another chapter in this volume [9] shows, Thurston’s work extends to much
wider subjects other than the two main topics which I talked about in this chapter.
Also, from around the 1990s, it became easier for Japanese mathematicians to
participate in international conferences or to stay abroad for a short time. Up to the
1980s, for Japanese mathematicians, visiting a foreign country meant staying there
for a fairly long period, such as during a sabbatical year. This change of the situation
made the interaction of Japanese mathematicians and foreign mathematicians
more frequent, and international collaborations became quite common. Thurston’s
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influence on Japanese mathematicians after this period has been very diversified.
Also, there was a growing number of ex-students of Thurston who in turn had
great influence on Japanese topologists and with whom some Japanese topologists
worked. Anyway, this is out of the range of the period I am talking about in this
chapter.

I finish this chapter with my personal memory. I met Thurston for the first time
in 1996 in Berkeley. Yet before that, I had once a correspondence with him. I found
some difficulty in understanding one part of his uniformisation theorem of Haken
manifolds in the late 1980s, which seemed to me to be a kind of gap in his argument.
I sent him a letter explaining the point, and got his reply by airmail. He explained to
me how the argument works by elaborating the point over two pages. To be honest,
I could not understand his argument, which was rather intuitive, quite well at that
time, but reading the letter again now, I realise that the question which I asked
him was completely answered without ambiguity. This is parallel to my experience
when I read his lecture notes. Sometimes, just reading a few paragraphs was very
demanding and it seemed that the argument might have a gap, but after we learnt
more and got familiar with his writing, we realised that the essential points were
all written down in the notes. This kind of difficulty might have been easily cleared
if we could talk with him face to face. Still I have somehow come to believe that
this tantalising process might have helped topologists living in Japan to grow and to
become independent researchers.
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Chapter 3
A Survey of the Impact of Thurston’s
Work on Knot Theory

Makoto Sakuma

Abstract This is a survey of the impact of Thurston’s work on knot theory, laying
emphasis on the two characteristic features, rigidity and flexibility, of 3-dimensional
hyperbolic structures. We also lay emphasis on the role of the classical invariants,
the Alexander polynomial and the homology of finite branched/unbranched cover-
ings.

Mathematics Subject Classification (2010) Primary 57M25; Secondary 57M50

3.1 Introduction

Knot theory is the analysis of pairs (S3,K), where K is a knot (i.e., an embedded
circle) in the 3-sphere S3, and classification of knots has been one of the main
problems in knot theory. The Alexander polynomial is an excellent invariant of
knots, and it had been a dominating tool and theme in knot theory, until knot theory
was influenced by Thurston’s work and the Jones polynomial was discovered. In
fact, the classical textbook by Crowell and Fox [71] is devoted to the calculation
of the knot group and the definition of the Alexander polynomial by using the free
differential calculus. The influential textbook by Rolfsen [275] lies emphasis on
geometric understanding of the Alexander polynomial through surgery description
of the infinite cyclic cover (cf. [134]). However, the Alexander polynomial is
far from being complete: there are infinitely many nontrivial knots with trivial
Alexander polynomial. The famous Kinoshita–Terasaka knot and the Conway knot
are related by mutation, and therefore no skein polynomial, including the Alexander
polynomial, can distinguish between them. The first proof of their inequivalence
was given by Riley [270] by studying parabolic representations of the knot groups
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into the finite simple group PSL(2,Z/7Z) and the homology of corresponding
finite branched/unbranched coverings. (This work led him to the discovery of the
hyperbolic structure of the figure-eight knot complement, which inspired Thurston.)
Riley called this a universal method for obtaining algebraic invariants of knots. The
method turned out to be, at least experimentally, a very powerful tool in knot theory,
due to the development of computer technology. However theoretical background
of the universal method has not been given yet.

In 1976, around the time Rolfsen’s book was published, William Thurston started
a series of lectures on “The geometry and topology of 3-manifolds”. His lecture
notes [300] begin with the following words.

The theme I intend to develop is that topology and geometry, in dimensions up through
3, are intricately related. Because of this relation, many questions which seem utterly
hopeless from a purely topological point of view can be fruitfully studied. It is not totally
unreasonable to hope that eventually all 3-manifolds will be understood in a systematic way.

This prophecy turned out to be true. Thurston’s work has revolutionized 3-
dimensional topology, and it has had tremendous impact on knot theory. The first
major impact was the proof of the Smith conjecture [219], a result of the efforts by
Thurston, Meeks and Yau, Bass, Shalen, Gordon and Litherland, and Morgan. As
Morgan predicted in [219, p.6], this was just the beginning of the saga.

In this chapter, we give a survey of the impact of Thurston’s work on knot
theory. However, the impact is huge, whereas both my ability and knowledge are
poor. Moreover, there already exist excellent surveys, including Callahan–Reid [54],
Adams [4] and Futer–Kalfagianni–Purcell [96]. So, I decided to lay emphasis on the
two characteristic features, rigidity and flexibility, of hyperbolic 3-manifolds.

As the title of Section 5 of Thurston’s lecture notes [300] represents, hyperbolic
structures on 3-manifolds have two different features, rigidity and flexibility.

The Mostow–Prasad rigidity theorem says that a complete hyperbolic structure
of finite volume on an n-manifold with n ≥ 3 is rigid: it does not admit local
deformation, and moreover, such a structure is unique. Thus any geometric invariant
determined by the complete hyperbolic structure of an n-manifold M with n ≥ 3
is automatically a topological invariant of M . Thurston’s uniformization theorem
for Haken manifolds implies that almost every knot K in S3 is hyperbolic, namely
the complement S3 − K admits a complete hyperbolic structure of finite volume.
Thus we obtain plenty of topological invariants of hyperbolic knots, including
the volume, the maximal cusp volume, the Euclidean modulus of the cusp torus,
the length spectrum, the lengths of geodesic paths joining the cusp to itself,
the invariant trace field, the invariant quaternion algebra, etc. In particular, the
canonical decomposition (see Sect. 3.6.1) gives a complete combinatorial invariant
for hyperbolic knots, by virtue of the Gordon–Luecke knot complement theorem.
The computer program, SnapPea, developed by J. Weeks enables us to calculate the
canonical decomposition of hyperbolic knot complements. For example, we can
easily detect the inequivalence of the Kinoshita–Terasaka knot and the Conway
knot, by checking with SnapPea that the number of 3-cells in the canonical
decompositions of the knot complements are 12 and 14, respectively. The rigidity
theorem provides us a number of powerful invariants, and it has enriched knot theory
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by opening new directions of research, namely the study of the behavior of the
geometric invariants. An enormous amount of deep research have been made in
these new directions. (See Sects. 3.6, 3.8 and 3.9.)

There are two kinds of flexibility of hyperbolic structures on 3-manifolds.
One of them is that of cusped hyperbolic manifolds: the complete hyperbolic
structure admits nontrivial continuous deformations into incomplete hyperbolic
structures. By considering the metric completions of incomplete hyperbolic struc-
tures, Thurston established the hyperbolic Dehn filling (surgery) theorem, which
says that “almost all” Dehn fillings of an orientable cusped hyperbolic 3-manifold
produce complete hyperbolic manifolds. Since every closed orientable 3-manifold
is obtained by Dehn surgery of a hyperbolic link, the theorem implies that “almost
all closed orientable 3-manifolds” are hyperbolic. This gave strong evidence for
Thurston’s geometrization conjecture, which was eventually proved by Perelman.
The natural and important problem of the study of the exceptional surgeries of
hyperbolic knot complements attracted the attention of many mathematicians and
numerous research was made on this problem. Due to the development of Heegaard–
Floer homology, this problem now attracts renewed interest.

The other flexibility of the 3-dimensional hyperbolic structure is that of complete
hyperbolic structures of infinite volume, in other words, the flexibility of complete
hyperbolic structures on the interior of a compact orientable 3-manifold whose
boundary contains a component with negative Euler characteristic. The deformation
theory of such structures is the heart of Kleinian group theory, and it is this
flexibility that enabled Thurston to prove the hyperbolization theorem of atoroidal
Haken 3-manifolds. In particular, the complete hyperbolic structure of a surface
bundle over S1 (with pseudo-Anosov mondromy) was constructed by developing
the deformation theory of the complete hyperbolic structures on � × R, where �

is the fiber surface. The idea of the Cannon–Thurston map, a π1(�)-equivariant
sphere filling curve, naturally arose from this construction. Thurston produced
various astonishing pictures of (approximations of) Cannon–Thurston maps. (See
[302, Figures 8 and 10], [308, Figure 1] and the beautiful book [227] by Mumford–
Series–Wright.) It was indeed a shocking event for the author of this survey (who
was ignorant of deformation theory and had no idea that it has something to do with
knot theory) to learn that a simple topological object, such as the figure-eight knot,
carries such mysterious mathematics under cover.

In conclusion, the flexibility of 3-dimensional hyperbolic structure has enriched
knot theory by bringing the concept of deformation into knot theory. (See Sects. 3.7
and 3.10.)

In this review, we also consider the role of the classical knot invariants, the
Alexander polynomial and the homology of finite branched/unbranched coverings.
After the appearance of Thurston’s work and the Jones polynomials, the role of
these invariants in knot theory might have decreased. However, they continue to be
important themes in knot theory. For the Alexander polynomial, its twisted version
was defined by Lin [183] for classical knots and by Wada [313] in a general setting.
For a hyperbolic knot, we can consider the hyperbolic torsion polynomial (see [81])
as the most natural twisted Alexander polynomial, and a beautiful Thurstonian
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connection (cf. [10, Section 1.2]) between the topology and geometry of knots is
found (see Sect. 3.12.2). For the homology of finite branched/unbranched coverings
of a knot, Thang Le [180] proved a mysterious relation between the asymptotic
growth of the order of the torsion part and the Gromov norm of the knot (see
Sect. 3.13.4). This result is particularly surprising to the author of this survey,
for whom homology of finite coverings is a favorite invariant, but who had never
imagined that the whole family of the familiar invariant could contain such deep
geometric information.

3.2 Knot Theory Before Thurston

In this section, we recall basic definitions and the classical results in knot theory,
mostly obtained before knot theory was influenced by Thurston’s work: (i) genera
of knots, (ii) Schubert’s unique prime decomposition theorem, (iii) knot groups,
consequences of Waldhausen’s work on Haken manifolds, and the Gordon–Lueke
knot complement theorem, (iv) fibered knots and open book decompositions, (v) the
definition of the Alexander polynomial and its effectiveness and weakness, and (vi)
representations of knot groups in finite groups.

The book of Adams [2] is a wonderful introduction to knot theory. For classical
results in knot theory, see the textbooks Crowell–Fox [71], Rolfsen [275], Kauffman
[159], Burde–Zieschang [52], Kawauchi [161], Murasugi [235], Lickorish [182],
Livingston [184], Prasolov–Sossinsky [258], Cromwell [69] and Burde–Zieschang–
Heusener [53]. See also the special issue edited by Adams [3] and the handbook
Menasco–Thistlethwaite [207].

3.2.1 The Fundamental Problem in Knot Theory

A knot K is a smoothly (or piecewise-linearly) embedded circle in the 3-sphere
S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}. Two knots K and K ′ are said to be
equivalent, denoted by K ∼= K ′, if there is a self-homeomorphism f of S3 such
that f (K) = K ′, i.e., the pair (S3,K) is homeomorphic to the pair (S3,K ′). If
the homeomorphism f preserves the orientation of S3 and hence is isotopic to the
identity homeomorphism 1S3 , then K and K ′ are said to be isotopic. We do not
distinguish between a knot K and the equivalence/isotopy class represented by K .
A knot is trivial if it is isotopic to a standard circle O := {(z1, 0) ∈ S3 | |z1| = 1}.

Every knot is represented by a knot diagram, a 4-valent plannar graph whose
vertices are endowed with over/under information. A vertex of a knot diagram with
over/under information is called a crossing.

For a knot K , we denote by K∗ the image of K by an orientation-reversing
homeomorphism of S3, and call it the mirror image of K . K∗ is represented by
the knot diagram which is obtained from that of K by reversing the over/under
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Fig. 3.1 The pretzel knot
P (−3, 5, 7) with four
different orientations. These
oriented knots are not
non-isotopic to each other

information at every crossing. A knot K is achiral (or amphicheiral)1 if K∗ is
isotopic to K , otherwise it is chiral.

An oriented knot is a knot K where the circle K is also endowed with an
orientation. (We assume that S3 is endowed with the standard orientation.) Two
oriented knots K and K ′ are said to be isotopic if there is an orientation-preserving
self-homeomorphism f of S3 with f (K) = K ′ such that f |K : K → K ′ is also
orientation-preserving. This is equivalent to the condition that there is an isotopy
of S3 which carries the oriented circle K to the oriented circle K ′. For a given
oriented knot K , we obtain the following three (possibly isotopic) oriented knots,
by reversing one or both of the orientations of S3 and the circle K (see Fig. 3.1):

−K := (S3,−K), K∗ := (−S3,K) ∼= (S3,K∗), −K∗ := (−S3,−K) ∼= (S3,−K∗)

A knot K is invertible, positive-amphicheiral, or negative-amphicheiral, respec-
tively, if K is isotopic to −K , K∗, or −K∗. If the symmetry can realize by an
involution, then we say that K is strongly invertible, strongly positive-amphicheiral,
or strongly negative-amphicheiral, respectively (see Fig. 3.2).

It is one of the most fundamental problems in knot theory to detect whether two
given knots K and K ′ are equivalent or not, in particular if a given knot K is trivial
or not. The problem of detecting whether a given knot is chiral (or invertible) is a
special case of a refinement for oriented knots of this fundamental problem.

1This follows [71], though the terminology “amphichiral” seems to be more popular.
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strongly invertible strongly
negative amphicheiral

strongly
positive amphicheiral

Fig. 3.2 Symmetries of knots realized by involutions

To end this section, we note that the first proof of the existence of non-invertible
knots due to Trotter [309] essentially uses 2-dimensional hyperbolic geometry (see
the paragraph after Theorem 3.4.2).

3.2.2 Seifert Surface

A Seifert surface of a knot K in S3 is a connected compact orientable surface �

in S3 with ∂� = K . The existence of a Seifert surface was first proved by Frankel
and Pontryagin [90], through a smooth map f : S3 − K → S1 which represents
a generator of H 1(S3 − K;Z) ∼= Z as the closure of the inverse image f−1(b) of
a regular point b ∈ S1. Later, Seifert gave a simple effective method, called the
Seifert algorithm, for constructing a Seifert surface from an oriented knot diagram
(see Fig. 3.3). The genus g(K) of a knot K is the minimum of the genera of Seifert
surfaces for K . This is one of the most fundamental invariants of a knot, generalized
by Thurston to the concept of Thurston norm. The trivial knot O is characterized by
the property g(O) = 0.

3.2.3 The Unique Prime Decomposition of a Knot

We recall Shubert’s unique prime decomposition theorem, which reduces the
classification problem of knots to that of prime knots. Given two oriented knots
K1 and K2, we can define the composition K1#K2 as the pairwise connected sum
(S3,K1)#(S3,K2) of oriented manifold pairs, as in Fig. 3.4. With respect to the
connected sum, the set of all oriented knots up to isotopy becomes a commutative
semi-group having the trivial knot O as the unit.

A knot K is prime if K ∼= K1#K2 implies K1 ∼= O or K2 ∼= O . It is a
classical theorem due to Schubert [283] that every oriented knot has a unique prime
decomposition.
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Fig. 3.3 Seifert algorithm: By smoothing all crossings of a knot diagram, we obtain Seifert circles
(mutually disjoint circles in the plane). Construct mutually disjoint disks in R

3 bounded by the
Seifert circles, and join them by bands. The resulting surface is a Seifert surface

Fig. 3.4 Connected sum of knots

Theorem 3.2.1 (The Unique Prime Decomposition of Knots) Every nontrivial
oriented knot (S3,K) can be decomposed as the sum of finitely many nontrivial
prime oriented knots. Moreover if K ∼= K1#K2# · · · #Kn and K ∼= J1#J2# · · · #Jm

with each Ki and Ji nontrivial prime knots, then m = n, and after reordering,
Ki

∼= Ji as oriented knots.

The existence of a prime decomposition is guaranteed by the additivity of genus
with respect to connected sum, i.e.,

g(K1#K2) = g(K1)+ g(K2) for any oriented knots K1 and K2.

The uniqueness of the prime decomposition is proved by a simple cut and paste
argument.

3.2.4 Knot Complements and Knot Groups

The exterior of a knot K is defined by E(K) := S3 − intN(K), where N(K) is a
regular neighborhood of K . The knot complement S3 − K is homeomorphic to the
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interior of E(K), and the fundamental group π1(S
3 − K) ∼= π1(E(K)) is called

the knot group, and denoted by G(K). By using the sphere theorem [252] (cf. [127,
Chapter 4]), we can see that E(K) is aspherical, and hence the homotopy type of
E(K) is completely determined by the knot group G(K). A group presentation,
called the Wirtinger presentation, of G(K) can be obtained from a knot diagram of
K (see [71, 275]).

The peripheral subgroup P(K) of the knot group G(K) is defined as (the
conjugacy class of) the image of the homomorphism j∗ : π1(∂E(K)) → π1(E(K))

induced by the inclusion map j : ∂E(K) → E(K). For the trivial knot O , E(O)

is homeomorphic to the solid torus, and so G(O) = P(O) ∼= Z. Dehn’s lemma,
established by Papakyriakopoulos [252], gives the following characterization of the
trivial knot.

Theorem 3.2.2 A knot K is trivial if and only if the following mutually equivalent
conditions hold.

(1) Ker[j∗ : π1(∂E(K)) → π1(E(K))] is nontrivial.
(2) The peripheral subgroup P(K) is isomorphic to Z.
(3) The knot group G(K) is isomorphic to Z.

If K is a nontrivial knot, then the peripheral subgroup P(K) ∼= π1(∂E(K)) ∼=
Z ⊕ Z is generated by two special elements, a meridian μ and a longitude λ,
represented by the simple loops μ := ∂D2 × {∗} and λ := {∗} × S1 respectively, in
∂E(K) = ∂N(K) = ∂(D2 × S1). Here the framing N(K) ∼= D2 × S1 is chosen so
that the linking number lk(K, λ) = 0. When K is oriented, the orientations of μ and
λ are chosen so that lk(K,μ) = +1 and that K and λ are homologous in N(K).

The classical work of Waldhausen [317] on Haken manifolds implies the
following theorem which reduces the equivalence problem for knots to a problem
of knot groups.

Theorem 3.2.3 For two knots K and K ′, the following hold.

(1) E(K) and E(K ′) are homeomorphic if and only if (G(K), P (K)) and
(G(K ′), P (K ′)) are isomorphic, i.e., there is an isomorphism ϕ : G(K) →
G(K ′) such that ϕ(P (K)) = P(K ′) up to conjugacy.

(2) K and K ′ are equivalent if and only if (G(K), P (K),μ) and (G(K ′), P (K ′),
μ′±1) are isomorphic, i.e., there is an isomorphism ϕ : (G(K), P (K)) →
(G(K ′), P (K ′)) such that ϕ(μ) = μ′±1 up to conjugacy.

For nontrivial oriented knots K1 and K2, the knot groups G(K1#K2) and
G(K1#(−K∗

2 )) are isomorphic. In fact, both E(K1#K2) and E(K1#(−K∗
2 )) are

obtained from E(K1) and E(K2) by gluing annuli in their boundaries, and so
homotopy equivalent to the space obtained from E(K1) and E(K2) by identifying
the meridians μ1 and μ2. On the other hand, by the unique prime decomposition
Theorem 3.2.1, the oriented knots K1#K2 and K1#(−K∗

2 ) are isotopic if and only if
K2 is negative amphicheiral (i.e., −K∗

2 is isotopic to K2). Thus, in general, the knot
group alone is not a complete invariant for knots.
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Building on the cyclic surgery theorem (Theorem 3.11.2) by Culler, Gordon,
Luecke and Shalen [76], Whitten [324] proved that prime knots with isomorphic
knot groups have homeomorphic exteriors. On the other hand, we have the following
celebrated theorem of Gordon and Luecke [114].

Theorem 3.2.4 (Knot Complement Theorem) Two knots are equivalent if and
only if they have homeomorphic complements.

Thus we have the following theorem.

Theorem 3.2.5 Two prime knots are equivalent if and only if they have isomorphic
knot groups.

3.2.5 Fibered Knots

A knot K is fibered if E(K) has the structure of a bundle over the circle, namely,
there is a connected compact orientable surface � and an orientation-preserving
homeomorphism ϕ : � → �, such that

E(K) ∼= � × [0, 1]/(x, 0) ∼ (ϕ(x), 1).

The homeomorphism ϕ is called the monodromy of the fiber structure. Each fiber
� of the bundle structure is a compact orientable surface in E(K) such that
� ∩ ∂E(K) = ∂� is a longitude of K . The union of � and an annulus in N(K)

cobounded by ∂� and K is a minimal genus Seifert surface for K . This is the unique
minimal genus Seifert surface for K up to isotopy fixing K .

We may choose ϕ so that its restriction to ∂� is the identity map and thus the
image of y × [0, 1] in E(K) is a meridian of K for every y ∈ ∂�. Then

(S3,K) ∼= (�, ∂�) × [0, 1]/[(x, 0) ∼ (ϕ(x), 1); y × [0, 1] ∼ y (for y ∈ ∂�)].

This structure is called an open book decomposition with binding K , and the
homeomorphism ϕ is called the monodromy of the fibered knot K . It was proved by
Alexander [17] that every connected closed orientable 3-manifold admits an open
book decomposition. Later, Giroux [107] found a very important correspondence
between the open book decompositions (up to positive stabilization) of a given
closed oriented 3-manifold M and oriented contact structures on M up to isotopy
(see [83] for details). The following characterization of fibered knots in terms of
knot groups was proved by Stallings [295], and attracted the attention of researchers
at the time.

Theorem 3.2.6 A knot K in S3 is a fibered knot if and only if the commutator
subgroup G(K)′ = [G(K),G(K)] is finitely generated.
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The only if part follows from the fact that the infinite cyclic covering E∞(K) of
E(K), introduced in the subsection below, is identified with �×R and so G(K)′ ∼=
π1(E∞(K)) ∼= π1(�) is a free group of rank 2g(K). The heart of the theorem is
that the converse also holds.

3.2.6 Alexander Invariants

Though the knot group is a complete invariant for prime knots, it is, in general, not
easy to distinguish two given knot groups. The Alexander polynomial serves as a
convenient and tractable tool for this problem, even though it is not almighty.

Let K be an oriented knot. Then the first integral homology group H1(E(K);Z)
is the infinite cyclic group generated by the image, t , of the meridian μ. Thus there
is a unique infinite cyclic covering p∞ : E∞(K) → E(K), and the covering
transformation group is identified with the infinite cyclic group 〈t〉 generated by
t . H1(E∞(K);Z) has the structure of a module over the integral group ring Z〈t〉.
This module is called the knot module. As an abelian group, H1(E∞(K);Z) is
identified with G(K)′/G(K)′′ where G(K)′ and G(K)′′, respectively, are the first
and second commutator subgroups of G(K). Moreover the action of the generator t
is given by t[α] = [μαμ−1] for α ∈ G(K)′, where μ is a meridian. Thus the knot
module is determined by G(K). In fact, a presentation matrix is obtained from a
presentation of the knot group, via Fox’s free differential calculus (see [71], [161,
Chapter 7]). The Alexander polynomial �K(t) of K is defined as the generator of
the first elementary ideal of the knot module.

A more conceptual definition can be given by using the Q〈t〉-module
H1(E∞(K);Q) as follows. Since the rational group ring Q〈t〉 is a principal ideal
domain and since H1(E∞(K);Q) is a finitely generated torsion module over Q〈t〉,
we have

H1(E∞(K);Q) ∼= Q〈t〉
(f1(t))

⊕ · · · ⊕ Q〈t〉
(fr (t))

,

where fi(t) are elements of Z〈t〉 whose coefficients are relatively prime. Then
�K(t)

.= f1(t) · · · fr(t), where
.= means equality up to multiplication by a unit

±t i of the integral Laurent polynomial ring Z〈t〉. The Alexander polynomial �K(t)

is an integral Laurent polynomial in the variable t , defined up to multiplication by a
unit. For the trivial knot O , we have �O(t)

.= 1. We summarize basic properties of
the Alexander polynomial.
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Theorem 3.2.7

(1) For any knot K , its Alexander polynomial �K(t) satisfies the following
condition.

�K(1) = ±1, �K(t−1)
.= �K(t)

Conversely, for any Laurent polynomial �(t) satisfying the above condition,
there is a knot K whose Alexander polynomial is equal to �(t).

(2) For every knot K in S3, we have the following estimate of the genus:

g(K) ≥ deg�K(t).

(3) For any fibered knot K , the Alexander polynomial �K(t) is monic, and the
equality hold in the estimate (2).

Proof of Theorem 3.2.7. The proof relies on an analysis of the manifold M :=
E(K)\�, the manifold obtained from E(K) by cutting along a Seifert surface �; in
other words, M is the complement of an open regular neighborhood of � in E(K).
Let �+ and �− be copies of � on ∂M� , and consider the annulus A := M ∩
∂E(K). Then (M,�+,�−, A) is a sutured manifold (see [98, 100], [161, Chapter
5]), and this together with the natural homeomorphism �+ → �− recovers E(K).
The infinite cyclic covering E∞(K) is obtained from the set of copies {Mn} of
M indexed with n ∈ Z, by gluing the copy of �− in Mn with the copy of F+
in Mn+1. The homological glueing information is given by the Seifert matrix V =
(lk(αi , α

+
j ))1≤i,j≤2g, where {αi}1≤i,j≤2g with g = 2g(�) is a set of oriented simple

loops on � which forms a basis of H1(�), α+j is a copy of αj on the +-side of �,

and lk(·, ·) denotes the linking number. The matrix tV − V T gives a presentation
matrix of H1(E∞(K)) as a Z〈t〉-module, and hence �K(t) = det(tV −V T ). Using
this formula we can prove Theorem 3.2.7.

For knots with small crossing numbers, the Alexander polynomial is quite
efficient. For any prime knot K up to 10 crossings, equality holds in the estimate
of the genus in Theorem 3.2.7(2). Moreover, such a knot K is fibered if and only if
�K(t) is monic (see Kanenobu [155]).

The Alexander polynomial is also very efficient for alternating knots. A knot K
is said to be alternating if it is represented by an alternating diagram, namely a
diagram in which the crossings alternate under and over as one travels along the
diagram. A knot diagram is said to be reduced if there is no circle in the plane
which intersects the diagram only at a single crossing. Any alternating diagram
can be deformed into a (possible trivial) reduced alternating diagram. When K is
an alternating knot and � is a Seifert surface obtained by the Seifert algorithm
from a reduced alternating diagram of K , the complementary sutured manifold
(M,�+,�−, A) has a nice structure, which in particular implies det(V ) �= 0. This
shows that the estimate Theorem 3.2.7(2) is sharp for alternating knots (see Crowell
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[70] and Murasugi [233]). Moreover, Murasugi [234] proved that the converse to
Theorem 3.2.7(3) also holds for alternating knots.

Theorem 3.2.8 For any alternating knot K , the following hold.

(1) g(K) = deg�K(t).
(2) K is fibered if and only if �K(t) is monic.

In order to prove the above results, Murasugi introduced the concept of a
Murasugi sum of two Seifert surfaces. The simplest case corresponds to the
connected sum of knots and the second simplest case corresponds to plumbing
introduced by Stallings [296]. It was later shown by Gabai [99] that the Murasugi
sum is a natural geometric operation in the following sense: If � is a Murasugi sum
of �1 and �2, then the following hold.

(1) � is of minimal genus if and only if �1 and �2 are of minimal genus.
(2) � is a fiber surface if and only if �1 and �2 are fiber surfaces.

In addition to Theorems 3.2.7 and 3.2.8, various applications of the Alexander
polynomials were found. Among them, we explain a theorem by Kinoshita [165],
which gives a condition on the Alexander polynomial that a counter-example to the
Smith Conjecture must satisfy. As described in Sect. 3.4.4, the Smith conjecture
(Theorem 3.4.6) was later proved using Thurston’s geometrization theorem for
Haken manifolds.

Theorem 3.2.9 If K is a fixed point of an orientation-preserving periodic diffeo-
morphism of period n, then there is an integral Laurent polynomial f (t) such that

(1) �K(tn) = �n−1
i=0 f (ξ it) where ξ is a primitive n-th root of unity, and

(2) f (1) = ±1, f (t−1)
.= f (t)

See [161, Chapter 10] for other applications of the Alexander polynomial to the
study of symmetry of knots, including the first proof of the non-invertibility of the
knot 817 by Kawauchi [160], answering to a question of Fox (cf. [88, Problem 10]).
(Another proof of the non-invertibility of 817 was announced almost at the same
time by Bonahon and Siebenmann, based on their characteristic splitting theory (see
Sect. 3.4).) It should be noted that though the definition of the Alexander polynomial
depends on the orientation of K , by Theorem 3.2.7(1) the resulting �K(t) does
not depend on the orientation. It is interesting that, despite this fact, the Alexander
polynomial can be used for the study of invertibility and chirality of knots. Finally,
we point out that the Alexander module H1(E∞(K)) does depend on the orientation
of K , though it is not easy to detect the dependence (see [89], [133]).

Though we have observed the effectiveness of the Alexander polynomial, there
are a lot of knots for which the Alexander polynomial is useless. In fact, H. Seifert
[288], J.H.C. Whitehead [323], and Kinoshita–Terasaka [166] gave systematic
construction of nontrivial knots with trivial Alexander polynomial. For example,
the pretzel knot K(−3, 5, 7) in Fig. 3.1, the Whitehead double of any nontrivial
knot (cf. Fig. 3.6), the Kinoshita–Terasaka knot and the Conway knot in Fig. 3.5
have trivial Alexander polynomial.
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Fig. 3.5 The Kinoshita–Terasaka knot and the Conway knot: The circles in the figure represent
the Conway spheres which determine the Bonahon–Siebenmann decompositions, described in
Sect. 3.4.1. From this picture, we can see that the Conway knot is a mutant of the Kinoshita
Terasaka knot

The Conway knot is a mutant of the Kinoshita–Terasaka knot (see Construction
4 in Sect. 3.4.5 for the precise definition). It is known that various invariants
coincide for a knot and its mutant, including the Alexander polynomial, the Jones
polynomial, the Homflypt polynomial, the double branched covering, and Gromov
norm. So it is not easy to distinguish a knot from its mutant.

3.2.7 Representations of Knot Groups onto Finite Groups

The definition of the Alexander polynomial is based on the fact that the knot group
G(K) of an oriented knot K admits a unique preferred epimorphism onto the infinite
cyclic group 〈t〉. By replacing Z with an arbitrary group �, we obtain the following
family of invariants of knots. Let R(G(K), �) be the set of homomorphisms from
G(K) to �, up to conjugacy (i.e., modulo post composition of inner-automorphisms
of �), is an invariant of G(K). Then its cardinality |R(G(K), �)| is an invariant
of the knot group G(K). We may also consider the quotient of R(G(K), �) by the
action of the automorphism group of �.

Fix a conjugacy class γ of an element of �, and let R(G(K), �, γ ) be the
subset of R(G(K), �) consisting of the homomorphisms which map the meridian
to an element in the conjugacy class γ . Then the cardinality |R(G(K), �, γ )| is
again an invariant of the oriented knot K . If � is the dihedral group D2p =
〈a, t | ap, t2, tat−1 = a−1〉 of order 2p and if γ is the conjugacy class of the ele-
ment t , the Fox p-coloring number [87] is essentially equal to |R(G(K),D2p, t)|.

Fix a transitive representation of � into the symmetric group Sn of degree
n, where n is possibly infinite. Then for each φ ∈ R(G(K), �), we have a
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(possibly disconnected) n-fold covering Eφ(K) of E(K). Then the family of
homology groups {H1(Eφ(K);Z)}φ∈R(G(K),�) forms an invariant of the knot K .
Furthermore, if the image of the element γ in Sn is of finite order, then we obtain a
branched covering Mφ(K) of S3 branched over K . The family of homology groups
{H1(Mφ(K);Z)}φ∈R(G(K),�,γ ) forms another invariant of K . We can also consider
the torsion linking numbers among the components of the inverse image of K .

Riley [270] applied this method by choosing � to be the simplest finite
simple group PSL(2, p), with p a prime ≥ 5, and setting γ to be the parabolic

transformation

(
1 1
0 1

)

. This enabled him to prove that the Kinoshita–Terasaka knot

and the Conway knot are different. His proof also showed that none of them
is amphicheiral. He then considered parabolic representations of knot groups to
PSL(2,C), and this led him to the discovery of the complete hyperbolic structure of
the Figure-eight knot complement in [271].

Hartley [123] realized that one can apply this method to the problem of identify-
ing noninvertible knots, as follows. Suppose no automorphism of � maps γ to γ−1.
Then the set R(G(K), �, γ ) is possibly different from the set R(G(K), �, γ−1),
and there is a chance to show noninvertibility of K by comparing the homology
invariants associated with φ ∈ R(G(K), �, γ ) with those associated with φ′ ∈
R(G(K), �, γ−1). Hartley showed that this method is quite effective: he completely
determined the 36 non-invertible knots up to 10 crossings claimed by Conway to be
noninvertible.

A variation of the method is to consider the subset Rt (G(K), Sn, γ ) of
R(G(K), Sn, γ ) consisting of the transitive representations, where n is a finite
positive integer. By virtue of the development of computers, this turns out to be an
extremely efficient method for distinguishing knots. In fact, Thistlethwaite [299]
succeeded in distinguishing knots up to 11 crossings, and later the same method
was applied successfully to knots up to 16 crossings in [144].

3.3 The Geometric Decomposition of Knot Exteriors

The purpose of this section is to explain the geometric decompositions of knot
exteriors into Seifert pieces and hyperbolic pieces, obtained as a special case of
the Thurston’s geometrization theorem of Haken manifolds.

We recall (i) the prime decomposition theorem of general compact orientable 3-
manifolds, (ii) the torus decomposition theorem of compact irreducible orientable
3-manifolds, (iii) the eight homogeneous 3-dimensional geometries, and (iv) the
geometrization conjecture, which was finally established by Perelman. In the final
subsection, we give detailed exposition of the geometric decompositions of knot
exteriors.

For standard facts in 3-manifold theory, see the short note Hatcher [125] and
the textbooks Hempel [127], Jaco [148], Jaco–Shalen [149], Johannson [150] and
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Schultens [286]. For an introduction to geometric structures, see the surveys Scott
[287] and Bonahon [40] and the textbook Martelli [194].

3.3.1 Prime Decomposition of 3-Manifolds

In this subsection, we recall the canonical decomposition of compact orientable 3-
manifolds by 2-spheres. Let M be a compact connected orientable 3-manifold. A
2-sphere in M is essential if it does not bound a 3-ball in M . M is irreducible if
it contains no essential 2-sphere. Suppose M is not irreducible, and let S be an
essential 2-sphere in M . If S is separating (i.e., M−S consists of two components),
then M is the connected sum M1#M2 of the two compact orientable 3-manifolds M1
and M2, which are obtained from the closures of the components by capping off the
resulting sphere boundaries by adding 3-balls. If S is non-separating (i.e., M − S

is connected), then M is expressed as the connected sum (S2 × S1)#M ′ of S2 × S1

with some compact orientable 3-manifold M ′ (possibly S3).
M is prime if whenever M = M1#M2 we have Mi

∼= S3 for i = 1 or 2. Then we
have the following Kneser–Milnor unique prime decomposition theorem [170, 211]
(cf. [127]).

Theorem 3.3.1 (Unique Prime Decomposition of Compact Orientable 3-
Manifolds) Any compact orientable 3-manifold admits a decomposition
M = P1# · · · #Pn into prime manifolds {Pi}. Moreover, the prime factors {Pi}
are uniquely determined by M , up to change of the indices.

3.3.2 Torus Decomposition of Irreducible 3-Manifolds

In this subsection, we explain the torus decomposition theorem for compact
orientable irreducible 3-manifolds. Torus decomposition is a simple version of more
intricate JSJ (Jaco–Shalen–Johannson) decomposition, in which decompositions
along annuli are also involved. The JSJ decomposition theory grew out of the
study to understand homotopy equivalences among 3-manifolds, and its simplified
version, the torus decomposition, turned out to be a complete obstruction for the
hyperbolization of a 3-manifold.

Throughout this subsection, � denotes a compact orientable surface in M which
is properly embedded in M , i.e., � ∩M = ∂�. We also assume that � �∼= S2. Then
� is incompressible in M if for any disk D in M such that D ∩� = ∂�, the simple
loop ∂D bounds a disk in �. By the loop theorem (see [127]), this is equivalent to
the algebraic condition that the homomorphism j∗ : π1(�) → π1(M) induced by
the inclusion is injective.

M is Haken if it is irreducible and contains a properly embedded compact
orientable surface which is incompressible.
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A surface � in M is essential if it is incompressible and is not ∂-parallel, i.e.,
� does not cut off a 3-manifold in M homeomorphic to � × I . M is atoroidal if it
does not contain an essential torus.

M is a Seifert fibered space if it is expressed as a union of disjoint circles, in a
particular way. The quotient of M obtained by collapsing each fiber into a point has
the structure of a 2-dimensional orbifold, and is called the base orbifold. If M admits
a smooth S1 action without a fixed point (i.e., the stabilizer of any point is not the
whole group S1), then M is a Seifert fibered space whose base orbifold is the orbit
space M/S1. Seifert fibered spaces are regarded as S1-bundles over 2-dimensional
orbifolds, and are completely described by the Seifert invariants. See [127, 287] for
details.

Now we state the torus decomposition theorem, which is a simplified version of
the JSJ decomposition theorem due to Jaco and Shalen [149] and Johannson [150].
(See [241] and [66] for an alternative proof, and see [125] for a simple proof of the
torus decomposition theorem.)

Theorem 3.3.2 (Torus Decomposition Theorem) For a compact orientable irre-
ducible 3-manifold M , there is a unique (up to isotopy) family T of disjoint essential
tori, satisfying the following properties.

(a) Each closed up component of M−T is either a Seifert fibered space or atoroidal.
(b) If any component of T is deleted, Property (a) fails.

In the above theorem, by a closed up component M − T, we mean the closure
of a component of M − N(T), where N(T) is a regular neighborhood of T. The
subsurface T is called the characteristic toric family of M , and each closed up
component of M − T is called a JSJ piece of M .

It should be noted that the family T is not only unique up to homeomorphism but
also unique up to isotopy. This forms a sharp contrast to the fact that in the prime
decomposition theorem, the family of the splitting spheres is not unique even up to
homeomorphisms. (It only says that the resulting prime manifolds are unique up to
homeomorphisms.)

3.3.3 The Geometrization Conjecture of Thurston

Thurston’s geometrization conjecture says that any compact orientable irreducible
3-manifold has a canonical splitting, by tori, into pieces which admit one of the
following eight homogeneous geometries.

◦ The spaces of constant curvature, S3, E3 and H3;
◦ The product spaces S2 × E1 and H2 × E1; and
◦ The 3-dimensional Lie groups Nil, Sol, and S̃L2(R).

Here a compact connected orientable 3-manifold M is geometric if either it is a
3-ball or its interior can be presented as the quotient intM = X/� of one of the
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above homogeneous spaces, X, by a discrete group � of isometries acting freely
and discontinuously on X. If X = Sol then M is a bundle over S1 or the 1-
dimensional orbifold S1/(z ∼ z̄) with torus fiber; if X is neither Sol nor H3, then
M is a Seifert fibered space and it is completely described by Seifert invariants.
Conversely any Seifert fibered space admits one of the 6 remaining geometric. See
the nice expositions [40, 287] for details.

Thus we have a complete topological classification of the geometric manifolds
with X geometry for X �= H3, and the study of hyperbolic manifolds forms the
crucial part in 3-manifold theory and knot theory.

Thurston proposed the following geometrization theorem as a conjecture, which
says that the torus decomposition gives a complete obstruction for a compact
orientable 3-manifold to be hyperbolic. Here M is said to be hyperbolic if its
interior can be presented as the quotient intM = H3/� by a discrete torsion-
free group � of isometries of H3 (cf. Sect. 3.5). Thurston proved the conjecture
for various cases, including the case when M is Haken, and the whole conjecture
was finally proved by Perelman [253–255]. (See [201, 202, 218] for a survey, and
see [23, 59, 169, 223, 224] for detailed expositions.)

Theorem 3.3.3 (Geometrization Theorem) Let M be a connected irreducible
atoroidal compact orientable 3-manifold. Then M is either a Seifert fibered space
or a hyperbolic manifold.

By combining Theorems 3.3.2 and 3.3.3, we obtain the following geometric
decomposition theorem.

Theorem 3.3.4 (Geometric Decomposition Theorem) For a compact orientable
irreducible 3-manifold M , there is a unique (up to isotopy) family T of disjoint
essential tori satisfying the following properties.

(a) Each closed up component of M − T is either a Seifert fibered space or a
hyperbolic manifold.

(b) If any component of T is deleted, Property (a) fails.

In the above theorem, a closed up component of M−T is called a Seifert piece or
a hyperbolic piece according to whether it is a Seifert fibered space or a hyperbolic
manifold.

3.3.4 Geometric Decompositions of Knot Exteriors

We describe a consequence for knot exteriors of the torus decomposition theorem
and the geometrization theorem described in the previous subsection. Let K be a
knot and consider its exterior E(K). Then E(K) is irreducible by the Schönflies
theorem. Moreover, E(K) is Haken, because a minimal genus Seifert surface is an
incompressible surface in E(K).
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Theorem 3.3.5 (The Geometric Decomposition of Knot Exteriors) Given a
knot K in S3, there is a unique (up to isotopy) compact subsurface T in the interior
E(K) satisfying the following properties.

(a) Each component of T is an essential torus.
(b) Each closed up component of E(K) − T is either a Seifert fibered space or a

hyperbolic manifold of finite volume.
(c) If any component of T is deleted, Property (b) fails.

We call the JSJ piece of E(K) containing ∂E(K) the root JSJ piece . The JSJ-
decomposition is intimately related to Schubert’s satellite operation [284]. To see
this, assume that T �= ∅ and pick a component T of T. Then T bounds a solid torus
V = S1 ×D2 in S3, which satisfies the following conditions.

(1) The core k := S1 × 0 of V forms a nontrivial knot in S3.
(2) K is contained in V geometrically essentially, i.e., there is no 3-ball B such that

K ⊂ B ⊂ V . Moreover, K is not isotopic in V to the core k of V .

Thus K is a satellite knot of the companion knot k ⊂ S3 with pattern (V ,K) (cf.
Fig. 3.6 and [275, Section 4.D]).

It should be noted that composition of knots is a special case of the satellite
operation. In fact, the composite knot K1#K2 is a satellite of K1 with pattern (S3 −
intN(μ2),K2) where μ2 is a meridian of K2. It is also a satellite of K2 with pattern
(S3 − intN(μ1),K1).

It turns out that JSJ pieces of knot exteriors are expressed as link exteriors
(Theorem 3.3.7). A link L is a smoothly (or piecewise-linearly) embedded disjoint
union of circles in S3, namely L is a closed 1-submanifold of S3. Thus a knot is a
link of 1 component. A link of μ-components is called a μ-component trivial link
if it bounds μ disjoint disks in S3, and we denote it by Oμ. The exterior of a link
L is defined by E(L) := S3 − intN(L), where N(L) is a regular neighborhood of
L. The links in the example below play a key role in torus decompositions of knot
exteriors.

Fig. 3.6 A Whitehead double
of a trefoil knot is a satellite
knot whose companion knot
is a trefoil knot and whose
pattern knot is represented by
the Whitehead link
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Example 3.3.6

(1) The μ + 1-component key chain link Hμ+1 = K0 ∪ Oμ is a union of the
μ-component trivial link Oμ and the trivial knot K0 which intersects each
member of μ disjoint links bounded by Oμ. Then E(Hμ+1) is homeomorphic
to (μ holed disk)× S1, and is called a composing space. If E(Hμ+1) is the root
JSJ piece of a knot exterior E(K), then K is a connected sum of μ prime knots.

(2) For a pair (p, q) of relatively prime integers, the (p, q)-torus knot Kp,q is
defined by

Kp,q := {(z1, z2) ∈ S3 | zp1 + z
q

2 = 0}.

Kp,q is a regular orbit of the circle action on S3 given by

ω · (z1, z2) = (ωqz1, ω
pz2) (ω ∈ S1 ⊂ C).

Thus E(Kp,q) is a Seifert fibered space. Kp,q is contained in the torus

T := {(z1, z2) ∈ S3 | |z1|p = |z2|q},

and it wraps q times in the z1 direction and p times in the z2 direction. The
annulus A := T ∩E(K) divides E(Kp,q) into two solid tori. By van-Kampen’s
theorem in this setting, we see that

G(Kp,q) = 〈a, b | ap = bq〉.

The cyclic subgroup generated by ap = bq forms the infinite cyclic center of
G(Kp,q). Moreover, a knot K is a torus knot if and only if G(K) has a nontrivial
center. Kp,q is nontrivial if and only if both p and q have absolute value ≥ 2.
If E(Kp,q) is a JSJ piece of a knot exterior E(K), then K is a satellite of the
torus knot Kp,q .

(3) For a pair (p, q) of relatively prime integers with p ≥ 2, the (p, q)-Seifert link
Cp,q is defined by

Cp,q := K0 ∪Kp,q with K0 = {(z1, z2) ∈ S3 | z2 = 0}.

If Cp,q is the root JSJ piece of a knot exterior E(K), then K is the (p, q)-cable
of some nontrivial knot.

We have the following characterization of the torus decompositions of knot
exteriors.

Theorem 3.3.7

(1) A compact orientable 3-manifold M is a JSJ piece of E(K) for some nontrivial
knot K in S3 if and only if M ∼= E(L) for some link L in S3, which is the union
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of a knot K0 and a trivial link Oμ (with μ possibly 0), such that E(L) is either (i)
hyperbolic or (ii) a Seifert fibered space homeomorphic to a composing space,
a nontrivial torus knot exterior, or a cable space.

(2) Let K be a nontrivial knot in S3, and let T be a union of disjoint essential tori
in E(K), satisfying the following conditions.

(i) Each closed up component of E(K)−T is homeomorphic to a link exterior
E(L) which satisfies the condition in (1).

(ii) There does not exist a pair of adjacent closed up components of E(K)−T,
both of which are composing spaces.

Then T is the characteristic toric family of E(K).

The way JSJ pieces fit together in E(K) is recorded by the companionship
tree, defined as follows: The vertices correspond to the JSJ pieces, and the edges
correspond to the components of T, where if an edge corresponds to a component
T of T, it joins the vertices corresponding to the two JSJ pieces containing T as a
boundary component. Since H1(S

3) = 0, this graph is a tree. For a more detailed
description of torus decompositions, see [42, Chapter 2] and [51].

3.4 The Orbifold Theorem and the Bonahon–Siebenmann
Decomposition of Links

In [300, Chapter 13], Thurston initiated the systematic study of orbifolds, namely
quotients of spaces by properly discontinuous group actions which are not neces-
sarily free. In 1978, he announced the orbifold theorem, the geometrization theorem
of 3-orbifolds which have non-empty 1-dimensional singular set. Every link L =
∪jKj determines an infinite family of orbifolds, by regarding each component Kj

as the singular locus of cone angle 2π/nj for some nj ≥ 2. The case when nj = 2
for every j is particularly important, and the Bonahon–Siebenmann decomposition
theory of links is essentially the decomposition theory of such orbifolds. Their
theory is intimately related with Conway’s ingenious analysis of link diagrams,
and gives us a nice method for understanding links directly from their diagrams. In
particular, it gives a complete classification of the “algebraic links”, which implies,
for example, that the Kinoshita–Terasaka knot and the Conway knot are different
and that they admit no symmetry.

The purpose of this section is to recall the orbifold theorem and its impact on
knot theory. To be precise, we will give surveys of (i) the Bonahon–Siebenmann
decomposition theory, (ii) the classification of 2-bridge links, (iii) the orbifold
theorem, and (iv) application of the orbifold theorem to the study of branched cyclic
coverings.
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3.4.1 The Bonahon–Siebenmann Decompositions for Simple
Links

By the geometric decomposition Theorems 3.3.5 and 3.3.7 of knot exteriors, the
classification of knots is reduced to that of the links whose exteriors have trivial torus
decompositions. Deriving from Montesinos’ work [214, 215] on double branched
coverings of links and Thurston’s work on 3-dimensional orbifolds, Bonahon and
Siebenmann established a new decomposition theorem for such links. This is
essentially a Z/2Z-equivariant JSJ decomposition theory, applied to the double
branched coverings of links.

To explain their results, we introduce a few definitions. A link L in S3 is splittable
if there is a 2-sphere S in S3 which separates the components of L. L is unsplittable
if it is not splittable. This is equivalent to the condition that E(L) is irreducible. L is
simple for Schubert if E(L) is irreducible and atoroidal. If L is simple for Schubert,
then the JSJ decomposition of E(L) is trivial. The converse also holds for knots, but
not for links. For example, the key-chain link Hμ+1 is not simple for Schubert, but
the torus decomposition of E(Hμ+1) is trivial.

Let (M,L) be a pair consisting of a compact orientable 3-manifold and a proper
1-submanifold L in M . A Conway sphere in (M,L) is a 2-sphere � in intM or ∂M
which meets L transversely in 4 points. A Conway sphere � is said to be pairwise
compressible if there is a disk D in M − L such that D ∩ � = ∂D does not bound
a disk in � − L. Otherwise, � is said to be pairwise incompressible. Two Conway
spheres � and �′ in M are said to be pairwise parallel, if there is a closed up
component N of M − (� ∪ �′) bounded by � and �′ such that (N,N ∩ L) ∼=
(�,� ∩ L) × [0, 1]. A Conway sphere is essential if it is pairwise incompressible
and is not pairwise parallel to a boundary component. (M,L) is simple for Conway
if it does not contain an essential Conway sphere.

A trivial tangle is a pair (B3, t), where t is a union of two arcs properly embedded
arcs in B3 which is parallel to a pair of disjoint arc in ∂B3. A rational tangle is a
trivial tangle (B3, t) which is endowed with an identification of ∂(B3, t) with the
Conway sphere standardly embedded inR3 ⊂ S3. A rational tangle, up to the natural
equivalence relation, is determined uniquely by its slope as illustrated in Fig. 3.7.
(See [63] for the original definition, and see [42, Chapter 8.1] or [69, Section 8.6]
for detailed exposition.)

A Montesinos pair is a pair (M,L) which is built from a hollow Montesinos pair
or a hollow Montesinos pair with a ring in Fig. 3.8 by plugging some of the holes
with rational tangles of finite slope.

Bonahon and Siebenmann established the following decomposition theorem [42,
Theorem 3.4].

Theorem 3.4.1 For a link L in S3 that is simple for Schubert, there is a unique
(up to isotopy respecting L) compact subsurface G ⊂ S3 satisfying the following
property.
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Fig. 3.7 The pair of arcs forming a trivial tangle is parallel to a pair of arcs on the boundary
Conway sphere. If we identify the Conway sphere with the quotient of R2 by the group generated
by π-rotations around the lattice points, then the inverse image of the pair of arcs in R2 forms a
family of mutually disjoint lines of rational slope passing through the lattice points. This slope is
the slope of the rational tangle

Fig. 3.8 (a) a hollow Montesinos pair, (b) a hollow Montesinos pair with a ring

(a) Each component of G is a pairwise incompressible Conway sphere.
(b) Each closed up component N of S3 − G gives a pair (N,N ∩ L) that either is

simple for Conway, or else is a Montesinos pair.
(c) If any component of G is deleted, Property (b) fails.

The above decomposition is called the characteristic decomposition (or the
Bonahon–Siebenmann decomposition) of (S3, L). The union of the Montesinos
pairs is called the algebraic part or arborescent part of (S3, L). The link (S3, L) is
called an arborescent link if its arborescent part is equal to the whole pair (S3, L).
This terminology comes from the fact that arborescent parts can be represented by
weight planar trees. The classification the arborescent parts and links is given by
[42, Part V].

Example 3.4.2 The Bonahon–Siebenmann decomposition of the Kinoshita–
Terasaka knot and the Conway knot are given by the spheres in Fig. 3.5 (cf.
[215, Sections 4.1 and 4.2]). This fact gives an intuitive proof of the inequivalence
of these two knots. It also shows that both knots are arborescent.

For a link L in S3, let p : M2(L) → S3 be the double branched covering
of S3 branched over L, and let τ be the covering involution. Then the Bonahon–
Siebenmann decomposition of L can be regarded as a Z2-equivariant version of the
torus decomposition of M2(L) for the following reasons:
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◦ The inverse image of an essential Conway sphere of (S3, L) is an essential torus
in M2(L).

◦ Let (N,N ∩ L) be a piece of the Bonahon–Siebenmann decomposition of
(S3, L) which is a Montesinos pair. Then the inverse image p−1(N) is a Seifert
fibered space, where the base orbifold is orientable or non-orientable according
to whether (N,N ∩ L) is obtained from a hollow Montesinos pair or that with a
ring (see [214, 216]). Moreover, the covering involution τ preserves the Seifert
fibration of p−1(N). The image of its fiber in S3 is either a circle disjoint from L

or an interval with endpoints in L.
◦ The above fact implies that the inverse image in M2(L) of the arborescent part of

(S3, L) is a graph manifold (cf. Waldhausen [316]). In particular, if (S3, L) is an
arborescent link then M2(L) is a graph manifold.

◦ For each piece (N,N∩L) of the Bonahon–Siebenmann decomposition of (S3, L)

which is not a Montesinos pair, the inverse image p−1(N) is irreducible and
atoroidal. Moreover, by the orbifold theorem (Theorem 3.4.4) explained later in
this section, p−1(N) admits a complete hyperbolic structure of finite volume,
with respect to which τ |p−1(N) is an isometry.

We note that the Bonahan-Siebenmann decomposition is intimately related
with Conway’s ingenious analysis of knot diagrams, which in turn is based on
Kirkmann’s idea from the nineteenth century (see [144] for the history). In fact, it
reveals that Conway’s notation for a link diagram is not merely a convenient tool for
describing diagrams but also contains geometric information of the link represented
by a diagram. This is certainly the case for algebraic parts of the link. As shown
in [42, Theorems 1.4 and 6.11], Conway’s notation for non-algebraic parts also has
geometric information under certain conditions.

3.4.2 2-Bridge Links

In this subsection, we introduce 2-bridge links, which form a very special but
important class of links. For a rational number r ∈ Q ∪ {1/0}, the 2-bridge link,
K(r), of slope r is defined as the “sum” of the rational tangles of slopes r and 1/0.
To be precise, it is obtained from the rational tangles, (B3, t (r)) and (B3, t (1/0)),
of slopes r and 1/0, respectively, by glueing (B3, t (r)) and (−B3, t (1/0)) along
the boundaries via the identity map. (Note that the boundaries of rational tangles are
identified with the Conway sphere standardly embedded in R3.) If r = q/p where
p ≥ 0 and q are relatively prime integers, then K(r) is a knot or a two-component
link according to whether p is odd or even. The following classification theorem was
proved by Schubert [285], by establishing the uniqueness up to isotopy of 2-bridge
spheres (2-spheres which divide K(r) into two trivial tangles).
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◦ Two 2-bridge links K(q/p) and K(q ′/p′) are isotopic if and only if p = p′ and
either q ≡ q ′ (mod p) or qq ′ ≡ 1 (mod p). They are homeomorphic if and
only if p = p′ and either q ≡ ±q ′ (mod p) or qq ′ ≡ ±1 (mod p).

The double branched covering, M2(K(q/p)), of S3 branched over K(q/p) is the
lens space L(p, q), and the above classification of 2-bridge links can be also
deduced from the classification of lens spaces, which in turn was established
by Reidemeister [265], using the Reidemeister torsion. Moreover, the following
characterization of 2-bridge link was obtained by Hodgson and Rubinstein [139],
by classifying involutions on lens spaces with 1-dimensional fixed point sets.

◦ A link L in S3 is a 2-bridge link if and only if the double branched covering
M2(L) is a lens space.

The result of [139] is a special but important case of the orbifold theorem
(Theorem 3.4.4) explained later in this section. They also proved the uniqueness
up to isotopy of genus 1 Heegaard surfaces of lens spaces, which in turn gives a
purely topological proof of the classification of lens spaces.

Thurston’s uniformization theorem for Haken manifold (cf. Theorems 3.3.3),
together with an analysis of incompressible surfaces in the exterior of 2-bridge links,
imply the following (cf. [272, p.102], [171, Lemmas 4.4], [126]).

◦ The 2-bridge link K(q/p) is hyperbolic if and only if q �≡ ±1 (mod p).

3.4.3 Bonahon–Siebenmann Decompositions and π -Orbifolds

For a link L in S3, the pair (S3, L) is homeomorphic to the quotient
(M2(L),Fix(τ ))/τ , where M2(L) is the double branched covering of S3 branched
over L and τ is the covering involution. This means that the good 3-orbifold
O(L) := M2(L)/τ has S3 as underlying space and L as singular set, and each
component of the singular set L has cone angle π . The Bonahon–Siebenmann
decomposition is regarded as the torus decomposition of this orbifold.

Recall that an n-orbifold is a metrizable topological space O locally modeled
on the quotient of Rn by a finite subgroup G of the orthogonal group O(n). If a
point x ∈ O corresponds to the image of the origin of Rn, then the finite group G

is called the local group at x, and is denoted by Gx . If Gx is trivial, x is regular,
otherwise x is singular. The singular locus is the subset, �O, of O consisting of the
singular points. When Gx is the cyclic group generated by a 2π/m-rotation around
the codimension 2 subspace Rn−2 × {0}, we say that the point x (and the stratum of
the singular set containing x) has cone angle 2π/m or index m.

A quotient space O := X/�, where X is a smooth n-manifold and � is a smooth
properly discontinuous action, is an n-orbifold, and its singular locus is the image
of the subspace of X consisting of points with nontrivial stabilizer. If � is a finite
group, such an orbifold is called a good orbifold. The orbifold fundamental group
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πorb
1 (O) of O is defined as the group consisting of all lifts of � to the universal

covering space X̃ of X. Thus we have the following exact sequence.

1 → π1(X) → πorb
1 (O) → � → 1

For a link (S3, L), the orbifold O(L) := (M2(L),Fix(τ ))/τ is called the π-
orbifold associated with L. The orbifold fundamental group πorb

1 (O(L)) is called
the π-orbifold group of L. It is calculated from the link group G(L) = π1(S

3 − L)

and a set of meridians {μ1, . . . , μm} as follows:

πorb
1 (O(L)) = G(L)/〈〈μ2

1, . . . , μ
2
m〉〉.

Here m is the number of components of L, and μj is a meridian of the j -th
component of L. By using the orbifold theorem explained in the next subsection,
Boileau and Zimmermann [34] proved the following theorem which shows that
πorb

1 (O(L)) is a very strong invariant for links.

Theorem 3.4.2 Let L be a prime unsplittable link in S3 such that πorb
1 (O(L)) is

infinite. Then the following hold.

(1) For any link L′ in S3, the pairs (S3, L) and (S3, L′) are homeomorphic if and
only if their π-orbifold groups πorb

1 (O(L)) and πorb
1 (O(L′)) are isomorphic.

(2) The natural homomorphism from the symmetry group Sym(S3, L) to the outer-
automorphism group Out(πorb

1 (O(L))) is an isomorphism.

Here the symmetry group Sym(S3, L) is the group of diffeomorphisms of the
pair (S3, L) up to isotopy. It should be noted that the problem of determining
the symmetry group of a knot is a refinement of the fundamental problem of
determining whether the knot is chiral/invertible.

Using the above theorem, Boileau and Zimmermann [33] determined the sym-
metry groups of all non-elliptic Montesinos links, i.e., the Montesinos links with
infinite π-orbifold groups. (The symmetry groups of elliptic Montesinos links were
determined by [279] using the orbifold theorem.) This result may be regarded as
a broad extension of Trotter’s proof [309] of non-invertibility of the pretzel knot
P(p, q, r) with |p|, |q|, |r| distinct odd integers≥ 3. Trotter’s proof is based on the
fact that πorb

1 (O(P (p, q, r))) is an extension of the hyperbolic triangular reflection
group

[p, q, r] = 〈x, y, z | x2, y2, z2, (xy)p, (yz)q, (zx)r〉

by the infinite cyclic group, which in turn is a consequence of the fact that
the π-orbifold O(P (p, q, r)) is a Seifert fibered orbifold over the 2-dimensional
hyperbolic orbifold H2/[p, q, r].

The symmetry groups of the arborescent links are completely determined by
Bonahon and Siebenmann in [42]. In particular, this implies that the symmetry
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groups of the Kinoshita–Terasaka knot and the Conway knot are trivial, and so they
are chiral and noninvertible. The knot 817 is also arborescent, and its symmetry
group is the order 2 cyclic group, generated by an orientation-reversing involu-
tion representing the negative-amphicheirality of the knot. This is the Bonahon-
Siebenmann’s proof of the non-invertibility of 817 (cf. Sect. 3.2.6).

3.4.4 The Orbifold Theorem and the Smith Conjecture

Many of the concepts for 3-manifolds, such as irreducibility, atoroidality and Seifert
fibrations, have natural generalization for 3-orbifolds, and a characteristic splitting
(torus decomposition) theorem was established by Bonahon and Siebenmann [41]
(cf. [35, 40]). The characteristic splitting Theorem 3.4.1 for links is a special case
of the general splitting theorem, though the detailed analysis for the algebraic parts
and the application to knot theory in [42] cannot be found in [41].

Bonahon-Siebenmann’s theory forms the first step towards the proof of the
following geometrization theorem for orbifolds, which was announced by Thurston
[301], and finally proved by Boileau, Leeb and Porti [36] (see also Cooper–
Hodgson–Kerckhoff [65] and Boileau–Porti [32] for an earlier account, and
Dinkelbach–Leeb [79] for the generalization to non-orientable orbifolds using
the equivariant Ricci flow).

Theorem 3.4.4 (Orbifold Theorem) Every compact orientable good 3-orbifold
with nonempty singular set has a canonical splitting by spherical 2-dimensional
suborbifolds and toric 2-dimensional suborbifolds into geometric 3-orbifolds.

Here a 3-orbifold O is geometric if either it is the quotient of a ball by an
orthogonal action, or its interior has one of the eight Thurston geometries, namely
O = X/�, where X is one of the eight Thurston’s geometries and � is a discrete
subgroup of Isom(X). (If X is different from the constant curvature spaces H3, E3

and S3, then there is no canonical metric on X, however, it admits a family of natural
metrics for which Isom(X) are identical. See the beautiful surveys [40, 287].)

The orbifold theorem was first announced as the following symmetry theorem
concerning finite group actions on 3-manifolds.

Theorem 3.4.5 (Symmetry Theorem) Let M be a compact orientable irreducible
3-manifold. Suppose M admits an action by a finite group G of orientation-
preserving diffeomorphisms such that some non-trivial element has a fixed point
set of dimension one. Then M admits a geometric decomposition preserved by the
group action.

This theorem poses a very strong restriction on finite group actions on knots (see
[28, 187, 278]). In particular, it includes, as a special case, the following positive
answer to the Smith conjecture.
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Theorem 3.4.6 (The Smith Conjecture) If h : S3 → S3 is an orientation-
preserving periodic diffeomorphism with non-empty fixed point set, then h is
smoothly conjugate to an orthogonal diffeomorphism. In particular, Fix(h) is the
trivial knot.

The proof of this conjecture recorded in [219] may be regarded as the first
major impact of Thurston’s uniformization theorem for Haken manifolds, and it
was established using the uniformization theorem, the equivariant loop theorem by
Meeks–Yau [205], and a refinement of Bass–Serre theory [289].

In Theorems 3.4.5 and 3.4.6, the smoothness of the action is essential. In fact
there is an orientation-preserving periodic homeomorphism h of S3 which has a
wild knot as the fixed point set; in particular, the cyclic action generated by h

is not topologically conjugate to an orthogonal action. It is this phenomena that
lead Shin’ichi Kinoshita and Hidetaka Terasaka, the founders of knot theory in
Japan, into knot theory. It is an amazing coincidence that Terasaka published an
introductory book [298] to non-Euclidean geometry for the general public in 1977,
around the time Thurston started the series of lectures on the geometry and topology
of 3-manifolds.

3.4.5 Branched Cyclic Coverings of Knots

In Sect. 3.4.3, we explained the important role of the double branched coverings of
knots and links. Not only the double branched covering but also the cyclic branched
covering has attracted keen attention of various mathematicians, because the latter
gives a bridge between knot theory and 3-manifold theory and because of its special
beauty. In this subsection, we review the impact of Thurston’s work, in particular
the orbifold theorem, on the study of branched cyclic coverings of knots.

For a knot K in S3, let Mn(K) be the n-fold cyclic branched covering of S3

branched over K . We also call Mn(K) the n-fold cyclic branched covering of K .
Then we have the following natural question.

Problem 3.4.7 To what extent does the topological type of Mn(K) determine K?

It should be noted that Mn(K) inherits the orientation of the ambient space S3,
but it is independent of the orientation of the circle K . Namely Mn(K) ∼= Mn(−K)

as oriented manifolds. Thus the precise meaning of the above question is as follows.
To what extent does the topological type of the oriented manifold Mn(K) determine
the isotopy type of the unoriented knot K?

The positive solution of the Smith conjecture is essentially equivalent to the
following partial answer to the above problem (see [219]).

Theorem 3.4.8 (Branched Covering Theorem) A knot K in S3 is trivial if and
only if Mn(K) ∼= S3 for some n ≥ 2.
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The orbifold theorem gives a very strong tool for the study of Problem 3.4.7.
Before describing its influence, let us recall two classical constructions of pairs of
knots sharing the same cyclic branched covering.

Construction 1 Let K be a non-invertible prime oriented knot. Then, by the unique
prime factorization theorem, the knots K#K and K#(−K) are not isotopic as
unoriented knots. However, they share the same n-fold cyclic branched covering
for all n ≥ 2, because:

Mn(K#K) ∼= Mn(K)#Mn(K) ∼= Mn(K)#Mn(−K) ∼= Mn(K#(−K))

Construction 2 Let L = K1 ∪K2 be a 2-component link consisting of two trivial
knots. For integers n1, n2 ≥ 2 which are relatively prime to the linking number
lk(K1,K2), the inverse image K̃1 of K1 in Mn1(K2) ∼= S3 is a knot, and so is the
inverse image K̃2 of K2 in Mn2(K1) ∼= S3. Moreover, both Mn2(K̃1) and Mn1(K̃2)

are homeomorphic to the (Z/n1Z) ⊕ (Z/n2Z)-covering of S3 branched over L,
and hence they are homeomorphic. (There is an analogous construction by using a
three-component link such that any 2-component sublink is a Hopf link (see [267,
0.2]).)

Now, we state an important consequence of the orbifold theorem (see [65]).

Theorem 3.4.9 Let K be a hyperbolic knot in S3, i.e., K is a knot which is neither
a torus knot nor a satellite knot. Then Mn(K) is hyperbolic for all n ≥ 3, except
for the 3-fold covering of the figure eight knot (which is a Euclidean manifold).
Moreover, the covering transformation group acts on Mn(K) by isometries.

Remark 3.4.10 In the above theorem the assumption n ≥ 3 is essential. In fact, if
a hyperbolic knot contains an essential Conway sphere, �, then the inverse image,
�̃, of � in M2(K) is an essential torus and hence M2(K) is non-hyperbolic even
though K itself is hyperbolic. Moreover, every arborescent link has a graph manifold
as double branched covering.

The hyperbolic Dehn surgery theorem implies that if n is sufficiently large, then
the branch line forms the unique shortest closed geodesic in Mn(K) (cf. Sect. 3.7.3).
Using this fact, we can see that Mn(K) for sufficiently large n determines the knot
K . More generally, Kojima [172] proved the following theorem, which gives a
positive answer to a question of Goldsmith [167, Problem 1.27].

Theorem 3.4.11 For each prime knot K there exists a constant nK , such that two
prime knots K and K ′ are equivalent if their n-fold cyclic branched covers are
homeomorphic for some n > max(nK, nK ′).

We can reformulate Problem 3.4.7 as follows: For a given connected closed
orientable 3-manifold M , in how many different ways can M occur as a cyclic
branched covering of a knot in S3? There are two basic cases: the case when M is
a Seifert fibered space and the case when M is a hyperbolic manifold. (The general
case can be treated by using the equivariant sphere theorem and torus decomposition
[204] into Seifert fibered space and hyperbolic manifolds.)
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When M is a Seifert fibered space, the covering transformation group, H , is
fiber-preserving by [204] (when π1(M) is infinite) and by the orbifold theorem
(when π1(M) is finite). If H reverses the fiber-orientation, then the quotient knot
is a Montesinos knot whereas if H preserves the fiber-orientation then the quotient
knot is a torus knot.

In the case where M is hyperbolic, we may assume, by the orbifold theorem,
that H is a cyclic subgroup of the finite group Isom+(M). The group H must be
a hyper-elliptic group, namely H is a finite cyclic group such that Fix h is a circle
for every non-trivial element h ∈ H , and M/H ∼= S3 (cf. [39, Definition 1]). Thus
there is a one-to-one correspondence

{knots K such that Mn(K) ∼= M for some n ≥ 2}/isotopy

↔ {hyper-elliptic subgroups of Isom+(M)}/conjugacy.

By Kojima’s theorem [173], any finite group can be the full isometry group of
a closed orientable hyperbolic 3-manifold. However, the geometric condition for
a hyper-elliptic group, H , implies purely group theoretical conditions on H . For
example, we can see by using the Smith conjecture (Theorem 3.4.6) that the
normalizer of H in Isom+(M) is a finite subgroup of the semi-direct product
(Z/2Z)� (Q/Z⊕Q/Z), where Z/2Z acts on Q/Z⊕Q/Z as multiplication by −1
(see [39, Remark 3]). Thus we have a chance to apply finite group theory to the study
of cyclic branched coverings. For example, if we are interested in the case when
the degree n is a prime number p, then by Sylow’s theorem, every hyper-elliptic
subgroup of order p is conjugate to a cyclic subgroup of a single Sylow p-subgroup
Sp of Isom+(M). This interplay between the study of cyclic branched coverings and
finite group theory was initiated by Reni and Zimmermann, and various interesting
results were obtained, including the following.

◦ Reni–Zimmermann [267]: Let K and K ′ be two hyperbolic knots such that
Mn(K) ∼= Mn′(K ′) for some n, n′ ≥ 3. Suppose further that n and n′ have a
common prime divisor p > 2. Then K and K ′ are related by Construction 2.
In particular, if n = n′ is not a power of 2, then the same conclusion holds (cf.
[328]).

◦ Paoluzzi [251]: A hyperbolic knot is determined by any three of its cyclic
branched coverings of order ≥ 2. Indeed, two coverings suffice if their orders
are not coprime.

◦ Boileau–Franchi–Mecchia–Paoluzzi–Zimmermann [39]: A closed hyperbolic 3-
manifold is a cyclic branched covering of at most fifteen inequivalent knots in
S3.

A noteworthy aspect of the proof of the last result is the substantial use of finite
group theory, in particular of the classification of finite simple groups.

For the double branched coverings, we have the following additional construc-
tion.
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Construction 3 Let θ be a θ -curve in S3, namely a spatial graph consisting of two
vertices and three edges α1, α2 and α3, each of which connects the two vertices. For
{i, j, k} = {1, 2, 3}, suppose Ak := αi ∪ αj forms a trivial knot. Then the inverse
image, Kk , of the arc αk in M2(Ak) ∼= S3 forms a (strongly invertible) knot, and
M2(Kk) is identified with the (Z/2Z)2-covering of S3 branched over θ . If Ak is
a trivial knot for more than one k ∈ {1, 2, 3}, we obtain knots in S3 sharing the
same double branched coverings. (A similar construction is applied to embeddings
of the 1-skeleton of the tetrahedron and the Kuratwski graph in S3, which produce
potentially distinct 4 and 9 knots, respectively, sharing the same double branched
coverings (see [203]).)

A link L is said to be π-hyperbolic if M2(L) is hyperbolic. For double coverings
of π-hyperbolic knots, the following results were obtained.

◦ Boileau–Flapan [29]: If K is a π-hyperbolic knot, then every knot K ′ which
shares the same double branched covering with K is constructed by repeatedly
applying Constructions 2 and 3.

◦ Reni [266]: There are at most nine different π-hyperbolic knots with the same
double branched coverings. Mecchia–Reni [203] gave a more geometric proof to
this estimate and proved that the same estimate holds for π-hyperbolic links.

◦ Kawauchi [162]: Reni’s estimate is the best possible, i.e., there are nine mutually
inequivalent π-hyperbolic knots Ki (i = 1, · · · , 9), in S3 with the same double
branched coverings.

In the proof of the second result, the study of the Sylow 2-subgroup of Isom+(M) of
a closed orientable hyperbolic 3-manifold holds a key. The third result was obtained
by using Kawauchi’s imitation theory, which yields, for a given (3, 1)-manifold pair
(M,L), a family of (3, 1)-manifold pairs (M∗, L∗) which is “topologically similar”
to (M,L). A key example in the theory is the Kinoshita–Terasaka knot, which is
an imitation of the trivial knot. (This fact was first found by Nakanishi [236] and a
beautiful generalization of this fact was given by Kanenobu [156].)

For the double branched covering of links which are not π-hyperbolic, we have
the following additional construction. (See Paoluzzi [250] for further construction.)

Construction 4 (Mutation) Let � be an essential Conway sphere of a link L in S3.
Cut (S3, L) along � and reglue by an orientation-preserving involution of (�,� ∩
L) whose fixed point set is disjoint from � ∩ L. This process, called a mutation,
results in a new link L′ in S3, called a mutant of L. A pair of links are called mutants
if they are related by a sequence of mutations. It was proved by Viro [312, Theorem
1] that if L and L′ are mutants then they share the same double branched coverings
(cf. [161, Proposition 3.8.2]).

In [115], Greene studied the Heegaard Floer homology of the double branched
coverings of alternating links, and proved that a reduced alternating link diagram is
determined up to mutation by the Heegaard Floer homology of the double branched
covering of the link. In particular, the following result follows.
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◦ Two reduced alternating links L and L′ share the same double branched covering
if and only if L and L′ are mutants.

He also proposes the mysterious conjecture: if a pair of links have homeomorphic
double branched coverings, then either both are alternating or both are non-
alternating.

3.5 Hyperbolic Manifolds and the Rigidity Theorem

In this section, we recall basic facts concerning hyperbolic manifolds and the
Mostow–Prasad rigidity theorem for hyperbolic manifolds of finite volume and of
dimension ≥ 3. The rigidity theorem has had tremendous influence on knot theory,
because it guarantees that any geometric invariant of the hyperbolic structure of
a hyperbolic knot complement is automatically a topological invariant of the knot
complement.

For further information on hyperbolic geometry, see the textbooks Benedetti–
Petronio [19], Ratcliffe [260], Matsuzaki–Taniguchi [197], Anderson [18] and
Marden [191].

3.5.1 Hyperbolic Space

Let Hn be the hyperbolic n-space, i.e., the upper-half space

H
n := {(x1, . . . , xn) ∈ R

n | xn > 0}

in Rn equipped with the Riemannian metric

ds2 = 1

x2
n

(dx2
1 + · · · + dx2

n).

Hn is the unique connected, simply connected, complete Riemannian manifold of
constant sectional curvature −1. The isometry group Isom(Hn) is a real Lie group
and acts transitively on Hn, and the stablizer of each point is identified with the
orthogonal group O(n). If n ≥ 3, the ideal boundary ∂Hn = (Rn−1 × {0}) ∪ {∞}
has a natural conformal structure, and the orientation-preserving isometry group
Isom+(Hn) is identified with the group of conformal maps of ∂Hn.

Let γ be a nontrivial element of Isom+(Hn). Then precisely one of the following
holds.

(1) γ is elliptic, i.e., γ has a fixed point in Hn.
(2) γ is parabolic, i.e., γ has a unique fixed point, x, in ∂Hn, called the parabolic

fixed point. Then γ preserves every horoball, Hx , centered at x. Here, if x �= ∞,
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then Hx is the intersection of a (closed) Euclidean ball with Hn which touches
∂Hn at x, and if x = ∞ then Hx is the closed upper-half space

H∞,c := {(x1, . . . , xn) ∈ H
n | xn ≥ c} for some c > 0,

called the horoball centered at ∞ with hight c. The horosphere ∂Hx inherits a
Euclidean metric from the hyperbolic metric, which is invariant by γ .

(3) γ is hyperbolic, i.e., γ has precisely two fixed points in ∂Hn, one of which is
repelling and the other is attracting. The geodesic in Hn joining the two fixed
points is the unique geodesic which is preserved by γ ; it is called the axis of γ ,
and denoted by axis γ .

For low dimensions n = 2 and 3, we have:

Isom+(H2) ∼= PSL(2,R), Isom+(H3) ∼= PSL(2,C).

We identify the upper-half space H3 = R2×R+ with C×R+ and identify the ideal

boundary ∂H3 with the Riemann sphere C∪{∞}. Then the action of A =
(
a b

c d

)

∈
PSL(2,C) on ∂H3 = C ∪ {∞} is given by the linear fractional transformation

A(z) = az+ b

cz+ d
.

Assume that A �= ±E, where E is the identity matrix. Then, as we see in
the following, the orientation-preserving isometry of H3 corresponding to A ∈
PSL(2,C) is elliptic, parabolic, or hyperbolic according as the trace trA (which
is defined up to sign change) belongs to (−2, 2), {±2}, or C− [−2, 2].

Case 1. trA �= ±2. Then A has precisely two fixed points in ∂H3. After
conjugation in PSL(2,C), we may assume that they are 0 and ∞. Thus A(z) = az

for some a = reθ
√−1 ∈ C∗ − {1}. The action of the isometry A on H3 is given by:

A(z, t) = (az, |a|t) = (reθ
√−1z, rt).

This is a skrew motion along the geodesic axis 0 × R+ with (signed) translation
length log r and rotation angle θ . The quantity

LA := log r + θ
√−1 = log a ∈ C/2π

√−1Z

is called the complex translation length of the isometry A. If we interchange 0 and
∞ by conjugation in PSL(2,C), then the complex translation length changes into
−(log r + θ

√−1). Thus the complex translation length is defined only modulo
2π
√−1Z and up to multiplication by±1. In fact, a simple calculation implies LA is

characterized by the following identity: (Note that tr A for A ∈ PSL(2,C) is defined
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only up to sign.)

± trA = 2 cosh
LA

2

If we fix an orientation of the axis, then the complex translation length is defined
as an element in C/2π

√−1Z. Note that A is elliptic if and only if r = 1, which
equivalent to the condition that trA ∈ (−2, 2) (under the assumption that A �= ±E).
Thus A is hyperbolic or elliptic according to whether trA is contained in (−2, 2) or
C− [−2, 2].

Case 2. trA = ±2. Then A has a unique fixed point in ∂H3 and hence parabolic.
After conjugation in PSL(2,C), we may assume that it is ∞. Thus A(z) = z + τ

for some τ ∈ C∗. The action of the isometry A on H3 is given by:

A(z, t) = (z+ τ, t).

In this case, the complex translation length LA is defined to be 0.
The following lemma can be easily proved.

Lemma 3.5.1 Let A be a nontrivial element in PSL(2,C) which is not an elliptic
element of order 2. Then the centralizer C(A) in PSL(2,C) is as follows.

(1) If A is elliptic or hyperbolic, then C(A) − {E} consists of elliptic/hyperbolic
elements which share the same axis with A. Thus C(A) is isomorphic to the
multiplicative group C∗

(2) If A is parabolic, then C(A)− {E} consists of parabolic elements which share
the same parabolic fixed point with A. Thus C(A) is isomorphic to the additive
group C

3.5.2 Basic Facts for Hyperbolic Manifolds

By a hyperbolic structure on an n-manifold M , we mean a Riemannian metric on M

of constant sectional curvature −1: the curvature condition means that every point
in M has a neighborhood isometric to an open set of Hn. A hyperbolic structure on
M induces a hyperbolic structure on the universal cover M̃ of M which is invariant
by the action of the covering transformation group. Thus we obtain a local isometry
D : M̃ → Hn, called the developing map, and a homomorphism ρ : π1(M) →
IsomHn, called the holonomy representation, such that D is ρ-equivariant, i.e., D ◦
γ = ρ(γ ) ◦D : M̃ → Hn.

A hyperbolic structure on M is complete if the induced metric on M is complete.
This condition is equivalent to the condition that the induced metric on M̃ is
complete, which in turn is equivalent to the condition that the developing map D :
M̃ → Hn is an isometry. Then the holonomy representation ρ : π1(M) → IsomHn

is faithful and discrete, nameley ρ gives an isomorphism from π1(M) to a discrete
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torsion-free subgroup, �, of IsomHn. Thus the complete hyperbolic manifold M is
identified with Hn/�.

By a Kleinian group we mean a discrete subgroup of Isom+
H3, and by a

Fuchsian group we mean a discrete subgroup of Isom+
H2. By Lemma 3.5.1, any

commutative torsion-free Kleinian group is conjugate to one of the three groups in
the following example.

Example 3.5.2 (Commutative Torsion-Free Kleinian Groups)

(1) The infinite cyclic group J0 = J0(re
θ
√−1) generated by the hyperbolic element

A(z) = reθ
√−1z with r > 1. The hyperbolic manifold H3/J0 is homeomorphic

to the interior of the solid torus, and it has the unique closed geodesic with
length �LA = log r . For any r > 0, the closed r-neighborhood of axisA
is invariant by J0, and its quotient by J0 is called a tube around the closed
geodesic.

(2) The infinite cyclic group J1 generated by the parabolic transformation A(z) =
z+1. The hyperbolic manifold H3/J1 is homeomorphic to the product intD∗×
R+, where D∗ = D2 − {0} is a once-punctured disk. This hyperbolic manifold
does not contain a closed geodesic. For any c > 0, the horoballH∞,c is invariant
by J1 and and its quotient by J1 is called an annulus cusp.

(3) The rank 2 free abelian group J2 = J2(τ ) generated by the two parabolic
transformations A(z) = z+1 and B(z) = z+τ with τ ∈ C−R. The hyperbolic
manifold H3/J2 is homeomorphic to the product T 2 × R+, and it does not
contain a closed geodesic. For any c > 0, the horoball H∞,c is invariant by
J2 and its quotient by J2 is called a torus cusp. The boundary torus ∂H∞,c/J2
admits a Euclidean structure which is conformally equivalent to the Euclidean
torus C/〈1, τ 〉. Though the cusp neighborhood H∞,c/J2 is noncompact, its
volume vol(H∞,c/J2) = 1

2 area(∂H∞,c/J2) is finite. The complex number τ

is called the modulus of the cusp torus with respect to the basis {A,B}.
For an orientable complete hyperbolic 3-manifold M = H3/� and a point x ∈

M the injectivity radius r(x,M) of M at x is defined by

r(x,M) = sup{r > 0 | the r-neigborhood of x in M is isometric to an r-ball in H
3}.

For a given constant ε > 0, we can decompose M into the ε-thick part

M≥ε = {x ∈ M | r(x,M) ≥ 1

2
ε}

and its complement

M<ε = {x ∈ M | r(x,M) <
1

2
ε}.

The closure of M<ε is denoted by M≤ε and is called the ε-thin part of M . (This
complicated definition eliminates the trouble which occurs when there is a closed
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geodesic of length ε [307, p.254].) The following is a consequence of the Margulis
lemma (see [300, Theorem 5.10.1 and Corollary 5.10.2]).

Theorem 3.5.3 There is a universal constant ε0 > 0, such that for any positive
constant ε < ε0 and for any orientable complete hyperbolic manifold M = H3/�,
the ε-thin part M≤ε is a disjoint union of tubes around (short) simple closed
geodesics, annulus cusps, and torus cusps.

The following proposition can be proved by using the above theorem and the
concept of convex core introduced in Sect. 3.10.1. (See [300, Proposition 5.11.1]).

Proposition 3.5.4 If an orientable complete hyperbolic manifold M = H3/� has
finite volume, then M is the union of a compact submanifold (bounded by tori) and
finitely many torus cusps C1, . . . , Cm for some m ≥ 0. In particular, M is identified
with the interior of a compact 3-manifold M̄ with (possibly empty) toral boundary.

To end this subsection, we recall an important consequence of Thurston’s
hyperbolization theorem for Haken manifolds.

Definition 3.5.5 A knot or link L in S3 is hyperbolic if its complement S3 − L ∼=
intE(L) admits a complete hyperbolic structure of finite volume.

The following theorem is a special case of Theorem 3.3.5, which in turn is a
special case of the geometrization theorem.

Theorem 3.5.6 A prime knot in S3 is hyperbolic if and only if it is neither a torus
knot nor a satellite knot. More generally, an unsplittable prime link L is hyperbolic
if and only if E(L) is atoroidal and is not a Seifert fibered space.

3.5.3 Rigidity Theorem for Complete Hyperbolic Manifolds
of Finite Volume

For complete hyperbolic structures of finite volume of dimension≥ 3, the following
strong rigidity theorem is established by Mostow [225] and Prasad [257] (cf. [300,
Theorem 5.7.2]).

Theorem 3.5.7 (The Mostow–Prasad Rigidity Theorem) If an orientable n-
manifold with n ≥ 3 admits a complete hyperbolic structure of finite volume, then
this structure is unique. To be precise, the following holds. Let �i (i = 1, 2) be
discrete torsion free subgroups of Isom+

Hn with n ≥ 3 of cofinite volume, i.e.,
vol(Hn/�i) < ∞. Then any isomorphism φ : �1 → �2 is realized by a unique
isometry f : Hn/�1 → Hn/�2.

This theorem together with Thurston’s hyperbolization theorem had tremendous
impact in knot theory. Because Theorem 3.5.6 says that almost all knots are
hyperbolic (moreover, the Geometrization Theorem 3.3.5 reduces the study of knots
to the study of hyperbolic links) and the above theorem imply that geometric
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invariants, such as volumes, cusp shapes, and lengths of shortest closed geodesics,
of the complete hyperbolic structures on knot/link complements are topological
invariants of the knots/links.

3.6 Computation of Hyperbolic Structures and Canonical
Decompositions of Cusped Hyperbolic Manifolds

Epstein and Penner proved that every cusped hyperbolic manifold of finite volume
admits a natural ideal polyhedral decomposition, called the canonical decom-
position. This fact (together with the rigidity theorem and the Gordon–Luecke
knot complement theorem) has the following striking consequence in knot theory.
The combinatorial structure of the canonical decomposition of a hyperbolic knot
complement is a complete knot invariant. Moreover the marvelous computer
program SnapPea developed by Jeffrey Weeks enabled us to compute the canonical
decompositions of knot complements. For example, SnapPea immediately tells us
that the Kinoshita–Terasaka knot and the Conway’s knot are different and that they
admit no symmetry.

In this section, we recall the Epstein–Penner canonical decomposition and
its impact on knot theory. We also recall a method for constructing hyperbolic
structures by using ideal triangulation, which was first explained in Thurston’s
lecture notes [300, Chapter 4], and explain a method for finding the canonical
decomposition. In the final subsection, we give a list of geometric invariants of
hyperbolic knots, which are guaranteed to be knot invariants by the rigidity theorem,
and introduce their study from the viewpoint of effective geometrization.

3.6.1 The Canonical Decompositions of Cusped Hyperbolic
Manifolds

Let M = Hn/� be an orientable complete hyperbolic n-manifold of finite volume
with m ≥ 1 cusps. Pick mutually disjoint cusps C1, . . . , Cm of M , and set
C = ∪m

i=1Ci . Then we can canonically construct a spine F and a canonical ideal
polyhedral decomposition D of M as follows.

Observe that a generic point in M − C has a unique shortest geodesic path to
C but that there are exceptional points which have more than one shortest geodesic
paths to C. Let F be the subset of M − C consisting of these exceptional points.
Namely, F is the cut locus in M with respect to the cusps C = ∪m

i=1Ci . Then F

is a locally finite totally geodesic cell complex in M , and there is a deformation
retraction of M onto F. We call it the Ford complex or Ford spine of M , with respect
to the choice of cusps C1, C2, . . . , Cm.
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By taking the geometric dual to F as follows, we obtain an ideal polyhedral
decomposition D of M . Let F̃ and C̃ be the inverse images of F and C in the
universal covering Hn of M . Pick a vertex x of F̃. Then there are finitely many
shortest geodesic paths from x to C̃. Let {vi} be the ideal points in ∂Hn forming
the centers of the horoball components of C̃ which are joined to x by a shortest
geodesic path. The convex hull of the ideal points {vi} forms an n-dimensional
ideal polyhedron of Hn, and the collection of all such ideal polyhedra, where x runs
over the vertices of F̃, determines a �-invariant tessellation of Hn. The tessellation
descends to an ideal polyhedral decomposition D of M = Hn/�.

Epstein and Penner [82] gave a description of the decomposition D by using a
convex hull construction in Minkowski space. Their description shows that each cell
ofD admits a natural (incomplete) Euclidean structure: so, these decompositions are
called Euclidean decompositions. In [14], a generalization of the Epstein–Penner
construction to cusped hyperbolic manifolds of infinite volume is given, and their
relationship to the convex cores are discussed.

The Ford complex F and its geometric dual D depend only on the ratio of the
volumes vol(C1) : vol(C2) : · · · : vol(Cm). Moreover, it is proved by Akiyoshi
[13] that the combinatorial structures of F, when the ratio varies, are finite. The
ideal polyhedral decompositionD, for the case when C1, C2, . . . , Cm have the same
volume, is uniquely determined by the hyperbolic manifold M , and is called the
canonical decomposition of the cusped hyperbolic manifold M .

Example 3.6.1

(1) Let M be the hyperbolic thrice-punctured sphere, obtained by gluing two ideal
hyperbolic triangles through identification of their boundaries via the identity
map. Then this decomposition of M into the two copies of ideal triangles is
the canonical decomposition of M . The corresponding Ford complex of M is a
θ -shaped geodesic spine of M consisting of two vertices and three edges.

(2) As shown by Thurston [301, Chapter 4], the complete hyperbolic structure of
the figure-eight knot complement M is obtained by glueing two copies of the
regular ideal tetrahedron. The decomposition of M into the two copies of the
regular ideal tetrahedron is the canonical decomposition of M .

Since the complete hyperbolic structure of a given knot complement is unique
by the Mostow–Prasad rigidity theorem (Theorem 3.5.7), and since by the knot
complement theorem (Theorem 3.2.4) a knot is determined by its complement,
it follows that the combinatorial structure of the canonical decomposition of a
hyperbolic knot complement is a complete topological invariant of the knot.

Theorem 3.6.2

(1) Two hyperbolic knots are equivalent, if and only if the canonical decompositions
of their complements are combinatorially equivalent.

(2) Let K be a hyperbolic knot and D the canonical decomposition of S3−K . Then

Sym(S3,K) ∼= Isom(S3 −K) ∼= Aut(D).
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In the above theorem, Sym(S3,K) := π0 Diff(S3,K) denotes the symmetry
group of the knot K , and Aut(D) denotes the combinatorial automorphism group of
D.

Example 3.6.3 (1) It is a simple exercise to see that the automorphism group
of the canonical decomposition D of the complement figure-eight knot K is
isomorphic to the order 8 dihedral group D8. Thus we have Sym(S3,K) ∼=
Isom(S3 −K) ∼= D8.

(2) The canonical decompositions of the complements of the Kinoshita–Terasaka
knot and the Conway knot consist of 12 and 14 ideal tetrahedra, respectively.
Hence they are inequivalent, even though they are mutants of each other
and so they share the same Alexander polynomial, the Jones polynomial, the
hyperbolic volume and the same double branched coverings. Moreover, the
automorphism groups of both canonical decompositions are trivial. Thus the
symmetry groups of these two knots are trivial. In particular, both of them
are neither amphicheiral nor invertible. The noninvertibility of 817 can be also
proved by using the canonical decomposition of the knot complement.

As explained in the next subsection, the canonical decompositions are amenable
to computer calculation, and wonderful computer programs were developed:
SnapPea by Weeks [320], Snap by Coulson–Goodman–Hodgson–Neumann [68],
SnapPy by Culler–Dunfield–Goerner [75], and a computer verified program
HIKMOT by Hoffman–Ichihara–Kashiwagi–Masai–Oishi–Takayasu [143]. The
results in Example 3.6.3(2) are, of course, obtained by any of these programs.

This enabled Hoste, Thistlethwaite and Weeks [144] to extend (and correct)
Conway’s enumeration of all 11 crossing knots to include all prime knots up
16 crossings. There are 1,701,936 such knots, and all except for 32 knots are
hyperbolic! To be precise, Hoste and Weeks used the canonical decomposition, and
Thistelethwaite used the “universal method” described at the end of Sect. 3.2.7. Thus
their table is double checked, and this fact shows the strength of both methods.

This is something like a magic wand for knot theorists as long as finitely
many knots of reasonable crossing numbers are concerned. However, to understand
the canonical decompositions of infinite families of knots or cusped hyperbolic
manifolds is not easy. For the Farey manifolds, namely punctured torus bundles and
2-bridge knot complements, the combinatorial structures of the canonical decompo-
sitions are determined by Jorgensen [152] and Guéritaud [121] (cf. [15, 120, 281]).

To end this subsection, we remark that it is still an open problem to see
whether every orientable cusped hyperbolic 3-manifold of finite volume admits a
ideal triangulation, namely an ideal polyhedral decomposition consisting of ideal
tetrahedra. Here an ideal tetrahedron is a closed convex hull in H3 of 4 ideal
points in ∂H3, called the ideal vertices. (Since any such manifold M admits
an ideal polyhedral decomposition by [82] and since every ideal polyhedron is
decomposed into ideal tetrahedra, M admits a partially flat ideal triangulation,
namely one in which some of the tetrahedra degenerate into flat quadrilaterals with
distinct vertices (see [256]). But this does not necessarily lead to a genuine ideal
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triangulation of M .) Wada, Yamashita and Yoshida [315] and Yoshida [326] proved
the existence of such triangulations under certain combinatorial conditions on the
polyhedral decomposition, and Luo, Schleimer and Tillman [188] proved that every
such manifold virtually admits an ideal triangulation, namely some finite cover
has an ideal triangulation. Hodgson, Rubinstein and Segerman [141] considered
a relaxed version of the problem, and proved, in particular, that every hyperbolic
link complement in S3 admits a topological ideal triangulation with a “strict angled
structure”.

3.6.2 Ideal Triangulations and Computations of the Hyperbolic
Structures

Let M = H3/� be an orientable complete hyperbolic 3-manifold of finite volume
with m ≥ 1 cusps, and let ρ : π1(M) → � < PSL(2,C) be the holonomy
representation. Then, as we have observed in the previous section, M admits an
ideal polyhedral decomposition D. We now assume that D is an ideal triangulation,
namely D consists of ideal tetrahedra. Any ideal tetrahedron � (up to isometry)
is represented by a complex number z with positive imaginary part, such that the
Euclidean triangle cut out of any vertex of � by a horosphere is similar to the
triangle in C with vertices 0, 1, and z. In fact, � is isometric to the ideal tetrahedron
�(z) spanned by 0, 1,∞ and z in the upper half-space model C×R+ of H3. We call
z the shape parameter of the ideal tetrahedron �(z). (If z has negative imaginary
part, then �(z) is regarded as negatively oriented. If z is a real number different
from 0 and 1, then �(z) is regarded as a degenerate ideal tetrahedron.) The complex
numbers z, (z − 1)/z, and 1/(1 − z) give isometric ideal tetrahedra, and we give
each edge e of � = �(z) one of the three complex numbers by the following rule,
and call it the edge parameter of � associated with e.

◦ Edges [0,∞] and [1, z] have edge parameter z.
◦ Edges [1,∞] and [0, z] have edge parameter 1/(1− z).
◦ Edges [z,∞] and [0, 1] have edge parameter (z− 1)/z.

Let e be an edge of the ideal triangulation D of M , and let z1, . . . , zk be the edge
parameter of the edges of ideal tetrahedra glued to e. Since these ideal tetrahedra
close up as one goes around e, the parameters satisfies the following equation.

k∏

i=1

zj = 1 and
k∑

j=1

arg(zj ) = 2π

This condition is identical to the following equation, which is called the gluing
equation around e.

k∑

j=1

log(zj ) = 2π
√−1,
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where log : C−R≤0 → C is the branch of the logarithm function whose imaginary
part lies in (−π, π).

Let T be a torus boundary component of the compact 3-manifold M̄ whose
interior is homeomorphic to the hyperbolic manifold M = H3/�, and let μ be
an oriented essential simple loop on T . (A simple loop on T is essential if it
does not bound a disk in T .) By identifying T with a cusp torus, and considering
the intersection with the cusp torus with the ideal triangulation D, we obtain a
triangulation of T , whose vertices correspond to the edges of D and whose triangles
correspond to truncations of ideal tetrahedra around ideal vertices. We may assume
that μ intersects the edges of the triangulation transversely and does not intersect
the vertices of the triangulation. Each segment of μ in a triangle cuts off a single
vertex of the triangle, and so has an associated edge parameter zj . Define εj = +1
or −1 according to whether the vertex lies to the left of μ or not. (Here we assume
that ∞ is a parabolic fixed point of �, π1(T ) is identified with the stabilizer �∞
of ∞, and T is identified with the Euclidean torus C/�∞ via the projection from
a horosphere centered at ∞ to C. The left/right convention is determined by the
standard orientation of C.) Then we can see that the complex translation length of
the image ρ(μ) of μ by the holonomy representation ρ of the complete hyperbolic
manifold M is represented by the complex number

Lμ :=
∑

j

εj log(zj ).

Since ρ(μ) is parabolic, we have Lμ = 0. Thus we have the following completeness
equation

∑

i

εi log(zi) = 0.

Conversely, let M̄ be an orientable compact manifold whose boundary is non-
empty and consists of tori, and let D be a topological ideal triangulation of
M = int M̄ . Namely D is a topological trianglulation (a cell decomposition
whose cells are identified with simplices) of the space M̂ = M̄/ ∼, where ∼ is
the equivalence relation which identifies all points of each boundary component
of M̄, such that the vertex set of D is equal to the finite set consisting of the
image of ∂M̄ . By a simple argument using the Euler characteristic, we see that
the number of edges in D is equal to the number, t , of tetrahedra in D. Now let
H+ = {z ∈ C | �z > 0} be the upper-half space of the complex plane. Pick a t-tuple
of complex numbers z = (z1, . . . , zt ) ∈ (H+)t ⊂ Ct with positive imaginary parts,
and identify the topological ideal tetrahedra {�1, . . . ,�t } with hyperbolic ideal
tetrahedra {�(z1), . . . ,�(zt )}. Since all hyperbolic ideal triangles are isometric,
we can realize the topological gluing maps among the faces of the topological ideal
tetrahedra by hyperbolic isometries. Thus we obtain a hyperbolic structure on the
complement of the 1-skeleton of D. We have the following theorem (see [242, 300]).
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Theorem 3.6.4 Under the above setting, the following hold for each z =
(z1, . . . , zt ) ∈ (H+)t ⊂ Ct .

(1) The hyperbolic structure on the complement of the 1-skeleton of D extends a
hyperbolic structure on the whole M if and only if z satisfies the gluing equation
at every edge of D.

(2) When condition (1) is satisfied, the resulting hyperbolic structure on M is
complete if and only if z also satisfies the completeness equation at every
boundary component of M̄ (for a single choice of an oriented essential simple
loop μ for each boundary component).

Remark 3.6.5 Let X be the variety of z = (z1, . . . , zt ) ∈ C
t consisting of the

solutions of the gluing equations. Then, by a combinatorial argument, we can see
that X has dimension m over C, where m is the number of boundary components
of M̄ ([300, Theorem 5.6], [242, Proposition 2.3]). By the rigidity theorem, there
is a unique point z0 ∈ X ∩ (H+)t which satisfies the completeness equation. It is
proved by [242, Section 4] that z0 is a smooth point of X ∩ (H+)t , namely there
is a neighborhood of z0 in X ∩ (H+)t which is biholomorphically equivalent to an
open set in C

m. (Moreover, it was proved by Choi [62] that X ∩ (H+)t is a smooth
complex manifold.) This fact plays a crucial role in a proof of the hyperbolic Dehn
filling theorem (see Sect. 3.7.2).

On the other hand, there is a convenient method for obtaining topological ideal
triangulations of knot/link complements from diagrams (see [206, 297, 322]). Thus
we have a good chance to construct a complete hyperbolic structure on a given
knot/link complement by applying Theorem 3.6.4. In fact, this works extremely
well, though the proof of Thurston’s uniformization theorem is very difficult.

Moreover, if a given ideal triangulation D of M satisfies a certain inequality at
each codimension 1 face of D, then D is the canonical decomposition (see [321]). If
the inequality was not satisfied at some face of D, then apply the Pachner 3−2 move
to D at the face, if it is geometrically realizable, and check if the conditions for the
faces hold. If this does not lead to the canonical decomposition, then retriangulate
D randomly, and repeat the above procedure. This is the way SnapPea finds the
canonical decompositions. Though there is no theoretical guarantee, this method is
extremely efficient (see [321, 322]). For the treatment of the case when the canonical
decomposition is not an ideal triangulation, see the work of Hodgson and Weeks
[140].

3.6.3 Other Geometric Invariants for Hyperbolic Knots
and Effective Geometrization

In addition to the canonical decomposition, there are various important geometric
invariants of hyperbolic knots and links.
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◦ The volumes and the Chern–Simons invariants of the hyperbolic link comple-
ments.

◦ The volumes of the maximal cusps.
◦ The moduli of the Euclidean cusp tori.
◦ Length spectrum, i.e., the multi-set of lengths of closed geodesics, in particular

the length of the shortest closed geodesic.
◦ Lengths of the vertical geodesic paths, joining maximal cusps to themselves.
◦ Euclidean length spectrum of the maximal cusp torus.

Volumes of hyperbolic manifolds are treated in Sect. 3.8.
In the recent beautiful survey [96], Futer, Kalfagianni, and Purcell discuss these

invariants from the viewpoint of effective geometrization or WYSIWYG topology,
where WYSIWYG stands for “what you see is what you get”, which aims to
determine the geometry of link complements directly from the link diagrams. A
typical example in this direction is the following estimate by Lackenby [176] of the
volume of alternating link complements in terms of the twist number.

Theorem 3.6.6 Let D be a reduced alternating diagram of a hyperbolic link L in
S3, and let t (D) be the twist number of the diagram D. Then

1

2
Vtet(t (D)− 2) ≤ vol(S3 − L) ≤ Vtet(16t (D)− 16)

where Vtet = 1.0149416 . . . is the volume of the regular ideal tetrahedron.

Here the twist number t (D) of a link digram D is the number of twists of D, where
a twist of D is either a connected collection of bigon regions in D arranged in a row
which is maximal in the sense that it is not part of a longer row of bigons, or a single
crossing adjacent to no bigon regions.

The article [96] presents a nice survey on the recent great progress towards
effective geometrization, including a refinement of the above result.

3.7 Flexibility of Incomplete Hyperbolic Structures
and the Hyperbolic Dehn Filling Theorem

By the Mostow–Prasad rigidity theorem, the complete hyperbolic structure on a 3-
manifold M of finite volume is rigid. However, when M has a cusp, the complete
hyperbolic structure admits nontrivial continuous deformations into incomplete
hyperbolic structures (see Remark 3.6.5). In the generic case, the metric completion
yields a pathological topological space which is not even Hausdorff. However, in
certain special isolated cases, the metric completion produces a complete hyperbolic
manifold. This is a rough idea of Thurston’s hyperbolic Dehn filling Theorem.
This theorem has stimulated keen attention of many mathematicians and enormous
amount of research grew out of this result. In this section, we give an outline of a
proof of this theorem and a brief survey of its influence on knot theory.
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3.7.1 Hyperbolic Dehn Filling Theorem

We begin by recalling the topological operation, Dehn filling. By an oriented slope
on a torus T , we mean the isotopy class of an oriented essential simple loop on T .
Each oriented slope represents a primitive element of H1(T ;Z), and conversely any
primitive element of H1(T ;Z) is represented by a unique oriented slope. If we fix
a basis {μ, λ} of H1(T ;Z), then a primitive element of H1(T ;Z) is expressed as
pμ + qλ where (p, q) is a pair of relatively prime integers. Thus we can identify
the set of oriented slopes on T with the set of pairs of relatively prime integers
(p, q) ∈ Z2 ⊂ R2 ∪ {∞} ∼= S2.

Let M be a connected compact orientable 3-manifold whose boundary consists
of m tori T1, . . . , Tm. Pick an oriented slope νj on Tj for each j , and attach a solid
torus Vj = D2

j × S1 to M along Tj , so that the meridian ∂D2
j × {∗} is identified

with the slope νj . The resulting manifold is denoted by M(ν) = M(ν1, . . . , νm)

and called the result of Dehn filling of M along the tuple ν = (ν1, . . . , νm) of
oriented slopes. We extend this operation to the case where some νj is the symbol
∞, by the rule that if νj = ∞ then we leave the boundary Tj as it is. In particular,
M(∞, . . . ,∞) = M .

The following theorem is proved by Thurston [300, Chapters 4 and Section 5.8].

Theorem 3.7.1 (Hyperbolic Dehn Filling Theorem) Let M be a connected
compact orientable 3-manifold whose boundary consists of m tori, and suppose
that intM admits a complete hyperbolic structure of finite volume. Then, except
for finitely many choices of the slopes of νj for each 1 ≤ j ≤ m, the manifold
M(ν1, . . . , νm) admits a complete hyperbolic structure. To be more precise, there
exists a neighborhood V of (∞, . . . ,∞) in (R2 ∪ {∞})m such that M(ν1, . . . , νm)

admits a complete hyperbolic structure for every slope (ν1, . . . , νm) contained in V .

Remark 3.7.2

(1) The operation at Tj is actually determined by the slope (the isotopy class of an
unoriented essential simple loop on a torus) obtained from νj by forgetting the
orientation.

(2) When M is the exterior of an m-component link L = ∪m
j=1Kj in S3, we

fix an orientation of each component Kj of L, and choose the meridian-
longitude systems {μj , λj } as a preferred basis for H1(Tj ;Z), and represent
an oriented slope, νj , on Tj by a pair of relatively prime integers (pj , qj ) with
νj = pjμj + qjλj . The slope obtained from νj by forgetting the orientation is
uniquely determined by the rational number pj/qj ∈ Q ∪ {1/0}. (It should be
noted that slope 1/0 and the symbol∞ have different meanings.) Moreover, this
does not depend on the choice of the orientation of Kj . We denote the manifold
M(ν1, . . . , νm) by M(p1/q1, . . . , pm/qm), and call it the result of Dehn surgery
on L with slope (p1/q1, . . . , pm/qm).

In Theorem 3.7.1, a slope (or a tuple of slopes) which does not produce a
hyperbolic manifold is called an exceptional slope.
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Example 3.7.3

(1) The exceptional slopes of the figure-eight knot K are the slopes p/q with
−4 ≤ p ≤ 4 and −1 ≤ q ≤ 1. Thus the set of exceptional slopes is
{1/0, 0,±1,±2,±3,±4} (see [300, Section 4.6]).

(2) Let M be the exterior of the Whitehead link L = K1 ∪ K2 in S3. Consider
the Dehn filling only along T1 = ∂N(K1). Then the exceptional slopes for
this Dehn filling are those slopes contained in the parallelogram with vertices
±(4,−1) and ±(0, 1) (see [240, Section 6]).

3.7.2 Outline of a Proof and Generalized Dehn Filling
Coefficients

We give an outline of the proof of Theorem 3.7.1 by Neumann–Zagier [242] (cf. [19,
Section E.6]), when the hyperbolic manifold intM admits an ideal triangulation D.
(See Petronio–Porti [256] for a proof without assuming the existence of an ideal
triangulation, and using a partially flat ideal triangulation of M .) Let �1, . . . ,�t

be the ideal tetrahedra in D, and let z0 = (z0
1, . . . , z

0
t ) be their shape parameters.

By the rigidity theorem and Theorem 3.6.4, z0 is the unique solution of the gluing
and the completeness equations. Let X be the variety of z = (z1, . . . , zt ) ∈ Ct

consisting of the solutions of the gluing equations. For z ∈ X ∩ (H+)t , let Mz be
the (almost certainly incomplete) hyperbolic manifold determined by the parameter
z, and let ρz : π1(M) → PSL(2,C) be the holonomy representation of Mz. For
each boundary component Tj of M (1 ≤ j ≤ m), fix an oriented slope μj . For
z ∈ X ∩ (H+)t , let uj (z) be the complex number Lμj , defined as in Sect. 3.6.2,
which represents the complex translation length of ρz(μj ). (Though the complex
translation length is defined only modulo 2π

√−1Z and up to multiplication by ±1,
the construction in Sect. 3.6.2 gives a well-defined continuous lift to C.)

For each boundary component Tj , pick an oriented slope λj which intersects μj

transversely in a single point and so {μj , λj } forms a generator system of H1(Tj ;Z).
Let v := (v1, . . . , vm) be the map fromX to Cm, where vj (z) is the complex number
Lλj , defined as in Sect. 3.6.2, which represents the complex translation length of
ρz(λj ).

Recall the key Remark 3.6.5 that there is a neighborhood of z0 in X∩(H+)t which
is biholomorphically equivalent to an open set in Cm. By using this fact, we can see
that u := (u1, . . . , um) maps a neighborhood of z0 ∈ X∩ (H+)t biholomorphically
onto a neighborhood, X0, of 0 ∈ Cm (cf. [242, Section 4]).

We now change notation as follows. For u ∈ X0, we denote the corresponding
hyperbolic manifold and the holonomy representation by Mu and ρu, respectively,
and we regard v as a map from X0 to Cm.

By replacing X0 with a smaller neighboorhood of 0, if necessary, we can assume
that u and v are independent over R, for all u ∈ X0−{0}. In fact, there is an analytic
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function τ = (τ1, . . . , τm) : X0 → Cm, satisfying the following conditions [242,
Lemma 4.1]:

(1) vj (u) = τj (u)uj for every u = (u1, . . . , uj , . . . , um) ∈ X0 and j = 1, . . . ,m.
(2) τj (0, . . . , 0) is equal to the modulus of the cusp torus Tj of the complete

hyperbolic manifold M with respect to {μj , λj }.
In particular, we may assume that τj (u) is non-real for every u ∈ X0, and so u and
v are independent over R for every u ∈ X0 − {0}.

Now we define the generalized Dehn filling coefficients of the j -th boundary
torus component νj ∈ R2 ∪ {∞} ∼= S2 by the formula:

{
νj = ∞ if uj = 0

νj = (pj , qj ) where pjuj + qjvj = 2π
√−1 if uj �= 0

The hyperbolic Dehn filling Theorem 3.7.1 is a consequence of the following
theorem.

Theorem 3.7.4 Under the above setting, the “generalized Dehn filling coefficients
map” u 	→ ν = (ν1, . . . , νm) gives a homeomorphism from a neighborhood U ⊂
X0 of 0 in Cm onto a neigborhood V of (∞, . . . ,∞) in (R2∪{∞})m. Moreover, the
following hold.

◦ If νj = ∞, the hyperbolic structure at the j -th end is complete.
◦ If νj = (pj , qj ) where pj , qj ∈ Z are coprime, then the completion of the j -th

end is a hyperbolic 3-manifold, which is topologically the Dehn filling such that
the simple loop pjμj + qjλj on Tj bounds a disk.

◦ When pj/qj ∈ Q∪{∞}, let mj, nj ∈ Z be coprime integers such that (pj , qj ) =
d(mj , nj ) for some d > 0. The completion is a hyperbolic cone 3-manifold
obtained by gluing a solid torus with singular core, such that the simple loop
mjμj + njλj on Tj bounds a disk which has a singularity at the center, and that
the cone angle of the singular locus is 2π/d .

◦ If pj/qj ∈ R − Q, then the metric completion of the j -th end is not even
topologically a manifold.

In the above, a hyperbolic cone 3-manifold is a smooth 3-manifold C equipped
with a complete metric (distance function) which is locally isometric to H3 or to
the space H3(α) obtained from a geodesic cheese-cake-shaped polyhedron of angle
α > 0 by identifying two sides. The singular locus � ⊂ C is the set of points
modeled on the singular line of some H3(α), and α is called the cone angle at a
singular point modeled on this singular line (for precise definition, see [135, Section
1], [65, Chapter 3], [32, Chapter 1], [36, Section 3]). Hyperbolic 3-cone manifolds
play a key role in the proof of the orbifold theorem (Theorem 3.4.4).

Remark 3.7.5

(1) Assume that a tuple of oriented slopes ν = (ν1, . . . , νm) is the image of
a paremeter u = (u1, · · · , um) ∈ U in Theorem 3.7.4, namely the metric
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completion of the hyperbolic manifold Mu is homeomorphic to the manifold
M(ν) obtained from M by Dehn filling along ν. Let ν ′ be the tuple of oriented
slopes obtained from ν by replacing some component νj = (pj , qj ) with
−νj = (−pj ,−qj ). Then ν ′ is the image of the parameter u′ obtained from
u by replacing the component uj with −uj . Since M(ν ′) is homeomorphic to
M(ν) by a homeomorphism preserving the subspace M , the rigidity theorem
implies that Mu′ is isometric to Mu. In fact, such an isometry exists whenever
two parameters u and u′ are related by the involution (u1, . . . , uj , . . . , um) 	→
(u1, . . . ,−uj , . . . , um). Thus deformations of the complete hyperbolic mani-
fold M are parametrized by the quotient of U by the (Z/2Z)m-action, generated
by the above involutions with j = 1, . . . ,m. In other words, the space U is
identified with a (Z/2Z)m-branched covering of a deformation space of M .
The space U actually parametrizes the incomplete hyperbolic manifolds Mu

endowed with an ideal triangulation (see [242, p.323]).
(2) In Theorem 3.7.4, the complete hyperbolic manifolds {M(ν)} are regarded as

discrete points in the deformation space U/(Z/2Z)m ∼= V/(Z/2Z)m. Thus the
discrete set of complete hyperbolic manifolds {M(ν)} are linked together in the
connected space V/(Z/2Z)m.

3.7.3 Geometry of the Hyperbolic Manifolds Obtained by Dehn
Fillings

In the hyperbolic Dehn filling Theorem 3.7.1, the complete hyperbolic manifolds
M(ν) = M(ν1, . . . , νm) geometrically converge to the original complete hyperbolic
manifold intM as ν = (ν1, . . . , νm) → ∞ = (∞, . . . ,∞) [300, Section 5.11].
Namely, there are positive numbers ε(ν) converging to 0 as ν → ∞, and numbers
k(ν) > 1 converging to 1 as ν → ∞, such that there is a k(ν)-bi-Lipschitz
diffeomorphism

φν : M(ν)≥ε(ν) → (intM)≥ε(ν)

between that ε(ν)-thick parts. This in particular implies that the lengths of core
loops of the attached solid tori in M(ν) converge to 0 as ν → ∞. This fact plays an
essential role in various researches, including [27, 140, 172, 177, 269].

This also implies that the volumes vol(M(ν)) of the Dehn filled manifolds
converge to the volume vol(intM) of the original hyperbolic manifold as ν → ∞.
Moreover, Thurston [300] proved, by using the Gromov norm (cf. Sect. 3.8.4), that
vol(M(ν)) is strictly smaller than vol(M) if ν �= ∞. This is refined to quantitative
estimates of vol(M(ν)) by Neumann–Zagier [242], Hodgson–Kerckhoff [136] and
Futer–Kalfagianni–Purcell [95].

Gromov and Thurston obtained the following result, by constructing a Rieman-
nian metric of negative curvature on M(ν), when each surgery curve is “sufficiently
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long”, by modifying the complete hyperbolic metric of intM (see [26] for a detailed
proof).

Theorem 3.7.6 (The 2π-Theorem) Let M be an orientable complete hyperbolic
3-manifold of finite volume, and let C1, . . . , Cm be disjoint torus cusps of M .
Suppose νi is a slope on ∂Ci represented by a geodesic with length > 2π with
respect to the Euclidean metric. Then M(ν1, . . . , νm) has a Riemannian metric of
negative curvature.

The metric on M(ν1, . . . , νm) outside the filling solid tori is identical to the
hyperbolic metric on M − ∪m

j=1Cj . The geometrization theorem (Theorem 3.3.3)
established by Perelman guarantees that the resulting manifold M(ν1, . . . , νm) is
actually hyperbolic.

The 2π-theorem was refined to the 6-theorem by Agol [5] and Lackenby [176],
and it plays a key role in the study of exceptional surgeries (see the next subsection).

3.7.4 Exceptional Surgeries

For a given hyperbolic knot K in S3, or more generally an orientable complete
hyperbolic manifold with one cusp, there are only finitely many exceptional slopes
ν which produce non-hyperbolic manifolds. For example, the figure-eight knot has
10 exceptional slopes (Example 3.7.3(1)). In the survey [112], Gordon proposed
various interesting conjectures, including one which says that 10 is the largest
possible number of exceptional slopes of a hyperbolic knot complement.

The natural and important problem of determining exceptional surgery slopes has
attracted attention of many mathematicians, and an enormous amount of research
grew out of this problem, including:

◦ the 2π-theorem of Gromov–Thurston [118] and its improvement to the 6-
theorem by Agol [5] and Lackenby [176],

◦ the cyclic surgery theorem by Culler–Gordon–Luecke–Shalen [76], obtained
by combining two different kinds of arguments, namely (i) arguments using
the SL(2,C)-character varieties (cf. Sect. 3.11.3) and (ii) combinatorial, graph-
theoretic analysis of the intersection of two incompressible, planar surfaces in
knot exteriors,

◦ study of finite surgery by Boyer–Zhang [46, 47] and Ni–Zhang [243], by
mainly using the SL(2,C)-character varieties (Heegaard Floer homology and the
Casson–Walker invariant are also used in [243]),

◦ the proof of the Property R conjecture by Gabai [102], by using taut foliations,
◦ a universal upper bound of the number of exceptional slopes by Hodgson–

Kerckhoff [136, 137], by developing deformation theory of hyperbolic structures
(cf. [135]).
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◦ the optimal universal upper bound, 10, on the number of exceptional slopes of
a one-cusped hyperbolic manifold by Lackenby–Meyerhoff [178] (see Agol [6]
for related work),

◦ the optimal universal upper bound, 8, on the geometric intersection numbers of
pairs of exceptional slopes of one-cusped hyperbolic manifolds by Lackenby–
Meyerhoff [178],

◦ the complete classification of exceptional surgeries on hyperbolic alternating
knots by Ichihara–Masai [145], building on a result of [175] and through
computer-aided verified computation [143] using a super-computer.

The last three results give affirmative answers to some conjectures in [112]. See the
survey articles [45, 112, 113] for background and further information.

As for Seifert surgeries of knots, namely surgeries which produce Seifert fibered
spaces, Deruelle, Miyazaki and Motegi [77] embarked on the project to understand
the whole shape of relationships among all such surgeries, and various interesting
results are obtained in this direction.

Among Seifert surgeries, lens space surgeries are particularly interesting. Berge
[21] presented a conjecturally complete list of lens space surgery on knots in S3.
Based on Berge’s conjecture, Goda and Teragaito [108] conjectured that if a p-
surgery on a hyperbolic knot K produces a lens space then K is a fibered knot and
its genus g satisfies the inequality 2g + 8 ≤ |p| ≤ 4g − 1. (Note that by the cyclic
surgery theorem p is an integer.) Rasmussen [259] attacked this problem by using
the Heegaard Floer homology, and obtained the estimate |p| ≤ 4g + 3. This in
fact relies on the fact that lens spaces belong to larger class of spaces, known as L-
spaces, which are rational homology 3-spheres with the “simplest Heegaard–Floer
homology” (see Ozsváth–Szabó [248]). See Greene [116] and references therein
for further information on L-space surgery, and see the reviews [153, 249] for the
background.

A nice overall survey (in Japanese) on surgery was recently written by Motegi
[226], and its English translation will appear soon. This survey is strongly recom-
mended.

3.8 Volumes of Hyperbolic 3-Manifolds

The volume is the most basic invariant of hyperbolic manifolds. After quickly
recalling a method for calculating hyperbolic volumes, we explain (i) the Jorgensen-
Thurston theory concerning the volume spectrum of hyperbolic 3-manifolds, (ii)
results concerning small volume hyperbolic manifolds, (iii) relation to the Gromov
norm, and finally (iv) the volume conjecture, which lies in the two innovations,
hyperbolic geometry and quantum topology, in knot theory.
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3.8.1 Calculation of Hyperbolic Volumes

We explain a method for calculating the volumes of hyperbolic 3-manifolds, which
is implemented in SnapPea. The method depends on the fact that every hyperbolic 3-
manifold M is obtained by hyperbolic Dehn filling on a cusped hyperbolic manifold,
say M0. This follows from the facts that the complement of a simple closed
geodesic is a cusped hyperbolic manifold (see [277]) and that the shortest closed
geodesic in M is simple. SnapPea usually succeeds in finding an ideal triangulation
of the complete hyperbolic manifold M0, which can be deformed into an ideal
triangulation of the incomplete hyperbolic structure on M0 whose completion yields
the complete hyperbolic structure of M (cf. Sect. 3.7.2). Thus the calculation of
vol(M) is reduced to that of the volumes of ideal tetrahedra.

Recall that the isometry type of an ideal tetrahedron is determined by its shape
parameter z ∈ H ⊂ C, which in turn represent the similarity class of the Euclidean
triangle with vertex set {0, 1, z}. Let α, β, γ be the inner angles of this triangle.
Then the volume of the ideal tetrahedron �(z) of shape parameter z is given by the
following formula:

vol(�(z)) = �(α)+�(β)+�(γ ),

where �(θ) is the Lobachevsky function defined by

�(θ) = −
∫ θ

0
log |2 sin t|dt = 1

2

∞∑

n=1

sin(2nθ)

n2 .

The volume function vol(�(z)) takes the maximal value Vtet = 3�(π/3) =
1.0149416 . . . precisely at z = exp(π

√−1/3), i.e., exactly when �(z) is a regular
ideal tetrahedron. See [300, Chapters 6 and 7] for details.

3.8.2 Jørgensen–Thurston Theory for the Volumes
of Hyperbolic 3-Manifolds

Let Vn ⊂ R+ be the ordered set consisting of the volumes of complete hyperbolic
n-manifolds. If n �= 3 then Vn is isomorphic to N, by Gauss–Bonnet theorem for
n = 2 and by Wang’s theorem [319] for n ≥ 4. For dimension n = 3, we have
the following surprising theorem due to Jørgensen and Thurston (see [300]), which
forms a sharp contrast to Wang’s theorem.

Theorem 3.8.1 (Jørgensen–Thurston Theorem) V3 is a well-orderd closed set
which is isomorphic to ωω. Moreover, the map

vol : {complete hyperbolic 3-manifolds of finite volume}/(isometry) → V3

is finite to one.
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This means that there is a smallest volume v1, a next smallest volume v2, and
so on, and these are the volumes of closed hyperbolic 3-manifolds. The increasing
sequence v1 < v2 < · · · < vk < · · · has a limit vω , and this is the volume of a
complete hyperbolic 3-manifold with one cusp (cf. Sect. 3.7.3). There is a smallest
volume vω+1 bigger than vω , a second smallest volume vω+2 bigger than vω+1, and
so on, and these are the volumes of closed hyperbolic 3-manifolds, and their limit
v2ω is the second smallest volume of a complete hyperbolic 3-manifold with one
cusp. The increasing sequence vω < v2ω < · · · < vkω < · · · has a limit vω2 , and
this is the volume of a complete hyperbolic 3-manifold with two cusps, and so on.

The second statement of Theorem 3.8.1 says that the volume is “almost” a
complete invariant of complete hyperbolic manifolds.

Of course, the volume is not a complete invariant. For example, the complements
of the Kinoshita–Terasaka knot and the Conway knot have the same volume
11.21911773. . . . In fact, Ruberman [276] proved that the hyperbolic volume, more
generally the Gromov invariant (cf. Sect. 3.8.4 below), is unchanged by mutation.
Hodgson and Masai [138] studied the number N(v) of orientable hyperbolic 3-
manifolds with given volume v ∈ V3: they constructed infinitely many v ∈ V3
for which N(v) = 1, and proved the exponential growth of N(v) by showing
N(4nVoct) ≥ 2n/(2n). See Chesebro–DeBlois [61] and Millichap [209] for related
results.

3.8.3 Small Volume Hyperbolic Manifolds

It is a natural and important problem to determine the small volumes, such as v1, vω,
vω2 , etc. For the minimal volume vωn of orientable complete hyperbolic 3-manifolds
with n-cusps, the following results are established.

◦ Gabai–Meyerhoff–Milley (2009) [103]: The Fomenko–Matveev–Weeks mani-
fold, which is obtained by (5, 2) and (5, 1) Dehn surgery on the Whitehaed link,
has the smallest volume v1 = 0.94270736 . . ..

◦ Cao–Meyerhoff (2001) [58]: The figure-eight knot complement and its sister,
namely (5, 1)-filling on one component of the Whitehead link complement, have
the volume vω = 2Vtet = 2.02988 . . ., where Vtet = 1.0149416 . . . is the volume
of the regular ideal tetrahedron. The figure-eight knot is the orientation double
cover of the Gieseking manifold, the non-orientable hyperbolic 3-manifold,
which has the smallest volume among the all (orientable or not) complete non-
compact hyperbolic 3-manifolds (see Adams [1]).

◦ Agol (2010) [7]: The Whitehaed link complement and the complement of the
pretzel link P(−2, 3, 8) have the volume vω2 = Voct = 3.66386 . . ., where Voct
is the volume of regular ideal octahedron.

◦ Yoshida (2013) [327]: The complement of the minimally twisted hyperbolic 4-
chain link has the volume vω4 = 2Voct = 7.32772 . . ..
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See the review [105], for further information. It should be noted that all of the
above small volume hyperbolic manifolds are arithmetic (cf. [124], [240, Theorem
5.1] and Subection 3.9.3).

As is noted in [104, Introduction], Thurston had long promoted the idea that
volume is a good measure of the complexity of a hyperbolic 3-manifold. In fact,
in [300, the end of Chapter 6], he writes the following: One gets a feeling that
volume is a very good measure of the complexity of a link complement, and that the
ordinal structure is really inherent in three-manifolds. The following conjecture,
due to Thurston, Weeks, Matveev–Fomenko and Mednykh–Vesnin, states the idea
more rigorously, and the results presented above can be regarded as partial answers
to this conjecture.

Conjecture 3.8.2 The complete low-volume hyperbolic 3-manifolds can be
obtained by filling cusped hyperbolic 3-manifolds of small topological complexity.

To end this subsection, we explain another approach to Thurston’s idea above,
by using the notions of shadows of 3 and 4-manifolds introduced by Turaev [310,
311]. Costantino and Thurston [67] introduced the shadow complexity sc(M) of a
compact orientable 3-manifold M with (possibly empty) toral boundary, and proved
the following estimate of the Gromov norm ||M|| (cf. Sect. 3.8.4, below):

Vtet

2Voct
||M|| ≤ sc(M) ≤ C||M||2 for some universal constant C.

In the same paper, they implicitly introduced the notion of stable map complexity
and studied its relation between (branched) shadow complexity as well. Ishikawa
and Koda [147] showed the two complexities are actually equal, and moreover, using
the result of [95], they gave an elaborate refinement of the above (left) inequal-
ity when M is hyperbolic. They also defined the branched shadow complexity
bsc(M,L) for a link L in a compact orientable 3-manifold M with (possibly empty)
toral boundary, and gave a complete characterization of hyperbolic links L in S3

with bsc(S3, L) = 1.

3.8.4 Gromov Norm

In [117], Gromov introduced the notion of simplicial volume ||M|| of a closed
manifold M as follows, using real singular homology:

||M|| := inf{||z|| | z is a singular cycle representing the fundamental class [M]}

Here, for a (real) singular chain z = ∑
j ajσj , its norm ||z|| is defined as the sum∑

j |aj | of the absolute values of its coefficients. He used it to estimate the “minimal
volume” of closed smooth manifold (see [117]). Building on this work, Thurston
[300, Chapter 6] defined the Gromov norm ||M|| of a compact orientable 3-manifold
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M with (possibly empty) toral boundary as follows:

||M|| := lim
ε→0

inf{||z|| | z is a singular chain representing [M, ∂M] and ||∂z|| ≤ ε}

He then proved the following.

(1) If M is hyperbolic (and hence intM admits a complete hyperbolic structure of
finite volume), then

||M|| = 1

Vtet
vol(intM).

(2) If M is a Seifert fibered space, then ||M|| = 0.
(3) Let T be a torus embedded in intM and let MT be the manifold obtained by

cutting M along T . Then ||M|| ≤ ||MT ||.
Soma [294] proved that when T is incompressible, equality holds in (3) and that
similarly equality holds for an incompressible annulus properly embedded in M . He
then defined, for a link L in S3, the Gromov invariant ||L|| of L by ||L|| = ||E(L)||,
and obtained the following theorem.

Theorem 3.8.2 (Soma) For a link L in S3, the following hold.

(1) If L is a split sum of two links L1 and L2, then ||L|| = ||L1|| + ||L2||.
(2) If L is a connected sum of two links L1 and L2, then ||L|| = ||L1|| + ||L2||.
(3) Suppose L is a non-splittable link, and let {Mj } be the hyperbolic pieces of the

JSJ decomposition of E(L). Then

||L|| =
∑

j

||Mj || = 1

Vtet

∑

j

vol(intMj).

3.8.5 The Volume Conjecture

In addition to the revolution caused by William Thurston, knot theory has expe-
rienced yet another revolution through the discovery of the Jones polynomial by
Vaughan Jones [151]. The Volume Conjecture, first stated by Rinat Kashaev [158]
and then reformulated and expanded by Hitoshi Murakami and Jun Murakami [230],
provoked deep interaction between the two innovations, hyperbolic geometry and
quantum topology.

The conjecture says that the hyperbolic volume of a hyperbolic knot in S3 (more
generally, the Gromov norm of a knot in S3) is determined by the asymptotic
behavior of Kashaev’s invariant 〈K〉N , which is shown by [230] to coincide
with the evaluation, JN(K), of the N-colored Jones polynomial (with a certain
normalization) at the primitive N-th root of unity exp(2πi/N).



3 A Survey of the Impact of Thurston’s Work on Knot Theory 119

Conjecture 3.8.4 (Volume Conjecture) For any knot K in S3, the following holds:

||K|| = 2π

Vtet
lim

N→∞
log |JN(K)|

N
.

In particular, if K is a hyperbolic knot, the following holds:

vol(S3 −K) = 2π lim
N→∞

log |JN(K)|
N

.

Moreover, H. Murakami and J. Murakami proved that Kashaev’s invariant also
coincides with an evaluation of the generalized Alexander polynomial defined by
Y. Akutsu, T. Deguchi and T. Ohtsuki [16]. They say in [230, page 86] that the set
of colored Jones polynomials and the set of generalized Alexander polynomials of
Akutsu–Deguchi–Ohtsuki intersect at Kashaev’s invariants.

Furthermore, H. Murakami, J. Murakami, M. Okamoto, T. Takata and Y. Yokota
[232] proposed the following complexification of Kashaev’s conjecture:

Conjecture 3.8.5 (Complexification of the Volume Conjecture) For any hyperbolic
knot K in S3, the following holds:

vol(S3 −K)+√−1CS(S3 −K) = 2π lim
N→∞

log JN(K)

N
.

In the above conjecture CS(S3 − K) denotes the Chern–Simons invariant of
S3 −K (see [60, 208, 325]). For further information, see the surveys [228, 229] and
the recently published book [231].

3.9 Commensurability and Arithmetic Invariants
of Hyperbolic Manifolds

In [300, Sections 6.7 and 6.8], Thurston studied the commensurability relation
among hyperbolic knot/link complements, and gave various commensurable and
incommesurable examples. This work has promoted intimate interaction between
knot theory and number theory. In this section, we recall basic arithmetic invariants
of commensurability classes of Kleinian groups, and describe application to knot
theory. We also describe the dichotomy between arithmetic groups and non-
arithmetic groups found by Margulis and Borel. In the final subsection, we recall the
solution due to Gehring, Marshal and Martin of the 3-dimensional Siegel problem to
determine the minimal volume of hyperbolic orbifolds, lying emphasis on the role
of arithmetic groups. For further information on the topic of this section, see the
textbook Maclachlan–Reid [189].
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3.9.1 Commensurability Classes and Invariant Trace Fields

Two Kleinian groups �1 and �2 are said to be commensurable if there is a
conjugate, �

g

2 := g−1�2g (g ∈ PSL(2,C)) such that �1 ∩ �
g

2 has finite index
both in �1 and �

g

2 . This is equivalent to the condition that the two hyperbolic
manifolds M1 = H3/�1 and M2 = H3/�2 are commensurable, i.e., there is a
hyperbolic manifold which is a finite covering of both M1 and M2. As is explained
in Sect. 3.6.1, the canonical decomposition provides us an efficient method for
checking if two (cusped) hyperbolic manifolds are isometric. But, the method is not
directly applicable for checking commensurability, though there is a nice application
of the canonical decomposition for the commensurability problem (see [110] and
Sect. 3.9.3).

Number theory enables us to define a very useful invariant of the commen-
surability classes of Kleinian groups of cofinite volume. Let M = H3/� be
an orientable complete hyperbolic manifold of finite volume. Consider the set
tr� = {± tr(γ ) | γ ∈ �} ⊂ C and the field Q(tr�) generated by the set. (Note
that the trace tr γ for γ ∈ PSL(2,C) ∼= Isom+(H3) is well-defined up to sign.) This
is called the trace field of the Kleinian group �. It follows from the rigidity theorem
that the trace field Q(tr�) has finite degree over Q, i.e., it is a number field. By the
rigidity theorem again, this is an invariant of the topological space M .

Though the trace field Q(tr�) itself is not, in general, an invariant of the com-
mensurability class, it provides us with a very useful commensurability invariant as
follows. Let �(2) be the subgroup of � generated by {γ 2 | γ ∈ �}. Then �(2) is
normal in � and �/�(2) is a finite abelian group which is a direct sum of order 2
cyclic groups. The following theorem was proved by Reid [261].

Theorem 3.9.1 Let � be a Kleinian group of finite covolume. Then Q(tr�(2)) is an
invariant of the commensurability class of �. Moreover

Q(tr �(2)) = Q({(tr γ )2 | γ ∈ �}).

The field Q(tr�(2)) is denoted by k(�) and is called the invariant trace field of �.
By [240, Corollary 2.3], if M = H3/� is a knot complement (or more generally,
the complement of a link in a Z/2Z-homology sphere) then k(�) = Q(tr�): thus
in this case the trace field itself is an invariant of the commensurability class.

If M is a cusped hyperbolic manifold which admits an ideal triangulation into
the hyperbolic ideal tetrahedra {�(z1), . . . ,�(zt )}, then the following holds [240,
Theorem 2.4]:

k(�) = Q(z1, . . . , zt ).

The invariant quaternion algebra of � is the k(�)-algebra of the 2 × 2 matrix
algebra M2(C) generated over k(�) by the elements of �(2). It is denoted by A(�).
This algebra is also an invariant of the commensurability class of �. Both k(�) and
A(�) are preserved by mutation (see [239]).
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The computer program “Snap” calculates various arithmetic invariants including
the invariant trace field and the invariant quaternion algebra (see [68]).

3.9.2 Commensurators and Hidden Symmetries

For a Kleinian group � of cofinite volume, the commensurator of � is defined by

Comm(�) = {g ∈ IsomH
3 | [�;� ∩ �g] < ∞},

and its orientation-preserving subgroup is denoted by Comm+(�). The commen-
surator Comm(�) is identified with the group of equivalence classes of virtual
automorphisms of �. A virtual automorphism of � is an isomorphism φ : �1 → �2
between subgroups of finite index in �, and two virtual automorphisms are defined
to be equivalent if they agree on some subgroup of � of finite index. A virtual
automorphism represents an isometry between two finite coverings H3/�1 and
H3/�2 of the hyperbolic manifold M = H3/�. It is called a hidden symmetry of
M if it is not a lift of an isometry of M . By a hidden symmetry of a hyperbolic knot
in S3, we mean a hidden symmetry of the knot complement. We can see as follows
that the figure-eight knot K has a hidden symmetry. Recall that S3 − K = H3/�

has an ideal triangulation consisting of two copies of the regular ideal tetrahedron

�(ω) with ω = exp(π
√−1
3 ). This implies that the invariant trace field k(�) is

equal to Q(ω) = Q(
√−3). Moreover, we see that � is a subgroup PSL(2,O3)

of finite index (actually equal to 24), where O3 is the ring of integers of the
number field of Q(

√−3). This implies that PGL(2,Q(
√−3)) belongs to the

commensurator subgroup of �. In fact, we have Comm+(�) = PGL(2,Q(
√−3)).

Since PGL(2,Q(
√−3)) is dense in PSL(2,C), the normalizer of � must be a proper

subgroup of Comm+(�) = PGL(2,Q(
√−3)). Hence � (and so the figure-eight

knot) has a hidden symmetry.
In addition to the figure-eight knot, the two dodecahedral knots of Aitchison and

Rubinstein [12] admit hidden symmetries, and these three are the only known such
knots. Neumann and Reid [240, Question 1] conjecture that they are all. For results
related to the conjecture, see [37, 38, 210, 264] and references therein.

3.9.3 Arithmetic Versus Non-arithmetic

The above explanation for the existence of hidden symmetries of the figure-eight
knot is based on the fact that the figure-eight knot group belongs to the particularly
nice family of Kleinian groups, called arithmetic groups. For the definition of
arithmetic groups, see the textbook [263] or the course notes [238, Chapter 3,
Section 3]. If we restrict our attention to a cofinite volume Kleinian group � such
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that M = H
3/� has a cusp, then � is arithmetic if and only if � is conjugate to a

subgroup of PGL(2,Od) for some positive integer d . Here Od is the ring of integers
of the number field of Q(

√−d). In this case, we have k(�) = Q(
√−d) and A(�) =

M2(Q(
√−d)), and the invariant trace field k(�) is the complete commensurability

invariant of the arithmetic group �. However, most cusped hyperbolic manifolds are
non-arithmetic; in particular, the figure-eight knot is the unique hyperbolic knot in
S3 whose complement is arithmetic (see Reid [262]).

Margulis [192] (see also Borel [43]) establised the following striking dichotomy
between the arithemtic Kleinian groups and non-arithmetic Kleinian groups.

Theorem 3.9.2 Let � be a cofinite volume Kleinian group. Then the following
hold.

(1) � is non-arithmetic if and only if � has finite index in Comm+(�). In this case,
Comm+(�) is the unique maximal element in the commensurability class of �.

(2) � is arithmetic if and only if Comm+(�) is dense in PSL(2,C). In this case,
there are infinitely many maximal elements in the commensurability class of �.

The first assertion of Theorem 3.9.2 shows that the commensurability class of
a non-arithmetic cofinite volume Kleinian group � is particularly simple, namely
it consists only of conjugates of finite index subgroups of the Kleinian group
Comm+(�). In terms of orbifolds, this means that two non-arithmetic orientable
hyperbolic 3-manifolds M1 and M2 are commensurable if and only if they cover
a common orbifold. Based on this fact and by using the Epstein–Penner decom-
position [82] and finiteness of Epstein–Penner decompositions of a given cusped
hyperbolic manifolds (see Akiyoshi [13]), Goodman–Heard–Hodgson [110] gave
a practical algorithm for determining when two cusped hyperbolic non-arithmetic
3-manifolds are commensurable. Their algorithm is based on the fact that two
cusped hyperbolic n-manifolds M and M ′ cover a common orbifold if and only
if they admit Epstein–Penner decompositions lifting to isometric tilings of Hn (see
[110, Theorem 2.4]). Their algorithm is implemented in a computer program, which
enabled them to determine the commensurability classes of the complements of all
hyperbolic knots and links up to 12 crossings. In particular, they have shown that
the complements of the Kinoshita–Terasaka knot and the Conway knot belong to
different commensurability classes, even though they share the same invariant trace
fields and invariant quaternion algebras. See Chesebro–DeBlois [61] and Millichap–
Worden [210] for related works.

The second assertion of Theorem 3.9.2 shows that the commensurability class
of arithmetic Kleinian groups is very complicated. Walter Neumann describes a
geometric way of thinking of this situation as follows, in his course notes [238,
Chapter 3, Section 6].

A Kleinian (or Fuchsian) group is the symmetry group of some “pattern” inH3 (respectively
H

2). This pattern might just be a tessellation — for instance, a tesselation by fundamental
domains, or it might be an Escher-style drawing. If one superposes two copies of this
pattern, displaced with respect to each other, one will usually get a pattern which no longer
has a Kleinian (or Fuchsian) symmetry group in our sense — the symmetry group has
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become too small to have finite volume quotient. But in the arithmetic case — and only in
this arithmetic case — one can always change the displacement very slightly to make the
superposed pattern have a symmetry group that is of finite index in the original group.

In the course notes [238], we can also find a beautiful introduction to the idea of
Scissor congruence, with a historical background which goes back to Euclid, Dehn
and Hilbert. For more details of this important topic, see [237].

3.9.4 Siegel’s Problem and Arithmetic Manifolds

In Sect. 3.8.3, we surveyed various important results concerning small volume
hyperbolic 3-manifolds. It is equally natural and important to study small volume
hyperbolic orbifolds. In 1943, Siegel [291, 292] posed the problem of identifing the
infimum

μ(n) = inf
�

vol(Hn/�)

where the infimum is taken over the lattices � < Isom+
Hn, i.e., discrete subgroups

of cofinite volume. Siegel solved the problem in dimension 2, by showing that the
(2, 3, 7)-triangle group is the unique Fuchsian group of minimal coarea

μ(2) = 2π

∣
∣
∣
∣
1

2
+ 1

3
+ 1

7
− 1

∣
∣
∣
∣ =

π

21
.

In 1986, Kazhdan and Margulis [163] made an important contribution to the
Siegel problem, by proving that μ(n) is positive and attained for each n.

Arithmetic groups play a crucial role in the study of the Siegel problem. One
big reason is that, due to formulas of Borel [43], various explicit calculations can
be made for arithmetic Kleinian groups. According to Gaven Martin [195], another
reason is that it turns out that nearly all the extremal problems one might formulate
are realised by arithmetic groups, perhaps the number theory forcing additional
symmetries in a group and therefore making it “smaller” or “tighter”.

After a long term collaboration, Gehring, Marshal and Martin [106, 193] finally
solved the 3-dimensional Siegel problem.

Theorem 3.9.3 The minimum μ(3) of the volumes of hyperbolic 3-orbifolds is

μ(3) = vol(H3/�0) = 2753/22−7π−6ζk(2) ∼ 0.03905 . . . ,

where ζk is the Dedekind zeta function of the underlying number field Q(γ0), with
γ0 a complex root of γ 4 + 6γ 3 + 12γ 2 + 9γ + 1, of discriminant −275. Here
�0 is an arithmetic Kleinian group obtained as a Z/2Z-extension of the index 2
orientation-preserving subgroup of the group generated by reflection in the faces of
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the 3-5-3-hyperbolic Coxeter tetrahedron. The group �0 is generated by two elliptic
elements, one of order 2 and the other of order 5.

Remark 3.9.4 The quotient orbifold O0 = H3/�0 is as illustrated in Fig. 3.9,
where the blue eyeglasses represent the generating pair. This orbifold is obtained
from the “Heckoid orbifold H(1/4; 5/2)” in Fig. 3.10 by an orbifold surgery.
Here a Heckoid orbifold is a hyperbolic 3-orbifold whose orbifold fundamental
group is a Heckoid group, which is a Kleinian group generated by two parabolic
transformations introduced by Riley [274] as an analogy of Hecke groups and
formulated by [181]. Heckoid orbifolds are also intimately related to 2-bridge links.
As noted by Martin [195, 196], most of small volume 3-orbifolds arise from 2-bridge
links.

Fig. 3.9 The minimal volume 3-orbifold H
3/�0. The blue eyeglass frame represents the generat-

ing pair of �0 consisting of elliptic elements

Fig. 3.10 The left picture illustrates the Heckoid orbifold H(1/4; 5/2) and the parabolic generat-
ing pair of the Heckoid group πorb

1 (H(1/4; 5/2)). The Heckoid group is identified with the image

of the holonomy representation of the hyperbolic cone manifold C
(

1/4; 2π
(5/2)

)
depicted by the

right picture
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See the survey by Martin [195] for backgrounds and details concerning the 3-
dimensional Siegel problem, and the surveys by Belolipetsky [20] and Kellerhals
[164] for the higher dimensional Siegel problem.

The above theorem has the following application to finite group actions on
hyperbolic 3-manifolds.

Corollary 3.9.5 Let M be an orientable complete hyperbolic 3-manifold of finite
volume, and let G be a finite group acting on M effectively and orientation-
preservingly. Then

|G| ≤ volM

μ(3)
.

A refinement of this corollary for hyperbolic knot complements can be found in
[96, Theorem 4.14].

3.10 Flexibility of Complete Hyperbolic Manifolds:
Deformation Theory of Hyperbolic Structures

Let M be a complete hyperbolic manifold homeomorphic to the interior of a
compact orientable 3-manifold M̄ . If ∂M̄ is a (possibly empty) union of tori,
then vol(M) < ∞ and so by the Mostow–Prasad rigidity theorem the complete
hyperbolic structure on M is unique. However, when ∂M̄ contains a component
different from a torus, the complete hyperbolic structure of M admits a nontrivial
deformation, and there is a rich and deep deformation theory. This deformation
theory is one of the central themes in Kleinian group theory and it plays a crucial
role in the proof of the geometrization theorem of Haken manifolds. In particular,
the existence of complete hyperbolic structures on surface bundles over the circle,
e.g. the complements of hyperbolic fibered knots, was established as a consequence
the double limit theorem [308, Theorem 4.1] concerning the deformation space
of hyperbolic structures on � × R where � is a (fiber) surface. The idea of a
Cannon–Thurston map, a π1(�)-equivariant sphere filling curve, grew out of this
construction.

On the other hand, Agol [8] proved that a hyperbolic punctured surface bundle
over the circle admits a very special topological ideal triangulation, called a veering
triangulation, which is canonical in the sense that it is determined by the fiber
structure. It was revealed by Guéritaud [122] that the veering triangulation is
intimately related to the Cannon–Thurston map.

The purpose of this section is (i) to give an introduction to the deformation
theory of Kleinian groups and its relation to the hyperbolic structures of surface
bundles over the circle, and (ii) to explain Cannon–Thurston maps and veering
triangulations. For further information on deformation theory, see Otal [246, 247],
Matsuzaki–Taniguchi [197], Kapovich [157], Ohshika [245] and Marden [190, 191].
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3.10.1 Convex Cores and Conformal Boundaries of Hyperbolic
Manifolds

In this subsection, we recall the basic concepts of convex cores and conformal
boundaries of hyperbolic manifolds.

Though the action of a Kleinian group � on H3 is properly discontinuous, the
action of � on ∂H3 does not have this property. To see this, pick a point x ∈ H3

and consider its orbit �x. Of course the orbit is discrete in H3. But, it has nonempty
accumulation points in the 3-ball H3 ∪ ∂H3 (provided that � is not a finite group).
The set of all accumulation points is independent of the choice of x and forms a
�-invariant closed set in ∂H3. This set is denoted by �(�) and is called the limit
set of �. The action of � on �(�) is not properly discontinuous and is chaotic. The
complement �(�) := ∂H3 − �(�) is called the domain of discontinuity of �, and
it is a (possibly empty) maximal open domain in ∂H3 on which � acts properly
discontinuously.

The convex core CM of a complete hyperbolic manifold M = H3/� is defined
as the quotient C(�(�))/�, where C(�(�)) is the convex hull in H3 of the limit
set �(�). Note that any closed geodesic in M corresponds to a conjugacy class of a
hyperbolic element of � and that the endpoints of its axis are contained in �(�): this
implies that the axis is contained in C(�(�)) and so the closed geodesic is contained
in CM . In fact, CM is the smallest locally convex closed subset of M which contains
all closed geodesics of M . The convex core CM is also characterized as the smallest
locally convex submanifold of M whose inclusion is a homotopy equivalence.

On the other hand, since the action of � on ∂H3 (and hence on �(�)) is
conformal, the quotient space ∂∞M := �(�)/� has a natural conformal structure
and forms the boundary of the Klein manifold (H3∪�(�)/�). The Riemann surface
∂∞M = �(�)/� is called the conformal boundary of M .

Example 3.10.1 (Infinite Cyclic Kleinian Group) For the infinite cyclic Kleinian
group � generated by a hyperbolic transformation A(z) = az with |a| �= 1 in
Example 3.5.2(1), the convex core of the quotient hyperbolic manifold H3/� ∼=
int(D2 × S1) is equal to the core closed geodesic (0 × R+)/�, and the conformal
boundary is the torus (C− {0})/(z ∼ az).

In the remainder of this section � ∼= int�g,b denotes the closed orientable
surface of genus g with b punctures, and with negative Euler characteristic.

Definition 3.10.2 (Type-Preserving Representation) A representation ρ :
π1(�) ∼= π1(�g,b) → Isom+

H
3 is type-preserving if it satisfies the following

conditions.

(1) ρ maps peripheral elements (elements represented by boundary loops of �g,b)
to parabolic elements.

(2) ρ is irreducible, i.e., ρ(π1(�)) does not have a common fixed point on ∂H3.
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Example 3.10.3 (Fuchsian Group) The surface � admits a complete hyperbolic
structure of finite area π |χ(�)|. Pick a complete hyperbolic metric on � and let
ρ0 : π1(�) → Isom+

H2 be the holonomy representation. Then it is discrete,
faithful and type-preserving, and its image �0 = ρ0(π1(�)) is a Fuchsian group.
The limit set of the Fuchsian group �0 is equal to ∂H2. Regard �0 as a Kleinian
group, i.e., a discrete subgroup of Isom+

H3. Then the limit set �(�0) is the round
circle ∂H2 in ∂H3, where H2(= R × R+ ⊂ C × R+ = H3) is the hyperplane of
H3 invariant by �. The Kleinian manifold (H3 ∪ �(�0))/�0 is homeomorphic to
the product of � and the closed interval [−∞,∞], and the convex core is identified
with � × 0.

Example 3.10.4 (Quasifuchsian Group) The Fuchsian representation ρ0 :
π1(�) → PSL(2,R) in the previous example admits a nontrivial deformation
into a faithful discrete type-preserving PSL(2,C)-representation ρ, such that
(H3∪�(�))/� ∼= �×[−∞,∞]where � = ρ(π1(�)). This condition is equivalent
to the condition that the limit set �(�) is a topological circle. A Kleinian group
isomorphic to π1(�) satisfying this condition is called a quasifuchsian group and
the holonomy representation is called a quasifuchsian representation. Generically,
a quasifuchsian group is not conjugate to a Fuchsian group in PSL(2,C), and in
this case, the circle �(�) in ∂H3 is very complicated; in particular its Housdorff
dimension is strictly bigger than 1. The convex core CM of the hyperbolic manifold
M = H3/� is identified with � × [−1, 1] in � × (−∞,∞) ∼= M . Each boundary
component � × {±1} of the convex core has the structure of “hyperbolic surface
bent along a geodesic lamination”. (see [300, Section 8.5], [55]). The domain
of discontinuity �(�) consists of two components �+(�) and �−(�), and the
Riemann surfaces S± = �±(�) correspond to the boundary components � × {±}
of � × [∞,+∞].
Example 3.10.5 (Fiber Group) Let M̂ = H

3/�̂ be a complete hyperbolic manifold
of finite volume, and assume that M̂ has the structure of a �-bundle over S1. Then
the fiber group, �, the subgroup of �̂ obtained as the image of the fundamental
group of a fiber surface �, is an infinite normal subgroup. This implies that �(�) =
�(�̂) = ∂H3 (see [300, Corollary 8.1.3]). Thus the inverse image of a fiber � in the
universal cover H3 of M̂ is a topological plane whose closure contains the whole
ideal boundary ∂H3. It is very difficult to imagine such a plane, and in this sense,
the fiber group � is quite different from a quasifucshian group, though they are all
isomorphic to π1(�).

3.10.2 Deformation Space

We continue to denote by � a closed orientable surface of genus g with b punctures,
which has a negative Euler characteristic. By a marked hyperbolic structure on �,
we mean a pair (S, f ) of a finite area complete hyperbolic surface S = H2/�

and an orientation-preserving homeomorphism f : � → S. Note that the
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composition of f∗ : π1(�) → π1(S) and the holonomy representation π1(S) →
� < Isom+

H2 determine a type-preserving discrete faithful representation ρ :
π1(�) → Isom+

H2. Two marked hyperbolic structure (S1, f1) and (S2, f2) on �

are equivalent if there is an orientation-preserving isometry h : S1 → S2 such that
h ◦ f1 is homotopic to f2. This is equivalent to the condition that the corresponding
representations ρ1 and ρ2 are equal up to conjugation by an element of Isom+

H2.
Let H(�) be the set of all marked hyperbolic structure on � up to equivalence.

In order to introduce a natural topology on H(�), consider the spaces

Homtp(π1(�), Isom+
H

2) := {ρ : π1(�) → Isom+
H

2 | ρ is type-preserving};
Rtp(�) := Homtp(π1(�), Isom+

H
2)/ Isom+

H
2.

By choosing a finite generating set of π1(�) of cardinality k, Homtp(π1(�), Isom+
H2) is identified with a subset of the product (topological) space (Isom+

H2)k ,
and the subspace topology it inherits is independent of the choice of a
finite generating set. The group Isom+

H2 acts by conjugation on the space
Homtp(π1(�), Isom+

H2), and Rtp(�) is defined to be the quotient space. The set
H(�) is identified with a subset of Rtp(�), and we denote the resulting topological
space by AH(�).

The space AH(�) is nothing other than the Teichmüller space Teich(�) of
�. The Fenchel–Nielsen coordinate gives a homeomorphism from AH(�) =
Teich(�) onto the Euclidean space R6g−6+3b (see [146], [300, Theroem 5.3,5]).
It should be noted that Teich(�) can be also identified with the space of marked
Riemann surface structures on �.

Now we consider hyperbolic structures on the oriented 3-manifold � × R. By a
marked hyperbolic structure on � × R, we mean a pair (N, f ) where N = H3/�

is an oriented complete hyperbolic 3-manifold and f : � ×R→ N an orientation-
preserving homeomorphism which satisfies the following conditions.

◦ Let ρ : π1(�) → � < Isom+
H3 be the homomorphism obtained as the

composition of the homomorphism (f ◦ j)∗ : π1(�) → π1(N), where j :
� → � × 0 → � × R is the inclusion map, and the holonomy representation
π1(N) → Isom+(H3) of the hyperbolic manifold N . Then we require that
ρ is type-preserving. (In other words, we require that the homeomorphism f

maps (ends of �) × R into the main cusp of N carrying the parabolic elements
ρ(peripheral elements).)

Thus we restrict our attention to the hyperbolic structures on the pared manifold
(�g,b×I, ∂�g,b×I) with I = [−∞,∞] (see [305, Section 7]) for the teminology).

Two marked hyperbolic structures (N1, f1) and (N2, f2) on � × R are regarded
as equivalent if there is an orientation-preserving isometry h : N1 → N2 such that
h ◦ f1 is homotopic to f2. This condition is equivalent to the condition that the
corresponding representations ρ1 and ρ2 are equal up to conjugation by an element
of Isom+

H3. Thus the set H(�×R) of all marked hyperbolic structures on � ×R
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up to equivalence is identified with the subset of the space

Rtp(� ×R) := {ρ : π1(�) → Isom+
H

3 ρ is type-preserving}/ Isom+
H

3

consisting of (the images of) discrete faithful representations. The set H(� × R)

with the subspace topology is denoted by AH(� × R). This topology is called the
algebraic topology of H(� × R). It is well-known that Rtp(� × R) is Hausdorff,
and AH(� × R) is a closed subset of Rtp(� × R) (cf. [190, Section 4]).

Let QF(� × R) be the subspace of AH(� × R) consisting of the quasifuchsian
representations. For each quasifuchsian representation ρ : π1(�) → PSL(2,C)

with � = ρ(π1(�)), the Kleinian manifold (H3 ∪ �(�))/� ∼= � × [−∞,∞] is
bounded by two marked Riemann surfaces S± = �±(�)/�, where S± correspond
to � × {±∞} ⊂ � × [−∞,∞]. The pair (S−, S+) is regarded as a point in the
product Teich(�̄)×Teich(�), where �̄ is the surface � with the reverse orientation.
This determines a map

ν : QF(� × R) → Teich(�̄)× Teich(�).

Bers’ simultaneous uniformization theorem says that ν is a homeomorphism (see
[146]).

The positive solution to Thurston’s Density Conjecture by Brock, Canary and
Minsky [50], obtained as a consequence of deep results by a number of researchers
in the deformation theory of Kleinian groups, says that AH(� × R) is equal to the
closure of its open subset QF(� ×R):

AH(� × R) = QF(� ×R)

Thus any discrete faithful type-preserving PSL(2,C)-representation of π1(�) is
a limit of quasifuchsian representations. In particular, a fiber Kleinian group of a
hyperbolic surface bundle over S1 is obtained as the limit of quasifuchsian groups.
Historically, the existence of the fiber Kleinian group (and so the existence of a
complete hyperbolic structure on surface bundles) was first proved in the case where
� is a once-punctured torus by Jørgensen [152]: the simplest case of the figure-eight
knot complement was also proved by Riley [271]. Thurston was impressed by these
works. He proved the hyperbolization theorem for surface bundles in [308] (cf. Otal
[247]) via his double limit theorem [308, Theorem 4.1].

Cannon and Thurston [57] found the following surprising fact. Let ρ0 : π1(�) →
PSL(2,C) be a Fuchsian representation, and let ρ : π1(�) → PSL(2,C) be the
type-preserving discrete faithful representation whose image � gives the fiber group
of a hyperbolic �-bundle over S1. Recall that �(�0) = ∂H2 and �(�) = ∂H3 (see
Example 3.10.5), and π1(�) acts on these sets via ρ0 and ρ, respectively.

Theorem 3.10.6 (Cannon–Thurston Map) There is a (ρ0, ρ)-equivariant surjec-
tive continuous map

κ : ∂H2 = �(�0) → �(�) = ∂H3.
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The map κ is called the Cannon–Thurston map. This theorem was first proved
by Cannon and Thurston [57] for the closed surface case, and then proved by
Bowditch [44] for the general case. Work of many authors has extended the results
in various ways (see the review [213]). For the simplest case where � is the once-
punctured torus, the computer program OPTi developed by Wada [314] visualizes
deformations of the limit sets of quasifuchsian punctured torus groups (see [15] for
background). We can also see a lot of breathtaking pictures related to the Cannon–
Thurston maps (mainly for the once-punctured torus) in the book Indra’s Pearls
[227].

3.10.3 Nielsen–Thurston Classification of Surface
Homeomorphisms and Geometrization of Surface
Bundles

We quickly recall the Nielsen–Thurston classification of surface homeomorphisms
(see [84, 85, 306]). Let MCG(�) be the mapping class group of � (the closed
orientable surface of genus g with b punctures such that χ(�) < 0), the group
of the orientation-preserving homeomorphisms of � modulo isotopy. We do not
distinguish between a homeomorphism of � and the element (mapping class) of
MCG(�) represented by it, as long as there is no fear of confusion. Then Nielsen–
Thurston theory says that for any ϕ ∈ MCG(�), one of the following holds.

(1) ϕ is periodic, namely ϕ has finite order in MCG(�). In this case, ϕ is repre-
sented by a (periodic) isometry with respect to some finite-volume complete
hyperbolic structure on �.

(2) ϕ is reducible, i.e., there is a nonempty family of mutually disjoint essential
simple loops whose union is preserved by (a representative of) ϕ.

(3) ϕ is pseudo-Anosov. This means that � has a “half-translation structure” such

that the homeomorphism ϕ is “realized by” a diagonal matrix

(
α 0
0 1/α

)

with

α > 1.

The precise meaning of the last condition is as follows. A half-translation structure
on � is a singular Euclidean metric on �, with a finite number of conical
singularities of cone angle kπ (k ≥ 3), and total cone angle k′π (k′ ≥ 1) around
each puncture. The surface � with cone points removed admits an isometric atlas
over R2 whose transition maps are of the form (x, y) 	→ ±(x, y)+ (a, b) for some
(a, b) ∈ R2. Then ϕ is pseudo-Anosov if there is a half-translation structure on �,
such that the homeomorphism ϕ has a local expression (x, y) 	→ (αx, α−1y) with
respect to isometric atlas of the half-translation structure. The constant α is called
the expansion factor of the map ϕ.

This condition is described as follows in Thurston’s original paper [306, Theorem
4]: there is a real number α > 1 and a pair of transverse measured foliations Fs
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and Fu such that ϕ(Fs) = α−1Fs and ϕ(Fu) = αFu. Here a measured foliation
on � is a singular foliation endowed with a measure in the transverse direction,
where only finitely many singularities of “k-pronged saddle” (k = 1 or k ≥ 3)
are allowed. The notation F1 = αF2 means that F1 and F2 agree as foliations,
but the transverse measure of F1 is α times that of F2. With respect to the half-
translation structure of � discussed in the above, the measured foliations Fs and Fu

are the vertical and holizontal foliations, λ+ and λ−, equipped with the transverse
measures |dx| and |dy| respectively. (Note that every straight line segment in �

belongs to a unique (singular) foliation by parallel straight lines, and so the vertical
and horizontal foliations make sense.) Since ϕ is locally expressed by (x, y) 	→
(αx, α−1y), it preserves the vertical and horizontal measured foliations up to the
factors α−1 and α, respectively.

By considering the “projective classes” of measured foliations, Thurston con-
structed the projective measured foliation space PMF(�) and proved that it forms
the boundary of a natural compactification of the Teichmüller space Teich(�).

Teich(�) = Teich(�) � PMF(�) ∼= intB6g−6+2b � ∂B6g−6+2b ∼= B6g−6+2b

The compactification is natural in the following sense. The action of MCG(�) on
Teich(�) defined by the rule

ϕ(S, f ) := (S, f ◦ ϕ−1) for (S, f ) ∈ Teich(�)

extends to the action on the compactification, so that its restriction to the boundary
PML(�) is the natural action given by

∫

γ

ϕ∗(F) =
∫

ϕ−1(γ )

F.

Here γ is an arc transverse to the foliation ϕ(F ), and
∫
γ
ϕ∗(F ) is the measure of

γ with respect to the measured foliation ϕ∗(F ). It should be noted that the set of
all essential simple loops in � up to isotopy is identified with a dense subset of
PMF(�) and that the above action is an extension of the natural action of MCG(�)

on S.
By using this natural compactification of Teichmüller space, Thurston estab-

lished the classification of surface homeomorphisms, as follows. For a given ϕ ∈
MCG(�), its action on Teich(�) ∼= B6g−6+2b has a fixed point, by Brower’s fixed
point theorem. If there is a fixed point in Teich(�), then ϕ is periodic. Suppose
there is no fixed points in Teich(�) and so all fixed points lie in PMF(�). If the
underlying foliation of some fixed point contains a closed leaf, then ϕ is reducible.
Thurston managed to prove that ϕ is pseudo-Anosov in the remaining case.

Now, let Mϕ := � × R/(x, t) ∼ (ϕ(x), t + 1) be the �-bundle over S1 with
monodromy ϕ. Then it is easy to observe that if ϕ is periodic then Mϕ is a Seifert
fibered space, and that if ϕ is reducible then Mϕ admits a nontrivial torus decom-



132 M. Sakuma

position. For the remaining case when ϕ is pseudo-Anosov, the following theorem
was proved by Thurston, as a special case of the geometrization Theorem 3.3.4.

Theorem 3.10.7 The surface bundle Mϕ is hyperbolic if and only if ϕ is pseudo-
Anosov.

As noted in Sect. 3.10.2, the corresponding fiber group ρ ∈ AH(� × I) is a
limit of quasi-fuchsian groups. Actually, for any (S−, S+) ∈ Teich(�̄)× Teich(�),
ρ is obtained as a limit of a subsequence of the sequence of quasifuchsian groups
{ν−1(ϕ−k(S−), ϕk(S+))}k≥0 (see McMullen [199, Theorem 3.8]).

3.10.4 Cannon–Thurston Maps and Veering Triangulations

We now describe the combinatorial structure of the Cannon–Thurston map associ-
ated with the �-bundle Mϕ with pseudo-Anosov monodromy ϕ. Let ρ0 : π1(�) →
PSL(2,C) be a Fuchsian representation with image �0, and let ρ : π1(�) →
PSL(2,C) be the discrete faithful representation whose image � gives the fiber
group of Mϕ .

Let j be the inclusion map from � = H2/�0 to the infinite cyclic cover M̃ϕ =
H3/� of Mϕ , and consider its lift j̃ : H2 → H3 to the universal cover. Then the
Cannon Thurston map κ : ∂H2 → ∂H3 is the boundary map of the extension of j̃

to a map from H
2 ∪ ∂H2 to H

3 ∪ ∂H3.
In order to describe the combinatorics of the Cannon–Thurston map κ , let λ̃± be

the singular foliations of H2 obtained as the lifts of the vertical/horizontal foliations
λ±, invariant by ϕ. Then the endpoints of each leaf of λ̃± are mapped by κ into
the same point, and this turns out to generate the combinatorics of κ . To be precise,
let ∼± be the equivalence relation on ∂H2 which identifies the endpoints of each
leaf of λ̃± by allowing for leaves that pass through singularities. Let ∼ be the
equivalence relation on ∂H2 generated by ∼+ and ∼−. Here the relations ∼+ and
∼− are “almost independent” in the sense that if x ∼ y then x ∼+ y or x ∼− y

or else there is a parabolic fixed point p of �0 such that either (x ∼+ p ∼− y) or
(x ∼− p ∼+ y). Moreover distinct parabolic fixed points of �0 cannot be equivalent
under ∼. It was proved by Bowditch [44, Section 9] (cf. [57, Section 5]) that

κ(x) = κ(y) if and only if x ∼ y.

In the remainder of this subsection, we assume that the singularities of the
invariant foliations λ± occur only at punctures of the fiber. (This condition is
satisfied if � is a once-punctured torus.) Then it follows that for a point q ∈ ∂H3,
the inverse image κ−1(q) consists of 1, 2 or countably infinitely many points. The
last case happens if and only if q is a parabolic fixed point of �, and in this case
∂H2 − κ−1(q) consists of countably infinitely many open intervals. Cannon and
Dicks [56] studied the way these intervals are mapped onto the complex plane
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Fig. 3.11 Projected
-horosphere triangulation
induced by the canonical
decomposition and fractal
tessellation for a once
-punctured torus bundle.
Straight line segments etch
the projected-horosphere
triangulation while fractal
arcs etch the fractal
tessellation. This picture is
taken from [78, Fig. 1]

C ∼= ∂H3−{q}, and constructed a certain fractal tessellation of C in the case where
� is a once-punctured torus. Dicks and Sakuma [78] then observed that there is an
intimate relation between the fractal tessellation and the cusp triangulation (lifted
to the universal cover C) induced by the canonical triangulation of the hyperbolic
once-punctured torus bundles (see Fig. 3.11).

On the other hand, Agol [8] introduced veering triangulations, which are
(topological) ideal triangulations of cusped hyperbolic 3-manifolds with a very
special combinatorial structure. He proved that every hyperbolic surface bundle,
for which the singularities of the invariant foliations λ± occur only at punctures
of the fiber, admits a veering triangulation, which is canonical in the sense that it
is uniquely determined by the fiber structure. (More strongly, it is determined by
Thurston’s fiber face to which the fibration belongs [212].)

In the beautiful paper [122], Guéritaud revealed an intimate relation between the
veering triangulation and the fractal tessellation arising from the Cannon–Thurston
map for every such hyperbolic surface bundle Mϕ . To this end, he gave a natural
construction of the veering triangulation in terms of the invariant foliations. The
construction works in the universal cover �̃, endowed with the half-translation
structure associated with the pseudo-Anosov monodromy. He considered maximal
rectangles in �̃ whose sides are vertical and horizontal in �̃ and whose interiors
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are disjoint from the singularities. Such maximal rectangles have one singularities
on each side; connecting these 4 singularities produces the ideal tetrahedra of the
veering triangulation. This construction enabled Guéritaud to describe the relation
between the veering triangulation and the fractal tessellation associated with the
Cannon–Thurston map.

Roughly speaking, Guéritaud’s construction of the veering triangulation is an
analogue of the Delaunay triangulation relative to the singular set, with respect
to the �∞-metric arising from the half-translation structure. On the other hand,
the canonical decomposition of a cusped hyperbolic manifold is an analogue of
the Delaunay triangulation relative to cusps, with respect to the hyperbolic metric.
For hyperbolic once-punctured torus bundles, these two decompositions are equal.
However, these two decompositions are quite different in general. In fact, it was
shown by Hodgson, Issa, Ahmad and Segerman [142] that there exist veering
triangulations which are not geometric, in the sense that they are not isotopic to
hyperbolic ideal triangulations. Moreover, it was recently proved by Futer, Taylor
and Worden [97] that generically veering triangulations are not geometric. In spite of
this defect from the viewpoint of hyperbolic geometry, nice applications of veering
triangulations to the study of curve complexes were given by Minsky and Taylor
[212].

3.11 Representations of 3-Manifold Groups

In Sects. 3.7 and 3.10, we treated deformations of hyperbolic structures. In
Sect. 3.7, we considered complete hyperbolic manifolds of finite volume and studied
deformations into incomplete hyperbolic structures, whereas in Sect. 3.10, we con-
sidered complete hyperbolic manifolds of infinite volume and studied deformations
keeping the completeness. In both sections, deformations are described in terms of
deformations of holonomy representations.

One purpose of this section is to present the definition of SL(2,C)character vari-
eties, which forms a common base ground for both treatments in Sects. 3.7 and 3.10,
and then to give a description of the hyperbolic Dehn filling theorem independent
of ideal triangulations, following Boileau–Heusener–Porti [32, Appendix B]. For
another treatment, see Hodgson–Kerckhoff [135, p.49, Remark].

Another purpose of this section is to describe applications of the character
varieties to knot theory and 3-manifold theory. We have already observed in
Sect. 3.2.7 that study of representations of knot groups to finite groups gives us a
powerful tool in knot theory. The character variety, which is essentially the space of
representations of a knot group or a 3-manifold group into the Lie group SL(2,C)

up to conjugation by elements of SL(2,C), leads to new versatile tools in knot
theory and 3-manifold theory. We give a quick review to the Culler–Shalen theory
[73, 74, 76] and the A-polynomials due to Cooper, Culler, Gillet, Long and Shalen
[64]. For further information, see the survey Shalen [290].
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3.11.1 Character Variety

Let M be a compact connected manifold, and let R(M) = Hom(π1(M),SL(2,C))

be the space of all representations of π1(M) into SL(2,C). This set has the structure
of a complex affine algebraic set, because it is identified with a subspace of
(SL(2,C))k ⊂ C4k , where k is the cardinality of a generating set of π1(M), defined
by a system of polynomial equations. For a representation ρ ∈ R(M), the function
χρ : π1(M) → C defined by χρ(γ ) = tr(ρ(γ )) is called the character of ρ. (We
don’t distinguish between a representation and the element of R(M).) The set X(M)

of all characters also has the structure of an affine algebraic set, and it is called the
character variety of M . This can be seen as follows. For each γ ∈ π1(M), consider
the function Iγ : X(M) → C, defined by Iγ (ρ) = χ(γ ). Then there are finitely
many elements γ1, . . . , γd for which Iγ1×· · ·×Iγd : X(M) → Cd is an embedding,
and its image forms an affine algebraic set [73, Corollary 1.4.5].

The natural projection from the space R(M)/SL(2,C) of all conjugacy classes
of representations onto X(M) fails to be injective only at the conjugacy classes
of reducible representations (see [290, Proposition 1.1.1]). In this sense, X(M) is
regarded as the quotient R(M)//SL(2,C) in the category of affine algebraic sets.

If M is a hyperbolic 3-manifold, i.e., if intM admits a complete hyperbolic
structure, then the holonomy representation ρ : π1(M) → PSL(2,C) lifts to
an SL(2,C)-representation (see [72]). In particular, the space Rtp(� × R) of
conjugacy classes of type-preserving PSL(2,C)-representations of π1(� ×R) (see
Sect. 3.10.2) is covered by a subspace of X(� ×R).

3.11.2 Hyperbolic Dehn Filling Theorem and Character
Variety

Consider the setting in Sect. 3.7.1, namely M is a connected compact orientable
3-manifold with ∂M = �m

j=1Tj a non-empty union of tori, such that intM admits
a complete hyperbolic structure. Let {μj , λj } is a pair of oriented slopes in the
boundary torus Tj , which forms a generator system of H1(Tj ;Z). Let ρ0 be a lift of
the holonomy representation of the complete hyperbolic structure of intM , and let
χ0 be its character. Consider the map Iμ = (Iμ1 , . . . , Iμm) : X(M) → Cm. Then
the following theorem holds (see [32, Theorem B.1.2]).

Theorem 3.11.1 The map Iμ : X(M) → Cm is locally bianalytic at χ0.

Using this theorem, we can associate each character in some neighborhood of χ0
with generalized Dehn filling coefficients. To describe this, recall that the complex
translation length LA of an element A ∈ SL(2,C) is defined as an element of
C/2π

√−1Z up to multiplication by ±1, by the following formula (see Sect. 3.5.1).

tr A = 2 cosh
LA

2
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In order to have a well-defined complex translation length as an element in C, we
consider the (Z/2Z)m-branched covering map ψ : Ũ → W from a neighborhood
Ũ ⊂ Cm of the origin onto a neighborhood W ⊂ X(M) of χ0 such that

Iμj ψ(u) = εj cosh
uj

2
for every u = (u1, . . . , um) ∈ Ũ

where εj ∈ {±} is chosen so that Iμj (ψ(0)) = χ0(μj ) = tr(ρ0(μj )) = εj2. Note
that Theorem 3.11.1 guarantees the existence of this covering.

One can define a generalized Dehn surgery coefficients map as in Sect. 3.7.1, as
Theorem 3.7.4 holds in this setting, where a certain open neighborhood, U ⊂ Ũ ,
of the origin plays the role of the open neighborhood U in the theorem (see [32,
Proposition B.1.9]). (In fact, by Remark 3.7.5, the space U is bi-holomorphic to the
space U in Theorem 3.7.4, when M admits an ideal triangulation.)

In the setting of Sect. 3.7.2, each parameter u ∈ U corresponds to a parameter
z representing the shapes of ideal tetrahedra, and so it determines an (incomplete)
hyperbolic structure on intM . In the current setting, we appeal to the fact that a
small deformation of a hyperbolic structure is parametrized by deformation of the
holonomy representation (see [301, Proposition 5.1] and [32, Proposition B.1.10]).
This is an outline of the proof the hyperbolic Dehn filling Theorem 3.7.1 without
using an ideal triangulation of M , given by [32, Appendix B].

Note that the above proof is not effective in the sense that it gives no information
about the size or shape of hyperbolic Dehn surgery space V ⊂ (R2 ∪ {∞})m.
In [137] (cf. [135, 136]), Hodgson and Kerckhoff developed a new theory of
infinitesimal harmonic deformations for compact hyperbolic 3-manifolds with
“tubular neighborhood”, and gave an effective proof of the hyperbolic Dehn filling
theorem; they proved that all generalized Dehn filling coefficients outside a disc of
“uniform” size yield hyperbolic structures.

3.11.3 The Culler–Shalen Theory and the Cyclic Surgery
Theorem

We give a quick survey of the Culler–Shalen theory. See [290] for a detailed
self-contained review. Let M be a compact, connected, orientable, irreducible 3-
manifold. Suppose M contains an essential surface F . Then by considering the
inverse image F̃ of F in the universal covering M̃, we can construct a tree T , such
that the vertices correspond to the components of M̃ − F̃ and the edges correspond
to the connected components of F̃ , where the edge corresponding to a component
of F̃ joins the two vertices corresponding to the components of M̃ − F̃ abutting
the component of F̃ . The covering transformation group π1(M) acts on the tree T

simplicially, and this action is nontrivial (i.e., no vertex is stabilized by the whole
group π1(M)) and without inversion (i.e., if an element γ ∈ π1(M) leaves an edge
invariant, then γ fixes the edge pointwise). Conversely, it is known that if π1(M)
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acts simplicially on a tree nontrivially and without inversion, then M contains an
essential surface.

In [73], Culler and Shalen established a method for constructing such actions of
π1(M) on trees, by using the character variety X(M). The theory says that if X(M)

contains an algebraic curve C, then each ideal point of the curve gives rise to such
an action of π1(M) and hence an essential surface in M . In this theory, Tits–Bass–
Serre theory [289] on the structure of subgroups of SL(2, F ), where F is a field with
a discrete valuation, plays a key role. Various applications of this theory are given,
including (a) a simpler proof and generalization of the Smith conjecture [73] and
(b) a proof of the Neuwirth conjecture which says that every nontrivial knot group
is a free product of two proper subgroups amalgamated along a free product [74].

In [76], Culler, Gordon, Luecke and Shalen introduced a norm || · || :
H1(∂M;R) → R for a compact orientable hyperbolic 3-manifold M with a
single torus boundary. A key fact behind this definition is the following: Let X0 be
the irreducible component of the character variety X(M) containing the character
χ0 of the (lifted) holonomy representation of the complete hyperbolic structure on
intM . Then X0 has complex dimension 1 (see Theorem 3.11.1). Let X̂0 be the
projective completion of the affine algebraic curve X0 in which the ideal points
are smooth. Then for each γ ∈ H1(∂M) = π1(∂M), the restriction to X0 of the
function Iγ : X(M) → C, defined by Iγ (χ) = χ(γ ), extends to a rational function,
Îγ : X̂0 → C ∪ {∞}, where the ideal points of X̂0 (i.e., the points in X̂0 − X0) are
the poles of this rational function. The norm || · || : H1(∂M;R) → R is defined to
be the norm obtained as the continuous extension of the function H1(∂M;Z) → Z

which associates γ with the degree of Îγ . The norm plays a crucial role in the proof
of the cyclic surgery theorem below, established by Culler, Gordon, Luecke, and
Shalen [76]. The theorem was proved by combining (i) arguments using the norm
and (ii) graph-theoretic analysis of the intersection of two incompressible, planar
surfaces in knot exteriors.

Theorem 3.11.2 (Cyclic Surgery Theorem) Let M be a compact, connected,
orientable, irreducible 3-manifold such that ∂M is a single torus, and suppose that
M is not a Seifert fibered space. Let α and β be two non-isotopic essential simple
loops on ∂M , such that π1(M(α)) and π1(M(β)) are cyclic. Then the geometric
intersection number of α and β is equal to 1.

In [46, 47], Boyer and Zhang generalized the above idea and proved an analogue
of the above theorem for finite surgeries. See [45], for further information.

The Culler–Shalen theory was extended by Morgan and Shalen [220–222] to the
theory of R-trees. Here an R-tree is a metric space in which any two points are
joined by a unique topological arc. The theory plays a key role in Otal’s proof [247]
of the double limit theorem. See the reviews [24, 217] for further information.
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3.11.4 A-Polynomials

We give a short review of the A-polynomial of a knot K , which is introduced
by Cooper, Culler, Gillet, Long, and Shalen [64] by using the character variety
X(M) of the knot exterior M of K . The idea is to consider the restriction map
r : X(M) → X(∂M) induced by the inclusion of π1(∂M) into π1(M). Then
even though X(M) is complicated, its image r(X(M)) can be very simple. Note
that π1(∂M) is the free abelian group freely generated by the longitude λ and the
meridian μ. Thus, for any irreducible 1-dimensional component C in the image
r(X(M)) ⊂ X(∂M), there is a holomorphic map f : C → C × C which assigns
the pair of the “eigen values” of the images of λ and μ by the corresponding
representations. Then the closure of the image f (C) becomes an algebraic curve in
C2. Such a curve is equal to the zero set of a single defining polynomial, FC(x, y).
Now consider the product

∏
C FC(x, y) of the defining polynomialsFC(x, y) where

C runs over the 1-dimensional irreducible components of r(X(M)). Then the A-
polynomial of K is defined as

AK(x, y) = 1

x − 1

∏

C

FC(x, y)

The reason of dividing out by the factor x − 1 is that H1(M) is the free abelian
group generated by μ and so we always have a component corresponding to abelian
representations, which gives rise to the factor x − 1. By normalizing AK(x, y) so
that it is an integral polynomial, it is defined up to multiplication by ±xayb.

It is obvious that AO(x, y) = 1 for the trivial knot O , and it is proved that
the converse also holds (see Boyer–Zhang [48] and Dunfield–Garoufalidis [80]).
The most important properties of the A-polynomials come from the fact that they
encode information about the boundary slopes of the knot, via the Newton polygon
of AK(x, y). Recall that a boundary slope of a knot K is a slope (isotopy class of
an essential simple loop) in the boundary torus of the knot exterior M , such that
there is an essential surface in M whose boundary consists of loops representing the
slope. The Newton polygon of the polynomial AK(x, y) is the convex hull of the
finite set:

{(i, j) ∈ Z
2 | the coefficient of xiyj in AK(x, y) is non-zero}.

The following striking theorem is proved by [64, Theorem 3.4].

Theorem 3.11.3 Slopes of the edges of the Newton polygon of AK(x, y) are
boundary slopes of the knot K .
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3.12 Knot Genus and Thurston Norm

By generalizing the genus of a knot, Thurston [304] defined a (semi-)norm on
H 1(M;R) ∼= H2(M, ∂M;R) for a compact orientable 3-manifold M . It is called
the Thurston (semi-)norm of M . By the work of Gabai [98], the Thurston norm
is identical to the Gromov norm on H2(M, ∂M;Z). The Thurston norm can be
used to study the set of fiberings of M over the circle, and the work of Fried and
McMullen enabled a unified treatment of the fiberings of M . After recalling these
works, we explain two Thurstonian connections between the topology and geometry
of 3-manifolds, related to Thurston norms. Namely, we survey (i) the relation of
the Thurston norm with the hyperbolic torsion polynomial due to Dunfield–Friedl–
Jackson [81] and Agol–Dunfield [10], and (ii) that with the harmonic L2-norm with
respect to the hyperbolic metric due to Brock–Dunfield [49].

3.12.1 Thurston Norm

Let M be a compact oriented 3-manifolds with ∂M a possibly empty union of tori.
For a compact possibly disconnected surface �, let �0 be the surface consisting
of the components of � which are neither homeomorphic to D2 nor S2, and
define its complexity by χ−(�) := |χ(�0)|. For an integral homology class
α ∈ H2(M, ∂M;Z), define its Thurston norm ||α||Th by

||α||Th = min{χ−(�) | [�] = α}

Theorem 3.12.1

(1) || · ||Th extends to a continuous map || · ||Th : H 1(M;R) ∼= H2(M, ∂M;R) →
R≥0, and this gives a semi-norm on H 1(M;R). Moreover, if any compact ori-
entable surface properly embedded in M , representing a nontrivial homology
class, has a negative Euler characteristic, then || · ||Th is a norm.

(2) Suppose || · ||Th is a norm, then the unit ball

BM = {α ∈ H 1(M;R) | ||α||Th ≤ 1}

is a finite-sided polyhedron whose vertices are rational points.
(3) Suppose || · ||Th is a norm. Then there are codimension one faces F1, . . . , Fk , of

BM satisfying the following conditions.

(i) Any integral cohomology class in the interior of the cone R+ · Fi is a fiber
class.

(ii) Conversely, any fiber class is contained in the interior of some cone R+·Fi .
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Here a class φ ∈ H 1(M;Z) is called a fibered class if it is an integral multiple of
the cohomology class represented by a bundle projection p : M → S1. In the above
theorem, each Fi is called a fibered face.

The fiber structures contained in the interior of the cone on a fibered face can
be given a unified treatment, and various interesting results can be obtained. In
particular, building on the results of Fried, McMullen [200] proved that each fibered
face F determines a 2-dimensional “lamination” L of M transverse to every fiber
surface � with (Poincaré dual of [�]) ∈ R+·F , where �∩L is the stable lamination
of the monodromy of the fibration. By using this result, he defined the Teichmüller
polynomial θF ∈ Z[H1(M;Z)/TorH1(M;Z)] and proved the following results
[200].

◦ The Teichmüller polynomial is symmetric, i.e., if θF = ∑
g agg then θF =

∑
g agg

−1 up to a unit in Z[H1(M)/TorH1(M)].
◦ For any integral cohomology class φ ∈ R+ · F , the expansion factor k(ϕ) of

the corresponding monodromy ϕ is equal to the largest root of the one-variable
polynomial obtained by evaluating θF by φ.

◦ The function φ 	→ 1/ log k(ϕ) extends to a real-analytic function on R+ · F
which is strictly concave.

◦ The cone R+ · F is dual to a vertex of the Newton polygon ⊂ H1(M;R) of θF .
◦ If the lamination L is transversely orientable, then the (multivariable) Alexander

polynomial of M divides the Teichmüller polynomial θF

To end this subsection, we recall an important result of Gabai [98], obtained
as a corollary of his construction of codimension 1 transversely oriented foliations
without Reeb components which contain a given Thurston norm minimizing surface
as a closed leaf. To explain this, we consider another (semi-)norm || · ||sTh on
H 1(M;R) ∼= H2(M, ∂M;R) for a compact irreducible orientable 3-manifold M ,
defined by using immersed surfaces instead of embedded surfaces. Namely, for an
integral homology class α ∈ H2(M, ∂M;Z), define ||α||sTh to be the minimum
of χ−(�) of a compact oriented surface � for which there is a proper immersion
f : (�, ∂�) → (M, ∂M) such that f∗([�]) = α, namely,

||α||sTh = min{χ−(�) | ∃f : (�, ∂�) � (M, ∂M) such that f∗([�]) = α}.

The new norm || · ||sTh is defined as a continuous extension of the above norm on the
integral homology.

In addition to this, as in Sect. 3.8.4, the Gromov norm || · ||Gr is defined by

||α||Gr := inf{||z|| | z is a singular cycle representing the homology class α},

where, for a (real) singular chain z =∑
j ajσj , its norm ||z|| is defined as the sum∑

j |aj | of the absolute values of its coefficients. The following theorem was proved
by Gabai [98].
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Theorem 3.12.2 Let M be a connected compact irreducible orientable 3-manifold
with possibly empty toral boundary. Then the three norms on H 1(M;R) ∼=
H2(M, ∂M;R) coincide, namely,

|| · ||Th = || · ||sTh = || · ||Gr.

In particular, for a knot K in S3, its genus g(K) is equal to the immersed
genus of K , which is defined as the minimum of the genus g(�) of a compact
connected oriented surface � such that there is an immersion f : � → S3, with
f−1(K) = ∂�, whose singular set is disjoint from K . This is a generalization of
Dehn’s lemma for higher genus, and gives a partial affirmative answer to a question
raised by Papakyriakopoulos [252], who established Dehn’s lemma.

3.12.2 Evaluation of Thurston Norms in Terms of Twisted
Alexander Polynomials

The twisted Alexander polynomials, defined by Lin [183] for classical knots and by
Wada [313] in the general setting, give a powerful tool for studying the Thurston
norm. Such a “polynomial” �(M,φ, ρ) depends on a class φ ∈ H 1(M;Z) and a
linear representation ρ : π1(M) → GL(V ), where V is a finite-dimensional vector
space over a field F . Then �(M,φ, ρ) is defined as an element of the quotient field
F(t±1) of the group ring F [t±1], and analogies of Theorem 3.2.7 on the classical
Alexander polynomial are obtained by several authors (see the surveys [89, 160]).
Friedl and Viddusi [90, 91] proved the surprising results that the twisted Alexander
polynomials can detect fiber classes and the Thurston norms.

When K is a hyperbolic knot in S3, it is natural to consider the twisted Alexander
polynomial for the representation ρ : G(K) → SL(2,C) which projects to the
holonomy representation of the complete hyperbolic structure of S3 − K . Though
there are precisely two such representations up to conjugacy, there is unique one
for which tr ρ(μ) = +2, where μ a meridian of K . (For the other lift ρ′, we
have trρ′(μ) = −2.) Thus we can consider the twisted Alexander ploynomial
�(E(K), φ, ρ), where φ ∈ H 1(E(K);Z) ∼= Z is the generator. The invariant is
called the hyperbolic torsion polynomial of K and is denoted by JK(t) (see [81]).
The artificial choice of the lift ρ is irrelevant, because if ρ is replaced with the other
lift ρ′, then the corresponding polynomial J′K(t) is equal to JK(−t). As a special
case of the general results on the twisted Alexander polynomial, the following hold
for every hyperbolic knot K in S3.

(1) 4g(K)− 2 ≥ degJK(t).
(2) If K is fibered, then JK(t) is monic.

These may be regarded as analogies of Theorem 3.2.7(2) and (3) on the classical
Alexander polynomial. Dunfield, Friedl and Jackson [81] made extensive computer
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experiments, and confirmed that for all hyperbolic knots with at most 15 crossings,
the estimate (1) is sharp and that (2) detect all non-fibered knots. In particular, the
hyperbolic torsion polynomial detects that the genera of the Kinoshita–Terasaka
knot and the Conway knot are 3 and 5, respectively. (The genera of arborescent
links, including these two knots, had been determined by Gabai [101] through the
topological study of complementary sutured manifolds.) Thus the hyperbolic torsion
polynomials can distinguish knots which are mutants of each other. In [10], Agol
and Dunfield studied the conjecture posed by [81], that the estimate (1) is sharp for
every hyperbolic knot, and they verified the conjecture for libroid hyperbolic knots
in S3. The libroid knots form a broad class of knots, which is closed under Murasugi
sum, and in particular all arborescent are libroid knots.

3.12.3 Harmonic Norm and Thurston Norm

Let M be a closed orientable hyperbolic 3-manifold. Then in addition to the
topologically defined Thurston norm || · ||Th, there is yet another canonically
defined geometric norm on H 1(M;R). By the rigidity theorem, M admits a unique
hyperbolic metric, and by applying Hodge theory to this Riemannian metric, we can
identify H 1(M;R) with the space of harmonic 1-forms. Thus the harmonic norm
|| · ||L2 determines another norm on H 1(M;R) ∼= H2(M;R). Here the harmonic
norm is the one associated with the usual inner product for 1-forms:

〈α, β〉 =
∫

M

α ∧ ∗β,

where ∗ is the Hodge ∗-operator. Since it comes from a positive-definite inner
product, the unit ball of ||·||L2 is a smooth ellipsoid. Brock and Dunfield [49] proved
the following relation between the topological norm and the geometric norm.

Theorem 3.12.3 For all closed orientable hyperbolic 3-manifold M one has

π√
vol(M)

|| · ||Th ≤ || · ||L2 ≤ 10π
√

inj(M)
|| · ||Th.

In the above theorem, inj(M) denotes the injectivity radius of M , i.e., half of the
length of the shortest closed geodesic. Moreover, they also showed that the above
estimates are in some sense sharp, by giving families of examples.

These results were obtained as refinements of a result of Bergeron, Sengün
and Venkatesh [22], which in turn is preceded by the work by Kronheimer and
Mrowka [174] that characterize the Thurston norm as the infimum (over all possible
Rimennian metrics) of certain scaled harmonic metrics.



3 A Survey of the Impact of Thurston’s Work on Knot Theory 143

3.13 Finite-Index Subgroups of Knot Groups and 3-Manifold
Groups

As explained in Sect. 3.2.7, finite branched/unbranched coverings of knots are a
powerful tool for distinguishing knots. This fact reflects the richness of finite-index
subgroups of knot groups. In this section, we survey the following topics which
illustrate this richness: (i) universal groups, which produce all closed orientable 3-
manifolds, (ii) positive solution of the virtual fibering conjecture, (iii) Grothendieck
rigidity of 3-manifold groups, and (iv) mysterious relation between the Gromov
norm and the homology growth of finite coverings.

3.13.1 Universal Knots/Links and Universal Groups

In an unpublished preprint [303], W. Thurston presented a very complicated six
component link in S3, and proved the surprising fact that every closed orientable
3-manifold can be expressed as a branched cover of the 3-sphere branched over this
link. He called links with this property universal links. He asked if a universal knot
exists, and if even the figure-eight knot was universal. This question was answered
affirmatively by Hilden, Lozano and Montesinos in [130], where they proved that
every hyperbolic 2-bridge knot and link is universal.

Moreover, it was later proved by Hilden, Lozano, Montesinos and Whitten in
[131] that every closed orientable 3-manifold M is a covering of S3 branced over
the Borromean rings and having branching indices 1, 2 and 4 (cf. Fig. 3.12). This
implies that the hyperbolic orbifold U = H3/U with underlying space S3 and with
singular set the Borromean ring where all components have cone angle π/2, is a
universal orbifold in the following sense: for any closed orientable 3-manifold M ,
there is a finite orbifold covering O → U with underlying space |O| homeomorphic
to M . In other words, the orbifold fundamental group U = πorb

1 (U) is a universal
group, i.e., for any closed orientable 3-manifold M , there is a finite index subgroup
� of U such that |H3/�| ∼= M . It is surprising that all closed orientable 3-manifolds
are constructed from a single group U and its finite index subgroups. Moreover,
universal groups seem to be ubiquitous (cf. [132]).

Fig. 3.12 The Borromean
orbifold B(p, q, r) is a
universal orbifold if p ≥ 3
and both q and r are even
integers ≥ 4 by [132]
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3.13.2 Virtual Fibering Conjecture

The positive solution of Thurston’s virtual fibering conjecture by Agol [9] and the
geometric solution of Waldhausen’s conjecture for hyperbolic manifolds due to
Kahn–Markovic [154], which play a key role in the proof of the virtual fibering
conjecture, also reflect the richness of subgroups of Kleinian groups. Please see
Bestvina [25] for a survey of this important topic.

Here, I only recall Walsh’s simple construction [318] of a nontrivial example
of virtual fibering using knot theory. Let K be a spherical Montesinos knot/link
which is not fibered, e.g., the 52 knot, the 2-bridge knot of slope 2/7. Then the
double branched covering M2(K) of S3 branched over K is a spherical manifold
and so its universal covering M̃2(K) is the 3-sphere. The inverse image, K̃, of
K in the universal cover is a great circle link in S3, because it is the singular set
of the isometric group action of the π-orbifold group of K (cf. Sect. 3.4.3). Pick
a component O of K̃ , and observe that the remaining components form a closed
braid around O , because K̃ consists of great circles. This shows that the covering
M̃2(K) − K̃ of S3 − K is a punctured disk bundle over the circle, though S3 − K

itself does not admit a fiber structure over the circle.

3.13.3 Profinite Completions of Knot Groups and 3-Manifold
Groups

As explained in Sect. 3.2.7, representations of knot groups onto finite groups serve
a powerful tool for distinguishing knots. Thus it is natural to ask the following
question (cf. [30]).

Question 3.13.1 To what degree does the set of finite quotients of knot groups
distinguish knots? More generally, what properties of 3-manifolds are determined
by the set of finite quotients of their fundamental groups?

The geometrization theorem and Hempel’s argument [128] show that every 3-
manifold group is residually finite, namely, for any nontrivial element g ∈ π1(M),
where M is a compact connected orientable 3-manifold, there is a finite quotient of
π1(M) in which g remain nontrivial. This implies that the above question can be
formulated in terms of the profinite completion of the fundamental group.

Recall that the profinite completion of a group �, is the inverse limit of the inverse
system of finite quotients of �: we denote it by �̂. (The profinite completion is
actually defined to be a topological group endowed with the profinite topology.
By Nikolov–Segal [244], the topology of any “finitely generated profinite group”
is determined by the algebraic structure. So we do not care about the topological
structure in this subsection.) The natural map � → �̂ is injective if and only if �

is residually finite. Let C(�) denote the family of finite quotients of �. Then the
following holds (see [268, p.88-89], [185, Theorem 2.2]).
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Theorem 3.13.2 For two finitely generated residually finite groups �1 and �2, the
equality C(�1) = C(�2) holds if and only if �̂1 ∼= �̂2, i.e., the profinite completions
are isomorphic.

Thus Question 3.13.1 is reformulated by using the profinite completion; in
particular, the following question arises as a special case.

Question 3.13.3 Let M1 and M2 be connected compact orientable 3-manifolds, for
which the profinite completions π̂1(M1) and π̂1(M2) are isomorphic. Are π1(M1)

and π1(M2) isomorphic?

The answer to the above question is no. In fact, Funar [94] and Hempel [129]
showed that the profinite completion of the fundamental group cannot always
distinguish certain pairs of torus bundles nor certain pairs of Seifert fibered spaces.
It is still an open question though whether the profinite completion can distinguish
any two hyperbolic 3-manifolds. Boileau and Friedl [30] considered a more relaxed
Question 3.13.1 and obtained various interesting results concerning fiberedness and
the Thurston norm, and have shown that the figure-eight knot and torus knots are
distinguished from other knots by the profinite completions of their knot groups.

On the other hand, the following problem had been posed by Grothendieck [119].

Problem 3.13.4 (Grothendieck) Let ϕ : �1 → �2 be a homomorphism of finitely
presented residually finite groups for which the extension ϕ̂ : �̂1 → �̂2 is an
isomorphism. Is ϕ an isomorphism?

If ϕ̂ : �̂1 → �̂2 is an isomorphism, then the composition �1 → �̂1 → �̂2 is
an injection and so ϕ : �1 → �2 must be an injection. Therefore Grothendieck’s
problem reduces to the case where �1 is a subgroup of �2. Long and Reid [185]
introduced the following terminology. For a group G and its subgroup H < G, the
pair (G,H) is a Grothendieck pair if the inclusion j : H → G provides a negative
answer to Grothendieck’s problem. If for all finitely generated subgroups H < G,
(G,H) is never a Grothendieck pair then G is Grothendieck rigid.

The following theorem was proved by Long and Reid [185] for the case where
M is closed and by Boileau and Friedl [31] for general case.

Theorem 3.13.5 Let M be a connected, orientable, irreducible, compact 3-
manifold. Then π1(M) is Grothendieck rigid.

In the examples of Funar [94] and Hempel [129], the isomorphisms between the
profinite completions are not induced by a homomorphism between the 3-manifold
groups.

3.13.4 Homology Growth

Investigation of the first homology groups of finite (branched or unbranched)
coverings has a long history (cf. Sect. 3.2.7). For the homology of finite abelian
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coverings of links, it was proved that they are essentially determined by the
Alexander invariants of links (see [86, 198, 280]). In [111], Gordon studied the
asymptotic behavior the homology of finite cyclic branched coverings of a knot,
and gave a necessary and sufficient condition for H1(Mn(K);Z) to be periodic
with respect to n, in terms of the Alexander invariants. This in particular implies
that if the Alexander polynomial �K(t) has a root which is not a primitive root
of 1 then H1(Mn(K);Z) cannot be periodic. In fact, he showed that the order
|H1(Mn(K);Z)| is unbounded under the same assumption, and then asked if the
order |H1(Mn(K);Z)| tends to ∞. Riley [273] and González-Acuña and Short
[109], independently, proved that |H1(Mn(K);Z)| grows exponentially. To be
precise, the following was proved:

lim
nj→∞

1

nj

log |H1(Mnj (K);Z)| = logM(�K),

where {nj } runs over the natural numbers such that |H1(Mnj (K);Z)| is finite, and
M(�K) is the Mahler measure of the Alexander polynomial �K(t). The Mahler
measure of a polynomial f (t) is defined by

M(f ) = exp

(∫

S1
log |f (s)|ds

)

= exp

(∫ 1

0
log |f (e2π

√−1t )|dt
)

= |c|
∏

f (ω)=0

max(|ω|, 1) (c is the leading coefficient of f (t)).

Here, the last equality is a consequence of Jensen’s formula [11, p. 205].
This result was extended by Silver and Williams [293] to links in S3, by using the

result of Schmidt [282] on the entropy of a certain dynamical system. Let L be an
m-component oriented link in S3, with the complement X = S3−L. For a subgroup
� ⊂ H1(X;Z) ∼= Zm of rank m, let Xbr

� be the corresponding branched covering of
Z. Set

〈�〉 = min{|x| | x ∈ �− {0}},

where |x| =
√∑

i |xi |2 for x = (x1, . . . , xm) ∈ Zm. Let �L ∈ Z[t1, . . . , tm] be the
(0-th) Alexander polynomial of L.

Theorem 3.13.6 (Silver–Williams) Under the above setting, suppose that �L �=
0. Then the following holds:

lim sup
〈�〉→∞

ln |TorZ H1(X
br
�;Z)|

|Zm/�| = logM(�L).
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Here M(�L) is the Mahler measure of �L, defined by

M(�L) = exp

(∫

T m

log |�L(s)|ds
)

,

where T m := (S1)m ⊂ Cm is the multiplicative subgroup in Cm, and ds indicates
integration with respect to normalized Haar measure on T m.

In [179], Thang Le solved a conjecture of Schmidt [282], and by using the
solution, he extended the above result to links in oriented integral homology 3-
spheres, and to include the case where the 0-th Alexander polynomial vanishes,
by replacing the 0-th Alexander polynomial with the first non-vanishing Alexander
polynomial. He also proved that the same formula holds for unbranched abelian
coverings.

In [180], Le also studied the asymptotic behavior of the homology of non-abelian
coverings, by using the result on L2-torsion by Lück [186, Theorems 4.3 and 4.9].
Let X be an irreducible compact orientable 3-manifold with infinite fundamental
group with (possibly empty) toral boundary. For a subgroup � of π1(X) of finite
index, let X� be the corresponding finite covering of X. A sequence {�k} of
subgroups of π1(X) of finite index is said to be nested, if �k+1 < �k . It is said
to be exhaustive if ∩k�k = {1}.
Theorem 3.13.7 (Le) Under the above setting, the following holds for any nested
exhaustive sequence {�k} of normal subgroups of π1(X) of finite index:

lim sup
k→∞

ln |TorH1(X�k ;Z)|
[π1(X) : �k] ≤ Vtet||X||

6π
,

where ||X|| is the Gromov norm of X.

For a knot K in S3 with exterior X and a finite index subroup � < G(K), let Xbr
�

be the corresponding branched covering of S3 branched over K .

Theorem 3.13.8 (Le) Under the above setting, the following holds for any nested
exhaustive sequence {�k} of normal subgroups of G(K) = π1(X) of finite index.

lim sup
k→∞

ln |TorH1(X
br
�k
;Z)|

[π1(X) : �k] ≤ Vtet||X||
6π

,

where ||X|| is the Gromov norm of X.

For the sake of simplicity, we stated Le’s theorem only for regular coverings.
However, the actual statement of his theorem is much more general and it does not
restrict to regular coverings. For a precise statement, see the original paper [180].
Moreover, he conjectures that the identity holds in both theorems.
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The homology of finite (branched/unbranched) coverings is a common and well-
known invariant in knot theory. It is impressive that the asymptotic behavior of this
familiar invariant reflects the deep geometric structure of the knot.
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science in general by Thurston.
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4.1 Prologue

The aim of this chapter is to briefly present Thurston’s contribution to the theory of
3-manifolds and recent developments afterwards exclusively. We focus particularly
on the 3-manifold theory and will not discuss other contributions to mathematics or
science in general by Thurston. However, we hope the readers will realize how the
study of 3-manifolds was dramatically accelerated by Thurston.

4.2 Pre-Thurston Era

Throughout this chapter, we assume for simplicity that all manifolds discussed are
compact and orientable unless otherwise stated.

The study of topology of manifolds has a history of more than 120 years. It
was initiated by Poincaré in his paper entitled “Analysis Situs” in 1895 and five
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subsequent supplements appearing between 1899 and 1904. In the last supplement
[33], Poincaré asked if every closed simply connected 3-manifold is homeomorphic
to the 3-sphere. This is a type of question in mathematics which asks if every object
with a particular property is very special and which looks too specific at first glance.
However, surprisingly enough, this question later called the Poincaré conjecture
motivated extensive studies of the topology of manifolds in the last century and
led to the development of the basis of algebraic topology, homology theory and
homotopy theory. On the other hand, the study of 3-manifolds in particular walked
a bit different path from the mainstream of topology while elaborating on this claim.

Among the many trials in 3-manifold topology up to the 1960s, the best success
in the structure theory was the theorem by Waldhausen [45] for Haken manifolds.
Recall that an essential 2-sphere or a 2-disk in a 3-manifold is one which does not
bound a 3-ball. A Haken manifold is, by definition, a 3-manifold without separating
essential 2-spheres but with either essential 2-spheres, 2-disks or connected essential
(π1-injective) embedded surfaces of nonpositive Euler characteristic. A 3-manifold
without separating essential 2-spheres is called irreducible, and irreducibility was
used in those days to avoid a possible counterexample to the Poincaré conjecture.
The theorem by Waldhausen asserts that a homotopy equivalence between Haken
manifolds preserving peripheral structures is homotopic to a homeomorphism. A
Haken manifold admits a hierarchy to a union of 3-balls by cutting along essential
embedded surfaces and this property was a key ingredient of Waldhausen’s proof.

The Poincaré conjecture can be rephrased as whether a 3-manifold homotopy
equivalent to the 3-sphere is homeomorphic to the 3-sphere. An easy extension of
the Poincaré conjecture could be stated as: are homotopy equivalent 3-manifolds
homeomorphic to each other? This question was known to have counterexamples
in lens spaces, but Waldhauen answered the question in the affirmative for Haken
3-manifolds, the class which was expected to occupy a large portion of the world of
3-manifolds.

Waldhausen’s structural study was continued by Jaco–Shalen and Johansson for
3-manifolds with essential embedded tori in the later half of the 1970s in [16, 17]. To
be more precise, recall that a Seifert fibered space is, by definition, a circle bundle
over a 2-dimensional orbifold as an orbifold. Seifert fibered spaces had been well
studied by experts. The sphere, lens spaces and many other 3-manifolds with finite
π1 were known to be Seifert fibered, and today we know that so is every 3-manifolds
with finite π1. Those are non-Haken manifolds. There is also a class of non-Haken
Seifert fibered spaces with infinite π1, which in those days were sometimes called
small. A neighborhood of an essential embedded torus in a 3-manifold forms a
Seifert fibered part. This part may be or may not be a maximal Seifert fibered part
in the 3-manifold. What was shown by Jaco–Shalen and Johannson’s work is that
the maximal Seifert fibered part in a Haken manifold is unique up to isotopy, and its
complement (if it exists) is atoroidal, meaning that every essential embedding from
the torus is homotopic to some boundary of the maximal Seifert part.

Here we need to define a stronger atoroidality to go further. A 3-manifold is said
to be homotopically atoroidal if any Z × Z in π1 is conjugate to a subgroup of
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the group generated by the toroidal boundary. Homotopically atoroidal manifolds
either have no Z× Z in π1 or contain an essential torus homotopic to the boundary.
In particular, they are atoroidal. Meanwhile small Seifert fibered spaces are atoroidal
but not homotopically atoroidal.

We can now state two critical questions about the structure of 3-manifolds,
which arose when Jaco–Shalen and Johannson’s torus decomposition theory was
established:

1. Are there non-Haken 3-manifolds that are not Seifert fibered?
2. What do homotopically atoroidal manifolds look like?

These questions seemed to be very wide open in those days even with the
machinery supporting the successful structural study.

4.3 Thurston Era

The period in which Thurston himself proved serious results on 3-manifold theory
was probably between the later half of the 1970s and the early 1980s, if we ignore
influences by what he said in public and his unseen attempts in succeeding years.
After establishing surprising contributions in foliation theory, Thurston moved to 3-
manifold theory in the mid-1970s. He changed the research direction of the theory
of 3-manifolds during a very short period by introducing completely new geometric
aspects. He had special insight into hyperbolic geometry, the geometry of constant
negative sectional curvature, and brought his own vision to 3-manifold topology.

The first surprise by Thurston in 3-manifold theory was an elementary but
extremely original study of the Dehn surgeries on the figure eight knot discussed
in §4 of his seminal lecture notes [39]. The figure eight knot complement can
be obtained by appropriately pasting two ideal regular hyperbolic tetrahedra.
Through a very naive but ingenious argument using the deformation of tetrahedra,
Thurston showed that Dehn surgeries on the figure eight knot produce non-
Haken and hyperbolic (and hence non-Seifert) 3-manifolds except in ten cases.
This answers the first question of the previous section in a rather generic form.
Moreover, Thurston immediately generalized his argument based on pioneering use
of character varieties, studied extensively in these days, in §5 of [39] as follows.

Theorem 1 (Hyperbolic Dehn Surgery Theorem) All but finitely many Dehn
surgeries on a hyperbolic knot produce hyperbolic manifolds.

This theorem should be stated as one consequence of Thurston’s results on the
flexibility of hyperbolic structures on cusped manifolds. Mostow–Prasad rigidity
[27, 34] claims that the hyperbolic structure is rigid if we stay within complete
structures in dimension at least 3. However, Thurston found that hyperbolic struc-
tures are flexible on 3-manifolds if we allow incomplete metrics with reasonably
understandable singularities in their completion. This highly original observation
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predicts that hyperbolicity would become the crucial concept in classifying the
structure of 3-manifolds, rather than Hakenness.

As for the second question in the previous section, one should mention that
a hyperbolic 3-manifold is easily shown to be homotopically atoroidal, based on
the structure of the isometry group of 3-dimensional hyperbolic space. Thus its
answer should be expected to involve hyperbolicity. Thurston proved the following
remarkable theorem for Haken manifolds almost at the same time that he proved the
Hyperbolic Dehn Surgery Theorem.

Theorem 2 (Hyperbolization Theorem for Haken Manifolds) Any homotopi-
cally atoroidal Haken manifold admits a hyperbolic structure.

This theorem answers the second question in the previous section for Haken
manifolds, including the case without essential embedded tori, The result was strong
enough to prove the 40 years standing Smith conjecture in the affirmative, with the
help of minimal surface theory developed by Meeks–Yau and several additional
arguments by Bass, Gordon–Litherland and Shalen. The Smith conjecture asks if
any non-trivial orientation-preserving periodic diffeomorphism on the 3-sphere with
nontrivial fixed point set is equivariant to a periodic isometry on the 3-sphere with
the standard spherical metric. The solution of the Smith conjecture, which gathered
many ideas of different aspects of mathematics such as differential geometry,
subgroups of Lie groups, geometric topology and their interplay was presented in
the late 1970s in the book [26] that collected articles by the main players for the
resolution except for Thurston.

Thurston’s proof of Theorem 2 was divided completely but not exclusively into
two cases according to whether a surface along which we first cut is a fiber or not.
The proof for the second case was based on the hierarchy of Haken manifolds and
uses many new and exciting ideas to overcome serious difficulties that appeared
in the geometric setting in contrast to Waldhausen’s topological setting. The proof
for the first case needs a double limiting argument involving Kleinian groups
and was based on Thurston’s deep study of automorphisms of surfaces in [42].
A fairly detailed outline of the proof was presented in the article by Morgan in
[26]. Thurston promised to provide a series of six papers that would cover all
details. However this series was never completed. The first paper [41], discussing
the deformation space for the acylinderical case, appeared in 1986 in the Annals of
Mathematics. But the second one [44] discussing the fibered case, in other words
the I -bundle case after cutting along the first essential surface, and the third one
[43] discussing the mixed case where the complement of a cutting surface has
both acylinder parts and I-bundle parts are still in preprint forms. The remaining
papers are unavailable in public. There were several attempts to cover all of the
details. Among others, we recommend the articles by Otal [28, 29] and the book by
Kapovich [19] for expositions that are close to Thurston’s original ideas, and also
the articles by Sullivan [38] and McMullen [22] for alternative proofs for the fibered
case. Theorem 2 was called the Monster in those days, because of the extreme
difficulty of its proof.
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In the very late 1970s, Thurston seemed to be convinced that hyperbolic geom-
etry would cover the missing part of the Waldhausen, Jaco–Shalen and Johannson
theory. He formulated his vision of the structure theory of 3-manifolds in terms of
geometric concepts and announced it as the geometrization conjecture at the AMS
symposium on the mathematical heritage of Henri Poincaré held in 1980 at Indiana.
His article based on the lecture was published as [40].

To state the geometrization conjecture precisely, we need to give a few defi-
nitions. Recall that we are assuming all manifolds to be compact and orientable.
A 3-manifold is known to decompose into a finitely many irreducible or S1 × S2

factors by splitting along separating essential spheres by Kneser [21]. This is
called a connected sum decomposition. The uniqueness of this decomposition
was proved by Milnor [24] in the early 1960s. As we have already mentioned
in the previous section, Jaco–Shalen and Johannson then developed the torus
decomposition theory. These topological decompositions provided the basic pieces
that, Thurston conjectured, would admit one of eight geometric structures. Six of
them are for Seifert fibered spaces and another one is for solvable manifolds. The
last one is the hyperbolic geometry that was expected to be the generic case. A more
precise and detailed description of the eight 3-dimensional geometries can be found
in the article by Scott [37].

The following geometrization conjecture, which includes the Poincaré conjecture
as a special case, lasted for 20 years as an undoubted working hypothesis for people
involved in 3-dimensional topology.

Conjecture 3 (Geometrization Conjecture) Any closed 3-manifold admits a canon-
ical decomposition into geometric pieces.

In [40], Thurston also listed a set of problems. Among them, one group on 3-
manifold theory consists of variants of the geometrization conjecture. Problems in
another group on 3-manifold theory are mostly related to the conjecture usually
attributed to Waldhausen in [45], though he did not formally state it, asserting that
every irreducible 3-manifold with infinite π1 is virtually Haken, that is, finitely
covered by a Haken manifold. This is obviously a question about non-Haken
manifolds, and one should remark that non-Haken Seifert manifolds with infinite
π1 were known to admit a Haken finite cover. Also, it was proved in the early
1990s by Casson–Jungries [6] and independently by Gabai [10] based on several
previous works that an irreducible 3-manifold with a normal Z in its π1 and hence
a Z × Z is a Seifert fibered space. Thus the real target of Waldhausen’s conjecture
became homotopically atoroidal manifolds, for instance hyperbolic manifolds. In
anticipation of such progress, Thurston conjectured more wildly,

Conjecture 4 (Virtual Fiber Conjecture) Any hyperbolic 3-manifold is finitely
covered by a manifold which fibers over the circle.

Since a hyperbolic 3-manifold fibering over the circle certainly contains an
essential embedded surface of negative Euler characteristic as a fiber, it is Haken.
Thus the positive resolution of the virtual fiber conjecture implies the resolution for
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Waldhausen’s conjecture mentioned in the previous paragraph if the geometrization
conjecture is true.

These two challenging conjectures of Thurston have greatly encouraged the
development of the theory of 3-manifolds, and both were finally resolved early in
this century. But before going into their details, let us come back to another of
Thurston’s contribution to the geometrization conjecture.

Thurston announced the following orbifold version of the geometrization con-
jecture in 1982.

Theorem 5 (Orbifold Theorem) Any closed 3-manifold admitting an orientation
preserving periodic self-diffeomorphism with a nontrivial fixed point set admits a
geometric decomposition such that the diffeomorphism is isometric.

The orbifold theorem announced by Thurston was planned to be proved by
giving a geometric structure on the quotient orbifold. It has many consequences.
For example, it provides a new proof of the Smith conjecture. It implies the
geometrization conjecture for closed 3-manifold with Heegaard decomposition of
genus 2 since these manifolds admit orientation preserving involutions coming from
the hyper-elliptic involution on the Heegaard surface.

The proof starts with looking at the quotient orbifold. The complement of the
singular set is Haken and hence, by the Monster, admits a geometric decomposition
The main case is when this complement admits a complete hyperbolic structure.
One can use the hyperbolic Dehn surgery deformation theory from Theorem 1
so that the structure is conically singular along the singular set without changing
the underlying space. If the cone angle increasing the Dehn surgery deformation
reaches the expected cone angle, then we are done. However, the argument needs
much more care when the deformation cannot reach the expected angle. Thurston
had analyzed the possible manners of degeneration and claimed that the conclusion
holds with suitable care after degeneration. Unfortunately, people needed more time
to be convinced of what Thurston claimed compared to the case of the Monster.
More than 15 years later, two groups succeeded in giving complete proofs for the
orbifold theorem in [5, 8]. At the very end of Thurston’s argument, he used an
equivariant version of Hamilton’s work [11] on Ricci flow of 3-manifolds admitting
positive Ricci curvature. The role of Hamilton’s work is to deform metrics on 3-
orbifolds with positive Ricci curvature to positive constant sectional curvatures. We
will come back to the contribution of Hamilton to the geometrization conjecture in
the next section.

Thurston was awarded the Fields medal for his contribution to the study of 3-
manifolds in 1982. C. T. C. Wall, who presented his work, said that 3-dimensional
topology had now firmly rejoined the mainstream of mathematics by the work of
Thurston. These are undoubtedly the best words to express Thurston’s contribution
in 3-dimensional topology.
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4.4 Post-Thurston Era

In this century, there were two miracles that independently resolved these extremely
wild conjectures of 1982. We will briefly describe them in this section.

4.4.1 Geometrization Conjecture

There had been many attempts to partially answer or approach the geometrization
conjecture for the case of infinite π1 since it was formulated. However the case of
finite π1 had stayed completely outside of the development in the last century except
for the orbifold theorem and Hamilton–Perelman’s attempts.

Perelman put three papers [30–32] on arXiv in 2002 and 2003 and declared the
resolution of the geometrization conjecture in the affirmative. The proof was based
on Hamilton’s Ricci flow, which is a flow on the space of Riemannian metrics on a
manifold satisfying an evolutional PDE,

d

dt
g = −2 Ricg

where Ric represents the Ricci curvature tensor. This equation can be regarded as a
variational equation that averages metrics in the long term. After Hamilton proved
a sort of geometrization for 3-manifolds with positive Ricci curvature in [11], Yau
suggested to Hamilton that the solution of the Ricci flow might converge to the
metric that the geometrization conjecture expects. Hamilton had been seriously
involved in Yau’s suggestion and has been establishing a program to resolve the
geometrization conjecture through several deep studies on the Ricci flow in a series
of papers [12–14]. A survey by Chow [7] discusses Hamilton’s work along these
lines.

Perelman essentially followed Hamilton’s program. However, he had to fill
in conceptual and technical details and needed to modify Hamilton’s set up.
His breakthrough would be to establish a locally non-collapsing theorem which
guarantees that the rescaling limit of the solution of the Ricci flow is controllable.
This is presented in the first preprint [30]. Then following [13], Perelman introduced
Ricci flow with surgery in [31] and claimed the resolution of the geometrization
conjecture.

Theorem 6 (Perelman) The geometrization conjecture is true.

This theorem was officially recognized at the ICM 2006 in Madrid. Excellent
expositions of this innovation were presented by Milnor [25] in its very early stage
and by McMullen [23] in its mature stage. The third preprint [32] presents a bypath
argument independent from a half of the argument in [31] to prove for instance
the Poincaré conjecture, when we start with a connected sum of manifolds with
finite π1.
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Perelman’s proof of the geometrization conjecture has a similarity with the proof
of the orbifold theorem. Both arguments are based on the deformation of metrics.
The difference is that Thurston used hyperbolic metrics with cone singularities,
while Perelman used nonsingular Riemaniann metrics. Thus Thurston’s argument is
geometric, while Perelman’s involves more analysis. Perelman’s arguments brought
a big surprise not only to geometers but also to analysts world-wide. His arguments
certainly led to a new direction for the study of singular solutions for some PDE.
In fact, Perelman’s work has promoted the popularity of the term “blow up” in
contemporary PDE theory.

4.4.2 Virtual Fiber Conjecture

Once again, the virtual Haken conjecture by Waldhausen states that every irre-
ducible 3-manifold with infinite π1 is virtually Haken, namely, finitely covered by
a Haken manifold. After Perelman’s resolution of the geometrization conjecture,
this conjecture remained unsolved only for hyperbolic manifolds. Thus, the virtual
fiber conjecture came to include the virtual Haken conjecture, and this motivated a
significant number of people. There were actually several serious studies by experts
including Thurston, but most of them were rather illustrative or experimental before
Agol [1]. In this paper, Agol presented a fairly generic criterion for virtual fibering
that he called residually finite rational solvability. It is an effective refinement of
separability of a subgroup in a group. Agol showed, in particular, that any subgroup
of a right-angled Artin group has this useful property.

There was a strong reason for Agol to reach to this definition. Early this century,
Wise and his many collaborators developed the theory of special groups. They
started with groups acting effectively on non-positively curved (NPC for short)
cube complexes. One of their most notable contributions was the discovery of the
specialness of a group or an action defined in [15]. Specialness can be defined by a
somewhat technical combinatorial structure of an NPC cube complex. Surprisingly,
Haglund–Wise [15] showed that specialness can be characterized in a purely group
theoretic fashion: that a special group is a subgroup of a right angled Artin group.

An epoch making result was provided by Kahn–Markovic [18] who showed that
there are many almost geodesic quasi-Fuchsian surfaces in any closed hyperbolic 3-
manifold. Their result, which was presented at the 21st Nevanlinna Colloquium held
at Kyoto University in 2009, gave a completely new tool to discuss the virtual fiber
conjecture. In fact, Bergeron–Wise [3] immediately noticed that the result could be
used to build a wall system of Sageev, as in [36], in the 3-dimensional hyperbolic
space invariant under the action of a cocompact Kleinian group. Then the recipe by
Sageev [35, 36] leads to a construction of a proper group action on an NPC cube
complex by the same group.
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Agol then succeeded in showing that the action constructed in this way is special,
and concluded that

Theorem 7 (Agol) The virtual fiber conjecture is true, and so is the virtual Haken
conjecture.

What Agol actually proved in [2] was much stronger. He showed that every
compact cube complex with a hyperbolic fundamental group is virtually special. In
other words, a hyperbolic group that acts on an NPC cube complex cocompactly
is virtually special. The resolution of the virtual fiber conjecture is one of its
many consequences when combined with previous results by Sageev, Wise and
his collaborators, Kahn–Markovic and Bergeron–Wise. Thus the theorem by Agol
pertains not only to the theory of 3-manifolds. However, we would like to note that
the idea of the proof was connected to the techniques developed in the theory of
3-manifold, in the Thurston Era, especially hyperbolic Dehn surgery theory in the
context of group theory.

We would like to refer for more details of this innovative result to the articles by
Klarreich [20] for general audiences, and Bestvina [4] and Friedle [9] for experts.

4.5 Epilogue

Thurston’s vision of 3-manifold theory, as presented for instance in the problem set
in [40], has been completed by Perelman and Agol. However, it is more important
to mention that Thurston presented us simultaneously with many new directions
in mathematics even within the theory of 3-manifolds. In fact, we found fine
geometric nature of 3-manifolds and many interesting questions. The connection
between quantum topology and hyperbolic geometry in 3-manifolds could be one
such fascinating topics. For example, there is the volume conjecture, which expects
to precisely identify the hyperbolic volume of a knot complement with a certain
asymptote of special values of quantum invariants of the knot. This conjecture
has motivated and involved many researchers including people in mathematical
physics. There are many other germs to create new links from 3-manifold theory
within topology, with the other mathematical fields including geometry and science
in general. For instance, geometric group theory is now expanding in many new
directions, Teichmüller theory is finding interest in a higher dimensional analogue,
and so on.

What Thurston did and left to us was extremely incredible and more than
dramatic indeed.
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Chapter 5
Combinatorics Encoding Geometry:
The Legacy of Bill Thurston in the Story
of One Theorem

Philip L. Bowers

Abstract This chapter presents a whirlwind tour of some results surrounding
the Koebe–Andre’ev–Thurston Theorem, Bill Thurston’s seminal circle packing
theorem that appears in Chapter 13 of The Geometry and Topology of Three-
Manifolds.

Keywords Circle packing · Uniformization · Circle domain · Discrete
conformal geometry · Conformal type · Inversive distance · Polyhedron

AMS Codes 52C26, 57M20

5.1 Introduction

Bill Thurston was the most original and influential topologist of the last half-century.
His impact on the discipline of geometric topology during that time is unsurpassed,
and his insights in the topology and geometry of three-manifolds led finally to the
resolution of the most celebrated problem of topology over the last century—The
Poincaré Conjecture. He made fundamental contributions to many sub-disciplines
within geometric topology, from the theory of foliations on manifolds to the
combinatorial structure of rational maps on the two-sphere, and from geometric and
automatic group theory to classical polyhedral geometry. Of course his foundational
work on three-manifolds, first laid out in his courses at Princeton in the late 1970s,
compiled initially as a Princeton paper-back monograph inscribed by Bill Floyd
and available upon request as The Geometry and Topology of Three-Manifolds
(GTTM) [73], and maturing as the famous Thurston Geometrization Conjecture of
the early 1980s, was the driving force behind the development of geometric topology
for the next thirty years. The final confirmation of the Geometrization Conjecture
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by Giorgi Perelman using the flow of Ricci curvature, following a program that
had been introduced by Richard Hamilton, is one of the crown jewels of twentieth
century mathematics.

Thurston marks a watershed in the short history of topology,1 a signpost, demar-
cating topology before Thurston, and topology after Thurston. This is evidenced not
only in the fabulous results he proved, explained, and inspired, but even more so
in how he taught us to do mathematics. Topology before Thurston was dominated
by the general and the abstract, entrapped in the rarified heights that captured the
mathematical world in general, and topology in particular, in the period from the
1930s until the 1970s. Topology after Thurston is dominated by the particular and
the geometric, a throwback to the nineteenth-century, having much in common with
the highly geometric landscape that inspired Felix Klein and Max Dehn, who walked
around and within Riemann surfaces, knew them intimately, and understood them
in their particularity. Thurston’s vision gave a generation of topologists permission
to get their collective hands dirty by examining in great depth specific structures on
specific examples.

One of the organizing principles that lies behind Thurston’s vision is that
geometry informs topology, and that the non-Euclidean geometry of Lobachevski,
Bolyai, and Beltrami in particular is systemic to the study of topology. Hyperbolic
geometry permeates topology after Thurston, and it is hyperbolic geometry that
becomes the common thread of the present chapter. This will be seen in the
interrelated studies presented here. All to varying degrees are due to the direct
influence of Bill Thurston and his generalization of the earlier results of Koebe
and Andre’ev. All involve hyperbolic geometry in some form or influence, and even
further all illustrate how combinatorics encodes geometry, another of the principles
that underlies Thurston’s vision. To my mind, the proposition that combinatorics
encodes geometry, which in turn informs topology has become a fundamental
guiding motif for topology after Thurston. I offer this chapter as a celebration of
Bill Thurston’s vision and his immense influence over our discipline.

5.1.1 An Introductory Overview

The Koebe–Andre’ev–Thurston Theorem represents a rediscovery and broad gen-
eralization of a curiosity of Paul Koebe’s from 1936, and has an interpretation
that recovers a characterization of certain three-dimensional hyperbolic polyhedra
due to E.M. Andre’ev in two papers from 1970. This theorem is the foundation
stone of the discipline that has been dubbed as discrete conformal geometry, which
itself has been developed extensively by many mathematicians in many different
directions over the last thirty years. Discrete conformal geometry in its purest form
is geometry born of combinatorics, but it has theoretical and practical applications.

1I will use the term topology henceforth to mean geometric topology. By dropping the adjective
geometric I certainly mean no slight of general, set-theoretic, or algebraic topology.
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In the theoretical realm, it produces a discrete analytic function theory that is faithful
to its continuous cousin, a quantum theory of complex analysis from which the
classical theory emerges in the limit of large scales. In the realm of applications,
it has been developed in a variety of directions, for practical applications in areas
as diverse as biomedical imaging and 3D print head guidance. This rather large
body of work flows from simple insights that Thurston presented in his lecture at
Purdue University in 1985 on how to use the most elementary case of his circle
packing theorem to provide a practical algorithm for approximating the Riemann
mapping from a proper, simply-connected planar domain to the unit disk. A personal
accounting of this development can be found in the author’s own review [14] of the
bible of circle packing theory, Ken Stephenson’s Introduction to Circle Packing: The
Theory of Discrete Analytic Functions [71].

A perusal of the section and subsection headings of this chapter will give the
reader a clue as to where I am going in this survey. I primarily stick with the
theoretical results for which there are fairly direct lines from the Koebe–Andre’ev–
Thurston Theorem to those results. This means in particular that I almost totally
ignore the really vast array of practical applications that circle packing has found,
especially in the last two decades as discrete differential geometry has become
of primary importance in so many applications among computer scientists and
computational geometers. A survey of applications will have to wait as space
constraints preclude a discussion that does justice to the topic.

5.1.2 Dedication and Appreciation

This chapter is dedicated to the memory of Bill Thurston and his student Oded
Schramm, and to an appreciation of Jim Cannon and Ken Stephenson. I have
spoken already of Bill Thurston’s legacy. Oded Schramm was one of the first
to press Thurston’s ideas on circle packings to a high level of development and
application, and his great originality in approaching these problems has bequeathed
to us a treasure trove of beautiful gems of mathematics. Most of Oded’s work
on circle packing and discrete geometry was accomplished in the decade of the
1990s. As Bill is a demarcation point in the history of topology, Oded is one in the
history of probability theory. In the late nineties, Oded became interested in some
classical open problems in probability theory generated by physicists, in percolation
theory and in random planar triangulations in particular. Physicists had much
theoretical and computational evidence for the veracity of their conjectures, but
little mathematical proof, or even mathematical tools to approach their verifications.
In Oded’s hands these venerable conjectures and problems began to yield to
mathematical proof, using ingenious tools developed or refined by Oded and
his collaborators, chief among which are SLEκ , originally Stochastic-Loewner
Evolution, now renamed as Schramm–Loewner Evolution, and UIPT’s, or Uniform
Infinite Planar Triangulations. For a wonderful biographical commentary on Oded’s
contributions to mathematics, see Steffen Rohde’s article Oded Schramm: From
Circle Packing to SLE in [58].
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The two individuals who have had the greatest impact on my mathematical
work are Jim Cannon and Ken Stephenson, the one a mathematical hero of mine,
the other my stalwart collaborator for three decades. Jim’s work has influenced
mine significantly, and I greatly admire his mathematical tastes and contributions.
Pre-Thurston, Jim had made a name for himself in geometric topology in the
flavor of Bing and Milnor, having solved the famous double suspension problem
and having made seminal contributions to cell-like decomposition theory and the
characterization of manifolds. In the beginning of the Thurston era, his influential
paper The combinatorial structure of cocompact discrete hyperbolic groups [24]
anticipated many of the later developments of geometric group theory, presaging
Gromov’s thin triangle condition and, à la Dehn, the importance of negative
curvature in solving the classical word and conjugacy problems of combinatorial
group theory. He with Thurston invented automatic group theory and then Jim
settled upon the conjecture that bears his name as the work that for three decades
has consumed his attention. Ken has been a joy with whom to collaborate over the
past three decades. He was inspired upon attending Thurston’s Purdue lecture in
1985 to change his mathematical attentions from a successful career as a complex
function theorist, to a geometer exploring this new idea of circle packing using both
traditional mathematical proof and the power of computations for mathematical
experimentation. I began my foray into Thurston-style geometry and topology by
answering in [17] a question of Ken and Alan Beardon from one of the first research
papers [7] to appear on circle packings after Rodin and Sullivan’s 1987 paper [62]
confirming the conjecture of Thurston from the Purdue lecture. Ken and I are co-
authors on a number of research articles and his down-to-earth approach to the
understanding of mathematics has been a constant check on my tendency toward
flights of fancy. I have learned from him how to tell a good story of a mathematical
topic. For Ken’s warm friendship and collaboration I am grateful.

5.2 The Koebe–Andre’ev–Thurston Theorem, Part I

5.2.1 Koebe Uniformization and Circle Packing

In the early years of the twentieth century, rigorous proofs of the Riemann
Mapping Theorem and the more general Uniformization Theorem were given by
such eminent mathematicians as Osgood, Carathéodory, Poincaré, and Koebe, and
refinements and re-workings would continue to be made by others, even up to
the present.2 The generalization of the Riemann Mapping Theorem to multiply-

2The author recommends rather highly the article On the history of the Riemann mapping
theorem [38] by Jeremy Gray and the monograph Uniformization of Riemann Surfaces: Revisiting
a Hundred-Year-Old Theorem [32]. These two works give insightful historical accountings of
the discovery, articulation, understanding, and finally rigorous proofs of the Riemann Mapping
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connected domains fell to the hands of Paul Koebe, who in 1920 in [49] proved that
every finitely-connected domain in the Riemann sphere is conformally equivalent to
a circle domain, a connected open set all of whose complementary components are
points or closed round disks. Of course for a 1-connected, or simply-connected,
domain this is nothing more than the Riemann Mapping Theorem. He proved
also a rigidity result, that any conformal homeomorphism between any two circle
domains with finitely many complementary components is in fact the restriction
of a Möbius transformation.3 Koebe’s real goal was what is known by its German
name as Koebe’s Kreisnormierungsproblem and by its English equivalent as Koebe’s
Uniformization Conjecture, which he posed in 1908.

Koebe Uniformization Conjecture ([48]) Every domain in the Riemann sphere is
conformally homeomorphic to a circle domain.

This of course includes those domains with infinitely many, whether countably or
uncountably many, complementary components. The general Koebe Uniformization
Conjecture remains open to this day. More on this later.

In a paper of 1936, Koebe obtained the following circle packing theorem as a
limiting case of his uniformization theorem of 1920. This went unnoticed by the
circle packing community until sometime in the early 1990s.

Koebe Circle Packing Theorem ([50]) Every oriented simplicial triangulation K

of the 2-sphere S2 determines a univalent circle packing K(C) for K , unique up to
Möbius transformations of the sphere.

Here the circle packing K(C) is a collection C = {Cv : v ∈ V (K)} of circles Cv

in the sphere S2 indexed by the vertex set V (K) of K such that Cu and Cv are
tangent whenever uv is an edge of K , and for which circles Cu, Cv , and Cw bound
a positively oriented interstice whenever uvw is a positively oriented face of K .
The circle packing is univalent if there is a collection D = {Dv : v ∈ V (K)} of
disks with Cv = ∂Dv whose interiors are pairwise disjoint.4 Connecting the centers
of the adjacent circles by appropriate great circular arcs then produces a geodesic
triangulation of S2 isomorphic to K . Figure 5.1 shows a circle packing of the sphere
determined by an abstract triangulation K , and the realization of K as a geodesic
triangulation. Of course the circle packings for a fixed K are Möbius equivalent,
while the corresponding geodesic triangulations are not, simply because neither
circle centers nor great circles are Möbius-invariant. I will look at a proof of the
Koebe Circle Packing Theorem later, but first I’ll present Thurston’s generalization.

Theorem and the Uniformization Theorem. The narratives are at once engaging and perceptive,
illustrating wonderfully the fact that mathematics is generally a common endeavor of a community
of folks rather than the singular achievement of an enlightened few.
3Beware! This is not true in general. Two domains with uncountably many complementary
components may be conformally equivalent yet fail to be Möbius equivalent.
4Without univalence, packings with branching would be allowed, where the sequence of circles
tangent to a single circle C may wrap around C multiple times before closing up. See Sect. 5.3.3.
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Fig. 5.1 An abstract triangulation K of the 2-sphere determines (a) a circle packing, which in turn
determines a realization of K as (b) a geodesic triangulation of the 2-sphere.

5.2.2 Koebe–Andre’ev–Thurston, or KAT for Short

In his Princeton course of 1978–79, Thurston greatly generalized the Koebe Circle
Packing Theorem, though at the time he was unaware of Koebe’s result. He
generalized in two ways, first by allowing adjacent circles to overlap and second by
extending the theorem to arbitrary compact orientable surfaces. Thurston realized
that his version of the theorem on the sphere S2 in fact encodes information about
convex hyperbolic polyhedra, the connection of course through the fact that the
sphere S2 serves as the space at infinity of the Beltrami–Klein and Poincaré ball
versions of hyperbolic three-spaceH3 with circles on the sphere the ideal boundaries
of hyperbolic planes in H3. These polyhedra had been characterized in two papers of
Andre’ev from 1970, whose results can be interpreted in terms of the existence and
uniqueness of the circle packings Thurston examined in his generalization of Koebe.
Thurston’s generalization to overlapping packings on the sphere is now known as
the Koebe–Andre’ev–Thurston Theorem, honoring its three principle protagonists.

Koebe–Andre’ev–Thurston Theorem I (for the sphere) Let K be an oriented
simplicial triangulation of S2, different from the tetrahedral triangulation, and let
� : E(K) → [0, π/2] be a map assigning angle values to each edge of K . Assume
that the following two conditions hold.

(i) If e1, e2, e3 form a closed loop of edges from K with
∑3

i=1 �(ei) ≥ π , then e1,
e2, and e3 form the boundary of a face of K .

(ii) If e1, e2, e3, e4 form a closed loop of edges from K with
∑4

i=1 �(ei) = 2π ,
then e1, e2, e3, and e4 form the boundary of the union of two adjacent faces
of K .
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Then there is a realization of K as a geodesic triangulation of S2 and a family
C = {Cv : v ∈ V (K)} of circles centered at the vertices of the triangulation so that
the two circles Cv and Cw meet at angle �(e) whenever e = vw is an edge of K .
The circle packing C is unique up to Möbius transformations.

Now I want to point out that exactly what is called the Koebe–Andre’ev–Thurston
Theorem is not at all settled. Some references use the term to mean the tangency
case of the theorem (� ≡ 0), which is nothing more than the Koebe Circle Packing
Theorem, while others use the term to mean Thurston’s full generalization of the
theorem to arbitrary closed surfaces that is presented in Sect. 5.3.2. Exactly what
Thurston proved in GTTM also often is misreported. In fact my introduction to this
section is a bit of a misreporting, so let me take a little time to say exactly what
Thurston does in Chapter 13 of GTTM.

In terms of circle packings on the 2-sphere, Thurston does not allow overlaps
of adjacent circles, only tangencies. His version of the tangency case appears as
Corollary 13.6.2 in Chapter 13 of GTTM, and appears as a corollary of Theorem
13.6.1, which he attributes to Andre’ev. This theorem concerns hyperbolic structures
on orbifolds and, as it was Thurston who invented the notion of orbifold in his
course at Princeton during 1976–77 as recorded in the footnote on page 13.5 of
Chapter 13 of GTTM itself, this theorem is an interpretation of Andre’ev’s in the
context of orbifolds. Thurston does not give a proof of Theorem 13.6.1, but uses
its result ensuring the existence of a hyperbolic structure on a suitable orbifold
to prove Koebe’s Theorem of 1936, Corollary 13.6.2. He does this by using the
triangulation K to define an associated polyhedron P by cutting off vertices by
planes that pass through midpoints of edges. He then uses the Andre’ev result to
realize P as a right-angled ideal polyhedron in H3. The faces of this polyhedron then
lie in planes whose ideal circular boundaries are the circles of the desired tangency
packing complemented by the orthogonal circles through three mutually adjacent
points of tangency. He then invokes Mostow rigidity for uniqueness.

It isn’t until he presents Theorem 13.7.1 that Thurston allows for adjacent circles
to overlap with angle between zero and π/2, and that only for surfaces other than
the sphere, those surfaces with nonpositive Euler characteristic. Thurston proves
this by assigning polyhedral metrics with curvature concentrated at the vertices
v1, . . . , vn by assigning a radius ri at vertex vi . Defining the mapping c : Rn → Rn

that measures the curvature via c(r)i = 2π − (the angle sum at vertex vi), he then
argues in nine pages that the origin 0 is in the image of c, which implies the desired
result. It is the case that the version Thurston presents on the sphere, Corollary
13.6.2, is Koebe’s result, and uses Andre’ev’s ideas for the proof. It is only with
this positive genus version, Theorem 13.7.1, that Thurston puts forth new geometric
ideas, fertile enough to spawn an industry dedicated to understanding polyhedral
metrics on surfaces and their induced circle packings.

Thurston’s approach to circle packing is rather entwined with his overall concern,
that of hyperbolic structures on three-dimensional manifolds and orbifolds. Since
this work of the 1970s, Thurston’s circle packing results have spawned a rather
extensive theory that is more combinatorial and geometric, and related more
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to classical complex function theory and Riemann surfaces, and less to three-
manifolds. It is related intimately to hyperbolic polyhedra and their generalizations,
this the subject of Sect. 5.7, and has found several scientific applications. In the
hands of folks like Ken Stephenson and his students and collaborators, it has
spawned a discrete theory of complex analytic functions, laid out ever so elegantly in
Stephenson’s Introduction to Circle Packing [71]. It has yielded beautiful results on,
for example, discrete minimal surfaces in the hands of the Berlin school of Bobenko,
Hoffman, Springborn, Pinkall, and Polthier; see for example [11] and [56]. Though
the theory now is rather mature, it continues to interact in new and interesting ways
with new areas, for instance lying in the background in conformal tilings [21, 22], or
in the foreground with its interaction with the classical rigidity theory of Euclidean
frameworks [23]. There is an immense literature here, and so much of it owes a great
debt of gratitude to the insights of Bill Thurston.

5.2.3 A Proof of the Koebe Circle Packing Theorem

Rather than proving the whole of KAT I, I will address the case where � is iden-
tically zero and prove Koebe’s result. The proof presented here can be modified to
give a complete proof of KAT I, which is done in [18] in proving a generalization.5

Koebe’s original proof of his namesake theorem uses a limiting process on circle
domains and classical analytic arguments on convergence of analytic families of
maps, very much in the flavor of what we now teach as classical techniques in our
complex analysis courses. There are now many proofs of the Koebe Circle Packing
Theorem. To name a few, besides Koebe’s, there is Thurston’s in GTTM already
outlined above based on Andre’ev’s results on hyperbolic polyhedra, Al Marden
and Burt Rodin’s using piecewise flat polyhedral metrics, Alan Beardon and Ken
Stephenson’s [7] that adapts the classical Perron method for constructing harmonic
maps as an upper envelope of subharmonic maps, Colin de Verdière’s [33] based on
a variational principle, Igor Rivins’s hidden in his paper [60] on Euclidean structures
on triangulated surfaces, the author’s [12] that turns the Beardon–Stephenson proof
upside down to address packings on punctured surfaces, and Alexandre Bobenko
and Boris Springborn’s [10] that uses a minimal principle on integrable systems.
Here I present a geometric and combinatorial proof where hyperbolic geometry is
the crucial ingredient. The proof is a twist on the Perron method used by Beardon
and Stephenson in [7] and is specialized from a more general version that applies
to arbitrary surfaces of finite conformal type that appears in [12]. We will see that it
has the advantage of generalizing in interesting ways.

Proof of the Koebe Circle Packing Theorem By removing one vertex v0 from K

and its adjacent edges and faces, one obtains a triangulation T of a closed disk.

5See Sect. 5.3.3.
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Place a piecewise hyperbolic metric on T as follows. For any positive function r :
V (T ) → (0,∞), let |T (r)| be the metric space obtained by identifying the face
v1v2v3 of T with the hyperbolic triangle of side lengths r(vi) + r(vj ) for i �= j ∈
{1, 2, 3}. This places a piecewise hyperbolic metric on T with cone-like singularities
at the interior vertices. This structure often now is called a piecewise hyperbolic
polyhedral metric, and the function r is called variously a radius vector or label.
For any vertex v, one can measure the angle sum θr(v) of the angles at v in all the
faces incident to v. I will say that r is a superpacking label for T if the angle sums
of all interior vertices are at most 2π , and a packing label6 if all are equal to 2π .

Now modify this a little by allowing r to take infinite values at the boundary
vertices. This causes some ambiguity only if there is a separating edge in T that
disconnects T when removed. This will be taken care of later, so for now assume
no separating edge exists. The goal is to find a packing label r with r(w) = ∞
whenever w is a boundary vertex. Assuming that such an r exists, we may glue on
hyperbolic half planes along the faces with two boundary vertices to give a complete
hyperbolic metric on a topological disk, which must be isometric to the hyperbolic
plane. This implies that the metric space |T (r)| is isometric to an ideal polygon
in the hyperbolic plane whose sides are hyperbolic lines connecting adjacent ideal
vertices that correspond to the boundary vertices of T . Now placing hyperbolic
circles of radii r(v) centered at interior vertices v and horocycles centered at ideal
vertices determined by the boundary vertices gives a univalent circle packing of
the hyperbolic plane realized as, say, the Poincaré disk, the unit disk D in the
complex plane with Poincaré metric ds = 2|dz|/(1−|z|2). The boundary circles are
horocycles in the hyperbolic metric on the disk and are therefore circles internally
tangent to the unit circle. Stereographic projection to the sphere S2 and addition of
the equator as the circle corresponding to the vertex v0 removed initially produces
a univalent circle packing of the sphere in the pattern of K as desired. Uniqueness
follows from uniqueness of the packing label r with infinite boundary values, which
follows from the construction of r explained next.

Define the function r as

r(v) = inf {r(v) : r ∈ R} (5.2.1)

where

R = {r : V (T ) → (0,∞] : r is a superpacking label for T with infinite boundary values}.

The claim is that this is the desired packing label. The first observation is that R �= ∅
so that we are not taking the infimum of the empty set. This is because one may
choose label values so large on the interior vertices that all of the faces become
hyperbolic triangles whose interior angles are no more than 2π/d , where d is the

6For emphasis one sometimes calls this a hyperbolic packing label to distinguish it from flat or
Euclidean packing labels that also find their use in this discipline.



182 P. L. Bowers

maximum degree of all the vertices of T . It follows that r is a non-negative function
with infinite boundary values. To verify that r is a packing label, I show that

(i) r cannot take a zero value on any interior vertex, which then implies that r ∈ R,
and,

(ii) the angle sum at any interior vertex is 2π , meaning further that r is a packing
label.

We need two preliminary observations.

(iii) Hyperbolic area is bounded away from zero. The hyperbolic area of the
singular hyperbolic surface |T (r)| is ≥ π for all superpacking labels r ∈ R.

(iv) Monotonicity of angles. For a face f = v0v1v2 of T , let αr(i), for i = 0, 1, 2,
be the angle that the label r ∈ R gives to f at vertex vi . Then αr (0) ↑ π ,
αr(1) ↓ 0, and αr(2) ↓ 0 monotonically as r(v0) ↓ 0 when r(v1) and r(v2)

are held fixed.

In calculating the hyperbolic area to confirm item (iii), let V (T ) and F(T ) be
the respective vertex and face sets of T of respective cardinalities V and F. The
sum of the angles of a face when given its metric by r is denoted αr(f ) so that
its hyperbolic area is Ar(f ) = π − αr(f ). Finally, with Vint and Vbd denoting the
numbers of interior and boundary vertices of T so that V = Vint + Vbd, one has

hyp-area (|T (r)|) = π F−
∑

f∈F(T )

αr (f ) = π F−
∑

v∈V (T )

θr (v) ≥ π(F− 2Vint),

(5.2.2)

since θr(v) ≤ 2π at interior vertices and θr(v) = 0 at boundary ones. An Euler
characteristic exercise then shows that F − 2Vint = Vbd − 2 ≥ 1, the inequality
holding since K is simplicial. It follows that every superpacking label with infinite
boundary values produces a metric on T with hyperbolic area at least π . Item (iv) is
almost obvious from drawing examples, but can be given a rigorous proof using the
hyperbolic law of cosines from hyperbolic trigonometry.

I now address item (i). First the claim is that the label r cannot be identically
zero on the set of interior vertices. Indeed, if r is identically zero, one may choose
a sequence of superpacking labels ri with infinite boundary values such that, for
each interior vertex v, ri (v) → 0 as i → ∞. This latter fact in turn follows from
the observation that the minimum label min{r1, r2} is in R whenever r1 and r2 are
labels in R, which in turn is a consequence of the monotonicity of angles (iv). Recall
that we are under the assumption that there are no separating edges so that at least
one vertex of any face f of T is interior. Any such interior vertex has ri -values
converging to zero, and any boundary one is fixed at infinity, and with this it is easy
to see that the hyperbolic area Ari (f ) → 0 as i → ∞. But this implies that the
hyperbolic area of |T (ri)| converges to zero as i →∞, which contradicts item (iii).

Now could it be that r takes a zero value at some interior vertex, but not at all?
The argument that this in fact does not happen is a generalization of what I have
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argued thus far. I will but give an indication of how it goes, referring the reader
to [12] for details. Let T ′ be the subcomplex of T determined by those faces of T

that have a vertex in r−1(0). An argument using Euler characteristic similar to that
already given implies that the hyperbolic area of |T ′(r)| is positive and bounded
away from zero for every superpacking label r with fixed non-negative boundary
values. But an argument as in the preceding paragraph shows that the hyperbolic
areas of |T ′(ri )| converge to zero for a sequence of superpacking labels with fixed
boundary values and interior vertex values converging to zero. This contradiction
implies that r is a positive function on the interior vertex set, and continuity of angles
of a triangle with respect to edge lengths implies that θr(v) = limi→∞ θri (v) ≤ 2π
at any interior vertex, since θri (v) ≤ 2π for all i. This shows that r ∈ R and
completes the verification of item (i).

Item (ii) follows quickly from item (iv). Indeed, if (ii) fails, then there is an
interior vertex v of T such that θr(v) < 2π . By the monotonicity properties (iv),
varying r by slightly decreasing its value at v without changing any other values
increases θr(v) while decreasing θr(w) for any vertex w incident to v. By making
that decrease of r(v) small enough to keep the angle sum at v below 2π , we obtain a
superpacking label r with infinite boundary values that satisfies r(v) < r(v), which
contradicts the definition of r in Eq. 5.2.1.

At this point I have shown that r is a packing label with infinite boundary values,
and I now claim that it is the only one. Suppose there is a packing label r in R
that differs from the infimum label r defined in Eq. 5.2.1. Then r(v) ≤ r(v) for all
vertices v, but there must be some interior vertex w with r(w) < r(w). This implies
that the hyperbolic area of the surface |T (r)| is strictly less than that of |T (r)|. But
this is impossible since r and r are packing labels with infinite boundary values,
and as argued above, both |T (r)| and |T (r)| are ideal hyperbolic polygons with
VBd sides. An easy exercise shows that the hyperbolic area of any such hyperbolic
polygon is equal to (VBd − 2)π .

This completes the proof modulo the assumption that T has no separating edge.
This is handled by induction on the number of such edges. If there is one separating
edge uv, cut T into T1 and T2 along that edge, circle pack each in the unit disk with
horocyclic boundary circles, and then using Möbius transformations, place the T1
packing in the upper half disk with the horocycles for u and v circles tangent at
the origin and centered on the real axis, and place the T2 packing in the lower half
of the disk with those same horocylic circles for u and v. This is possible since T

is oriented, and this gives an appropriate packing label of T with infinite boundary
values. !�

5.2.4 Maximal Packings and the Boundary Value Problem

This proof actually proves the following extremely useful fact, which Beardon and
Stephenson [7] exploited to give the first extension of the Koebe Circle Packing
Theorem to infinite packings of the disk and the plane. The infinite theory is
presented in Sect. 5.4.
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Maximal Disk Packing Theorem Every oriented simplicial triangulation T of a
closed disk determines a univalent circle packing T (C) for T in the unit disk D in
the complex plane C, unique up to Möbius transformations of the disk, with the
circles corresponding to boundary vertices of T internally tangent to the unit circle
boundary ∂D = S1. Moreover, when given its canonical hyperbolic metric making
D into the Poincaré disk model of the hyperbolic plane H2, the circle radii of the
packing are uniquely determined by T .

The circle packing guaranteed by this theorem is called the maximal packing for
T . This theorem is in fact a special case of the more general result of Beardon and
Stephenson [8] that solves the discrete version of the classical Dirichlet boundary
value problem of harmonic analysis. In that paper, the authors also prove a discrete
version of the classical Schwarz-Pick Lemma of complex analysis. These two
theorems finish up the present section.

Discrete Boundary Value Theorem (Beardon and Stephenson [8]) Let T be an
oriented simplicial triangulation of a closed disk and f : VBd(T ) → (0,∞]
a function assigning positive or infinite values to the boundary vertices. Then
there exists a unique hyperbolic packing label r : V (T ) → (0,∞] extending
f . The resulting circle packing T (Cr) of the unit disk D is unique up to Möbius
transformations of D.

Proof The proof is a straightforward modification of that of the Koebe Circle
Packing Theorem already presented. Again r = infR is the desired packing label,
provided that

R = {r : r is a superpacking label for T with r(w) ≥ f (w) when w ∈ VBd(T )}.

Of course, f ≡ ∞ gives the maximal packing of the preceding theorem. !�
This proof is a modification of the Beardon–Stephenson proof, which uses

subpacking rather than superpacking labels. In a subpacking label, the interior angle
sums are greater than or equal to 2π and one obtains the packing label as an upper
envelope of subpacking labels, with the packing label given by r = supR′ where
R′ is the set of subpacking labels with boundary values given by f . The advantage
of approaching the desired packing label r from above using superpackings (infR)
rather than from below using subpackings (supR′) is that this upper Perron method
readily generalizes to include cusp type singularities and cone type singularities at
interior vertices.7 This is presented in Sect. 5.3.4.

A word of warning here. When the boundary values are allowed to be finite,
the resulting packing, though locally univalent, may not be globally univalent. This
means that the disks bounded by the circles of the packing may overlap non-trivially,
though ones neighboring the same interior vertex never do; this is the meaning of

7Another not insignificant advantage is that it is easy to show that R �= ∅ while proving that
R′ �= ∅ generally is difficult.
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Fig. 5.2 A locally univalent circle packing that is not globally univalent

locally univalent. Figure 5.2 shows a locally univalent packing that is not globally
univalent.

The second theorem of Beardon and Stephenson follows partly from the proof of
the first (item (i)), and the rest of the theorem follows from a careful analysis of paths
and angles in piecewise hyperbolic surfaces. The details of course appear in [8]. The
theorem I state here is the generalization of what the reference [8] calls the Discrete
Schwarz-Pick Lemma, which in turn is obtained by setting the boundary values of
r identically to infinity.

Discrete Schwarz-Pick Lemma (Beardon and Stephenson [8]) Let r, r ′;V (T )

→ (0,∞] be packing labels for the oriented simplicial triangulation T of a closed
disk. Suppose that r(w) ≥ r ′(w) at every boundary vertex w ∈ VBd(T ). Then

(i) r ≥ r ′; i.e., r(v) ≥ r ′(v) at every vertex v of T ;
(ii) ρr(u, v) ≥ ρr ′(u, v) for any two vertices u and v, where ρr is the distance

function on the metric surface |T (r)|, and similarly for ρr ′ ;
(iii) Ar(f ) ≥ Ar ′(f ) for any face f of T . (Recall that Ar(f ) is the hyperbolic area

of the face f .)

Moreover, if a single instance of finite equality occurs at an interior vertex in (i), or
at vertices u and v at least one of which is interior in (ii), or at any face in (iii), then
r = r ′.
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5.3 The Koebe–Andre’ev–Thurston Theorem, Part II

5.3.1 Circle Packings of Compact Surfaces

Thurston’s other avenue of generalization of Koebe, indeed the more far-reaching
one, is his extension of KAT to arbitrary orientable closed surfaces. Here there
are striking illustrations of how purely combinatorial information encodes precise
geometry. I will start with Thurston’s tangency case of packings before presenting
his version with overlaps.

Theorem 5.3.1 Let K be an oriented simplicial triangulation of a closed surface Sg

of positive genus. Then there is a metric of constant curvature, unique up to scaling,
on Sg that supports a univalent, tangency circle packing C = {Cv : v ∈ V (K)}
modeled on K . In particular, Cu and Cv are tangent whenever uv is an edge of
K . The packing C is unique up to isometries of Sg in this metric when g ≥ 2, and
up to scaling when g = 1. Connecting the centers of adjacent circles by geodesic
shortest paths produces a geodesic triangulation of the surface in the pattern of K .
The metric is locally Euclidean when g = 1 and locally hyperbolic otherwise.

Just in case the reader blinked and missed it, I aim to emphasize the extent to
which combinatorics determines geometry in this theorem. The simplicial complex
K provides purely combinatorial data with topological overtones. Yet hidden inside
of the combinatorics is precise geometry. For example in the hyperbolic case where
g > 1, among the uncountably many possible pairwise distinct hyperbolic metrics
of constant curvature −1 as tabulated in the (6g − 6)-dimensional moduli space
M(Sg) ∼= R

6g−6, the complex K chooses exactly one of these metrics, and in
that metric, determines a univalent circle packing unique up to isometry! For none
of the other metrics that Sg supports is there a univalent tangency packing of
circles in the pattern of K! Since there are only countably many pairwise distinct
simplicial triangulations of the fixed surface Sg , only countably many of the metrics
parameterized by M(Sg) support any univalent tangency packing at all, though the
set of metrics that do support such circle packings does form a dense subset of the
moduli space.

I present a Proof of Theorem 5.3.1 based on the upper Perron method used to
prove the Koebe Circle Packing Theorem.

Proof Let R = {r : V (K) → (0,∞) : θr(v) ≤ 2π for all v ∈ V (K)}, the set of
superpacking labels for K . Here again, exactly as in the proof of the Koebe Circle
Packing Theorem, the label r determines a hyperbolic polyhedral metric surface
|K(r)|. A unique packing label for which the angle sum at every vertex is equal to
2π would give all the claims of the theorem in the hyperbolic case. My claim is
that when g ≥ 2, the function r = infR is the unique packing label for K , and
when g = 1, then r = infR is identically zero, but provides a way to place a flat
polyhedral metric on K that meets the packing condition.
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Exactly the calculation of Inequality 5.2.2 gives hyp-area(|K(r)|) ≥ (F− 2V)π
for any superpacking label r ∈ R, and an Euler characteristic argument gives

F− 2V = −2χ(Sg) = 4g − 4. (5.3.1)

When g ≥ 2 so that F − 2V is positive and hence hyp-area(|K(r)|) is positive, the
same argument used in the proof of the Koebe Circle Packing Theorem shows that
items (i) and (ii) of that proof hold, so that r is a packing label. Uniqueness follows
exactly as in that proof.

The remaining case is when g = 1 so that Sg is a topological torus. Here are the
steps in proving that S1 supports a flat metric that supports a univalent circle packing
in the pattern of K , both the packing and the metric unique up to scaling.

(i) When g = 1, F− 2V = 0 and this implies that r = infR is identically zero on
V (K).

(ii) Fix a vertex v† in K and let R† = {r† : r ∈ R}, where r† is the normalized
label defined by r†(v) = r(v)/r(v†).

(iii) Show that r† = infR† takes only positive values.
(iv) Let |K(r†)|flat be the flat polyhedral surface with cone type singularities

obtained by identifying a face v1v2v3 with the Euclidean triangle of side-
lengths r†(vi)+ r†(vj ) for i �= j ∈ {1, 2, 3}.

(v) Show that |K(r†)|flat is non-singular; i.e., r† is a flat packing label with
Euclidean angle sums θflat

r† (v) = 2π at every vertex v.

(vi) Show that r† is the unique flat packing label with value 1 at v†.

The details of the argument appear in [7], but I will give an indication of why this
outline works to prove the desired result. Let A(r) be the hyperbolic area of the
singular hyperbolic surface |K(r)| when r ∈ R and observe that

A(r)− s(r) = (F− 2V)π, where s(r) =
∑

v∈V (K)

(2π − θr (v)). (5.3.2)

Here s(r) is the total angle shortage.8 In the genus 1 case, F − 2V = 0 so
A(r) = s(r) for all superpacking labels r ∈ R. Now assuming that item (i) has
been verified, any superpacking label r that is close to the infimum infR = 0
has area A(r) close to zero and hence so too is the shortage s(r) close to zero.
In the limit as r → infR = 0, the shortages s(r) → 0 and this implies that
the singular hyperbolic surfaces |K(r)| have angle sums θr (v) → 2π for every
vertex v. Since Euclidean geometry is the small scale limit of hyperbolic geometry,
this implies that the Euclidean angle sums θflat

r (v) → 2π as r → 0. Thus the
collection {|K(r)|flat}r∈R is a collection of singular flat surfaces whose singularities
are removed in the limit as r → 0. Of course there is no limiting surface since

8Also called the discrete curvature.
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r → 0. Whereas this cannot be remedied in hyperbolic geometry, it can be remedied
in Euclidean geometry by rescaling the labels r as described in item (ii). With item
(iii) confirmed so that the flat polyhedral surface |K(r†)|flat of item (iv) exists, since
similarity transformations exist in Euclidean geometry, these rescalings preserve the
Euclidean angles and imply that the limit surface |K(r†)|flat is non-singular. Items
(v) and (vi) just state formally the result of making this imprecise but rather accurate
discussion rigorous. !�

5.3.2 KAT for Compact Surfaces

Thurston’s Theorem 13.7.1 of GTTM combines the introduction of surfaces of
genus greater than zero in Theorem 5.3.1 with the overlap conditions of the KAT
Circle Packing Theorem.

Koebe–Andre’ev–Thurston Theorem II (for compact surfaces) (Theorem
13.7.1, GTTM) Let K be an oriented simplicial triangulation of a surface Sg of
genus g ≥ 1, and let � : E(K) → [0, π/2] be a map assigning angle values to
each edge of K . Assume that the following two conditions hold.

(i) If e1, e2, e3 form a closed loop of edges from K with
∑3

i=1 �(ei) ≥ π , then e1,
e2, and e3 form the boundary of a face of K .

(ii) If e1, e2, e3, e4 form a closed loop of edges from K with
∑4

i=1 �(ei) = 2π ,
then e1, e2, e3, and e4 form the boundary of the union of two adjacent faces
of K .

Then there is a metric of constant curvature on Sg , unique up to scaling, and a
realization of K as a geodesic triangulation in that metric, as well as a family C =
{Cv : v ∈ V (K)} of circles centered at the vertices of the triangulation so that the
two circles Cv and Cw meet at angle �(e) whenever e = vw is an edge of K . The
circle packing C is unique up to isometry.

I already have discussed the proof in GTTM. Let me say further that it was in
this proof that Thurston introduced the idea of using labels, or radii assignments
to vertices, to build a polyhedral surface with cone type singularities, and then to
vary the labels until the packing condition is met. This is still the basic idea for
proving many packing results, though the way in which one varies the labels and the
choice of initial labels changes from researcher to researcher and from application
to application. The Perron method used in this chapter is a modification of the
method of Beardon and Stephenson [7]. This idea also led to a practical algorithm
for producing the packing labels that was the starting point for Ken Stephenson’s
CirclePack. This sophisticated software package for computing circle packings
has enjoyed extensive development over the past 30 years and is freely available at
Ken’s webpage.

Before I introduce infinite circle packings and their really interesting and novel
features in Sect. 5.4, I’ll discuss two generalizations of the KAT Theorems. The first
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is presented in Sect. 5.3.3 and generalizes KAT I to certain branched packings of
the 2-sphere where circles tangent to a given one wrap around that one more than
once. These packings of course fail to be univalent, but provide a rich family of
packings that model the behavior of polynomial mappings of the Riemann sphere.
The ultimate goal is to model arbitrary rational mappings of the sphere, which would
require the theory to extend to more general branch structures, this a topic of current
research; see for example [5]. The second is presented in Sect. 5.3.4 and examines
how to include both cusps with ideal vertices as well as prescribed discrete curvature
at pre-chosen vertices.

5.3.3 A Branched KAT Theorem and Polynomial Branching

Ken Stephenson and I generalized KAT I by allowing for polynomial branching to
occur in the circle packing. Branching means that we allow for the angle sums at
predetermined vertices to be a positive integer multiple of 2π rather than just 2π ,
or stated differently, we allow the circles tangent to a given one to wrap around that
given circle multiple times before closing up; see Fig. 5.3. Polynomial means that
half the branching is concentrated at one vertex. The terminology comes from the
classical theory of rational maps. Indeed, rational mappings may be thought of as

Fig. 5.3 Branching of multiplicity m = 2 or order o = 1. Starting with the grey disk on the left
and moving counterclockwise, four sequentially tangent grey disks wrap around the blue central
disk nearly one full turn, at which point the sequentially tangent transparent (or white) disks take
over to wrap around slightly more than one full turn to close up the flower of circles with angle
sum θ = 4π
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branched self-mappings of the 2-sphere, and the polynomial mappings are precisely
those in which there is an even amount of branching with half the branching
occurring at a single point. Taken together, a circle packing promised by the next
theorem mimics the behavior of a polynomial mapping of the Riemann sphere.

Our proof of the theorem as presented in [18] offers an independent proof of KAT
I, which the branched version reduces to when the branch structure β is empty. In
fact as far as I know, it was the first full direct proof of KAT I given that Thurston
proves only the tangency case (the Koebe Circle Packing Theorem) and Marden-
Rodin [54], though allowing overlapping circles, has more restrictive hypotheses.
KAT I is implied by Igor Rivin’s earlier work, which bears the same resemblance
to KAT I as does Andre’ev’s in that it is a result on the existence of hyperbolic
polyhedra.

I state the result and then backtrack to fill in definitions and discuss the proof.

Polynomially Branched KAT Theorem (Bowers and Stephenson [18]) Let K be
an oriented simplicial triangulation of S2, different from the tetrahedral triangula-
tion, and let � : E(K) → [0, π/2] be a map assigning angle values to each edge
of K . Assume that the following two conditions hold.

(i) If e1, e2, e3 form a closed loop of edges from K with
∑3

i=1 �(ei) ≥ π , then e1,
e2, and e3 form the boundary of a face of K .

(ii) If e1, e2, e3, e4 form a closed loop of edges from K with
∑4

i=1 �(ei) = 2π ,
then e1, e2, e3, and e4 form the boundary of the union of two adjacent faces
of K .

If β is a polynomial branch structure for the edge-labeled triangulation (K,�),
then there exists a circle packing C = {Cv : v ∈ V (K)} for (K,�), a family
of circles in S2 so that the two circles Cv and Cw meet at angle �(e) whenever
e = vw is an edge of K , with br(C) = β. The circle packing C is unique up to
Möbius transformations.

A branch structure essentially is a listing of some of the vertices of K , each
paired with an integer ≥ 2 that indicates how many times the circles adjacent to the
ones corresponding to the selected vertices wrap around before closing up. Before
making this precise, let’s observe that there must be further combinatorial conditions
to ensure that a branched circle packing exists for the branch structure. Indeed, note
that when there is no branching, the fact that K is a simplicial triangulation implies
that the degree of each vertex is at least three, and this local condition guarantees
that there are enough circles adjacent to a given circle to wrap around once, with
angle sum 2π , at least in the tangency case. A moment’s thought will show that if
the desire is that there be branching of multiplicity m ≥ 2 at a circle Cv , meaning
that the circles adjacent to Cv wrap around m times before closing up, there had
better be at least 1 + 2m adjacent ones to achieve the angle sum of 2πm. This may
not be sufficient but certainly is necessary, and the definition of a polynomial branch
structure includes enough combinatorial conditions to ensure sufficiency.

To clothe this discussion in a bit of flesh, suppose that C = {Cv : v ∈ V (K)} is
a circle packing for the pair (K,�). For each vertex v ∈ V (K), identify v with the
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center of its corresponding circle Cv . Fixing a vertex v, let v1, . . . , vn be the list of
neighbors of v forming the consecutive vertices in a walk around the boundary of
the star st(v) of v, and let αi be the measure of the spherical angle � vivvi+1. Then v

is said to be a branch point of order o = m− 1, or of multiplicity m, if θ(v) = 2πm

for some integer m ≥ 2, where θ(v) = α1 + · · · + αn is the angle sum at v; again,
see Fig. 5.3. The branch set br(C) of the circle packing is the set of ordered pairs
(v, o(v)) as v ranges over the branch points and o(v) is the order of v. It is clear that
the combinatorics of K as well as the values of � restrict the branch orders.

My aim is to construct circle packings of S2 in the pattern of K with overlaps
given by � with a given, predetermined branch set. Toward this end, I will define
a branch structure on the complex T = K \ Int[st(v∞)] that triangulates the closed
disk one obtains by deleting one vertex, v∞, and its incident open cells from K . I
will use �T to mean the restriction of � to the vertices of T .

Definition (Branch Structure) A set β = {(v1, o1, ), . . . , (v�, o�)}, where
vi, . . . , v� is a pairwise distinct list of interior vertices of T and each oi is a positive
integer, is a branch structure for the pair (T ,�T ) if the following condition holds:
for each simple closed edge path γ = e1 · · · en in T that bounds a combinatorial
disk D that contains at least one of the vertices vi , the inequality

n∑

i=1

[π −�T (ei)] > 2π(o(D)+ 1) (5.3.3)

holds, where o(D) =∑
oi , the sum taken over all indices i for which vi ∈ Int(D).

We will see that this condition on the combinatorics of T and the values of �T

ensures that there are no local obstructions to the existence of a circle packing for
(T ,�T ) whose branch set is β, and in fact is enough to ensure that there are no
global ones.

Definition (Polynomial Branch Structure) Let K be a simplicial triangulation of
S2 with edge function � : V (K) → [0, π/2]. A collection

β = {(v∞, o∞), (v1, o1), . . . (v�, o�)}

is a polynomial branch structure for (K,�) if the following conditions prevail.

(1) o∞ = o1 + · · · + o�.
(2) The vertices v1, . . . , v� are all interior vertices of the complex T = K \

Int[st(v∞)].
(3) βT = {(v1, o1), . . . (v�, o�)} is a branch structure for (T ,�T ).
(4) No �-edge labeled subgraph of the type given in Fig. 5.4 occurs in K where v

is one of the branch vertices v1, . . . , v�.

A few comments concerning this definition are in order. Item (1) says that there
is an even amount of branching and half of it occurs at vertex v∞; item (2) says that
no branch vertex from the list v1, . . . , v� is adjacent to the vertex v∞; item (3) in
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Fig. 5.4 A forbidden
edge-labeled subgraph for a
polynomial branch structure

particular says that Inequality Eq. 5.3.3 holds for (T ,�T ); item (4) is a technical
condition that avoids impossible configurations.

Discussion of Proof How do we put all of this together to prove the Polynomially
Branched KAT Theorem? Letting β = {(v∞, o∞), (v1, o1), . . . (v�, o�)} be a
polynomial branch structure for (K,�), we remove the vertex v∞ and work with
hyperbolic polyhedral metrics on the disk triangulation T as in the proof of the
Koebe Circle Packing Theorem. The idea is the same as there in that we want to use
vertex labels on T to describe hyperbolic triangles that then are identified with faces
to form a singular hyperbolic surface, and then vary the labels to meet angle targets
at the vertices. There are three new difficulties that appear.

(i) Target overlap angles are given by �T for adjacent circles rather than
tangencies.

(ii) Rather that 2π , the target angle sums at branch vertices are 2πmi for integers
mi = oi + 1 ≥ 2.

(iii) As the boundary ∂D ultimately will serve as the circle corresponding to v∞ in
the desired circle packing, the overlaps of the boundary circles of the packing
for T must intersect the unit circle at the angles demanded by �.

Now items (i) and (ii) are really no problem as superpacking labels can be described
that allow for prescribed overlap angles for adjacent circles and target angles
prescribed by the branch structure. The real difficulty is item (iii). If we use radius
labels, the best we can do is, as in the proof of the Koebe Theorem, get boundary
circles that meet the unit circle at single points with intersection angle zero. The
hint for resolving this difficulty is found in thinking a bit more about the role of
circles in hyperbolic geometry, and in particular in the Poincaré disk model where
H2 is identified with the unit disk D, and the ideal boundary of H2 is identified
with ∂D = S1. Euclidean circles that meet the Poincaré disk D not only serve as
hyperbolic circles, but also as horocycles and hypercycles. Those that lie entirely
within D are hyperbolic circles, those internally tangent to the ideal boundary S1 are
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horocycles, and those that meet the boundary in two points a and b are hypercycles
whose points in D lie equidistant to the hyperbolic line with ideal endpoints a

and b. This latter case includes the hyperbolic geodesic lines. What proves fruitful
here is the fact that, when oriented, these Euclidean circles and circular arcs are
precisely the curves of constant geodetic curvature in the hyperbolic plane. This
is implied immediately by the fact that these are the flow lines of 1-parameter
groups of hyperbolic isometries, the hyperbolic circles the flow lines of elliptic
flows, horocycles of parabolic flows, and hypercycles of hyperbolic flows.

Here are the salient facts about the geodetic curvature κ of an arc of an oriented
Euclidean circle that lies in the Poincaré disk D. Call an arc c = C ∩ D, where
C is a Euclidean circle that meets D, a cycle with parent circle C. There is a
normalized setting in which the curvature can be read off easily. Apply a conformal
automorphism of the disk so that c passes through the origin and its parent circle C

is centered on the positive real axis. Orient c counterclockwise and let t , 0 < t ≤ ∞
denote the point of intersection of C with the interval (0,∞]. Then the curvature
satisfies κ = κ(c) = 1/t . In terms of intrinsic parameters, for counterclockwise-
oriented hypercycles when t > 1, κ(c) = cosα where α is the acute angle of
intersection of C with the unit circle. This includes the case of a hyperbolic geodesic
where α = π/2 and κ = 0. Assuming still the counterclockwise orientation, when
t = 1, c is a horocycle with κ(c) = 1, and when t < 1, c = C is a hyperbolic circle
of some hyperbolic radius r with κ(c) = coth r .

For our purposes it is quite fortuitous that monotone curvature parameters for
cycles can be used as vertex labels on T in place of radii labels to encode a singular
hyperbolic metric on a disk that T triangulates. The curvature is inversely related
to the radii, but the really important feature is that, unlike radii labels, the curvature
label can be used to identify faces of T , not only with hyperbolic triangles with
both finite and ideal vertices, but also triangles with “hyperideal vertices.”9 This
means that when curvatures κ1, κ2, and κ3 label the vertices of the face f and
values �T (ei) for i = 1, 2, 3 label the opposite edges, the face f may be identified
with the region of the hyperbolic plane determined by cycles of curvatures κ1, κ2,
and κ3 overlapping with angles �T (ei) for i = 1, 2, 3. This accomplishes two
things. First, the overlaps of cycles are given by the edge function �T . Second,
and very importantly, if the vertex w of f is a boundary vertex and the value
κ = cos�T (wv∞) is used for the curvature, then the boundary cycle corresponding
to w overlaps with the unit circle by an angle of �T (wv∞).

The important point is that the set K of curvature labels, ones whose boundary
values are given by g(w) = cos�(wv∞) for the boundary vertex w, and that
produce superpackings where the angle sums at interior vertices are no more than
2π at non-branch points and no more than 2πmi at branch point vi , may be varied
to obtain a β-packing label, this time as supK, the supremum instead of the infimum

9When the Klein disk is used as the model for the hyperbolic plane these are in fact Euclidean
triangles that meet the disk, but whose vertices may lie within the disk, on the ideal boundary, or
outside the closed disk. The hyperideal vertices are the latter ones.
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since curvatures are inversely related to radii. Of course by β-packing label I mean
that the angle sum at any interior vertex that is not a branch vertex is 2π , and at
vi is 2πmi . The argument is akin to that of the proof of the Koebe Circle Packing
Theorem, but, though still elementary, is much more intricate and involved. The full
detailed proof appears in [18] where the key proposition, stated below, generalizes
the Discrete Boundary Value Theorem of Beardon and Stephenson. Setting up this
result with appropriate definitions and analysis of hyperideal hyperbolic triangles,
as well as the proof itself, takes up most of the content of the paper.

Proposition 5.3.2 (Bowers and Stephenson [18]) Let g be a proper boundary
label for T and β a branch structure for (T ,�T ). Then there exists a unique β-
packing label k for (T ,�T ) such that k(w) = g(w) for every boundary vertex of T .

This then is used to complete the proof of the Polynomially Branched KAT
Theorem by using the circle packing produced by Proposition 5.3.2, augmented
by the unit circle corresponding to the removed vertex v∞ to define C. Much of
this becomes routine at this point, except that one still must confirm that half the
branching occurs at v∞. This turns out to be nontrivial. Again the details are rather
involved and can be found in [18]. !�

5.3.4 Cusps and Cone Type Singularities

In this section I offer a generalization of KAT II where prescribed target angle
sums at vertices are assigned, and necessary and sufficient conditions are sought
to guarantee existence of such packings. This is the discrete version of the classical
Schwarz-Picard problem of the existence of hyperbolic metrics on Riemann surfaces
with prescribed cone type singularities. For simplicity I am going to restrict to the
tangency case where � is identically zero.

To set up the problem, let K be a simplicial triangulation of a compact surface,
possibly with boundary, with F faces, E edges, and V vertices. The vertex set V (K)

is partitioned into three sets: two disjoint subsets of interior vertices denoted as VInt
and Vcusps, and the set VBd of boundary vertices, with respective cardinalities VInt,
Vcusps, and VBd. Elements of VInt are called interior vertices and of Vcusps are called
cusp vertices. Two functions are given, the first f : VBd → (0,∞] giving target
radii for the boundary vertices and the second θ : VInt → (0,∞) giving target angle
sums at interior vertices. The target angle sums at the cusp vertices in Vcusps are
zero. The task is to give necessary and sufficient conditions on K to guarantee the
existence of a packing label r : V (K) → (0,∞] for this data such that r = f on
VBd, r = ∞ on Vcusps, and θr(v) = θ(v) for every interior vertex v ∈ VInt.

To describe a solution to this problem, for any set V of vertices, let FV denote
the number of faces of K that meet V , and let θ(V ) = ∑

v∈V θ(v) denote the total
angle sum of the vertices of V . Let

R = {r : V (K) → (0,∞] : r = f on VBd, r = ∞ on Vcusps, θr (v) ≤ θ(v) for all v ∈ Vint}.
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This describes the set of superpacking labels for the data θ with boundary values
given by f and cusp set Vcusps. A packing label for this data is a superpacking label
where, in addition, the target angle sums given by θ are met, so that θr (v) = θ(v) for
all v ∈ VInt. For any superpacking label r and vertex set V , let θr(V ) =∑

v∈V θr(v).
The next theorem gives necessary and sufficient conditions for a solution to the
discrete Schwarz-Picard boundary value problem. The proof is a generalization
of the proof presented herein for the Koebe Circle Packing Theorem. There the
important invariant is F − 2VInt. In the borderless case of Theorem 5.3.1, the
important invariant is F − 2V. These arise from writing the hyperbolic area of the
surface determined by a packing label, provided one exits, in terms of combinatorial
invariants. The corresponding fact in this setting is that, for any packing label r for
the data f , θ , and Vcusps,

hyp-area(K(r))+ θr(VBd) = π F− θr(VInt) = π F− θ(VInt).

The right hand side of this equation is an invariant of K and θ and must be positive
since the left hand side is positive. Also, for every interior vertex v,

θ(v) = θr(v) < π deg v

These give two necessary conditions for a desired label to exist, but these are not
sufficient. Nonetheless, these two conditions are the extreme cases of the sufficient
condition that appears as item (i) of the theorem.

Discrete Schwarz-Picard Boundary Value Theorem (Bowers [12]) The follow-
ing are equivalent.

(i) For every edge-path connected set V ⊂ VInt of interior vertices, the invariant
π FV − θ(V ) is positive.

(ii) The function r = infR does not take a zero value at any vertex.
(iii) The function r = infR is the unique packing label for K with data f , θ , and

Vcusps.
(iv) There exist a packing label for K for the data f , θ , and Vcusps.

A word of caution is in order. Though this does solve the discrete Schwarz-
Picard problem, the combinatorial condition of item (i), that π FV − θ(V ) > 0
for every path connected subset V of interior vertices, is a very difficult condition to
check once the size of K becomes in any way substantial. This pure mathematician
has learnt to appreciate the difficulties our computational geometer cousins face
when trying to make the elegant output of our theorems practical tools for
performing geometric computations. This difficulty often is unrecognized or left
unacknowledged by my pure mathematician siblings.
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5.4 Infinite Packings of Non-compact Surfaces

I now turn our attention to infinite packings of non-compact surfaces. Here new and
interesting phenomena arise, fraught with their own peculiar difficulties. To keep
the conversation manageable, I am restricting attention to tangency circle packings
of simply connected domains and will concentrate on one very interesting problem
that arises in this setting—the type problem—and one great success in attacking the
Koebe Uniformization Conjecture.

5.4.1 The Discrete Uniformization Theorem

Does every simplicial triangulation K of every topological surface S, compact or
not, admit a circle packing in some geometric structure on S? By passing to the
universal covering surface S̃ and lifting the triangulation to a triangulation K̃ of
S̃, the question may be approached by asking whether any G-invariant simplicial
triangulation of a simply connected surface admits a G-invariant circle packing in
some geometric structure, where G is a group of symmetries of the complex. There
are only two simply connected surfaces up to homeomorphism, the sphere and the
plane. The former case is addressed by the Koebe Circle Packing Theorem. In this
section I will address the latter case.

Let T be a plane triangulation graph, by which I mean that T is the 1-skeleton
of a simplicial triangulation K of the topological plane. There are precisely two
inequivalent conformal structures on the plane, the one conformally equivalent to
the complex plane C and the other to the open unit disk D. There are precisely
two complete metrics of constant curvature up to scaling on the plane, the one
isometric to Euclidean 2-spaceE2 and of constant zero curvature, the other isometric
to the hyperbolic plane H2 and of constant negative curvature. Fortunately, the
conformal and the geometric structures mesh nicely in that the complex plane C

is a conformal model of plane Euclidean geometry via its standard Euclidean metric
dsC = |dz|, and the disk D is a conformal model of plane hyperbolic geometry via
the Poincaré metric dsD = 2|dz|/(1− |z|2). Metric circles in these two geometries
are precisely the Euclidean circles contained in their point sets, so circle packings in
these geometric surfaces can be identified with Euclidean circle packings of C and
D. I will use G10 to mean either C or D with the intrinsic Euclidean or hyperbolic
geometry determined by either dsC or dsD when referring to geometric quantities
like geodesics and angles, etc. Here is the foundational result in this setting.

Discrete Uniformization Theorem (Beardon and Stephenson [7], He and
Schramm [42]) Every plane triangulation graph T can be realized as the contacts
graph of a univalent circle packing T(C) that fills exactly one of the complex plane

10G means Geometry.
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C or the disk D. The packing is unique up to conformal automorphisms of either C
or D.

The contacts graph of a collection is a graph with a vertex for each element of
the collection and an edge between two vertices if an only if the corresponding
elements meet. The carrier of the circle packing C in the geometry G is the union of
the geodesic triangles formed by connecting centers of triples of mutually adjacent
circles with geodesic segments, and C fills G whenever its carrier is all of G. When
C is univalent and fills G, C is said to be a maximal packing for T or K , and K may
be realized as a geodesic triangulation of G whose vertices are the centers of the
circles of C with geodesic edges connecting adjacent centers.

Once this theorem is in place, the whole of the theory of tangency circle packings
on non-compact surfaces comes into play. As already indicated, in a thoroughly
classical way packing questions on surfaces can be transferred to questions of
packings on simply connected surfaces, this by passing to covering spaces acted
upon by groups of deck transformations. Any combinatorial symmetries of the
complex K are realized as automorphic symmetries of G, this from the uniqueness
of the Discrete Uniformization Theorem, and this offers an alternate Proof of
Theorem 5.3.1, and an extension of that theorem to triangulations of arbitrary, non-
compact surfaces.

Beardon and Stephenson [7] proved the Discrete Uniformization Theorem when
T has bounded degree, a global bound on the degrees of all the vertices of T. In this
foundational paper as well as in their subsequent one [8], Beardon and Stephenson
laid out a beautiful theory of circle packings on arbitrary surfaces, gave a blueprint
for developing a theory of discrete analytic functions, and articulated one of the most
interesting problems in the discipline, that of the circle packing type problem for
non-compact surfaces, this latter the subject of the section following. The bounded
degree assumption was needed both to verify that the packing fills G and for the
uniqueness, and He and Schramm [42] removed the bounded degree hypothesis
and proved the general case where there is no global bound on the degrees of
vertices. Earlier, Schramm [65] had proved a very general rigidity theorem for
infinite packings of planar domains whose complementary domains are a countable
collection of points, and He and Schramm [42] extended this to general countably
connected domains.

Discussion of Proof The full proof is scattered throughout several articles pub-
lished in the 1990s. In what constitutes a significant service to the discipline, Ken
Stephenson has laid out a complete proof in roughly fifty pages of his wonderful
text Introduction to Circle Packing [71]. I have not the space here to do justice to
the argument, but I will make some comments.

Beardon and Stephenson’s proof of existence relies on the Maximal Disk Packing
Theorem and uses a diagonal argument on a sequence of finite subcomplexes of K

that exhausts K . It does not depend on any bounded degree assumption and is quite
straightforward. The proof of existence goes like this. Write K = ∪∞i=1Ki as a
nested, increasing union of finite subcomplexes Ki , each a simplicial triangulation
of a closed disk. Apply the Maximal Disk Packing Theorem to obtain a sequence
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Ci of univalent, maximal circle packings for the complexes Ki in the unit disk
D realized as the Poincaré disk model of hyperbolic geometry. Fix a base vertex
v0 of K1 and let Ci be the circle of Ci that corresponds to v0. By applying an
automorphism of the disk if needed, assume that Ci is centered at the origin and
of hyperbolic radius ri (v0). Now the Discrete Schwarz-Pick Lemma implies that
the sequence ri (v0) of hyperbolic radii is non-increasing, hence has a limit, say
r(v0) ≥ 0, as i →∞. There are two cases.

(I) The limit radius r(v0) �= 0;
(II) The limit radius r(v0) = 0.

The first claim is that if v is any other vertex of K whose corresponding circle of
Ci , for large enough i, has hyperbolic radius ri (v), then limi→∞ ri (v) is not zero
when case (I) occurs and is equal to zero when case (II) occurs. This means that
the limit radius function r : V (K) → [0,∞) never takes a zero value in case (I)
and is identically zero in case (II). The proof of this claim uses the Ring Lemma
of Burt Rodin and Dennis Sullivan that was crucial in [62] in their confirmation of
Thurston’s outlined proof of the Discrete Riemann Mapping Theorem presented in
his 1985 Purdue lecture; see Sect. 5.5.1. The Ring Lemma guarantees the existence
of a sequence of positive constants cd such that, when d ≥ 3 disks form a cycle
of sequentially tangent disks all tangent to a central disk of Euclidean radius R,
and the disks have pairwise disjoint interiors, then the smallest disk has Euclidean
radius ≥ cdR. The Ring Lemma is applied as follows. Let v0 v1 · · · vn = v

be a path of vertices in K from v0 to v and choose N so large that this path
of vertices is contained in the interior of Ki , for all i ≥ N . The Ring Lemma
applied sequentially to the chain of pairwise tangent circles in Ci corresponding
to the path v0 v1 · · · vn = v implies that there is a positive constant c such that
Ri(v) ≥ cRi(v0), where Ri is the Euclidean radius function on Ci . This holds for
all i ≥ N and the constant c is independent of i. As hyperbolic and Euclidean radii
of circles in the disk are comparable in the small, this implies the claim.

Now order the vertex set V (K) as v0, v1, . . . . In case (I), choose a subsequence ij
so that the hyperbolic centers of the circles of the sequence Cij all corresponding to

the vertex v1 converge in the closed disk D to a point c1. An application of item (ii)
of the Discrete Schwarz Pick Lemma implies that c1 is contained in the open disk
D. Repeat to find a subsequence of ij for which the hyperbolic centers of the circles
corresponding to v2 converge to a point c2 in D. Iterating and applying a diagonal
argument gives a subsequence of the sequence of circle packings Ci for which the
hyperbolic centers of the circles corresponding to the vertex vn of K converges to
a point cn in D for all positive integers n. Centering a circle of hyperbolic radius
r(vn) at the point cn produces a circle packing in the Poincaré disk in the pattern of
K . In case (II) when r is identically zero, a diagonal argument applied to the scaled
packing 1

Ri
Ci , where Ri is the Euclidean radius of Ci , produces a circle packing in

the plane C in the pattern of K . Call the limit circle packing in either case C.
There are three facts left to prove: first, that C is univalent; second, that C

fills the disk in case (I) and the plane in case (II); third, that C is unique up
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to automorphisms. The first claim of univalence follows from the fact that each
circle packing Ci is univalent and the convergent subsequence of radii and centers
described above essentially describes geometric convergence of circle packings.
Beardon and Stephenson’s original proof of the second claim that the packing fills
G relied critically on the bounded degree assumption. It was used to ensure that
piecewise linear maps from the complexes Ki into the geometry G defined using
the convergent sequence of circle packings are uniformly quasiconformal so that
the Carathéodory Kernel Theorem [27] applies to ensure that the image of the limit
function is the kernel of the image sets, which is the whole of G. The third claim
of uniqueness in the hyperbolic case (I) follows from the uniqueness of the limiting
radius function, but in the Euclidean case (II), uniqueness uses the bounded degree
assumption. Later He and Schramm removed the bounded degree assumption. Their
proof of uniqueness in case (II) is particularly elegant. It is a topological proof based
on the winding numbers of mappings defined on the boundaries of corresponding
intersticial regions in two circle packings for the same complex K , both of which
fill C. All of this is rather nicely laid out in Stephenson’s Introduction to Circle
Packing [71]. !�

5.4.2 Types of Type

The dichotomy between hyperbolic and Euclidean behavior is evident in the
Discrete Uniformization Theorem. Indeed, the combinatorial complex K , or its 1-
skeleton T, determines uniquely its geometry in that the maximal circle packing
T(C) fills either the disk D or the complex plane C, but forbids two packings where
one fills the disk and the other the plane. This leads to the next definition.

Definition (CP-Type) A simplicial triagulation K of the plane, and its 1-skeleton
plane triangulation graph T = K(1), are said to CP-parabolic or CP-hyperbolic
when the maximal circle packing T(C) fills respectively the complex plane C or
the disk D. The CP-type problem is the problem of determining whether a given
complex K or plane triangulation graph T is CP-parabolic or CP-hyperbolic. One
seeks conditions or invariants on the complex K or the graph T, reasonably checked
or computed, that can determine which of the two CP-types adheres. See Fig. 5.5.

This is a discrete version of the classical conformal type problem, or just
type problem for short, that of determining whether, à la classical Uniformization
Theorem, a given non-compact simply connected Riemann surface is parabolic
and conformally equivalent to the complex plane C, or hyperbolic and conformally
equivalent to the disk D.

Historically this is not the first discrete type problem. That honor probably goes
to the problem of determining the random walk type, or RW-type for short, of an
infinite graph. My aim in this section is to review this and several other species
of discrete type problems and explore their interactions in the context of plane
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(a) (b)

Fig. 5.5 The CP-type of a plane triangulation graph is determined by the corresponding maximal
circle packing and whether it fills the plane or the disk. (a) The penny packing, the maximal
circle packing for the constant 6◦ plane triangulation graph G6, fills the plane C. The graph G6
is parabolic. (b) The maximal circle packing for the constant 7◦ plane triangulation graph G7 fills
the disk D. The graph G7 is hyperbolic, as are the graphs Gd for all d ≥ 7

triangulation graphs. In all I will examine six different species of discrete type that
go under the abbreviations CP, RW, EL, EEL, VEL, and EQ-type.

Consider the standard simple random walk on a simple, connected, locally finite
graph G where the probability of walking across a particular edge uv from vertex
u to vertex v is 1/ degu. The graph G is said to be random walk parabolic, or
RW-parabolic, if a walker almost surely returns to a fixed base vertex, and random
walk hyperbolic or RW-hyperbolic otherwise. More common terminology is that
the graph is recurrent when RW-parabolic and transient when RW-hyperbolic.
In a transient graph, a random walker has a positive probability for escaping to
infinity whereas in a recurrent one, the escape probability vanishes and, in fact,
the walker almost surely returns to every vertex infinitely often. Woess [74] is a
fantastic reference for the classical theory of random walks on graphs and Lawler
and Limic [51] is an up-to-date reference with many recent results.

Early on in the development of circle packing theory, Ken Stephenson made a
connection between the CP- and RW-type problems. The intuition for the connection
arises from the close connection in classical complex function theory between the
conformal type problem and brownian motion on a Riemann surface. Stephen-
son [70] proved that the CP- and RW-types of bounded degree plane triangulation
graphs always coincide. Later in [43], He and Schramm gave an example of a
plane triangulation graph, necessarily of unbounded degree, that is CP-parabolic but
RW-hyperbolic. There the authors focused more sharply on the distinction between
these two species of type and recalled Duffin’s EEL-type from [35] and developed
Cannon’s VEL-type inspired by Cannon [25] in articulating the distinction.
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Before continuing with the discussion of CP-type, let’s review a bit of history.
The story of discrete type really begins in the 1920s with Póyla’s study [57] of the
RW-type of the integer grid in Rd where he proved that the integer grid in R2 is RW-
parabolic while the grid in higher-dimensional Euclidean spaces is RW-hyperbolic.
In 1959, Nash–Williams in [55] used a method of Lord Rayleigh to link the RW-
type of a locally finite graph with its resistance to electric flow when each edge is
thought of as a wire with a unit of electrical resistance, giving rise to EL-type. To
be a bit less cryptic, when an infinite graph is thought of as an electric network with
each edge representing a wire of unit resistance, the question is whether electricity
will flow from a base vertex to infinity when a unit potential is applied to the base
vertex and infinity is grounded. This is made a bit more precise by asking what the
effective resistance is from the base vertex to infinity for the network. When the
effective resistance to infinity is infinite, no current flows and the network is EL-
parabolic, and when the resistance is finite so that current does flow, the network is
EL-hyperbolic. In the beautiful 1984 Carus Mathematical Monograph [34] entitled
Random Walks and Electric networks, Peter Doyle and J. Laurie Snell present an
accessible proof that the RW- and EL-type of an infinite graph coincide. In 1962,
Duffin [35] gave a combinatorial invariant of a graph, the edge extremal length, that
characterizes the RW- or EL-type according to whether the edge extremal length of
the set of transient edge-paths is infinite or not.

What is the edge extremal length of a path family? It is a discrete version of
the classical conformal extremal length of a path family in a Riemann surface in
quasiconformal analysis. For a graph G, let � be any family of edge-paths, infinite or
not. The edge extremal length is obtained by measuring the minimal length-squared
of the curves in � divided by the area, this maximized over all metric assignments.
This is the same as the classical definition, only what changes is how the admissible
metrics are assigned. Here are the details. An edge-path in G is a finite or infinite
sequence e = e1, e2, . . . of directed edges of G with the terminal vertex of ei equal
to the initial vertex of ei+1. An edge metric on G is a function m : E(G) → [0,∞]
that assigns a non-negative value to each edge, and the area of m is defined as
area(m) = ∑

e∈E(G) m(e)2. An edge metric is admissible if its area is finite and I
will let ME(G) denote the collection of admissible edge metrics. The m-length of
the edge-path e is �m(e) = ∑

i=1 m(ei). Finally, the edge extremal length of the
family � of edge-paths is

EEL(�) = sup
m∈ME(G)

infe∈� �m(e)2

area(m)
.

The notation EEL(G) is reserved for the case where � is the set of paths to infinity
that start at a given base vertex v0. These are called the transient edge-paths in G

based at v0, and any such transient edge-path e ∈ � has initial vertex v0 at its first
edge e1 and is not contained in any finite collection of edges. One says that the
graph G is EEL-parabolic if EEL(G) = ∞ and EEL-hyperbolic otherwise. It is an
easy exercise to confirm that EEL-type does not depend on which base vertex is
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chosen. Duffin’s result of [35] already mentioned is that both the RW- and EL-type
of a graph coincides with the EEL-type. This was the state of the art in discrete type
in the early 1990s when Stephenson connected CP-type with RW-type for bounded
degree plane triangulation graphs.

In 1995, He and Schramm [43] in a remarkable article clarified the role of the
bounded degree assumption. There, after constructing a plane triangulation graph
that, though CP-parabolic, is RW-hyperbolic, they applied Cannon’s vertex extremal
length to characterize CP-type combinatorially in the way that edge extremal
length characterizes RW-type. Cannon [25] introduced the vertex extremal length
of a discrete curve family made of shinglings and used it as a tool for assigning
combinatorial moduli to ring domains in the space at infinity of a negatively curved
group. He and Schramm adapted Cannon’s vertex extremal length to Duffin’s
development of EEL-type to create VEL-type. The adjustment merely replaces
edge-paths by vertex-paths and edge metrics by vertex metrics. The vertex extremal
length of a family � of vertex paths is

VEL(�) = sup
m∈MV (G)

infv∈� �m(v)2

area(m)
. (5.4.1)

Here, a vertex-path is a sequence v = v1, v2, . . . where each vi is incident with
its successor vi+1, and a vertex metric is a non-negative function m : V (G) →
[0,∞] with area area(m) = ∑

v∈V (G) m(v)2. The m-length of the vertex-path v is
�m(v) = ∑

i=1 m(vi) and the set of admissible metrics, the ones of finite area, is
denoted as MV (G). The VEL-type of G now is defined analogously to EEL-type.
Indeed, VEL(G) means VEL(�), where � is the set of transient vertex-paths based
at v0, those that meet infinitely many vertices. The graph G is VEL-parabolic if
VEL(G) = ∞ and VEL-hyperbolic otherwise, and again it is an easy exercise
to confirm that VEL-type does not depend on which base vertex is chosen. This
seemingly innocuous adjustment to the definition of EEL-type turns out to be
precisely the tool needed to characterize CP-type.

Though, easily, the EEL- and VEL-types of a bounded degree graph coincide,
they may differ for a graph of unbounded degree. The relationships between the
four types—RW, EL, EEL, VEL—are summarized in the next theorem.

Discrete Type Theorem for Graphs Let G be a connected, infinite, locally finite
graph.

(i) [Nash–Willliams [55], Duffin [35]] The three types—RW, EL, EEL—coincide
for G.

(ii) [He–Schramm [43]] If G is EEL-parabolic then it is VEL-parabolic. If G has
bounded degree and is VEL-parabolic, then it is EEL-parabolic.

(iii) [He–Schramm [43]] There is a VEL-parabolic plane triangulation graph that
is EEL-hyperbolic, necessarily of unbounded degree.

For a plane triangulation graph T, all five types—RW, EL, EEL, VEL, CP—
coincide provided T has bounded degree. As stated above, it was Stephenson who
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first proved this for RW- and CP-types. He and Schramm clarified the need for the
bounded degree hypothesis, and the relationship between discrete types for plane
triangulation graphs is summarized next.

Discrete Type Theorem for Plane Triangulation Graphs (He–Schramm [43])
Let T be a plane triangulation graph. Then T is CP-parabolic if and only if it is
VEL-parabolic.

The proofs of these theorems are quite difficult and involved, though still
elementary, and space forbids any sort of discussion of the proofs that would do
justice to the subject. Suffice it to say that the interested reader can do no better than
to consult the references cited in this section to fill in gaps in the desired detail of
proofs.

The Discrete Type Theorem for Plane Triangulation Graphs reduces the very
difficult problem of determining whether the maximal circle packing for T is
parabolic or hyperbolic to a combinatorial computation on the graph T. The
disappointment comes when one actually tries to do the computation of VEL(T)

from Eq. 5.4.1 for almost any given plane triangulation graph. One then finds out
just how difficult it is to perform this computation; nonetheless, this development is
useful for some theoretical considerations. For example, He and Schramm use the
theorem to extend Stephenson’s result on RW- and CP-type. Here is an interesting
result of the author that uses the computation of Eq. 5.4.1 for the proof of item (ii)
of the theorem.

Theorem 5.4.1 (Bowers [13]) Let G be a connected, infinite, locally finite graph
and T a plane triangulation graph.

(i) IfG is Gromov negatively curved and its Gromov boundary contains a nontrivial
continuum, then G is RW-hyperbolic.

(ii) If T is Gromov negatively curved, then T is CP-parabolic if and only if its
Gromov boundary is a singleton; alternately, it is CP-hyperbolic if and only if
its Gromov boundary is a topological circle.

I refer the reader to the appendix of the article [13] for definitions and basic
theorems on Gromov negatively curved graphs and metric spaces. To show how the
computation from Eq. 5.4.1 may proceed, I’ll prove the lemma used in [13] to prove
the first assertion of item (ii) of Theorem 5.4.1.

Lemma 5.4.2 Let v0 be a vertex in the connected, infinite, locally finite graphG and
let {Vn} be a sequence of pairwise disjoint sets of vertices, each of which separates
v0 from infinity. Suppose there exist positive constants C and ε such that, for n ≥ N ,

Card(Vn) ≤ Cn.

Then the graph G is VEL-parabolic.
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Proof Define the vertex metric m by m(v) = 1/(n logn) for any v ∈ Vn when
n ≥ N , and m(v) = 0 otherwise. Then m is admissible since

area(m) =
∞∑

n=N

Card(Vn)

(n logn)2 ≤
∞∑

n=N

C

n(logn)2 < ∞.

For any transient vertex-path v, the m-length satisfies �m(v) ≥∑∞
n=N 1/(n logn) =

∞, hence every transient vertex-path has infinite m-length. This implies that
VEL(G) = ∞ and G is VEL-parabolic. !�

I’ll end this section with a sixth version of discrete type that is of recent interest
in several settings. It arose first for me when Ken Stephenson and I constructed
expansion complexes of finite subdivision rules, for the first time in [19] when
examining the pentagonal subdivision rule of Cannon, Floyd, and Parry [26]. More
recently it arises in our examination of hierarchical conformal tilings [21, 22], and
in Gill and Rohde’s [37] examination of random planar maps. I name this version of
discrete type EQ-type with EQ an abbreviation for equilateral. A plane triangulation
graph T = K(1) can be used to build a piecewise equilateral surface by setting each
edge to unit length and isometrically gluing unit-sided equilateral triangles along
their boundaries to the boundaries of the faces of K . This produces a piecewise flat
surface |T|eq that has a natural conformal atlas obtained as follows. Each edge e of
T indexes a chart map ϕe defined on the interior of the union of the faces incident
with e. These have been identified with unit equilateral triangles and the chart map
ϕe is an orientation-preserving isometry to the plane C. Each vertex v also indexes
a chart map ϕv defined on the metric neighborhood of v in |T|eq of radius 1/2,
and uses an appropriate complex power mapping to flatten that neighborhood to a
disk in the plane C. The overlap maps are conformal homeomorphisms between
the appropriate domains. The chart family A = {ϕx : x ∈ V (T) ∪ E(T)} forms a
complex atlas making |T|eq into a non-compact simply connected Riemann surface
S(T). The type problem now is manifest. Is S(T) conformally the plane C or the
disk D? In the former case, T and K are said to be EQ-parabolic, in the latter EQ-
hyperbolic.

Notice that the question of the EQ-type of a plane triangulation graph is the
classical question of the conformal type of a simply connected Riemann surface.
It bares the moniker discrete because of how the surface is built—using discrete
building blocks, the equilateral triangles, glued in a combinatorial pattern encoded
in T. The desire is for a combinatorial invariant of T or K that will determine its EQ-
type. So, what relationship exists between the discrete types already discussed and
EQ-type? For plane triangulation graphs of bounded degree, easy arguments using
quasiconformal mappings show that EQ-type coincides with CP-type—just map the
equilateral triangle in |T|eq at face f to the corresponding geodesic triangle in G.
When T has bounded degree, this map is uniformly quasiconformal and so the EQ-
type agrees with the conformal type of G. For unbounded degree plane triangulation
graphs, it remains an open question as to whether the EQ-type coincides with,
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say, the EEL- or the VEL-type, or perhaps neither. I am bold enough to offer the
following conjecture.

Conjecture 5.4.3 For any plane triangulation graph, EQ-type coincides with VEL-
type, and therefore with CP-type.

A great reference for various expressions of discrete type and their stability under
subdivision is Bill Wood’s doctoral thesis [75] and the subsequent article [76]. I now
turn our attention to Koebe’s original inspiration for his circle packing theorem, his
interest in circle domains, uniformization, and the Kreisnormierungsproblem.

5.4.3 Koebe Uniformization for Countably-Connected
Domains

Zheng-Xu He and Oded Schramm’s work on circle packing in the late 1980s and
early 1990s led them to a study of Koebe’s Uniformization Conjecture. Though
the discrete circle packing tools they developed and used did not directly apply
to Koebe’s problem, the perspective they had gained turned out to be useful.
By 1992–1993, they had made the greatest advance on Koebe’s problem since
its articulation and had proved a circle packing version that greatly generalized
the Discrete Uniformization Theorem. Their work is detailed in the Annals of
Mathematics article Fixed points, Koebe uniformization, and circle packings. The
proofs are rather intricate and so I am content to state the two main results without
any indication of the proofs, leaving it to the interested reader to peruse [42] for
details.

He–Schramm Uniformization Theorem (He and Schramm [42], Schramm [67])
Every countably connected domain in the Riemann sphere is conformally
homeomorphic to a circle domain. Moreover, the circle domain is unique up to
Möbius transformations and every conformal automorphism of the circle domain is
the restriction of a Möbius transformation.

A domain triangulation graph is the 1-skeleton of a simplicial triangulation of a
planar domain.

He–Schramm Discrete Uniformization Theorem (He and Schramm [42])
Every domain triangulation graph with at most countably many ends has a univalent
circle packing in the plane C whose carrier is a circle domain. Moreover, the circle
packing is unique up to Möbius transformations.

He and Schramm prove a theorem that generalizes their Uniformization The-
orem to generaized domains and generalized circle domains. This more general
unifomization theorem then is used to give a quick proof of their Discrete Uni-
formization Theorem.
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I’ll close this section by mentioning that Schramm in a 1995 paper [67]
introduced the notion of transboundary extremal length that generalizes the classical
extremal length of curve families. Transboundary extremal length is more suited
to path families in multiply connected domains that allow for the curves of the
family to pass through the complementary components of the domain. Using this
tool, Schramm gives a short proof of Koebe uniformization of countably connected
domains and generalizes it in two ways. First, he shows that circle domains as the
target of uniformization may be replaced by more general domains, namely, those
where the complementary components are what he calls τ -fat sets. Second, he shows
that some domains with uncountably many complementary components may be
uniformized to circle domains, namely those where the complementary components
are uniformly fat. This includes for example domains whose boundary components
are points and μ-quasicircles for a fixed constant μ ≥ 1.

5.5 Some Theoretical Applications

The theoretical work in circle packing has grown up hand-in-hand with various
applications. In the past score of years, the needs of computer imaging have added
a practical bent to the applications with the use of the theory for everything from
medical imaging to 3D-printer head guidance. This has been one of the impetuses
for the development of the discipline of discrete differential geometry with discrete
conformal geometry as but one of its chapters. Circle packing theory à la Thurston
as described in this chapter is one flavor of this, but several groups of computational
geometers and computer scientists have developed discrete conformal geometry in
a great variety of ways, with new techniques designed to solve both practical and
theoretical problems. The discipline has grown to a vast enterprise too large and
complicated for a review of this type. Rather than attempt a thorough discussion of
these applications, I’ll only mention a couple of the theoretical applications. The
first stands as one of the linchpins of the discipline, and the second generalizes the
first. I’ll leave it for the interested reader to peruse the many resources available to
learn of the state of the art today in practical applications.

5.5.1 Approximating the Riemann Mapping

The event that really got circle packing launched, piquing the interest of a small
group of research mathematicians from as diverse fields as complex function theory,
combinatorial and computational geometry, geometric topology, and the classical
theory of polyhedra, was Bill Thurston’s address entitled The Finite Riemann
Mapping Theorem at Purdue University in 1985. He presented there an algorithm
for computing discrete versions of the Riemann mapping of a fixed, proper, simply
connected domain in the complex plane C to the unit disk D, with an indication
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of why the discrete mappings should converge to a conformal homeomorphism of
the domain onto D. Burt Rodin and Dennis Sullivan published in [62] a proof of
Thurston’s claims in 1987, and this began a steady output of published research on
circle packings that continues today. Here I review the content of Thurston’s 1985
talk and explain the Rodin-Sullivan verification of Thurston’s claims.

Thurston’s algorithm is illustrated nicely in the graphics of Fig. 5.6. The scheme
is rather simple. Overlay a domain D with a hexagonal circle packingHε of constant
circle radii ε, a ‘penny packing.’ Use the domain D as a cookie cutter to cut out a
portion of the packing, say Pε , whose combinatorics are given by the simplicial
complex Tε . Apply the Maximal Disk Packing Theorem to obtain a maximal circle
packingQε of the diskD. Choosing two points x and y in the domain D, let uε and vε
be the vertices of Tε whose corresponding circles are closest to the respective points
x and y. From the uniqueness of the Maximal Disk Packing Theorem, one may
assume that the packings Qε have been normalized so that the circle corresponding
to uε is centered at the origin and the one corresponding to vε is centered on the
positive real axis. Define the discrete Riemann mapping fε : carr(Pε) → carr(Qε)

as the piecewise linear mapping that takes centers of circles of Pε to corresponding
centers of circles of Qε . Thurston’s claim of his 1985 lecture that Rodin and Sullivan
verified in 1987 is the content of the next theorem.

Discrete Riemann Mapping Theorem (Rodin and Sullivan [62]) The mappings
fε converge as ε ↓ 0, uniformly on compact subsets of D, to the Riemann mapping
f of D onto D with f (x) = 0 and f (y) > 0.

Before I discuss the proof, I should say that there is nothing special about
the hexagonal combinatorics. He and Schramm [44] verified that the particular
combinatorics of the overlay packings are irrelevant as long as the maximum circle
radii approach zero.

Sketch of Proof The proof applies classical tools from quasiconformal analysis to
confirm convergence of the discrete mappings to the Riemann mapping. There are
three parts. First, the Ring Lemma, already used on page 198 in the proof of the
Discrete Uniformization Theorem, is used to observe that the discrete Riemann
mappings fε for ε > 0 form a family of uniformly quasiconformal mappings
with, say, dilatation of all maps bounded by μ ≥ 1. Second, standard results of
quasiconformal analysis imply that the mappings converge to a μ-quasiconformal
mapping f of D onto D. Third, the limit mapping is proved to be 1-quasiconformal,
or just conformal, so that it is a Riemann mapping of the domain D onto the disk D.
Allow me to fill in each of the three parts of the argument a bit.

The first part, that the discrete Riemann mappings have quasiconformal dis-
tortion uniformly bounded, uses the fact that simplicial homeomorphisms are
μ-quasiconformal with the distortion constant μ depending only on the shapes of the
triangles involved. In particular, because the complexes Tε have constant degree six
on interior vertices, the Ring Lemma implies that there is a minimum possible angle
ω > 0 for any of the triangles in the Euclidean carrier carr(Qε), this independent of
ε. This implies that the discrete maps fε are uniformly μ-quasiconformal since the
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Fig. 5.6 Discrete Riemann mappings with finer and finer hexagonal circle packings
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images of the equilateral triangles of carr(Pε) are triangles of carr(Qε) of uniformly
bounded distortion.

The second part now follows from standard tools of quasiconformal analysis. The
uniformly quasiconformal maps fε are equicontinuous on compact subsets of D, as
are the maps f−1

ε on compact subsets of D. It follows that the family {fε}ε>0 is a
normal family and any limit mapping f is bijective between D and D. This latter
claim uses the fact that any limit mapping is necessarily μ-quasiconformal, and the
Carathéodory Kernel Theorem implies that f takes D onto D.

Finally, that any limit mapping f is conformal follows from the Hexagonal
Packing Lemma. This says that in a packing with hexagonal combinatorics, any
two adjacent circles buried deeply within the packing have nearly equal radii. Here
is the exact statement.

Hexagonal Packing Lemma (Rodin and Sullivan [62]) There is a sequence cn
decreasing to zero as n → ∞ such that in any packing with n generations of the
regular hexagonal combinatorics surrounding circle C, the ratio of radii of C and
any adjacent circle differs from unity by less than cn.

This lemma shows that as ε ↓ 0, the mappings fε restricted to a fixed compact
subset of D maps equilateral triangles to triangles of carr(Qε) that become arbitrarily
close to equilateral, and this implies that any limit mapping is conformal.

This completes the proof modulo the proof of the Hexagonal Packing Lemma.
This is proved as follows. Let Hn be any packing of circles in the plane with
combinatorics given by greater than or equal to n generations of the hexagonal
packing and whose central circle is the circle C0 of unit radius centered at the origin.
The Ring Lemma implies that the radii of the circles n generations removed from C0
in the packings Hm for m ≥ n are bounded away from zero and infinity. A diagonal
argument implies that there is a subsequence Hni that geometrically converges to a
packing H , which necessarily has hexagonal combinatorics. But the uniqueness of
the Discrete Uniformization Theorem implies that H = H1, the penny packing of
unit radius. If the lemma were not true, one could choose the sequence Hn in such
a way that the ratio of the center circle of Hn to at least one of its neighbors differs
from unity by at least a fixed constant δ > 0. This would imply that the limit packing
H has a circle adjacent to C0 of non-unit radius, contradicting uniqueness. !�

I should mention that Rodin and Sullivan did not have access to the Discrete
Uniformization Theorem in 1987 as it was published only in 1990. They had to
prove uniqueness of the penny packing of the plane, which they did by invoking
results of Dennis Sullivan [72] extending the Mostow Rigidity Theorem to non-
compact three-manifolds whose volumes grow slowly enough. This initiated an
attempt to prove the Hexagonal Packing Lemma using only elementary means,
which ultimately led to a better understanding of the rigidity of infinite circle
packings over the next decade. This paper of Rodin and Sullivan was highly
influential and can claim to be the genesis of the serious study of circle packings that
now includes in its accomplishments hundreds of articles, thousands of citations,
and a huge reservoir of applications in a great variety of different settings.
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5.5.2 Uniformizing Equilateral Surfaces

I already have defined piecewise equilateral metrics determined by plane trian-
gulation graphs in the context of the type problem. Of course there is nothing
special about plane triangulation graphs. Any triangulation T of a surface may
be endowed with a piecewise equilateral metric by identifying faces with unit
equilateral triangles. Exactly as explained in Sect. 5.4.2, this endows the surface
with a complex atlas of conformal charts indexed by the vertices and edges of
the triangulation. Equilateral surfaces have become important in several different
areas of mathematics. They arise for example in Grothendieck’s theory of dessins
d’enfants and their corresponding Belyı̆ maps, see [20], in Angel and Schramm’s
theory of uniform infinite planar triangulations [4], in Gill and Rohde’s study of
random planar maps [37], in Bowers and Stephenson’s theory of conformal tilings
and especially those that arise from expansion complexes [21, 22], and in discrete
conformal flattening of surfaces in R3 [16]. In this section I introduce a method of
uniformizing these surfaces using the tools of Rodin-Sullivan [62] and basic surface
theory.

Let T be a triangulation of the topological surface S. The notation |T |eq is used
to denote the piecewise equilateral metric space determined by the triangulation T

and ST to denote the Riemann surface determined by the atlas A = {ϕx : x ∈
V (T ) ∪ E(T )}. Note that T need not be a simplicial triangulation for this to make
sense. A face f of T first is identified as an equilateral triangle in |T |eq and then as a
curvilinear triangle in the canonical metric of constant curvature on the surface ST .
What is the shape of f in ST ? One fact about the shape of this curvilinear triangle
is that the angle that two of its sides makes that emanate from the same vertex is
2π/d , where d is the degree of the vertex. Another fact is that the sides are analytic
arcs, and in fact any such arc is the fixed point set of an anti-conformal reflection
that exchanges the two triangles incident with that arc. In the case ST is parabolic
or hyperbolic, f can be lifted to the plane C or the Poincaré disk D and so this
shape may be displayed as a curvilinear triangle in the plane. In case ST is elliptic,
this shape may be stereographically projected from the 2-sphere to the plane. How
does one get at this shape? The answer Ken Stephenson and I supplied in [20] is the
content of this section.

For simplicity, let’s restrict our attention to closed surfaces. The scheme for
approximating a uniformizing map is to use the triangulation T as a pattern
for a circle packing, and then refine iteratively using so-called hex-refinement to
obtain a sequence Pn of finer and finer circle packings, after an initial barycentric
subdivision. Hex-refinement applied to a triangular face just adds a vertex to each
existing edge and then connects the three new vertices on the three edges of the
face by a 3-cycle of edges, thus subdividing the face into four smaller triangles.
Thus barycentric subdivision followed by hex-refinement produces T1, and iteration
of hex-refinement then produces the sequence Tn with Pn the corresponding circle
packing in the surface Sn in the pattern of Tn. There is an added layer of difficulty
here in that, unlike with the use of the hexagonal packing in the Discrete Riemann
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Mapping Theorem, the circle packings in this setting do not occupy the same
surface. The surfaces Sn are determined by the triangulations Tn according to
Theorem 5.3.1, and these need not be conformally equivalent to one another. Also,
any face f of T with nth hex-subdivision fn in Tn determines a sequence Pn(f ) of
circle packings, those circles in Pn corresponding to the vertices of fn.

Discrete Uniformization Theorem for Equilateral Surfaces (Bowers and Step-
henson [20]) The surfaces Sn converge in moduli as n → ∞ to a surface S that is
conformally homeomorphic to the surface ST , the Riemann surface determined by
the equilateral surface |T |eq. For any face f of T , the carriers of Pn(f ) converge
geometrically to the shape of f in ST when given its canonical constant curvature
metric.

The latter statement of the theorem may be understood to mean that when one
lifts the carriers to the universal cover, the sphere S2, the plane C, or the disk D, and
normalizes appropriately, the carriers converge in the Hausdorff metric on compacta
to the appropriate lift of f in ST .

Sketch of Proof Note that the realizations of the triangulation T in the metric
surface |T |eq and in the Riemann surface ST are reflective, meaning that each edge
e is the fixed point set of an anti-conformal reflection that exchanges the two faces
contiguous to e.11 Rather than the canonical constant curvature metric, I shall use
the piecewise equilateral metric ρT on ST throughout the proof. Here is a key
observation. Hex-subdivision may be performed metrically in ST by adding new
vertices v(e) as the mid-points of the edges e ∈ E(T ) and connecting v(e) to
v(e′) by a Euclidean straight line segment in the metric ρT in the face bounded
by edges e, e′ and e′′. This realizes the hex-refined triangulation T1 as a reflective
triangulation in ST .12 Iterating, Tn may be realized as a reflective triangulation of
ST that metrically hex-subdivides Tn−1.

Define homeomorphismshn : ST → Sn so that the image of vertex v of Tn under
hn is the center of the circle that corresponds to v in the circle packing Pn, extend
linearly along edges and then with minimum quasiconformal distortion across faces.
By the Ring Lemma, each mapping hn is quasiconformal, and since hex-refinement
does not increase degree, any bound ≥ 6 on the degrees of the vertices of T also
bounds the degrees of the vertices of Tn, for all n ≥ 1. This implies that the
homeomorphisms hn have uniformly bounded dilatations, and this implies that a
subsequence of the surfaces Sn converges in moduli to a Riemann surface S.

My claim is that S is conformally equivalent to ST . This would be confirmed
were the maximum dilatations of the homeomorphismshn shown to limit to unity as
n →∞, but unfortunately this does not occur. In fact these dilatations are bounded
away from unity with large dilatations concentrated near the original vertices of T .

11To be clear, the reflection is anti-conformal on the interior of the union of the two faces incident
at e, but not at the vertices.
12Technically, this is after the initial barycentric subdivision, which also is performed in the metric
ρT and yields a reflective triangulation.
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To get around this, let D be a compact domain in ST disjoint from the vertex set
V (T ). Note that the combinatorics of Tn away from the vertices of T is hexagonal,
and this implies that as n → ∞, the compact set D is surrounded by a number
of generations of the hexagonal combinatorics that increases without bound. The
Hexagonal Packing Lemma applies to confirm that the maximum dilatations of
the restrictions of the homeomorphisms hn to D converge to unity. This works
for every compact domain that misses the vertex set V (T ), and this implies that
the limit mapping h : ST → S is conformal on the complement of the vertex set
V (T ). Now the removability of isolated singularities comes into play and implies
that the homeomorphism h is conformal at the vertices, and so is a conformal
homeomorphism of ST onto S. !�

Figure 5.7 shows an example of an approximation to a portion of an equilateral
surface uniformized in the plane. In this figure each edge is the fixed point set of an
anti-conformal reflection that exchanges the grey-white pair of triangles sharing that
edge. This is an approximation of the conformally correct shapes of the equilateral
triangles forming the equilateral surface being imaged.

Fig. 5.7 Conformal shapes of equilateral triangles in a planar equilateral surface approximated
with the circle packing of the twice hex-refined barycentric subdivision of the original triangulation
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5.6 Inversive Distance Circle Packings

Around 2001, Ken Stephenson and I began thinking about inversive distance
circle packings and how they could be used to uniformize piecewise flat surfaces,
those surfaces in which each face is identified with a flat Euclidean triangle, not
necessarily equilateral. There is a tentative discussion of this in [20] and further
discussion in [16] of the difficulties in proving convergence of discrete mappings to
the uniformization mapping, though the method does seem to work well in practice;
again see [16]. The first theoretical questions concern (1) the existence of circle
packings with prescribed inversive distances between adjacent circles and (2) the
rigidity and uniqueness of these packings.

When all inversive distances lie in the unit interval, adjacent circles overlap with
specified angle 0 ≤ θ ≤ π/2. This is covered by the Koebe–Andre’ev–Thurston
Theorems. When inversive distance is greater than unity, the circles do not overlap
and the inversive distance is a Möbius-invariant measure of how separated the
circles are. In this case Problems (1) and (2) seem much more difficult to approach.
Problem (1) is especially difficult in that there are local assignments of inversive
distances that must be avoided as there are no circle configurations that realize those
distances. These are difficult to catalogue, but even if there are no local obstructions
to the existence of a packing, it is not at all clear whether still there may be global
obstructions. Little progress has been made on Problem (1), but the situation for
Problem (2) has enjoyed some progress, initially in 2011 and more recently in the
past couple of years. It is these recent successes in approaching Problem (2) that
occupies this section. My contention is that a change of viewpoint can be effective
in approaching inversive distance circle packings, and a hint as to how to proceed
comes from the classical rigidity theory of bar-and-joint linkages. After a brief
review of inversive distance, I will explore this new framework for circle packings
and discuss some recent successes.

5.6.1 A Quick Introduction to Inversive Distance

There are a number of ways to define the inversive distance between two circles in
the Riemann sphere. I will present several of these below, starting with the most
mundane that gives a Euclidean formula for the inversive distance between two
planar circles.13 Let C1 and C2 be distinct circles in the complex plane C centered
at the respective points p1 and p2, of respective radii r1 and r2, and bounding the
respective companion disks D1 and D2.

13This easily can be extended to the inversive distance between a circle and a line, or two lines. I
will forgo this development since the next definition is completely general.
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Definition (Inversive Distance in the Euclidean Metric) The inversive distance
〈C1, C2〉 between C1 and C2 is

〈C1, C2〉 = |p1 − p2|2 − r2
1 − r2

2

2r1r2
. (5.6.1)

The absolute inversive distance between distinct circles is the absolute value of the
inversive distance.

The absolute inversive distance is a Möbius invariant of the placement of two
circles in the plane. This means that there is a Möbius transformation of C taking
one circle pair to another if and only if the absolute inversive distances of the two
pairs agree. The important geometric facts that make the inversive distance useful
in inversive geometry and circle packing are as follows. When 〈C1, C2〉 > 1, D1 ∩
D2 = ∅ and 〈C1, C2〉 = cosh δ, where δ is the hyperbolic distance between the
totally geodesic hyperbolic planes in the upper-half-space model C × (0,∞) of
H3 whose ideal boundaries are C1 and C2. When 〈C1, C2〉 = 1, D1 and D2 are
tangent at their single point of intersection. When 1 > 〈C1, C2〉 ≥ 0, D1 and D2
overlap with angle 0 < θ ≤ π/2 with 〈C1, C2〉 = cos θ . In particular, 〈C1, C2〉 = 0
precisely when θ = π/2. When 〈C1, C2〉 < 0, then D1 and D2 overlap by an angle
greater than π/2. This includes the case where one of D1 or D2 is contained in the
other, this when 〈C1, C2〉 ≤ −1. In fact, when 〈C1, C2〉 < −1 then 〈C1, C2〉 =
− cosh δ where δ has the same meaning as above, and when 〈C1, C2〉 = −1 then C1
and C2 are ‘internally’ tangent. When −1 < 〈C1, C2〉 < 0, then the overlap angle
of D1 and D2 satisfies π > θ > π/2 and again 〈C1, C2〉 = cos θ .

The more general definition measures the inversive distance between oriented
circles. Note that an oriented circle determines a unique closed companion or
spanning disk that the circle bounds. Indeed, assuming fixed orientations for S2 and
Ĉ that are compatible via stereographic projection, the companion disk determined
by the oriented circle C is the closed complementary disk D (of the two available)
whose positively oriented boundary ∂+D = C, where of course the orientation of
D is inherited from that of S2 or Ĉ. This is described colloquially by saying that D
lies to the left of C as one traverses C along the direction of its orientation.

Definition (General Inversive Distance) Let C1 and C2 be oriented circles in the
extended plane Ĉ bounding their respective companion disks D1 and D2, and let
C be any oriented circle mutually orthogonal to C1 and C2. Denote the points of
intersection of C with C1 as z1, z2 ordered so that the oriented sub-arc of C from
z1 to z2 lies in the disk D1. Similarly denote the ordered points of intersection of C
with D2 as w1, w2. The general inversive distance between C1 and C2, denoted as
〈C1, C2〉, is defined in terms of the cross ratio

[z1, z2;w1, w2] = (z1 − w1)(z2 −w2)

(z1 − z2)(w1 −w2)
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Fig. 5.8 Inversive distances
d = 〈C1, C2〉. The shaded
regions are the intersections
D1 ∩D2, the points common
to the spanning disks D1 and
D2 for both circles C1 and C2

by

〈C1, C2〉 = 2[z1, z2;w1, w2] − 1.

Subsequently, I’ll drop the adjective general and refer to the inversive distance
〈C1, C2〉 with its absolute value |〈C1, C2〉| the absolute inversive distance.14

Recall that cross ratios of ordered 4-tuples of points in Ĉ are invariant under
Möbius transformations and that there is a Möbius transformation taking an ordered
set of four points of Ĉ to another ordered set of four if and only if the cross ratios of
the sets agree. This implies that which circle C orthogonal to both C1 and C2 is used
in the definition is irrelevant as a Möbius transformation that set-wise fixes C1 and
C2 can be used to move any one orthogonal circle to another. Which one of the two
orientations on the orthogonal circle C is used is irrelevant as the cross ratio satisfies
[z1, z2;w1, w2] = [z2, z1;w2, w1]. This equation also shows that the inversive
distance is preserved when the orientation of both circles is reversed so that it is
only the relative orientation of the two circles that is important for the definition. In
fact, the general inversive distance is a relative conformal measure of the placement
of an oriented circle pair on the Riemann sphere. By this I mean that two oriented
circle pairs are inversive equivalent if and only if their inversive distances agree. All
of this should cause one to pause to develop some intuition about how companion
disks may overlap with various values of inversive distances. See Fig. 5.8 for some

14The author first learned of defining inversive distance in this way from his student, Roger Vogeler.
He has looked for this in the literature and, unable to find it, can only surmise that it is original
with Prof. Vogeler. The definition appeared in [16] in 2003.
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corrections to possible misconceptions. Finally, the inversive distance is symmetric
with 〈C1, C2〉 = 〈C2, C1〉 since [z1, z2;w1, w2] = [w1, w2; z1, z2].

The inversive distance is real since the cross ratio of points lying on a common
circle is real and, in fact, every real value is realized as the inversive distance of
some oriented circle pair. Notice that if the orientation of only one member of a
circle pair is reversed, the inversive distance merely changes sign. This follows from
the immediate relation [z1, z2;w2, w1] = 1−[z1, z2;w1, w2]. Despite its name, the
inversive distance is not a metric as it fails to be non-negative and fails to satisfy the
triangle inequality.15

The third definition is entirely in terms of the spherical metric.

Definition (Inversive Distance in the Spherical Metric) In the 2-sphere S2, the
inversive distance may be expressed as

〈C1, C2〉 = − cos�(p1, p2)+ cos(r1) cos(r2)

sin(r1) sin(r2)
= −p1 · p2 + cos(r1) cos(r2)

sin(r1) sin(r2)
.

(5.6.2)

Here, �(p1, p2) = cos−1(p1 · p2) denotes the spherical distance between the
centers, p1 and p2, of the respective companion disks, p1 · p2 the usual Euclidean
inner product between the unit vectors p1 and p2, and r1 and r2 the respective
spherical radii of the companion disks. Note that ri = cos−1(pi · qi) for any point
qi on the circle Ci , for i = 1, 2.

Verifying the equivalence of this with the general definition is an exercise in
the use of trigonometric identities after a standard placement of C1 and C2 on
S2 followed by stereographic projection. This standard placement is obtained by
finding the unique great circle C orthogonal to both C1 and C2 and then rotating the
sphere so that this great circle is the equator, which then stereographically projects
to the unit circle in the complex plane. The details are left to the reader.

Here are two more quick descriptions of inversive distance. For those conversant
with the representation of circles in S2 by vectors in de Sitter space, the inversive
distance is the Minkowski inner product between the two points of de Sitter space
that represent the two oriented circles. This is, perhaps, the most elegant formulation
of the product. The final way I’ll describe the inversive distance is a neat little
curiosity. Let C1 = ∂D = S1 be the unit circle oriented clockwise and C2 a
circle oriented counterclockwise that meets the open unit disk non-trivially. Then,
as explained on page 193, the intersection c2 of C2 with the open disk is a curve of
constant geodetic curvature in the Poincaré disk D ∼= H2. The inversive distance is
〈C1, C2〉 = curv(c2), the geodetic curvature of the cycle c2 in the Poincaré metric
on D. This includes all three cases for the cycle c2—a hyperbolic circle in D, a

15Some authors, perhaps more aptly, call the inversive distance the inversive product of C1 and C2.
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horocycle that meets ∂D at a single point, or a hypercycle that meets ∂D at two
points.16

5.6.2 Some Advances on the Rigidity Question

In [20], inversive distance circle packings were introduced. Rather than preassigned
overlap angles labeling edges of a triangulation of a surface as in the Koebe–
Andre’ev–Thurston Theorems, preassigned inversive distances label the edges.
As stated already, questions of interest are of the existence and uniqueness of
circle configurations in geometric structures on surfaces that realize the inversive
distance data. Though the existence question is wide open, in 2011–2012 there
were three advances on the uniqueness question for inversive distance packings.
First, Guo [41] proved that inversive distance packings of closed surfaces of
positive genus, ones supporting flat or hyperbolic metrics, are locally rigid whenever
the inversive distances are non-negative. Shortly after that, Luo [52] improved
this to global rigidity, or uniqueness of the packings in the cases considered by
Guo. Then in a surprising result of the year following, Ma and Schlenker [53]
produced a counterexample to global uniqueness for packings of the 2-sphere. They
gave examples of pairs of circle packings of S

2 in the pattern of the octahedral
triangulation with six circles that satisfy the same inversive distance data, but that
are not Möbius equivalent.

The ingredients of Ma and Schlenker’s example are Schönhardt’s twisted
octahedron, which is an infinitesimally flexible polyhedron in Euclidean space E

3,
embeddings in de Sitter space S

3
1, and special properties of the Pogorelov map

between different geometries. In 2017, John Bowers and I [15] constructed a large
family of Ma–Schlenker–like examples using only inversive geometry, producing
many counterexamples to the uniqueness of inversive distance circle packings in the
2-sphere.

The Schönhardt octahedron is an example of a bar-and-joint linkage important in
the rigidity theory of Euclidean frameworks, and its use in the Ma–Schlenker exam-
ple hinted at a way forward in understanding the rigidity theory of inversive distance
circle packings in the 2-sphere. This led to a fruitful change in viewpoint and a
reformatting of the question of uniqueness of inversive distance circle packings
to the question of the rigidity—local, global, and infinitesimal—of more general
circle frameworks. These are analogues in Möbius geometry of the Euclidean
frameworks in Euclidean geometry with point configurations in E

3 replaced by
circle configurations in S

2 and the Euclidean metric replaced by the non-metric
inversive distance. The analogy is not exact, but the theory of linkages in E

3 has
been found to be a good guide for understanding some of the rigidity theory of circle

16My student, Opal Graham, noticed, then proved this when I was lecturing on the curves of
constant geodetic curvature in the hyperbolic plane.
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frameworks. Part of why this works so well is because the space of circles in the 2-
sphere is a three-dimensional incidence geometry that has much in common with the
space of points in Euclidean 3-space. The lines of this geometry are coaxial circle
families and the planes are what Carathéodory in [28] called bundles of circles.
This allows one to define what is meant by a convex collection of circles, planar
collections of circles, circle polyhedra, bounded circle configurations, etc. Space
constraints in this chapter interfere with even a cursory account of these issues, so
I am content with listing a couple of recent successes of the theory without all the
definitions needed for a precise understanding, and then taking some time to set up
the language of this change of viewpoint.

The two theorems following are the result, both the statements and the proofs,
of an engagement between circle packing theory and the classical rigidity theory of
Euclidean frameworks in E3.

Theorem 5.6.1 (Bowers et al. [23]) Let C and C′ be two non-unitary, inversive
distance circle packings with ortho-circles for the same oriented edge-labeled
triangulation of the 2-sphere S2. If C and C′ are convex and proper, then there is
a Möbius transformation T : S2 → S2 such that T (C) = C′.

The edge-label refers to prescribed inversive distances labeling each edge. Non-
unitary means that the inversive distance between any pair of adjacent circles
is not unity; in fact, these inversive distances are in the set (−1, 1) ∪ (1,∞).
Having ortho-circles means that each triple of mutually adjacent circles have
an orthogonal circle. This generalizes to a global rigidity theorem about circle
polyhedra, circle configurations in the pattern of three-dimensional polyhedra
whose faces correspond to circle configurations that are planar in the incidence
geometry of circle space; see [23] for details.

Theorem 5.6.2 (Bowers et al. [23]) Any two convex and proper non-unitary circle
polyhedra with Möbius-congruent faces that are based on the same oriented
abstract spherical polyhedron and are consistently oriented are Möbius-congruent.

Theorem 5.6.1 coupled with the Ma–Schlenker example of [53] and the examples
of [15] show that the uniqueness of inversive distance circle packings, and more
generally, of circle polyhedra is exactly analogous to that of Euclidean polyhedra—
convex and bounded polyhedra in E3 are prescribed uniquely by their edge lengths
and face angles whereas non-convex or unbounded polyhedra are not. The proof of
this for convex and bounded Euclidean polyhedra is Cauchy’s celebrated rigidity
theorem [29], which is reviewed in Sect. 5.7.5. The Proof of Theorem 5.6.2
follows Cauchy’s original argument, which splits the proof into two components—a
combinatorial lemma and a geometric lemma. Cauchy’s combinatorial lemma deals
with a certain labeling of the edges of any graph on a sphere, and applies to the
present setting. The geometric lemma, known as Cauchy’s Arm Lemma, requires
that a polygon with certain properties be defined for each vertex of the polyhedron,
and fails to apply here. The main work of the proof is in describing and analyzing
a family of hyperbolic polygons called green-black polygons that are defined for
each vertex of a circle polyhedron in a Möbius-invariant manner. An analogue of
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Cauchy’s Arm Lemma for convex green-black polygons is developed and used to
prove these theorems.

5.6.3 Circle Frameworks and Möbius Rigidity

I’ll close out this section with a description of the change in viewpoint from circle
packings to circle frameworks. This can be done using only absolute inversive
distance, but I find it advantageous to remain as general as possible in setting up
the viewpoint. The goal is to generalize the language of circle packings and patterns
of triangulations and quadrangulations of the 2-sphere to that of circle realizations
of oriented circle frameworks. Let G be a graph, by which I mean a set of vertices
V = V (G) and simple edges E = E(G). Both loops and multiple edges are
disallowed. An oriented edge incident to the initial vertex u and terminal vertex
v is denoted as uv, and −uv means the oppositely oriented edge vu. I will use
the same notation, uv, to denote an un-oriented edge, context making the meaning
clear. A circle framework with adjacency graph G, or c-framework for short, is a
collection C = {Cu : u ∈ V (G)} of oriented circles in S

2 indexed by the vertex set
of G. This is denoted by G(C). Two c-frameworks G(C) and G(C′) are equivalent
if 〈Cu,Cv〉 = 〈C′

u, C
′
v〉 whenever uv is an edge of G. Let H be a subgroup of

the inversive group Inv(S2) of the 2-sphere. Two collections C and C′ of oriented
circles indexed by the same set are H -equivalent or H -congruent provided there is
a mapping T ∈ H such that T (C) = C′, respecting the common indexing and the
orientations of the circles. When H is not so important they are inversive-equivalent
or inversive-congruent, and when T can be chosen to be a Möbius transformation,
they are Möbius-equivalent or Möbius-congruent. The global rigidity theory of c-
frameworks concerns conditions on G or G(C) that ensure that the equivalence
of the c-frameworks G(C) and G(C′) guarantees their H -equivalence. Often one
restricts attention to c-frameworks in a restricted collection F of c-frameworks. In
Theorem 5.6.2, F is the collection of non-unitary, convex and proper c-polyhedra
and the interest is in Möbius equivalence.

Definition (Labeled Graph and Circle Realization) An edge-label is a real-
valued function β : E(G) → R defined on the edge set of G, and G together
with an edge-label β is denoted as Gβ and called an edge-labeled graph. The
c-framework G(C) is a circle realization of the edge-labeled graph Gβ provided
〈Cu,Cv〉 = β(uv) for every edge uv of G, which henceforth is denoted as Gβ(C).
See Fig. 5.9.

Circle packings are circle realizations of edge-labeled graphs that arise as the
1-skeletons of oriented triangulations of the 2-sphere that also satisfy certain prop-
erties that ensure that the realizations of the triangular boundaries of faces respect
orientation. The general definition allows for branch vertices and configurations
of circles in which the open geodesic triangles cut out by connecting centers of
adjacent circles overlap. There are subtleties in which I have no interest, so I am
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(a) (b)

Fig. 5.9 An edge-labeled octahedral graph and its circle realization. The labels are proposed inver-
sive distances between the circles corresponding to the vertices. (a) An edge-labeled octahedral
graph Oβ . Labels < 1 imply overlapping circles, > 1 separated ones. (b) A corresponding c-
framework realizing Oβ . Circle A is hidden on the back side of the sphere

going to adapt a restricted definition that corresponds to the circle packings that
arise from spherical polyhedral metrics on triangulated surfaces. These are circle
realizations of the edge-labeled 1-skeleton Gβ = K

(1)
β of an oriented triangulation

K of S2 that produce oriented geodesic triangulations17 of the 2-sphere when
adjacent circle centers are connected by geodesic arcs. The assumption here is
that the centers of no two adjacent circles are antipodal, so that there is a unique
geodesic arc connecting them, and that the centers of three circles corresponding to
the vertices of a face of K do not lie on a great circle. Now this causes no particular
problems when all adjacent circles overlap nontrivially, the traditional playing field
of circle packing, but does cause some real concern when adjacent circles may have
inversive distance greater than unity. For example, a circle realization may produce a
geodesic triangulation of the sphere by connecting adjacent centers while its Möbius
image may not. This is traced directly to the fact that neither circle centers nor radii,
nor geodesic arcs, are Möbius invariants in the inversive geometry of the sphere.
This behavior does not occur for inversive distance circle packings of the Euclidean
or hyperbolic planes (and surfaces), precisely because circle centers and geodesics
are invariant under automorphisms and radii are invariant up to scale in Euclidean
geometry and invariant in hyperbolic geometry. My belief is that using centers and
radii of circles in inversive geometry should be avoided except where these can be
used to simplify computations (as in the use of the spherical definition of inversive
distance). The shift then is from inversive distance circle packings to inversive

17By this I mean that the orientation of the geodesic triangulation determined by the packing is
consistent with the orientation on K .
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distance circle realizations. One is less concerned with possible underlying geodesic
triangulations and more concerned with Möbius-invariant quantities. For example,
rather than working with a geodesic face formed by connecting the centers of three
mutually adjacent circles, one is more interested in the existence of an ortho-circle,
a circle mutually orthogonal to the three, which is a Möbius invariant. Though the
initial motivation was circle packing as reflected in Theorem 5.6.1, the real interest
has evolved to circle realizations as reflected in the more general version represented
by Theorem 5.6.2.

It turns out that Theorem 5.6.2 has implications for the rigidity of generalized
hyperbolic polyhedra in H3. Thurston was the first to exploit this connection
between circle configurations on S2 and hyperbolic polyhedra in H3 in really
significant ways, and his observations inspired several avenues of clarification and
generalization. It is to this that I turn in the penultimate section of this chapter.

5.7 Polyhedra—From Steiner (1832) to Rivin (1996),
and Beyond

In this section I survey the rich mathematical vein that has been mined in the geo-
metric theory of polyhedra, particularly of three-dimensional hyperbolic polyhedra,
that has its origins in Thurston’s insights on using his circle packing theorem to
characterize certain hyperbolic polyhedra. The initial observation of Thurston was
that the study of polyhedra in hyperbolic three-space can be transferred to the study
of overlapping circle packings in the two-sphere by realizing the Riemann sphere
as the boundary of the Beltrami–Klein model of H3 sitting as the unit ball B3 in
the real projective three-space. Theorems in one of these venues correspond to
theorems in the other. Later Thurston’s students, Oded Schramm and Igor Rivin,
made great strides in the theory of both three-dimensional Euclidean and hyperbolic
polyhedra, not so much using the techniques of circle packing but instead using
very intricate and clever geometric arguments, often times in this classical setting
of H3 ∼= B3 ⊂ E3 ⊂ RP

3. There is here a beautiful interplay among the classical
geometries illustrating Arthur Cayley’s aphorism that “All geometry is projective
geometry.” Here one sees the Beltrami–Klein model of hyperbolic three-space as
a sub-geometry of the real projective three-space, with its orientation-preserving
isometry group naturally identified with the Lorentz group of Minkowski space-
time, which itself restricts to the two-sphere boundary of hyperbolic space as the
group of circle-preserving transformations of the two-sphere, the group of Möbius
transformations. This one geometry, the real projective geometry of dimension
three, presents a playing field for studying three-dimensional polyhedra—classical
Euclidean polyhedra, hyperbolic polyhedra of various types and generalizations,
projective polyhedra, and circle polyhedra of Möbius geometry.

I will begin with an application of Thurston’s circle packing theorem on using
polyhedra to cage a sphere, and move then to Schramm’s generalization. From there
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I will discuss the characterization of certain hyperbolic polyhedra—compact by
Hodgson and Rivin, ideal by Rivin, and hyper-ideal by Bao and Bonahon—and will
finish with very recent work by Chen and Schlenker that characterizes those convex
projective polyhedra all of whose vertices lie on the ideal boundary of hyperbolic
space. I include a bonus final section on Cauchy’s 1813 Rigidity Theorem for the
reader who is approaching this subject as a novice. This is the fundamental theorem
of rigidity theory, and the techniques and tools Cauchy developed have been used
time and again in proofs of rigidity in the past 200 years. Both Schramm and Rivin
make use of Cauchy’s toolbox in their theorems on convex hyperbolic and Euclidean
polyhedra, as do Bao and Bonahon as well as Bowers, Pratt and the author. Before
these recent developments, previous generations of mathematicians who delved
into the study of polyhedra made use of Cauchy’s toolbox—Dehn in his proof of
infinitesimal rigidity, Aleksandrov in his rigidity results, Gluck in his examination
of generic rigidity, and Connelly in various of his contributions.

5.7.1 Caging Eggs—Thurston and Schramm

In 1832, Jakob Steiner [69] asked

In which cases does a convex polyhedron have a combinatorial equivalent which is inscribed
in, or circumscribed about, a sphere?

When a convex polyhedron P is inscribed in the sphere S so that its vertices
lie on S, then its polar dual circumscribes the sphere S, so that each face of the
dual P ∗ meets S in a single point. It wasn’t until 1928 that Ernst Steinitz found
families of non-inscribable polyhedral types with the example of a cube truncated at
one vertex being the simplest. Marcel Berger [9, p. 532] takes this long duration
of time between Steiner and Steinitz as evidence that the theory of polyhedra
in the years intervening had fallen into disrespect among mathematicians, being
a subject of the old-fashioned mathematics of synthetic geometry.18 One would
be hard pressed to say that the study of polyhedra in the time between Steinitz
and Thurston was anything but a curiosity to many a mathematician schooled in
the rarified heights of abstraction that had captured the mathematical mind of the
time. The sort of “pedestrian geometry” offered by the study of polyhedra captured
the imagination of a select few. There has been a healthy development of the
rigidity theory of polyhedra, notably by Aleksandrov in the 1950s, and Gluck and
Connelly in the 1970s. Aleksandrov’s work was largely ignored in the West until the
1980s. Coxeter had done truly foundational work in the combinatorial structure of
polyhedra in the 1940s and 1950s, and Victor Klee and Branko Grünbaum began
their foundational studies a bit later. Coxeter’s work in geometry was routinely
dismissed by much of mainstream mathematics as old-fashioned nineteenth century

18Berger [9] uses the word disdain to describe the prevailing opinion of the study of polyhedra.
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mathematics, uninteresting and pedestrian. Both Aleksandrov and Coxeter were
“rehabilitated” by the larger community of geometers and topologists when their
work of the forties and fifties—Aleksandrov’s on metric geometry and Coxeter’s
on reflection groups—became important to the development of geometric group
theory after Gromov’s publication of his hyperbolic groups essay [39] in 1987. With
apologies to Aleksandrov, Coxeter, Klee, and Grünbaum, it has taken the attention of
Thurston and his students Schramm and especially Rivin to resurrect more intense
interest among topologists in this venerable old subject of classical geometry.19

Steinitz’s basic tool for attacking the Steiner question is the following observa-
tion. Suppose the polyhedron P circumscribes the sphere S. Let e = uv be an edge
of P with adjacent faces f and g. Since P circumscribes S, the face f is tangent
to S at a point p and g is tangent at a point q . Then the angle � upv = � uqv in
measure and we let !(e) denote this common value. It is immediate that summing
these edge labels for the edges of any face yields an angle sum of 2π . The reader
might want to use this observation to see why a dodecahedron truncated at every
vertex admits no inscribed sphere as there is no edge labeling ! for this polyhedron
that satisfies this property.

According to Steinitz then, the condition that an edge label ! : E(P) → (0, π)

exists for the polyhedronP whose sum for the edges of each face is 2π is a necessary
condition that P have a combinatorially equivalent realization that circumscribes
a sphere, but it is not sufficient. It was not until Rivin’s study of hyperbolic
polyhedra in the late 1980s and early—1990s that a characterization of polyhedra
of circumscribable type, ones combinatorially equivalent to polyhedra that may
circumscribe a sphere, was found. The definitive result is due to Rivin and reported
in Hodgson, Rivin, and Smith [47], and follows from his characterization of ideal
convex hyperbolic polyhedra that is presented in a later section.

Circumscribable Type Characterization (Rivin) A polyhedron P is of circum-
scribable type if and only if there exists a label ! : E(P) → (0, π) such that the
sum of the labels !(e) as e ranges over any circuit bounding a face is 2π , while the
sum as e ranges over any simple circuit not bounding a face is strictly greater than
2π .

A polyhedron is of inscribable type if it is combinatorially equivalent to one that
may be inscribed in a sphere.

Incsribable Type Characterization (Rivin) A polyhedron P is of inscribable type
if and only if its dual P ∗ is of circumscribable type.

The proofs will be discussed later, but first I want to generalize this discussion a
bit. Inscription and circumscription are the respective cases, m = 0 and m = d − 1,
of the question of whether a d-dimensional convex polytope has a realization in

19Grünbaum [40] addresses the disinterest of the mathematical community in the combinatorial
theory of polytopes in the preface to his book.
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Ed each of whose m-dimensional faces meets a fixed (d − 1)-dimensional sphere
in a single point. One says that the polytope is (m, d)-scribable in this case. Egon
Shulte [68] proved in the mid-1980s that when 0 ≤ m < d and d > 2, then there
are combinatorial types of d-dimensional polytopes that are not (m, d)-scribable,
except for the single exceptional case when (m, d) = (1, 3). The exceptional case
then is when a convex polyhedron in E3 midscribes a sphere S, so that each edge of
P is tangent to S, meeting S in exactly one point.

In light of Shulte’s result it perhaps is surprising that in his exceptional case,
every convex polyhedron in E3 has a combinatorially equivalent realization that is
midscribable about, say, the unit sphere S2. Thurston in Chapter 13 of GTTM states
that this is a consequence of Andre’ev’s theorems in [2, 3]. The proof I give merely
applies the Koebe–Andre’ev–Thurston Theorem to an appropriately edge-labeled
graph.

Midscribability of Convex Polyhedra (Thurston [73]) Every convex polyhedron
in E3 has a combinatorially equivalent realization that is midscribable about the
unit sphere S2. Considering E3 ⊂ RP

3, any such realization is unique up to
projective transformations of RP3 that set-wise fix the unit sphere S2.20

Proof Let P be a convex polyhedron in E3 and let K be the simplicial 2-complex
obtained by adding a vertex to each open face of P and starring to the vertices.
Precisely, the vertices of K are those of P along with a new vertex vf for each face
f of P . The edges are the edges of P along with edges of the form vvf , where
v is a vertex of f . The faces are the 2-simplices of the form uvvf where uv is an
edge of f . Write the edge-set of K as E(K) = E(P) ∪ E′, where E′ are the new
edges of the form vvf . Define an angle map � : E(K) → [0, π/2] by �(e) = 0
when e ∈ E(P) and �(e) = π/2 when e ∈ E′. An application of the Koebe–
Andre’ev–Thurston Theorem I produces a circle packing K(C) on the 2-sphere S2

and a geodesic triangulation in the pattern of K with overlap angles of adjacent
circles given by �. For each face f of P , let Hf be the half-space in E3 that meets
all the circles of K(C) and whose bounding plane ∂Hf contains Cvf . My claim is
that the convex polyhedron Q = ∩f∈F(P )Hf midscribes S2 and is combinatorially
equivalent to P .

For any vertex v of P , let v∗ be the apex of the cone in E
3 that is tangent to

S
2 along the circle Cv , and when e = uv is an edge of P , let e∗ = u∗v∗ be the

segment with endpoints u∗ and v∗. Let f be a face of the polyhedronP with vertices
v1, . . . , vn written in cyclic order. Since the circle Cvf is orthogonal to the circles
Cvi , the apexes v∗i all lie on the bounding plane ∂Hf , for i = 1, . . . , n. Let f ∗
denote the convex hull of the points v∗1 , . . . , v∗n in ∂Hf . A moment’s thought should
convince the reader that the convex polyhedron Q may be described as the convex
hull of the set V (Q) = {v∗ : v ∈ V (P)}. It follows that the vertex set of Q is V (Q),
edge set is E(Q) = {e∗ : e ∈ E(P)}, and face set is F(Q) = {f ∗ : f ∈ F(P)}. This
verifies that P and Q are combinatorially equivalent. Moreover, the edge e∗ = u∗v∗

20The projective transformations that fix S2 act as Möbius transformations on S2.
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Fig. 5.10 A midscribed polyhedron. Each face meets the sphere S
2 in a red circle and each vertex

is the cone point of a black circle. Each edge e∗ meets S2 in exactly one point, at the intersection
of the two red circles determined by the faces incident to e∗, or at the intersection of the two black
circles determined by the endpoints of e∗

is tangent to the sphere S2 at the point of intersection of the circles Cu and Cv , which
are tangent since �(e) = 0. Hence Q midscribes the sphere S2. See Fig. 5.10.

Uniqueness up to projective transformations that fix the unit sphere follows from
the Möbius uniqueness of the circle packing K(C) with edge angle data � and the
fact that the Möbius group extends its action on S2 to a projective action of RP3

set-wise fixing S2. !�
Schulte introduced in [68] the question of whether the sphere can be replaced

by other convex bodies. Schramm [64] proved that when the convex polyhedron
P is simplicial, then for any smooth convex body S, a combinatorially equivalent
polyhedron Q exists that midscribes S. Of course this means that each edge of Q

is tangent to the boundary ∂S. Shortly thereafter, Schramm improved his result by
removing the requirement that P be simplicial. A convex body S is strictly convex
if its boundary contains no non-degenerate line segment, and is smooth if each point
of the boundary has a unique supporting plane. This latter condition is equivalent to
the boundary being C1-smooth. Schramm’s definitive result on midscription is the
main theorem of his Inventiones article [66] whimsically entitled How to cage an
egg.
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Convex Body Midscription (Schramm [66]) Let P be a convex polyhedron and
S a smooth strictly convex body in E3. Then there exists a convex polyhedron Q

combinatorially equivalent to P that midscribes S.

Discussion of Proof The proof is rather involved and so I am content to give the
briefest of indication of its method. Schramm defines the configuration space Z =
(E3)V (P ) × G(2, 3)F (P ), where V (P) and F(P) are the respective sets of vertices
and faces of P , and G(2, 3) is the manifold of oriented affine planes in E3. In this
way P is identified with a single point of Z, and the combinatorial type of P defines
a submanifold ZP of Z corresponding to various convex polyhedra in E3 that are
combinatorially equivalent to P . Schramm then shows that there is a C2 convex
body S0 with positively curved boundary that P midscribes. Let St , 0 ≤ t ≤ 1, be
a C2-path of convex bodies with positively curved boundaries with S1 = S. The
idea now is to flow S0 to S1 along this path and drag combinatorial realizations
of P along as midscribing polyhedra. The proof relies on a fine analysis of the
configuration space Z and its submanifold ZP , and the method is to show that when
St is midscribed by a realization of P , then so is St ′ for all t ′ in an open interval about
t . Then a delicate argument shows also that the set of parameter values for which
St is midscribable by a realization of P is a closed set. Being open and closed, and
nonempty since P midscribes S0, this set of parameter values must be the whole of
the unit interval, hence S = S1 is midscribed by a realization of P . !�

The remaining discussion on hyperbolic polyhedra has little to do, at least
directly, with the Koebe–Andre’ev–Thurston Theorem. The arguments tend to be
clever and technical, but ultimately involve the elementary geometry of hyperbolic
space, often times realized as the unit ball in projective 3-space where the machinery
of the Minkowski inner product and of de Sitter space is available. I include the
discussion in order to complete for the reader the current state of affairs in the study
of convex hyperbolic polyhedra, a study which I view as having been revitalized by
Thurston’s articulation of KAT I and pushed forward into the broader mathematical
consciousness by the seminal work of Thurston’s students, Oded Schramm and
especially Igor Rivin.

5.7.2 Compact and Convex Hyperbolic Polyhedra—Hodgson
and Rivin

In his doctoral thesis of 1986, Igor Rivin studied convex hyperbolic polyhedra.
Therein he gave a characterization of compact, convex hyperbolic polyhedra that
generalizes the Andre’ev results of [2],21 and in articles in the early 1990s, extended
his characterization to ideal polyhedra, generalizing Andre’ev’s results in [3]. He

21See Roeder, Hubbard, and Dunbar’s paper [63] for a readable proof of Andre’ev’s classification
of compact hyperbolic polyhedra with non-obtuse exterior dihedral angles.
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used this latter generalization to answer definitively Steiner’s question of 1832
asking for a characterization of those polyhedra that circumscribe a sphere. This of
course is the content of the Circumscribable Type Characterization Theorem of the
preceding section. In this section, I present an overview of Rivin’s characterization
of compact and convex hyperbolic polyhedra in terms of a generalized Gauss map.
The overview embellishes Hodgson’s outline presented in [45] (and repeated in
[46]). In the section following, I outline Rivin’s characterization of ideal polyhedra
and make his observation that the Circumscribable Type Characterization Theorem
is an immediate corollary of his characterization of ideal polyhedra.

To lay the groundwork, let’s review the Gauss map G of a compact and convex
Euclidean polyhedron P to the unit sphere S2. This is a set-valued map from the
2-complex forming the boundary of P that assigns to the point p of ∂P the set of
outward pointing unit normals to support planes to P at p. Thus when p is a point
of an open face f , G(p) = G(f ) is a single point determined by the outward unit
normal to f . When p is in the open edge e incident to faces f and g, G(p) = G(e) is
the great circular arc connectingG(f ) to G(g) of length equal to the exterior dihedral
angle between f and g. Finally, for a vertex p of P , G(p) is the convex spherical
polygon bounded by the arcs G(e) for edges e incident with p. When edges e and e′
of the face f are incident at p, the interior angle of the polygon G(p) at the vertex
G(f ) is π−α, where α is the interior angle of the face f at p. In this way the Gauss
map realizes the Poincaré dual P ∗ of P as a geodesic cellular decomposition of the
2-sphere S2. Notice that the Gauss map does not encode all the information needed
to reconstruct the polyhedron P . It encodes the interior angles of all the faces and
the dihedral angles of all adjacent faces, but there is no encoding of side-lengths of
the edges of P . For example, all rectangular boxes have the same image under the
Gauss map, namely, a regular right-angled octahedral decomposition of the sphere
S2.

Another way to describe the convex spherical polygon G(p) for a vertex p of
P is as the polar dual L∗(p) of the infinitesimal link L(p) of p in P .22 Note that
L(p) is a convex spherical polygon with internal angles equal to the dihedral angles
of the faces of P incident with p, and edge-lengths equal to the internal angles
at the vertex p in the faces of P incident with p. Recall that an oriented great
circle in S2 and its spherical center are polar duals of one another. The polar dual
L∗(p) is obtained by replacing the edges of L(p) by the polar dual centers of their
supporting great circles, and the vertices by appropriate arcs of the polar dual great
circles. A nice exercise in spherical geometry verifies that L∗(p) is isometric to
G(p). This gives an alternate construction of the Poincaré dual P ∗ as a geodesic,
cellular decomposition of the 2-sphere—just isometrically glue the polar duals
L∗(p) together as p ranges over the vertices of P along corresponding edges, L∗(p)

22For a Euclidean polyhedron, L(p) is the intersection of P with a small sphere centered at p, one
whose radius is smaller than the lengths of edges incident with p, rescaled to unit radius, and is
oriented so that its interior is “to the left” as one traverses the polygon in its positive direction.
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glued to L∗(q) whenever pq is an edge of P .23 Obviously this gluing produces a
2-sphere, not only homeomorphic, but also isometric to the standard 2-sphere S

2,
and reproduces the cellular decomposition determined by the Gauss map.

It is this latter construction of the Poincaré dual P ∗ as a cellular decomposition of
the 2-sphere that readily generalizes to convex and compact hyperbolic polyhedra.
Indeed, let P now be a convex and compact hyperbolic polyhedron in H

3 and
for each vertex p, let L∗(p) be the polar dual of the infinitesimal link L(p) of p

in P .24 The link L(p), as in the Euclidean case, is an oriented convex spherical
polygon in S

2 with internal angles equal to the dihedral angles of the faces of P

incident with p, and edge-lengths equal to the internal angles at the vertex p in
the faces of P incident with p. The polar dual L∗(p) then encodes the exterior
dihedral angles at the edges of P incident with p as the lengths of its edges, and
the interior angles α of the faces incident with p as its interior angles in the form
π − α. This construction acts as a local Gauss map in a small neighborhood of the
vertex p. Now exactly as before, isometrically glue the polar duals L∗(p) together
as p ranges over the vertices of P along corresponding edges. The result is again
a 2-sphere topologically, which is called the Gaussian image of P and denoted as
G(P ), with a spherical metric of constant unit curvature, except at the vertices. The
vertices have cone type singularities with concentrated negative curvature. Indeed,
at the vertex corresponding to the face f = p1 · · ·pn of P , the angle sum is
θ(f ) = nπ − ∑n

i=1 αi , where αi is the internal angle of f at the vertex pi . In
the hyperbolic plane, the compact and convex polygon f always has interior angle
sum strictly less than (n− 2)π so that θ(f ) > 2π .

This brings us to Rivin’s characterization of compact and convex hyperbolic
polyhedra.

Compact Convex Hyperbolic Polyhedra Characterization (Rivin) A metric
space (M, g) homeomorphic to S2 can arise as the Gaussian image G(P ) of a
compact and convex polyhedron P in H3 if and only if these three conditions
adhere.

(i) The metric g has constant curvature +1 except at a finite number of cone
points.

(ii) The cone angle at each cone point is greater than 2π .
(iii) The lengths of the nontrivial closed geodesics of (M, g) are all strictly greater

than 2π .

Moreover, the metric g determines P uniquely up to hyperbolic congruence.

Recall that the Gauss map does not determine Euclidean polyhedra up to
congruence since it contains no information about side lengths. In contrast, a

23The edge pq determines respective vertices u and v of L(p) and L(q) whose respective polar
edges u∗ and v∗ have the same lengths, namely the exterior dihedral angle of P at edge pq.
24This is the link in the tangent space of H3 of the pre-image of the intersection of P with a small
neighborhood of p under the exponential map.
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hyperbolic polyhedron is determined up to a global hyperbolic isometry by its
Gaussian image. The proof of this uniqueness uses Cauchy’s toolbox that is
reviewed in Addendum Sect. 5.7.5, wherein I recall the tools Cauchy used to prove
his celebrated rigidity theorem of 1813. The necessity of items (i) and (ii) follows
from the previous discussion and that of (iii) uses the fact that the total geodedic
curvature of a non-trivial closed hyperbolic space curve is greater than 2π , a
hyperbolic version of Fenchel’s Theorem on Euclidean space curves. The proof of
sufficiency is based on Aleksandrov’s Invariance of Domain method used in his
study of Euclidean polyhedra in [1].

Rivin also uses Cauchy’s toolbox to prove this rather interesting theorem that
illustrates again the enhanced rigidity of hyperbolic polyhedra vis-à-vis Euclidean
ones.

Face Angle Rigidity (Rivin) The face angles of a compact and convex polyhedron
in H3 determine it up to congruence.

The characterization of compact and convex hyperbolic polyhedra in terms of the
Gaussian image surveyed here suffers from the same defect as Aleksandrov’s char-
acterization of compact and convex Euclidean polyhedra. Both characterizations
posit a singular positively curved metric on a 2-sphere, but neither provides a way
to decode from this metric space (M, g) the combinatorial type of the polyhedron
P encoded in (M, g). The proof is not constructive, but depends on a topological
analysis within the space of admissible metrics on the 2-sphere satisfying the three
conditions of the characterization and yields, finally, the abstract fact of existence
of an appropriate polyhedron, without describing its combinatorial type.

5.7.3 Convex Ideal Hyperbolic Polyhedra—Rivin

Rivin turns his attention to convex ideal polyhedra in H3 in [61] where he gives a
full characterization in terms of exterior dihedral angles. The characterization begins
with an analysis of the exterior dihedral angles of such a polyhedron reported in [47]
with details in [59] that goes as follows. Label each edge e∗ of the polyhedron P ∗
dual to the ideal convex polyhedron P by the exterior dihedral angle θ(e∗) of the
corresponding edge e of P . Rivin’s argument that these labels satisfy the following
conditions is reproduced in the next two theorems.

(i) 0 < θ(e∗) < π for all edges e of P .
(ii) If the edges e∗1, . . . , e∗n are the edges bounding a face of P ∗, then θ(e∗1)+ · · ·+

θ(e∗n) = 2π .
(iii) If e∗1, . . . , e∗n forms a simple nontrivial circuit that does not bound a face of P ∗,

then θ(e∗1)+ · · · + θ(e∗n) > 2π .

Compare these conditions with the hypotheses of the Circumscribable Type Char-
acterization on page 223. Now Condition (i) is a requirement of convexity and
Condition (ii) is seen easily in the upper-half-space model by placing one of the
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ideal vertices v of P at infinity and observing that the link of v is a convex Euclidean
polygon. Indeed, the faces incident with v lie on vertical Euclidean planes whose
intersections with the xy-plane cut out a convex Euclidean polygon L(v), and quite
easily the sum θ(e∗1) + · · · + θ(e∗n) is precisely the sum of the turning angles of
L(v). Condition (iii) is a consequence of the following discrete, hyperbolic version
of Fenchel’s Theorem, in this case for closed polygonal curves in H3.

Discrete Total Curvature for Polygonal Hyperbolic Loops (Rivin [61]) The
total discrete geodesic curvature of a closed, polygonal, hyperbolic space curve is
greater than 2π , unless the vertices are collinear, in which case the total curvature
is 2π .

Proof The total discrete geodesic curvature of the polygonal hyperbolic space curve
γ with vertices p1, . . . , pk, pk+1 = p1 is

∑k
i=1 αi , where αi is the turning angle of

γ at pi . The angle αi is just the exterior angle at pi of the triangle τi = pi−1pipi+1.
For 2 ≤ i ≤ k − 1, let Ti be the triangle Ti = p1pipi+1 with internal angles ai ,
bi , and ci at the respective vertices p1, pi , and pi+1. Note that by considering the
triangles τi , Ti−1 and Ti with common vertex pi , the spherical triangle inequality
gives

ci−1 + bi ≥ π − αi for 3 ≤ i ≤ k − 1,

and

b2 = π − α2, ck−1 = π − αk, and
k−1∑

i=2

ai ≥ π − α1.

Recalling that π ≥ ai + bi + ci with equality only when p1, pi , and pi+1 are
collinear, and then summing, one has

(k − 2)π ≥
k−1∑

i=2

(ai + bi + ci) ≥ kπ −
k∑

i=1

αi,

with equality only when p1, . . . , pk are collinear. !�
Theorem 5.7.1 (Rivin [59]) The edge label θ(e∗) of the polyhedron P ∗ dual to the
ideal convex polyhedron P defined above satisfies Conditions (i)–(iii).

Proof Conditions (i) and (ii) already are verified. For Condition (iii), the circuit e∗1,
. . . , e∗n that does not bound a face of P ∗ corresponds to a chain of contiguous faces
f1, . . . , fn in P with fi ∩ fi+1 = ei . F = ∪n

i=1fi is a hyperbolic surface with
boundary and cusps, and can be completed by extending geodesically across the
boundary components to a complete immersed surface F̃ in H

3 without boundary.
The surface F̃ is an immersed hyperbolic cylinder with both ends of infinite-area.
This observation uses the fact that the circuit e∗1, . . . , e∗n does not bound a face of P ∗.
Let γ be the unique closed geodesic path on the surface F̃ that is freely homotopic
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to the meridian. The curve γ is immersed in H
3 as a polygonal curve lying on F̃

with turning angles at the edges ei . But it is easy to see that the turning angle of γ at
edge ei is no more than the exterior dihedral angle of the faces fi and fi+1 that meet
along ei . This implies that the sum, θ(e∗1)+ · · · + θ(e∗n), which is the sum of these
dihedral angles, is at least as large as the discrete geodesic curvature of γ , which in
turn is greater than 2π by an application of the preceding theorem. !�

Rivin was able to turn this around and prove a converse to the theorem, which
gives the following characterization of convex, ideal hyperbolic polyhedra. The
existence is proved in [61], uniqueness in [60], and necessity of the three conditions
in [59].

Characterization of Convex Ideal Polyhedra (Rivin [61]) Let P ∗ be an abstract
polyhedron. Then for any label θ : E(P ∗) → (0, π) that satisfies Conditions
(i)–(iii), there is a convex, ideal hyperbolic polyhedron P in H3 whose Poincaré
dual is P ∗, and whose exterior dihedral angles at edges e are given by the values
θ(e∗). Moreover, P is unique up to hyperbolic congruence. Conversely, every such
polyhedron P satisfies Conditions (i)–(iii) as shown in Theorem 5.7.1.

This characterization also proves the Circumscribable and Inscribable Type
Characterizations, answering Steiner’s question of 1832. This is because a convex,
ideal hyperbolic polyhedron in the Beltrami–Klein projective model of H3 is
represented by a convex Euclidean polyhedron inscribed in the 2-sphere S2.

Since Rivin’s work of the 1990s, several topologists and geometers have taken
up the mantel and continued to unearth these beautiful gems of discrete geometry.
I’ll close this survey with the mention of two examples in the next section, the first
from the first decade of the new century, and the second of very recent origin.

5.7.4 New Millennium Excavations

Space constraints forbid too much further development of the topic, but I would
be remiss if I didn’t mention at least these two beautiful theorems, the first
characterizing convex hyperideal hyperbolic polyhedra by Bao and Bonahon, and
the second giving a complete answer to Steiner’s original question when interpreted
as broadly as possible, this time by Chen and Schlenker. I develop just enough of
these topics to state the main results, and leave the interested reader the task of
perusing the original articles for details of the proofs.

5.7.4.1 Hyperideal Polyhedra—Bao and Bonahon

A hyperideal polyhedron in H
3 is a non-compact polyhedron that may be described

most easily in the Beltrami–Klein projective model H
3 = B

3 ⊂ RP
3 as the
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intersection with B
3 of a projective polyhedron all of whose vertices lie outside of

B
3 while each edge meets B3. Bao and Bonahon [6] classify hyperideal polyhedra

up to hyperbolic congruence in terms of their dihedral angles and combinatorial type
in much the same vein as Rivin’s classification of ideal hyperbolic polyhedra. Note
that Bao and Bonahon do allow for the vertices to lie on the sphere S

2 = ∂B3 and
hence their characterization reduces to Rivin’s for ideal polyhedra.

I will state the characterization in terms of conditions on the 1-skeletal graph of
the dual polyhedron using Steinitz’s famous characterization of those graphs that
may serve as the dual graph of a convex polyhedron in E

3 as precisely the planar,
3-connected graphs.

Characterization of Convex Hyperideal Polyhedra (Bao and Bonahon [6]) Let
G be a 3-connected graph embedded in S2 and θ : E(G) → (0, π). There is a
hyperideal polyhedron P in H3 with dual graph isomorphic with G and exterior
dihedral angles given by θ if and only if the following conditions are satisfied.

(i) If e1, . . . , en forms a simple nontrivial circuit of edges of G, then θ(e1)+ · · · +
θ(en) ≥ 2π , with equality possible only if e1, . . . , en bounds a component of
S2 − G.

(ii) If γ = e1, . . . , en forms a simple path of edges of G that connects two vertices
of G that lie in the closure of a component C of S2 −G, but γ does not lie in the
boundary of C, then θ(e1)+ · · · + θ(en) > π .

Moreover if P ′ is the projective polyhedron with P ′ ∩ H3 = P , a vertex v of P ′ is
located on the sphere at infinity of H3 if and only if equality holds in Condition (i)
for the boundary of the corresponding component of S2 − G.

Finally, the hyperideal polyhedron P is unique up to hyperbolic congruence.

I should mention that Hodgson and Rivin’s [46] characterization of compact
and convex hyperbolic polyhedra can be applied to appropriate truncated polyhedra
associated with those hyperideal polyhedra for which no vertex lies on the sphere at
infinity to characterize them.

Define a strictly hyperideal polyhedron to be the intersection of B3 with a
projective polyhedron P all of whose vertices lie outside the closed unit ball

B
3 = B3 ∪ S2, but all of whose faces meet B3. Note that this definition allows

that an edge of P may lie entirely outside the closed ball B
3
. These are yet to be

characterized, but I mention that the article [23] verifies the rigidity of these that are
bounded and convex, as long as no edges are tangent to the unit sphere. The proof
again uses Cauchy’s toolbox.

5.7.4.2 Weakly Inscribed Polyhedra—Chen and Schlenker

Recall Steiner’s question of which polyhedra inscribe or circumscribe a sphere that
Rivin answered. A more faithful translation of Steiner’s question from the German
is “Does every polyhedron have a combinatorially equivalent realization that is
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inscribed or circumscribed to a sphere, or to another quadratic surface? If not, which
polyhedra have such realizations?” He includes the definition that “A polyhedron P

is inscribed to a quadratic surface S if all the vertices of P lie on S,” and further
defines that P is circumscribed to S if all of its facets are tangent to S. As before I
will concentrate on inscription since polarity relates circumscription to inscription.
In the very recent preprint [30], Chen and Schlenker point out that the apparent
grammar mistake—inscribed to instead of in S—makes a significant distinction.

Generally Steiner’s question has been interpreted to ask about inscription of the
polyhedron P to a quadratic surface S in Euclidean space E3, and in this setting P

is contained in the bounded component of the complement of S, i.e., P is “inside”
S, hence the change from inscribed “to” to “in”. But Steiner’s question makes sense
in projective space as well, and in this setting a polyhedron may be inscribed to a
surface without being inscribed in the surface. To be a bit more illustrative, consider
the unit sphere S2 sitting in E3 ⊂ RP

3. Now S2 usually is thought of as the boundary
of the open unit ball B3 that serves as the projective model of hyperbolic space, and
this is what Rivin exploited in his characterization of those polyhedra inscribable in

S2. But S2 is also the boundary of the complement RP3 −B
3
, which has a complete

metric making it into a model of de Sitter space dS3. In this setting a projective
polyhedron may have its vertices on the sphere S2 and yet not lie entirely in the
ball B3 so that it is inscribed to S2, but not inscribed in S2 in the usual meaning.
Following Chen and Schlenker, I will revise Steiner’s terminology to emphasize the
difference between inscribed in and inscribed to but not in.

Definition (Strong and Weak Inscription) In the real projective space RP
3, a

polyhedron P inscribed to a quadratic surface S is strongly inscribed in S if the
interior of P is disjoint from S, and weakly inscribed to S otherwise.

Before presenting a characterization of those polyhedra weakly inscribed to a
sphere in RP

3, allow a word about polyhedra inscribed to other quadratic surfaces.
This topic has been neglected until rather recently. There are only three quadratic
surfaces in RP

3 up to projective transformations, and these are the sphere, the one-
sheeted hyperboloid, and the cylinder. Danciger, Maloni, and Schlenker in [31]
characterized the combinatorial types of polyhedra that are strongly inscribable in
a one-sheeted hyperboloid or in a cylinder, and of course Rivin takes care of those
strongly inscribable in a sphere. Chen and Schlenker’s work reported here charac-
terizes those polyhedra weakly inscribable to a sphere, and the characterization of
those weakly inscribable to the remaining two quadratic surfaces is the subject of
current research by Chen and Schlenker.

Weak Inscription Characterization (Chen and Schlenker [30]) A 3-connected
planar graph � is the 1-skeleton of a polyhedron P ⊂ RP

3 weakly inscribed to a
sphere if and only if � admits a vertex-disjoint cycle cover by two cycles C1 and
C2 with the following property. Color edge uv red if u and v both belong to C1
or both belong to C2, and color it blue otherwise. Then there is a weight function
w : E(�) → R such that
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(i) w > 0 on red edges and w < 0 on blue ones;
(ii) w sums to 0 over the edges adjacent to a vertex v, unless v is the only vertex on

C1 or C2 (trivial cycle), in which case w sums to −2π over the edges adjacent
to v.

I end this survey of progress in the characterization of polyhedra since Thurston’s
observation that every polyhedron type in E3 has a realization that midscribes a
sphere with a description of the original rigidity theorem of Cauchy that is so
instrumental in many of the proofs of the results surveyed here.

5.7.5 Addendum: Cauchy’s Toolbox

In this bonus section I review Cauchy’s celebrated rigidity theorem [29] of 1813
on the uniqueness of convex, bounded polyhedra in E3. The theorem concerns
two convex polyhedra with equivalent combinatorics and with corresponding faces
congruent. Cauchy’s Rigidity Theorem states that the two polyhedra must be
congruent globally, meaning that there is a Euclidean isometry of the whole of E3

mapping one to the other. Like many of the great theorems of mathematics, the proof
is of more importance than the theorem itself. As stated earlier in the introduction
to this section, the toolbox Cauchy developed has been instrumental in the past 200
year development of the theory of polyhedra, especially in its rigidity theory. The
proof, though at places clever and even subtle, overall is rather straightforward with
a simplicity that belies its importance.

Cauchy’s proof has two components—the one geometric and the other combina-
torial. The geometric component is the Discrete Four Vertex Lemma, which follows
from an application of Cauchy’s Arm Lemma. Denote a convex planar or spherical
polygon P merely by listing its vertices in cyclic order, say as P = p1 . . . pn. The
Euclidean or spherical length of the side pipi+1 is denoted as |pipi+1| and the
interior angle at pi is denoted as � pi .

Cauchy Arm Lemma Let P = p1 . . . pn and P ′ = p′1 . . . p′n be two convex planar
or spherical polygons such that, for 1 ≤ i < n, |pipi+1| = |p′ip′i+1|, and for
1 ≤ i < n − 1, � pi+1 ≤ � p′i+1. Then |pnp1| ≤ |p′np′1| with equality if and only if
� pi+1 = � p′i+1 for all 1 ≤ i < n− 1.

Cauchy’s original proof of the lemma had a gap that subsequently was filled by
Ernst Steinitz. A straightforward inductive proof, such as the one in [36], relies on
the law of cosines and the triangle inequality.

Now let P and P ′ be convex planar or spherical polygons with the same number
of sides whose corresponding sides have equal length. Label each vertex of P with a
plus sign + or a minus sign − by comparing its angle with the corresponding angle
in P ′: if the angle at pi is larger than that at p′i , label it with a +, if smaller, a −, and
if equal, no label at all. Using the Cauchy Arm Lemma, the proof of the following
lemma is straightforward.
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Discrete Four Vertex Lemma Let P and P ′ be as in the preceding paragraph and
label the vertices of P as described. Then either P and P ′ are congruent, or a walk
around P encounters at least four sign changes, from − to + or from + to −.

Proof First note that because a polygon is a cycle, the number of sign changes must
be even. If no vertex is labeled, then the two polygons are congruent. Assume then
that some of the vertices are labeled, but all with the same label. Then Cauchy’s
Arm Lemma implies that there exists a pair of corresponding edges in P and P ′
with different lengths, a contradiction.

Assume now that there are exactly two sign changes of the labels of P . Select
two edges pipi+1 and pjpj+1 (oriented counter-clockwise) of P such that all of
the + signs are along the subchain from pi+1 to pj and all of the − signs are
along the subchain from pj+1 back to pi . Subdivide both edges in two by adding
a vertex at the respective midpoints X and Y of pipi+1 and pjpj+1. Similarly,
subdivide the corresponding edges p′ip′i+1 and p′j p′j+1 in P ′ at midpoints X′ and
Y ′. Denote the subchain of P from X to Y by P+ and the subchain from Y back to
X by P−. Similarly for P ′+ and P ′− in P ′. Applying the arm lemma to P+ and P ′+
implies that |XY | > |X′Y ′|, and, similarly, an application to P− and P ′− implies that
|XY | < |X′Y ′|, a contradiction. !�

This brings us to the combinatorial component of Cauchy’s proof. A nice proof
of the following lemma appears in [36] and follows from an argument based on the
Euler characteristic of a sphere.

Cauchy Combinatorial Lemma Let P be an abstract spherical polyhedron. Then
for any labeling of any non-empty subset of the edges of P with + and − signs,
there exists a vertex v that is incident to an edge labeled with a + or a − sign for
which one encounters at most two sign changes in labels on the edges adjacent to v

as one walks around the vertex.

Cauchy Rigidity Theorem If two bounded, combinatorially equivalent, convex
polyhedra in E3 have congruent corresponding faces, then they are congruent by
a Euclidean isometry of E3.

Proof Assume that bounded, convex polyhedra P and P ′ have the same combina-
torics and congruent corresponding faces. For each edge of P , label its dihedral
angle with a + or a − depending on whether it is larger or smaller than the
corresponding dihedral angle in P ′. If P and P ′ are not congruent, Cauchy’s
Combinatorial Lemma provides a vertex v that is incident to an edge labeled with a
+ or a− sign, and around which there are at most two sign changes. Intersect P with
a small sphere centered at v (one that contains no other vertex of P on its interior)
to obtain a convex spherical polygon, and intersect P ′ with a sphere centered at
the corresponding vertex v′ and of the same radius. By construction both spherical
polygons have the same edge lengths, and the angles between edges are given by the
dihedral angles between faces at v and v′. An application of the Four Vertex Lemma
implies that there are at least four sign changes, contradicting that there are at most
two. It follows that P and P ′ are congruent. !�
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Both the bounded and convex requirements are necessary. For example, a
polyhedron Ĥ in the shape of a cubical house with a shallow pyramidal roof has
a cousin Ȟ obtained by inverting the roof. Ĥ is not congruent to Ȟ , though these
are combinatorially equivalent with congruent corresponding faces.

5.8 In Closing, an Open Invitation

This has been a whirlwind tour through the four decade history of the influence
of one theorem brought to prominence by the mathematician we celebrate in
this volume. Any result that has spawned such a great body of significant work
leaves in its wake a bounty of open questions, problems, conjectures, and possible
applications that await the right insights for resolution and explanation. What of
the Koebe Uniformization Conjecture, of the question of where EQ-type sits among
EEL- and VEL-type, of circle packings that mimic rational functions with arbitrary
branching, of the existence and rigidity of inversive distance circle packings, of
characterizations of projective polyhedra up to Möbius equivalence generalizing
Bao-Bonahon, or of combinatorial rather than metric characterizations of hyperbolic
polyhedra of various stripes? I have not covered in this survey the myriad of
applications that circle packing has spawned, particularly in the realm of computer
graphics and imaging, where each month sees more and more new and original
publications. And so I close this tribute to the influence of this one theorem of Bill
Thurston with an invitation to any reader who has been captured by the beauty and
elegance of the results outlined in this survey to explore further on his or her own
the wider discipline of Discrete Conformal Geometry, in both its theoretical and
practical bents, and perhaps to add to our understanding and appreciation of this
beautiful landscape opened up by the imagination of Bill Thurston.
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Chapter 6
On Thurston’s Parameterization
of CP1-Structures

Shinpei Baba

Abstract Thurston established a correspondence between CP1-structures (complex
projective structures) and equivariant pleated surfaces in the hyperbolic-three space
H3, in order to give a parameterization of the deformation space of CP1-structures.
In this note, we summarize Thurston’s parametrization of CP1-structures, based on
[15] and [17], giving an outline and the key points of its construction.

In addition we give independent proofs for the following well-known theorems
on CP1-structures by means of pleated surfaces given by the parameterization. (1)
Goldman’s Theorem on CP1-structures with quasi-Fuchsian holonomy. (2) The path
lifting property of developing maps in the domain of discontinuities in CP1.

Keywords CP1-structures · Measured laminations · Pleated surfaces

AMS Classification 57M50

6.1 Introduction

Let P be the space of all (marked) CP1-structures on a closed oriented surface S of
genus at least two (Sect. 6.2). Thurston gave the following parameterization of P,
using pleated surfaces in the hyperbolic three-space H3.

Theorem A (Thurston, [15, 17])

P ∼= ML× T,

where ML is the space of measured laminations on S and T is the space of all
(marked) hyperbolic structures on S.
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In Sect. 6.4, we outline this correspondence, in part, giving more details,
following the work of Kulkarni and Pinkall [17]. A hyperbolic structure on S is
in particular a CP1 structure, and its holonomy is a discrete and faithful represen-
tation of π1(S) into PSL(2,R), called a Fuchsian representation. One holonomy
representation of a CP1-structure on S corresponds to countably many different
CP1-structures on S. Indeed, there is an operation called 2π-grafting (or simply
grafting) which transforms a CP1-structure to a new CP1-structure, preserving its
holonomy representations. The following theorem of Goldman characterizes all
CP1-structures with fixed Fuchsian holonomy.

Theorem B ([11]) Every CP1-structure C on S with Fuchsian holonomy ρ is
obtained by grafting the hyperbolic structure τ along a unique multiloop M .

Goldman actually proved the theorem for more general quasi-Fuchsian groups,
although the proof is immediately reduced to the case of Fuchsian representations
by a quasiconformal map of CP1. Let C be a CP1-structure with Fuchsian holonomy
π1(S) → PSL(2,C). Then, by Theorem B, C corresponds to (τ,M), where τ is the
hyperbolic structure H2/Imρ and each loop of M has a 2π-multiple weight.

For a subgroup � ⊂ PSL(2,C), the limit set of � is the set of accumulation
points of a �-orbit in CP1, and the domain of discontinuity is the complement of the
limit set in CP1. In Sect. 6.5, we give an alternative proof of Theorem B, directly
using pleated surfaces given by the Thurston parameters.

The following Theorem is a technical part of the proof of Theorem B, which was
originally missing.

Theorem C ([7], See also §14.4.1. in [12]) Let (f, ρ) be a developing pair of a
CP1-structure on S. Let � be the domain of discontinuity of Imρ. Then, for each
connected component U of f−1(�), the restriction of f to U is a covering map
onto its image.

Note that as developing maps are local homeomorphisms, Theorem C is equiva-
lent to saying that f has the path lifting property in the domain of discontinuity of
Imρ.

We also give an alternative proof of Theorem C in Sect. 6.6, using Thurston’s
parametrization.

Theorem B states that given two CP1-structures C1 and C2 with Fuchsian
holonomy, C1 can be transformed into C2, via the hyperbolic structure, by a
composition of an inverse-grafting and a grafting (where an inverse grafting is
the opposite of grafting which removes a cylinder for 2π-grafting). The following
question due to Gallo, Kapovich, and Marden remains open.

Conjecture 6.1.1 (§12.1 in [10]) Given two CP1-structures C1, C2 on S with fixed
holonomy π1(S) → PSL(2,C), there is a composition of grafts and inverses of
grafts which transforms C1 into C2.

Although [10] stated this conjecture in the form of a question, we state it
more positively since it has been solved affirmatively for generic holonomy
representations, namely, for purely loxodromic representations [3, 4]. (For Schottky
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representations, see [2].) There is also a version of this question for branched CP1-
structures (Problem 12:1:2 in [10]); see [5, 19] for some progress in the case of
branched CP1-structures.

Recently, Gupta and Mj [13] gave a generalization of Theorem A to certain CP1-
structures on a surface with punctures (namely, CP1-structures which corresponds
to compact Riemann surfaces with meromorphic quadratic differentials whose poles
are of order at least three); see also [1].

6.2 CP1-Structures on Surfaces

General references for CP1-structures can be found in, for example [8, 16].
A CP1-structure on S is a (CP1,PSL(2,C))-structure, i.e. a maximal atlas of

charts embedding open subsets of S onto open subsets of CP1 such that their
transition maps are in PSL(2,C). Let S̃ be the universal cover of S, which is
topologically an open disk. Then, equivalently, a CP1-structure on S is defined as a
pair (f, ρ) consisting of

• a local homeomorphism f : S̃ → CP1 (developing map) and
• a homomorphism ρ : π1(S) → PSL(2,C) (holonomy representation)

such that f is ρ-equivariant (i.e. fα = ρ(α)f for all α ∈ π1(S)). This pair(f, ρ)
is called the developing pair of C, and (f, ρ) is, by definition, equivalent to
(γf, γργ−1) for all γ ∈ PSL(2,C). Due to the equivariance condition, we do not
usually need to distinguish between an element of π1(S) and its free homotopy
class. Let P be the deformation space of all CP1-structures on S; then P has a
natural topology, given by the open-compact topology on the developing maps
f : S̃ → CP1.

Notice that hyperbolic structures are, in particular, CP1-structures, as H2 is the
upper half-plane in C and the orientation-preserving isometry group IsomH2 is the
subgroup PSL(2,R) of PSL(2,C).

6.3 Grafting

A grafting is a cut-and-paste operation of a CP1-structure inserting some structure
along a loop, an arc or more generally a lamination, originally due to [14, 18, 20].
There are slightly different versions of grafting, but they all yield new CP1-
structures without changing the topological types of the base surfaces.

A round circle in CP1 = C ∪ {∞} is a round circle in C or a straight line in
C plus ∞. A round disk in CP1 is a disk bounded by a round circle. An arc α on
a CP1-structure is circular if α is immersed to (or embedded in) a round circle on
CP1 by the developing map. Similarly, a loop α on a CP1-structure C is circular if
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its lift α̃ to the universal cover is immersed to a circular arc CP1 by the developing
map.

We first define a grafting along a circular arc on a CP1-structure. For θ > 0,
consider the horizontal biinfinite strip R × [0, θi] in C of height θ . Then let Rθ

be the CP1-structure on the strip whose developing map is the restriction of the
exponential map exp : C → C \ {0}. This CP1-structure is called the crescent of
angle θ or simply θ -crescent.

Let � be a (biinfinite) circular arc properly embedded in a CP1-surface C. Then
the grafting of C along � by θ is the insertion of this strip Rθ along � (θ -grafting),
to be precise, as follows: Notice that C\� has two boundary components isomorphic
to �. Then we take a union of C \ � and R × [0, θi] by an isomorphism between
∂(C \ �) and ∂(R × [0, θi]) so that there is “no shearing”, i.e. for each r ∈ R, the
vertical arc r × [0, θi] connects the points of the different boundary components of
C \ � corresponding to the same point of �.

Let � be a circular loop on a projective surface C. We can similarly define a
grafting along � by grafting the universal cover C̃ of C in an equivariant manner:
Letting φ : C̃ → C be the universal covering map, φ−1(�) is a union of disjoint
circular arcs property embedded in C̃ which is invariant under π1(S).

Then, we insert a θ -crescent along each arc of φ−1(�) as above. By quotienting
out the resulting structure by π1(S), we obtain a new CP1-structure homeomorphic
to C, since a cylinder is inserted to C along �. Indeed, the stabilizer of an arc �̃ of
φ−1(�) is an infinite cyclic group generated by an element γ ∈ π1(S) whose free
homotopy class is �, and the cyclic group 〈γ 〉 acts on Rθ so that the quotient is the
inserted cylinder (grafting cylinder of height θ ).

Note that Rθ is foliated by horizontal lines R × {y}, y ∈ [0, θ ]. Then it has a
natural transverse measure given by the difference of the second coordinates. This
measured foliation descends to a measured foliation on the grafting cylinder. In
addition, there is a natural projection Rθ → R to the first coordinate (collapsing
map). This projection descends to a collapsing map of a grafting cylinder to a circle.

Let Gr�,θ (C) denote the resulting CP1-structure homeomorphic to C. Notice that
the holonomy along the circular loop � is hyperbolic, as it has exactly two fixed
points on CP1 which are the endpoints of the developments of �.

In the case that θ is an integer multiple of 2π , the holonomy C is not changed by
the θ -grafting, since the developing map does not change in φ−1(C\�). In particular,
the 2π-grafting along a circular loop � inserts a copy of CP1 minus a circular arc
along each lift of �.

In fact, a 2π-grafting is still well-defined along a more general loop. A loop � on
C = (f, ρ) is admissible if ρ(γ ) is hyperbolic and an (equivalently, every) lift �̃ of
� embeds into CP1 by f . Given such a loop, we can insert a copy of CP1 \ (f (�̃) ∪
Fix(ρ(γ ))) along �̃, where Fix(ρ(γ )) denotes the fixed points of ρ(γ ). Note that
the quotient of CP1 \ Fix(ρ(γ )) by the infinite cyclic group generated by ρ(γ ) is a
projective structure T on a torus, and the development f (�̃) covers a simple loop on
T isomorphic to �. By abuse of notation, we also denote the loop on T by �. Then
the 2π-grafting of C along � is given by identifying the boundary loops of C \ �
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and T \ � by the isomorphism. Denote by Gr�(C) the 2π-grafting of C along an
admissible loop �.

A multiloop is a union of locally finite disjoint simple closed curves. Note that if
there is a multiloop M on a projective surface consisting of admissible loops, then
a grafting can be done along M simultaneously.

6.4 The Construction of Thurston’s Parameters

In this section, we explain the correspondence stated in Theorem A in both
directions, following [17].

6.4.1 The Construction of CP1-Structures from Measured
Laminations on Hyperbolic Surfaces

Let (τ, L) ∈ T × ML, where τ is a hyperbolic structure on S, and L a measured
geodesic lamination on τ . Then (τ, L) corresponds to the CP1-structure on S

obtained by grafting τ along L as follows.
Suppose first that L consists of periodic leaves. Then, for each leaf � of L, letting

w be its weight, we insert a grafting cylinder of height w, and obtain a projective
structure C = (f, ρ) on S. Let L̃ be the pull back of L by the universal covering
map. Then there is a ρ-equivariant pleated surface β : H2 → H3, obtained by
bending H2 along L̃ by the angles given by the weights.

Let κ : C → τ be the collapsing map obtained by collapsing all grafting cylinders
in C in Sect. 6.3. For each point p in C̃, there is an open neighborhood D, called a
maximal disk, such that f embeds D onto a round disk in CP1. Then, the boundary
of f (D) bounds a hyperbolic plane Hp in H3. Denote, by "p : f (D) → Hp, the
nearest projection. Then β ◦ κ̃(p) = "p ◦ f (p) for all p ∈ C̃, where κ̃ : C̃ → H2

is the lift of κ : C → τ .
Suppose next that L contains an irrational sublamination. Then, pick a sequence

of measured laminations Li consisting of closed leaves, such that Li converges to
L as i →∞. Then, for each i, as above there is a CP1-structure Ci = GrLi (τ ) and
a ρi -equivariant pleated surface βi : H2 → H3. As Li converges to L, the surface
βi converges to a pleated surface β : H2 → H3 uniformly on compact sets, and
therefore Ci converges to a CP1-structure on S. (See [6].)
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6.4.2 The Construction of Measured Laminations
on Hyperbolic Surfaces from CP1-Structures

Let C = (f, ρ) be a projective structure on S given by a developing pair. Let C̃ be
the universal cover of C.

Identify CP1 conformally with a unit sphere S2 in R3. Then, each round circle
on CP1 is the intersection of S2 with some (affine) hyperplane R2 in R3. A (open)
round disk D in C̃ is an open subset of C̃ homeomorphic to an open disk, such that
f embeds D onto an open round disk in CP1 (we also say a maximal disk of C̃,
emphasizing the ambient space for the maximality). A maximal disk D in C̃ is a
round disk, such that there is no round disk in C̃ strictly containing D. Let D be a
maximal disk in C̃. Then the closure of its image, f (D), is a closed round disk in
CP1.

We first see a basic example illustrating the pleated surface corresponding to a
CP1-structure. (See [9].) Let U be a region of CP1 homeomorphic to an open disk
such that CP1 \ U contains more than one point (i.e. U � CP1,C). Regard CP1

as the ideal boundary of hyperbolic three-space H3, and consider the convex full
of CP1 \ U in H3. Then its boundary in H3 is a hyperbolic plane H2 bent along a
measured lamination LU [9]. This lamination corresponds to the lamination in the
Thurston coordinates.

Let "U denote the orthogonal projection from U to ∂ Conv(CP1\U). Then, since
∂ Conv(CP1\U) is, in the intrinsic metric, a hyperbolic plane, " yields a continuous
map from U to H2. For each maximal disk D in U , let HD be the hyperbolic plane
in H3 bounded by its ideal boundary of D. Then HD intersects ∂ Conv(CP1 \ U)

in either a geodesic or the closure of a complementary region of LU in H2. Thus,
all maximal disks in U correspond to the strata of (H2, L), where each stratum is
either the closure of a complementary region of L in H2, a leaf of L with atomic
measure, or a leaf of L not contained in the closure of some complementary region.
In particular, two distinct complementary regions R1, R2 of (H2, L) correspond to
different maximal disks D1,D2, and if R1 is close enough to R2, then D1 intersects
D2. Accordingly, the ideal boundary circles of D1 and D2 bound hyperbolic planes
intersecting in a geodesic. Then the transverse measure of LU is, infinitesimally,
given by the angles between such hyperbolic planes.

Moreover there is a natural measured lamination LU on U which maps to LU

by "U . If a leaf � has a positive atomic measure w > 0, then "−1
U (�) is a crescent

region Rw of angle w, and Rw is foliated by circular arcs �′ which project to �.
Then "U is a homeomorphism in the complement of such foliated crescents, and
"U isomorphically takes LU to LU in the complement (i.e. it preserves leaves and
transverse measure). The transverse measure of L is given by infinitesimal angles
between “very close” maximal disks.

As developing maps of CP1-structures are, in general, not embedding, we need
to find such projections somewhat more “locally” using maximal disks.

Let D be a maximal disk in the universal cover C̃, and let D be the closure of
D in C̃. In other words, D is the connected component of f−1(f (D)) containing
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D. Then f (D) \ f (D) is a subset of the boundary circle of the round disk f (D),
and the points in this subset are called the ideal points of D. (Given a point p of the
boundary circle f (D), pick a path α : [0, 1) → f (D) limiting to p as the parameter
goes to 1. Then p is an ideal point of D if and only if the lift of α to C̃ leaves every
compact subset of C̃.)

Let ∂∞D ⊂ CP1 denote the set of all ideal points of D. As f |D is an
embedding onto a round disk, we regard ∂∞D as a subset of the boundary circle
of D abstractly (not as a subset of CP1). Then ∂∞D is a closed subset of S1, since
its complement is open. Identifying D with a hyperbolic disk conformally, we let
Core(D) = CoreC̃ (D) be the convex hull of ∂∞D.

For each point p of C̃, there is a round disk containing p, and moreover, as C is
not CP1 or C, there is a maximal disk containing p. The canonical neighborhood
Up of C is the union of all maximal disks Dj (j ∈ J ) in C̃ which contain p.

In fact, (C,L) completely determines the Thurston parameters (τ, L). Further-
more the Thurston parameters near p ∈ CP1 are determined by the Thurston
parameters of its canonical neighborhood, in the way similar to the region U in
CP1 homeomorphic to a disk as above. Namely Lemma 6.4.3 below implies that the
Thurston lamination on C̃ near p is determined by the canonical neighborhood Up

of p, and the following Proposition states that Up is a topological disk embedded in
CP1.

Proposition 6.4.1 ([17], Proposition 4.1) For every point p in C̃, f : S̃ → CP1

embeds its canonical neighborhood Up into CP1. Moreover Up is homeomorphic to
an open disk.

Proof Set Up = ∪Dj , where Dj are maximal disks in C̃ containing p. Let x, y

be distinct points in Up; let Dx and Dy be maximal disks containing {p, x} and
{p, y}, respectively. By the definition of maximal disks, f embeds Di and Dj onto
round disks in CP1. Then f (Di) ∩ f (Dj ) = f (Di ∩ Dj) is either a crescent or a
round annulus, i.e. a region in CP1 bounded by disjoint round circles. If it is a round
annulus, then f |Di ∪Dj must be a homeomorphism onto CP1 and Di ∪ Dj = S̃,
which cannot occur. Thus f (Di ∩Dj ) is a crescent, and therefore f is injective on
Dx ∪Dy . Hence f (x) �= f (y), and f embeds Up into CP1.

The image f (Up) is not surjective (as S is not homomorphic to a sphere). Thus
we can normalize CP1 = C∪{∞} so that p = ∞ and 0 �∈ Up. Then CP1 \Up is the
intersection of the closed disks CP1 \ Dj containing 0. Thus CP1 \ Up is a closed
convex subset containing 0, and therefore Up is topologically an open disk. !�

Then in the setting of Proposition 6.4.1, we have

Corollary 6.4.2 When CP1 = C ∪ {∞} is normalized so that p = {∞}, the
complement CP1 \ Up is a compact convex subset K of C.

The canonical neighborhood Up can be regarded as a projective structure on an
open disk (Proposition 6.4.1), and one can consider maximal disks in Up, which are
a priori unrelated maximal disks in C̃.
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Lemma 6.4.3 The maximal disks of Up bijectively correspond to the maximal disks
of C̃ whose closure contain p by the inclusion Up ⊂ C̃.

Moreover, if D is a maximal disk of Up containing p, then the ideal points of D
as a maximal disk of Up coincide with its ideal points of D as a maximal disk of C̃.

Proof If D is a maximal disk in C̃ containing p, then, by the definition of Up,
clearly D is also a maximal disk in Up. Similarly, if D is a maximal disk in C̃ whose
boundary contains p, then there is a sequence of maximal disks Di containing p

with Di → D as i → ∞. Therefore every maximal disk D in C̃ whose closure
contains p is a maximal disk in Up.

We show the opposite inclusion. By Corollary 6.4.2, the complement K = CP1 \
Up is a closed compact convex subset of C. If there is a (straight) line � in C such
that �∩K is a single point x, then, by the inclusions C̃ ⊃ Up ⊂ CP1, x corresponds
to an ideal point of a maximal ball of C̃ containing p. Next suppose that there
is a line � in C such that � ∩ K is a line segment. Then, letting P be the half-
plane bounded by � so that P and K have disjoint interiors, there is a sequence of
maximal disks Di of C̃ containing p such that Di converges to P as i →∞. Thus
the endpoints of the line segment correspond to ideal points of C̃.

Suppose that D is a maximal disk of Up. Then D intersects K in ∂K . If ∂D

intersects K in a line segment, then D is a half-plane in C with ∂D containing p.
As the endpoints of the segment correspond to the ideal points of C̃, D is also a
maximal disk in C̃.

If the closure of D does not intersect K in a line segment, then clearly D contains
p. If a point on ∂K is not an interior point of any line segment of ∂K , then the point
corresponds to an ideal point of C̃. Therefore no round disk in C̃ strictly contains D,
and therefore D is also a maximal ball in C̃. Thus we have the opposite inclusion.

Finally, suppose that D is a maximal ball in Up containing p. Then D ∩ K

contains no line segment, and therefore, D∩K corresponds to the ideal points of D
as a maximal ball in C̃. !�

The following proposition yields a lamination on C̃ invariant under π1(S).

Proposition 6.4.4 ([17], Theorem 4.4) The cores Core(D) of the maximal disks D

in C̃ are all disjoint and their union is C̃.

Proof We first show that the cores are disjoint. Let D1 and D2 be distinct maximal
disks in C̃. If D1 ∩ D2 �= ∅, then f (D1) and f (D2) are round disks intersecting a
crescent. Therefore Core(D1) and Core(D2) are disjoint. (Consider the circular arc
in D1 orthogonal to ∂D1; then, indeed, this arc separates Core(D1) and Core(D2)

in D1 ∪D2.) !�
Claim 6.4.5 Given a convex subset V of C, there is a unique round disk D in C of
minimal radius containing V .

Proof Suppose, on the contrary, that there are two different round disks D1,D2
containing V which attain the minimal radius. Then, clearly, there is a round disk
D3 of strictly smaller radius which contains V (such that D3 ⊃ D1 ∩D2 and D3 ⊂
D1 ∪D2). This is a contradiction. !�
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Claim 6.4.6 The convex hull of ∂D ∩ V contains the center of c with respect to the
complete hyperbolic metric on D(∼= H

2) given by the conformal identification.

Proof Suppose not; then the closure of V is contained in the interior of a
(Euclidean) half disk of D. Then one can easily find a round disk of smaller radius
containing V . !�

Note that, the inversion of CP1 = C∪{∞} about ∂D exchanges∞ and the center
of D, and it fixes ∂D pointwise. Then, by Claim 6.4.6, in the (conformal) hyperbolic
metric on D, the convex hull of ∂D ∩ V contains the center of D. Therefore, by the
inversion, in the hyperbolic metric on CP1 \ D, the point at ∞ is contained in the
convex hull of ∂D ∩ V in the interior of CP1 \D.

Using the above claims, we show that, for every x ∈ C̃, there is a maximal disk
D in C̃ whose core contains x. Let Ux = ∪j∈JDj be the canonical neighborhood
of x, where Dj are the maximal disks in C̃ which contain x. Normalize CP1 so that
f (x) = ∞. Let Dc

j = CP1 \ f (Dj ). Then CP1 \ f (Ux) = ∩jD
c
j . By Claim 6.4.6,

let D be the maximal disk of Ux such that x ∈ CoreUx (D). By Lemma 6.4.3, D is
also a maximal disk of C̃ which contains x, and moreover the ideal points of D as
a maximal disk of Ux coincide with those as a maximal ball of C̃. Then, CoreC̃ (D)

contains x. 6.4.4

By Proposition 6.4.4, C̃ is canonically decomposed into the cores of maximal
disks in C̃, which yields a stratification of C̃. Note that this decomposition is
invariant under π1(S), as the maximal balls and ideal points are preserved by the
action. Moreover, for each maximal disk D in C̃, Core(D) is properly embedded
in C̃. Then the one-dimensional cores and the boundary components of two-
dimensional cores form a π1(S)-invariant lamination λ̃ on C̃, which descends to
a lamination λ on C.

Next we see that the angles between infinitesimally close maximal disks yield
a natural transverse measure of this lamination. Given a point x ∈ C̃, let Dx be
the maximal disk in C̃ whose core contains x. If y ∈ C̃ is sufficiently close to x,
then Dy intersects Dx . Then let � (Dx,Dy) denote the angle between the boundary
circles of Dx and Dy . To be precise, this is the angle of the crescent Dx \ Dy (or
Dy \Dx ) at the vertices. Then � (Dx,Dy) → 0 as y → x.

Let x and y be distinct points of C̃ contained in different strata of (C̃, λ̃). Then
pick a path α : [0, 1] → C̃ connecting x to y such that α is transverse to λ̃. Let
� : 0 = t0 < t1 < · · · < tn = 1 be a finite division of [0, 1], and let xi = α(ti )

for each i = 0, . . . , n. Let |�| = minn−1
i=0 (xi+1 − xi), the smallest width of the

subintervals. Then, let !(�) = �n−1
i=1

� (Dxi ,Dxi+1) for a subdivision � of [0, 1]
with sufficiently small |�|. Pick a sequence of subdivisions �i such that |�i | → 0
as i → ∞. Then limi→∞(!(�i)) exists and it is independent of the choice of �i

as i → ∞ [6, II.1]. We define the transverse measure of α to be limi→∞(!(�i)).
Then λ̃ with this transverse measure yields a measured lamination L̃ invariant under
π1(S). Thus L̃ descends to a measured lamination L on C.
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By Lemma 6.4.3, for every x ∈ C̃, the measured lamination L near x is
determined by the canonical neighborhood Ux of x. Let Lx be the measured
lamination on Ux , which descends to the measured lamination on the boundary of
Conv(CP1 \ Ux). Then there is a neighborhood V of x in Ux such that L and Lx

coincide in V by the inclusion Ux ⊂ C̃.
For each point x ∈ C̃, the boundary circle of the maximal disk Dx bounds a

hyperbolic plane Hx inH3. Let "x : f (Dx) → Hx be the projection along geodesics
in H3 orthogonal to Hx . Then Hx has a canonical normal direction pointing to
Dx . By Lemma 6.4.3 there is a neighborhood V of x, such that "y(y) = "x(y).
Moreover, "x coincides with the projection onto the boundary pleated surface of
Conv(CP1 \ Ux). Therefore, as in the case of regions in CP1, we have a pleated
surface H2 → H3 which is ρ-equivariant, as in the following paragraph.

We assume that crescents R in C̃ are always foliated by leaves of L̃ sharing their
endpoints at the vertices of R. We have a well-defined continuous map " : C̃ → H3

defined by "(x) = "x(x). We shall take an appropriate quotient of C̃ to turn it
into a hyperbolic plane. For each crescent R in C̃, " takes each leaf in R to the
geodesic in H3 connecting the vertices of R. Identify x, y ∈ C̃, if x, y are contained
in a single crescent in C̃ and "x(x) = "y(y); let κ̃ : C̃ → C̃/ ∼ be the quotient
map by this identification, which collapses each foliated crescent region to a single
leaf. Then by the equivalence relation, " : C̃ → H3 induces a continuous map
β : (C̃/ ∼) → H3 such that "x(x) = β ◦ κ . Moreover, C̃/ ∼ is H2 with respect to
the path metric in H3 via " , since, for every x ∈ C̃, " coincides with the projection
Ux → ∂ Conv(CP1 \ Ux) in a neighborhood of x. Thus we have a ρ-equivariant
pleated surface H2 → H3.

The measured lamination L̃ on C̃ descends to a measured lamination L̃ on H2

invariant under π1(S). By taking the quotient, we obtain a desired pair (τ, L) of a
hyperbolic surface τ and a measured geodesic lamination L on τ .

Similarly, the collapsing map κ̃ : C̃ → H2 descends to a collapsing map κ : C →
τ . Then, for each periodic leaf � of L, κ−1(�) is a grafting cylinder foliated by closed
leaves of L.

Finally we note that as β : H2 → H3 is obtained by bending H2 in H3 along L̃,
the pair (τ, L) corresponds to C by the correspondence in Sect. 6.4.1.

6.5 Goldman’s Theorem on Projective Structures
with Fuchsian Holonomy

Let C be a CP1-structure on S with holonomy ρ, and let (τ, L) ∈ T × ML be its
Thurston parameters. Let ψ : H2 → τ be the universal covering map, and L̃ be the
measured lamination ψ−1(L) on H

2. Let � = Imρ, and let � denote the limit set
of Imρ.
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Lemma 6.5.1 Let β : H2 → H
3 be the associated pleated surface, where H

2 is
the universal cover of τ . Then, for every leaf �̃ of L̃, β|�̃ is a geodesic connecting
different points of �.

Proof If �̃ is a lift of a closed leaf of L, then the assertion clearly holds.
For every closed curve α on τ , let α̃ be a lift of α to H2. Since the curve β|α̃

is preserved by the hyperbolic element ρ(α), it is a quasi-geodesic in H3 whose
endpoints are the fixed points of ρ(α). Note that the endpoints are contained in �.

Let � be a non-periodic leaf of L, and let �̃ be a lift of � to H2. There is a sequence
of simple closed geodesics �i on τ such that �i converges to � in the Hausdorff
topology [6, I.4.2.14]. For each i ∈ N, pick a lift �̃i of �i to H2 so that �̃i → �

uniformly on compact sets as i → ∞. Then, β|�̃i converges to β|�̃ uniformly on
compact sets. Moreover as � τi (τi, Li) → 0, βi |�̃i is asymptotically an isometric
embedding: To be precise, for large enough i, it is a bilipschitz embedding, and its
bilipschitz constant converges to 1 as i →∞ [3, Proposition 4.1].

As �i are closed loops, the endpoints of β|�̃i are in �. Then the endpoints of β|�̃i
converge to the endpoints of β|�̃ in CP1. Therefore, since � is a closed subset of
∂H3, the endpoints of β|� are also contained in �. !�

We immediately have the following.

Corollary 6.5.2 For each stratum σ of (H2, L̃), let Dσ ⊂ C̃ be the maximal disk
whose core corresponds to σ . Then its ideal points ∂∞Dσ are contained in the limit
set �.

We reprove the following theorem by means of pleated surfaces.

Proposition 6.5.3 (See [21, Theorem 3.7.3.]) Let C be a CP1-structure with real
holonomy ρ : π1(S) → PSL(2,R) and (L, τ ) its Thurston parameters. Then each
leaf of L is periodic, and its weight is a π-multiple. If ρ is, in addition, Fuchsian,
then each leaf of L is periodic and its weight is a 2π-multiple.

Proof We first show that L consists of periodic leaves. Suppose, on the contrary,
that L contains an irrational minimal sublamination N . Then the transverse measure
is continuous in a neighborhood of |N | in τ (i.e. no leaf of N has an atomic
measure).

Thus there are two-dimensional strata σ, σ1, σ2, . . . of H2 \ L̃, such that σi

converges to an edge of σ as i → ∞. Note that, as it is two-dimensional, each
β(σi) has at least three ideal points, which lie in a round circle in CP1. Let
H,H1,H2, . . . be the supporting oriented hyperbolic planes in H3 of σ, σ1, . . . .
Let �

H3(H,Hi) ∈ [0, π] be the angle between the hyperbolic planes H and
Hi with respect to their orientations, if H and Hi intersect. Then, by continuity,
�
H3(H,Hi) → 0 as i →∞. Thus the ideal points of σ and σi cannot be contained

in a single round circle if i is sufficiently large. By Corollary 6.5.2, this cannot
happen as � is a single round circle.

We first show that the weight of each leaf of L is a multiple of π . Let σ1 and σ2
be components of H2 \ L̃ adjacent along a leaf of L̃. Let H1 and H2 be the support
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planes of σ1 and σ2, respectively. Then the angle between H1 and H2 is the weight
of �. As the ideal points of σ1 and σ2 must lie in the round circle �, the angle must
be a multiple of π .

Suppose, in addition, that ρ is Fuchsian. Let β0 : H2(= τ̃ ) → H3 be the ρ-
equivariant embedding onto the hyperbolic plane H� bounded by �. For each i =
1, 2, as each boundary component m of σi covers a periodic leaf of L, β = β0 on
m. Therefore H1 = H2 = Conv(�), and β0 = β on σi for each i = 1, 2. As the
orientation of H1 coincides with that of H2, the weight of m must be a multiple of
2π . !�
Proof of Theorem B By Proposition 6.5.3, L is a union of closed geodesics � with
2π-multiple weights. For each (closed) leaf � of L, let 2πn� denote the weight of �,
where n� is a positive integer. Let κ : C → τ be the collapsing map. Then, κ−1(�)

is a grafting cylinder of height 2πn�, the structure inserted by 2π-grafting n times.
Therefore, C is obtained by grafting along a multiloop corresponding to L. !�

6.6 The Path Lifting Property in the Domain of Discontinuity

Let C = (f, ρ) be a CP1-structure on S. Then, let � be the limit set of Imρ, and let
� = CP1 \�, the domain of discontinuity.

Proposition 6.6.1 For every x ∈ �, there is a neighborhood Vx in � such that,
for every y ∈ S̃ with f (y) ∈ Vx , Vx is contained in the maximal disk whose core
contains x.

Proof The union H3 ∪ ∂H3 is a unit ball in the Euclidean space and the visual
distance is the restriction of the Euclidean metric.

Suppose, on the contrary, that there is no such neighborhood Vx . Then there is a
sequence x1, x2, · · · ∈ f−1(x) such that, letting H1,H2, . . . be their corresponding
hyperbolic support planes, the visual distance from Hi to x goes to zero as i →∞.

Let yi ∈ H3 be the nearest point projection of f (xi) to Hi . Then, yi → x in the
visual metric. Let σi be the stratum of (H2, L̃i ) which contains κ̃(xi). Then, as
the orthogonal projection of f (xi) to Hi is yi , the visual distance between x and
βi(σi) goes to zero as i → ∞. Therefore, there is an ideal point pi of β(σi) which
converges to x as i →∞. As � is open, this is a contradiction by Corollary 6.5.2.

!�
As f embeds maximal disks of C̃ into CP1, we immediately have the following.

Corollary 6.6.2 For each point x ∈ �, there is a neighborhood Vx of x such that, if
f (y) ∈ Vx for y ∈ S̃, then f embeds a neighborhoodWy of y in S̃ homomorphically
onto Vx .

Theorem C immediately follows from the corollary.
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Chapter 7
A Short Proof of an Assertion
of Thurston Concerning Convex Hulls

Graham Smith

Abstract Let X be a closed subset of the ideal boundary ∂∞H3 of 3-dimensional
hyperbolic space H3 and let K be its convex hull in H3. We provide a short proof of
the fact that the topological boundary ∂K of K is intrinsically hyperbolic.

AMS Classification: 30F60

7.1 Introduction

In this chapter, we study the intrinsic geometries of the boundaries of convex hulls
in space-forms. For m a positive integer and κ ∈ {−1, 0, 1}, let Mm

κ denote the m-
dimensional space-form of constant sectional curvature equal to κ . We will say that
a closed subset K of Mm

κ is convex whenever any length-minimising geodesic arc
whose two extremities lie in K is also wholly contained in K . Observe that, in the
positive-curvature case, with convexity defined in this manner, a convex subset of
Mm

1 is either contained in an open hemisphere or is equal to the whole of Mm
1 .

Finally, given a closed subset X of Mm
κ , we define its convex hull, denoted by

Conv(X), to be the intersection of all closed, convex subsets of Mm
κ containing X.

Let K now be a convex subset with non-trivial interior of some space-form Mm
κ .

Let ∂K denote its set-theoretic boundary. The intrinsic metric (distance function) of
∂K is defined by

d(x, y) := Inf
γ

Length(γ ),

where γ varies over all rectifiable curves γ : [0, 1] → ∂K with γ (0) = x and
γ (1) = y. Since ∂K is everywhere locally a Lipschitz graph (see, for example,
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Theorem 4.12 of [7]), the topology generated over this subset by d coincides with
the topology that it inherits from Mm

κ .
Suppose now that K is the convex hull of some closed subset X. In this case,

the set ∂K\X is known to satisfy at every point x the local geodesic property (c.f.
Section 4.5 of [7] and Chapter 8 of [8]), namely, that there exists an open geodesic
segment γ : ] − ε, ε[→ ∂K\X such that γ (0) = x. Furthermore, this property
characterises convex hulls (see Theorem 4.18 of [7]).

Having established these preliminaries, we now consider the case where the
ambient space is 3-dimensional, so that ∂K is 2-dimensional. If ∂K\X were smooth,
then the local geodesic property would make this surface extrinsically flat, and thus
instrinsically everywhere locally isometric to M2

κ . In Chapter 8 of [8], Thurston
argues heuristically to show that this property continues to hold even in the non-
smooth case. He then explains, furthermore, that the canonical embedding of ∂K\X
into M3

κ is totally geodesic except over a singular set given by the union of disjoint
geodesics. These observations play a key role in Thurston’s approach to Teichmüller
theory by providing a bridge between hyperbolic geometry, on the one hand, and the
theory of measured geodesic laminations, on the other. In this chapter, we provide
a new proof of Thurston’s result which is both shorter and more direct than those
currently available in the literature (see [3] and [6]).

We show

Theorem 7.1.1 Let X be a closed subset of M3
κ . If Conv(X) has non-trivial interior,

then � := ∂Conv(X)\X is everywhere locally isometric to M2
κ . Furthermore, the

canonical embedding of � into M3
κ is totally geodesic except over a closed set which

is a union of disjoint geodesic segments.

When κ = −1, M3
κ is 3-dimensional hyperbolic space H

3. Recall that the ideal
boundary ∂∞H

3 of H3 is defined to be the space of equivalence classes of oriented
geodesic rays (see [1]). A more useful description of the ideal boundary for our
current applications is given by the Kleinian parametrisation, which maps H3 onto
the open unit ball B1(0) in R

3 in such a manner as to send hyperbolic geodesics to
straight lines. With this parametrisation, the ideal boundary of H3 identifies with the
unit sphere S1(0) in R

3, and the convex hull in H
3 of any given subset X of S1(0)

likewise identifies with its convex hull in B1(0). Theorem 7.1.1 now yields

Theorem 7.1.2 Let X be a closed subset of ∂∞H3. Let Conv(X) denote its convex
hull in H3. If Conv(X) has non-trivial interior, then � := ∂Conv(X)\X is
everywhere locally isometric to H2. Furthermore, the canonical embedding of �

into H3 is totally geodesic except over a closed set which is a union of complete,
non-intersecting geodesics.
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7.2 Convex Subsets Viewed Extrinsically

Consider first an arbitrary metric space (Y, δ). In what follows, for any subset X of
Y and for any r > 0, we will denote by Br(X) the open neighbourhood of radius
r about X and, in the case where X = {x} consists of a single point, we will write
Br(x) instead of Br(X). Let CB(Y ) denote the set of closed, bounded subsets of Y .
Recall (see Section 45 of [5]) that the Hausdorff metric is defined over this set by

dH(X1, X2) = Inf{r > 0 | X1 ⊆ Br(X2) & X2 ⊆ Br(X1)}.

Recall also that the metric space (CB(Y ), dH) is compact (resp. complete) if and
only if Y is compact (resp. complete).

Suppose now that Y = Rm is m-dimensional euclidean space. Consider the set
CC(Y ) of compact, convex subsets of Y . Observe that CC(Y ) is a closed subset of
CB(Y ) and that, furthermore, the operator Conv defines a projection from CB(Y )

onto this subset. In this section, we study the topological properties of these objects.
Our results will also extend to convex subsets of arbitrary space-forms via affine
charts.

Recall now that a closed half-space in Rm is a subset of the form

Hα,λ := {y | α(y) ≤ λ},

where α : Rm → R is a linear form and λ > 0 is a real number. It is straightforward
to show (see Theorem 5.2 of [7]) that the convex hull of X is also the intersection
of all closed half-spaces containing X.

Lemma 7.2.1 Let (Xn) be a sequence of compact subsets of Rm. If this sequence
converges in the Hausdorff sense to the compact subset X∞, then the sequence
(Conv(Xn)) of convex hulls also converges in the Hausdorff sense to Conv(X∞). In
other words, Conv maps CB(Rm) continuously onto CC(Rm).

Proof For all n ∈ N ∪ {∞}, denote Kn := Conv(Xn). First observe that there
exists R > 0 such that, for all n, Xn ⊆ BR(0) so that, in particular, Kn ⊆ BR(0).
Since the set of compact, convex subsets of the closed ball BR(0) is compact in the
Hausdorff topology, it suffices to show that K∞ is the only concentration point of the
sequence (Kn) in this topology. Suppose therefore that another such concentration
point K ′∞ exists. In particular, K ′∞ is compact and convex and X∞ ⊂ K ′∞ so that,
by definition of the convex hull, K∞ ⊆ K ′∞. Let x be a point of K ′∞\K∞. Let Hα,λ

be a half-space which contains K∞ but which does not contain x. Let ε > 0 be such
that α(x) = λ+ 2ε. Since X∞ is contained in Hα,λ, for all sufficiently large n, Xn

is contained in Hα,λ+ε . In particular, for all such n, Kn is also contained in Hα,λ+ε ,
so that Kn ∩Bε(x) = ∅. This is absurd, since some subsequence of (Kn) converges
to K∞ in the Hausdorff sense, and the result follows. !�
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Consider now a point x ∈ Rm. For ε, r > 0, we say that the subset X of Rm

is ε-dense in Br(x) whenever every point of Br(x) lies at a distance of less than ε

from X.

Lemma 7.2.2 If X is a compact, convex subset of Rm which is r-dense in Br(x),
then x lies in X.

Proof Indeed, if H is a half-space that contains X, then H must also contain x, for
otherwise there would be a point of Br(x) lying at a distance of greater than r from
H , and therefore also from X, which is absurd. The result follows. !�

For x ∈ Rm and λ > 0, let Dλ
x denote the affine transformation which dilates by

a factor of λ about the point x, that is,

Dλ
xy = x + λ(y − x).

Lemma 7.2.3 Let (Kn) be a sequence of compact, convex subsets of Rm converging
in the Hausdorff sense to the compact, convex subset K∞. If x is an interior point
of K∞ then, for all λ > 1, and for all sufficiently large n,

D
1
λ
x K∞ ⊆ Kn ⊆ Dλ

xK∞.

Proof Suppose that B2r (x) is contained in K∞. We first show that Br(x) is also
contained in Kn for sufficiently large n. Indeed, since (Kn) converges to K∞ in
the Hausdorff sense, for sufficiently large n, the set Kn is r-dense in Br(y) for all
y ∈ Br(x). It follows by Lemma 7.2.2 that, for all such n, Br(x) is also contained
in Kn, as asserted.

Observe now that, for any convex subset K , if Br(x) ⊆ K , then for all λ > 1,

B(λ−1)r(K) ⊆ Dλ
xK.

Thus, since (Kn) converges to K∞ in the Hausdorff sense, for sufficiently large n,

Kn ⊆ B(λ−1)r(K∞) ⊆ Dλ
xK∞,

and the second inclusion follows. Likewise, for sufficiently large n,

K∞ ⊆ B(λ−1)r(Kn) ⊆ Dλ
xKn,

so that

D
1
λ
x K∞ ⊆ Kn,

and the first inclusion follows. This completes the proof. !�



7 A Short Proof of an Assertion of Thurston Concerning Convex Hulls 259

7.3 Convex Subsets Viewed Intrinsically

First recall that, given two compact metric spaces (X1, d1) and (X2, d2), their
Gromov-Hausdorff distance (see [4]) is defined by

dGH((X1, d1), (X2, d2)) := Inf
φ1,φ2,(Y,δ)

dH(φ1(X1), φ2(Y2)),

where the infimum is taken over all metric spaces (Y, δ) and functions φ1 : X1 → Y

and φ2 : X2 → Y which are isometries onto their images. The following technical
result will prove useful.

Lemma 7.3.1 Let X1 and X2 be compact metric spaces with metrics d1 and d2
respectively. For ε ∈]0, 1], suppose that there exist surjective maps � : X1 → X2
and " : X2 → X1 such that

d2(�(x),�(y)) ≤ (1 + ε)d1(x, y),

d1("(x),"(y)) ≤ (1 + ε)d2(x, y),

and

d1(x, "�(x)) ≤ ε.

Then the Gromov-Hausdorff distance between X1 and X2 satisfies

dGH(X1,X2) ≤ ε(2 + Max(Diam(X1),Diam(X2))).

Proof Indeed, consider first a compact metric space (X, d). Observe that the map
D : X → L∞(X) given by D(x)(y) := d(x, y) is an isometry onto its image.
Furthermore, given another compact metric space (X′, d ′) and a surjective map
� : X → X′, the composition operator �∗ : L∞(X′) → L∞(X) also defines
an isometry onto its image and, in particular, restricts to an isometry from D′(X′)
onto a subset of L∞(X). For each i, define Di : Xi → L∞(Xi) in this manner.
From the above relations, we deduce that, for all x, y ∈ X1,

�∗D2(�(x))(y)−D1(x)(y) ≤ εDiam(X1),

("�)∗D1("�(x))(y)−�∗D2(�(x))(y) ≤ εDiam(X2), and

D1(x)(y)− ("�)∗D1("�(x))(y) ≤ 2ε.

Together these relations yield

‖�∗D2(�(x))−D1(x)‖L∞ ≤ ε(2 + Max(Diam(X1),Diam(X2))),

from which the result follows. !�
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Now let � be an affine chart of Mm
κ in Rm. That is, when κ = −1, and Mm

κ = Hm

is hyperbolic space, � is the open unit ball in Rm which identifies with Hm via the
Kleinian parametrisation; when κ = 0 and Mm

κ = Rm is Euclidean space, � is
simply the whole of Rm; and when κ = 1 and Mm

κ = Sm is the unit sphere, �
is also the whole of Rm which now identifies with an open hemisphere also via the
Kleinian parametrisation. Let g denote the riemannian metric of this affine chart and
let d denote the topological metric (distance function) that it defines. Throughout the
rest of this section, for any subset X of �, and for all r > 0, Br,d(X) will denote the

open neighbourhood of radius r about X with respect to d .
Consider now a compact, convex subset K of �, and let � : � → K be the

closest point projection.

Lemma 7.3.2 If Br,d(K) ⊆ �, then for all x, y ∈ Br,d(K),

d(�(x),�(y)) ≤ 1

cos(r)
d(x, y).

Remark In fact, when κ ∈ {−1, 0}, the closest point projection is a contraction
(see [1]).

Proof It suffices to consider the case where x and y are elements of Br,d(K)\K ,
as the remaining cases are similar and simpler. Consider the geodesic quadrilateral
determined by the ordered sequence of points (x, y,�(y), �(x)). By convexity,
the geodesic segment �(x)�(y) is contained in K . In particular, since �(x) and
�(y) are the closest points in K to x and y respectively, the angles x�(x)�(y) and
y�(y)�(x), taken with respect to the metric g, are both at least π/2, and the result
now follows by standard comparison theory (see [2]). !�
Lemma 7.3.3 Let (Kn) be a sequence of compact, convex subsets of � with non-
trivial interiors, let K∞ be another compact, convex subset of � with non-trivial
interior, and for all n ∈ N ∪ {∞}, let dn denote the intrinsic metric of ∂Kn with
respect to g. If (Kn) converges to K∞ in the Hausdorff sense, then (∂Kn, dn)

converges to (∂K∞, d∞) in the Gromov-Hausdorff sense.

Proof Let x be an interior point of K∞. Choose λ > 1. By Lemma 7.2.3, for
sufficiently large n,

D
1
λ
x K∞ ⊆ Kn ⊆ Dλ

xK∞.

Now denote � := Dλ
x�∞ and " := �nD

λ
x , where �∞ and �n are respectively the

closest point projections onto D
1/λ
x K∞ and Kn with respect to the metric g. Since

� and " are continuous with unit degree, they are surjective. Thus, by Lemma 7.3.2
and the smoothness of g, for any given ε > 0, � and " satisfy the hypotheses of
Lemma 7.3.1 provided that λ is chosen sufficiently close to 1. The result follows.

!�
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Proof of Theorem 7.1.1 Let (Xn) be a sequence of finite subsets of � converging to
X in the Hausdorff sense. For all n, Conv(Xn) is a convex polyhedron with vertices
in Xn. In particular, for all n, the intrinsic metric of �n := ∂Conv(Xn)\Xn is locally
isometric to M2

κ . Since, by Lemma 7.2.1, the sequence (Conv(Xn)) of convex hulls
converges in the Hausdorff sense to the convex hull Conv(X∞), the first assertion
now follows by Lemma 7.3.3. To prove the second assertion, consider a totally
geodesic supporting plane P to Conv(X∞) at some point of � := Conv(X∞)\X.
Since Conv(X∞) is a convex hull, the intersection of P with Conv(X) is either a
geodesic segment with end-points in X, or a convex polygon with geodesic edges
and vertices in X. From this the second assertion readily follows, and this completes
the proof. !�
Proof of Theorem 7.1.2 Fix a point x ∈ H3, and for all r > 0, let Br(x) denote the
closed ball of radius r about x in H3. For all r , Conv(X) ∩Br(x) is the convex hull
of the compact set Conv(X)∩ ∂Br (x), and the result follows by Theorem 7.1.1. !�
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Chapter 8
The Double Limit Theorem
and Its Legacy

Cyril Lecuire

Abstract This chapter surveys recent and less recent results on conver-
gence of Kleinian representations, following Thurston’s Double Limit and
“AH(acylindrical) is compact” Theorems.

Keywords Kleinian groups · Deformation space · Ahlfors–Bers coordinates ·
Algebraic convergence
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8.1 Introduction

Although Kleinian groups were discovered in the late nineteenth century (by
Schottky, Klein and Poincaré), the story of the present chapter’s topic really
starts in the early sixties with the works of Ahlfors and Bers on quasi-conformal
deformations of Fuchsian groups [2, 3, 8]. In particular, after further development
by Maskit [49] and Kra [44], it led to the parametrization of the space of quasi-
conformal deformations by the conformal structure at infinity. Combined with later
works of Marden [48] and Sullivan [82] this provided coordinates for the interior
of the deformation space AH(π1(M)) usually called the Ahlfors–Bers coordinates.
This also led to Bers’ compactification of Teichmüller space, [7], who in particular
introduced sequences of quasi-Fuchsian groups converging to non quasi-Fuchsian
ones. Meanwhile Jørgensen developed methods to study sequences of Kleinian
groups, showing that discreteness is a closed property and isolating two types
of convergence, which he called algebraic and geometric. In contrast to this rich
theory of deformations of quasi-Fuchsian groups, Schottky groups and other infinite
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covolume convex cocompact Kleinian groups, Mostow showed in the late sixties
that cocompact Kleinian groups are rigid, [61]. Then in the late seventies, Thurston
revolutionized the world of low-dimensional geometry, introducing original and
exotic tools to prove beautiful and unexpected new results.

In an incomplete series of articles ([84] and sequel) Thurston planned to present
the arguments involved in the proof of the Geometrization Theorem for Haken
Manifolds. Convergence of Kleinian representations plays a central role in each of
the three existing papers: the main result of [84] is that AH(acylindrical) is compact
(Theorem 8.1.1 in the present chapter), the Double Limit Theorem (Theorem 8.1.3
below) is essential in [87] and [88] is devoted to the Broken Windows Theorem
(Theorem 8.4.2) and related results.

Now that the historical context has been set up, let us get more technical. The
deformation space AH(π1(M)) of a hyperbolic 3-manifold M is the set of discrete
and faithful representations ρ : π1(M) → PSL2(C) up to conjugacy, equipped
with the quotient of the compact open topology. We will elaborate on the topology
of AH(π1(M)) in Sects. 8.2 and 8.7. For now let us consider two simple cases:
when M is a product I × S over a closed surface and M is acylindrical. In both
cases the conformal structures at infinity provides us with a homeomorphism q :
int(AH(π1(M))) → T (∂χ<0M) and we call q(ρ) the Ahlfors–Bers coordinates of
ρ. From this homeomorphism, we get that if a sequence {ρi} ⊂ int(AH(π1(M)))

has bounded Ahlfors–Bers coordinates, then {ρi} has a converging subsequence.
The question we address in this chapter is: What is the behaviour of a sequence with
diverging Ahlfors–Bers coordinates?

When M is acylindrical, a complete answer has been provided by Thurston ([84],
and an alternate proof was given by Morgan–Shalen [60]) with the following result:

Theorem 8.1.1 (AH(acylindrical) Is Compact) If M is any compact acylindrical
3-manifold with boundary, then AH(π1(M)) is compact.

Moreover, the fact that AH(π1(M)) is compact characterizes acylindrical mani-
folds.

When M = I × S, the Ahlfors–Bers coordinates are a pair of metrics
(σ+, σ−) ∈ T (S)× T (S). A first condition for convergence comes from the works
of Ahlfors and Bers (see Theorem 8.3.1):

Theorem 8.1.2 Let {ρi} ⊂ AH(π1(S)) be a sequence of representations with
Ahlfors–Bers coordinates (σ+i , σ−i ). If {σ+i } converges in the Teichmüller space
T (S) then {ρi} has a converging subsequence.

If we allow both coordinates σ+i and σ−i to diverge, then {ρi} may not have
a converging subsequence. To undertake a finer analysis, we need a way to
quantify the behavior of diverging sequences. Thurston used his compactification
of Teichmüller space by projective measured laminations in the celebrated Double
Limit Theorem:

Theorem 8.1.3 (Double Limit Theorem) Let S be a closed surface and let
μ+, μ− be two measured geodesic laminations that bind S. Then for any sequence
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{σ+i , σ−i } in T (S) × T (S) converging to (the projective classes of) (μ+, μ−) in
T (S) × T (S), the sequence of quasi-Fuchsian representations with Ahlfors–Bers
coordinates (σ+i , σ−i ) has a converging subsequence.

Otal gave an alternative proof of this result in [75]. Thurston’s, Morgan–
Shalen’s and Otal’s proofs of Theorems 8.1.1 and 8.1.3 have seen adaptations and
improvements by different authors which led to various generalizations. In this
chapter, we will survey those generalizations and outline the arguments that are
involved in their proofs.

We conclude this introduction with a plan of the chapter. In the second section
we introduce deformation spaces and Thurston’s and Culler–Morgan–Shalen’s com-
pactifications. In Sect. 8.3, we explain Thurston’s and Otal’s proofs of the Double
Limit Theorem. In the following section, we describe Thurston’s and Morgan–
Shalen’s arguments leading to the proof of the compactness of AH(acylindrical)
and its more general version, the Broken Window Only Theorem. Then we explain
how to combine the Broken Window Only Theorem with the proof of the Double
Limit Theorem to get a convergence Theorem for manifolds with incompressible
boundary. In Sect. 8.5, we describe in details progress that led to a general statement
for all compact hyperbolic 3-manifolds, answering a question of Thurston. In
Sect. 8.6, we mention the obstacles encountered when trying to relax the conditions
in the Double Limit Theorem until they are necessary and sufficient. Then we
describe a change of setting, using the curve complex to define such necessary and
sufficient conditions. Lastly in Sect. 8.7, we depict some of the applications of the
theorems listed in this chapter, starting with Thurston’s Hyperbolization Theorem.

8.2 Compactifications of Deformation Spaces

8.2.1 Definitions

8.2.1.1 Deformation Spaces

Let M be a compact n-manifold (we are only interested in the cases n = 2 and 3)
and set G = π1(M). Let D(G) ⊂ Hom(G, Isom+(Hd)) denote the set of discrete
and faithful representations. Given ρ ∈ D(G), the quotient Hd/ρ(G) is a complete
hyperbolic n-manifold homotopy equivalent to M . We equip Hom(G, Isom+(Hd))

(and hence D(G)) with the compact open topology, so that ρn −→ ρ if
ρn(g) −→ ρ(g) for any g ∈ G. This topology is also called the algebraic
topology. Notice that when G is not Abelian, D(G) is a closed subset [30, 38].
The group Isom+(Hd) acts properly discontinuously by conjugacy on D(G) and
the quotient AH(G) is the deformation space of G. AH(G) is also the space of
marked hyperbolic structures (N, h) where N is a complete hyperbolic n-manifold
and h : M → N is a homotopy equivalence, modulo the equivalence relation
(N, h) ∼ (N ′, h′) if there is an isometry ψ : N → N ′ such that h′ is homotopic to
ψ ◦ h.
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When d = 2 and ∂M = ∅, AH(G) = T (M) ∪ T (M) is the union of two copies
of the Teichmüller space of M .

When d = 3, by Thurston’s Hyperbolisation Theorem,AH(G) �= ∅ if and only if
M is irreducible and atoroidal. Let us focus on this case making our way towards the
Ahlfors–Bers coordinates mentioned in the introduction. To simplify the notation
and statements, we will use the same notation for a conjugacy class in AH(G) and
a representative of this conjugacy class and we will assume that M is orientable and
that ∂M contains no tori.

8.2.1.2 Ahlfors–Bers Coordinates

Given ρ ∈ AH(G), the group ρ(G) acts by conformal transformations on Ĉ =
∂∞H3. Let �ρ be the maximal invariant open subset on which this action is properly
discontinuous. We say that ρ is convex cocompact if (H3 ∪ �ρ)/ρ(G) is compact
(this is equivalent to more classical definitions, see [48]). By Marden [48] and
Sullivan [82], ρ is in the interior of AH(G) if and only if it is convex cocompact.
To each component C of int(AH(π1(M))) is associated a pair (N, h) where N is
a compact 3-manifold and h : M → N is a homotopy equivalence (up to an
equivalence relation, see [6], here we only need a representative). Then, for each
ρ ∈ C there is a homeomorphism fρ : N → (Hp3 ∪ �ρ)/ρ(G) such that
(fρ ◦ h)∗ = ρ. Since the only requirement on fρ is (fρ ◦ h)∗ = ρ, the isotopy
class of fρ is uniquely defined up to the action of the group Mod0(N) of isotopy
classes of orientation-preserving homeomorphisms of N that are homotopic to the
identity.

Associating to a each representation ρ ∈ C its conformal structure at infinity
�ρ/ρ(G), we get a map q : C → T (∂N)/Mod0(N). As mentioned in the
introduction, by results of Ahlfors–Bers [3], Bers [8], Maskit [49] and Kra [44],
q is a homeomorphism. We call q(ρ) the Ahlfors–Bers coordinates of ρ. When M

has incompressible boundary, Mod0(M) and Mod0(N) are trivial and C ≈ T (∂N)

is an open ball.
Notice that when M = S × I , M is acylindrical or M is a handlebody,

int(AH(π1(M))) has only one component (corresponding to (M, Id)). The inter-
ested reader may refer to [6] or [4] for an enumeration of the components of
AH(π1(M)) and int(AH(π1(M))) in general.

To study sequences that do not converge in the interior of AH(π1(M)), we want
to describe how their Ahlfors–Bers coordinates diverge in Teichmüller space. This
naturally leads us to introduce Thurston’s compactification.

Before that, let us finish this section with a notation. In a compact connected
n-manifold M , a closed curve γ defines through its free homotopy class a
conjugacy class in the fundamental group that we will also denote by γ . Given
ρ ∈ AH(π1(M)), we denote by �ρ(γ ) the length in Hn/ρ(π1(M)) of the geodesic
γ ∗ρ in the free homotopy class corresponding to ρ(γ ).
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8.2.2 Thurston’s Compactification of Teichmüller Space

Thurston constructed a compactification of Teichmüller space by projective mea-
sured foliations or equivalently projective measured geodesic laminations. We will
adopt the latter since it is better suited to applications and extensions to Kleinians
group. Before proceeding, let us briefly mention that this compactification led to
Thurston’s celebrated classification of surface homeomorphisms ([87, Theorem
2.5], see also [34] or [35]).

A geodesic lamination L on a closed hyperbolic surface S is heuristically a
Hausdorff limit of multi-curves, i.e. disjoint unions of simple closed geodesics. The
actual definition, which follows, encompasses a slightly larger set but in practice we
will only consider such limits. A geodesic lamination is a compact set that is a (non-
empty) disjoint union of complete embedded geodesics. Note that this definition can
be made independent of the choice of metric on S, see [75, Appendice] for example.

A measured geodesic lamination λ consists of a geodesic lamination |λ| and a
transverse measure on |λ|: any arc k ∼= [0, 1] embedded in S transverse to |λ|, such
that ∂k ⊂ S − |λ|, is endowed with a transverse measure dλ such that:

– the support of dλ|k is |λ| ∩ k;
– if an arc k′ can be homotoped to k by a homotopy preserving |λ| then∫

k
dλ = ∫

k′ dλ.

The simplest case of measured geodesic laminations is a weighted simple closed
geodesic δc, i.e. a simple closed geodesic c equipped with a transverse Dirac
measure with weight δ. Weighted multi-curves are dense in the space ML(S) of
measured geodesic laminations equipped with the weak∗ topology. Thus measured
geodesic laminations can simply be viewed as limits of weighted multi-curves.

Given a hyperbolic metric on S, and hence a faithful and discrete representation
ρ : π1(S) → PSL2(R), the length of a weighted simple closed geodesic δc, is
defined by homogeneity: �ρ(δc) = δ�ρ(c). Then the length of a weighted multi-
curve is simply the sum of the length of its weighted leaves and the length of a
measured geodesic lamination is defined by taking limits of lengths of weighted
multi-curves. Alternatively, given a measured geodesic lamination μ, we may pick
a family k of arcs transverse to its support |μ| so that the components of |μ| − k

are arcs with bounded lengths. Then the length of μ is computed by integrating
the lengths of these arcs over the transverse measure. It turns out that these two
definitions are equivalent and it follows from this equivalence that the definition
using limit of sequences of weighted multi-curves is independent of the choice of
the sequence.

Given a simple closed geodesic c and λ ∈ ML(S), the intersection number
i(c, λ) is the total weight of the measure on c when c is transverse to λ and is 0
otherwise, i.e. when c lies in or is disjoint from the support of λ. This extends to
weighted simple closed geodesics by homogeneity: i(δc, λ) = δi(c, λ), to weighted
multi-curves by additivity and then to measured geodesic laminations by continuity.
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There is a natural action of R∗+ on ML(S) obtained by multiplying the measure
and the space PML(S) of projective measured geodesic laminations is the quotient
of ML(S)− {0} under this action.

Thurston uses the intersection number to define a compactification of Teich-
müller space by projective measured geodesic laminations ([83, Theorem 2.2]):

Theorem 8.2.1 (Laminations Compactify Teichmüller Space) The union
T (S) = T (S) ∪ PML(S) has a natural topology homeomorphic to a closed
ball.

In this topology, a sequence {ρi} of representations in T (S) converges to a
lamination [μ] ∈ PML(S) if and only if there is a sequence {μi} −→∞ (i.e. there
is an arc k with

∫
k
dμi −→∞) of measured laminations converging projectively to

μ such that for all μ′ ∈ ML(S) for which i(μ′, μ) �= 0,

lim
i−→∞

�ρi (μ
′)

i(μi, μ′)
= 1.

Furthermore, �ρ0(μi) −→∞ but �ρi (μi) remains bounded.
Moreover, there is a constant C such that

i(μ′, μi) ≤ �ρi (μ
′) ≤ i(μ′, μi)+ C�ρ0(μ

′). (8.1)

The first part of the statement defines the compactification of Teichmüller space
by projective measured geodesic lamination. The general idea is that if a sequence
eventually stays outside every compact set, the lengths of some closed geodesics
go to infinity: the metric is stretched. Since the area is bounded, locally, the metric
is stretched only in one direction, transversely to a measured geodesic lamination

μi so that limi−→∞
�ρi (μ

′)
i(μi,μ

′) = 1. We may then extract a projectively converging
subsequence from the sequence {μi}.

Formula (8.1) gives a more precise and uniform approximation. This uniformity
can be used to prove a convergence result for surfaces in the spirit of the Double
Limit Theorem (compare with Theorem 8.3.2). We say that two measured geodesic
laminations γ, λ bind S if i(γ, ν)+ i(λ, ν) > 0 for any non-trivial ν ∈ML(S).

Theorem 8.2.2 Let S be a closed surface and let μ± be two measured geodesic
laminations that bind S. Let {μ±i } be two sequences of weighted multi-curves
converging μ±. Then any sequence {ρi} ⊂ T (S) such that {�ρi (μ

+
i )} and {�ρi (μ

−
i )}

are bounded has a converging subsequence.

Proof If {ρi} does not have a converging subsequence then it has a subsequence
converging to a projective measured geodesic lamination [ν]. Theorem 8.2.1
provides a sequence {νi} −→ ∞ converging projectively to ν, i.e. {εiνi} converges
to ν for a sequence εi −→ 0, such that the inequalities (8.1) are satisfied. Since
μ+ and μ− bind S, i(μ+, ν) + i(μ−, ν) > 0, say i(μ+, ν) > 0. By continuity
of the intersection number, i(μ+i , νi ) −→ ∞. Now inequality (8.1) contradicts the
assumption that �ρi (μ

+) is bounded. !�
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8.2.3 Culler–Morgan–Shalen’s Compactification

A different point of view on the compactification of deformation spaces, using
methods from algebraic geometry, was introduced by Culler and Shalen in [32]
and then further developed by Morgan and Shalen [57, 59] and [60]. In particular,
in [57] and [55] (see also [58]), Morgan and Shalen use valuations to compactify
deformation spaces for hyperbolic manifolds in any dimension. The added points
are actions on �-trees from which one easily extracts an action on a real tree
(more details about these below). By a result of Skora, [79], (small minimal)
actions of surface groups on real trees are dual to measured geodesic laminations.
Thus, in dimension 2, Thurston’s and Culler–Morgan–Shalen’s compactification of
Teichmüller spaces are equivalent.

In [9, 77] and [29], Bestvina, Paulin and Chiswell give an alternative and more
geometric approach (with some variations) to Culler–Morgan–Shalen’s compact-
ification by actions on real trees. Let us sketch the ideas behind that geometric
approach.

Consider a sequence of faithful and discrete representation ρi : G → Isom(Hd)

of a non-Abelian finitely generated group G and set Ki = inf
x∈Hd

{max
g∈S d(x, gx)}

for a finite generating set S ⊂ G. Since ρi(G) is discrete and non-Abelian, Ki is
a minimum reached at some point xi . Up to conjugating ρi , we may assume that
xi = O . The sequence {ρi} stays in a compact subset of the deformation space if
and only if Ki is bounded. When Ki goes to infinity, one rescales Hd by multiplying
the distances by K−1

i so that the action of ρi(S) on K−1
i H

d is bounded. In H
d ,

geodesic triangles are δ-thin, in the sense that any edge lies in a δ-neighbourhood
of the other two (with δ = log 2). When we rescale the metric, the triangles become
K−1

i δ-thin with K−1
i δ −→ 0, so that they look more and more like tripods as i

goes to ∞. One then just needs the appropriate formalism to find a subsequence
such that the action of ρi(G) on K−1

i H
n tends in some way to an action on a

geodesic metric space where every geodesic triangle is a tripod. Such a space is
called a real tree, a generalisation of simplicial trees that allows more flexibility on
the vertices (they can accumulate or form a continuum). The convergence “in some
way” is made formal by using the pointed Gromov–Hausdorff topology and either
sequences of expanding finite subsets of G (as in [9] and [77]) or ultra-filters ([29],
see also [39, chapter 9]). Thus we have extracted a subsequence of ρi converging
to an action of G on a real tree. Up to taking a substree, the action can be assumed
to be minimal, i.e. there is no invariant subtree. Furthermore, one can deduce from
Margulis’ Lemma that the action is small, i.e. edge stabilizers are Abelian. Notice
that if we choose a different generating set S, we may get a different sequence Ki

and the limiting tree may differ by a homothety.
As mentioned above, in dimension 2, the compactification by actions on real

trees is equivalent to Thurston’s compactification by projective measured geodesic
laminations. This identification goes through the dual tree Tλ to a measured
geodesic laminations λ ∈ ML(S). To define Tλ, we first replace the closed leaves by
foliated neighbourhoods so that the transverse measure has no atoms. The preimage
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λ̃ ⊂ H
2 of λ under the covering projection H

2 → S defines a partition P of H2

into closed sets. An element of P is either the closure of a component of H2 − |λ|
or a leaf of |λ| which is not in the closure of such a component. The transverse
measure defines a distance on P turning it into a real tree Tλ and the action of π1(S)

on H
2 = S̃ induces an action on Tλ. Notice that by the theorem of Skora [79],

any small minimal action of π1(S) on a real tree is dual to a measured geodesic
lamination.

If a sequence of representations ρi : π1(S) → PSL(2,R) converges in
Thurston’s compactification to a (projective) measured geodesic lamination μ, then
{ρi} also converges in Culler–Morgan–Shalen’s compactification to the action of
π1(S) on Tμ. A simple way to see the unity of these two compactifications is to
look at translation lengths and intersection numbers. Given an action of a group
G on a real tree T and g ∈ G, define its translation distance by δT (g) =
inf{d(x, gx)|x ∈ T }. By Culler and Morgan [31], a minimal action of G by
isometries on a real tree is uniquely defined by the function δ : G → R

+. If c

is a simple closed curve on S and if we also denote by c the corresponding element
of π1(S), then we have δTμ

(c) = i(μ, c). Now in Thurston’s compactification, we
have εi −→ 0 such that εi�ρi (c) −→ i(c, μ) while in Culler–Morgan–Shalen’s, we
have εi�ρi (c) −→ δT (c). Hence T is dual to μ.

8.3 The Double Limit Theorem

In this section, we will describe Thurston’s and Otal’s proofs of the Double Limit
Theorem. Let us first recall its statement.

Theorem 1.3 Let S be a closed surface and let μ+, μ− be two measured geodesic
laminations that bind S. Then for any sequence {(σ+i , σ−i )} in T (S)×T (S) converg-
ing to (μ+, μ−) in T (S) × T (S), the sequence of quasi-Fuchsian representations
with Ahlfors–Bers coordinates (σ+i , σ−i ) has a converging subsequence.

The first step in both proofs consists in establishing a link between the lengths of
curves with respect to the conformal structures at infinity and their lengths inside the
quotient 3-manifold. Let ρ : π1(S) → PSL2(C) be a quasi-Fuchsian representation
with Ahlfors–Bers coordinates (i.e. conformal structures at infinity) (σ+, σ−) ∈
T (S) × T (S). Given a closed curve γ ⊂ S, let �σ+(γ ), resp. �σ−(γ ), denote the
length of the geodesic in the homotopy class of γ with respect to the metric σ+,
resp. σ−. Let also �ρ(γ ) denote the length of the geodesic of H3/ρ(π1(S)) in the
homotopy class defined by γ .

Lemma 8.3.1 We have: �ρ(γ ) ≤ 2 inf{�σ+(γ ), �σ−(γ )}.
This statement, which is a reformulation of [7, Theorem 3], follows also from

the work of Ahlfors [2] (see [75, Lemma 5.1.1]).
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If a sequence σ±i converges to a lamination μ±, then by Theorem 8.2.1, there
is a sequence of measured laminations μ±i converging projectively to μ± such
that �σ±i

(μi) remains bounded. Since weighted multi-curves are dense in ML(S),

we can assume that μ±i is a multi-curve for any i. Combining this observation
with Lemma 8.3.1, Theorem 8.1.3 reduces to the following generalization of
Theorem 8.2.2:

Theorem 8.3.2 Let S be a closed surface and let μ+, μ− be two measured
geodesic laminations that bind S. Let {μ+i }, {μ−i } ⊂ ML(S) × ML(S) be two
sequences of weighted multi-curves converging respectively to μ+ and μ−. Then
any sequence {ρi} ⊂ AH(π1(S)) such that {�ρi (μ

+
i )} and {�ρi (μ

−
i )} are bounded

has a converging subsequence.

8.3.1 Thurston’s Arguments: Efficiency of Pleated Surfaces

Thurston’s approach to prove the Double limit Theorem is to project the 3-manifold
to an immersed surface especially constructed so that the induced distortion on the
metric is controlled and thus reduce the problem to the 2-dimensional case. This
is done through the “Efficiency of Pleated Surfaces” Theorem which allows one
to estimate the lengths of geodesics in the 3-manifold based on the length of their
representatives on some surfaces specifically immersed in it. These surfaces are
pleated surfaces, namely the immersions have totally geodesic image except on a
geodesic lamination called the pleating locus. Such a pleated surface is locally ruled
and the induced metric is hyperbolic. For example, let us pick a finite maximal
lamination λ ∈ ML(S), and a representation ρ ∈ int(AH(π1(S))). A surface fλ :
S → Nρ = H3/ρ(π1(S)) pleated along λ always exists, it maps the leaves of λ to
geodesics and the complementary regions to geodesic triangles.

Theorem 8.3.3 (Efficiency of Pleated Surfaces, [87, Theorem 3.3]) Let S be a
closed surface. For any ε > 0, there is a constant C < ∞ such that the following
holds:

• Let λ be any finite maximal lamination on S.
• Let ρ be any element of int(AH(π1(S))) such that no closed leaf of λ has length

less than ε in Nρ = H3/ρ(π1(S)), and let fλ : S → Nρ be a surface which is
pleated along λ.

• Let μ ∈ ML(S) be a measured geodesic lamination.

Then

�ρ(μ) ≤ �fλ(μ) ≤ �ρ(μ)+ Ca(λ,μ).
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We will describe the alternation number a(λ, .) in the sketch of the Proof of
Theorem 8.3.3. For the proof of the Double Limit Theorem we only need to know
that a(λ, .) is finite and continuous [84, Proposition 3.2].

Before describing the Proof of Theorem 8.3.3, let us explain how it is used to
conclude the Proof of Theorem 8.3.2 (and hence of the Double Limit Theorem).
First, Thurston produces a curve c (actually infinitely many such curves, see [87,
Corollary 4.3]) which is not too short in any of the manifolds Ni = H3/ρi(π1(M))

(up to extracting a subsequence), i.e. �ρi (c) ≥ ε for all i and a constant ε that
depends only on S. Adding spiraling leaves, c can easily be extended to a maximal
lamination λ with no closed leaf except for c. Then there is a unique pleated surface
fλ,i : S → Ni which maps each component of S−λ to a geodesic triangle. Applying
Theorem 8.3.3, we get that both {�fλ,i (μ

+
n )} and {�fλ,i (μ

−
n )} are bounded (see also

[87, Theorem 4.4]). By Theorem 8.2.2, the metric induced by fλ,i stays in a compact
set. It follows that for any closed curve d on S, �ρi (d) ≤ �fλ,i (d) is bounded and
that the sequence {ρi} has a converging subsequence.

Sketch of the Proof of Theorem 8.3.3 These inequalities need only be proved for
simple closed curves. Then they holds for weighted multicurves and extend to
measured lamination by continuity of the length function [14] and of the alternation
number [84, Proposition 3.2]. The left hand inequality is obvious so we focus on the
right hand one.

Let d ⊂ S be a closed geodesic for the metric induced by fλ. Approximate d on S

by a piecewise geodesic curve p made up of segments in λ and small jumps between
those segments. To ensure that the jumps are small, we pick successive segments in
asymptotic leaves of λ, and to have a control on the number of segments we pick
non-successive segments in non-asymptotic leaves. The number of segments is then
the number a(λ, d) of times the direction of asymptoticity of the leaves of λ changes
as one goes around d .

Next, consider a simplicial annulus A joining fλ(p) to the geodesic d∗ ⊂ Nρ in
the homotopy class of fλ(d) and fix δ > 0. From each point x ∈ fλ(p) draw in A

an arc Ax orthogonal to fλ(p) which either has length δ or hit ∂A before reaching
that length. By the Gauss–Bonnet formula, the contribution to the length of fλ(p)

of the points x for which Ax has length δ, Ax hits d∗ or x is close to a corner is
at most �N(d) + O(a(λ, d)). For the remaining points, Ax is a shortcut in N , and
the Uniform Injectivity Theorem (Theorem 8.3.4 below) says that there is a shortcut
in S joining the preimage of the endpoints of Ax . It is not difficult to ensure in
the construction of p that there are not too many such shortcuts. Thus we get C

depending only on S and ε such that �fλ(d) ≤ �fλ(p) ≤ �N(d)+ Ca(λ, d).
To have a complete overview of the proof, it remains to examine the Uniform

Injectivity Theorem. Given a differentiable manifold N , let PN denote the tangent
line bundle.

Theorem 8.3.4 (Uniform Injectivity, [84, Theorem 5.7]) Let ε0 > 0 and let S

be a closed surface. Given a representation ρ ∈ AH(π1(S)), a pleated map f :
S → Nρ = H

3/ρ(π1(S)) which induces ρ and a lamination λ ⊂ S which is
mapped geodesically by f , denote by g : λ → PMρ the canonical lifting. There is
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δ0 > 0 depending only on ε0 and S such that for any two points x and y ∈ λ whose
injectivity radii are greater than ε0, if df (x, y) ≥ ε0 then dNρ (f (x), f (y)) ≥ δ0.

The uniformity comes from a limit argument. Thurston first shows that g is
injective [84, Theorems 5.5 and 5.6] by contradiction. A non injective map g would
map two leaves of λ to the same geodesic and hence their closures to the same
set. This would produce two non-homotopic simple closed curves c1, c2 ⊂ S with
the same image under f . This would contradict the assumption that f induces
ρ. From the injectivity he then goes to the uniform injectivity by establishing the
compactness of pleated surfaces (in the appropriate topology). !�

8.3.2 Otal’s Proof: Real Trees and δ-Realization of Train
Tracks

In his book on Thurston’s Hyperbolization Theorem for manifolds which fiber over
the circle, Otal introduces a different strategy to prove the Double Limit Theorem. It
goes by contradiction, using the Culler–Morgan–Shalen compactification by actions
on real trees (the geometric approach as described in Sect. 8.2.3). The idea is to
approximate geodesic laminations in H3/ρi(π1(S)) by piecewise geodesic arcs with
the geodesic pieces belonging to a finite set of homotopy classes which do not
depend on i. The convergence to an action on a real tree allows us to estimate the
behavior of the length of those geodesic arcs and then the behavior of geodesic
laminations. These alternative arguments require an additional hypothesis:

Theorem 8.3.5 Let S be a closed surface and let μ+, μ− be two minimal measured
geodesic laminations that bind S. Let {μ+i , μ−i } be two sequences of weighted
multi-curves converging in the Hausdorff topology to almost minimal laminations
containing μ+ and μ− respectively. Then any sequence {ρi} ⊂ AH(π1(S)) such
that {�ρi (μ

+
i )} and {�ρi (μ

−
i )} are bounded has a converging subsequence.

A geodesic lamination is minimal if any leaf is dense and almost minimal if it
is made up of one minimal lamination μ and finitely many leaves accumulating on
μ. Notice that if μ+ and μ− have simply connected complementary regions (for
example when they are stable laminations of pseudo-Anosov mapping classes), we
could equivalently request that {μ+i } and {μ−i } converge projectively to projective
laminations supported by |μ+| and |μ−|. In particular Theorem 8.3.5 is sufficient
for the proof of the Hyperbolization Theorem.

As mentioned earlier, the proof goes by contradiction. We consider a sequence
{ρi} ⊂ AH(π1(S)) of quasi-Fuchsian representations tending to a small minimal
action of π1(S) on a (projective) real tree T . Namely, there is εi −→ 0 such that
the action of ρi(π1(S)) on εiH

3 tends to the action of π1(S) on T . By Skora’s
Theorem [79], this action is dual to a (projective) measured lamination ν. Since
μ+ and μ− bind S, at least one crosses ν, say i(μ+, ν) > 0, and denote by μ+h
the Hausdorff limit of {μ+i }. The next step in the proof consists in constructing a
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train track carrying μ+h (and hence μ+i for i large enough), using a segment of ν

that crosses μ+ as its unique switch. Before that, let us take a short break to review
some definitions.

A (fattened) train track on a compact surface S is a finite family of rectangles
which intersect only at their vertical sides. A connected component of the union of
the vertical sides is called a switch and such switches are required to be embedded
arcs. This is a fattened version of the train tracks defined by Thurston in [86] (see
also Penner and Harer [78]. The rectangles come with a vertical and a horizontal
foliations. To carry the metaphor further, let us call rail a line made up of horizontal
fibers and tie a leaf of the vertical foliation. A geodesic lamination is carried by a
train track if (up to isotopy) it lies in the train track and is transverse to the ties.

Picking a segment κ ⊂ |ν| that crosses μ+ and grouping the component of |μ+|−
κ by homotopy classes, Otal constructs a train track R carrying μ+h with κ as its
only switch. The fact that T is dual to ν naturally produces a π1(S)-equivariant map
fν : H2 → T . By construction, this map fν is monotonous on the preimage of the
rails of R and not constant on any rectangle. Otal uses this observation to turn fν

into a realization of R, i.e. a map f that is injective when restricted to a lift of a
rail. Then f is also a realization of any geodesic lamination λ carried by R, i.e. it is
injective when restricted to a leaf of the preimage of λ.

Let R̃ ⊂ H2 be the preimage of R and let κ̃ ⊂ R̃ be a lift of κ (the switch
of R). Recall that the action ρi(π1(S)) on εiH

3 tends to the action of π1(S) on T
and consider a sequence of points pi ∈ H3 tending to p = f (κ̃). Consider the ρi -
equivariant map Fi : R̃ → H3 that maps κ̃ to pi and each rectangle to a geodesic
segment. For any rectangle R̃, εi�(Fi(R̃)) converges to the positive length of f (R̃).
It follows that for any geodesic l carried by R, F(l̃) is made up of long geodesic
segments. But we cannot guarantee that F(l̃) is a quasi-geodesic since we have no
control on the angle between two successive geodesic segments.

In the last step of the proof, Otal changes the train track R by a subdivision
operation, producing a new train track R′ carrying μ+h and a ρi-equivariant map

F ′
i : R̃′ → H3 which maps rectangles to long segments such that the angles between

two successive segments are close to π . Then for i large enough and for any closed
curve c carried by R, the projection of F ′i (c̃) to H3/ρi(π1(S)) is a quasi-geodesic
and its length is close to the length of the geodesic c∗i ⊂ H3/ρi(π1(S)) in the same
homotopy class. Thus the length of c∗i is approximated by the sum of the lengths of
the images of the rectangle of R it goes through and we get:

εi�ρi (c
∗
i ) ≥ K�s0(c).

where �s0 is the length for a fixed reference hyperbolic metric on S, a simple way
to roughly evaluate the number of rectangles through which c goes, K is a constant
that depends only on R and the inequality holds for i large enough and for any
closed curve carried by R.

In particular, we have �ρi (μ
+
i ) −→∞ which is the desired contradiction.
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Remark 8.3.6 The assumption that μ±h is almost minimal was used in two
instances:

– to deduce that μ+h is carried by a train track R realized in T from the assumption
that λ intersects μ and

– to construct a train track R with only one switch carrying μ+h .

The fact that R has only one switch simplifies the construction but removing
that constraint would only add more technicalities, whereas R being realized (or
equivalently μ+h being realized) is required to end up with a piecewise geodesic
curve made up of long segments with incident angles close to π .

Thus we could relax the assumption on μ± being almost minimal as long as we
can guarantee that μ+h or μ−h is realized in any dual tree.

We could also put aside Skora’s Theorem and dual laminations and start from the
assumption that μ+ is realized in T . Proceeding with the same arguments from that
point on leads to:

Theorem 8.3.7 (Continuity Theorem) Let M be a compact atoroidal 3-manifold
and {ρi} ⊂ AH(π1(M)) be a sequence tending to a small minimal action of π1(M)

on a real-tree T . Let εi −→ 0 be such that ∀g ∈ π1(M), εiδρi (g) −→ δT (g)

and let μ ⊂ ∂M be a geodesic lamination which is realized in T . Then there exists
a neighborhood V(μ) of |μ|, and constants K, i0 such that for any simple closed
curve c ⊂ V(μ) and for any i ≥ i0,

εilρi (c
∗) ≥ Kls0(c).

8.4 Manifolds with Incompressible Boundary

Next, we will consider Kleinian representations of fundamental groups of 3-
manifolds with incompressible boundary, starting with acylindrical manifolds. Let
us recall that an essential disc, annulus or torus is an incompressible properly
embedded disc, annulus or torus that is not boundary parallel, i.e. cannot be
homotoped relative to its boundary in ∂M . A compact 3-manifold is atoroidal if
it does not contain any essential torus and is acylindrical if it does not contain any
essential disc, torus or annulus.

Before discussing the compactness of AH(acylindrical), let us outline the
importance of acylindrical manifolds in the topology of 3-manifolds. For this
purpose, we introduce the theory of the characteristic submanifold (or JSJ decom-
position). To give a general idea let us say that the characteristic submanifold � of a
compact 3-manifold with incompressible boundary is the smallest submanifold that
contains all the essential tori, Klein bottles, annuli and Möbius bands up to isotopy
(a precise definition can be found in [36] and [37], see also [12, Theorem 3.8]).
Its existence and uniqueness (up to isotopy) has been established independently by
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Jaco–Shalen [36] and Johannson [37]. We are only interested in orientable atoroidal
3-manifolds, in which case the components of � are essential I -bundles, solid tori
and thickened tori. The solid tori and thickened tori are only required to intersect
∂M along a collection of disjoint annuli and tori, which is why they are not viewed
as essential I -bundles. The components of M − � are acylindrical relative to ∂M ,
i.e. if W is the closure of a component of M − � and ∂0W = W ∩ ∂M then any
annulus (A, ∂A) ⊂ (W, ∂0W) can be homotoped in ∂W relative to its boundary. A
relative version of this theory produces a characteristic submanifold relative to an
incompressible subsurface ∂0M ⊂ ∂M of the boundary (see [59, §IV.4.]), it contains
all the essential annuli (A, ∂A) ⊂ (M, ∂0M). This will be especially interesting
in the next section where we will consider more general 3-manifolds since ∂M is
allowed to be compressible as long as ∂0M is incompressible.

Let us draw a simple conclusion from this dense paragraph: a compact orientable
atoroidal 3-manifold with incompressible boundary is made up of I -bundles,
(relative) acylindrical submanifolds and submanifolds with abelian fundamental
groups. Since we have already studied deformations of hyperbolic I -bundles in the
previous sections, it now seems natural to follow up with acylindrical manifolds.

Theorem 1.1 (AH(acylindrical) Is Compact) If M is any compact acylindrical
3-manifold with boundary, then AH(π1(M)) is compact.

This result is due to Thurston, [84, Theorem 1.2], and then was proved by
Morgan–Shalen, [60, Theorem V.2.1] with very distinct ideas and tools. Their
overall strategies also differ: Thurston first proves Theorem 8.1.1 in [84] and
later introduces new arguments (in [88]) to extend of the proof to a more general
setting whereas Morgan and Shalen directly prove a general statement in [60] and
deduce Theorem 8.1.1 as a special case. Both strategies still lead to comparable
generalizations, which essentially state the following: for a compact atoroidal 3-
manifold M with incompressible boundary, a sequence in AH(π1(M)) can only
degenerate on the fundamental group of the characteristic submanifold.

8.4.1 Thurston’s Proof and Generalizations: Degenerating
Simplices and Broken Windows

Following the chronological order, let us first outline Thurston’s Proof of Theo-
rem 8.1.1. Consider a sequence of maps fi : M → Mi = H3/ρi(π1(M)) mapping
a fixed triangulation of M minus the vertices to ideal simplices so that the restriction
to the boundary is a pleated surface. We separate the simplices of the triangulation of
M into two families �b and �∞ depending on whether the geometry of fi remains
bounded or goes to infinity. Thurston deduces then from the Uniform Injectivity
Theorem that a neighbourhood of the interface between these two families has
boundary with small area and hence with Abelian fundamental group. It follows
then from topological considerations that �b carries the fundamental group. Thus
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the sequence {ρi} is bounded. In a subsequent paper, [88], Thurston uses the same
argument to establish a relative compactness Theorem:

Theorem 8.4.1 (Relative Boundedness, [88, Theorem 3.1]) Let M be a 3-
manifold, and γ a doubly incompressible multicurve on ∂M . Then for any constant
A > 0, the subset of AH(π1(M)) such that the total length of γ does not exceed A

is compact.

We say that a multi-curve on the boundary of a compact 3-manifold is doubly
incompressible if it intersects the boundary of any essential disc or annulus (this is
a special case of Thurston’s original definition [88, p. 10] where S = ∂M and f is
the inclusion).

Since ∂M is not assumed to be incompressible, the Uniform Injectivity Theorem
may not apply under the assumptions of Theorem 8.4.1 (we will give more insight
on this issue in the next section). To overcome this difficulty Thurston extends the
Uniform Injectivity Theorem at the price of loosing some of its uniformity: the
constant δ depends also on a doubly incompressible multicurve γ that must be
contained in the pleating locus and on a bound on the length of this multicurve.
Once this is established, the Proof of Theorem 8.4.1 follows the same outline as the
Proof of Theorem 8.1.1.

Thurston uses Theorem 8.4.1 for a final generalization of Theorem 8.1.1: the
Broken Windows Only Theorem. He uses a slight variation on the characteristic
submanifold made up only of I -bundles which he calls the windows: he does not
take the solid tori and thickened tori and replace them with a collection of thickened
annuli. In his usual picturesque style, Thurston derives the name from the idea that
if the manifold was made of glass, the window would be the part through which
one could see without distortion. He shows that for a sequence in AH(π1(M)),
degenerations can only happen on the fundamental group of the window, hence
carrying the metaphor further: “ only the window breaks”.

Theorem 8.4.2 (Broken Windows Only, [88, Theorem 0.1]) If � ⊂ π1(M) is
any subgroup which is conjugate to the fundamental group of a component of
M − window(M), then the set of representations of � in Isom(H3) induced from
AH(π1(M)) are bounded, up to conjugacy.

The window is an I -bundle over a (usually disconnected) compact surface S

called the window base (denoted wb above). Its boundary ∂S is the window frame.
The Broken Windows Only Theorem is deduced from Theorem 8.4.1 and a

uniform bound on the length of the window frame:

Theorem 8.4.3 (Window Frame Bounded, [88, Theorem 1.3]) For any manifold
M with incompressible boundary, there is a constantC such that among all elements
ρ ∈ AH(π1(M)), the length in Nρ of ∂wb(M) is bounded.

Thurston’s Proof of Theorem 8.4.3 ([84], see also the appendix of [55]) uses the
area growth rate of branched pleated surfaces. An alternate proof using the Uniform
Injectivity Theorem appeared in [20, Appendix].
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In [87], the Broken Windows Only Theorem (Theorem 8.4.2) has a second part,
generalizing a previous result of Thurston on surface groups ([87, Theorem 6.2]),
and setting up the existence of sequences of maximal convergence and subman-
ifolds of maximal convergence. But, as observed by Ohshika, the Convergence
on Subsurfaces Theorem, [87, Theorem 6.2], does not extend to manifolds with
incompressible boundaries as described by Thurston (see the example in [71, §5.3]).
On the other hand, Canary et al. [28, Theorem 5.5] observed that one may remark
the representations and extract a subsequence so that it converges on most of M:

Theorem 8.4.4 ([21, Theorem 2.8]) Let M be a compact 3-manifold with incom-
pressible boundary and consider a sequence {ρi} ⊂ AH(π1(M)) of representation
uniformizing M . Then after passing to a subsequence, there is a collection B of
essential annuli and a sequence of homeomorphisms φi : M → M each supported
on window(M) such that

(1) lim �ρn◦(φn)∗(c) = 0 for any simple closed c ⊂ ∂B and
(2) {ρn ◦ (φn)∗} converges on the fundamental group of each component of M −B.

The proof of the last statement combines the Broken Windows Only Theorem,
the Efficiency of Pleated Surfaces and Mumford Compactness Theorem ([62], see
also [28, Proposition 5.6]).

8.4.2 Morgan and Shalen’s Arguments: Trees
and Codimension-1 Laminations

Morgan and Shalen start in a very general setting by considering a compact
irreducible 3-manifold M and an incompressible subsurface of its boundary ∂0M ⊂
∂M . They associate to each small minimal action of π1(M) on a real tree T a
measured codimension 1 lamination L ⊂ M and a morphism between its dual tree
TL and T . This morphism may not be injective: it may fold, i.e. map two adjacent
segments onto one. This possible lack of injectivity cannot be overcome in general
since there are small minimal actions of fundamental groups of compact atoroidal
3-manifolds on real trees which are not dual to any codimension 1 laminations (see
[71]). A morphism is still enough to guarantee that the fundamental group of every
component of M − L has a fixed point in T . In a previous work [59], Morgan and
Shalen have shown that such a lamination sits (up to some surgeries and isotopies)
in the characteristic submanifold relative to ∂M − ∂0M . This leads to the following
statement:

Theorem 8.4.5 ([60, Theorem IV.1.2]) Let M be a compact irreducible 3-
manifold, let ∂0M ⊂ M be an incompressible subsurface and let � ⊂ M be
the characteristic submanifold relative to ∂0M . Let π1(M) × T → T be a small
action on a real tree and suppose that for any component Z of ∂M − ∂0M , π1(Z)

has a fixed point. Then for each component C of M − �, the group π1(C) has a
fixed point in T .
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When M is acylindrical, the characteristic submanifold is empty and it follows
from this statement that there is no small minimal action of π1(M) on a non-trivial
real tree. Then the conclusion of Theorem 8.1.1 follows from Culler–Morgan–
Shalen’s compactification of the deformation space.

Let us add that a more general result about splitting of groups acting on real
trees (from which Theorem 8.4.5 can be deduced) has been obtained by Rips, using
combinatorial methods instead of topological arguments, see [10] and [39, §12].

8.4.3 Mixing the Arguments

Theorems 8.4.5 and 8.4.2 both tell us that to bound a sequence of representations
ρi ∈ AH(π1(M)) it suffices to bound its restriction to the fundamental group of
the window. Using this observation, we will extend the Double Limit Theorem
to manifolds with incompressible boundaries. Let us first set up a property of
laminations on ∂M that will play the role of the binding property in the Double
Limit Theorem. We say that a measured lamination λ ∈ML(∂M) on the boundary
of a manifold with incompressible boundary is acylindrical if there is ε > 0 such
that i(λ, ∂A) ≥ ε for any essential annulus A ⊂ M . As observed by Bonahon–Otal
[13], when M is not an I -bundle, it is equivalent to require that i(λ, ∂A) > 0 for
any essential annulus A ⊂ M .

Theorem 8.4.6 Let M be a compact hyperbolizable 3-manifold with incompress-
ible boundary, let C be a connected component of int(AH(π1(M))) containing a
representation uniformizing M and let μ ∈ML(∂M) be an acylindrical measured
geodesic lamination. Then for any sequence {σi} in T (∂M) converging to μ in
T (∂M), the sequence of convex cocompact representations in C with Ahlfors–Bers
coordinates σi has a converging subsequence.

Using Lemma 8.3.1, the hypothesis on {σi} can be replaced with a bound on
the length of a sequence of weighted multi-curves converging to μ. The resulting
statement can then be established using Theorem 8.4.2 and the arguments explained
in Sect. 8.3.1. If we add the assumption that the limit is almost minimal (see
Remark 8.3.6), we can also build a proof on Theorem 8.4.5 and Otal’s arguments
(compare with [13, Lemme 14]). Let us mix the two approaches to provide an
alternative and fairly short proof (see also [66, Theorem 3.7] and [69, Theorem
3.1] for different mixes of those arguments).

Proof As in the proof of the Double Limit Theorem, we use Theorem 8.2.1 and
Lemma 8.3.1 to obtain a sequence of weighted multi-curves μi ∈ ML(∂M) such
that μi −→ μ and {�ρi (μi)} is bounded (compare with the beginning of Sect. 8.3).

As we have seen in Sect. 8.2.3, if ρi has no converging subsequence then a
subsequence converges to a small minimal action on a real tree T , namely there
is εi −→ 0 such that εi�ρi (c

∗) −→ δT (c) for any closed curve c ∈ M . For each
component S of ∂M with negative Euler characteristic, since M has incompressible
boundary, the map i∗ : π1(S) → π1(M) induced by the inclusion provides us with
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a small action of π1(S) on T . We can apply Skora’s Theorem [79] to the minimal
invariant subtree TS ⊂ T to get a dual lamination νS .

Building a pleated surface fλ,i : S → Ni = H3/ρi(π1(M)) with
a pleating locus that never gets too short (as explained in the Proof of
Theorem 8.3.2), we get from the Efficiency of Pleated Surfaces (Theorem 8.3.3)
�ρi (d) ≤ �fλ,i (d) ≤ �ρi (d)+ Ca(λi, d) for any simple closed curve d ⊂ S. In
particular εi�fλ,i (d) −→ δT (d) = δTS (d). It follows that the metric induced
by fλ,i converges to νS in Thurston’s compactification. In particular, there is a
sequence {νi} −→ ∞ of measured laminations converging projectively to ν such
that i(γ, νi) ≤ �fλ,i (γ ) ≤ i(γ, νi)+C′�f0(γ ) for any measured lamination γ on S.
Combining these inequalities with the Efficiency of pleated surfaces, we get

i(γ, νi)− Ca(λi, γ ) ≤ �ρi (γ ) ≤ i(γ, νi)+ C′�f0(γ ). (8.2)

Set ν = ⋃
S⊂∂M νS and denote by S(ν) its minimal supporting surface. Let

F ⊂ ∂M be an essential subsurface. It follows from the definition of ν that π1(F )

has a fixed point in T if and only if F is disjoint from S(ν) (up to isotopy). It
follows then from [60, Theorem IV.1.2] that there is a collection �ν of essential
I -bundles, solid tori and thickened tori such that S(ν) = ∂� ∩ ∂M . Assuming
that M is not an I -bundle, consider an essential annulus A ⊂ ∂�. By assumption,
i(∂A,μ) > 0. This is possible only if i(μ, ν) > 0. Then we get i(μi, νi) −→ ∞
and �ρi (μi) −→∞ by inequality (8.2). This contradiction concludes the proof. !�

8.5 Manifolds with Compressible Boundary

In the previous section we saw that with some additional work, an analogue of
the Double Limit Theorem could be established for manifolds with incompressible
boundary. To prove a similar result in full generality, we need to consider manifolds
with compressible boundary. As we will see in this section, some of the results that
were crucial in each proof either are not known in this level of generality or fail to
be true.

The first step in both Thurston’s and Otal’s proof was Lemma 8.3.1 and an
essential hypothesis in its proof (see [7, Theorem 3] and [75, Theorem 5.1.1]) is
that the domain of discontinuity is simply connected. Canary first overcame this
issue in [26] by using new arguments and allowing the multiplicative constant to
depend on the injectivity radius of the domain of discontinuity.

Theorem 8.5.1 ([26]) Given A > 0, there exists R such that, if � is a nonelemen-
tary Kleinian group such that every geodesic in D� has length (in the Poincaré
metric on D�) at least A and if c is any closed curve on S = D�/�, then

�N(c∗) ≤ R�S(c)

where N = H3/�.
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Notice that a geodesic in the domain of discontinuity is a meridian, i.e. it bounds
an essential disk. One can prove that a sequence for which the length of a meridian
goes to 0 necessarily diverges. Thus the dependence of the constant on A will not be
an obstacle when proving convergence results. Furthermore, at the price of dropping
the linearity, Sugawa obtained in [80, Proposition 6.1] a universal constant with the
following inequality (with the notation of Theorem 8.5.1):

�N(c∗) ≤ 2�S(c)e
�S(c)/2 (8.3)

This definitively solves the issue of replacing Lemma 8.3.1, even though, as
mentioned earlier, Theorem 8.5.1 was already enough.

A more critical obstacle when attempting to extend Thurston’s arguments is that
the Uniform Injectivity Theorem, which is essential in Thurston’s proof of both the
Double Limit Theorem and the compactness of AH(acylindrical), does not hold
for compressible pleated surfaces. A sequence of compressible pleated surfaces
for which the length of a meridian goes to 0 does not converge in any reasonable
sense. A way to get around this obstacle was given previously with the Relative
Boundedness Theorem (Theorem 8.4.1) where we required a bound on the length of
a fixed doubly incompressible multicurve. Combining Theorem 8.4.1 and Sugawa’s
inequality (8.3), we get:

Theorem 8.5.2 Let γ ∈ ∂M be a doubly incompressible multicurve and consider
a sequence {ρi} ∈ AH(π1(M)). If �σi (γ ) is bounded, then ρi has a converging
subsequence.

The idea of adding a bound on the length of a well-chosen multi-curve has been
pushed further by Canary who enhances the arguments of the proof of the Double
Limit Theorem to get:

Theorem 8.5.3 ([27]) Let H be a handlebody and consider a sequence
{ρi} ⊂ int(AH(π1(H))) with Ahlfors–Bers coordinates converging to a Masur
domain lamination. If H = S × I and �ρi (∂S) ≤ K for all i and some K

independent of i, then {ρi} has a convergent subsequence in AH(π1(H)).

This statement raises another, although less decisive, issue: deciding what con-
dition will replace the assumption that the laminations are binding. In [50], Masur
introduced an open subset of PML(∂H) for a handlebody H which is now known
as the Masur domain. Save for some exceptional cases, it consists in projective
measured laminations which intersect every projective limits of meridians.

It was conjectured by Thurston (see [27]) that this domain was the appropriate
setting to extend the Double Limit Theorem to handlebodies. Later, this definition
was extended to compression bodies by Otal in [73] (see also [43]).

When trying to extend Otal’s proof to manifolds with compressible boundary,
one also encounters important difficulties. As already explained the issue of
extending Lemma 8.3.1 and the assumption that laminations are binding are shared
by both proofs. When M is not an I -bundle, we still use Culler–Morgan–Shalen’s
compactification to get a small minimal action of π1(M) on a real tree. If S is a
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component of ∂M , we get an action of π1(S) on the same real tree through the map
i∗ : π1(S) → π1(M) induced by the inclusion. But when S is compressible, this
action is not small and hence may not be dual to a measured geodesic lamination.
Showing that a measured lamination on the boundary is realised in the tree in
order to use the Continuity Theorem becomes problematic. Again, one way to
get around this obstacle is to assume a control on the length of some multi-curve
whose complement is incompressible. With this idea, one can obtain statements that
are close to Theorem 8.5.3 (with the limitations described in Remark 8.3.6), see
[74]. Deducing from the work of Culler–Vogtmann [33] that any action of a rank-2
free group is dual to a measured lamination on a compact surface, Otal shows the
following:

Theorem 8.5.4 ([74, Theorem 1.5]) Let H be a genus-2 handlebody and {ρi} a
sequence in int(AH(π1(H))) with Ahlfors–Bers coordinates converging to a Masur
domain lamination whose complementary regions are simply connected. Then {ρi}
has a converging subsequence.

Before discussing further developments, we should mention the work of Ohshika
on free products � = π1(S1) ∗ π1(S2) of two surface groups. In [67], he uses the
Culler–Morgan–Shalen compactification and a careful study of actions � on real
trees when both surface groups have fixed points to prove a convergence result
for representations in AH(�) whose exterior boundary tend to a Masur domain
lamination.

The most important breakthrough regarding the convergence of sequences in
AH(π1(M)) when M has compressible boundary was achieved by Kleineidam–
Souto in [43]. By pursuing the study of limits of meridians initiated in [73] and
cleverly adapting some arguments from [79], they manage to prove the following:

Theorem 8.5.5 ([43, Corollary 3]) Let H be a handlebody and π1(H)× T → T

be a non-trivial small minimal action on a real tree T . Then at least one minimal
component of every measured lamination in the Masur domain is realised in T .

This allows them to use the Continuity Theorem to show that, for a handlebody
M , a sequence in AH(π1(M)) is precompact if we assume a bound on the length
of a sequence of measured laminations converging to a Masur domain lamination.
These results are extended to compression bodies in the same paper ([43] and then to
compact atoroidal 3-manifolds in [46] (see also [45, Proposition 6.1 and Theorem
6.6]). This leads to some nice generalizations of the Double Limit Theorem such
as [65, Theorem 8.1] and [70, Theorem 3.8] although the need to converge to an
almost minimal lamination (see Remark 8.3.6) adds some technical hypothesis to
the statements.

The final page in this story was written by Kim–Lecuire–Ohshika, [42], who
lifted this last limitation with an area argument in a simplicial annulus as in the
proof of Efficiency of Pleated Surface and the analysis of limits of boundaries of
essential disks and annuli initiated in [73] and pursued in [43] and [46].
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Theorem 8.5.6 ([42]) Let M be a compact orientable irreducible atoroidal 3-
manifold, let C be a connected component of int(AH(π1(M)) containing a rep-
resentation uniformizing M . Let {ρi} ⊂ C be a sequence of convex cocompact
representations with Ahlfors–Bers coordinates σi ∈ T (∂M). If σi converges
to a doubly incompressible measured lamination, then {ρi} has a convergent
subsequence.

This statement uses a slight generalization of Masur domain introduced in [46]:
a measured geodesic lamamination λ ∈ML(∂M) is doubly incompressible if there
exists η > 0 such that i(λ, ∂E) > η for any essential disc or annulus E ⊂ M .

Notice that if λ is not doubly incompressible, using Dehn twists along annuli,
a diverging sequence {ρi} ⊂ AH(π1(M)) can be constructed so that σi tend to λ

(compare with [41]).

8.6 Necessary Conditions

The theorems mentioned in the previous sections provide necessary conditions
for a sequence to have a converging subsequence. As we already mentioned,
Theorems 8.1.3 and 8.5.6 are optimal in the sense that if a measured lamination
λ does not satisfy their assumptions, then there is a diverging sequence whose
Ahlfors–Bers coordinates tend to λ. On the other hand there are a lot of converging
sequences which do not satisfy the condition of Theorem 8.5.6 (Theorem 8.1.3 is
simply the special case where M = S × I ), i.e. their Ahlfors–Bers coordinates σi

tend to a measured lamination that is not doubly incompressible. This condition is
far from being necessary.

In the quasi-Fuchsian case, some necessary conditions have been established
by Ohshika with [68, theorem 3.1] and [72, Theorems 3,5 and 12]. Let
ρi : π1(S) → PSL2(C) be quasi-Fuchsian representations with Ahlfors–Bers
coordinates (σ±i ) such that {σ±i }, converge to a (projective) measured lamination
μ±. A very rough description of Ohshika’s statements could be that if μ+ and μ−
share something (a leaf or a boundary component of a supporting surface), then {ρi}
diverges.

There is a large gap between these necessary conditions and the sufficient
conditions of Theorem 8.5.6. One origin of this gap is the coarseness of Thurston’s
compactification: it only records the part of the representation that degenerates the
fastest. Let us illustrate this idea with an example. Let S be a closed surface and
c, d ⊂ S be two disjoint simple closed curves that are not isotopic and denote
by ψc,ψd the right Dehn twist along c, resp. d . Fix X ∈ T (S) and consider for
every i > 0 the quasi-Fuchsian group ρi : π1(S) → PSL2(C) with Ahlfors–Bers
coordinates (ψii

c X,ψii

d X). It is easy to deduce from Lemma 8.3.1 that {ρi} has a
converging subsequence. Let "c : S × I → S × I be the Dehn twist along the
annulus c × I . One can prove that θi = ρi ◦ ("i

c)∗ has no converging subsequence.

On the other hand, the Ahlfors–Bers coordinates of θi , (ψi
c ◦ψii

c X,ψi
c ◦ψii

d X), have
the same limit (c, d) as the coordinates of ρi .
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A way to have a finer compactification of Teichmüller space is given by the
Culler–Morgan–Shalen compactification by actions on �-trees (see [57]) and their
dual �-measured laminations (see [56]). A simpler alternative which ought to give
similar results for this specific problem is to look at Hausdorff limits of short pants
decompositions or short collections of binding curves. Necessary conditions have
also been given by Ohshika with this idea, see [72, Theorem 4]. But there is still a
gap which, as illustrated by Brock et al. [19, Example 1.4], cannot be filled within
this framework.

Brock, Bromberg, Canary and Lecuire managed to close these gaps in [19] with a
different approach based on Masur–Minsky’s work on the curve complex (especially
[51]).

Theorem 8.6.1 ([19]) Let S be a compact, orientable surface and let {ρi} be a
sequence in AH(π1(S)) with Ahlfors–Bers coordinates {σ±i }. Then {ρi} has a
convergent subsequence if and only if there exists a subsequence {ρj } of {ρi} such
that {σ±j } bounds projections.

The statement is short because the authors have craftily hidden the technicalities
in the definition of “bounds projections”. To give the precise definition would
require too many preliminaries but we will try to convey the spirit. The definition
of “bounding projections” consists in two conditions that we will refer as (a) and
(b), following [19]. Condition (a) essentially prevents the case where both {σ+i }
and {σ−i } tend to filling projective measured laminations with the same support
(see also [68]). Condition (b) sees the introduction of combinatorial parabolics.
Those are simple curves on S for which the behavior of σ+i (for upward pointing
combinatorial parabolics) or σ−i (for downward pointing ones) indicates that they
should be parabolics in the limit (if there was one). Condition (b) essentially says
that a simple closed curve on S cannot be simultaneously an upward pointing and
a downward pointing combinatorial parabolic. The possibility of wrapping of the
algebraic limit, as described in [5], compels us to add some exceptions to this last
condition (condition (b)(ii), see also [72, Theorem 6]).

The Proof of Theorem 8.6.1 as well as the proofs of the main Theorems in
[72] make extensive use of the works of Masur–Minsky and Minsky [51] and [53].
Masur and Minsky associate a family of simple closed curves H0

ν , to a pair of end
invariants {σ±}. They add some structure to H0

ν to form what they call a hierarchy
Hν . Minsky builds from this hierarchy a model Mν , i.e. a piecewise Riemannian
manifold homeomorphic to S × I whose metric depends only on the hierarchy Hν .
Then with the collaboration of Brock et al. [17] and Minsky [53] shows that for
any hyperbolic manifold Nρ with end invariants {σ±}, there is a bilipschitz map
Mν → Nρ . When ρ is convex cocompact, the end invariants are the Ahlfors–
Bers coordinates. In general they are a mixture of conformal structure at infinity
and ending laminations which describe the asymptotic behavior of the geometry of
the ends of H3/ρ(π1(S)). This work on the models led to the proof of Thurston’s
Ending Lamination Conjecture which asserts that a representation ρ ∈ AH(π1(S))

is uniquely defined by its end invariants. One important result of [53] that makes the
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construction of the model work is the existence of a bound on the length in Nρ of
all the curves of H0

ν . Furthermore, this bound depends only on S.
Let us go back to Theorem 8.6.1 and consider a sequence {ρi} in AH(π1(S)) with

Ahlfors–Bers coordinates {σ±i }. When {σ±i } bounds projections, Brock–Bromberg–
Canary–Lecuire deduce from the structure of H0

σi
that it contains a family of binding

curves independent of i. The convergence follows immediately. On the other hand,
Brock–Bromberg–Canary–Minsky [18] and Ohshika [72] use Minsky’s model to
study the link between the behavior of the end invariants of a sequence and the end
invariants of a limit. This leads to the divergence results in [72] and the necessity
part in Theorem 8.6.1.

We conclude this section by noticing that all the results we have mentioned
so far give conditions for a convergence up to extracting a subsequence. To have
convergence of the actual sequence would mean to completely predict the end
invariants of the limit. The fact that the geometric limit often differs from the
algebraic limit makes such a prediction extremely difficult.

8.7 Some Applications

The original motivation for the Double Limit Theorem and the compactness of
AH(acylindrical) was the Hyperbolization Theorem for Haken manifolds:

Theorem 8.7.1 (Hyperbolization Theorem) Let M be a compact irreducible
atoroidal Haken 3-manifold, then the interior of M has a complete hyperbolic
structure.

Even though Thurston never published a complete proof for reasons that he
explained in [85], he shared his arguments on multiple occasions and wrote some of
them in [84, 87] and [88]. The proof decomposes into two distinct cases, each one
using a different convergence result.

In the case of manifolds that fiber over the circle, the Double Limit Theorem is
used to construct an invariant metric on the cyclic cover. Thurston’s arguments have
been summarized in [81] and Otal wrote a complete proof in [75] (with different
arguments to prove the Double Limit Theorem, as explained in Sect. 8.3.2).

In the other case, the compactness of AH(acylindrical) is used to establish the
Bounded Image Theorem (see [40, Theorem 41]) which allows hyperbolic pieces
to be glued together to form a larger hyperbolic manifold. Morgan summarized
Thurston’s arguments in [54] and Kapovich, [39], and Otal, [76], wrote complete
proofs.

The Density Theorem is another example of a proof in which convergence results
play an important role.

Theorem 8.7.2 (Bers–Thurston’s Density) Every finitely generated Kleinian
group is an algebraic limit of geometrically finite groups.
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This statement resolves a generalization due to Sullivan and Thurston of a
conjecture of Bers. Combined with works of Marden and Sullivan, Theorem 8.7.2
shows that the deformation space AH(π1(M)) does not have any isolated point.
Its proof has been written out by Namazi–Souto, [65], and Ohshika [70], it uses
the Tameness Theorem [1] and [25], the Ending Lamination Theorem [17, 53],
a convergence Theorem (for example Theorem 8.5.6, but a weaker statement is
sufficient) and an additional argument to show that non-realizable laminations are
ending laminations (see [65, Theorem 1.4] or [70, Proposition 6.5]). The fact that
this proof uses the resolutions of two difficult conjectures is a good illustration
of how unfathomable the topology of the deformation space AH(π1(M)) can be.
Notice that an alternate approach has been developed by Brock–Bromberg [15]
when ∂M is incompressible.

Combining the Density Theorem with the Ahlfors–Bers coordinates, we get that
AH(π1(M) is the closure of an union of topological balls (assuming that ∂M is
incompressible to simplify the statements). Despite this apparent simplicity, various
exotic phenomenons have been observed. First Anderson–Canary, [5] proved that
two of those balls may have intersecting closures. Then McMullen, [52] and
Bromberg–Holt, [24] showed that those balls may self-bump. Lastly, Bromberg,
[23], and Magyd [47], concluded that AH(π1(M)) may not be locally connected.
On the other hand by studying the ways different sequences converge to a point, we
can find points where none of these happen:

Theorem 8.7.3 ([22] and [16]) Let M be a compact atoroidal 3-manifold with
incompressible boundary. If ρ is a quasiconformally rigid point in ∂AH(π1(M))

then ρ is uniquely approachable. In particular, AH(π1(M)) is locally connected at
ρ and there is no self–bumping at ρ.

A representation ρ is quasiconformally rigid if �ρ/ρ(π1(M)) is a union of three
holed spheres.

The proofs of many more results could illustrate the usefulness of the conver-
gence results presented in this chapter. To drive this point home, let us also mention
the work of Bonahon–Otal [13] and Lecuire [46] on bending measured laminations
and the work of Namazi [63], Namazi–Souto [64] and Brock–Minsky–Namazi–
Souto [20] on models for compact and non-compact hyperbolic 3-manifolds.

We would like to conclude this chapter by mentioning an article of Biringer–
Souto, [11], where the authors study sequence of unfaithful representations.
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Chapter 9
Geometry and Topology of Geometric
Limits I

Ken’ichi Ohshika and Teruhiko Soma

Abstract In this chapter, we classify completely, up to isometry, hyperbolic 3-
manifolds corresponding to geometric limits of Kleinian surface groups isomorphic
to π1(S) for a finite-type hyperbolic surface S. In the first of the three main
theorems which constitute the basic results of this chapter, we construct bi-
Lipschitz model manifolds for such hyperbolic 3-manifolds, which have a structure
called brick decomposition and are embedded topologically in S × (0, 1). In the
second theorem, we show that conversely, any such model manifold admitting a
brick decomposition with reasonable conditions is bi-Lipschitz homeomorphic to
a hyperbolic manifold corresponding to some geometric limit of quasi-Fuchsian
groups. In the third theorem, it is shown that we can define end invariants for
hyperbolic 3-manifolds appearing as geometric limits of Kleinian surface groups,
and that the homeomorphism type and the end invariants determine the isometric
type of a manifold. This is analogous to the ending lamination theorem for the case
of finitely generated Kleinian groups. These results constitute an attempt to give an
answer to the 8th question among the famous 24 questions raised by Thurston.
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9.1 Introduction

There are two notions of convergence in the theory of Kleinian group: algebraic
convergence and geometric convergence. Algebraic convergence is a convergence
with respect to the topology induced from the natural topology on the space of
representations of a group into PSL2C. On the other hand, geometric convergence
corresponds to a convergence of the quotient hyperbolic 3-manifolds with respect
to the pointed Gromov–Hausdorff topology. One of the main topics in the theory
of Kleinian groups is studying the topological structure of deformation spaces.
Deformation spaces have topologies induced from the algebraic convergence. Still,
their singularities, for instance, those which are called self-bumping points, are
caused by the difference between the algebraic and geometric convergences, as was
shown by work of Anderson–Canary [3] and McMullen [33]. This suggests that
studying geometric limits is important for understanding the deformation spaces.

For an algebraically convergent sequence of Kleinian groups, its geometric
limit, which always exists up to passing to a subsequence, contains the algebraic
limit, but may be larger than it in general. The difference between algebraic limit
and geometric one was first observed by Jørgensen and Marden. In [22], they
gave an example of algebraically convergent sequence of infinite cyclic groups in
PSL2C which converges geometrically to a rank-2 parabolic group. This is a typical
phenomenon for geometric limits, and is a cause of the existence of geometric limits
larger than algebraic ones in more complicated situations such as in the example of
Kerckhoff–Thurston [24] which we now explain.

Kerckhoff and Thurston considered a sequence in the Bers slice of a quasi-
Fuchsian space of a surface S, parametrised as (m0, τ

nn0) ∈ T (S) × T (S̄) for a
Dehn twist τ along an essential simple closed curve c on S, where m0 and n0 are
arbitrary points in the Teichmüller spaces T (S) and T (S̄). They took a sequence
of quasi-Fuchsian groups representing (m0, τ

nn0) so that it converges algebraically,
which can always be done by Bers’s compactness theorem, and showed that such a
sequence converges geometrically to a group G such that H3/G is homeomorphic to
S×(0, 1)\c×{ 1

2 }. Here the end c×{ 1
2} in S×(0, 1) corresponds to a Z×Z-cusp of

H3/G where a phenomenon as in the case of Jørgensen–Marden occurs. By iterating
this kind of procedure, it is also possible to construct an example of a geometric limit
G′ of quasi-Fuchsian groups such that H3/G′ has infinitely countably many Z×Z-
cusps as was shown by Bonahon–Otal [7], (see also Ohshika [38]). In particular, this
shows that the geometric limit of quasi-Fuchsian groups isomorphic to π1(S) with
a finite type surface S can be infinitely generated.

Another important example of geometric limits of quasi-Fuchsian groups was
given by Brock [11]. He considered a homeomorphism φ : S → S which is pseudo-
Anosov on some essential subsurface H of S and is the identity outside, and a
sequence parametrised as (m0, φ

nn0) in the Bers slice as in the case of Kerckhoff–
Thurston. He showed that the geometric limit of such a sequence is a Kleinian group
G′′ such that H3/G′′ is homeomorphic to S × (0, 1) \ H × { 1

2 }, where H × { 1
2 }

corresponds to a pair of geometrically infinite tame ends.
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A natural problem arising from these examples is to determine what kind of
Kleinian groups can appear as geometric limits of quasi-Fuchsian groups, or more
generally as a geometric limit of a sequence in the deformation space of a Kleinian
group. The purpose of this series of papers is to answer this question. In the present
chapter, we shall consider only geometric limits of Kleinian groups isomorphic to
surface groups preserving the parabolicity, which are sometimes called Kleinian
surface groups. In Theorem A, which is the first of the three main theorems of
this chapter, we shall give (bi-Lipschitz) model manifolds for geometric limits of
Kleinian surface groups and present conditions which the model manifolds should
satisfy. In Theorem C we shall show that these conditions are in fact sufficient, i.e.
that any model manifold satisfying the conditions in Theorem A is homeomorphic
to some geometric limit of quasi-Fuchsian groups. Combining these two theorems,
we characterise completely Kleinian groups which can appear as geometric limits
of Kleinian surface groups.

Another natural problem is to classify completely hyperbolic manifolds corre-
sponding to geometric limits up to isometries, which is the subject of Theorem D.
The classification problem of finitely generated Kleinian groups, which was called
the ending lamination conjecture and is now the ending lamination theorem, was
solved by Minsky, collaborating with Brock, Canary and Masur [12, 29, 30, 35].
(An alternative approach can be found in Bowditch [10]. See also an excellent
expository paper by Lecuire [26].) Since geometric limits of isomorphic non-
elementary finitely generated Kleinian groups can be infinitely generated in general,
as explained above, the ending lamination theorem is not sufficient for our situation.
Using our model manifolds constructed in Theorem A, we shall prove that the
homeomorphism type and (generalised) end invariants completely determine the
isometry type of geometric limits. Indeed this is what Theorem D claims for
geometric limits of Kleinian surface groups.

In [48], Thurston listed 24 questions in the field of hyperbolic 3-manifolds and
Kleinian groups which were open at that time. The question 8 reads “Analyse limits
of quasi-fuchsian groups with accidental parabolics”. Otal in [45], which is a very
informative and well-written review of Thurston’s paper, interpreted this problem
as one of analysing geometric limits of algebraically convergent quasi-Fuchsian
groups. The results of the present chapter give a complete answer to Thurston’s
question 8 interpreted in this way.

There are applications of the results of this chapter, which appeared in [36,
40, 42]. In [42], Theorem A is used to analyse which points on the boundary of
the quasi-Fuchsian space can be bumping points. The second paper [40] studies
a quotient space of the Bers boundary of Teichmüller space, called the reduced
Bers boundary, on which the mapping class group action on the Teichmüller space
extends continuously. Mahan Mj and Ohshika in [36] give necessary and sufficient
conditions for the Cannon–Thurston maps of quasi-Fuchsian groups to converge
pointwise to that of their limit group applying our classification of geometric limits.
We refer the reader also to [41] for the overall picture of geometric limits.

An article sequel to this chapter [43], which will appear as a chapter in a later
volume of this book, will deal with geometric limits of Schottky groups.
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9.2 Main Results

In this section, we shall state the main results of this chapter. We shall also give
definitions of terms which are necessary for stating the main results, and a short
outline of their proofs.

For a hyperbolic 3-manifold N , we denote by N0 the complement of the open
ε-cusp neighbourhoods in N for ε > 0 less than the three-dimensional Margulis
constant, and call it the non-cuspidal part of N . Its homeomorphism type does not
depend on the choice of the constant ε. We call the ends of N0 the relative ends of
N . By the resolution of Marden’s tameness conjecture by Agol [2] and Calegari and
Gabai [13], the relative ends of any hyperbolic 3-manifold with finitely generated
fundamental group are topologically tame, i.e. each of them has a neighbourhood
homeomorphic to F × (0,∞), where F = F × {0} corresponds to the frontier
component of a relative compact core of N0 facing the relative end. It follows
then from the results of Bonahon [6] and Canary [14], that such a relative end
is either geometrically finite or simply degenerate: the latter means that there is
a sequence of closed geodesics tending to the end which are projected in F × R to
simple closed curves on F whose projective classes converge in the projectivised
Masur domain. However, in general, a hyperbolic 3-manifold N with infinitely
generated fundamental group may have infinitely many relative ends which are
neither geometrically finite nor simply degenerate. We call such (relative) ends
wild. To our knowledge, suitable invariants of wild ends which play the role of end
invariants for tame ends have not been known up to now. Still, we shall show that
for hyperbolic 3-manifolds corresponding to geometric limits of surface Kleinian
groups, wild ends are controlled in some way and are determined only by the
homeomorphism types, as we shall see in Theorem C.

Now, we are going to state our main results. The first theorem, Theorem A, says
that every geometric limit of Kleinian surface groups isomorphic to π1(S), for a
surface S of finite type, has a bi-Lipschitz model which admits a decomposition
into standard blocks, and can be embedded topologically into S × (0, 1). This gives
also necessary conditions which hyperbolic 3-manifolds corresponding to geometric
limits of Kleinian surface groups must satisfy. Before stating the theorem, we shall
explain terms which will be used in the statement. A detailed account of these
notions can be found in Sect. 9.4.1. A brick B is a 3-manifold homeomorphic to
F × J for a compact connected essential subsurface F of S with χ(F) < 0 and
an interval J which is either closed or half-open. A brick manifold is a union
of countably many bricks Fn × Jn which are glued to each other along essential
subsurfaces on their fronts Fn × ∂Jn.

In a brick manifold, we attach to the end of each half-open brick either a
conformal structure at infinity or an ending lamination (i.e. a filling geodesic
lamination). We call the brick geometrically finite in the former case and simply
degenerate in the latter. Each half-open end of a brick constitutes an end of M , and
the end is called geometrically finite or simply degenerate accordingly. The ending
lamination or the conformal structure attached there is called the end invariant. The
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union of ideal boundaries on which conformal structures are given is called the
boundary at infinity of M , and is denoted by ∂∞M . A brick manifold endowed with
these end invariants is called a labelled brick manifold. An end of a brick manifold
which does not correspond to an end of a half-open brick is called wild. A wild end
corresponds to a sequence of bricks which accumulates in S × (0, 1).

We say that a labelled brick manifold admits a block decomposition when the
manifold is decomposed into blocks in the sense of Minsky and solid tori in such a
way that each block has horizontal and vertical directions coinciding with those of
bricks. We also require the block decomposition for a half-open brick to have solid
tori whose core curves are vertically projected to simple closed curves converging to
the end invariant of the brick. The blocks have standard metrics and we can choose
the gluing maps to be isometries. By identifying a solid torus with a Margulis tube
which is determined by information coming from the block decomposition, we can
put a metric on the labelled brick manifold. We call such a metric a model metric.
(See Sects. 9.4.4 and 9.4.5 for details.)

Theorem A Let S be an orientable connected hyperbolic surface of finite type. Let
{Gn} be a sequence of Kleinian surface groups isomorphic to π1(S) preserving the
parabolicity, and converging geometrically to a non-elementary Kleinian group G.
Then there are a labelled brick manifold M which admits a block decomposition,
and a K-bi-Lipschitz homeomorphism from M with the model metric to the non-
cuspidal part N0 of the hyperbolic 3-manifold N = H3/G, with the constant K

depending only on χ(S), and which satisfies the following properties.

(i) Each component of ∂M is either a torus or an open annulus.
(ii) There is no properly embedded incompressible annulus in M whose boundary

components lie on distinct boundary components of M .
(iii) If there is an embedded, incompressible half-open annulus S1 × [0,∞) in M

such that S1 × {t} tends to a wild end e of M as t →∞, i.e. such that for any
neighbourhood U of e there is t0 such that S × (t0,∞) is contained in U , then
its core curve is homotopic into an open annulus component of ∂M tending
to e.

(iv) The manifold M is (not necessarily properly) embedded in S × (0, 1) in
such a way that each brick has a form F × J with an interval J and an
essential subsurface F of S with respect to the product structure of S × (0, 1)
and the ends of geometrically finite bricks lie S × {0, 1}. (We shall say that
geometrically finite ends are peripheral, to refer to the last condition.)

We call the labelled brick manifold M in this theorem a model manifold for the
geometric limit N . It should be noted that a result similar to this one was announced
in the introduction of the first preprint version of Brock–Canary–Minsky [12]. By
(iv), we see that the geometric limit manifold N0 has at most−2χ(S) geometrically
finite ends.
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The following corollary is easily deduced from Theorem A.

Corollary B Let G be a non-elementary geometric limit of Kleinian surface groups
isomorphic to π1(S) preserving the parabolicity for S as in Theorem A. Then N =
H3/G has at most countably many relative ends.

The next theorem guarantees the existence of a geometric limit which is bi-
Lipschitz equivalent to a brick manifold with the properties in Theorem A provided
that there are no two simply degenerate ends with homotopic ending laminations.

Theorem C Suppose that M is a labelled brick manifold satisfying conditions (i)–
(iv) in Theorem A such that the ending laminations of two simply degenerate ends of
M are not homotopic to each other in M . (This condition is necessary only when M

is homeomorphic to F × (0, 1) for a compact essential subsurface F of S since
ending laminations are filling and by condition (ii) no two ends are homotopic
except for this case.) Then M has a block decomposition, and if we put on M the
model metric associated with the decomposition, then there exists a non-elementary
geometric limit G of quasi-Fuchsian groups which are isomorphic to π1(S) such
that N = H3/G admits a K-bi-Lipschitz homeomorphism f : M → N0 which
can be extended continuously to a conformal map ∂∞M → ∂∞N between the
boundaries at infinity for a constant K ≥ 1 depending only on χ(S).

We shall often use the term “uniform bi-Lipschitz map” to mean that its bi-
Lipschitz constant depends only on χ(S), and hence is independent of the end
invariants.

By applying Theorem C, we can construct various examples of geometric limits
G of quasi-Fuchsian groups isomorphic to π1(S); for instance, one such that
N0 has infinitely many simply degenerate ends and infinitely many wild ends
simultaneously.

The last theorem is a classification theorem which is analogous to the ending
lamination theorem for the finitely generated case.

Theorem D Suppose that G1 and G2 are non-elementary geometric limits of
Kleinian surface groups isomorphic to π1(S) preserving the parabolicity. If f :
H3/G1 → H3/G2 is a homeomorphism preserving their end invariants, then f is
properly homotopic to an isometry.

Remark 9.2.1 In the beginning of the present work, we tried to use a more classical
topological approach involving only hyperbolic geometry to study topological
properties of geometric limits of quasi-Fuchsian groups. Subsequently we found
that, by invoking the bi-Lipschitz model theorem by Brock–Canary–Minsky, it is
possible to simplify the proofs of some results and moreover to obtain a deeper
result on geometric properties of geometric limits. Therefore, we have changed our
original plan and adopted the method relying upon the work of [12, 35]. On the other
hand, we have noticed that our original approach on geometric limits gives rise to a
rather short proof of the bi-Lipschitz model theorem. See Soma [46].
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Now we outline the proofs of the main theorems. To prove Theorem A, we
shall first apply Minsky’s bi-Lipschitz model theorem to each H3/Gn for the given
sequence of Kleinian groups {Gn} in the statement, and get a model manifold Mn

which can be decomposed into blocks with a bi-Lipschitz homeomorphism gn from
Mn to (H3/Gn)0. We define M and a bi-Lipschitz homeomorphism from M to N0 to
be the geometric limits of Mn and gn. We shall verify that these satisfy the required
conditions (i)–(iv) one by one, among which the most difficult is (iv). Since M is the
geometric limit of {Mn}, each union of finite bricks can be proved to be embedded
in S × (0, 1) preserving the product structures, but this does not imply immediately
that the entire M can also be embedded. We shall need to rearrange the embeddings
of sub-bricks by twisting them in such a way that the twisting stabilises on each
brick, as will be shown in Lemma 9.4.1.

Next we turn to Theorem C. We shall first consider an ascending exhausting
sequence of sub-brick-manifolds Wn consisting of finite bricks within the given
labelled brick manifold M . These Wn may have very complicated homeomorphism
types, but we shall construct from the Wn brick manifolds Zn corresponding to
geometrically finite Kleinian surface groups by applying Thurston’s uniformisation
theorem for compact irreducible atoroidal 3-manifolds with boundary, whose
geometric limit is also M . We shall approximate in the geometric topology these
Kleinian groups corresponding to Zn by quasi-Fuchsian groups, which are the
groups we wanted.

Finally, we outline the proof of Theorem D. We are given two geometric limits
G1 and G2 such that N1 = H3/G1 and N2 = H3/G2 share the same topological
type and end invariants. By Theorem A, we can construct a labelled model manifold
M of (N1)0. By our assumption, there is a homeomorphism from M to (N2)0
preserving the end invariants. In Theorem 9.5.1, which is a generalisation of the bi-
Lipschitz model theorem by Brock–Canary–Minsky [12], we shall prove that such
a homeomorphism can be homotoped to a uniform bi-Lipschitz homeomorphism.
This shows that G1 and G2 are quasi-conformally conjugate by a quasi-conformal
homeomorphism which is conformal on the domain of discontinuity. The second
statement of Corollary B makes it possible to apply McMullen’s generalisation
of Sullivan’s rigidity theorem and we shall be able to show that G1 and G2 are
conformally conjugate.

9.3 Preliminaries

We refer the reader to Thurston [47], Benedetti and Petronio [4], Matsuzaki and
Taniguchi [31], and Marden [27, 28] for the general theory of hyperbolic manifolds
and Kleinian groups, and to Hempel [21] for 3-manifold topology.

Throughout this chapter, all manifolds are assumed to be oriented, and all
homeomorphisms between manifolds are assumed to be orientation-preserving.
When we talk about a surface S, we always assume that it is a connected surface of
finite type possibly with punctures and χ(S) < 0. Sometimes, we fix a hyperbolic
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structure of finite area on it for convenience. We denote by �0,3, �0,4, �1,1 compact
surfaces homeomorphic respectively to a three-holed sphere, a four-holed sphere
and a one-holed torus.

9.3.1 The Curve Graph and Tight Geodesics

In this subsection we shall review the basic terminology and results on curve graphs
and tight geodesics. Most of these results are due to Masur–Minsky and can be
found in [29, 30].

A subsurface � of S is called essential if no component of the frontier of � is
null-homotopic in S. We also regard S itself as an essential subsurface of S. When
� is an open annulus we further assume that the frontier of � is not homotopic to a
puncture of S. We consider both closed essential subsurfaces and open ones. When
we consider two essential subsurfaces, we assume that they do not have inessential
intersection. If two essential subsurfaces are isotopic, they are assumed to coincide.

Let � be a connected surface of finite type, possibly with punctures. In this
chapter, when we talk about curve graphs, we only consider the situation where
� is an open essential subsurface of some fixed surface S, including the case when
� = S. The complexity of � is defined by ξ(�) = 3g + p, where g is the genus
of � and p its number of punctures. (For our purpose, this is more convenient than
the Euler characteristic χ(S).) A surface � with ξ(�) = 3 (resp. ξ(�) = 4) is
homeomorphic to the interior of �0,3 (resp. the interior of either �0,4 or �1,1).

When ξ(�) > 4, we define the curve graph C(�) of � to be a simplicial graph
whose vertices are homotopy classes of non-contractible simple closed curves on �

which are not homotopic to punctures such that two vertices are connected by an
edge if and only if they have disjoint representatives. We call a vertex of C(�) or
its representative a curve on �. For our convenience, we fix a complete hyperbolic
structure on � of finite area and take a uniquely determined closed geodesic as a
representative for any curve on �. The notion of curve graph was first introduced by
Harvey [20] and extended and modified in [29, 30, 34]. In the case when ξ(�) = 4,
the curve graph C(�) is defined so that the vertices are curves on � and two curves
v,w are joined by an edge if and only if they have minimum geometric intersection,
i.e. i(v,w) = 1 when � is Int�1,1 and i(v,w) = 2 when � is Int�0,4. When �

is an open annulus embedded in S, we consider the covering �̃ of S (with a fixed
hyperbolic structure) associated to π1(�) and compactify �̃ to �̄ by attaching to
it its ideal boundary. The vertices of the curve graph C(�) are homotopy classes of
essential arcs on �̄ fixing the endpoints. Two vertices are connected by an edge if
and only if they can be homotoped fixing the endpoints to arcs whose interiors are
disjoint.

We put the path metric d = dC(�) on C(�) by setting the length of each edge
to be 1. In the case when ξ(�) > 4, a finite subset v of vertices in C(�) is said to
constitute a simplex if any two curves of v are represented by disjoint and non-
parallel simple closed curves on �. This naming comes from the fact that they
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actually span a simplex in the curve complex of �. We only use this term and do
not need to consider the curve complex itself. The graph C(�) is not locally finite
but was proved to be Gromov hyperbolic as a metric space by Masur and Minsky
[29]. (See also Bowditch [8] for an alternative approach.)

Let ML(�) be the space of compact measured laminations on � and UML(�)

the quotient space of ML(�) obtained by forgetting the measures, and let EL(�)

be the subspace of UML(�) consisting of filling laminations, which we call the
ending lamination space of �. Here a lamination μ in UML(�) is said to be filling
if, for any μ′ ∈ UML(�), either μ′ = μ or μ′ intersects μ non-trivially and
transversely. (The term “arational lamination” is used in some literature, with the
same meaning.) Refer to [5, 17] for the definition and basic facts about measured
lamination space.

Gromov showed that there is a natural boundary at infinity for a Gromov
hyperbolic space. According to Klarreich [25] (see also Hamenstädt [19]), there
exists a homeomorphism k from the Gromov boundary ∂C(�) of C(�) to EL(�)

such that a sequence {vi} of vertices of C(�) converges to β ∈ ∂C(�) if and only if
{vi} regarded as a sequence in UML(�) converges to k(β) in UML(�).

Definition 9.3.1 A sequence g = {vi}i∈J of simplices in C(�) is called a tight
sequence if it satisfies one of the following conditions depending on whether ξ(�)

is greater than 4 or not, where J is a finite or an infinite interval of Z.

(i) When ξ(�) > 4, for any vertices wi of vi and wj of vj with i �= j , we have
d(wi,wj ) = |i−j |. Moreover, if {i−1, i, i+1} ⊆ J , then vi is represented by
the union of all components of ∂�i+1

i−1 that are non-peripheral in �, where �i+1
i−1

is a subsurface smallest up to isotopy (with respect to the inclusion) in � with
essential boundary containing the geodesic representatives of all the vertices of
vi−1 and vi+1.

(ii) When ξ(�) = 4, each vi is a vertex in C(�) and d(vi, vj ) = |i − j |.
The sequence g is said to connect vinf J with vsup J , where we define vinf J to be

limi→−∞ vi when inf J = −∞ and vsup J to be limi→∞ vi when sup J = ∞. The
surface � is called the support of g and is denoted by D(g). The length of g is
defined to be #J − 1, where #J − 1 is defined to be ∞ when #J = ∞.

We regard a single vertex as a tight sequence of length 0. It follows from
the definition that for any tight sequence {vi}, if a vertex w of C(�) meets vi
transversely, then w meets at least one of vi−1 and vi+1 transversely.

For an open essential subsurface F of � and a tight geodesic g in C(�), we
denote by φg(F ) the union of simplices on g which are disjoint from F . Here being
disjoint means that they can be made disjoint by an isotopy. For a curve c on F , we
use the symbol φg(c) to denote φg(A(c)), where A(c) is an annular neighbourhood
of c. The following property of tight geodesics is essentially used in this chapter.

Lemma 9.3.2 (Lemma 4.10 in [30]) Let Y be an essential subsurface of � and g

a tight geodesic in C(�). Then φg(Y ) consists of 0, 1, 2, or 3 contiguous simplices
of g.
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The following theorem is Lemma 5.14 in [35] (see also Theorem 1.2 in [9]),
which was crucial in the proof of the ending lamination conjecture.

Theorem 9.3.3 Let u,w be distinct vertices or laminations in C(�)∪EL(�). Then
there exists a tight sequence connecting u with w.

A marking on � is a simplex in C(�) with some of its vertices (possibly none)
having transversals. Here a transversal of a curve c is defined to be a vertex of
the curve graph of an annular neighbourhood of c. For a marking I , we denote by
B(I ) its vertices with the transversals forgotten, and call it the base curves. Suppose
that each of I ,T is either a marking on � or a lamination in EL(�). Then a tight
sequence g = {vi}i∈I on � is said to be a tight geodesic with initial marking I (g) =
I and terminal marking T (g) = T if it satisfies the following conditions.

– If i0 = inf J > −∞, then vi0 is a vertex of C(�) contained in B(I ). If inf J =
−∞, then I = limi→−∞ vi ∈ EL(�).

– If j0 = sup J < ∞, then vj0 is a vertex of C(�) contained in B(T ). If sup J =
∞, then T = limj→∞ vj ∈ EL(�).

For a simplex vj of g = {vj } supported on �, a component of � \ vj and
an annulus with core curve in vj is called a component domain of vj , and also a
component domain of g. We also define the predecessor pred(vj ) of vj to be vj−1
if j �= 1, and I (g) if j = 1. Similarly we define the successor succ(vj ). For a
component domain Y of vj , we denote pred(vj )|Y by I (Y, g) and succ(vj )|Y by
T (Y, g). Here in the case when Y is an annulus pred(vj )|Y denotes a vertex in
C(Y ) which pred(vj ) determines when j �= 1 and the transversal of the vertex vj
determines if j = 1. The same definition applies for succ(vj )|Y . If T (Y, g) �= ∅,

then we write Y
d↘ g and say that Y is forward subordinate to g at vj . Similarly we

write g
d↙ Y and say that Y is backward subordinate to g at vj if I (Y, g) �= ∅. If a

tight geodesic k is supported on Y , the domain Y is forward subordinate to g at vj ,
and T (k) = T (Y, g), we say that k is forward subordinate to g at vj and denote this

by k
d↘ g. Similarly, we define g

d↙ k.

Definition 9.3.4 A hierarchy H of geodesics on S is a family of tight geodesics on
essential open subsurfaces of S with the following properties.

(1) There is a unique geodesic gH in H with D(gH ) = S, which we call the main
geodesic.

(2) Let Y be a component domain of both a simplex v of g ∈ H and w of g′ ∈ H

such that g
d↙ Y

d↘ g′. (The geodesics g and g′ may be the same.) Then there

exists a unique geodesic h in H such that D(h) = Y and g
d↙ h

d↘ g′.
(3) For any geodesic g in H other than gH , there exist geodesics h, k ∈ H such

that h
d↙ g

d↘ k.
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For a hierarchy H , we define |H | to be the sum of the lengths of the geodesics
constituting H .

A hierarchy H is said to be complete if for each component domain X of ξ(X) �=
3, there is a geodesic in H supported on X. A geodesic g in a hierarchy in H whose
domain D(g) satisfies ξ(D(g)) = 4 is called a 4-geodesic. A sub-hierarchy of a
complete hierarchy H consisting of all the geodesics in H supported on domains
with ξ ≥ 4 is called the 4-sub-hierarchy.

Definition 9.3.5 Let H be a hierarchy of geodesics on S. A slice of H is a set
of pairs σ = {(g, v)} of a geodesic g ∈ H and a simplex v on g which has the
following properties.

(1) If (g, v1) and (g, v2) are contained in σ , then v1 = v2.
(2) There is a pair (gσ , vσ ) ∈ σ called the bottom pair, and except for the bottom

pair every pair (h,w) ∈ σ is supported in a component domain of some other
(k, u) ∈ σ .

We also call gσ the bottom geodesic and vσ the bottom simplex of σ .
A slice σ is said to be saturated if for any (g, v) ∈ σ and its component domain

D for which there is a geodesic h in H supported on D, there is some simplex w

of h such that (h,w) ∈ σ . We say that σ is non-annular saturated if the above
holds provided that D is not an annulus. For a slice σ , base(σ ) denotes the union
of all vertices contained in simplices which appear in σ , which forms a simplex of
C(D(gσ )).

9.3.2 Hyperbolic 3-manifolds and Geometric Limits

A Kleinian group � is a discrete subgroup of PSL2C. When � contains an abelian
subgroup of finite index, it is called elementary. In this chapter, we always assume
that Kleinian groups are torsion-free, or equivalently that they contain no elliptic
elements. Under this assumption, a Kleinian group is elementary if and only if it is
isomorphic to a free abelian group of rank at most two. For a Kleinian group �, the
quotient space N = H3/� is called the hyperbolic 3-manifold corresponding to �.

The limit set �� of � is the set of accumulation points of the orbit space �x0
in the closed 3-ball H3 ∪ Ĉ for a fixed point x0 ∈ H3. It should be noted that ��

is contained in Ĉ since � acts on H3 properly discontinuously. The complement of
�� in Ĉ is called the region of discontinuity of �, and is denoted by �� . We can
regard N as the interior of the manifold (H3 ∪��)/�, which is called the Kleinian
manifold corresponding to �. The boundary at infinity ��/� is also denoted by
∂∞N . The Nielsen convex hull H� is the smallest closed convex set in H3 containing
all geodesics with endpoints on �� . The Nielsen convex core is also �-invariant. Its
quotient C� = H�/� is called the convex core of N . The Kleinian group � is said
to be geometrically finite if the volume of the δ-neighbourhood of C� in N is finite
for some δ > 0.
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For a positive number ε, the ε-thin part N(0,ε] of N is the set consisting of all
points x ∈ N such that there exists a non-contractible loop l of length ≤ ε based at
x. The complement of its interior N[ε,∞) = N \ IntN(0,ε] is called the ε-thick part of
N . A Margulis tube is an embedded, equidistant, tubular neighbourhood of a simple
closed geodesic in N . A Z or a Z×Z-cusp neighbourhood P is a subset of N such
that each component of p−1(P ) is a horoball whose stabiliser in � is isomorphic
to either Z or Z × Z, where p : H3 → N is the universal covering. By Margulis’
lemma [47, Corollary 5.10.2], there exists a constant ε0 > 0 independent of �,
called the Margulis constant, such that, for any 0 < ε < ε0, each component of
N(0,ε] is either a Margulis tube or a Z or a Z×Z-cusp neighbourhood. Let N0 = Nε

0
be the union of N[ε,∞) and all the Margulis tube components of N(0,ε], which we
call the non-cuspidal part of N . For any ε1 < ε2 < ε0, there exists a K-bi-Lipschitz
deformation retraction N

ε2
0 → N

ε1
0 for some constant K ≥ 1 depending only on ε1

and ε2. It should also be noted that that N0 is a deformation retract of N . Ends of
N0 are called relative ends of N . Each component of the boundary ∂N0 is either a
Euclidean torus or a Euclidean open annulus. Since every cusp neighbourhood of N
is covered by a horoball in H3 based at a single point of Ĉ, the boundary at infinity
∂∞N0 of N0 is equal to ∂∞N .

A sequence {(Xn, xn)} of complete metric spaces with base points converges
geometrically (in the sense of Gromov) to a complete metric space (Y, y) if there
exist (Kn,Ln)-quasi-isometric, Ln-dense map gn : BRn(Xn, xN) → BKnRn(Y, y)

with Kn ↘ 1, Ln ↘ 0 and Rn → ∞, where BR(X, x) denotes the R-metric
ball in X centred at x. A sequence of Kleinian groups {Gn} is said to converge
geometrically to a Kleinian group G if (i) each γ ∈ G is the limit of a sequence {γn}
with γn ∈ �n and (ii) the limit of any convergent sequence {γni } with γni ∈ �ni is
an element of G. It is well known that {H3/Gn} converges geometrically to H3/G

with basepoints chosen to be the projections of a common point x0 in H3 if and only
if {Gn} converges to G geometrically. Refer to [22], [4, Chapter E] for more details
on properties of geometric limits.

Suppose that � is an open essential subsurface of S, possibly S itself. The
Teichmüller space of � is denoted by T (�), for which we assume that every frontier
or puncture corresponds to a parabolic cusp. For a point σ ∈ T (�), the surface �

with a hyperbolic metric representing σ is denoted by �(σ). A proper map f from
�(σ) to a hyperbolic 3-manifold N with σ ∈ T (�) is called a pleated surface
realising a geodesic lamination λ in �(σ) if f satisfies the following conditions.

(i) f maps each parabolic cusp of �(σ) to a parabolic cusp in N .
(ii) The path-metric induced from N by f coincides with σ , that is, for any

rectifiable path α in �(σ), its image f (α) is also a rectifiable path in N with
length�(σ)(α) = lengthN(f (α)).

(iii) f (l) is a geodesic in N for each leaf l of λ.
(iv) For each component � of � \ λ, the restriction f |� is a totally geodesic

immersion into N .

A relative end e of hyperbolic 3-manifold N is said to be topologically tame
if there is a properly embedded compact surface F in N0 which separates a
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submanifold containing e homeomorphic to F × [0,∞). All topologically tame
ends of hyperbolic 3-manifolds considered in this chapter are assumed to be
incompressible, i.e. the inclusion F ⊂ N is π1-injective. A topologically tame
relative end e is called geometrically finite if e has a neighbourhood which intersects
no closed geodesics. (Here we need to assume e to be topologically tame since
we are considering also the case when π1(N) is infinitely generated.) For a
geometrically finite end, the conformal structure ν(e) on the component of ∂∞N

corresponding to e is defined to be the end invariant of e. If � itself is geometrically
finite, then every relative end of N is geometrically finite.

As was shown by Bonahon [6], if e is topologically tame and incompressible but
not geometrically finite, then there exists a sequence of closed geodesics tending
to e in a neighbourhood E ∼= F × [0,∞) of e which are homotopic in E to
essential simple closed curves cn on F . Moreover, it is shown in [47] that {cn}
converges in UML(IntF) to a lamination ν(e) contained in EL(IntF) which is
determined uniquely, independently of the choice of closed geodesics tending to
e. This ν(e) is called the ending lamination of e. In this situation, we say that the
relative end e is simply degenerate and define the end invariant of e to be the ending
lamination ν(e). An end which is not topologically tame is called wild. (Recall
that we are not assuming the fundamental group of N to be finitely generated.) No
reasonable invariant for a wild end is known up to now. This forces us to define the
end invariants of N to be only those of topologically tame relative ends of N .

9.3.3 Least-Area Surfaces

In some arguments in this chapter, it will be necessary to homotope an immersion
to an embedding or to make intersecting surfaces disjoint by a homotopy. For that,
we shall make use of the following result proved by Freedman–Hass–Scott [18].

Theorem 9.3.6 ([18]) Let M be an orientable irreducible Riemannian 3-manifold
possibly with boundary having inward (or zero) mean curvature vectors, and f :
F → M a proper continuous map from a compact (possibly disconnected) surface
F which is properly homotopic to an incompressible embedding. Then any least-
area surface f0 homotopic to f is either an embedding or can be homotoped to
an embedding within an arbitrarily small regular neighbourhood of its image. In
particular, considering a Riemannian metric on M which is multiplied by a very
large scalar outside a regular neighbourhood of the image of f , it follows that
f can be homotoped to an embedding which is contained in an arbitrarily small
regular neighbourhood of the image of f .
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9.4 Brick Manifolds

9.4.1 Embeddings of Brick Manifolds with Infinite Bricks

We shall first introduce some notation to denote the union of sets in a family. The
notation will be convenient in the following discussion on brick manifolds. Let
Y = {Yα}α∈A be a family of subsets of some set X. We denote by

∨
Y the subset⋃

α∈A Yα of X. It should be noted that even when we consider a sequence of families
{Yn} of subsets of X, the union

∨
Yn is taken for each n.

Now we shall give a precise definition of brick manifolds, upon which we have
touched lightly before stating the main results in Sect. 9.2. As we explained there,
model manifolds of geometric limits which we shall use to prove our main results
have structures of brick manifolds.

Throughout this subsection, S denotes some fixed surface of finite type with
ξ(S) ≥ 4. A brick is a 3-manifold homeomorphic to F × J for a compact essential
subsurface F of S with ξ(F ) ≥ 3 and J is either [0, 1] or [0, 1) or (0, 1]. In the latter
two cases, the brick is said to be half open. We define ξ(B) to be ξ(F ). For a brick
B, we set ∂−B = F × {0} and ∂+B = F × {1} and call them the upper front and
the lower front respectively, even when B is half open. When B is half open, a front
which is not contained in B is called the ideal front of B. On the other hand, ∂F ×J

is called the vertical boundary of B, and is denoted by ∂vB. A brick B = F × J

has two foliations: the horizontal (codimension-1) foliation whose leaves consist of
F × {t} and vertical (codimension-2) foliation whose leaves consist of {x} × J . A
map from a brick to S× I (where I is an interval in R) is said to be leaf-preserving
when leaves of the horizontal and the vertical foliations are mapped to leaves of
the corresponding foliation of the range. Here, for S × I , the horizontal foliation
consists of S × {t} whereas the vertical foliation consists of {x} × I .

Before defining brick complexes and brick manifolds in general, we shall first
define finite brick complexes and finite brick manifolds. A finite brick complex is a
family of finitely many bricks K = {B1, . . . , Bm} realised as subsets of a 3-manifold
with pairwise disjoint interiors satisfying the following two conditions:

(1)
⋃m

i=1 Bi is connected.
(2) For any two bricks Bi, Bj in K with Fij = Bi ∩ Bj �= ∅, there exists a leaf-

preserving embedding η : Bi ∪ Bj → S × [−1, 1] with η(Bi) ⊂ S × [−1, 0],
η(Bj ) ⊂ S × [0, 1] such that η(Fij ) is an essential subsurface of S × {0} with
ξ(η(Fij )) ≥ 3.

The union
∨

K is called a finite brick manifold with brick decomposition K. We
call Fij in the second condition the joint of Bi and Bj . A joint Fij is said to be
inessential if ∂−Bi = Fij = ∂+Bj .

Now we define brick complexes and brick manifolds. Let {Kn}∞n=1 be an
ascending sequence of finite brick complexes. Then the union K = ⋃∞

n=1 Kn

is called a brick complex, and
∨

K is said to be a brick manifold with brick
decomposition K. In the situation where a leaf-preserving embedding η : M →
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S × (0, 1) of a brick manifold is given, a half-open brick B in K is said to be
peripheral with respect to η if the ideal front of η(B) is contained in S×{0}∪S×{1}.

The following lemma is a key step in the proof of Theorem A, to whose proof
the rest of this subsection is devoted. In the setting of Theorem A, the model
manifold M for N is a brick manifold which is a geometric limit of model manifolds
for (H3/Gn)0. It follows that M contains an ascending exhausting sequence of
finite brick manifolds which admit leaf-preserving embeddings into S × (0, 1). The
following lemma then implies that there is a leaf-preserving embedding of M itself
into S × (0, 1).

Lemma 9.4.1 Let {Mn} be a sequence of finite brick manifolds with brick com-
plexes Kn such that Kn � Kn+1. If there exists a leaf-preserving embedding
ηn : Mn → S × (0, 1) for each n ∈ N, then the brick manifold M = ⋃∞

n=1 Mn

has the following properties.

(i) There exists a leaf-preserving embedding η∞ : M → S × (0, 1).
(ii) The ends of M are countable.

(iii) If B ∈ Km is peripheral with respect to ηn for all n ≥ m, then B is also
peripheral with respect to η∞.

We use the symbols prh : S × [0, 1] → [0, 1] to denote the projection to the
second factor, and prv : S × [0, 1] → S to denote that to the first factor. For any
brick Bi ∈ Kn, we set prh ◦ ηn(∂−Bi) = αi,n and prh ◦ ηn(∂+Bi) = βi,n. (Here
we regard ηn as extended to ideal fronts continuously.) A half-open brick Bi is
peripheral with respect to ηn if and only if either αi,n = 0 or βi,n = 1. For integers
n,m with 1 ≤ n ≤ m, let Tn,m be the subset of [0, 1] consisting of the αi,m, βi,m for
Bi ∈ Kn, and set Tn = Tn,n. Consider the correspondence τn,m : Tn → Tm which
transfers αi,n, βi,n respectively to αi,m, βi,m. Note that τn,m may not be a map in
general. In fact, it may occur that αi,n = αj,n (resp. αi,n = βj,n) but αi,m �= αj,m

(resp. αi,m �= βj,m) etc.
To prove Lemma 9.4.1, we shall make use of the following two kinds of

rearrangement for {Kn} and {ηn}. In Rearrangement I, by taking a subsequence and
modifying the embeddings ηn, we shall make αi,n and βi,n independent of n.

Rearrangement I Fix n ∈ N. Then by passing to a subsequence, we can make
τm,m′ |Tn,m be a map for m′ > m ≥ n. Moreover, since there are only finitely many
bricks in Kn, there are only finitely many ways to give them an order. Therefore,
we can take a subsequence {Knk } of {Km}m≥n so that the restriction τnk,nl |Tn,nk :
Tn,nk → Tn,nl is an order-preserving bijection whenever nk ≤ nl . For any k ≥ n,
we define a new embedding ηk to be the old ηnk |Mk . Repeating the same argument,
we can assume that τm1,m2 |Tn,m1 : Tn,m1 → Tn,m2 is an order-preserving bijection
for any triple n ≤ m1 ≤ m2. Since ηn and ηm embed {∂−Bi, ∂+Bi | Bi ∈ Kn} in the
same order, we can deform the new ηn by ambient isotopies of S × I in such a way
that we have αi,n = αi,m and βi,n = βi,m for any n ≤ m and any i with Bi ∈ Kn. In
particular, Tn can be made a subset of Tm.
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Fig. 9.1 The union of the
shaded regions in the lower
(resp. higher) level is ηn(R

3
n)

(resp. ηn(R
10
n ))

a0

a10

a12

a2

a3

a9

Rearrangement II Set Tn = {a0, a1, . . . , at }, where elements are subscripted in
increasing order, and R

j
n = η−1

n (S × [aj−1, aj ]). See Fig. 9.1. Passing again to
a subsequence of {ηn} if necessary, we may assume that, for any j = 1, . . . , t ,
all ηm|Rj

n (m ≥ n) define the same embedding up to isotopies and changes
of the markings of S × [aj−1, aj ], i.e. there exists an orientation-preserving

homeomorphism γm,n : S × [aj−1, aj ] → S × [aj−1, aj ] with γm,n ◦ (ηm|Rj
n) =

ηn|Rj
n . For, if we fix a topological type of a compact essential subsurface F of S,

there are only finitely many embeddings, up to isotopies and changes of markings,
of F into S as an essential subsurface.

We note that this γm,n◦(ηm|Rj
n) may not extend to the entire Mm. In fact even for

a brick B in Km \ Kn with both ∂+B and ∂−B contained in Mn, it may be possible
that γm,n ◦ ηm(∂−B) and γm,n ◦ ηm(∂+B) are not isotopic.

To construct embeddings of the Mn which stabilise on each brick after finitely
many steps, we need to modify the above embeddings ηn by composing ‘twists’
which will be defined below. Before the definition, we shall observe the local
structure of the embeddings ηn(Mn) at horizontal levels near the accumulation
points of ∪mTm.

For each c ∈ I and n ∈ N, we call �(n)
c := (S × {c}) \ Int(ηn(Mn)) the slit for

ηn(Mn) at c. By Rearrangements I and II, for every fixed c, if we take a sufficiently
large n0, the topological type of �

(n)
c does not vary with n ≥ n0. The slit �

(n)
c

is said to be stable if all the �
(m)
c (m ≥ n) are homeomorphic. For c ∈ I , we

define χstab(�c) to be χ(�
(n)
c ) for stable �

(n)
c . Since the embedding of every brick



9 Geometry and Topology of Geometric Limits I 307

Fig. 9.2 The union of the
bold horizontal segments
represents �

(n)
c . The union of

�
(n)
c and the shaded regions

is the δ-region Qδ(�
(n)
c )

c

c − δ

c + δ
B1

(n)
B3

(n)

B2
(n) B5

(n)
B4

(n)

intersects S × {c} at an essential subsurface with negative Euler characteristic, we
see that χ(�

(n)
c ) is monotone increasing and once the equality χ(�

(n)
c ) = χstab(�c)

holds, �(n)
c is stable.

Let T ′∞ be the set of accumulation points of T∞ := ⋃
n≥1 Tn. For c ∈ T ′∞,

consider a sufficiently large n such that �(n)
c is stable. Suppose that B(n)

1 , . . . , B
(n)
k

are the bricks in Kn with ηn(B
(n)
i )∩ S × {c} �= ∅ (i = 1, . . . , k). Take a sufficiently

small δ > 0 so that S × ([c− δ, c) ∪ (c, c + δ]) meets none of the images under ηn

of the fronts of B(n)
i (i = 1, . . . , k). Then we call the set

Qδ(Σ
(n)
c ) := (

S × ([c − δ, c) ∪ (c, c + δ]) \ ηn(B
(n)
1 ) ∪ · · · ∪ ηn(B

(n)
k )

) ∪Σ(n)
c

the δ-region of the slit �(n)
c for ηn(Mn). See Fig. 9.2. When c is 0 or 1, we need to

modify the definition a little: we define Qδ(�
(n)
c ) to be S × (0, δ] when c = 0 and

S × [1 − δ, 1) when c = 1.
For m ≥ n, if �

(m)
d (d ∈ I) is contained in Qδ(�

(m)
c ) \ �

(m)
c then χ(�

(m)
d ) ≥

χstab(�c). If the equality holds, then �
(m)
d is parallel to �

(m)
c in S×[0, 1] \ηm(Mm)

(for, since Mm is connected, there cannot be a brick obstructing the parallelism),
and even if the strict inequality holds, prv(�

(m)
d ) is contained in prv(�

(m)
c ) (up to

isotopy). Therefore, in particular if d lies on a side of c from which T∞ accumulates
to c, the strict inequality χ(�

(m)
d ) > χ(�

(m)
c ) holds. Since the only bricks that

contribute to increase χ(�
(m)
c ) are those intersecting S × {c}, and their fronts other

than those on S × {c} lie outside the δ-region, we see that even for m smaller than
n, we have the inequality χ(�

(m)
d ) ≥ χ(�

(m)
c ). Thus we have shown the following

claim.

Claim 9.4.2 For c ∈ T ′∞, there exists δ(c) > 0 depending only on c such that
χstab(�d) ≥ χstab(�c) if d lies in [c − δ(c), c + δ(c)]. In particular, if d lies on a
side of c from which T∞ accumulates to c, we have χstab(�d) > χstab(�c).

In general, for every n, the inequality χ(�
(n)
d ) ≥ χ(�

(n)
c ) holds provided that d

lies in [c − δ(c), c + δ(c)], and prv(�
(n)
d ) is contained in prv(�

(n)
c ) up to isotopy.
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Fig. 9.3⋃k
i=1[ci − δ(ci ), ci + δ(ci )]

covers T∞ ∪ T ′∞ except for
b1, . . . , bu

b1

b4

c1

b2

b3

c2

c3

c4

c5

For an integer s ≥ 1, we define T ′∞,s to be the subset of T ′∞ consisting of
elements c ∈ T ′∞ for which −χstab(�c) = s. Suppose that c is contained in T ′∞,s .
Then by the claim above, if d lies on a side of c from which T∞ accumulates to
c, and |d − c| < δ(c), then −χstab(�d) < s. Taking into account also the side
from which T∞ does not accumulate to c, we can take a possibly smaller δ(c) such
that for any �

(n)
d with d ∈ T∞ ∪ T ′∞ contained in Qδ(c)(�

(n)
c ) \ �

(n)
c , we have

−χstab(�d) < s. This implies that (c− δ(c), c+ δ(c))∩ T ′∞,s = {c}. It follows that
T ′∞,s is a countable subset of [0, 1] for every s, and hence so is T ′∞.

By making δ(c) smaller if necessary, we can assume that for any c, c′ ∈ T ′∞,
either [c − δ(c), c + δ(c)] and [c′ − δ(c′), c′ + δ(c′)] are disjoint or one of them
contains the other. Since T∞∪T ′∞ is compact, there exists a finite subset {c1, . . . , ck}
of T ′∞ such that

⋃k
i=1[ci−δ(ci), ci+δ(ci)] covers T∞∪T ′∞ except for finitely many

elements b1, . . . , bu of T∞. See Fig. 9.3.
For a point a ∈ T∞ we define c(a) to be a point in T ′∞ such that [c(a) −

δ(c(a)), c(a)) ∪ (c(a), c(a)+ δ(c(a))] contains a and is the smallest among such
sets with respect to the inclusion. In the case when there is no such set, i.e. if a is
among b1, . . . , bu, we define c(a) to be 1 by convention.

Now we shall define maps called twists, which will be used to modify embed-
dings. Let F be a compact essential subsurface of S × {a} with 0 < a < 1 and
ϕ : F → F an orientation-preserving homeomorphism such that ϕ|∂F is the
identity. Consider a 3-manifold Nϕ obtained from S × [0, 1] \ IntF by identifying
the (±)-sides F (±) of F by ϕ : F (−) → F (+) instead of the identity. The original
S × [0, 1] \ IntF is naturally regarded as a subset of Nϕ . We say that Nϕ is the
manifold obtained from S×[0, 1] \ IntF by the ϕ-twist along F . The manifold thus
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Fig. 9.4 The shaded parts
represent the affected regions

(a) (b)

F

H

F

obtained is homeomorphic to S × [0, 1], by a homeomorphism which we specify as
follows. Let C0 be either F ×[0, a) or F × (a, 1]. Then we have a homeomorphism
ξ0 : Nϕ → S × [0, 1] such that ξ0|(Nϕ \ C0) is the identity, whereas ξ0|C0 is
ϕ−1 × id[0,a) if C0 is F × [0, a), and ϕ × id(a,1] if C0 is F × (a, 1]. The part of
Nφ where the homeomorphism is not the identity is called the affected region of the
twist. In the present case, C0 is the affected region. See Fig. 9.4a.

For the proof of Lemma 9.4.1, we need to reduce the affected region using the
following trick. Let H be a non-peripheral horizontal essential subsurface in S ×
[0, 1] with prv(H) ⊃ prv(F ) which lies in S × {b} for some b with F × {b} ⊂ C0.
Then there exists a homeomorphism ξ1 : Nϕ \H → S × [0, 1] \H whose affected
region is C1 = F × 〈b, a〉, where 〈a, b〉 denotes (a, b) if b > a and (b, a) if a > b,
i.e. ξi |Nϕ \ C1 is the identity. See Fig. 9.4b. In the following proof of Lemma 9.4.1,
we shall use this trick letting b be c(a) ∈ T ′∞ defined above.

Now we are ready to formally start the proof of Lemma 9.4.1.

Proof of Lemma 9.4.1 First we shall show part (i). We shall define inductively a
leaf-preserving embedding hn : Mn → S × [0, 1] with h−1

n (S × [aj−1, aj ]) =
η−1
n (S × [aj−1, aj ]) for Tn = {a0, a1, . . . , at }. Here ηn denotes the one which we

obtained after applying Rearrangements I and II for the original ηn. We set h1 = η1.
We assume that hn−1 has already been defined, and define hn inductively so that the
hn retain the properties obtained by Rearrangements I and II.

Recall that we defined R
j
n to be η−1

n (S × [aj−1, aj ]). By Rearrangement I,

we have R
j
n ∩ Mn−1 = R

j
n−1 for any j = 1, . . . , t . By Rearrangement II for

ηn and hence also for hn−1, we see that there exists an embedding ĥ
j
n : R

j
n →

S × [aj−1, aj ] such that ĥ
j
n ◦ ηn|Rj

n ∩ Mn−1 = hn−1|Rj
n ∩ Mn−1. We note that

the union of ĥ
j
n ◦ ηn does not necessarily match up on the boundaries of the

Rh
n to define an entire embedding from Mn to S × [0, 1]. Let T̂n be the subset

of Tn consisting of elements aj ∈ Tn for which χ(�
(n−1)
aj ) < χ(�

(n)
aj ), where

�
(n−1)
aj = S×{aj }\ Int(hn−1(Mn−1)) and �

(n)
aj = S×{aj }\ Int(

⋃t
j=1 ĥ

j
n ◦ηn(R

j
n))

are slits for hn−1 and ĥ
j
n ◦ ηn. In particular, c ∈ T̂n implies that �(n−1)

c is unstable.
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To construct an embedding on the entire Mn from this ĥj
n◦ηn, we need to perform

twist as defined before. For each aj ∈ T̂n, we choose an orientation-preserving

homeomorphism ϕaj : �
(n−1)
aj → �

(n−1)
aj with ϕaj |∂�(n−1)

aj being the identity so

that
⋃t

j=1 ĥ
j
n ◦ ηn extends to an embedding ĥn : Mn → Nn, where Nn is the

manifold obtained from S × [0, 1] \⋃
aj∈T̂n

�
(n−1)
aj by the composition of the ϕaj -

twists. By our definition of ĥ
j
n, if we identify Nn with S × [0, 1] so that the non-

affected regions do not move as was explained before, then the difference between
ĥn|Mn−1 and hn−1 is the composition of the ϕaj -twists.

Now we consider reducing the affected region of the ϕaj -twist, to make the
embeddings stabilise on each brick. Recall that for aj , there is a point c(aj ) ∈ T ′∞
defined above such that [c(aj )−δ(c(aj )), c(aj ))∪(c(aj ), c(aj )+δ(c(aj ))] contains

aj and is the smallest among such sets. By Claim 9.4.2, we see that prv(�
(n−1)
aj )

is contained in prv(�
(n−1)
c(aj )

) for the embedding hn−1. We then reduce the affected

region of the ϕaj region to prv(�
(n−1)
aj )×〈aj , c(aj )〉 in the way which we explained

just before the beginning of the proof of Lemma 9.4.1. In general, there might be
other ak among Tn = {a1, . . . , at } lying between aj and c(aj ). By our definition of
the function c, in this case we have 〈ak, c(ak)〉 ⊂ 〈aj , c(aj )〉. This implies that the

ϕak -twist does not change the condition that prv(�
n−1
aj

) is contained in prv(�
(n−1)
c(aj )

).
(This is valid even when c(aj ) = 1.) Therefore, there is a homeomorphism

ξn : Nn\⋃aj∈T̂n
�

(n)
c(aj )

→ S×[0, 1]\⋃
aj∈T̂n

�
(n)
c(aj )

′
such that the affected region of

the ϕaj -twist after composing ξn is contained in �
(n)
c(aj )

× 〈aj , c(aj )〉, where �
(n)
c(aj )

′

is the horizontal essential subsurfaces in S × [0, 1] corresponding to the slit �(n)
c(aj )

and we regard 〈aj , c(aj )〉 as (aj , 1] when c(aj ) = 1. Then ξn ◦ ĥn extends to a leaf-
preserving embedding hn : Mn → S × [0, 1], whose restriction to Mn−1 coincides
with hn−1 outside the affected regions, but hn may not be an extension of hn−1 in
the affected regions. For the sequence of embeddings hn thus obtained, we shall
show that the restriction hn|B to each brick B ∈ K is eventually the same map even
though n varies.

Let B be a brick of K. Then, there is a number m such that Mm contains B. Recall
that b1, . . . , bu ∈ T∞ are the points which are not contained in

⋃k
i=1[ci−δ(ci), ci+

δ(ci)]. Take a sufficiently large w0 ∈ N such that w0 > m, and such that all the
�

(w0)
j are stable for j ∈ {b1, . . . , bu}. This also means that all the twists along the

slits at b1, . . . , bu are already done by the w0-th step. For n > w0, consider a twist
performed in the construction of hn at a. If S × 〈a, c(a)〉 is disjoint from hm(B),
hence from hn−1(B), the image of B under hn is the same as that of hn−1(B). Recall
also that T̂n consists of the points where the Euler number of the slit changes at n.
Since for each a ∈ T∞, there are only finitely many n such that a is contained in T̂n,
if there are only finitely many n and twists at an for which S×〈an, c(an)〉 intersects
hm(B), then the image of B stabilises after finitely many steps.
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Suppose that there are infinitely many regions S × 〈an(j)

j , c(a
n(j)

j )〉 (n(j) ≥ w0)

with a
n(j)
j ∈ T̂n(j) which intersect hm(B). We claim that then the 〈an(j)

j , c(a
n(j)
j )〉

are contained in (prh(∂−hm(B)), prh(∂+hm(B))) except for finitely many of them.
Suppose, on the contrary, that infinitely many of them, which we denote again
by 〈an(j)

j , c(a
n(j)
j )〉, are not contained in (prh(∂−hm(B), prh(∂+hm(B))). Passing

to a subsequence, we can assume that {an(j)
j } converges to a point b ∈ T ′∞.

This implies that [b − δ(b), b + δ(b)] contains a
n(j)

j for sufficiently large j ,

and that c(a
n(j)
j ) is not greater than b and converges to b as j → ∞ since

there are only finitely many a
n(j)
j such that 〈an(j)

j , c(a
n(j)
j )〉 contains b. Since

S×〈an(j)

j , c(a
n(j)

j )〉 intersects hn−1(B), the only possibility is that an(j)

j is contained

in (prh(∂−hm(B), prh(∂+hm(B))) for all large j . Therefore 〈an(j)
j , c(a

n(j)
j )〉must be

contained in (prh(∂−hm(B), prh(∂+hm(B))), which is a contradiction.

Therefore we have only to consider φ
a
n(j)
j

-twists such that the 〈an(j)
j , c(a

n(j)
j )〉

are contained in (prh(∂−hm(B), prh(∂+hm(B))). Then φ
n(j)
aj is supported on �

n(j)
aj ,

which is disjoint from S × {aj } ∩ hn(j)−1(B). Therefore the embedding hn(j)−1(B)

does not change after performing the φ
n(j)
aj -twist. Thus we have shown that the

embedding of B stabilises after finite steps. It follows that a leaf-preserving
embedding η∞ : M → S × [0, 1] is well defined by setting η∞|B = hn|B for
large n. Since the rearranged ηn maps Mn into S × (0, 1), so does hn. Hence the
image of η∞ lies in S × (0, 1). This completes the proof of (i).

If B(m)
j ∈ Km is peripheral with respect to hn for all n ≥ m, then either αj,n = 0

or βj,n = 1 for all n ≥ m, even after Rearrangement I. It follows from our definition
of η∞ that either αj,∞ = 0 or βj,∞ = 1 holds. This shows part (iii).

Finally, we turn to part (ii). We consider the ends of the embedded image η∞(M)

instead of M itself. Fix a basepoint x0 in η∞(M). For an end e of η∞(M), consider
an arc αe in η∞(M) emanating from x0 and tending to e which meets each horizontal
leaf of every brick η∞(Bj ) (Bj ∈ K) with αe∩η∞(Bj ) �= ∅ transversely in a single
point except for the one containing x0. This implies that αe meets each S × {c} at
most at −χ(S) points. It follows that prh(αe) converges to a point b(e) of T ′∞.

Now, for c ∈ T ′∞, suppose that e1, . . . , em are distinct m ends of η∞(M) with
b(e1) = · · · = b(em) = c. For a sufficiently large n, these ends are contained in
distinct components of η∞(M \ Mn). Therefore, for each j = 1, . . . ,m, we can
choose a subarc βej of αej tending to ej in such a way that βej and βej ′ do not pass
through the same brick of η∞(M) if j �= j ′. If we take a sufficiently small δ > 0,
then each βej passes through the δ-region S×[c− δ, c)∪S× (c, c+ δ] transversely
to the horizontal leaves. It follows that m ≤ −2χ(S) since there are at most −χ(S)

ends lying on S × {c} in each of S × [c − δ, c) and S × (c, c + δ]. Since T ′∞ is a
countable set as was seen before, this implies that the ends of η∞(M) are countable.
This completes the proof of part (ii). !�
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9.4.2 Conditions on Labelled Brick Manifolds

A labelled brick manifold is a brick manifold M in which every half-open brick
has either a point in the Teichmüller space or an ending lamination attached to it
as follows. Let B be a half-open brick in M which is homeomorphic to F × J ,
where J is either [0, 1) or (0, 1]. Half-open bricks are divided into two categories:
geometrically finite bricks and simply degenerate bricks. If B is geometrically finite,
then a point in T (IntF) is given to B, otherwise an ending lamination of B, which
is contained in EL(IntF) is given. For a geometrically finite brick B, the interior of
the ideal front of B is denoted by ∂∞B, and the point in T (IntF) is regarded as a
marked conformal structure on ∂∞B. Also for a simply degenerate brick, the given
ending lamination is regarded as attached to the end corresponding to its ideal front.

As in Theorem A, we shall consider labelled brick manifolds M satisfying the
following conditions.

A-(1) Every component of ∂M is either a torus or an open annulus.
A-(2) There is no properly embedded essential annulus whose boundary compo-

nents lie in distinct boundary components of M .
A-(3) If there is an embedded, incompressible half-open annulus S1 ×[0,∞) in M

such that S1 ×{t} tends to a wild end e, then its core curve is homotopic into
an open-annulus component of ∂M tending to e.

A-(4) M is embedded into S × (0, 1) preserving the horizontal and the vertical
leaves in such a way that the ends of geometrically finite bricks are
peripheral.

A-(5) Every geometrically finite half-open brick has real front which is an inessen-
tial joint: i.e. its real front is contained in the intersection with another brick.

We shall explain the meanings of these conditions briefly. We consider a model
manifold M of a geometric limit of Kleinian surface groups, whose corresponding
hyperbolic 3-manifold we denote by N . The boundary of M corresponds to
the frontier of the non-cuspidal part N0. This shows that condition A-(1) must
be satisfied. Moreover by Margulis’s lemma, no essential loops on two distinct
components of FrN0 can be homotopic to each other. This implies condition A-(2).

To illustrate the meaning of condition A-(3), we consider the situation where
M is embedded in S × (0, 1) preserving the horizontal and vertical leaves, which
is required by A-(4). A-(3) says that if M has a wild end e, there must be a
sequence of complementary components of M in S × (0, 1) which tends to the
image of e in S × (0, 1) in such a way that no closed curve can be homotoped to
e without being obstructed by a complementary component, except those lying on
an annulus boundary component tending to e. We note that the model manifolds
of Kleinian surface groups (isomorphic to π1(S)) constructed by Minsky can
be regarded as labelled brick manifolds as will be explained later. Such brick
manifolds can be embedded in S × (0, 1) preserving the horizontal and the vertical
leaves. Lemma 9.4.1 implies that model manifolds of geometric limits can also be
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embedded in S × (0, 1) preserving the horizontal and the vertical leaves in such a
way that the geometrically finite ends are peripheral. This implies condition A-(4).

The last condition A-(5) is just for convenience in defining a metric on a brick
manifold later.

9.4.3 Tight Tube Unions

To construct model manifolds of Kleinian surface groups, Minsky considered a
hierarchy of tight geodesics. In his construction, a tight geodesic is realised in
the model manifold as a sequence of Margulis tubes. We shall consider a similar
realisation of a tight geodesic in the model manifold, which we call a tight tube
union.

Consider a brick B = F × [0, 1] with ξ(F ) > 4 in a labelled brick manifold.
Suppose that we are given a pair of multi-curves I×{0} and T ×{1} lying on Int∂−B
and Int∂+B respectively, which represent simplices in C(IntF) by identifying ∂−B
and ∂+B with F naturally. Let g = {vi}ni=0 be a tight geodesic in C(IntF) with
I (g) = I and T (g) = T . Then

⋃n
i=0 vi × [i/(n+ 1), (i + 1)/(n+ 1)] is a disjoint

union AB of vertical annuli in B. We call the union AB a tight annulus union in B

connecting I × {0} with T × {1}.
Next we consider the case when B is a half-open brick F ×[0, 1) with ξ(F ) > 4.

Since we are not going to put an annulus union or a tube union for geometrically
finite bricks, we assume that B is simply degenerate. Suppose then that I × {0} is
a multi-curve on Int∂−B = IntF , and that T × {1} is an element of EL(Int∂+B) =
EL(IntF), which is the ending lamination of B. Let g = {vi}∞i=0 be a tight geodesic
ray in C(IntF) with I (g) = I and T (g) = T . Then the union AB = ⋃∞

i=0 vi ×
[1 − 1/2i, 1 − 1/2i+1] of vertical annuli in B is called a tight annulus union in B

connecting I × {0} with T × {1}. We can consider a similar construction for a half-
open brick F × (0, 1] when an ending lamination on Int∂−B and a multi-curve on
Int∂+B are given, and define AB =⋃∞

i=0 vi × [1/2i+1, 1/2i].
When ξ(F ) = 4, we need to modify our definition to make annuli pairwise

disjoint. In this case, we define a tight annulus union AB by
⋃n

i=0 vi × [i/(n +
1), (2i + 1)/(2n + 2)] if B = F × [0, 1], by

⋃∞
i=0 vi × [1 − 1/2i, 1 − 3/2i+2] if

B = F × [0, 1), and AB =⋃∞
i=0 vi × [3/2i+2, 1/2i] if B = F × (0, 1].

Let AB = ⋃
i vi × Ji be a tight annulus union in a brick B. Take a sufficiently

thin annular neighbourhood Ri of vi on F so that Ri × Ji are pairwise disjoint in
B. Then VB =⋃

i Ri × Ji is called a tight tube union in B connecting I × {0} with
T × {1}.
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9.4.4 Block Decompositions of Labelled Brick Manifolds

In this subsection, we shall show that a labelled brick manifold M admits a decom-
position into blocks in the sense of Minsky provided that its brick decomposition
K satisfies conditions A-(1)–(5) and the following additional condition (EL), which
corresponds to the assumption on ending laminations of simply degenerate ends of
M given in Theorem C.

(EL) For any two simply degenerate bricks B,B ′ in K, their ending laminations
μ(B) and μ(B ′) are not homotopic in M .

Under conditions A-(1)–(5), this condition is automatically satisfied unless M

is homeomorphic to F × (0, 1) for a compact essential subsurface F of S as we
can see in the following way. Let B1 and B2 be two simply degenerate bricks with
B1 = F1 × J1 and B2 = F2 × J2, where J1 and J2 are half-open intervals. Note that
each component of ∂vB1 and ∂vB2 lies in ∂M . Condition A-(2) shows that F1 × {t}
and F2 × {t ′} cannot be homotopic in M unless M is homeomorphic to F1 × (0, 1).
Since μ(B1) is contained in EL(IntF1) whereas μ(B2) lies in EL(IntF2), which
means that they are filling on non-homotopic surfaces, they cannot be homotopic in
M unless F1 and F2 are homotopic in M . Therefore M must be homeomorphic to
F1 × (0, 1) if B1 and B2 have homotopic ending laminations.

Let Kgf be the subset ofK consisting of geometrically finite bricks, and set Kint =
K \ Kgf. The union ∂∞M = ⋃

B∈Kgf
∂∞B is called the boundary at infinity of M .

Bricks contained in Kint are called internal bricks.
We modify the brick decomposition K of M by performing the following two

operations.

(1) Removing inessential joints: Suppose that there is an inessential joint F of
two bricks B,B ′ in Kint. Then we replace B,B ′ with the single brick B ∪ B ′.
In the exceptional case when M is homeomorphic to F × (0, 1) and has two
simply degenerate bricks, this may yield a ‘brick’ homeomorphic to F × (0, 1),
which was not allowed in our definition. We still allow this operation and call a
brick thus obtained an open brick.

(2) Splitting bricks with non-overlapping annuli on the boundary: Suppose that
there is a brick B = F × [0, 1] in Kint with a component A of ∂M ∩ Int∂−B
which does not overlap ∂M ∩ Int∂+B. Here an annulus A1 in B is said to
overlap a union of annuli A in B when the vertical projections of A1 and A
to F intersect essentially. Then we remove IntA×[0, 1] from B and split B into
two bricks B1, B2. We can naturally identify M with M \A× [0, 1) and regard
(K \ {B}) ∪ {B1, B2} as a new brick decomposition of M . We can perform the
same operation also when there is an annulus in ∂M ∩ Int∂+B which does not
overlap ∂M ∩ Int∂−B.
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By repeating these two kinds of operations, we can assume

Assumption 9.4.3

(1) that there is no inessential joint for any two bricks in K,
(2) that for any brick B both of whose fronts ∂−B and ∂+B are real, each

component of Int∂−B ∩ ∂M overlaps Int∂+B ∩ ∂M and each component of
Int∂+B ∩ ∂M overlaps Int∂−B ∩ ∂M .

By condition A-(1), ∂M is a union of tori and open annuli. Since M is a brick
manifold, each of such tori and annuli consists of horizontal annuli and vertical
annuli whose interiors are pairwise disjoint, and contains at least one horizontal
annulus except for the case when it is a totally vertical annulus. Let HA be the union
of core curves of the horizontal annuli constituting the boundary components of
M . (We take one core curve from each horizontal annulus.) For each geometrically
finite brick Bi , we fix a multi-curve s(Bi) on its real front Fi which is the shortest
pants decomposition of Fi with respect to the hyperbolic structure given to Bi . Note
that although we gave a conformal structure on the ideal front, we put the pants
decomposition on the real front. Let l(K) be the union of HA, the s(Bi) for the
geometrically finite bricks Bi , and the ending laminations μ(Bj ) for all simply
degenerate brick Bj in Kint, which we regard as lying on the ideal fronts. See
Fig. 9.5a.

B1

B2

B3

B4 B6B5

B7

shortest pants

s(B )1{{

(a) (b)

B9
B8

μ(B )3

B10

{

Fig. 9.5 (a) B1, B10 is geometrically finite and B3, B8 are simply degenerate. The real fronts of
B1 and B10 are inessential joints. B2, B3, B7 are connectable. (b) The union of shaded rectangles
represents V (1). The white rectangles are bricks in K(1)

int ∪Kgf
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We set Mint = ∨
Kint. A brick B in Kint is said to be connectable if neither

I (B) = ∂−B ∩ l(K) nor T (B) = ∂+B ∩ l(K) is empty. We use this term
‘connectable’ considering the fact that if both I (B) and T (B) are non-empty, then
we can put a tube union in the brick B in question, which connects I (B) with
T (B), at the first stage in the following construction. Notice that if B is a simply
degenerate brick, although μ(B) does not lie inside M , either ∂−B or ∂+B contains
μ(B), and hence intersects l(K). It should be also noted that any brick B in Kint that
has greatest ξ(B) among the bricks in Kint is connectable unless ξ(B) = 3 since we
removed inessential joints. We denote by ξ0 the greatest ξ(B), and suppose that
ξ0 ≥ 5.

For any connectable brick B of Kint with ξ(B) ≥ 5, we take a tight tube union
in B connecting I (B) with T (B), and denote it by VB . In the case when B is an
open brick, condition (EL) guarantees that there is a tight tube union connecting
I (B) and T (B). We set VB = ∅ if either B is not connectable or ξ(B) ≤ 4, and
define V̄ (1) = ⋃

B∈Kint
VB . See Fig. 9.5b. Now, if there are two tubes T1, T2 in V̄ (1)

which are homotopic in M \ (V̄ (1) \ (T1∪T2)) we merge them into one tube: we can
assume that they are vertically isotopic, and by putting a tube between them which
is also a thickened annulus, we can make them parts of a larger tube. Repeating this
operation, we get a union of tubes V (1) in which no two tubes are homotopic in the
complement of the rest of the tubes.

Let M
(1)
int be the closure of Mint \ V (1) in Mint. Since V (1) consists of tubes

which are thickened vertical annuli in Mint, the 3-manifold M
(1)
int has a local product

structure (i.e. the one-dimensional vertical direction and two-dimensional horizontal
direction) induced from that on Mint which in turn comes from the product structures
of bricks. Thus M

(1)
int has a brick decomposition K(1)

int allowing a brick also to be an
open one having the form F ×(0, 1) such that each brick is the closure of a maximal
union of vertically parallel horizontal leaves in M

(1)
int .

We shall next verify condition A-(2). Suppose, seeking a contradiction, that there
is a properly embedded annulus in M

(1)
int whose boundaries lie in distinct boundary

components. This means that there are horizontal annuli A,A′ lying on distinct
boundary components whose core curves c, c′ are homotopic in M

(1)
int . Since two

simplices on a geodesic at distance greater than 1 have essential intersection, it
is impossible that A and A′ are contained in tubes in the same brick of Kint. If
they are contained in distinct bricks, by our operation modifying V̄ (1) to V (1), these
annuli A and A′ lie on the same boundary component, contradicting our assumption.
Therefore, condition A-(2) holds also for M(1)

int .

Now we consider condition A-(3). Let B be a half-open or open brick in K(1)
int .

Suppose that B meets infinitely many original internal bricks B̂p of Kint. Note that
B ∩ B̂p is homeomorphic to ∂hB × [0, 1] for each p, except possibly for one which
contains an ideal end of B. Then we can take an essential simple closed curve on the
horizontal surface of B which is not homotopic into an annulus component of ∂M ,
and is vertically isotopic into each of the B̂p. This gives rise to an incompressible
half-open annulus with core curve not homotopic into an annulus component of ∂M .
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This half-open annulus tends to the same wild end of M that the bricks B̂p tend to.
This contradicts condition A-(3) for M . (This end cannot be simply degenerate since
each simply degenerate end is contained in one brick of K.) Therefore, any brick in
K(1)

int meets only finitely many bricks of Kint. Also, we can see that an ideal front
F of B cannot be contained in the ideal front F ′ of some simply degenerate brick
B ′ = F ′ ×J of Kint since μ(B ′) is contained in EL(F ′), and hence there is no open
annulus in B ′ disjoint from the tight union of tubes which we extracted to construct
M

(1)
int . Thus we have shown that M

(1)
int contains neither half-open nor open bricks.

We should note that the greatest ξ(B) for the bricks B in M
(1)
int , which we denote by

ξ1, is less than ξ0 since bricks in Mint with ξ = ξ0 are all connectable.
Suppose next that ξ1 ≥ 5, and consider the unionV (2) of tubes which we obtained

by modifying the union of all tight tube unions VB for all B ∈ K(1)
int in the same

way as we defined V (1) in K merging homotopic tubes, and the closure M
(2)
int of

M
(1)
int \ V (2) in M

(1)
int . For the same reason as before, the greatest ξ(B) for the bricks

B in M
(2)
int is less than ξ1. Therefore, repeating the same procedure at most ξ(S)− 4

times, we reach a brick decomposition K(k)
int on M

(k)
int such that ξ(B) is either 3 or 4

for every brick B ∈ K(k)
int . In the special case when ξ0 = 4, we are in this situation

from the beginning, and hence we set k = 0.
Let V (k+1) be the union of tubes obtained by modifying in the same way as before

the union of tight tube unions VB for bricks B ∈ K(k)
int with ξ(B) = 4, and let K(k+1)

int

be the brick decomposition on the closure M
(k+1)
int of M

(k)
int \ V (k+1) such that each

brick is a maximal union of parallel leaves with respect to the horizontal foliation
on M

(k+1)
int . Moving components of V (k+1) vertically by an ambient isotopy of M(k)

int
if necessary, we can assume that for every brick B of Kint, its fronts ∂±B do not go
though the gaps of tubes of V (k+1), i.e. the following holds.

(BB) For any B ∈ Kint and B ′ ∈ K(k)
int with H = (∂+B ∪ ∂−B) ∩ B ′ �= ∅, each

component of H \ IntVB ′ is homeomorphic to �0,3.

We set Bint = K(k+1)
int , B = K(k+1)

int ∪Kgf, M[0]int = M
(k+1)
int , M[0] = M[0]int ∪

(
∨

Kgf), and V = ⋃k+1
m=1 V (m). We call B a block decomposition of M[0] and each

element ofB a block. Note that each block in Bint is homeomorphic to either �0,3×J

or �1,1 × J or �0,4 × J , where J is a closed or half-open or open interval, since
every brick in K(k+1)

int has ξ at most 4. Also by our definition of bricks for M
(k+1)
int

no two blocks meet at an inessential joint.

Remark 9.4.4 It may appear that our definition of blocks is slightly different from
that of Minsky in [35] as we allow blocks homeomorphic to �0,3 × J . Still the
difference is just a minor point since we can convert our block decomposition into
that à la Minsky just by cutting a block of the form �0,3× J into halves and pasting
one of them to the block above it and the other to the one below it.

Each component (i.e. tube) of V is a solid torus which is foliated by vertically
parallel horizontal annuli. For each solid torus V in V , its boundary ∂V is contained
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Fig. 9.6 A local picture of
M in the case of k = 0. The
white region is M[0].
V1 ∪ V5 ∪ V6 ⊂ V[0] and
V2 ∪ V3 ∪ V4 ∪ V7 ∪ V8 ⊂
V \ V[0]

in ∂M[0]∪∂M . If M[0]∩V consists of two vertical annuli A1, A2 for some V ∈ V ,
then ∂V \ Int(A1 ∪ A2) is a union of two horizontal annuli contained in ∂M , and
hence each of A1, A2 is a properly embedded essential annulus in M . (These annuli
cannot be boundary-parallel since, by definition, a brick is not allowed to be a solid
torus.) Since each component of ∂M is either an open annulus or a torus, this is
possible only when each of A1, A2 connects two distinct components of ∂M . This
contradicts condition A-(2). Therefore, for any component V of V , the intersection
M[0] ∩ V is either a torus or an annulus consisting of two vertical annuli and one
horizontal annulus. See Fig. 9.6.

Let V[0] be the union of all components V of V such that M[0] ∩ V is a torus,
and set M0 = M[0] ∪ V[0]. Then M0 is obviously a deformation retract of M and
there exists a homeomorphism ηM : M0 → M homotopic to the inclusion such that
the restriction ηM |V [0] is the identity. We often identify the original brick manifold
M with M0 via the map ηM .

9.4.5 Model Metrics on Brick Manifolds

Now we shall define a metric on a brick manifold induced from its decomposition
into blocks. We note that our metric is obtained by pasting metrics given on the
blocks, and does not depend on the embedding in S × [0, 1] which we constructed
in Sect. 9.4.1.

We shall put a standard metric on each block. However, our metric is slightly
different from that of Minsky in [35]. Fix ε1 > 0 less than the three-dimensional
Margulis constant, and a hyperbolic metric on the three-holed sphere �0,3 with
respect to which each component of ∂�0,3 is a closed geodesic of length ε1. Let
B0,3 be �0,3 × [0, 1] endowed with the product metric of the hyperbolic metric on
�0,3 and the standard metric on [0, 1].
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Consider two essential simple closed curves l0, l1 on �0,4 (resp. �1,1) with
geometric intersection number i(l0, l1) = 2 (resp. i(l0, l1) = 1) and set Bα to be a
brick of the form �α × [0, 1] for α ∈ {(0, 4), (1, 1)}. Let A− and A+ be annular
neighbourhoods of l0 × {0} and l1 × {1} in ∂−Bα and ∂+Bα respectively. We define
a piecewise Riemannian metric on Bα such that each component of ∂−Bα \ IntA−
and ∂+Bα \ IntA+ is isometric to �0,3 with the hyperbolic metric given above,
all of A−, A+ and ∂vBα are isometric to the product annulus S1(ε1) × [0, 1] and
distBα(∂−Bα, ∂+Bα) = 1, where S1(ε1) is a round circle in the Euclidean plane of
circumference ε1.

For any brick B ∈ Bint of type β ∈ {(0, 3), (0, 4), (1, 1)}, consider a
diffeomorphism hB : Bβ → B such that hB(∂vBβ) = ∂vB and moreover
hB(A±) = ∂±B ∩ V[0] when ξ(B) = 4. We can choose these homeomorphisms
in such a way that for any B,B ′ of types β, β ′ ∈ {(0, 3), (0, 4), (1, 1)} in Bint with
F = ∂+B ∩ ∂−B ′ �= ∅, ((hB ′ |F )−1 ◦ hB |h−1

B (F )
) is an isometry with respect to the

metrics on Bβ and Bβ ′ defined above. Then M[0]int has a piecewise Riemannian
metric induced from those on B0,3, B0,4, B1,1 via embeddings hB : Bβ → M[0]int.

We shall next define metrics on geometrically finite bricks. Each geometrically
finite brick B of B is identified with F × [−1,∞) preserving the horizontal and the
vertical leaves for a compact core F of some open essential subsurface F̊ of S with
ξ(F ) ≥ 3. Since F̊ can be identified with IntF , by our definition of geometrically
finite bricks, F̊ = F̊ × {∞} is given a conformal structure. Let σ(B) be a complete
hyperbolic metric on F̊ which is compatible with the given conformal structure.
We regard F as obtained from F̊ (σ (B)) by deleting the cusp neighbourhoods
which are components of F̊ (σ )(0,ε1). Consider a piecewise Riemannian metric
τ (B) on F̊ obtained by rescaling σ(B) on the points of F̊ in such a way that
τ (B)/σ(B) is continuous and is equal to 1 on F̊ (σ (B))[ε1,∞), and each component
of F̊ (σ (B))(0,ε1] is a Euclidean cylinder with respect to the τ (B)-metric. On the
other hand, we put another piecewise Riemannian metric υ(B) on F such that
each component of F(υ(B))(0,ε1] is a Euclidean cylinder, F(υ(B))[ε1,∞) × {−1}
coincides with M[0]int ∩ B, and each component of F(υ(B))[ε1,∞) is isometric
to �0,3. We choose such a metric so that the identity F(τ(B)) → F(υ(B)) is
uniformly bi-Lipschitz (i.e. the bi-Lipschitz constant is bounded by a constant
independent of B and F ). We call such a metric as υ(B) a cylinder-�0,3 metric
on F × {−1}. We note that our υ(B) corresponds to the metric σm′

given in [35,
§8.3].

We put a piecewise Riemannian metric on F × [−1, 0] such that its restriction to
F ×{−1} is equal to F(υ(B)), its restriction to F ×{0} is equal to F(τ(B)), and the
induced metric on F × {t} is uniformly bi-Lipschitz to τ (B) via the identification
of F × {t} with F . Recall that F is a compact core of an open surface F̊ . We take a
diffeomorphism η : F × [0,∞) → F̊ × [0,∞) such that the restriction η|F × {0}
is the identity and η(∂F ×[0,∞)) lies on F̊ ×{0} so that η|∂F ×[0, 1] is isometric
with respect to the metric on F × [0, 1] defined above and τ (B) on F̊ ×{0}. We put
on F × [0,∞) the induced metric η∗(ds2), where ds2 is a piecewise Riemannian
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metric on F̊ × [0,∞) defined by

ds2 = τ (B)e2r + dr2 (r ∈ [0,∞)). (9.4.1)

We define a piecewise Riemannian metric on B by pasting the metrics on F×[−1, 0]
and F × [0,∞) along F × {0}, which has the metric τ (B) on both sides. We
may assume that the metric on M[0]int and that on B are equal on M[0]int ∩
B = F(υ(B))[ε1,∞) × {−1} deforming the map attaching B to M[0]int by an
ambient isotopy if necessary. Thus we have obtained a piecewise Riemannian metric
on M[0], which we call the model metric on M[0]. By our construction, each
component C of ∂M[0] is either a Euclidean torus or a Euclidean cylinder which
has a foliation FC whose leaves consist of closed geodesics of length ε1.

9.4.6 Meridian Coefficients

For a complex number z with Im(z) > 0 and a real number η > 0, we denote
the covering map C → C/η(Z + zZ) by πz,η. For any component V of V[0],
its boundary ∂V has a Euclidean metric induced from the model metric on M[0]
as above. Then there is a unique ω ∈ C with Im(ω) > 0 for which we have an
orientation-preserving isometry from the quotient space C/ε1(Z+ωZ) to ∂V taking
πω,ε1(R) (resp. πω,ε1(ωR)) to a longitude (resp. a meridian) of V . (Here a longitude
of V is defined to be a horizontal essential simple closed curve on ∂V .) We denote
this ω by ωM(V ) and call it the meridian coefficient of ∂V .

Minsky showed that any meridian coefficient can be realised by a “Margulis
tube” as the Euclidean structure of its boundary. For r > 0 and λ ∈ C, we
consider the loxodromic transformation z 	→ eλz for z ∈ Ĉ. The quotient of the
r-neighbourhood of the axis, which connects 0 ∈ C and ∞ in H3, by the Z-
action generated by the loxodromic transformation is denoted by V(λ, r), and is
called the Margulis tube with coefficients (λ, r). Here, abusing the terminology,
we always call hyperbolic equidistance tubular neighbourhoods of simple closed
geodesics Margulis tubes even when the lengths of the core curves are not less
than the Margulis constant. We note that the shortest longitudes give a foliation
on ∂V (λ, r), which we call the longitude foliation.

Lemma 9.4.5 (Lemma 3.2 in [35]) For any ω ∈ C with Im(ω) > 0, there is
a Margulis tube V(λ, r) as above, determined uniquely up to isometry, whose
boundary has Euclidean metric isometric to ∂V with the given ω in such a way
that the meridian and the longitude of V(λ, r) correspond to those of V .

The following lemma proved in [12] shows that the meridian coefficients give
quasi-isometric control of Margulis tubes.

Lemma 9.4.6 (Lemma 8.5 in [12]) For any constant K ≥ 1, R > 0 and L > 0,
there exists a constant K ′ as follows. Suppose that r, r ′ ≥ R and |λ|, |λ′| ≤ L. Let
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υ : ∂V(λ, r) → ∂V(λ′, r ′) be a K-bi-Lipschitz homeomorphism taking a meridian
to a meridian and the longitude foliation to the longitude foliation. Then υ can be
extended to a K ′-bi-Lipschitz homeomorphism from V(λ, r) to V(λ′, r ′).

For any integer k > 0, consider the union V[k] of components V of V[0] with
|ωM(V )| ≥ k and set

M[k] = M[0] ∪ (V[0] \ V[k]).

By definition, we have M0 = M[k] ∪ V[k]. We put on each component V of V[0] a
hyperbolic metric induced from the Margulis tube whose boundary has exactly the
Euclidean metric induced from the model metric on M[0], which is guaranteed to
exist by Lemma 9.4.5. In this way, we extend the model metric on M[0] to a metric
on M0 whose restriction on V[0] is hyperbolic. The brick manifold M has a metric
induced from that on M0 via the homeomorphism ηM . We also call these metrics
on M0 and M the model metrics.

9.5 The Bi-Lipschitz Model Theorem for Brick Manifolds

Minsky constructed in [35] model manifolds for hyperbolic 3-manifolds homeo-
morphic to S × (0, 1) and proved that for any such hyperbolic manifold, there is
a Lipschitz map, called a model map, from its model manifold, whose Lipschitz
constant is uniformly bounded. Furthermore, in Brock–Canary–Minsky [12], it was
shown that such a model map can be taken to be a bi-Lipschitz homeomorphism, still
with uniformly bounded bi-Lipschitz constant. Using and generalising these results,
we shall show that a homeomorphism from a labelled brick manifold satisfying
conditions A-(1)–(5) and (EL) to a hyperbolic 3-manifold preserving end invariants
can be homotoped to a bi-Lipschitz homeomorphism with uniformly bounded bi-
Lipschitz constant. Let us recall that for any hyperbolic 3-manifold N and a constant
ε1 > 0 less than the Margulis constant, N0 = N

ε1
0 denotes the ε1-non-cuspidal part,

i.e. the union of N[ε1,∞) and all Margulis tube components of N(0,ε1] as defined in
Sect. 9.3.2.

Theorem 9.5.1 (Bi-Lipschitz Model Theorem) Let M be a labelled brick mani-
fold satisfying conditions A-(1)–(5) and (EL), and N a hyperbolic 3-manifold with
a homeomorphism f : M → N0 preserving the end invariants. Then f is properly
homotopic to a homeomorphism g : M → N0 = N

ε1
0 satisfying the following

conditions, where k ∈ N, K ≥ 1 and ε1 less than the Margulis constant depend
only on ξ(S).

(i) The image g(V[k]) = T[k] is a union of ε1-Margulis tubes of N0.
(ii) g(M[k]) = N0 \ IntT[k].

(iii) The restriction g|M[k] : M[k] → N0 \ IntT[k] is a K-bi-Lipschitz map.
(iv) The homeomorphism g extends continuously to a conformal map from ∂∞M

to ∂∞N .
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9.5.1 Minsky’s Arguments

Since we need to use Minsky’s results and arguments contained in [35] to prove The-
orem 9.5.1, we shall review them in this subsection. Let N be a complete hyperbolic
3-manifold homotopy equivalent to S. The end invariants of N correspond to two
geodesic laminations ν−, ν+ on S, obtained by converting each conformal structure
at infinity defined on an essential subsurface of S to a shortest pants decomposition.
There is a hierarchy HN of (possibly infinite) tight geodesics connecting ν− with ν+
in C(S). Minsky constructed in [35] a model manifold M of N homotopy equivalent
to S, and a Lipschitz model map fN : M → N based on HN. His model manifold
M consists of “internal blocks”, “boundary blocks”, “exterior blocks”, and Margulis
tubes. The union of the former three types, forgetting Margulis tubes, is denoted by
M[0].

For each Margulis tube V , in the same way as in Sect. 9.4.6, the meridian
coefficient ωV (M) is defined. We use the symbols V[k] and M[k] in the same way
as in Sect. 9.4.6.

Exterior models were introduced to give Lipschitz models of the components of
the complement of the “augmented convex core”. Here an augmented convex core is
the union of the 1-neighbourhood of the convex core and the ε1-thin part, where ε1
is a universal constant less than the three-dimensional Margulis constant which we
introduced at the beginning Sect. 9.5. Each component U of the complement of the
augmented convex core of M is homeomorphic to � × (0,∞) or � × (−∞, 0)
preserving the orientation for an essential subsurface � of S, where � × {0}
corresponds to a boundary component of the augmented convex core. The end
corresponding to �×{∞} or �×{−∞} has a conformal structure at infinity, denoted
by σ(U). The corresponding exterior block EU is homeomorphic to � × [0,∞) or
�× (−∞, 0] preserving the orientation. The conformal structure at infinity σ(U) is
assigned to the end of EU . The exterior block EU has a Riemannian metric which we
defined in Eq. (9.4.1) setting τ (B) in Sect. 9.4.5 to be σ(U) when it is identified with
� × [0,∞). When EU is identified with � × (−∞, 0], we replace t in Eq. (9.4.1)
with −t . The following was proved as Lemma 3.4 in [35].

Lemma 9.5.2 (Minsky [35] Lemma 3.4) For each component U of the comple-
ment of the augmented convex core of N, there is uniform bi-Lipschitz homeomor-
phism from EU to the closure of U which induces the identity on �.

Apart from the exterior blocks, M[0] consists of internal blocks and boundary
blocks. An internal block B has the form of � × [−1, 1], with A(α)× [−1,−1/2)
and A(β) × (1/2, 1] deleted for an essential subsurface � of S with ξ(�) = 4,
where α, β are essential simple closed curves on � intersecting at fewest possible
points (at one point when � = �0,4, and at two points when � = �1,1). We
fix a hyperbolic metric σ�(0,3) on �(0,3) with respect to which the length of every
boundary component is ε1. We put a metric on B so that B ∩�× {t} is isometric to
(�(0,3), σ�(0,3) ) for t ∈ [−1,−1/2) ∪ (1/2, 1] via the canonical identification. For
t ∈ [−1/2, 1/2] we put on � × {t} a metric which is a union of one or two copies
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of (�(0,3), σ�(0,3) ) and a flat annulus with circumference ε1. A boundary block B ′
has the form of �×[−1, 0] for an essential subsurface � of S with ξ(�) ≥ 4, from
which A(P�) × [−1,−1/2) is deleted, where P� is a multicurve decomposing �

into pairs of pants, and A(P�) denotes its regular neighbourhood. For every t ∈
[−1,−1/2) ∪ (1/2, 1], the surface B ′ ∩ � × {t} is a union of pairs of pants each
of which has the metric σ�(0,3) independent of t . For t = −1/2, the surface � × {t}
is a union of pairs of pants, which has the same metric, and A(P�) on which a flat
metric with circumference ε1 is put. The top boundary � × {0} has a hyperbolic
metric within a uniformly bounded distortion from the hyperbolic metric σ(U) for
the geometrically finite end U facing B ′, with respect to which every component of
P� has length less than ε1. For t ∈ (0, 1/2), we put a metric on � × {t} so that
outside A(P�) × (0, 1/2), the metric is uniformly bi-Lipschitz to the product of
σ�(0,3) and dt . The metric on M[0] is given by gluing the metrics on the blocks by
pasting them by isometries on pairs of pants.

To construct a uniform Lipschitz model map, starting from any continuous map
f between M and N in a given homotopy class, Minsky gave in §10 of [35]
a homotopy to deform f to a Lipschitz map in several steps as listed below.
Throughout these steps, we continue to use the symbol f to denote the map obtained
in each modification.

(Step 0) We homotope the restriction of f to each exterior block to a uniformly
Lipschitz map. This can be done by Lemma 9.5.2.

(Step 1) Let P be any gluing surface, a pair of pants along which blocks of M[0]
are glued. Let V1, V2 and V3 be the Margulis tubes on whose boundaries
∂P lies, and γ1, γ2 and γ3 be the closed geodesics which are core curves
of f (V1), f (V2) and f (V3) respectively. We homotope f so that f |P
is a restriction of a pleated surface bounded by γ1, γ2 and γ3 for every
gluing surface P . This makes the restriction of f to the union of the
exterior blocks and gluing surfaces uniformly Lipschictz.

(Step 2) For each block b ∼= �×[−1, 1] of M[0], we consider the middle surface
�m corresponding to � × {0}. We homotope f so that f |�m is the
“halfway surface” between the two pleated surfaces f |� × {−1} and
f |�×{1}. This step makes the restriction of f to the union of the exterior
blocks, the gluing surfaces and the middle surfaces uniformly Lipschitz.

(Step 3) We homotope f by straightening the part between the gluing surfaces
and the middle surface for each internal block, and the part between the
gluing surface and the outer boundary. This step makes the restriction of
f to M[0] uniformly Lipschitz.

(Step 4) We homotope f so that its image is contained in the augmented convex
core of N. This can be done preserving the uniform Lipschitzness.

(Step 5) We show that for any k, there exists ε > 0 such that the image of f |M[k]
is disjoint from the ε-Margulis tubes in N.

(Step 6) We homotope f so that its restriction to each Margulis tube in V[k] is
L(k)-Lipschitz, where L(k) is a constant depending only on S and k.
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(Step 7) We homotope f so that there is a constant k0 depending only on ξ(S)

such that for any k > k0, the Lipschitz constant L(k) can be taken to be
independent of k.

9.5.2 Length Bound

The rest of this section is devoted to the proof of Theorem 9.5.1. We should note
that by Lemma 9.4.1, there is a proper embedding ιM of our model manifold into
S × (0, 1). Accordingly, we have an embedding ιN : N0 → S × (0, 1) such that
ιN ◦ f = ιM . As in the previous section, we modify the brick decomposition of M

so that Assumption 9.4.3 holds.
By the same argument as Lemma 9.5.2, we can deform f to a map f1 by a

proper homotopy so that for any geometrically finite half-open brick B ′ ∈ Kgf, the
restriction f1|B ′ : B ′ → f1(B

′) is a uniformly bi-Lipschitz homeomorphism which
extends continuously to a conformal map from ∂∞B ′ to ∂∞f1(B

′) and its real front
is mapped into the boundary of the convex core of N .

We shall first show that f1 can be properly homotoped to a K-Lipschitz map
with a constant K depending only on ξ(S). For that, we shall follow the line of
Minsky’s argument in [35]. Recall that we have a union of tubes V in M which we
constructed in Sect. 9.4.4 inducing a decomposition of M into blocks, and that for
each tube V in V[0], its meridian coefficient ωM(V ) is defined. The first step is to
prove the following lemma.

Lemma 9.5.3 There is a universal constant L depending only on ξ(S) such that
for the core curve v of each tube V in V , the length of the closed geodesic in N

homotopic to f (v) is less than L.

Proof This lemma corresponds to Lemma 7.9 in Minsky [35]. We shall also use its
generalisation by Bowditch, Theorem 1.3 in [9].

Recall that we constructed a block decomposition of M repeating the process of
putting tight tube unions in bricks, starting from the decomposition of M into bricks
of K. First, we note that the geodesic lengths of the images under f of core curves
of tubes in V \ V[0] are bounded by a constant depending only on ξ(S): for each of
them corresponds to a curve in the shortest pants decomposition of the hyperbolic
structure at infinity on a geometrically finite end whose length is bounded by Bers’s
lemma, and by Sullivan’s theorem [16], the corresponding closed geodesic in N has
also length bounded by a constant depending only on ξ(S).

At the first stage, for each connectable internal brick B = F ×J , we connected a
component ∂−B ∩ l(K) with a component of ∂+B ∩ l(K) by a tight geodesic. Since
f takes l(K) to either an ending lamination or a parabolic element in N or a closed
geodesic corresponding to a simple closed curve in a shortest pants decomposition
in the conformal structure at infinity, by applying Lemma 7.9 in Minsky [35] or
Theorem 1.3 in Bowditch [9] to the covering of N associated to f#π1(B), we see that
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there is a constant L0 depending only on ξ(S) such that each curve in the simplices
constituting the tight geodesic has length in N bounded by L0.

At the n-th stage, we have bricksK(n)
int constituting M

(n)
int which is the complement

of Vn = ⋃n
m=1 V (m) in Mint. Let ln be the union of l(K) and the core curves of Vn

that are not homotopic to simple closed curves in l(K). In each brick B(n) of K(n)
int ,

we constructed a tight tube union connecting ∂−B(n) ∩ ln and ∂+B ∩ ln. Therefore
using Bowditch’s Theorem 1.3 inductively, we see that if the geodesic lengths in
N of curves in ln are bounded by Ln, then there is Ln+1 depending only on Ln

bounding the lengths in N of ln+1. Since we reached the block decomposition within
ξ(S) − 3 steps, we see that there is a constant L depending only on ξ(S) which
bounds the lengths of the closed geodesics corresponding to the core curves of V .

!�

9.5.3 Homotoping f to a Lipschitz Map Preserving
the Thin Part

Moving V by an ambient isotopy of Mint without changing the structure of block
decomposition, we may assume that for any B ∈ Kint, every component of ∂+B \V
and ∂−B \ V is homeomorphic to a thrice-punctured sphere. Let F be a compact
essential subsurface of S such that B is homeomorphic to F × J for an interval
J . If ∂+B is a real front, then ∂+B ∩ V determines a simplex in C(F ) inducing a
pants decomposition of F . We now homotope f1 so that each core curve of V[0]
is mapped to a closed geodesic. By Lemma 9.5.3, all such closed geodesics have
length bounded by L. In this situation, we can apply Minsky’s construction which
we explained in Sect. 9.5.1 to get a map f2 : M → N for which the following hold.
Recall that we have fixed a constant ε1 less than the three-dimensional Margulis
constant.

(1) We have f2|B ′ = f1|B ′ for every B ′ ∈ Kgf. This corresponds to Lemma 9.5.2.
(2) For each block B of M[0]int, the f2|∂±B lies on a pleated surface with totally

geodesic boundary each of whose components is a closed geodesic homotopic
to f2(v) for a core curve v of some V ∈ V . This corresponds to Step 1 in
Sect. 9.5.1.

(3) There exists a constant ε0 > 0 depending only on ξ(S) such that for a core
curve v of a solid torus component V of V , if the geodesic length of f2(v) is
less than ε0, then f2(V ) is contained in the ε1-Margulis tube with core curve
f2(v). This corresponds to Step 3.

(4) The image of f2 is contained in the union of the 1-neighbourhood of the convex
core of N and the ε1-Margulis tubes of N . This corresponds to Step 4.

To modify f2 further to get a Lipschitz map, we need the following lemma, which
corresponds to Step 7 in Sect. 9.5.1.
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Lemma 9.5.4 Let V be a tube in V[0], and v its core curve. For any δ > 0, there
exists k which depends on δ and ξ(S) but is independent of M and N such that if
|ωM(V )| > k then the closed geodesic homotopic to f (v) has length smaller than δ.

Proof This lemma corresponds to Lemma 10.1 in Minsky [35]. In our situation, V
may be shared by blocks contained in distinct bricks. Therefore, we cannot apply
Minsky’s result directly. Instead, we use an argument which can also be found
in Soma [46]. Our argument is by contradiction. Suppose that there exist δ > 0
and tubes Vj with core curves vj such that |ωM(Vj )| → ∞ whereas the closed
geodesics homotopic to f2(vj ) have length greater than δ.

Since |ωM(Vj )| → ∞, by passing to a subsequence, we can assume that either
�ωM(Vj ) → ∞ or �ωM(Vj ) → ∞ holds. We shall first consider the case when
�ωM(Vj ) → ∞. By the definition of ωM(Vj ), there are (�ωM(Vj ) − 2) blocks
which intersect ∂Vj along their vertical sides. This implies that there are at least
�ωM(Vj ) gluing surfaces, which are homeomorphic to �(0,3), having boundary
components lying on ∂Vj . We should also note that no two distinct gluing surfaces
are homotopic in M . Since we assumed that �ωM(Vj ) goes to ∞, there are kj
pairwise non-homotopic gluing surfaces with boundary components on ∂Vj with
kj → ∞. The image of each gluing surface lies on a pleated surface with totally
geodesic boundary one of whose components is the closed geodesic γj homotopic to
f (vj ). Therefore, there are kj pairwise non-homotopic pleated surfaces from �(0,3)
which have γj as a boundary component.

Now, we put a basepoint xj on γj , and consider the geometric limit (N∞, x∞)

of (N, xj ), passing to a subsequence if necessary. Since the length of γj is bounded
from above by Lemma 9.5.3 and from below by δ > 0 by our assumption, the
geometric limit exists (as a hyperbolic 3-manifold) if we take a subsequence. The
geometric limit does not depend on the choice of xj as long as it lies on γj
once we fix some geometrically convergent subsequence. Let ρi : BRi (N, xj ) →
BKiRi (N∞, x∞) be an approximate isometry associated to the geometric conver-
gence with Ri → ∞ and Ki → 1. In the geometric limit N∞, we have the limit
γ∞ of γj , which is a closed geodesic since the lengths of the γj are bounded away
from 0. The geometric limit of pleated surfaces with boundary components on γj are
pleated surfaces with a boundary component on γ∞. We should also note that if we
fix a positive constant ε smaller than δ and ε1, then all the pleated surfaces intersect
the ε-thin part of N only near their boundary components other than γj , and hence
that the limit pleated surfaces can intersect the ε-thin part only near their boundary
components other than γ∞. Since kj → ∞, we can find among the limit pleated
surfaces, two limit pleated surfaces F1, F2 such that F2 is homotopic to F1 in a
small regular neighbourhood F1 whereas ρ−1

i (F1) and ρ−1
i (F2) are not homotopic.

This is a contradiction.
It remains to deal with the case when �ωM(Vj ) →∞ with �ωM(Vj ) bounded.

Fix a horizontal simple closed curve ci on ∂Vj . We let di be a simple closed curve
on ∂Vj intersecting ci at one point and having shortest length among all simple
closed curves intersecting ci at one point. Let mj be a meridian of Vj . Since each dj
intersects cj at one point, as elements of the first homology group of ∂Vj , we have
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[dj ] = [mj ] + αj [cj ] with αj ∈ Z if we fix orientations on cj ,mj and dj . Since we
assumed that�ωM(Vj ) →∞, we have |αj | → ∞, and in particular, we can assume
that αj �= 0 by taking a subsequence. Since the length of dj is shortest among
the simple closed curves intersecting cj at one point, we have length∂Vj

(dj ) ≤
(�ωM(Vj ) + 1)ε1. Now, since ∂Vj is contained in M[0], by condition (6) above,
we have length(f2(dj )) ≤ L(0)(�ωM(Vj ) + 1)ε1. The right hand side is bounded
above since we have already proved that �ωM(Vj ) is bounded as j → ∞. Since
[dj ] = [mj ]+αj [cj ], the curve f2(dj ) with an appropriate orientation is homotopic
to the |αj |-time iteration of γj in N . This implies lengthf2(dj ) ≥ |αj |length(γj ).
The right hand side goes to ∞, whereas the left hand side is bounded as we have
seen above. This is a contradiction. !�

Having proved Lemma 9.5.4, the rest of the modification to get a proper, degree-
1 map f3 : M → N0 such that f3|M[k] is K3-Lipschitz with K3 depending only on
ξ(S) consists of the following two steps.

(5) For any k, there exists a positive number ε(k) < ε1 such that f2(M[k]) is
disjoint from the ε1-Margulis tubes of N whose core curves have length less
than ε(k). This corresponds to Step 5 of Sect. 9.5.1.

(6) For any k, there exists a constant L(k) such that f2|M[k] is L(k)-Lipschitz.
This corresponds to Step 6.

We state one more property of f3 which is derived from our construction.

(7) Since f3 has degree 1, there exist constants k2 and ε(k2) as in condition (5)
depending only on ξ(S) such that any ε1-Margulis tube in N whose core curve
has length less than ε(k2) is contained in the image of a component of V[k2].

9.5.4 Preliminary Steps to Homotope f3 to a Bi-Lipschitz Map

We now turn to modify f3 to a bi-Lipschitz homeomorphism. This was done in
Brock–Canary–Minsky [12] for the case of surface Kleinian groups. Recall that we
moved V so that for each brick B in Kint, if its upper or lower front ∂±B is real,
then every component of ∂±B \ V is a thrice-punctured sphere. We parametrise B

as F × J with a closed or half-open interval J . We define i(B) to be a simplex in
C(F ) with empty transversals such that i(B) × {min J } is homotopic to the union
of core curves of ∂−B ∩V if ∂−B is real, and to be the ending lamination of the end
corresponding to F ×{inf J } if ∂−B is ideal. Similarly we define t(B) for the upper
boundary of B. We shall first show that in this setting, the block decomposition of
B induced by V corresponds to a hierarchy in the sense of Masur–Minsky [30].

Lemma 9.5.5 Let B be a brick in Kint, homeomorphic to F × J with a closed or
half-open interval J . Then there is a 4-complete hierarchy h of tight geodesics on F

with I (h) = i(B) and T (h) = t(B) whose 4-sub-hierarchy gives rise to the same
block decomposition of B as the one induced by V converted as in Remark 9.4.4 to
Minsky’s decomposition.
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Proof In the construction of V in the previous section, we began with putting
tight tube unions in all connectable bricks in Mint whose initial and terminal
vertices are in l(K). After that, we merged homotopic tubes into one and let the
obtained tube union be V (1). Then we considered the brick manifold M(1) which
is the complement of V (1) and repeated the same procedure until we got a block
decomposition. Now, we shall look more closely how tubes are put (and merged) in
B during this construction and define tight geodesics which constitute h. We define
I (B) = i(B) × inf J and T (B) = t(B) × sup J . (These may be larger than I (B)

and T (B) defined in the previous section.)
If B is connectable in the first step of the construction of V , then we get a tube

union VB on B in the first step, which corresponds to a tight geodesic gB in C(F )

connecting a component of l(K)∩ ∂−B with a component of l(K)∩ ∂+B. (If one of
them is an ending lamination, the geodesic gB refers to a tight geodesic ray tending
to it.) Since l(K) ∩ ∂−B ⊂ I (B) and l(K) ∩ ∂+B ⊂ T (B), we can assume that
gB has i(B) as initial marking, and t(B) as terminal marking. We let gB the main
geodesic of h.

We next consider how the merging of tubes is reflected in the construction of
geodesics in the hierarchy still under the assumption that B is connectable at the
first step. If there is a tube V in B which is merged with another homotopic tube
V ′ in another brick B ′, then a core curve v of V must be in either i(B) or t(B)

since ∂±B \ V consists of thrice-punctured spheres. This can occur only when the
core curve is contained in either the first, or the second, or the second but last, or
the last simplex of the geodesic gB , for its core curve regarded as a curve on ∂±B
cannot have non-zero intersection number with I(B) or T(B). If v is contained in
the first or the last vertex of gB , this procedure of merging does not affect tubes in B.
Otherwise, v is contained in either the second or the second to last simplex of gB . In
this case, we regard the procedure as corresponding to putting a geodesic consisting
of only one vertex, i.e. of length 0, which is subordinate to gB at the first or the last
vertex.

Next, we shall consider the case when B is not connectable in the first step. In
the second step, either (a) B is contained in another brick B̄ constituting M(1) or
(b) B is split into two (or more) in the process of merging two homotopic tubes of
V (1), one lying above B and the other below B. In the latter case, let V1, . . . , Vp be
tubes in V (1) which split B. We should note that these tubes have core curves which
are homotopic to curves both in I (B) and T (B). Let v1, . . . , vp be the curves on
F corresponding to their core curves. Then we define geodesics g1, . . . , gp each of
which consists of only one vertex, such that D(g1) = F , D(gj ) is a component

of F \ ∪j−1
s=1vs for j = 2, . . . p, I (gj ) = i(B) ∩ D(gj ), T (gj ) = t(B) ∩ D(gj ),

and gj−1
d↙ gj

d↘ gj−1, and let them be geodesics contained in h setting the main
geodesic gB to be g1. In case (a), if B̄ is connectable in M(1), then we consider
VB̄∩B, where as explained above B is assumed to be in a position such that V∩∂−B
is a regular neighbourhood of I (B) and V∩∂+B is that of T (B), and define the main
geodesic gB to be the tight geodesic in C(F ) corresponding to VB̄ ∩ B. As before,
we define I (gB) = i(B) and T (gB) = t(B). If B̄ is not connectable, we proceed
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to the following step and repeat the same procedure depending on whether there is
a brick containing B̄ or B̄ is split by merging of homotopic tubes. Thus we have
defined the main geodesic gB , together with some more geodesics in h in the case
when B is split. We shall now turn to the subsequent steps.

In the subsequent steps, we put a tight tube union VB ′ into a brick B ′ constituting
a brick decomposition of Mint \ V (k). We shall show that the intersection with B

of each tube union in a connectable brick B ′ in the (k + 1)-th step gives rise to a
tight geodesic on F which is subordinate to the ones obtained up to the k-th step.
This implies that in the final step, we shall get a hierarchy on F connecting i(B)

and t(B). To show that, we shall analyse what a tube union in B ′ brings about to B,
dividing the argument into subcases depending on the location of B ′ with regard to
B. (Again, B is in a position where ∂−B ∩ V is a regular neighbourhood of I (B)

and ∂+B ∩ V is that of T (B).) We parametrise B ′ as F ′ × J ′ with F ′ ⊂ F , in such
a way that horizontal leaves and vertical leaves are contained in those of bricks in
Kint. Since F ′ × {x} for x ∈ IntJ ′ is a horizontal leaf whose boundary lies on ∂Vk ,
the surface F ′ is a component domain of a geodesic corresponding to a tube union
which was already put into M up to the k-th step. Now we divide our argument into
three, depending on an inclusion relation between J and J ′.

First, suppose that B ′ is contained in B, which means that both ∂−B ′ and ∂+B ′
lie in B and J ′ is contained in J . Recall that core curves of ∂±B ′ ∩Vk are ∂±B ′ ∩ lk .
We define I (B ′) = ∂−B ′ ∩ (lk ∪ (i(B)× inf J )) and T (B ′) = ∂+B ′ ∩ (lk ∪ (t(B)×
sup J )). In this definition, we need to add i(B) × inf J and t(B) × sup J to deal
with the case when infB ′ = infB or sup B ′ = supB. Note that I (B ′) is lk ∩
∂−B ′ and T (B ′) is lk ∩ ∂+B ′, which are contained in I (B ′) and T (B ′) respectively.
By our construction of V (k+1), the tube union VB ′ in B ′ connects a component of
I (B ′) to that of T (B ′). We define gB ′ to be the tight geodesic corresponding to
VB ′ whose initial and terminal markings are simplices corresponding to I (B ′) and
T (B ′) respectively. Since we defined I (B ′) = ∂−B ′ ∩ (lk ∪ (i(B) × inf J )) and
T (B ′) = ∂+B ′ ∩ (lk ∪ (t(B) × sup J )), and F ′ is a component domain of some
simplex of a tight geodesic of h already defined as was explained above, the tight
geodesic gB ′ is both forward and backward subordinate to a geodesic in h which
was obtained up to the k-th step.

Next suppose that, one of ∂−B ′ and ∂+B ′ is contained in B whereas the other
is not. This means that one of the endpoints of J ′ lies in J whereas the other does
not. Now, we assume that ∂−B ′ is the one contained in B: for the other case, we
can argue in the same way, just interchanging the directions. In this situation, I (B ′)
coincides with ∂−B∩lk which is contained in lk∩B. On the other hand, T (B ′) may
not lie in B. Now, by our definition of V , the tube union VB ′ put into B ′ is contained
in V . Therefore, VB ′ intersects ∂+B by components of ∂+B ∩ V since we moved
V so that every component of ∂+B \ V is a thrice-punctured sphere. (Recall that
unless ξ(B ′) = 4, the upper front of each tube of VB ′ lies on the same horizontal
level as the lower front of the subsequent tube. In the case when ξ(B ′) = 4, there is
a gap between them, but we moved V so that ∂±B avoid such gaps.) Therefore, if
we consider a sub-tube union V̄B ′ of VB ′ starting from the first tube and ending at a
tube in ∂+B∩V , then it is exactly what VB ′ brings about to B. If VB ′ ∩∂+B consists
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of only one component, then we let gB̄ ′ be the tight geodesic corresponding to V̄B ′
defining I (gB̄ ′ ) to be a simplex consisting of curves corresponding to ∂−B ′ ∩ (lk ∪
(i(B)× inf J )) and T (gB̄ ′) to be t(B) ∩ F ′. Otherwise, we choose one component
of VB ′ , denoted by V 0

B ′ and remove the others, denoted by V 1
B ′ , . . . , V u

B ′ , from V̄B ′ ,
and then define gB̄ ′ in the same way. Since the last tube of V̄B ′ intersects ∂+B, it
has a core curve contained in T (B). This implies that gB̄ ′ is forward subordinate
to one of the geodesics obtained up to the k-th step. We also know that gB̄ ′ is also
backward subordinate to such a geodesic by the argument in the previous case.

In the latter case when VB ′ ∩ ∂+B is not connected, we further define tight
geodesics g1

B̄ ′ , . . . , g
u
B ′ inductively as follows. Let v

j

B ′ be a core curve of V
j

B ′ for

j = 0, . . . , u. Let D be a component of F \ v0
B ′ containing v1

B ′ , and let v−1
B ′ be

the simplex of gB̄ ′ which precedes v0
B ′ . Then we define g1

B ′ to be a tight geodesic of

length 1 supported on D with I (g1
B ′ ) equal to v−1

B ′ ∩D and T (g1
B ′) equal to t(B)∩D.

(The intersection v−1
B ′ ∩D is not empty since gB̄ ′ is tight.) In the same way, we define

Dk to be the component of F \ (v0
B ′ ∪ · · · ∪ vk−1

B ′ ) containing vk
B ′ and gk

B ′ to be a
tight geodesic of length 1 supported on Dk with I (gk

B ′ ) equal to vB ′ ∩Dk and T (gk
b′)

equal to t(B) ∩Dk . Then all these geodesics g0
B ′ , . . . , gu

B ′ are subordinate to gB̄ ′ in
both directions. Thus in either case, we get tight geodesics which are both backward
and forward subordinate to geodesics in h obtained up to the previous step.

Finally suppose that neither ∂−B ′ nor ∂+B ′ is contained in B. Then VB ′ intersects
∂−B by a union of solid tori V1 contained in ∂−B ∩ V and ∂+B by a union of solid
tori V2 contained in ∂+B∩V . We define V̄B ′ to be the sub-tube union of VB ′ starting
from a component of V1 and ending at a component of V2. Then V̄B ′ is the union
of tubes which VB ′ brings about to B. We define gB̄ ′ to be the corresponding tight
geodesic supported on F ′, setting its initial and terminal markings to be i(B) ∩ F ′
and t(B)∩F ′ respectively. In the same way as in the previous paragraph, we define
geodesics of length 1 corresponding to the components of V1 and V2 which are not
chosen. These geodesics are both forward and backward subordinate to geodesics
which are obtained up to the k-th step by the same reason as in the previous case.

Now, recall that in each step, we also merge homotopic tubes into one. As was
analysed in the first step, this procedure corresponds to putting a geodesic consisting
of only one vertex which is subordinate to a geodesic which was already constructed
in the previous steps. Thus we have shown that at each step we get a geodesic
subordinate to those which we have already had and at the final step, we get non-
annular geodesics in h.

We shall next define annular geodesics of h. Let V be a tube in V intersecting B

along its entire boundary. We parametrise V as A × [0, 1] preserving leaves. Since
A×{0} lies on ∂+b for some block b of the form �0,4×J or �1,1×J , the core curve
of the annulus on ∂−b which is the complement of the other blocks intersecting ∂−b
defines an arc on A×{0}which is regarded as a vertex v− in C(A). Similarly we can
define an arc on A× {1} regarded as a vertex v+ in C(A) from the block on whose
bottom A × {1} lies. We define a geodesic gB supported on A connecting v− and
v+, and let it be contained in h. By our construction, this geodesic is both forward
and backward subordinate to 4-geodesics already contained in h.
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It remains to show that the block decomposition of B induced from V is
compatible with h. This means that we have a resolution of the 4-sub-hierarchy
of h which gives rise to the block decomposition induced from V . We consider the
family of horizontal surfaces F × {t} in B. Then outside countably many intervals
corresponding to gaps which we introduced for 4-geodesics, F × {t} ∩ V induces
a pants decomposition of F . We should also note that if t is contained in a gap
interval, then F × {t} passes a block of the form either �0,4 × J or �1,1 × J .
Passing each interval of gap, the configuration of pants decomposition changes
by elementary moves which may take place at finitely many disjoint places at the
same time. This must come from stepping forward on 4-geodesics which we defined
above. Therefore, this induces a resolution of the 4-sub-hierarchy of h. Since each
elementary move also corresponds to a block of the form �0,4×J or �1,1×J in our
decomposition, the block decomposition induced from this resolution is obtained by
converting the one induced from V as in Remark 9.4.4. !�

In a hierarchy, a curve can appear at most once. Since our tube union V itself
does not correspond to a hierarchy (Lemma 9.5.5 only says that its restriction to a
brick corresponds to a hierarchy.), we need to show the same kind of property for V .

Lemma 9.5.6 There are no two distinct tubes in V which are homotopic in M .

Proof Suppose, seeking a contradiction, that there are tubes V1, V2 in V which are
homotopic to each other in M . Let k1, k2 be the numbers such that V1 ∈ V (k1) and
V2 ∈ V (k2), and set k = max{k1, k2}. (When we say Vs ∈ V (ks) for s = 1, 2, we take
the smallest ks such that V (ks) contains a tube constituting Vs . We follow the same
convention throughout the proof.) Then longitudes of V1 and V2 pushed out to their
boundaries are not homotopic in M(k), for otherwise they should have been merged
into one in our construction. Let U be the union of tubes in Vk = ∪k

j=1V (j) which
intersect essentially an embedded annulus A bounded by the pushed-out longitudes
of V1 and V2 in M . (These are determined independently of the choice of an annulus
since M is atoroidal.)

Let U ∈ U be a tube which appears in the earliest step among the tubes in U ,
and suppose that U ∈ V (l). Note that we have l ≤ k by our definition of U . Let
B ∼= F × J be a brick in K(l−1) where U appears as a tube in the tight tube union.
If either the interior of V1 or V2, say V1, intersects a front of B, then by replacing
V1 ∩ B with V1, we can assume that both V1 and V2 have interiors disjoint from the
fronts of B. We also note that by our choice of l, the annulus A can be regarded as
lying in M(l−1).

First suppose that both V1 and V2 are contained in B. In the following argument,
for two tubes U,V ∈ V , we write U ≈ V if U = A1 × J1, V = A2 × J2 and
IntJ1 ∩ IntJ2 �= ∅ for the parametrisation on S × (0, 1) in which M is embedded
by ιM . In the k-th step, a tight tube union VB corresponding to a tight geodesic gB

on C(F ) is given. Then there are tubes U1, U2 in the tight tube union of B such that
V1 ≈ U1 and V2 ≈ U2. Let u1, u2, u, v be vertices of C(F ), which correspond
to U1, U2, U, V1 respectively. Since U intersects A, we have u1 < u < u2 or
u2 < u < u1 with respect to the ordering on the simplices of gB . Since V1 ≈ U1 and
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V2 ≈ U2, we see that i(u1, v) = 0 and i(u2, v) = 0. Then, we have u1, u2 ∈ φgB (v)

whereas u �∈ φgB (v). This contradicts the fact that φgB (u) consists of contiguous
simplices, which is described in Lemma 9.3.2.

Next suppose that one of V1, V2, say V1, lies outside B whereas V2 is contained
in B. In this case, A passes through a joint contained in the upper or the lower front
of B. We only consider the case when A passes through a joint in the upper front.
The other case can be dealt with in the same way just by turning the figure upside
down. Since A passes through a joint in the upper front, the vertical projection of the
core curve of T (B) is disjoint from that of the core curve of V1, which implies that
the last vertex u∞ of gB is contained in φgB (v). As in the previous paragraph, we
have u1 < u < u∞ and u1, u∞ ∈ φgB (v) whereas u �∈ φgB (v), which contradicts
Lemma 9.3.2 as before. Also in the case when both V1 and V2 lie outside B, we
can argue in the same way considering joints which A passes contained in the upper
and the lower fronts. Then we see that the first and the last vertices are contained in
φgB (v) whereas u is not. This again contradicts Lemma 9.3.2, which completes the
proof. !�

The next lemma is obtained from Otal [44] for hyperbolic 3-manifolds home-
omorphic to S × R for a hyperbolic surface S. Since the only condition that
is necessary for the proof is the fact that the manifold can be filled up by
incompressible pleated surfaces (with bounded genus), his argument also works in
our setting.

Lemma 9.5.7 There is a constant k0 depending only on χ(S) such that for any
k ≥ k0 and the tubes V ∈ V[k], the union c of core curves of the V , taken one on
each tube, is mapped by f3 to unknotted and unlinked closed geodesics, i.e. there
is a isotopy of S × (0, 1) which takes ιN (c) to a disjoint collection of simple closed
curves lying on horizontal surfaces.

Take k2 in condition (7) so that ε(k2) is less than our fixed ε1 (less than the
Margulis constant). By Lemma 9.5.4. there exists k1 such that if |ω(V )| ≥ k1, then
f (v) has length less than ε(k2). We define ku = max{k0, k1, k2} for k0 in the above
lemma, and let εu be ε(ku).

Now, we recall the following definition of topological order introduced in Brock–
Canary–Minsky [12], which we shall apply for surfaces in M or N0.

Definition 9.5.8 (Brock–Canary–Minsky [12]) Let j1 : F1 → M and j2 : F2 →
M be maps from essential subsurfaces F1, F2 ⊂ S such that ιM ◦ ji is homotopic
to the inclusion Fi → Fi × {t} for i = 1, 2. We write j1 ≺top j2 if and only if
ιM ◦ j1 can be homotoped to S × {0} without touching ιM ◦ j2(F2) and ιM ◦ j2 can
be homotoped to S×{1} without touching ιM ◦ j1(F1). We call the relation ≺top the
topological order. We define the topological order on maps from surfaces to N0 in
the same way just replacing M with N0 and ιM with ιN .

We should also recall that two embedded surfaces F1, F2 in S × (0, 1) are said
to overlap if their projections to S have essential intersection. We use this term also
for surfaces in M or N0, for they can be embedded in S × (0, 1) by ιM and ιN .
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9.5.5 Homotoping f3 to a Homeomorphism

We shall next consider homotoping f3 so that its restriction to the union of the joints
of the bricks is an embedding. Let F be a joint of B with another brick. Recall that F
intersects V in such a way that each component of F \V is a thrice-punctured sphere.
We define F̌ [k] to be an embedded surface in M[k] obtained from F by isotoping
annuli in F ∩V[k] to those on ∂V[k]. There are two choices for an annulus for each
component of F ∩ V[k]. We take an annulus on ∂V[k] situated below the other one
with respect to the embedding ιM .

Recall that the images of V[ku] are unknotted and unlinked ε1-Margulis tubes
whose core curves have lengths less than ε(k2). Conversely, every ε1-Margulis tube
whose core curve has length less than ε(k2) is the image of a component of V[k2]
by f3. Recall that we denote the union of the Margulis tubes which are the images
under f3 of the tubes in V[ku] by T [ku]. We denote N0 \ IntT [ku] by N[ku]. By
Lemma 9.5.6, f3 induces a bijection between the components of V[ku] and those
of T [ku]. Moreover, the image of M[k2] is disjoint from T [ku] by condition (5).
Again by Lemma 9.5.6, no tubes in V[k2] \ V[ku] are mapped to T [ku]. Therefore
f3 induces a Lipschitz map f3 : M[ku] → N[ku].
Proposition 9.5.9 The Lipschitz map f3 : M[ku] → N[ku] can be properly
homotoped to a homeomorphism f4 : M[ku] → N[ku], which extends to a
homeomorphism between M and N0. This map f4 may not be Lipschitz.

Proof Let B be a brick of Kint. We denote by F+
1 , . . . , F+

μ its joints contained in
the upper front, and by F−

1 , . . . , F−
ν those contained in the lower front. (One of

the fronts may be ideal; hence one of these families may be empty.) We consider
F̌+

1 [ku], . . . , F̌+
μ [ku] and F̌−

1 [ku], . . . , F̌−
ν [ku] as defined above, and denote their

unions by F̌+ and F̌−. Note that both F̌+ and F̌− are incompressible in M . By
changing each joint F to F̌ , we get a brick decomposition of M which is isotopic to
the original one. From now on until the end of the proof of this proposition, when we
refer to a brick B, we mean the one in this new decomposition, which is isotopic to
the original B. Let pB : MB → M be the covering associated to the image of π1(B)

in π1(M). Similarly, we consider the covering NB of N0 associated to (f3)#π1(B).
Let f̃3 : MB → NB be the lift of f3 which is uniformly Lipschitz outside the
preimages of V[ku], and f̃ : MB → NB that of f , which is a homeomorphism. The
surfaces F̌+, F̌− lift homeomorphically to surfaces F̃+, F̃− lying on the boundary of
a submanifold B̃ homeomorphic to B under pB . We use the symbols ∂−B̃ and ∂+B̃
to denote the fronts of B̃ corresponding to ∂−B and ∂+B respectively. Let Ṽ[k2] and
T̃ [ku] be the preimages of V[k2] and T [ku] respectively. We denote by MB [ku] the
complement of IntṼ[ku] in MB , and by NB [ku] the complement of IntT̃ [ku] in NB .

Note that f̃3|(F̃+ � F̃−) is properly homotopic to f̃ |(F̃+ � F̃−) which is an
embedding. We can assume that f̃3|(F̃+ � F̃−) is an immersion from the start by
perturbing it. Then, by Theorem 9.3.6, we see that f̃3|(F̃+ � F̃−) can be properly
homotoped to an embedding by a homotopy which passes through only relatively
compact components of NB \ f̃3(F̃+ � F̃−). We note that each of such relatively
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compact components is homeomorphic to a trivial I -bundle whose associated ∂I -
bundle can be identified with a compact subsurface of F̃+ � F̃−.

Suppose that a component W of NB \ f̃3(F̃+ � F̃−) intersects a component T of
T̃ [ku]. This means that W contains T since f3(F̌ ) is disjoint from T [ku]. We shall
now prove the following claim.

Claim 9.5.10 The surfaces f̃3(F̃+) and f̃3(F̃−) are homotopic to disjoint embed-
dings by proper homotopies which do not touch T .

Proof Because f3 satisfies conditions (3), (5) and (7), there is a unique component
V of Ṽ[ku], which is a solid torus, such that f̃3(V ) = T . Since M[ku] is mapped to
N[ku] and V[ku] bijects to T [ku], we see that f̃3(MB \ V ) ⊂ NB \ T . Since every
Kleinian surface group is tame, the interior of NB is homeomorphic to ∂−B×(0, 1),
and hence so is MB . Let V1, . . . , Vp be the components of ∂M whose longitudes (in
the case of torus boundary) or core curves (in the case of open annulus boundary)
are homotopic into F̌+

1 ∪ · · · ∪ F̌+
μ in M \ IntB. We renumber them in such a way

that V1, . . . , Vr are disjoint from B whereas Vr+1, . . . , Vp intersect B along annuli.
By the annulus theorem and a standard cut-and-paste technique, we see that there
are disjoint embedded annuli α1, . . . , αr realising homotopies between longitudes
or core curves on V1, . . . , Vp and simple closed curves on F̌+

1 ∪ · · · ∪ F̌+
p with

∂αj ⊂ Vj ∪ F̌+
1 ∪ · · · ∪ F̌+

p . We can lift V1, . . . , Vp and α1, . . . , αr to open annuli
A1, . . . , Ap on ∂MB and annuli α̃1, . . . , α̃r such that Aj and α̃j intersect at a core
curve of Aj for j = 1, . . . , r . Similarly, we consider the components V ′

1, . . . , V
′
q

of ∂M whose longitudes or core curves are homotopic into F̌−
1 ∪ · · · ∪ F̌−

ν in M \
IntB, among which V ′

1, . . . , V
′
s lie outside B, and take annuli α′1, . . . , α′s realising

homotopies between longitudes or core curves and simple closed curves on F̌−
1 ∪

· · · ∪ F̌−
ν . We lift V ′

1, . . . , V
′
q to open annuli A′

1, . . . , A
′
q and α′1, . . . , α′s to annuli

α̃′1, . . . , α̃′s in the same way as the previous case.
Let Ā1, . . . , Āp and Ā′

1, . . . , Ā
′
q be core annuli of A1, . . . , Ap and A′

1, . . . , A
′
q

such that Āj contains α̃j ∩ Aj for j ≤ r whereas Āj = B̃ ∩ Aj for j > r ,
and Ā′

j contains α′j ∩ A′
j for j ≤ s whereas Ā′

j = B̃ ∩ A′
j for j > s. By

identifying ∂−B̃ and ∂+B̃ by vertical translation and ∂−B̃ with ∂−B by pB , we
regard Ā1, . . . , Āp; Ā′

1, . . . , Ā
′
q as lying on ∂−B. To construct parts corresponding

to the Z-cusps in ∂−B × (0, 1), we set U+ = (Ā1 ∪ · · · ∪ Ār) × (7/8, 1),
U ′+ = (Ār+1 ∪ · · · ∪ Āp) × (3/4, 1), U− = (Ā′

1 ∪ · · · ∪ Ā′
s) × (0, 1/8), and

U ′− = (Ā′
s+1 ∪ · · · ∪ Ā′

q)× (0, 1/4) and denote the union of these four parts by U .
We parametrise MB by a proper homeomorphism IM : MB → ∂−B × (0, 1) \ U ,
in such a way that F̃− is identified with the horizontal surface ∂−B × {1/4} \ IntU ′−
whereas F̃+ is identified with the horizontal surface ∂+B × {3/4} \ IntU ′+.

Similarly, we parametrise NB by a homeomorphism IN : NB → ∂−B ×
(0, 1) \ U in such a way that IN (f̃3(B̃)) lies in ∂−B × [1/4, 3/4] and IN(W)

lies in ∂−B × [1/8, 7/8]. Note that each component of ∂U corresponds to the
boundary of a Z-cusp neighbourhood of NB . Since NB is the covering of the non-
cuspidal part N0, we can extend NB to a hyperbolic 3-manifold N̂B which is the
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covering of N associated to π1(B) by attaching cusp neighbourhoods. Therefore,
the parametrisation IN extends to a homeomorphism ÎN : N̂B → ∂−B × (0, 1).

Since both F̃+ and F̃− are disjoint from Ṽ[ku], the solid torus IM(V ) is contained
in either ∂−B × (0, 1/4) or ∂−B × (1/4, 3/4) or ∂−B × (3/4, 1). We shall first
consider the case when IM(V ) is contained in ∂−B× (1/4, 3/4). Take a sufficiently
small number s0 so that both Î−1

N (∂−B × (1 − s0, 1)) and Î−1
N (∂−B × (0, s0)) are

disjoint from the 1-neighbourhood of W . Since f3 is proper and has degree 1, for
sufficiently small t0 > 0, the surfaces IN ◦ f̃3 ◦ I−1

M (∂−B × {t0} \ U) and IN ◦ f̃3 ◦
I−1
M (∂−B × {1 − t0} \ U) are contained in ∂−B × (0, s0) and ∂−B × (1 − s0, 1)

respectively. Denote I−1
M (F̃+ × {1 − t0} \ U) by F ′+, and I−1

M (F̃− × {t0} \ U) by
F ′−.

We can enlarge F ′− and F ′+ to surfaces F̌ ′− and F̌ ′+ homeomorphic to F̌−
and F̌+ respectively by joining pairs of parallel boundary components of F ′− lying
on ∂U− by annuli on ∂U− bounded by them, and those of F ′+ lying on ∂U+ by
annuli on ∂U+ bounded by them. On the other hand, since f̃3(F ′−) and f̃3(F ′+)
are disjoint from the 1-neighbourhood of W , we can enlarge f̃3(F ′−) and f̃3(F ′+)
by joining each pair of parallel boundary component on IN ◦f̃3(∂U−∪∂U+) ⊂ ∂N0
by an annulus embedded in the closure of an ε-cusp neighbourhood which is a
component of N \IntN0 so that their images under ÎN are contained in ∂−B×(0, s0)

and ∂−B × (1 − s0, 1) respectively. These surfaces, which are homeomorphic to
F̌− and F̌+, are homotopic to embeddings F̄− and F̄+ respectively outside the
1-neighbourhood of W by our choice of s0, again using Theorem 9.3.6. Then
by our choice of t0 in the previous paragraph, we see that f̃3(F̌ ′+) and f̃3(F̌ ′−)
are homotopic to F̄− and F̄+ respectively by homotopies disjoint from W ⊃ T .
Since f̃3(F̃−) is homotopic to f̃3(F̌ ′−) outside T and f̃3(F̃+) is homotopic to
f̃3(F̌ ′+) outside T (for IM(V ) is contained in ∂−B× (1/4, 3/4) and f̃3(MB \V ) ⊂
NB \ T ), the surfaces f̃3(F̃−) and f̃3(F̃+) are homotopic to disjoint embeddings by
homotopies disjoint from T .

Next suppose that IM(V ) is contained in ∂−B × (0, 1/4). In this case, we shall
consider moving both F̃− and F̃+ in the +-direction. As in the previous case, there
are sufficiently small s0, t0 > 0 such that Î−1

N (∂−B × (1 − s0)) is disjoint from the
1-neighbourhood of W , and such that IN ◦ f̃3 ◦ I−1

M (∂−B × {1 − t0}) is contained
in ∂−B × (1 − s0, 1). Then, by the same argument as in the previous case, we
can see that both f̃3(F̃−) and f̃3(F̃+) are homotopic to an embedding contained
in Î−1

N (∂−B × (1 − s0, 1)) by a homotopy outside T . They can be homotoped to
disjoint embeddings just by considering parallel copies of the embedding. Thus we
are done also in this case. The argument for the case when IM(V ) is contained in
∂−B × (3/4, 1) is similarly just by changing the +-direction to the −-direction. !�

The above claim says that a homotopy from f3(F̃+ � F̃−) to an embedding can
be taken to be disjoint from W since any essential homotopy passing through W

must intersect T . We can repeat the same argument for every relatively compact
component of N0 \ f̃3(F̃+ � F̃−) containing a component of T̃ [ku] and show that
f̃3(F̃+ � F̃−) can be homotoped to an embedding by a homotopy within NB [ku].
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Now, we consider a new hyperbolic metric mN on IntN[ku] which makes every
component of T [ku] a torus cusp preserving the original cusps of N . Pull back
this metric to IntNB[ku] and denote it by mB . We consider a least area map h3 :
F̃− � F̃+ → (IntNB [ku],mB) homotopic to f̃3|F̃− � F̃+. By Theorem 9.3.6, h3 is
an embedding.

In the following argument, we shall use the notion of topological order due to
Brock–Canary–Minsky [12] which we explained in Definition 9.5.8.

Claim 9.5.11 Let B be a brick in Kint neither of whose fronts lies on the boundary
of Mint. Then the embedding h3 can be extended to an orientation-preserving
embedding of B̃ ∩ IntMB[ku] to (IntNB[ku],mB) taking B̃ ∩ Ṽ[ku] to cusps
corresponding to T̃ [ku] and the homotopy classes of meridians of tube components
of B̃ ∩ Ṽ[ku] to those of T̃ [ku].
Proof Recall that there is a homeomorphism IN : NB → ∂−B × (0, 1) \U . By our
definition of ku, the images of the tube components of T̃ [ku] under IN are unknotted
and unlinked in ∂−B×(0, 1). Since ends of h3(F̃−�F̃+) other than those tending to
cusps of NB tend to IN(∂T̃ [ku]), the surfaces IN◦h3(F̃−)�IN◦h3(F̃+) together with
annuli on IN(∂T̃ [ku]) bound a submanifold homeomorphic to ∂−B × [1/4, 3/4] ∼=
B̃. We shall first prove that IN ◦h3(F̃+) is situated above IN ◦h3(F̃−). This trivially
holds by definition when one of F̃+ and F̃− is empty. Therefore, we assume that
neither of them is empty. Since we assumed that neither ∂−B nor ∂+B lie on the
boundary of Mint, both ∂−B̃ ∩ ∂MB and ∂+B̃ ∩ ∂MB are non-empty.

By Assumption 9.4.3, every component of ∂−B ∩ ∂M overlaps some component
of ∂+B ∩ ∂M . Therefore, we can take components X and X′ of Ṽ[ku] on which
boundary components of F̃+ and of F̃− are respectively such that X∩ B̃ and X′ ∩ B̃

overlap. It follows that we have X∩B̃ ≺top X′∩B̃ . Since f̃3 is a proper degree-1 map
and f̃3|Ṽ[ku] is a homeomorphism onto its image, this implies that f̃3(X ∩ B̃) ≺top

f̃3(X ∩ B̃). On the other hand, if IN ◦ h3(F̃+) is situated under IN ◦ h3(F̃−), then
we should have f̃3(X

′ ∩ B̃) ≺top f̃3(X ∩ B̃), which is a contradiction. Thus we
have proved that IN ◦ h3(F̃+) is situated above IN ◦ h3(F̃−) and h3 extends to an
orientation-preserving homeomorphism from B̃ to a submanifold BN bounded by
h3(F̃− � F̃+).

We shall next show that this homeomorphism induces one between B̃ ∩
IntMB [ku] to BN∩IntNB [ku]. For that, it suffices to show that for the components of
Ṽ[ku] in B̃, the corresponding components of T̃ [ku] are contained in BN preserving
the topological order since all such components in BN are unknotted and unlinked.
Let V be a component of Ṽ[ku] contained in B̃. Then we have F̃− ≺top V ≺top F̃+.
Let T be a component of T̃ [ku] with T = f̃3(V ). Since f̃3 is a proper degree-
1 map and takes MB \ V to NB \ T , we see that f̃3(F̃−) ≺top T ≺top f̃3(F̃+).
Since h3, defined on F̃− � F̃+, is homotopic to f3|(F̃− � F̃+) in NB [ku], we
also have h3(F̃−) ≺top T ≺top h3(F̃+). Therefore any tube component of V[ku]
in B̃ has its corresponding Margulis tube in BN . Now suppose that we have two
such tube components V1, V2 with V1 ≺top V2. Let T1, T2 be the components of
T̃ [ku] with f̃3(V1) = T1 and f̃3(V2) = T2. Then by the same argument as above
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using the bijective correspondence between the components of Ṽ[ku] and T̃ [ku], we
have T1 ≺top T2. Thus we have shown that we have a homeomorphism h̄3 from
B̃ ∩ IntMB[ku] onto BN ∩ IntNB [ku] which is an extension of h3.

It remains to show that a meridian of a solid torus component of Ṽ[ku] contained
in B̃ is taken to a meridian of T̃ [ku] by h̄3. This is rather obvious from our
construction: for f̃3 takes meridians of solid torus components of Ṽ[ku] to those
of T̃ [ku]. !�

Now, for each brick B of Kint neither of whose fronts lies on the boundary of
Mint, we consider B ∩ IntM[ku], its lift B̃ in IntMB [ku], and its embedding into
IntNB [ku] by an extension of the least-area map h3 given above, which we denote
by BN as above. We denote the map taking B ∩ IntM[ku] to BN obtained in this
way by fB . We regard BN as a hyperbolic 3-manifold with boundary by restricting
the metric mB , and call BN with this metric the least-area realisation of B. In the
case when B is a brick one of whose front lies on the boundary of Mint, we define
BN to be a submanifold of IntNB [ku] homeomorphic to ∂−B × (0, 1) obtained by
cutting IntNB [ku] along the embedding of one of the boundary components of B̃

whose projection in M does not lie on the boundary of Mint, defined using the least
area map in the same way as above.

For a brick in B ∼= F × [−1,∞) in Kgf, in the same way as bricks in Kint,
we consider homotoping f̃3|(F × {−1} ∩M[ku]) to a least area surface in NB [ku]
and constructing a realisation BN of B ∩ IntM[ku] in IntNB [ku]. Since the least
area surface is contained in the convex core of NB , we can assume that for the part
F × [0,∞), the realisation BN is just a lift of f3(F × [0,∞)) to NB .

Suppose that two bricks B1 and B2 of K share a joint F . We can assume F

is a component of ∂+B1 and ∂−B2 by interchanging B1 and B2 if necessary.
Construct least-area realisations B1

N and B2
N as above. Then both of their boundaries

contain a least area surface corresponding to F as components. We denote by Fj

the one contained in ∂B
j

N for j = 1, 2. Since the projections of F 1 and F 2 in
(IntN[ku],mN) are least-area surfaces homotopic to f3(F ) (which might not be
embeddings), they must coincide. Therefore, F 1 is isometric to F 2. Then we can
consider the hyperbolic 3-manifold homeomorphic to (IntB1∪IntB2∪F)∩IntM[ku]
by pasting B1

N and B2
N along F 1 and F 2 by an isometry.

Repeating this procedure for every joint on B1 and B2, then again for all the
bricks, we get a hyperbolic 3-manifold N ′[ku] homeomorphic to IntM[ku]. We
denote the homeomorphism obtained by identifying B ∩ IntM[ku] with BN in
N ′[ku] by h : IntM[ku] → N ′[ku]. We shall show that this manifold is isometric to
(IntN[ku],mN).

Claim 9.5.12 There is an isometry f ′ : N ′[ku] → (IntN[ku],mN), whose
restriction to BN for each brick B is an isometric embedding homotopic to f3 ◦f−1

B

in N0.

Proof For each brick B, by Claim 9.5.11, there is an (extended) embedding h3 :
B̃ ∩ IntMB [ku] → IntNB [ku] homotopic to f̃3|B ∩ IntMB[ku]. If we lift f−1

B (BN)
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to IntMB[ku], and embed it by h3 into IntNB [ku], then the map is isometric by
our definition of the metric on N ′[ku]. By projecting it to N[ku], we get a locally
isometric map from BN , which was defined above and is bounded by least area
surfaces, into IntN[ku]. Since for two bricks sharing a joint, such maps induce the
same map on the joint, we can glue this map at joints and get a local isometry
f ′ : N ′[ku] → IntN[ku]. (Note that if two bricks share a joint, then their images
by h3 lie on the opposite sides of the image of the joint by our way of extending h3
in Claim 9.5.11, which guarantees that the map is also a local isometry at joints.)
Since h3 is homotopic to f3|B, we see that f ′ ◦ h3 is homotopic to f3.

Since f ′ induces an isomorphism between fundamental groups, to show that
it is an isometry, it is sufficient to show that f ′ is proper. Suppose, seeking a
contradiction, that f ′ is not proper. Then, there exists a sequence of distinct bricks
Bi of Kint and points xi ∈ Bi

N such that {f ′(xi)} converges in IntN[ku]. Since
{f ′(xi)} converges, the injectivity radius at f ′(xi) is bounded below by a positive
constant independent of i, hence so is the injectivity radius at xi . We divide our
argument depending on whether the distance between xi and ∂Bi

N is bounded or not
as i →∞.

First we consider the case when the distance from xi and ∂Bi
N is bounded as

i →∞. Let F i be a least-area boundary component of Bi
N from which xi is within

uniformly bounded distance. Since ξ(F i) ≤ ξ(S), the diameter of the thick part
of F i is uniformly bounded. Since xi lies in the thick part, it is within uniformly
bounded distance from either an ε1-Margulis tube or an ε-cusp neighbourhood
touching F i which corresponds to a component Ṽ i of T̃ [ku]. We denote by V i a
component of T [ku] which is the projection of Ṽ i .

We can show that in (IntN[ku],mN), for each component V of T [ku] there are
only finitely many images of joints by f ′ touching V as follows. For any R > 0,
there are a finitely many components of T [ku] and original cusp neighbourhoods of
N which can be reached from V within the distance R modulo the ε0-thin part. Since
joints are homeomorphic to subsurfaces of S and the boundaries of their images in
N[ku] lie in T [ku] ∪ ∂N0 as longitudes or core curves, there are only finitely many
possibilities for the homotopy classes of the boundaries of their images in N[ku].
This implies that there are only finitely many joints up to homotopy whose images
can touch V since there are at most two kinds of homotopy classes of horizontal
surfaces if we fix a boundary. Since no two distinct joints are homotopic as we
removed inessential joints, it follows that there are only finitely many joints whose
images touch V .

Since our joints F i are all distinct, we can assume that all the V i are distinct
by taking a subsequence. Since f3 takes the components of V[ku] to those of T [ku]
one-to-one, and no other part of M is mapped to T [ku], we see that f ′ takes the
V i to distinct components of T [ku]. Therefore f ′(xi) is within bounded distance
from infinitely many distinct components of T [ku]. Since the f ′(xi) are assumed to
converge, this contradicts the fact that there are only finitely many components of
T [ku] within a bounded distance.
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Thus, it only remains to consider the case when the distance from xi to the
boundary of Bi

N goes to ∞ as i →∞. Recall that Bi
N was originally a submanifold

in IntNBi [ku]. Therefore, we can regard xi also as a point in IntNBi [ku]. Since
Bi

N is bounded by least-area surfaces, it is contained in the convex core of
(IntNBi [ku],mBi ). Therefore, there is a pleated surface ki : ∂−Bi → IntNBi [ku]
which is within bounded distance from xi and is homotopic to the inclusion of ∂−Bi

as ∂−Bi × {t} with respect to the parametrisation NBi
∼= ∂−Bi × (0, 1). Since the

distance from xi to ∂Bi
N goes to ∞, we can assume that the image of ki is contained

in Bi
N . Hence we can regard ki as a pleated surface in N ′[ku]. Also since the cuspidal

part of N ′[ku] consists of those of N0 and rank-2 cusps corresponding to T [ku], we
can take cusp neighbourhoods small enough to be disjoint from all the images of ki .

We consider the pleated surfaces f ′ ◦ ki . Since {f ′(xi)} converges and f ′ ◦
ki is disjoint from the cusp neighbourhoods which are images of those taken
above, the sequence of pleated surfaces {f ′ ◦ ki} converges geometrically inside
(IntN[ku],mN), passing to a subsequence. This implies in particular that there are
distinct i1, i2 such that f ′ ◦ki1 and f ′ ◦ki2 are properly homotopic. Since f ′ induces
an isomorphism between fundamental groups, it follows that ki1 and ki2 are properly
homotopic. This is a contradiction since no two horizontal surfaces of distinct bricks
are properly homotopic. (Recall that N ′[ku] and IntM[ku] are homeomorphic.) Thus
we have established that f ′ is an isometry. By our construction, it is evident that
f ′|BN is homotopic to f3 ◦ f−1

B in N0. !�
Thus IntN[ku] is isometric to N ′[ku] which is the union of the BN each of which

is homeomorphic to B ∩ IntM[ku]. This shows that there is a homeomorphism h :
IntM[ku] → N ′[ku] such that f ′ ◦ h is homotopic to f3|IntM[ku]. By setting f4 to
be the natural extension of f ′ ◦h to M[ku], we get a homeomorphism as we wanted.

It only remains to show that f4 extends to a homeomorphism between M and N0.
To show this, it suffices to show that for each component V of V[kn], its meridian is
sent to a meridian of a component of T [ku]. If V is contained in some brick B, then
this follows from Claim 9.5.11. Since we isotoped the original brick decomposition
to a new one by moving each joint F to F̌ , we see that every component of V[ku] is
contained in some brick.

This completes the proof of Proposition 9.5.9. !�
Having proved that M[ku] and N[ku] are homeomorphic, we shall next show

that the Lipschitz map f3 can be homotoped so as to embed the joints preserving
the Lipschitzness. For that, it is more convenient to consider a brick decomposition
of M[ku] rather than that of M . As in Sect. 9.4.4, we define a brick of M[ku]
to be a maximal union of vertically parallel horizontal leaves which are inherited
from the horizontal foliation of M . By the same argument as in Sect. 9.4.4, we can
check conditions A-(1)–(5) are satisfied. (In reality, only A-(2) and A-(3) need to be
checked.) We denote this brick decomposition of M[ku] by K[ku].

Before changing the images of joints to Lipschitz embeddings, we shall first
move f3 so that it preserves the order of joints on the boundary except for parallel
ones. Let F be the union of joints of pairs of bricks in K[ku]. We introduce an
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equivalence relation ∼ in the set of components of F such that F1 ∼ F2 if they are
parallel. By our definition of brick decomposition, there are no three distinct joints
in F which are all parallel. Therefore each equivalence class consists of at most two
joints. We define the reduced union of joints to be the union of joints taken one from
each equivalence class, and denote it by F̂ .

Lemma 9.5.13 There is a uniform constant K ′
3 as follows. We can homotope f3 to

a proper, degree-1 map f ′
3 : M[ku] → N[ku] with the following properties.

(i) f ′
3 coincides with f3 outside small pairwise disjoint neighbourhoods of the

components of ∂M[ku].
(ii) f ′

3 is K ′
3-Lipschitz.

(iii) On each component T of ∂M[ku], distinct components of F ∩ T have disjoint
images under f ′

3.
(iv) On each component T of ∂M[ku], the restriction f ′

3|T maps the components

of F̂ ∩ T disjointly preserving the orientation of F̂ ∩ T and the order of
{F ∩ T | F is a component of F̂}. (When T is a torus the order means the
cyclic order.)

(v) For a component F of F \ F̂ , let F̂ be the other component of F equivalent to
F and contained in F̂ . Then f ′

3 also preserves the order of ((F̂ \ F̂ )∪F)∩ T

for any component F of F \ F̂ .
(vi) The order of F ∩ T and F̂ ∩ T as in (v) may be reversed only when f ′

3(F ) ∩
f ′

3(F̂ ) = ∅.
(vii) For each small δ > 0, there is a universal number n0 such that for any

component F of F , there are at most n0 joints Fi such that f ′
3(Fi ∩ T ) are

within distance δ from f ′
3(F ∩ T ).

Proof Let T be a component of ∂M[ku], which is either a torus or an open annulus.
As was shown before, T consists of horizontal annuli and vertical annuli, and the
joints can intersect only vertical annuli, their boundaries included. We shall show
that we can homotope f3|T to a uniformly Lipschitz map with desired properties
by a homotopy moving each point at a uniformly bounded distance. We should note
that f3|T is a degree-1 map to a boundary component T ′ of N[ku]. The foliation of
M by horizontal leaves induces a foliation on T whose leaves are parallel horizontal
circles. By our definition of the model metric, each leaf has length ε1. We can extend
this foliation also to horizontal annuli so that they are also foliated by parallel circles
with length ε1. We let γ be a simple closed geodesic with respect to the induced
metric intersecting each leaf at one point when T is a torus, and a geodesic ray
intersecting each leaf at one point when T is an open annulus.

Since f3 is K3-Lipschitz, the homotopy class in T ′ of the images of the leaves has
geodesic length bounded by K3ε1 with respect to the Euclidean metric on T ′. We
also note that this length is also bounded below by ε1 since T ′ lies on the boundary
of an ε1-Margulis tube. We first homotope f3|T fixing f3|γ so that for each leaf l

of the foliation on T , the simple closed curve f̄3(l) is a closed geodesic with respect
to the Euclidean metric on T ′. Also, if there are distinct components of F ∩ T

which have the same image, we can perturb the map by a homotopy to make their
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images disjoint moving them within a very small distance. Thus we get a map f̄3
hoomotopic to f3. We can take a homotopy H3 : A× [0, 1] → T ′ from f3 to f̄3 as
a K̄3-Lipschitz map, where K̄3 depends only on ε1 and K , since the length of each
closed curve f3(l) is between ε1 and Kε1 and the perturbation moves the images at
uniformly bounded distances.

Now, the map from γ to f3(γ ) = f̄3(γ ) may not proceed in the positive direction
monotonously. (As we shall see below, since f3|T has degree 1, the orientations of
T and T ′ determine the positive direction to which f̄3(γ ) should proceed.) This may
cause a permutation of the order of F̂∩T by f̄3. We fix an orientation of the foliation
on T , which, together with the orientation of T , induces a transverse orientation of
the leaves and an orientation of γ . This also defines a transverse orientation of the
foliation on T ′ induced by the closed geodesics which are images of the leaves
on T , since f ′

3|T has degree 1. We number the simple closed curves constituting

F̂ ∩ T as F1, F2, . . . in accordance with the order determined by the orientation
of γ . In the case when T is a torus, we fix a leaf on the lower horizontal annulus,
and let its intersection with γ , which we denote by a0, be the starting point. The
transverse orientation of the foliation on T ′ gives an order on the images f̄3(F1 ∩
T ), . . . , which may be different from the order on T . (We allow some of them to
go beyond f̄3(a0) in the negative direction. As long as f̄3(γ ) moves in the negative
direction, we regard it as receding with respect to the order on T ′.) Let σ be a
permutation such that f̄3(Fσ(1)), . . . is the right order on T ′; in other words Fi

is mapped to the σ−1(i)-th curve with respect to the order on T ′. Now, we first
look at f̄3(F1 ∩ T ) which is the σ−1(1)-th curve on T ′, and consider the curves
f̄3(Fσ(1)∩T ), . . . , f̄3(Fσ(σ−1(1)−1)∩T ) which are those situated before f̄3(F1∩T )

on T ′. Set j = max{σ(1), . . . , σ (σ−1(1)− 1)}. We shall consider moving f̄3(F1 ∩
T ), . . . , f̄3(Fj ∩ T ) to correct their order. The point in the following argument is
that this can be done by a homotopy with bounded displacement.

Using Theorem 9.3.6, we shall bound uniformly the distance between any
two of f̄3(F1 ∩ T ), . . . , f̄3(Fj ∩ T ). Let k be a number among 2, . . . , j . First
consider the case when f̄3(Fk ∩ T ) comes before f̄3(F1 ∩ T ) on T ′. Recall
that by Proposition 9.5.9, f3 is homotopic in M[ku] to a homeomorphism f4 :
M[ku] → N[ku]. By the same procedure as we used to construct f̄3 from f3,
we can assume that f4 also maps each leaf on T to a closed geodesic with
respect to the induced Euclidean metric on T ′. Then, since both F1 and Fk are
incompressible, by Theorem 9.3.6, we can homotope f̄3|F1 and f̄3|Fk fixing the
boundaries to embeddings g1

3 and gk
3 in N[ku] which are contained in small regular

neighbourhoods of f̄3(F1) and f̄3(Fk) respectively. By perturbing g1
3 and gk

3 , we
can assume that they are transverse to f4(F1) and f4(Fk) at their interiors. Then
(g1

3(F1) ∪ f4(F1)) ∩ T ′ bounds an annulus A′
1 which may degenerate to a circle.

When T is a torus, there are two choices for A′
1. We choose one which bounds

a compact region with subsurfaces on g1
3(F1) and f4(F1) (possibly together with

annuli on other components of ∂N[ku]) which is disjoint from gk
3(Fk) (k �= 1) with

f4(F1) ∩ gk
3(Fk) = ∅. Similarly, we define an annulus A′

k for gk
3(Fk) and f4(Fk).

Since g1
3(F1 ∩ T ) comes after gk

3(Fk ∩ T ) whereas f4(F1 ∩ T ) is situated before
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f4(Fk ∩T ), we see that A′
1 and A′

k must intersect. Since f4(F1)∩f4(Fk) = ∅, both

F1 and Fk are connected, and by our definition of F̂ , F1 and Fk are not parallel, we
see that g1

3(F1) and gk
3(Fk) must intersect at their interiors. By our construction of

g1
3 and gk

3 , this implies that f̄3(F1) and f̄3(Fk) also intersect at their interiors. Next
suppose that f̄3(Fk ∩T ) comes after f̄3(F1 ∩T ). By our definition of j , we see that
f̄3(Fj ∩ T ) comes before f̄3(F1 ∩ T ), hence also before f̄3(Fk ∩ T ). Since k < j ,
the order of Fj ∩ T and Fk ∩ T is reversed under f̄3, and we can argue in the same
way as above to conclude that f̄3(Fj ) and f̄3(Fk) intersect at their interiors.

Recall that the diameters of the joints F1, . . . are uniformly bounded from above
by a constant depending only on ξ(S). Since f̄3 is uniformly Lipschitz, their images
f̄3(F1), . . . also have diameters bounded from above by a constant λ depending only
on ξ(S). This implies that for any k = 2, . . . , j , the distance between f̄3(Fk ∩ T )

and either f̄3(F1 ∩ T ) or f̄3(Fj ∩ T ) is bounded by 2λ. Therefore the distance
between any two of f̄3(F1 ∩ T ), . . . , f̄3(Fj ∩ T ) is bounded by 4λ. Recall that
f̄3(F1 ∩ T ), . . . , f̄3(Fp ∩ T ) are parallel closed geodesics on T ′ with respect to
the induced Euclidean metric. By the uniform quasi-convexity of horoballs, we see
that there is a number λ0 depending only on ξ(S) which bounds the distance on
T ′ between any two of f̄3(F1 ∩ T ), . . . , f̄3(Fj ∩ T ) with respect to the induced
Euclidean metric. Then we can homotope f̄3|T so that f̄3(F1 ∩ T ), . . . , f̄3(Fj ∩ T )

lie in the right order on T ′ and near the original position of f̄3(Fσ(1) ∩ T ) so that all
f̄3(Fi ∩ T ) with i > j come after them, without changing the condition that every
leaf is mapped to a closed geodesic preserved, by moving the image by f̄3 of thin
neighbourhoods of F1 ∩ T , . . . , Fj ∩ T only at distance at most λ0 + 1. The map
which we get after this homotopy is also uniformly Lipschitz since the displacement
of the points by the homotopy is uniformly bounded.

We now forget about F1, . . . , Fj and only consider Fj+1, . . . . If σ(j + 1) =
j + 1, we also forget about Fj+1 and proceed to the first j0 > j with σ(j0) �= j0.
Otherwise we let j0 be j + 1. Regarding f̄3(Fj0 ∩ T ) instead of f̄3(F1 ∩ T ) as the
first one, we repeat the same argument. Then we can correct the order of f̄3(Fj0 ∩
T ), . . . , f̄3(Fj1∩T ) for j1 > j0 which is defined to be max{σ(j0), . . . , σ (σ−1(j0)−
1)} and make them come after f̄3(Fj0−1) by moving f̄3 in thin neighbourhoods of
Fj0 ∩ T , . . . , Fj1 ∩ T only at distance less than λ0 + 1. We note that we do not
touch the components Fk ∩T with k < j0 at this stage. We repeat the same process,
and eventually we can homotope f̄3|T to a uniformly Lipschitz map f T

3 : T → T ′
which preserves the order of F1 ∩ T , . . . by a homotopy moving every point within
the distance λ0+1. (To be more precise, we need to define the homotopy inductively
in the case when there are infinitely many components of F̂ ∩ T .)

Having moved f̄3|T to f T
3 which preserves the order of F̂ ∩ T , we now turn to

considering a component F of F \ F̂ . Suppose that f T
3 does not preserve the order

of F̂ ∩ T if we replace F̂ in F̂ with F . Then for each component F ′ of F̂ \ F̂

such that the order between F and F ′ is reversed by f T
3 , we see that by the same

argument, F must intersect F ′, and we can move f̄3 in a thin neighbourhood of
F ∩T within the distance λ0+1 to correct the order. Moreover, in the same way, we
can correct the order of the images F ∩T and F̂ ∩T under f T

3 by moving f T
3 within
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the distance λ0+1 if f̄3(F ) and f̄3(F̂ ) intersect. We note that during this homotopy,
each component of F is moved at most twice; hence the displacement is bounded
independently of the number of components of F . Thus we have shown that if we
construct a uniform Lipschitz map whose restriction to T is f T

3 , then conditions
(iii), (iv) and (v) in the statement are satisfied. We denote a homotopy on T by H ′

3.
This homotopy H ′

3 is uniformly Lipschitz since the homotopy only passes through
uniformly Lipschitz maps and its displacement function is uniformly bounded.

We next show that f T
3 thus obtained satisfies condition (vii) (with f ′

3 in the
statement replaced by f T

3 ). Fix some component F of F ; and we shall bound the
number of components F ′ of F such that f T

3 (F ∩T ) and f T
3 (F ′ ∩T ) are within the

distance δ. Since f T
3 is obtained from f̄3|T by moving at most the distance λ0 + 1,

if f T
3 (F ′ ∩ T ) is within distance δ from f T

3 (F ∩ T ), then f3(F
′) is within distance

δ+2(λ0+1) from f3(F ). By our construction of the brick decomposition of M[ku],
for each joint, there is at most one other joint to which it is parallel. Therefore, for
any natural number ν there exists n such that if there are n distinct joints, then there
are at least ν boundary components of M[ku] which these joints intersect or which
is contained in a region cobounded by two among these joints which is foliated by
horizontal surfaces. Since f3 is uniformly Lipschitz, the diameter of the image of
each horizontal surface under f3 is bounded by a constant λ1 depending only on
ξ(S). We note that if a component T of ∂N[ku] is contained in a region cobounded
by two joints, then it is within distance 2λ1 from every point on each of the joints.
Now, since there is a bound for the number of components of ∂N[ku] which can
be reached from F within distance δ + 2(λ0 + 1) + 2λ1, we get n0 bounding the
number of components of F ∩ T whose images by f T

3 are within distance δ from
f T

3 (F ∩ T ).
We finally show that the map f T

3 defined above can be extended to a uniform
Lipschitz map f ′

3. We can take r > 0 depending only on ε1 and ξ(S) such that the
boundary components of M[ku] have product r-neighbourhoods in M[ku]which are
pairwise disjoint. Let Nr (T ) denote the r-neighbourhood in M[ku] of a boundary
component T of M[ku]; and we parametrise Nr (T ) by T × [0, r] so that T × {t}
is at distance t from T . We modify f3 only inside ∪Nr (T ) to get f ′

3. We first
define f ′

3|T ×[2r/3, r] to be rescaled f3|Nr (T ) so that f ′
3|∂V ×{2r/3} is naturally

identified with f3|T . Next we define f ′
3|T ×[r/3, 2r/3] to realise the homotopy H3

so that f ′
3|T ×{t} corresponds to H3( , 2− 3t/r). Finally we define f ′

3|T ×[0, r/3]
to realise the homotopy H ′

3, so that f ′
3|T ×{t} corresponds to H ′

3( , 1−3t/r). Since
H3 and H ′

3 are uniformly Lipschitz, we see that there is a uniform constant K ′
3 such

that f ′
3 is K ′

3-Lipschitz. !�
Lemma 9.5.14 Let F be the union of the joints of pairs of bricks in K[ku] as defined
above. Then, there exists a K ′-Lipschitz homotopy H : F × [0, 1] → N[ku] fixing
the boundary of F with K ′ depending only on ξ(S) such that the following hold.

(i) H |F × {0} coincides with f ′
3|F .

(ii) H(x, t) = f ′
3(x) for every x ∈ ∂M[ku] ∩ F .
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(iii) H |F × [1/2, 1] is a C2-embedding.
(iv) For each component F of F , the restriction H |F ×[1/2, 1] is K ′-bi-Lipschitz.

Proof Let F be a component of F . Since by condition (5) in Sect. 9.5.3, the
geodesic lengths of core curves in V[0] \V[ku] are bounded below by εu, and F \V
consists of thrice-punctured spheres, the modulus of F is uniformly bounded. By
condition (7) in Sect. 9.5.3 and our choice of ku, we see that there is no essential
closed curve with length less than εu in N[ku]. This shows that the map f ′

3|F is
a uniformly bi-Lipschitz map onto its image. (We should note that f ′

3|F may not
be injective. The bi-Lipschitzness here means that the metric on F induced from
M[ku] and the one induced from N[ku] by f ′

3 are bi-Lipschitz equivalent.) We
can approximate f ′

3|F by an immersion fixing the boundary and preserving the
uniform bi-Lipschitzity. Now, by Proposition 9.5.9, f ′

3|F is properly homotopic to
an embedding in N[ku] (not fixing the boundary).

We shall first show that each component F of F can be homotoped fixing the
boundary to a uniformly bi-Lipschitz embedding. Suppose, seeking a contradiction,
that this is not the case. Then there exist sequences of labelled brick manifolds
Mi , homeomorphisms f i : Mi → Ni , Lipschitz maps f i

3 : Mi [ku] → Ni [ku]
corresponding to f ′

3 constructed above, and joints F i in Mi[ku] such that an
embedding gi

3 as above within the δ-neighbourhood of f i
3 (F

i) cannot be made
Ki-bi-Lipschitz, with Ki → ∞. We put the superscript i for all the symbols
related to Mi and Ni . By taking a subsequence we can assume that all the F̂ i

are homeomorphic to some fixed surface F . As shown before, by our definition
of the model metric, the moduli of the F i are bounded. Therefore, we can choose
a homeomorphism κi : F → F i so that the pullback of the metric on F i by κi
converges as i → ∞. Take a basepoint x on F , and consider geometric limits
of (F i, κi(x)), (Mi[ku], κi(x)), and (Ni [ku], f i

3 ◦ κi(x)). Since f i
3 is uniformly

Lipschitz, it converges to a Lipschitz map f∞
3 : M∞[ku] → N∞[ku], where

M∞[ku] and N∞[ku] are the geometric limits of (Mi[ku], κi(x)) and (Ni [ku], f3 ◦
κi(x)) respectively. Since the metrics induced from the F i on F are bounded, the
homeomorphism ki converges to a homeomorphism κ∞ : F → F∞, where F∞ is
embedded in M∞[ku].

As before, we can assume that both f i
3 ◦ κi and f∞

3 ◦ κ∞ are immersions. By
Theorem 9.3.6 as was used in the proof of Proposition 9.5.9, f i

3 ◦ κi is homotopic
to a least-area embedding relative to the boundary by a homotopy passing through
only relatively compact components of Ni [ku]\f i

3 ◦κi(F ). Since N[ku] contains no
Margulis tubes whose core curves have lengths less than εu and the diameters of the
f i

3 ◦ κi(F ) are bounded, these components have uniformly bounded diameters and
converge geometrically to relatively compact components of N∞[ku]\f∞

3 ◦κ∞(F )

through which f∞
3 ◦ κ∞ can be homotoped to an embedding (after perturbation

if necessary). Therefore, the geometric limit f∞
3 ◦ κ∞ can be homotoped to a

bi-Lipschitz embedding in N∞[ku]. By pulling back this embedding and using
a homotopy, we can homotope f i

3 ◦ κi to a uniformly bi-Lipschitz embedding,
contradicting our assumption. Thus we have shown that f ′

3|F can be homotoped
to a uniformly bi-Lipschitz least-area embedding, which we shall let be H(· , 3/4)
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on F . The above argument also shows that we can choose a homotopy H on F

between H(· , 3/4)|F and H(· , 0) = f ′
3|F to be uniformly Lipschitz.

Since f ′
3 preserves the order of F̂ ∩ T as was shown in Lemma 9.5.13-(iii), f ′

3

is homotopic to a homeomorphism from M[ku] to N[ku] fixing F̂ ∩ T . Therefore
the least area surfaces homotopic to the restrictions of f ′

3 to the components of F̂
fixing the boundary must be pairwise disjoint. The same holds even if we put F of
F \F̂ into F̂ removing its counterpart F̂ instead. Therefore, to show the disjointness
of the least-area images of the components of F , it suffices to show that the least
area surfaces homotopic to f ′

3(F ) and f ′
3(F̂ ) are disjoint for each component F of

F \ F̂ . This follows immediately from Theorem 9.3.6 when f ′
3(F ) and f ′

3(F̂ ) are

already disjoint. If f ′
3(F ) and f ′

3(F̂ ) intersect, then condition (vi) of Lemma 9.5.13

implies that the order of F ∩ T and F̂ ∩ T is preserved under f ′
3|T . Therefore, by

considering F̂ ∪ F instead of F̂ , we see that the least area surfaces are disjoint.
It remains to show that we can take disjoint regular neighbourhoods of the

components. (Since the restriction of H(· , 3/4) to each component of F is
uniformly bi-Lipschitz, the uniform bi-Lipschitzness on F × [1/2, 1] follows
immediately once we prove that we can take regular neighbourhoods to be disjoint.
Combined with the fact shown above that a homotopy between f ′

3 and H(· , 3/4)
can be made uniformly Lipschitz, the uniform Lipschitzness of H also follows.)
Recall that by Lemma 9.5.13-(vii), we can assume that there is a uniform positive
lower bound for the distances between the images of distinct boundary components
of F under f ′

3, hence also under H(· , 3/4). To get disjoint regular neighbourhoods,
what we need is a lower bound for the distances between the images of distinct
components of F under H(· , 3/4), not only for their boundaries but for the
entire surfaces. Suppose that such a lower bound does not exist. Then by taking
a geometric limit, we get two least-area surfaces which are tangent to each other
at their interiors. This contradicts the maximal principle of minimal surfaces. Thus,
we have shown that there is a lower bound, and that we can take disjoint regular
neighbourhoods. !�

9.5.6 Topological Ordering of Joints

Next we shall show that the obtained embedding H(· , 1) : F → N[ku] preserves
the topological order of joints.

Lemma 9.5.15 Let F1 and F2 be joints in F such that ιM(F1) and ιM(F2) are not
homotopic in S × (0, 1). If F1 ≺top F2, then H(F1, 1) ≺top H(F2, 1).

Proof Suppose that F1 ≺top F2, and that ιM(F1) is not homotopic to ιM(F2) in
S× (0, 1). Let c be a boundary component of F2 which overlaps F1 if there are any.
There is a component T of ∂M[ku] on which c lies. Then, Lemma 3.3 in Brock–
Canary–Minsky [12] implies that F1 ≺top c. Recall from Proposition 9.5.9 that
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f4 extends to a homeomorphism f̂4 : M → N0 properly homotopic to f . Since
F1 ≺top c, the surface ιM(F1) can be homotoped to S×{0} without touching ιM(c).
Since ιM = ιN ◦ f , we see that ιN ◦ f (F1) can be homotoped to S × {1} without
touching ιN ◦f (c), which by Lemma 3.18 in [12] implies f (F1) ≺top f (c). Because
f is properly homotopic to f̂4, we also have f4(F1) ≺top f4(c). Since c lies on a
component T of ∂M[ku], the homeomorphism f4 is homotopic to f ′

3 in N[ku], and
H is a proper homotopy in N[ku], this topological order is preserved by H(· , 1), and
we have H(F1, 1) ≺top H(c, 1). By the same argument and changing the direction
of order, we see that for any boundary component c′ of F1 that overlaps F2, we
have H(c′, 1) ≺top H(F2, 1). Since F1 and F2 are assumed not to be homotopic, by
Lemma 3.17 in [12], this implies that H(F1, 1) ≺top H(F2, 1). !�

We next consider the case when two joints F1 and F2 have homotopic images
under ιM .

Lemma 9.5.16 Suppose that F1 and F2 are joints in F such that ιM(F1) is
homotopic to ιM(F2). We further assume that F1 ∪ F2 does not bound a brick in
M[ku]. If F1 ≺top F2, then we have H(F1, 1) ≺top H(F2, 1).

Proof Since ιM(F1) is homotopic to ιM(F1), for each component c of ∂F1, there
is a unique component c′ of ∂F2 such that ιM(c) is freely homotopic to ιM(c′) in
S × (0, 1). Suppose first that c and c′ are homotopic in M[ku] for all components c

of ∂F1. Then c and c′ lie on the same boundary component of ∂M[ku] by condition
A-(2) in Sect. 9.4.2 and the definition of V[ku]. Since this holds for every boundary
component of F1, we see that F1 ∪ F2 bounds a submanifold W in M[ku]. If W is
homeomorphic to F1 × [0, 1], then by our definition of the brick decomposition of
M[ku], we see that W consists of only one brick. This contradicts our assumption
that F1 ∪ F2 does not bound a brick.

Therefore, F1 ∪ F2 bounds a submanifold W in M[ku], which is not homeomor-
phic to F1×[0, 1]. Since ιM(F1∪F2) bounds a region homeomorphic to F1×[0, 1] in
S×[0, 1], this implies that there is a component T of ∂M[ku] which is contained in
W . We take a horizontal curve d contained in T . Then d overlaps both F1 and F2 and
F1 ≺top d ≺top F2. This implies that f4(F1) ≺top f4(d) ≺top f4(F2). Since ιN ◦ f̂4
is homotopic to ιM , we see that ιN ◦ f4(F1) is homotopic to ιN ◦ f4(F2), and the
boundary of ιN ◦f4(F1), which lies on V[ku], is unknotted and unlinked. Therefore,
applying Lemma 3.16 in [12], we have f4(F1) ≺top f4(F2), which implies that
H(F1, 1) ≺top H(F2, 1) as before.

Thus it only remains to consider the case when there is a component c of ∂F1
which is not homotopic to c′ in M[ku]. Since ιM(c) and ιM(c′) are homotopic, and
ιM(c) and ιM(c′) are horizontal, there is an embedded annulus A bounded by ι(c)∪
ι(c′) in S × (0, 1). Since c and c′ are not homotopic in M[ku], there is a boundary
component T of M[ku] such that ιM(T ) intersects A essentially. Take a longitude
or a core curve c′′ of T . Then we have F1 ≺top c′′ ≺top F2. Now since f4 is a
homeomorphism from M to N0, we see that f4(F1) ≺top f4(c

′′) ≺top f4(F2), and
as before, we have H(F1, 1) ≺top H(c′′, 1) ≺top H(F2, 1). Since ιN ◦H(F1, 1) and
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ιN ◦H(F2, 1) are homotopic, Lemma 3.16 in [12] again implies that H(F1, 1) ≺top
H(F2, 1). Thus we have completed the proof. !�

The remaining case is when F1 and F2 are homotopic in M[ku] and cobound a
brick in M[ku]. Let B be a brick bounded by F1 ∪ F2, and h(B) the hierarchy on B

which we obtain by applying Lemma 9.5.5 to M[ku]. We now introduce the term a
“deep-seated geodesic” for a tight geodesic in the hierarchy h(B).

Definition 9.5.17 We say that a tight geodesic g ∈ h(B) is deep-seated if there is
a component of FrD(g) whose corresponding tube in V is disjoint from either ∂+B
or ∂−B. In the case when D(g) is an annulus, we regard a core curve of D(g) as a
component of FrD(g).

We shall first show that h(B) cannot have a long deep-seated geodesic.

Lemma 9.5.18 Let B be a brick in M[ku]int. Then every deep-seated geodesic in
h(B) has length less than A, where A is a constant depending only on ξ(S).

Proof By Theorem 9.1 in [35], we can take a constant A such that if g ∈ h(B) has
length at least A, then every component c of FrD(g) lies on either ∂M or a boundary
component ∂V for V ∈ V such that |ωM(V )| > ku. (Since we are considering tight
geodesics in h(B) consisting of simplices on the curve complex of C(∂−B), we can
apply Minsky’s result on Kleinian surface groups.) Therefore in this situation, every
component of FrD(g) lies on ∂M[ku]. If g is deep-seated, then some component c of
FrD(g) must lie on ∂V which is disjoint either from ∂+B or ∂−B. Thus we see that
if h(B) has a deep-seated geodesic with length at least A, then there is a component
of ∂M[ku] which intersects B but not at least one of ∂−B and ∂+B. This contradicts
the assumption that ∂−B and ∂+B are homotopic and bound B in M[ku]. !�

Fix A as in Lemma 9.5.18 so that all the deep-seated geodesics in h(B) have
length less than A. We further divide our argument into two cases: the first is when
the number of blocks constituting B is large and the other is when it is small. It will
turn out later that we do not need to show that the topological order is preserved in
the latter case for the proof of Theorem 9.5.1.

Lemma 9.5.19 There exists a constant C depending only on ξ(S) (and A) such
that the following holds. If |h(B)| > C, then we have H(∂−B, 1) ≺top H(∂+B, 1).
(Recall that |h(B)| denotes the sum of the lengths of all the geodesics constituting
h(B).)

Proof We can take a constant C so that if |h(B)| > C, then there must be a geodesic
g in h(B) whose length is greater than A. By Lemma 9.5.18, then g cannot be deep-
seated. If g is not deep-seated, then since every frontier component of D(g) lies in
∂M[ku], the only possibility is that g is the main geodesic of h(B). Then we can
apply Theorem 7.1 in [12] to our hierarchy h(B). The same argument as in the case
1b of the proof of Lemma 8.4 in [12] implies that H(∂−B, 1) ≺top H(∂+B, 1). !�

The remaining case when |h(B) ≤ C is included in the “short” case, which will
be defined in the following subsection.
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9.5.7 Deformation to a Bi-Lipschitz Map

Having obtained the results in the previous subsection, we are now in a position to
show that we can further homotope H(· , 1) to make it bi-Lipschitz on the region
between joints, applying the arguments of §§8.2-8.4 in Brock–Canary–Minsky [12].

For a brick B in M[ku]int which is not short, we shall construct a cut system,
following §4 and §8.2 in Brock–Canary–Minsky [12]. Our cut system CB is a set
of slices of h(B) having the following properties with a constant d1 > 5 depending
only on ξ(S) which will be specified later.

(1) For a geodesic g ∈ h(B), let CB |g denote the subset of CB consisting of slices
with bottom geodesic g. Then, for any geodesic g ∈ h(B), the bottom simplices
{vτ | τ ∈ CB |g} cut g into intervals all of whose lengths are between d1 and
3d1.

(2) Two distinct slices in CB |g cannot have the same bottom simplex.
(3) For each τ ∈ CB and any (k, v) in τ other than the bottom one, v is the first

vertex of k.
(4) For every non-annular geodesic g, any slice in CB |g is a non-annular saturated

slice.
(5) For an annular geodesic g, there is at most one slice in CB |g.

We take a constant d1 ≥ C for C in Lemma 9.5.19 so that for any geodesic g in
the hierarchy h(B), if g has length at least d1, the geodesic length of each component
of f3(∂D(g)) in N is less than εu. (By Lemmas 9.5.4 and 9.5.19, such a d1 exists and
depends only on ξ(S).) We say that the brick B is short if |h(B)| ≤ 4ξ(S)d1. (Here
we choose 4ξ(S) as a function of ξ(S) bounding the number of geodesics constituting
a hierarchy.) If B is not short, then at least one of the geodesics in h(B) has length
greater than d1. Therefore, CB is non-empty in this case. When B is short, we define
CB to be an empty set.

For each slice τ in CB , we define extended split level surfaces as below following
[12]. Suppose that the bottom pair (gτ , vτ ) of τ is not supported in an annulus.
Since τ is a non-annular saturated slice and h(B) is 4-complete, base(τ ) defines
a pants decomposition of D(gτ ). For each pair of pants Y constituting the pants
decomposition, there is a horizontal boundary of two adjacent blocks à la Minsky of
the form Y × {t} with respect to the parametrisation of S × (0, 1), along which the
two are glued. (This lies at the middle of a block of the form �0,3 × J in our block
decomposition in Sect. 9.4.) This horizontal surface is denoted by FY . We consider
the union Fτ = ∪FY for all Y constituting the pants decomposition, and call it
the split level surface corresponding to τ . By joining two parallel boundaries of Fτ

using annuli in solid tori of V[0] \V[ku], we get a surface homeomorphic to D(gτ ).
By condition (3), such annuli can be chosen to be uniformly close to horizontal
annuli. We call this surface the extended split level surface corresponding to τ and
denote it by Fτ . For a cut system CB as above, the split level surface Fτ for τ ∈ CB

is called a cut in B. Let FB be the union of Fτ for all τ ∈ CB and Fb the union of
FB for all bricks B ∈ K[ku]int. Let V be a component of V on which a boundary
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component of Fτ lies. By condition (1) of the definitions of CB and d1, we see that
ω(V ) > ku, hence V ∈ V[ku]. Therefore, by adding Fb to the joints of M[ku], we
get a subdivision of M[ku] into smaller bricks, which may have inessential joints.
We denote this refined brick manifold by M ′[ku]. (Note that M[ku] and M ′[ku] are
the same as manifolds; only their brick structures differ.)

We shall show that H(· , 1) can be homotoped so that the restriction to Fb ∪ F
is a uniform bi-Lipschitz embedding.

Lemma 9.5.20 There exist a constant K ′′ depending only on ξ(S) and a K ′′-
Lipschitz homotopy H ′ : (Fb ∪ F)× [0, 1] → N[ku], such that

(i) H ′|(Fb ∪ F)× {0} coincides with H(Fb ∪ F , 1).
(ii) H ′|(Fb ∪ F)× [1/2, 1] is a K ′′-bi-Lipschitz C2-embedding.

Proof Our argument is similar to the proof of Lemma 9.5.14. Let T be a component
of ∂M[ku] intersecting B and T ′ its image in N[ku] under f4. We first need to show
that the H(· , 1) can be moved to a uniformly Lipschitz map which preserves the
order of T ∩ (Fb ∪ F) except for the fronts of short bricks, by a homotopy whose
displacement function is bounded from above by a uniform constant. Our situation
is a little different from that of Lemma 9.5.13 since among our surfaces in Fb ∪ F ,
there might be more than two components which are all homotopic to each other.
Still, we can argue as in the proof of (vi) in Lemma 9.5.13, and see that the order
of components F,F ′ of Fb ∪ F can be reversed only when they are homotopic in
M[ku] and H(F, 1)∩H(F ′, 1) = ∅. Now, by applying Lemma 9.5.19 to our refined
brick manifold M ′[ku], we see that the order between F ∩T and F ′ ∩T is preserved
by H(· , 1) unless F ∪ F ′ bounds a brick B with |h(B)| < C in M ′[ku], which
must be also a short brick of M[ku] since we did not introduce a new brick B with
|h(B)| < d1 in our subdivision of bricks. Thus we have shown that H(· , 1) can
be homotoped with uniformly bounded displacement of points so that the order of
(Fb ∪ F) ∩ T is preserved for any component T of ∂M[ku] except for the order
between the two fronts of the same short bricks. Let f ′′

3 be a uniform Lipschitz map
from M ′[ku] to N[ku], thus obtained.

Next we shall show that the same property as (vii) in Lemma 9.5.13 holds for Fb

and f ′′
3 ; that is, for any δ, there is a number n0 bounding the number of components

of f ′′
3 (Fb∩T ) which are within distance δ from f ′′

3 (F ∩T ) for any component F of
Fb. Let F1, . . . , Fn be distinct components of Fb such that f ′′

3 (F1∩T ), . . . , f ′′
3 (Fn∩

T ) are within distance δ from f ′′
3 (F ∩ T ). Then H(F1, 1), . . . , H (Fn, 1) are within

distance 3λ0 + δ from H(F, 1), where λ0 is the constant which we defined in the
proof of Lemma 9.5.13. Recall that for each slice τ of CB , each component of Fτ \V
is a thrice-punctured sphere. By Lemma 9.5.6, for distinct slices Fτ1 , . . . , Fτn , there
are at least ν non-homotopic tubes in V which at least one of Fτ1 , . . . , Fτn intersects
with ν going to ∞ as n → ∞. By Lemma 9.5.3, each tube has a core curve with
length less than L. Since H(· , 1) is uniformly Lipschitz, the lengths of the images
of the core curves are universally bounded. Suppose that there is no universal bound
for n. Then by the usual argument using a geometric limit of model maps, we are
lead to a contradiction since for any hyperbolic 3-manifold, a constant R and a base
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point x in the manifold, there are only finitely many homotopy classes which are
represented by a closed curve of length less than L contained in the R-ball centred at
x. Thus we have shown that f ′′

3 |FB has the same property as (vii) in Lemma 9.5.13.
Combining this with Lemma 9.5.13, we see that for any δ, there exists n0 bounding
the number of components of f ′′

3 ((Fb ∪F)∩ T ) within distance δ from f ′′
3 (F ∩ T )

for any component of F of Fb ∪ F .
By the same argument as Lemma 9.5.14, we see that H(· , 1) can be homotoped

to a uniform Lipschitz map which embeds Fb ∪ F in such a way that two distinct
components have disjoint δ-regular neighbourhoods. !�

By this homotopy H ′, we can homotope f ′
3 to a map f5 which is a uniform bi-

Lipschitz map on each component of Fb∪F and whose restriction to a small regular
neighbourhood of Fb ∪ F is an embedding. Recall that by the results in Sect. 9.5.6
and Lemmas 9.5.18 and 9.5.19, f5 preserves the topological order of Fb ∪F except
for the fronts of short brick. If B is short, then B consists of less than 4ξ(S)d1 blocks,
hence the diameter of B, which can be bounded by a linear function of the number of
blocks, is bounded by a constant depending only on ξ(S). Therefore, we can isotope
f5(∂−B) into a regular neighbourhood of f5(∂+B) so that f5(∂−B) ≺top f5(∂+B)

preserving the condition on the bi-Lipschitzness. We should note that short bricks of
M ′[ku] come from those of M[ku] and that by Assumption 9.4.3, two short bricks
cannot be adjacent to each other. Therefore, we can perform this deformation for
all short bricks so that f5(∂−B) and f5(∂+B) have regular neighbourhoods with
uniform width. Since the embedding of each cut by f5 has a regular neighbourhood
with uniform width, f5 is bi-Lipschitz not only on each cut or joint but also with
respect to the induced metric on the entire Fb ∪F .

To complete the proof of Theorem 9.5.1, it remains to deform f5 in the
complement of Fb ∪ F in M[ku]int to make it bi-Lipschitz without changing the
map on F × [0,∞) for every geometrically finite brick, which we parametrise as
F × [−1,∞) as before. This can be done by the same argument as §8.4 in [12]
without any modification. Thus we have completed the proof of Theorem 9.5.1 by
setting k to be ku.

9.6 Proofs of Theorems

9.6.1 Geometric Limits of Geometrically Finite Bricks

Let Gn be a Kleinian surface group, and set Nn to be H3/Gn. Let gn : Mn → (Nn)0
be a model map constructed in [12] which induces a bi-Lipschitz homeomorphism
gn[ku] : Mn[ku] → Nn[ku]. Suppose that Mn has a geometrically finite brick
Bn

∼= Fn × [−1,∞) or Fn × (−∞, 1]. We note that for each geometrically
finite end, Minsky [35] constructed a boundary block which is mapped into the
augmented convex core and an exterior block for the exterior component of the
augmented convex core containing the end. We have explained the details of this in
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Sect. 9.5.1. Our geometrically finite brick is obtained as the union of these two. We
shall consider only the case when Bn

∼= Fn × [−1,∞), for the other case can be
dealt with in the same way just by changing the +-direction to the −-direction.

Lemma 9.6.1 Let xn be a point in Bn in the above situation. Suppose that with
respect to the metric dBn on Bn defined in Sect. 9.4.5, we have dBn(Fn×{−1}, xn) →
∞. Then the geometric limit of (a subsequence of) {(Nn, gn(xn))} is elementary: i.e.
isomorphic to H3/� for an elementary Kleinian group �.

Proof Let C(Nn) be the convex core of Nn = H
3/Gn. By the definition of our

model maps, we see that dNn(C(Nn), gn(xn)) →∞. Let � be a Kleinian group such
that (H3/�, x∞) is the Gromov–Hausdorff limit of {(Nn, gn(xn))} after passing
to a subsequence. Suppose, seeking a contradiction, that there are non-commuting
elements g, h in �. Then, there exist elements gn, hn in Gn such that lim gn = g

and lim hn = h. Consider the action of Gn on H
3. Then gn and hn act on H

3 as
loxodromic or parabolic transformations. Let ln be a geodesic in H

3 which we set to
be the common perpendicular of the axes of gn and hn if they are both loxodromic,
or the geodesic ray perpendicular to the axis of the loxodromic one and tending to
the fixed point at infinity of the parabolic one when only one of them is loxodromic,
or the geodesic connecting the fixed points at infinity of the two elements if both are
parabolic.

We claim that the function t (gn, hn)(x) = max{d(x, gn(x)), d(x, hn(x))} has
a minimum at a point cn on ln. This can be seen by considering sets Vgn(r) and
Vhn(r) consisting of points whose translation distances are less than or equal to
r under gn and hn respectively. The smallest r for which Vgn(r) ∩ Vhn(r) �= ∅
realises the minimum of t (gn, hn). (If Vgn(r) (resp. Vhn(r)) reaches the axis of hn

(resp. gn) while Vhn(r) (resp. Vgn(r)) is empty, we take such r as the smallest.) By
the convexity of these sets, we see that the intersection consists of one point cn,
and that it lies on ln. Since both {gn} and {hn} converge, the smallest r is bounded
from above independently of n. Since the configurations of Vgn(r), Vhn(r) up to
isometries are compact, we see that |t (gn, hn)(y) − 2d(y, cn)| is bounded from
above independently of n. (This follows from the fact that the displacement of a
point can be approximated by twice the distance from the point to the axis if the
translation length on the axis is bounded above.)

Obviously, ln is contained in the Nielsen convex hull of Gn, i.e. the convex hull
in H

3 of the limit set �Gn . Take a lift x̃n of gn(xn) which converges to a lift x̃∞
of x∞. Since dNn(C(Nn), gn(xn)) →∞, the distance of ln from a lift x̃n of gn(xn)

in H
3 goes to ∞ as n → ∞; hence d(x̃n, cn) → ∞. From the above observation,

this implies that t (gn, hn)(x̃n) →∞. This contradicts the facts that g = lim gn and
h = lim hn translate x̃∞ by a finite distance. !�

We now consider geometric limits of geometrically finite bricks Bm parametrised
as Fm × [−1,∞) as in Sect. 9.4.5. Since we are only interested in non-elementary
geometric limits, by virtue of the previous lemma, we have only to consider the
case when the basepoint lies on the real front along which the brick is pasted to
other bricks. Let xm be a point in Bm lying on Fm × {−1}. Since each F̂m = Fm ×
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{−1} has the cylinder-�0,3 metric υm, the sequence {(Fm × {−1}, xm)} converges
geometrically to a pointed surface (F̂∞, x∞) passing to a subsequence, and F̂∞ also
has a cylinder-�0,3 metric υ∞ and is homeomorphic to a subsurfaceF∞ of S. On the
other hand, Fm×{0} has a metric τm which is Euclidean in annular neighbourhoods
of pants curves, and is hyperbolic outside. If we put a basepoint ym on Fm × {0}
whose distance from xm is bounded as m →∞, the sequence {(Fm × {0}, ym)} has
a geometric limit (F̄∞, y∞) (passing to a subsequence) with F̄∞ homeomorphic
to F∞, and having the same kind of metric as Fm × {0}. Since Fm × [0, 1] has a
metric which is bi-Lipschiz equivalent to the product of τm and the standard interval,
{(Fm × [0, 1], xm)} has a geometric limit homeomorphic to F∞ × [0, 1] bounded
by F̄∞, regarded as Fm × {0}, and F̂∞, regarded as F∞ × {−1}. Moreover, since
Fm×[0,∞) has metric e2rτm+dr2 (r ∈ [0,∞)), this part converges to a manifold
homeomorphic to F∞×[0,∞) with the metric e2rτ∞+dr2. Thus, we have seen that
{Bm} converges to a geometrically finite brick B∞ homeomorphic to F∞×[−1,∞)

which has the metric defined in Sect. 9.4.5.

9.6.2 Proofs of Theorem A and Corollary B

Proof of Theorem A Let {Gn} be a sequence of Kleinian surface groups which
converges geometrically to a non-elementary Kleinian group G. Since {Gn} con-
verges geometrically to G, fixing a basepoint in H3, and projecting it to H3/Gn and
H3/G as basepoints yn and y∞, we get a geometric convergence (H3/Gn, yn) →
(H3/G, y∞). By the original bi-Lipschitz model theorem [12], for each n ∈ N,
there exist a model manifold Mn and a model map gn : Mn → (Nn)0 inducing
a K-bi-Lipschitz homeomorphism gn : Mn[ku] → Nn[ku], where Nn = H3/Gn.
We let xn be a point in Mn which is taken to yn by gn. The model manifold Mn

consists of Mn[0], which is decomposed into internal blocks and boundary blocks,
and Margulis tubes. Since we assumed that G is non-elementary, xn cannot go
deeper and deeper into Margulis tubes as n → ∞. Therefore, moving xn and yn
within uniformly bounded distance without changing G up to conjugacy, we can
assume that xn lies in Mn[0].

Since Gn is a Kleinian surface group, Mn is properly embedded in S0 × (0, 1)
for a compact core S0 of S so that the boundary of a cusp neighbourhood which
does not correspond to a boundary component of S0 is a properly embedded open
annulus both of whose ends go to the same end of S0 × (0, 1), either to the +-
direction or to the −-direction. We equip Mn with the structure of a brick manifold
compatible with the block decomposition as follows. We first consider a proper
embedding ηn : Mn → S × (0, 1) with the following properties, obtained from the
above embedding by isotoping blocks within S × (0, 1).

(1) The embedding ηn preserves the horizontal and the vertical leaves of each block.
(Here for a block of the form �×J , each �×{t} is a horizontal leaf and {x}×J

is a vertical leaf.)
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(2) Each Margulis tube in Mn is mapped to A× [t1, t2] for some essential annulus
A on S and t1 < t2, and each torus boundary of Mn is mapped to the boundary
of A× [t1, t2].

(3) Each open annulus boundary component of Mn except for those corresponding
to cusps of S is mapped to the boundary of either A× [t, 1) or A× (0, t] for an
essential annulus A on S and t ∈ (0, 1).

(4) The geometrically finite ends of Mn are peripheral, i.e. lie on S × {0, 1}.
This is exactly the situation as in the construction of a brick decomposition for M(1)

int
in Sect. 9.4.4. Therefore, we can endow Mn with a brick decomposition by defining
each to be a maximal family of parallel leaves.

We now consider the geometric limit (M[0], x∞) of (Mn[0], xn), possibly
passing to a subsequence. Note that any internal block of Mn[0] is isometric to
either �(0,4)×[0, 1] or �(1,1)×[0, 1], or �(0,3)×[0, 1], each with a standard metric.
(We can consider a block decomposition in our sense or Minsky’s. Either will do.)
Therefore a geometric limit of internal blocks can also be regarded as blocks. On the
other hand, as was seen in Sect. 9.6.1, any sequence of geometrically finite bricks
in Mn[0] converges geometrically to a geometrically finite brick in after taking a
subsequence if we put a basepoint on the real front. Since G is non-elementary, by
Lemma 9.6.1, if the xn lie in geometrically finite bricks, we can assume that they lie
on the real fronts of the bricks. These imply that the geometric limit M[0] consists of
geometrically finite bricks and the remaining part which is decomposed into blocks.
(Here we are not considering yet the brick decomposition of M[0].)

We denote by M[0]int the part of M[0] consisting of the limits of internal bricks.
The complement of M[0]int in M[0] consists of geometrically finite bricks as was
seen above. As before, we denote by Vn the union of tubes in the tight tube unions
giving a block decomposition of M0

n . (Recall that M0
n is the complement of tubes in

Vn intersecting Mn along annuli and is naturally identified with Mn.) For any k, we
denote by Vn[k] the subset of Vn consisting of tubes V with |ωMn(V )| ≥ k. Recall
that Mn[k] = (Mn)

0 \Vn[k]. We denote by Tn[k] the union of Margulis tubes which
is the image of Vn[k] by gn. (Recall that we abuse the term “Margulis tube” to refer
also to a tubular neighbourhood of a closed geodesic with uniformly bounded length
even when it is greater than the Margulis constant.)

Each torus component T of ∂M[0] is a geometric limit of torus components Tn

of ∂Mn[0]. Since Tn converges geometrically, either {ωMn(Tn)} converges or goes to
∞. (Note that this excludes the case when |ωMn(Tn)| goes to ∞ but ωMn(Tn) does
not.) If it converges, then Tn bounds a Margulis tube Vn converging geometrically
to a Margulis tube V bounded by T . We denote by V∞ the union of such tubes V .
The gluing map of Vn to Mn[0] converges to a gluing map of V to M[0]. We define
the union of Mn[0] and such tubes glued by the limit gluing maps to be M . Then it
follows immediately that the geometric convergence of (Mn[0], xn) to (M[0], x∞)

extends that of (Mn, xn) to (M,∞). We denote by M[k] the union of M[0] and
tubes in V∞ for which limn→∞ |ωMn(Tn)| ≤ k. The argument above also implies in
particular that gn with base point xn converges to a K-bi-Lipschitz homeomorphism
g : M[ku] → N[ku]. Since we put the metric on each Vn ∈ Vn[ku] inherited from
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a Margulis tube determined by ωMn(Vn) and ku was taken so that gn(∂Vn) bounds
an unknotted Margulis tube in Nn, each gn is extended to a K-bi-Lipschitz map in
each Vn. Therefore g is also extended to a K-bi-Lipschitz homeomorphism from M

to N0. We use the symbol Mint to denote the union of M[0]int and V∞.
If limn→∞ ωMn(Tn) = ∞, then g(T ) is the boundary of a torus cusp neigh-

bourhood of N in the complement of N0. If we put a basepoint on ∂Vn = Tn,
then the geometric limit of Vn is also a Z × Z-cusp which is K-bi-Lipschitz
to the cusp neighbourhood bounded by g(T ) since by Lemmas 9.4.5 and 9.4.6,
ωMn(Tn) controls the modulus of the Margulis tube bounded by gn(Tn). Note that
by our definition of M , the limit cusp neighbourhood is not contained in our model
manifold M . Therefore, M is not exactly a geometric limit of {Mn} but is obtained
from the geometric limit by removing cusp neighbourhoods; but for simplicity, we
shall often refer below to M as a geometric limit of {Mn}.

The properties (ii) that M is acylindrical and (i) that ∂M consists of tori and
annuli in the statement of Theorem A are derived from the same properties for
N0. We shall next show that M is a brick manifold. Recall that M[0]int admits a
decomposition into blocks. Let ρn : Brn(Mn, xn) → BKnrn(M, x∞) be a (Kn, rn)-
approximate isometry associated to the geometric convergence of {(Mn, xn)} to
(M, x∞). We can arrange ρn so that for each block b of M[0]int, its pull-back
ρ−1
n (b) is also a block with respect to the block decomposition of the brick manifold

Mn, and ρ−1
n |b preserves the vertical and horizontal leaves of b. Recall that the

embedding ηn of Mn into S × (0, 1) preserves the vertical and the horizontal
leaves of blocks. Therefore, at each point of M the (two-dimensional) horizontal
directions and the vertical direction are well defined. The horizontal directions in M

constitute a foliation whose leaves are incompressible in M and homeomorphic to
an essential subsurface of S (including S itself) as we can see by considering their
image under ρ−1

n for large n. We define a leaf of this foliation to be a horizontal leaf
of M . Horizontal leaves are transversely oriented, by defining the+-direction of the
second factor of S × (0, 1) to be the positive direction.

Now, we define a brick in M to be a closed submanifold which is the closure of
a maximal union of parallel horizontal leaves in M if it has non-empty interior. It
is evident that the bricks defined in this way are pairwise disjoint. We can further
show the following, which implies that M is a brick manifold.

Lemma 9.6.2 Every point in M is contained in a brick. The bricks are locally finite.

Proof Let x be a point in M , and F a horizontal leaf of M on which x lies. We
say that a boundary component T of M touches F from above if T ∩ F �= ∅ and
if any leaf near F and above F intersects T whereas any leaf below F is disjoint
from T . Similarly, we define touching from below. Every component of ∂M is either
a torus or an open annulus, and they may intersect a horizontal leaf along annuli.
Recall that an annulus component of ∂Mn contains only one horizontal annulus,
and a torus component contains only two horizontal annuli situated at different
horizontal levels. This property is preserved by taking geometric limit, and hence if a
component of ∂M intersects a horizontal leaf along annuli, the intersection consists
of a single annulus. Moreover, since M is acylindrical, there are no two annuli on
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∂M ∩ F which are parallel on F and are contained in distinct components of ∂M .
Therefore, the number of the components of F ∩ ∂M is uniformly bounded by a
constant depending only on ξ(S).

Now, recall that the height (with respect to the metric determined by blocks) of
each component of ∂Mn is uniformly bounded from below by a positive constant ζ .
We take a positive number θ < ζ , and let F ′ be a horizontal leaf of M above F at
distance θ with respect to the metric determined by blocks. Then each component of
∂M within distance θ from F which does not lie below F must intersect either F or
F ′. Therefore, the number of such components is bounded by a constant depending
only on ξ(S). The same holds for components of ∂M within distance θ from F not
lying above F .

Let h1 be the minimum of the heights above F (with respect to the metric on
M determined by blocks) of the components of ∂M intersecting F but not touching
from below, which we allow to be ∞, including the case when there are no such
components. Since there are finitely many components of ∂M intersecting F as was
shown above, we have h1 > 0. Next let h′1 be the minimal distance from F to the
components of ∂M lying above F , which is defined to be ∞ if there are no such
components. By the observation in the previous paragraph, there are only finitely
many components of ∂M within a fixed distance from F , and hence we have h′1 > 0.
We set h̄1 to be min{h1, h

′
1}. Then, if we move F in the vertical direction on the

positive side within distance h̄1 to another horizontal surface, then the new surface
may lose (from a parallel copy of F ) the interior of annuli which are intersection
with components of ∂M touching from above, but the surface cannot change in other
ways. Therefore all the horizontal leaves above F within distance h̄1 are parallel to
each other.j It follows that if x lies outside the intersection with components of ∂M
touching F from above, then x is contained in a brick which passes through F or is
situated above F and touches F at the boundary from above. Similarly by defining
h2 and h′2 with changing the +-direction to the −-direction and setting h̄2 to be
min{h2, h

′
2}, we see that all the horizontal surface below F within distance h̄2 are

parallel to each other. Also, if x lies outside the intersection with components of ∂M
touching F from below, then x is contained in a brick which passes through F or is
situated below F and touches F at its boundary from below. Since no components of
∂M can touch F from both above and below, this shows that x is always contained
in a brick.

Furthermore, there are only finitely many bricks at distance less than min{h̄1, h̄2}
since F is contained in the (non-empty) union of finitely many bricks whose heights
are at least min{h̄1, h̄2} and one of which contains x. This shows the local finiteness
of the bricks. !�

By our definition of bricks in M and in Mn, for any brick B in M its pull-back
ρ−1
n (B) is contained in one brick in Mn for large n. Now, we are in a position to

use Lemma 9.4.1 to verify condition (iv) in Theorem A. For any r ∈ N, let M(r)

be the submanifold of M consisting of bricks intersecting the r-ball centred at x∞
with respect to the metric induced from those on blocks. Then M(r) contains only
finitely many bricks by Lemma 9.6.2. If we take a sufficiently large n, then we can
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Fig. 9.7 e is a wild end

pull back M(r) to Mn by ρ−1
n . Since the pull-back of each brick is contained in a

brick of Mn, we can embed M(r) to S × (0, 1) by ηn ◦ ρ−1
n preserving the vertical

and the horizontal leaves. Since M = ∪∞r=1M(r), by Lemma 9.4.1, we can embed
M into S × (0, 1) in such a way that every brick is mapped to a submanifold of the
form F × J . Since the geometrically finite ends of Mn are peripheral, we see that
the same holds for M by Lemma 9.4.1. This completes the proof of (iv).

Finally, we shall show (iii), that there is no incompressible half-open annulus
tending to a wild end e with core curve not homotopic to an annulus component
of ∂M tending to e. Suppose, seeking a contradiction, that M has such an end e

to which an incompressible half-open annulus A tends, and that the core curve of
A is not homotopic into an annulus component of ∂M tending to e. Let {Hj } be
a sequence of properly embedded connected horizontal surfaces in M meeting A

transversely and tending to e. (Since every point lies on some horizontal leaf, such a
sequence of horizontal surfaces exist.) See Fig. 9.7a. For each j , the intersection A∩
Hj is an essential simple closed curve, which we denote by lj . By our assumption,
lj is not homotopic into an annulus component of ∂M tending to e. Therefore, g(lj )
either represents a loxodromic element or is homotopic into a cusp which is disjoint
from a small neighbourhood of e.

We first assume that g(lj ) represents a loxodromic element. Let hj : Hj → N0
be a pleated surface properly homotopic to g|Hj realising lj as a closed geodesic,
which we denote by l∗. We should note that Hj is homeomorphic to an essential
subsurface of S. For any δ > 0, the pleated surfaces hj have an upper bound
depending only on χ(S) and δ for the diameters modulo their δ-thin parts. Since
there are only finitely many ε1-cusp neighbourhood within a bounded distance
modulo the δ-thin part of N from l∗ and the images of the hj contain l∗, by taking
a subsequence we can assume that the homotopy class of ∂Hj does not depend on
j . By condition (ii) which we have already proved, this implies that the boundary
components of M on which ∂Hj lies does not depend on j . It follows that there is an
essential subsurface R of S such that all the Hj are vertically parallel to R × {1/2}
in S× (0, 1). (Notice that they may not be parallel in M . To be more precise, we are
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claiming that the ιM(Hj ) are vertically parallel to R × {1/2} for the embedding ιM
of M into S × (0, 1) obtained above. We omit to write ιM here.)

Let ij : R → Hj be a homeomorphism compatible with a homotopy from
R × {1/2} to Hj in S × (0, 1). Since the lj are homotopic to each other in S ×
(0, 1), we can arrange the ij so that there is a simple closed curve l on R such that
ij (l) = lj for all j . Recall that there are only finitely many ε1-cusp neighbourhoods
which pleated surfaces hj can touch. We extend l to a pants decomposition P of
R so that no curve is mapped to a curve freely homotopic into a cusp which some
hj (Hj ) touches. Since the condition that hj is homotopic to g|Hj and realises l

guarantees the existence of such an extension, we can assume that hj itself realises
P . We now consider the sequence of pleated surfaces {hj ◦ ij : R → N0}. Since
there are only finitely many cusps which we must take into account, by applying
the compactness of marked pleated surfaces without accidental parabolics (5.2.18
in Canary–Epstein–Green [15]), we see that passing to a subsequence, {hj ◦ ij }
converges to a pleated surface from a component R′ of R \ α containing l, where α

is a possibly empty union of disjoint non-parallel essential annuli in R, uniformly
on every compact subset of R′. It follows that there exists j0 ∈ N, such that all
hj ◦ ij |R′ (j ≥ j0) are properly homotopic in N0. Pulling back this to M , we see
that there is no component of S×(0, 1)\M which obstructs homotopies between the
ij |R′. Hence, the subsurfaces ij (R

′) of Hj are vertically parallel in M for all large
j . Therefore, there exists a submanifold R′ × [0, 1) embedded in M preserving the
horizontal and vertical leaves, which contains a neighbourhood of the end of A such
that R′ × {t} tends to e as t → 1. See Fig. 9.7b.

We shall next show that we have the same kind of product region even when
g(lj ) represents a parabolic class. Let c be a cusp of N homotopic to g(lj ). Then, we
consider a pleated surface hj : Hj \ IntN(lj ) → N0 taking ∂N(lj ) to the boundary
of the cusp neighbourhood of c instead of the one realising lj as a closed geodesic,
where N(lj ) denotes an annular neighbourhood of lj . Even in this case, we have the
finiteness of pleated surfaces which can be reached from the δ-cusp neighbourhood
Uc of c within a bounded distance modulo the thin part. Therefore, as before, we
can show that the Hj are parallel in S × (0, 1) after taking a subsequence.

As before, we can consider a homeomorphism ij : R → Hj compatible with the
inclusion of R into S, and can assume that hj ◦ ij realises a pants decomposition
P containing l none of whose curves except for l is mapped to a cusp which can be
reached by hj (Hj ). Then as in the previous case, there is a possibly empty union
α of non-parallel disjoint essential annuli on R, and for components R1, R2 of R \
(N(l) ∪ α) adjacent to N(l), which may coincide if l is non-separating, the pleated
surfaces hj ◦ ij |R1 ∪ R2 converge uniformly on every compact set of R1 ∪ R2. Let
R′ be R1 ∪ R2 ∪N(l). Since the hj ◦ ij |R′ are homotopic to each other for large j ,
we see that the subsurfaces ij (R

′) on Hj are vertically parallel to each other. This
shows that there is a region R′×[0, 1) embedded in M preserving the horizontal and
vertical leaves which contains a neighbourhood of the end of A such that R′ × {t}
tends to e as t → 1.

In both cases, i.e. whether g(lj ) represents a loxodromic class or a parabolic
class, if every sequence of properly embedded connected horizontal surfaces tending
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to e is eventually contained in R′ × [0, 1) defined above, then R′ × [0, 1) constitutes
a neighbourhood of e, contradicting the assumption that e is wild. Suppose that this
is not the case. Then some component c of FrR′ is not homotopic to a core curve
of an annulus component of ∂M tending to e. Therefore, we can repeat the above
argument replacing A with c × [0, 1) ⊂ R′ × [0, 1) and get a larger subsurface
R′′ properly containing R′ and a leaf-preserving embedding R′′ × [0, 1) such that
R′′ × {t} tends to e as t → 1. Since the topological type of S is fixed, this process
terminates in finitely many steps, and we get a neighbourhood of e in the form
R0 × [0, 1) for some essential subsurface R0 of S (which might be S itself) such
that FrR0 × [0, 1) lies on ∂M . By our definition of brick decomposition of M ,
this R0 × [0, 1) is contained in one brick and e must be simply degenerate. This
contradicts the assumption that e is wild. !�
Proof of Corollary B By Theorem A, there is a brick manifold M having the
properties listed in the theorem with a bi-Lipschitz homeomorphism g : M → N0.
By Lemma 9.4.1, M has at most countably many ends; hence so does N0. !�

9.6.3 Proof of Theorem C

Proof of Theorem C Let M be a labelled brick manifold satisfying conditions (i)–
(iv) in Theorem A with end invariants given so that condition (EL) in Sect. 9.4.4 is
satisfied. Let K be a brick complex with

∨
K = M . By Sects. 9.4.2 and 9.4.4, M

admits a decomposition into blocks. We use the symbols V and V[k] etc. to denote
the unions of tubes inducing the decomposition into blocks as before. This implies
that condition (BB) in Sect. 9.4.4 also holds. Since M is assumed to be embedded
in S × (0, 1), we often identify M and its image in S × (0, 1).

For a simply degenerate brick B = F × [s, t) in K, we consider a monotone
increasing sequence {pn} of positive numbers tending to t such that, for any n ∈ N,
every component of F × {pn} \ IntV is homeomorphic to �0,3 and B(pn) = F ×
[s, pn] contains at least n components of V[0]. We construct B(pn) in the same way
when B = F×(t, s], just turning everything upside down. Let {Kn} be an ascending
sequence of finite brick complexes with

⋃
n Kn = K. We may choose such Kn so

that Mn =∨
Kn is connected for any n ∈ N. Since all geometrically finite bricks in

K are peripheral in S × (0, 1), the their number is at most −2χ(S). Hence we can
choose {Kn} so that K1 contains Kgf.

Consider a brick complex K−
n obtained from Kn by replacing every simply

degenerate bricks B in Kn with B(pn), and set M−
n = ∨

K−
n . For a simply

degenerate brick B in Kn and for all i ≥ n, the brick B is contained in Ki since
{Ki} is ascending. Since B = ⋃

i≥n B(pi ) by our definition of B(pn), we have
B ⊂⋃

i M
−
i . Therefore we see that M =⋃

n M−
n .

We fix a base point x0 in M−
1 ∩ M[0]. Let Wn[0] be the component of M−

n ∩
M[0] containing x0, and Wn the union of Wn[0] and the components of V[0] whose
boundaries lie on ∂Wn[0]. By the definition of Wn, we have Wn ⊂ M−

n ∩M0. For
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Fig. 9.8 This figure
illustrates Zn. The shaded
region represents Wn and the
union of black rectangles is
V ′
n. B(pn) ∈ K−

n is contained
in a simply degenerate brick
B in Kn with
B = B(pn) ∪X. V1 splits
M−

n into Wn and
Y = M−

n \Wn. V2 and V3
(resp. V4 and V5) are
components of Vext

n parallel
to each other in S × (0, 1). V ′

1
(resp. V ′

2) obstructs an
annulus between V2 and V3
(resp. V4 and V5)

V1

any n ∈ N, there exists m ≥ n such that every component of V[0] intersecting M−
n

is contained in the component of M−
m containing x0 since there are only finitely

many components of V[0] intersecting M−
n . This means in particular that M−

n ∩M0

is contained in Wm, and hence that
⋃

m Wm = ⋃
n(M

−
n ∩ M0) = M0. Taking a

subsequence if necessary, we may assume that W1 contains all the bricks in Kgf.
Let Vext

n be the union of all the components of V \ IntWn intersecting ∂Wn. It
should be noted that Vext

n might contain a component of V \ V[0]. By the definition
of Wn, each component of Wn ∩ Vext

n is an annulus. Since M[0] is acylindrical,
there is no essential annulus A in Wn with ∂A ⊂ Wn ∩ Vext

n . Still there might be
an annulus A in S × (0, 1) with ∂A ⊂ Vext

n . Figure 9.8 illustrates such a situation.
By the acylindricity of M[0], for such an annulus A, either there is a tube VA in
V obstructing A, or A goes out of M (i.e. A cannot be homotoped into M). In the
latter case, A must go out from a simply degenerate end B by condition (iii) of
Theorem A. Since the core curves of V converges to an ending lamination, which
is filling, we see that also in this case there is a tube VA in V obstructing A. Since
there are only finitely many homotopy classes of such annuli, we can choose finitely
many pairwise disjoint tubes V ′

1, . . . , V
′
m of V in S × (0, 1) \Wn which obstruct all

such annuli. Then by setting V ′n = Vext
n ∪V ′

1 ∪ · · · ∪V ′
m and Zn = S× (0, 1) \V ′n in

S × (0, 1), and defining its brick decomposition using maximal families of parallel
horizontal leaves as usual, we see that Zn is an acylindrical finite brick manifold
with a brick decomposition Ln which is an extension of Kn|Wn . (Figure 9.8 is an
example of Zn.) Note that Zn is not necessarily a subset of Zn+1 although Wn ⊂
Wn+1.

Since Wn contains all the bricks of Kgf and since they are peripheral, we have
∂∞M ⊂ ∂∞Zn. Using the conformal structure given on ∂∞M , we regard Zn as
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a labelled brick manifold. We can take tight tube unions so that their restrictions
to Wn coincide with V ∩ Wn. As was shown in Sect. 9.4.4, these tubes induce a
decomposition of Zn[0] into blocks. By condition (BB) in Sect. 9.4.4, the closure of
each component of ∂Wn \Vext

n is homeomorphic to �0,3. It follows that for any B in
Ln with ∂±B∩Vext

n �= ∅, each component of ∂±B\IntVext
n is homeomorphic to �0,3.

Therefore, this block decomposition of Zn[0] can be taken so that its restriction to
Wn is equal to the original block decomposition on Wn[0]. As in Sect. 9.4.5, we
define a model metric on Zn[0] using the blocks and the conformal structure on
∂∞Zn, and the model metric on Zn[0] is extended to the one on Zn as before so
that each component of Zn \ Zn[0] is a Margulis tube having a metric inherited
from its realisation in a hyperbolic 3-manifold. Since dZn(x0, Zn \Wn) goes to ∞
as n →∞ with respect to the model metric dZn on Zn, the geometric limit of {Zn}
is equal to the geometric limit M0 of {Wn}. It is easy to check that Zn is irreducible
and atoroidal.

By Thurston’s uniformisation theorem for atoroidal Haken manifolds [48] (see
Morgan [37] and Kapovich [23] for the proof), there exists a geometrically finite
hyperbolic 3-manifold Nn with a homeomorphism fn : Zn → (Nn)0 which can
be extended to the conformal map from ∂∞Zn to ∂∞Nn. By Theorem 9.5.1 (or the
original bi-Lipschitz theorem by Brock–Canary–Minsky), we may assume that fn

is a K-bi-Lipschitz map. Since the geometric limit of Zn based at x0 is M0, by the
Ascoli–Arzelà theorem, {fn} converges uniformly on any compact set of M0 to a
K-bi-Lipschitz map f : M0 → N0, where N is a geometric limit of Nn. By our
definition of M−

n and Wn, each simply degenerate brick F × J has a sequence of
tubes in Vext

n , taken one for each n, whose longitudes ln regarded as simple closed
curves on F converge to the ending lamination ν(e) given on the end e contained in
F × J . By our definition of the metric on M0, the lengths of the ln with respect to
the model metric on M0 are uniformly bounded from above. Since f is bi-Lipschitz,
the closed geodesics l∗n in N freely homotopic to f (ln) have also uniformly bounded
lengths. This shows that l∗n must tend to the end f (e) by the argument of §§6.3–6.4
of Bonahon [6]. Therefore, the end f (e) of N0 has the ending lamination f∗(ν(e)).

Let Gn be a Kleinian group with H3/Gn = Nn. By the main theorem of [39],
there is a sequence of geometrically finite hyperbolic 3-manifolds Nk

n = H3/Gk
n

without Z-cusps such that Gk
n converges algebraically to Gn. We can choose Nk

n

so that the domain of discontinuity of Gk
n converges to that of Gn in the sense of

Carathéodory by defining Gk
n to be obtained by pinching the conformal structure

at infinity along curves corresponding to the Z-cusps of Nn and using Lemma 3
of Abikoff [1]. By Proposition 4.2 of Jørgensen–Marden [22], this implies that Gk

n

converges strongly to Gn as k → ∞. By performing hyperbolic Dehn surgeries
along the torus cusps of Nk

n of type (1, un) with sufficiently large un ∈ N, we have
quasi-Fuchsian manifolds N

′k
n geometrically approximating Nk

n closer and closer as
k → ∞ as was shown in Bonahon–Otal [7] and Ohshika [38]. This gives rise to a
sequence of quasi-Fuchsian manifolds N

′k
n converging geometrically to Nn as k →

∞. By the diagonal argument, we have a sequence of quasi-Fuchsian manifolds N ′
n

converging geometrically to N . This completes the proof of Theorem C. !�



9 Geometry and Topology of Geometric Limits I 361

9.6.4 Proof of Theorem D

Proof of Theorem D Let G1 and G2 be non-elementary geometric limits of
Kleinian surface groups isomorphic to π1(S) preserving parabolicity, and
f : N1 = H3/G1 → N2 = H3/G2 a homeomorphism preserving their end
invariants. We may assume that f ((N1)0) = (N2)0. By Theorem A, there exists
a brick manifold M and a K-bi-Lipschitz homeomorphism η1 : M → (N1)0
preserving the end invariants. Then the composition η2 = f ◦ η1 : M → (N2)0
is also a homeomorphism preserving the end invariants. By Theorem 9.5.1, we
can properly homotope η2 to a K-bi-Lipschitz homeomorphism, which we denote
by the same symbol η2. Therefore η2 ◦ η−1

1 : (N1)0 → (N2)0 is a bi-Lipschitz
homeomorphism preserving the end invariants, which can be extended to a bi-
Lipschitz map � : N1 → N2. This � can be lifted to a bi-Lipschitz homeomorphism
�̃ : H3 → H3 between the universal coverings, which is equivariant with respect
to the covering translations. Furthermore �̃ is extended to a quasi-conformal
homeomorphism �̃∂ on the Riemann sphere Ĉ such that �̃∂ |�G1

is a conformal
homeomorphism from �G1 to �G2 . On the other hand, the injectivity radii in the
convex cores of our manifolds N1 and N2 are bounded above by the existence of
uniform models for Kleinian surface groups as was proved in [12]. Theorem 2.9 in
McMullen [32], which generalises Sullivan’s rigidity theorem, says that any quasi-
conformal deformation of a (torsion-free) Kleinian group whose convex core has
injectivity radii bounded above has support in the region of discontinuity. Applying
this theorem to our G1 and G2 we see that η2 ◦ η−1

1 , which is properly homotopic
to f , is properly homotopic to an isometry. !�

References

1. W. Abikoff, On boundaries of Teichmüller spaces and on Kleinian groups. III. Acta Math. 134,
211–237 (1975)

2. I. Agol, Tameness of Hyperbolic 3-manifolds, preprint. https://arxiv.org/abs/math/0405568
3. J. Anderson, R. Canary, Algebraic limits of Kleinian groups which rearrange the pages of a

book. Invent. Math. 126, 205–214 (1996)
4. R. Benedetti, C. Petronio, Lectures on Hyperbolic Geometry (Universitext, Springer, Berlin,

1992)
5. S. Bleiler, A. Casson, Automorphisms of surfaces after Nielsen and Thurston, London

Mathematical Society Student Texts, vol. 9 (Cambridge University, Cambridge, 1988), iv+105
pp.

6. F. Bonahon, Bouts des variétés hyperboliques de dimension 3. Ann. Math. 124, 71–158 (1986)
7. F. Bonahon, J.-P. Otal, Variétés hyperboliques avec géodésiques arbitrairement courtes. Bull.

London Math. Soc. 20, 255–261 (1988)
8. B. Bowditch, Intersection numbers and the hyperbolicity of the curve complex. J. Reine Angew.

Math. 598, 105–129 (2006)
9. B. Bowditch, Length bounds on curves arising from tight geodesics. Geom. Funct. Anal. 17,

1001–1042 (2007)
10. B. Bowditch, The ending lamination theorem, preprint (2011)

https://arxiv.org/abs/math/0405568


362 K. Ohshika and T. Soma

11. J. Brock, Iteration of mapping classes and limits of hyperbolic 3-manifolds. Invent. Math. 143,
523–570 (2001)

12. J. Brock, R. Canary, Y. Minsky, The classification of Kleinian surface groups, II: The Ending
Lamination Conjecture. Ann. of Math. 176(2), 1–149 (2012)

13. D. Calegari, D. Gabai, Shrinkwrapping and the taming of hyperbolic 3-manifolds. J. Am. Math.
Soc. 19, 385–446 (2006)

14. R. Canary, Ends of hyperbolic 3-manifolds. J. Am. Math. Soc. 6, 1–35 (1993)
15. R. Canary, D. Epstein, P. Green, Notes on notes of Thurston, in Fundamentals of Hyperbolic

Geometry: Selected Expositions. London Mathematical Society Lecture Note Series, vol. 328
(Cambridge University, Cambridge, 2006), pp. 1–115

16. D.B.A. Epstein, A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and
measured pleated surfaces, in Analytical and geometric aspects of hyperbolic space (Coven-
try/Durham, 1984). London Mathematical Society, Lecture Note Series, vol. 111 (Cambridge
University, Cambridge, 1987)

17. A. Fathi, F. Laudenbach, V. Poénaru, Travaux de Thurston sur les surfaces, in Astérisque
(Socity of Mathematical, France, 1979), pp. 66–67

18. M. Freedman, J. Hass, P. Scott, Least area incompressible surfaces in 3-manifolds. Invent.
Math. 71, 609–642 (1983)

19. U. Hamenstädt, Train tracks and the Gromov boundary of the complex of curves, in Spaces of
Kleinian groups. London Mathematical of Society, Lecture Note Series, vol, 329 (Cambridge
University, Cambridge, 2006), pp. 187–207

20. W. Harvey, Boundary structure of the modular group, in Riemann Surfaces and Related Topics:
Proceedings of the 1978 Stony Brook Conference (State University New York, Stony Brook,
1978), pp. 245–251. Annual of Mathematical Studies No. 97 (Princeton University, Princeton,
1981)

21. J. Hempel, 3-Manifolds. Annals of Mathematics Studies, No. 86 (Princeton University,
Princeton, 1976)

22. T. Jørgensen, A. Marden, Geometric and algebraic convergence of Kleinian groups. Math.
Scand. 66, 47–72 (1990)

23. M. Kapovich, Hyperbolic manifolds and discrete groups, in Progress in Mathematics Studies,
vol. 183 (Birkhäuser, New York, 2000)

24. S. Kerckhoff, W. Thurston, Non-continuity of the action of the modular group at Bers’
boundary of Teichmüller space. Invent. Math. 100, 25–47 (1990)

25. E. Klarreich, The boundary at infinity of the curve complex and the relative Teichmüller space,
preprint (1999)

26. C. Lecuire, Modèles et laminations terminales (d’après Minsky et Brock-Canary-Minsky),
Astérisque, vol. 361 (2014), pp. 299–323. Exp. No. 1068, ix

27. A. Marden, Outer Circles: An Introduction to Hyperbolic 3-manifolds (Cambridge University,
Cambridge, 2007)

28. A. Marden, Hyperbolic Manifolds: An Introduction in 2 and 3 Dimensions (Cambridge
University, Cambridge, 2016), xviii+515 pp.

29. H. Masur, Y. Minsky, Geometry of the complex of curves, I: Hyperbolicity. Invent. Math. 138,
103–149 (1999)

30. H. Masur, Y. Minsky, Geometry of the complex of curves, II: Hierarchical structure. Geom.
Funct. Anal. 10, 902–974 (2000)

31. K. Matsuzaki, M. Taniguchi, Hyperbolic Manifolds and Kleinian Groups (Oxford University,
Oxford, 1998)

32. C. McMullen, Renormalization and 3-manifolds Which Fiber over the Circle. Annals of
Mathematics Studies, vol. 142 (Princeton University, Princeton, 1996)

33. C. McMullen, Complex earthquakes and Teichmüller theory. J. Am. Math. Soc. 11, 283–320
(1998)

34. Y. Minsky, On rigidity, limit sets and end invariants of hyperbolic 3-manifolds. J. Am. Math.
Soc. 7, 539–588 (1994)



9 Geometry and Topology of Geometric Limits I 363

35. Y. Minsky, The classification of Kleinian surface groups I: models and bounds. Ann. of Math.
171, 1–107 (2010)

36. Mahan Mj, K. Ohshika, Discontinuous motions of limit sets, preprint. https://arxiv.org/abs/
1704.00269

37. J. Morgan, On Thurston’s uniformisation theorem for three-dimensional manifolds, in The
Smith Conjecture (Academic Press, New York, 1984), pp. 37–125

38. K. Ohshika, Geometric behaviour of Kleinian groups on boundaries for deformation spaces.
Quart. J. Math. Oxford 43(2), 97–111 (1992)

39. K. Ohshika, Geometrically finite Kleinian groups and parabolic elements. Proc. Edinburgh
Math. Soc. 41(2), 141–159 (1998)

40. K. Ohshika, Reduced Bers boundaries of Teichmüller spaces. Ann. Inst. Fourier 64, 145–176
(2014)

41. K. Ohshika, Geometric limits and their applications, in Handbook of Group Actions II
(International Press/Higher Education Press, 2015), pp. 245–270

42. K. Ohshika, Divergence, Exotic Convergence and Self-Bumping in Quasi-Fuchsian Spaces
(2018). https://arxiv.org/abs/1010.0070, to appear in Ann. Fac. Sci. Toulouse

43. K. Ohshika, T. Soma, Geometry and topology of geometric limits II, to appear in In the
tradition of Thurston : Geometry and groups ed. K. Ohshika, A. Papadopoulos, Springer Cham.

44. J.-P. Otal, Les géodésiques fermées d’une variété hyperbolique en tant que nœuds, in Kleinian
Groups and Hyperbolic 3-manifolds (Warwick 2001). London Mathematical Society Lecture
Note Series, vol. 299 (Cambridge University Press, Cambridge, 2003), pp. 95–104

45. J.-P. Otal, William P. Thurston: “Three-dimensional manifolds, Kleinian groups and hyperbolic
geometry”. Jahresber. Dtsch. Math.-Ver. 116, 3–20 (2014)

46. T. Soma, Geometric approach to ending lamination conjecture, preprint. https://arxiv.org/abs/
0801.4236

47. W. Thurston, The Geometry and Topology of 3-Manifolds. Lecture Notes (Princeton university,
Princeton, 1978). http://www.msri.org/publications/books/gt3m/

48. W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull.
Am. Math. Soc. 6, 357–381 (1982)

https://arxiv.org/abs/1704.00269
https://arxiv.org/abs/1704.00269
https://arxiv.org/abs/1010.0070
https://arxiv.org/abs/0801.4236
https://arxiv.org/abs/0801.4236
http://www.msri.org/publications/books/gt3m/


Chapter 10
Laminar Groups and 3-Manifolds

Hyungryul Baik and KyeongRo Kim

Abstract Thurston showed that the fundamental group of a closed atoroidal 3-
manifold admitting a co-oriented taut foliation acts faithfully on the circle by
orientation-preserving homeomorphisms. This action on the circle is called a
universal circle action, due to the rich information it carries. In this chapter, we first
review Thurston’s theory of universal circles and follow-up work of other authors.
We note that the universal circle action of a 3-manifold group always admits an
invariant lamination. A group acting on the circle with an invariant lamination is
called a laminar group. In the second half of the chapter, we discuss the theory
of laminar groups and prove some interesting properties of laminar groups under
various conditions.

Keywords Tits alternative · Laminations · Circle homeomorphisms · Fuchsian
groups · Fibered 3-manifolds · Pseudo-Anosov surface diffeomorphism

MSC Classes 20F65, 20H10, 37C85, 37E10, 57M60

10.1 Introduction

A few years before Perelman came up with his proof of the Poincaré conjecture
using the theory of Ricci flow [28, 29] (built upon the work of Hamilton [23]),
Thurston showed his vision to finish the geometrization program using foliations
in 3-manifolds in [31]. Although Thurston left the manuscript unfinished after
Perelman’s resolution of the geometrization conjecture, [31] contains abundant
beautiful ideas which are closely related to many interesting results by a number of
authors including Ghys [22], Calegari-Dunfield [11], Calegari [9], Fenley [16, 17],
Barbot-Fenley [5], Gabai-Kazez [20, 21], Mosher [26], and Frankel [19].
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One of the main themes of [31] is to combine a few approaches to 3-manifolds
which are proven to be successful and fruitful. In particular, a deep connection
between codimension-1 objects in 3-manifold and 3-manifold group actions on the
low-dimensional spaces has been investigated. One of the main theorems in this
chapter is the following.

Theorem 10.1.1 (Thurston’s Universal Circle for Co-orientable Taut Foliations
[31]) Let M be a closed atoroidal 3-manifold admitting a co-orientable taut folia-
tion F. Then there exists a faithful homomorphism ρuniv : π1(M) → Homeo+(S1).

A codimension-one foliation F of a manifold M is called taut if there exists a
closed embedded loop γ in M which is transverse to the leaves of F and intersects
every leaf of F at least once. In fact, the action in Thurston’s theorem is not just any
group action on the circle. Thurston called the circle obtained in the above theorem a
universal circle for the taut foliationF. Let us denote it by S1

univ . The name suggests
that ρuniv is not just an action but it “sees” the structure of the foliation. In fact, a
universal circle consists of following data:

(1) Let F̃ be the covering foliation on F in the universal cover M̃ of M . For each
leaf λ of F̃, there exists a circle S1∞(λ) so that the action of π1(M) on the leaves
extends continuously to the set of such circles.

(2) For each leaf λ of F̃, there exists a monotone map φλ : S1
univ → S1∞(λ),

i.e., a continuous surjection so that the preimage of each point in the range is
connected.

(3) For each α ∈ π1(M) and for each leaf λ, the following diagram commutes:

S1
univ S1

univ

S1∞(λ) S1∞(α(λ))

ρuniv(α)

φλ φα(λ)

α

(4) (comparability condition) For each leaf λ of F̃, the maximal connected intervals
in S1

univ which are mapped to points by φλ are called the gaps associated to λ

and the complement of the gaps is called the core associated to λ. For any two
incomparable leaves μ, λ, the core associated to μ is contained in a single gap
associated to λ and vice versa.

For the construction of the universal circle, we borrow material largely from
[11], so for the interested readers, please consult [11] for details. Here we recall
the main ingredients and rough ideas to see the big picture. As we will see in the
construction, there are some choices involved and as a result, a universal circle is
not unique. Perhaps coming up with a canonical way of obtaining a universal circle
via some universal property would be desirable.

Many results analogous to Theorem 10.1.1 have been obtained in the literature
under the presence of other codimension-1 objects or flows in the 3-manifold. For



10 Laminar Groups and 3-Manifolds 367

instance, Calegari obtained the result for 3-manifolds with quasi-geodesic flows [9],
and Calegari and Dunfield showed this result in the case of essential laminations
with solid torus guts [11]. Later Hamm in his PhD thesis [24] generalized Calegari-
Dunfield’s work to a more general class of essential laminations.

In Sects. 10.2–10.4, we briefly review these works. In Sect. 10.5, we observe
that in all those cases, the action on the circle comes with an invariant lamination.
This motivates the study of groups acting on the circle with invariant laminations
(and such groups are called laminar groups). In Sects. 10.6–10.11, we discuss some
recent and on-going work in the theory of laminar groups. We emphasize that by no
means the review of the material in the literature in Sects. 10.2–10.5 can serve as a
thorough survey for all related works.

10.2 S1-Bundle over the Leaf Space

Let F be a co-oriented taut foliation in a 3-manifold M . Let F̃ be the foliation on
the universal cover M̃ of M which covers F, and let L = L(F̃) be the leaf space of
this covering foliation. As a set, each point of L corresponds to a leaf of F̃. To give
a topology, we say that a sequence of leaves μi converges to a leaf μ∞ if for every
compact subset K of M̃, μi ∩K converges to μ∞ ∩K in the Hausdorff topology.

The leaf space L is a one-dimensional manifold in the sense that each point has
a neighborhood homeomorphic to R but L does not have to be Hausdorff. In fact,
the leaf space L is Hausdorff if and only if it is homeomorphic to R. In that case,
we say that F is an R-covered foliation.

In all other cases, L is not Hausdorff. The co-orientation ofF gives an orientation
on each embedded line segment of the leaf space. Therefore, it induces a partial
order on the leaf space L. For two leaves α, β of F̃, we say that α < β if there exist
an embedded closed interval in L whose endpoints are α, β, and it is an oriented
path from α to β with respect to the induced orientation. One caveat is that we need
to know that there exists no closed transversal to F̃. This will be shown later in this
section. F is R-covered if and only if the induced partial order on L is a total order.
In general, if F is not R-covered, there are incomparable leaves.

We say that F is branched in the forward direction (a.k.a. has one sided
branching in the positive direction [10]) if it is not R-covered and if for any two
leaves α, β of F̃ there exists a leaf γ of F̃ such that α > γ and β > γ . Similarly,
one can define a branching in the backward direction. In this chapter, when we think
of a non R-covered foliation, we only consider the case where F has two-sided
branching i.e., it is branched in both forward and backward direction for simplicity.
For what we discuss in this section, this assumption is not so relevant.

We would like to construct what can be called an S1-bundle over L(F̃) in some
sense. In other words, we would like to assign one copy of the circle to each leaf,
but where does it come from? To begin with, we recall the result of Candel.

In general, for a manifold M with dimension n ≥ 3, a two-dimensional
lamination is called a Riemann surface lamination if each leaf is a Riemann surface.
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More precisely, suppose that M admits an atlas with product charts φp : Up →
Bp × Kp where Bp is a domain in C, Kp a closed subspace of Rn−2, Up an open
subset of M , and φp a homeomorphism. We further assume that each coordinate
change has the form φp ◦ φ−1

q (b, k) = (ψ(b, k), ρ(k)) where ψ, ρ are continuous
functions and ψ is holomorphic in b. Such an atlas � is called a Riemann surface
lamination. We will focus on the case where M is a 3-manifold, and � is a surface
lamination in M . In fact, we assume M to be a closed hyperbolic 3-manifold
throughout the rest of the chapter, since the theory of universal circles was built
upon the assumption that the 3-manifold is closed and atoroidal (we know now it is
hyperbolic due to the geometrization theorem). Also, Bp is always taken to be the
unit disk D. Hence we consider the product charts Ui = D ×Ki .

Candel obtained a significant generalization of the classical uniformization
theorem for Riemann surfaces in the setting of Riemann surface laminations. In
particular, this provides a sufficient condition for (M,�) to admit a Riemannian
metric so that its restriction to � is a leaf-wise hyperbolic metric. We only recall the
main ideas. For details on Candel’s work, we refer the readers to [12] or [10].

The classical uniformization theorem says that if a closed Riemann surface has
negative Euler characteristic, then it admits a hyperbolic metric. To state a similar
result for laminations, we need to develop a notion which plays a role similar to the
Euler characteristic. To do this, we first need to discuss invariant transverse measures
on laminations. An invariant transverse measure μ for a lamination � is a collection
of nonnegative Borel measure on the leaf space of � in each product chart which is
compatible on the overlap of distinct charts.

Now when � is a Riemann surface lamination, the leafwise metric determines a
leafwise closed 2-form, say �. The product measure μ×� is a signed Borel measure
on the total space �. We call the total mass of this measure the Euler characteristic
χ(μ) of μ. As in the case of the classical uniformization theorem, the sign of the
Euler characteristic is important.

Note that if U = D × K is a product chart for �, then (μ × �)(U) =∫
K
(
∫
D×k

�)dμ(k). When � admits a leafwise hyperbolic metric, then
∫
D×k

� is
negative and μ is a nonnegative measure by definition, hence (μ×�)(U) is negative
for each product chart U . As a consequence, we have χ(μ) < 0. Candel proved that
the converse is also true.

Theorem 10.2.1 (Candel’s Uniformization Theorem [12]) Let � be a Riemann
surface lamination. Then � admits a leafwise hyperbolic metric if and only if
the Euler characteristic χ(μ) is negative for all nontrivial invariant transverse
measure μ.

While Candel’s theorem is not specifically about hyperbolic manifolds, we go
back to our own setting where M is a closed hyperbolic 3-manifold and F is a co-
orientable taut foliation. First, we observe that no leaf of F is the 2-sphere S2. This
follows from the Reeb stability theorem.
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Theorem 10.2.2 (Reeb Stability Theorem) Let F be a cooriented taut foliation
in a closed 3-manifold M . Suppose that F has a leaf homeomorphic to S2. Then M

is homeomorphic to S2 × S1 and F is the product foliation by spheres.

Sketch of the Proof Since π1(S
2) is trivial, the holonomy along any path on the

spherical leaf is trivial. Therefore, the spherical leaf has a neighborhood which is
foliated as a product. This shows that the set of spherical leaves form an open subset
of M .

Since M is compact, We know that if we have a sequence of closed leaves λi

which converge to a leaf λ, then λ is also closed. If all λi are spheres, then in a small
neighborhood of λ, the projection along the vertical direction in each product chart
defines a covering map from λi to λ for large enough i. Since F is co-oriented, λ
is also necessarily a sphere. Therefore, the set of spherical leaves forms a closed
subset of M . Since the set is both open and closed, it should be M itself. !�

Since M is assumed to be hyperbolic in our case, we do not have any spherical
leaf.

Also no leaf is a torus. Indeed, since M is atoroidal, if any leaf is a torus, then it
would bound a solid torus. One can foliate the solid torus where the boundary is also
a leaf, and it is called a Reeb component. First, one can foliate H = {(x, y, z) ∈
R

3 : z ≥ 0} by the horizontal planes {(x, y, z) : z = c}. Quotient H \ {(0, 0, 0)}
by the equivalence relation (x, y, z) ∼ (2x, 2y, 2x). In this case, one can easily see
that if a transversal in M travels from the complement of the Reeb component into
the Reeb component by passing through the boundary leaf of the Reeb component
(the torus leaf), it cannot escape from the Reeb component again. Hence, if F is a
taut foliation, it cannot have a Reeb component.

From this, one can conclude that each leaf of F is of hyperbolic type. Therefore,
the condition of Candel’s theorem is satisfied, and M admits a leafwise hyperbolic
metric.

By a work of Rosenberg [30] which is an important improvement of the seminal
work of Novikov [27], we know the followings about M and F:

(i) M is irreducible.
(ii) For each leaf α of F, the inclusion map α ↪−→ M induces an injective

homomorphism π1(α) → π1(M).
(iii) Every closed transversal to F is nontrivial in π1(M).

Here we immediately see that the leaf space L is a tree in the sense that there
is no cycle embedded in L. If there exists such a cycle, it corresponds to a closed
transversal to F̃, so it projects down to a closed transversal to F. Then it must
be nontrivial in π1(M) while it lifts to a loop in the universal cover of M , a
contradiction. We remark that the word tree is not used to mean a simplicial tree. It
is a simply connected (not necessarily Hausdorff) 1-manifold.

From this result, one can immediately deduce the following theorem.

Theorem 10.2.3 Let M,F be as above. Then every leaf of F̃ is a properly
embedded plane in M̃.



370 H. Baik and K. Kim

Sketch of a Proof First of all, every leaf of F̃ is simply connected. Let λ̃ be a leaf
of F̃, and γ a loop on λ̃. Note that λ̃ is a covering of some leaf λ of F.

Since M̃ is simply connected, γ is homotopically trivial in M̃, so it must
be homotopically trivial in M . On the other hand, by the theorem of Novikov–
Rosenberg above, λ is π1-injectively embedded in M . Thus, γ must be trivial
in λ. By the homotopy lifting property, this implies that the original loop γ is
homotopically trivial in λ̃. Since γ is arbitrary, this implies that λ̃ is simply
connected.

Now by the Reeb stability theorem, no leaf is a sphere. Hence all leaves of
F̃ must be planes. For a leaf λ̃ of F̃, if it is covered by product charts so that
in each chart, the intersection with λ̃ is connected (each connected component is
called a plaque), then it must be properly embedded. Therefore, if λ̃ is not properly
embedded, there exists a product chart where λ̃ intersects in at least two plaques. In
that case, one can make a closed loop in M̃ such that first, one can use the transversal
in that product chart to connect two points in different plaques of λ̃, and close it up
by a path contained in λ̃. Now this path in λ̃ is covered by finitely many product
charts, so one can tilt it to get a transversal which is very close to the original
path (see Fig. 10.1. In our case, the charts U1 and Un could coincide). Using this
technique, one gets a closed transversal γ̃ to F̃ which intersects λ̃. The transversal
gets mapped to a closed transversal γ in M and by Part (iii) of the Novikov–
Rosenberg theorem stated above, γ must be homotopically nontrivial. On the other
hand, since M̃ is simply connected, γ̃ is homotopically trivial, a contradiction. We
conclude that every leaf is properly embedded. !�

U1

U2

Un· · ·

Fig. 10.1 Consider the loop obtained by concatenating the blue arc which is contained in a leaf of
the foliation with the green arc which is assumed to be transverse to the foliation. The blue arc is
tilted to the red arc to make the whole loop transverse to the foliation. Note that one cannot draw
the green arc so that it intersects the chart Un from below, since this would contradict the fact that
the foliation is co-oriented
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Combining this result with Candel’s theorem, we find a metric on M so that each
leaf of F̃ equipped with the induced path metric is isometric to the hyperbolic plane
H2. For each leaf λ of F̃, since λ can be identified with H2 and the ideal boundary
of H2 is homeomorphic to the circle (called the circle at infinity), we get the circle at
infinity S1∞(λ) for λ. Now we define the circle bundle at infinityE∞ as the set of all
circles at infinity for the leaves of F̃. In other words, E∞ = ∪λ∈LS1∞(λ). E∞ can
be obtained from the “cylinders” over each transverse arc to F̃ by patching them
together appropriately. We explain what this means in the next section.

10.3 Leaf Pocket Theorem and the Special Sections

Now we have circles, one for each leaf of F̃. We need to combine them to make
one big mother circle which we will call a universal circle. This is done as follows:
in the previous section, we defined E∞ as a set, so we first give a description of its
topology. Second, we note that there are some special sections for the bundle E∞
which are preserved under the deck group action on M̃. Third, we observe that they
can be circularly ordered so that the deck group action is order-preserving. Finally,
taking an order completion of the set of special sections, we get a circle.

To do this, we need to understand both “tangential geometry” and “transverse
geometry” of F. For the tangential geometry, here is one useful lemma.

Lemma 10.3.1 There exists ε > 0 such that every leaf of F̃ is quasi-isometrically
embedded in its ε-neighborhood.

Proof For each point p in M , consider a product chart Up which is evenly covered
by the universal covering map so that one connected component of the preimage
of Up is a product chart where each leaf of F̃ intersects at most once. The last
condition can be satisfied for the reason explained in the proof of Theorem 10.2.3.

By compactness of M , there exist finitely many points p1, . . . , pn so that M is
covered by Up1 , . . . , Upn . For simplicity of the notation, we write Upi as Ui . Again
since M is compact, we can apply the Lebesgue number lemma to conclude that
there exists ε > 0 such that every ball of radius 2ε is contained in one of the product
charts Ui .

Now let λ be any leaf of F̃, and let N be the ε-neighborhood of λ. By our choice
of ε, lifts of the product charts Ui cover the entire N . Since these are lifts of finitely
many product charts, they have uniformly bounded geometry. This shows that λ is
quasi-isometrically embedded in N . !�

A positive number ε as in the above lemma is called a separation constant of F.
The transverse geometry of F is described in the so-called leaf pocket theorem.

To state the theorem, we first need to define the endpoint map. Let λ be a leaf of F̃,
and p a point in it. Then for any vector u in the unit tangent space UTpλ at p, let
e(u) be the endpoint in S1∞(λ) of the geodesic ray in λ determined by u. This defines
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a map, which again we call e, from the unit tangent bundle UT F̃ of F̃ to E∞. Now
we give E∞ the finest topology so that the map e : UT F̃→ E∞ is continuous.

Now we explain what we meant by “patching cylinders” in the last section. Let
τ be any transverse arc to F̃. Then UT F̃τ is literally a cylinder. If e(v1) = e(v2)

for v1 ∈ UT F̃τ1 and v2 ∈ UT F̃τ2 for two transverse arcs τ1, τ2, then we identify
v1 and v2. Hence E∞ is obtained from the disjoint union of cylinders of the form
UT F̃τ under these identifications.

Going back to the transverse geometry of the foliation, we call a map m : I ×
R≥0 → M̃ a marker if m({k} × R≥0) is a geodesic ray in a single leaf of F̃ for
each k ∈ I and m(I × {t}) is a transverse arc with length no greater than ε/3 for all
t ∈ R≥0 where ε is a separation constant for F.

Let p ∈ M̃ and λ be a leaf of F̃ containing p. Suppose there exists a marker m
such that p = m(k, 0) for some k ∈ I . This means that there exists a transversal
m(I×{0}) at p, the holonomy along the geodesic ray m({k}×R≥0) emanating from
p being defined for the whole time. Said differently, along this ray, nearby leaves
are not pulled away from the leaf λ too fast. The following theorem of Thurston
shows that for arbitrary p ∈ M̃ , there exist abundant directions with this property.
This describes the transverse geometry of F.

The original proof of the leaf pocket theorem given by Thurston in [31] uses the
existence of harmonic measures for foliations. An alternative, purely topological
proof is given by Calegari-Dunfield [11]. We omit the discussion of the proof here
and only briefly explain how this theorem is applied to get a set of cyclically ordered
set of sections.

Theorem 10.3.2 (Leaf Pocket Theorem [11, 31]) For every leaf λ of F̃, the set of
endpoints of markers is dense in S1∞(λ).

Abusing the notation, we also call the set of endpoints of a marker a marker. Let
C be a cylinder in E∞ i.e, C = ∪λ∈I S1∞(λ) where I is an interval in L. C is foliated
by circles at infinities for the leaves corresponding to points in I . The first thing to
observe is that any two markers contained in C are either disjoint or their union is
an interval transverse to the circle fibers in C.

This is actually a consequence of the tangential geometry of F (more precisely
the existence of a separation constant ε). Suppose that two markers m1,m2 intersect
at a point in S1∞(λ) but have distinct endpoints on S1∞(μ) for some leaves λ,μ ∈ I .
On λ, the geodesic rays of mi’s become arbitrarily close to each other, since they
have the same endpoints on the ideal boundary. Hence, by shortening the markers
horizontally (i.e., by restricting markers to [t,∞) for sufficiently large t), we may
assume that they are within ε/3-distance from each other on λ with respect to the
metric on M̃ . Since each marker is ε/3-thin, the geodesic rays of mi’s on μ are
within ε-distance from each other again with respect to the metric on M̃ . However,
those rays diverge on μ, hence with respect to the hyperbolic metric on μ, the rays
get arbitrarily far away from each other. This contradicts the fact that μ is quasi-
isometrically embedded in its ε-neighborhood.
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From this fact together with the leaf pocket theorem, we can start constructing
sections on C. First, pick a set T of finitely many markers on C so that each non-
boundary circle fiber of C intersects at least one marker at an interior point of the
marker, and the boundary circle fibers meet at least one marker at the endpoint.

To make our description simple, let us parametrize I (recall that C is a circle
bundle over an interval I in L) to be the closed interval [0, 1], and the leaf
corresponding to point t ∈ [0, 1] is denoted by λt . Let p ∈ S1∞(λt ) ⊂ C for some
t . We can choose a “left-most” path through p with respect to T in the following
way: On S1∞(λt ), we start from p and move anti-clockwise until we hit a marker.
At the marker, follow the marker upward (increasing the parameter t) until the end
of the marker. At the end, move anti-clockwise as much as you can until you hits
another marker. Follow the marker upward. In this way we construct a path from p

to S1∞(λ1).
Let us call this path γp,T . Now make the set T bigger by adding more markers

on C to get a new set T ′ of markers. If new markers do not intersect the path γp,T ,
there is nothing to do in the sense that γp,T = γp,T ′ . Hence let us assume that
a new marker m intersects the path γp,T . This means that at some t , γp,T moves
horizontally on S1∞(λt ) but the marker m crosses it vertically. Hence, when we
construct the path with respect to the set T ∪ {m} of markers, our path should stop
at m ∩ S1∞(λt ) and follow m upward, and then move horizontally anti-clockwise
again until hitting other markers in the set. Then one can observe that the path γp,T ′
is slightly perturbed to the right compared to γp,T . To make this more precise, one
can unwrap the circle fibered of C to the real line R to get a simply-connected cover
of C which is now foliated by horizontal lines. Here we see this cover so that on
each line fiber, moving to the left corresponds to moving anti-clockwise on a circle
fiber on C. Then clearly the new path γp,T ′ is on the right compared to γp,T (here
one should fix a lift p̃ of p and consider the lifts of the paths passing through p̃).
An important point is that they cannot cross each other, although they are likely to
coalesce.

Now for any two paths γ and δ on C, we say γ ≤ δ if the lift of δ through p̃ is
on the right side to the lift of γ through p̃ in the universal cover of C. This gives a
partial ordering on the set of paths on C. For any two sets of markers T ⊂ T ′, we
get γp,T ≤ γp,T ′ . Now we define a section τp : I → C by τp(ν) = sup{minγp,T ∩
S1∞(ν) : T is a set of markers}. Here the minimum means the projection of the left-
most point in the universal cover of C, and the supremum exists because the lifts
of paths γp,T to the cover of C through p̃ are bounded from above by the vertical
line through p̃. This new path τp is continuous since the set of markers meets each
circle fiber at a dense subset. Consequently, we get a continuous section τp of the
circle-bundle C over I and call it a left-most section starting from p.

Starting from p, one can also move downward in the leaf space L. In this case,
instead of using the left-most paths, we take right-most paths by moving clockwise
on each circle fiber and following markers downward. This is called a right-most
section starting from p. Hence, for each embedded line A in L, one can get a section
τp of the bundle E∞|A over A by taking a left-most section when we move upward
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from p along A, and taking a right-most section when we move downward from p

along A. But we would like to extend τp as a section for the bundle E∞ → L.
Before we proceed, we need one definition. Consider a sequence (μi) of leaves

of F̃ which are contained in a single totally ordered segment of L and increasing
with respect to that order. We call such a sequence monotone ordered. Suppose
there exists a collection of leaves {λj } of F̃ such that μi converges on compact
subsets of M̃ in the Hausdorff topology to the union of leaves λ, then we call the
collection {λj } together with the monotone ordered sequence (μi) a cataclysm. Here
the convergence means that for any compact subset K of M , μi ∩ K converges to
(∪jλj ) ∩ K in the Hausdorff topology. In fact, it is more appropriate to consider
the cataclysms up to some natural equivalence relation because the sequence (μi)

is not an essential part of the data. So as long as we have two monotone ordered
sequences contained in a single totally ordered segment of L which converge to the
same collection of leaves {λj }, we say that those two cataclysms are equivalent.
Abusing the notation, we will just call the collection {λj } a cataclysm.

For the purpose of visualization, see Fig. 10.2 for one lower-dimensional exam-
ple. On the left-hand side of the figure, what is drawn is a foliation of R2 which
is divided into three parts by two red vertical lines. The left-most part and right-
most part, they are foliated by black vertical lines, and in the middle region, it is
foliated by blue curves where each end of each blue curve is asymptotic to one
of the red lines. On the right-hand side of the figure, its leaf space is drawn. By
construction, the leaf space is not Hausdorff. Here the red leaves form a cataclysm,
and a monotone ordered sequence can be taken to be a sequence of blue leaves.

Let λ be a leaf so that p ∈ S1∞(λ) and let μ be any other leaf in L. There exists a
unique broken path from λ in μ which is obtained in the following way: first collapse
each cataclysm to a point in L to get an actual tree Y , take the unique path from λ

to μ in Y , and pull it back to L. This broken path is a union of embedded intervals
in L with occasional jumps between two leaves in the same cataclysm. Say, in this
broken path, τp comes down to λ1 and it jumps to λ2 which is in the same cataclysm

Fig. 10.2 A two-dimensional example of a foliation and its leaf space
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with λ1 and then move upward from there. Say μi is a monotone ordered sequence
converging to λ1 and λ2.

Suppose I1, I2 are two intervals in L such that they coincide in an half-open
interval I and differ at only one vertex, μi are in I , and Ij = I ∪ {λj } for j = 1, 2.
For each j ∈ {1, 2}, let mj,m

′
j be any two markers so that they have one endpoint

on S1∞(λj ) and the rest lie in the circle-bundle C over I . For later use, let us call
the circle-bundle over Ij , say Cj , for each j . First note that m1 and m2 are disjoint
on C. Otherwise, since they are ε/3-thin, again we get a contradiction to the fact
that ε is a separation constant for F. Also, for each μi which intersects all the
markers m1,m

′
1,m2,m

′
2, the pairs (m1,m

′
1) and (m2,m

′
2) are unlinked in the circle

S1∞(μi). Here we say that two pairs (a, b) and (c, d) of points of the circle are
unlinked if both a, b are contained in the closure of a single connected component
of S1 \ {c, d}. If they are linked, since λ1 gets close to μi near the pair (m1,m

′
1)

and λ2 gets close to μi near the pair (m2,m
′
2), either λ1 and λ2 are comparable

in L or they must intersect. We know that λ1 and λ2 are incomparable, so this is
impossible. Consequently, one can take disjoint arcs J1, J2 of S1∞(μi) so that the
set of endpoints of the markers in Cj on S1∞(μi) are completely contained in Jj .

Let S1
λ1λ2

be the circle obtained from S1∞(μi) by collapsing each connected
component of the complement of the closure of the set of intersections with the
markers through either λ1 or λ2. Naturally for each j , there exists a monotone map
φj : S1

λ1λ2
→ S1∞(λj ). For instance, φ1 collapses the arc obtained from the image

of the closure of the set of intersections with the markers through λ2 under the
monotone map S1∞(μi) → S1

λ1λ2
, and similarly for φ2. Then the preimage of τp(λ1)

under φ1 gets mapped to a single point in S1∞(λ2) via φ2. Let this point be τp(λ2).
We continue by constructing a left-most section starting at τp(λ2). This procedure
allows us to construct τp along the broken path from λ to μ, therefore we get a
well-defined value τp(μ). We call a section for E∞ → L a special section if it is τp
for some p ∈ E∞ and constructed as above.

Let S be the set of all special sections. First of all, they are built upon the
set of markers which is preserved under the π1(M)-action, since the markers are
constructed using the geometry of the foliation. One can also check easily that S
admits a natural cyclic order. For a triple (τp1, τp2 , τp3), there must exist μ ∈ L so
that τp1(μ), τp2(μ), τp3(μ) are distinct. Hence they inherit a cyclic order from the
orientation on S1∞(μ). Clearly this cyclic order is preserved by the π1(M)-action,
since the cyclic order on each cataclysm is determined by the geometry of the
foliation as well. Of course we put many details under the rug. For the full detail
of the proof, see Section 6 of [11].

By taking the completion of the set of special sections of E∞ as an ordered set,
one gets a circle S1

univ where π1(M) acts by order-preserving homeomorphisms.
Recall the definition of a universal circle given as a set of data in the introduction.

We also need a monotone map φλ : S1
univ → S1∞(λ) for each leaf λ of F̃. For a

point p on S1
univ corresponding to a special section, φλ(p) is just the evaluation

of the section at λ. From the construction, it is clear that φλ is monotone, and
commutativity of the diagram in the definition of the universal circle holds. Also, for
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incomparable leaves λ1, λ2, since the core of φλ1 is the closure of the points in S1
univ

corresponding to the special sections through a point on S1∞(λ1) and since they are
entirely collapsed to a single point in S1∞(λ2) (recall the part where we constructed
the circle S1

λ1λ2
above), the core of φλ1 must be contained in a gap of φλ2 . This is

actually contained in a single gap because the fact that the markers through S1∞(λ1)

are unlinked with the markers through S1∞(λ2) implies that the same fact holds for
special sections.

One last thing to check is that the action on S1
univ is faithful. In the case of R-

covered foliations, one can find a transverse pseudo-Anosov flow, and in that case
the faithfulness can be verified using the ideas in [7]. See also Sect. 10.4 to see the
detail of the pseudo-Anosov flow case. Hence we consider only the case that F has
branching. Let H be the kernel of the action ρuniv : π1(M) → HomeoS1

univ .
Suppose H is nontrivial. Let h be any nontrivial element of H and let λ be any

leaf of F̃. We have the following commutative diagram:

S1
univ S1

univ

S1∞(λ) S1∞(h(λ))

ρuniv(h)

φλ φh(λ)

h

Since h acts trivially on the universal circle, the top map ρuniv(h) is the identity
map.

If h(λ) = λ, then by the above diagram, we know that h acts trivially on S1∞(λ).
This implies that h acts on λ as the identity but this is impossible since h is a
nontrivial element of π1(M). Hence h(λ) is different from λ.

Second, we observe that λ and h(λ) are comparable. Indeed, suppose they are
incomparable. By the commutativity of the above diagram, any gap associated with
λ is contained in a gap associated with h(λ), but also the core associated with λ is
contained in a single gap associated with h(λ), a contradiction. Therefore, the leaves
λ and h(λ) are comparable.

Let λ,μ be two distinct leaves contained in the same cataclysm in L. From above
discussion, Hλ is an infinite set contained in a line X of L, and similarly, Hμ is
an infinite set contained in a line Y of L. For each h ∈ H , h(λ) and h(μ) are
two distinct leaves contained in the same cataclysm. This shows that there exists
infinitely many pairs of points (x, y) ∈ X×Y such that x and y are contained in the
same cataclysm. But this is impossible for two lines in L, since there cannot be a
nontrivial cycle in L. This is a contradiction, so we conclude that H must be trivial,
i.e., the π1(M)-action on S1

univ is faithful.
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10.4 The Case of Quasi-Geodesic and Pseudo-Anosov Flows

Let F be a flow on the closed hyperbolic 3-manifold M . As we lifted a taut foliation
in the 3-manifold to the covering foliation of the universal cover, we can consider
the lifted flow F̃ in the universal cover of M . We say that F is a quasi-geodesic flow
if each flow line of F̃ is a quasi-geodesic in M̃ which can be identified with the
hyperbolic 3-space H

3.
Pseudo-Anosov flows form another important class of flows in 3-manifolds. A

flow F is pseudo-Anosov if it locally looks like a branched covering of an Anosov
flow.

These two notions are closely related. First, Steven Frankel [18] announced the
resolution of Calegari’s flow conjecture which says that any quasi-geodesic flow
on a closed hyperbolic 3-manifold can be deformed to a flow that is both quasi-
geodesic and pseudo-Anosov. On the other hand, not every pseudo-Anosov flow is
quasi-geodesic. Fenley [14] constructed a large class of Anosov flows in hyperbolic
3-manifolds which are not quasi-geodesic. Later he gave a necessary and sufficient
condition for a pseudo-Anosov flow to be quasi-geodesic in [17]. These are optimal
results.

Calegari [9] showed that if M admits a quasi-geodesic flow, then π1(M) acts
faithfully on the circle where the circle is the boundary of the group-equivariant
compactification of the space of flow lines of the covering flow F̃. In some sense,
the work of Ghys in [22] is a prototype of the result of Calegari. Roughly speaking,
Ghys proved that the leaf space of the weak stable foliation of an Anosov flow on a
circle bundle is a line, and established a map from the leaf space into the circle.

On the other hand, Calegari-Dunfield [11] showed the same result in the case
M admits a pseudo-Anosov flow. Hence, modulo Frankel’s upcoming paper, the
construction of the action on the circle for quasi-geodesic flows can be reduced
to the one for pseudo-Anosov flows. In this section, we will review the work of
Calegari-Dunfield for the 3-manifolds admitting a pseudo-Anosov flow.

As shown in the seminal paper of Cannon and Thurston [13], the suspension
flow of hyperbolic mapping tori can be chosen to be both quasi-geodesic and
pseudo-Anosov. They used this to show that lifts of surface fibers of a fibered
hyperbolic 3-manifold extend continuously to the ideal boundary of M̃ (therefore
their boundaries give group-equivariant surjections from S1 to S2, which are
commonly called Cannon–Thurston maps). This was later generalized by Fenley
[16]. Hence, it might be instructive to consider the suspension flows when we think
of a pseudo-Anosov flow. In the case of a suspension flow for a hyperbolic mapping
torus M , one can consider the suspension of stable and unstable singular measured
foliations on the surface for the monodromy to obtain two-dimensional stable and
unstable singular foliations in M . Analogously, in the case of a general pseudo-
Anosov flow, M has two-dimensional stable and unstable singular foliations.

Let Fu be the unstable foliation in M for a pseudo-Anosov flow F. Fu can be
split open to a lamination �. � can be obtained from Fu by first removing the
singular leaves, and for each singular leaf removed, we insert a finite-sided ideal
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polygon bundle over the circle so that the leaves of � are precisely the nonsingular
leaves of Fu together with one leaf for every face of a singular leaf of Fu. Just like
in the case of the taut foliations, one can consider the lifted lamination �̃ in M̃ and
the leaf space L of �̃. One caution here is that a vertex in L is either a non-boundary
leaf or a closed complementary region of �̃. Since a complementary region comes
from a singular leaf, it is natural to identify the whole thing as a single point in the
space of leaves.

At a point in L, it does not locally look like an open interval of the real line, but
instead each point of L has a neighborhood which is totally orderable, and between
any two points, there exists a unique path which is a concatenation of such orderable
segments. This structure is called an order tree.

One of the key statements in [11] is the following:

Theorem 10.4.1 (Calegari-Dunfield [11]) Let M be a closed hyperbolic 3-
manifold. If M admits a very full lamination with orderable cataclysms, then
π1(M) acts faithfully on the circle by orientation-preserving homeomorphisms.

Sketch of the Proof We remark that Calegari-Dunfield showed a stronger result
by weakening the assumption that the lamination is very full. They allowed the
complementary regions of the lamination to be so-called solid torus guts, and in that
case, it is shown that one can fill in the lamination with additional leaves to get a
very full lamination while preserving many nice properties.

As we explained above, the laminations we obtain from pseudo-Anosov flows
(including the stable and unstable laminations in the hyperbolic mapping tori)
are very full which means that each complementary region is a finite-sided ideal
polygon bundle over the circle. To see how this condition is used, we first fix
orientations on the core curves of the complementary regions of �. This determines
a natural cyclic order on the faces of each cataclysm, hence gives a natural cyclic
order on the set of segments sharing exactly one vertex. This order is π1(M)-
invariant by construction.

The second condition of having orderable cataclysms means that there exists
an ordering on each cataclysm which is invariant under the action of the stabilizer
of the cataclysm in π1(M). A set of segments of L which differ only by a single
vertex correspond to a cataclysm, so they also have natural ordering which is π1(M)-
invariant by definition of orderable cataclysms.

In summary, a set of segments of L which share exactly one vertex are cyclically
ordered and a set of segments of L which differ only at a vertex are linearly ordered.
Furthermore, these orderings are π1(M)-invariant. From this data, one can realize
L as a “planar order tree”. There are three types of points in L: first a cataclysm
point, i.e., a point corresponding to a leaf in a cataclysm, second a singular point
which corresponds to a closed complementary region, and finally an ordinary point
which belongs to none of the previous two cases. Let p be an arbitrary point in L. To
be concrete, let us assume p is an ordinary point. Draw the point p as an arbitrary
point in R

2, maybe the origin, and let I be the orderable segment containing p

where endpoints are either cataclysm points or singular points but any other points
are ordinary points. If an endpoint is singular, one can draw the incident segments
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so that the cyclic order on them matches with the cyclic order on their realization
inherited from the plane. If an endpoint is a cataclysm point, again one can draw the
other segments “incident” at the cataclysm with respect to the linear order on them.
Continuing this process, we can realize L as an order tree on the plane.

Let e1, e2, e3 be three distinct ends of L. Pick a point p in L and let ri be the
ray from p to ei for i = 1, 2, 3. Since e1, e2, e3 are all distinct, the ri ’s must get
separated at some point, and form a subtree of L. Based on our realization of L on
R2, the rays ri are naturally cyclically ordered, which gives a cyclic ordering on the
triple (e1, e2, e3). Note that the ordering on the triple (e1, e2, e3) does not depend
on the choice of p.

This defines a cyclic ordering on the set E of ends of L, and by construction,
it is π1(M)-invariant. Hence we obtained a cyclically ordered set E where π1(M)

acts by order-preserving maps. E is equipped with the topology determined by its
order: for e ∈ E, the sets {x ∈ E \ {a, b}|(b, x, a) is positively oriented} for some
a, b ∈ E where (a, e, b) is positively oriented form a basis for the topology on E.
Then there exists a unique continuous order-preserving embedding of E into S1 up
to homeomorphisms. By collapsing each connected component of the complement
of the closure of the image of E, we get a circle where π1(M) acts by orientation-
preserving homeomorphisms. Here the circle is obtained as the order-completion of
E, and we will denote it as E.

Suppose a nontrivial element α of π1(M) acts trivially on this circle. For
each complementary region of �̃, let p be the vertex of L corresponding to the
complementary region. Consider all infinite rays in L starting at p; this defines
a subset of E. The fact that α fixes this set implies that α actually fixes p. In
other words, when we consider the action of α on M̃, it preserves the given
complementary region. Hence, all complementary regions are preserved by α. Each
complementary region of �̃ is a Z-cover of a complementary region of �. Hence if α
preserves a complementary region of �̃, then it admits an invariant quasi-geodesic.
If α preserves another complementary region,α would admit another quasi-geodesic
axis who endpoints are disjoint from the one we already had, a contradiction. We
have shown that the π1(M)-action on the circle constructed above is faithful. !�

To apply the above theorem to our case, it remains to see that our lamination
� has orderable cataclysms. This observation is due to Fenley [15]. Note that each
leaf of �̃ is foliated by the flow lines of F̃u contained in that leaf. Whenever we talk
about the foliation on a leaf, we refer to this foliation coming from F̃u. Let {λj } be
(an equivalence class of) a cataclysm and let (μi) be a monotone ordered sequence
of nonsingular leaves of �̃ converging to {λj } on compact subsets of M̃ . For each
j , choose a sequence of points pij ∈ μi so that pij converges to a point qj in λj as
i tends to ∞.

Candel’s theorem again applies here: M admits a metric so that each μi is
isometric to H2. Then the foliation on μi from �̃ is a foliation by bi-infinite
geodesics which all share one endpoint (this is an unstable lamination so the flow
lines are oriented so that they flow from this common endpoint). Hence the leaf
space of the foliation on each μi is R, hence naturally totally ordered. The set {pij }
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of points on μi has a natural order on the indices j with respect to this order. For
each j , we can take a small product chart Uj around qj . For all large enough i, the
plaque Pj obtained as the intersection Uj ∩ μi contains pij and Pj converges to
Uj ∩ λj as foliated disks. Hence, the order relation between pij and pij ′ remains
the same for all sufficiently large i. Hence, this gives an ordering on the set {qj }
which can be used as an ordering on the cataclysm {λj }. Since the flow lines of F̃u

are preserved under the π1(M)-action, our ordering on the cataclysm is invariant
under the action of its stabilizer in π1(M). Hence, the unstable lamination for a
pseudo-Anosov flow has orderable cataclysms so the above theorem applies. We
finally obtain

Theorem 10.4.2 (Calegari-Dunfield [11]) Let M be a closed hyperbolic 3-
manifold which admits a pseudo-Anosov flow. Then π1(M) acts faithfully on the
circle by orientation-preserving homeomorphisms.

10.5 Invariant Laminations for the Universal Circles
and Laminar Groups

A lamination � on S1 is defined to be a closed subset of the set of all unordered pairs
of two distinct points of S1 so that any two elements are unlinked. Recall that two
pairs (a, b) and (c, d) of points of the circle are unlinked if both a, b are contained
in the closure of a single connected component of S1 \ {c, d}. Note that if a = c and
b �= d , the pairs (a, b) and (c, d) are still unlinked according to our definition.

One can visualize � by identifying the circle with the ideal boundary of H2 and
then realizing each element as the endpoints of a bi-infinite geodesic. We call this
geodesic lamination a geometric realization of �. Since the geometric realization is
unique up to isotopy, we will freely go back and forth between a lamination on the
circle and its geometric realization to discuss its properties.

We first consider the case that M is a closed hyperbolic 3-manifold and F is a co-
orientable taut foliation with a branching. In Sect. 10.3, we saw that there exists a set
of special sections which has a π1(M)-invariant cyclic order and it can be completed
to get a universal circle S1

univ where π1(M) acts faithfully by orientation-preserving
homeomorphisms.

Now we see that this action preserves laminations. We will construct a lamination
�+ assuming the leaf space L is branched in the forward direction. In the case L has
a branching in the backward direction, one can construct another lamination �− in
a completely analogous way. For each leaf λ in L, let L+(λ) denote the connected
component of L \ {λ} containing at least one leaf μ with μ > λ. For a subset X

of L, we say core(X) is the union of the cores associated with the leaves in X. Let
�(core(X)) be the boundary of the convex hull of the closure of core(X) in H2.
Finally, define �+(λ) to be �(core(L+(λ))), and �+ to be the closure of the union
∪λ∈L�+(λ). Note that �+ is completely determined by the structure of L.
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To see that this is indeed a lamination, we need to show that for λ,μ ∈ L, no
leaf of �+(λ) is linked with a leaf of �+(μ). This is easy to see when λ,μ are
comparable, since one of �+(λ) and �+(μ) is contained in the other. When they
are incomparable, there are two cases. One case is that λ /∈ �+(μ) and μ /∈ �+(λ).
In this case, �+(μ) and �+(λ) are disjoint, so this is again straightforward. Finally,
let us assume that λ ∈ �+(μ) and μ ∈ �+(λ). In this case, �+(λ) ∪�+(μ) = L.
Hence core(L) = core(�+(λ)) ∪ core(�+(μ)), so the boundaries of the convex
hulls do not cross in H2.

Up to here, we did not really need to assume that L is branched in the forward
direction. To see �+ is nonempty, we need this assumption. From the assumption
that L has a branching in the forward direction, there exist leaves μ, λ so that λ /∈
�+(μ) and μ /∈ �+(λ). As we noted above, �+(μ) and �+(λ) are disjoint, so
their cores are unlinked. In particular, core(�+(λ)) is not dense in S1

univ , which is
sufficient to conclude that �+ is nonempty.

Now we get an invariant lamination for the universal circle action for the pseudo-
Anosov flow. Let us consider the setup of Sect. 10.4. Let p1, . . . , pk be points in
L corresponding to a set of representative of orbits of cataclysm points under the
π1(M)-action. Say each pi corresponds to a complementary region which is an
ideal ni -gon bundle over the circle. Then L \ {pi} consists of ni subtrees of L.
Choose q1, . . . , qni on E which separate the ends of distinct subtrees of L \ {pi}.
We may assume that the ni-tuple (q1, . . . , qni ) is positively oriented with respect to
the cyclic order on E. Then we consider the pairs (qj , qj+1) for each j = 1, . . . , ni

mod ni + 1. We do this for each pi and take the union of π1(M)-orbits of all those
pairs, and call it �. This process can be done so that elements of � are pairwise
unlinked. By taking a closure of � in the space of unordered pairs of points of E,
we get a π1(M)-invariant lamination.

In summary,

Theorem 10.5.1 Let M be a closed hyperbolic 3-manifold with either a taut folia-
tion, a quasi-geodesic flow or a pseudo-Anosov flow. Then π1(M) acts faithfully on
the circle by orientation-preserving homeomorphisms with an invariant lamination.

From this result, it is natural to ask if a group acting faithfully on the circle
by orientation-preserving homeomorphisms with invariant laminations has any
interesting property. We call such a group a laminar group.

One might first wonder whether there are some natural examples of laminar
groups other than the 3-manifold groups we have seen. In fact, all surface groups
are laminar groups. Let Sg be a closed connected orientable surface of genus g ≥ 2,
and fix a hyperbolic metric on Sg . The deck group action of π1(Sg) on H

2 extends
to an action on ∂∞H

2 by homeomorphisms. In this case, any geodesic lamination
on Sg defines a lamination on ∂∞H

2 which is π1(Sg)-invariant. In this case, one can
easily construct infinitely many invariant laminations with a lot of structures.

A lamination � on S1 is called very full if when it is realized as a geodesic
lamination on H

2 via an arbitrary identification of S1 with ∂∞H
2, all the com-

plementary regions are finite-sided ideal polygons. For later use, let us call this
geodesic lamination on H

2 a geometric realization of �. In the case of π1(Sg), there
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are infinitely many very full invariant laminations on ∂∞H
2. One way to get a very

full lamination is to start with a pants-decomposition by simple closed geodesics
and then decompose each pair of pants into two ideal triangles by three bi-infinite
geodesics which spiral toward boundary components. Then all complementary
regions of the resulting lamination are ideal triangles. Since there are infinitely many
different pants-decompositions, we get infinitely many different very full invariant
laminations. In fact, this argument can be easily generalized to any (complete)
hyperbolic surface except the three-punctured sphere, even the ones with infinite
area.

In [3], the first author showed that this is actually the characterizing property
for hyperbolic surface groups. In fact, we only need three invariant laminations
instead of infinitely many invariant laminations. Roughly speaking, a group acting
faithfully on the circle acts like a hyperbolic surface group if and only if it admits
three different very full invariant laminations. Via an arbitrary identification of S1

with ∂∞H
2, we always identify PSL2(R) with a subgroup of Homeo+ S1. A precise

version of this theorem is the following:

Theorem 10.5.2 (Baik [3]) Let G < Homeo+ S1 be a torsion-free discrete
subgroup. Then the followings are equivalent:

• G is conjugated into PSL2(R) by an element of Homeo+ S1 so that H2/G is not
a three-punctured sphere.

• G admits three very full invariant laminations �1,�2,�3 where a point p of S1

is a common endpoint of leaves from �i and �j for i �= j if and only if it is a
cusp point of G (i.e., a fixed point of a parabolic element).

One can deduce the following simplified version immediately from the above
theorem.

Corollary 10.5.3 (Characterization of Cusp-Free Hyperbolic Surface Groups)
Let G < Homeo+ S1 be a torsion-free discrete subgroup. Then G is conjugate into
PSL2(R) by an element of Homeo+ S1 so that H2/G has no cusps if and only if G
admits three very full invariant laminations �1,�2,�3 so that leaves from �i and
�j with i �= j do not share an endpoint.

The proof is pretty long so we do not try to recall it here, but we would like to
talk about some key ingredients. One very important observation on the very full
lamination � is that each point p in S1 which is not an endpoint of any leaf of �

has a nested sequence of neighborhoods (Ij ) so that Ij shrinks to p and for each j

there exists a leaf �j of � whose endpoints are precisely the endpoints of Ij . Such
a sequence of leaves (�j ) is called a rainbow at p. In short,

Lemma 10.5.4 (Baik [3]) Let � be a very full lamination on S1. For each p ∈ S1,
either there exists a leaf of � which has p as an endpoint, or there exists a rainbow
at p.

Another key ingredient is actually a big hammer called convergence group
theorem. Let G be a group acting on a compactum X. We say that the G-action is a
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convergence group action if the induced diagonal action of G on X ×X × X − �

where � is the big diagonal is properly discontinuous.

Theorem 10.5.5 (Convergence Group Theorem (Gabai), (Casson–Jungreis),
(Tukia), (Hinkkanen), . . . .) Suppose a group G acts on S1 as a convergence
group. Then G is conjugate into PSL2(R).

Due to this remarkable theorem, one only needs to check that if G admits three
very full laminations, then G acts on S1 as a convergence group. Suppose not. By
definition, this means that there exist a sequence ((xi, yi, zi )) of three distinct points
in S1 and a sequence (gi) of elements of G such that (xi, yi , zi) → (x∞, y∞, z∞)

and (gixi, giyi, gizi ) → (x ′∞, y ′∞, z′∞) where (x∞, y∞, z∞) and (x ′∞, y ′∞, z′∞) are
triples of distinct points in S1. One can then check that for various possibilities for
x∞, y∞, z∞, x ′∞, y ′∞, z′∞ which are either an endpoint of leaves or having rainbows
in each �i , each case cannot happen by finding a leaf which is forced to be mapped
to a pair which is linked to the given leaf. For details, consult [3].

10.6 Basic Notions and Notation to Study the Group Action
on the Circle

So far we have provided a brief review of previously known results. Starting from
this section, we now move toward some recent results on this topic. First we need to
set up the notation.

Let S1 be the multiplicative topological subgroup of C defined as

S1 = {z ∈ C : |z| = 1}.

So far we have used the term cyclic order, but from now on, we will call it a circular
order, since it is more suitable for the context. To give more precise definitions, let
us consider the stereographic projection p : S1 \ {1} → R defined as

p(z) = Im(z)

Re(z)− 1
.

Obviously, p is a homeomorphism with respect to the standard topologies. For our
convenience, we define the degenerate set �n(G) of a set G to be the set

�n(G) = {(g1, · · · , gn) ∈ Gn : gi = gj f or some i �= j }

of all n-tuples with some repeated elements.

Definition 10.6.1 For n ≥ 3, an element (x1, · · · , xn) in (S1)n − �n(S
1) is a

positively oriented n-tuple on S1 if for each i ∈ {2, · · · , n − 1}, p(x−1
1 xi) <

p(x−1
1 xi+1). An element (x1, · · · , xn) in (S1)n − �n(S

1) is a negatively oriented
n-tuple on S1 if for each i ∈ {2, · · · , n− 1}, p(x−1

1 xi+1) < p(x−1
1 xi).
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We use the definition of circular order in the following form.

Definition 10.6.2 A circular order on a set G is a map ϕ : G3 → {−1, 0, 1} ⊆ Z

with the following properties:

(DV) ϕ kills precisely the degenerate set, i.e.

ϕ−1(0) = �3(G).

(C) ϕ is a 2-cocycle, i.e.

ϕ(g1, g2, g3)− ϕ(g0, g2, g3)+ ϕ(g0, g1, g3)− ϕ(g0, g1, g2) = 0

for all g0, g1, g2, g3 ∈ G.

Furthermore, if G is a group, then a left-invariant circular order on G is a circular
order on G as set that also satisfies the homogeneity property:

(H) ϕ is homogeneous, i.e.

ϕ(g0, g1, g2) = ϕ(hg0, hg1, hg2)

for all h ∈ G and (g0, g1, g2) ∈ G3.

By abuse of language, we will refer to a “left-invariant circular order of a group”
simply as a “circular order.” To learn about invariant circular orders of groups, see
[4].

Let us define a circular order ϕ on the multiplicative group S1 in the following
way. For p ∈ �3(S

1), ϕ(p) = 0. For p ∈ (S1)3 − �3(S
1), we assign ϕ(p) = 1 if

p is positively oriented in S1, and ϕ(p) = −1 if p is negatively oriented in S1. We
can easily check that ϕ is a circular order of the group S1.

We also set up terminologies for intervals in S1. The reason is that in the rest of
the chapter, we will reformulate laminations on S1 as sets of intervals with certain
conditions. Using this new perspective, we will give a detailed discussion of laminar
groups. First, we call a nonempty proper connected open subset of S1 an open
interval in S1. Technically, we distinguish the following two cases.

Definition 10.6.3 Let u, v be two elements of S1.

(1) If u �= v, (u, v)S1 is the set

(u, v)S1 = {p ∈ S1 : ϕ(u, p, v) = 1}.

We call it a nondegenerate open interval in S1.
(2) If u = v, (u, v)S1 is the set

(u, v)S1 = S1 − {u}.

We call it a degenerate open interval in S1.
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If (u, v)S1 is a nondegenerate open interval, then we denote (v, u)S1 by (u, v)∗
S1 ,

and call it the dual interval of (u, v)S1 .

We can check that the set of nondegenerate open intervals of S1 is a base for the
topology of S1 which is induced from the standard topology of C. For convenience,
we also use the following notation. Let (u, v)S1 be a nondegenerate open interval.
Then, we denote

(1) for z ∈ S1, z(u, v)S1 = (zu, zv)S1 ,
(2) [u, v)S1 = {u} ∪ (u, v)S1 ,
(3) (u, v]S1 = (u, v)S1 ∪ {v},
(4) [u, v]S1 = (u, v)S1 ∪ {u, v}.

We can derive the following list of properties about dual intervals. Let I and J

be two nondegenerate open intervals.

(1) (I∗)∗ = I ,
(2) I c = I∗,
(3) If I ⊆ J , then J ∗ ⊆ I∗,
(4) If I ∩ J = ∅, then I ⊆ J ∗,
(5) If I ∩ J = ∅, then |Ī ∩ J̄ | ≤ 2,

where Ī is the closure of I . Recall that every open subset of R can be obtained by a
countable disjoint union of open intervals of R. The same is true for S1.

Proposition 10.6.4 Every proper open set of S1 is an at most countable union of
disjoint open intervals.

10.7 Lamination Systems on S1 and Laminar Groups

Using the notation and terminology defined in the previous section, we introduce
the notion of lamination systems on S1. This is a set of intervals in S1 with certain
conditions which corresponds to leaves of our usual notion of a lamination on S1.
Before defining lamination systems, we need to introduce a condition which is
analogous to the unlinkedness in laminations on S1.

Definition 10.7.1 Let I and J be two nondegenerate open intervals. If I ⊆ J or
I∗ ⊆ J , then we say that the two points set {I, I∗} lies on J (see Fig. 10.3). If Ī ⊆ J

or I∗ ⊆ J , then we say that the two points set {I, I∗} properly lies on J .

Let us define lamination systems.

Definition 10.7.2 Let L be a nonempty family of nondegenerate open intervals
of S1. L is called a lamination system on S1 if it satisfies the following three
properties:

(1) If I ∈ L, then I∗ ∈ L.
(2) For any I, J ∈ L, {I, I∗} lies on J or J ∗.
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J

I

I∗I

J

I∗

Fig. 10.3 The red segment represents the nondegenerate open interval J and the blue parts
represent I and I∗. Two figures show all possible cases where {I, I∗} lies on J

(3) If there is a sequence {In}∞n=1 on L such that for n ∈ N, In ⊆ In+1, and
∞⋃

n=1

In

is a nondegenerate open interval in S1, then
∞⋃

n=1

In ∈ L.

The original definition of laminations on S1 is a closed subset of the set of all
pairs in S1 with unlinkedness condition. In a lamination system, each two points set
corresponds to the set of two connected components of the complement of the two
points.

In this sense, we define leaves and gaps on a lamination system L as following.
A subset G of L is a leaf of L if G = {I, I∗} for some I ∈ L. We denote such a
leaf G by �(I). With this definition of leaf, we can see that the second condition of
lamination system implies unlinkedness of leaves of laminations of S1. Likewise, a
subset G of L is a gap of L if G satisfies the following two conditions:

(1) Elements of G are disjoint.
(2) For each I ∈ L, there is a J in G on which �(I) lies (see Fig. 10.4).

By the second condition on gaps, every gap is nonempty. Obviously, a leaf is also
a gap with two elements. So we say that a gap is a non-leaf gap if it is not a leaf.
Then, we denote S1 −

⋃

I∈G
I as v(G ) and call it a vertex set of G or an end points

set of G. Each element of a vertex set is called a vertex or an end point. Note that in
general, a vertex set need not be a discrete subset of S1. Geometrically, the convex
hull conv(v(G )) of v(G ) in H2 is the geometric realization of a gap G.

The third condition on lamination systems is analogous to the closedness of
laminations on S1. From now on, to describe the limit of a sequence of leaves,
we define the notion of convergence of a sequence of leaves.
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Fig. 10.4 The red chords on
the disk are the geometric
realization of �(Ji). In this
figure, the geodesic
lamination is the union of red
and blue chords and a gap is
{J1, J2, J3, J4}. Note that any
blue chord �(I) lies on Ji

J1
J2

J3

J4

�(I)

�(J1)

�(J2)

�(J3)
�(J4)

Definition 10.7.3 Let L be a lamination system, and {�n}∞n=1 be a sequence of
leaves on L. Let J be a nondegenerate open interval. We say that {�n}∞n=1 converges
to J if there is a sequence {In}∞n=1 on L such that for each n ∈ N, �n = �(In), and

J ⊆ lim inf In ⊆ lim sup In ⊆ J .

We denote this by �n → J .

This definition is symmetric in the following sense.

Proposition 10.7.4 Let L be a lamination system and {�n}n=1 be a sequence of
leaves on L. Let J be a nondegenerate open interval. Suppose that there is a
sequence {In}∞n=1 on L such that for each n ∈ N, �n = �(In) and

J ⊆ lim inf In ⊆ lim sup In ⊆ J .

Then

J ∗ ⊆ lim inf I∗n ⊆ lim sup I∗n ⊆ J ∗.

Proof Since J ⊆ lim inf In =
∞⋃

k=1

∞⋂

n=k

In ⊆ J , so J ∗ = J
c ⊆

∞⋂

k=1

∞⋃

n=k

I c
n ⊆

J c = J ∗. So, lim sup I∗n =
∞⋂

k=1

∞⋃

n=k

I∗n ⊆
∞⋂

k=1

∞⋃

n=k

I∗n =
∞⋂

k=1

∞⋃

n=k

I c
n ⊆ J c = J ∗. It

remains to show that J ∗ ⊆ lim inf I∗n . Since J ⊆ lim sup In =
∞⋂

k=1

∞⋃

n=k

In ⊆ J , so
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J ∗ = J
c ⊆

∞⋃

k=1

∞⋂

n=k

I c
n =

∞⋃

k=1

∞⋂

n=k

I∗n ⊆ J c = J ∗. Denote J ∗ = (u, v)S1 and choose

w ∈ J. For each n ∈ N, define (un, vn)S1 as follows:

(un, vn)S1 = wp−1((p(w−1u)+ L

3n
, p(w−1v)− L

3n
))

where p is the stereographic projection and L = p(w−1v)−p(w−1u). Then for all
n ∈ N, [un, vn]S1 ⊆ (un+1, vn+1)S1 ⊆ J ∗.

Fix m ∈ N. Since [um, vm]S1 ⊆ J ∗ ⊆
∞⋃

k=1

∞⋂

n=k

I∗n , there is a natural number Nm

such that {um, vm} ⊆
∞⋂

n=Nm

I∗n . Note that since
∞⋂

k=1

∞⋃

n=k

I∗n ⊆ J ∗, there is a natural

number N such that w /∈
∞⋃

n=N

I∗n . Let Mm = max{N,Nm}. Then for all k ≥ Mm,

{um, vm} ⊆ I∗k and w /∈ I∗k .
From now on, we show that for all k ≥ Mm, (um, vm)S1 ⊆ I∗k . Fix k ≥ Mm

and denote I∗k = (ak, bk)S1 . Note that since [um, vm]S1 ⊆ J ∗ and w ∈ J ,
w /∈ [um, vm]S1 . If {ak, bk} = {um, vm}, then (ak, bk)S1 = (um, vm)S1 since
w /∈ [um, vm]S1 . If not, there is an element v ∈ {um, vm} − {ak, bk}. First, consider
the case v = um. Since {um, vm} ⊆ I∗k , it is vm ∈ [ak, um)S1 or vm ∈ (um, bk]S1 .

If vm ∈ [ak, um)S1 , then (vm, um)S1 ⊆ [ak, um)S1 ⊆ [ak, bk]S1 . However, this is a
contradiction since w ∈ (vm, um)S1 and w /∈ [ak, bk]S1 . Therefore, vm ∈ (um, bk]S1

and so (um, vm)S1 ⊆ (um, bk]S1 ⊆ [ak, bk]S1 . Thus, (um, vm)S1 ⊆ (ak, bk)S1 = I∗k .
Similarly, we can prove the case v = vm.

Therefore, for all m ∈ N, (um, vm)S1 ⊆
∞⋂

n=Mm

I∗n ⊆
∞⋃

k=1

∞⋂

n=k

I∗n = lim inf I∗n .

Thus, J ∗ =
∞⋃

m=1

(um, vm)S1 ⊆ lim inf I∗n . !�

Since the third condition on lamination systems guarantees that the limit of
an ascending sequence on a lamination system is in the lamination system, we
need to consider descending sequences to say about limits of arbitrary sequences
on lamination systems. The following lemma implies closedness of descending
sequences in a lamination system L.

Lemma 10.7.5 Let {In}∞n=1 be a sequence on a lamination system L such that

In+1 ⊆ In for all n ∈ N, and
∞⋃

n=1

I∗n = J ∈ L. Then Int
( ∞⋂

n=1

In

)
= J ∗ ∈ L.



10 Laminar Groups and 3-Manifolds 389

Proof Since
∞⋃

n=1

I∗n = J , so

J ∗ = J c =
∞⋂

n=1

(I∗n )c =
∞⋂

n=1

In.

So,
∞⋂

n=1

In ⊆
∞⋂

n=1

In = J ∗. Since
∞⋃

n=1

I∗n = J , so for all n ∈ N, I∗n ⊆ J and so J ∗ ⊆

In. Therefore, J ∗ ⊆
∞⋂

n=1

In. Thus, J ∗ ⊆
∞⋂

n=1

In = J ∗ and so Int
( ∞⋂

n=1

In

)
= J ∗. !�

With this lemma, the following proposition shows the closedness of lamination
systems.

Proposition 10.7.6 If a sequence {�n}∞n=1 of leaves of a lamination system L
converges to a nondegenerate open interval J , then J ∈ L.

Proof Since the sequence {�n} converges to J , there is a sequence {In}∞n=1 on the
lamination system L such that for all n ∈ N, �n = �(In) and

J ⊆ lim inf In ⊆ lim sup In ⊆ J .

Since
∞⋂

k=1

∞⋃

n=k

In ⊆ J , and so J ∗ = J
c ⊆

∞⋃

k=1

∞⋂

n=k

I c
n , there is N ∈ N such that

∞⋂

n=N

Ic
n �= ∅. Then we can get

( ∞⋃

n=k

In

)c �= ∅ for all k ≥ N since
∞⋂

n=k

I c
n ⊆

∞⋂

n=k+1

I c
n

for all k ≥ N . On the other hand, since J ⊆
∞⋃

k=1

∞⋂

n=k

In, there is N ′ ∈ N such that

∞⋂

n=N ′
In �= ∅. Choose p ∈

∞⋂

n=N ′
Ik , and set M = max{N,N ′}. Since for n ≥ M , In

is a connected open subset of S1, and contains p, so for k ≥ M ,
∞⋃

n=k

In is nonempty

open connected subset of S1. Since for all k ≥ M ,
( ∞⋃

n=k

In

)c �= ∅ and so
∞⋃

n=k

In is a

proper subset of S1, then for each k ≥ M ,
∞⋃

n=k

In is an open interval. If for all k ≥ M ,

∞⋃

n=k

In is a degenerate open interval, then
∞⋂

k=1

∞⋃

n=k

In =
∞⋂

k=M

∞⋃

n=k

In is a degenerate
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open interval, but this contradicts
∞⋂

k=1

∞⋃

n=k

In ⊆ J . Therefore, there is K ∈ N such

that K ≥ M , and for all k ≥ K ,
∞⋃

n=k

In is nondegenerate. Let L =
∞⋃

n=K

In. Then,

for all n ≥ K , In ⊆ L and so L∗ ⊆ I∗n . Therefore, we get that for all n ≥ K ,
p ∈ In ⊆ L.

From now on, we show that for any n,m ≥ K , In ⊆ Im or Im ⊆ In. Choose
n,m ≥ K . If In ⊆ I∗m, then p ∈ I∗m, and so this contradicts p ∈ Im. If I∗m ⊆ In, then
L∗ ⊆ I∗m ⊆ In, and so this contradicts In ⊆ L. So, we can get what we want.

Then, we show that
∞⋃

n=k

In ∈ L for all k ≥ K . Fix k ≥ K . Let Ji =
k+i⋃

n=k

In

for i ∈ N. Then J1 = Ik ∪ Ik+1. Since Ik ⊆ Ik+1 or Ik+1 ⊆ Ik , so J1 = Ik or
J1 = Ik+1, and so J1 ∈ L. Assume that Jm ∈ L for some m ∈ N. If Ik+m+1 ⊆ Ij
for some j ∈ {k, k + 1, · · · , k + m}, then Jm+1 = Jm ∈ L. If not, Ij ⊆ Ik+m+1
for all j ∈ {k, k + 1, · · · , k + m}, and so Jm+1 = Ik+m+1 ∈ L. Therefore, by
mathematical induction, Ji ∈ L for all i ∈ N. Moreover, Ji ⊆ Ji+1 for all i ∈ N.

Since by the condition of K ,
∞⋃

i=1

Ji =
∞⋃

n=k

In is a nondegenerate open interval and

so
∞⋃

i=1

Ji ∈ L, so
∞⋃

n=k

In ∈ L.

From now on, let Li =
∞⋃

n=K+i

In for i ∈ N. Then, for all i ∈ N, Li ∈ L by the

above, and Li+1 ⊆ Li . Since J ⊆
∞⋂

k=1

∞⋃

n=k

In ⊆ J̄ , and
∞⋂

k=1

∞⋃

n=k

In =
∞⋂

k=K+1

∞⋃

n=k

In =
∞⋂

i=1

Li , so J ⊆
∞⋂

i=1

Li ⊆ J̄ . So, J ∗ ⊆
∞⋃

i=1

L∗i ⊆ J ∗, and so
∞⋃

i=1

L∗i ⊆
∞⋃

i=1

L∗i ⊆ J ∗.

Therefore,
∞⋃

i=1

L∗i is nondegenerate. Since for all i ∈ N, L∗i ∈ L, and L∗i ⊆ L∗i+1,

∞⋃

i=1

L∗i ∈ L. Thus by Lemma 10.7.5, Int
( ∞⋂

i=1

Li

)
=
( ∞⋃

i=1

L∗i
)∗ ∈ L. Since J ⊆

∞⋂

i=1

Li ⊆ J̄ , J = Int
( ∞⋂

i=1

Li

)
∈ L. !�

Moreover, by Proposition 10.7.4 we can prove that if �n → J , then �n → J ∗,
and so J ∗ ∈ L. So, we can make the following definition.
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Definition 10.7.7 Let L be a lamination system, and {�n}∞n=1 be a sequence of
leaves on L. Let � be a leaf of L. Then, we say that {�n}∞n=1 converges to � if
�n → I for some I ∈ �.

So far, we have studied the definition of a lamination system. From now on, we
talk about the shape of lamination systems. First, as we can see in the proof of
Proposition 10.7.6, the following structure is useful to deal with configuration of
leaves.

Definition 10.7.8 Let L be a lamination system on S1 and I be a nondegenerate
open interval. Then, for p ∈ I , we define CI

p as the set CI
p = {J ∈ L : p ∈ J ⊆ I }.

As we observed in the proof of Proposition 10.7.6, CI
p is totally ordered by the

inclusion.

Proposition 10.7.9 CI
p is totally ordered by the set inclusion ⊆.

Proof If CI
p has at most one element, it is true. Assume that CI

p has at least two
elements. Let J and K be two distinct elements of L. If J ⊆ K∗, then p ∈ L ⊆ K∗
and so it is a contradiction since p ∈ K . If K∗ ⊆ J , then K∗ ⊆ J ⊆ I , and so
I∗ ⊆ K . But it contradicts K ⊆ I . Thus, J ⊆ K or K ⊆ J . !�

The following lemma tells about the maximal and minimal elements of CI
p.

Lemma 10.7.10 Let L be a lamination system on S1, and I be a nondegenerate
open interval. Let x be an element of I . Assume that CI

x is nonempty. Then, there is a

sequence {Jn}∞n=1 on CI
x such that for all n ∈ N, Jn ⊆ Jn+1, and

∞⋃

n=1

Jn =
⋃

K∈CI
x

K .

Also, there is a sequence {Kn}∞n=1 on CI
x such that for all n ∈ N, Kn+1 ⊆ Kn, and

∞⋂

n=1

Kn =
⋂

K∈CI
x

K .

Proof First, we show the first statement. Since x ∈ K for all K ∈ CI
x ,

⋃

K∈CI
x

K

is a connected open set. Because
⋃

K∈CI
x

K ⊆ I , or equivalently I c ⊆
( ⋃

K∈CI
x

K
)c

,

⋃

K∈CI
x

K is a nondegenerate open interval. So, we can write
⋃

K∈CI
x

K = (u, v)S1 for

some u, v ∈ S1 with u �= v. Choose z ∈ (v, u)S1 . We define a sequence {In}∞n=1 of
nondegenerate intervals as

In = zp−1((p(z−1u)+ L

3n
, p(z−1v)− L

3n
))
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where p is the stereographic projection map used in the definition of the orientation,

L = p(z−1v)− p(z−1u). Then, for all n ∈ N, In ⊆ In+1 and
∞⋃

n=1

In = (u, v)S1 .

From now on, we construct a sequence {Kn}∞n=1 in CI
x such that In ⊆ Kn. For

n ∈ N, we denote In = (pn, qn)S1 . Then since ∂In ⊆ (u, v)S1 and
⋃

K∈CI
x

K =

(u, v)S1 , there are Kpn and Kqn in CI
x such that pn ∈ Kpn , and qn ∈ Kqn . By

Proposition 10.7.9, Kpn ⊆ Kqn or Kqn ⊆ Kpn . If Kqn ⊆ Kpn , then ∂In ⊂ Kpn . So
(pn, qn)S1 ⊆ Kpn or (qn, pn)S1 ⊆ Kpn . Since z /∈ Kpn , so In = (pn, qn)S1 ⊆ Kpn .
In this case, we set Kn = Kpn Likewise, if Kpn ⊆ Kqn , then In ⊆ Kqn , and so we
set Kn = Kqn .

For n ∈ N, we define Jn as Jn =
n⋃

m=1

Km. As in the argument in Proposi-

tion 10.7.6, Jn ∈ CI
x for all n ∈ N. Then {Jn}∞n=1 is a sequence on CI

x such that for
all n ∈ N, In ⊆ Jn ⊆ Jn+1 ⊆ (u, v)S1 . Therefore,

∞⋃

n=1

Jn =
∞⋃

n=1

In = (u, v)S1 =
⋃

K∈CI
x

K.

The second statement can be also proved in a similar way. Let A =
⋂

K∈CI
x

K.

Then,

A =
⋂

K∈CI
x

K ⊆
⋂

K∈CI
x

K

and so

⋃

K∈CI
x

K∗ =
⋃

K∈CI
x

K
c ⊆ Ac =

⋃

K∈CI
x

Kc =
⋃

K∈CI
x

K∗ ⊆
⋃

K∈CI
x

K∗.

So we get

⋃

K∈CI
x

K∗ ⊆ Ac ⊆
⋃

K∈CI
x

K∗.
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Since for all K ∈ CI
x , x ∈ K ⊆ I and so x /∈ K∗ and I∗ ⊆ K∗,

⋃

K∈CI
x

K∗ is a

nonempty proper connected open set and so it is an open interval in S1. Then, we
can write

⋃

K∈CI
x

K∗ = (v, u)S1 for some u, v ∈ S1. Then

(v, u)S1 ⊆ Ac ⊆ (v, u)S1

and so

(v, u)
c

S1 ⊆ A ⊆ (v, u)c
S1 .

Since (v, u)S1 is homeomorphic toR, it is Lindelöff. So, there is a sequence {Kn}∞n=1

on CI
x such that

∞⋃

n=1

K∗
n =

⋃

K∈CI
x

K∗ = (v, u)S1 since
⋃

K∈CI
x

K∗ is an open cover of

(v, u)S1 .
If u = v, then ∅ = (v, u)

c

S1 ⊆ A ⊆ (v, u)c
S1 = {u}. Since

{x} ⊆
∞⋂

n=1

Kn ⊆
∞⋂

n=1

Kn =
∞⋂

n=1

(K∗
n)

c =
( ∞⋃

n=1

K∗
n

)c = (v, u)c
S1 = {u},

so {x} ⊆
∞⋂

n=1

Kn ⊆ {u}. Therefore, {x} =
∞⋂

n=1

Kn = {u}. Thus, since x ∈ A

and A ⊆ {u}, and so {x} = A = {u},
∞⋂

n=1

Kn = A = {x}. For each n ∈ N,

define Jn =
n⋂

m=1

Km. Then, for all n ∈ N, Jn ∈ CI
x and Jn+1 ⊆ Jn. Thus, since

∞⋂

n=1

Kn =
∞⋂

n=1

Jn, the sequence {Jn}∞n=1 is the sequence that we want.

If u �= v, then

(u, v)S1 = (v, u)
c

S1 ⊆ A ⊆ (v, u)c
S1 = [u, v]S1 .

There are four cases: A = (u, v)S1 , A = [u, v]S1 , A = [u, v)S1 and A = (u, v]S1 .

First, if A = [u, v]S1 , then

[u, v]S1 = A =
⋂

K∈CI
x

K ⊆
∞⋂

n=1

Kn ⊆
∞⋂

n=1

Kn =
∞⋂

n=1

(K∗
n)

c =
( ∞⋃

n=1

K∗
n

)c = [u, v]S1 .
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Therefore,

[u, v]S1 = A =
∞⋂

n=1

Kn.

Then, for each n ∈ N, define Jn =
n⋂

m=1

Km. By the construction of {Jn}∞n=1, for all

n ∈ N, Jn ∈ CI
x and Jn+1 ⊆ Jn. Thus, since

∞⋂

n=1

Kn =
∞⋂

n=1

Jn, the sequence {Jn}∞n=1

is a sequence that we want.
Next, if A = (u, v)S1 , then there are Ku and Kv in CI

x such that u /∈ Ku and
v /∈ Kv . Since CI

x is totally ordered, so Ku ⊆ Kv or Kv ⊆ Ku. Therefore, one of
Ku and Kv , say K ′, does not intersect {u, v}. Since

(u, v)S1 = A ⊆ K ′ ⊆ S1 − {u, v} = (u, v)S1 ∪ (v, u)S1

and K ′ is connected, K ′ = (u, v)S1 . Therefore, (u, v)S1 ∈ CI
x and so, for each

n ∈ N, define Jn = (u, v)S1 . Then the sequence {Jn}∞n=1 is the sequence that we
want.

If A = (u, v]S1 , then there is an element L in CI
x such that u /∈ L. Define

C = {K ∈ CI
x : K ⊆ L}. Since C ⊆ CI

x , C is also totally ordered by the inclusion.

Note that A =
⋂

K∈CI
x

K =
⋂

K∈C
K and

⋃

K∈CI
x

K∗ =
⋃

K∈C
K∗. So, since

⋃

K∈C
K∗ is a

nondegenerate open interval and so is Lindelöff, there is a sequence {Ln}∞n=1 of C

such that
⋃

K∈C
K∗ =

∞⋃

n=1

L∗n. Then

(u, v]S1 = A =
⋂

K∈C
K ⊆

∞⋂

n=1

Ln ⊆
∞⋂

n=1

Ln =
∞⋂

n=1

(L∗n)c =
( ∞⋃

n=1

L∗n
)c = [u, v]S1 .

So we get

(u, v]S1 = A ⊆
∞⋂

n=1

Ln ⊆ [u, v]S1 .

Since for all n ∈ N, u /∈ Ln, (u, v]S1 = A =
∞⋂

n=1

Ln. Then, for each n ∈ N,

define Jn =
n⋂

m=1

Lm. By the construction of {Jn}∞n=1, for all n ∈ N, Jn ∈ CI
x and
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Jn+1 ⊆ Jn. Thus, the sequence {Jn}∞n=1 is the one that we want. The proof of the
case A = [u, v)S1 is similar to the case A = (u, v]S1 . !�

Note that if CI
p �= ∅, then by Lemma 10.7.10,

⋃

J∈CI
p

J ∈ L. On a lamination

system L, when a sequence of leaves converges to a leaf �, it approaches � in two
different sides of �. Geometrically, if there is no converging sequence of leaves on
one side, then there is a non-leaf gap on that side. To describe this situation, we use
the following definition.

Definition 10.7.11 Let L be a lamination system on S1, and I ∈ L. Let {�n}∞n=1 be
a sequence of leaves of L. Then we call {�n}∞n=1 an I-side sequence if for all n ∈ N,
I /∈ �n, and �n lies on I , and �n → I . And we say that I is isolated if there is no
I -side sequence on L. Moreover, a leaf � is isolated if each element of � is isolated.

The following Lemma shows that the previous statement is true.

Lemma 10.7.12 Let L be a lamination system on S1 and I ∈ L. Suppose that I∗
is isolated. Then, there is a non-leaf gap G such that I ∈ G.

Proof For any point p in I∗ at which 2 ≤ |CI ∗
p |, we define Jp =

⋃

J∈CI∗
p −{I ∗}

J .

Then Jp is a nondegenerate open interval since Jp is a nonempty connected open

subset of S1 and I ⊆ Jp
c. By applying Lemma 10.7.10 to C

Jp
p , Jp ∈ L and since

I∗ is isolated, Jp � I∗.
Note that Jp and Jq are disjoint or coincide whenever p �= q ∈ I∗.
Define G = {I } ∪ {Jp : p ∈ I∗ and 2 ≤ |CI ∗

p |}. Then if there is K ∈ L with
�(K) �= �(I), then �(K) lies on I or I∗. If �(K) lies on I∗, then there is L in �(K)

which is contained on I∗. Since for any x in L, L ∈ CI ∗
x , �(K) lies on Jx for any

x ∈ L. Thus, G is the non-leaf gap in which I is. !�
The following lemma is about the configuration of two gaps. It is a kind of

generalization of unlinkedness condition of two leaves to unlinkedness condition
of two gaps.

Lemma 10.7.13 Let L be a lamination system on S1, and G, G ′ be two gaps with
|G |, |G ′| ≥ 2. Then, G = G ′ or there are I in G, and I ′ in G ′ such that I∗ ⊆ I ′,
and for all J ∈ G, �(J ) lies on I ′, and for all J ′ ∈ G ′, �(J ′) lies on I .

Proof Assume that G �= G ′. If G � G ′, then there is I in G ′ − G. Then, since G is a
gap, there is J in G on which �(I) lies. Since G ′ is a gap, then for all K ∈ G ′ − {I },
I ∩K = ∅, and so I ∩J = ∅. Since I ∩J = ∅, I ⊆ J ∗ and since �(I) lies on J and
I ∩J = ∅, then I∗ ⊆ J and J ∗ ⊆ I . Therefore, I = J ∗, and so {I, I∗} ⊆ G ′. Thus,
G ′ is a leaf �(I), and so G is a one point subset of G ′. However, this contradicts
|G ′| ≥ 2. Similarly, we can get that G ′ � G is not possible.

So, there are J in G−G ′ and J ′ in G ′ − G. Since G and G ′ are gaps, there are K

in G and K ′ in G ′ such that �(J ′) lies on K and �(J ) lies on K ′. Since G ′ is a gap,
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�(K) lies on L′ for some L′ ∈ G ′. Likewise, since G is a gap, �(K ′) lies on L for
some L ∈ G.

First, consider the case L′ �= J ′. Since �(K) lies on L′, K ⊆ L′ or K∗ ⊆ L′. If
K ⊆ L′, then J ′ ⊆ K cannot occur, and so (J ′)∗ ⊆ K ⊆ L′ since �(J ′) lies on K .
Since by assumption, L′∩J ′ = ∅, so L′ ⊆ (J ′)∗. Therefore (J ′)∗ = K = L′, and so
G ′ should be a leaf �(J ′). Then since K = (J ′)∗, and I ⊆ K∗ for all I ∈ G−{K},
so I ⊆ J ′ for all I ∈ G−{K}. Therefore, for all I ∈ G, �(I) lies on J ′. Since
K∗ = J ′ ⊆ J ′ and, trivially, �(J ′) lies on K , K and J ′ are the elements that we
want to find. On the other hand, if K∗ ⊆ L′, then for all I ∈ G−{K}, I ⊆ K∗ ⊆ L′
since I ⊆ K∗. Therefore, for all I ∈ G, �(I) lies on L′. And by the assumption,
(L′)∗ ⊆ K . Likewise, for all I ′ ∈ G ′, �(I ′) lies on K . So, in this case, K and L′ are
the elements that we want.

Second, consider the case L′ = J ′. Then �(J ′) lies on K and �(K) lies on J ′. If
J ′ ⊆ K , then K∗ ⊆ (J ′)∗. Since �(K) lies on J ′, there are two possibility. One is
K ⊆ J ′, and so K = J ′. However, it contradicts J ′ ∈ G ′ −G. The other is K∗ ⊆ J ′,
but it also contradicts K∗ ⊆ (J ′)∗. Therefore, (J ′)∗ ⊆ K . Since G ′ is a gap, for all
I ′ ∈ G ′ − {J ′}, I ′ ⊆ (J ′)∗, and so for all I ′ ∈ G ′, �(I ′) lies on K . And by the
assumption, K∗ ⊆ J ′. Likewise, for all I ∈ G, �(I) lies on J ′. Thus, K and J ′ are
the elements that we want. !�

On a lamination system L on S1, a gap G with |v(G )| < ∞ is
called an ideal polygon. In particular, an ideal polygon is called a non-leaf
ideal polygon if it is not a leaf. For an ideal polygon G, since v(G ) is a
finite set, we can write v(G ) = {x1, x2, · · · , xn} where |v(G )| = n, and
(x1, x2, · · · , xn) is a positively oriented n-tuple. Moreover, we can represent
G = {(x1, x2)S1, (x2, x3)S1, · · · , (xn−1, xn)S1, (xn, x1)S1}. Then we say that a
lamination system L is very full if every gap of L is an ideal polygon. Let
E(L) =

⋃

I∈L
v(�(I)) and call it the end points set of L. A lamination system

L is called dense if E(L) is a dense subset of S1. Let p ∈ S1 and L be a dense
lamination system. Suppose that there is a sequence {In}∞n=1 on L such that for

all n ∈ N, In+1 ⊆ In, and
⋂

n∈N
In = {p}. We call such a sequence a rainbow at

p. In [3], it is observed that very full laminations have abundant rainbows (see
Theorem 10.7.14 for a precise statement). In the rest of the section, we recall some
results from [3] and [1] about invariant laminations and give alternative proofs in
the language of lamination systems.

Theorem 10.7.14 ([3]) Let L be a very full lamination system. For p ∈ S1, either
p is in E(L) or p has a rainbow. These two possibilities are mutually exclusive.

Proof Let p be a point of S1. First we show that if there is no I ∈ L such that
p ∈ v(�(I)), then p has a rainbow. Assume that there is no I in L such that p ∈
v(�(I)). Since L is nonempty, there is an element I in L. Then, by assumption,
p /∈ v(�(I)) = ∂I . Since S1 has a partition {I, ∂I, I∗}, p belongs to either I or
I∗. Say that p ∈ I . Then, CI

p is nonempty. By Lemma 10.7.10, there is a sequence



10 Laminar Groups and 3-Manifolds 397

{Kn}∞n=1 on CI
p such that for all n ∈ N, Kn+1 ⊆ Kn, and

∞⋂

n=1

Kn =
⋂

K∈CI
p

K . If

∞⋂

n=1

Kn = {p}, we are done. If not,
∞⋃

n=1

K∗
n is a nondegenerate open interval J with

p ∈ J c = J ∗ and J ∈ L, and by Lemma 10.7.5, Int
( ∞⋂

n=1

Kn

)
= J ∗ ∈ L. If

p ∈ ∂J ∗,then p ∈ E(L) and so it contradicts the assumption. So p ∈ J ∗. Then
p ∈ J ∗ ⊆ I , and so J ∗ is the minimal element of CI

p . Now, we want to show that
J ∗ is isolated. Suppose that there is a J ∗-side sequence {�n}∞n=1. Then there is a
sequence {In}∞n=1 on L such that for all n ∈ N, �n = �(In), and

J ∗ ⊆ lim inf In ⊆ lim sup In ⊆ J ∗.

So, since p ∈ J ∗ ⊆ lim inf In, there is m ∈ N such that p ∈
∞⋂

n=m

In. Therefore,

for all k ≥ m, p ∈ Ik and so Ik � J . Then choose q ∈ J . Since lim sup In ⊆ J ∗,

there is m′ ∈ N such that q /∈
∞⋃

n=m′
In. Therefore, for all k ≥ m′, J � Ik . So, for

k ≥ max{m,m′}, J ∗ ⊆ Ik or Ik ⊆ J ∗. Since for all n ∈ N, �n �= �(J ∗), then for
k ≥ max{m,m′}, J ∗ � Ik or Ik � J ∗. Since for all n ∈ N, �n lies on J ∗, so for
k ≥ max{m,m′}, Ik � J ∗. Moreover, for k ≥ max{m,m′}, p ∈ Ik � J ∗ ⊆ I , and
so Ik ∈ CI

p. This contradicts the minimality of J ∗ on CI
p. Therefore, J ∗ is isolated.

Then by Lemma 10.7.12, there is the non-leaf gap G such that J ∈ G. Since L

is very full, v(G ) is finite, and so
⋃

I∈G
∂I = v(G ). Note that S1 has a partition

G∪{v(G )}. By assumption, p /∈ v(G ), so there is K ∈ G−{J } such that p ∈ K .
Since K � J ∗ ⊆ I , K ∈ CI

p. but this contradicts the minimality of J ∗ on CI
p. Thus,

∞⋂

n=1

Kn = {p}.
Finally, we want to show that if there is a leaf � such that p ∈ v(�), p has no

rainbow. Suppose that there are a rainbow {In}∞n=1, and a leaf � such that p ∈ v(�).
Since for all n ∈ N, p ∈ In, � lies on In. Choose n ∈ N. Then there is an element I
in � such that I � In. If I∗ � In+1, then I∗ � In+1 ⊆ In, but this is a contradiction.

So, I � In+1. Therefore, I ⊆
∞⋂

n=1

In, but this is not possible since
∞⋂

n=1

In = {p}. !�

Corollary 10.7.15 ([3]) Let L be a very full lamination system of S1. Then, E(L )

is dense in S1.

Proof Suppose that E(L ) is not dense. Then, there is a point p in S1 which has an
open neighborhood K which is a nondegenerate open interval with E(L )∩K = ∅.
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And by Theorem 10.7.14, there is a rainbow {In}∞n=1 at p. Fix n ∈ N and denote
In = (un, vn)S1 and K = (s, t)S1 . Let ϕ be the circular order of S1. Note that
ϕ(un, p, vn) = 1. Since E(L ) ∩ K = ∅, ϕ(s, un, t) = ϕ(s, vn, t) = −1 and
so ϕ(t, un, s) = ϕ(t, vn, s) = 1. Since ϕ(s, p, t) = 1 and ϕ(t, s, p) = 1, so
ϕ(t, un, p) = ϕ(t, vn, p) = 1. Since by the cocycle condition on the four points
(t, un, vn, p),

ϕ(un, vn, p)− ϕ(t, vn, p) + ϕ(t, un, p)− ϕ(t, un, vn) = 0,

then

−1 − 1 + 1 − ϕ(t, un, vn) = 0,

Hence ϕ(t, un, vn) = −1. Therefore, ϕ(un, t, vn) = 1. Likewise, ϕ(s, un, t) =
ϕ(s, vn, t) = −1 and so ϕ(s, t, un) = ϕ(s, t, vn) = 1. Since ϕ(s, p, t) = 1, then
ϕ(s, p, un) = ϕ(s, p, vn) = 1. Since by the cocycle condition on the four points
(s, p, un, vn),

ϕ(p, un, vn)− ϕ(s, un, vn)+ ϕ(s, p, vn)− ϕ(s, p, un) = 0,

then

−1− ϕ(s, un, vn)+ 1 − 1 = 0.

Hence ϕ(s, un, vn) = −1. Therefore, ϕ(un, s, vn) = 1.
We have shown that ϕ(un, s, vn) = ϕ(un, t, vn) = 1 and we have ϕ(s, un, t) =

ϕ(s, vn, t) = −1 since E(L )∩K = ∅. From now on, we show that K ⊆ In. Let q
be a point in K . Then ϕ(s, q, t) = 1 and since ϕ(s, un, t) = ϕ(s, vn, t) = −1 and
so ϕ(s, t, un) = ϕ(s, t, vn) = 1, we get that ϕ(s, q, un) = ϕ(s, q, vn) = 1. Then by
applying the cocycle condition to four points (un, s, q, vn),

ϕ(s, q, vn)− ϕ(un, q, vn)+ ϕ(un, s, vn)− ϕ(un, s, q) = 0.

Since ϕ(un, s, q) = ϕ(s, q, un),

ϕ(s, q, vn)−ϕ(un, q, vn)+ϕ(un, s, vn)−ϕ(un, s, q) = 1−ϕ(un, q, vn)+1−1 = 0.

Therefore, ϕ(un, q, vn) = 1 and so q ∈ In. We are done. This implies that for all

n ∈ N, K ⊆ In, so K ⊆
∞⋂

n=1

In, but this contradicts the definition of a rainbow.

Thus, E(L ) is dense. !�
Indeed, very fullness does not guarantee the existence of non-leaf gaps. More

precisely, a lamination system, of which the geometric realization is a geodesic
lamination which foliates the whole hyperbolic plane, is very full, but there is no
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non-leaf gap. So, we need some notions to rule out this situation and to guarantee
the existence of a gap on a lamination system. So, the following definitions on a
lamination system describe the situation which is analogous to that in H2, there is
no open disk foliated by leaves on a given geodesic lamination which is a geometric
realization of a lamination on S1.

Definition 10.7.16 Let L be a lamination system and {I, J } be a subset of L.
Then, {I, J } is called a distinct pair if I ∩ J = ∅, and {I, J } is not a leaf. A distinct
pair {I, J } is separated if there is a non-leaf gap G such that I ⊆ K and J ⊆ L

for some K,L ∈ G, not necessarily K �= L. And L is totally disconnected if every
distinct pair is separated.

Two lamination systems L1 and L2 have distinct endpoints if E(L1)∩E(L2) =
∅. When we study two lamination systems, the distinct endpoints condition enforces
totally disconnectedness on lamination systems.

Lemma 10.7.17 ([1]) If two dense lamination systems have distinct endpoints, then
each of the lamination systems is totally disconnected.

Proof Let L1 and L2 be two dense lamination systems with distinct endpoints.
First, we show that L1 is totally disconnected. Suppose that a subset {I, J } of L1 is
a distinct pair. I∗ ∩J ∗ is a non-empty open set. Since E(L2) is dense in S1, we can
choose p ∈ I∗ ∩ J ∗ ∩E(L2). If there is K ∈ L1 such that p ∈ K ⊆ I∗ ∩ J ∗, then
K ∈ CI ∗

p ∩ CJ ∗
p and so CI ∗

p ∩ CJ ∗
p is nonempty where we consider CI ∗

p and CJ ∗
p on

L1. Note that CI ∗
p ∩ CJ ∗

p is totally ordered by ⊆. Let M be the union of elements

of CI ∗
p ∩ CJ ∗

p . Then M is a nondegenerate open interval with p ∈ M ⊆ I∗ ∩ J ∗.

So, CM
p is equal to CI ∗

p ∩ CJ ∗
p = {K ∈ L1 : p ∈ K ⊆ I∗ ∩ J ∗}. Moreover, by

Lemma 10.7.10, M ∈ L1.
We want to show that M∗ is isolated on L1. Suppose that {�n}∞n=1 be an M∗-side

sequence of leaves of L1. Then, there is {In}∞n=1 such that for all n ∈ N, �n = �(In),
and

M∗ ⊆ lim inf In ⊆ lim sup In ⊆ M∗.

Choose pI ∈ I and pJ ∈ J . Since M∗ ⊆ lim inf In and {pI , pJ } ⊆ I ∪ J ⊆ M∗,

there is m ∈ N such that {pI , pJ } ⊆
∞⋂

n=m

In. Therefore, for all n ≥ m, {pI , pJ } ⊆ In

and so In � M . Also, since lim sup In ⊆ M∗ and p ∈ M , there is m′ such that

p /∈
∞⋃

n=m′
In. Therefore, for all n ≥ m′, p /∈ In and so M � In. Hence, for all

n ≥ max{m,m′}, In ⊆ M∗ or M∗ ⊆ In. Moreover, for n ≥ max{m,m′}, since
�n �= �(M∗), In � M∗ or M∗ � In and since �n lies on M∗, In � M∗ is the
possible case. Thus, for all n ≥ max{m,m′}, {pI , pJ } ⊆ In � M∗.

Then, fix n ≥ max{m,m′}. If I∗ ⊆ In or J ∗ ⊆ In, then M ⊆ In, and this
contradicts In ⊆ M∗. If In ⊆ I∗ or In ⊆ J ∗, then {pI , pJ } ⊆ I∗ or {pI , pJ } ⊆ J ∗,
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respectively, and so it is also a contradiction since I ∩ I∗ = ∅ and J ∩ J ∗ = ∅. If
In ⊆ I or In ⊆ J , then {pI , pJ } ⊆ I or {pI , pJ } ⊆ J , respectively, and so this is
also a contradiction since I ∩ J = ∅. Therefore, I ∪ J ⊆ In. Hence M � I∗n ⊆
I∗ ∩ J ∗. This contradicts the maximality of M on CI ∗

p ∩CJ ∗
p . Thus, M∗ is isolated.

Finally, by Lemma 10.7.12, there is a non-leaf gap G such that M ∈ G. If there
is L ∈ G such that I∗ ⊆ L or J ∗ ⊆ L, then M ⊆ I∗ ⊆ L or M ⊆ J ∗ ⊆ L and so
M = I∗ = L or M = J ∗ = L, respectively. Then, J ⊆ I∗ = M or I ⊆ J ∗ = M ,
respectively. However, this is a contradiction since M ∩ {pI , pJ } = ∅. Therefore,
by the definition of gap, there are L and L′ in G such that I ⊆ L and J ⊆ L′. So,
{I, J } is separated.

Next, assume that CI ∗
p ∩ CJ ∗

p = ∅. Choose K ∈ CI ∗
p . If K ⊆ J , then this

contradicts p ∈ J ∗. If K ⊆ J ∗, then K ∈ CJ ∗
p , and so this contradicts the

assumption. If J ∗ ⊆ K , then J ∗ ⊆ K ⊆ I∗, and I ⊆ J , then this contradicts
the definition of distinct pairs. Therefore, J � K , and so ({p} ∪ J ) ⊆ K . By
Lemma 10.7.10, there is a sequence {Fn}∞n=1 such that for all n ∈ N, Fn+1 ⊆ Fn

and
∞⋂

n=1

Fn =
⋂

F∈CI∗
p

F and since ({p} ∪ J ) ⊆ F for all F ∈ CI ∗
p ,

∞⋃

n=1

F ∗
n is a

nondegenerate open interval and so
∞⋃

n=1

F ∗
n ∈ L1. Therefore, by Lemma 10.7.5,

Int
( ∞⋂

n=1

Fn

)
= Int

( ⋂

F∈CI∗
p

F
)

is a nondegenerate open interval N with p ∈ N ,

J ⊆ N and N ∈ L1. Since p is not in E(L1), then p ∈ N .
Now, we want to show that N is isolated. Suppose that there is an N-side

sequence {�n}∞n=1 on L1. So, there is a sequence {In}∞n=1 on L1 such that for all
n ∈ N, �n = �(In) and

N ⊆ lim inf In ⊆ lim sup In ⊆ N.

Choose q ∈ I . Since lim sup In ⊆ N , there is m ∈ N such that q /∈
∞⋃

n=m

In. Also,

since N ⊆ lim inf In, there is m′ ∈ N such that p ∈
∞⋂

n=m′
In. Therefore, for all

n ≥ max{m,m′}, p ∈ In and q ∈ I c
n .

Fix n ≥ max{m,m′}. If In ⊆ N∗, then p ∈ In ⊆ N∗ and this is a contradiction
since p ∈ N . If N∗ ⊆ In, then q ∈ I c

n ⊆ (N∗)c and this is a contradiction since
q ∈ I ⊆ N∗. Therefore, In ⊆ N or N ⊆ In. Moreover, since �n �= �(N), In � N

or N � In and since �n lies on N , In � N is the possible case. But p ⊆ In � N ,
and this contradicts the minimality of N on CI ∗

p . So, by Lemma 10.7.12, there is a
non-leaf gap G such that N∗ ∈ G. It is enough to show that there is K in G such that
J ⊆ K . Suppose that there is K ′ in G such that J ∗ ⊆ K ′. Then N∗ ⊆ J ∗ ⊆ K ′
and so N∗ = J ∗ = K ′. But, this implies N = J and since p ∈ N and p /∈ J ,
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this is a contradiction. Therefore, there is K in G such that J ⊆ K . Thus, {I, J } is
separated and so L1 is totally disconnected. For the same reason, L2 is also totally
disconnected. !�

We have introduced lamination systems as a model for laminations on the circle.
In this perspective, laminar groups are groups acting on the circle with invariant
lamination systems. We end this section, discussing about actions on lamination
systems. A homeomorphism f on S1 is orientation preserving if for any positively
oriented triple (z1, z2, z3), (f (z1), f (z2), f (z3)) is a positively oriented triple. We
denote the set of orientation preserving homeomorphisms on S1 as Homeo+(S1)

and the set of fixed points of f as Fixf . Note that if f ∈ Homeo+(S1), for
u, v ∈ S1, we have f ((u, v)S1) = (f (u), f (v))S1 and if u �= v, then f ((u, v)∗

S1) =
f ((u, v)S1)∗.

Definition 10.7.18 Let L be a lamination system, and G be a subgroup of
Homeo+(S1). L is called a G-invariant lamination system if for any I ∈ L and
g ∈ G, g(I) ∈ L. When L is a G-invariant lamination system, the action of G on
L is said to be minimal if for any two leaves �, �′ ∈ L, there is a sequence {gn}∞n=1
on G such that gn(�

′) → �.

First, note that on a G-invariant lamination system, every gap is mapped to a gap
and the converging property is preserved under the given G-action. Furthermore,
when we consider a minimal action on a lamination system which has a non-leaf
ideal polygon, the orbit of end points of the ideal polygon is usually dense in S1.
This denseness gives the following lemma which is useful to analyze the action.

Lemma 10.7.19 Let G be a subgroup of Homeo+(S1), and L a G-invariant
lamination system. Assume that there is an ideal polygon G which is not a leaf,
and that vG(G ) =

⋃

g∈G
v(g(G )) is dense in S1. Then, for each I ∈ G, there is an

element gI in G such that for any J ∈ gI (G ), �(J ) properly lies on I , equivalently
v(gI (G )) ⊆ I .

Proof Choose I ∈ G. Since vG(G ) is dense in S1, there is p ∈ vG(G ) ∩ I . By
the definition of vG(G ), there is an element g in G such that p ∈ v(g(G )). Note
that G �= g(G ) since v(G ) �= v(g(G )). Since G is an ideal polygon and 3 ≤ |G |,
by Lemma 10.7.13, there are J in G, and J ′ in g(G ) such that (J ′)∗ ⊆ J . Hence,
for all K ∈ G, �(K) lies on J ′, and for all K ′ ∈ g(G ), �(K ′) lies on J . Since
for all K ′ ∈ g(G ), �(K ′) lies on J , then v(g(G )) ⊆ J̄ . Therefore, since p ∈ I ,
then J should be I . Since (J ′)∗ ⊆ J , for each I ′ ∈ g(G ) − {J ′}, I ′ ⊆ J . Choose
I ′ in g(G ) − {J ′}. If I ′ = J , then J ′ ⊆ (I ′)∗ = J ∗ and so J ′ = (I ′)∗ = J ∗since
(J ′)∗ ⊆ J . But in this case, g(G ) is the leaf �(I ′), which contradicts the assumption.
Therefore, I ′ � J = I .

Then we do the same process in I ′. Since vG(G ) is dense in S1, there is p′ ∈
vG(G ) ∩ I ′. By the definition of vG(G ), there is an element g′ in G such that p′ ∈
v(g′(G )). By Lemma 10.7.13, there are L in g(G ) and L′ in g′(G ) such that (L′)∗ ⊆
L. Hence, for all K ∈ g(G ), �(K) lies on L′ and for all K ′ ∈ g′(G ), �(K ′) lies on
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L. Since for all K ′ ∈ g′(G ), �(K ′) lies on L, then v(g′(G )) ⊆ L. Therefore, since
p′ ∈ I ′, L should be I ′. If I ′ ⊆ I , then g′ is the element that we want. Assume that
I ′ � I . Since I ′ � I , then ∂I ′ � I , that is, there is an element x in ∂I ′ such that
x /∈ I . Since I ′ ⊆ I then ∂I ′ ⊆ I . Therefore, x ∈ ∂I since x /∈ I . So, x ∈ ∂I ∩ ∂I ′.
If ∂I = ∂I ′, then I ′ = I or I ′ = I∗ since I and I ′ are nondegenerate open intervals.
However, this is a contradiction since I ′ � I . Thus, ∂I ′ ∩ ∂I = {x}.

In this case, if x /∈ v(g′(G )), then we are done. Assume that x ∈ v(g′(G )). Note
that v(g′(G )) ⊆ (L′)∗. Since (L′)∗ ⊆ I ′, x ∈ (L′)∗ ⊆ I ′ and x ∈ ∂I ′, so x ∈ ∂L′.
There is a unique element M in g′(G ) − {L′} such that x ∈ ∂M . Therefore, for
any N in g′(G ) − {L′,M}, N ⊆ I . Choose I ′′ in g′(G ) − {L′,M}. Finally, since
vG(G ) is dense in S1, there is p′′ ∈ vG(G ) ∩ I ′′. By the definition of vG(G ), there
is an element g′′ in G such that p′′ ∈ v(g′′(G )). Like the previous argument, we can
conclude that v(g′′(G )) ⊆ I ′′. Therefore, v(g′′(G )) ⊆ I . !�

10.8 Not Virtually Abelian Laminar Groups

In this section, we prove the following theorem which gives a condition which
guarantees that a laminar group is not virtually abelian.

Theorem 10.8.1 Let G be a subgroup of Homeo+(S1) and L be a G-invariant
lamination system. Suppose that there is an ideal polygon G on L which is not a
leaf. If vG(G ) is dense in S1, then G is not virtually abelian.

The denseness of vG(G ) allows some movements of intervals by an element of G.
So, the strategy of the proof of the above theorem is to analyze the fixed point set of
some element of G and to find contradictory configurations of fixed points by using
the denseness. Before proving the theorem, we define some notions about non-leaf
ideal polygons.

Definition 10.8.2 Let G be a subgroup of Homeo+(S1) and L a G-invariant
lamination system. For each g ∈ G and for each ideal polygon G of L, we define
the g-type of G as follows:

(1) The g-type of G is g-free if |v(G ) ∩ Fixg| = 0
(2) The g-type of G is g-sticky if |v(G ) ∩ Fixg| = 1
(3) The g-type of G is g-fixed if v(G ) ⊆ Fixg

In the following proposition, we can see that for each element g of G and for any
ideal polygon G of a lamination system L, G is one of these g-types.

Proposition 10.8.3 Let G be a subgroup of Homeo+(S1) and L a G-invariant
lamination system. Suppose that there is an ideal polygon G in L which is not a
leaf. For g ∈ G, if there are three distinct elements I1, I2 and I3 in G such that for
all i ∈ Z3 (i ∈ Zn means that the indices are modulo n), Ii contains a fixed point of
g, then G is g-fixed.
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Proof By Lemma 10.7.13, g(G ) = G or there are I in G and I ′ in g(G ) such that
I∗ ⊆ I ′. First, we consider the latter case. If I ′ = g(I), then I∗ ⊆ g(I). We
set I = (a, b)S1 . Then (b, a)S1 ⊆ (g(a), g(b))S1 and so a and b are not fixed
points of g. Moreover, for z ∈ (b, a)S1 , z ∈ (b, a)S1 ⊆ (g(a), g(b))S1 and so
g−1(z) ∈ (a, b)S1. Then since (a, b)S1 and (b, a)S1 are disjoint, z �= g−1(z) and so
g(z) �= z. Therefore, (b, a)S1 ⊆ S1 −Fixg and so [b, a]S1 ⊆ S1 −Fixg. However,
this implies that there is only one element in G whose closure contains a fixed point
of g and this is a contradiction by the assumption.

So, we assume that I ′ �= g(I). Choose K in G−{I, g−1(I ′)}. Denote K =
(x, y)S1 . Since (I ′)∗ ⊆ I and g(K) and I ′ are disjoint, g(K) ⊆ (I ′)∗ ⊆ I and
since I ⊆ K∗, g(K) ⊆ K∗, that is, (g(x), g(y))S1 ⊆ (y, x)S1 . This implies
that x and y are not fixed points of g. And for all w ∈ (x, y)S1 , g(w) ∈
(g(x), g(y))S1 ⊆ (y, x)S1 and since (x, y)S1 and (y, x)S1 are disjoint, g(w) �= w.
Therefore, (x, y)S1 ⊆ S1 − Fixg and so [x, y]S1 ⊆ S1 − Fixg. However, there
are exactly two elements I and g−1(I ′) of which the closures can contains fixed
points of g and this is a contradiction by the assumption. Thus, g(G ) = G is the
only possible case.

We set G = {(x1, x2)S1, (x2, x3)S1, · · · , (xn−1, xn)S1, (xn, x1)S1} and use Zn

as the index set. Note that since g(G ) = G, there is k ∈ Zn such that
(g(xi), g(xi+1))S1 = (xi+k, xi+1+k)S1 . If k �= 0 on Zn, then there is no fixed
point of g since for all i ∈ Zn, g(xi) = xi+k �= xi and g((xi, xi+1)S1) =
(xi+k, xi+1+k)S1 ⊆ (xi, xi+1)

∗
S1 . This is a contradiction since Fixg �= ∅ by the

assumption. Therefore, k = 0 on Zn. Thus, for all i ∈ Zn, g(xi) = xi and so G is
g-fixed. !�
Corollary 10.8.4 Let G be a subgroup of Homeo+(S1) and L be a G-invariant
lamination system. Let g be a nontrivial element of G with Fixg �= ∅. Suppose that
there is an ideal polygon G of L with 2 ≤ |v(G) ∩ Fixg|. Then, G is g-fixed.

By Corollary 10.8.4, we can see that all ideal polygons fall into one of the three
g-types defined in Definition 10.8.2. The following proposition is very classical but
since it will be frequently used, we include its proof for completeness.

Proposition 10.8.5 Let g and h be two elements of Homeo+(S1) and x an element
of S1. Suppose that gh = hg. Then, x is a fixed point of g if and only if h(x) is a
fixed point of g.

Proof Suppose that x is a fixed point of g. Then g(h(x)) = h(g(x)) = h(x) and so
h(x) is a fixed point of g. Conversely, suppose that h(x) is a fixed point of g. Then,
h(g(x)) = g(h(x)) = h(x) and since h is a bijection, g(x) = x. And so x is a fixed
point of g. !�

To start the proof of the main theorem, we should take a non-trivial element of
G which has a fixed point. The following lemma shows that there is a non-trivial
element of G under the conditions of the main theorem.

Lemma 10.8.6 Let G be a subgroup of Homeo+(S1) and L be a G-invariant
lamination system. Suppose that there is an ideal polygon G on L such that G is
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not a leaf and vG(G ) is dense in S1. Then, there is a nontrivial element g of G such
that Fixg �= ∅.

Proof Assume that there is no non-trivial element of G which has a fixed point.
Choose I ∈ G. By Lemma 10.7.19, there is an element g in G such that for any
K ∈ g(G ), �(K) properly lies on I . By Lemma 10.7.13, there is the element I ′ in
g(G ) such that (I ′)∗ ⊆ I and since �(I ′) properly lies on I , (I ′)∗ ⊆ I . If I ′ �= g(I),
then g(I) ⊆ (I ′)∗ and so g(I ) ⊆ (I ′)∗ ⊆ I ⊆ I . This implies that there is a
fixed point of g in I , but this contradicts the assumption. So, I ′ = g(I) is the
possible case. Then, choose J in g(G ) such that J ⊂ I. By Lemma 10.7.19, there
is an element h in G such that for any K ∈ hg(G ), �(K) properly lies on J . By
Lemma 10.7.13, there is an element J ′ in hg(G ) such that (J ′)∗ ⊆ J and since
�(J ′) properly lies on J , (J ′)∗ ⊆ J . If J ′ �= h(J ), then h(J ) ⊆ (J ′)∗ and so
h(J ) ⊆ (J ′)∗ ⊆ J ⊆ J . This implies that there is a fixed point of h in J , but this
contradicts the assumption. So J ′ = h(J ). Since g(I) = I ′, g(I) ⊆ J ∗ and so
h(g(I)) ⊆ h(J ∗) = h(J )∗ = (J ′)∗. Then,

h(g(I )) = h(g(I)) ⊆ (J ′)∗ ⊆ J ⊆ J ⊆ I ⊆ I .

This implies that the nontrivial element hg has a fixed point in I but this contradicts
the assumption. Thus, there is a nontrivial element of G which has a fixed point. !�

Before proving the virtual case, we show that G is non-abelian under the
condition of the main theorem.

Theorem 10.8.7 Let G be a subgroup of Homeo+(S1) and L be a G-invariant
lamination system. Suppose that there is an ideal polygon G on L which is not a
leaf. If vG(G ) is dense in S1, then G is non-abelian.

Proof Assume that G is abelian. By Lemma 10.8.6, there is a nontrivial element g in
G with Fixg �= ∅. First, if there are three distinct elements in G such that the closure
of each element contains a fixed point, then by Proposition 10.8.3,G is g-fixed. Since
for all h ∈ G, h(v(G )) ⊆ Fixg, so by Proposition 10.8.5, vG(G ) ⊆ Fixg. By the
assumption, vG(G ) is dense and so Fixg is dense in S1. Since Fixg is closed in
S1, Fixg = S1, but this implies that g is the trivial element of G and so it is a
contradiction.

If there are exactly two distinct elements I and J in G such that I ∩ Fixg �= ∅
and J ∩ Fixg �= ∅, then there is an element K in G such that K ∩ Fixg = ∅.
By Lemma 10.7.19, there is an element h in G such that for any L ∈ h(G), �(L)

properly lies on K . By Lemma 10.7.13, there is an element K ′ in h(G ) such that
(K ′)∗ ⊆ K and since �(K ′) properly lies on K , (K ′)∗ ⊆ K . Then at least one of
h(I) and h(J ) is not K ′. Without loss of generality, we may assume that h(I) �= K ′.
Then h(I) ⊆ (K ′)∗ ⊆ K and so h(I) ⊆ K. However, by Proposition 10.8.5,
h(I)∩Fixg �= ∅ since I ∩Fixg �= ∅, and so K ∩Fixg �= ∅. This is a contradiction
since K ∩ Fixg = ∅.
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Finally, if there is a unique element M in G such that M ∩ Fixg �= ∅, that
is, Fixg ⊆ M, then there are two distinct elements O1 and O2 in G such that
O1 ∩ Fixg = ∅ and O2 ∩ Fixg = ∅. For each i ∈ Z2, by Lemma 10.7.19, there
is an element fi in G such that for any P ∈ fi(G ), �(P ) properly lies on Oi . Fix
i ∈ Z2. By Lemma 10.7.13, there is an element O ′

i in fi(G ) such that (O ′
i )
∗ ⊆ Oi . If

O ′
i �= fi(M), then fi(M) ⊆ (O ′

i )
∗ ⊆ Oi and so fi(M) = fi(M) ⊆ Oi . However,

by Proposition 10.8.5, fi(M) ∩ Fixg �= ∅ since M ∩ Fixg �= ∅ and so this is a
contradiction since Oi ∩ Fixg = ∅. Therefore, for all i ∈ Z2, fi(M) = O ′

i . Then,
we get the following relations:

(1) f1(O1) ⊆ f1(M
∗) = f1(M)∗ = (O ′

1)
∗ ⊆ O1

(2) f1(O2) ⊆ f1(M
∗) = f1(M)∗ = (O ′

1)
∗ ⊆ O1

(3) f2(O1) ⊆ f2(M
∗) = f2(M)∗ = (O ′

2)
∗ ⊆ O2

(4) f2(O2) ⊆ f2(M
∗) = f2(M)∗ = (O ′

2)
∗ ⊆ O2

Let us consider two elements f1f2 and f2f1.

f1f2(O1) ⊆ f1(O2) ⊆ O1

and

f2f1(O1) ⊆ f2(O1) ⊆ O2.

However, this implies f1f2(O1) �= f2f1(O1) since O1 and O2 are disjoint, and so
this contradicts the assumption that G is abelian. Thus, G is non-abelian. !�

To improve this theorem, we need the following lemma. When we prove the
virtual case, we will take a finite index subgroup H of G and construct new
lamination system which is preserved by H . In this construction of the H -invariant
lamination system, we will collapse the original circle on which the G-invariant
lamination system is defined. The following lemma guarantees that there is a non-
leaf gap of the H -invariant lamination system.

Lemma 10.8.8 Let G be a subgroup of Homeo+(S1) and L a G-invariant
lamination system in which there is a non-leaf ideal polygon G0. Suppose that
vG(G0) is dense in S1. If H is a finite index subgroup of G, then there is a non-
leaf ideal polygon G in L which is g(G0) for some g ∈ G and has three elements
I1, I2 and I3 such that for all i ∈ Z3, Ii ∩ vH (G ) has nonempty interior.

Proof Since the case G = H is obvious, we assume that H is a proper subgroup
of G. Assume that for each g ∈ G, there are at most two elements in g(G0) which
contain interior points of vH (g(G0)). Since H has a finite index, we can denote
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H\G = {Hg1,Hg2, · · · ,Hgn} for some {g1, g2, · · · , gn} ⊆ G. Then, vG(G0) =
n⋃

i=1

vH (gi(G0)). So,

S1 = vG(G0) =
n⋃

i=1

vH (gi(G0)) =
n⋃

i=1

vH (gi(G0))

since vG(G0) is dense in S1. Since a finite union of nowhere dense sets is
nowhere dense and S1 is not nowhere dense, there is α1 ∈ {1, 2, · · · , n} such that
vH (gα1(G0)) has non-empty interior. Without loss of generality, we may assume
α1 = 1. Since vH (g1(G0)) has non-empty interior, there is a nondegenerate interval
J1 in S1 such that J1 ⊆ vH (g1(G0)). Denote J1 = (u1, v1)S1 . Since J1∩vH (g1(G0))

is dense in J1, there is a gap G1 such that G1 = h1g1(G0) for some h1 ∈ H and
J1 ∩ v(G1) �= ∅. Choose p1 ∈ J1 ∩ v(G1). By the assumption, there are exactly
two elements in G1 which contain (u1, p1)S1 or (p1, v1)S1 . Then, we can choose an
elements K1 in G1 such that K1 ∩ vH (g1(G0)) is nowhere dense in K1. Then,

K1 = K1 ∩ S1 = K1 ∩ vG(G0) = K1 ∩
n⋃

i=1

vH (gi(G0))

= K1 ∩
n⋃

i=1

vH (gi(G0)) =
n⋃

i=1

K1 ∩ vH (gi(G0)).

Since a finite union of nowhere dense sets is nowhere dense and since K1 is not
nowhere dense, there is an element α2 ∈ {2, · · · , n} such that K1 ∩ vH (gα2(G0))

has non-empty interior. Without loss of generality, we may assume α2 = 2. Since
K1 ∩ vH (g2(G0)) has non-empty interior, there is a nondegenerate interval J2 on
K1 such that J2 ⊆ K1 ∩ vH (g2(G0)). We set J2 = (u2, v2)S1 . Since vG(G0) is
dense in S1 and so E(L ) is dense in S1, there is a point q1 in E(L ) ∩ J2. There
is a leaf �1 such that q1 ∈ v(�1). By Lemma 10.7.13, there is L1 in �1 such that
L1 ⊆ K1. Then, one of L1 ∩ (u2, q1)S1 and L1 ∩ (q1, v2)S1 is non-empty and so
J2 ∩L1 is non-empty. Likewise, J2 ∩L∗1 is also non-empty. Since J2 ∩ vH (g2(G0))

is dense in J2, there is a gap G2 such that G2 = h2g2(G0) for some h2 ∈ H and
J2 ∩ L1 ∩ v(G2) �= ∅. By Lemma 10.7.13, there is M1 in G2 such that M∗

1 ⊆ L1.

Since J2∩L∗1 is non-empty, J2∩L∗1 ⊆ L∗1 ⊆ M1 and so M1∩vH (G2) has non-empty
interior. By assumption, this implies that there is K2 in G2 such that K2 ⊆ M∗

1 and
K2 ∩ vH (G2) is nowhere dense in K2. Moreover, K2 ⊆ M∗

1 ⊆ L1 ⊆ K1. Therefore,
K2 ∩ vH (G1) and K2 ∩ vH (G2) are nowhere dense in K2. If n = 2, then

K2 = K2 ∩ S1

= K2 ∩ vG(G0)
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= K2 ∩
2⋃

i=1

vH (gi(G0))

= K2 ∩
2⋃

i=1

vH (gi(G0))

=
2⋃

i=1

K2 ∩ vH (gi(G0))

= [K2 ∩ vH (g1(G0))] ∪ [K2 ∩ vH (g2(G0))
]

= [
K2 ∩ vH (G1)] ∪ [K2 ∩ vH (G2)].

However, this is a contradiction since a finite union of nowhere dense sets is nowhere
dense.

If n is greater than 3, choose m ∈ {2, · · · , n − 1}. Assume that for each i ∈
{1, 2, · · · ,m}, there is a gap Gi which is higi(G0) for some hi ∈ H and that there
is Km in Gm such that for all i ∈ {1, 2, · · · ,m}, Km ∩ vH (Gi ) are nowhere dense in
Km. Then,

Km = Km ∩ S1

= Km ∩ vG(G0)

= Km ∩
n⋃

i=1

vH (gi(G0))

= Km ∩
n⋃

i=1

vH (gi(G0))

=
n⋃

i=1

Km ∩ vH (gi(G0))

Since a finite union of nowhere dense sets is nowhere dense and since Km is not
nowhere dense, there is αm+1 ∈ {m+ 1, · · · , n} such that Km ∩ vH (gαm+1(G0)) has
non-empty interior. Without loss of generality, we may assume αm+1 = m+1. Since
Km ∩ vH (gm+1(G0)) has non-empty interior, there is a nondegenerate interval Jm+1
on Km such that Jm+1 ⊆ Km ∩ vH (gm+1(G0)). We set Jm+1 = (um+1, vm+1)S1 .

Since E(L ) is dense in S1, there is a point qm in E(L ) ∩ Jm+1. There is a
leaf �m such that qm ∈ v(�m). By Lemma 10.7.13, there exists Lm in �m such
that Lm ⊆ Km. Then, one of Lm ∩ (um+1, qm)S1 and Lm ∩ (qm, vm+1)S1 is non-
empty and so Jm+1 ∩ Lm is non-empty. Likewise, Jm+1 ∩ L∗m is also non-empty.
Since Jm+1 ∩ vH (gm+1(G0)) is dense in Jm+1, there is a gap Gm+1 such that
Gm+1 = hm+1gm+1(G0) for some hm+1 ∈ H and Jm+1 ∩ Lm ∩ v(Gm+1) �= ∅.
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By Lemma 10.7.13, there is Mm in Gm+1 such that M∗
m ⊆ Lm. Since Jm+1 ∩ L∗m

is non-empty, Jm+1 ∩ L∗m ⊆ L∗m ⊆ Mm and so Mm ∩ vH (Gm+1) has non-
empty interior. By assumption, this implies that there is Km+1 in Gm+1 such that
Km+1 ⊆ M∗

m and Km+1 ∩ vH (Gm+1) is nowhere dense in Km+1. Moreover,
Km+1 ⊆ M∗

m ⊆ Lm ⊆ Km. Therefore, for all i ∈ {1, 2, · · · ,m+1}, Km+1∩vH (Gi )

are nowhere dense in Km+1.
Finally, for each i ∈ {1, 2, · · · , n}, there is a gap Gi which is higi(G0) for some

hi ∈ H and there is Kn in Gn such that for all i ∈ {1, 2, · · · , n}, Kn ∩ vH (Gi ) are
nowhere dense in Kn. However,

Kn = Kn ∩ S1

= Kn ∩ vG(G0)

= Kn ∩
n⋃

i=1

vH (gi(G0))

= Kn ∩
n⋃

i=1

vH (gi(G0))

=
n⋃

i=1

Kn ∩ vH (gi(G0))

=
n⋃

i=1

Kn ∩ vH (Gi )

so this is a contradiction since a finite union of nowhere dense sets is nowhere dense.
We are done. !�

Let us prove the main theorem.

Theorem 10.8.9 Let G be a subgroup of Homeo+(S1) and L be a G-invariant
lamination system. Suppose that there is an ideal polygon G0 on L which is not a
leaf. If vG(G0) is dense in S1, then G is not virtually abelian.

Proof Suppose that H is a finite index subgroup of G. By Lemma 10.8.8, there is a
gap G which is g(G0) for some g ∈ G and has three elements I1, I2 and I3 such that
for all i ∈ Z3, Ii∩vH (G ) has non-empty interior on S1. Since vH (G ) has non-empty
interior, we can define m : S1 → S1 as the monotone map which collapses each
closure of connected component of S1 − vH (G ). Then, for each element h ∈ H ,
there is a unique element gh in Homeo+(S1) which makes the following diagram
commute:

S1 S1

S1 S1

h

m

gh

m
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since vH (S1) is preserved by the action of H . Define GH ≡ {gh ∈ Homeo+(S1) :
h ∈ H }. Then, GH is isomorphic to some quotient group of H. Let us define LH

as the family of nondegenerate open intervals (u, v)S1 such that there is I in L
such that m(v(�(I))) = {u, v}. By the construction of LH , LH is a GH -invariant
lamination system. Moreover, since G has three elements I1, I2 and I3 such that for
all i ∈ Z3, Ii ∩ vH (G ) has non-empty interior, there is a non-leaf ideal polygon GH

in LH such that m(v(G )) = v(GH). By the construction of GH and LH , vGH (GH )

is dense in S1. Therefore, by Theorem 10.8.7, GH is non-abelian and so H is also
non-abelian. Thus, G is not virtually abelian. !�

10.9 Existence of a Non-abelian Free Subgroup
in the Tight Pairs

In 2001, Calegari wrote a set of lecture notes entitled ‘Foliations and the geometriza-
tion of 3-manifolds’ [8], and later a large chunk of these notes became the book [10].
In these notes, Calegari introduced the notion of a tight pair to study special types
of laminar groups. We rephrase the definition below in terms of lamination systems.

Definition 10.9.1 Let G be a subgroup of Homeo+(S1), and L be a G-invariant
lamination system. The pair (L,G) is tight if L is very full and totally disconnected
and if for each I ∈ L, �(I) is not isolated, G acts on L minimally and the set of
non-leaf gaps consists of finitely many orbit classes under this action.

There is a familiar example which comes from the geodesic invariant laminations
of a peusdo-Anosov element of the mapping class group of a closed hyperbolic
surface. For example, take a pseudo-Anosov element [ϕ] ∈ Mod(S2) where S2 is
a genus 2 hyperbolic surface. By the definition of a pseudo-Anosov element, there
are two invariant geodesic laminations �+(unstable) and �−(stable). Since S2 is
hyperbolic, the universal covering is H2. The preimages of �± under the covering
map are two geodesic laminations of H2. Each of these laminations satisfies the
following properties.

(1) It is very full,
(2) there is no isolated leaf,
(3) it is totally disconnected, that is, there is no foliated open disk on H2,
(4) the action of π1(S2) is minimal, that is, the orbit of any leaf is dense in the

lamination, and
(5) the set of complementary regions falls into finitely many orbit classes under the

action of π1(S2).

So, we can see that the lamination systems induced from these laminations with
π1(S2) are tight pairs.

In [8], Calegari showed that there are two types of tight pairs, sticky pairs and
slippery pairs. (L,G) is a sticky pair if every gap of L has a vertex shared with
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another non-leaf gap, and is a slippery pair if no non-leaf gap of L shares a vertex
with other gaps. He constructed a dual R-tree to L in the case of a sticky pair. By
analyzing the G-action on this dual tree, the following theorem was obtained.

Theorem 10.9.2 (Calegari [8]) Suppose (L, π1(M)) is a sticky pair for some
closed irreducible 3-manifold M . Then M is Haken.

Full details of the proof of the above theorem are also presented in the Master’s
thesis of Te Winkel [32]. In this section, we study a general feature of tight pairs.

Proposition 10.9.3 Let (L,G) be a tight pair. Then for any leaf �, vG(�) =⋃

g∈G
v(g(�)) is dense in S1.

Proof Suppose that there is a leaf � of L such that vG(�) is not dense in S1. Then
there is a connected component K of S1 − vG(�). Since, by Corollary 10.7.15,
E(L ) is dense in S1, there is a p in E(L ) ∩K and so there is a leaf �′ of L with
p ∈ v(�′). Since the action of G is minimal, there is a sequence {gn}∞n=1 of G such
that gn(�) → �′. Then there is a sequence {Jn}∞n=1 of L such that for all n ∈ N,
gn(�) = �(Jn) and

I ′ ⊆ lim infJn ⊆ lim supJn ⊆ I ′

for some I ′ ∈ �′. By the choice of K , for each n ∈ N, we have either K ⊆ Jn or
K ⊆ J ∗n . Note that I ′ ∩K is not empty. Choose q ∈ I ′ ∩K . Since I ′ ⊆ lim infJn,

there is N in N such that q ∈
∞⋂

n=N

Jn. Therefore, for any n ≥ N , q ∈ K ⊆ Jn and

so K ⊆
∞⋂

n=N

Jn ⊆ lim inf Jn. However, K is not contained in I ′ and so this is a

contradiction. !�
Corollary 10.9.4 Let (L,G) be a tight pair. Then for any non-leaf gap G, vG(G )

is dense in S1.

Proposition 10.9.5 Let (L,G) be a tight pair. There is a non-leaf gap G.

Proof Since L is not empty, there exists an element I ∈ L. By the definition of
a lamination system, I∗ ∈ L. By Corollary 10.7.15, there is a p in E(L ) ∩ I∗.
So there is a J ∈ L such that p ∈ v(�(J )). If J ⊆ I , then p ∈ J ⊆ I and this
is a contradiction since p ∈ I∗. If J ∗ ⊆ I , then p ∈ J ∗ ⊆ I and this is also a
contradiction since p ∈ I∗. Therefore, either I � J or I � J ∗. So, {I, J ∗} or
{I, J } is a distinct pair, respectively. Thus, since L is totally disconnected, there is
a non-leaf gap which makes the distinct pairs separated. !�

By Theorem 10.8.9, tight pairs are not virtually abelian. Our goal here is to show
that a tight pair actually contains a non-abelian free subgroup as long as it does not
admits a global fixed point. We will use the following famous theorem of Margulis
which is analogous to the Tits alternative.
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Theorem 10.9.6 (Margulis [25]) Let G be a subgroup of Homeo+(S1). At least
one of the following properties holds:

(1) G contains a non-abelian free subgroup.
(2) There is a Borel probability measure on the circle which is G-invariant.

Let μ be a Borel probability measure on S1. We define the support of μ as the
complement of the union of measure zero open sets and denote it as supp(μ). We
have the following facts:

(1) supp(μ) is a closed subset of S1.
(2) For each p ∈ supp(μ) and each open neighborhood U of p, μ(U) > 0.
(3) If μ is also G-invariant where G is a subgroup of Homeo+(S1), then supp(μ)

is also G-invariant, that is, for each g ∈ G, g(supp(μ)) = supp(μ).

Lemma 10.9.7 Let (L,G) be a tight pair. Suppose that there is a Borel probability
measure μ on S1 which is G-invariant. Then for each non-leaf gap G of L, there is
a unique element I in G such that μ(I) = 1.

Proof Let G be a non-leaf gap. First, we want to show that there are at most two
positive measure elements in G. Suppose that there are three elements I0, I1 and I2
in G which are positive measure. Say that {Ii}i∈Z3 and choose i ∈ Z3. By
Lemma 10.7.19, there is a gi ∈ G such that for any J ∈ gi(G ), �(J ) properly
lies on Ii and by Lemma 10.7.13, there exist Li in G and L′i in gi(G ) such that
(L′i )∗ ⊆ Li . Since for all J ∈ gi(G ) which is not L′i , J ⊆ Li and so �(J ) lies on Li ,
so Li = Ii . If gi(Ii ) �= L′i , then gi(Ii ) ⊆ (L′i )∗ ⊆ Ii . Then, at least one of gi(Ii+1)

and gi(Ii+2) is contained in Ii . If, for some j ∈ Z3 − {i}, g(Ii) ∪ g(Ij ) ⊆ Ii , then
μ(g(Ii)) + μ(g(Ij )) ≤ μ(Ii) and since μ is G-invariant, μ(Ii) + μ(Ij ) ≤ μ(Ii),
and so μ(Ij ) ≤ 0. This is a contradiction since 0 < μ(Ij ). Therefore, gi(Ii ) = L′i .
Then for all i ∈ Z3, gi(Ii+1) ∪ gi(Ii+2) ⊆ gi(Ii )

∗ = (L′i )∗ ⊆ Li = Ii and so
μ(Ii+1)+ μ(Ii+2) = μ(gi(Ii+1))+ μ(gi(Ii+2)) ≤ μ(Ii). However,

μ(I1) ≥ μ(I2)+ μ(I3) ≥ {μ(I3)+ μ(I1)} + {μ(I1)+ μ(I2)}

and so

0 ≥ μ(I1)+ μ(I2)+ μ(I3).

This is a contradiction since μ(I1) + μ(I2) + μ(I3) > 0. Therefore, there are at
most two positive measure elements in G. This implies that there is at least one
measure-zero element J in G since G is a non-leaf gap. Now, we show that there
is an element I such that μ(I) = 1. By Lemma 10.7.19, there is g ∈ G such that
for any K ∈ g(G ), �(K) properly lies on J and by Lemma 10.7.13, there exist L
in G and L′ in g(G ) such that (L′)∗ ⊆ L. Then, L = J and (L′)∗ ⊆ L = J . So
μ((L′)c) = μ((L′)∗) ≤ μ(J ) = 0 and this implies that μ(L′) = 1. Thus, L′ is the
element I which we wanted. !�
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Now, we can get the same result in a leaf as the following lemma says.

Lemma 10.9.8 Let (L,G) be a tight pair. Suppose that there is a Borel probability
measure μ on S1 which is G-invariant. Then for each leaf �, there is a unique
element I in � such that μ(I) = 1.

Proof Let � be a leaf of L. By Proposition 10.9.5, there is a non-leaf gap G of
L. By the definition of gaps, � lies on an element J of G. Say that � = �(I) and
I ⊆ J . Choose K in G which is not J . By Corollary 10.9.4 and Lemma 10.7.19,
there is g in G such that v(g(G )) ⊆ K . There is K ′ in g(G ) such that K ′ ⊆ K . By
Proposition 10.9.3, there is g′ such that v(g′(�))∩K ′ �= ∅. Choose p in v(g′(�))∩K ′.
If K ′ ⊆ g′(I), then p ∈ g′(I∗) ⊆ (K ′)∗ = (K ′)c which is a contradiction since
p ∈ K ′. If K ′ ⊆ g′(I∗), then p ∈ g′(I) ⊆ (K ′)∗ which is also a contradiction since
p ∈ K ′. Therefore, we have either g′(I) � K ′ or g′(I∗) � K ′. So, either g′(I) ⊆ K

or g′(I∗) ⊆ K .
First, if I is positive measure, then J is also positive measure and, by

Lemma 10.9.7, μ(J ) = 1. Moreover, K is of measure zero. So g′(I∗) ⊆ K

and μ(I∗) = μ(g′(I∗)) = μ(g′(I∗)) ≤ μ(K) = 0. Therefore, μ(I∗) = 0 and so
μ(I) = 1.

Next, assume that μ(I) = 0. If μ(J ) = 0, then by Lemma 10.9.7 μ(J) = 0,
and so μ(I) ≤ μ(J) = 0. Therefore, μ(I) = 0 and so μ(I∗) = 1. If μ(J ) = 1,
then μ(K) = 0 by Lemma 10.9.7. Since 1 = μ(I∗) = μ(g′(I∗)) = μ(g′(I∗)),
g′(I∗) ⊆ K is not possible and so g′(I) ⊆ K is the possible case. Therefore,
μ(g′(I)) ≤ μ(K) = 0, and so μ(I) = 0. Thus, μ(I∗) = 1. !�

Finally, we prove the main theorem.

Theorem 10.9.9 Let (L,G) be a tight pair. Suppose that there is a Borel prob-
ability measure μ on S1 which is G-invariant. Then, the support supp(μ) of the
measure μ is a one point set.

Proof Let p be a point in supp(μ). First, if p ∈ E(L ), then there is a leaf � with
p ∈ v(�). By Lemma 10.9.8, there is a unique element I in � such that μ(I) = 1.
So, supp(μ) ∩ I∗ = ∅ by the definition of the support.

By Proposition 10.9.5, there is a non-leaf gap G and by Corollary 10.9.4, vG(G )

is dense in S1. So, there is g in G such that v(g(G )) ∩ I∗ �= ∅. Moreover, by
Lemma 10.7.13 , there is J in g(G ) such that J ∗ ⊆ I∗. Since I∗ is measure zero,
μ(J ) = 1 by Lemma 10.9.8. And since g(G ) is a non-leaf gap, there is K in g(G )

such that K ⊆ J ∗ and μ(K) = 0. Then by Corollary 10.9.4 and Lemma 10.7.19,
there is h in G such that v(h(g(G ))) ⊆ K . Therefore, we can choose L in h(g(G ))

such that L ⊂ K and so L ⊂ I∗.
By Proposition 10.9.3, vG(�) is dense so there is k in G such that v(k(�)) ∩

L �= ∅. Then by Lemma 10.7.13, M ⊆ L for some M ∈ k(�) which implies
k(p) ∈ v(k(�)) ⊂ L ⊂ I∗. However, since k(p) ∈ supp(μ), 0 < μ(I∗) which is a
contradiction. Thus p /∈ E(L ).
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So, by Lemma 10.7.14, there is a rainbow {In}∞n=1 at p. Applying Lemma 10.9.8
to each �(In), since p ∈ In, μ(In) = 1 for all n ∈ N. Therefore, μ({p}) =
μ(

∞⋂

n=1

In) = lim
n→∞μ(In) = 1 since μ is a finite measure. Thus, supp(μ) = {p}. !�

The following is an immediate corollary of the above theorem, since if there
are more than one global fixed point, one can find an invariant probability measure
supported on those points.

Corollary 10.9.10 Let (L,G) be a tight pair. There is at most one global fixed
point.

Now we state the main result of this section.

Corollary 10.9.11 Let (L,G) be a tight pair without global fixed points. Then, G
contains a non-abelian free subgroup.

Proof Suppose that there is a G-invariant Borel probability measure μ. Then by
Lemma 10.9.9 supp(μ) is a one point set. Since supp(μ) is G-invariant, so the
element of supp(μ) is a global fixed point. By assumption, this is a contradiction.
Therefore, there is no such measure. By Theorem 10.9.6, G contains a non-abelian
free subgroup. !�

10.10 Loose Laminations

A very full lamination system is loose if for any two non-leaf gaps G and G ′ with
G �= G ′, v(G ) ∩ v(G ′) = ∅. There are equivalent conditions in totally disconnected
very full lamination systems.

Lemma 10.10.1 ([1]) Let L be a totally disconnected very full lamination system.
Then L is loose if and only if the following conditions are satisfied:

(1) for each p ∈ S1, at most finitely many leaves of L have p as an endpoint.
(2) There are no isolated leaves.

A group acting on the circle with two loose invariant laminations with certain
conditions is called a pseudo-fibered triple. It was observed in the first author’s PhD
thesis [2] that each nontrivial element in the pseudo-fibered triple has at most finitely
many fixed points under the assumption that the fixed point set is countable, hence
countability of the fixed point sets is an underlying assumption in [1]. This section
should serve as an appendix to [1] in which we prove that additional assumption
that the fixed point sets are countable is not necessary.

In this section, we consider a pseudo-fibered triple which is a triple (L1,L2,G)

in which G is a finitely generated subgroup of Homeo+(S1), each nontrivial element
of G has at most countably many fixed points in S1 and Li are G-invariant very full
loose lamination systems with E(L1) ∩ E(L2) = ∅. Indeed, without the fixed
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point condition of G, we can induce the original definition, that is, each nontrivial
element of G has finitely many fixed points. Let us begin with a weaker version of
the definition of a pseudo-fibered triple.

Definition 10.10.2 Let G be a finitely generated subgroup of Homeo+(S1), and L1
and L2 be two G-invariant lamination system. Then a triple (L1,L2,G) is pseudo-
fibered if L1 and L2 are very full loose lamination systems with E(L1)∩E(L2) =
∅.

The disjoint endpoints condition of two lamination systems implies totally discon-
nectedness on lamination systems.

Proposition 10.10.3 ([1]) Let (L1,L2,G) be a pseudo-fibered triple. Then L1
and L2 are totally disconnected.

Proof This follows from Corollary 10.7.15 and Lemma 10.7.17. !�
The following proposition says that there is no sticky leaf on two lamination
systems.

Proposition 10.10.4 Let (L1,L2,G) be a pseudo-fibered triple, and G be a leaf in
L1. For each g ∈ G, we have either v(G ) ⊆ Fixg or v(G ) ⊆ S1 − Fixg.

Proof Fix g in G. If Fixg = ∅ or Fixg = S1, then this is obvious. Assume that
Fixg �= ∅ and Fixg �= S1. We set G = �((u, v)S1). If u ∈ Fixg and v ∈ S1−Fixg,
then for each n ∈ Z, gn(�((u, v)S1)) = �((gn(u), gn(v))S1) = �((u, gn(v))S1).
Since g(v) �= v, we have either (u, v)S1 � g((u, v)S1) = (u, g(v))S1 or
(u, g(v))S1 = g((u, v)S1) � (u, v)S1 . Therefore, there are infinitely many leaves
{gn(G )| n ∈ Z} in which u is an endpoint. However, by Proposition 10.10.3, L1
and L2 are totally disconnected and so we can apply Lemma 10.10.1 to L1. This
is a contradiction. If v ∈ Fixg and u ∈ S1 − Fixg, we can make a same argument
with G = �((v, u)S1). Thus, we are done. !�
With this proposition, we analyze the complement of the fixed points set of a non-
trivial element of G. First, we recall the following lemma.

Lemma 10.10.5 ([3]) Let g be a non-trivial orientation-preserving homeomor-
phism on S1 with 3 ≤ |Fixg|. Then any very full lamination system L which is
〈g〉-invariant has a leaf � in L such that v(�) ⊆ Fixg. Moreover, for any connected
component I of S1 − Fixg with I = (a, b)S1, at least one of a and b is an endpoint
of a leaf of L.

We can interpret this lemma in a pseudo-fibered triple setting as the following
proposition.

Proposition 10.10.6 Let (L1,L2,G) be a pseudo-fibered triple and g a nontrivial
element of G with 3 ≤ |Fixg|. For any connected component (u, v)S1 of S1−Fixg,
u ∈ E(Li ) and v ∈ E(Lj ) with i �= j ∈ {1, 2}.
Proof By Lemma 10.10.5 and the condition E(L1) ∩ E(L2) = ∅, this is obvious.

!�
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Proposition 10.10.7 Let (L1,L2,G) be a pseudo-fibered triple and g a nontrivial
element of G. Suppose that there are two distinct connected components I1 and I2
of S1 − Fixg such that I1 ∩ I2 = ∅. Then, for each i ∈ {1, 2}, there is no leaf � of
Li such that |v(�) ∩ I1| = |v(�) ∩ I2| = 1.

Proof Let I1 = (u1, v1)S1 and I2 = (u2, v2)S1 . Since I1 ∩ I2 = ∅,
|{u1, v1, u2, v2}| = 4 and since {u1, v1, u2, v2} ⊆ Fixg, 4 ≤ |Fixg|. Then we
can apply Proposition 10.10.6 to (u1, v1)S1 and so u1 ∈ E(Li ) and v1 ∈ E(Lj )

with i �= j ∈ {1, 2}. Assume that there is an element I in L1 ∪L2 such that

[v1, u2]S1 ⊆ I ⊂ I ⊂ (u1, v2)S1 . Since I ∈ C
(u1,v2)S1
v1 and C

(u1,v2)S1
v1 is preserved

by g and linearly ordered by the set inclusion by Proposition 10.7.9, we have either
I ⊆ g(I) or g(I) ⊆ I . Since ∂I ⊆ S1−Fixg, we have either I ⊆ g(I) or g(I ) ⊆ I .
So one of the two sequences {gn(�(I))}∞n=1 and {g−n(�(I))}∞n=1 converges to
(v1, u2)S1 and the other converges to (u1, v2)S1 . This implies that {u1, v1} ⊆ E(Li )

for some i ∈ {1, 2}. But this is a contradiction since E(L1)∩E(L2) = ∅. Therefore
there is no such I . So we are done. !�
Proposition 10.10.8 Let (L1,L2,G) be a pseudo-fibered triple and g a nontrivial
element of G with 3 ≤ |Fixg|. For any connected component I of S1 − Fixg, each
point of ∂I is isolated in Fixg.

Proof We set I = (u, v)S1 . Then by Proposition 10.10.6, u ∈ E(Li ) and v ∈
E(Lj ) with i �= j ∈ {1, 2}. Let us say that u ∈ E(L1) and v ∈ E(L2). Since
E(L1) ∩ E(L2) = ∅, u /∈ E(L2) and so by Lemma 10.7.14, u has a rainbow
{In}∞n=1 in L2. Since 3 ≤ |Fixg|, there is a fixed point w in Fixg − {u, v}. Note

that w ∈ (v, u)S1 . Since
∞⋂

n=1

In = {u}, there is IN in {In}∞n=1 such that {v,w} ⊆ I∗N .

So, we can assume that u ∈ In and {v,w} ⊆ I∗n for all n ∈ N and set In =
(un, vn)S1 . Then, we want to show that for all n ∈ N, vn ∈ (u, v)S1 and un ∈
(w, u)S1 . Since ϕ(un, u, vn) = 1 and ϕ(vn, v, un) = ϕ(un, vn, v) = 1, by the
cocycle condition on the four points (un, u, vn, v),

ϕ(u, vn, v)−ϕ(un, vn, v)+ϕ(un, u, v)−ϕ(un, u, vn) = ϕ(u, vn, v)−1+ϕ(un, u, v)−1 = 0

and so the only possible case is ϕ(u, vn, v) = ϕ(un, u, v) = 1. On the other hand,
since ϕ(un, u, vn) = 1 and ϕ(vn,w, un) = ϕ(un, vn,w) = 1, by the cocycle
conditions on the four points (un, u, vn,w),

ϕ(u, vn,w)−ϕ(un, vn,w)+ϕ(un, u,w)−ϕ(un, u, vn) = ϕ(u, vn,w)−1+ϕ(un, u,w)−1 = 0

and so the only possible case is ϕ(u, vn,w) = ϕ(un, u,w) = 1. Therefore, for all
n ∈ N, vn ∈ (u, v)S1 and un ∈ (w, u)S1 since ϕ(u, vn, v) = 1 and ϕ(w, un, u) =
ϕ(un, u,w) = 1.

Fix n in N. Since vn ∈ (u, v)S1 ⊆ S1 −Fixg, by Proposition 10.10.4, un ∈ S1 −
Fixg and so there is a unique connected component J of S1 −Fixg which contains
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un. Since un ∈ (w, u)S1 , we have J ⊆ (w, u)S1 and by Proposition 10.10.7, J ∩
[u, v]S1 �= ∅. Since v �= w, J ∩ [u, v]S1 ⊆ [w,u]S1 ∩ [u, v]S1 = {u} and so
J ∩[u, v]S1 = {u}. Therefore, u is isolated in Fixg. Likewise, v is isolated in Fixg.

!�
Now, we prove lemmas which will be used in the proof of the main theorem.

Lemma 10.10.9 Let (L1,L2,G) be a pseudo-fibered triple and g a nontrivial
element of G with 4 ≤ |Fixg|. Suppose that there is an isolated fixed point p of g.
Then there is an element I in L1 ∪L2 such that p ∈ v(�(I)) and |I ∩ Fixg| = 1.

Proof Since p is an isolated fixed point and 4 ≤ |Fixg|, there is a connected
component (p, q)S1 of S1 − Fixg which is a nondegenerate open interval. By
Proposition 10.10.8, q is also an isolated fixed point. So there is a connected
component (q, r)S1 of S1−Fixg. Since 4 ≤ |Fixg|, r �= p. By Proposition 10.10.6,
{p, r} ⊆ E(Li ) and q ∈ E(Lj ) with i �= j ∈ {1, 2}. Say that {p, r} ⊆ E(L1)

and q ∈ E(L2). Since E(L1) and E(L2) are disjoint, there is a rainbow {In}∞n=1

at q in L1 by Theorem 10.7.14. Since
∞⋂

n=1

In = {q}, there is IN in {In}∞n=1 such

that {p, r} ⊆ I∗N . We obtain that q ∈ IN ⊂ IN ⊆ (p, r)S1 . Since C
(p,r)

S1
q on

L1 is linearly ordered and preserved by g, g(IN) ⊆ IN or IN ⊆ g(IN). Note that
∂IN is contained in S1 − Fixg. So, g(IN ) ⊂ IN or IN ⊂ g(IN ). Then, one of the
two sequences {gk(�(IN))}∞k=1 and {g−k(�(IN))}∞k=1 converges to (p, r)S1 on L1.
Therefore, (p, r)S1 ∈ L1. !�
Lemma 10.10.10 Let (L1,L2,G) be a pseudo-fibered triple and g a nontrivial
element of G with 5 ≤ |Fixg|. Suppose that there is an isolated fixed point p of g.
If I is an element in L1 ∪L2 such that p ∈ v(�(I)) and |I ∩ Fixg| = 1, then I∗ is
isolated.

Proof Without loss of generality, we can assume that there is such an element I in
L1. By Proposition 10.10.4, v(�(I)) ⊂ Fixg since p ∈ Fixg. Say I = (u, v)S1 and
denote the fixed point in I by q . By Proposition 10.10.8, there are two connected
components (x, u)S1 and (v, y)S1 of S1 − Fixg. Since 5 ≤ |Fixg|, x �= y.

Suppose that there is an I∗-side sequence {�n}∞n=1 on L1. There is a sequence
{In}∞n=1 on L1 such that �n = �(In) for all n ∈ N and I∗ ⊆ lim inf In ⊆
lim sup In ⊆ I∗. Since I∗ ⊆ lim inf In, there is an N such that {x, y} ⊆

∞⋂

n=N

In

and since lim sup In ⊆ I∗, there is an N ′ such that q /∈
∞⋃

n=N ′
In.

Fix n with n > max{N,N ′}. Then by the choice of n, {x, y} ⊆ In and q /∈ In.
From now on, we show In � I∗. If I∗n ⊆ I∗, then q ∈ I ⊆ In which is
a contradiction since q /∈ In. If I∗ ⊆ I∗n , then {x, y} ⊆ In ⊆ I which is
a contradiction since {x, y} ⊆ I∗. Hence, In ⊆ I∗ or I∗ ⊆ In. Then, since
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�(I) �= �(In), In � I∗ or I∗ � In. Therefore, since �(In) lies on I∗, In � I∗
is the only possible case.

Say In = (a, b)S1. By assumption, {x, y} ⊆ In. So, we want to show that
[y, x]S1 ⊂ (a, b)S1 . Choose z ∈ (y, x)S1 . Since z ∈ (y, x)S1 and q ∈ (x, y)S1 , we
get ϕ(y, z, x) = 1 and ϕ(x, q, y) = 1, respectively. This implies that ϕ(x, q, z) = 1
and ϕ(y, z, q) = 1. Since {x, y} ⊆ In and q ∈ I ⊆ I∗n , we get ϕ(a, x, b) = 1
and ϕ(b, q, a) = 1, respectively. This implies ϕ(b, q, x) = 1. Likewise, since
{x, y} ⊆ In and q ∈ I∗n , we get ϕ(a, y, b) = 1 and ϕ(b, q, a) = 1, respectively.
This implies ϕ(a, y, q) = 1. Therefore, since ϕ(x, q, z) = ϕ(b, q, x) = 1,
ϕ(q, z, b) = 1 and since ϕ(y, z, q) = ϕ(a, y, q) = 1, ϕ(q, a, z) = 1. Finally,
by applying the cocycle condition to four points (a, z, q, b),

ϕ(z, q, b)− ϕ(a, q, b)+ ϕ(a, z, b)− ϕ(a, z, q) = 0

and so

(−1)− (−1)+ ϕ(a, z, b)− 1 = 0.

Hence, ϕ(a, z, b) = 1 and so we can conclude that (y, x)S1 ⊂ (a, b)S1. Thus, since
{x, y} ⊆ In, [y, x]S1 ⊂ (a, b)S1 .

We have shown that [y, x]S1 ⊂ (a, b)S1 � (v, u)S1 . Then a ∈ [v, y)S1 and b ∈
(x, u]S1 . By Proposition 10.10.4, {a, b} = {u, v} or a ∈ (v, y)S1 and b ∈ (x, u)S1 .
If {a, b} = {u, v}, this is a contradiction since (a, b)S1 � (v, u)S1 . Therefore, a ∈
(v, y)S1 and b ∈ (x, u)S1 . However, by Proposition 10.10.7, this is a contradiction.
Thus, I∗ is isolated. !�
Lemma 10.10.11 Let (L1,L2,G) be a pseudo-fibered triple and g a nontrivial
element of G with Fixg �= ∅. Suppose that there is a non-leaf gap G of Li for some
i ∈ {1, 2}. If there is an isolated fixed point in v(G ), then v(G ) ⊆ Fixg and for all
I ∈ G, |I ∩ Fixg| = 1.

Proof Without loss of generality, we can assume that G is a gap on L1. Denote
the isolated fixed point by p. By Proposition 10.10.4 we can derive v(G ) ⊆ Fixg.
Since G is a non-leaf gap, 3 ≤ |Fixg|. Then, for each J ∈ G, 1 ≤ |J ∩ Fixg|. If
not, there is an element J in G such that J ∩ Fixg = ∅. This implies that J is a
connected component of S1 − Fixg. But this contradicts Proposition 10.10.6. So,
we also conclude 6 ≤ |Fixg|.

Let us set p = x1 and G = {(x1, x2)S1, (x2, x3)S1, · · · , (xn−1, xn)S1, (xn, x1)S1}.
We use Zn as the index set. First, assume that xi is an isolated fixed point for
some i ∈ Zn. Since xi is isolated, there is a connected component (xi, x

′
i )S1 .

Since (xi, x
′
i )S1 ⊆ (xi, xi+1)S1 and 1 ≤ |(xi, xi+1)S1 ∩ Fixg|, so xi �= x ′i and

(xi, x
′
i )S1 � (xi, xi+1)S1 . By Proposition 10.10.8, x ′i is also an isolated fixed point

and so there is a connected component (x ′i , x ′′i ) of S1 − Fixg. Then there are two
cases. One is (xi, x

′′
i )S1 = (xi, xi+1)S1 and the other is (xi, x

′′
i )S1 � (xi, xi+1)S1 .

Assume that (xi, x ′′i )S1 � (xi, xi+1)S1 . By Proposition 10.10.6, {xi, x ′′i } ⊆ E(L1)
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and x ′i ∈ E(L2). Then by Theorem 10.7.14, there is a rainbow {In}∞n=1 at x ′i on

L1 since E(L1) ∩ E(L2) = ∅. Since
∞⋂

n=1

In = {x ′i}, there is IN in {In}∞n=1 such

that {xi, x ′′i } ⊆ I∗N . Then IN ∈ C
(xi,x

′′
i )S1

x ′i
with IN ⊂ (xi, x

′′
i )S1 . Since C

(xi,x
′′
i )S1

x ′i
is

preserved by g and v(�(IN )) ⊆ S1 − Fixg, g(IN ) ⊂ IN or IN ⊂ g(IN ). So, one of
two sequences {�(gk(IN ))}∞k=1 and {�(g−k(IN))}∞k=1 converges to (xi, x

′′
i )S1 on L1.

Therefore, (xi, x ′′i ) ∈ L1. By Lemma 10.10.10, (xi, x ′′i )∗S1 is isolated. Therefore,
by Lemma 10.7.12, there is a non-leaf gap G ′ of L1 which contains (xi, x

′′
i )S1 ,

However, by the definition of looseness, this is a contradiction since G ′ �= G and
xi ∈ v(G ) ∩ v(G ′). Thus, (xi, x

′′
i )S1 = (xi, xi+1)S1 is the possible case. So,

(xi, xi+1)S1 contains only one fixed point and by Proposition 10.10.8 xi+1 is an
isolated fixed point. Therefore, since x1 is an isolated fixed point, we are done.

!�
Let us prove the main theorem.

Theorem 10.10.12 Let (L1,L2,G) be a pseudo-fibered triple and g a nontrivial
element of G. Then |Fixg| < ∞.

Proof It is enough to show the case 5 ≤ |Fixg|. Assume 5 ≤ |Fixg|. Since g

is nontrivial, S1 − Fixg is nonempty and so there is a connected component I of
S1 − Fixg which is a nondegenerate open interval. By Proposition 10.10.8, for
each p ∈ ∂I , p is an isolated fixed point. Choose p ∈ ∂I . By Lemma 10.10.9,
there is an element J in L1 ∪L2 such that p ∈ v(�(J )) and |J ∩ Fixg| = 1.
Without loss generality, say J ∈ L1. Then, by Lemma 10.10.10, J ∗ is isolated and
so by Lemma 10.7.12, there is a non-leaf gap G such that J ∈ G. Therefore, by
Lemma 10.10.11, v(G ) ⊆ Fixg and for all K ∈ G, |K ∩ Fixg| = 1. This implies
|Fixg| < ∞. !�

10.11 Future Directions

We conclude the chapter by suggesting some future directions. As we saw in
Corollary 10.9.11, if (L,G) is a tight pair, then G contains a nonabelian free
subgroup as long as it does not admit a global fixed point. Indeed, one can show that
a sticky pair has no global fixed point, hence the group of the sticky pair necessarily
contains a nonabelian free subgroup (the proof will be contained in an upcoming
paper of the authors). Although it seems more difficult to determine if a slippery
pair has no global fixed point, we propose the following conjecture.

Conjecture 10.11.1 Suppose (L,G) is a tight pair, then G admits no global fixed
point (therefore, it contains a nonabelian free subgroup).
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Another direction is to study further properties of pseudo-fibered triples. In [1],
the following conjecture based on observations in [2, 3] was proposed.

Conjecture 10.11.2 ([1]) Let (G,L1,L2) be a pseudo-fibered triple. Suppose G

is finitely generated, torsion-free, and freely indecomposable. Then one of the
following three possibilities holds:

1. G is virtually abelian.
2. G is topologically conjugate into PSL2(R).
3. G is isomorphic to a closed hyperbolic 3-manifold group.

By Theorem 10.5.2 (or its simplified version), the second possibility of Conjec-
ture 10.11.2 holds if there exists a third invariant lamination which is compatible
with other L1,L2. The following theorem is a combination of two main theorems
of [1] on pseudo-fibered triples.

Theorem 10.11.3 ([1]) Suppose G is a group as in Conjecture 10.11.2.

1. G satisfies a type of Tits alternative. Namely, each subgroup of G either contains
a nonabelian free subgroup or is virtually abelian.

2. If G purely consists of hyperbolic elements, then G acts on S2 as a convergence
group.

The 2-sphere that appears in the second part of Theorem 10.11.3 is obtained
as a quotient of the circle on which the group G acts. The quotient map is the
map collapsing laminations L1 and L2 which is analogous to the famous Cannon–
Thurston map constructed in the seminal paper [13]. The study of the induced action
on S2 in our work was largely influenced by Fenley’s work [16].

One strategy to achieve the third possibility of Conjecture 10.11.2 is to first
strengthen the second part of Theorem 10.11.3. Namely, one may try to show that
if G contains both hyperbolic and non-hyperbolic elements, then G acts on S2 as
a uniform convergence group. Then by a theorem of Bowditch [6], G is word-
hyperbolic and S2 is equivariantly homeomorphic to its boundary. Hence, if one
can prove Cannon’s conjecture in this setting, one ends up with the third possibility
of Conjecture 10.11.2. Perhaps as an intermediate step, one may try the following
conjecture.

Conjecture 10.11.4 Suppose G is a group as in Conjecture 10.11.2, and assume G

is not virtually abelian. Then G is word-hyperbolic.
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Chapter 11
Length Functions on Currents
and Applications to Dynamics
and Counting

Viveka Erlandsson and Caglar Uyanik

Abstract The aim of this chapter is twofold. We first explore a variety of length
functions on the space of currents, and we survey recent work regarding applications
of length functions to counting problems. Secondly, we use length functions to
provide a proof of a folklore theorem which states that pseudo-Anosov homeomor-
phisms of closed hyperbolic surfaces act on the space of projective geodesic currents
with uniform North-South dynamics.
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11.1 Introduction

Geodesic currents are measure theoretic generalizations of closed curves on hyper-
bolic surfaces and they play an important role, among many other things, in the study
of the geometry of Teichmüller space (see, for example, [5, 6]). The set of all closed
curves sits naturally as a subset of the space of currents, and various fundamental
notions such as geometric intersection number and length of curves extend to this
more general setting of currents.

The aim of this (mostly expository) chapter is twofold. We first explore a variety
of length functions on the space of currents, and we survey recent work regarding
applications of length functions to counting problems. Secondly, we use length
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functions to provide a proof of a folklore theorem which states that pseudo-Anosov
homeomorphisms of closed hyperbolic surfaces act on the space of projective
geodesic currents with uniform North-South dynamics, see Theorem 11.5.1.

More precisely, let S be a closed, orientable, finite type surface of genus
g ≥ 2 and denote the space of geodesic currents on S by Curr(S). By a length
function on Curr(S) we mean a function that is homogeneous and positive (see
Definition 11.2.2). There are many ways to define a length of a closed curve on
S: a Riemannian metric on S naturally induces a notion of length, a generating set
of π1(S) gives the notion of word length of a curve, and given a fixed (filling) curve
γ one can consider a combinatorial length given by the curves’ intersection number
with γ . We will see that all these notions of length give rise to continuous length
functions on Curr(S).

As a first example, in Sect. 11.2.6, we will see that Bonahon’s intersection form,
which is an extension of the geometric intersection number of curves to currents,
induces a continuous length function on Curr(S). We also use this intersection form
to prove the uniform North-South dynamics result mentioned above (see Sect. 11.5).

In Sect. 11.3 we explore other notions of length of curves that have continuous
extensions to length functions on Curr(S). In Sect. 11.3.1 we use Liouville currents
to extend the length of curves given by any (possibly singular) non-positively
curved Riemannian metric on S to a continuous length function on Curr(S), as
well as the word length with respect to so-called simple generating sets of π1(S)

(see Theorem 11.3.3 and Corollary 11.3.5). Next, we explore length functions with
respect to any Riemannian metric on S (respectively the word length with respect to
an arbitrary generating set) and explain why the corresponding stable lengths extend
to continuous length functions on Curr(S), see Theorem 11.3.6.

In Sect. 11.4, we apply the results of Sect. 11.3 to problems regarding counting
curves on surfaces. Mirzakhani [24, 25] proved that the asymptotic growth rate of
the number of curves of bounded hyperbolic length, in each mapping class group
orbit, is polynomial in the length (see Theorem 11.4.1 for the precise statement). We
explain how to use continuous length functions on Curr(S) to generalize her result
to other notions of length of curves, and show that the same asymptotic behavior
holds for all lengths discussed above (see Theorem 11.4.3 and Corollary 11.4.9).
These results appeared in [11–13] and here we attempt to give a clear outline of the
logic behind these proofs.

11.2 Background

11.2.1 Curves on Surfaces

Throughout this chapter, we let S be a closed, orientable, finite type surface of
genus g ≥ 2. By a curve γ on S we mean a (free) homotopy class of an immersed,
essential, closed curve. That is, the homotopy class of the image of an immersion
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of the unit circle S1 → S, where the image is not homotopic to a point. We say
the curve is simple if the immersion is homotopic to an embedding. We identify a
curve with its corresponding conjugacy class, denoted [γ ], in the fundamental group
π1(S). Furthermore, we assume curves to be primitive, that is γ �= ηk for any k > 1
and η ∈ π1(S). By a multicurve we mean a union of finitely many weighted curves,
that is

n⋃

i=1

aiγi

where ai > 0 and γi is a curve for each i. We say the multicurve is integral if ai ∈ Z

for all i, and that it is simple if the curves γi are simple and pairwise disjoint.

11.2.2 Teichmüller Space and the Mapping Class Group

A hyperbolic structure on a surface S is a collection of charts {(Ui, ψi)} such that

(1) {Ui} is an open cover of S,
(2) the map ψi : Ui → H2 is an orientation preserving homeomorphism onto its

image for each i,
(3) For each i, j such that Ui ∩ Uj �= ∅ the restriction of ψj ◦ ψ−1

i to each
component of Ui ∩ Uj is an element of Isom+(H2).

The surface S together with a hyperbolic structure is called a hyperbolic
surface. The Cartan–Hadamard theorem asserts that a closed hyperbolic surface is
isometrically diffeomorphic to H2/� where � is a torsion-free discrete subgroup of
Isom+(H2).

A marked hyperbolic surface is a pair (X, f ) where

(1) X = H2/� is a hyperbolic surface, and
(2) f : S → X is an orientation-preserving homeomorphism.

Given a marked hyperbolic surface (X, f ), we can pull back the hyperbolic
structure on X by f to one on S. Conversely, given a hyperbolic structure on S,
the identity map id : S → S makes (S, id) into a marked hyperbolic surface.

The Teichmüller space of S is the set Teich(S) = {(X, f )}/ ∼ of equivalence
classes of marked hyperbolic surfaces, where two hyperbolic surfaces (X, f ) and
(Y, g) are equivalent if g ◦ f−1 is homotopic to an isometry from X to Y .

The mapping class group Mod(S) of S is the group of isotopy classes of
orientation-preserving homeomorphisms of S; in other words,

Mod(S) = Homeo+(S)/Homeo0(S)
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where Homeo0(S) is the connected component of the identity in the orientation-
preserving homeomorphism group Homeo+(S).

The mapping class group Mod(S) acts on Teich(S) naturally by precomposing
the marking map, i.e. for ϕ ∈ Mod(S), and [(X, f )] ∈ Teich(S) choose a lift � ∈
Homeo+(S) of ϕ and define

ϕ[(X, f )] = [(X, f ◦�−1)].

11.2.3 Measured Laminations

A geodesic lamination on a hyperbolic surface S is a closed subset L of S that is a
union of simple, pairwise disjoint, complete geodesics on S. The geodesics in L are
called the leaves of the lamination. A transverse measure λ on L is an assignment
of a locally finite Borel (Radon) measure λ|k on each arc k transverse to L so that

(1) If k′ is a subarc of an arc k, then λ|k′ is the restriction to k′ of λ|k ;
(2) Transverse arcs which are transversely isotopic have the same measure.

A measured lamination is a pair (L, λ) where L is a geodesic lamination and λ

is a transverse measure. In what follows, we will suppress L and write λ for brevity.
The set of measured laminations on S is denoted by ML(S), and endowed with the
weak-* topology: a sequence λn ∈ ML(S) converges to λ ∈ ML(S) if and only if

∫

k

f dλn −→
∫

k

f dλ

for any compactly supported continuous function f defined on a generic transverse
arc k on S.

An easy example of a measured geodesic lamination is given by a simple
curve γ on S, together with the transverse measure λγ : for each transverse arc
k the transverse measure is the Dirac measure λγ |k which counts the number of
intersections with γ , i.e. for any Borel subset B of k, we have λγ |k(B) = |B ∩ γ |.
The set of measured geodesic laminations coming from weighted simple curves λγ

is dense in ML(S), see [27]. We denote the subset of ML(S) coming from simple
integral multicurves by MLZ(S).

Note that R+ acts naturally on ML(S) by scaling the transverse measure. The
space of projective measured laminations is defined as the quotient

PML(S) = ML(S)/R+

and the equivalence class of a measured geodesic lamination in PML(S) is denoted
by [λ]. We endow PML(S) with the quotient topology.

The space ML(S) of measured laminations is homeomorphic to R6g−6 and has a
Mod(S)-invariant piecewise linear manifold structure (see, for example, [27]). This
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piecewise linear structure is given by train track coordinates. We refer the reader to
[29] and [27] for a detailed discussion of train tracks and only recall the relevant
notions for our purposes.

Let τ be a smoothly embedded 1-complex in S, i.e. an embedded complex whose
edges are smoothly embedded arcs with well-defined tangent lines at the end-points.
A complementary region of τ is the metric completion of a connected component
of S \ τ . We say τ is a train track on S if in addition it satisfies the following
properties:

(1) at each vertex, called switch, the tangent lines to all adjacent edges agree
(2) at each vertex the set of adjacent edges can be divided into two sets according to

the direction of the tangent line; we require each of these sets to be non-empty
at every vertex

(3) doubling each complementary region gives a surface with singular points
having negative Euler characteristic χ = 2 − 2g − p (where g and p represent
the genus and the number of singular points, respectively).

A train track is called maximal if the complementary regions to τ are all triangles.
A simple closed curve, or more generally a measured lamination (L, λ), is

carried by τ if there is a smooth map g : S → S such that

(1) g : S → S is isotopic to the identity,
(2) the restriction of g to L is an immersion,
(3) g(L) ⊂ τ .

There is a finite collection of train tracks T = {τ1, τ2, . . . , τn} such that for
all λ ∈ ML(S) there is a τi ∈ T which λ is carried by. The set of measured
laminations carried by a train track is full dimensional if and only if the train track
is maximal and recurrent. Now, each maximal train track τ determines a cone C(τ)

in R6g−6, given by the solutions to the so called switch equations, and we have a
homeomorphism between all laminations carried by τ and C(τ). Moreover, the set
of integer points in C(τ) is in one to one correspondence with the simple integral
multicurves (i.e. elements of MLZ(S)) carried by τ .

11.2.4 Geodesic Currents

Consider a hyperbolic metric ρ on S and let S̃ be the universal cover equipped with
the pullback metric ρ̃. Let G(ρ̃) denote the set of complete geodesics in S̃. Let S1∞
denote the boundary at infinity of S̃. Note that since ρ̃ is hyperbolic and complete,
S̃ is isometric to H2 and its boundary is homeomorphic to the unit circle S1. Each
geodesic is uniquely determined by its pair of endpoints on S1∞. Hence we can
identify the set of geodesics with the double boundary

G(S̃) =
(
S1∞ × S1∞

)
\�)/(x, y) ∼ (y, x)
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where � denotes the diagonal. That is, G(S̃) consists of unordered pairs of distinct
boundary points, and we refer to it as the space of geodesics of S̃. Note that G(S̃) is
independent of the metric ρ. Indeed, if ρ′ is another geodesic metric on S, then the
universal cover S̃ equipped with the pullback metric ρ̃′ is quasi-isometric to H2 and
this quasi-isometry extends to a homeomorphism of the boundaries at infinity (see
[1] for the details). Hence G(S̃) is well-defined without a reference to a metric.

The fundamental group π1(S) acts naturally on S̃ by deck transformations, and
this action extends continuously to S1∞ and G(S̃). For any (geodesic) metric ρ the
map

∂ρ : G(ρ̃) → G(S̃)

that maps each geodesic to its pair of endpoints is continuous, surjective and π1(S)-
invariant, and a homeomorphism when ρ is negatively curved.

A geodesic current on S is a Radon measure on G(S̃) which is invariant under
the action of π1(S). We denote the set of all geodesic currents on S by Curr(S) and
endow it with the weak-* topology: A sequence μn ∈ Curr(S) of currents converges
to μ ∈ Curr(S) if and only if

∫

f dμn −→
∫

f dμ

for all continuous, compactly supported functions f : G(S̃) → R.
As a first example of a geodesic current, consider the preimage under the

covering map in S̃ of any closed curve γ on S, which is a collection of complete
geodesics in S̃. This defines a discrete subset of G(S̃) which is invariant under the
action of π1(S). The Dirac (counting) measure associated with this set on G(S̃) gives
a geodesic current on S.

The map from the set of curves on S to Curr(S) that sends each curve to its
corresponding geodesic current, as above, is injective. Hence, we view the set of
curves on S as a subset of Curr(S). In fact, Bonahon showed that the set of all
weighted curves is dense in Curr(S) [5]. We identify a curve γ with the current it
defines, and by abuse of notation we denote both by γ .

Another important subset of geodesic currents is given by measured laminations.
Let (L, λ) be a measured lamination and consider its preimage L̃ in S̃ which is a
collection of pairwise disjoint complete geodesics. The lift L̃ is a discrete subset of
G(S̃) which is π1(S)-invariant. Hence the associated Dirac measure on L̃ defines a
geodesic current on S. Moreover this measure agrees with the transverse measure λ,
see [1] for the details. Hence we view ML(S) as a subset of Curr(S) as well.

A current ν ∈ Curr(S) is called filling if every complete geodesic in S̃

transversely intersects a geodesic in the support of ν in G(S̃). Note that this
definition agrees with the classical notion of filling curves: a curve γ defines a filling
current if and only if γ is filling as a curve, i.e. S \ γ is a union of topological disks.
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11.2.5 Nielsen–Thurston Classification

Thurston defined a Mod(S)-equivariant compactification of the Teichmüller space
by the space of projective measured laminations and using the action of Mod(S) on
Teich(S) = Teich(S) ∪ PML(S) showed:

Theorem 11.2.1 (Nielsen-Thurston Classification) [14, 30] Each ϕ ∈ Mod(S) is
either periodic, reducible or pseudo-Anosov. Furthermore, pseudo-Anosov mapping
classes are neither periodic nor reducible.

Here ϕ ∈ Mod(S) is called periodic if there exist a k > 0 such that ϕk is the
identity. The map ϕ is called reducible if there is a collection C of disjoint simple
curves on S and a representative ϕ′ of ϕ such that ϕ′(C) is isotopic to C. Finally,
ϕ ∈ Mod(S) is called pseudo-Anosov if there exists a filling pair of transverse,
measured laminations (L+, λ+) and (L−, λ−), a number α > 1 called the stretch
factor, and a representative homeomorphism ϕ′ of ϕ such that

ϕ′(L+, λ+) = (L+, αλ+)

and

ϕ′(L−, λ−) = (L−, 1

α
λ−).

The measured laminations (L+, λ+) and (L−, λ−) are called the unstable lamina-
tion and the stable lamination respectively. We will suppress the L and write λ+
and λ− respectively.

11.2.6 Length Functions and the Intersection Number

Definition 11.2.2 A length function on the space of geodesic currents is a map
� : Curr(S) → R which is homogeneous and positive, i.e.

�(aμ) = a�(μ)

for any a > 0 and μ ∈ Curr(S), �(μ) ≥ 0 for all μ ∈ Curr(S) and �(μ) = 0 if and
only if μ = 0.

We say that a map � on the set of curves on S is a length function if it is a positive
function, i.e. �(γ ) > 0 for all curves γ on S. Note that this agrees with the definition
above, when viewing the set of curves as a subset of the space of geodesic currents.
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Given two curves γ, η on S, their (geometric) intersection number, denoted
i(γ, η), is defined as the minimum number of transverse intersections between
transverse representatives of the homotopy classes of γ and η. That is

i(γ, η) = min
{|γ ′ � η′| | γ ′ ∼ γ, η′ ∼ η

}

where ∼ denotes homotopic.
We note that i(γ, γ ) = 0 if and only if γ is a simple curve. Moreover, an

equivalent description of the intersection number of two distinct curves γ and η

is the following. Let ρ be a hyperbolic metric on S and S̃ be the universal cover
equipped with the pullback metric ρ̃. Let γ̃ be a geodesic representative of a lift of
γ to S̃. Consider the set of lifts of η and take their geodesic representatives. Let x
be a point on γ̃ that does not lie on a geodesic representative of any lift of η, and
consider the bounded segment δγ of γ̃ between x and γ (x). Then the intersection
number i(γ, η) is exactly the same as the number of the lifts of η that intersect
(necessarily transversely) δγ . This description of the intersection number will be
helpful below.

Viewing the set of curves as a subspace of the space of geodesic currents, it is
natural to ask if the intersection number extends, in a nice way, to Curr(S). Indeed,
Bonahon [6] showed that there is a unique continuous extension of the intersection
number to the space of geodesic currents:

Theorem 11.2.3 ([6, Proposition 4.5]) There is a unique continuous, symmetric,
bilinear form

i(·, ·) : Curr(S)× Curr(S) → R≥0

such that i(γ, η) agrees with the geometric intersection number whenever γ, η are
curves on S.

Here we give the definition of this intersection form and explain how it induces
length functions on Curr(S). For the definition we follow the exposition presented
in [1] and refer to that paper for more details. Let G�(S̃) ⊂ G(S̃) × G(S̃) be the
subset defined by

G�(S̃) =
{
({x, y}, {z,w}) ∈ G(S̃)× G(S̃) \� |{x, y}, {c, d} link

}

where � represents the diagonal and we say that {x, y} and {z,w} link if x and y

belong to different components of S1∞\{z,w}. Equivalently,G�(S̃) consists of pairs
of geodesics in S̃ that intersect transversely. The action of π1(S) on S̃ induces a free
and properly discontinuous action on G�(S̃) and hence the quotient map

G�(S̃) → G�(S̃)/π1(S)
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is a covering map. We define

G�(S) = G�(S̃)/π1(S).

Now, let μ, ν ∈ Curr(S). Then μ × ν is a product measure on G(S̃) × G(S̃) and
hence on G�(S̃). This descends to a measure on G�(S) by locally pushing forward
μ × ν through the covering map, and the intersection of μ and ν is defined as the
μ× ν-mass on G(S), that is,

i(μ, ν) =
∫

G�(S)

dμ× dν.

Let γ be a curve and identify it with the current it defines. Let μ ∈ Curr(S). Then
i(γ, μ) can be defined as follows. As above, choose a hyperbolic metric ρ on S and
consider the universal cover S̃ equipped with the pullback metric ρ̃. Take a lift of
γ and let γ̃ be its geodesic representative. Let x be a point on γ̃ and consider the
geodesic segment ηγ from x to γ (x). Let G�(ηγ ) denote the set of geodesics that
transversely intersect ηγ and ∂ρG�(ηγ ) the subset of G(S̃) obtained by identifying
each geodesic in G�(ηγ ) with its pair of endpoints on S1∞. Then

i(γ, μ) = μ
(
∂ρG�(ηγ )

)
,

see Fig. 11.1. In particular, we see that when μ is also (the current associated with) a
curve on S, then the intersection form agrees with the geometric intersection number
of curves on S.

We record some useful facts about the intersection form:

(1) If ν ∈ Curr(S) is filling, then i(ν, μ) �= 0 for all μ ∈ Curr(S) \ {0}.
(2) The intersection form is invariant under Mod(S). That is, if g ∈ Mod(S) then

i(μ, ν) = i(g(μ), g(ν)) for any μ, ν ∈ Curr(S).
(3) i(μ,μ) = 0 if and only if μ ∈ ML(S).

Fig. 11.1 Intersection of a
curve γ with a current μ:
i(γ, μ) = μ(I × J ). Here ηγ

is represented by the solid
blue segment and
∂ρG�(ηγ ) = I × J
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(4) If ν ∈ Curr(S) is filling and L > 0, then the set

{μ ∈ Curr(S) | i(μ, ν) ≤ L}
is a compact set.

The first two statements follow from the definition of the intersection form, while
the last two are results by Bonahon, see [5].

We define the space of projective geodesic currents to be

PCurr(S) = (Curr(S) \ {0}) /R+.

It follows from (4) above that PCurr(S) is a compact space.
Next we show how to obtain continuous length functions on Curr(S) from the

intersection form. Fix a filling current ν ∈ Curr(S). Define

�ν(μ) = i(ν, μ)

for all μ ∈ Curr(S). By the linearity and continuity of the intersection form, �ν is
continuous and homogenous on Curr(S). Furthermore, since ν is filling, it follows
from (1) above that �ν is positive. Hence the function above defines a continuous
length function

�ν : Curr(S) → R.

Moreover, this is the unique continuous extension of the length function on the set
of curves defined by

�ν(γ ) = i(ν, γ )

for all curves γ on S. In Sect. 11.3 we will see that many other notions of lengths of
curves have unique continuous extensions to length functions on Curr(S).

We end this section by noting that the intersection form can also be defined for
geodesic currents on surfaces with boundary, and we refer the reader to [10] for the
definitions. For simplicity of the exposition we assume throughout that S is a closed
surface although the results presented here have generalizations that also hold for
the case of compact surfaces.

11.3 Length Functions on Space of Currents

In Sect. 11.2.6 we saw that the geometric intersection number on the set of curves
extend continuously to a bilinear form on pairs of currents and hence, fixing a filling
curve (or current) ν, the length function

�ν(γ ) = i(ν, γ )
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on the set of curves, extends continuously to a length function on currents, defined
by

�ν(μ) = i(ν, μ)

for all μ ∈ Curr(S). There are many ways to define the length of a curve on a surface
and it is natural to ask which other notions of length extends continuously to the
space of currents. More concretely, let ρ be a (possibly singular) Riemannian metric
on S. Then ρ naturally induces a length function �ρ(·) on the set of curves where
the length of a curve γ is defined to be the ρ-length of a shortest representative of
γ . In the case when ρ is a negatively curved metric, this is the length of the unique
geodesic representative in the homotopy class of γ . Another natural length function
on the set of curves is given by first identifying a curve on S with a conjugacy class
in the fundamental group π1(S) and, for a fixed a generating set of π1(S), defining
the length of a curve to be the minimal number of generators needed to represent
the corresponding conjugacy class. In general, given a geodesic metric space (X, d)

on which π1(S) acts discretely and cocompactly by isometries, one can ask whether
the translation length of a curve γ

�X(γ ) = inf
x∈X d(x, γ (x)) (11.1)

extends continuously to a length function on the space of currents. Note that when
X is the universal cover of S equipped with a Riemannian metric, or X is the Cayley
graph with respect to a generating set of π1(S), this length agrees with the notions
described above.

We will see that in many cases such a continuous extension exists. In particular,
in Sect. 11.3.1 below, we explain why it exists for any (possibly singular) non-
positively curved Riemannian metric on S, through the use of Liouville currents
and their relation to the intersection form on Curr(S). Similar arguments show
that the word length with respect to certain (well-chosen) generating sets extends
continuously to a length function on the space of currents.

Alas, such a continuous extension does not always exist. However, as we will
see in Sect. 11.3.2, for any length function �X on curves as above, the stable length
function defined by

slX(γ ) = lim
n→∞

1

n
�X(γ n)

always extends continuously to a length function on Curr(S).
Finally, in Sect. 11.3.3, we will see that the two approaches of defining an

extension (using intersection with a special current, and considering the stable
length) are intimately related.
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11.3.1 Length of Currents Through Liouville Currents

In this section we explain how the length function of curves with respect to any
(possibly singular) non-positively curved Riemannian metric on S can be extended
continuously to a length function on the space of currents on S.

First, fix a hyperbolic metric ρ on S. The hyperbolic length of a homotopy class
of a closed curve γ is defined as the length of the ρ-geodesic representative, and
denoted by �ρ(γ ). There exists a current associated with ρ, called its Liouville
current and denoted by Lρ , whose intersection form with curves on S determines
the length function induced by ρ, that is:

i(γ, Lρ) = �ρ(γ ) (11.2)

for all curves γ on S.
Here we describe two equivalent definitions of the Liouville current and we refer

the reader to [1, 6, 17, 26] for more details.
First we define the Liouville measure L on the hyperbolic plane H2. Let G(H2)

denote the set of all bi-infinite geodesics in H2, which we identify with their
endpoints on the unit circle S1. Let [a, b] and [c, d] be two non-empty disjoint
intervals on S1. Define

L ([a, b] × [c, d]) =
∣
∣
∣
∣log

∣
∣
∣
∣
(a − c)(b − d)

(a − d)(b − c)

∣
∣
∣
∣

∣
∣
∣
∣ (11.3)

whenever a, b, c, d are four distinct points, and set L ([a, b] × [c, d]) = 0 if one
of the intervals is a singleton. The map L extends uniquely to a Radon measure on
G(H2) (see [6]) and is invariant under the action of π1(S) since the right-hand side
in (11.3) is invariant under this action. In the disk model of H2 we have, using local
coordinates (eiα, eiβ ),

Lρ = dαdβ

|eiα − eiβ |2

where dαdβ is the Lebesgue measure defined by the Euclidean metric on S1, and
in particular L is absolutely continuous with respect to the Lebesgue measure (see,
for example, [1]). Now, given a hyperbolic metric ρ on S the universal cover S̃ with
the pull-back metric ρ̃ is isometric to H2 and the boundary S1∞ is homeomorphic to
S1. We define Lρ , the Liouville current with respect to ρ, to be the pull-back of L

through this homeomorphism.
Alternatively, one can define the Liouville current in the following way. Let η̃ be

a ρ̃-geodesic arc in S̃, parametrized at unit-speed by η̃ : (−a, a) → η̃(t). Let G(η̃)

denote the set of all ρ̃-geodesics in S̃ that intersect η̃ transversely. Note that each
geodesic in G(η̃) is uniquely determined by its point of intersection η̃(t) with η̃ and
its angle of intersection (chosen in an arbitrary but consistent way). This gives rise
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to a homeomorphism

hη : (−a, a)× (0, π) → G(η̃).

Consider the measure on (−a, a)× (0, π) defined by

ds = 1

2
sin(θ)dθdt.

We push forward this measure through hη to obtain a measure on G(η̃). Lastly, we
further push the measure forward through the homeomorphism

∂ρ : G(ρ̃) → G(S̃)

which maps each geodesic inG(η̃) to its endpoints. The resulting measure is a Radon
measure on G(S̃). Furthermore, since π1(S) acts by isometries on S̃, the measure is
invariant under its action. This measure is the Liouville measure Lρ and agrees with
the previous definition.

While the closed formula in the first definition makes it easier to state, the
construction involved in the latter makes (11.2) more natural to see. Indeed,
integrating ds over G(η̃) for a unit-speed parametrized geodesic arc η̃ gives exactly
the length of η̃.

The existence of Liouville currents for hyperbolic metrics allows us to embed the
Teichmüller space of S into the space of geodesics currents, as shown by Bonahon
[6]. More precisely, let (X, f ) be a point in the Teichmüller space, and �X and LX be
the corresponding length function on curves and the Liouville current, respectively.
Then, we have:

Theorem 11.3.1 ([6]) The map

(X, f ) 	→ LX

defines an embedding Teich(S) ↪→ Curr(S) satisfying

i(γ, LX) = �X(γ )

for all curves γ on S.

Note that, since the intersection form is continuous and bilinear on Curr(S) ×
Curr(S), as discussed in Sect. 11.2.6, the hyperbolic length function has a continu-
ous extension to a length function on Curr(S) by setting

�ρ(μ) = i(μ,Lρ)
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for all μ ∈ Curr(S). The positivity of this function follows from the fact that the
Liouville current is filling and hence i(μ,Lρ) = 0 if and only if μ is the 0-current.
Moreover, this extension is unique due to the following theorem by Otal [26].

Theorem 11.3.2 ([26]) Suppose μ1, μ2 ∈ Curr(S). If i(μ1, γ ) = i(μ2, γ ) for all
curves γ on S, then μ1 = μ2.

More generally, let ρ be any metric on S, and let �ρ(γ ) denote the length of a
shortest representative in the homotopy class of a curve γ . We say Lρ is a Liouville
current for ρ if Eq. (11.2) holds, that is

i(γ, Lρ) = �ρ(γ )

for all curves γ on S. Note that when such a current exists it must be unique and is
necessarily a filling current, by the same theorem by Otal.

As explained above, a Liouville current exists for any hyperbolic metric on
S. Otal [26] showed the existence of a Liouville current for any (variable) nega-
tively curved metric on S. By work of Duchin-Leininger-Rafi [10] and Bankovic-
Leininger [3] such a current also exists for any non-positively curved Euclidean cone
metric on S. Finally, Constantine [9] extended these results to any non-positively
curved (singular) Riemannian metric, giving the Liouville current associated with
any such metric (in fact, also for the larger class of so-called no conjugate points
cone metrics, see [9] for the definition). We record a consequence of this sequence
of results here:

Theorem 11.3.3 ([9, Proposition 4.4]) Let ρ be any (possibly singular) non-
positively curved Riemannian metric on S and let �ρ(γ ) denote the ρ-length of a
shortest representative in the homotopy class of γ . Then the length function �ρ on
the set of curves extends continuously to a length function

�ρ : Curr(S) → R.

Moreover, this extension is unique.

We note that Liouville currents also exist in other settings. Notably, Martone–
Zhang proved the existence of such currents in the context of a large class of
representations, including Hitchin and maximal ones, see [22] for details.

From a more algebraic viewpoint, one can consider the word metric on π1(S)

with respect to a fixed generating set: We choose a base point p on S and identify
the elements of π1(S) with loops based at p. Since this group is finitely generated,
we choose a finite, symmetric generating set G = {g±1

1 , g±1
2 , . . . , g±1

n }. Given a
conjugacy class [γ ] (or, equivalently, a homotopy class of a curve γ ) we define the
word length of the conjugacy class [γ ] with respect to G to be

�G([γ ]) = min
{
|k1| + |k2| + · · · |km| | gk1

i1
g
k2
i2
· · · gkm

im
∈ [γ ]

}
.
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Fig. 11.2 A genus 2 surface
S with a simple
(non-minimal) generating
set G = {α±1, β±1,

γ±1, δ±1, η±1}

We say a generating set G is simple if the loops gi in G are simple and pairwise
disjoint except at the base point p (see Fig. 11.2 for an example). Note that there
are many such generating sets, including any one-vertex triangulation of S or the
standard generating set for a genus g surface {a1, b1, a2, b2, . . . ag, bg} with the
relation [a1, b1] · · · [ag, bg] = 1.

In [11] it is shown that, given a simple generating set G, there exists a collection
of curves ν = ν(G), depending only on the generating set, such that the word length
of a curve is given exactly by its geometric intersection number with this curve:

Theorem 11.3.4 ([11, Theorem 1.2]) Let G be a simple generating set for π1(S).
Then there exists a collection of curves ν = ν(G) on S such that

�G(γ ) = i(ν, γ )

for all curves γ in S. Moreover, ν is unique with this property.

By viewing the set of curves as a subset of Curr(S), if G is a simple generating
set for π1(S), then the above result says that there exists a (unique) Liouville current
associated with the corresponding word metric. In particular, it follows that the word
length extends continuously to the space of currents:

Corollary 11.3.5 ([11, Corollary 1.3]) Let G be a simple generating set for π1(S).
Then the word length with respect to G on the set of curves extends continuously to
a length function

�G : Curr(S) → R.

Moreover, this extension is unique.

11.3.2 Stable Length of Currents

There are many notions of lengths not covered by the Liouville currents explained
above. Two such occasions are the length of a curve with respect to a Riemannian
metric which attains positive curvature values at places, and the word length with
respect to a non-simple generating set. In fact, in these settings such currents do
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not necessarily exist. For instance, if we consider the word metric with respect to a
non-simple generating set then we observe that the length function cannot extend
continuously to a length function on the space of geodesic currents. To see this,
consider the case where S is the once-punctured torus and let a, b be the standard
generators for the free group π1(S). Then, the word length with respect to the
generating set G = {a±1, b±1, a±2}, does not extend to a continuous homogeneous

function on Curr(S). Indeed, the sequence of currents
(

1
2na

2nb
)

converges to the

current a as n → ∞ and hence if such a function �G existed, continuity would
imply that

�G

(
1

2n
a2nb

)

→ �G(a) = 1

while, on the other hand, homogeneity would imply

�G

(
1

2n
a2nb

)

= 1

2n
�G(a2nb) = n+ 1

2n
→ 1

2

as n →∞, a contradiction.
However, as shown in [13], if we consider the stable length of curves instead,

which we describe below, this length function always extends continuously to the
space of geodesic currents.

Let X be any geodesic metric space on which π1(S) acts discretely and
cocompactly by isometries. For a conjugacy class [γ ] in π1(S) (or, equivalently,
a curve γ on S), define its translation length �X(γ ) with respect to X as in (11.1).
Then the stable length of [γ ] is defined to be

slX(γ ) = lim
n→∞

1

n
�X(γ n) = lim

n→∞
1

n
inf
x∈X d(x, γ n(x)).

Again, this definition is independent of the choice of the representative in the
conjugacy class. In [13] it is shown that, with X as above, this notion of length
always extends continuously to Curr(S):

Theorem 11.3.6 ([13, Theorem 1.5]) Let X be a geodesic metric space on which
π1(S) acts discretely and cocompactly by isometries. Then the stable length function
slX on the set of curves extends continuously to a length function

slX : Curr(S) → R.

Moreover, this extension is unique.

The proof of Theorem 11.3.6 is rather involved, with the main difficulty being
how to define the stable length of a current, and we will not explain it here, but
we refer the reader to [13]. Instead we give some consequences of Theorem 11.3.6.
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If we equip S with any Riemannian metric and let X be its universal cover S̃ we
immediately get the following corollary:

Corollary 11.3.7 Let ρ be any Riemannian metric on S. For a curve γ , let �ρ(γ )

be the ρ-length of a shortest representative. Then the stable length defined by

stρ(γ ) = lim
n→∞

1

n
�ρ(γ

n)

has a unique continuous extension to a length function

stρ : Curr(S) → R+.

Similarly, if we let X be the Cayley graph with respect to a finite generating set
of π1(S) we also have:

Corollary 11.3.8 Let G be any finite generating set for π1(S). Let �G(γ ) denote
the shortest word length of a representative in the conjugacy class of γ . Then the
stable length defined by

stG(γ ) = lim
n→∞

1

n
�G(γ n)

has a unique continuous extension to a length function

stG : Curr(S) → R+.

We remark that in [13] Theorem 11.3.6 was proved in a more general setting,
namely when the surface group is replaced by any torsion free Gromov hyperbolic
group �. It is shown that in this setting, the corresponding stable length of a
conjugacy class extends to a continuous length function on the space of (oriented)
currents on �. This space, introduced by Bonahon [7] and denoted Curr(�), is
defined to be the set of �-invariant Radon measures on the double boundary

(∂� × ∂� \�)/ ∼

where ∂� is the Gromov boundary of � and where we identify (γ1, γ2) with (γ2, γ1)

(see, for example, [19]). Since we will not use this more general setting here we refer
to [7] and [13] for the precise definitions.

We also remark that Theorem 11.3.6 was proved by Bonahon [7] in the case when
X is “uniquely geodesic at infinity”, i.e. any two points on the (Gromov) boundary
at infinity of X determine a unique geodesic between them. However, this condition
is not satisfied in general for the universal cover of Riemannian metrics, nor for
Cayley graphs.

Finally we note that, in [7], Bonahon remarks that it should be possible to remove
not only the uniquely geodesic hypothesis, which Theorem 11.3.6 proves, but also
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the cocompact assumption. The proof of Theorem 11.3.6 in [13] still requires �

to act cocompactly on X and it is an interesting question whether it is a necessary
condition.

Question 11.3.9 Does Theorem 11.3.6 still hold for a surface group that acts
discretely, but not cocompactly on X?

It should be noted that the assumption on the action to be discrete cannot be
removed, as shown by Bonahon [7].

11.3.3 Stable Length as a Generalization of Intersection
Length

At first glance, extending length of curves to length functions on currents through
the intersection length or by considering the stable length might seem like very
different approaches. However, as we will observe below, the two notions can be
unified: given a filling current ν one can construct a metric space (X, d) on which
π1(S) acts discretely and cocompactly by isometries, and such that

slX(γ ) = i(ν, γ )

for all curves γ on S. The basis for our metric is a semi-distance presented by
Glorieux in [16], described below.

Fix a hyperbolic metric ρ on S and let S̃ be the universal covering equipped
with the pull-back metric. We define a metric space (X, d) in the following way.
As in Sect. 11.3.1, for a geodesic arc η̃ let G(η̃) denote the set of geodesics in
S̃ that intersect η̃ transversely. Let ∂ρG(η̃) denote the image of G(η̃) under the
homeomorphism that maps each geodesic to its pair of endpoints. Let ν be a filling
current in Curr(S). For two distinct points x, y ∈ S̃, define

d ′(x, y) = ν(∂ρG(η̃))

where η̃ is the geodesic arc connecting x and y. Set d ′(x, x) = 0 for all x ∈ S̃.
Note that d ′ is symmetric, i.e. d ′(x, y) = d ′(y, x), and d ′(x, y) ≥ 0 for all

x, y ∈ S̃ (although d ′ might not separate points, i.e. d ′(x, y) = 0 need not imply that
x = y). Furthermore, by the definition of the intersection number (see Sect. 11.2.6),
if x lies on the axis of an element γ ∈ π1(S) then

d ′(x, γ (x)) = i(ν, γ ). (11.4)
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Moreover, in [16] it is shown that

(1) d ′ satisfies the triangle inequality, i.e. d ′(x, y) ≤ d ′(x, z) + d ′(z, y) for all
x, y, x ∈ S̃,

(2) i(ν, γ ) ≤ d ′(x, γ (x)) for all x ∈ S̃ and γ ∈ π1(S).

In [16] d ′ was used to find the critical exponent for geodesic currents, here we
use it to construct our desired metric space. Define

X = S̃/ ∼

where x ∼ y if and only if d ′(x, y) = 0, equipped with the metric d induced by d ′.
That is,

d ([x], [y]) = d ′(x, y)

for all [x], [y] ∈ X, where x and y are any representatives of [x] and [y],
respectively. Using 11.3.3 above and Eq. (11.4) we see that the stable length with
respect to X agrees with the length function defined by the intersection with ν:

slX(γ ) = lim
n→∞

1

n
inf
x∈X d(x, γ n(x)) = lim

n→∞
1

n
i(ν, γ n) = i(ν, γ )

for any conjugacy class [γ ] in π1(S) (or, equivalently, any curve γ on S).
Since ν is π1(S)-invariant, π1(S) acts by isometries on (X, d) and, since the

action is cocompact on S̃ it is also cocompact on (X, d). Moreover, it is not hard to
see that π1(S) acts discretely on (X, d) since ν is filling: if there exists a sequence
(γn) in π1(S) and x ∈ S̃ such that d(x, γn(x)) → 0 as n → ∞, then, by 11.3.3,
i(ν, γn) → 0 as n →∞, contradicting the fact that ν is filling.

We have the following result:

Theorem 11.3.10 Let ν be any filling current. Then there exists a metric space X

on which π1(S) acts discretely and cocompactly by isometries such that

slX(γ ) = i(ν, γ )

for all curves γ on S. !�

11.4 Applications to Counting Curves

In [24, 25] Mirzakhani gives the asymptotic growth rate of the number of curves of
bounded length, in each Mod(S)-orbit, as the length grows.
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Theorem 11.4.1 ([24, 25, Theorem 1.1]) Let γ0 be a curve on S, and ρ be a
hyperbolic metric on S. Then

lim
L→∞

#{γ ∈ Mod(S) · γ0 | �ρ(γ ) ≤ L}
L6g−6

= Cγ0 ·mρ

for some Cγ0 > 0, and mρ = mTh({λ ∈ ML(S) | �ρ(λ) ≤ 1}) where mTh is the
Thurston measure on ML(S).

The constant Cγ0 in Theorem 11.4.1 is independent of the hyperbolic metric ρ.
In fact, Mirzakhani [24] showed that

Cγ0 =
nγ0

mg

where nγ0 > 0 depends only on γ0 and

mg =
∫

M
mρ dvolWP (11.5)

where the integral is taken over the moduli space

M = Teich(S)/Mod(S)

with respect to the Weil–Petersson volume form.
The Thurston measure is the natural Mod(S)-invariant locally finite measure on

ML(S) given by the piecewise linear structure coming from train track coordinates.
See Sect. 11.4.1 for details.

The purpose of this section is to discuss a generalization of the theorem of
Mirzakhani above, based on the previous section (see Theorem 11.4.3). We will
explain why the same asymptotic behavior as in Theorem 11.4.1 holds for other
metrics on S, in particular for any Riemannian metric. The results presented are
contained in [11, 12] and [13]. The idea behind the proof of the generalization to
other metrics crystallized over the above series of papers, so we provide a unified
but brief explanation for the statements and proofs of these results.

Remark 11.4.2 Theorem 11.4.1, as well as its generalization Theorem 11.4.3 below,
holds for any finite type, orientable surface of negative Euler characteristic (other
than the thrice punctured sphere). That is, we can allow S to have n punctures or
boundary components, and the same asymptotic behavior holds (where we replace
6g−6 in the exponent by 6g−6+2n). However, somewhat surprisingly, orientability
is a necessary condition. For non-orientable surfaces the theorems fail, see [15, 21].
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11.4.1 Thurston Measure

Recall, from Sect. 11.2.3, that the space ML(S) of measured laminations has a
Mod(S)-invariant piecewise linear manifold structure. Moreover, the PL-manifold
is equipped with a Mod(S)-invariant symplectic structure, which gives rise to a
Mod(S)-invariant measure in the Lebesgue class. This is the Thurston measure mTh.
It is infinite, but locally finite, and satisfies

mTh(L · U) = L6g−6 ·mTh(U)

for every Borel set U ⊂ ML(S) and L > 0 (see [29]). Furthermore, as shown by
Masur [23], the Thurston measure mTh is ergodic with respect to the Mod(S)-action
on ML(S), and is the only (up to scaling) invariant measure in the Lebesgue class.
Recall that a measure m is said to be ergodic with respect to Mod(S) if for every
Mod(S)-invariant Borel set U we have that either m(U) = 0 or m(Uc) = 0.

In this section we explain how one can see the Thurston measure (up to scaling)
as a limit of a sequence of measures, which gives perhaps a more intuitive feeling
of what this measure is.

For each L, define a measure on ML(S) by

mL = 1

L6g−6

∑

γ∈MLZ(S)

δ 1
L
γ

where δx denotes the Dirac measure centered at x and MLZ(S) is the subset of
ML(S) corresponding to integral multicurves. We will show that, as L →∞, these
measures converge to a multiple of the Thurston measure, i.e.

lim
L→∞

1

L6g−6

∑

γ∈MLZ(S)

δ 1
L
γ = c ·mTh (11.6)

for some c > 0. Note that each mL is Mod(S)-invariant, and hence so is any limit.
It is enough to show the convergence of the measures in each chart given by the

linear piecewise structure on ML(S). Hence we fix a maximal train track τ and let
C(τ) be the solution set to the switch equations of τ . The set C(τ) is a rational cone
of dimension 6g−6 in RE , where E is the number of edges of τ , and defines an open
set in ML(S) given by all measured laminations carried by τ . The integral simple
multicurves carried by τ correspond exactly to the integer points in C(τ) which in
turn, by the rationality of C(τ), we identify with a subset of Z6g−6. Accordingly,
we identify C(τ) with a cone C′(τ ) in R6g−6 such that C′(τ ) ∩ Z6g−6 correspond
to the integral multicurves carried by τ . Finally, we push forward mL through these
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identifications to a measure on R6g−6∩C′(τ ) which is the restriction of the measure

mL
τ = 1

L6g−6

∑

p∈Z6g−6

δ 1
L
p

(viewed as a measure on R6g−6) to the cone C′(τ ).
It is not hard to see that mL

τ converges to the Lebegue measure as L → ∞.
However, we include an outline for a proof of this statement here, since we will use
a similar argument in Sect. 11.4.2 concerning convergence of a family of measures
on the space of currents.

Note that the family (mL
τ )L is precompact in the space of Radon measures on

R6g−6, meaning that any sequence of measures has a subsequence that weakly
converges to a measure. Indeed, since the space of probability measures on a
compact metric space is compact, it is enough to show that

lim sup
L→∞

mL
τ (Rs) < ∞ (11.7)

where Rs is a (closed) cube of side length s in R6g−6. Clearly we have

(s − 1)6g−6 ≤ #Rs ∩ Z6g−6 ≤ (s + 1)6g−6 (11.8)

and so

mL
τ (Rs) = #{p ∈ Z6g−6 |p ∈ Rs·L}

L6g−6 ≤ (sL+ 1)6g−6

L6g−6

and the limit (superior) of the right hand side is finite. Hence (11.7) holds. Now let
m be any limit point of (mL

τ )L. Note that for each L, the measure mL
τ is invariant

under translation in the lattice ( 1
L
Z)6g−6. It follows that m is translation invariant

in R6g−6 and hence must be a multiple of the Lebesgue measure (since this is the
unique measure, up to scaling, with this property). For any (Ln)n with Ln → ∞
there exists a subsequence (Lnk )k such that

m
Lnk
τ → c · L

for some c > 0 as k → ∞, where L denotes the Lebesgue measure. Hence, to
prove (11.6) we need to show that c is independent of the subsequence. Note that,
as above,

mL
τ (R1) = #

{
p ∈ Z6g−6 |p ∈ RL

}

L6g−6
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and the right hand side converges as L →∞ by (11.8) to 1, that is, to the Lebesgue
measure of the unit cube R1. Hence the limit of the right hand side does not depend
on the subsequence and (11.6) follows.

11.4.2 Counting with Respect to Length Functions

Given a hyperbolic metric ρ on S and its corresponding Liouville current Lρ ,
one can replace the length function �ρ(·) in Theorem 11.4.1 with the intersection
function i(Lρ, ·). In view of this, one can consider the following generalization of
the limit appearing in the mentioned theorem:

lim
L→∞

#{γ ∈ Mod(S) · γ0 | i(ν, γ ) ≤ L}
L6g−6 (11.9)

where γ0 is a curve on S and ν is any filling current. (Note that we require ν

to be filling to guarantee that there are only finitely many curves with bounded
intersection number with ν). In particular, by letting ν be a Liouville current for
another metric, such as a variable negatively curved or Euclidean cone metric, this
is equivalent to asking if the limit (11.9) exists with respect to this metric.

In [12] it was shown that the limit in (11.9) exists for any filling current ν, and
in fact, more generally when the intersection function i(ν, ·) is replaced by any
continuous length function �(·) defined on the space of currents. Recall that we say
� is a length function on Curr(S) if it is homogeneous and �(μ) ≥ 0 for all currents
μ and �(μ) = 0 if and only if μ = 0.

Theorem 11.4.3 ([12]) Let � : Curr(S) → R be any continuous length function
and γ0 a curve on S. Then

lim
L→∞

#{γ ∈ Mod(S) · γ0 | �(γ ) ≤ L}
L6g−6 = Cγ0 ·m�

where Cγ0 > 0 is the same constant as in Theorem 11.4.1, and

m� = mTh ({λ ∈ ML(S) | �(λ) ≤ 1}) .

Here we give an outline of the arguments involved in proving Theorem 11.4.3,
and refer to [12] for the details.

The main idea to prove the convergence of the limit

lim
L→∞

#{γ ∈ Mod(S) · γ0 | �(γ ) ≤ L}
L6g−6 (11.10)

is to consider a sequence of measures on Curr(S) analogous to the measures on
ML(S) in Sect. 11.4.1. Let γ0 ∈ S be a curve and define, for each L > 0, a measure
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on Curr(S) by

mL
γ0
= 1

L6g−6

∑

γ∈Mod(S)·γ0

δ 1
L γ

.

Note that each mL
γ0

is locally finite and invariant under the action of Mod(S). In fact,
we will see that, as L →∞ they converge to a Mod(S)-invariant measure on ML(S)

that is absolutely continuous with respect to the Thurston measure, and hence, using
the ergodicity of mTh, they must converge to a multiple of this measure:

Theorem 11.4.4 ([12, 13, Theorem 5.1]) Let γ0 be any curve on S. Then

lim
L→∞mL

γ0
= Cγ0 ·mTh

where Cγ0 > 0 is the constant in Theorem 11.4.1.

First we explain why Theorem 11.4.4 implies Theorem 11.4.3. Fix a continuous
length function � : Curr(S) → R and let

B� = {μ ∈ Curr(S) | �(μ) ≤ 1}.

Note that the limit (11.10) is equivalent to

lim
L→∞mL

γ0
(B�).

The continuity of � implies that B� is a closed set. Also, for any measurable set U
satisfying U ∩ L · U = ∅ for any positive L �= 1, the scaling properties of the
Thurston measure imply that mTh(U) = 0. To see this, note that for all L �= 1

mTh(U ∪ L · U) = mTh(U)+mTh(L · U) = mTh(U)(1 + L6g−6)

and letting L → 1 we get mTh(U) = 2mTh(U), i.e. mTh(U) = 0. In particular,
mTh(∂B�) = 0. Hence, by the Portmanteau Theorem, see [4],

lim
L→∞mL

γ0
= Cγ0 ·mTh

implies that

lim
L→∞mL

γ0
(B�) = Cγ0 ·mTh(B�)

where we view mTh as a measure on Curr(S) with full support on the subspace
ML(S). Theorem 11.4.3 follows.



11 Length Functions and Applications to Dynamics and Counting 447

Next we outline the arguments proving Theorem 11.4.4. In an attempt to aid the
reader we first outline the main steps involved in the proof:

(1) Let mγ0 be any limit point of the family (mL
γ0
)L, and note that it is Mod(S)-

invariant.
(2) We show that mγ0 is supported on ML(S), and
(3) that mγ0 is absolutely continuous with respect to the Thurston measure mTh on

ML(S).
(4) Ergodicity of mTh with respect to Mod(S) together with the steps above,

implies that mγ0 = C ·mTh for some C > 0.
(5) Finally, using Mirzakhani’s theorem (Theorem 11.4.1) we show that the

constant C above does not depend on the subsequence and is in fact equal to
Cγ0 . Hence mL

γ0
→ Cγ0 ·mTh.

We formalize the conclusion of step 11.4.2 below:

Proposition 11.4.5 ([12, Proposition 4.1]) Let (Ln)n be any sequence of positive
numbers such that Ln →∞. Then there is a subsequence (Lnk )k such that

m
Lnk
γ0 → C ·mTh

for some C > 0, as k →∞.

As above, due to the Portmanteau Theorem, we get the following consequence:

Corollary 11.4.6 Let � : Curr(S) → R be a continuous length function and let
(Ln)n be any sequence of positive numbers such that Ln → ∞. Then there is a
subsequence (Lnk )k such that

m
Lnk
γ0 (B�) → C ·mTh(B�)

for some C > 0, as k →∞.

The key idea behind proving Proposition 11.4.5 is to associate to each (generic)
curve in Mod(S) · γ0 a simple multi-curve. Specifically, we define a map

πε
γ0
: �ε

γ0
→ MLZ(S)

where �ε
γ0
⊂ Mod(S) · γ0 is a generic subset such that

(1− ε)�(γ ) < �(πε
γ0
(γ )) < (1 + ε)�(γ ). (11.11)

We say a set � is generic if

#�

L6g−6 → 0
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as L → ∞. The existence of such a map results from the following observation,
which says that the expected angle of self-intersection of a long curve is arbitrarily
small.

Theorem 11.4.7 ([12, Theorem 1.2]) Let � (γ ) denote the largest angle among the
self-intersection angles of a curve γ . Let γ0 ⊂ S be a curve and ρ a hyperbolic
metric. Then

lim
L→∞

#{γ ∈ Mod(S) · γ0 | �ρ(γ ) ≤ L, � (γ ) ≥ δ}
L6g−6 = 0

for all δ > 0.

The proof of Theorem 11.4.7 is quite involved (see [12, Section 3.3]), but the
general idea is that large self-intersection angles result in ideal 4-gons on the surface
which most of the curves have to avoid. The set of curves on S which do not intersect
a 4-gon must live on a proper subsurface and hence the number of these curves of
length bounded by L must grow at a slower rate than L6g−6. This idea is inspired
by the fact that the subspace of ML(S) of measured laminations carried by non-
maximal train tracks (i.e. train tracks that have complementary regions larger than
triangles) has dimension strictly less than 6g − 6.

Armed with Theorem 11.4.7, we can resolve the self-intersections and end
up with a simple multi-curve whose length is close to the length of the original
curve (see [12, Section 3.4] for details), and this is the idea for the map πε

γ0
. In

particular, for any ε > 0 there is an angle bound δ > 0 such that any curve γ

with self-intersection angles less than δ is mapped to a simple multi-curve πε
γ0
(γ )

satisfying (11.11). These curves are what make up the generic set Sε
γ0

.
We fix ε > 0 and suppress the superscript in πε

γ0
for ease of notation. It is

clear that πγ0 is finite-to-one, but the main useful property of the map, and the
key technical difficulty of the proof (details of which will be omitted here, see [12,
Section 2.4]) is that it is uniformly bounded-to-1. That is:

Lemma 11.4.8 ([12, Proposition 3.9]) There exists a constant K = K(γ0) > 0
such that

|π−1
γ0

(λ)| < K (11.12)

for all λ ∈ MLZ(S).

We note that any limit point mγ0 is locally finite and Mod(S)-invariant since this
is true for each mL

γ0
. We then use Lemma 11.4.8 to show that any limit point is also

uniformly continuous with respect to the Thurston measure. To do so, we first push
forward the measure mL

γ0
via πγ0 resulting in the following measure supported on

ML(S):

nL
γ0
= 1

L6g−6

∑

λ∈MLZ(S)

|π−1
γ0

(λ)|δ 1
L
λ.
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It is not difficult to see that mγ0 is a limit point of the family (mL
γ0
)L if an only if

it is a limit point of the family (nL
γ0
)L. In particular, any limit point is supported on

ML(S), completing step 11.4.2.
Now, (11.12) implies that

nL
γ0
= 1

L6g−6

∑

λ∈MLZ(S)

|π−1
γ0

(λ)|δ 1
Lλ

< K · 1

L6g−6

∑

λ∈MLZ(S)

δ 1
Lλ

and the right hand side converges to a multiple of mTh as L → ∞ (see (11.6)). In
particular, any limit point of (nL

γ0
)L, and hence of (mL

γ0
)L, is absolutely continuous

with respect to the Thurston measure, completing step 11.4.2.
Next, recall that, by a result of Masur [23], the Thurston measure is ergodic with

respect to the action of Mod(S) on ML(S). Hence, since any limit mγ0 of (mL
γ0
)L is

invariant under this action and absolutely continuous with respect to the Thurston
measure, the only choice for mγ0 is a positive multiple of the Thurston measure. This
completes the argument for proving Proposition 11.4.5 (and hence step 11.4.2).

Finally, we use Mirzakhani’s result (Theorem 11.4.1) to complete the outline
of the proof of Theorem 11.4.4. We need to show that the constant C in Propo-
sition 11.4.5 is independent of the subsequence and that C is in fact equal to the
constant Cγ0 .

Let ρ be a hyperbolic metric on S and Lρ the corresponding Liouville current.
Let �ρ : Curr(S) → R be the length function defined by

�ρ(μ) = i(μ,Lρ)

which agrees with the hyperbolic length on curves. Following the notation above,
let

B�ρ = {μ ∈ Curr(S) | i(μ,Lρ) ≤ 1}.

By definition,

mL
γ0
(B�ρ ) =

#{γ ∈ Mod(S) · γ0 | �ρ(γ ) ≤ L}
L6g−6 .

By Theorem 11.4.1 we know that the right hand side converges to

Cγ0 ·mTh(B�ρ ).

In particular, mL
γ0
(B�ρ ) converges and by Corollary 11.4.6 it must converge to C ·

mTh(B�ρ ) for some C > 0. Hence we have C = Cγ0 , completing step 11.4.2, and
Theorem 11.4.4 follows.
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Lastly, we note Theorem 11.4.4 tells in particular that we have the asymptotic
growth

#{γ ∈ Mod(S) · γ0 | �(γ ) ≤ L} ∼ const · L6g−6

for any of the length functions � discussed in Sect. 11.3. In particular, this result
is true for the length induced by any non-positive (singular) Riemannian metric on
S as well as for the stable length with respect to a geodesic metric space X on
which π1(S) acts discretely and cocompactly by isometries (see Theorem 11.3.6).
However, in [13] it is shown that it is enough for the stable length to extend to
Curr(S) to conclude that the asymptotics above hold for the actual (translation)
length. In particular, it holds for any Riemannian metric on S.

Corollary 11.4.9 ([13, Corollaries 1.3 and 1.4]) Let γ0 be a curve on S. If ρ is
any (possibly singular) Riemannian metric on S and �ρ is the corresponding length
function on curves, then

lim
L→∞

#{γ ∈ Mod(S) · γ0 | �ρ(γ ) ≤ L}
L6g−6

exists and is positive. Similarly, if we replace the length function with the word
length with respect to any finite generating set of π1(S) then the corresponding
limit also exists and is positive.

11.4.3 Orbits of Currents

We end by remarking that one could also ask whether the limit in Theorem 11.4.3
exists if we look at the Mod(S)-orbit of any current instead of a curve. Rafi-Souto
proved that this is indeed the case:

Theorem 11.4.10 ([28, Main Theorem]) Let � : Curr(S) → R be a continuous
length function. For any filling current ν ∈ Curr(S) we have

lim
L→∞

#{μ ∈ Mod(S) · ν | �(μ) ≤ L}
L6g−6 = Cν ·m�

where Cν > 0 and m� = mTh({λ ∈ ML | �(λ) ≤ 1}).
The constant Cν , as in Theorem 11.4.1 is independent of � and can be written as

Cν = nν

mg

where mg is the same constant as in (11.5). However, in [28] the constant nν , in the
case when ν is filling, is also described:

nν = mTh({λ ∈ ML | i(ν, λ) ≤ 1}).
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The proof of Theorem 11.4.10 follows a similar logic to the proof of Theo-
rem 11.4.3 above. However, in order to generalize Proposition 11.4.5 to hold also
when γ0 is a filling current, Rafi and Souto combine this proposition together with a
deep result of Lindenstrauss–Mirzakhani [20] about the classifications of invariant
measures on ML(S).

We note that Theorem 11.4.10 holds also for surfaces with boundary, as do
Theorems 11.4.1 and 11.4.3, but unlike the latter two which also work for surfaces
with cusps, Theorem 11.4.10 requires S to be compact (or alternatively, that ν has
compact support).

As an application to Theorem 11.4.10, Rafi–Souto prove the asymptotic growth
of lattice points in Teichmüller space with respect to the Thurston metric. As before,
for a length function f : Curr(S) → R we let mf denote the constant

mf = mTh({λ ∈ ML(S) | f (λ) ≤ 1})

and we let mX denote the corresponding constant when f = �X, the hyperbolic
length on X ∈ Teich(S).

Theorem 11.4.11 ([28, Theorem 1.1]) Let X,Y ∈ Teich(S). Then

lim
R→∞

#{ϕ ∈ Mod(S) | dTh(X, ϕ(Y )) ≤ R}
e(6g−6)R

= mDXmY

mg

where dT h denotes the Thurston metric on Teich(S), mg is as above, and

DX(μ) = max
λ∈ML(S)

i(λ, μ)

�X(λ)
.

The analogous result of Theorem 11.4.11 when the Thurston metric is replaced
by the Teichmüller metric was proved, using different methods, by Athreya-
Bufetov–Eskin–Mirzakhani in [2].

11.5 Dynamics of Pseudo-Anosov Homeomorphisms

The purpose of this section is to give a concise proof of a folklore result using
Bonahon’s intersection function on the space of currents: pseudo-Anosov homeo-
morphisms of closed hyperbolic surfaces act on the space of projective geodesic
currents with uniform North-South dynamics.

Theorem 11.5.1 Let S be closed hyperbolic surface and ϕ : S → S be a pseudo-
Anosov homeomorphism. Then ϕ acts on the space of projective geodesic currents
PCurr(S) with uniform North-South dynamics: The action of ϕ on PCurr(S) has
exactly two fixed points [λ+] and [λ−] and for any open neighborhood U± of [λ±]
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and a compact set K± ⊂ PCurr(S) \ [λ∓], there exist an exponent M ≥ 1 such that
ϕ±n(K±) ⊂ U± for all n ≥ M .

The idea of the proof is as follows: The set of non-zero currents that have
zero intersection with the stable current/lamination is precisely the positive scalar
multiples of the stable current/lamination. Similarly, the set of non-zero currents that
has zero intersection with the unstable current/lamination is precisely the positive
scalar multiples of the unstable current/lamination, see Lemma 11.5.2.

Using Lemma 11.5.2 we define continuous functions J+ and J− on the space of
projective currents which take the value 0 only on [λ+] and [λ−] respectively. We
then use these functions to construct neighborhoods of [λ+] and [λ−] and use the
properties of intersection function to get convergence estimates.

The proof we present here is motivated by Ivanov’s proof of North-South
dynamics in the setting of projective measured laminations [18], and consists of
putting together a series of lemmas, which we first state and prove.

Lemma 11.5.2 Let ϕ : S → S be a pseudo-Anosov homeomorphism on a closed
hyperbolic surface and λ+ and λ− be the corresponding unstable and stable
laminations for ϕ. Then,

i(λ±, μ) = 0 if and only if μ = kλ±

for some k ≥ 0.

Proof Here we give a brief idea of the proof and refer the reader to proof of [31,
Proposition 3.1] for details in the case of non-closed surfaces, where the proof is
more involved. Let λ+ be the unstable lamination on S corresponding to the pseudo-
Anosov homeomorphism f . The proof for λ− is almost identical.

We first prove the easy direction of the statement. Namely, let μ = kλ+, and
α > 1 be such that ϕ(λ+) = αλ+. Then, by properties of the intersection number
we have

i(kλ+, λ+) = i(ϕn(kλ+), ϕn(λ+))

= i(αnkλ+, αnλ+)

= α2ni(kλ+, λ+)

which implies i(kλ+, λ+) = 0.
For the forward implication, we first cut the surface along the leaves of the

unstable lamination. The complementary regions are finite sided ideal polygons,
[8, Proposition 5.3]. Let μ be any current such that i(μ, λ+) = 0. Let � be any leaf
in the support of μ. Since the projection of this leaf onto the surface cannot intersect
the leaves of the unstable lamination transversely, there are two possibilities for
this projection. Either � projects onto a leaf of the lamination λ or it is a complete
geodesic that is asymptotic to two different sides of a complementary polygon. In
the second case, this leaf cannot support any measure, otherwise the corresponding
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current would not be locally finite. Hence μ and λ+ have the same support, and
unique ergodicity of λ+ implies that μ = kλ+. !�

Fix a filling current ν on S, and consider the following two functions J+, J− :
PCurr(S) → R≥0 defined by

J+([μ]) = i(μ, λ+)
i(μ, ν)

, J−[μ] = i(μ, λ−)
i(μ, ν)

where μ is any representative of [μ]. Note that J+, J− are well defined and
continuous since the intersection function is continuous and homogeneous, and the
denominator is non-zero by the choice of ν.

Lemma 11.5.3 Let α be the stretch factor for the pseudo-Anosov element ϕ and
let ν be a filling current. If K is a compact set in PCurr(S) \ [λ−], then there exist
C > 0 such that

1

i(ϕn(μ), ν)
≤ C

αni(μ, ν)

for all μ such that [μ] ∈ K .

Proof Since PCurr(S) is compact, there exist 0 < C1 < ∞ such that

J−([μ]) = i(μ, λ−)
i(μ, ν)

≤ C1

i.e.

i(μ, λ−) ≤ C1i(μ, ν)

for all nonzero μ ∈ Curr(S).
Furthermore, by Lemma 11.5.2 the quantity i(μ, λ−) is non-zero for any μ such

that [μ] ∈ PCurr(S) \ [λ−]. Therefore, by compactness of K , there exist C2 > 0
such that

i(μ, λ−) ≥ C2i(μ, ν)

for all μ with [μ] ∈ K .
From these two inequalities we obtain, for all μ such that [μ] ∈ K ,

i(ϕn(μ), ν) ≥ 1

C1
i(ϕn(μ), λ−) = 1

C1
i(μ, ϕ−n(λ−))

= 1

C1
i(μ, αnλ−)
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= 1

C1
αni(μ, λ−)

≥ C2

C1
αni(μ, ν).

Setting C = C1

C2
, the conclusion of the lemma follows.

!�
Lemma 11.5.4 Let U be an open neighborhood of [λ+] and K be a compact set in
PCurr(S) \ [λ−]. There exist M1 > 0 such that

ϕn(K) ⊂ U

for all n ≥ M1.

Proof Since i(μ, λ+) = 0 if and only if [μ] = [λ+], and PCurr(S) \U is compact,
the function J+([μ]) has a positive absolute minimum on the set PCurr(S) \U , say
ε > 0. Therefore, it suffices to prove that J+(ϕn[μ]) < ε for all [μ] ∈ K , and for
all large n in order to obtain the conclusion of the lemma.

On the other hand, PCurr(S) is compact, so the function J+([μ]) has an upper
bound, i.e. there exists 0 < D < ∞ such that

i(μ, λ+)
i(μ, ν)

≤ D

for all μ.

Let ε > 0 be as above, and choose M1 > 0 such that
DC

α2M1
< ε where α is

the stretch factor of ϕ and C is the constant given by Lemma 11.5.3. Then, for all
[μ] ∈ K we have

J+(ϕn[μ]) = i(ϕn(μ), λ+)
i(ϕn(μ), ν)

= i(μ, ϕ−n(λ+))
i(ϕn(μ), ν)

= α−ni(μ, λ+)
i(ϕn(μ), ν)

≤ Cα−ni(μ, λ+)
αni(μ, ν)

≤ DC

α2n
< ε

for all n ≥ M1. !�
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We are now ready to prove the theorem:

Proof of Theorem 11.5.1 Using an argument symmetric to the one in the proof of
Lemma 11.5.4, we can show that given any compact set K ⊂ PCurr(S) \ [λ−] and
an open neighborhood U of [λ−] there exist M2 > 0 such that ϕ−n(K) ⊂ U for all
n ≥ M2. The theorem now follows by setting M = max{M1,M2}. !�

In fact, we have much more precise information in terms of pointwise dynamics:

Theorem 11.5.5 Let α > 1 be the stretch factor for ϕ. Then, for any [μ] �= [λ−],

lim
n→∞ α−nϕn(μ) = cμλ+

for some cμ > 0, and for any [μ′] �= [λ+]

lim
n→∞ α−nϕ−n(μ′) = cμ′λ−

for some cμ′ > 0.

Proof The proof builds on the analogous result in the case of laminations, and
nearly identical to the case where S has boundary components, see the proof of
[31, Theorem 3.4]. !�

Recall, from Sect. 11.3.1, that given a hyperbolic metric ρ on S the hyperbolic
length extends to a continuous length function � on Curr(S) given by

�ρ(μ) = i(Lρ, μ)

for all μ ∈ Curr(S), where Lρ is the Liouville currents associated with ρ. As an
application to this we get as a corollary to the North-South dynamics the following
generalization, to all curves, of a well known result about simple closed curves:

Corollary 11.5.6 For any pseudo-Anosov homeomorphism ϕ : S → S of a closed,
orientable hyperbolic surface S, there exists M > 0 such that for any essential (not
necessarily simple) closed curve γ on S, either

�ρ(ϕ
kγ ) > �ρ(γ ) or �ρ(ϕ

−kγ ) > �ρ(γ )

for all k ≥ M .

Proof We will show that there exists M > 0 such that for all γ on S, the following
holds:

�(ϕkγ )+ �(ϕ−kγ )

�(γ )
> 2
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for all k ≥ M . Let Lρ be the Liouville current associated with the hyperbolic metric
ρ. Note that, for all k,

�ρ(ϕ
kγ ) = i(ϕkγ, Lρ) = i(γ, ϕ−kLρ)

and

�ρ(ϕ
−kγ ) = i(ϕ−kγ, Lρ) = i(γ, ϕkLρ).

Hence it suffices to prove that there exist M > 0 such that

i(γ, ϕkLρ)+ i(γ, ϕ−kLρ)

�ρ(γ )
> 2 (11.13)

for all γ and for all k ≥ M .
Let α > 1 be the stretch factor for ϕ and λ+ and λ− its unstable and stable

laminations, respectively. Using the properties of the intersection form we have

i(γk, ϕ
kLρ)+ i(γk, ϕ

−kLρ)

�ρ(γk)
= i

(
γk

�ρ(γk)
, ϕkLρ

)

+ i

(
γk

�ρ(γk)
, ϕ−kLρ

)

= αki

(
γk

�ρ(γk)
, α−kϕkLρ

)

+ αki

(
γk

�ρ(γk)
, α−kϕ−kLρ

)

Since the length of
γk

�ρ(γk)
is 1 for all k, they lie in a compact set and hence there

exist μ ∈ Curr(S) such that (up to passing to a subsequence)

lim
k→∞

γk

�(γk)
= μ.

On the other hand, Theorem 11.5.5 implies that, for some c0, c1 > 0

lim
k→∞ α−kϕkLρ = c0λ+ and lim

k→∞α−kϕ−kLρ = c1λ−.

Therefore, as k →∞,

i

(
γk

�ρ(γk)
, α−kϕkLρ

)

→ c0i(μ, λ+) and i

(
γk

�ρ(γk)
, α−kϕ−kLρ

)

→ c1i(μ, λ−).
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Since {λ+, λ−} is a filling pair of currents, at least one of the quantities i(μ, λ+)
or i(μ, λ−) must be positive. Hence, since αk →∞ as k →∞, we have

i(γk, ϕ
kLρ)+ i(γk, ϕ

−kLρ)

�ρ(γk)
→∞.

In particular, there exists M > 0 such that (11.13) holds for all k ≥ M .
!�
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Chapter 12
Big Mapping Class Groups: An Overview

Javier Aramayona and Nicholas G. Vlamis

A Domingo, in memoriam.

Abstract We survey recent developments on mapping class groups of surfaces of
infinite topological type.

12.1 Introduction

In the blogpost [30], D. Calegari proposed the study of the mapping class group
Map(R2 \C), where C denotes a Cantor set. More concretely, he posed the question
of whether this group has an infinite-dimensional space of quasimorphisms, as is
the case with the mapping class group of a surface of finite topological type, after a
celebrated result of Bestvina–Fujiwara [19]. In addition, Calegari suggested a line of
attack on the problem, in analogy with Bestvina–Fujiwara’s original argument; in a
nutshell, the first idea is to prove that a certain complex of arcs on which Map(R2\C)

acts is hyperbolic and has infinite diameter, and then exhibit elements which act
weakly properly discontinously [19] on this complex.

This strategy was successfully implemented by J. Bavard in her thesis [13]
(English translation: [14]), and has since caused a surge of interest in mapping class
groups of infinite-type surfaces (or big mapping class groups, in the terminology
coined by Calegari) among the geometric group theory and low-dimensional
topology communities. Most of the results to date have focused on the basic
structure of big mapping class groups, as well as on the similarities and differences
with mapping class groups of finite-type surfaces.
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Fig. 12.1 Infinite-type deer, by Juan Pablo Díaz González, UNAM

This said, big mapping class groups made their appearance in other related areas
of mathematics quite a long time ago. For instance, big mapping class groups arise
naturally in the context of stable properties of mapping class groups [84]; infinite-
type surfaces are intimately related to the study of quasiconformal maps [18]; the so-
called braided Thompson’s group BV of Brin [28] and Dehornoy [35] is naturally a
subgroup of the mapping class group of a sphere minus a Cantor set; etc.

The aim of this survey is to give an overview of the recent developments around
big mapping class groups, mainly from the point of view of geometric group theory,
and to describe some of the connections to other areas of mathematics, such as
Polish groups and Thompson’s groups. Along the way, we will offer open problems
related to the topics covered.



12 Big Mapping Class Groups: An Overview 461

Plan of the Chapter All the objects and definitions needed in the exposition are
introduced in Sect. 12.2. In Sect. 12.3, we present two results which are crucial to a
large number of the results discussed in subsequent sections. Section 12.4 deals with
topological aspects of big mapping class groups: generation, Polish structure, etc.
Section 12.5 concerns algebraic results: automorphisms, homology, relation with
Thompson’s groups, etc. Finally, in Sect. 12.6 we will concentrate on the action of
big mapping class groups on various hyperbolic complexes constructed from arcs
and/or curves on the surface.

Big Absences There are a number of interesting topics related to big mapping
class groups which are not covered in this survey. Notably, the relation between
mapping class groups and dynamics [29], the theory of Teichmüller spaces of
infinite-type surfaces (see [73, 81] and the references therein), and the theory of
infinite translation surfaces (see for instance [91] and the references therein).

12.2 Preliminaries

In this section we introduce the background material needed for the rest of the
chapter.

12.2.1 Surfaces and Their Classification

Throughout this chapter, all surfaces considered will be assumed to be second
countable, connected, orientable, and have compact (possibly empty) boundary. If
the fundamental group of S is finitely generated, we will say that S is of finite type;
otherwise, we will say that S is of infinite type.

It is well-known that the homeomorphism type of a finite-type surface is
determined by the triple (g, p, b), where g ≥ 0 is the genus, and p, b ≥ 0 are,
respectively, the number of punctures and boundary components of the surface.
Because of this fact, we will use the standard notation Sb

g,p for the surface specified
by these data; as usual, we will drop p and b from the notation whenever they are
equal to zero.

There is also a similar classification for infinite-type surfaces [69, 96], in terms
of genus, number of boundary components, and the topology of the space of ends,
which we now define. First, an exiting sequence is a sequence {Un}n∈N of connected
open subsets of S with the following properties:

1. Un ⊂ Um whenever m < n,
2. Un is not relatively compact for any n ∈ N,
3. Un has compact boundary for all n ∈ N, and
4. any relatively compact subset of S is disjoint from all but finitely many Un’s.
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Two exiting sequences are equivalent if every element of the first is eventually
contained in some element of the second, and vice versa. We denote by Ends(S)
the set of all equivalence classes of exiting sequences of S; an element of
Ends(S) is referred to as an end of S. The set Ends(S) becomes a topological
space, called the space of ends of S, by specifying the following basis: given
a subset U ⊂ S with compact boundary, consider the set U∗ of all ends
represented by an exiting sequence eventually contained in U ; the set {U∗ :
U ⊂ S open with compact boundary} is the desired basis. If U is an open set with
compact boundary and e ∈ U∗, then we say that U is a neighborhood of the end e.

Given the above basis, it is not difficult to see that Ends(S) is Hausdorff,
totally disconnected, and second countable. Moreover, the definition above can be
reframed to describe Ends(S) in terms of an inverse limit of compact spaces; in
particular, Tychonoff’s theorem implies Ends(S) is compact. (For a reference, see
[3, Chapter 1].)

Theorem 12.2.1 For any surface S, the space Ends(S) is totally disconnected,
second countable, and compact. In particular, Ends(S) is homeomorphic to a closed
subset of a Cantor set.

We now proceed to describe the classification of infinite-type surfaces up to
homeomorphism. To this end, we will say that an end is planar if it admits a
neighborhood that is embeddable in the plane; otherwise an end is non-planar
(or accumulated by genus) and every neighborhood of the end has infinite genus.
Denote by Endsnp(S) the subspace of Ends(S) consisting of non-planar ends, noting
that it is closed in the subspace topology. The following result was proved by
Kerékjártó [69] and Richards [96].

Theorem 12.2.2 (Classification, [69, 96]) Let S1, S2 be surfaces, and write gi and
bi , respectively, for the genus and number of boundary components of Si . Then
S1 ∼= S2 if and only if g1 = g2, b1 = b2 and there is a homeomorphism

Ends(S1) → Ends(S2)

that restricts to a homeomorphism

Endsnp(S1) → Endsnp(S2).

In light of the above result, an obvious question is: given two closed subsets X,Y

of a Cantor set, with Y ⊂ X, can they be realized as the spaces of ends (resp. ends
accumulated by genus) of some surface? The following theorem, due to Richards
[96], states that the answer is “yes”:

Theorem 12.2.3 (Realization, [96]) Let X,Y be closed subsets of a Cantor set
with Y ⊂ X. Then there exists a surface S such that Ends(S) ∼= X and
Endsnp(S) ∼= Y .
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With the classification and realization theorems at hand, we make a quick note
about cardinality: there are exactly ℵ0 many homeomorphism classes of compact
surfaces, but 2ℵ0 many homeomorphism classes of second-countable surfaces. The
second statement follows from a count on the homeomorphism classes of closed
subsets of the Cantor set [95]. Interestingly, if one drops the condition of second
countability, then there are 2ℵ1 many homeomorphism classes of surfaces [49].

12.2.1.1 Some Important Examples

Several infinite-type surfaces have standard names, which makes them easy to
identify; these are as follows:

• The Loch Ness monster surface: the infinite-genus surface with exactly one end
(which is necessarily non-planar).

• Jacob’s ladder surface: the infinite-genus surface with exactly two ends, both
non-planar.

• The Cantor tree surface: the planar surface whose space of ends is a Cantor space.
Hence, this surface is homeomorphic to a sphere minus a Cantor set.

• The blooming Cantor tree surface: the infinite-genus surface whose space of ends
is a Cantor space, and such that every end is non-planar.

• The flute surface: the planar surface whose space of ends has a unique accumu-
lation point. Hence, this surface is homeomorphic to C�Z (and the end space is
homeomorphic to {0} ∪ { 1

n
: n ∈ N}, viewed as a subset of R).

The Loch Ness monster surface, Jacob’s ladder surface, and the blooming Cantor
tree surface are shown in Fig. 12.2; the Cantor tree surface can be seen in Fig. 12.4.

Fig. 12.2 From left to right: Loch Ness monster surface, Jacob’s ladder surface, and the blooming
Cantor tree surface
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To the authors’ knowledge, the first two of these names were introduced by Phillips–
Sullivan [88], the second two by Ghys [51], and the last by Basmajian [12]. It
is worth noting that in [51], Ghys shows that a generic non-compact leaf of 2-
dimensional lamination of a metric space is either the plane, the cylinder, or one
of the first four surfaces above.

12.2.2 Arcs and Curves

By an arc on S we mean the homotopy class of a properly embedded copy of R.
Abusing notation, we will not distinguish between arcs and their representatives.
Two arcs are disjoint if they have disjoint representatives; otherwise we say that they
intersect. The intersection number, denoted i(·, ·), between two arcs is the minimum
(possibly infinite) number of points of intersection between representatives.

By a curve on S we mean the homotopy class of a simple closed curve on S

which does not bound a disk, a punctured disk, or an annulus whose other boundary
component is contained in ∂S. As was the case with arcs, we will use the same
notation for curves and their representatives. We say that a curve α is non-separating
if S � α is connected; otherwise we say that α is separating. Again, we may talk
about when two curves are disjoint or intersect, and define their intersection number
as we did with arcs and use the same notation. Note, however, that the intersection
number between two curves is necessarily a finite number.

A multicurve is a set of pairwise-distinct and pairwise-disjoint curves. A pants
decomposition is a multicurve P that is maximal with respect to inclusion, and such
that any compact set on S is intersected by only finitely many elements of P . As
such, the interior of every connected component of the complement of P in S is
homeomorphic to a sphere with three points removed, commonly referred to as a
pair of pants.

12.2.3 Mapping Class Group

Consider the group Homeo(S, ∂S) of homeomorphisms of S that restrict to the
identity on the boundary of S, equipped with the compact-open topology, and the
subgroup Homeo+(S, ∂S) consisting of those elements that preserve orientation.
Let Homeo0(S, ∂S) denote the path component of the identity in Homeo(S, ∂S),
and note that Homeo0(S, ∂S) ⊂ Homeo+(S, ∂S). The extended mapping class
group is

Map±(S) := Homeo(S, ∂S)/Homeo0(S, ∂S),
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and the mapping class group is the subgroup

Map(S) := Homeo+(S, ∂S)/Homeo0(S, ∂S).

The extended mapping class group becomes a topological group with the quotient
topology coming from the compact-open topology on Homeo(S, ∂S). Combining
[39, Theorem 6.4] and [44, Theorem 1], we see that the elements of Map(S) are
exactly the isotopy classes of orientation-preserving homeomorphisms of S (see the
appendix in [103] for a more detailed discussion).

(Note that is not clear or obvious that the mapping class group is Hausdorff,
since—a priori—path components are not closed subsets. Being Hausdorff is a
condition that is often required in the definition of topological group. We will deal
with this in Sect. 12.4.)

12.2.4 Several Natural Subgroups

Throughout the survey, several natural subgroups of mapping class groups will
appear: we provide their definition here.

12.2.4.1 Pure Mapping Class Group

Observe that every homeomorphism of S induces a type-preserving homeomor-
phism of its space of ends. In other words, there is a natural map

Homeo+(S, ∂S) → Homeo(Ends(S),Endsnp(S)), (12.1)

where the latter group denotes the subgroup of the homeomorphism group of
Ends(S) whose elements preserve Endsnp(S) setwise. One checks this is a con-
tinuous homomorphism when Homeo(Ends(S),Endsnp(S)) is equipped with the
(subgroup topology coming from the) compact-open topology.

Richards’s proof of the classification of surfaces can readily be adapted to
establish the surjectivity of the homomorphism given in (12.1). As an isotopy fixes
every end of a surface, the homomorphism (12.1) factors through Map(S) yielding
a surjective homomorphism

Map(S) → Homeo(Ends(S),Endsnp(S)). (12.2)

The pure mapping class group, written PMap(S), is the kernel of the above
homomorphism. In particular, we have a short exact sequence

1 → PMap(S) → Map(S) → Homeo(Ends(S),Endsnp(S)) → 1 (12.3)
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It is worth noting that by Stone’s representation theorem, there is a one-to-one
correspondence (or, technically, a contravariant functor) between closed subsets
of the Cantor set and countable Boolean algebras. There is a large amount of
literature about automorphism groups of boolean algebras, which can be translated
to homeomorphism groups of end spaces of surfaces (and vice versa).

We also note that, by the definition of the mapping class groups, Map(S) =
PMap(S) if and only if either |Ends(S)| ≤ 1 or |Ends(S)| = 2 and S has exactly
one planar end.

12.2.4.2 Compactly Supported Mapping Class Group

An element of Map(S) is compactly supported if it has a representative homeomor-
phism that is the identity outside of a compact subset. The compactly supported
mapping class group, denoted Mapc(S), is the subgroup of Map(S) consisting of
the compactly supported elements. Observe that, in fact, Mapc(S) < PMap(S).

We say a compact subsurface X of a surface S is essential if no component of
S � X is a disk or annulus. If X is an essential compact subsurface of S, then
Map(X) < Mapc(S). Note that for any two essential compact subsurfaces X and
Y of S, we have Map(X) < Map(Y ) whenever X ⊂ Y . Moreover, the union of all
compact subsurfaces of S is equal to S; hence, we have:

Proposition 12.2.4 For any surface S,

Mapc(S) = lim→ Map(X),

where the direct limit is taken over all essential compact subsurfaces X of S, ordered
by inclusion.

12.2.4.3 Torelli Group

Observe that every element of Map(S) acts on the homology group H1(S,Z) by
automorphisms. In other words, there is a homomorphism

Map(S) → Aut(H1(S,Z)). (12.4)

We remark that if S is a finite-type surface of genus g and with at most one
puncture, then Aut(H1(S,Z)) is isomorphic to the symplectic group Sp(2g,Z),
although this is not true in general. The Torelli group I(S) is the kernel of the
homomorphism (12.4); in other words, it is the subgroup of Map(S) whose elements
act trivially on homology. Observe that I(S) is a subgroup of PMap(S).
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12.2.5 Modular Groups

Naturally associated to a Riemann surface is the subgroup QC(X) of Homeo+(X)

consisting of the quasi-conformal homeomorphisms. The image of QC(X) in
Map(X), denoted Mod(X), is commonly referred to as either the Teichmüller
modular group of X or the quasi-conformal mapping class group of X. In the case
that X is of finite topological type, Mod(X) and Map(X) agree and are routinely
interchanged in the literature; however, this fails to be the case for infinite-type
surfaces.

In the infinite-type setting, unlike mapping class groups, modular groups have
a long history of being studied, especially from the theory of Riemann surfaces
and Teichmüller theory. As such, discussing the modular group would be a survey
in-of-itself and we will make no further mention of it. But, we note that there are
surely many interesting questions and problems related to how Mod(X) sits as a
subgroup of Map(S), where X is a Riemann surface homeomorphic to an infinite-
type surface S.

12.3 Two Important Results

In this section we present two results that underpin a large number of the topics
discussed in latter sections. Throughout this section, every surface is assumed to
have empty boundary.

12.3.1 Alexander Method

As mentioned in the introduction, Map(S) inherits a natural topology when
viewed as a quotient of Homeo+(S), equipped with the compact-open topology.
It is standard to require that a topological group be Hausdorff, and so it is not
immediately obvious that Map(S) in this topology is in fact a topological group.
However, we can use the extension of Alexander’s method to infinite-type surfaces
given in [61]. Here, we state the corollary we require:

Theorem 12.3.1 ([61, Corollary 1.2]) Let S be an infinite-type surface. If f ∈
Homeo+(S) fixes the isotopy class of every simple closed curve, then f is isotopic
to the identity.

Theorem 12.3.1 can used to separate the identity from any other element in
Map(S) by an open set and, for topological groups, this is enough to guarantee
the group is Hausdorff; hence, Map(S) is a topological group.
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12.3.2 Automorphisms of the Curve Graph

The curve graph C(S) of S is the simplicial graph whose vertex set is the set
of curves on S, and where two vertices are adjacent in C(S) if and only if the
corresponding curves on S are disjoint. From now on we will not distinguish
between vertices of C(S) and the curves they represent.

Observe that Map±(S) acts on C(S) by simplicial automorphisms. In fact, the
combined work of Ivanov [63], Korkmaz [71], and Luo [74] shows that, with the
exception of the twice-holed torus, there are no other automorphisms of C(S) when
S is of finite type. In the infinite-type setting, the analogous result was proved
independently by Hernández–Morales–Valdez [60] and Bavard–Dowdall–Rafi [17]:

Theorem 12.3.2 If S is an infinite-type surface, then the group of simplicial
automorphisms of C(S) is naturally isomorphic to Map±(S).

Note that, in particular, Theorem 12.3.1 is required to show that the action of
Map(S) on C(S) has no kernel.

12.4 Topological Aspects

We will see in this section that big mapping class groups are interesting topological
groups—a divergence from the finite-type setting. This offers exciting new connec-
tions for mapping class groups, some of which we explore below.

It follows from the Alexander method for finite-type surfaces (see [43, Proposi-
tion 2.8]) that Map(S) is discrete when S is of finite-type. However, this is far from
true for big mapping class groups: to see this, let S be an infinite-type surface and let
{cn}n∈N be a sequence of simple closed curves such that, for every compact subset
K of S, there is an integer N such that K ∩ cn = ∅ for all n > N . If Tn is the Dehn
twist about cn, then the sequence {Tn}n∈N limits to the identity in Map(S).

12.4.1 The Permutation Topology

In order to investigate the topology of Map(S) in more depth, it is convenient to
have a more combinatorial description of its topology.

Let � be a simplicial graph with a countable set of vertices, and let Aut(�) be
the group of simplicial automorphisms of �. Given a subset A of �, let

U(A) := {g ∈ Aut(�) | g(a) = a for all a ∈ A}.

Then Aut(�) may be endowed with a natural topology, called the permutation
topology, defined by declaring the Aut(�)-translates of U(A), for every finite subset



12 Big Mapping Class Groups: An Overview 469

A of �, a basis for the topology. Equivalently, the permutation topology is the
coarsest topology in which, for every v ∈ C(S), the function ωv : Aut(�) → �

defined by ωv(g) = g(v) is continuous.
With respect to the permutation topology, Aut(�) becomes a second-countable

(and in particular, separable) topological group. Moreover, it is a standard exercise
in descriptive set theory texts to show that Aut(�) supports a complete metric
(which—usually—fails to be Aut(�)-invariant).

In particular, Aut(�) is an example of a Polish group, that is, a separable and
completely metrizable group. Polish groups are a well-studied class of groups and
we will make use of their theory.

For an infinite-type surface S with empty boundary, let � = C(S), then,
by Theorem 12.3.2, we can identify Map±(S) with Aut(�) and equip Map±(S)
with the associated permutation topology. It is an exercise in definitions and the
Alexander method to show that this permutation topology agrees with the compact-
open topology. Recall that a Gδ subset of a topological space is a subset that can
be written as the intersection of countably many open sets (note that in a metrizable
space, every closed set is a Gδ subset). As a consequence of this discussion, we
have:

Proposition 12.4.1 Let S be a infinite-type surface, possibly with non-empty
boundary. Then, Map±(S) and all its Gδ-subgroups, including Map(S) and
PMap(S), are Polish.

Note that, unlike the preceding discussion, Proposition 12.4.1 does not require
S to have empty boundary: this is because the mapping class group of a bordered
surface can be embedded in a borderless surface as a closed subgroup.

12.4.2 Basic Properties

Now that we have an understanding of the topology of mapping class groups, we can
investigate their basic properties. First, note that the sets in the basis defined above
for Map(S) are in fact clopen and hence mapping class groups are zero-dimensional.

Now, let S be of infinite type. Observe that if A ⊂ C(S) and c ∈ C(S) such
that c ∩ a = ∅ for all a ∈ A, then the sequence {T n

c }n∈N has no limit point
and is contained in U(A); in particular, again by homogeneity, we can conclude
that every compact subset of Map(S) is nowhere dense. This also establishes the
weaker fact that Map(S) fails to be locally compact. Moreover, as a Polish space
cannot be the countable union of nowhere dense subsets, we can conclude that
Map(S) is not compactly generated.1 Lastly, the Alexandrov–Urysohn Theorem

1There are two standard meanings for compactly generated, one algebraic and one topological.
For clarity, we are referring to the algebraic setting: specifically, we mean that if a set S generates
Map(S), as a group, then S cannot be compact.
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(see [66, Theorem 7.7]) establishes NN as the unique space, up to homeomorphism,
that is non-empty, Polish, zero-dimensional, and in which every compact subset
has non-empty interior; hence, Map(S) is homeomorphic to NN. We record these
observations in the following theorem:

Theorem 12.4.2 For every infinite-type surface S,

(1) Map(S) is not locally compact,
(2) Map(S) is not compactly generated,
(3) Map(S) is homeomorphic to the Baire space NN (which in turn is homeomor-

phic to R �Q).

Theorem 12.4.2 establishes big mapping class groups as large topological
groups. It is often the case that the tools developed for studying finitely-generated
groups have natural analogs in the setting of locally-compact compactly-generated
topological groups. The failure of big mapping class groups to fall into this category
will generally complicate matters, but simultaneously offers big mapping class
groups as potential fertile ground for applying the rapidly developing and exciting
theory and tools of non-locally-compact topological groups. We will see this below
when we discuss the geometry of mapping class groups.

12.4.3 Topological Generation

Since big mapping class groups are separable, they are necessarily topologically
generated by a countable set, that is, there exists a countable set that generates
a dense subgroup. The goal of this subsection is to produce such a topological
generating set whose elements are relatively simple. Recall that for a connected
finite-type surface S, its pure mapping class group PMap(S) is generated by—a
finite set of—Dehn twists. In order to generate the full mapping class group, it is
necessary to add half-twists, which correspond to transpositions in the symmetric
group isomorphic to Map(S)/ PMap(S).

In the infinite-type setting, Eq. (12.3) tells us that Map(S)/ PMap(S) is iso-
morphic to Homeo(Ends(S),Endsnp(S)), so in order to understand topological
generating sets for Map(S), we would also have to do so for the latter homeomor-
phism groups; this will take us too far afield and so we will focus on generating
PMap(S).

Using the fact that the mapping class group of a compact surface is generated
by Dehn twists, we see that the group Mapc(S) consisting of compactly supported
mapping classes is generated by Dehn twists. It is natural to ask if the closure of this
group is all of PMap(S). The next result, proved by Patel and the second author in
[87], shows that this is true only in certain cases:

Theorem 12.4.3 ([87]) The set of Dehn twists topologically generate PMap(S) if
and only if S has at most one non-planar end.
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α σ(α)

x σ(x)

Fig. 12.3 The circles are identified vertically to obtain �

The only impediment to Dehn twists topologically generating is the existence of
a homeomorphism f : S → S and a separating curve γ non-trivial in homology
such that f (γ ) ∩ γ = ∅. As it turns out, this can only be done—while fixing the
ends—if there are at least two non-planar ends. Let us give an example of such a
homeomorphism, known as a handle shift, which was introduced in [87].

For n ∈ Z, let B±
n be the open Euclidean disks of radius 1 in R2 centered

at (n,±2), respectively. Let � be the (infinite-genus) surface obtained from
R × [−4, 4] by, for each n ∈ Z, removing B±

n and identifying ∂B+
n and ∂B−

n

via an orientation-reversing homeomorphism. Up to isotopy, there is a unique
homeomorphism σ : � → � determined by requiring

1. σ((x, y)) = (x + 1, y) for all (x, y) ∈ � with |y| ≤ 3, and
2. σ((x,±4)) = (x,±4) for all x ∈ R.

See Fig. 12.3 to see the behavior of σ on a vertical arc. Now, for an infinite-genus
surface S, we say a homeomorphism h : S → S is a handle shift if there exists a
proper embedding ι : � → S such that

h =
{
ι ◦ σ ◦ ι−1(x) x ∈ ι(�)

x otherwise

We will also refer to a mapping class containing a handle shift as a handle shift
itself. Identifying � with its image under ι, we say that h is supported on �. Since
the embedding ι is required to be proper, there is an induced map ι∞ : Ends(�) →
Ends(S). It follows that h has an attracting and a repelling end, which we label h+
and h− respectively, and that satisfy

lim
n→±∞ hn(x) = h±

for every x in the interior of � (the limit is formally taken in the Freudenthal
compactification of S). Note that if h1 and h2 are isotopic handle shifts, then
h±1 = h±2 ; therefore, we can talk about the attracting and repelling ends of a mapping
class associated to a handle shift.
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Let h be a handle shift supported on � in an infinite-genus surface S with at
least two non-planar ends and such that h+ �= h−. Now observe that if we take a
separating curve γ that is non-trivial in homology and such that γ ∩� is connected
and isotopic to a vertical arc, then γ is non-trivial in homology, γ is not homotopic
to h(γ ), and i(γ, h(γ )) = 0. As described in [87], these conditions guarantee that
h is not a limit of compactly supported mapping classes.

It was shown in [87] that the set of Dehn twists together with the set of handle
shifts topologically generate PMap(S). But, the set of handle shifts is uncountable
and we want a countable dense subset. As a corollary of a—much stronger—result
in [11], we can reduce to a countable collection:

Theorem 12.4.4 ([11]) If S is an infinite-genus surface with at least two non-
planar ends, then there exists a countable set consisting of Dehn twists and handle
shifts topologically generating PMap(S).

The handle shifts obtained from [11] will pairwise commute; however, for a
weaker, but direct version, it would suffice to choose a countable dense subset
{(e+n , e−n )}n∈N in Endsnp(S) × Endsnp(S) and handle shifts hn ∈ PMap(S) such
that h±n = e±n . It can be checked that these handle shifts along with Dehn twists will
topologically generate PMap(S).

Adapting an argument presented in [43, Theorem 7.16] showing that the mapping
class group of a finite-type surface is generated by torsion elements, Afton–
Freedman–Lanier–Yin [1] observed:

Theorem 12.4.5 ([1]) If S is an infinite-genus surface, then PMap(S) is topologi-
cally generated by handle shifts.

12.4.3.1 Torelli Group

As noted previously, I(S) is contained in PMap(S); moreover, handle shifts act
non-trivially on homology and hence I(S) contains no handle shifts. This is enough
to imply that I(S) is contained in the closure of Mapc(S) (this follows from
Corollary 12.5.18 below). Letting Ic(S) denote the intersection I(S) ∩ Mapc(S),
it is natural to ask if the closure of Ic(S) is all of I(S). The answer is yes:

Theorem 12.4.6 ([10]) If S is an infinite-type surface, then Ic(S) is dense in I(S).

Combining results of Birman [23], Powell [90] and an argument due to Justin
Malestein, the above theorem implies the following (see [10] for details and
definitions):

Theorem 12.4.7 ([10]) Let S be any surface of infinite type. Then I(S) is topolog-
ically generated by separating twists and bounding-pair maps.
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12.4.4 Coarse Boundedness

Before we begin, we note that all the general theory about Polish groups discussed
here is developed in Rosendal’s forthcoming book [99].

The theories of finitely-generated groups and locally-compact compactly-
generated topological groups have many analogies, especially from the viewpoint
of geometric group theory. This is naturally due to compactness being a natural
generalization of finiteness; however, as noticed by Rosendal, there is a weaker
condition on topological groups that allows one to still capture many of the key
aspects of the theory of locally-compact compactly-generated groups.

The key observations is to note that a compact subset of a (pseudo-)metric
space always has finite diameter; it turns out this is the property to focus on. In
a Polish group G, a subset A of G is coarsely bounded, or CB for short, if it has
finite diameter in every continuous pseudo-metric on G (in fact, it is sufficient to
only consider left-invariant continuous pseudo-metrics). A Polish group is coarsely
bounded, or CB, if it is coarsely bounded as a subset; it is locally coarsely bounded,
or locally CB, if there exists a coarsely-bounded open neighborhood of the identity;
it is CB generated if there exists a coarsely bounded set algebraically generating the
group.

One should naturally think of CB as a generalization of compact, locally CB
as a generalization of locally compact, and CB generated as a generalization of
compactly generated. Conveniently, every CB generated Polish group is locally CB
[99, Theorem 2.30] (note: it is not the case that every compactly-generated group is
locally compact, e.g. (Q,+) is compactly generated but not locally compact).

From the point of view of this survey, the main result of the theory of CB-
generated Polish groups is that, up to quasi-isometry, they have a well-defined
metric. In particular, CB-generated Polish groups have a well-defined geometry and
they can be studied through the lens of geometric group theory. Let us now describe
this result.

A left-invariant continuous pseudo-metric d is maximal if for any other left-
invariant continuous pseudo-metric d ′ there exits constants K,L ≥ 0 such that
d ′ < K · d + L. In particular, up to quasi-isometry, if a maximal pseudo-metric
exists, then it is unique. Before stating the theorem, a subset of a Polish space is
analytic if it is the continuous image of a Polish space. Now, combining pieces of
Theorem 1.2, Proposition 2.52, Theorem 2.53, and Example 2.54 from [99], we
have:

Theorem 12.4.8 ([99]) Let G be a CB-generated Polish group. Then:

(1) G admits a left-invariant continuous maximal metric d .
(2) G has an analytic symmetric coarsely-bounded generated set; moreover, G

equipped with the word metric associated to any such generating set is quasi-
isometric to (G, d).

Note that the metric topology associated to a word metric is always discrete and
hence cannot be continuous on a non-discrete topological group. However, the above
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theorem tells us that (non-continuous) word metrics capture the geometry of the
group.

In recent work, Mann–Rafi [77] classify the CB, locally CB, and CB-generated
mapping class groups. The most general version of their result is a bit technical to
state, so we will state a specific case that captures the main flavor. It is a classical
result of Mazurkiewicz and Sierpinski [80] that every countable compact Hausdorff
topological space is homeomorphic to an ordinal space of the form ωαn+ 1, where
α is a countable ordinal, n is a natural number, and ω is the first infinite ordinal.

Theorem 12.4.9 ([77]) Let S be an infinite-type surface so that either every end of
S is planar or every end of S is non-planar. If the end space of S is countable and
homeomorphic to ωαn+ 1, then

(1) Map(S) is CB if and only if n = 1.
(2) If n ≥ 2 and α is a successor ordinal, then Map(S) is CB generated, but not

CB.
(3) If n ≥ 2 and α is a limit ordinal, then Map(S) is locally CB, but not CB

generated.

The full statement of Mann–Rafi’s theorem involves generalizing the trichotomy
above to uncountable end spaces; they do this by introducing a partial order on the
ends. We encourage the interested reader to see their paper for details; we believe
the various cases described will be essential for researchers interested in proving
results about all big mapping class groups.

For examples, the mapping class group of the Loch Ness monster surface is CB
as is the mapping class group of the flute surface. Also, though it does not fit into the
countable version of the Mann–Rafi theorem given above, the mapping class group
of the Cantor tree surface is CB. For n ∈ N, let �n denote the infinite-genus surface
with n ends, all of which are non-planar. If n ≥ 2, then Map(�n) is CB generated,
but not CB; in particular, Map(�n) is not quasi-isometric to Map(�1) if n ≥ 2.
Therefore, we ask:

Question 12.4.10 Are Map(�n) and Map(�m) quasi-isometric if and only if
n = m?

As a complementary question, we propose:

Question 12.4.11 Are there computable quasi-isometry invariants of CB-generated
big mapping class groups (e.g. geometric rank)?

12.4.5 Automatic Continuity

A topological group G has the automatic continuity property if every abstract group
homomorphism from G to a separable topological group is continuous. There is a
beautiful history to studying automatic continuity given in [98]; however, we only
discuss several relevant examples (and non-examples).
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For a non-example, consider the following: the real line R and the real plane
R2, each equipped with the standard Euclidean topology and the group operation of
(vector) addition, are isomorphic as groups. To see this, observe that both R and R2

are infinite-dimensional vector spaces over the rationals Q with bases of cardinality
2ℵ0 and hence they are isomorphic. However, R and R2 are not homeomorphic and
hence this group isomorphism cannot be continuous.

For examples, none of which are trivial, the homeomorphism group of the
Cantor set [67] as well as the homeomorphism group of any closed manifold
[75, 97] has the automatic continuity property. The automatic continuity property
for homeomorphism groups (and some diffeomorphism groups) has been key to
recent developments in approaches to the dimension growth question of Ghys
[50] regarding actions of infinite groups on compact manifolds (e.g. Chen–Mann
[33], Hurtado [62]). The application of automatic continuity in understanding the
rigidity of homeomorphism groups of compact manifolds motivates us to ask about
automatic continuity in mapping class groups, where there are also open rigidity
questions (see Sect. 12.5).

Question 12.4.12 Classify the surfaces S for which the groups Homeo(S) and/or
Map(S) have the automatic continuity property.

Recently, building on her previous work [75], Mann proved that the homeo-
morphism group of any manifold that can be realized as the interior of a compact
manifold with boundary has the automatic continuity property [76]. In the same
article, Mann gave the first examples of infinite-type surfaces (e.g. the sphere
minus a Cantor set) whose homeomorphism groups have the automatic continuity
property. Mann’s result actually shows these groups have a stronger property (they
are Steinhaus), which passes to quotients and hence yields:

Theorem 12.4.13 ([76, Corollary 2.1]) Let S be an infinite-type surface of finite
genus whose space of ends is of the form C � F , where C is a Cantor space and F

is a finite discrete space. Then, Map(S) has the automatic continuity property.

In [76, Example 2.3], Mann also gives an example of an infinite-type surface
whose homeomorphism group and mapping class group do not have the automatic
continuity property.

All the arguments establishing automatic continuity for the homeomorphism
groups mentioned above rely on the same core technique, which unfortunately does
not readily extend to non-compact surfaces with infinite-genus nor finite-genus with
non-perfect end space.
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12.5 Algebraic Aspects

12.5.1 Algebraic Rigidity

In this subsection, all surfaces are assumed to have empty boundary. A classical
result of Ivanov [64] asserts that, with several well-understood exceptions, every
automorphism of the mapping class group of a finite-type surface S is induced by a
homeomorphism of S. Ivanov gave a simplified proof of this result using the curve
complex in [63]; however, in this case, he assumes the underlying surface has genus
at least two. This simplified proof was adapted to the remaining cases by Korkmaz
[71] and Luo [74] independently. In the infinite-type setting, the analogous result
was established by Bavard–Dowdall–Rafi [17]; namely, one has:

Theorem 12.5.1 ([17]) For any infinite-type surface S,

Aut(Map(S)) ∼= Map±(S).

The idea of the proof of Theorem 12.5.1 is similar in spirit to that of Ivanov,
adapted to the context of infinite-type surfaces. First, the authors prove that an
element of Map(S) is supported on a finite-type subsurface of S if and only if its
conjugacy class is countable, and from this they obtain an algebraic characterization
of Dehn twists, similar to Ivanov’s original one, which is preserved by automor-
phisms. As a consequence, any given automorphism of Map(S) induces a simplicial
automorphism of the curve complex C(S) which in turn, by Theorem 12.3.2, is
induced by an element of Map±(S). At this point, the mapping class obtained this
way coincides with the original automorphism on every Dehn twist, from which one
quickly deduces that they are equal.

12.5.1.1 Injective and Surjective Homomorphisms

Ivanov’s theorem gave rise to a large number of stronger rigidity results about
mapping class groups. For instance, a result of Ivanov–McCarthy [65] asserts that
mapping class groups of surfaces of genus at least three are co-Hopfian, that is, every
injective endomorphism is an automorphism. Hence, every injective endomorphism
is induced by a homeomorphism of the underlying surface. The analog in the
infinite-type setting is not known:

Question 12.5.2 Are mapping class groups of infinite-type surfaces co-Hopfian?

One of the main hurdles in this direction is that, for infinite-type surfaces,
simplicial injections of the curve complex into itself need not come from mapping
classes, in stark contrast to the case of finite-type surfaces (see [58] for the strongest
result of this type). An example of this, for surfaces of infinite genus, may be found
in [59, Lemma 5.3]. We now present another instance of this phenomenon, which
can be easily generalized to other punctured surfaces:
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Example (Non-surjective Simplicial Injections Between Curve Graphs) Let S
be the flute surface. As such, we may realize S as the surface obtained by removing
from S2 a convergent sequence together with its limit point.

Fix a hyperbolic structure on S, and realize every simple closed curve on S by its
unique geodesic representative. Since there are only countably many simple closed
curves on S, we may pick a point p in the complement of the union of all the simple
closed geodesics. Therefore we obtain a map h : C(S) → C(S \ {p}) which is easily
seen to be injective, since two curves that are disjoint on S remain disjoint after
puncturing. Finally, observe that S \{p} is homeomorphic to S, but that the map h is
not induced by a homeomorphism, as it is not surjective. This finishes the example.

With respect to surjective homomorphisms, a group is Hopfian if every surjective
endomorphism is an automorphism. It is an exercise to show that every finitely-
generated residually-finite group is Hopfian; hence, mapping class groups of finite-
type surfaces are Hopfian. It is therefore natural to ask if big mapping class groups
are Hopfian. But, we quickly find a counterexample:

Example (Non-Hopfian Mapping Class Group) Let E be a closed subset of the
Cantor set such that the set E′ of accumulation points of E satisfies E′ �= E and
E′ is homeomorphic to E. For example, the ordinal space ωω + 1 has this property.
Embed E into the 2-sphere S2. We then have that the embedding S2

�E ↪→ S
2
�E′

induces a forgetful homomorphism Map(S2
�E) → Map(S2

�E′) that is surjective,
but not injective. Now, S2

�E is homeomorphic to S
2
�E′ and hence we see there

exists a surjective endomorphism of Map(S2
�E) that fails to be an automorphism.

Note that the forgetful map exists only because E � E′—the set of isolated points
of E—is invariant under the action of Map(S2

� E).

Question 12.5.3 If a surjective endomorphism of a mapping class group fails to be
an automorphism, is it necessarily a forgetful homomorphism?

12.5.1.2 General Homomorphisms

A result of Souto and the first author [7] describes all non-trivial homomorphisms
PMap(S) → PMap(S′), where the genus of S is at least six and the genus of
S′ is less than twice the genus of S, showing that they arise as combinations of
subsurface inclusions, forgetting punctures, and deleting boundary components. A
homomorphism between mapping class groups that comes from a manipulation at
the level of the underlying surfaces is called geometric.

Other than Theorem 12.5.1, there are no results of this kind in the context of
infinite-type surfaces. In fact, as a consequence of Theorem 12.5.15 below, if S

has at least two non-planar ends then there are non-geometric endomorphisms of
PMap(S). However, all these examples factor through the (non-trivial) abelianiza-
tion of PMap(S). An ambitious question is to ask if this is the only way to produce
non-geometric endomorphisms:
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Question 12.5.4 Let S be a surface of infinite type with no boundary. Does every
non-geometric endomorphism of PMap(S) factor through its abelianization?

A much more humble question to which we do not know the answer (although
we expect it to be negative) is:

Question 12.5.5 Let S be Jacob’s ladder surface and let S′ be the Loch Ness
monster. Are there any homomorphisms PMap(S) → PMap(S′) with non-abelian
image?

12.5.1.3 Rigidity of Subgroups

In fact, the aforementioned result of Ivanov [63] applies to injections between finite-
index subgroups of mapping class groups. In other words, it asserts that the abstract
commensurator Comm(Map(S)) of Map(S) is equal to Map±(S), provided the
genus of S is large enough. For infinite-type surfaces, the analog is due to Bavard–
Dowdall–Rafi [17] (the proof is the same as for Theorem 12.5.1):

Theorem 12.5.6 ([17]) For any infinite-type surface S,

Comm(Map(S)) ∼= Map±(S).

In [10], it is shown that I(S) is also algebraically rigid; more concretely:

Theorem 12.5.7 ([10]) For any infinite-type surface S,

Aut(I(S)) ∼= Comm(I(S)) ∼= Map±(S).

The equivalent statement for finite-type surfaces was proved by Farb–Ivanov [42]
for automorphisms, and by Brendle–Margalit [26] for commensurations.

We remark that it is not known whether I(S) has any finite-index subgroups at
all; hence we ask:

Question 12.5.8 Does I(S) have any proper finite-index subgroups?

Note that if the answer to the above question were negative, then Comm(I(S))
would be equal to Aut(I(S)) a priori.

Finally, we should mention a recent theorem of Brendle–Margalit [27] (for closed
surfaces) and McLeay [82] (for surfaces with punctures) which vastly generalizes
the theorems above, proving that every normal subgroup which contains elements of
sufficiently small support has the extended mapping class group as its automorphism
and abstract commensurator group. In the setting of infinite-type surfaces one
expects fewer necessary conditions, as the following result of McLeay [83] shows:

Theorem 12.5.9 ([83]) Let S be the Cantor tree surface. If N is any normal
subgroup of Map(S), then

Aut(N) ∼= Map±(S).
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Though not directly a rigidity result, we finish this subsection by recalling a result
of Lanier–Loving [72] that fits with the discussion:

Theorem 12.5.10 ([72]) If S is an infinite-type surface, then every normal sub-
group has trivial center.

12.5.2 Abelianization

A classical result of Powell [90], building up on previous work of Mumford [86] and
Birman [23], shows that the abelianization of the mapping class group of a closed
surface of genus at least three is trivial. Moreover, the lantern relation can be used
to establish the same result for all finite-type surfaces:

Theorem 12.5.11 (See [43, Theorem 5.2]) Let S be a finite-type surface of genus
at least 3. Then PMap(S) has trivial abelianization.

By Proposition 12.2.4, Mapc(S) is a direct limit of finite-type mapping class
groups, and hence:

Corollary 12.5.12 Let S be a surface of genus at least 3. Then Mapc(S) has trivial
abelianization.

We would like to promote the above corollary to a statement about the pure
mapping class group, and here is one instance where automatic continuity is
incredibly useful. Indeed, a result of Dudley [38] asserts that if G is a Polish
group, then any homomorphism G → Z is continuous. Combining this with
Corollary 12.5.12, we have:

Theorem 12.5.13 Let S be a surface of genus at least 3. Then, every homomor-
phism

Mapc(S) → Z

is trivial. In other words,

H 1(Mapc(S),Z) = {1}.

In light of Theorem 12.4.3 above, this has the following consequence:

Corollary 12.5.14 Let S be a surface with at most one non-planar end. Then
H 1(PMap(S),Z) = {1}.

However, in [11] it was shown that the situation for general infinite-type surfaces
is rather different. Namely, one has:
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Theorem 12.5.15 ([11]) Let S be a surface of genus at least two, and let Ŝ denote
the result of filling every planar end of S. Then

H 1(PMap(S),Z) ∼= H
sep
1 (Ŝ,Z),

where the latter group is the subgroup of H1(Ŝ,Z) generated by homology classes
with separating representatives.

In particular, H 1(PMap(S),Z) is not trivial as soon as S has at least two non-
planar ends. A natural problem is:

Problem 12.5.16 Compute the low-dimensional (co-)homology groups of Map(S)
and PMap(S).

In his original blogpost, Calegari [30] showed that the mapping class group of
the Cantor tree surface is uniformly perfect, which implies that both H1 and H 1

are trivial (with integer coefficients). Recently, Calegari–Chen have computed the
second homology; we record both results below:

Theorem 12.5.17 ([30, 31]) Let � denote the mapping class group of the Cantor
tree surface. Then H 1(�,Z), H1(�,Z) and H 2(�,Z) are trivial, and H2(�,Z) =
Z/2Z.

The following structural result about pure mapping class groups provides the
core piece in the proof of Theorem 12.5.15; compare with Theorem 12.4.4 above:

Theorem 12.5.18 For any surface S, we have

PMap(S) = Mapc(S)

∏

s∈S
〈hs〉,

where the rightmost group is a direct product of cyclic groups generated by
pairwise-commuting handle shifts hs , where s ranges over a free basis of
H

sep
1 (Ŝ,Z).

Theorem 12.5.15 leaves out some low-genus cases, which were subsequently
settled by Domat–Plummer [37]. More concretely, they proved the following result
for genus-one surfaces:

Theorem 12.5.19 ([37]) Let S be an infinite-type surface of genus one. Then

H 1(PMap(S),Z) = 0.

For an infinite-type surface S of genus-zero the situation is different, for in this
case there is a surjective homomorphism PMap(S) → F2, the free group on two
generators, since the pure mapping class group of a four-times punctured sphere is
isomorphic to F2. Nevertheless, Domat–Plummer prove:
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Theorem 12.5.20 ([37]) Let S be an infinite-type surface of genus zero. Then
H 1(PMap(S),Z) contains uncountably many classes which do not come from
forgetful maps to spheres with finitely many punctures.

12.5.3 Quantifying Rigidity

In Sect. 12.5.1, we saw that automorphisms of mapping class groups are geometric.
In fact, something stronger is true: outside several low-complexity cases, given
two surfaces S1 and S2 any isomorphism Map(S1) → Map(S2) (or PMap(S1) →
PMap(S2)) is induced by a homeomorphism S1 → S2 (this is shown in [17] in the
infinite-type setting and can be deduced in the finite-type setting from [64, 71, 74]).
In particular, in the finite-type setting, using the virtual cohomological dimension
[56] and algebraic rank [21] of Map(S), it is possible to determine the topology of S
from algebraic invariants of Map(S). Given that rigidity holds in big mapping class
groups, it should be possible to do the same:

Question 12.5.21 Is there a list of algebraic invariants of Map(S) that determine
the topology of S?

Let us provide some examples connecting algebraic invariants of Map(S) and the
topology of S. First, we have the following corollary of Theorem 12.5.15:

Corollary 12.5.22 ([11]) The algebraic rank of H 1(PMap(S),Z) is:

• 0 if and only if S has at most one non-planar end.
• n ∈ N if and only if S has n+ 1 non-planar ends.
• infinite if and only if S has infinitely many non-planar ends.

Next, recall that a group is residually finite if and only if the intersection of all its
normal subgroups is the identity.

Theorem 12.5.23 ([87]) Let S be any surface.

• PMap(S) is residually finite if and only if S has finite genus.
• Map(S) is residually finite if and only if S is of finite type.

Now, it follows from the work of Bavard–Walker [16] that if S has an isolated
planar end then PMap(S) is circularly orderable (though not equivalent, the reader
can read this as “acts faithfully on the circle”). Moreover, by forthcoming work
of Aougab, Patel, and the second author [5], every finite group can be realized as a
subgroup of PMap(S) whenever S has infinite-genus and no planar ends. Combining
these facts, with the two results mentioned in this subsection and the fact that
Aut(PMap(S)) ∼= Map±(S) when S is of infinite-type [17], we are able to give
a complete answer to Question 12.5.21 for a countably infinite family of surfaces:
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Theorem 12.5.24 ([5]) For n ∈ N, let �n denote the n-ended infinite-genus surface
with no planar ends and let G = PMap(S) for some surface S. The surface S is
homeomorphic to �n if and only if G satisfies each of the following properties:

(1) G is not residually finite,
(2) G is not circularly orderable,
(3) H 1(G,Z) has rank n− 1, and
(4) G is finite index in Aut(G).

12.5.4 Homology Representation

As mentioned in Sect. 12.5.1, there is a homomorphism

ρS : Map(S) → Aut(H1(S,Z)),

given by the action of mapping classes on the homology of the surface. For finite-
type surfaces with at most one puncture or boundary component, the algebraic
intersection pairing of homology classes is a symplectic form, and one shows that
the homomorphism

Map(S) → Sp(2g,Z),

where g is the genus of S, is surjective; see [43, Section 6] for details.
The homology representation for infinite-type surfaces has been studied by

Fanoni, Hensel, and the second author [41]. In the infinite-type setting, there is only
one surface with at most one end, namely the Loch Ness monster surface; in this
case, it turns out an analogous result holds:

Theorem 12.5.25 ([41]) Let S be the Loch Ness monster surface. Then the image
of the homology representation is the subgroup of Aut(H1(S,Z)) consisting of those
elements which preserve the algebraic intersection form. In other words,

Im(φS) = Sp(N,Z).

For surfaces with more than one end (or boundary component), preserving
algebraic intersection is not enough to characterize the image of ρS in H1(S,Z)

(this is true in both the finite-type and infinite-type settings). In the same article
[41], the authors give a characterization of the image of ρS for an arbitrary surface
S in terms of preserving a filtration of the first homology. The full statement is a bit
technical, so we refer the interested reader directly to [41].



12 Big Mapping Class Groups: An Overview 483

12.5.5 Nielsen Realization

Kerckhoff’s Nielsen Realization Theorem [68] asserts that every finite subgroup of
the mapping class group of a finite-type surface S of negative Euler characteristic
lifts to Homeo(S); moreover, it may be realized as a subgroup of the isometry group
of some hyperbolic metric on S.

In the context of big mapping class groups, the analogous statement has been
obtained by Afton–Calegari–Chen–Lyman [2]:

Theorem 12.5.26 Let S be a surface of infinite type. Then every finite subgroup of
Map(S) lifts to Homeo+(S). Moreover, every finite group can be realized as a group
of isometries of some hyperbolic metric on S.

We should also note that there is analog of Nielsen realization in the setting of
analytically-infinite Riemann surfaces due to Markovic [78]. A hyperbolic Riemann
surface is a complex 1-manifold whose universal cover is isomorphic to the unit
disk.

Theorem 12.5.27 ([78]) Let S be an infinite-type surface and let G be a subgroup
of Map(S). If there exists a hyperbolic Riemann surface X homeomorphic to S and
a constant K > 1 such that every element of G can be realized by a K-quasi-
conformal homeomorphism X → X, then there is a hyperbolic Riemann surface Y

such that Y is quasi-conformally equivalent to X and G < Isom(Y ).

12.5.6 The Relation with Thompson Groups

Thompson’s groups F , T and V constitute prominent examples of discrete sub-
groups of Homeo(C), the homeomorphism group of the Cantor set. Among many
other features, they are infinite groups of type F∞, and which have simple
commutator subgroup (in fact, V itself is simple). We now briefly review the
construction of these groups, referring the reader to the standard reference [32] for
a thorough treatment of Thompson’s groups.

12.5.6.1 Thompson’s Groups

Let T be a rooted binary tree, noting that its space of ends of T is homeomorphic
to the Cantor set C. The tree T has a natural left-to-right orientation once we fix a
realization of T as a subset of the hyperbolic plane. With respect to this orientation,
given a subtree of T with n leaves, we may order its set of leaves using the numbers
1, . . . , n, so that the numbers increase from left to right.

Let τ, τ ′ be subtrees of T with the same number of leaves, and such that both
contain the root of T . If σ is a bijection between the sets of leaves of τ and τ ′, then
the triple (τ, τ ′, σ ) extends in a natural way to a homeomorphism of C. Of course,
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the same homeomorphism may be induced by different such triples (obtained by
expanding and contracting a given finite subtree), and Thompson’s group V is the
group of equivalence classes of such triples. In turn, Thompson’s group T (resp. F )
corresponds to the case when the bijection σ is a cycle (resp. the identity).

12.5.6.2 Asymptotic Mapping Class Groups

We now explain the relation between Thompson’s groups and big mapping class
groups. To this end, let S denote either the Cantor tree surface or the blooming
Cantor tree surface. In these particular cases, the exact sequence (12.3) reads

1 → PMap(S) → Map(S) → Homeo(C) → 1. (12.5)

Over the last two decades, numerous authors have given geometric constructions of
finitely-presented subgroups H of Map(S) for which the sequence (12.5) restricts
to

1 → Mapc(S) → H → G → 1, (12.6)

where G is one of Thompson’s groups F , T or V (or their commutator subgroups).
To the best of our knowledge, the first step in this direction was the paper of

Greenberg–Sergiescu [52], whose objective was to construct an acyclic extension
of F ′, the commutator subgroup of F , by the braid group B∞ on infinitely many
strands. This was later generalized simultaneously by Brin [28] and Dehornoy
[35] to the construction of an extension of V by B∞, the so-called braided
Thompson groups. Funar–Kapoudjian [45, 46], and later Funar and the first author
[6], constructed finitely-generated (and often finitely-presented) extensions of V by
a direct limit of mapping class groups of compact surfaces. Part of the motivation
[46] is to construct a finitely-presented group whose homology agrees with the
stable homology of pure mapping class groups, after a seminal result of Harer [55].

A common feature of all of the above constructions is that they may be expressed
in terms of groups of homeomorphisms of an infinite-type surface which eventually
preserve some topological data; these are the asymptotic mapping class groups
introduced by Funar–Kapoudjian in [45]. We now briefly recall their definition in
the simpler case of a surface of genus zero.

12.5.6.3 The Case of the Cantor Tree Surface

Let S be the Cantor tree surface, that is, a sphere with a Cantor set removed. Fix,
once and for all, a pants decomposition P of S and a set A of pairwise-disjoint,
properly-embedded arcs on S such that S�A has exactly two connected components
ν±, and each connected component of S�P is intersected by exactly three elements
of A; see Fig. 12.4. The triple (P,A, ν+) is called a rigid structure on S.
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Fig. 12.4 The rigid structure on S

We say that a homeomorphismf : S → S is asymptotically rigid if there exists a
compact subsurface X ⊂ S with ∂X ⊂ P , such that ∂f (X) ⊂ P and the restriction
homeomorphism

f : S �X → S � f (X)

setwise preserves (the relevant part of) the rigid structure. The group B is then
defined as the subgroup of Map(S) whose elements have an asymptotically rigid
homeomorphism. In their paper [45], Funar and Kapoudjian showed that the
restriction of the sequence (12.6) yields

1 → Mapc(S) → B → V → 1, (12.7)

As such, B contains the mapping class group of every compact surface of genus zero
with non-empty boundary. In light of this, the main result of [45] is rather striking:

Theorem 12.5.28 ([45]) The group B is finitely presented.

Moreover, they observed:

Proposition 12.5.29 The short exact sequence (12.7) splits over Thompson’s group
T . As a consequence, B is not linear and does not have Kazhdan’s Property (T).

We remark that a well-known question about finite-type mapping class groups
asks whether they are linear or have Kazhdan’s Property (T).

12.5.6.4 Other Compact Surfaces with a Cantor Set Removed

The construction of asymptotic mapping class groups makes sense for arbitrary
surfaces. In fact, as commented in [45], the group constructed by Brin [28] and
Dehornoy [35] are asymptotic mapping class groups of a closed disc with a Cantor
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set removed, and as such embeds as a subgroup of B. In addition, Funar and the
first author [6] generalized the construction of B to the surface �g obtained by
removing a Cantor set from a closed surface Sg of finite genus g ≥ 1. Roughly
speaking, a rigid structure on �g is determined by a simple closed curve α ⊂ �g

that cuts off a once-punctured surface of genus g, together with a rigid structure for
the planar component of �g . One then defines the notion of an asymptotically rigid
homeomorphism in an analogous way, and constructs the asymptotic mapping class
group Bg as the subgroup of Map(�g) whose elements have an asymptotically rigid
representative. In this case, the restriction of the short exact sequence (12.5) to the
group Bg reads

1 → Mapc(�g) → Bg → V → 1; (12.8)

in particular,Bg contains the mapping class group of every compact surface of genus
at most g and with non-empty boundary. The following is one of the main results of
[6]:

Theorem 12.5.30 ([6]) For every g ≥ 1, the group Bg is finitely presented. In
addition, it is not linear and does not have Kazhdan’s Property (T).

In addition, in [6] the authors explore the structure of the groupsBg in connection
with mapping class groups of finite-type surfaces. For instance, every automorphism
of Bg is induced by a homeomorphism of �g (compare with Theorems 12.5.1
and 12.5.7).

12.5.6.5 The Case of the Blooming Cantor Tree

In [46], Funar and Kapoudjian constructed an asymptotic mapping class group B∞
for the blooming Cantor tree, which we denote by �∞. In a similar fashion, the
short exact sequence (12.5), when restricted to B∞, yields:

1 → Mapc(�∞) → B∞ → V → 1. (12.9)

The following is the main result of [46]:

Theorem 12.5.31 ([46]) The group B∞ is finitely generated. Moreover, its rational
cohomology coincides with the stable rational cohomology of the mapping class
group.

Note that, while asymptotic mapping class groups of finite genus are finitely
presented, the group B∞ is only known to be finitely generated. In light of this, we
ask:

Question 12.5.32 Determine whether the asymptotic mapping class groups Bn, for
n ∈ N ∪ {∞}, satisfy stronger finiteness properties. Are they F∞?
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A positive answer to the above question, in the case of n = 0, is conjectured in
[45, p. 967]. The question of whether B∞ is finitely presented appears in [48].

12.5.6.6 A Dense Asymptotic Mapping Class Group

In addition, in [6] the authors considered a subgroup Hg with Bg < Hg <

Map(�g). The definition of Hg is similar to that of Bg, without the requirement that
its elements preserve the connected component ν+ appearing in the definition of
rigid structure. In short, the difference between Bg and Hg is that the latter contains
half-twists about separating curves cutting off a disk minus a Cantor set. For this
reason, the group Hg is referred to as the group of half-twists.

A large part of the motivation for consideringHg comes from the study of smooth
mapping class groups, as explained in [47]. Indeed, put a differentiable structure
on the closed surface Sg of genus g, and realize C as the the middle-third Cantor
set on a smoothly embedded interval on Sg . Let Mods (Sg, C) denote the smooth
mapping class group of the pair (Sg, C), namely the group of isotopy classes of
smooth diffeomorphisms of Sg preserving globally the Cantor set C. The following
is a recent result of Funar and Neretin [47]:

Theorem 12.5.33 ([47], Cor. 2) For every g ≥ 0, we have Hg
∼= Mods(Sg, C).

Using the same techniques as with Bg, Funar and the first author [6] proved:

Theorem 12.5.34 ([6]) For every g ≥ 1, the group Hg is finitely presented. In
addition, it is not linear and does not have Kazhdan’s Property (T).

However, a nice extra feature of the group Hg is the following result, which
should be compared with Theorem 12.4.3:

Theorem 12.5.35 For every g ≥ 0 the group Hg is dense in Map(�g).

Finally, the restriction to Hg of the sequence (12.7) reads

1 → Mapc(�g) → Hg → V2[Z2] → 1, (12.10)

where V2[Z2] is the Higman–Thompson group V2[Z2] [22]. A surprising result
of Bleak–Donoven–Jonušas [22] establishes that V and V2[Z2] are conjugate as
subgroups of Homeo(C) through an explicit homeomorphism of C (a cellular
automaton). An obvious questions then is:

Question 12.5.36 Are the groups Bg and Hg isomorphic?

It would be surprising if the question above had a positive answer, since
isomorphisms between (sufficiently rich) subgroups of mapping class groups tend
to come from surface homeomorphisms.
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We end this section with the following vague question:

Question 12.5.37 Are there other geometrically-defined subgroups of Map(�g)

which surject to other interesting classes of subgroups of Homeo(C), such as
Higman-Thompson groups, Neretin groups, etc.?

12.6 Geometric Aspects

Mapping class groups of finite-type surfaces have been successfully studied through
their action on various combinatorial complexes, notably the curve graph; a first
instance of this is Ivanov’s Rigidity Theorem mentioned in Sect. 12.5.1. Moreover,
it turns out that the geometric structure of C(S), equipped with its natural path
metric, sheds intense light on the algebraic and geometric structure of Map(S). In
this direction, the following is a seminal theorem of Masur–Minsky [79]:

Theorem 12.6.1 ([79]) Let S be a finite-type surface. If C(S) is connected, then it
is hyperbolic (in the sense of Gromov).

A number of authors have proved analogous results for other combinatorial
complexes associated to surfaces, such as the disk graph [80], the non-separating
curve graph NonSep(S) [54, 80], the arc graph A(S) [57], etc. In fact, a surprising
phenomenon is that the hyperbolicity constant in Theorem 12.6.1, as well as the
those of other complexes, turn out to be independent of the underlying surface;
we say that the corresponding family of complexes are uniformly hyperbolic. The
following theorem is a combination of the results of [4, 25, 34, 57, 93]:

Theorem 12.6.2 Let S be a finite-type surface.

(1) ([57]) A(S) is uniformly hyperbolic.
(2) ([4, 25, 34, 57]) C(S) is uniformly hyperbolic
(3) ([93]) For fixed g, the graph NonSep(Sg,n)) is hyperbolic with respect to a

constant which does not depend on n.

The above result may be regarded as a curiosity at first, but it happens to be of
central importance in the study of big mapping class groups, as we will explain next.

12.6.1 Complexes for Infinite-Type Surfaces

As in the finite-type case, one may be tempted to use interesting geometric
properties of analogous combinatorial models, built from arcs and/or curves, in
order to study mapping class groups. This initial surge of enthusiasm is thwarted
by the following immediate observation; before we state it, we recall that, for an
infinite-type surface S, the arc graph A(S) is defined to be the simplicial graph
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whose vertices are properly embedded arcs on S which join two (not necessarily
distinct) planar ends of S, and where adjacency corresponds to disjointness.

Fact 12.6.3 Let S be a surface of infinite type. Then C(S) has diameter two.
Furthermore, if S has infinitely many planar ends, then A(S) also has diameter
two.

However, as mentioned in the introduction, in [30] Calegari proposed studying
Map(R2 \ C) via its action on a certain subgraph of A(R2 \ C); observe that, by
the above, A(R2 \ C) itself has diameter two. Calegari’s idea was to consider the
subgraph A∞ of A(R2

� C) consisting of arcs with at most one endpoint in C

(hence, necessarily one end of an arc in A∞ is contained in the unique isolated
planar end ofR2

�C). The next result was proved by Juliette Bavard [13, 14] proving
a conjecture posed by Calegari:

Theorem 12.6.4 A∞ is a Gromov-hyperbolic space of infinite diameter.

Based on this result, and with a lot of extra work, she also proved that Map(R2 \
C) has an infinite-dimensional space of quasi-morphisms. This is in stark contrast to
Map(S2�C), which Calegari shows admits no quasi-morphisms (and even stronger,
we know Map(S2 � C) is CB [77]). We note that the automorphism group of A∞
and related graphs are computed in [101] and shown to be the extended mapping
class group.

The above theorem may be regarded as part of a more general phenomenon,
which we now explain. In order to do so, we need the following terminology due
to Schleimer [102]. Given a graph X(S) built from arcs and/or curves on S, say
that a subsurface Y ⊂ S is a witness for X(S) if every vertex of X intersects Y

non-trivially. For instance, the only non-trivial witness for C(S) is S itself while, in
the case of A(S), any subsurface Y ⊂ S which contains every puncture of S is a
witness.

The following theorem is a reformulated version of [8, Theorem 1] (see also [36,
Section 6] for another formulation). In an intuitive way, it encapsulates the idea of
taking a limit of a family of uniformly hyperbolic spaces:

Theorem 12.6.5 Let X(S) be a connected Map(S)-invariant graph, whose vertices
are defined by finite sets of arcs or curves on S, and where edges correspond to
bounded intersection number. Given a subsurface Y ⊂ S, define X(Y ) to be the full
subgraph of X(S) spanned by those vertices which are entirely contained in Y and
equip X(Y ) with the induced path metric. Suppose that:

(1) For every triangle T in X(S) there exists a finite-type witness Y such that T is
contained in X(Y ) and X(Y ) is connected;

(2) There exists constants δ,K,C > 0 such that for every finite-type witness Y of
S with X(Y ) connected, the following conditions are satisfied:

(a) X(Y ) is a δ-hyperbolic graph of infinite diameter.
(b) The inclusion map X(Y ) ↪→ X(S) is a (K,C)-quasi-isometric embedding.

Then X(S) is hyperbolic and has infinite diameter.
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Given a finite set P of isolated planar ends of S, denote by A(S;P) the subgraph
of A(S) spanned by those arcs which have at least one endpoint in P ; observe that
every subsurface of S which contains P is a witness for A(S;P). The above result
and the uniform hyperbolicity presented in Theorem 12.6.2 are used to prove the
following:

Theorem 12.6.6 Let S be an infinite-type surface.

(1) ([8, 9, 13]) Let P be a non-empty finite set of isolated punctures of S. Then,
A(S;P) is hyperbolic.

(2) ([93]) If S has finite genus at least 2, then the graph NonSep(S) is hyperbolic.

Remark There is a subtlety about Theorem 12.6.6 which is worth mentioning at this
point; see also [8, Theorem 1]. Let P,Q be two finite sets of isolated punctures of
S, with P ∩Q = ∅, and consider the subgraph A(S;P,Q) of A(S) which have one
endpoint in P and one endpoint in Q. Then A(S;P,Q) is not hyperbolic.

Indeed, this is a manifestation of Schleimer’s Disjoint Witness Property [102],
which asserts that if a graph or curves/arcs has two disjoint witnesses of infinite
diameter then it is not hyperbolic, for one may use subsurface projections to
construct a quasi-isometrically embedded copy of Z2 inside the graph.

Finally, observe that the graph A(S;P,Q) contains two disjoint witnesses, since
one can take two finite-type surfaces, one containing P and the other containing Q.
This finishes the remark.

These different phenomena were clarified in subsequent work of Durham, Fanoni
and the second author [36]. The motivation of their work was to find actions of big
mapping class group not relying on isolated planar ends. Before explaining their
result, we need some definitions.

Let Q be a collection of pairwise-disjoint closed subsets of Ends(S). Every
separating curve on S partitions Ends(S); let Sep2(S,Q) denote the subgraph of
C(S) consisting of separating curves on S that partition Q into two sets, each of
cardinality at least 2 (there is a slight modification if |Q| = 4, see [36] for details).

Theorem 12.6.7 ([36]) Let S be an infinite-type surface. Let Q be a collection of
pairwise-disjoint closed subsets of Ends(S) such that, for every ω ∈ Q and every
f ∈ Map(S), there exists ω′ ∈ Q with f (ω) = ω′. Then, Sep2(S,Q) is hyperbolic,
infinite diameter, Map(S)-invariant, and there are infinitely many mapping classes
which act with positive translation length on Sep2(S,Q).

For example, if S = �n (the n-ended infinite-genus surface with no planar ends)
with n ≥ 4, then Q = Ends(S) satisfies the hypothesis of the above theorem.

We note that in the days this survey was being finalized, Fanoni–Ghaswala–
McLeay [40] constructed new examples of hyperbolic infinite-diameter graphs that
admit actions of big mapping class groups with unbounded orbits. We direct the
reader to their article for details.

Klarreich [70] showed that the Gromov boundary of the curve graph is Map(S)-
equivariantly homeomorphic to the space of ending laminations on the surface; see
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also [53] for a different argument, and Pho-On’s thesis [89] for an effective proof of
this using the unicorn machinery of [57]. In unpublished work, Schleimer proved
that the boundary of the arc graph is naturally identified with the space of all ending
laminations supported on witnesses of S; this is also carried out in an effective
manner in Pho-On’s thesis [89].

In light of these results, we ask the following natural question:

Question 12.6.8 Describe the Gromov boundary of the various hyperbolic com-
plexes associated to an infinite-type surface S, ideally in terms of laminations/foli-
ations on S.

For the case when the surface is R
2 \ C, the Gromov boundary of the relative

arc graph A∞ of Theorem 12.6.4 is described by Bavard-Walker [16] in terms of
rays on the surface. Rasmussen [94] has recently reproved a result of Hamenstädt
computing the Gromov boundary of the graph of non-separating curves and points
out that his techniques can be extended to the infinite-type setting; however, the
issue is a lack of understanding of laminations on infinite-type surfaces. We should
note at this point that Šarić [100] recently developed the theory of train tracks for
infinite-type surfaces, which should aid in investigating laminations.

The natural motivation for understanding the Gromov boundary is to gain insight
into a potential classification of big mapping classes akin to that of the Nielsen–
Thurston classification. We should note that there is much research in this direction
for quasi-conformal mapping class groups and their action on Teichmüller space.

12.6.2 Weak Proper Discontinuity and Acylindricity

Let G be a group acting by isometries on a hyperbolic metric space (X, d). We say
that the action is acylindrical if, for every D ≥ 0, there exists R ≥ 0 such that, for
every x, y ∈ X with d(x, y) ≥ D, the cardinality of the set

{g ∈ G | d(x, gx), d(y, gy) ≤ R}

is finite. To exclude uninteresting pathologies, we restrict our attention to actions
where there are infinitely many points on the Gromov boundary of X that are
accumulation points of G-orbits; call such an action non-elementary. We say that a
group is acylindrically hyperbolic if it admits a non-elementary acylindrical action
on some Gromov-hyperbolic space.

A result of Bowditch [24] asserts that, if S has finite type, the action of Map(S)
on C(S) is acylindrical. Bavard–Genevois [15] proved that the analogous statement
does not hold for infinite-type surfaces:

Theorem 12.6.9 ([15]) If S has infinite type, then Map(S) is not acylindrically
hyperbolic.
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Prior to the notion of acylindricity, Bestvina–Fujiwara [19] introduced the
concept of weak proper discontinutity (WPD, for short), and used it to show
that if a group has an interesting WPD action then it has an infinite-dimensional
space of quasimorphisms; equivalently, its second bounded cohomology group is
infinite-dimensional. We briefly recall these ideas. Let G be a group acting on a
Gromov-hyperbolic metric space (X, d), and g ∈ G be a loxodromic element. We
say that g is a WPD element if, for every x ∈ X and every R ≥ 0, there is N ∈ N

such that the set

{h ∈ G | d(x, h(x)) ≤ R, d(gN (x), hgN(x) ≤ R}

is finite. Bestvina–Fujiwara [19] proved that, for a finite-type surface S, any pseudo-
Anosov element of Map(S) is WPD with respect to the natural action on the curve
complex. This notion was further weakened by Bromberg–Bestvina–Fujiwara [20]
to that of a WWPD action: suppose again G acts on a hyperbolic space X, and let g
be a loxodromic element of G with fixed points η± on the Gromov boundary ∂X of
X. We say that g is a WWPD element if, for every sequence {hn}n∈N of elements
of G, with hn(η

+) → η+ and hn(η)
− → η−, there exists N ∈ N such that, for all

n ≥ N , one has

hn(g
+) = g+ and hn(g

−) = g−.

The existence of WWPD elements of big mapping class groups has been recently
studied by Rasmussen [92]. Let S be an infinite-type surface with at least one
isolated puncture p, and let A(S, p) be the relative arc graph of S based at p.
Rasmussen proved:

Theorem 12.6.10 ([92]) An element g ∈ Map(S) is WWPD with respect to the
action of Map(S) on A(S, p) if and only if there exists a finite-type g-invariant
subsurface Y ⊂ S, with p ∈ Y , such that the restriction of g to Y is pseudo-Anosov.

As a consequence, he deduces that a class of subgroups of Map(S) have infinite-
dimensional second bounded cohomology.

We finish with mentioning a very recent construction of Morales–Valdez [85],
in which they construct examples of mapping classes which act loxodromically on
A∞ and do not preserve any finite-type subsurface.
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100. D. Šarić, Train tracks and measured laminations on infinite surfaces (2019). Preprint.

arXiv:1902.03437
101. A. Schaffer-Cohen, Automorphisms of the loop and arc graph of an infinite-type surface

(2019). Preprint. arXiv:1912.06774
102. S. Schleimer, Notes on the curve complex. Manuscript available from the author’s website

http://homepages.warwick.ac.uk/~masgar/math.html
103. N. Vlamis, Notes on the topology of big mapping class groups (discussions from an AIM

workshop). Manuscript available at https://math.nickvlamis.com/research

https://amcleayblog.wordpress.com/research/
https://amcleayblog.wordpress.com/research/
https://arxiv.org/abs/1909.06680
https://arxiv.org/abs/1909.06680
http://homepages.math.uic.edu/~rosendal/PapersWebsite/Coarse-Geometry-Book23.pdf
http://homepages.warwick.ac.uk/~masgar/math.html
https://math.nickvlamis.com/research


Chapter 13
Teichmüller Theory, Thurston Theory,
Extremal Length Geometry and Complex
Analysis

Hideki Miyachi

Abstract The aim of this chapter is to report on a recent progress of the author’s
research on Complex analysis on Teichmüller space based on Thurston’s theory on
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Fig. 13.1 Relations among several aspects in Teichmüller theory

yroehtrellümhcieT Function theory, Pluripotential theory

Bers slice
hyperconvex domain

polynomially convex domain
holomorphic family equivariant holomorphic map

ecnatsidrellümhcieT
Kobayashi distance

pluricomplex Green function

log-Extremal length
horofunction

Busemann cocycle

ratio of Extremal lengths
Kobayashi distance

Poisson kernel

Thurston measure
invariant measure of geodesic flow

pluriharmonic measure

Fig. 13.2 A dictionary

13.1.1 Background

The complex structure of Teichmüller space was established by Teichmüller [77]
(see [78] for an English translation. See also [1, 4]). From Teichmüller’s original
definition of Teichmüller space, the complex structure includes the definition of
the holomorphic families of Riemann surfaces. Teichmüller space as a complex
manifold is the universal classifying space of holomorphic fiber spaces of Riemann
surfaces (cf. [71]. See also [2, 11]). The infinitesimal complex structure is described
by the first cohomology group of the sheaf of holomorphic vector fields (cf.
[41]), and by equivalent classes of infinitesimal Beltrami differentials (infinitesimal
quasiconformal deformations) (cf. [75]).

Bers [9] realized Teichmüller space complex analytically as a bounded domain in
a complex Euclidean space. Hence, Teichmüller space admits a canonical boundary,
the so-called Bers boundary, defined from the complex analytical view point (cf.
[10]), though the boundary does depend on the choice of the base point which
is used in the definition of the embedding (cf. [37]). The Bers realization is also
comprehended as a part of the deformation space of Kleinian surface groups.
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Each marked Riemann surface corresponds to a quasifuchsian group, and the Bers
boundary consists of structually unstable Kleinian groups with a (unique) simply
connected invariant domain (with respect to allowable representations in the sense
of [10]).

From the topological aspect, Teichmüller space is often seen as the orbifold
universal covering space of the moduli space of Riemann surfaces. This point of
view is useful in the study the mapping class group. For instance, the rational
cohomology group of the moduli space is isomorphic to that of the mapping class
group (e.g. [30]).

Teichmüller spaces are also used to construct the boundary at infinity in the
description of degenerations of conformal and hyperbolic structures on surfaces.
Actually, Thurston introduced the completion of weighted simple closed curves,
the so-called measured foliation (lamination) space. This completion yields a
boundary at infinity called the Thurston boundary and a compactification called the
Thurston compactification. In Thurston’s picture, most of the geometric invariants
are interpreted as (extensions of) the geometric intersection number with simple
closed curves. With the behavior of the intersection number, projective classes of
measured foliations are guides for the description of the degeneration of divergent
sequences in Teichmüller space (cf. [25, Exposé 8]).

In his classification of three-dimensional manifolds, Thurston also developed the
theory of Kleinian groups. In his program, Thurston poses a famous conjecture, the
ending lamination conjecture (cf. [82, Problem 11 in §6]). This was settled by Brock,
Canary and Minsky [19, 53] after a breakthrough in the study of the complex of
curves by Masur and Minsky [49, 50]. Together with the double limit theorem due to
Thurston [83], the ending lamination theorem provides not only a parametrization of
most of the Bers boundary by the space of projective classes of measured foliations,
but it also a connection between the complex analytical aspect and the topological
aspect in Teichmüller theory (cf. [19]. See also Sect. 13.4.5).

Extremal length geometry on Teichmüller space (named after [28]) is the
geometry on Teichmüller space studied with the extremal length functions. After
the Kerckhoff formula for the Teichmüller distance, Extremal length geometry on
Teichmüller space stands for the geometry of Teichmüller space with respect to
the Teichmüller distance (cf. [36]). Gardiner and Masur [28] defined a canonical
compactification of Teichmüller space in the setting of Extremal length geometry
by applying Thurston’s compactifying procedure. Extremal length geometry is also
thought of as the geometry of the (generalized) intersection number associated
with extremal length, and merged with Thurston’s framework (cf. [59]). Namely,
it is developed as Thurston’s theory with extremal length as a background. Royden
showed that the Teichmüller distance coincides with the Kobayashi distance under
the canonical complex stucture [70]. Royden’s observation is a connection between
the complex analytical aspect and the Extremal length geometry in Teichmüller
theory.
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13.1.2 Aim of This Chapter

The main topic in this chapter is to give the Poisson integral formula for holomor-
phic functions and pluriharmonic functions on the Bers compactification (Corol-
lary 13.7.1).

A basic problem behind our research is “what are holomorphic functions on
Teichmüller spaces?”, while each holomorphic mapping into Teichmüller space
admits a geometric interpretation via Teichmüller’s original definition of the
complex structure of Teichmüller space. With the help of Extremal length geometry,
our Poisson integral formula is expected to strengthen the connection between the
topological aspect and the complex analytical aspect in Teichmüller theory, and to
encourage the development of a framework of Complex analysis on Teichmüller
space with Thurston’s theory.

In this chapter, for simplicity, we deal with the Teichmüller space of a closed
orientable surface of genus g. All the results are valid for finite-dimensional
Teichmüller spaces.

13.2 Teichmüller Theory

13.2.1 Teichmüller Space

Let �g be a closed orientable surface of genus g ≥ 2. A marked Riemann surface
(X, f ) of genus g is a pair of a compact Riemann surface X and an orientation-
preserving homeomorphism f : �g → X. Two marked Riemann surfaces (X1, f1)

and (X2, f2) are Teichmüller-equivalent if there is a biholomorphism h : X1 → X2
such that h ◦ f1 is homotopic to f2. The Teichmüller space Tg of Riemann surfaces
of genus g is the totality of Teichmüller-equivalence classes of marked Riemann
surfaces of genus g. For a comprehensive introduction, we refer the reader to the
book [32] by Imayoshi and Taniguchi.

For K ≥ 1, a K-quasiconformal mapping f : D1 → D2 between domains D1,
D2 ⊂ C is an orientation preserving homeomorphism whose first distributional
partial derivatives are locally in L2 and satisfies |fz| ≤ k|fz| almost everywhere
on D1 where k = (K − 1)/(K + 1). The infimum K(f ) of such K is called the
maximal dilatation of f . Quasiconformal mappings between Riemann surfaces are
canonically defined.

For xi = (Xi, fi ) ∈ Tg (i = 1, 2), we define the Teichmüller distance dT by

dT (x1, x2) = 1

2
log inf

h
K(h)

where h runs over all quasiconformal mappings h : X1 → X2 which are homotopic
to f2 ◦ f−1

1 . The Teichmüller distance is complete and it makes Tg a uniquely
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geodesic metric space (cf. [76, 79] for an English translation. See also [3]). The
mapping class group MCG(�g) of �g acts isometrically on Tg by

ω(x) = (X, f ◦ ω−1) (13.2.1)

for x = (X, f ) ∈ Tg.

13.2.2 Complex Structure

Let X be a closed Riemann surface of genus g. Let L∞(X) be the complex Banach
space of complex-valued measurable (−1, 1)-forms μ = μ(z)(dz/dz) with the
essential supremum norm

‖μ‖∞ = ess.sup
p∈X

|μ(p)| < ∞.

Let B(X) be the unit ball in L∞(X). An element in B(X) is called a Beltrami
differential on X. For any μ ∈ B(X), there is a quasiconformal mapping f μ : X →
f μ(X) satisfying the Beltrami differential equation ∂f μ = μ∂f μ on X. Fix
an orientation-preserving homeomorphism h : �g → X. We define a natural
projection, called the Bers projection with basepoint x0 = (X, h) ∈ Tg by

� : B(X) - μ → (f μ(X), f μ ◦ h) ∈ Tg

which sends the origin 0 ∈ B(X) to x0 = (X, h) ∈ Tg. Teichmüller space Tg admits
a complex structure such that the Bers projection is a holomorphic submersion (in
fact, the sections of the submersion define holomorphic local charts). This complex
structure is unique in the sense that it is independent of the choice of the basepoint
x0 ∈ Tg (e.g. [32, §6.2.3]).

A holomorphic quadratic differential q = q(z)dz2 on X is a section of the
square of the canonical line bundle on X. Let QX be the complex Banach space
of holomorphic quadratic differentials q on X with L1-norm

‖q‖ =
∫

X

|q(z)|
√−1

2
dz ∧ dz < ∞.

By the Riemann–Roch theorem, the space QX is linearly isomorphic to C3g−3 over
C. For x = (X, f ) ∈ Tg, we set Qx = QX. The complex vector bundle Qg =
∪x∈Tg

Qx is a holomorphic vector bundle over Tg . A natural pairing

B(X) ×QX - (μ, q) 	→ 〈μ, q〉 =
∫

X

μ(z)q(z)

√−1

2
dz ∧ dz
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gives the identification between the holomorphic cotangent space T ∗
x Tg with Qx .

The holomorphic tangent space is described as

TxTg
∼= L∞(X)/{μ ∈ L∞(X) | 〈μ, q〉 = 0, ∀q ∈ Qx}

by Teichmüller’s lemma (cf. [75, 80] for an English translation. See also [8, 27]).
The action (13.2.1) of the mapping class group is a holomorphic action on the
Teichmüller space. Conversely, any holomorphic action on Teichmüller space comes
from that of the mapping class group (cf. [70]. See also [51, 59]).

13.2.3 Toy Model: The Case of Tori

Let �1 be a (topological) torus. Let {[A], [B]} be a pair of generators of the
homology group of �1 with [A] · [B] = 1 (the algebraic intersection number).
The pair (�1, {[A], [B]}) is a marked torus.

The deformation space (Teichmüller space) T1 of marked tori is identified with
the unit disk D in the following way: Any ξ ∈ D corresponds to a marked torus
Xξ which is the quotient space of C by the marked lattice with ordered pair of
generators {1, τ } where τ = τ (ξ) = √−1(1+ ξ)/(1− ξ). For instance, the marked
square torus corresponds to the origin ξ = 0 ∈ D.

Under the identification T1 ∼= D, the Teichmüller distance coincides with the
hyperbolic distance on D of curvature −4 (cf. Sect. 13.5.3).

13.3 Thurston’s Theory on Surface Topology

13.3.1 Measured Foliations

Let S = S(�g) be the totality of homotopy classes of non-trivial simple closed
curves on �g . The set of formal products WS = WS(�g) = {tα | t ≥ 0, α ∈ S} is
called the set of weighted simple closed curves. The closure MF of the embedding

WS - tα 	→ [β → t i(α, β)] ∈ R
S≥0

is called the space of measured foliations, where the function space R
S≥0 is

topologized with the pointwise convergence topology. For F ∈ MF , the value
F(α) at α ∈ S is said to be the intesection number between F and α, and denoted
by i(F, α).

Notice that measured foliations are originally defined as equivalence classes F

of pairs (F , μ) of singular foliations and transverse measures to the foliations. For
α ∈ S, the infimum of the integration of the transverse measure along simple closed
curves in the homotopy class α defines the intersection number i(F, α) (cf. [25, 81]).
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The mapping class group MCG(�g) acts on MF by

i(ω(F ), α) = i(F, ω−1(α))

for F ∈MF , α ∈ S and ω ∈ MCG(�g).
The spaces MF = MF(�g) and RS≥0 admit actions of the group of positive

numbers R>0 by multiplication. The projective space PMF = (MF − {0})/R>0
is called the space of projective measured foliations. Set PR = (RS≥0 − {0})/R>0.
The intersection number i(tα, sβ) = tsi(α, β) on WS ×WS extends continuously
on MF ×MF [16, 25, 81]. In this chapter, we say that a measured foliation F ∈
MF − {0} is uniquely ergodic if i(F,G) = 0 (G ∈ MF − {0}) implies G = tF

for some t > 0.
Any measured foliation F is described as an equivalence class of a family of

differential forms in a generalized sense as follows. Fix a differential structure on
�g . We consider a family ψ = {ψi}i = {(ψi, Ui)}i with the following conditions.1

There exist k1, · · · , kn ∈ N and x1, · · · , xn ∈ �g such that

(1) {Ui}i is an open cover of �g − {x1, · · · , xn} and ψi is a non-vanishing C∞
real-valued closed 1-form on each Ui ;

(2) ψi = ±ψj on Ui ∩ Uj ;
(3) at each xi , there is a local chart (u, v) : V → R2 such that for z = u +√−1v,

ψi = Re(zki/2dz) on V ∩ Ui for some branch of zki/2 in Ui ∩ V .

By definition, the absolute value |ψ| = |ψi | on Ui of ψ = {ψi}i is well-defined
on �g . Each singularity is a zero of the form |ψ|. The intersection number between
ψ = {ψi}i and α ∈ S is defined by

i(|ψ|, α) = inf
α′∼α

∫

α′
|ψ|.

(cf. [31, Chapter I, §1]). Two such families ψ1 = {ψ1
i }i and ψ2 = {ψ2

j }i are measure
equivalent if |ψ1| = |ψ2| as functions on S. A representative of a measured foliation
is said to be generic if all its singularities are represented by a differential form with
simple zeros. Any measured foliation admits a generic representative.

The integral curves of the projective vector field on �g representing the kernel of
a differential form define a foliation with singularities on �g , and the absolute value
of the differential form defines the transverse measure to the foliation. Under this
correspondence, measured foliations are described as measure equivalence classes
of pairs consisting of foliations with singularities and transverse measures to the
foliations.

1In the literature (for instance, [28, 31]), ψ itself is sometimes called a measured foliation.
However, in our context, measured foliations are equivalence classes. Hence, we do not call this a
measured foliation here to avoid confusion.
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13.3.2 Measured Laminations

Suppose g ≥ 2 and fix a hyperbolic structure on �g . A geodesic lamination is a
closed subset of �g consisting of disjoint simple complete geodesics. A transverse
measure of a geodesic lamination is an assignment of a Radon measure to each
transverse arc to the geodesic lamination. A measured lamination L = (|L|, μ) is a
pair consisting of a geodesic lamination |L|, which is called the support of L, and a
transverse measure μ to the geodesic lamination [22, 81]. Any measured lamination
L is assumed to have full support in the sense that for any transverse arc I to |L|, the
support of the Radon measure assigned to I coincides with |L| ∩ I . We denote by
ML = ML(�g) the totality of measured laminations on �g . Any weighted simple
closed curve tα ∈ WS is associated with a measured lamination whose support is
the geodesic representative of α and the transverse measure is t times the counting
measure for the intersection with the geodesic representative.

The intersection number between a measured lamination L = (L,μ) and α ∈ S
is defined by

i(L, α) = inf
α′∼α

∫

α′
dμ.

There is a natural bijection between MF and ML such that F ∈MF corresponds
to L ∈ML if and only if

i(F, α) = i(L, α) (13.3.1)

for all α ∈ S (cf. [68, §1.7]). The space of measured laminations is also topologized
with the pointwise convergence of the intersection number, and the bijective
correspondence MF ∼= ML becomes a homeomorphism under this topology.
The space PML of projective measured laminations is defined in the same way,
and is homeomorphic to PMF . Thurston showed that MF (and hence ML) is
homeomorphic to R6g−6 when g ≥ 2 and to R2 when g = 1, and PMF (and
hencePML) is homeomorphic to the sphere of dimension 6g−7 if g ≥ 2 and to the
circle if g = 1 (cf. [25, 81]). The space ML (and hence MF ) admits a canonical
piecewise (integral) linear structure inherited from the transverse measures or the
intersection number (cf. [81, Proposition 9.5.8]. See also [17, Part II] and [69, §1]).

13.3.3 Thurston’s Measure

The space of measured foliations (and hence measured laminations) admits a
canonical ergodic measure, called the Thurston measure, equivariant under the
action of Mapping class group. The following definion of the measure is due to
Masur [48, §4].
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Fig. 13.3 Three patterns of singularities in pairs of pants

Let {γi}3g−3
i=1 be a pants decomposition of �g such that no γi occurs twice on the

boundary of a pair of pants. Let F ∈MF . A pair of pants D defined from {γi}3g−3
i=1

is said to be of Case I for F if the intersection number of F with each boundary
curve of D is less than the sum of the other two, of Case II if the intersection
number of F with one boundary curve of D is larger than the sum of the other two,
and of Case III if the intersection number of F with one boundary component is
equal to the sum of the other two. Case III is a limiting case of cases I and II (cf.
Fig. 13.3. See also [48, Figure in p. 177]).

A subset U ⊂ MF is said to be of constant type if all the γi are transverse for
any F ∈ U and if F1, F2 ∈ U and D is any pair of paths with respect to {γi}i , then
D is either of Case I for both F1 and F2 or Case II for both. MF is a disjoint union
of domains of constant type together with lower-dimensional sets where some γi is
a leaf or some pair of pants is of Case III. Such a U is an open set on MF because
the intersection number MF - F 	→ i(F, γi) is continuous for i = 1, · · · , 3g− 3.

Let U ⊂ MF be a domain of constant type. For F ∈ U , let � : �̃ → �g be
the orientation double covering ramified over the singularities of F such that the
pullback �∗F is given by a closed 1-form ψ̃F on �̃. The singularities of the normal
forms (in the sense of [25, Exposé 6]) of measured foliations in U with respect to
{γi}3g−3

i=1 are all simple and contained in pairs of pants. The combinatorial pattern
of singularities and singular leaves on each pair of pants does not change when the
measured foliations vary in U (cf. Fig. 13.3). Hence, up to isotopy, we can take a
common double branched covering � : �̃ → �g for all F ∈ U .

Fix a basis α1, · · · , α6g−6 for the odd homology group H1(�̃,Z)− with respect
to the action of the canonical involution �̃ → �̃ of the covering � : �̃ → �g . The
cohomology class of the 1-form ψ̃F on �̃ defined from F ∈ U is odd with respect
to the involution, and is recognized as an element in the dual of the odd homology
group H1(�̃,Z)−. Then, for A ⊂ U , the Thurston measure μTh(A) of A is defined
by the Lebesgue measure of the image

{(ψF (α1), · · · , ψF (α6g−6)) | F ∈ A} ⊂ R
6g−6.

We define μTh to be zero on the complement of all such U and thus μTh is defined
on MF . The Thurston measure μTh is defined independently of the choice of the
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basis {α1, · · · , α6g−6} and it is invariant under the action of mapping class group (cf.
[48, Lemmas 4.2 and 4.3]). The Thurston measure defined here coincides with the
volume form of the Thurston symplectic form up to constant multiple (e.g. [54, 68]).

13.3.4 Toy Model: The Case of Tori

We shall frequently use the notions given in Sect. 13.2.3. For p/q ∈ Q̂ ∪ {∞}, the
p/q-curve γp/q on �1 is, in our convention, an (unoriented) simple closed curve
representing±(p[A]−q[B]). The geometric intersection number between the p/q-
curve and the r/s-curve is equal to |ps − rq| (cf. [25, Exposé 1]). After identifying
(�1, {[A], [B]}) and a marked square torus X0, the measured foliation associated
with the p/q-curve is defined by a 1-form ψp/q = qdu+ pdv (where u + iv is a
standard Euclidean coordinate on X0 = C/〈z+ 1, z+√−1〉). Consider a mapping

WS - tγp/q 	→ [tq, tp] = [
tψp/q(A), tψp/q(B)

] ∈ R
2/Z2 (13.3.2)

where Z2 is the group of automorphisms of R2 generated by the π-rotation with
respect to the origin. By taking the closure of the image, we get the identification
MF ∼= R2/Z2 ∼= R2. For a ∈ MF ∼= R2/Z2, we denote by Fa the
measured foliation corresponding to a. Geometrically, the measured foliation F[a,b]
is associated with the flow defined by the differential form ψ[a,b] = adu+ bdv and
the corresponding foliation consists of lines in the direction (−b, a). The measured
foliation F[a,b] is characterized by the equation

i(F[a,b], F[q,p]) = |ap − bq|

for p/q ∈ Q̂. From (13.3.2), the identification between MF and R2/Z2 is
concretely obtained by

MF - F[a,b] 	→ [a, b] = [
ψF[a,b](A),ψF[a,b](B)

] ∈ R
2/Z2. (13.3.3)

The Thurston measure μTh on MF is a Borel measure on MF which is the
pullback of the Lebesgue measure on R2/Z2 via the mapping (13.3.3).

The space PMF = PMF(�1) = (MF − {0})/R>0 of projective measured
foliations is identified with the circle S1 = {|ξ | = 1} ⊂ C via the projection

MF - [a, b] 	→ e
√−1!([a,b]) = τ−1(b/a) = (b −√−1a)/(b +√−1a) ∈ S

1,

where the function ! satisfies 0 < !([a, b]) ≤ 2π for all [a, b] ∈ PMF and
!([0, 1]) = 2π .
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13.4 Thurston’s Theory on Kleinian Surface Groups

In this section, we recall Thurston’s picture of the theory of Kleinian surface groups.
We also discuss the Bers slice with sophisticated results in the theory of Kleinian
surface groups.

13.4.1 Kleinian Groups

A discrete subgroup � in PSL2(C) ∼= Isom+(H3) is called a Kleinian group. The
limit set �� ⊂ Ĉ of a Kleinian group � is, by definition, the set of accumulation
points of the orbit of � of a point in H3. A Kleinian group � is called non-
elementary if �� contains at least 3 points, elementary otherwise. Any Kleinian
group in this chapter is assumed to be non-elementary unless otherwise specified.
The complement�� of �� in Ĉ is called the region of discontinuity of �. A Kleinian
group � is called a Fuchsian group if the limit set �� of � is a round circle in Ĉ.

13.4.2 Quasiconformal Deformations

A measurable function μ on Ĉ is said to be invariant under a Kleinian group � if
μ ◦ γ (γ ′/γ ′) = μ on Ĉ for all γ ∈ �. Let L∞(�) be the complex Banach space of
invariant bounded measurable functions under � with the essential supremum norm.
Let B(�) be the unit ball in L∞(�). For any μ ∈ B(�), there is a quasiconformal
mapping wμ (which is unique up to pre-composing with Möbius transformations)
such that ∂wμ = μ∂wμ. Then, the conjugation �μ = wμ�(wμ)−1 also becomes
a Kleinian group. We call �μ a quasiconformal deformation of �. A quasifuchsian
group is, by definition, a quasiconformal deformation of a Fuchsian group.

13.4.3 Classification of Marked Kleinian Surface Groups

A Kleinian surface group is, by defintion, a Kleinian group which is isomorphic to
the fundamental group of a compact surface (a type-preserving condition is needed
if the surface has boundary. For instance, see [53]). A Kleinian surface group is said
to be marked if it is assigned a homomorphism from the fundamental group of a
fixed compact surface.

Let ρ : π1(�g) → PSL(2,C) be a faithful discrete representation. An accidental
parabolic transformation (APT) of ρ is an element γ ∈ π1(�g) or the image ρ(γ )

such that ρ(γ ) is parabolic (cf. [10]).
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13.4.3.1 End Invariants

Bonahon–Thurston’s tameness theorem asserts that the representation ρ is induced
from a homeomorphism from the quotient manifold Nρ = H

3/Im(ρ) to the product
manifold �g ×R (cf. [16, 81]).

Suppose that ρ admits no APT. The quotient manifold Nρ has two ends e+ and
e− (in the sense of Freudenthal) corresponding to �g × {t > 0} and �g × {t < 0}.
An end es (s = ±) is said to be geometrically infinite if any neighborhood of the end
es intersects a closed geodesic. An end which is not geometrically infinite is called
geometrically finite.

Any geometrically infinite end of Nρ is simply degenerate in the sense that there
is a sequence {γn}n of simple closed curves on �g = �g × {0} ⊂ �g × R ∼= Nρ

such that the geodesic representative of γn in Nρ exits the end es (cf. [16, 81]).
Fix a hyperbolic structure on �g and consider the sequence of geodesics {γ ∗n }n
representing such a {γn}n. The ending lamination of the geometrically infinite end es
is a geodesic lamination which is the support of the accumulation points of {γ ∗n }n in
PML. The ending lamination is well-defined and has a minimal and filling property
saying that any leaf of |L| is dense and any measured lamination L whose suppost is
the ending lamination of some faithful discrete representation without APT satisfies
that i(L, α) �= 0 for all α ∈ S (cf. [81, Proposition 9.3.8]).

When the end es is geometrically finite, there is a component �s of �Im(ρ)

such that the union Nρ ∪ (�s/Im(ρ)) defines a compactification of the end es .
The quotient surface �s/Im(ρ) has a conformal structure inherited from Ĉ (the
orientation is inherited from the product structure of Nρ

∼= �g ×R), and a marking
induced from ρ. Therefore, we can associate to a geometrically finite end es a point
in Tg, which is called the Teichmüller end invariant of the geometrically finite end
es . Teichmüller end invariants and ending laminations for the ends of Nρ are well-
defined for the representation ρ, and called the end invariants of ρ.

We could also define end invariants for general faithful-discrete representations
of π1(S). However, we omit this definition because we do not need the general
situation in this chapter (e.g. [53, §2.2]).

13.4.3.2 Ending Lamination Theorem

The ending lamination theorem asserts that faithful discrete PSL(2,C)-
representions of π1(S) are classified by the end invatiants [19, 53]. Furthermore,
with Thurston’s double limit theorem [83], any Kleinian surface group is obtained
as the algebraic limit of a sequence of marked quasifuchsian groups. This is known
as the density theorem (cf. [19]. See also [18, 65, 66] for the general case).
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13.4.4 Bers Slice

Let � be a Fuchsian group isomorphic to π1(�g) and satisfying �� = R̂ = R∪{∞}.
Let A2(H

∗, �) be the space of holomorphic functions ϕ on the lower-half plane H∗
which satisfy ϕ(γ (z))(γ ′(z))2 = ϕ(z) for all z ∈ H∗ and γ ∈ � and the function
z 	→ Im(z)2|ϕ(z)| is bounded on H∗.

Let X0 = H/� and set π : H → X0 to be the universal covering projection.
Fix a marking f0 : �g → X0 and set x0 = (X0, f0) ∈ Tg . For μ ∈ B(X0), by
the measurable Riemann mapping theorem [5], there is a unique quasiconformal
mapping wμ on C satisfying

∂wμ

∂wμ
=
{
π∗(μ) on H

0 on C−H

and wμ(0) = wμ(1)− 1 = 0. Then, a complex analytic mapping

B(X0) - μ 	→ Sch(wμ |H∗) ∈ A2(H
∗, �)

descends to a complex analytic embedding Tg → A2(H
∗, �), where Sch(h) stands

for the Schwarzian derivative of a holomorphic function h (cf. [9]). The embedding
is called the Bers embedding, and the image T B

x0
is called the Bers slice (e.g. [32,

§6.1]).
In the theory of Kleinian groups, the Bers slice is described as follows. For ϕ ∈

A2(H
∗, �), there is a locally univalent holomorphic mapping Wϕ on H∗ such that

the Schwarzian derivative of Wϕ is equal to ϕ. The holonomy representation ρϕ is
a homomorphism � → PSL(2,C) satisfying ρϕ(γ ) ◦Wϕ = Wϕ ◦ γ on H∗ for all
γ ∈ �. By fixing an identification π1(�g) ∼= � (in other words, we fix a marking
�g → X), we also think of ρϕ as a PSL(2,C)-representation of π1(�g). The local
univalent holomorphic mapping Wϕ is regarded as the developing mapping for the
(marked) projective structure with holonomy ρϕ (e.g. [21, 73]).

When μ ∈ B(X0) satisfies Sch(wμ |H∗) = ϕ, Wϕ coincides with the
composition of a Möbius transformation and the restriction wμ |H∗ . In fact, the
Bers slice T B

x0
is equal to the set of ϕ ∈ A2(H

∗, �) such that Wϕ admits a

quasiconformal extension on Ĉ. The closure of T B
x0

in A2(H
∗, �) is known as the

Bers compactification of Tg . The boundary ∂T B
x0

is called the Bers boundary of Tg

(cf. [10]). Each point of the Bers compactification defines a marked Kleinian surface
group �ϕ = Im(ρϕ) with isomorphism ρϕ : π1(�g) ∼= � → �ϕ . To the negative
end of the marked Kleinian surface group ρϕ of any ϕ in the Bers compactification
of T B

x0
, the Teichmüller end invariant x0 = (X0, f0) ∈ Tg is assigned. From the

ending lamination theorem and the double limit theorem, any ϕ ∈ A2(H
∗, �) with

univalent Wϕ is in the Bers compactification of T B
x0

(see also [20] for a different
approach).
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Kerckhoff and Thurston [37] observed that the Bers compactification is depen-
dent on the choice of the base point in the sense that for another x1 ∈ Tg , the
natural biholomorphic mapping T B

x0
→ T B

x1
induced by the identity mapping on

Tg does not extend homeomorphically to the Bers closures. On the other hand,
as we will mention in Sect. 13.4.5, the natural biholomorphic mapping extends
homeomorphically “almost everywhere” to the Bers boundaries (cf. [67]. See also
[12]).

13.4.5 Structure of the Bers Boundary

In this section, we recall a topological parametrization of a part of the Bers boundary
via the ending lamination theorem.

13.4.5.1 Complex of Curves and the Gromov Boundary

The complex of curves Cg is a simplicial complex where any k-simplex is an
unordered sequence [α0, · · · , αk] of homotopy classes of simple closed curves on
�g such that i(αi, αj ) = 0 and αi �= αj for 0 ≤ i < j ≤ k. After identifying each
k-simplex with the Euclidean standard k-simplex, the complex of curves becomes a
metric space. Masur and Minsky [49] showed that the complex of curves is Gromov
hyperbolic.

The Gromov boundary ∂Cg of Cg is described as follows. A measured foliation
(lamination) F is said to be minimal if i(F, α) �= 0 for all α ∈ S. Two measured
foliations (laminations) F1 and F2 are said to be topologically equivalent if the
underlying foliations are equivalent with respect to isotopy and Whitehead moves.
Klarreich [38] showed that the Gromov boundary ∂Cg is identified with the set of
topological equivalence classes of minimal foliations (see also [29]).

13.4.5.2 Boundary Groups Without APTs

Let x0 ∈ Tg . Let ∂APT T B
x0

be the subset of the Bers boundary which consists of
boundary groups with APT. Let ∂minT B

x0
= ∂T B

x0
−∂APT T B

x0
. By virtue of the ending

lamination theorem and the Thurston double limit theorem, we have the following
homeomorphism

� : ∂Cg → ∂minT B
x0

(13.4.1)

which assigns [F ] ∈ ∂Cg to the boundary group whose ending lamination is the sup-
port of the measured lamination corresponding to F under the identification (13.3.1)
(cf. [44]). The boundary ∂Cg contains a subset ∂ueCg consisting of topological
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equivalence classes of minimal uniquely ergodic measured foliations. Let ∂ueT B
x0

be the image of ∂ueCg under the identification (13.4.1).

13.4.6 The Case of Once-Punctured Tori

Minsky [52] solved the ending lamination conjecture for once-punctured torus
groups before solving the general case. Applying the ending lamination theorem,
he showed that the Bers slice for once-punctured tori is homeomorphic to the
Thurston compactification of the Teichmüller space of once-puncture tori. Namely,
the boundary groups are parametrized by PMF . It is well-known that any measured
foliation on the once-punctured torus is either rational or minimal uniquely ergodic
(e.g. [14, 35]).

13.5 Extremal Length and Thurston Measures on PMF
13.5.1 Hubbard–Masur Differentials and Extremal Length

Let x = (X, f ) ∈ Tg. For q ∈ Qx , the vertical foliation v(q) ∈MF of q is defined
by

i(v(q), α) = inf
α′∼f (α)

∫

α′
|Re

√
q|

for α ∈ S. Hubbard and Masur [31] observe that the mapping

Qx - q 	→ v(q) ∈ MF

is a homeomorphism. For F ∈ MF , the Hubbard–Masur differential qF,x ∈ Qx is
defined by the relation v(qF,x) = F . The extremal length of F ∈MF on x ∈ Tg is
defined by the L1-norm

Extx(F ) = ‖qF,x‖.

We can also consider the extremal length for measured laminations by the corre-
spondence (13.3.1). The extremal length satisfies that Extx(tF ) = t2Extx(F ) for
F ∈MF and t ≥ 0, and that Tg ×MF - (x, F ) 	→ Extx(F ) is continuous.

Kerckhoff [36] observed that for any x, y ∈ Tg ,

dT (x, y) = 1

2
log sup

α∈S
Extx(α)

Exty(α)
. (13.5.1)

The formula (13.5.1) is called the Kerckhoff formula of the Teichmüller distance.
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13.5.2 Thurston Measures on PMF

Fix a point x ∈ Tg . After [48] (see also [6, §2.3]), we define a measure νx
T h on

PMF , which we also call the Thurston measure on PMF with base point x here,
by

νx
T h(E) = 1

CHM

μTh({F ∈ MF | [F ] ∈ E,Extx(F ) ≤ 1}), (13.5.2)

where the bracket [F ] means the projective class of F ∈ MF and CHM is the
Hubbard–Masur constant discussed in [6, §2.3] and [26, §5.7]. The multiplication
of the reciprocal of the Hubbard–Masur constant in the right-hand side of (13.5.2)
means that the Thurston measure νx

T h defined here is normalized in such a way that
the total mass of PMF is equal to 1 for each x ∈ Tg.

13.5.3 Toy Model: The Case of Tori

The marking determines the p/q-curve on each Xξ . The Hubbard–Masur differen-
tial on Xξ with respect to F[a,b] ∈MF is

q[a,b],ξ = −
(
−b + aτ(ξ)

Imτ (ξ)

)2

dz2.

(cf, Sect. 13.2.3). The extremal length of F[a,b] on Xξ is

ExtXξ (F[a,b]) = ‖q[a,b],ξ‖ = | − b + aτ(ξ)|2
Imτ (ξ)

= (a2 + b2)
|ξ − e

√−1!([a,b]))|2
1− |ξ |2 .

(13.5.3)

The Kerckhoff formula asserts that the Teichmüller distance dT1 on T1 is

dT1(Xξ ,Xη) = 1

2
log sup

p/q∈Q̂

ExtXξ (F[−p,q])
ExtXη(F[−p,q])

= 1

2
log max

0≤!≤2π

|ξ − e
√−1!|2

1 − |ξ |2
1 − |η|2

|η − e
√−1!|2

= 1

2
log

|1 − ξη| + |ξ − η|
|1 − ξη| − |ξ − η| ,

which coincides with the hyperbolic distance on D with curvature −4 (cf. [7]).
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We calculate the Thurston measure ν
ξ
T h for ξ ∈ D ∼= T1. Let Bξ be the unit ball

with respect to the extremal length ExtXξ (·) in MF ∼= R2/Z2. Take !ξ ∈ (0, 2π]
with e

√−1!ξ = ξ/|ξ |. From (13.5.3), Bξ is the unit disk if ξ = 0, and the ellipse
whose major axis is a segment of length 2(1 + |ξ |)/(1 − |ξ |) of direction !ξ , and
whose minor axis is a segment of length 2(1−|ξ |)/(1+|ξ |) of direction !ξ +π/2,
otherwise. The identification PMF ∼= S1 → ∂Bξ ⊂ MF ∼= R2/Z2 is given by

S
1 - e

√−1! 	→
[ √

1 − |ξ |2
|ξ − e

√−1!| sin
!

2
,−

√
1 − |ξ |2

|ξ − e
√−1!| cos

!

2

]

.

Hence, the Thurston measure ν
ξ
T h for Xξ is

ν
ξ
T h(E) = 1

2π

∫

E

1 − |ξ |2
|ξ − e

√−1!|2 d! (13.5.4)

for E ⊂ PMF ∼= S1, from the normalization of the Thurston measures.

13.6 Thurston Theory with Extremal Length

13.6.1 Gardiner–Masur Compactfication

The Gardiner–Masur compactification is defined by Gardinar and Masur in [28] as
the closure of the image of the embedding

Tg - x 	→ [S - α 	→ Extx(α)
1/2] ∈ PR = (RS≥0 − {0})/R>0. (13.6.1)

The boundary ∂GMTg of the compactification is called the Gardiner–Masur bound-
ary. The Gardiner–Masur boundary contains the space PMF of projective mea-
sured foliations (cf. [28, Theorem 7.1]) as a proper subset.

In [56], the author observed that when fixing x0 ∈ Tg , for any p ∈ Tg ∪ ∂GMTg ,
there is a unique continuous function Ep on MF such that the restriction of Ep to
S represents p in the closure of the image of (13.6.1), Epn → Ep when pn → p in
Tg ∪ ∂GMTg , and maxExtx0 (F )=1 Ep(F ) = 1. For instance,

Ex(F ) = e−dT (x0,x)Extx(F )1/2 (13.6.2)

E[G](F ) = i(F,G)

Extx0(G)1/2 (13.6.3)

for x ∈ Tg and [G] ∈ PMF ⊂ ∂GMTg (see also [59, §3]).
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13.6.2 Thurston’s Theory with Extremal Length

Let ∂̃GM be the preimage of the projection RS≥0 → PR of the Gardiner–Masur

boundary. Notice from Gardiner and Masur’s observation that MF ⊂ ∂̃GM .
The extermal length function Extx(·) on MF extends continuously on ∂̃GM , and
the intersection number i( · , · ) on MF × MF also extends continuously on
∂̃GM × ∂̃GM (cf. [59, Theorems 1 and 3]). Using the intersection number on ∂̃GM ,
the formula (13.6.3) is extended as

Ep(F ) = i(F, a)

Extx0(a)
1/2

where a ∈ ∂̃GM − {0} is a representative of p. The Gromov product with base point
x0 ∈ Tg

〈x | y〉x0 =
1

2
(dT (x0, x)+ dT (x0, y)− dT (x, y))

is recognized as the log-intersection number between marked Riemann surfaces in
the sense that

exp(−2〈xn | yn〉x0) →
i(a, b)

Extx0(a)
1/2Extx0(b)

1/2

as n → ∞ for x ∈ Tg , when the sequences {xn}n and {yn}n in Tg converge to the
projective classes of a and b ∈ ∂̃GM − {0}, respectively (cf. [59, Corollary 1]).

13.6.3 Toy Model: The Case of Tori

The Gardiner–Masur compactification of T1 was already discussed in [55]. Indeed,
the Gardiner–Masur compactification coincides with the Thurston compactifica-
tion.2 For the convenience of the readers, we discuss briefly this coincidence.
Consider a function

Eξ (F[a,b]) = e−dT (�1)(0,ξ )ExtXξ (F[a,b])1/2

=
√
a2 + b2 |ξ − e

√−1!([a,b])|
1 + |ξ |

2We need to define with care the Thurston compactification of the Teichmüller space of flat tori,
since there is no hyperbolic structure on the torus. Indeed, we adopt here flat structures instead of
hyperbolic structures for defining the Thurston compactification.
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for [a, b] ∈ MF ∼= R
2/Z2 (cf. (13.6.2)). Let {ξn}n be a divergent sequence in

T1 ∼= D. By taking a subsequence if necessary, we may assume that ξn converges to
e
√−1! = τ−1(b/a) with ! = !([a, b]). Then,

Eξn(F[q,p]) →
|ap − bq|√
a2 + b2

= i
(
F[a,b], F[q,p]

)

ExtX0(F[a,b])1/2

as n → ∞ for any p/q ∈ Q̂ ∼= S. Thus, the sequence {Eξn}n is thought
of as converging to the function i( · , F[a,b])/ExtX0(F[a,b])1/2 on the space of
functions on S. Since the Gardiner–Masur boundary contains PMF , this boundary
is identified with PMF(�1). Furthermore, the identification T1 ∼= D extends
homeomorphically between the Gardinar-Masur compactification of T1 and the
closed unit disk D.

The Gromov product of the Teichmüller distance satisfies

exp(−2〈ξ | η〉0) =
(

1− |ξ |
1+ |ξ |

1 − |η|
1 + |η|

|1 − ηξ | + |ξ − η|
|1 − ηξ | − |ξ − η|

)1/2

for ξ, η ∈ T1 ∼= D. Hence, if ξ and η tend to the projective classes [F[a,b]] and
[F[c,d]] of F[a,b], F[c,d] ∈ MF − {0} ∼= (R2 − {0})/Z2, we have

exp(−2〈ξ | η〉0) → |ad − bc|√
a2 + b2

√
c2 + dc

= i(F[a,b], F[c,d])
ExtX0(F[a,b])1/2ExtX0(F[c,d])1/2 .

13.7 Complex Analysis on Teichmüller Space

13.7.1 Complex Analysis

Plurisubharmonic functions are fundamental functions in the theory of several
complex variables. An upper-semicontinuous function u on a domain � in C

N

which is not identically −∞ is said to be plurisubharmonic if for all a ∈ � and
v ∈ C

N , λ 	→ u(a + λv) is subharmonic or identically −∞ on every component of
the set {λ ∈ C | a + λv ∈ �} [40, §2.9]. Let u be a C2 function on a domain � in
C

N . Let z = (zi)
N
i=1 ∈ � and v = (vi)

N
i=1 ∈ C

N = Tz�. The Levi form is defined
by

L(u)(z)[v, v] =
N∑

i,j=1

∂2u

∂zi∂zj
(z)vivj

(cf. [40, (1.4.2)]). A C2-function u on � is said to be plurisubharmonic if and only
if L(u)(z)[v, v] ≥ 0 for any z ∈ � and v ∈ CN . We can define plurisubharmonic
functions on complex manifolds in the usual manner.
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A domain � in CN is said to be hyperconvex (in the sense of Stehlé [74]) if there
is an upper-bounded continuous plurisubharmonic exhaustion on �. Demailly [23]
showed that for any bounded hyperconvex domain � in CN and w ∈ �, there is a
unique continuous plurisubharmonic function u�,w = u�( · , w) on � with values
in [−∞, 0] such that

(1) u�,w |∂�= 0;
(2) the current (ddcu�)N is the Dirac measure (2π)Nδw supported at w; and
(3) u�,w(z,w) = log ‖z −w‖ +O(1) as z → w.

Indeed, the function u�,w is characterized as

u�,w(z,w) = sup
v

v(z)

where the supremum runs over all non-positive plurisubharmonic functions v

satisfying v(z) ≤ log ‖z − w‖ + O(1) as z → w. The function u� is called the
pluricomplex Green function on � (see [39]).

Demailly [23] also found the pluriharmonic measures for bounded hyperconvex
domains. For a bounded hyperconvex domain � in C

N , the pluriharmonic measure
is a Radon measure supported on ∂� defined as the limit of the family of the
Monge–Ampère measures associated to the pluricomplex Green function (cf. [23,
(5.2) Définition]). The pluriharmonic measure ωz of z ∈ � satisfies the Lelong–
Jensen formula

V (z) =
∫

∂�

V (ζ )dωz(ζ )− 1

(2π)N

∫

�

(ddcV )∧ |u�,z|(ddcu�,w)N−1 (13.7.1)

for any continuous function V on � which is plurisubharmonic on � (cf. [23,
(5.1) Théorème]). In particular, since ddcV = 0 on � when V is holomorphic
(or pluriharmonic) on a neighborhood of �, the Poisson integral formula

V (z) =
∫

∂�

V (ζ )dωz(ζ ) (13.7.2)

holds from (13.7.1) for a holomorphic (or pluriharmonic) function V on � which is
continuous on �.

13.7.2 The Complex Structure on Teichmüller Space Revisited

As discussed in Sect. 13.4.4, the Bers slice is a realization of Teichmüller space Tg

as a bounded domain in a complex Euclidean space. The Bers slice, as a bounded
domain, has rich properties in the complex analytical aspect. For instance, Shiga
[72] showed that the Bers slice is polynomially convex (see also [24]). Krushkal
[42] observed that the Teichmüller space Tg is hyperconvex (see also [61, 84]).
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13.7.3 Complex Analysis with Extremal Length

Extremal length functions have nice complex analytic properties. Indeed, the
negatively reciprocal of the extremal length function

Tg - x 	→ − 1

Extx(F )
(13.7.3)

is plurisubharmonic on Tg for all F ∈ MF − {0} (cf. [61, Theorem 5.3]).
We have a concrete formula of the Levi form of the extremal length function
of a generic measured foliation (cf. [61, Theorem 5.1]). The plurisubharmonicity
of the functions (13.7.3) implies that the extremal length functions themselves
are plurisubharmonic, and the logarithm of any polynomial of extremal length
functions with positive coefficients is also plurisubharmonic (cf. [61, Corollary
1.1]). Especially, the Teichmüller distance function

Tg - x 	→ dT (x, y) = 1

2
sup
α∈S

(log Extx(α)− log Exty(α))

is plurisubharmonic for fixed y ∈ Tg (cf. [61]. See also [40, Theorem 2.6.1]). The
plurisubharmonicity of the extremal length functions was first proved by Liu and
Su [47]. The plurisubharmonicity of the Teichmüller distance function was first
observed by Krushkal [43]. Our discussions are different from them in any case.

13.7.4 Pluricomplex Green Function

Krushkal [43] observed that the pluricomplex Green function on Tg satisfies the
following remarkable formula, the so-called Krushkal formula

uTg
(x, y) = log tanh dT (x, y) (13.7.4)

for x, y ∈ Tg, where uTg
(x, y) = uTg,y(x, y) is the pluricomplex Green function

on Tg with pole at y discussed in the previous section (see also [63] for a different
proof). A concrete formula for the Levi form of the Teichmüller distance function
and the pluricomplex Green function are given in [63] on an open dense subset of Tg ,
and the Levi forms are described in terms of the complexified Thurston symplectic
form (see [26] for related results). The pluricomplex Green function is expected to
be a connector between the topological aspect and the complex analytical aspect in
Teichmüller theory (cf. Sect. 13.8.3).
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13.7.5 Pluriharmonic Measures

We give a review of the recent progress on Demailly’s pluriharmonic measures on
Teichmüller spaces.

Fix x0 ∈ Tg . The pluriharmonic measures are supported on the Bers boundary
∂T B

x0
. The Kerckhoff–Thuston theorem asserts that the Bers compactification is

dependent on the choice of the base point x0 (cf. [37]). Hence, we denote by ω
x0
x the

pluriharmonic measure of x ∈ Tg on T B
x0

.
For ϕ ∈ ∂ueT B

x0
, let Fϕ ∈ MF be the representative of the measured foliation

whose support corresponds to the ending lamination of the marked Kleinian surface
group �ϕ (cf. Sect. 13.4.5.2). We define a function Tg × Tg × ∂T B

x0
by

P(x, y, ϕ) =

⎧
⎪⎨

⎪⎩

(
Extx(Fϕ)

Exty(Fϕ)

)3g−3

(ϕ ∈ ∂ueT B
x0

)

1 (otherwise).

Theorem 13.7.1 (Poisson Kernel) For any x, y ∈ Tg , we have

dωx0
y = P(x, y, · )dωx0

x (13.7.5)

almost everywhere on ∂T B
x0

with respect to the pluriharmonic measure.

Demailly observed that for any x, y ∈ Tg , ω
x0
x and ω

x0
y are absolutely continuous

with respect to each other (cf. [23, (5.3) Théorème]). Hence, the condition “almost
everywhere” in the last part of the statement of Theorem 13.7.1 is independent of
the choice of the points of the definition for the pluriharmonic measures.

Corollary 13.7.1 (Poisson Integral Formula) Let f be a holomorphic function or
a pluriharmonic function on a domain containing the Bers compactification. Then,

f (x) =
∫

∂T B
x0

f (ϕ)P(x0, x, ϕ)dωx0
x0
(ϕ)

for x ∈ Tg after identifying Tg
∼= T B

x0
via the Bers embedding with the base point

x0.

We give a sketch of the proof of Theorem 13.7.1. The details appear in [62]. We
first notice the following which is cofirmed in [62].

Proposition 13.7.1 (APT’s are Null) For any x ∈ Tg, the pluriharmonic measure
ω

x0
x is supported in ∂minT B

x0
. Namely, we have ω

x0
x (∂APT T B

x0
) = 0.

Recall that ∂minT B
x0

is a subset of ∂T B
x0

consisting of boundary groups whose ending
lamination is minimal (cf. Sect. 13.4.5.2). Proposition 13.7.1 is proved as follows.
For any γ ∈ π1(�g), the trace function Trγ of γ is a holomorphic function on
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the ambient space of the Bers slice whose values are in C − [0, 4) on the Bers
compactification (cf. (13.8.1)). Furthermore, Trγ (ϕ) = 4 if and only if γ is an
APT of ρϕ . Composing an affine conjugation of the Joukowsky transform, we get
a continuous function λ on the Bers compactification which is holomorphic in Tg

such that the values are in D∪{1} and λ(ϕ) = 1 if and only if γ is an APT of ρϕ . As
n →∞, the n-th power λn tends to the characteristic function on the set consisting
of ϕ ∈ ∂T B

x0
such that γ is an APT of ρϕ . Since π1(�g) is a countable group, the

Poisson integral formula (13.7.2) for λn and the Lebesgue dominated convergence
theorem guarantee that the pluriharmonic measure of ∂APT T B

x0
is zero.

Fix x, y ∈ Tg. We define a measurable function � on ∂T B
x0

by the limit

�(ϕ) = lim sup
z→ϕ

log tanh(dT (y, z))

log tanh(dT (x, z))

at ϕ ∈ ∂T B
x0

. Then, Demailly observes that

dωx0
y ≤ �3g−3dωx0

x (13.7.6)

on ∂T B
x0

(cf. [23, (3.8) Théorème] and (13.7.4)). When ϕ ∈ ∂ueT B
x0

, we can see
that any sequence in Tg converging to ϕ in the Bers compactification converges
to the projective class [Fϕ] in the Gardiner–Masur compactification by applying
the argument in [60] and the characterization of uniquely ergodic points in the
Gardiner–Masur compactification developped in [57, 59]. Since

log tanh(dT (y, z))

log tanh(dT (x, z))
= exp(2(dT (x, z)− dT (y, z)))(1 + o(1))

as z → ϕ, we obtain

�(ϕ) = Extx(Fϕ)

Exty(Fϕ)

for ϕ ∈ ∂ueT B
x0

from the formulae in [59, §5.1] (see also Sect. 13.8.1).
Let us finish the sketch of the proof of Theorem 13.7.1. Let PMFmin ⊂ PMF

be the set of projective classes of minimal measured foliations. From Klarreich’s
result [38], there is a continuous projection ' : PMFmin → ∂Cg (see also [29]).
Notice from Proposition 13.7.1 that ω

x0
x0 is supported on ∂minT B

x0
.

A key for proving Theorem 13.7.1 is that ω
x0
x0 is absolutely continuous with

respect to the push-forward measure (� ◦ ')∗(dνx0
T h) of the Thurston measure

(Sect. 13.5.2). In fact, we see in [62] that ω
x0
x0 coincides with (� ◦ ')∗(νx0

T h) on
∂T B

x0
(see Sect. 13.8.1).
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From the absolute continuity, we conclude that ∂ueT B
x0

is of full measure with
respect to the pluriharmonic measure ω

x0
x0 on Tg, since from Masur’s result [48],

∂ueT B
x0

is a set of full measure on ∂T B
x0

with respect to (�◦')∗(νx0
T h). Therefore, the

function � defined above coincides with P(x, y, · ) almost everywhere on ∂T B
x0

with
respect to the pluriharmonic measures. Since the function P is reciprocal in the sense
that P(y, x, ϕ) = P(x, y, ϕ)−1 for (x, y, ϕ) ∈ Tg × Tg × ∂T B

x0
, from (13.7.6), the

identity (13.7.5) holds almost everywhere on ∂T B
x0

with respect to the pluriharmonic
measures.

13.7.6 Toy Model: The Case of Tori

The (pluricomplex) Green function on T1 ∼= D with pole at ξ0 ∈ T1 (satisfying the
properties given in Sect. 13.7.1) is

uT1(Xξ ,Xξ0) = log

∣
∣
∣
∣
ξ − ξ0

1 − ξ0ξ

∣
∣
∣
∣ = log tanh dT (Xξ ,Xξ0).

After identifying the Thurston (Gardiner–Masur) compactification and the Bers
compactification via Minsky’s ending lamination theorem for once-punctured torus
groups, the (pluri)harmonic measure at ξ ∈ T1 ∼= D is equal to the usual harmonic
measure

dω0
ξ =

1

2π

1 − |ξ |2
|ξ − e

√−1!|d!, (13.7.7)

which coincides with the (normalized) Thurston measure (13.5.4). In this case, the
function defined by

P(ξ, η, [a, b]) = Extξ (F[a,b])
Extη(F[a,b])

= 1 − |η|2
1 − |ξ |2

|ξ − e
√−1!([a,b])|

|η − e
√−1!([a,b])|

for (ξ, η, [a, b]) ∈ T1 × T1 × PMF satisfies

dω0
η = P(ξ, η, · )dω0

ξ

on PMF for ξ, η ∈ T1 as (13.7.5).
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13.8 Toward Complex Analysis with Thurston Theory

13.8.1 Pluriharmonic Measures

After [6, §2.3.1], we consider the cocycle function defined by

β(x, y; ϕ) =
⎧
⎨

⎩

1

2
(log Extx(Fϕ)− log Exty(Fϕ)) (ϕ ∈ ∂ueT B

x0
)

0 (otherwise).

for (x, y, ϕ) ∈ Tg × Tg × ∂T B
x0

. The cocycle function β is also understood as the
horofunction for the Teichmüller distance when ϕ ∈ ∂ueT B

x0
(cf. [46]. See also [58,

59]). Theorem 13.7.1 implies that the pluriharmonic measures {ωx0
x }x∈Tg

on ∂T B
x0

are regarded as conformal densities of dimension δ = 6g − 6 for the cocycle β in
the sense of Athreya, Bufetov, Eskin and Mirzakhani: that is, for x, y ∈ Tg and a
measurable subset U ⊂ ∂T B

x0
, we have

dωx0
y = exp (δβ(x, y; · )) dωx0

x

ω
x0
ω(x)(ω(U)) = ωx0

x (U)

(see the discussion after [23, (5.2) Définition]). Notice from the ending lamination
theorem that the mapping class group MCG(�g) acts on ∂minT B

x0
homeomorphi-

cally. From [45], the conformal density of dimension 6g − 6 on PMF are unique
up to scale, and equal to the system of Thurston measures on PMF .

We actually have an analogy with the case of Teichmüller space of tori
concerning the pluriharmonic measures (cf. [62]). Namely, as observations (13.5.4)
and (13.7.7) in our toy model, the pluriharmonic measure coincides with the
pushforward measure of the Thurston measure via the mapping (13.4.1). The
coincidence is a topological characterization of the pluriharmonic measures in
Teichmüller theory.

Kaimanovich and Masur [34] discussed the Poisson boundary of Teichmüller
space and obtained the Poisson integral formula in their setting. Though the author
does not know any connection between their setting and our setting at this time, any
connection will be interesting.

13.8.2 Trace Functions

The Bers slice is contained in the space of projective structures as mentioned
in Sect. 13.4.4. For γ ∈ π1(�g), the trace function

Trγ (ϕ) = tr2(ρϕ(γ )) (ϕ ∈ A2(H
∗, �)) (13.8.1)
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is a holomorphic function on the ambient space A2(H
∗, �). From the Poisson

integral formula (Corollary 13.7.1),

Trγ (x) =
∫

∂T B
x0

Trγ (ϕ)P(x0, x, ϕ)dωx0
x0
(ϕ) (13.8.2)

for γ ∈ π1(�g) under the identification Tg
∼= T B

x0
. The trace function is the

quadruple of the square of cosh of the half of the complex length of γ of the
representation. As the pivot theorem in [52], the short curve theorem in [53], and
the length bound theorem in [19], the behavior of the complex length is studied in
terms of end invariants from the combinatorial view point. We expect, with Extremal
length geometry, the behavior of the trace function in Tg is understood with the
averaging (13.8.2) of the combinatorial descriptions of the trace functions at the
Bers boundary.

13.8.3 Holomorphic Functions

Since Teichmüller space is a Stein manifold (cf. [13]), the complex analytical
structure is essentially understood from the C-algebra of the space of holomorphic
functions (cf. [33]). The discussion in the previous section will provide a new
approach to the study of holomorphic functions on Teichmüller space.

Since the Bers slice T B
x0

is polynomially convex in A2(H
∗, �) (cf. [72]), any

holomorphic function on Teichmüller space can be approximated by holomorphic
functions on the ambient space A2(H

∗, �). To almost all points in the Bers
boundary, the ending laminations which are topological invariants are associated.
Hence, the boundary values of given holomorphic functions stand for the “com-
binatorial” descriptions of the holomorphic functions in Teichmüller theory. Thus,
any holomorphic function on Teichmüller space will be understood by the behavior
of the boundary values (combinatorial descriptions) of the approximations together
with the Poisson integral formula (Corollary 13.7.1).

In [64], the author defines real analytic charts of Teichmüller space associated
with the extremal length functions and describes the complex structure with respect
to these charts. We also describe the CR-equations on the horosphere of the
extremal length functions. The boundary values of the holomorphic functions on
the horosphere satisfy the CR-equations (cf. [15]). To characterize the combinatorial
descriptions of holomorphic functions at the boundary, we hope to develop a kind
of “CR-equations” on the boundary by (for example) extending the CR-equations
on the horospheres.
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Chapter 14
Signatures of Monic Polynomials

Norbert A’Campo

Abstract Let P : C → C be a monic polynomial map of degree d ≥ 1. We
call the inverse image of the union of the real and imaginary axes the geometric
picture of the polynomial P . The geometric picture of a monic polynomial is a
piecewise smooth planar graph. Smooth isotopy classes relative to the 4d asymptotic
ends at infinity of geometric pictures are called signatures. The set of signatures �d

of monic degree-d polynomials is finite. We give a combinatorial characterization
of the set of signatures �d and prove that the space of monic polynomials of
given signature is contractible. This construction leads to a real semi-algebraic cell-
decomposition

Pold =
⋃

σ∈�d

{P | σ(P ) = σ }

of the space Pold of monic polynomials of degree d . In this cell-decomposition the
classical discriminant locus �d appears as a union of cells. The complement of the
classical discriminant Bd := Pold \�d is a union of cells. The face operators of this
cell-decomposition of the space Bd are explicitly given. Since Bd is a classifying
space for the braid group, we obtain a finite complex that computes the group
cohomology of the braid group with integral coefficients.

The picture of the polynomial P is in fact a union of leaves of the pair of
orthogonal foliations of the quadratic differential dP 2. Clearly, our inspiration on
this work came from William Thurston’s work.
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14.1 Introduction

Let P : C → C be a polynomial mapping. We assume that P is monic, i.e. with
leading coefficient 1. We call a polynomial P balanced if its sub-leading coefficient
vanishes which says that the sum of its roots P−1(0) weighted by multiplicity equals
0. A unique Tschirnhausen substitution z = z−t will transform a monic polynomial
into a monic and balanced one. We call the inverse image by the map P of the
union of the real and the imaginary axis the geometric picture πP of the monic
polynomial P .

Geometric pictures1 of monic polynomials are special graphs in the Gaussian
plane C. Their combinatorial restrictions are listed in the following statement.

Theorem 14.1.1 Let P(z) be a monic polynomial of degree d > 0. Its geometric
picture πP is a smooth graph in C with the following properties:

1. The graph has no cycles. The graph is a forest. The non-compact edges are
properly embedded in C.

2. The complementary regions have a 4-colouring by symbols A,B,C,D. The
colouring is proper, meaning that regions having a boundary edge in common
have different colors.

3. The edges are oriented smooth curves and have a 2-colouring by symbols R, I .
They carry the symbol R if the edge separates D and A or B and C coloured
regions. They carry the symbol I if the edge separates A and B or C and D

coloured regions. The colouring may be not proper. The orientation is right-
handed if one crosses the edge from D to A or A to B, and left-handed if one
crosses B to C or C to D.

4. The picture has 4d edges that, near infinity, are asymptotic to the rays
rekπi/2d, r > 0, k = 0, 1, · · · , 4d − 1. The colours R, I alternate and the
orientations of the R coloured and also the I coloured alternate between out-
going and in-going.

5. Near infinity the sectors are coloured in the counterclockwise orientation by the
4-periodic sequence of symbols A,B,C,D,A,B, · · · .

6. The graph can have 5 types of vertices: for the first 4 types only A,B or
B,C or C,D or D,A regions are incident and only edges of one color are
incident, moreover for the fifth type, regions of all 4 colours are incident and the
colours appear in the counterclockwise orientation as A,B,C,D,A,B, · · · . So,
in particular the graph has no terminal vertices.

7. At all points p ∈ πP the germ of the graph πP is smoothly diffeomorphic to the
germ at 0 ∈ C of {z ∈ C | Rezk = 0} for some k = 1, 2, · · · .

Proof The real and imaginary axis decompose the complex plane C in four regions
coloured in cyclic counterclockwise order by A,B,C,D according to the signs of
the real and imaginary part respectively++,−+,−−,+−. The real and imaginary

1François Bergeron informed us that he also introduced geometric pictures and studied them for
the same purpose, see arXiv:0901.4030.
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axes are coloured by R, I and are oriented by the gradients of the real and imaginary
parts. In fact, this is the colouring and the orientation of the picture πz of the
degree-1 polynomial z. The picture πP inherites the colouring for its regions and
the colouring together with orientation of its edges by pulling back via the map P

the colouring and orientation of πz. Properties 2, 3, · · · 7 are clear.
For property 1 we first observe that the function Re(P ) ∗ Im(P ) : C → R

is harmonic. Indeed, Re(P ) ∗ Im(P ) = 1

2
Im(P 2) and the imaginary part of the

holomorphic map P 2 is harmonic. A minimal cycle Z in πP is a simply closed curve
and would bound an open bounded region U . Since the function Re(P ) ∗ Im(P )

vanishes along Z, we would have Re(P ) ∗ Im(P ) = 0 on U . It follows that the
image P(U) of P = Re(P ) + iIm(P ) is contained in the union of the real and
imaginary axes in C, contradicting the openness of the non constant holomorphic
mapping P [11]. �
Theorem 14.1.2 For a given degree d , there exist only finitely many isotopy classes
of graphs satisfying the seven properties of Theorem 14.1.1.

Proof We compactify the graph by adding 4d ideal vertices at infinity, one for each
ray, see Property 4. Let v be the number of vertices and v′ be the number of inner
(non-ideal) vertices of the compactified graph. Since the degree of an inner vertex
is at least 4, the number of incidence pairs of a vertex, finite or ideal, and edge is at
least 4v′ + 4d . So the number e of edges is at least 2v′ + 2d . Since the graph is an
non-empty forest, its Euler number is at least 1. Hence

1 ≤ v − e ≤ (v′ + 4d)− (2v′ + 2d)

showing that v′ ≤ 2d − 1 and v ≤ 6d − 1. The statement follows, since the number
of isotopy classes, relative to infinity, of planar forests with 4d ideal fixed terminal
vertices at infinity and at most 2d − 1 finite vertices is finite. �
Definition A signature of degree d is a smooth isotopy class of graphs that satisfy
the seven properties of Theorem 14.1.1.

Equipped with the Hausdorff topology of proper closed subsets in C, a signature
becomes a topological space of planar graphs. Classical theorems of Rheinhold Baer
[1], David Epstein [6] and Jean Cerf [3] in planar topology tell us that a signature is
a contractible space. See the thesis of Yves Ladegaillerie [7] for the study of spaces
of graphs in surfaces.

The following theorems are the main results. Every signature is realized by a
monic polynomial.

Theorem 14.1.3 Let σ be a signature of degree d > 0. Then there exists some
P ∈ Pold whose geometric picture belongs to σ .

The space of monic polynomials with given signature is contractible.

Theorem 14.1.4 Let σ be a signature of degree d > 0. The space {P ∈ Pold |
σ(P ) = σ } is contractible.
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14.2 Bi-regular Polynomials

As intermezzo we first study the most generic monic polynomials. The correspond-
ing cells are the open cells. We call the map P bi-regular if 0 ∈ R is a regular
value for both mappings, the real as well as the imaginary part Re(P ) : C → R

and Im(P ) : C→ R. The geometric picture of a bi-regular polynomial P of degree
d > 0 is the union of the oriented inverse images of 0 ∈ R for the maps Re(P )

and Im(P ). It has d vertices of valency 4 at the roots of P and 4d non compact
terminal edges. Here we show as an example the geometric picture of the bi-regular
polynomial

P = z13 − 6z7 + z4 − z3 + 5z2 + z + 3 + 2i

See the picture in Fig. 14.1 that we made with SAGE [14]. The green lines are the
inverse image by P of the oriented (from −∞ to +∞) real axis, and are also the
inverse image by Im(P ) of 0 ∈ R. The blue ones are the inverse image by P of
the oriented (from −i∞ to +i∞) imaginary axis and also the inverse image by
Re(P ) of 0 ∈ R. There are 13 transversal intersection points of a green and blue
line, which of course are the roots of the polynomial P . At each root a blue and
a green line intersect orthogonally since the polynomial map P is conformal and
hence its differential at regular points preserves angles. Each blue or green line is
a properly embedded copy of the oriented real line in the plane. Near infinity those

Fig. 14.1 P = z13 − 6z7 + z4 − z3 + 5z2 + z+ 3 + 2i
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lines are asymptotic to rays emanating from the origin. For a bi-regular polynomial
of degree d , the inverse image of the real axis is a disjoint union of d copies of an
oriented real line, having 2d ends that are asymptotic to rays directed by the 2d-
roots of unity θ with θd = ±1. The inverse image of the imaginary axis is a similar
disjoint union of d copies of a real line, except that the ends are asymptotic to the
directions of the 4d-roots of unity θ with θd = ±i. We orient the asymptotic rays
from 0 to ∞. The orientation of a curve of the picture and its asymptotic ray match
if θd = +1,+i and are opposite if θd = −1,−i. We call the geometric picture of a
bi-regular polynomial a bi-regular picture.

We say that two bi-regular pictures π, π ′ are combinatorially equivalent if there
exists a regular proper ambient isotopy that keeps the direction of the asymptotics
fixed and that moves π to π ′. A bi-regular signature is a combinatorial equivalence
class of bi-regular pictures.

In the next section we will count the number of bi-regular signatures of degree
d . From the combinatorial viewpoint, a bi-regular signature is a signature such that
every vertex has valence 4 at which the incident 4 sectors have moreover 4 different
colours.

This is especially interesting for following a root rt continuously given by
a family Pt of polynomials. What is still missing, is an understanding of the
wall crossings phenomena between different connected components of bi-regular
polynomials. In particular we do not know the dual graph of those components for
which a component becomes a vertex and a pair of vertices is connected by an edge
if one gets from one component to the other by a transversal wall crossing. We plan
applications to computer graphics and robotics in the future.

14.3 Counting Bi-regular and Sub Bi-regular Signatures

Let P : C→ C be a monic polynomial mapping of degree d . We assume that 0 ∈ R

is a regular value of the imaginary part mapping of Im(P ) : C → R. The inverse
image P−1(R) ⊂ C is a system of d disjoint smoothly embedded copies of the real
line. The orientations of this system can be reconstructed, since the positive end of
the real axis is an asymptotic ray with matching orientations and since the matching
and non-matching ends alternate if one goes from one 2d-root of unity to the next.
So we can forget the orientations of the components of P−1(R) ⊂ C without loosing
information. Combinatorially we can think of P−1(R) ⊂ C as a system of d disjoint
diagonals and edges in a 2d-gon. The number of possible systems D(d) of d non-
intersecting diagonals or edges in a 2d-gon is given by a Catalan number. We put
D(0) = 1, and have D(1) = 1, D(2) = 2 and for d ≥ 3 the number of d non-
intersecting diagonals or edges in a 2d-gon is given by a Catalan number D(d).
Here in particular disjoint means having no common vertices! Moreover, for d ≥ 3
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the recurrence relation

D(d + 1) =
∑

0≤i≤d

D(i)D(d − i)

holds. This recurrence relation is obtained by splitting a 2(d + 1)-gon along the
curve that has the first vertex as end. This is the recurrence relation for the Catalan
numbers, hence D(d) = 1

d+1

(2d
d

)
[4]. The first Catalan numbers for d = 1, 2, · · ·

are

1, 2, 5, 14, 42, 132, 429, 1430.

For the inverse image of the imaginary axis we also have D(d) possibilities. The
two possibilities are very dependent, since each component of the inverse image of
the real axis intersects transversally the inverse image of the imaginary axis once. So
we need a combined counting. Let Pict(d) be the number of possible combinatorial
types of pictures. We put Pict(0) = 1 and have Pict(1) = 1. For d ≥ 2 we have the
recurrence relation

Pict(d + 1) =
∑

0≤i,0≤j,0≤k,0≤l,i+j+k+l=d

Pict(i)Pict(j)Pict(k)Pict(l),

which is obtained from the following splitting: let α be the curve in P−1(R) that is
asymptotic to the positive real axis and β be the curve in P−1(iR) that intersects A.
The pair of curves (α, β) splits the complex plane into four regions. The summing
indices i, j, k, l are the number of roots of a bi-regular polynomial in these regions.
The Catalan recurrence expresses D(d + 1) as a sum of products D(a)D(b) with
a + b = d . The recurrence for Pict(d + 1) is similar, except that Pict(d + 1) is a
sum of 4-factor products. In order to integrate this recursion we first computed with
a PARI program [10] the first 15 terms. The result was

1, 4, 22, 140, 969, 7084, 53820, 420732, 3362260, 27343888,

225568798, 1882933364, 15875338990, 134993766600, 1156393243320

A search in the on-line Encyclopedia of Integral Sequences founded in 1964 by
N.J.A. Sloane, [9] see https:/oeis.org/ identifies this sequence with the sequence
A002293 and shows to us many interesting interpretations. Also we learn, that the
closed formula is of Fuss–Catalan type:

Pict(d) = 1

3d + 1

(
4d

d

)

By induction upon d we check that the proposed expression satisfies the recursion
relation of Pict(d).

https:/oeis.org/


14 Signatures of Monic Polynomials 533

Fig. 14.2 P (z) = (z− i/3)3 + (z− i/3)2 + i

The space of bi-regular polynomials of degree d is an open subset in the space of
all degree-d polynomials.

The connected components correspond bijectively to pictures of bi-regular
polynomials. We say that two components are neighbours if they are separated by a
wall of real co-dimension 1. In this case we also say that two bi-regular pictures or
bi-regular signatures are neighbours. The signature of the picture of Fig. 14.2 defines
such a wall that separates two bi-regular components. The picture of Fig. 14.2 allows
two smoothings that yield bi-regular pictures.

The discriminant � ⊂ Cd is the space of monic polynomial mappings P : C→
C having 0 ∈ C as critical value. Clearly, a polynomial P belongs to � if and only
if the mappings Re(P ) : C → R and Im(P ) : C → R have a critical point with
critical value 0 in common. It follows that each cell of bi-regular polynomials is
contained in the complement of �. It also follows that the co-dimension 1 walls are
contained in the complement of �.

The polynomial P(z) = z3 − z/3 + 28/27 is regular above 0 as mapping from
C to C, but the map Re(P ) : C → R has two critical points with 0 as value. The
polynomial P belongs to a stratum of real co-dimension 2. See Fig. 14.3. The two
critical points of Re(P ) : C→ R can fuse together in a stratum of real co-dimension
3. See the picture of Q(z) = z3 + 1 in Fig. 14.4.

The polynomial P(z) = z3− 1

10
z+1 is regular above 0 as mapping from C to C,

but the map Re(P ) : C→ R has two critical points with 0 as value. The polynomial
P belongs to a stratum of real co-dimension 2. See Fig. 14.3. The two critical points
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Fig. 14.3 P (z) = z3 − 1

10
z+ 1

Fig. 14.4 Q(z) = z3 + 1
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Fig. 14.5 P (z) = z3 − (
1

10
+ i

200
)z+ 1 + i

1000

of Re(P ) : C → R can fuse together in a stratum of real co-dimension 3. See the
picture of Q(z) = z3 + 1 in Fig. 14.4.

The two critical points of Re(P ) : C → R can be smoothed, one a lot, the other
less, see Fig. 14.5.

Again with a PARI program we could compute the numbers of co-dimension 1
walls in degree d = 1, 2, 3, . . . . We get:

0, 4, 48, 480, 4560, 42504, 393120, 3624768, 33390720, 307618740

This sequence is not identified by the Sloane data base.
After having put a previous version of the present work on the arxiv, Alin Bostan

has communicated to me by email the following very interesting observations [2].
The sequence

0, 4, 48, 480, 4560, 42504, 393120, 3624768, 33390720, 307618740, · · ·

is equal to

d 	→ 4

(
4d

d − 2

)
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Its generating function is an algebraic hypergeometric function, namely:

4x2
3F2([9/4, 5/2, 11/4], [10/3, 11/3], 28/33x)

Problems Let B(d, c) be the number of cells in Bd of codimension c. Study the
generating series

C(x, y) =
∑

d,c

B(d, c)xdyc ∈ Z[[x, y]]

and the coefficients

Cc(x) =
∑

d

B(d, c)xd ∈ Z[[x]]

Study the differential operators that annilate C(x, y), Cc(x). Find closed expres-
sions for B(d, c).

Special polynomials have typical pictures. As example see the fifth Chebyshev
polynomial of the first kind in Fig. 14.6. One observes that its picture can be
smoothed at 4 places. So, the fifth Chebyshev polynomial belongs to a cell of
codimension 4. This cell is in the closure of 24 cells of bi-regular polynomials. This
holds for all degrees: the Chebyshev polynomial Tn of degree n belongs to a cell of

Fig. 14.6 T (5, z) = 16z5 − 20z3 + 5z
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codimension n− 1 along which 2n−1 bi-regular cells meet. Incidently, observe that
2n−1 is the leading coefficient of the polynomial Tn. The cell of the signature σ(Tn)

is the space of all real monic Morse deformations of the polynomial zn with n − 1
real critical points and 2 critical values.

14.4 Proofs

The proofs are based on the Riemann Mapping Theorem in combination with
theorems of Baer [1], Epstein [6] and Cerf [3] on homotopy versus isotopy and
theorems of C.J. Earle and J. Eells [5] on the contractability of the connected
components of groups of diffeomorphism in dimension two.

Proof of Theorem 14.1.3 Let σ be a signature and let γ be a smooth oriented,
coloured embedded graph in the class σ . Let 4d be the number of ideal vertices.
The seven properties allow to construct a smooth function f : C→ C such that the
following holds.

1. The graph γ is the inverse image by f of the union of the real and imaginary
axes.

2. The map f is open with at most d − 1 critical points. The determinant of the
tangent map Df is positive at all regular points of f . At each critical point of f
the germ of f is smoothly equivalent to the germ of z ∈ C 	→ zk + t ∈ C for
some k = 1, 2, · · · and some t ∈ {+1,−1,+i,−i, 0}.

3. The restriction of f to an edge of γ is regular and injective.
4. The colourings of regions and edges of γ are the pull-backs by f of the

colourings of Pz.

5. limz∈C,|z|→+∞
f (z)

zd
= 1.

The construction of the map f goes in steps. First choose r1 > 0 big enough
such that all circles with center 0 ∈ C and radius r ≥ r1 intersect γ transversally.
This is possible since the non-bounded edges of γ are asymptotic to rays of constant
argument. Define f to be zd in the complement of the disk of radius r1. Clearly, f
will satisfy 5.

Next label the regions of the complement of γ . Remember that every region goes
to infinity. Label the sectors counterclockwise at infinity from 1 to 4d . The first 4
regions with labels 1, 2, 3, 4 are those going to infinity along the sectors with label
1, 2, 3, 4. Let S be the sector with lowest number that does not belong to one of the
preceding regions with labels 1, 2, 3, 4. The region with label 5 will be that region
that goes to infinity along the sector S. Now look again for the sector S with lowest
label not belonging to an already labelled region. The region going to infinity along
S gets label 6, etc.
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The degree kl of a region Rl is defined as its number of sectors at infinity. The
number kl is also the number of connected boundary components of color R or I

of Rl .
Extend f , satisfying 1., 2., 3., 4., over the closure of the first region by putting

a critical point of type (z − a) 	→ zk1 + (i + 1) at a point in the interior of R1.
Now f is already defined on coloured components of the boundary of the closure
of the region R2. Extend f over the closure of R2 by putting a critical point of type
(z− a) 	→ zk2 + (i − 1), etc.

Let J be the pull-back by f of the standard conformal structure J0 on C to C.
The map f : (C, J ) → (C, J0) is holomorphic. By the Riemann mapping theorem
a biholomorphic map ρ : (C, J ) → (C, J0) exists. Indeed, by property 5 for f ,
the map extends to a self-map of C ∪ {∞}. Replacing ρ finally by a positive real
multiple λρ the composition f ◦ ρ : C→ C by Rouché’s Theorem will be a monic
polynomial having a picture in the class of γ . �
Proof Theorem 14.1.4 Consider the signature σ as a space � of smooth oriented
planar graphs. The space �, if equipped with the topology induced by the topology
of the oriented arc-length parametrizations of the edges, is contractible by the
theorems of Baer [1] and Epstein [6]. Given γ ∈ �, the space Eγ with the smooth
topology of functions f : C→ C satisfying the five properties stated in the previous
theorem is contractible. The space E� of pairs (f, γ ) with γ ∈ � and f ∈ Eγ by a
theorem of Cerf [3] is the total space of a fiber bundle π : E� → �, (f, γ ) 	→ γ . It
follows that the space E� is contractible.

The group GC,∞ of orientation preserving diffeomorphisms of C extending to
C ∪ {∞} as a diffeomorphism with the identity as differential at ∞, is contractible.
The group GC,∞ acts with closed orbits and without fixed points on E� . So the
space E�/GC,∞ is contractible. By the Riemann mapping Theorem [12], there
exists in every GC,∞-orbit a unique pair (f, γ ) such that the pull back by f of
the standard conformal structure on C is again the standard structure. In order to
achieve uniqueness of the pair (f, γ ), we require moreover that f , now by Rouché’s
Theorem a monic polynomial, is balanced. It follows that the space of monic and
balanced polynomials with picture in � is a space of representatives for the quotient
E�/GC,∞.

We conclude that the space of monic balanced polynomial mappings P with pic-
ture in the isotopy class � is contractible. The group of Tschirnhausen substitutions
is contractible and acts fixed point free on the space of monic polynomial mappings
P with picture in the isotopy class �. Hence, the space of monic polynomial
mappings P with signature σ is contractible too. �
Labelling Roots Let r be a root of a monic polynomial P . The root r belongs to
a connected component T of the picture of P . The component T is an coloured
oriented tree. We define as label the pair (α, β) consisting of the 4d-root of unity.
The root of unity α = e2πik/2d , with k ∈ {0, 1, · · · , 2d − 1} minimal, is in fact the
2d-root of unity, that we get by starting at r and by following in T the oriented edges
in P−1(R). The root of unity β = e2πi(2k+1)/4d with minimal k ∈ {0, 1, · · · , 2d−1}
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is the root of unity that we get by starting at r and by following in T the oriented
edges in P−1(iR).

Essentially, from its label we can find back the corresponding root by solving
differential equations. The map from root to label is constant in each cell of the
cell-decomposition by signatures. This property has clearly applications, each time
one wishes to follow roots of polynomials continuously in families of polynomials.
Robotics typically encounters this wish.

14.5 Pictures of Meromorphic Functions

The real axis R ∪ {∞} and the imaginary axis iR ∪ {∞}, both extended by the
point ∞, divide the Riemann sphere P 1(C) = C ∪ {∞} in four regions, that
again we label by the colours A,B,C,D. Define the picture of a rational map
f : P 1(C) → P 1(C) to be the inverse image of the union of the extended
axis. Similarly, define the picture of a holomorphic map f : S → P 1(C) on a
Riemann surface. Call a rational map or more generally a meromorphic function
f on a Riemann surface very bi-regular if the critical values do not belong to the
extended real or the extended imaginary axis. Call a function f bi-regular if its
critical values do not belong to the (non extended) real or imaginary axis. The bi-
regular polynomials remain according to this definition bi-regular. We plan to study
in future from the combinatorial viewpoint these more general settings.

14.6 Face Operations, Remarks, Questions

The most non-bi-regular polynomial are P = (z − r)d , d ≥ 2, r ∈ C. Each
connected component of bi-regular polynomials of degree d > 1 has such a
polynomial in its closure. Indeed, let P be bi-regular of degree d > 1. The family of
bi-regular polynomials tdP (z/t), t ∈ R, t > 0, has as limit at t = 0 the polynomial
zd . The family is an orbit of the weighted homogeneous action of the group of
positive real numbers

(t, P ) 	→ t • P = tdegree(P )P (z/t)

In fact the larger group of affine substitutions

z 	→ z/t + a, t > 0, a ∈ C

acts on monic polynomials. We can use this action for simplification and normal-
ization. We define as norm ‖P‖ the l2-norm of the vector of coefficients of P . First,
for a polynomial P �= (z − r)d of degree d > 1 we simplify by a Tschirnhausen
substitution z 	→ z − a killing the coefficient of the term zd−1 in P , next we
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choose t > 0 in order to get a polynomial of norm 1. This is possible since for
P �= zd there exists precisely one t > 0 with ‖t • P‖ = 1. So instead of studying
the chambers of bi-regular polynomials in the vector space of complex dimension
d of all monic polynomials of degree d , one can restrict this study to the unit
sphere of real dimension 2d − 3 in the space of degree d Tschirnhausen simplified
polynomials. For instance, it would be interesting to study what happens for d = 3.
One gets a decomposition of the sphere S3 in 22 contractible components. What is
the dual graph?

Face operators correspond to the following two operations on signatures. Let σ
be a signature. Let π be a picture in the class σ . The picture π decomposes the plane
C in polygonal regions. The regions have piecewise smooth curves as boundaries.

The first operation consists in contracting diagonals of regions. Let D be a
smooth generic diagonal in such a region connecting two boundary points of the
same color, such that the graph π ∪ D is still a forest. The endpoints of D are
smooth points of edges. The new graph π ∪D obtained by adding D to the picture
π does not satisfy the seven properties. In particular, two vertices are of degree 3.
Let πD be the planar graph obtained by contracting the diagonal D to a new vertex
of degree 4. The graph πD , together with its colouring of edges, labelling of regions,
satisfies the seven properties and the class of πD is again a signature σD .

The second operation consists of contracting an edge of π connecting two
vertices which are no roots, i.e. vertices not incident with all four colors A,B,C,D.
Contracting the edge E in π transforms π to a new picture with the seven properties,
so constructs a new signature σE .

The operation of adding and contracting a diagonal D to σ or the operation of
contracting an edge E such that σD or σE is again a signature corresponds to a
co-dimension one face operation for the cell-decomposition of the space Bd .

It is a challenging problem to understand the combinatorics of these face
operations and to describe the corresponding cell and co-chain complex for the
spaces Bd .

By a theorem of Stanisław Łojasiewicz [8], the semi-algebraic cell-
decomposition of Bd is compatible with a triangulation. Working in the second
barycentric subdivisions allows to construct regular open neighborhoods Uσ in Bd

of closures in Bd of cells {P | σ(P ) = σ } ⊂ Bd . The integral Čech-cohomology of
the acyclic covering {Uσ } of Bd computes the group cohomology H ∗((Br(d),Z)

of the braid group Br(d). It is a challenging problem to do this computation
effectively.

A third face operation is needed in spaces of polynomials that have roots of
multiplicities exceeding one. Instead of contracting edges, now also contracting
minimal subtrees T with two or more edges in π such that the class σT of π/T

is again a signature gives a face operation.
The unit sphere S2d−2 in the space of complex Tschirnhausen simplified

polynomials of degree d has a natural probability measure. A natural question is
about the probability that a random polynomial P realizes a given picture. What
picture has highest probability?
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The notion bi-regularity suggests two notions of discriminants for polynomials.
We define as real discriminant the set �R of all monic polynomials P of a given
degree such that 0 ∈ R is a critical value of the real part Re(P ), and accordingly
�iR all polynomials with 0 ∈ R as critical value for Im(P ). Recall that the classical
discriminant � is the set of polynomials P such that the mapping P : C → C has
0 ∈ C as critical value. The complement of the union �R ∪ �iR is the set of bi-
regular polynomials and the classical discriminant � is included in the intersection
�R ∩�iR.

We get a braid invariant as follows. A braid b defines an isotopy class of a closed
path of monic polynomials in the complement of �. What is the minimal number of
bi-regular chambers that such a path for a given braid has to visit?

14.7 Sage and Pari Scripts

‘ ‘ H e l l o Pa r i ’ ’ Computes t h e v e c t o r o f t h e number o f p o s s i b l e
p i c t u r e s o f t h e monic deg ree deg <= g bi−r e g u l a r p o l y n o m i a l s .

v e c t o r _ n u m b _ p i c t ( g )=
{
X= v e c t o r ( g , i , 0 ) ;
X[ 1 ] = 1 ;
f o r ( deg =2 , g ,

f o r ( a =0 , deg−1,
f o r ( b =0 , deg−1−a ,
f o r ( c =0 , deg−1−a−b ,
f o r ( d=deg−1−a−b−c , deg−1−a−b−c ,

X[ deg ]=X[ deg ]+
i f ( a ==0 ,1 ,X[ a ] )∗

i f ( b ==0 ,1 ,X[ b ] )∗
i f ( c ==0 ,1 ,X[ c ] )∗

i d ( d ==0 ,1 ,X[ d ] ) ;
) ; ) ; ) ; ) ;

) ;
X

}
numb_pic t ( deg )=
{
X= v e c t o r _ n u m b _ p i c t ( deg ) ;
X[ deg ]
}

Computes t h e number o f cod i m ens i on 1 w a l l s i n t h e
space o f monic deg ree deg p o l y n o m i a l s .

numb_wall ( deg )=
{
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i f ( deg <3 , Res =( deg −1)∗4 ,
X= v e c t o r _ n u m b _ p i c t ( deg −1);
Res =2∗deg∗sum ( a =1 , deg−1,X[ a ]∗X[ deg−a ] ) ;

) ;
Res
}

‘ ‘ He l l o Sage ’ ’ Draw t h e p i c t u r e o f a po l ynom i a l .
Here as example P=z^13−6z ^7 . . . . .

i m por t m a t p l o t l i b
p= Graph i c s ( )
va r ( ’ x ’ , ’ y ’ , domain=RR)
z=x+ i ∗y
f = expand ( z^13−6∗z ^7+ z^4−z ^3+5∗ z ^2+ z +3+2∗ i )
u =( f + c o n j u g a t e ( f ) ) / 2
v=− i ∗ ( f−u )
p1= i m p l i c i t _ p l o t ( u ==0 , ( x , −4 , 4 ) , ( y , −4 , 4 ) , c o l o r = ra inbow ( 5 ) [ 2 ] )
p2= i m p l i c i t _ p l o t ( v ==0 , ( x , −4 , 4 ) , ( y , −4 , 4 ) , c o l o r = ra inbow ( 5 ) [ 3 ] )
p=sum ( [ p1 , p2 ] )
p . show ( )
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Chapter 15
Anti-de Sitter Geometry and Teichmüller
Theory

Francesco Bonsante and Andrea Seppi

Abstract The aim of this chapter is to provide an introduction to Anti-de Sitter
geometry, with special emphasis on dimension three and on the relations with
Teichmüller theory, whose study has been initiated by the seminal paper of Geoffrey
Mess in 1990. In the first part we give a broad introduction to Anti-de Sitter
geometry in any dimension. The main results of Mess, including the classification
of maximal globally hyperbolic Cauchy compact manifolds and the construction of
the Gauss map, are treated in the second part. Finally, the third part contains related
results which have been developed after the work of Mess, with the aim of giving
an overview on the state-of-the-art.

Keywords Anti-de Sitter geometry · Globally hyperbolic Lorentzian manifolds ·
Hyperbolic geometry · Teichmüller theory
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Introduction

At the end of last century the interest around Lorentzian geometry in low dimension,
and in particular Lorentzian manifolds of constant sectional curvature, grew signi-
ficatively. Among them, the most interesting ones are those of constant negative
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sectional curvature, which are called Anti-de Sitter manifolds and have been largely
studied until nowadays.

There were at least two different motivations behind this increased interest for
Lorentzian geometry of constant sectional curvature. The first motivation was the
study of proper affine actions on Rn. Affine actions which preserve the Euclidean
structure of Rn are well-understood since the work of Bieberbach of 1912. On
the other hand the general case seems considerably more difficult and there are
still important open questions in the area. It was natural to consider proper actions
which preserve the Minkowski structure as an intermediate problem, which already
contains some deep cases, like proper actions of free groups. In particular in
dimension three, the classification of free group actions was shown to be crucial
towards a complete understanding of three-dimensional affine manifolds, see [65,
Theorem 2.1]. This problem has been studied by several authors, see for instance
[37, 38, 57, 58, 73], and a complete classification has been given only recently
[41, 49, 51]. Similar problems have been studied in the more general setting of
proper isometric actions on Lorentzian manifolds of constant sectional curvature
[49, 80, 95, 96]. See [54] for a recent and complete survey on these topics.

In a different direction, another motivation arose from the study of gravity in
dimension three. In mathematical physics, this consists in the study of Lorentzian
metrics on manifolds which obey to the so-called Einstein equation. In dimension
three the problem is considerably simpler, since solutions of Einstein equations are
precisely Lorentzian metrics of constant sectional curvature (whose sign depends on
the choice of the cosmological constant which appears in the Einstein equation). The
study of the space of constant sectional curvature metrics was therefore considered
as the first step towards a quantization of the three-dimensional gravity, and as a toy
model which could help in the understanding of the four-dimensional situation. See
for instance the inspiring work of Witten [113]. Unlike its Riemannian counterpart,
this classification is expected to include Lorentzian metrics which are not geodesi-
cally complete, in light of the relevant notion of initial and final singularity. A
standard assumption is to consider globally hyperbolic metrics. Roughly speaking,
these are metrics which admit foliations by Riemannian hypersurfaces, recovering
the idea of a space evolving in time. By a result of Choquet-Bruhat, any globally
hyperbolic metric solving Einstein’s equation can be isometrically embedded in
a maximal one, see [42, 43], which reduces the problem to the classification of
maximal globally hyperbolic Einstein spacetimes. In dimension three this problem
was addressed by Andersson, Moncrief and others by means of analytic methods
(see for instance [3, 4, 91]).

The seminal work of Geoffrey Mess [89], which originally appeared in 1990,
represented a very striking, and successful, attempt to link these two different areas.
On the one hand Mess proved one of the main achievements in the classification
of proper isometric actions of discrete groups on Minkowski space, showing that
the action is necessarily by a free group. On the other hand he gave a noteworthy
classification of the moduli space of maximal globally hyperbolic spacetimes
of constant sectional curvature. Mess’ approach, unlike that of Andersson and
Moncrief, was based on geometric constructions inspired by the work of Thurston
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in the 1980s. Indeed a remarkable aspect of his work is the link between three-
dimensional gravity and hyperbolic geometry in dimension two, with particular
regard to connections with Teichmüller theory. While those connections were
expected, and partially contained in the previous work of other authors, it is really
the paper of Mess that deeply clarified the picture.

The work of Mess, now considered “classical”, provided a new perspective for
the study of Lorentzian geometric structures and Teichmüller space. It inspired
many lines of investigation which have been developed until the very recent years
and seem to be still very promising.

Scope and Organization

The purpose of this chapter is threefold. The first goal is providing an introduction
to Anti-de Sitter geometry, first in any dimension and then specifically in dimension
three, and this is the content of Part 1. More concretely, in Chap. 15.1.1 we provide
some general preliminaries on Lorentzian geometry, with focus on Lorentzian
manifolds of constant sectional curvature and maximal isometry group. This serves
also as a motivation for the models of Anti-de Sitter space to be introduced later,
by explaining in what sense they represent the model spaces for constant negative
curvature in the Lorentzian setting. In Chap. 15.1.1.4 we introduce various models
of Anti-de Sitter space in arbitrary dimension, and study their geometry and their
properties. Chapter 15.1.2 focuses on three-dimensional Anti-de Sitter geometry, by
introducing the PSL(2,R)-model which is peculiar to this dimension.

The second goal, achieved in Part 2, is to provide a self-contained exposition
of the results of Mess, published in [89], which concern Anti-de Sitter three-
dimensional geometry. These can be divided into two main directions: the classi-
fication of maximal globally hyperbolic Anti-de Sitter three-manifolds containing
a closed Cauchy surface and the construction of the Gauss map. Chapter 15.2.1
contains a number of preliminary results necessary to develop the theory, in partic-
ular about causal properties of Anti-de Sitter geometry and isometric actions, which
constitute the fundamental setup for the proofs of Mess’ classification results. In
Chap. 15.2.2 we then prove the classification result of maximal globally hyperbolic
manifolds containing a Cauchy surface of genus g. For genus g = 1, we describe
the deformation space of these structures, which is essentially identified with the
deformation space of semi-translation structures on the 2-torus. The situation is
extremely more interesting in genus g ≥ 2. Here the main classification result of
Mess, whose proof is concluded in Theorem 15.2.2.5.4, is that the deformation space
of maximal globally hyperbolic manifolds is homeomorphic to the product of two
copies of the Teichmüller space of the closed surface of genus g. In Chap. 15.2.3
we discuss the construction of the Gauss map associated with spacelike surfaces in
Anti-de Sitter space, an idea whose main application in the work of Mess is a proof
of Thurston’s Earthquake Theorem, using pleated surfaces. We will sketch Mess’
proof of the Earthquake Theorem, again in an essentially self-contained fashion,
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and at the same time we develop further tools, for instance a differential geometric
approach to the Gauss map for smooth spacelike surfaces, which have been proved
useful in many applications.

Indeed, in Part 3 we survey more recent results on Anti-de Sitter three-
dimensional geometry, with special interest in the relations with Teichmüller theory,
which somehow rely on the legacy of Mess’ paper. In Chap. 15.3.1 we still focus
on maximal globally hyperbolic manifolds with closed Cauchy surfaces. We give
further results on their structure, for instance on foliations by surfaces with special
properties of curvatures, and on the understanding of invariants such as the volume,
in relation with their deformation space. As an outcome, we obtain applications
in Teichmüller theory, and new parameterizations of the deformation space in
terms of holomorphic objects. Finally, in Chap. 15.3.2 we discuss the case of
spacelike surfaces with a different topology. We explain a number of results which
can be seen as the “universal” version of the analogue problems in the closed
case, and derive applications for the theory of universal Teichmüller theory. As a
conclusion we mention very briefly Anti-de Sitter structures with timelike cone
singularities (“particles”) and with multi-black holes, and how they are related to
the Teichmüller theory of hyperbolic surfaces with cone points and with geodesic
boundary respectively.

Other Research Directions

As mentioned already at the beginning, the aim of this paper is not to provide
a comprehensive treatment of Anti-de Sitter geometry, and we decided to focus
on three-dimensional geometry, in the spirit of Mess, and to the relations with
Teichmüller theory of hyperbolic surfaces. A variety of related topics are not
included here, as a result of our necessity to make certain choices in the exposition,
but would certainly deserve their own place. Among others, we would like to
mention:

• The study of properly discontinuous actions on Anti-de Sitter three-space,
a natural problem to consider in light of the results we mentioned in this
introduction about proper actions on affine space, for which much work towards
a complete classification has been developed in recent times. See [48, 50, 54, 55,
72, 108, 109].

• Higher-dimensional Anti-de Sitter geometry, in particular the study of globally
hyperbolic manifolds: [8–11, 85, 90]

• The relations of Anti-de Sitter geometry with other geometric structures, both
in dimension three and in higher dimensions, for instance given by the Wick
rotation [20, 21, 98] and by geometric transition [45–47, 50, 62, 93, 99].

• The study of dynamical properties of isometric actions on Anti-de Sitter space,
for instance in terms of Anosov representations, and the generalizations of these
properties to other types of geometric structures. See for instance [8, 10, 52, 69,
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70, 74, 76, 84, 112]. It is also worth remarking here the recents works which
highlighted the Higgs bundles perspective, see [1, 2, 44].

15.1 Part 1: Anti-de Sitter Space

15.1.1 Preliminaries on Lorentzian Geometry

The aim of this preliminary section is to briefly recall some basic facts about
Lorentzian manifolds. We will introduce Lorentzian manifolds of constant sectional
curvature and we will see that, as in the Riemannian case, two Lorentzian manifolds
of constant sectional curvature K are locally isometric. In particular, we focus
on those with maximal isometry group, as they provide models of manifolds of
constant sectional curvature: if M is a Lorentzian manifold with constant sectional
curvature K and maximal isometry group, then any Lorentzian manifold with
constant sectional curvature K carries a natural (Isom(M),M)-atlas made of local
isometries. Simply connected space forms have maximal isometry group, but in
general there are manifolds with maximal isometry group which are not simply
connected. In particular we will focus on the case K = −1 and in that case it will
be convenient to use models which are not simply connected.

15.1.1.1 Basic Definitions

A Lorentzian metric on a manifold of dimension n+1 is a non-degenerate symmetric
2-tensor g of signature (n, 1). A Lorentzian manifold is a connected manifold M

equipped with a Lorentzian metric g.
In a Lorentzian manifold M we say that a non-zero vector v ∈ TM is spacelike,

lightlike, timelike if g(v, v) is respectively positive, zero or negative. More generally,
we say that a linear subspace V ⊂ TxM is spacelike, lightlike, timelike if the
restriction of gx to V is positive definite, degenerate or indefinite.

The set of lightlike vectors, together with the null vector, disconnects TxM into
3 regions: two convex open cones formed by timelike vectors, one opposite to the
other, and the region of spacelike vectors. As a consequence the set of timelike
vectors in the total space TM is either connected or is made by two connected
components. In the latter case M is said time-orientable, and a time orientation is
the choice of one of these components. Vectors in the chosen component are said
future-directed, vectors in the other component are said past-directed.

A differentiable curve is spacelike, lightlike, timelike if its tangent vector is
spacelike (resp. lightlike, timelike) at every point. It is causal if the tangent vector is
either timelike or lightlike. Given a point x in a time-oriented Lorentzian manifold
M , the future of x is the set I+(x) of points which are connected to x by a
future-directed causal curve. The past of x, denoted I−(x), is defined similarly, for
past-directed causal curves.
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An orthonormal basis of TxM is a basis v1, . . . vn+1 such that |g(vi , vj )| = δij ,
with v1, . . . vn spacelike, and vn+1 timelike. If v1, . . . vn+1 is an orthonormal basis
then for v =∑n+1

i=1 xivi we have g(v, v) =∑n
i=1 x2

i − x2
n+1.

As in the Riemannian setting, on a Lorentzian manifold M there is a unique
linear connection ∇ which is symmetric and compatible with the Lorentzian metric
g. We refer to it as the Levi-Civita connection of M . The Levi-Civita connection
determines the Riemann curvature tensor defined by

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w .

We then say that a Lorentzian manifold M has constant sectional curvature K if

g(R(u, v)v, u) = K
(
g(u, u)g(v, v) − g(u, v)2

)
(15.1.1)

for every pair of vectors u, v ∈ TxM and every x ∈ M . This definition is strictly
analogous to the definition given in the Riemannian realm. However in this setting
the sectional curvature can be defined only for planes in TxM where g is non-
degenerate.

Finally, we say that M is geodesically complete if every geodesic is defined for
all times, or in other words, the exponential map is defined everywhere.

15.1.1.2 Maximal Isometry Groups and Geodesic Completeness

Two Lorentzian manifolds M and N of constant curvature K are locally isometric,
a fact which is well-known in the Riemannian setting. More precisely, the following
holds:

Lemma 15.1.1.2.1 Let M and N be Lorentzian manifolds of constant curvature K .
Then every linear isometry L : TxM → TyN extends to an isometry f : U → V ,
where U and V are neighbourhoods of x and y respectively. Any two extensions
f : U → V and f : U ′ → V ′ of L coincide on U ∩ U ′. Moreover L extends
to a local isometry f : M → N provided that M is simply connected and N is
geodesically complete.

Exactly as in the Riemannian case the proof is a simple consequence of the
classical Cartan–Ambrose–Hicks Theorem (see for instance [92] for a reference).
A direct consequence of Lemma 15.1.1.2.1 is the following:

Corollary 15.1.1.2.2 Let M and N be simply connected, geodesically complete
Lorentzian manifolds of constant curvature K . Then any linear isometry L :
TxM → TyN extends to a global isometry f : M → N .

In particular, there is a unique simply connected geodesically complete
Lorentzian manifold of constant curvature K up to isometries. For instance for
K = 0 a model is the Minkowski space Rn,1, that is Rn+1 provided with the
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standard metric

g = dx2
1 + . . .+ dx2

n − dx2
n+1 .

In Sect. 15.1.1.7 we will construct an explicit model for K = −1.
Another consequence of Lemma 15.1.1.2.1 is that, fixing a point x0 ∈ M , the

set of isometries of M , which we will denote by Isom(M), can be realized as
a subset of ISO(Tx0M,TM), namely the fiber bundle over M whose fiber over
x ∈ M is the space of linear isometries of Tx0M into TxM . It can be proved
that Isom(M) has the structure of a Lie group with respect to composition so that
the inclusion Isom(M) ↪→ ISO(Tx0M,TM) is a differentiable proper embedding,
see [78, Theorem 4.1]. It follows that the maximal dimension of Isom(M) is
dim O(n, 1)+ n+ 1 = (n+ 1)(n+ 2)/2.

Definition 15.1.1.2.3 A Lorentzian manifold M has maximal isometry group if the
action of Isom(M) is transitive and, for every point x ∈ M , every linear isometry
L : TxM → TxM extends to an isometry of M .

Equivalently M has maximal isometry group if the above inclusion of Isom(M) into
ISO(Tx0M,TM) is a bijection. Hence if M has maximal isometry group, then the
dimension of the isometry group is maximal.

From Corollary 15.1.1.2.2, every simply connected Lorentzian manifold M has
maximal isometry group if it has constant sectional curvature and is geodesically
complete. The converse holds even without the simply connectedness assumption.
Namely:

Lemma 15.1.1.2.4 If M is a Lorentzian manifold with maximal isometry group
then M has constant sectional curvature and is geodesically complete.

Proof Let us show that the sectional curvature is constant. First fix a point x ∈ M .
As the identity component of O(TxM) ∼= O(n, 1) acts transitively on spacelike
planes, there exists a constant K such that Eq. (15.1.1) holds for for every pair (u, v)
of vectors tangent at x which generate a spacelike plane. Now, for every point x ∈ M

both sides of Eq. (15.1.1) are polynomial in u, v ∈ TxM . Since the set of pairs
(u, v) which generate spacelike planes is open in TxM × TxM , we conclude that
Eq. (15.1.1) must hold for every pair (u, v) ∈ TxM × TxM . Since Isom(M) acts
transitively on M , Eq. (15.1.1) holds for every (u, v) ∈ TxM × TxM independently
of x, with the same constant K .

To prove geodesic completeness, we have to show that every geodesic is defined
for all times. Suppose γ is a parameterized geodesic with γ (0) = x and γ ′(0) =
v ∈ TxM , which is defined for a finite maximal time T > 0. Let T0 = T − ε > 0.
Then by assumption one can find an isometry f : M → M which maps x to γ (T0)

and v to γ ′(T0). Then t 	→ f ◦γ (t−T0) is a parameterized geodesic which provides
a continuation of γ , thus contradicting the assumption that T < +∞ is the maximal
time of definition. !�
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15.1.1.3 A Classification Result

Simply connected Lorentzian manifolds with maximal isometry group play an
important role, in light of the following result of classification.

Proposition 15.1.1.3.1 Let MK be a simply connected Lorentzian manifold of
constant sectional curvature K with maximal isometry group, and let M be a
Lorentzian manifold of constant sectional curvature K . Then:

• M is geodesically complete if and only if there is a local isometry p : MK → M

which is a universal covering.
• M has maximal isometry group if and only if Aut(p : MK → M) is normal in

Isom(MK).

Proof If M is geodesically complete, then lifting the metric to the universal cover
M̃ one gets a simply connected geodesically complete Lorentzian manifold of
constant sectional curvature K , which by Corollary 15.1.1.2.2 is isometric to MK .
The covering map p : MK → M is then a local isometry by construction. The
converse is straightforward.

Now, let � = Aut(p : MK → M), which is a discrete subgroup of Isom(MK).
Thus M is obtained as the quotient M = MK/�, where � acts freely and properly
discontinuously on MK . The isometry group of M is isomorphic to N(�)/�, where
N(�) is the normalizer of � in Isom(MK). The isomorphism is based on the
observation that any isometry of M̃ which normalises � descends to an isometry
of M , and conversely the lifting of any isometry of M must be in N(�).

Hence the condition that M has maximal isometry group is equivalent to the
condition that every element f of Isom(MK) descends in the quotient to an isometry
of M . This is in turn equivalent to the condition that f�f−1 = � for every f ∈
Isom(MK), namely, that � is normal in Isom(MK). !�
Remark 15.1.1.3.2 Since � = Aut(p : MK → M) is discrete, being normal in
Isom(MK) implies that elements of � commute with the elements of the identity
component of Isom(MK). This remark suggests that there are usually not many
Lorentzian manifolds of constant sectional curvature with maximal isometry group.

Finally, any isometry between connected open subsets of a Lorentzian manifold
M with maximal isometry group extends to a global isometry. In particular if MK

is a Lorentzian manifold of constant sectional curvature K with maximal isometry
group, than any Lorentzian manifold M of constant sectional curvature K admits
a natural (Isom(MK),MK)-structure whose charts are isometries between open
subsets of M and open subsets of MK .

We will sometimes refer to Lorentzian manifolds of constant sectional curvature
K with maximal isometry group as models of constant sectional curvature K .
After these preliminary motivations, in the following we will study several models
of constant sectional curvature −1, or in other words, models of Anti-de Sitter
geometry.
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15.1.1.4 Models of Anti de Sitter (n + 1)-Space

We construct here models of Lorentzian manifolds with constant sectional curvature
−1 and maximal isometry group in any dimension, by stressing the analogies with
the models of hyperbolic space.

15.1.1.5 The Quadric Model

Let us start by the so-called quadric model, which is the analogue of the hyperboloid
model of hyperbolic space. Denote by R

n,2 the real vector space Rn+2 equipped with
the quadratic form

qn,2(x) = x2
1 + . . .+ x2

n − x2
n+1 − x2

n+2 ,

and by 〈v,w〉n,2 the associated symmetric form. Finally let O(n, 2) be the group of
linear transformations of Rn+2 which preserve qn,2.

Then we define

H
n,1 := {x ∈ R

n,2 | qn,2(x) = −1} .

It is immediate to check that Hn,1 is a smooth connected submanifold of Rn,2 of
dimension n+1. The tangent space TxH

n,1 regarded as a subspace ofRn+2 coincides
with the orthogonal space x⊥ = {y ∈ Rn+2 | 〈x, y〉n,2 = 0}. A simple signature
argument shows that the restriction of the symmetric form 〈·, ·〉n,2 to THn,1 has
Lorentzian signature, hence it makes Hn,1 a Lorentzian manifold. We remark that
this model is somehow the analogue of the hyperboloid model of hyperbolic space,
that is

H
n = {y ∈ R

n,1 | qn,1(y) = −1 , yn+1 > 0} , (15.1.2)

and in fact Hn is isometrically embedded in Hn,1 as the submanifold defined by
xn+2 = 0, xn+1 > 0.

The natural action of O(n, 2) on Rn,2 preserves Hn,1 and in fact O(n, 2) acts by
isometries on Hn,1. We remark that if x ∈ Hn,1 and v1, . . . , vn+1 is an orthonormal
basis of TxH

n,1 then the linear transformation of Rn+2 sending the standard basis
to the basis v1, . . . , vn+1, x is in O(n, 2). This in particular shows that O(n, 2) acts
transitively on Hn,1 and that the stabilizer of a point x acts transitively on the space
of orthonormal bases of TxH

n,1. These facts imply that Hn,1 has maximal isometry
group and that the isometry group is indeed identified to O(n, 2) . Notice that Hn,1

can be regarded as the non-Riemannian symmetric space O(n, 2)/O(n, 1), where
O(n, 1) is identified with the stabilizer of (0, 0, . . . , 0, 1).

The Sectional Curvature By Lemma 15.1.1.2.4, Hn,1 has constant sectional
curvature. Let us now check that the sectional curvature is negative (actually,
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K = −1). For this purpose, observe that the normal line in R
n,2 of Hn,1 at a point

x ∈ H
n,1 is identified with the line generated by x itself. It follows that, if v,w are

tangent vector fields along H
n,1, we have the orthogonal decomposition (we will

omit here the subscript in the bilinear form 〈v,w〉n,2, and simply write 〈v,w〉):

(Dvw)(x) = (∇vw)(x)+ 〈v,w〉x ,

where D is the flat connection of Rn+2 and ∇ is the Levi-Civita connection of Hn,1.
Using the flatness of D, one easily computes that

R(u, v)w = 〈u,w〉v − 〈v,w〉u ,

so that

〈R(u, v)v, u〉 = −
(
〈u, u〉〈v, v〉 − 〈v, u〉2

)
,

and this shows that Hn,1 has constant sectional curvature−1. Finally, let us remark
that Hn,1 is not simply connected, being homeomorphic to Rn×S1. (See Fig. 15.1.)

15.1.1.6 The “Klein Model” and Its Boundary

Let us now introduce a projective model, or “Klein model”, for Anti-de Sitter
geometry. Let us define

AdSn,1 := H
n,1/{±1} .

Fig. 15.1 For n = 1, H1,1 is
the one-sheeted hyperboloid
in R1,2, which is
homeomorphic to the annulus
R× S1. The lines in the left
and right rulings are lightlike
geodesics
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Since {±1} is the center of O(n, 2) (hence normal), AdSn,1 (endowed with
the Lorentzian metric induced by the quotient) has maximal isometry group by
Proposition 15.1.1.3.1 and is therefore a model of constant sectional curvature −1.
It can also be shown that the center of the isometry group of AdSn,1 is trivial, or
equivalently that AdSn,1 is the quotient of its universal covering by the center of its
isometry group. It follows (see also Remark 15.1.1.3.2) that it is the minimal model
of AdS geometry, in the sense that any other model is a covering of AdSn,1.

By definition AdSn,1 is naturally identified with a subset of real projective space
RPn+1, more precisely the subset of timelike directions of Rn,2:

AdSn,1 = {[x] ∈ RPn+1 | qn,2(x) < 0} .

Like in hyperbolic geometry, the boundary of AdSn,1 in projective space RPn+1

is a quadric of signature (n, 2), that is the projectivization of the set of lightlike
vectors in Rn,2. Namely

∂AdSn,1 = {[x] ∈ RPn+1 | qn,2(x) = 0} .

Isometries of AdSn,1 induce projective transformations which preserve ∂AdSn,1.

The Conformal Lorentzian Structure of the Boundary In the rest of this subsec-
tion, in analogy with hyperbolic geometry, we shall equip ∂AdSn,1 with a conformal
Lorentzian structure that extends the conformal Lorentzian structure defined inside.
This will be obtained by means of the following construction.

Given a point � = Span(x) of RPn+1, the tangent space of real projective space
has the canonical identification

T�RPn+1 ∼= Hom(�,Rn+2/�) .

As a preliminary remark, when � is timelike (namely qn,2(x) < 0), the quotient
Rn+2/� is canonically identified with �⊥. For any local section σ : AdSn,1 → Rn,2

of the canonical projection, one can then define a metric over TAdSn,1 by

⟪f, g⟫σ = 〈f (σ [x]), g(σ [x])〉n,2 , (15.1.3)

for f, g ∈ T[x]AdSn,1 ∼= Hom(�, �⊥). It is an exercise to check that if σ0 is a section
with values in Hn,1, then one recovers the previously constructed metric of AdSn,1,
which coincides with the pull-back of the metric over Rn,2 since the differential of
σ0 identifies T[x]AdSn,1 with TxH

n,1 = x⊥. This does not hold for a general section
σ , but one still recovers a conformal metric as a consequence of the easy formula

⟪f, g⟫λσ = λ2⟪f, g⟫σ (15.1.4)

for any function λ.
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Let us now turn our attention to the case that � = Span(x) is lightlike, namely
qn,2(x) = 0. In this case there is no way to define a natural metric on Rn+2/�.
However, if we let

L = {x ∈ R
n,2 | qn,2(x) = 0}

be the space of lightlike vectors, then TxL is precisely �⊥ and contains � itself. In
fact T�∂AdSn,1 is canonically identified to Hom(�, �⊥/�). Moreover the bilinear
form of Rn,2, restricted to �⊥, induces a well-defined, non degenerate bilinear form
(of signature (n− 1, 1)) on �⊥/�, which we denote by 〈v,w〉�⊥/�.

Hence one can define a metric on ∂AdSn,1 for any section σ : ∂AdSn,1 → L of
the canonical projection by the formula

((f, g))σ = 〈f (σ [x]), g(σ [x])〉�⊥/� , (15.1.5)

where now f, g ∈ Hom(�, �⊥/�). Here this metric can be indeed be expressed as
the pull-back

((f, g))σ = 〈σ∗(f ), σ∗(g)〉n,2 , (15.1.6)

since the degenerate metric on TxL = �⊥ is by construction the pull-back of the
metric of �⊥/� by the projection along the degenerate direction �.

One again has the formula

((f, g))λσ = λ2 ((f, g))σ (15.1.7)

similarly to (15.1.4), and therefore the induced conformal class over T ∂AdSn,1 is
independent of the choice of σ and equips T ∂AdSn,1 with a conformal Lorentzian
metric. The naturality of the construction implies that the isometry group of Hn,1

acts by conformal transformations over ∂AdSn,1. Finally, let us show that this
conformal Lorentzian metric is naturally the conformal compactification of AdSn,1.
In fact, if σ is a section of the canonical projection π : Rn,2 → RPn+1, defined
in a neighborhood U of a point of ∂AdSn,1, by construction the metric ((·, ·))σ
over ∂AdSn,1 ∩ U is the limit of the conformal metric associated to σ defined in
AdSn,1 ∩ U : this means that if (pn, vn) is a sequence in TAdSn,1 that converges to
(p∞, v∞) ∈ T ∂AdSn,1, then ⟪vn, vn⟫σ (pn) → ((v∞, v∞))σ (p∞).

In the physics literature, the conformal Lorentzian manifold ∂AdSn,1 is known
as Einstein universe. See for instance [13, 63, 64] for more details.

Remark 15.1.1.6.1 A conformal Lorentzian structure is equivalent to the smooth
field of lightlike directions, which is also called the light cone. More precisely, a
diffeomorphism f : (M, g) → (N, g′) between Lorentzian manifold is conformal,
meaning that f ∗g′ = e2λg for some smooth function λ : M → R, if and only if the
differentials of f and f−1 map causal vectors to causal vectors. If M and N have
dimension ≥ 3, this is indeed equivalent to the condition that the differential of f

maps lightlike vectors to lightlike vectors.
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Remark 15.1.1.6.2 In order to better understand the light cone in the case of
∂AdSn,1, let us notice that if [y] ∈ ∂AdSn,1 formula (15.1.6) implies that the
lightlike vectors in T[y]∂AdSn,1 are the projection of vectors x ∈ Rn+2 such that
〈x, y〉n,2 = 0 and 〈x, x〉n,2 = 0. These vectors are such that Span(x, y) are
totally degenerate planes in Rn,2, or equivalently give projective lines contained in
∂AdSn,1. Thus the light cone in ∂AdSn,1 through [y] is the union of all the projective
lines contained in ∂AdSn,1 which pass through [y].

15.1.1.7 The “Poincaré Model” for the Universal Cover

We have already observed that Hn,1, and its double quotient AdSn,1, are not
simply connected. Let us now construct a simply connected model of Anti-de Sitter
geometry, namely the universal cover of Hn,1 and AdSn,1. For this purpose, let Hn

be the hyperboloid model of hyperbolic space (defined in (15.1.2)). Then

π(y, t) = (y1, . . . , yn, yn+1 cos t, yn+1 sin t) (15.1.8)

defines a map π : Hn × R → Hn,1 and it is immediate yo check that this map is a
covering with deck transformations of the form (y, t) 	→ (y, t + 2kπ) for k ∈ Z.
See Fig. 15.6 for a picture in dimension 3. Clearly ÃdSn,1 is the universal cover also
for the projective model AdSn,1, the covering map being the composition of (15.1.8)
with the double quotient Hn,1 → AdSn,1.

Pulling back the Lorentzian metric over Hn × R we get a simply connected
Lorentzian manifold of constant curvature −1, which we denote by ÃdSn,1. The
metric of ÃdSn,1 is a warped product of the form

π∗gHn,1 = gHn − y2
n+1dt

2 . (15.1.9)

Moreover ÃdSn,1 has maximal isometry group, hence we have obtained a simply
connected model for AdS geometry. More precisely, we have a central extension,
that is a (non split) short exact sequence

0 → Z→ Isom(ÃdSn,1) → O(n, 2) → 1 .

It is convenient to express the metric (15.1.9) using the Poincaré model of the
hyperbolic space. Recall that the disk model of the hyperbolic space is the unit disk
Dn = {x ∈ Rn|||x|| < 1} equipped with the conformal metric 4

(1−r2)2

∑
dx2

i , where

r2 := ||x||2 = ∑
x2
i . The isometry with the hyperboloid model of Hn is given by

the transformation

(x1, . . . , xn) 	→
(

y1 = 2x1

1 − r2
, . . . , yn = 2xn

1 − r2
, yn+1 = 1 + r2

1 − r2

)

.
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In conclusion ÃdSn,1 has the model Dn × R equipped with the metric

4

(1 − r2)2 (dx
2
1 + . . .+ dx2

n)−
(

1 + r2

1 − r2

)2

dt2 . (15.1.10)

The “Poincaré model” of the AdS geometry, which has been introduced in [27], is
then the cylinder Dn × R equipped with the metric (15.1.10). From Eq. (15.1.10),
each slice {t = c} is a totally geodesic copy of Hn, a fact which will be evident also
from other reasons in Sect. 15.1.1.8. The expression (15.1.10) also shows that the
vector field ∂/∂ t is a timelike non-vanishing vector field on ÃdSn,1, which shows
that ÃdSn,1 is time-orientable. Since any choice of time orientation is preserved by
the action of deck transformations of the covering ÃdSn,1 → AdSn,1, this shows
that also Hn,1 and AdSn,1 are time-orientable. Notice however that vertical lines in
the metric are not geodesic (15.1.10), except for the central line, passing through
x1 = . . . = xn = t = 0.

The Conformal Metric of the Boundary Using the covering map from Hn × R to
AdSn,1, we can endow ÃdSn,1 (and similarly any other covering of AdSn,1) with a
natural boundary. Concretely, the covering map (now in the projective model of Hn)

π ′([y1 : . . . : yn, : yn+1], t) = [y1 : . . . : yn : yn+1 cos t : yn+1 sin t]

extends to π ′ : (Hn ∪ ∂Hn)× R → AdSn,1 ∪ ∂AdSn,1. To compute the conformal
Lorentzian structure of the boundary, we consider the map τ : Hn × R → Rn+2

defined by

τ ([y1 : . . . : yn, : yn+1], t) = (y1/yn+1, . . . , yn/yn+1, cos t, sin t)

which clearly extends to the boundary, and induces a (local) section of the projection
Rn+2 → AdSn,1. In fact, if η is the generator of the group of deck transformations
of the covering π ′ : ÃdSn,1 → AdSn,1, then τ has the equivariance τ ◦ηi = (−1)iτ .
Using also (15.1.7), the conformal Lorentzian metric on ∂ÃdSn,1 induced by σ by
means of Eq. (15.1.5) is the pull-back of a Lorentzian metric compatible with the
natural conformal structure of the boundary ∂AdSn,1. A direct computation (which
becomes very simple by using the metric (15.1.10), the formula (15.1.4) and the

observation that τ differs by the hyperboloid section by the factor yn+1 = 1+r2
1−r2 )

gives the expression

4

(1 + r2)2 (dx
2
1 + . . .+ dx2

n)− dt2 . (15.1.11)

This metric extends to Dn × R and thus the metric gSn−1 − dt2 on Sn−1 × R,
where gSn−1 is the round metric over the sphere, is compatible with the conformal
Lorentzian structure of ∂ÃdSn,1. This also shows that the conformal structure of
∂Hn,1 ∼= Sn−1×S1 admits the representative gSn−1−gS1 , and the conformal structure
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of ∂AdSn,1 is compatible with the double quotient of the latter, by the involution
(p, q) 	→ (−p,−q) on S

n−1 × S
1.

15.1.1.8 Geodesics

Let us now study more precise properties of AdS geometry, concerning its
geodesics.

In the Quadric Model Let us start with the exponential map in the hyperboloid
model. Given a point x ∈ Hn,1 and v ∈ THn,1 we shall determine the geodesic
through x with speed v. Let us distinguish several cases according to the sign of
qn,2(v). If v is lightlike, then

γ (t) = x + tv

is a geodesic of Rn,2 and is contained in H
n,1, hence γ is a geodesic for the intrinsic

metric. See Fig. 15.1.
If v is either timelike or spacelike, we claim that the geodesic γ (t) = expx(tv)

is contained in the linear plane W = Span(x, v). In fact, the linear transformation
T that fixes pointwise W and whose restriction to W⊥ is −1W⊥ is in O(n, 2). By
the uniqueness of the solutions of the geodesic equation, T ◦ γ = γ hence γ is
necessarily contained in H

n,1 ∩W . One can then easily derive the expressions

γ (t) = cosh(t)x + sinh(t)v (15.1.12)

if qn,2(v) = 1 and

γ (t) = cos(t)x + sin(t)v (15.1.13)

if qn,2(v) = −1.

In the Klein Model In analogy with the hyperbolic case, in the Klein model AdSn,1

geodesics are intersection of projective lines with the domain AdSn,1 ⊂ RPn+1.
From the above discussion,

• Timelike geodesics correspond to projective lines that are entirely contained in
AdSn,1, are closed non-trivial loops and have length π .

• Spacelike geodesics correspond to lines that meet ∂AdSn,1 transversally in two
points. They have infinite length.

• Lightlike geodesics correspond to lines tangent to ∂AdSn,1.

In particular the light cone through a point [x] ∈ AdSn,1 coincides with the cone
of lines through [x] tangent to ∂AdSn,1. See Fig. 15.2 for a picture (in dimension
3) in an affine chart, where geodesics look like straight lines. For instance in
the affine chart An+2 = {xn+2 �= 0}, where in coordinates (y1, . . . , yn+1) =
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Fig. 15.2 The projective model of three-dimensional AdS space in an affine chart. The interior
quadric is the lightcone from the point [0 : 0 : 0 : 1], which is tangent to the boundary as explained
in Sect. 15.1.1.8, pictured in the affine charts x4 �= 0 (left) and x3 �= 0 (right)

(x1/xn+2, . . . , xn+1/xn+2), the intersection AdSn,1 ∩ An+2 is the interior of a one-
sheeted hyperboloid, that is,

AdSn,1 ∩ An+2 = {y2
1 + . . .+ y2

n − y2
n+1 < 1} ,

while its boundary is the one-sheeted hyperboloid itself:

∂AdSn,1 ∩ An+2 = {y2
1 + . . .+ y2

n − y2
n+1 = 1} .

In an affine chart, timelike geodesics corresponds to affine lines which are entirely
contained in the Anti de Sitter space, and which are not asymptotic to its boundary;
lightlike geodesics are tangent to the one-sheeted hyperboloid, or are asymptotic to
it (tangent at infinity).

Remark 15.1.1.8.1 An important observation concerns the space of timelike
geodesics. Any timelike line is the projectivisation of a negative definite plane.
As Isom(AdSn,1) ∼= PO(n, 2) acts transitively on the space of timelike lines, and
since the stabiliser of a timelike line is the group P(O(n) × O(2)) which is the
maximal compact subgroup of PO(n, 2), the space of timelike geodesics of AdSn,1

is naturally identified with the Riemannian symmetric space of PO(n, 2).

Totally Geodesic Subspaces Before discussing the geodesics in the Poincaré
model, let us briefly discuss more in general totally geodesics subspaces. By an
argument analogous to the case of geodesics, totally geodesic subspaces of AdSn,1

of dimension k are obtained as the intersection of AdSn,1 with the projectivisation
P(W) of a linear subspace W of Rn,2 of dimension k + 1. The negative index of W
can be either 2 or 1, for otherwise the intersection AdSn,1 ∩ P(W) would be empty.
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Fig. 15.3 In an affine chart
for AdS2,1, a spacelike plane
(horizontal), which intersects
a timelike plane (vertical) in a
spacelike geodesic. A
lightlike plane (on the left) is
tangent to ∂AdS2,1 at a point

We have several cases—see Fig. 15.3:

• If W has signature (k − 1, 2), then P(W) ∩ AdSn,1 is isometric to AdSk−1,1.
• If W has signature (k−2, 1), then it is a copy of Minkowski space Rk−2,1, hence

P(W) ∩ AdSn,1 is a copy of the Klein model of hyperbolic space.
• If W is degenerate, then P(W) ∩ AdSn,1 is a lightlike subspace foliated by

lightlike geodesics tangent to the same point of ∂AdSn,1.

A particular case of the last point is when W is degenerate and dimW = n+ 1.
Then P(W)∩AdSn,1 is a projective hyperplane tangent to ∂AdSn,1 at a point [x] and
P(W) ∩ ∂AdSn,1 is the lightlike cone of ∂AdSn,1 through [x] (Remark 15.1.1.6.2).

In the Universal Cover In the universal cover ÃdSn,1, geodesics are the lifts of the
geodesics of the models AdSn,1 or Hn,1 which we have just described. Hence every
lightlike or spacelike geodesic in AdSn,1 and H

n,1, which is topologically a line,
has a countable number of lifts to ÃdSn,1. On the other hand timelike geodesics
in AdSn,1 and H

n,1 are topologically circles and are in bijections with timelike
geodesics of ÃdSn,1, as the covering map from ÃdSn,1, restricted to a timelike
geodesic, induces a covering map onto the circle.

Using the Poincaré model for the universal cover, introduced in Sect. 15.1.1.7, it
is easy to give an explicit description of (unparameterized) lightlike geodesics. In
fact, in Lorentzian geometry not only the nature of a vector (i.e. timelike, lightlike
or spacelike) is conformally invariant, but also unparameterized lightlike are a
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conformal invariant. More concretely, the following holds, see for instance [66,
Proposition 2.131].

Theorem 15.1.1.8.2 If two Lorentzian metrics g and g′ on a manifold M are
conformal, then they have the same unparameterized lightlike geodesics.

As a consequence of Theorem 15.1.1.8.2, we can replace the Poincaré met-
ric (15.1.10) by the conformal metric given by (15.1.11):

4

(1 + r2)2 (dx
2
1 + . . .+ dxn)2 − dt2 . (15.1.14)

Now observe that the first term in the expression (15.1.14) is exactly the form of
the spherical metric on a hemisphere, pulled-back to the unit disc by means of the
stereographic projection. We will call such a metric the hemispherical metric and we
will denote it, with a small abuse of notation, by gSn . In other words, the conformal
metric (15.1.14) is isometric to gSn − dt2 on the product of a hemisphere and the
line. The boundary of ∂D is an equator for the hemispherical metric, and in fact it is
the only equator completely contained in (D∪ ∂D, gSn), which justifies the fact that
it will be called the equator for simplicity.

As a consequence, unparameterized lightlike geodesics of ÃdSn,1 going through
a point (p0, t0) are characterized by the conditions that they are mapped to spherical
geodesics under the vertical projection (p, t) 	→ p and moreover

t− t0 = dSn(p,p0) (15.1.15)

on the geodesic. In particular, these lightlike geodesics meet the boundary of ÃdSn,1

at the points which satisfy (15.1.15) such that p is on the equator of the hemisphere:
as an example, if p0 is the center of the hemisphere, then the points at infinity of the
lightcone over (p0, t0) are the horizontal slice t = t0 + π/2. This sphere is also the
boundary of a hyperplane dual to (p0, t0), see next section.

The same argument also permits to describe explicitely a lightlike hyperplane in
the Poincaré model for the universal cover: the lightlike hyperplane having (p0, t0)
as a past endpoint, (where now p0 is on the equator) is precisely {(p, t) | t − t0 =
dSn(p,p0)}, and its future endpoint is (−p0, t + π). See Fig. 15.4 for pictures in
dimension 2+ 1.

15.1.1.9 Polarity in Anti-de Sitter Space

The quadratic form qn,2 induces a polarity on the projective space RPn+1, namely
the correspondence which associates to the projective subspace P(W) the subspace
P(W⊥). In particular this correspondence induces a duality between spacelike
totally geodesic subspaces of AdSn,1: the dual of a spacelike k-dimensional
subspace is a n − k + 1 subspace. For instance the dual of a point [x] is a n-
dimensional spacelike hyperplane P[x] = P(x⊥). Projectively P[x] is characterised
as the hyperplane spanned by the intersection of ∂AdSn−1,1 with the lightcone from
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Fig. 15.4 In the left and middle pictures, future lightcones over a point in ÃdS2,1. In the left
picture the basepoint of the lightcone projects to the center of the disc, and therefore the closure
of the lightcone in the cylinder ∂ÃdS2,1 is a horizontal slice. In the right picture, a lightlike plane,
which is actually the degenerate limit of future lightcones as the basepoints tend to the boundary

Fig. 15.5 The duality in H2,1, which is the interior of a solid torus. The lightcone from a point x is
tangent to ∂H2,1 in two meridians, which span the dual planes P±

x . Timelike geodesics through x

intersect P±
x orthogonally and all meet again at the antipodal point −x. The region Ux is the solid

cylinder bounded by P±
x and containing x

[x]. More geometrically, it can be checked that P[x] is the set of antipodal points to
[x] along timelike geodesics through [x]. Also, every timelike geodesic through [x]
meets P[x] orthogonally at time π/2. Conversely, given a totally geodesic spacelike
hyperplane H , all the timelike geodesics that meet H orthogonally intersect in a
single point, which is the dual point of H .
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In the Quadric Model To some extent, the duality between points and planes lifts
to the coverings of AdSn,1. In Hn,1 there are two dual planes associated to any point
x: the sets

P±
x = {expx(±(π/2)v) | qn,2(v) = −1, v future-directed} .

Clearly P+
x and P−

x are antipodal and P±−x = P∓
x . The planes P±

x disconnect Hn,1

in two regions Ux and U−x , where Ux is the region containing x. See Fig. 15.5. They
can be characterised by

Ux = {y ∈ H
n,1 | 〈x, y〉n,1 < 0} .

Spacelike and lightlike geodesics through x do not exit Ux , while all the timelike
geodesics through x meet orthogonally P±

x and all pass through the point−x. More
precisely, a point y �= x is connected to x:

• by a spacelike geodesic if and only if 〈x, y〉n,1 < −1,
• by a lightike geodesic if and only if 〈x, y〉(n,1) = −1,
• by a timelike geodesic if and only if |〈x, y〉(n,1)| < 1.

(To check this, see also the expressions of geodesics in Sect. 15.1.1.8.) An immedi-
ate consequence is that if y is connected to x by a spacelike geodesic, there is no
geodesic joining y to −x. Hence the exponential map of Hn,1 is not surjective. But
as any point y ∈ Hn,1 can be connected through a geodesic either to x or to −x, the
exponential over AdSn,1 is surjective.

In the Universal Cover Finally, let us consider the situation in ÃdSn,1 ∼= Hn × R.
Recall that the group of deck transformations for the covering ÃdSn,1 → Hn,1 is
Z, where a generator acts by translations of 2π in the R factor. Hence the preimage
of a spacelike plane P ⊂ AdSn,1 is the disjoint union of spacelike planes (P k)k∈Z,
enumerated so that the generator η of Z acts by sending Pk to Pk+1. Moreover each
connected component of ÃdSn,1 \⋃k∈Z Pk is a fundamental domain for the action
of deck transformations of the covering ÃdSn,1 → AdSn,1.

Now given a point x, let us apply the previous construction to the plane Px =
Pπ ′(x) which is the dual of the image π ′(x) in AdSn,1, and let Vx be the connected
component which contains x. We will refer to Vx as the Dirichlet domain in ÃdS2,1

centered at x, since the construction of Vx is the analogue of a Dirichlet domain
in this context. Then the restricted covering map π ′|Vx : Vx → AdSn,1 \ Px

is an isometry. Therefore lightlike and spacelike geodesics through x are entirely
contained in Vx . See Fig. 15.6.
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Fig. 15.6 A topological picture of the universal cover ÃdS2,1. The planes P k
x are spacelike and

differ by deck transformations. The Dirichlet domain Vx is a solid cylinder containing x, bounded
by P k−1

x and P k
x

15.1.2 Anti de Sitter Space in Dimension (2 + 1)

The purpose of this section is to focus on some peculiarites of Anti-de Sitter
geometry in dimension three.

15.1.2.1 The PSL(2,R)-Model

The fundamental observation is the existence of a special model in dimension three
which naturally endows Anti-de Sitter space with a Lie group structure. To construct
this, consider the vector space M(2,R) of 2 × 2 matrices with real entries. Then
q = − det is a quadratic form with signature (2, 2), hence there is an isomorphic
identification between (M(2,R),− det) and (R2,2, q2,2), unique up to composition
by elements in O(2, 2). Under this isomorphismH2,1 is identified with the Lie group
SL(2,R).

Let us notice that SL(2,R)×SL(2,R) acts linearly on M(2,R) by left and right
multiplication:

(A,B) ·X := AXB−1 . (15.1.16)

As a simple consequence of the Binet Formula, this action preserves the quadratic
form q = − det and thus induces a representation

SL(2,R)× SL(2,R) → O(M(2,R), q) .

Since the center of SL(2,R) is ±1, the kernel of such a representation is given by
K = {(1,1), (−1,−1)}, and by a dimensional argument it turns out that the image
of the representation is the connected component of the identity:

Isom0(H
2,1) ∼= SO0(M(2,R), q) ∼= (SL(2,R)× SL(2,R))/K .

Using this model, one then has a natural identification of AdS2,1 with the Lie group
PSL(2,R), in such a way that

Isom0(AdS2,1) ∼= PSL(2,R)× PSL(2,R) (15.1.17)
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acting by left and right multiplication on PSL(2,R).
The stabilizer of the identity in Isom0(AdS2,1) is the diagonal subgroup � <

PSL(2,R) × PSL(2,R). Under the obvious identification of PSL(2,R) and �, the
action of the identity stabilizer on the Lie algebra sl(2,R) = T1PSL(2,R) is the
adjoint action of PSL(2,R). A direct consequence of this construction is the bi-
invariance of the quadratic form q . Indeed, denoting by q1 the restriction of q to
T1SL(2,R), a direct computation shows that q1 equals (1/8)κ , where κ(X, Y ) =
4tr (XY ) is the Killing form of sl(2,R).

Remark 15.1.2.1.1 The Lie algebra sl(2,R) equipped with the quadratic form q1 is
then a copy of the 3-dimensional Minkowski space, hence the adjoint action yields
a representation

PSL(2,R) → O(sl(2,R), q1)

which in turn induces the well-known isomorphism

SO0(2, 1) ∼= SO0(sl(2,R), q1) ∼= PSL(2,R) ,

which is nothing but the restriction of the isomorphism (15.1.17) to the stabilizer of
the identity in the left-hand side Isom0(AdS2,1), and to the diagonal subgroup � in
the right-hand side PSL(2,R)× PSL(2,R).

Remark 15.1.2.1.2 The identification betweenH2,1 and SL(2,R) parallels the more
classical identification between the three sphere S3 and the Lie group SU(2). The
analogy can be deepened by considering the isomorphism of gl(2,R) with the
algebra of pseudo-quaternions, namely the four-dimensional real algebra generated
by 1, i, j, k with the relations −i2 = j2 = k2 = 1 and k = ij = −j i. Under this
isomorphism the quadratic form det corresponds to

q(a + bi + cj + dk) = a2 + b2 − c2 − d2 ,

hence H2,1 is identified to the set of unitary pseudo-quaternions.

15.1.2.2 The Boundary of PSL(2,R)

From the identification between AdS2,1 and PSL(2,R), we obtain an identification
of ∂AdS2,1 with the boundary of PSL(2,R) into P(M(2,R)), which is the
projectivization of the cone of rank 1 matrices. Therefore from now on we shall
always consider

∂AdS2,1 = {[X] ∈ P(M(2,R)) | rank(X) = 1} .

We have a homeomorphism

∂AdS2,1 → RP1 × RP1
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which is defined by

[X] 	→ (ImX,KerX) ,

and is equivariant under the actions of PSL(2,R) × PSL(2,R): the obvious action
on RP1 ×RP1, and the action on ∂AdS2,1 induced by (15.1.16).

Lemma 15.1.2.2.1 The inversion map ι[X] = [X]−1 is a time-reversing isometry
of AdS2,1 which induces the homeomorphism (x, y) 	→ (y, x) on ∂AdS2,1 ∼= RP1×
RP1.

Proof Clearly ι is equivariant with respect to the isomorphism of PSL(2,R) ×
PSL(2,R) which switches the two factors. To show that it is an isometry it thus
suffices to check that its differential at the identity is a linear isometry, which is
obvious since d1ι is minus the identity, which also shows time-reversal. The second
claim is easily checked by observing that for an invertible 2 × 2 matrix we have
(detX)X−1 = (tr X)1 − X by the Cayley–Hamilton theorem, so that projectively
[X−1] = [trX1 − X]. This shows that the inversion map of AdS2,1 extends to the
transformation [X] → [trX1−X] along the boundary. If X is a rank 1 matrix, then it
is traceless if and only if X2 = 0, that is, if and only if KerX = ImX. So in this case
the statement is easily proved. If tr X �= 0, then X is diagonalizable with eigenvalues
0, and trX. Moreover KerX and ImX are the corresponding eigenspaces. It is easily
seen that Ker(trX1− X) = ImX and Im(tr X1−X) = KerX. !�

Using the upper half-plane model for the hyperbolic space H2, RP1 corresponds
to the boundary at infinity ∂H2 and PSL(2,R) is identified to Isom0(H

2), which acts
on RP1 in the canonical way. One can therefore consider ∂AdS2,1 as ∂H2 × ∂H2.
We can interpret the convergence to ∂AdS2,1 in this setting.

Lemma 15.1.2.2.2 A sequence [Xn] ∈ AdS2,1 converges to (x, y) ∈ ∂AdS2,1 ∼=
RP1 × RP1 if and only if for every p ∈ H

2, Xn(p) → x and X−1
n (p) → y.

Proof Since the action of PSL(2,R) on H2 is isometric, if the condition holds for
some p, then it holds for all p ∈ H2. Hence one can take for instance p = i in
the upper half-plane. Assuming Xn converges projectively to a rank 1 matrix X,
one checks immediately that X(p) is in the projective class of x = Im(X). The
convergence X−1

n (p) → y then follows by Lemma 15.1.2.2.1. !�
In this dimension, ∂AdS2,1 is a double ruled quadric, which in an affine chart

looks like in Fig. 15.1. We shall now describe geometrically these rulings. Given
any (x0, y0) ∈ ∂AdS2,1,

λy0 := {(x, y0) | x ∈ RP1}

describes a projective line in RP3 which is contained in ∂AdS2,1, hence lightlike for
the conformal Lorentzian structure of ∂AdS2,1 by Remark 15.1.1.6.2. In fact, λy0 is
the orbit of (x0, y0) by the action of PSL(2,R) × {1}, or by the (now free) action
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of PSO(2) × {1}, where PSO(2) corresponds to a 1-parameter elliptic subgroup in
PSL(2,R). In short,

λy0 = PSL(2,R) · (x0, y0) = PSO(2) · (x0, y0) .

We refer to λy0 as the left ruling through (x0, y0), and similarly the right ruling
is

μx0 := {(x0, y) | y ∈ RP1} ,
for which analogous considerations hold.

We conclude this section by remarking that the conformal Lorentzian structure
on ∂AdS2,1 is easily expressed in terms of the left and right rulings. Let us start by
carefully choosing a time-orientation on AdS2,1. Orienting RP1 in the usual way,
consider the induced orientation on PSO(2). We remark that PSO(2) is a timelike
geodesic of AdS2,1 and we choose the time orientation on AdS2,1 in such a way that
PSO(2) oriented as above is future directed. Observe that the action of PSO(2)×{1}
on AdS2,1 yields a flow on AdS2,1 generated by a right-invariant vector field, which
at 1 is the positive tangent vector of PSO(2). So orbits are all timelike and future
directed. Similarly {1} × PSO(2) yields a flow generated by a left-invariant vector
field, which at 1 is the negative tangent vector of PSO(2), and its orbits are all
timelike and past directed.

Proposition 15.1.2.2.3 Let πl, πr : RP1 × RP1 → RP1 be the canonical
projections and dθ the angular form on RP1 ∼= ∂H2. Then the symmetric product
π∗
l (dθ)π

∗
r (dθ) is in the conformal class of ∂AdS2,1.

Proof Since we already know that the left and right rulings are lightlike for the
conformal class of ∂AdS2,1, it only remains to check the sign by Remark 15.1.1.6.1.
Notice that λy0 is the orbit of the action of PSO(2) × {1}, while μx0 is the orbit of
the action of {1} × PSO(2). Then λy0 with the obvious parameterization is future
directed while μx0 is past directed. The result follows. !�

Therefore a C1 curve in ∂AdS2,1 is spacelike when it is locally the graph of
an orientation-preserving function, and timelike when it is locally the graph of an
orientation-reversing function. Given two intervals I1 and I2 in ∂H2 and assuming
θ1 and θ2 are angle determinantion over I1 and I2, the future I+I1×I2

(p0, q0) of a point
(p0, q0) in I1 × I2 is region where θ1(p) − θ1(p0) > 0 and θ2(q) − θ2(q0) < 0,
while the past is determined by reversing both inequalities. In conclusion

I+I1×I2
(p0, q0)∪I−I1×I2

(p0, q0) = {(p, q) ∈ I1×I2 | (θ1(p)−θ1(p0))(θ2(q)−θ2(q0)) < 0} .
(15.1.18)

15.1.2.3 Levi-Civita Connection

In this section we shall describe the properties of natural metric connections on
AdS2,1, for which the theory of Lie groups permits to give a transparent description.
Let us start by some general facts of Lie groups.
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Recall that the Lie bracket on the Lie algebra g = T1G of a Lie group G is
defined as

[V,W ]g = [Ṽ , W̃ ](1) = −[Ṽ ′, W̃ ′](1) , (15.1.19)

where [·, ·] now denotes the bracket of vector fields and Ṽ , W̃ (resp. Ṽ ′, W̃ ′) are the
left-invariant (resp. right-invariant) vector fields extending V and W respectively.

Now, any Lie group G is equipped with two natural connections, the left-
invariant connection Dl and the right-invariant connection Dr . The former is
uniquely determined by the condition that left-invariant vector fields are parallel,
and is left-invariant in the sense that, if Lg : G → G denotes left multiplication by
g, then

(Lg)∗(Dl
V W) = Dl

(Lg)∗(V )(Lg)∗(W) .

The left-invariant connection Dl at a point g ∈ G can be easily expressed as
ordinary differentiation in TgG, after pulling-back a vector field W to g by left
multiplication. More precisely,

Dl
V W = d

dt

∣
∣
∣
∣
t=0

(Lgγ (t)−1)∗(Wγ (t)) , (15.1.20)

where γ (t) is a path with γ (0) = g and γ ′(0) = V .
The analogous definition and property holds for Dr , replacing left-invariant by

right-invariant vector fields. Both connections Dl and Dr are flat and are compatible
with any metric on G which is left-invariant or right-invariant respectively. Indeed
parallel transport of a vector W ∈ TgG to Tg′G consists just in left (resp. right)
multiplication, namely in applying (Lg′g−1)∗ (resp. (Rg′g−1)∗) to W , and is therefore
path-independent.

But Dl and Dr are not torsion-free, as can be easily checked by the definition
of torsion, which we recall is a tensor of type (2, 1). For instance, computing at the
identity and using left-invariant extensions Ṽ and W̃ of V and W , one obtains

τ l(V ,W) = Dl
V W̃ −Dl

W Ṽ − [Ṽ , W̃ ](1) = −[Ṽ , W̃ ](1) = −[V,W ]g .

Similarly one obtains

τ r(V ,W) = [V,W ]g .

By construction, τ l is left-invariant and τ r is right-invariant. But by Ad-invariance
of the Lie bracket of g, the torsions τ l and τ r are actually bi-invariant.
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Moreover, a direct computation shows that the tensorial quantity Dr −Dl admits
the following expression at the identity:

Dr
VW −Dl

VW = [V,W ]g . (15.1.21)

To check Eq. (15.1.21), it suffices to consider the right-invariant extension W̃ of W ,
so that Dr

V W̃ = 0. Using the expression (15.1.20) for Dl at the identity, we see that

Dl
V W̃ = d

dt

∣
∣
∣
∣
t=0

(Lexp(−tV ))∗(W̃exp(tV ))

= d

dt

∣
∣
∣
∣
t=0

(Lexp(−tV ))∗(Rexp(tV ))∗(W) = −adV (W) = −[V,W ]g ,

which thus shows Eq. (15.1.21).
Now, given a bi-invariant pseudo-Riemannian metric on G, its Levi-Civita

connection∇ can be expressed as the mid-point between Dl and Dr . Namely, using
now V and W to denote vector fields,

∇VW = 1

2

(
Dl

VW +Dr
VW

)
, (15.1.22)

which is still a connection on G since the space of connections forms an affine
space with underlying vector space the space of (2, 1)-tensors. Indeed ∇ is still
compatible with the metric and is moreover torsion-free, since its torsion, which
equals (τ l + τ r )/2, vanishes.

A direct consequence of Eqs. (15.1.21) and (15.1.22) is the following well-known
expression for the Levi-Civita connection in terms of left-invariant vector fields:

Lemma 15.1.2.3.1 Given left-invariant vector fields V and W on G, the Levi-
Civita connection of a bi-invariant metric has the expression:

∇VW = 1

2
[V,W ] .

In particular, the Lie group exponential map coincides with the pseudo-Riemannian
exponential map.

Proof The first part of the statement follows from Eqs. (15.1.21) and (15.1.22),
since for left-invariant vector fields Dl

V W = 0. The second part is a direct
consequence, since 1-parameter groups γ : I → G integrate left-invariant vector
fields, and therefore ∇γ̇ γ̇ = 0. !�
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15.1.2.4 Lorentzian Cross-Product

Before a discussion on geodesics in the PSL(2,R)-model, which will rely on the Lie
group generalities of the previous section, we discuss here some particular features
of the Lie group G = PSL(2,R). Namely, we have a natural Lorentzian cross
product, that is a TAdS2,1-valued 2-form (V ,W) 	→ V ⊠ W , which is defined
by the equality

〈V ⊠W,U〉 = �(V,W,U) , (15.1.23)

where 〈·, ·〉 is the Anti-de Sitter metric and � is the associated volume form, namely
the unique 3-form taking the value 1 on any positive oriented orthonormal basis.
Here we orient PSL(2,R) by declaring that the orthonormal basis

V =
(

0 1
1 0

)

W =
(

1 0
0 −1

)

U =
(

0 −1
1 0

)

at the identity is positive. In other words, V ⊠ W equals ∗(X ∧ Y ), where
∗ : �2TAdS2,1 → TAdS2,1 is the Hodge star operator defined similarly to the
Riemannian case.

At the identity, a very simple equality holds for the Lorentzian cross product and
the Lie bracket of g:

Lemma 15.1.2.4.1 Given V,W ∈ T1PSL(2,R), [V,W ]g = −2V ⊠W .

Proof We claim that the volume form of the Anti-de Sitter metric equals:

�(V,W,U) = −1

2
〈[V,W ]g, U〉 . (15.1.24)

The stated equality then follows from Eq. (15.1.23). To see the claim, first let
us observe that the expression in (15.1.24) is an alternating three-form, as a
consequence of the skew-symmetry of the Lie bracket and of the (infinitesimal
version of) Ad-invariance of the Anti-de Sitter metric, namely:

〈[V,W ]g, U〉 = −〈W, [V,U ]g〉 . (15.1.25)

Hence � is a multiple of the volume form. To check the multiplicative factor, by
left-invariance, it suffices to perform the computation at T1AdS2,1 = sl(2,R) on
the positive orthonormal basis

V =
(

0 1
1 0

)

W =
(

1 0
0 −1

)

U =
(

0 −1
1 0

)

for which V,W are spacelike and U is timelike. The equality follows since
[V,W ]g = 2U . !�
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Lemma 15.1.2.4.1 permits to rewrite the expression for the Levi-Civita connection
of left-invariant vector fields, from Lemma 15.1.2.3.1, simply as ∇VW = −V ⊠
W and, together with Eqs. (15.1.22) and (15.1.21), to obtain the following general
expression for the Levi-Civita connection.

∇VW = Dl
VW − V ⊠W = Dr

V W + V ⊠W . (15.1.26)

Remark 15.1.2.4.2 Using the set-up of this section, one easily gets another com-
putation of the curvature of AdS2,1, different from that given in Sect. 15.1.1.5. Fix
V,W,U ∈ g = T1PSL(2,R), and denote by Ṽ , W̃ , Ũ the left invariant extensions
of V,W,U . From Lemma 15.1.2.3.1 and the Jacobi identity, one gets the following
expression for the Riemann tensor:

R(V,W)U =
(
∇Ṽ∇W̃ Ũ − ∇W̃∇Ṽ Ũ −∇[Ṽ ,W̃ ]Ũ

)
(1)

=
(

1

4
[Ṽ , [W̃ , Ũ ]] − 1

4
[W̃ , [Ṽ , Ũ ]] − 1

2
[[Ṽ , W̃ ], Ũ ]

)

(1)

= 1

4
[V, [W,U ]g]g − 1

4
[W, [V,U ]g]g − 1

2
[[V,W ]g, U ]g = 1

4
[U, [V,W ]g]g .

Hence from Lemma 15.1.2.4.1 and Eq. (15.1.25):

〈R(V,W)W,V 〉 = 1

4
〈[W, [V,W ]g]g, V 〉 = 1

4
〈[V,W ]g, [V,W ]g〉 = 〈V ⊠W,V ⊠W 〉 = −1 ,

for V,W orthonormal spacelike vectors, hence spanning a spacelike plane. An
analogous computation holds for timelike planes, thus showing that the sectional
curvature is identically −1.

15.1.2.5 Geodesics in PSL(2,R)

In this section we will describe the geodesics of the PSL(2,R)-model, applying its
Lie group structure.

Exponential Map Let us start by understanding the geodesics through the identity.
Recalling Remark 15.1.2.1.1, the Lie algebra of PSL(2,R) is isometrically iden-
tified to a copy of Minkowski space, where under such an isometry the stabilizer
of a point (namely PSL(2,R) acting by means of the adjoint action) corresponds
to the group of linear isometries of Minkowski space. In short, this means that we
shall distinguish geodesics by their type (timelike, spacelike, lightlike) and those
will be equivalent under this action. Moreover, by Lemma 15.1.2.3.1 it suffices to
understand the one-parameter groups for the Lie group structure of PSL(2,R). We
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immediately get the following:

• Timelike geodesics are, up to conjugacy, of the form

(
cos(t) − sin(t)
sin(t) cos(t)

)

namely, under the identification of PSL(2,R) with Isom(H2), they are elliptic
one-parameter groups fixing a point in H2. In this example, the tangent vector is
the matrix

(
0 −1
1 0

)

.

These are in fact closed geodesics, parameterized by arclength, of total length π .
• Spacelike geodesics are, again up to conjugacy:

(
cosh(t) sinh(t)
sinh(t) cosh(t)

)

with initial velocity

(
0 1
1 0

)

.

In terms of hyperbolic geometry, these are hyperbolic one-parameter groups,
fixing two points in the boundary of H2 (in this case, ±1).

• Finally, lightlike geodesics are the parabolic one-parameter groups conjugate to

(
1 t

0 1

)

,

whose initial vector has indeed zero length.

A Totally Geodesic Spacelike Plane Using the above description of timelike
geodesics through 1, we can also interpret the duality of Sect. 15.1.1.9 in terms
of the structure of PSL(2,R). Recalling that the dual plane of a point A is the set
of antipodal points along timelike geodesics through A, one sees that the dual plane
of 1 consists of elliptic isometries of H2 which rotate by an angle π . Equivalently,
this is the set of (projective classes) of traceless matrices, that is (by the Cayley–
Hamilton theorem)

P1 = {[J ] ∈ PSL(2,R) | J 2 = −1} .
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In other words, P1 is identified with the space of linear almost-complex structures
on R2, up to sign reversing. The boundary at infinity of P1 is made of traceless
matrices of rank 1, that is, the projectivization of the set of nilpotent 2× 2 matrices.

Recall that the stabilizer of 1 is the diagonal subgroup of PSL(2,R)×PSL(2,R),
and it also acts on the dual plane P1 by conjugation. The following statement is then
straightforward:

Lemma 15.1.2.5.1 The map from H
2 to P1, sending p ∈ H

2 to the elliptic order-
two element in PSL(2,R) fixing p, is a PSL(2,R)-equivariant isometry.

Proof Equivariance with respect to the actions of PSL(2,R) is easy since, for an
element X ∈ PSL(2,R), the order-two elliptic element fixing X · p is precisely the
X-conjugate of the order-two elliptic element fixing p. Using the equivariance, it
follows that the pull-back of the metric of P1 is a constant multiple of the hyperbolic
metric of H2. Since both have curvature −1, they must coincide. !�

On the double coverH2,1, which is the SL(2,R)-model, P1 lifts to the two planes
P±
1 dual to the identity. One of them consists of the matrices J such that J 2 = −1,

namely the linear almost-complex structures on R2, which are compatible with the
standard orientation of R2; the other contains the linear almost-complex structures
on R2 compatible with the opposite orientation of R2.

Timelike Geodesics To get a complete description of timelike geodesics (not only
those through the identity) it suffices to let (the identity component of) the isometry
group of AdS2,1, namely PSL(2,R) × PSL(2,R) act on PSL(2,R) by left and
right multiplication. In particular an important description of the space of timelike
geodesics of AdS2,1 (which is also the space of timelike geodesics of each finite-
index cover of AdS2,1) can be obtained, see [9].

Proposition 15.1.2.5.2 There is a homeomorphism between the space of (unpa-
rameterized) timelike geodesics of AdS2,1 and H2 × H2. The homeomorphism is
equivariant for the action of Isom0(AdS2,1) ∼= PSL(2,R)× PSL(2,R).

Proof The homeomorphism is defined as follows. Given (p, q) ∈ H2 × H2, we
associate to it the subset

Lp,q = {X ∈ PSL(2,R) |X · q = p} .

By the previous discussion, geodesics through the identity are precisely of the
form Lp,p for some p ∈ H

2. It is easy to check that the map (p, q) 	→ Lp,q is
equivariant for the natural actions of PSL(2,R)×PSL(2,R), namely (A,B)·Lp,q =
LA·p,B·q , which also implies that Lp,q is an unparameterized geodesic and that all
unparameterized geodesics are of this form, namely the map we defined is surjective.
It remains to see the injectivity: if Lp,q = Lp′,q ′ for (p, q) �= (p′, q ′) then in
particular there exists an isometry of H2 sending p to q and p′ to q ′. But such an
isometry is necessarily unique since the identity is the only isometry of H2 fixing
two different points. This gives a contradiction and thus concludes the proof. !�
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Spacelike Geodesics Let us conclude this section by an analysis of spacelike
geodesics. Let us consider an oriented geodesic � of H2. From the discussion at the
beginning of this section, the one-parameter group of hyperbolic transformations
fixing � as an oriented geodesic constitutes a spacelike geodesic through the origin.
By an argument very similar to Proposition 15.1.2.5.2, relying on the equivariance
of the construction by the actions of PSL(2,R) × PSL(2,R), one then proves that
every spacelike geodesic is of the form:

L�,j = {X ∈ PSL(2,R) |X · j = � as oriented geodesics} ,

where � and j denote oriented geodesics of H2. We remark that every (unparam-
eterized, unoriented) spacelike geodesic can be expressed in the above form in
two ways, as one can change the orientation of both � and j . Every such choice
corresponds to a choice of orientation for the spacelike geodesic. In other words,
one can show:

Proposition 15.1.2.5.3 There is a homeomorphism between the space of (unpa-
rameterized) oriented spacelike geodesics of AdS2,1 and the product of two copies
of ∂H2 × ∂H2 \ �, the space of oriented geodesics of H2. The homeomorphism is
equivariant for the action of Isom0(AdS2,1) ∼= PSL(2,R)× PSL(2,R).

However, for our purpose, we will mostly deal with unoriented geodesics, hence
we will have L�,j = L�′,j ′ where �′ equals � but endowed with the opposite
orientation. Given a spacelike geodesic, there is a natural notion of dual spacelike
geodesic, which is defined using the projective duality between points and planes
from Sect. 15.1.1.9:

Definition 15.1.2.5.4 Given a spacelike geodesic L�,j in AdS2,1, the dual spacelike
geodesic is the intersection of all spacelike planes dual to points of L�,j .

The construction of the dual geodesic is involutive. Let us now see an explicit
example. For the case of the geodesic L�,� through the origin, which consists of the
one-parameter hyperbolic group of PSL(2,R) translating along �, it can be checked
that the dual geodesic consists of all elliptic order-two elements (hence contained in
P1, as it is expected from the definition) whose fixed point lies in �. In other words,
the dual spacelike geodesic of L�,� is L�,�′ .

We can easily describe the points at infinity in ∂AdS2,1 of these geodesics. Using
Lemma 15.1.2.2.2, if x and y are the endpoints at infinity of � in ∂H2, then clearly
any sequence diverging towards an end of L�,� ⊂ PSL(2,R) maps an interior point
towards x, and the sequence of inverses towards y (up to switching x and y). In
other words, under the identification of ∂AdS2,1 with RP1 × RP1 (Sect. 15.1.2.2),
the endpoints of L�,� are (x, y) and (y, x). A similar argument applied to L�,�′ ,
which consists of order-two elliptic elements with fixed point in �, shows that its
endpoints are (x, x) and (y, y).

Recalling the descriptions of the left and right rulings of ∂AdS2,1, we conclude
that the endpoints of a spacelike geodesic and its dual are mutually connected
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by lightlike segments in ∂AdS2,1. See also Fig. 15.8 in Sect. 15.2.2, where this
configuration is studied and applied more deeply.

By naturality of the construction with respect to the action of PSL(2,R) ×
PSL(2,R), one has:

Proposition 15.1.2.5.5 Given a spacelike geodesic L�,j of AdS2,1, its endpoints in
∂AdS2,1 are (x1, y2) and (y1, x2), where x1 and y1 are the final and initial endpoints
of � in ∂H2, and x2 and y2 are the final and initial endpoints of j (where final
and initial refers to the orientation of � and j ). The dual geodesic is L�,j ′ and has
endpoints (x1, x2) and (y1, y2).

15.2 Part 2: The Seminal Work of Mess

The aim of this part is to describe Mess’ work, including the classification of
maximal globally hyperbolic spacetimes with compact Cauchy surface and the
Gauss map of spacelike surfaces. The material is organized in the following way.
Chapter 15.2.1 analyses various properties of causality and convexity in Anti-de
Sitter space, which are preliminary to the proof of Mess’ classification result. The
latter is given in Chap. 15.2.2. In Chap. 15.2.3 we then treat the Gauss map and its
first properties, and discuss Mess’ proof of the Earthquake Theorem.

15.2.1 Causality and Convexity Properties

Here we will first study achronal setsin the conformal compactification of Anti-de
Sitter space, a notion that makes sense in the universal cover ÃdS2,1, and then adapt
the notion for subsets of AdS2,1. Then we introduce the fundamental notions of
invisible domain and of domain of dependence, and describe their properties.

15.2.1.1 Achronal and Acausal Sets

Let us begin with the first definitions.

Definition 15.2.1.1.1 A subset X of ÃdS2,1 ∪ ∂ÃdS2,1 is achronal (resp. acausal )
if no pair of points in X is connected by timelike (resp. causal) lines in ÃdS2,1.

Since acausality and achronality are conformally invariant notions, it will be
often convenient to consider the metric gS2−dt2 onD×R we introduced in (15.1.14)
(for gS2 the hemispherical metric on the disc), which is conformal to the Poincaré
model of ÃdS2,1.
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Lemma 15.2.1.1.2 A subset X of ÃdS2,1 ∪ ∂ÃdS2,1 is achronal (resp. acausal) if
and only if it is the graph of a function f : D → R that is 1-Lipschitz (resp. strictly
1-Lipschitz) with respect to the distance induced by the hemispherical metric gS2 .

Clearly here D = πD(X) denotes the projection of X to the D factor.

Proof Assume that X is an achronal subset. Since vertical lines in the Poincaré
model are timelike, the restriction of the projection πD : D × R → D to X is
injective. So X can be regarded as the graph of a function f : D→ R. Imposing that
(x, f(x)) and (y, f(y)) are not related by a timelike curve we deduce that

|f(x)− f(y)| ≤ dS2(x, y) , (15.2.1)

where dS2 is the hemispherical distance (see also Sect. 15.1.1.8). The same argument
shows that conversely the graph of a 1-Lipschitz function defined on some subset of
D is achronal.

Moreover, two points (x, t) and (y, s) are on the same lightlike geodesic if and
only if |t−s| = d

S2(x, y). Hence X is acausal if and only if the inequality in (15.2.1)
is strict. !�

Observe that a 1-Lipschitz function on a region D ⊂ D extends uniquely to the
boundary of D. As a simple consequence of the previous lemma, we thus have:

Lemma 15.2.1.1.3 An achronal subset X in AdS2,1 is properly embedded if and
only if it is a global graph over D, and in this case it extends uniquely to the global
graph of a 1-Lipschitz function over D ∪ ∂D.

In light of Lemma 15.2.1.1.3, in the following we will refer to an achronal
surface as an achronal subset X in AdS2,1 which is the graph of a 1-Lipschitz
function defined on a domain in D.

Before studying more detailed properties, we shall remark that achronality and
acausality are global conditions. Let us first recall the definition of spacelike surface:

Definition 15.2.1.1.4 Given a surface S and a Lorentzian manifold (M, g), a C1

immersion σ : S → M is spacelike if the pull-back metric σ ∗g is a Riemannian
metric. If σ is an embedding, we refer to its image as a spacelike surface.

A spacelike surface S is locally acausal (in the sense that any point admits a
neighborhood in S that is acausal), but there are examples of spacelike surfaces
which are not achronal (hence a fortiori not acausal), a fact which highlights the
global character of Definition 15.2.1.1.1. On the other hand, we have this global
result.

Lemma 15.2.1.1.5 Any properly embedded spacelike surface in ÃdS2,1 is acausal.

Proof By Lemma 15.2.1.1.3, any properly embedded spacelike surface S in ÃdS2,1

disconnects the space in two regions U and V , whose common boundary is S, and
we can assume that the outward pointing normal from U (resp. V ) is past-directed
(resp. future directed). It then turns out that any future oriented causal path that
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meets S passes from V towards U . This implies that any causal path meets S at
most once. !�

Recall from Theorem 15.1.1.8.2 that unparameterized lightlike geodesics only
depend on the conformal class of the Lorentzian metric, hence in the following we
will simply refer to lightlike geodesics in ÃdS2,1, although we very often use the
conformal metric (15.1.14).

Lemma 15.2.1.1.6 Let S be a properly embedded achronal surface of ÃdS2,1 ∪
∂ÃdS2,1 and assume that a lightlike geodesic segment γ joins two points of S. Then
γ is entirely contained in S.

Proof Recalling Lemma 15.2.1.1.3, let fS : D → R be the function defining
S, which is 1-Lipschitz with respect to the hemispherical metric. Now if γ joins
(x, fS(x)) to (y, fS(y)), then (up to switching the role of x and y) fS(y) = fS(x) +
d
S2(x, y). Moreover γ consists of points of the form (z, fS(x) + d

S2(x, z)), for z
lying on the g

S2 -geodesic segment joining x to y. For such a point z on the geodesic
segment joining x to y, by achronality of S we have:

fS(z)−fS(x) ≤ dS2 (x, z) and fS(y)−fS(z) ≤ dS2 (z, y) = dS2 (x, y)−dS2(x, z) .

But the second inequality implies that fS(z) ≥ fS(x)+dS2(x, z) so we conclude that
fS(z) = fS(x)+ d

S2(z, x), proving that γ is contained in S. !�
Given a function f : D→ R, we define its oscillation as

osc(f) := max
y∈D

f(y)− min
y∈D

f(y) .

It is important to stress that this quantity is not invariant under the isometry group
of ÃdS2,1.

Lemma 15.2.1.1.7 Let S be a properly embedded achronal surface, defined as the
graph of fS : D → R. Then osc(fS) ≤ π . Moreover osc(f S) = π if and only if S is
a lightlike plane.

Proof As fS is 1-Lipschitz for the hemispherical metric, and the diameter of D for
gS2 is π we easily see that osc(fS) is bounded by π . Moreover if the value π is
attained it follows that there are two antipodal points y, y′ ∈ ∂D such that fS(y′) =
fS(y)+π . Recall from Sect. 15.1.1.8 (see also Fig. 15.4) that the lightlike plane with
past and future points (y, fS(y)) and (y′, fS(y)+ π) is

P = {(x, t) | t = fS(y)+ dS2(x, y)}

and is foliated by lightlike geodesics joining (y, fS(y)) to (y′, fS(y) + π). By
Lemma 15.2.1.1.6, P is included in S. Since both P and S are global graphs over
D, S = P . !�
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15.2.1.2 Invisible Domains

The first part of this subsection will be devoted to the definition and first properties
of invisible domains, which was first given in [6], and in the last part we will focus
on the case that X is a subset of ∂ÃdS2,1.

Definition 15.2.1.2.1 Given an achronal domain X in ÃdS2,1 ∪ ∂ÃdS2,1, the
invisible domain of X is the subset �(X) ⊂ ÃdS2,1 of points which are connected
to X by no causal path.

Recall that by McShane’s Theorem ([87]) any 1-Lipschitz function on a subset of
a metric space admits a 1-Lipschitz extension everywhere. Hence any achronal set
X, which by Lemma 15.2.1.1.2 is the graph of a 1-Lipschitz function fX : D → R

for D = πD(X), is a subset of a properly embedded achronal surface.
Here we introduce two particular extensions fX± : D∪∂D, to which we sometimes

refer as the extremal extensions:

fX−(y) = sup{fX(x)−dS2 (x, y) | x ∈ πD(X)} fX+(y) = inf{fX(x)+dS2 (x, y) | x ∈ πD(X)} .

Clearly fX± coincide with fX on X and are 1-Lipschitz.

Lemma 15.2.1.2.2 Let X be any closed achronal subset X of ÃdS2,1 ∪ ∂ÃdS2,1

and let S±(X) be the graphs of the extremal extensions fX±.

(1) The properly embedded surfaces S−(X) and S+(X) are achronal with S−(X) ⊂
I−(S+(X)), and �(X) = I+(S−(X)) ∩ I−(S+(X)).

(2) Every achronal subset containing X is contained in S−(X) ∪�(X) ∪ S+(X).
(3) Every point of S±(X) is connected to X by at least one lightlike geodesic

segment, which is entirely contained in S±(X). Finally, S+(X) ∩ S−(X) is the
union of X and all lightlike geodesic segments joining points of X.

Proof Let us first show that S−(X) ⊂ I−(S+(X)). Given a point (y, t), t ≤ fX+(y) if

and only if t ≤ fX(x) + dS2(x, y) for every x ∈ πD(X), that is, if and only if (y, t)
lies outside I+(X). Similarly (y, t) lies outside I−(X) if and only if t ≥ fX−(y). By
achronality, S+(X) does not meet the past of X, so we deduce that fX+(y) ≥ fX−(y)
for all y ∈ D, that is, S−(X) is contained in I−(S+(X)).

As a similar observation, given a point (y, t), {(y, t)} ∪X is achronal if and only
if fX−(y) ≤ t ≤ fX+(y). Moreover (y, t) is connected to X by no causal curve if and
only if fX−(y) < t < fX+(y). This shows that

�(X) = {(y, t) | fX−(y) < t < fX+(y)} ,

and also the second item, by applying the previous observation to any point of an
achronal set containing X which is not in X itself.

To prove the third item, fix a point in (y, t) ∈ S+(X). As we are assuming
that X is closed in ÃdS2,1 ∪ ∂ÃdS2,1, the fact that fX is 1-Lipschitz implies that
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πD(X) is closed in D ∪ ∂D, so it is compact. In particular there exists x ∈ ∂D such
that t = fX+(y) = fX(x) + dS2(x, y). Thus (y, t) is connected to (x, fX(x)) by a
lightlike geodesic segment. By Lemma 15.2.1.1.6, this geodesic segment is entirely
contained in S+(X). Clearly the proof for S−(X) is analogous.

It remains to compute S−(X)∩S+(X). For this purpose, notice that if two points
of X are connected by a lightlike geodesic segment γ , applying Lemma 15.2.1.1.6
we deduce that γ ⊂ S−(X) ∩ S+(X). Conversely let (y, t) ∈ S−(X) ∩ S+(X) so
that fX−(y) = fX+(y). There exist x and x′ in πD(X) such that

fX+(y) = fX(x)+ dS2(x, y) and fX−(y) = fX(x′)− dS2(x′, y)

Using that fX−(y) = fX+(y), the triangle inequality and the fact that fX is 1-Lipschitz
we deduce that

fX(x)− fX(x′) = dS2(x, x′) = dS2(x, y)+ dS2(y, x′) . (15.2.2)

Hence the points (x, fX(x)) and (x′, fX(x′)) are joined by a lightlike segment. If x, x′
are not antipodal points on ∂D there, there is a unique hemispherical geodesic η in
D joining x to x′, which must pass through y by (15.2.2), and which we may assume
parameterized by arclength. In this case the geodesic segment joining (x, fX(x)) to
(x′, fX(x′)) takes the form t 	→ (η(t), fX(x′)+ t), so it passes through (y, fX+(y)) =
(y, fX−(y)).

If x and x′ are antipodal, then there are infinitely many geodesics joining x to x′,
and we can pick one going through y. Then the same argument as above applies. !�
Remark 15.2.1.2.3 Given a point (y, t), the set of points (x, s) satisfying |s − t| <
dS2(x, y) coincides with the region of ÃdS2,1 which is connected to (y, t) by a
spacelike geodesic for the Anti-de Sitter metric. It coincides also with the region of
points connected to (y, t) by a spacelike geodesic for the conformal metric g

S2−dt2,
although in general spacelike geodesics for the two metrics do not coincide.

Now, since fX−(y) ≤ t ≤ fX+(y) is equivalent to the condition that |s − t| ≤
dS2(x, y) for all (x, s) ∈ X, the region

S+(X) ∪�(X) ∪ S−(X) = {(y, t) | fX−(y) ≤ t ≤ fX+(y)}

consists of points that are connected to any point of X by spacelike or lightlike
geodesics. Moreover �(X) consists of points connected to any point of X by a
spacelike geodesic.

We remark that in general �(X) could be empty. For instance if X is a global
graph then S+(X) = S−(X) = X and �(X) is empty.

Remark 15.2.1.2.4 Since any point of S±(X) is connected to X by a lightlike
geodesic, it follows by Lemma 15.2.1.1.6 that the intersection of any properly
embedded achronal surface containingX with S±(X) is a union of lightlike geodesic
segments with an endpoint in X. In particular any properly embedded acausal
surface containing X is contained in the region �(X).
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15.2.1.3 Achronal Meridians in ∂ ˜AdS2,1

We will be mainly interested in the invisible domains of achronal meridians � in
the boundary of ÃdS2,1, that are graphs of 1-Lipschitz functions f : ∂D → R. Let
us study more closely this case.

Lemma 15.2.1.3.1 Let � be an achronal meridian in ∂ÃdS2,1. Then either � is the
boundary of a lightlike plane, or S+(�)∩ S−(�) = �. In the latter case there is an
achronal properly embedded surface in �(�) whose boundary in ∂ÃdS2,1 is �.

Proof Let f : ∂D → R be the function whose graph is �. Recall from
Lemma 15.2.1.1.7 that osc(f) ≤ π . If there are points x0, x′0 such that f(x′0) =
f(x0)+π , then combining Lemmas 15.2.1.1.7 and 15.2.1.2.2 we deduce that � is the
boundary of a lightlike plane, and this lightlike plane coincides with S+(�)∩S−(�).

Assume now that the maximal oscillation of f is smaller than π , and let us show
that S+(�) ∩ S−(�) = �. By the assumption, if a lightlike geodesic connects
(x0, f(x0)) to (x′0, f(x′0)), then x0 and x′0 are not antipodal. But then x0, x′0 are
connected by a unique length-minimizing geodesic in D for the hemispherical
metric, which lies in ∂D. So the lightlike line connecting (x0, f(x0)) to (x′0, f(x′0))
is contained in ∂ÃdS2,1. By Lemma 15.2.1.2.2 we conclude that S−(�) and S+(�)

do not meet in ÃdS2,1 and therefore S+(�) ∩ S−(�) = �.
Finally, in this latter case the function F = (f�−+ f�+)/2 is 1-Lipschitz and defines

an achronal properly embedded surface contained in �(�), whose boundary is �.
!�

We remark that in fact for any achronal meridian there is a spacelike surface
whose boundary at infinity is �, see Remark 15.2.1.4.7 below.

Recall from Sect. 15.1.1.9 that, given a point x in ÃdS2,1, the Dirichlet domain
of x is the region Rx containing x and bounded by two spacelike planes “dual” to
x. Namely the planes, which by a small abuse we denote by P+

x and P−
x , consisting

of points at timelike distance π/2 in the future (resp. past) along timelike geodesics
with initial point x.

Proposition 15.2.1.3.2 Let � be an achronal meridian in ∂ÃdS2,1 different from
the boundary of a lightlike plane. Then

(1) A point x ∈ ÃdS2,1 lies in �(�) if and only if � is contained in the interior of
the Dirichlet region Rx .

(2) For any z ∈ �, let L−(z) and L+(z) be the two lightlike planes such that z is
the past vertex of L+(z) and the future vertex of L−(z). Then

�(�) =
⋂

z∈�
I+(L−(z)) ∩ I−(L+(z)) .

(3) The length of the intersection of �(�) with any timelike geodesic of ÃdS2,1 is
at most π . Moreover, there exists a timelike geodesic whose intersection with
�(�) has length π if and only if � is the boundary at infinity of a spacelike
plane.
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Proof By Remark 15.2.1.2.3 a point x lies in �(�) if and only if it is connected
to any point of � by a spacelike geodesic. The region of points connected to x by
a spacelike geodesic has boundary the lightcone from x, whose intersection with
∂ÃdS2,1 coincides with P±

x ∩ ∂ÃdS2,1. This proves the first statement.
Similarly the region bounded by L+(z) and L−(z) contains exactly points

connected to z by a spacelike geodesic. Using the characterization of �(�) as
above, we conclude the proof of the second statement.

For the third statement, if a timelike geodesic γ meets �(�) at a point x, then,
�(�) ⊂ Rx , so that the length of γ ∩�(�) is smaller than the length of γ ∩Rx . But
the latter is π . Assume there exists a geodesic γ such that the length of γ ∩ �(�)

is π . Up to applying an isometry of ÃdS2,1 we may assume that γ is vertical in the
Poincaré model of ÃdS2,1 and the mid-point of γ ∩�(�) is (0, 0). Thus (0,−π/2)
and (0, π/2) lie on S−(�) and S+(�) respectively. By Remark 15.2.1.2.3 points of
� are connected to (0,−π/2) by a spacelike or lightlike geodesic, hence s ≤ 0 for
all (ξ, s) ∈ �. Analogously using the point (0, π/2) we deduce that s ≥ 0 for all
(ξ, s) ∈ �, so that � = ∂D× {0}. !�

With similar arguments, we obtain that the invisible domain of an achronal
meridian which is not the boundary of a lightlike plane is always contained in a
Dirichlet region.

Proposition 15.2.1.3.3 Given an achronal meridian � in ∂ÃdS2,1 different from
the boundary of a lightlike plane, the invisible domain �(�) is contained in a
Dirichlet region. Moreover the closure of �(�) is contained in a Dirichlet region
unless � is the boundary of a spacelike plane.

Proof In fact let us set a+ = sup f�+ and a− = inf f�−, and consider the planes

Qa+ = {(x, t) | t = a+} and Qa− = {(x, t) | t = a−}

in the Poincaré model. Since clearly �(�) lies in the open region bounded by those
planes, it is sufficient to show that a+ − a− ≤ π . Assume by contradiction that
a+ − a− > π . Notice that Pa+ meets S+(�) at some point p+ = (x+,a+), and
Pa− meets S−(�) at some point p− = (x−,a−), where x+ and x− are points on D.
For ε = (a+−a−−π)/2 we can find x′+ and x′− in D such that p′+ = (x′+,a+− ε)

and p′− = (x′−,a− + ε) lie in �(�) (clearly if x± lies in D we can take x′± = x±).
As (a+− ε)− (a−− ε) = π , the geodesic segment γ joining p′+ and p′− is timelike
of length π . Its end-points are in I+(S−(�))∩ I−(S+(�)), so γ is entirely contained
in �(�). As end-points of γ are contained in �(�), γ can be extended within �(�)

but this contradicts the third point of Proposition 15.2.1.3.2.
The third point of Proposition 15.2.1.3.2 then shows that if a+ −a− = π then �

is the boundary of a spacelike plane. Hence apart from this case, one has a+−a− <

π , so the closure of �(�) is contained in a Dirichlet region. !�
Remark 15.2.1.3.4 When � is the boundary of a spacelike plane P , then there are
two points x− and x+, such that P = P+

x− = P−
x+ . The previous arguments show
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Fig. 15.7 The invisible
domain of the boundary of a
spacelike plane in the
Poincaré model for ÃdS2,1

that in this case �(�) is the union of all timelike lines joining x− to x+. In this case
S−(�) is the union of future directed lightlike geodesic rays emanating from x−,
whereas S+(�) is the union of future directed lightlike geodesic rays ending at x+.
See Fig. 15.7.

15.2.1.4 Domains of Dependence

We shall now introduce the notion of Cauchy surface and domains of dependence,
which is general in Lorentzian geometry, and develop some properties in ÃdS2,1.

Definition 15.2.1.4.1 Given an achronal subset X in a Lorentzian manifold (M, g),
the domain of dependence of X is the set

D(X) = {p ∈ M | every inextensible causal curve through p meets X} .

We say that X is a Cauchy surface of M if D(X) = M . A spacetime M is said
globally hyperbolic if it admits a Cauchy surface.

Globally hyperbolic spacetimes have some strong geometric properties, which
we summarize in the following theorem. We refer to [19, 23, 24, 68] for an extensive
treatment.
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Theorem 15.2.1.4.2 Let M be a globally hyperbolic spacetime. Then

(1) Any two Cauchy surfaces in M are diffeomorphic.
(2) There exists a submersion τ : M → R whose fibers are Cauchy surfaces.
(3) M is diffeomorphic to � × R, where � is any Cauchy surface in M .

Remark 15.2.1.4.3 The spacetime ÃdS2,1 is not globally hyperbolic. In fact if X is
achronal, it is contained in the graph of a 1-Lipschitz function f : (D ∪ ∂D, gS2) →
R. If t0 > sup f and ξ ∈ ∂D, then any lightlike ray with past end-point (ξ, t0) does
not intersect X.

Remark 15.2.1.4.4 By the usual invariance of causality notions under conformal
change of metrics, causal paths in ÃdS2,1 are the graphs of 1-Lipschitz functions
from (intervals in) R to D with respect to the hemispherical metric in the image.
Hence an inextensible causal curve in ÃdS2,1 is either the graph of a global 1-
Lipschitz function from R, or it is defined on a proper interval and has endpoint(s)
in ∂ÃdS2,1.

Lemma 15.2.1.4.5 Given an achronal meridian � in ∂ÃdS2,1, any Cauchy surface
in �(�) is properly embedded with boundary at infinity �.

Proof Let S be a Cauchy surface in �(�). For every x ∈ D, the vertical line through
x in the Poincaré model meets �(�), and its intersection with �(�) must meet S
by definition of Cauchy surface. This shows that S is a graph over D, proving that S
is properly embedded, and clearly ∂S = �. !�
Proposition 15.2.1.4.6 Let � be an achronal meridian in ∂ÃdS2,1 different from
the boundary of a lightlike plane. Let S be a properly embedded achronal surface in
�(�). Then D(S) = �(�). In particular �(�) is a globally hyperbolic spacetime.

Proof Let x be any point in �(�) and take any inextensible causal path through
x. A priori its future endpoint might be either in S+(�) or in �, but by definition
of �(�), x cannot be connected by a causal path to �, hence the latter case is
excluded. The same argument applies to show that the past endpoint is in S−(�).
Since the inextendible causal path meets both S+(�) and S−(�), it must meet S by
Lemma 15.2.1.4.5, hence x ∈ D(S).

Conversely, if x is not in �(�), then one can find a causal path joining x to �,
which is necessarily inextensible. Hence x is not in D(S). This concludes the proof.

!�
Remark 15.2.1.4.7 It follows from Theorem 15.2.1.4.2 and Proposition 15.2.1.4.6
that � is the boundary of a spacelike surface in �(�), namely a Cauchy surface for
�(�). By Lemma 15.2.1.4.5, this surface is properly embedded, hence the graph
of a global 1-Lipschitz function. This shows that any proper achronal meridian � is
the boundary at infinity of a properly embedded spacelike surface, which improves
the statement of Lemma 15.2.1.3.1.
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The most remarkable consequence of Proposition 15.2.1.4.6 is that the domain
of dependence of a properly embedded surface in ÃdS2,1 only depends on the
boundary at infinity. More precisely we have:

Corollary 15.2.1.4.8 If S and S′ are properly embedded spacelike surfaces in
ÃdS2,1, then D(S) = D(S′) if and only if ∂S = ∂S′.

15.2.1.5 Properly Achronal Sets in AdS2,1

It will be important for the applications of this theory to consider the model AdS2,1.
As AdS2,1 contains closed timelike lines, it does not contain any achronal subset.
However if P is a spacelike plane in AdS2,1, then AdS2,1\P does not contain closed
causal curves. Indeed it is simply connected, so it admits an isometric embedding
into ÃdS2,1, given by a section of the covering map ÃdS2,1 → AdS2,1, and whose
image is a Dirichlet region.

Definition 15.2.1.5.1 A subset X of AdS2,1 ∪ ∂AdS2,1 is a proper achronal subset
if there exists a spacelike plane P such that X is contained in AdS2,1 ∪ ∂AdS2,1 \P
and is achronal as a subset of AdS2,1 ∪ ∂AdS2,1 \ P .

Notice that if X is a proper achronal subset of AdS2,1 ∪ ∂AdS2,1, then it admits
a section to ÃdS2,1 ∪ ∂ÃdS2,1 and the image is achronal in ÃdS2,1 ∪ ∂ÃdS2,1.
Conversely if X̃ is an achronal subset of ÃdS2,1 different from a lightlike plane,
then it is contained in a Dirichlet region, as a consequence of Lemma 15.2.1.1.7 and
the fact that any achronal subset of ÃdS2,1 is contained in a properly embedded one.
As Dirichlet regions are projected in AdS2,1 to the complement of a spacelike plane,
the image of X̃ to AdS2,1 is a proper achronal subset.

Let us provide an important example which will be extensively used later.

Lemma 15.2.1.5.2 Let ϕ : RP1 → RP1 be an orientation preserving homeomor-
phism. Then the graph of ϕ, say �ϕ ⊂ RP1 ×RP1 ∼= ∂AdS2,1 is a proper achronal
subset and any lift �̃ϕ is an achronal meridian in ∂ÃdS2,1.

Proof First let us prove that �ϕ is locally achronal. In fact if U and V are
intervals around x and ϕ(x) and θ1 and θ2 are positive coordinates on U and V

respectively, then timelike curves γ (t) = (γ1(t), γ2(t)) in U × V are characterized
by the property that θ ′1(t)θ ′2(t) < 0, where we have put θi(t) := θi(γi(t)).
(See Proposition 15.1.2.2.3 and the following paragraph.) In particular points on
�ϕ∩U×V are not related by a timelike curve contained in U×V , by the assumption
that ϕ is orientation-preserving.

Let us prove that there exists a spacelike plane P such that P ∩ �ϕ = ∅. Let
us consider the identification RP1 = R ∪ {∞}, and take ϕ0 ∈ PSL(2,R) so that
ϕ−1

0 ϕ(0) = 1, ϕ−1
0 ϕ(1) = ∞, and ϕ−1

0 ϕ(∞) = 0. Then notice that ϕ−1
0 ϕ sends

the intervals (∞, 0), (0, 1) and (1,∞) respectively to (0, 1), (1,∞), (∞, 0). Thus
ϕ−1

0 ϕ has no fixed points, that is, the graph of ϕ does not meet the graph of ϕ0,
which is the asymptotic boundary of a spacelike plane Pϕ0 .
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Let us consider now a lift of �ϕ to the boundary of ÃdS2,1, say �̃ϕ . As �ϕ

is contained in a simply connected region of AdS2,1 ∪ ∂AdS2,1, �̃ϕ is a closed
locally achronal curve contained in ∂ÃdS2,1. In particular the projection �̃ϕ → ∂D

is locally injective. As �̃ϕ is compact, the map is a covering. On the other hand,
since �ϕ is homotopic to the boundary of a plane in ∂AdS2,1, it turns out that �̃ϕ is
homotopic to ∂D in ∂ÃdS2,1 so that the projection �̃ϕ → ∂D is bijective. It follows
that �̃ϕ is achronal, and the conclusion follows. !�

All the results we have proven for achronal sets in ÃdS2,1 can be rephrased
for proper achronal sets of AdS2,1. For instance any proper achronal set X can be
extended to a properly embedded proper achronal surface and there are two extremal
extensions, as in Lemma 15.2.1.2.2.

We will now focus on proper achronal meridians of ∂AdS2,1, which are proper
achronal embedded circles of the boundary of AdS2,1. They lift to achronal
meridians of ∂ÃdS2,1 different from the boundary of a lightlike plane. Indeed the
boundary of a lightlike plane is not contained in a Dirichlet region. Conversely
any achronal meridian of ∂ÃdS2,1 different from the boundary of a lightlike plane
projects to an achronal meridian of AdS2,1.

Proposition 15.2.1.5.3 Let � be a proper achronal meridian in ∂AdS2,1 and
denote by �̃ any lift to the universal covering. Then the universal covering map
of AdS2,1 maps �(�̃) injectively to the domain

�(�) := {x ∈ AdS2,1 |Px ∩� = ∅} .

Proof If p : ÃdS2,1 → AdS2,1 denotes the covering map, by Proposition 15.2.1.3.3
the invisible domain �(�̃) is contained in a Dirichlet region Rx̃ , hence the
restriction of p to �(�̃) is injective and its image is contained in p(Rx̃), namely
the complement in AdS2,1 ∪ ∂AdS2,1 of the spacelike plane Px dual to x = p(x̃).
Moreover by the first point of Proposition 15.2.1.3.2, one can actually pick for x̃

any point in �(�̃), which shows that the image p(�(�̃)) is contained in �(�) :=
{x ∈ AdS2,1 |Px ∩� = ∅}.

For the converse inclusion, let x ∈ AdS2,1 be a point whose dual plane Px does
not meet �. The preimage p−1(Px) is a countable disjoint union of planes which
disconnect ÃdS2,1 ∪ ∂ÃdS2,1 in a disjoint union of Dirichlet regions centered at
preimages of x. The lift �̃ is contained in exactly one such region, say Rx̃ . By the
first point of Proposition 15.2.1.3.2 x̃ ∈ �(�̃) which implies that x = p(x̃) lies in
p(�(�̃)). !�

When � is the graph of an orientation-preserving homeomorphism ϕ : RP 1 →
RP 1, there is a fairly simple characterization of �(�) using the identification
AdS2,1 = PSL(2,R).

Corollary 15.2.1.5.4 Let ϕ be an orientation-preserving homeomorphism. Then
x ∈ AdS2,1 lies in �(�ϕ) if and only if x◦ϕ has no fixed point as a homeomorphism
of RP 1.
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Proof It is easy to check that the dual plane of x, as an element of PSL(2,R),
meets ∂AdS2,1 along the graph of x−1, say �x−1 . Indeed this is easily checked if
x = id is the identity by the description of P1 we gave in Sect. 15.1.2.5 together with
Lemma 15.1.2.2.2. The general case then follows by applying left multiplication by
x itself, which maps the graph of the identity to the graph of x−1.

With this remark in hand, we have that x ∈ �(�ϕ) if and only if �x−1 ∩�ϕ = ∅.
This condition is equivalent to requiring that x ◦ ϕ has no fixed point on RP 1. !�
Proposition 15.2.1.5.5 Let σ : S → AdS2,1 be a proper spacelike immersion.
Then

• σ is a proper embedding.
• σ lifts to a proper embedding σ̃ : S → ÃdS2,1.
• The boundary at infinity of σ(S) is a proper achronal meridian � in ∂AdS2,1.
• D(σ (S)) = �(�).

Proof Denote by Ŝ the covering of S admitting a lift σ̂ : Ŝ → H2,1. In general
either Ŝ = S or it is a 2 : 1 covering. Since the covering is finite, σ̂ is a proper
immersion.

Let us consider the identification π : H2 × S1 → H2,1 defined in (15.1.8). The
induced projection pr : H2,1 → H2 is a proper fibration with timelike fibers. In
particular σ̂ is trasverse to the fibers of pr. It follows that pr ◦ σ : Ŝ → H2 is a
proper local diffeomorphism, hence a covering map. Since H2 is simply connected,
we deduce that the projection pr ◦ σ : Ŝ → H2 is a homeomorphism, σ̂ is an
embedding, and Ŝ is homeomorphic to the plane.

In particular we can lift σ̂ to the universal covering, say σ̃ : Ŝ → ÃdS2,1, which
is still a proper spacelike embedding Ŝ → ÃdS2,1. By Lemmas 15.2.1.1.3 and
15.2.1.1.5 we know that the image is an achronal surface whose boundary is an
achronal meridian, and is contained in a Dirichlet domain by Lemma 15.2.1.1.7. It
follows that σ̃ (Ŝ) is contained in a Dirichlet domain of the covering map H2,1 →
AdS2,1, on which we know that the covering map is injective. In particular σ is also
injective, hence Ŝ = S and this concludes the proof. !�
Remark 15.2.1.5.6 In the proof of Proposition 15.2.1.5.5, once we proved that Ŝ is
homeomorphic to R2, then we could have inferred immediately that Ŝ = S since it is
known, although non-trivial, that Z/2Z cannot act freely onR2 by diffeomorphisms.

We therefore have the following analogue version of Corollary 15.2.1.4.8 in
AdS2,1.

Corollary 15.2.1.5.7 If S and S′ are properly embedded spacelike surfaces in
AdS2,1, then D(S) = D(S′) if and only if ∂S = ∂S′.

15.2.1.6 Convexity Notions

Let � be a proper achronal meridian in ∂AdS2,1. In this section we will investigate
the convexity properties of �(�).
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Let us recall that X ⊂ RP3 is convex if it is contained in an affine chart and it is
convex in the affine chart. This notion does not depend on the affine chart containing
X. It is a proper convex set if it is moreover compactly contained in an affine chart.

Proposition 15.2.1.6.1 Given a proper achronal meridian � in ∂AdS2,1, �(�) is
convex. If � is different from the boundary of a spacelike plane then �(�) is a
proper convex set.

Proof By Proposition 15.2.1.3.3 there exists a spacelike plane P such that �(�) is
contained in the affine chart V of RP3 obtained by removing the projective plane
containing P . The domain AdS2,1 ∩ V = AdS2,1 \ P is isometric to a Dirichlet
region R of ÃdS2,1, by an isometry sending � to a lifting �̃ and �(�) to �(�̃). By
the second point of Proposition 15.2.1.3.2 we have

�(�̃) =
⋂

z̃∈�̃
I+(L−(z̃)) ∩ I−(L+(z̃)) .

Now if z̃ projects to z, then the images of L−(z̃) and L+(z̃) in V are the two
components of L(z)∩AdS2,1, where L(z) is the affine tangent plane of ∂AdS2,1∩V

at z. It turns out that the image of the region I+(L−(z̃)) ∩ I−(L+(z̃)) is the
intersection of AdS2,1 with the open half-space U(z) bounded by L(z) and whose
closure contains �. This shows:

�(�) = AdS2,1 ∩
⋂

z∈�
U(z) .

We now claim that actually

�(�) =
⋂

z∈�
U(z) ⊂ AdS2,1 ,

which will conclude the proof. As
⋂

z∈� U(z) is connected and meets AdS2,1, to
show that it is contained in AdS2,1 it is sufficient to show that it does not meet the
boundary of AdS2,1. For any w ∈ ∂AdS2,1 let us consider the leaf of the left ruling
through w, which intersects � at a point z. It turns out that L(z) contains the leaf of
the left ruling through z, hence w /∈ U(z).

Now, assume that � is not the boundary of a spacelike plane. Then by Proposi-
tion 15.2.1.3.3 on the universal covering the compact set �(�̃)∪S+(�̃)∪S−(�̃) is
contained in a Dirichlet domain, so its image is a compact set contained in an affine
chart. !�

A a consequence of the previous argument is that � is contained in an affine
chart whose complement in RP3 is a projective plane containing a spacelike plane
of AdS2,1. (Indeed � is contained in the closure of �(�), which is contained in
an affine chart, unless � is the boundary of a spacelike plane, in which case the
statement is trivial.) Hence it makes sense to give the following definition:
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Definition 15.2.1.6.2 Given a proper achronal meridian � in ∂AdS2,1, we define
C(�) to be the convex hull of �, which can be taken in an affine chart containing �.

Observe that we have proved implicitly that if � is an achronal meridian in
∂AdS2,1, then C(�) is contained in AdS2,1, which is not obvious as AdS2,1 is not
convex in RP3.

Remark 15.2.1.6.3 Since �(�) is convex, C(�) is contained in �(�). Moreover if
K is any convex set contained in AdS2,1∪ ∂AdS2,1 and containing �, then C(�) ⊂
K ⊂ �(�).

To see this, let V be an affine chart such that � ⊂ V is obtained by removing a
spacelike projective plane. Now, if z ∈ � then for any x ∈ AdS2,1 ∩ V the segment
connecting z and x in V is contained in AdS2,1 if and only if x ∈ U(z), the half-
space containing � and bounded by the tangent space of � at z, as defined in the
proof of Proposition 15.2.1.6.1.

Hence by the characterization of �(�) as the intersection of the U(z) given in
Proposition 15.2.1.6.1, if x is not in �(�), then it cannot be in K . This shows that
�(�) is the biggest convex subset of AdS2,1 containing �.

Assume now that � is not the boundary of a spacelike plane. Then the topological
frontiers in RP3 of �(�) and of C(�) are Lipschitz surfaces homeomorphic to
a sphere. This sphere is disconnected by � into two regions, homeomorphic to
disks, which form the boundary of �(�) and of C(�) in AdS2,1. For �(�) those
components are the image of S±(�̃) and will be denoted by S±(�).

Let us now focus on C(�). Let C(�̃) be a lifting of C(�), which is contained in
a Dirichlet region, say R. Let P be a support plane for C(�), which is necessarily
either spacelike or lightlike, and let P̃ be its lift which touches C(�̃). Hence either
�̃ is in I+(P̃ ) ∪ P̃ or in I−(P̃ ) ∪ P̃ . This permits to distinguish the components
of ∂C(�) \ �: the past boundary component ∂−C(�) has the property that �̃ is
contained in I+(P̃ )∪P̃ for all support planes which touch ∂−C(�), and analogously
we define the future boundary component ∂+C(�) by replacing I+ with I−. The
following proposition explains that the boundary components ∂±C(�) and S±(�)

have a kind of duality.

Proposition 15.2.1.6.4 Let � be a proper achronal meridian in AdS2,1, x ∈
AdS2,1 and Px the dual plane. Then

• x ∈ �(�) if and only if Px ∩ C(�) = ∅.
• x ∈ C(�) if and only if Px ∩�(�) = ∅.

In particular if � is not the boundary of a spacelike plane, then

• x ∈ ∂±�(�) if and only if Px is a support plane for ∂∓C(�).
• x ∈ ∂±C(�) if and only if Px is a support plane for S∓(�).

Proof From Proposition 15.2.1.5.3, points in �(�) are dual to planes disjoint from
�, which are precisely those which do not intersect C(�), by the definition of
convex hull. For the second statement, fix x and observe that z ∈ Px if and only
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if x ∈ Pz. Hence there exists a point z in the intersection Px ∩ �(�) if and only if
x is in a plane Pz which is disjoint from �, namely when x is not in C(�).

As a consequence ∂C(�) consists of points dual to support planes of �(�). Take
a support plane Px of S+(�) (hence dual to a point x) which meets S+(�) at z. If
z̃ denotes the corresponding point on S+(�̃), then �̃ ⊂ I+(P−

z̃
), and P−

z̃
∩ �̃ �= ∅.

Thus Pz, which is the projection of P−
z̃

, is a support plane of C(�) touching the
past boundary. As x ∈ Pz, we conclude that x lies in the past boundary. Similarly
points of the future boundary of C(�) correspond to support planes for S−(�). !�
Remark 15.2.1.6.5 It may happen that a boundary component of C(�) meets the
boundary of �(�). This exactly happens when the curve � contains a sawtooth,
namely two consecutive lightlike segments in ∂AdS2,1 one past directed and the
other future-directed. In this case the lightlike plane L(z) tangent to ∂AdS2,1 at the
vertex z of the sawtooth contains the two consecutive lightlike segments of �, while
the convex hull of � contains a lightlike triangle contained in L(z). This is however
not contained in �(�). If the curve � does not contain any sawtooth, then C(�)\�
is entirely contained in �(�).

The fundamental example is given in Fig. 15.8, where the yellow region repre-
sents at the same time the convex hull of the proper achronal meridian � in ∂AdS2,1

composed of four lightlike segments, two past-directed and two future-directed, and
the closure of �(�). See also Remark 15.3.2.1.3 and Fig. 15.14 below.

Proposition 15.2.1.6.6 The past and future boundary components of C(�) are
achronal surfaces.

Proof Let us give the proof for ∂+C(�). Take x, y ∈ ∂+C(�) and consider the
segment joining x to y in an affine chart containing �. If this segment was timelike
then the dual planes Px and Py would be disjoint. Then up to switching x to y we
may assume that, in the universal cover, P 1

x̃
⊂ I+(P 1

ỹ
), where x̃ and ỹ are the lifting

of x and y in the same Dirichlet region mapping to the fixed affine chart. But then
S+(�̃) would be contained in I−(P 1

ỹ
) and could not meet P 1

x̃
, thus contradicting

Proposition 15.2.1.6.4. !�
Remark 15.2.1.6.7 The past and future boundary components of C(�) are not
smooth, but only Lipschitz surfaces. Indeed the complement of � and of the
lightlike triangles (as described in Remark 15.2.1.6.5) is locally connected by
acausal Lipschitz arcs, and one can define a pseudo-distance, that in fact turns out
to be a distance and makes C(�) locally isometric to the hyperbolic plane.

The situation is very similar to the counterpart in hyperbolic three-space. The
intersection of a spacelike support plane with C(�) is either a geodesic or a straight
convex subset of H

2, i.e. a subset bounded by geodesics. Thus ∂C(�) \ � is
intrinsically a hyperbolic surface pleated along a measured geodesic lamination.
A remarkable difference with respect to the hyperbolic case is that in general those
surfaces may be non complete, but they are always isometric to straight convex
subsets of H2. See [32] for more details.
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15.2.2 Globally Hyperbolic Three-Manifolds

The aim of this section is to study maximal globally hyperbolic (MGH) Anti-de
Sitter spacetimes containing a compact Cauchy surface of genus r (we briefly say
that the globally hyperbolic spacetimes have genus r). We first prove that there are
no examples for r = 0. We will then briefly consider the torus case, and finally we
will deepen the study for r ≥ 2, first by introducing examples, and then by giving a
complete classification.

15.2.2.1 General Facts

We begin by some general results which will be used both in the genus one and in
the higher genus case. Recall that an immersion σ : S → AdS2,1 is spacelike if the
pull-back metric (also called first fundamental form) is a Riemannian metric. We
will provide more details on the theory of spacelike immersions in Sect. 15.2.3.1
below, which can be read independently.

Lemma 15.2.2.1.1 Let σ : S → AdS2,1 be a spacelike immersion. If σ ∗(gAdS2,1) is
a complete Riemannian metric, then σ is a proper embedding and S is diffeomorphic
to R2.

Proof By Proposition 15.2.1.5.5 it is sufficient to prove that σ is a proper
immersion. In the notation of Proposition 15.2.1.5.5, consider a lift σ̂ : Ŝ → H2,1.
It is clearly sufficient to prove that σ̂ is proper. We will prove that if γ : [0, 1) → Ŝ

is a path such that the limit limt→1 σ̂ (γ (t)) exists, then also limt→1 γ (t) exists.
Using the expression (15.1.10) for the metric on H2,1 under the identification

with H2 × S1 given by (15.1.8), we see that the length of γ for the pull-back
metric is smaller that the length of the projection of γ to the H2 factor, with
respect to the hyperbolic metric on H2. The latter hyperbolic length is finite by
the assumption, hence γ has finite length for the pull-back metric. The assumption
on the completeness of the pull-back metric implies the existence of the limit point
for γ (t). !�

As an immediate consequence, there can be no globally hyperbolic AdS space-
time whose Cauchy surfaces are diffeomorphic to the sphere. In fact, supposing such
a spacetime exists and � is a Cauchy surface, the developing map restricted to �

would be a spacelike immersion, and the pull-back metric would be complete by
compactness. But this contradicts Lemma 15.2.2.1.1. Hence we proved:

Corollary 15.2.2.1.2 There exists no globally hyperbolic Anti-de Sitter spacetime
of genus zero.

The following is a fundamental result on the structure of globally hyperbolic AdS
spacetimes.
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Proposition 15.2.2.1.3 Let M be a globally hyperbolic Anti-de Sitter spacetime of
genus r ≥ 1. Then

(1) The developing map dev : M̃ → AdS2,1 is injective.
(2) If � is a Cauchy surface of M , then the image of dev is contained in �(�),

where � is the boundary at infinity of dev(�̃).
(3) If ρ : π1(M) → Isom(AdS2,1) is the holonomy representation, ρ(π1(M))

acts freely and properly discontinuously on �(�), and �(�)/ρ(π1(M)) is a
globally hyperbolic spacetime containing M .

Proof Let d̃ev : M̃ → ÃdS2,1 be a lift of dev to the universal cover. By
Theorem 15.2.1.4.2, the spacetime M admits a foliation by smooth spacelike
surfaces (�t)t∈R of genus r ≥ 1, such that �t ⊂ I+(�t ′) for t > t ′. Let �̃t the
lift of the foliation on M̃. Since �t is closed, the induced metric on �t is complete,
and so is the induced metric on �̃t . As d̃ev is a local isometry, we deduce by
Lemma 15.2.2.1.1 that the restriction of d̃ev to �̃t is a proper embedding.

Assume now by contradiction that d̃ev(�̃t ) ∩ d̃ev(�̃t ′) �= ∅ for some t ≥ t ′.
Then there is a point x ∈ �̃t such that d̃ev(x) ∈ dev(�̃t ′). By the assumption
x is connected to �̃t ′ by a timelike arc η in M̃ . Then d̃ev(η) is a timelike arc in
ÃdS2,1 with end-points in d̃ev(�̃t ′) and this contradicts the achronality of d̃ev(�̃t ′).
This shows that d̃ev is injective, and moreover we conclude that d̃ev(�̃t ) is a
Cauchy surface of d̃ev(M̃). It follows using Proposition 15.2.1.5.5 that d̃ev(M̃) ⊂
D(d̃ev(�̃t )) = �(�̃), where �̃ is the boundary at infinity of d̃ev(�̃t ), which proves
the second point.

Now, the map d̃ev is ρ̃-equivariant, for a representation ρ̃ : π1(M) →
Isom(ÃdS2,1) which is a lift of the holonomy of M . As d̃ev(�̃t ) is ρ̃-invariant,
then so are �̃ and �(�̃). We shall prove that the action of π1(M) on �(�̃) given by
ρ̃ is proper. This will also show that the action is free, since π1(M) is isomorphic to
π1(�r) and therefore has no torsion.

For this purpose, let us notice that if K is relatively compact in �(�̃) then

XK := (I+(K) ∪ I−(K)) ∩ d̃ev(�̃t )

is relatively compact as well. As the action of π1(M) on �̃t , and thus on d̃ev(�̃t ), is
proper and XγK = γ (XK), we deduce that the set of γ such that XγK ∩XK �= ∅ is
finite. On the other hand if K∩γK �= ∅ then XK∩XγK �= ∅. We thus conclude that
the action is proper. By applying the path lifting property, one sees that the quotient
d̃ev(�̃t )/π1(M) is a Cauchy surface of �(�̃)/π1(M), which is therefore globally
hyperbolic.

The proof of the statement is then accomplished since by Proposition 15.2.1.5.3
the restriction of the covering map ÃdS2,1 → AdS2,1 to �(�̃) ∪� is injective. !�

A remarkable difference between Lorentzian and Riemannian geometry is that
in Lorentzian geometry geodesic completeness is a very strong assumption, and
in fact interesting classification results are obtained without such an assumption.
However, it is necessary to impose some maximality condition to compensate for
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Fig. 15.8 The lightlike
tetrahedron T: two of its
edges are spacelike lines of
AdS2,1, dual to one another
(on the top and bottom), and
the other four are lightlike
segments contained in
∂AdS2,1

non-completeness. Among several approaches, one of the most common is the
classification of a maximal globally hyperbolic spacetimes. We give a definition
here in our special setting, although one can give more general definitions in the
larger class of Einstein spacetimes.

Definition 15.2.2.1.4 A globally hyperbolic Anti-de Sitter manifold (M, g) is
maximal if any isometric embedding of (M, g) into a globally hyperbolic Anti-
de Sitter manifold (M ′, g′), which sends a Cauchy surface of (M, g) to a Cauchy
surface of (M ′, g′), is surjective.

The following corollary is a direct consequence of Proposition 15.2.2.1.3 and
Definition 15.2.2.1.4.

Corollary 15.2.2.1.5 An Anti de-Sitter globally hyperbolic spacetime M is max-
imal if and only if M̃ is isometric to the invisible domain of a proper achronal
meridian in AdS2,1.

15.2.2.2 Genus r = 1: Examples

Our first objective is the classification of MGH AdS spacetimes of genus 1. This
case has not been considered in the paper of Mess. However it has been studied in
the physics literature, for instance in [59] and [36]. We start by constructing a family
of examples, which will later be shown to be all examples of genus 1 up to isometry,
thus providing a full classification.

Recall from Definition 15.1.2.5.4 the construction of dual spacelike lines, as in
Fig. 15.8. In the PSL(2,R) model, up to isometry the two dual spacelike lines L and
L′ can be taken of the form L = L�,� where � is an oriented spacelike geodesic
in H2, and L′ = L�,�′ where �′ is � endowed with the opposite orientation. This
means that L consists of the hyperbolic isometries of H2 which translate along the
geodesic �, while L′ consists of order-two elliptic elements with fixed point in �.
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Fig. 15.9 A schematic picture of the two curves of Lemma 15.2.2.2.1 in the torus RP1 × RP1,
represented as a square with sides identified by translations

By Proposition 15.1.2.5.3, the endpoints of L are of the form (x, y) and (y, x) in
∂AdS2,1 ∼= RP1 × RP1, for x and y the endpoints of � in RP1, while the endpoints
of L′ are of the form (x, x) and (y, y).

The following lemma exhibits proper achronal meridians in ∂AdS2,1 containing
these four points, each of which, together with the two dual linesL andL′, constitute
the 1-skeleton of the affine tetrahedron as in Fig. 15.8.

Lemma 15.2.2.2.1 Let x, y be different points in RP1. Then there exist exactly
two proper achronal meridians in ∂AdS2,1 containing the points (x, x), (y, x),

(y, y), (x, y).

Proof Since (x, x) and (y, x) are in the same leaf λx of left ruling of ∂AdS2,1 ∼=
RP1 × RP1, a proper achronal meridian must necessily contain one of the two
segments connecting (x, x) and (y, x) in λx , thus giving two possible choices. Once
this choice is made, the same argument applies for the leaf μy of the right ruling
containing (y, x) and (y, y), but there is only one possible choice so as to give,
concatenated with the previously chosen segment in λx , a locally achronal curve.

More precisely, if we choose an affine chart which contains the four points (x, x),
(y, x), (y, y) and (x, y) and assume the segment chosen in the first step from (x, x)

to (y, x) is future-directed in this affine chart, then the segment connecting (y, x) to
(y, y) must necessarily be past directed. One then iterates this argument and obtains
precisely two proper achronal meridians: if we assume for simplicity that x = 0
and y = ∞ in RP1 ∼= R ∪ {∞}, the first is the concatenation of [0,∞] × {0},
{∞} × [0,∞], [∞, 0] × {∞} and {0} × [∞, 0]; the second the concatenation of
[∞, 0] × {0}, {∞} × [∞, 0], [0,∞]× {∞} and {0} × [0,∞]. See Fig. 15.9. !�

Let us call �1 and �2 the two proper achronal meridians described in
Lemma 15.2.2.2.1. Their lifts on the universal cover ÃdS2,1 are easily described.
For this purpose, let us fix x, y ∈ RP1 and let us choose a lift L̃ to ÃdS2,1 of
the spacelike geodesic in AdS2,1 connecting p1 = (x, y) and p2 = (y, x). Say
p̃1 = (ξ1, t1) and p̃2 = (ξ2, t2) are the endpoints of L̃ in the boundary ∂D × R of
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Fig. 15.10 The invisible
domains of the two achronal
meridians �̃1 and �̃2
composed of four lightlike
segments in ÃdS2,1. The
1-skeleton of the two
tetrahedra contains four
lightlike segments together
with two dual spacelike lines.
The left and right tetrahedra
actually differ by rotating on
D and translating vertically

the Poincaré model of ÃdS2,1. (Up to isometries, we could in fact assume that ξ1
and ξ2 are antipodal on S

1 and t1 = t2 = 0.)
Then �̃1 and �̃2 can be expressed as the graphs of f�i : ∂D→ R defined by:

f�1(ξ) = min{d
S2(ξ, ξ1)+ t1, dS2(ξ, ξ2)+ t2} , (15.2.3)

and

f�2(ξ) = max{t1 − d
S2(ξ, ξ1), t2 − d

S2(ξ, ξ2)} . (15.2.4)

Indeed, for f�1 , since (ξ1, t1) and (ξ2, t2) are connected by a spacelike line,
f�1(ξ1) = t1 and f�1(ξ2) = t2; moreover there are two points q̃1 = (η1, s1) and
q̃2 = (η2, s2) at which the expressions dS2(ξ, ξ1)+ t1 and dS2(ξ, ξ2)+ t2 are equal,
which are the endpoints of one lift of the dual line L′. Hence the graph of f�1 consists
of four lightlike segments, two future-directed and two past-directed. By the way,
observe that f�1 could be written by the equivalent expression:

f�1(ξ) = max{s1 − dS2(ξ, η1), s2 − dS2(ξ, η2)} . (15.2.5)

This analysis turns out to be extremely useful for the description of the invisible
domain and the convex hull of �1 and �2. These are pictured in Fig. 15.10 below.

Proposition 15.2.2.2.2 Let x, y be distinct points in RP1 and let �0 be a proper
achronal meridian in ∂AdS2,1 containing the points (x, x), (y, x), (y, y), (x, y).
Then �(�0) = C(�0) is a tetrahedron bounded by four lightlike planes.

Proof Let us first consider the picture in the universal cover ÃdS2,1, and consider
the lift �̃1 defined as the graph of f�1 as in Eq. (15.2.3). As a simple consequence of
the triangular inequality for the hemispherical metric, one sees that the functions fX−
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and fX+ we introduced in Sect. 15.2.1.2 and Lemma 15.2.1.2.2 (where now X = �̃1)
are given themselves by the expressions of Eqs. (15.2.3) and (15.2.5) respectively,
except that the point ξ is now allowed to vary in D ∪ ∂D.

Using the description of lightlike planes we gave in Sect. 15.1.1.8, see also
Fig. 15.4, the surfaces S±(�̃1) (which we recall are the graph of fX±) consist of two
lightlike half-planes meeting in a spacelike geodesic: the geodesic with endpoints q̃1
and q̃2 for S+(�̃1); the geodesic with endpoints p̃1 and p̃2 for S−(�̃1). Projecting
down to AdS2,1, the same description holds for S±(�0). Hence �(�0) is the interior
of a tetrahedron with lightlike faces. Its closure, which is the tetrahedron itself,
clearly coincides with the convex hull of �0 in an affine chart, which is also the
convex hull of L ∪ L′. !�
Remark 15.2.2.2.3 The region �(�0) is, up to isometries, insensitive to the choice
of �0 as in Lemma 15.2.2.2.1. Namely, there is an orientation-preserving, time-
preserving isometry of AdS2,1 which maps one proper achronal meridian as in
Lemma 15.2.2.2.1 to the other. The isometry is achieved simply by mapping the
spacelike line L to its dual L′, and therefore L′ is mapped to L.

In the universal cover ÃdS2,1, this isometry is easily expressed if we normalize L̃
so that its endpoints in ∂D× R are of the form p̃1 = (ξ1, t1) and p̃2 = (ξ2, t2) with
t1 = t2 and ξ1, ξ2 antipodal points in the sphere. Then the isometry we are looking
for is induced by the isometry of ÃdS2,1 which acts as a rotation of angle π/2 on D

and a vertical translation of π/2 on R. See again Fig. 15.10.

In what follows, we will refer to the region �(�0), which is uniquely determined
up to isometries, as the lightlike tetrahedron T. To give a concrete description
of the MGH spacetimes of genus one, the following geometric description of the
tetrahedron, from an intrinsic point of view, will be useful.

Lemma 15.2.2.2.4 The lightlike tetrahedron T is isometric to R
2 × (0, π/2)

endowed with the Lorentzian metric

cos2(z)dx2 + sin2(z)dy2 − dz2 . (15.2.6)

Proof The easiest way to perform this computation is in the quadric modelH2,1. Let
us consider two lifts L̂ and L̂′ of the spacelike dual geodesics L and L′ of AdS2,1. It
follows from the discussion of the duality in Sect. 15.1.1.9 that points in L′ are the
midpoints of the closed timelike geodesics leaving from L orthogonally. Hence in
the double cover we have a timelike geodesic of length π/2 connecting every point
of L̂ to every point of L̂′. Clearly these geodesics, projected to AdS2,1, foliate the
interior of the convex hull of �0, namely the lightlike tetrahedron T.

Let γ : R → L̂ and η : R → L̂ be arclength parameterizations of the chosen
spacelike geodesics in H2,1. By virtue of the above description, and using the
expression (15.1.13) for the geodesics in the quadric model, we have the following
diffeomorphism � between R2 × (0, π/2) and a lift of T in H2,1:

�(x, y, z) = cos(z)γ (x)+ sin(z)η(y) .
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Fig. 15.11 The foliation of the lightlike tetrahedron T = �(�0) by flat CMC surfaces with
constant values of z, in the coordinate system �. On the right the maximal surface corresponding
to z = π/4 is highlighted

A direct computation, using that γ (x) and η(y) are orthogonal in R2,2 for every
x, y, shows that the pull-back of the ambient metric 〈, ·, ·〉2,2 of H2,1 equals the
metric (15.2.6). !�

It is worth remarking that the surfaces given by z = c under the diffeo-
morphism � are intrinsically flat and complete, hence properly embedded by
Lemma 15.2.2.1.1. They are Cauchy surfaces for T by Proposition 15.2.1.5.5. See
Fig. 15.11.

To conclude the construction of the examples, it only remains to study the
stabilizer of the lines L and L′. In light of the naturality of the construction of
the dual line, the stabilizer of L actually coincides with the stabilizer of L′. In
the PSL(2,R)-model, recall that we defined L as the one-parameter subgroup of
PSL(2,R) of hyperbolic transformations which fix a geodesic � in H2. The dual
line consists of elliptic order-two isometries with fixed point on �.

Let us denote by αd the hyperbolic isometry which translates along � of signed
distance d . One then easily checks that the stabilizer of L which preserves an
orientation of L is:

Stab+(L) = {(αl, αm) | l, m ∈ R} ⊂ PSL(2,R)× PSL(2,R) , (15.2.7)

which is therefore isomorphic to R2. In fact, recalling the isometric action of
PSL(2,R) × PSL(2,R) on PSL(2,R) from Eq. (15.1.16), and the isometric iden-
tification of the dual plane P1 with H2 (Lemma 15.1.2.5.1), the isometries of the
form (αd , αd) fix L pointwise and act on L′ as a translation of length d . Conversely,
the isometries of the form (αd , α−d ) fix L′ setwise and act on L as a translation of
length d .

The orientation-preserving, time-preserving stabilizer consists of the normal
subgroup Stab+(L) and on another single coset, which consists of the rotations of
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angle π along each of the timelike geodesics leaving L orthogonally and connecting
L to the dual geodesic L′. In conclusion, we have the following:

Lemma 15.2.2.2.5 The orientation-preserving, time-preserving stabilizer of T is
isomorphic to the semidirect product R2 
 Z/2Z. The normal subgroup R2 acts, in
the coordinates given by Lemma 15.2.2.2.4, as

(l,m) · (x, y, z) =
(

x + l −m

2
, y + l +m

2
, z

)

,

while a generator of the Z/2Z-factor acts as (x, y, z) 	→ (−x,−y, z).

The full stabilizer of T contains also orientation-reversing and time-reversing
isometries, which can be easily figured out. Maximal globally hyperbolic spacetimes
of genus 1 are then obtained as quotients of T by an action of Z2.

Proposition 15.2.2.2.6 Given two linearly independent vectors (l,m) and (l′,m′),
the group Z2 generated by α = (αl, αm) and α′ = (αl′ , αm′ ) acts freely and properly
discontinuously on T and the quotient is a MGH spacetime of genus 1.

Proof The vectors ((l−m)/2, (l+m)/2) and ((l′ −m′)/2, (l′ +m′/2) are linearly
independent if and only if (l,m) and (l′,m′) are linearly independent. It is then clear
from Lemma 15.2.2.2.5, using the coordinates of Lemma 15.2.2.2.4, that the action
on T is free and properly discontinuous. Since any surface {z = c} is a Cauchy
surface in T, they project to Cauchy surfaces in the quotient, which is therefore
globally hyperbolic, and maximal by Proposition 15.2.2.1.3. !�

15.2.2.3 Genus r = 1: Classification

In this section we will prove that any MGH spacetime of genus r = 1 is isometric
to one of those constructed in Proposition 15.2.2.2.6. The key step in the argument
is the following proposition.

Proposition 15.2.2.3.1 Let M be a globally hyperbolic spacetime of genus r =
1 and let ρ = (ρl, ρr ) : π1(T

2) → PSL(2,R) × PSL(2,R) be the holonomy
representation. Then ρ is discrete and faithful. Moreover ρl and ρr are elementary
representations with two fixed points in RP1.

The last property in the statement is equivalent to the fact that ρl(γ ) and ρr(γ ) are
hyperbolic transformations for any γ ∈ π1(T

2).

Proof By Proposition 15.2.2.1.3 the developing map dev : M̃ → AdS2,1 is
injective, which implies that the holonomy representation is faithful. Moreover
dev(M̃) is a domain in AdS2,1 on which ρ(π1(T

2)) acts properly. It follows that
ρ(π1(T

2)) is a discrete subgroup of PSL(2,R) × PSL(2,R). The fact that ρl and
ρr are elementary representations is a simple consequence of the fact that π1(T

2) is
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abelian. In order to prove that ρl and ρr fix two points on RP1 we will show that no
other possibility can hold.

First assume that both ρl and ρr have a fixed point in H
2. Then ρ is conjugate

to a representation in PSO(2) × PSO(2). But there is no faithful and discrete
representation of π1(T

2) into a compact group.
To exclude the other possibilities we will use that, by Proposition 15.2.2.1.3,

there is a proper achronal meridian � in ∂AdS2,1 = RP1 ×RP1 invariant under the
representation ρ.

Assume first that ρl fixes a point in H
2, and ρr fixes (at least) a point y0 ∈ RP1.

For homological reasons the curve � must intersect the leaf λy0 at a point, say p0 =
(x0, y0). Let γ be a non-trivial element of π1(T

2), and set p1 := ρ(γ )(x0, y0) =
(ρl(γ )x0, y0). So � meets λy0 also at p1. By Lemma 15.2.1.1.6, � contains a
lightlike segment I in λy0 with end-points p0 and p1. Since

⋃
n ρ(γ )n(I) = λy0

we deduce that � contains the entire leaf λy0 but this is a contradiction with �

being a proper achronal meridian.
Let us now consider the case that ρl(γ ) and ρr(γ ) are parabolic transformations

for all c ∈ π1(T ). Up to conjugation we may assume that the fixed points of ρl and
ρr are both ∞ ∈ RP1, hence ρ takes values into the subgroup G∞ of PSL(2,R) ×
PSL(2,R) fixing p∞ = (∞,∞). Notice that G∞ acts by translations on the domain

U0 = RP1 ×RP1 \ (λ∞ ∪ μ∞) = (RP1 \ {∞})× (RP1 \ {∞}) = R
2 ,

and such an action provides an isomorphism G∞ ∼= R2. Since the holonomy is
discrete and faithful, ρ(π1(T

2)) is identified to a lattice of G∞. This implies that
for every p = (x0, y0) ∈ U0, the orbit of p is the set of vertices of a tessellation of
R2 by parallelograms. In particular such an orbit must contain points of I+U0

(p) =
{(x, y) | x − x0 > 0, y − y0 < 0}, which shows that in U0 there is no achronal
orbit for the action of π1(T

2). It follows that � cannot meet U0, so it is contained in
λ∞ ∪ μ∞. On the other hand, arguing as above we see that if � intersects the leaf
λ∞ (resp. μ∞) at a point different from p∞, then it must contain the whole leaf λ∞
(resp. μ∞), and this gives a contradiction.

Finally consider the case where for all γ ∈ π1(T
2) we have ρl(γ ) parabolic,

and ρr(γ ) hyperbolic. We can assume that ∞ is the fixed point of ρl , and 0,∞
are the fixed points of ρr . We consider the partition of RP1 × RP1 into ρ-invariant
subsets μ∞, λ0, λ∞, U+ = R × R+, and U− = R × R−. We will prove that
no π1(T

2)-orbit of U± is achronal, showing that � ⊂ μ∞ ∪ λ0 ∪ λ∞. Let G be
the subgroup of PSL(2,R) × PSL(2,R) made of elements whose left factor is a
parabolic transformation with fixed point at ∞ and whose right factor hyperbolic
transformation with fixed points 0,∞. Let us consider the diffeomorphism

� : R2 → U+ �(x, y) = (x, ey) ,

which conjugates the action of G∞ on R2 and of G on U+. In particular �−1 ◦
ρ(π1(T

2)) ◦� is a lattice in G∞. Thus as before no �−1 ◦ ρ(π1(T
2)) ◦�-orbit in
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R
2 is achronal. But � is conformal with respect to the Lorentzian metric dxdy on

R
2 and the conformal Lorentzian structure of ∂AdS2,1 restricted to U+. We deduce

that no ρ(π1(T
2))-orbit is achronal in U+. A similar proof works for U−.

This shows that � is contained in μ∞ ∪ λ0 ∪ λ∞. Hence � ∩ λ0 is either one
point or an arc. In the latter case the end-points of the arc should lie in ρ∞, but the
intersection of λ0 and μ∞ is only at the point (∞, 0), which contradicts that � is a
proper achronal meridian. So � intersects λ0 only at (∞, 0). Similarly � intersects
λ∞ only at (∞,∞). This implies that � ⊂ μ∞ which is a contradiction. !�

Now, given a pair of elementary representations ρl, ρr : Z2 → PSL(2,R) which
map every non-trivial element to a hyperbolic transformation, assume for simplicity
that the fixed points of ρl and ρr coincide, and let us call them x and y. Recall
from Lemma 15.2.2.2.1 that there are two proper achronal meridians containing the
four points (x, x), (y, x), (y, y), (x, y) in ∂AdS2,1. Each of them is clearly invariant
under the Z2-action induced by ρ. The next step consists in showing that these are
the only invariant proper achronal meridians.

Proposition 15.2.2.3.2 Let ρ : π1(T
2) → PSL(2,R) × PSL(2,R) be a represen-

tation such that ρl and ρr are elementary representations with two fixed points in
RP1. Then there are exactly two proper achronal meridians in ∂AdS2,1 which are
invariant under the action of π1(T

2) induced by ρ.

Proof Up to conjugation we may assume that both ρl and ρr fix 0 and ∞.
It will be sufficient to show that any ρ-invariant proper achronal meridian �

necessarily contains the four points (0, 0), (0,∞), (∞, 0), (∞,∞). Indeed by
Lemma 15.2.2.2.1 this will imply that � is either �1 or �2.

We claim that � must be contained in the union of leaves

X = λ0 ∪ λ∞ ∪ μ0 ∪ μ∞ .

First let us show how to conclude assuming the claim. Notice that the leaves λj

and μi meet at points pi,j = (i, j) for i, j = 0,∞. If � is an achronal meridian
contained in X, then it must be a concatenation of arcs on the leaves λ0, λ∞, μ0, μ∞
with end-points in {pi,j | i, j = 0,∞}. Notice that

• If � contains an arc on λj (resp. μi ) then it contains both p0,j , and p∞,j (resp.
pi,0 and pi,∞).

• If pij is contained in �, then � contains an arc on both λi and μj (otherwise �

should contain a leaf).

In particular we easily deduce that � must contain all points pi,j and we conclude.
In order to prove the claim we will check that no point in ∂AdS2,1 \ X has

an achronal orbit. Notice that ∂AdS2,1 \ X has the following four connected
components:

U+,+ = R+ × R+, U+,− = R+ × R−, U−,+ = R− ×R+, U−,− = R− ×R− .
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Each of these components is preserved by ρ. Let us focus on U+,+. Using the
notation of Proposition 15.2.2.3.1 consider the diffeomorphism

�+,+ : R2 → U+,+ �+,+(x, y) = (ex, ey) ,

which is conformal, similarly to the last part of the proof of Proposition 15.2.2.3.1.
Let Ĝ = Stab+(L) be the stabilizer of the geodesic L = L�,� preserving an
orientation, as in (15.2.7), where � is the oriented geodesic of H2 with endpoints 0
and ∞. Namely Ĝ is the subgroup of PSL(2,R)×PSL(2,R) of pairs of hyperbolic
transformations with fixed points at 0,∞. Then �+,+ conjugates G∞ and Ĝ. As
in Proposition 15.2.2.3.1, we deduce that �−1+,+ ◦ ρ(π1(M)) ◦ �+,+ is a lattice in
G∞ = R2 and therefore the action cannot have achronal orbits in R2. Since �+,+
is conformal, then the action of ρ(π1(M)) cannot have achronal orbits in U+,+. The
proof for the other connected components U±,± is completely analogous. !�

A consequence of Proposition 15.2.2.3.2 is the following. Recall from
Sect. 15.2.2.2 that T denotes a lightlike tetrahedron whose boundary in ∂AdS2,1 is a
proper achronal meridian consisting of the concatenation of four lightlike segments.
In Lemma 15.2.2.2.5 we showed that Ĝ = Stab+(L), which is the orientation-
preserving, time-preserving stabilizer of T, is isomorphic to the semi-direct product
R

2

 Z/2Z.

Corollary 15.2.2.3.3 Any MGH spacetime of genus one is isometric to a quotient
of T by a subgroup of Ĝ acting freely and properly discontinuously on T.

Proof By Proposition 15.2.2.1.3, any MGH spacetime M of genus one is isometric
to the quotient of the invisible domain of a proper achronal meridian invariant
under the action of ρ(π1(T

2)), where ρ : π1(T
2) → PSL(2,R) × PSL(2,R) is

the holonomy representation. By Proposition 15.2.2.3.1, ρ maps every non-trivial
element to a pair of hyperbolic transformations, and by Proposition 15.2.2.3.2
there are exactly two proper achronal meridians invariant under such a ρ, namely
those described in Lemma 15.2.2.2.1. However, by Remark 15.2.2.2.3, there is an
orientation-preserving, time-preserving isometry of AdS2,1 sending one invariant
proper achronal meridian to the other. Hence, up to composing with an isometry,
we see that M is isometric to a quotient of T, which is the invisible domain of the
proper achronal meridian �0 as in Proposition 15.2.2.2.2. !�

Let us conclude this section by a discussion on the classification of MGH
spacetimes of genus one. For this purpose, we introduce the deformation space

MGH(T 2) = {g MGH AdS metric on T 2 × R}/Diff0(T
2 ×R) ,

where the group of diffeomorphisms isotopic to the identity acts by pull-back. It
is a well-known fact from the theory of (G,X)-structures that the holonomy map,
which is well-defined with image in the space of representations of the fundamental
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group into G up to conjugacy (in this case G = PSL(2,R)× PSL(2,R)), descends
to the quotient MGH(T 2).

Now, Corollary 15.2.2.3.3 tells us that MGH spacetimes of genus 1 are deter-
mined by the holonomy representations of Z2 which take value in Ĝ and act freely
and properly discontinuously on T.

Two MGH spacetimes T/ρ1(Z
2) and T/ρ2(Z

2) represent the same point in
MGH(T 2) if and only if ρ1 and ρ2 are conjugate in Isom(AdS2,1), but in fact in this
case they are necessarily conjugate in Ĝ. Hence the deformation space MGH(T 2)

is identified to the space of Z2-representations in Ĝ acting freely and properly
discontinuously on T up to conjugacy in Ĝ.

By the proof of Proposition 15.2.2.2.6 we see that ρ(π1(T
2)) acts freely and

properly discontinuously on T if and only if, under the isomorphism between Ĝ

and the semi-direct product R2 
Z/2Z, its acts freely and properly discontinuously
on R2. Under this isomorphism, conjugacy by elements in the normal subgroup
R2 do not change ρ, while conjugacy by the generator of Z/2Z acts by minus the
identity. In conclusion, we have the following classification result:

Theorem 15.2.2.3.4 The deformation space MGH(T 2) is homeomorphic to the
space of discrete and faithful representations of π1(T

2) into R2 up to sign.

As a final comment, the space of discrete and faithful representations of π1(T
2)

into R
2 coincides with the space of translation structures on the torus. Since they

are considered up to sign change, MGH(T 2) is identified to the deformation space
of semi-translation structures on the torus.

15.2.2.4 Genus r ≥ 2: Examples

Let us now consider �r an oriented surface of genus r ≥ 2. Let us recall the
definition of Fuchsian representations.

Definition 15.2.2.4.1 A representation ρ : π1(S) → PSL(2,R) is positive
Fuchsian if there is a ρ-equivariant orientation-preserving homeomorphism δ :
�̃r → H2.

The definition is invariant under conjugation in PSL(2,R) ∼= Isom0(H
2), but

not under conjugation in Isom(H2). By a celebrated result by Goldman [71], a
representation ρ is positive Fuchsian if and only if the associated flat RP1 bundle
Eρ , constructed as the quotient of �̃r ×RP 1 by the diagonal action of π1(S) given
by the obvious action by deck transformation on the first factor, and by ρ on the
second factor, has Euler class 2 − 2r . This is also equivalent to the existence of an
orientation-preserving fiber bundle isomorphism between Eρ and the unit tangent
bundle of �r .

The following classical fact in Teichmüller theory, see for instance [67], is
essential for the construction of MGH spacetimes of genus r ≥ 2.
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Lemma 15.2.2.4.2 Given two positive Fuchsian representations ρl, ρr :
π1(�r) → PSL(2,R), any (ρl, ρr )-equivariant orientation-preserving homeo-
morphism of H2, which exist as a consequence of Definition 15.2.2.4.1, extends
continuously to an orientation-preserving homeomorphism of H2 ∪RP1. Moreover,
its extension ϕ : RP1 → RP1 is the unique (ρl, ρr )-equivariant orientation
preserving homeomorphism of RP1.

By (ρl, ρr )-equivariance of ϕ we mean the condition that for every γ ∈ π1(S):

ϕ ◦ ρl(γ ) = ρr(γ ) ◦ ϕ . (15.2.8)

Now let ρl, ρr : π1(�r) → PSL(2,R) be two positive Fuchsian representations.
We will consider the representation

ρ = (ρl, ρr) : π1(S) → Isom0(AdS2,1) ∼= PSL(2,R)×PSL(2,R) ∼= Isom(AdS2,1) .

Definition 15.2.2.4.3 Given a pair of positive Fuchsian representations ρl, ρr :
π1(�r) → PSL(2,R), we define �(ρ) to be the graph in RP1 × RP1 of the
unique (ρl, ρr )-equivariant orientation-preserving homeomorphism of RP1, and
�ρ := �(�(ρ)) its invisible domain in AdS2,1.

Using the above construction, we can build examples of MGH spacetimes having
holonomy any ρ = (ρl, ρr ) of this form.

Proposition 15.2.2.4.4 The domain �ρ is invariant under the isometric action
of π1(�r) on AdS2,1 induced by ρ. Moreover π1(�r) acts freely and properly
discontinuously on �ρ and the quotient is a MGH spacetime of genus r and
holonomy ρ.

Proof By the definition of ϕ and the action of PSL(2,R) × PSL(2,R) on it is
clear that �(ρ) is invariant by the action of (ρl(γ ), ρr (γ )), for every γ ∈ π1(�r).
Recalling from Corollary 15.2.1.5.4 that �ρ is the set of elements x ∈ PSL(2,R)

such that x ◦ ϕ have no fixed point on RP1, the invariance of �ρ also follows
immediately: indeed

(ρl(γ ) ◦ x ◦ ρr(γ )−1) ◦ ϕ = ρl(γ ) ◦ (x ◦ ϕ) ◦ ρl(γ )−1

acts freely on RP1 if x ◦ ϕ does.
Let us show that for a compact set K in �ρ , ρ(γ ) ·K stays in a compact region

of �ρ only for finitely many γ ∈ π1(�r). This will also show that the action is
free, since π1(�r) has no torsion. For this purpose, take a sequence xn ∈ K and a
sequence γn ∈ π1(�r) not definitively constant. We claim that up to a subsequence,
(ρ(γn) · xn) converges to some (ξ+, ϕ(ξ+)) in �(ρ). We will apply the criterion of
convergence to ∂AdS2,1 given in Lemma 15.1.2.2.2.

Since Fuchsian representations act cocompactly on H2, the sequence ρl(γn) has
no converging subsequences in PSL(2,R). By a well-known dynamical property of
PSL(2,R) (see for instance [18]), up to taking a subsequence, there exist ξ−, ξ+ on
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Fig. 15.12 The proof of Proposition 15.2.2.4.4, and in particular the fact that the image of p ∈ H
2

under ρ(γn) · xn = ρl(γn) ◦ xn ◦ ρr(γn)
−1 converges to ξ+ as n →+∞. A completely analogous

argument shows that the image of p under the inverse converges to ϕ(ξ+)

RP1 such that ρl(γn)
±1(ξ) → ξ± for all ξ �= ξ∓ and that the convergence is uniform

on compact sets of (H2 ∪RP1) \ {ξ∓}. By the equivariance (15.2.8), the same holds
for ρr(γn) where now ξ± are replaced by ϕ(ξ±).

To apply the criterion of Lemma 15.1.2.2.2, pick any p ∈ H2, and recall that
ρ(γn) ·xn = ρl(γn)◦xn ◦ρr(γn)

−1. By the dynamical property above, for any δ > 0
one can find n0 such that ρr(γn)

−1(p) is in the δ-neighborhood of ϕ(ξ−) (for the
Euclidean metric on the closed disc), say Uδ . Since xn lies in a compact region of
�ρ , we can assume that it converges to x∞ ∈ �ρ , hence x∞ ◦ ϕ has no fixed point,
and in particular x∞ ◦ ϕ(ξ−) �= ξ−.

Up to taking δ sufficiently small and n0 large, xn(Uδ) lies in a neighborhood
Vε of x∞ ◦ ϕ(ξ−) such that the closure of Vε is disjoint from ξ−. By construction
xn ◦ ρr(γn)

−1(p) ∈ Vε and by the uniform convergence on compact sets of the
complement of ξ−, ρl(γn) ◦ xn ◦ ρr(γn)

−1(p) converges to ξ+ for n large. The very
same argument then shows that (ρ(γn) · xn)−1(p) = ρr(γn) ◦ x−1

n ◦ ρl(γn)
−1(p)

converges to ϕ(ξ+). This concludes the claim. See Fig. 15.12.
Finally, the past and future boundary components ∂±C(�(ρ)) are contained in

�ρ , since �(ρ) is the graph of an orientation-preserving homeomorphism (see
Remark 15.2.1.6.5). Hence they are ρ-invariant properly embedded Cauchy surfaces
in �ρ and project to Cauchy surfaces of the quotient by the action of ρ(π1(�r)),
which are homeomorphic to �r . This shows that the quotient is a globally
hyperbolic spacetime of genus r , which is maximal by Proposition 15.2.2.1.3. !�
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15.2.2.5 Genus r ≥ 2: Classification

In this section we will conclude the classification result, by showing essentially that
the examples of Proposition 15.2.2.4.4 are all the MGH spacetimes of genus r .

Lemma 15.2.2.5.1 Let ρ = (ρl, ρr ) be a pair of positive Fuchsian representations,
and ϕ : RP1 → RP1 be the unique (ρl, ρr )-equivariant orientation-preserving
homeomorphism of RP1. Then �(ρ) is the unique proper achronal meridian in
∂AdS2,1 invariant under the action of π1(�r) induced by ρ.

Proof Let � be a proper achronal meridian invariant under the action of π1(�r).
We claim that the intersection �∩�ϕ is not empty. Once the claim will be showed,
the proof is concluded in the following way. If (ξ0, ϕ(ξ0)) ∈ �, then

(ρl(γ ) · ξ0, ϕ(ρl(γ ) · ξ0)) = (ρl(γ ) · ξ0, ρr (γ ) · ϕ(ξ0)) ∈ � .

However the ρl(π1(�r))-orbit of ξ0 is dense in RP1, hence we deduce that �

contains �ϕ . But both �ϕ and � are homeomorphic to S1, which necessarily
implies �ϕ = �.

Let us prove the claim. Let γ be a non-trivial element in π1(�r). It is known
that ρl(γ ) and ρr(γ ) are necessarily hyperbolic elements in PSL(2,R), hence we
denote by ξ+l (γ ), and ξ+r (γ ) their attractive fixed points respectively. Notice that
ξ+r (γ ) = ϕ(ξ+l (γ )), hence

(ξ+l (γ ), ξ+r (γ )) ∈ �ϕ .

By homological reasons the curve � must meet the leaf of the left ruling of ∂AdS2,1:

λξ+r (γ ) = {(η, ξ+r (γ )) | η ∈ RP1} .

That is, there exists η0 ∈ RP1 such that (η0, ξ
+
r (γ )) lies in �. But then

(ρl(γ )kη0, ξ
+
r (γ )) lies in � for k > 0. If η0 �= ξ−l (γ ) we can pass to the limit

on k and deduce that (ξ+l (γ ), ξ+r (γ )) lies in �.
So far, the choice of γ was arbitrary. To conclude, assume now by contradiction

that for every γ ∈ π1(�r) the point (ξ−l (γ ), ξ+r (γ )) lies in �. Take α, β ∈ π1(S)

so that the axes of ρl(α) and ρl(β) do not intersect. We may assume that the cyclic
order of end-points of those axes is

ξ+l (α) < ξ+l (β) < ξ−l (β) < ξ−l (α) . (15.2.9)

Since ξ±r (α) = ϕ(ξ±l (α)) and ξ±r (β) = ϕ(ξ±l (β)), we also have that

ξ+r (α) < ξ+r (β) < ξ−r (β) < ξ−r (α) . (15.2.10)
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On the other hand by assumption (applied to α, β and their inverses) the curve
� contains (ξ+l (α), ξ−r (α)), (ξ+l (β), ξ−r (β)), (ξ−l (β), ξ+r (β)), (ξ−l (α), ξ+r (α)). By
achronality of �, the cyclic order of the second components must be the same as
that of the first components (although not necessarily strict), hence from (15.2.9) we
obtain

ξ−r (α) ≤ ξ−r (β) ≤ ξ+r (β) ≤ ξ+r (α) ,

which contradicts (15.2.10). !�
Given a pair ρ = (ρl, ρr ) of positive Fuchsian representations of π1(�r), let us

denote by Mρ the MGH spacetime �ρ/ρ(π1(�r)) of Proposition 15.2.2.4.4.

Corollary 15.2.2.5.2 For any pair ρ = (ρl, ρr ) of positive Fuchsian representa-
tions of π1(�r), Mρ is the unique MGH spacetime with holonomy ρ.

The last step for the classification result is that the left and right holonomies are
necessarily positive Fuchsian.

Proposition 15.2.2.5.3 Let M be an oriented, time-oriented, globally hyperbolic
spacetime of genus r ≥ 2 and let us endow a Cauchy surface � with the orientation
induced by the future normal vector. Then the left and right components of the
holonomy ρ = (ρl, ρr ) : π1(�) → PSL(2,R) × PSL(2,R) are positive Fuchsian
representations.

In the statement, we refer to the holonomy ρ with respect to an orientation-
preserving developing map. Therefore ρ is well-defined up to conjugacy in
PSL(2,R)× PSL(2,R).

Proof We will prove that the RP1-flat bundles with holonomy ρl and ρr are
isomorphic to the unit tangent bundle of �. For the sake of definiteness, let us focus
on ρl . We will construct an isomorphism

�l : T 1�̃ → �̃ × RP1

equivariant with respect to the action on T 1�̃ by the actions by deck transformation,
and the diagonal action given by ρl on �̃ × RP1.

The map �l is defined in the following way. For an element (x, v) ∈ T 1�̃, let

ξ(x, v) = (ξ l(x, v), ξ r (x, v)) ∈ RP1 ×RP1

be the end-point of the spacelike geodesic ray expx(tv) in AdS2,1, for positive t .
Then we define �l(x, v) = (x, ξ l(x, v)). This map is clearly continuous, proper,
equivariant and fiber preserving.

In order to prove that it is bijective it is sufficient to notice that for any
x ∈ �̃ the map ξx : T 1

x (�̃) → RP1 × RP1 is an embedding with image the
boundary of the totally geodesic plane tangent to �̃ at x. This boundary is the
graph of an orientation-preserving map of RP1, so the projection v → ξ l(x, v)
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is bijective. Moreover, by our choice of the orientation on �, the orientation on
T 1
x �̃ corresponds to the orientation induced on ξx(T

1
x �̃) as graph of an orientation-

preserving homeomorphism. The proof for ρr is completely analogous. !�
We conclude by stating the classification result. Let us denote the deformation

space of MGH spacetimes of genus r by:

MGH(�r) = {g MGH AdS metric on �r × R}/Diff0(�r × R) ,

where the group of diffeomorphisms isotopic to the identity acts by pull-back.
Again the holonomy map takes value in the space of representations of π1(�r) into
PSL(2,R)× PSL(2,R) and is well-defined on the quotient MGH(�r).

By Proposition 15.2.2.5.3, the left and right components of the holonomy of
elements of MGH(�r) are positive Fuchsian representations. The space of these
representations up to conjugacy is identified with the Teichmüller space of �r by
the aforementioned work of Goldman [71]:

T (�r) ∼= {ρ : π1(�r) → PSL(2,R) positive Fuchsian representations}/PSL(2,R) .

Therefore the holonomy map can be considered as a map from MGH(�r)

with values in T (�r) × T (�r). We can summarize Proposition 15.2.2.4.4 and
Corollary 15.2.2.5.2 with the following theorem of Mess.

Theorem 15.2.2.5.4 The holonomy map

ρ :MGH(�r) → T (�r)× T (�r)

is a homeomorphism.

15.2.3 Gauss Map of Spacelike Surfaces

In this section we will introduce the Gauss map associated to a spacelike surface in
Anti-de Sitter space, study its properties, and deduce some results which will further
highlight the deep relation of Anti-de Sitter geometry with Teichmüller theory and
hyperbolic surfaces.

15.2.3.1 Spacelike Surfaces and Immersion Data

Let us start by recalling some generalities of (immersed) spacelike surfaces in Anti-
de Sitter geometry. For the moment, we shall assume that all our immersed surfaces
are of class C1.

Let us therefore assume that σ : � → AdS2,1 is a C1 immersion, and recall
that σ is spacelike if the pull-back σ ∗gAdS of the ambient Lorentzian metric gAdS
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is positive definite for every point of �. In this case the Riemannian metric I :=
σ ∗gAdS is called first fundamental form of σ .

The tangent bundle T S is then naturally identified to a subbundle of the pull-
back bundle σ ∗(TM) by means of the differential dσ . The normal bundle Nσ of σ
is defined as the gAdS-orthogonal complement of T S in σ ∗(TM), and the restriction
of gAdS to Nσ is negative definite. Using the decomposition

σ ∗(TM) = T S ⊕Nσ ,

the pull-back of the ambient Levi-Civita connection∇, restricted to sections tangent
to S splits as the sum of the Levi Civita connection∇I of the first fundamental form
I , and a symmetric 2-form with value in Nσ . As a consequence of time-orientability
of AdS2,1, the normal bundle admits a natural trivialization, which is the same as a
choice of a continuous unit normal vector field for σ . We will denote by ν : S → Nσ

the future-directed unit normal vector field, and consider the decomposition for all
vector field X,Y tangent to S:

∇VW = ∇I
VW + II (V,W)ν ,

where the symmetric (2, 0)-tensor II is called second fundamental form. It will be
convenient to consider the I -symmetric (1, 1)-tensor B ∈ (T S)∗ ⊗ T S defined by
II (V,W) = I (B(V ),W), which is called shape operator of σ . Similarly to the
Riemannian case, it turns out that σ∗(B(v)) = ∇vν.

The first and the second fundamental form of an immersion σ satisfy constraint
equations, known as the Gauss–Codazzi equations. More precisely the Gauss
equation consists of the identity

KI = −1 − det
I

II (15.2.11)

where KI is the curvature of I and detI II := detB by definition. On the other hand
the Codazzi equation states that ∇I II is a totally symmetric 3-form. In other words
we have

(∇I
V II)(W,U) = (∇I

W II)(V,U) (15.2.12)

which sometimes is also written in the equivalent form d∇I
B = 0 where

d∇I

B(V,W) = (∇I
V B)(W)− (∇I

WB)(V ) = ∇I
V (B(W)) − ∇I

W (B(V ))− B([V,W ]) .

(15.2.13)

The following classical result states that the Gauss–Codazzi equations are the
only constraints to be satisfied by the first and second fundamental forms.

Theorem 15.2.3.1.1 (Fundamental Theorem of Immersed Surfaces) Let S be a
simply connected surface, let I be a Riemannian metric on S and II be a symmetric
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(2, 0)-tensor on S. If I and II satisfy the Gauss–Codazzi equations (15.2.11)
and (15.2.12), then there exists a spacelike immersion σ : S → AdS2,1 having
I and II as first and second fundamental form. Moreover if σ and σ ′ are two such
immersions, then there exists a time-preserving isometry f such that σ ′ = f ◦ σ .

15.2.3.2 Germs of Spacelike Immersions in AdS Manifolds

Let us now consider the case of an oriented surface �, not necessarily simply
connected. Given a spacelike immersion σ : � → (M, g), where (M, g) is an
oriented Anti-de Sitter manifold, we can associate to σ the pair (I, II) of first and
second fundamental form exactly as in the previous section, where II is computed
with respect to the future unit normal vector ν of σ . Moreover, in this section
we shall always assume that the orientation of � and ν are compatible with the
orientation of M .

The pair (I, II) only depends on the germ of σ , which we introduce in the
following definition:

Definition 15.2.3.2.1 A germ of a spacelike immersion of � into an Anti-de
Sitter three-manifold is an equivalence class of spacelike immersions σ : � →
(M, g), where the time-oriented Lorentzian manifold (M, g) has constant sectional
curvature −1, by the following relation: σ : � → (M, g) and σ ′ : � → (M ′, g′)
are equivalent if there exist open subsets U in M and U ′ in M ′ and an orientation-
preserving, time-preserving isometry f : (U, g) → (U ′, g′) such that σ ′ = f ◦ σ .

Observe that in the definition, σ ′ = f ◦ σ implies that U is an open
neighbourhood of the image of σ , and similarly for U ′. It is a simple exercise to
check that the above definition gives an equivalence relation.

Now, given a pair (I, II) on a surface �, one can perform the following
construction. If π : �̃ → � is a universal cover, the pair (π∗I, π∗II) clearly
satisfy the Gauss–Codazzi equations on �̃, hence by the existence part of The-
orem 15.2.3.1.1 there exists a spacelike immersion σ̃ : �̃ → AdS2,1 having
immersion data (π∗I, π∗II). The uniqueness part of Theorem 15.2.3.1.1 then has
two consequences:

• Any two such immersions differ by post-composition by a global isometry of
AdS2,1.

• Given any such σ̃ , there exists a map ρ : π1(�) → Isom0(AdS2,1) such that, for
every γ ∈ π1(�), f ◦ γ = ρ(γ ) ◦ f .

It is easily checked that ρ is in fact a group representation. Moreover changing σ̃

by post-composition with an isometry f has the effect of conjugating ρ by f . The
immersion σ can then be extended to an immersion of U , an open neighbourhood
of � × {0} in � × R, into AdS2,1, by mapping (x, t) to the point γ (t) on the
timelike geodesic γ such that γ (0) = σ(p) and γ ′(0) is the future normal vector of
σ at x. We collect here the expression of the Anti-de Sitter metric in such a tubular
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neighborhood of σ , which is in fact a local computation and will be useful for future
reference:

Lemma 15.2.3.2.2 Given a spacelike immersion σ : � → AdS2,1, the pull-
back of the ambient metric by means of the map (p, t) 	→ expσ(x)(tν(x)) has the
expression:

− dt2 + cos2(t)I + 2 cos(t) sin(t)II + sin2(t)III , (15.2.14)

where I , II and III are the first, second and third fundamental form of σ .

Recall that the third fundamental form is defined as III (·, ·) = I (B(·), B(·))
where B is the shape operator. Conversely observe that, by a simple computation,
the immersion data of x 	→ (x, 0) in (15.2.14) are (I, II).

Proof We may use the quadric model, introduced in Sect. 15.1.1.5. By
Eq. (15.1.13), we have expσ(x)(tν(x)) = cos(t)σ (x) + sin(t)ν(x). The differential
in t gives the vector − sin(t)σ (x)+ cos(t)ν(x), while the differential in the spatial
direction (V , 0) gives the vector cos(t)dσx(v) + sin(t)dxν(v). The two vectors are
orthogonal. Recalling that I (·, ·) = 〈dσ(·), dσ (·)〉 and that the differential of σ

identifies B(v) and ∇vν, namely the tangential component of dν(v), the expression
of the pull-back metric follows immediately. !�

Therefore, given a pair (I, II), the expression (15.2.14) provides a Lorentzian
metric of constant curvature −1 on an open set U in � × R containing the slice
� × {0}, and thus a germ of immersion of � into an Anti-de Sitter three-manifold
with immersion data (I, II). The conclusion of the above discussion is summarized
in the following statement:

Proposition 15.2.3.2.3 Given a surface �, there are natural identifications
between the following spaces:

(1) The space of pairs (I, II) on � which are solutions of the Gauss–Codazzi
equations.

(2) The space of germs of spacelike immersions of � into Anti-de Sitter manifolds.
(3) The space of spacelike immersions of �̃ into AdS2,1, equivariant with respect to

a representation ρ : π1� → Isom0(AdS2,1), up to the action of Isom0(AdS2,1)

by post-composition.

The identifications are equivariant with respect to the actions of Diff(�), by pull-
back in item (1) and by pre-composition in items (2) and (3).

Let us now consider the case where � is a closed surface. By the arguments of the
previous section, the equivariant immersion σ̃ in item (3) of Proposition 15.2.3.2.3
is necessarily an embedding, which can be extended to an embedding of �̃×R onto
a domain of dependence in AdS2,1. The representation ρ : π1(�) → PSL(2,R) ×
PSL(2,R) coincides with the holonomy of a maximal globally hyperbolic Anti-de
Sitter manifold (M, g) (after identifying π1(�) with π1(M) using the embedding
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of � into M ∼= � × R), and therefore ρ consists of a pair of positive Fuchsian
representations by Proposition 15.2.2.5.3.

Quite remarkably, the embedding data (I, II) permit to recover explicitly the
pair of elements in the space T (S) × T (S) which parameterizes maximal globally
hyperbolic Anti-de Sitter manifolds with compact Cauchy surfaces—recall Theo-
rem 15.2.2.5.4. Such an explicit formula is the content of Proposition 15.2.3.3.7 in
the next section.

15.2.3.3 Gauss Map and Projections

We are now ready to define the Gauss map for spacelike surfaces in AdS2,1, see [9].
Recall from Proposition 15.1.2.5.2 that the space of timelike geodesics of AdS2,1 is
naturally identified with H2 × H2, where the identification maps a geodesic of the
form

Lp,q = {X ∈ PSL(2,R) |X · q = p}

to the pair (p, q) ∈ H2×H2. We still suppose that our spacelike immersions are C1

here, and will discuss certain cases of weaker regularity in the next section.

Definition 15.2.3.3.1 Let σ : S → AdS2,1 a spacelike immersion. The Gauss map
Gσ : S → H2 × H2 is defined as Gσ (x) = (p, q) such that Lp,q is the timelike
geodesic orthogonal to Im(dxσ ) at σ(x).

As a consequence of the equivariance property given in Proposition 15.1.2.5.2,
the Gauss map Gσ is natural with respect to the action of the isometry group,
meaning that

Gf ◦σ = f ·Gσ

for every f ∈ Isom0(AdS2,1) = PSL(2,R)× PSL(2,R).

Example 15.2.3.3.2 Recall that in Lemma 15.1.2.5.1 we gave an isometric embed-
ding of H2 in AdS2,1 with image the plane P1 dual to the identity. This isometric
embedding is defined by sending p ∈ H2 to the unique order-two element in
PSL(2,R) fixing p, which by definition lies on the geodesic Lp,p. Moreover the
geodesic Lp,p is orthogonal to P1. Hence the Gauss map associated to this
isometric embedding of H2 is simply p 	→ (p, p).

By construction, the Gauss map of a spacelike immersion σ is invariant by
reparametrization, in the sense that Gσ◦φ = Gσ ◦ φ for a diffeomorphism φ :
S′ → S. Hence it makes sense to talk about the Gauss map of a spacelike surface in
AdS2,1. For example, for the plane P1 dual to the identity as in Example 15.2.3.3.2,
the Gauss map of P1 is sends order-two element of PSL(2,R) to the pair (p, p)

where p is its fixed point.
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Lemma 15.2.3.3.3 Given a spacelike immersion σ : S → AdS2,1 with future unit
normal vector field ν, if σ(p) = 1, then

Gσ (p) = GP1

(
exp

(π

2
ν(p)

))
. (15.2.15)

Proof The proof follows from Example 15.2.3.3.2 and the observation that
the geodesic leaving from 1 with velocity ν(p) meets orthogonally P1 at
exp((π/2)ν(p)). !�

Let us now introduce the map

Fix : T 1,+
1 AdS2,1 → H

2

where T
1,+
1 AdS2,1 denotes the hyperboloid of future unit timelike vectors in

T1AdS2,1, such that Fix(ν) is the fixed point of the one-parameter elliptic group
{exp(tν) | t ∈ R}. This map is equivariant for the action of PSL(2,R), which
acts on the hyperboloid T

1,+
1 AdS2,1 by the adjoint representation and on H2 by

the obvious action. Since both T
1,+
1 AdS2,1 and H2 have constant curvature −1, it

follows immediately from the equivariance that Fix is an isometry.
In terms of the map Fix, Eq. (15.2.15) reads

Gσ (p) = (Fix(ν(p)),Fix(ν(p))) , (15.2.16)

provided σ(p) = 1. Using Lemma 15.2.3.3.3 and the naturality, we get the
following description of the Gauss map.

Lemma 15.2.3.3.4 Given a spacelike immersion σ : S → AdS2,1 with future unit
normal vector field ν,

Gσ (p) =
(
Fix((Rσ(p)−1)∗(ν(p))),Fix((Lσ(p)−1)∗(ν(p)))

)
.

Proof Let us first observe that, if σ(p) = 1, then the equality holds true by
Eq. (15.2.16). In the general case, the immersion σ ′ = (1, σ (p)) ◦ σ has the
property that σ ′(p) = 1, and the future normal vector at σ ′(p) equals ν′(p) =
(Rσ(p)−1)∗(ν(p)). Therefore

Gσ ′(p) =
(
Fix((Rσ(p)−1)∗(ν(p))),Fix((Rσ(p)−1)∗(ν(p)))

)
.

By the naturality of the Gauss map,

Gσ (p) = (1, σ (p)−1) ·Gσ ′(p)

=
(

Fix((Rσ(p)−1)∗(ν(p))), σ (p)−1 ◦ Fix((Rσ(p)−1)∗(ν(p)))
)

= (
Fix((Rσ(p)−1)∗(ν(p))),Fix((Lσ(p)−1)∗(ν(p)))

)
,
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where in the last line we used the fact that Fix is equivariant with respect to the
adjoint action on the hyperboloid T

1,+
1 AdS2,1. !�

The components of the Gauss map are called left and right projections, and will
be denoted by �l,�r : S → H2.

Remark 15.2.3.3.5 Under the identification given by Fix, the left and right projec-
tions can be interpreted in the following way. Given p ∈ S, �l(p) is the parallel
transport in 1 of the future unit vector ν(p) at σ(p) with respect to the right-
invariant connection Dr we introduced in Sect. 15.1.2.3. The right projection �r(p)

is instead obtained by parallel transport with respect to the left-invariant connection.

Remark 15.2.3.3.6 Another interpretation of the Gauss map, which was originally
given in the work of Mess, is the following. Given p ∈ S one can find a unique
left isometry fl(p), and a unique right isometry fr(p), sending the tangent plane P

to the image of σ at σ(p) to P1. Indeed the isometries fl(p) and fr(p) are simply
obtained by left and right multiplication by the inverse of dual point of the tangent
plane P , namely ς(p) = expσ(p)((π/2)ν(p)). Using the identification of the dual
plane P1 with H2 provided by Lemma 15.1.2.5.1, �l(p) and �r(p) are the image
of σ(p) under the right and left isometries respectively:

�l(p) = fr (p) ◦ σ(p) = (1, ς(p)) · σ(p) and

�r(p) = fl(p) ◦ σ(p) = (ς(p)−1,1) · σ(p) .

We are now ready to prove the formulae which express the pull-back of the
hyperbolic metrics by the left and right projections. When applying these formulae
to the embedding data of a surface in an MGH Cauchy compact Anti-de Sitter
spacetime (M, g), we obtain a pair of hyperbolic metrics whose isotopy classes
give are the parameters of (M, g) in T (S)× T (S). (See also Proposition 15.2.3.2.3
and the following paragraph.)

Proposition 15.2.3.3.7 Let σ : S → AdS2,1 be a spacelike immersion, let �l,�r :
S → H

2 be the left and right projections and let gH2 be the hyperbolic metric. Then

�∗
l gH2 = I ((id−JB)·, (id−JB)·) and �∗

r gH2 = I ((id+JB)·, (id+JB)·) ,

where I is the first fundamental form of σ , J its associated almost-complex
structure, and B the shape operator.

These formulae appeared in [79, Lemma 3.16], and are proved also in [9, Section
6.2]. Here we provide a self-contained proof.

Proof Let us check the formula for the pull-back of �r . By Lemma 15.2.3.3.4,

�r(x) = Fix((Lσ(x)−1)∗(ν(x))) .
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Since Fix : T 1,+
1 AdS2,1 → H2 is an isometry, �∗

r gH2 equals the pull-back of the
Anti-de Sitter metric through the map �̂r : S → T1AdS2,1 defined by �̂r (x) =
(Lσ(x)−1)∗(ν(x)).

Let us fix a orthonormal basis of left-invariant vector fields E1, . . . , En on
TAdS2,1. Then we can express the unit normal vector as ν(x) =∑

i νi (x)Ei(σ (x)),
for some functions νi : S → R. By Remark 15.2.3.3.5,

�̂r (x) =
∑

i

νi(x)Ei(1) .

By differentiating we obtain

d�̂r (v) =
∑

i

dνi(v)Ei(1) . (15.2.17)

On the other hand, since left-invariant vector fields are parallel for the left-invariant
connection Dl , we have

Dl
vν =

∑

i

dνi(v)Ei(σ (x)) . (15.2.18)

The identities (15.2.17) and (15.2.18) together show that �∗
r gH2(v,w), which

equals the Anti-de Sitter metric g
AdS2,1 at the identity evaluated on the tangent

vectors d�̂r (v) and d�̂r(w), equals g
AdS2,1(Dl

vν,D
l
wν).

Using Eq. (15.1.26) and Lemma 15.1.2.4.1,

Dl
vν = ∇vν + v ⊠ ν = B(v) − ν ⊠ v = (B − J)v .

We conclude that

�∗
r gH2(v,w) = I ((B − J)v, (B − J)w) = I ((id + JB)v, (id + JB)w)

as claimed. The proof for the left projection is exactly the same, using right-invariant
vector fields and the right-invariant connection, and one gets a difference in sign
when applying Eq. (15.1.26). !�

15.2.3.4 Consequences and Comments

We collect here several consequences and remarks around Proposition 15.2.3.3.7.

• A first simple remark is that if σ is a totally geodesic immersion, which means
that B vanishes identically, then the projections are local isometries. Even
without using Proposition 15.2.3.3.7, we have already observed this fact in
Example 15.2.3.3.2 for the totally geodesic plane P1, and it is therefore true
by the naturality property for every totally geodesic immersion.
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• Proposition 15.2.3.3.7 shows that the differential of the left and right projections
essentially has the expression

dσx ◦ (B ± J) ,

up to post-composing with an isometry sending the image of dσx to a fixed copy
of H2. Since B is I -symmetric, J ◦ B is traceless, and therefore

det(B ± J) = 1 + detB = −KI . (15.2.19)

This shows that �l is a local diffeomorphism at a point x if and only if �r is,
which is the case if and only if the intrinsic curvature of I at x is different from 0.

• Since the trace of B±J equals 2, the differentials of �l and �r have either rank
2 or rank 1. (In fact, by (15.2.19), when the differential of �l has rank 1, the
same holds for the differential of �r .) Hence the differential of the Gauss map
G : S → H

2 × H
2 is always non-singular. Moreover, we have the following

dichotomy: for every point x, either the image of G is locally a graph of a map
between (open subsets of) H2, or it is tangent at G(x) to a maximal flat of H2 ×
H

2, that is, to the product of two geodesics.
• If an immersed surface has the property that the curvature of the first fundamental

form never vanishes, and if moreover �l and �r are globally injective, then
the image of G is the graph of a diffeomorphism Fσ between two subsets of
H

2, called the associated map. From Eq. (15.2.19), the Jacobians of �l and �r

are equal, hence the associated map is area-preserving. When �l and �r are
only locally injective, but not globally, we still obtain an area-preserving local
diffeomorphism Fσ which is now defined between two hyperbolic surfaces, not
globally isometric to subsets of H2.

• More generally, as a consequence of the previous points, the image of G is always
a Lagrangian submanifold in H

2 ×H
2 with respect to the symplectic form

� = π∗
l ωH2 − π∗

r ωH2 , (15.2.20)

where ωH2 is the hyperbolic area form. This result has been proved in several
works with different methods: see [9, 30, 101]. Moreover the Lagrangian
condition is locally the only obstruction to inverting this construction, that is,
to realizing an immersed surfaces in H2 ×H2 locally as the image of the Gauss
map of a spacelike immersion in AdS2,1.

• Finally, given a spacelike immersion σ , the normal evolution of σ is defined as

σt (x) = expσ(x)(tν(x)) ,

where ν is the future unit normal vector field. In general σt may fail to be an
immersion for |t| large. (We will come back to this point in Sect. 15.3.1.1, in
particular Remark 15.3.1.1.3). When it is an immersion, the computation of the
metric in Lemma 15.2.3.2.2 shows that the image of σt at x is orthogonal to
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the geodesic γ (t) = expσ(x)(tν(x)). In other words, the Gauss map of σt is
equal to the Gauss map of σ . Hence with respect to the previous point, given
a spacelike immersion, there is actually a one-parameter family of immersions,
which differ from one another by the normal evolution, which have the same
Lagrangian submanifold of H2×H2 as Gauss map image. This phenomenon can
be explained in a more transparent way in terms of the unit tangent bundle, see
Sect. 15.2.3.5 below.

Remark 15.2.3.4.1 Given a Riemannian metric I , suppose A a (1, 1)-tensor which
is I -symmetric and I -Codazzi, namely satisfying d∇I

A = 0 (recall Eq. (15.2.13)
for the definition of the exterior derivative). Then the curvature of the metric g =
I (A·, A·) is expressed by the formula

Kg = KI

det(A)
,

see [82]. The tensors id ± J ◦ B appearing in Proposition 15.2.3.3.7 are I -
Codazzi, since id, J and B are all I -Codazzi. Then using the Gauss equation and
Eq. (15.2.19), one verifies directly that, when non-degenerate, the pull-back metrics
of Proposition 15.2.3.3.7 are hyperbolic.

15.2.3.5 Future Unit Tangent Bundle Perspective

The Gauss map of an embedded surface can be described concisely in terms of
the future timelike unit tangent bundle T 1,+AdS2,1, namely the bundle whose fiber
over x ∈ AdS2,1 is the subset of TxAdS2,1 consisting of future-directed timelike
vectors of square norm −1 (which is therefore a copy of H2). The total space
of T 1,+AdS2,1 has also a structure of principal S1-bundle over H2 × H2: the
projection π : T 1,+AdS2,1 → H2 × H2 maps (x, v) to the equivalence class (up
to reparametrization) of the timelike geodesic γ with γ (0) = x and γ ′(0) = v,
and the S1-action is by the geodesic flow, namely the action of eit maps (x, v) to
(γ (2t), γ ′(2t)) (recalling that timelike geodesics have length π).

One can then define the Gauss map for any spacelike immersed surface σ : S →
AdS2,1: this is simply obtained by first lifting σ to a map σ̃ : S → T 1,+AdS2,1,
where σ̃ = (σ, ν), and then projecting σ̃ to H2 × H2 by composition with π .
Hence one clearly recovers the fact that the Gauss map is invariant by the normal
evolution, since normal evolution corresponds to the action of the geodesic flow on
T 1,+AdS2,1.

We will not pursue this point of view very far here, and we refer to [30] for
the interested reader and to [77] for the necessary background. However, it is
worth mentioning that there is a natural fiber bundle connection on the principal
bundle π : T 1,+AdS2,1 → H2 × H2, which has interesting consequences. To
define the connection, recall that the Levi-Civita connection of AdS2,1 induces a
decomposition of T(x,v)TAdS2,1 = H ⊕ V , where V is the tangent space to the
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fiber, hence naturally isomorphic to TxAdS2,1, while H consists of vectors tangent
to the lifts to TAdS2,1 of geodesics of AdS2,1, and therefore the differential of
the projection TAdS2,1 → AdS2,1 identifies H with TxAdS2,1. Then the pseudo-
Riemannian Sasaki metric gS is defined on TAdS2,1 by declaring that H and V are
orthogonal, and that gS restricted to H and V coincides with the metric of AdS2,1

under the above isomorphisms. It turns out that the Sasaki metric is invariant both
under the action of the isometry group Isom(AdS2,1) and by the geodesic flow. Then
the connection, which in this case is simply a real-valued 1-form on T 1,+

AdS2,1, is
defined as

ω(·) = gS(χ, ·) ,

where χ is the infinitesimal generator of the geodesic flow: at a point (x, v), the
component of χ along V vanishes, while its component along H is v. One can
then prove (see [30, Proposition 3.9]) that the curvature of the connection ω, which
is defined as dω (in general there is an additional term ω ∧ ω, which vanished
automatically here), coincides up to a factor with the pull-back π∗�, where � is
the symplectic form of H2 × H2 defined in (15.2.20). This permits to recover once
more the fact that the Lagrangian condition is the only local obstruction to realize a
submanifold of H2 ×H2 as the Gauss map image of a spacelike surface in AdS2,1,
a fact we mentioned already in Sect. 15.2.3.4. In [30] this technology is applied to
determine a global obstruction to the reversibility of the Gauss map construction
for MGH Cauchy compact manifold, namely in presence of the action of a pair of
Fuchsian representations ρ = (ρl, ρr ) : π1� → PSL(2,R) × PSL(2,R), in terms
of Hamiltonian orbits.

15.2.3.6 Non-smooth Surfaces

The construction of the Gauss map can be extended in the non-smooth setting, for
instance for convex spacelike surfaces S in AdS2,1, which means that every support
plane of S is spacelike. Then one defines the set-valued Gauss map as the map
sending each point x of S to the set of future unit vectors in T

1,+
x AdS2,1 orthogonal

to support planes of S at x. Hence the image of a point x ∈ S is a convex subset of
TxAdS2,1, and it is reduced to a single point if and only if S is differentiable at x.
The image of G in T

1,+
x AdS2,1 is a C1,1 surface.

In this pioneering work, Mess highlighted the relation between pleated surfaces
and earthquake maps. Recall that, given an achronal meridian � ⊂ ∂AdS2,1, the
upper and lower boundary components ∂±C(�) of the convex hull of � are a convex
and a concave pleated surface, see Proposition 15.2.1.6.6 and Remark 15.2.1.6.7.

In general the pleated surfaces ∂±C(�) may contain lightlike triangles, which
happens exactly in correspondence of a sawtooth, see Remark 15.2.1.6.5 and also
Remark 15.3.2.1.3 below. In this case, the Gauss map is of course not defined on
these lightlike triangles. The fundamental claim is then the following, see also [9]
for more details:
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Lemma 15.2.3.6.1 Given an achronal meridian � ⊂ ∂AdS2,1, the image of the
Gauss map of ∂+C(�) and ∂−C(�), which are defined only on the spacelike parts,
are the graph of (left and right respectively) earthquake maps between straight
convex sets of H2.

More precisely, what happens is that the left and right projections from ∂+C(�)

to H2 are (right and left respectively) earthquake maps with image a straight convex
set, and the earthquake measured laminations coincide with the bending measured
laminations. Hence the composition �r ◦�−1

l gives a left earthquake map, which is
in fact defined in the complement of the simplicial leaves of the lamination, and its
earthquake measured lamination is identified to the bending measured lamination of
∂+C(�). The same holds for ∂−C(�), by reversing the roles of left and right.

We will not give a full proof of Lemma 15.2.3.6.1, but in the next section we will
explain the case of a surface pleated along a single geodesic, which is the essential
step. The full lemma can then be proved by an approximation argument as in [21].
For more details on the part of the statement about straight convex sets, see [32].

Now, when the curve � is the graph of an orientation-preserving homeomor-
phism, one obtains as a result earthquake maps of H2. When moreover ϕ is
the homeomorphism which conjugates the left and right representations ρl, ρr :
π1� → PSL(2,R) of the holonomy of a MGH Cauchy compact manifold, the
naturality of the construction implies that the earthquake map descends to an
earthquake map from the left to the right hyperbolic surfaces, namely H2/ρl(π1�)

and H2/ρr(π1�). (By Lemma 15.3.2.2.1 which will be discussed below, one
actually sees directly that the earthquake maps of H2 extends continuously to ϕ

on the boundary at infinity.)
Let us denote, for a measured geodesic lamination μ on �, the left and right

earthquake maps by

El
μ : T (�) → T (�) and Er

μ : T (�) → T (�) ,

seen as maps of the Teichmüller space of � to itself. As a consequence of the
previous discussion, and the example to be explained in the next section, Mess
recovered Thurston’s Earthquake Theorem:

Theorem 15.2.3.6.2 (Earthquake Theorem) Given any two hyperbolic metrics
h, h′ on �, there exists a unique pair of measured geodesic laminations (μl, μr)

on � such that [h′] = El
μl
([h]) = Er

μr
([h]).

We mention here that in [61] the Gauss map is considered for convex polyhedral
surfaces � in MGH Cauchy compact manifolds M . These convex polyhedral
surfaces are therefore contained in the complement of the convex core, and their
Gauss map will be again set-valued. The bending locus of �, which replaces the
bending lamination, induces two geodesic graphs on the left and right hyperbolic
surfaces with different combinatorics, called flippable tilings. Roughly speaking,
this is because the image of the vertices of � are mapped to hyperbolic polygons
under the left and right projections, and the associated map “flips” these polygons
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with respect to the adjacent components of the complement of the geodesic graph.
As a result of this construction, in [61] the authors prove the existence of (many)
left and right “flip” maps between any two closed hyperbolic surfaces of the same
genus.

15.2.3.7 The Fundamental Example

Finally, in order to understand how earthquake maps are associated to pleated
surfaces, let us now consider the fundamental example. Let S be a piecewise totally
geodesic surface consisting of the union of two half-planes in AdS2,1 meeting along
a spacelike geodesic, see Fig. 15.13.

Our aim is to understand the left and right projection for this surface S. Observe
that these are well-defined in the complement of the spacelike geodesic which
constitutes the bending locus of S. As already observed above (see the first point in
Sect. 15.2.3.4), the projections �l and �r are isometric on each (totally geodesic)
connected component of the complement of such bending geodesic in S. Let us call
these two components S1 and S2.

We may assume that S1 is contained in the plane P1, composed of order-two
elliptic elements in PSL(2,R). Therefore the bending locus is a spacelike geodesic
contained in P1, namely the set of order-two elliptic elements having fixed point in

Fig. 15.13 A pleated surface
with bending locus a single
geodesic, in an affine chart
for AdS2,1
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a geodesic � of H2. From the notation of Sect. 15.1.2.5, it has the form

L�,�′ = {X ∈ PSL(2,R) |X · �′ = � as oriented geodesics} ,

where �′ is the same geodesic but endowed with the opposite orientation.
To understand the behaviour of the projections, the key point is to understand

the stabilizer of the spacelike geodesic L�,�′ . This is a group isomorphic to R2,
consisting of pairs (A,B) ∈ PSL(2,R) × PSL(2,R) where both A and B are
hyperbolic transformations preserving �. The stabilizer of L�,�′ fixes setwise also
the dual geodesic, namely L�,� (Proposition 15.1.2.5.5).

In fact, by the definition of dual geodesic (Definition 15.1.2.5.4), the dual point
of the spacelike plane S2 lies in the dual geodesic, and is therefore a hyperbolic
transformation σ0 with axis �. Now, from the discussion of Sect. 15.2.3.3 (see in
particular Remark 15.2.3.3.6), the left projection �l : S1 � S2 → H2 is obviously
the identity on S1 (where we identify as usual P1 with a copy of H2), while on S2 it
is given by multiplication on the right by σ−1

0 . Similarly, the right projection is the
identity when restricted to S1, and left multiplication by σ−1

0 when restricted to S2.
In conclusion, the composition �r ◦ �−1

l acts on P1 as the identity on one
connected component of the complement of L�,�′ , and conjugates by σ0 on
the other connected component—which simply means acting by the hyperbolic
transformation σ0 under the identification between P1 and H2 (Lemma 15.1.2.5.1).
This is exactly an earthquake map with associated earthquake lamination the
geodesic �. Since the angle between the spacelike planes containing S1 and S2
equals the distance in the dual geodesic L�,� between the corresponding dual points,
we also conclude that the bending measure equals the measure associated with the
earthquake map. In short, the bending and earthquake measured laminations are
identified.

15.3 Part 3: Further Results

In this part we will explain various results which have been obtained after the work
of Mess. Of course we do not aim at an exhaustive treatment here; as mentioned
already in the introduction, our choice is to underline mostly the relations between
Anti-de Sitter geometry and Teichmüller theory.

15.3.1 More on MGH Cauchy Compact AdS Manifolds

In this section we first consider MGH Cauchy compact manifolds, which have
been studied in Chap. 15.2.2, with the purpose of describing more deeply their
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structure, their deformation space, and the applications to Teichmüller theory of
closed hyperbolic surfaces.

15.3.1.1 Foliations

A smoothly embedded spacelike surface S in AdS2,1 has constant mean curva-
ture(CMC) if its mean curvature, namely the trace of the shape operator B, is
constant. We will mostly denote by H the constant value of the mean curvature,
whose sign actually depends on the choice of a normal unit vector (we will implicitly
consider the future unit normal vector here). A particular case are maximal surfaces,
for which H = tr (B) = 0. We will implicitly assume that surfaces are spacelike.

Theorem 15.3.1.1.1 ([12]) Every maximal globally hyperbolic Anti-de Sitter man-
ifold with compact Cauchy surface is uniquely foliated by closed CMC surfaces,
where the mean curvature H varies in (−∞,+∞).

In fact, for every H the CMC surface �H is unique, as an application of the
maximum principle. Moreover, the CMC function τ : M → R which associates to
p the unique H such that the CMC surface �H contains p is a time function, namely
it is strictly increasing along future-directed causal curves.

The embedded surface S has constant Gaussian curvature(CGC) if the determi-
nant detB is constant. In this case the value of the constant is well-defined, and we
will consider here the case of positive Gaussian curvature, which will be denoted
by K ∈ (0,+∞). Hence a CGC surface is either locally convex or locally concave,
where the distinction between convex and concave is relative to the time orientation.

Theorem 15.3.1.1.2 ([14]) Let M be a maximal globally hyperbolic Anti-de Sitter
manifold with compact Cauchy surface. Then each connected component of M \
C(M) is uniquely foliated by closed CGC surfaces, where the Gaussian curvature
K varies in (0,+∞).

Again, each surface with constant Gaussian curvature K is unique in its
connected component. On each connected component the function which associates
to every point the corresponding value of K is again a time function (up to changing
the sign if necessary).

There is a remarkable relation between Theorems 15.3.1.1.1 and 15.3.1.1.2,
which is given by the normal evolution, and which will appear again in the
generalizations of these foliation results to the setting of universal Teichmüller
space. Let us introduce this relation here.

Recall that, given a spacelike immersion σ : S → AdS2,1 with future unit normal
vector field ν, the normal evolution of σ is defined as

σt (x) = expσ(x)(tν(x)) .
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(See also the final item in Sect. 15.2.3.4.) The computation of Lemma 15.2.3.2.2
shows that the pull-back of the ambient metric by σt has the form:

σ ∗t gAdS = I ((cos(t)id + sin(t)B)·, (cos(t)id + sin(t)B)·) , (15.3.1)

where as usual I is the first fundamental form of σ and B its shape operator.

Remark 15.3.1.1.3 The pull-back σ ∗t gAdS might in general be degenerate, corre-
sponding to the fact that the differential of σt might be singular for some t . Under
the identification between the tangent space of the image of σ and σt at x, dσ

and dσt differ by pre-composition with cos(t)id + sin(t)B, whose eigenvalues are
cos(t)+ sin(t)λ1 and cos(t)+ sin(t)λ2, λi being the principal curvatures.

Under certain conditions relating B and t , however, one can make sure that the
map σt is an immersion. For instance, by compactness there exists ε > 0 (which
depends on the norm of B) such that σt is an immersion for t ∈ (−ε, ε). A
more significant condition is the following: if σ is a convex immersion (meaning
that B is positive definite with respect to the future unit normal vector), then σt

is an immersion for positive times t , and of course the same holds for a concave
immersion and negative times.

The relation between CMC surfaces and CGC surfaces is then contained in the
following statement, which also appears in [40].

Proposition 15.3.1.1.4 Let σ : S → AdS2,1 be an immersion of constant Gaussian
curvature K > 0. Then the normal evolution σtK on the convex side of σ , for time
tK = arctan(K1/2) is an immersion of constant mean curvature H = K−1/2(K−1).

Proof By Remark 15.3.1.1.3 the normal evolution σt is an immersion. Let us denote
by It its first fundamental form, and by Bt its shape operator. To check the relation
between mean and Gaussian curvature, it is smarter to apply Eq. (15.3.1) to σt for
negative times and the expression of the curvature given in Remark 15.2.3.4.1. Then
one obtains

KI = KIt

det(cos(t)id − sin(t)Bt )
= − 1+ detBt

cos2(t)+ sin2(t) detBt − cos(t) sin(t)tr Bt

.

Hence one can check that KI (which equals −1 − detB) is constant if and only
if trBt = 2/ tan(2t), in which case an explicit computation shows that tan(t) =
1/
√
K. The result follows. !�

We remark here that a priori, the construction of Proposition 15.3.1.1.4 can-
not be reversed, since the normal evolution σt obtained from a constant mean
curvature immersion σ might be singular at some points. From the proof of
Proposition 15.3.1.1.4, one sees that in fact this occurs if and only if the intrinsic
curvature of the CMC immersion σ vanishes, which is equivalent to the determinant
of the shape operator being equal to −1.

But a posteriori the correspondence is indeed bijective when applied to the
closed surfaces of constant mean and Gaussian curvature of Theorems 15.3.1.1.1
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and 15.3.1.1.2, as a consequence of the uniqueness statements. Indeed if a closed
surface of constant mean curvature H in a MGH spacetime (M, g) were not
obtained by the “reversed” normal evolution construction with respect to Propo-
sition 15.3.1.1.4 (either in the future or in the past), then applying Proposi-
tion 15.3.1.1.4 to an actual surface of the expected constant Gaussian curvature
(given by Theorem 15.3.1.1.2) one would find a new surface of constant mean
curvature in (M, g), thus contradicting the uniqueness of Theorem 15.3.1.1.1. This
means that each surface �H of constant mean curvature H has two equidistant
surfaces of constant Gaussian curvature K+ and K− (which only depend on H ),
one convex in the past of �H , the other concave in its future.

15.3.1.2 Minimal Lagrangian Maps and Landslides

Using the results of the previous section, we can recover the existence of special
maps between closed hyperbolic surfaces, as maps associated to surfaces with
constant mean or Gaussian curvature.

Definition 15.3.1.2.1 Given two hyperbolic metrics h and h′ on a surface S, a
smooth map f : (S, h) → (S, h′) is minimal Lagrangian if its graph is a minimal
Lagrangian submanifold of S × S with respect to the Riemannian product metric
h⊕ h′ and the symplectic form π∗

l ωh − π∗
r ωh′ .

Given a maximal surface �0 in a maximal globally hyperbolic spacetime
(M, g), with compact Cauchy surface �, we claim that the associated map f0 is
a minimal Lagrangian map from (�, h) to (�, h′), where h and h′ are the quotient
metrics induced in H

2/ρl(π1�) and H
2/ρl(π1�). We have already discussed the

Lagrangian condition, which amounts to f0 being area-preserving and is always
verified by the Gauss map image (Sect. 15.2.3.4). The fact that the graph of f0 is
minimal in (� ×�,h⊕ h′) is a consequence of Proposition 15.2.3.3.7.

In fact, we shall show that the Gauss map is conformal and harmonic, which
implies that its image is a minimal surface. By Proposition 15.2.3.3.7 the pull-back
of the product Riemannian metric has the expression 2(I + III). When the trace of
B vanishes identically, by the Cayley–Hamilton theorem B2+(detB)id = 0, which
implies III = −(detB)I showing conformality. Also, observe that the projections
are local diffeomorphisms since by the previous section �0 is obtained as the
equidistant surface from a convex surface (of intrinsic curvature−2), the projections
are always local diffeomorphisms on convex surfaces (Sect. 15.2.3.4), and its Gauss
map coincides with that of �0 (Sect. 15.2.3.4, last item). By a topological argument,
the projections are then global diffeomorphisms from �0 to (�, h) and (�, h′).

The harmonicity of the Gauss map is equivalent to the harmonicity of each
projection. Since the notion of harmonic map between Riemannian surfaces only
depends on the conformal structure on the source, it suffices to show that

�l : (�0, I ) → (�0, I ((id − J ◦ B)·, (id − J ◦ B)·)
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is harmonic, and the same for �r . To see this, we can rewrite the target metric as
(I + III) − 2I ((J ◦ B)·, ·). We have used that B is traceless and thus J ◦ B is
I -symmetric. Together with the Codazzi property of J ◦ B, this also implies that
2I ((J ◦B)·, ·) is the real part of a holomorphic quadratic differential, in light of the
following well-known fact, see [75, 79, 107].

Lemma 15.3.1.2.2 Given a Riemannian metric g on a surface and a (1, 1)-tensor
A, A is traceless if and only if g(A·, ·) is the real part of a quadratic differential for
the conformal structure of g. Moreover the quadratic differential is holomorphic if
and only if A is g-Codazzi.

Therefore �l is harmonic. The same proof clearly holds for �r . This construction
can actually be reversed, in the sense that every minimal Lagrangian map can be
realized as the map associated with a maximal surface. This permits to reprove the
following theorem of existence and uniqueness of minimal Lagrangian diffeomor-
phisms in a given isotopy class:

Theorem 15.3.1.2.3 ([82, 100]) Given a closed surface � and two hyperbolic
metrics h and h′ on �, there exists a unique minimal Lagrangian diffeomorphism
f0 : (�, h) → (�, h′) isotopic to the identity.

Let us briefly turn our attention to landslides, a natural generalization of minimal
Lagrangian maps introduced in [33], which turn out to be precisely the maps
associated to constant mean curvature and constant Gaussian curvature surfaces.

Given two hyperbolic metrics h and h′ on a surface S, and θ ∈ (0, π) a θ -
landslide fθ : (S, h) → (S, h′) is a smooth map which satisfies one of the equivalent
conditions (see [29, Section 4.3] for more details and for the equivalence):

1. There exists a smooth (1, 1)-tensor A such that (if Jh is the almost-complex
structure of h):

f ∗
θ h

′ = h(((cos θ)id + (sin θ)Jh ◦ A)·, ((cos θ)id + (sin θ)Jh ◦ A)·)

which is positive-definite, h-symmetric, h-Codazzi and has unit determinant.
2. There exist harmonic maps f : (S,X) → (S, h) and f ′ : (S,X) → (S, h′),

where X is a conformal structure on S, such that fθ = f ′ ◦ f−1 whose Hopf
differentials satisfy

Hopf(f ) = e2iθHopf(f ′) .

Moreover, in the non-compact case, one has to further impose that f and f ′ have
the same holomorphic energy density.

When θ = π/2 we recover minimal Lagrangian maps, as the above two
conditions are in fact equivalent to Definition 15.3.1.2.1. It then turns out that θ -
landslides are precisely the maps associated to surfaces of constant mean curvature
H = 2/ tan θ , and therefore also to the two equidistant surfaces of constant Gaussian
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curvature tan2(θ/2) and 1/ tan2(θ/2). Hence the following result is a consequence
of Theorem 15.3.1.1.1 (or Theorem 15.3.1.1.2):

Theorem 15.3.1.2.4 Given a closed surface � and two hyperbolic metrics h and h′
on �, and θ ∈ (0, π), there exists a unique diffeomorphism fθ : (�, h) → (�, h′)
isotopic to the identity which is a θ -landslide.

It is worth remarking that, when θ approaches 0, then one of the two associated
surfaces of constant Gaussian curvature (namely the one having Gaussian curvature
tan2(θ/2)) approaches a boundary component of the convex core of the ambient
manifold (M, g), while the other escapes at infinity in the other end of (M, g).
When θ approaches π instead, the roles are switched. Hence the landslide maps
fθ converge to the left and right earthquake maps between (�, h) and (�, h′) as θ

diverges in its interval of definition (0, π). Morally, θ -landslides are a natural one-
parameter family of smooth extensions which interpolate between left earthquake,
minimal Lagrangian maps, and right earthquakes.

As a final remark for this section, recall from Sect. 15.2.3.4 that the area-
preserving condition for maps from (�, h) to (�, h′), or more generally the
Lagrangian condition for submanifolds of �×� (endowed with the symplectic form
induced in the quotient by (15.2.20)), are the only local obstructions to reversing the
Gauss map construction.

Roughly speaking, this means that any Lagrangian immersion of a simply
connected surface in H2 × H2 can be realized as the Gauss map image of a
spacelike immersion in AdS2,1. However, if the Lagrangian immersion in H2 ×H2

is equivariant with respect to a pair of Fuchsian representations ρ = (ρl, ρr ), the
corresponding immersion in AdS2,1 is not necessarily ρ-equivariant.

There is indeed an additional obstruction to reversing the Gauss map construction
globally. As mentioned already in Sect. 15.2.3.5, this obstruction has been studied
in [30] and [101] in terms of an orbit of the group of Hamiltonian symplecto-
morphisms. This obstruction translates to a cohomological vanishing condition by
means of the flux homomorphism, a tool from symplectic geometry.

15.3.1.3 Cotangent Bundle of Teichmüller Space

The existence and uniqueness of maximal and constant mean curvature surfaces
can be remarkably applied to provide new parameterizations of the deformation
space of MGH Cauchy compact Anti-de Sitter three-manifolds. The fundamental
observation is that, from Lemma 15.3.1.2.2, given a maximal surface � of constant
mean curvature H , the second fundamental form of � uniquely determines a
holomorphic quadratic differential α for the conformal structure associated to I .
Hence the conformal class of g, together with α, determines an element of the
cotangent bundle T ∗T (�).
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By virtue of the following theorem, the construction can be perfectly reversed.
This approach is known in the physics literature as ADM reduction based on the
article [5], see also [91] and [35, Chapter 2].

Theorem 15.3.1.3.1 ([79, Lemma 3.10]) Given a Riemannian metric g on a closed
surface � of genus at least 2 and a holomorphic quadratic differential α for g,
there exists a unique germ of maximal spacelike embedding in a MGH Anti-de Sitter
manifold having first fundamental form conformal to g and second fundamental
form the real part of α.

The proof roughly consists in applying PDE methods to find a function f

such that the Riemannian metric g′ = e2f g, together with the real part of α,
solves the Gauss equation. The Codazzi equation is still automatically satisfied as
a consequence of Lemma 15.3.1.2.2, and therefore the pair (g′,Re(α)) determines
the embedding data of a maximal surface using Theorem 15.2.3.1.1.

Remark 15.3.1.3.2 In [79, Lemma 3.10] the proof is actually given in the more
general case of surfaces of constant mean curvature H ∈ (−1, 1), where now the
traceless part of the second fundamental form, namely II0 = II − (H/2)I , is the
real part of a holomorphic quadratic differential.

Theorem 15.3.1.3.1, together with Theorem 15.3.1.1.1 and the parameterization
of Mess, then provides a homeomorphism F : T ∗T (S) → T (S) × T (S). It was
asked in [16, Question 8.1] whether this map is a symplectomorphism with respect
to the natural symplectic structures �COT on the cotangent bundle, and π∗

1 �WP −
π∗

2 �WP on T (S) → T (S), where �WP is the Weil–Petersson symplectic form on
T (S). The answer is affirmative up to a multiplicative factor.

Theorem 15.3.1.3.3 ([98, Theorem 1.11]) The map F : T ∗T (S) → T (S)×T (S)

satisfies

F ∗(π∗
1 �WP − π∗

2 �WP) = −2�COT .

15.3.1.4 Volume

In this section we will briefly mention the results of [31] on the volume of MGH
Cauchy compact Anti-de Sitter manifolds, which is an interesting invariant on
the deformation space T (S) × T (S). Here we are mostly interested in the coarse
behaviour of the volume function.

A first foundational fact is that the volume of a MGH Cauchy compact manifold
is finite, and is coarsely comparable to the volume of the convex core, up to a
constant which only depends on the topology.

Proposition 15.3.1.4.1 ([31, Proposition G]) Given a MGH Anti-de Sitter mani-
fold M with compact Cauchy surface homeomorphic to �, the volume of M \C(M)

is at most π2|χ(�)|/2, with equality if and only if M is Fuchsian.
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Special surfaces in M can then be used to obtain bounds on the volume in terms
of certain quantities defined on the deformation space T (S) × T (S), related to
energies of L1-type, by means of their associated maps (for instance, earthquake
maps from pleated surfaces, and minimal Lagrangian maps from maximal surfaces).

More concretely, given a C1-map f : (�, h) → (�, h′), where h and h′ are
hyperbolic metrics on �, the L1-energy of f is defined as:

E1(f ) =
∫

�

||df ||dAh ,

where the norm ||df || of the differential is computed with respect to the metrics h

and h′, and dAh denotes the area form of h. Unlike the more studied L2-energy,
which is the integral of ||df ||2, the L1-energy is not conformally invariant on the
source, but fully depends on the Riemannian metrics both on the source and on the
target.

Remark 15.3.1.4.2 The L1-energy can be defined under weaker regularity assump-
tions on f , and in fact it coincides with the notion of total variation for BV maps.
For earthquake maps, the total variation is essentially the length of the earthquake
lamination, up to a constant which only depends on the genus. The latter is defined
for simple closed curves as the product of the length of the h-geodesic realization
of the simple closed curve and its weight, and is then extended to general measured
laminations by a continuity argument.

Another important energy of L1-type is the holomorphic energy, which is defined
as

E∂(f ) =
∫

�

||∂f ||dAh ,

and was studied in [111]. In particular, it was shown that minimal Lagrangian
diffeomorphisms are minima of E∂(f ) on the space of diffeomorphisms from (�, h)

to (�, h′) isotopic to the identity.
Let us now summarize the results of [31], although we omit some of the details

here. We say that two quantities f, g, defined here on T (�) × T (�), are coarsely
equivalent if there exist positive constants M1,M2, A1, A1 (M for multiplicative
and A for additive) such that

M1f − A1 ≤ g ≤ M2f + A2 .

Theorem 15.3.1.4.3 ([31]) The following quantities are coarsely equivalent over
T (�) × T (�), with explicit multiplicative constants (universal) and additive
constants (which instead depend only on the genus of �):

• the volume of the MGH Cauchy compact manifold with left and right metrics h

and h′;
• the volume of its convex core;
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• the infimum of the L1-energy over C1 maps from (�, h) to (�, h′) homotopic to
the identity;

• the length of the left earthquake lamination from (�, h) to (�, h′);
• the length of the right earthquake lamination from (�, h) to (�, h′);
• the holomorphic energy density of the minimal Lagrangian diffeomorphism f0 :

(�, h) → (�, h′) isotopic to the identity.

It is also worth mentioning that the multiplicative constants from above and
below for the length of the left and right earthquake maps all agree, hence one
obtains as a corollary that, given two points in Teichmüller space, the length of
the left and right earthquake laminations differ by at most a constant which only
depends on the topology (explicitly, the constant is 2π2|χ(�)|).

Bounds on the volume are obtained also in terms of the exponential of the
Thurston distance between the corresponding points in T (�) (either of the two
asymmetric distances), from above, and in terms of the exponential of the Weil–
Petersson distance, from below, always up to additive and multiplicative constants,
both depending on the topology in this case. These results answer to some extent
Question 4.1 of [16].

15.3.1.5 Realization of Metrics and Laminations

A consequence of the pleated surface construction of Sect. 15.2.3.6 is that the geom-
etry of a MGH Anti-de Sitter manifold with compact Cauchy surface homeomorphic
to � is determined by the pair of a hyperbolic metric h on � and a measured
geodesic lamination. In fact, lifting the measured geodesic lamination μ on the
universal cover H2 of (�, h), one can realize a pleated surface having bending
lamination μ, which will be equivariant for some representation ρ : π1� →
PSL(2,R) × PSL(2,R). Such pleated surface maps in the quotient to a boundary
component of the convex core of a MGH Anti-de Sitter manifold.

Theorem 15.3.1.3.1 is, to some extent, a smooth analogue, where pleated
surfaces are replaced by maximal surfaces, and the data of a holomorphic quadratic
differential is a measure of the curvature of the surface. It is then a natural
question to ask, if the geometry of the MGH Cauchy compact manifold is uniquely
determined by other pairs, for instance the two bending laminations on the boundary
components of the convex core, or the hyperbolic metrics induced, or even by the
induced metrics on a pair of smooth surfaces. These questions can therefore provide
new parameterizations of the deformation space, and are of course motivated also
by their counterparts for quasi-Fuchsian hyperbolic manifolds. We briefly collect
here the state-of-the-art on these questions. Most of these questions were asked in
[16, Section 3].

Theorem 15.3.1.5.1 ([28, Theorem 1.4]) Given a compact surface � and two
measured laminations μ−, μ+ which fill �, there exists a MGH Anti-de Sitter
manifold homeomorphic to � × R such that the bending measured laminations of
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the lower and upper boundary components of the convex core are isotopic to μ−
and μ+ respectively.

The statement can be equivalently reformulated as the fact that, given any two
measured laminations which fill �, the composition of the corresponding left
earthquakes, seen as maps from T (�) to itself, has a fixed point. See [28, Theorem
1.1]. Observe that, similarly to the quasi-Fuchsian case, the hypothesis that μ− and
μ+ fill � is a necessary condition. Uniqueness of the MGH manifold (up to isotopy
of course) is still open.

The following result of Diallo concerns the prescriptions of the induced hyper-
bolic metric on the boundary of the convex core.

Theorem 15.3.1.5.2 ([56]) Given a compact surface � and two hyperbolic metric
h−, h+, there exists a MGH Anti-de Sitter manifold homeomorphic to � × R such
that induced metrics on the lower and upper boundary components of the convex
core are isotopic to h− and h+ respectively.

The following result is a smooth analogue, for convex/concave surfaces lying
outside the convex core.

Theorem 15.3.1.5.3 ([103]) Given a compact surface � and two Riemannian
metrics g−, g+ of curvature < −1, there exists a MGH Anti-de Sitter manifold
homeomorphic to � × R containing a convex surface �− and concave surface �+
whose first fundamental forms are isotopic to g− and g+ respectively.

Again, uniqueness is not known in general. When the curvature of g− and g+ is
equal to −2, uniqueness is proved in [79, Theorem 3.21] by proving that g− and g+
can be uniquely realized as the metrics on the equidistant surfaces from the maximal
surface (in the sense of Proposition 15.3.1.1.4 for H = 0, K = −1). This gives a
new parameterization of the deformation space by T (S)× T (S).

When the two metrics g− and g+ coincide, then Theorem 15.3.1.5.3 had been
already obtained in [83], by showing that there exists a Fuchsian realization. This
has been recently generalized by Labeni in [81], showing that one can realize any
locally CAT(-1) distance on � as the induced distance on a convex surface in a
Fuchsian MGH Anti-de Sitter spacetime. The result of Labeni generalizes also [60],
which concerns the realizability of a hyperbolic metric with cone singularities. It is
natural to expect that any two locally CAT(-1) distances can be realized, probably
uniquely, in a (non-Fuchsian, in general) MGH Anti-de Sitter manifold, but this is
still an open question.

15.3.2 Non-closed Surfaces

In this last chapter we will survey other results where the topology of spacelike
surfaces is not that of a closed surface. We will first discuss a number of universal
constructions, meaning that they generalize the situation one sees in the universal
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covering of a MGH Cauchy compact Anti-de Sitter manifold, which was explained
in Chap. 15.2.2. This will have applications for the theory of universal Teichmüller
space. Then we briefly discuss the state-of-the-art for manifolds with conical
singularities of timelike type, called particles and corresponding to Cauchy surfaces
with cone points, and the so-called multi-black holes which instead correspond to
surfaces with boundary.

15.3.2.1 Foliations with Asymptotic Boundary

Recall from Chap. 15.2.2 and in particular Proposition 15.2.2.1.3 that, given a MGH
Cauchy compact manifold M , any Cauchy surface in M lifts to a spacelike embed-
ded surface in AdS2,1 having asymptotic boundary a proper achronal meridian �

which is the graph of the unique homeomorphism conjugating the left and right
representations of π1� in PSL(2,R).

Some of the constructions we discussed above can be generalized to the setting
of any proper achronal meridian. Recall that �(�) denotes the invisible domain of
�, see Sect. 15.2.1.2.

Theorem 15.3.2.1.1 Let � ⊂ ∂AdS2,1 be the graph of an orientation-preserving
homeomorphism. Then there exists a unique foliation of the invisible domain �(�)

by properly embedded spacelike surfaces of constant mean curvature H , as H ∈
(−∞,+∞).

The CMC function associated to the foliation is a time function, similarly to the
compact case (see Theorem 15.3.1.1.1 and the following discussion).

In the literature Theorem 15.3.2.1.1 does not appear as it is stated here. The
existence for maximal surfaces (that is H = 0) is proved in [27, Theorem 1.6]
(where the statement is indeed given in any dimension). See also [84]. The result for
any value of H , including uniqueness and the foliation statement, appears in [104,
Theorem 3.1] again under the assumption that � is the graph of a quasi-symmetric
homeomorphism.

Moreover, as in the compact case, for every H the surface of constant mean
curvature H and asymptotic boundary � is unique. This is proved in [27, Theorem
1.10] for � the graph of a quasi-symmetric homeomorphism (Definition 15.3.2.2.4
below) and under the additional assumption of bounded second fundamental form.
Using the foliation result, uniqueness for the CMC surfaces is showed in [104, The-
orem 5.2] again assuming that � the graph of a quasi-symmetric homeomorphism.

The proofs, however, can be extended without further difficulty to the general
case of any orientation-preserving homeomorphism. We believe that, by a refine-
ment of the arguments, the statement can also be proved for � any proper achronal
meridian.

When � is the graph of an orientation-preserving homeomorphism, the existence
part of Theorem 15.3.2.1.1 can be actually be obtained as a straightforward
consequence of the following result for constant Gaussian curvature, by applying
the normal evolution described in Sect. 15.3.1.1.
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Theorem 15.3.2.1.2 ([29, Theorem 1.3]) Let � be any proper achronal meridian
in ∂AdS2,1 which is not a two-step curve. Then there exists a foliation of each
connected component of the complement of the convex hull C(�) in the invisible
domain �(�) by spacelike surfaces of constant Gaussian curvature K , as K ∈
(0,+∞).

Here we say that a proper achronal meridian � ⊂ ∂AdS2,1 is a two-step curve
if it is the union of four lightlike segments, two horizontal and two vertical in an
alternate fashion, under the natural identification of ∂AdS2,1 with RP1 × RP1. Up
to isometry, the configuration of a two-step curve is the one drawn in Fig. 15.8.

In other words, every domain of dependence in AdS2,1 which is not the invisible
domain of a two-step curve admits a foliation of the complement of the convex hull
by surfaces of constant Gaussian curvature. The Gaussian curvature function is a
time function, up to changing the sign as for the closed case (Theorem 15.3.1.1.1).
Moreover in [29, Theorem 1.4] uniqueness of the surfaces of constant Gaussian
curvature K in each connected component is proved under the assumption that � is
the graph of a quasisymmetric homeomorphism.

Theorems 15.3.2.1.1 and 15.3.2.1.2 provide affirmative answers to Questions 8.3
and 8.4 of [16] respectively.

Remark 15.3.2.1.3 Unlike Theorem 15.3.2.1.1, the surfaces S±K of constant Gaus-
sian curvature K ∈ (0,+∞) are not always properly embedded in AdS2,1. Their
boundary, however, is explicitely described: it coincides with � in the complement
of all sawteeth of �, where by a sawtooth we mean two consecutive lightlike
segments in ∂AdS2,1, one horizontal and one vertical, which are maximal (meaning
that they cannot be extended to longer lightlike segments). In correspondence of
each sawtooth, the boundary of S±K has an interior spacelike geodesic, namely
the geodesic connecting the two endpoints of the sawtooth. See Fig. 15.14, and
compare also with Remark 15.2.1.6.5. In conclusion, the surfaces S±K are actually
properly embedded in �(�). When � is the graph of an orientation-preserving
homeomorphism, it has no sawteeth, hence the boundary of S±K is precisely �, hence
in this case S±K is properly embedded also in AdS2,1.

Remark 15.3.2.1.4 The invisible domain of a two-step curve coincides with its
convex hull, hence clearly there can be no existence for surfaces of constant
Gaussian curvature in (0,+∞) in this case, since such a surface would be either
convex or concave and therefore live in the convex hull complement, which is empty.
On the other hand, when � is a two-step curve, there does exists a foliation by
surfaces of constant mean curvature with asymptotic boundary �, which is given by
the surfaces with z = c in the parameterization of �(�) of Lemma 15.2.2.2.4 and
pictured in Fig. 15.11.
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Fig. 15.14 A lightlike
triangle, whose boundary
consists of a sawtooth,
contained in ∂AdS2,1, and a
spacelike geodesic of AdS2,1

15.3.2.2 Extensions and Universal Teichmüller Space

The results of Sect. 15.3.2.1 have applications to the extensions of circle homeo-
morphisms, by means of the associated map which has already been discussed in
the closed case, together with the relevant definitions, in Sect. 15.3.1.2.

Extensions of Circle Homeomorphisms The essential lemma to obtain extensions
of circle homeomorphisms is the following. Recall from Sect. 15.1.2.2 that we
denoted by πl, πr the projections from ∂AdS2,1 to ∂H2 which come from the left
and right rulings, or in other words, the projections to the first and second factor in
the identification of ∂AdS2,1 with RP1 ×RP1.

Lemma 15.3.2.2.1 ([27, Lemma 3.18, Remark 3.19]) Let � ⊂ ∂AdS2,1 the graph
of an orientation-preserving homeomorphisms and S be a spacelike convex (or
concave) surface in AdS2,1 with boundary at infinity �. Then the left and right
projections �l,�r : S → H2 extend to the restrictions of πl, πr : RP1 × RP1 →
RP1 on �.

We do not repeat the computations of Sect. 15.3.1.2 here, but essentially for
every θ ∈ (0, π) there are three special surfaces with asymptotic boundary �,
equidistant from one another, one with constant mean curvature H = 2/ tan θ ,
one convex with constant Gaussian curvature tan2(θ/2) and one concave with
constant Gaussian curvature 1/ tan2(θ/2), which all have associated map a θ -
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landslide. Hence Theorems 15.3.2.1.1, or 15.3.2.1.2, together with the extension
lemma (Lemma 15.3.2.2.1), imply the following result:

Corollary 15.3.2.2.2 Given any orientation-preserving homeomorphism ϕ : S1 →
S1 and any θ ∈ (0, π), there exists a θ -landslide �θ : H2 → H2 whose extension
to S1 equals ϕ.

Since surfaces of constant mean curvature or Gaussian curvature are smooth, the
extension �θ will be smooth on H

2, and continuous up to the boundary.

Quasiconformal Mappings We now briefly recall some notions of the theory of
quasiconformal mappings. Since here we will be only interested in smooth maps, we
give a simplified definition under the smoothness assumption. Here we denote by D

the unit disc in C, as a Riemann surface. A diffeomorphism of D is quasiconformal
if its differential maps circles in TzD

∼= C to ellipses of uniformly bounded
eccentricity. More formally:

Definition 15.3.2.2.3 A diffeomorphism � : D→ D is quasiconformal if

K(�) := sup
z∈D

(
largest eigenvalue of d�T

z d�z

smallest eigenvalue of d�T
z d�z

)1/2

< +∞ .

In this case, the quantity K(�) is called maximal dilatation of �.

Quasiconformal mappings of D are precisely those which extend to homeomor-
phisms of the circle which are quasisymmetric, namely, they distort the cross-ratio
of symmetric quadruples in a uniformly controlled way.

Definition 15.3.2.2.4 An orientation-preserving homeomorphism ϕ : ∂D → ∂D is
quasisymmetric if

||ϕ|| := sup
cr(Q)=−1

| log |cr(ϕ(Q))|| < +∞ .

In this case, the quantity ||ϕ|| is called cross-ratio norm of ϕ.

Some explanation is required concerning Definition 15.3.2.2.4. In the definition
of ||ϕ||, the supremum is taken over all quadruples of points in ∂D which have
cross-ratio equal to −1. We use here a definition of cross-ratio such that a quadruple
(p, q, r, s) of points of ∂D has cross-ratio−1 if and only if it is symmetric, meaning
that the two geodesics for the Poincaré metric on D with endpoints (p, r) and (q, s)

intersect orthogonally.

Remark 15.3.2.2.5 Observe also that the cross-ratio norm is a well-defined invariant
of a curve � in the boundary of AdS2,1, since applying isometries of AdS2,1,
which corresponds to pre- and post-composing ϕ with elements of PSL(2,R),
do not change the cross-ratio norm. The cross-ratio norm is indeed well-defined
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on universal Teichmüller space T (D), which can be defined as the space of
quasisymmetric homeomorphism up to post-composition with PSL(2,R).

Theorem 15.3.2.2.6 ([25]) Any quasiconformal diffeomorphism of D extends to a
quasisymmetric homeomorphism of ∂D. Conversely, every quasisymmetric homeo-
morphism of ∂D admits a quasiconformal extension to D.

Back to Anti-de Sitter geometry, the following result is proved in [27, Theorem
1.4] for minimal Lagrangian extensions (i.e. θ = π/2) using maximal surfaces,
and in [29, Corollary 1.5] in full generality, using surfaces of constant Gaussian
curvature.

Theorem 15.3.2.2.7 Given any quasisymmetric homeomorphism ϕ : ∂D → ∂D

and any θ ∈ (0, π), there exists a unique quasiconformal diffeomorphism �θ :
D→ D extending ϕ which is a θ -landslide.

This result, which can be seen as a version of the Schoen Conjecture ([22, 86,
100]) for minimal Lagrangian maps and θ -landslides, has essentially two additional
points with respect to Corollary 15.3.2.2.2. The first is the fact that one can find
an extension which is quasiconformal, and the second is the uniqueness under the
quasiconformality assumption.

For the former, the proof given in [29] essentially consists in showing that the
surfaces with constant Gaussian curvature with asymptotic boundary the graph
of ϕ have bounded principal curvatures, a condition which translates in the
quasiconformality of the associated map. We will discuss the ingredients of the
proof given in [27] below together with other applications.

For the uniqueness instead, roughly speaking the key point is that not only the
construction of the associated map can be reversed, but moreover if one starts with a
quasiconformal extension (minimal Lagrangian, or landslide more generally), then
this can be obtained as the associated map of a surface S (which can be taken
of constant mean curvature or of constant Gaussian curvature) in AdS2,1 whose
first fundamental form is complete. Then S has asymptotic boundary a curve � in
∂AdS2,1, which by Lemma 15.3.2.2.1 coincides necessarily with the graph of ϕ. The
uniqueness of the extension �θ then follows from the uniqueness of the surface, as
mentioned in the comments after Theorems 15.3.2.1.1 and 15.3.2.1.2.

Optimality of Minimal Lagrangian Extensions An essential ingredient in the
proof of Theorem 15.3.2.2.7 given in [27] for minimal Lagrangian extension is the
width of the convex hull of �, which is defined for every proper achronal meridian
� as the supremum of the length of timelike curves contained in C(�). It turns
out that the width is always at most π/2. One then has the following equivalent
conditions:

• the proper achronal meridian � is the graph of a quasisymmetric homeomor-
phism;

• the width of the convex hull C(�) is strictly less than π/2;
• the principal curvatures of the maximal surface with asymptotic boundary � are

in (−1+ ε, 1 − ε) for ε > 0;
• the minimal Lagrangian associated map is quasiconformal.
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These four points all played an essential rôle in the proof of the following
theorem.

Theorem 15.3.2.2.8 ([102, Corollary 2.D]) There exists a universal constant C >

0 such that, for every quasisymmetric homeomorphism ϕ : ∂D → ∂D, the maximal
dilatation of the quasiconformal minimal Lagrangian extension � satisfies:

logK(�) ≤ C||ϕ|| .

Theorem 15.3.2.2.8 thus adresses a question asked in [16, Section 4.3] about
the efficiency of minimal Lagrangian extensions in terms of Teichmüller distance.
Let us outline the strategy of the proof. Essentially, the equivalence of the four
equivalent points mentioned above need to be quantified. One can in fact obtain
quantitative inequalities between the cross-ratio norm of ϕ and the width of the
convex hull, between the width and the principal curvatures of the maximal surface,
and finally between the principal curvatures and the maximal dilatation of the
minimal Lagrangian extension. Putting together all the quantitative estimates, one
obtains the inequality of Theorem 15.3.2.2.8.

There are two extreme cases to be understood. The first is when ϕ is the graph
of a transformation in PSL(2,R), which is equivalent to the maximal surface
being totally geodesic, to the width of the convex hull being equal to 0 and to
the minimal Lagrangian extension being isometric. In this case ‖ϕ‖ = 0 and
K(�) = 1. The qualitatively opposite case occurs for a two-step curve �, namely
the concatenation of four lightlike segments, which we described in detail in
Sect. 15.2.2.2. In this case the maximal surface is given by {z = π/4} in the
coordinates introduced in Lemma 15.2.2.2.4 on the lightlike tetrahedron T. See
also Fig. 15.11. Here the maximal surface is intrinsically flat, hence by the Gauss
equation its principal curvatures are 1 and −1 at every point. It follows from the
discussion of Sect. 15.2.3.4 that in this case there is no associated map at all between
subsets of H2. The width of the convex hull, which is the tetrahedronT itself, equals
π/2. The proof of Theorem 15.3.2.2.8 roughly speaking consists in showing that,
as ‖ϕ‖ approaches 0 or +∞, the geometry of the corresponding maximal surface
approaches that of the two extreme examples, the totally geodesic plane and the flat
maximal surface with principal curvatures identically 1 and −1.

15.3.2.3 Related Results

We briefly mention here some related results. The work [97] studies a “univer-
sal” version of the correspondence between MGH Anti-de Sitter manifolds and
Teichmüller space, and parameterizes a suitably defined moduli space of these
structures by the product of two copies of the universal Teichmüller space T (D).
(Recall Remark 15.3.2.2.5 for the definition of T (D).) Moreover, a universal version
of the map F of Theorem 15.3.1.3.3 is constructed, namely a map T ∗T (D) →
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T (D)× T (D), using the fact that the cotangent bundle T ∗T (D) is identified to the
space of bounded holomorphic quadratic differentials.

A qualitatively opposite situation is described in [105], where maximal surfaces
whose first fundamental form is conformal to C, and the second fundamental form
is the real part of a polynomial quadratic differential on C, are considered. It is
shown that these maximal surfaces are characterized by having asymptotic boundary
a curve in ∂AdS2,1 composed of the concatenation of a finite number of lightlike
sides.

A result of prescription of the induced metric on convex surfaces of constant
Gaussian curvature, generalizing to the universal setting some of the results
discussed in Sect. 15.3.1.5, is proved in [34]. In a similar spirit, results about the
realization of metrics on the boundary of ideal polyhedra in AdS2,1 are presented in
[53], and a first result on the prescription of bending laminations on the boundary
of the convex hull in the universal setting will appear in [88].

15.3.2.4 Cone Singularities and Manifolds with Particles

The last part of this paper will briefly survey results on Anti-de Sitter manifolds
with spacelike surfaces of finite type, namely homeomorphic to the complement
of a finite number of punctures in a closed surface. Depending on the geometry
near the removed points, different geometric structures can arise. For instance MGH
Anti-de Sitter manifolds with particles can be defined, where a particle is a cone
singularity of timelike type. It is required in the definition that the manifold contains
a locally convex Cauchy surface orthogonal to the singular locus. Hence the first
fundamental form of such a Cauchy surface has a cone point in correspondence
of each intersection with a particle. Many of the results we mention here are the
counterpart “with particles” of the results which have been described in Sect. 15.3.1
for the closed case. Hence we will omit most of the details here.

If one fixes the number of cone points (say n) and the cone angles θ1, . . . , θn
at each cone point, which is assumed to be smaller than π , it was proved in [26,
Theorem 1.4] that the deformation space of MGH Anti-de Sitter manifolds with
a Cauchy surface homeomorphic to � and particles of cone angles θ1, . . . , θn is
homeomorphic to the product of two copies of the Teichmüller space of � with n

cone points of angles θ1, . . . , θn. An earthquake theorem for hyperbolic surfaces
with cone points of angle less than π has then been proved, see [26, Theorem 1.2].
The prescription of measured geodesic laminations on the boundary of the convex
core, as an analogue of Theorem 15.3.1.5.1, has been established in [28].

The existence and uniqueness of a maximal surface orthogonal to the singular
locus was proved in [110, Theorem 1.4], thus obtaining as a consequence the
existence and uniqueness of a minimal Lagrangian map between two hyperbolic
surfaces with the same cone angles (less than π) in a given isotopy class ([110,
Theorem 1.3]). Moreover, together with [79, Theorem 5.11] which is a version “with
particles” of Theorem 15.3.1.3.1, one obtains a parameterization of the deformation
space of MGH AdS manifolds with particles by means of the cotangent bundle of the
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Teichmüller space of � with cone angles θ1, . . . , θn < π , which is also identified
to the bundle of holomorphic quadratic differentials with at most simple poles at the
punctures.

The existence and uniqueness of the maximal surface orthogonal to the singular
locus has then been improved in [40, Theorem 1.1] to the existence of a foliation by
constant mean curvature surfaces. The proof actually relies on the results of [39],
namely the existence of a foliation by surfaces of constant Gaussian curvature of
each connected component of the convex core complement ([39, Theorem 1.1]).
These results have of course applications for the existence of θ -landslides between
hyperbolic surfaces with cone angles, see [39, Theorem 5.8]. Many of these results
had been conjectured in [16, Section 6.2], see Questions 6.2–6.5.

The general study of cone singularities besides the case of particles, including
the possibility of intersections between singularities (“collisions”), and introducing
the notion of global hyperbolicity in this setting together with examples, has been
pursued in [15] and [17].

15.3.2.5 Boundary Components and Multi-Black Holes

Teichmüller theory for hyperbolic surfaces with boundary components or cusps is
instead intimately related to the geometry of Anti-de Sitter manifolds with multi-
black holes. Here we only sketch the definition, and we refer to [7] and [32] for
more details.

Let us now assume that ρl, ρr : π1� → PSL(2,R) are the holonomy
representations of complete hyperbolic structures on � with cusps and geodesic
boundary components. Then there is a maximal domain � in AdS2,1 on which the
action of (ρl, ρr ) is free and properly discontinuous, which is however not globally
hyperbolic. The domain � can actually be described as the union of all globally
hyperbolic domains on which the action is free and properly discontinuous, and
each of these can be obtained by the following construction.

The limit set of the action of ρl(π1�) on H2 can be described as the complement
of a family of open arcs in ∂H2, where the endpoints of each removed arc are
the endpoints of a lift to H2 of a geodesic boundary component. The limit set for
ρr(π1�) has an analogue description, and similarly to the closed case, one can find
a circle homeomorphism ϕ : ∂H2 → ∂H2 which is equivariant with respect to
the actions of ρl and ρr . This is however not uniquely determined when geodesic
boundary components are present. In fact, there are many possible choices of the
equivariant map ϕ, and the freedom of such choice corresponds to the definition of
ϕ on each open arc in ∂H2 in the complement of the limit set.

The choice of some particular equivariant map ϕ gives a globally hyperbolic
domain, namely the invisible domain of the graph of ϕ, on which the action is free
and properly discontinuous. The union of all such domains provides the maximal
domain �, whose quotient is a maximal Anti-de Sitter manifold with multi-black
holes.
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Using the pleated surface construction in this setting, in [32] an earthquake
theorem was proved for surfaces with boundary, namely given two hyperbolic
structures on � with geodesic boundary, there exist 2k left (or right) earthquake
maps, where k is the number of boundary components of �. The 2k choices
correspond to the choice, for every boundary component of �, to the sense in which
the earthquake lamination “spirals” around the boundary; in terms of Anti-de Sitter
geometry, this is the choice of a future or past sawtooth in ∂AdS2,1. An extension
of this result to crowned hyperbolic surfaces was given in [94].

The PhD thesis [94] contains a result of prescription of two filling measured
geodesic laminations on a hyperbolic surface with boundary, as the bending
laminations on the boundary components of the convex core of an Anti-de Sitter
manifold with multi-black holes. Finally, [106] contains a study of the maximal
surfaces which appear in this case, and of the associated minimal Lagrangian
diffeomorphisms, in terms of holomorphic quadratic differentials with poles of order
at most 2, hence extending the parameterization we discussed in Sect. 15.3.1.3 in the
closed case.
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Chapter 16
Quasi-Fuchsian Co-Minkowski Manifolds

Thierry Barbot and François Fillastre

Abstract Since the work of W.P. Thurston, some maps from Teichmüller space into
itself can be described using the extrinsic geometry of surfaces in three dimensional
hyperbolic space. Similarly, since the work of G. Mess, some of these maps can
be described using the extrinsic geometry of surfaces in Lorentzian space-forms.
Here we will use the degenerate geometry of co-Minkowski space to prove, and
generalize to any dimension, a theorem of Thurston that says that the total length of
measured geodesic laminations provides an asymmetric norm on the tangent bundle
of Teichmüller space.

The main part of this chapter is an introduction to the geometry of co-Minkowksi
space, the space of unoriented spacelike hyperplanes of the Minkowski space. Affine
deformations of cocompact lattices of hyperbolic isometries act on it, in a way
similar to the way that quasi-Fuchsian groups act on hyperbolic space. In particular,
there is a convex core construction. There is also a unique “mean” hypersurface,
i.e. with traceless second fundamental form. The mean distance between the mean
hypersurface and the lower boundary of the convex core endows the space of affine
deformations of a given lattice with an asymmetric norm. The symmetrization of
the asymmetric norm is simply the volume of the convex core.

In dimension 2 + 1, the asymmetric norm is the total length of the bending
lamination of the lower boundary component of the convex core. We then obtain
an extrinsic proof of the theorem of Thurston mentioned above.

We also exhibit and comment on the Anosov-like character of these deforma-
tions, similar to the Anosov character of the quasi-Fuchsian representations pointed
out in Guichard and Wienhard (Invent Math 190(2):357–438, 2012).
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16.1 Introduction

One of the main examples of the relation between the geometry of the convex core
of hyperbolic quasi–Fuchsian manifolds (such as exposed for example in [26]) and
transformations on Teichmüller space as pointed out by Thurston is the grafting
map. Similarly, Mess noted that the geometry of the convex core in some anti-de
Sitter manifolds is intimately related to the earthquake map. Here we will study
the geometry of the convex core of co-Minkowski quasi-Fuchsian manifolds (to be
defined below). Actually our study is not restricted to the 2 + 1 dimensional case.

Action of Hyperbolic Isometries on Model Spaces Let Hd/� be an oriented
compact hyperbolic manifold. In the Klein projective model, the hyperbolic space
Hd+1 is the interior of a ball, and some features of the action of � can be described
looking at the exterior of the ball, naturally endowed with a Lorentzian structure
of constant curvature one, and called de Sitter space. Using affine duality with
respect to the unit sphere, de Sitter space can be seen as the space of totally geodesic
hypersurfaces of Hd .

Since the work of G. Mess [1, 51], the action of cocompact lattices of O(d, 1) on
model spaces1 attracted attention from geometers, see e.g. the surveys [6, 29]. Apart
from de Sitter space, Anti-de Sitter space has constant curvature−1 and Minkowski
space is the flat one. As we said, de Sitter space is the dual of the hyperbolic space,
and Anti-de Sitter space is its own dual, see e.g. [28]. Co-Minkowski space is the
dual of Minkowski space. More precisely, it is the space of spacelike hyperplanes
of Minkowski space. It comes with a degenerate metric of constant curvature −1.2

Curvature −1 spaces
dual←→ Lorentzian spaces

Hyperbolic space ←→ de Sitter space

co-Minkowski space ←→ Minkowski space

Anti-de Sitter space ←→ Anti-de Sitter space

1We call a d-dimensional model space the quotient by the antipodal map of a pseudo-sphere in
R

d+1, see [28].
2For a pseudo-Riemannian manifold, the sectional curvature is computed only for planes of the
tangent space on which the metric is non-degenerate.
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Fig. 16.1 Affine models of the three 3d model spaces of constant curvature −1. Shadowed
discs are totally geodesic embedded hyperbolic planes. From left to right: hyperbolic space
(Riemannian), co-Minkowski space (degenerated), anti-de Sitter space (Lorentzian)

Co-Minkowski Space The first part of this chapter is an elementary introduction
to co-Minkowski space ∗Rd,1. This space has recently attracted attention under the
name “half-pipe”, as introduced by J. Dancinger in [20, 21],3 and used in recent
works [24, 58, 60], see also [28].

We will focus on a “Klein model” of co-Minkowski space as the subspace
Bd × R of the affine space Rd+1, where Bd is an open unit ball, see Fig. 16.1. In
general, the interest of an affine model is that (unparameterized) geodesics are affine
segments, so for example some affine notions as convexity or convex hull are easily
tractable. In the particular case of co-Minkowski space, many analogues of classical
differential geometry results are easier than the original ones, for example:

• the (smooth) hypersurfaces carrying a non-degenerate induced metric are all
hyperbolic, and when they are metrically complete, they are graphs of functions
on the ball Bd ,

• the shape operator of graph hypersurfaces gives symmetric Codazzi tensors on
the hyperbolic space H

d ,
• actually, the correspondence between complete hyperbolic hypersurfaces and

hyperbolic symmetric Codazzi tensors is one-to-one, that gives a simplified co-
Minkowski version of the fundamental theorem of hypersurfaces (Sect. 16.2.3.1),

• complete hyperbolic hypersurfaces such that the trace of the shape operator van-
ishes are called mean surfaces; existence and uniqueness of such hypersurfaces
are straightforward consequence of classical theory of elliptic PDEs on the ball
(Sect. 16.2.3.2),

• the functions whose graph is a boundary of the convex hull of the graph of a
continuous map b : ∂Bd → R are solutions of the classical Monge–Ampère
equation (Sect. 16.2.3.3).

3The surface coMin1+1 in Fig. 16.2 would deserve the name half-pipe. The name co-Minkowski
space comes from the particular situation of this co-pseudo-Euclidean space, see the corresponding
entry in the Encyclopaedia of Mathematics.
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Another nice feature of the cylinder model of co-Minkowski space is that it
allows an easy definition of degenerations of hyperbolic or Anti-de Sitter manifolds
to a co-Minkowski manifold, as Fig. 16.1 heuristically suggests. In turn, co-
Minkowski geometry as a transitional geometry between the hyperbolic geometry
and the AdS geometry was the main motivation of [20, 21], see also [28, 57, 60].
Such considerations are out of the scope of the present survey.

The Action of H 1(�,Rd,1) By duality, the group of isometries of Minkowski
space, that is O(d, 1)�Rd,1, acts on co-Minkowski space, preserving the degenerate
metric (see Remark 16.2.2). For our purpose, it will be more relevant to restrict
ourselves to the action of O0(d, 1) � Rd,1, where O0(d, 1) is the connected
component of the identity of O(d, 1). If � is a Kleinian cocompact subgroup of
O0(d, 1), then the representations of � into O0(d, 1) � Rd,1 are parameterized by
maps τ : � → Rd,1 satisfying a cocycle relation. Let Z1(�,Rd,1) be the space of
cocycles.

Different totally geodesic embedding of Hd (on which � acts) into co-Minkowski
space will give different cocycles, related by coboundary conditions. So we are
interested in the space H 1(�,Rd,1), the quotient of the space of cocycles by the
coboundaries. From an extrinsic point of view, the vector space H 1(�,Rd,1) is the
space of deformations of � into the group of affine isometries, up to conjugacy by
translations. But H 1(�,Rd,1) encodes more information:

• For d > 2, due to Mostow’s rigidity theorem, it is not possible to non-trivially
deform � among Kleinian subgroups of O(d, 1). But it is possible to look
at deformations of the canonical representation of � into O(d + 1, 1), that
corresponds to the deformation of the flat conformal structure of Hd/�. At an
infinitesimal level, the deformations are parameterized by H 1(�, so(d + 1, 1)).
Due to the well-known splitting so(d + 1, 1) = so(d, 1)⊕ R

d,1, we have

H 1(�, so(d + 1, 1)) = H 1(�, so(d, 1))⊕H 1(�,Rd,1) ,

but due to the Calabi–Weil infinitesimal rigidity theorem, H 1(�, so(d, 1))
reduces to 0 [42, 8.10].

• For d = 2, H 1(�,R2,1) is also isomorphic, as a linear space, to the tangent space
of the Teichmüller space at (the conjugacy class of) �, when we consider the
Teichmüller space as the space of discrete, faithful representations of � into the
isometries of the hyperbolic plane up to conjugacy, see Sect. 16.3.4.

• There is a natural isomorphism between H 1(�,Rd,1) and the space of traceless
symmetric Codazzi tensors on Hd/� (see Proposition 16.3.17 for a proof using
extrinsic co-Minkowski geometry), and the space of traceless symmetric Codazzi
tensors parameterizes the space of infinitesimal deformations of the flat confor-
mal structure of Hd/�, as well as the space of infinitesimal deformations of the
Riemannian metric of Hd/� preserving the total volume and the harmonicity of
the curvature [48].

• H 1(�,Rd,1) parameterizes the space of future complete flat globally hyperbolic
maximal Cauchy compact spacetimes (in short, future complete flat GHMC
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spacetimes), with � as the linear part of the holonomy, see [1, 3, 12, 51] for
more details and precise definitions. The universal covers of such spacetimes
isometrically embed as convex sets in Minkowski space, whose duals in co-
Minkowski space define the convex cores that will be mentioned below, see
Remark 16.3.24.

As a consequence of the second point,H 1(�,R2,1) is a vector space of dimension
(6g − 6), where g is the genus of H2/�. For d > 2, it is not clear whether
H 1(�,Rd,1) is trivial or not. A classical result is that it has dimension at least r

if Hd/� contains r disjoint embedded totally geodesic hypersurfaces [41, 45, 48].
We give an elementary co-Minkowski proof of this fact in Sect. 16.3.1. See for
example [2] and [41] for more information, and [7] for up-to-date references about
this question.

The action of �τ , that is � deformed by an element τ of Z1(�,Rd,1), on co-
Minkowski space is also interesting in its own. Namely, here too, it is a baby toy
model, this time comparing to the study of quasi-Fuchsian hyperbolic manifolds on
the one hand, and to AdS GHMC manifolds on the other one (they are the Lorentzian
analogues of quasi-Fuchsian hyperbolic manifolds). We will focus on the following
aspects. Let τ ∈ Z1(�,Rd,1).

• There exists a smooth hypersurface invariant under the action of �τ . This is
a simple illustration of the general “Ehresmann–Weil–Thurston principle”, see
Proposition 16.3.13.

• The group �τ acts freely and properly discontinuously on co-Minkowski space,
and the quotient gives a (d+1)-dimensional manifold homeomorphic to H

d/�×
R (see Lemma 16.3.1).

• The co-Minkowski manifold ∗
R

d,1/�τ has a convex core, i.e. it contains a non-
empty compact convex set. So the action of �τ on co-Minkowski space is convex
cocompact in the sense of [22, 23].

• The co-Minkowski manifold ∗
R

d,1/�τ contains a unique “mean” hypersurface,
that is with vanishing mean curvature. This situation is reminiscent of almost
Fuchsian manifolds, a particular case of quasi-Fuchsian manifolds which contain
a unique minimal surface, see [46].

• Moreover, ∗Rd,1/�τ is foliated by CMC hypersurfaces, equidistant to the mean
hypersurface, see Remark 16.3.16.

We consider that co-Minkowski space is a toy model, because with a pedestrian
approach, we are able to give an almost self-contained presentation of the different
properties evoked above.

Multi-Dimensional Thurston Earthquake Norm Until this point, all the men-
tioned results were previously more or less known, at least under the form of dual
statements in Minkowski space. Also, the present survey contains the following
original contribution.

As we said, the quotient of co-Minkowski space by �τ has a convex core, and
a unique mean hypersurface, contained in the convex core. The mean distance
between the lower boundary component of the convex core and this mean hyper-
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surface gives a non-negative number, which is uniquely defined by the class in
H 1(�,Rd,1) of τ . This gives a map from H 1(�,Rd,1) to R+, which is actually
an asymmetric norm on H 1(�,Rd,1), see Sect. 16.3.3.2. We will call it the S1 norm
(see Remark 16.3.26 for the signification of S1).

The symmetrization of the S1 norm is:

• the volume of the convex core;4

• a “mean distance” between the future complete and the past complete flat GHMC
having the same holonomy (see Remark 16.3.24).

In dimension 2, it appears that this asymmetric norm corresponds to the
earthquake norm introduced by Thurston in [63]. In particular, we obtain a new
proof of Theorem 5.2 in [63], saying that the earthquake norm is an asymmetric
norm on the tangent space of Teichmüller space. The tangent space of Teichmüller
space can be identified with the space of measured geodesic laminations, and the
earthquake norm in the total length of the lamination, see Sect. 16.3.4.

In turn, the volume of the convex core is the sum of the total length of the bending
laminations of its boundary. Here again, this result should be compared with its more
involved analogues in the hyperbolic and anti-de Sitter cases [16, 17].

Using two successive identifications of the tangent space of Teichmüller space
with its cotangent space and a formula of Wolpert, the earthquake norm defines
another asymmetric norm on the tangent space of Teichmüller space, the length
norm, see (16.42) for a formula. The length norm defines an asymmetric Finsler
structure on Teichmüller space, that in turn defines a distance, now called the
Thurston asymmetric distance, and introduced by Thurston in [63]. This distance
recently attracted attention [54, 55, 65]. Note that the earthquake norm also induces
an asymmetric distance on Teichmüller space, but, to the best of our knowledge,
nothing is known about this distance.

Anosov Feature In the third and last part of the present survey, we see that co-
Minkowski space is also a baby toy model for the theory of Anosov representations,
which has known during the recent years, after the pioneering work of F. Labourie
[47], a series of development (see [10, 19, 36, 37, 43], see also [6] for a complemen-
tary discussion on Anosov representations in the context of Lorentzian geometry,
and [32] for a proof of the Anosov character of the representations considered in the
present survey).

Once more, it turns out that in the context of co-Minkowski space the theory of
Anosov representations reduces to a particularly simple form. Moreover, this point
of view provides a proof of the fact that convergence of cocycle implies uniform
convergence of limit curves (Lemma 16.4.11).

4This fact was noted to the first author by Andrea Seppi.
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16.2 Co-Minkowski Geometry

Co-Minkowski space is the space of (unoriented) spacelike hyperplanes of
Minkowski space. We first investigate the space of oriented spacelike hyperplanes
(Sect. 16.2.1). Then we introduce a cylindrical affine model for co-Minkowski
space, similar to the Klein ball model of hyperbolic space (Sect. 16.2.2). In the
cylindrical model, the co-Minkowski space is the cylinder Bd ×R, where Bd is the
open unit ball of Rd centered at the origin. In particular, extrinsic co-Minkowski
geometry of graphs of maps h : Bd → R can be investigated (Sect. 16.2.3).

16.2.1 Definition of Co-Minkowski Space

16.2.1.1 Space of Spacelike Hyperplanes

Let us recall that the Minkowski space R
d,1 of Lorentzian geometry is the affine

space Rd+1 endowed with the bilinear form

〈x, y〉d,1 = x1y1 + · · · + xdyd − xd+1yd+1 .

A hyperplane P of Rd,1 is spacelike (resp. timelike, lightlike) if the restriction of
〈·, ·〉d,1 to P is positive-definite (resp. has signature (+, . . . ,+,−), is degenerate).
The isometry group of Rd,1 is O(d, 1) � Rd,1: it is generated by translations and
linear transformations preserving 〈·, ·〉d,1.

Linear spacelike hyperplanes are parameterized by the set of future unit normal
vectors (for 〈·, ·〉d,1):

Hd := {x ∈ R
d,1|〈x, x〉d,1 = −1, xd+1 > 0} .

Let gHd be the metric induced by 〈·, ·〉d,1 on the tangent spaces of Hd . It is well
known that (Hd, gHd ) is a model of the d-dimensional hyperbolic space.

Let P be an affine spacelike hyperplane of Rd,1. If n ∈ Hd ⊂ Rd,1 is the future
timelike unit normal to P , then there exists h ∈ R such that

P = {y ∈ R
d,1|〈y, n〉d,1 = h} .

This defines a point

P̃ ∗ = (n, h)

in R
d+1 ×R = R

d+2. More precisely, the point P̃ ∗ belongs to one of the connected
components of the degenerate quadric

coMind+1 := {x ∈ R
d+2|〈x, x〉d,1,0 = −1}
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Rd,1

n

n

n

P

h

h

P̃ ∗
coMind+1+

Hd

xd+1xd+1
xtx1

0

0

Fig. 16.2 The dual of a spacelike hyperplane of Minkowski space Rd,1 in coMind+1. In the picture,
d = 1

where

〈(x1, . . . , xd+1, xt ), (y1, . . . , yd+1, yt )〉d,1,0 = x1y1 + · · · + xdyd − xd+1yd+1 .

Later we will identify both components of the quadric, and the point P̃ ∗ will
correspond to a point P ∗, that explains the ˜ for our current notation. Note that
coMind+1 is the space of oriented spacelike hyperplanes of Minkowski space. See
Fig. 16.2.

We will denote by gcoMd+1 the degenerate (0, 2)-tensor induced by 〈·, ·〉d,1,0
on the tangents spaces of coMind+1. The connected component coMind+1+ =
coMind+1 ∩ {xd+1 > 0} of coMind+1 containing the point P̃ ∗ is homeomorphic
to Hd ×R. This leads to a fibration:

π : coMind+1+ → Hd

mapping (x1, . . . , xd+1, xt ) to (x1, . . . , xd+1). It is a principal R-bundle; it is an
isometry, and the fibers are precisely tangent to the kernel of the degenerate metric
gcoMd+1 , and

gcoMd+1 = π∗gHd .

16.2.1.2 Isometries

As the “metric” gcoMd+1 is degenerate, it will be more relevant to consider a
group acting on coMind+1. As an isometry of Minkowski space sends spacelike
hyperplanes onto spacelike hyperplanes, it acts naturally on coMind+1. This is the
way we define the isometry group of coMind+1. More precisely, it is immediate that
if

P = {y ∈ R
d,1|〈y, n〉d,1 = h}
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is a spacelike hyperplane of Rd,1 and A ∈ O(d, 1), so that P̃ ∗ = (n, h), then

ÃP
∗ = (An, h)

and if v ∈ R
d,1,

P̃ + v
∗ = (n, 〈v, n〉d,1 + h) .

So O(d, 1)�Rd,1 acts linearly on coMind+1 via the representation

(A, v) 	→

⎛

⎜
⎜
⎜
⎝

0

A ...

0
t vJA 1

⎞

⎟
⎟
⎟
⎠

, (16.1)

where J = diag(1, . . . , 1,−1) (recall that A ∈ O(d, 1) if and only if tA =
JA−1J ). So we define the isometry group of coMind+1 as O(d, 1) � Rd,1 with
the action on Rd+2 induced by the representation (16.1). In particular, the group
structure on O(d, 1)�Rd,1 is

(A1, v1) · (A2, v2) = (A1A2, v1 + A1v2) . (16.2)

Remark 16.2.1 Let O+(d, 1) be the subgroup of O(d, 1) preserving Hd . Then,
O+(d, 1) � Rd,1 preserves the connected component coMind+1+ , and the fibration
π is O+(d, 1) � Rd,1-equivariant. The elements of O+(d, 1) � Rd,1 inducing the
identity map on Hd are precisely the translations (elements of Rd,1).

Every fiber of π admits a natural Euclidean structure, for which they are
individually isomorphic to the real line. The action of O+(d, 1)�Rd,1 preserves this
Euclidean structure along the fibers. Indeed, such a fiber is a collection of parallel
spacelike hyperplanes with the same direction n, and one can define the “distance”
between two elements P , P ′ of the same fiber as the proper time of any timelike
segment orthogonal to P and P ′, and with extremities in P , P ′.

Remark 16.2.2 The isometry group of coMind+1 is smaller than the group of
transformations preserving the degenerate metric gcoMd+1 . For example, for c > 0,
the map Hc : Rd+2 → Rd+2, Hc(x) = (x1, x2, . . . , xd+1, cxt ), preserves 〈·, ·〉d,1,0
(hence it preserves coMind+1 and gcoMd+1), but by definition it is not an isometry
of coMind+1.

There does not exist any (non-degenerate) semi-Riemannian metric on coMind+1

invariant under the isometry group of coMind+1 [28, Fact 2.27].
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16.2.1.3 Connection, Geodesics

We have now the hypersurface coMind+1 in R
d+2 together with an “isometry group”

and a degenerate metric gcoMd+1 . As those elements arise from the degenerate form
〈·, ·〉d,1,0 on the ambient Rd+2, there is no obvious metric notion of “unit normal
vector” to coMind+1. Nevertheless, we can proceed similarly to classical affine
differential geometry [52]. Namely, at a point x ∈ coMind+1, let us define as a
“normal field” the vector field N(x) = x. Obviously, N is transverse to coMind+1

and invariant under the group of isometries of coMind+1. The choice of this normal
field allows one to define a connection ∇coMd+1

on coMind+1 induced by the
canonical connection D of the ambient linear space R

d+2:

DYX = ∇coMd+1

Y X + 〈X,Y 〉d,1,0 N .

The following facts are easily checked, see [28, Section 4.2].

Fact 16.2.3 The connection ∇coMd+1
has the following properties:

• it is torsion free,
• compatible with the degenerate metric gcoMd+1 ,
• invariant under isometries,
• its (unparameterized) geodesics are intersection of coMind+1 with linear planes

of Rd+2.

It follows from the last point that the intersection of coMind+1 with linear k-
planes of Rd+2 are totally geodesic. Those intersections will play a fundamental
role as the following fact shows.

Fact 16.2.4 The intersection of coMind+1 with a linear k-planes of Rd+2 transverse
to the degenerate direction is isometric (for the metric induced by gcoMd+1) to the
hyperbolic space of dimension k.

Moreover, ∇coMd+1
coincides with the Levi-Civita connection of the hyperbolic

metric on any such subspace.

Proof Immediate as one can always find an isometry of coMind+1 sending a linear
k-plane to a linear k-plane contained in {xt = 0}. !�

16.2.1.4 Co-Minkowski Space

The co-Minkowski space is the space of unoriented spacelike hyperplanes of
Minkowski space, that is, the quotient of coMind+1 by the antipodal map.

Definition 16.2.5 The co-Minkowski space ∗
R

d,1 is the following subspace of the
projective space: ∗Rd,1 = coMind+1/{± Id}, endowed with the push-forward of the
degenerate metric gcoMd+1 , denoted by g∗Rd,1 .
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The connection ∇coMd+1
also induces a connection ∇∗

R
d,1

on ∗
R

d,1.
We define the isometry group of ∗

R
d,1 as the image of O(d, 1) � R

d,1 into
PGL(d + 2), by a projective quotient of the representation given by (16.1).

The map π : coMind+1+ → Hd induces an R-fibration ∗π : ∗
R

d,1 → Hd ,
which is an isometry, and is equivariant for the action of the projectivization of
O(d, 1)�R

d,1.
In will be interesting to work in a particular affine model of co-Minkowski space.

This will be the cylindrical coordinates introduced in the next section.

16.2.2 Cylindrical Model

16.2.2.1 Klein Ball Model of the Hyperbolic Space

We have seen that the subspace Hd of Minkowski space, endowed with the induced
metric, is a model of the hyperbolic space. It is isometric to the subset {x ∈
R

d,1|〈x, x〉d,1 < 0} of the projective space P(Rd,1) endowed with the push-forward
metric.

The Klein ball model of the hyperbolic space is the image of the projective model
of the hyperbolic space in the affine chart {xd+1 = 1}. As a set, it is the open
Euclidean unit ball Bd . The push-forward of the hyperbolic metric on Bd is denoted
by gHd . We will sometimes use the notation H

d to designate the hyperbolic space
(Bd, gHd ). In the remainder of this section, we give explicit formulas relating the
hyperbolic geometry on Bd to the standard Euclidean geometry on Bd , that will be
needed in the sequel.

If x ∈ Bd , then the vector
(
x
1

)
of Rd,1 rescaled by the factor L−1(x) belongs to

Hd , where

L(x) =
√

1 − ‖x‖2

and ‖ · ‖ is the Euclidean norm on Bd :

‖(x1, . . . , xd)‖ =
√
x2

1 + · · · + x2
d ,

see Fig. 16.3.
The expression of the hyperbolic metric gHd in the Klein ball model is:

gHd (x)(X, Y ) = L(x)−2〈X,Y 〉d + L(x)−4〈x,X〉d 〈x, Y 〉d (16.3)

where 〈·, ·〉d is the standard Euclidean metric on R
d ⊃ Bd , x ∈ Bd , X,Y ∈ TxB

d ∼=
R

d . In order to help computations, one may note that

DXL−1(x) = L−3(x)〈x,X〉d (16.4)
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Fig. 16.3 The hyperboloid
Hd and the Klein ball model
of the hyperbolic space Hd

x
1

L−1(x) x
1

Bd

0

and

Hess L = −LgHd , (16.5)

where Hess is the usual Hessian on Rd .
If ωBd if the restriction to Bd of the Euclidean volume form, and ωHd is the

volume form on Bd associated to the hyperbolic metric gHd , from (16.3) one obtains

ωBd = Ld+1ωHd . (16.6)

The main feature of the Klein ball model of the hyperbolic space is that the
(unparameterized) geodesics of gHd are exactly the affine segments in Bd . This
is straightforward, as the geodesics of Hd are the intersections of Hd with linear
timelike planes of Rd,1. This gives the following correspondence between the
connections, see [28, Lemma 4.17].

Proposition 16.2.6 (Weyl Formula) If ∇H
d

is the Levi-Civita connection of gHd

and D is the canonical connection on Bd , then

∇H
d

X Y = DXY + L−2(x)(〈x,X〉dY + 〈x, Y 〉dX) . (16.7)

Corollary 16.2.7 If HessH
d

is the Hessian given by ∇H
d
, then, for a smooth map

f : Bd → R,

HessH
d

f (x)(X, Y ) = Hess f (x)(X, Y )− L−2(x)(〈x,X〉d d f (x)(Y )+ 〈x, Y 〉d d f (x)(Y )) .

(16.8)

Also,

L−1(x)Hess f (x)(X, Y ) =
(

HessH
d

(L−1f )(x)(X, Y ) − (L−1f )(x)gHd (x)(X, Y )
)

.

(16.9)
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Proof (16.8) follows from (16.7) and

HessH
d

f (x)(X, Y ) = X.Y.f (x)− d f (x)(∇H
d

X Y ) . (16.10)

Finally, (16.9) comes from (16.8), (16.3) and

Hess fg = fHess g + gHess f + d f ⊗ d g + d g ⊗ d f . (16.11)

!�
Fact 16.2.8 If � is the Euclidean Laplacian on Bd , then

trg
Hd

Hess f (x) = L2(x)(�f − Hess f (x)(x, x)) . (16.12)

If �H
d

is the Laplacian on Bd given by gHd , then

trg
Hd

L−1Hess f = �H
d

(L−1f )− d(L−1f ) . (16.13)

Proof Let A be the linear operator such that Hess f (x)(X, Y ) = gHd (x)(AX, Y ).
For x �= 0, let (ei)1,··· ,d be an orthonormal Euclidean basis of TxB

d , such that
e1 = x/‖x‖. The definition of A and (16.3) give, for i > 1,

〈Aei, ei〉d = L2(x)gHd (x)(Aei, ei) = L2(x)Hess f (x)(ei, ei ) ,

and

〈Ae1, e1〉d = L2(x)Hessh(x)(e1, e1)+ L−2(x)〈x,Ax〉d .

Also from the definition of A and (16.3),

L−2(x)〈x,Ax〉d = L2(x)gHd (x)(x,Ax) = L2(x)Hess f (x)(x, x) .

(16.12) follows from trg
Hd

Hess f (x) = ∑d
i=1〈Aei, ei〉d . Also, (16.13) is immedi-

ate from (16.9). !�
Let us end this section with some basic facts about (smooth) hyperbolic Codazzi

tensors.

Definition 16.2.9 A (0, 2)-tensor C on Hd is a (hyperbolic) Codazzi tensor if it
satisfies the the Codazzi equation on Hd :

∇H
d

X C(Y,Z) = ∇H
d

Y C(X,Z) .
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Lemma 16.2.10 Let C be a (0, 2)-tensor on Bd . Then C is a hyperbolic Codazzi
tensor if and only if

DX(LC)(Y,Z) = DY (LC)(X,Z) .

Proof The definition of Codazzi tensor means that

X.C(Y,Z)−C(∇H
d

X Y,Z)−C(Y,∇H
d

X Z) = Y.C(X,Z)−C(∇H
d

Y X,Z)−C(X,∇H
d

Y Z) .

Developing this expression using (16.7), one obtains, at a point x,

DXC(x)(Y,Z)−L−2(x)〈x,X〉dC(Y,Z) = DYC(x)(X,Z)−L−2(x)〈x, Y 〉dC(X,Z) .

Writing C = L−1LC, developing the above expression and using (16.4) leads to
the result. !�
Fact 16.2.11 Let S be a (0, 2)-tensor on Bd . If DXS(Y,Z) = DYS(X,Z), then
there exists a function F = (F1, . . . , Fn) with Fi : Bd → R such that S is the
Jacobian matrix of F .

Proof Let �j = ∑d
i=1 Sij dxi . As ∂Sij

∂xk
= ∂Skj

∂xi
, d�j = 0, so by the Poincaré

Lemma, there exists a function Fj : Bd → R such that dFj = �j . !�
Fact 16.2.12 Let F = (F1, . . . , Fd) with Fj : Bd → R. Then there exists f :
Bd → R with ∂f

∂xi
= Fi if and only if ∂Fi

∂xj
= ∂Fj

∂xi
.

In other term, the Jacobian matrix of F is a Hessian matrix (namely the one of
f ) if and only if it is a symmetric matrix.

Proof One implication is Schwarz’s theorem. On the other direction, the one-form
ω =∑d

i=1 Fidxi is closed by hypothesis, hence exact by the Poincaré Lemma, and
it suffices to set ω = df . !�

We finally obtain the following classical result [9, 15, 53].

Lemma 16.2.13 Let C be a (0, 2)-tensor on Bd . Then C is a symmetric hyperbolic
Codazzi tensor if and only if there exists f : Bd → R such that

C = L−1Hess f .

16.2.2.2 Affine Representation of Co-Minkowski Space

To keep track of some relevant affine notions such as convexity, we will work
in an affine model of co-Minkowski space. Namely, we will consider the affine
model of co-Minkowski space given by the central projection of coMind+1+ onto the
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hyperplane {xd+1 = 1} of Rd+2. Observe that in doing so, we favor the coordinate
xd+1, i.e. we distinguish the future timelike vector (0, . . . , 0, 1) of Rd,1. We will
come back to this remark in Sect. 16.4. In the hyperplane {xd+1 = 1}, the image
of coMind+1 is the cylinder Bd × R, where Bd is the open unit ball centered at the
origin of Rd .

We denote by π : Bd ×R→ Bd the projection on the first factor. It corresponds
to the fibration π : coMind+1+ → Hd . We will call vertical lines the fibers of π .
They correspond to parallel spacelike hyperplanes in Minkowski space.

Remark 16.2.14 In these coordinates Bd×R ⊂ Rd+1, the degenerate metric g∗Rd,1

of co-Minkowski space is gHd + 0 d x2
t . The degenerate metric g∗Rd,1 defines a

“distance” between points of co-Minkowski space. Actually this distance is nothing
but the Klein projective metric: if x, y ∈ Bd × R, then they are on a line meeting
∂Bd ×R∪ {∞} either at two distinct points I, J , or at I = J = ∞. Then the Klein
projective distance is d(x, y) = 1

2 | ln[x, y, I, J ]|, where [·, ·, ·, ·] is the cross-ratio,
see [28].

Remark 16.2.15 The boundary at infinity of co-Minkowski space is ∂Bd × R. It
parameterizes the set of lightlike affine hyperplanes of Minkowski space, and it is
called Penrose boundary in [3]. Note that (Rd \ B̄d) × R parameterize the set of
affine timelike hyperplanes of Minkowski space, but we don’t need to consider it.

The interest of an affine model is essentially given by the following facts. The
first one is an immediate consequence of the last point of Fact 16.2.3.

Fact 16.2.16 (Unparameterized) geodesics of ∗Rd,1 in the cylindrical model Bd×
R are (affine) geodesic segments.

The second fact follows from Fact 16.2.4 and by construction.

Fact 16.2.17 The intersection of Bd × R with any affine k-plane not containing a
vertical line, with the metric induced by g∗Rd,1 , is isometric to the hyperbolic space
of dimension k.

In particular, Bd × {0} ∼= Bd is the Klein ball model of the d-dimensional
hyperbolic space.

When k = d , we will call the intersection of Bd×R with a d-plane not containing
a vertical line a hyperbolic hyperplane.

Remark 16.2.18 As every non-degenerate tangent plane of co-Minkowski space is
isometric to the tangent plane of a hyperbolic space, the sectional curvature of co-
Minkowski space is −1.

16.2.2.3 Duality

This cylindrical affine model can be directly described from Minkowski space as
follows. Let P be an affine spacelike hyperplane of Rd,1, and let (x, 1) be a normal
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Rd,1 ∗Rd,1

P

Bd

Bd

x
1

x x

h

P ∗

Fig. 16.4 The dual P ∗ of the hyperplane P = {y ∈ R
d,1|〈(x1

)
, y〉d,1 = h}

vector, with x ∈ Bd . Then there exists a number h such that

P = {y ∈ R
d,1|〈

(
x

1

)

, y〉d,1 = h}

and P defines a point P ∗ = (x, h) ∈ Bd × R, see Fig. 16.4.
Let us give more precisions about the “duality” between Minkowski space and

co-Minkowski space. We already know that if P is a spacelike hyperplane of
Minkowski space, then P ∗ is a point in ∗Rd,1. Conversely, if P is a hyperbolic
hyperplane of ∗Rd,1, let P ∗ be the intersection of all the hyperplanes of Minkowski
space whose duals are points in P . For future reference, let us express this fact in
terms of the cylindrical coordinates Bd × R.

Fact 16.2.19 Let P be a hyperbolic hyperplane of co-Minkowski space, which is
the graph of the affine function h : Bd → R, h(x) = 〈x, v〉d + c. Then the point P ∗
dual to P has coordinates P ∗ = (v,−c) ∈ Rd × R = Rd,1.

In other terms, if Q is a point of Minkowski space, then the hyperplane Q∗ in co-
Minkowski space is the graph of the affine map h : Bd → R, h(x) = 〈Q,

(
x
1

)〉d,1.

Proof Let us fix x ∈ Bd . Then the point X = (x, 〈v, x〉d + c) ∈ Bd × R of co-
Minkowski space belongs to P . Its dual is the spacelike hyperplane of Minkowski
space defined as

X∗ = {(y, yd+1) ∈ R
d × R|〈

(
x

1

)

,

(
y

yd+1

)

〉d,1 = 〈v, x〉d + c} ,

i.e., X∗ = {(y, yd+1) ∈ Rd × R|〈(x1
)
,
(

y
yd+1

)〉d,1 = 〈(x1
)
,
(

v
−c

)〉d,1} and obviously
(v,−c) belongs to this hyperplane. As x was arbitrary, (v,−c) belongs to all the
hyperplanes dual to the points of P , which is the definition of P ∗. !�



16 Quasi-Fuchsian Co-Minkowski Manifolds 661

The proof of the following facts are left to the reader.

Fact 16.2.20

1. If P is a hyperbolic hyperplane in co-Minkowski space ∗
R

d,1, then P ∗ is a point
in Minkowski space Rd,1 and (P ∗)∗ = P .

2. Let P and Q be two hyperbolic hyperplanes in ∗
R

d,1.

(a) if P and Q meet in ∗Rd,1 then P ∗ and Q∗ are joined by a spacelike segment
in Rd,1.

(b) if P is strictly above Q in B̄d×R, then Q∗ −P ∗ is a future directed timelike
segment in Rd,1.

(c) if P and Q have a common point in ∂Bd ×R, then P ∗ and Q∗ are joined by
a lightlike segment.

The vector space structure of Minkowski space corresponds via duality to the
vector space structure on the space of restrictions to Bd of affine maps.

Fact 16.2.21 Let hQ and hP be the restrictions to Bd of affine maps, such that their
graphs are the hyperbolic hyperplanes P,Q of co-Minkowski space, and let λ ∈ R.
Then the graph of hP + λhQ is dual to the point P ∗ + λQ∗ of Minkowski space.

Remark 16.2.22 A convex spacelike hypersurface S of Minkowski space is the
boundary of the intersection of half-spaces bounded by spacelike hyperplanes. A
hypersurface is F-convex if it is the boundary of a spacelike convex hypersurface
such that any spacelike vector hyperplane is the direction of a support plane, and if
the surface is in the future side of its support planes. Each support plane P has a
normal vector of the form

(
x
1

)
for x ∈ Bd , so there is h(x) ∈ R such that

P = {y|〈y,
(
x

1

)

〉d,1 = h(x)} .

The graph S∗ of the function h in Bd × R is actually a convex hypersurface, see
[13, 30]. In more classical terms, h is the support function of the convex set K

bounded by S:

h(x) = maxk∈K 〈
(
x

1

)

, k〉d,1 . (16.14)

Let us suppose furthermore that S is the graph of a function f : Rd → R. Then if
k ∈ K there is y ∈ Rd such that k = ( y

f (y)

)
, and from (16.14),

h(x) = maxy∈Rd 〈
(
x

1

)

,

(
y

f (y)

)

〉d,1 = maxy∈Rd {〈x, y〉d − f (y)} ,

i.e. h is nothing but the conjugate (Legendre–Fenchel dual) of f .
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In the same way, convex hypersurfaces of Minkowski space which are in the
past side of their support planes have dual hypersurfaces in the cylindrical model of
co-Minkowski space, which are graphs of concave function h : Bd → R.

Example 16.2.23 The dual surface of the hyperboloid {y|〈y, y〉d,1 = −t2, yd+1 >

0} is the graph of the function Bd → R, x 	→ −tL(x). Note that this function
is convex (see (16.5)). In the same way, the dual surface of the hyperboloid
{y|〈y, y〉d,1 = −t2, yd+1 < 0} is the graph of the concave function h(x) = tL(x).

Remark 16.2.24 Any hypersurface in Minkowski space which is an envelope of
spacelike hyperplanes has a dual hypersurface in co-Minkowski space. This is more
easily seen in the other way. For any C2 function h : Bd → R, there exists a map
χ : Bd → R

d,1, the normal representation, such that P = {y|〈y, (x1
)〉d,1 = h(x)}

is tangent to χ(Bd) at the point χ(x), see [30, 2.12]. Notice that χ is in general
not a regular map, and that the concept of tangent hyperplane has to be understood
in a generalized sense. The simplest example is when h is the restriction to Bd of
an affine map: its graph is a hyperplane P in the cylindrical model Bd × R of co-
Minkowski space, and χ(Bd) is reduced to a point, the dual point of P in Minkowski
space.

Remark 16.2.25 The duality between R
d,1 and ∗

R
d,1 can also be seen in R

d+2,
looking at Rd,1 as a degenerate quadric in R

d+2. See [28, Section 2.5] for more
details.

16.2.2.4 Isometries in Cylindrical Coordinates

Let us write the action of the isometry group of co-Minkowski space in the
cylindrical coordinates Bd × R. First let us state some facts about the action
of hyperbolic isometries on Bd . The group O+(d, 1) acts by isometries on the
hyperbolic space Hd , and hence on the Klein ball model. More precisely, let x ∈ Bd

and A ∈ O+(d, 1). We will denote by A · x the image of x by the isometry of the
Klein ball model defined by A. We have

1
(
A
(
x
1

))
d+1

A

(
x

1

)

=
(
A · x

1

)

. (16.15)

Note that as A is a linear isometry of Minkowski space Rd,1, we have

| (A(x1
))

d+1 |2(‖A · x‖2 − 1) = ‖x‖2 − 1 ,

i.e.,

(
A
(
x
1

))
d+1 =

L(x)

L(A · x) , (16.16)
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so, together with (16.15), one obtains

A

(
x

1

)

= L(x)

L(A · x)
(
A · x

1

)

. (16.17)

For simplicity, let us fix also the following coordinate system; every element
(x1, . . . , xd+1) of Rd+1 has a horizontal component x̄ = (x1, . . . , xd) and a vertical
component xd+1. If 〈x̄, ȳ〉d is the scalar product of horizontal elements, we have,
for x, y ∈ Rd,1, 〈x, y〉d,1 = 〈x̄, ȳd 〉d − xd+1yd+1.

Lemma 16.2.26 Let (x, h) ∈ Bd × R and (A, v) ∈ O+(d, 1) � Rd,1. Then
the isometry of co-Minkowski space defined by (A, v) acts on the cylindrical
coordinates as follows:

(A, v)(x, h) =
(

A · x, L(A · x)
L(x)

h+ 〈A · x, v̄〉d − vd+1

)

. (16.18)

Proof When the isometry is linear, i.e. when v = 0, the elements of the image of
(x, h) by (A, v) are elements of Rd,1 satisfying:

h = 〈
(
x

1

)

, A−1
(

y

yd+1

)

〉d,1

= 〈A
(
x

1

)

,

(
y

yd+1

)

〉d,1

(16.17)= 〈 L(x)

L(A · x)
(
A.x

1

)

,

(
y

yd+1

)

〉d,1 .

Therefore, the image of (x, h) by (A, 0) is (A · x, L(A·x)
L(x)

h).

In the case of a translation by a vector v = (
v̄
vd

)
we have:

h = 〈
(
x

1

)

,

(
y

yd+1

)

−
(

v̄

vd+1

)

〉d,1

= 〈
(
x

1

)

,

(
y

yd+1

)

〉d,1 − 〈x, v̄〉d + vd+1 .

Hence the image of (x, h) by the translation is

(x, h+ 〈x, v̄〉d − vd+1) .

The Lemma follows because from (16.2), (A, v) = (Id, v)(A, 0). !�
Remark 16.2.27 There is an easy way to see the action of O+(d, 1) in the
coordinates Bd × R. Actually, Bd × R is foliated by the graphs of the functions
tL, t ∈ R. Note that these graphs are, for t �= 0, the duals of the two-sheeted
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Fig. 16.5 Action of (A, 0)
on Bd × R

Bd

xA · x

(x, h)

(A, 0)(x, h)

(x, h )

(A, 0)(x, h )

hyperboloids centered at the origin in Minkowski space, see Example 16.2.23.
Observe that for the sheet with positive (respectively negative) xd+1, the parameter
t is negative (respectively positive). Hence if (x, h) ∈ Bd × R belongs to the graph
of tL for some t , then for any A ∈ O+(d, 1), (A, 0)(x, h) still belongs to the graph
of tL, and of course its projection onto Bd × {0} is (A · x, 0), see Fig. 16.5.

Remark 16.2.28 In order to fully understand the action of O(d, 1) on co-
Minkowski space, we have to describe the action of − Id ∈ O(d, 1) on Bd × R. It
is actually straightforward that

(− Id, 0)(x, h) = (x,−h) . (16.19)

We now describe the action of the isometries of co-Minkowski space on
functions. Let S be a hypersurface in Minkowski space which is the graph of a map
h : Bd → R. Then, for (A, v) ∈ O+(d, 1)�Rd,1, due to (16.18), the hypersurface
(A, v)S is the graph of the map (A, v)h : Bd → R defined as

(A, v)h(x) := L(x)

L(A−1 · x)h(A
−1 · x)+ 〈x, v̄〉d − vd+1 . (16.20)

Lemma 16.2.29 Let h : Bd → R be a C2 map and (A, v) ∈ O+(d, 1) � R
d,1.

Then

Hess[(A, v)h](x)(X, Y ) = L(x)

L(A−1 · x) Hess h(A−1 · x)(DA−1(x)X,DA−1(x)Y ) .
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Proof As (Id, v)h is the sum of h with an affine function, we clearly have
Hess[(Id, v)h](x) = Hess h(x). So we need to check the result only for (A, 0).
As

Hess[(A, 0)h] = Hess

(
L

L ◦ A−1 (h ◦ A−1)

)

,

the result follows from the rules (16.11) and

Hess(f ◦ g)(x)(X, Y ) = Hess f (g(x))(d g(x)(X), d g(x)(Y ))+ d f (g(x))(Hess g(x)(X, Y )) ,

(16.21)

using the two following facts during the computations:

• L
L◦A is an affine map by (16.16), so has null Hessian;

• Differentiating two times (16.15) we obtain

A
(
X
0

)
d+1DA(x)(Y )+ A

(
Y
0

)
d+1DA(x)(X)+ A

(
x
1

)
d+1 HessA(x)(X, Y ) = 0 ,

so using (16.16) again,

d
L

L ◦ A
⊗ dA+ dA⊗ d

L

L ◦ A
+ L

L ◦ A
HessA = 0 .

!�
Lemma 16.2.30 Let h : Bd → R be a convex map. Then for (A, v) ∈ O+(d, 1)�
Rd,1, (A, v)h is a convex map.

Note that from (16.19), (− Id, 0)h is concave if h is convex.

Proof The simplest way to see this is to argue that the dual of the epigraph of h is
a future convex set in Minkowski space, see Remark 16.2.22. The isometry (A, v)

will send this future convex set to a future convex set (because A ∈ O+(d, 1)),
whose support function is exactly (A, v)h, hence convex. !�

16.2.2.5 Connection in Cylindrical Coordinates

Clearly, the restriction of the vector field ∂
∂xt

= (0, . . . , 0, 1) of Rd+2 to coMind+1

is invariant under the action of the isometries of coMind+1. It is also immediate to
see that ∂

∂xt
is parallel: ∇coMd+1 ∂

∂xt
= 0. We will denote by T the image of ∂

∂xt
in

co-Minkowski space. An elementary computation (see Fig. 16.6) shows that in the
cylindrical coordinates Bd × R,

T = L
∂

∂xt
. (16.22)



666 T. Barbot and F. Fillastre

Fig. 16.6 By Thales
theorem, T = L ∂

∂xt

In particular, T is invariant under the action of O+(d, 1)�Rd,1, and T is parallel:
∇∗

R
d,1

T = 0. Observe that the trajectories of the flow generated by T are the
vertical lines. In Minkowski space, the flow generated by T corresponds to parallel
displacement of spacelike hyperplanes.

With the help of T, one can express the connection ∇∗
R

d,1
in the cylindrical

coordinates. Namely, at each point (x, h) ∈ Bd × R, we set T(x, h) as the vector
basis for the R-component of the tangent space. Hence a vector field X of Bd × R

can be written as X = Xh + XTT, with Xh ∈ TxB
d and XT ∈ R. If Y is another

vector field of Bd × R, then

∇∗
R

d,1

Y X = ∇YhXh + Yh(XT)T + YT[T,X] . (16.23)

This is easily checked using the definition of the connection∇∗
R

d,1
and the fact that

T is parallel.

16.2.2.6 Volume Form

For future reference, let us mention that a volume form ωcoMd+1 is also given on
coMind+1. For v1, . . . , vd+1 vectors of Rd+2 tangent to coMind+1, set

ωcoMd+1(v1, . . . , vd+1) := ω
Rd+2(v1, . . . , vd+1,N)

(recall that N is the vector field N(x) = x on coMind+1). This form is invariant
under orientation-preserving isometries and parallel for ∇coMd+1

. It induces a
parallel form ω∗Rd,1 on co-Minkowski space, invariant under orientation preserving
isometries, and called the volume form of co-Minkowski space.

In the cylindrical coordinates, ω∗Rd,1 is defined as follows. At a point of
Bd ×R, let v1, . . . , vd be an oriented free family of non-vertical tangent vectors. In
particular, v1, . . . , vd are tangent to a hyperbolic hyperplane, so, keeping the same
notation, we can consider a family v1, . . . , vd of oriented orthonormal vectors fields,
such that v1, . . . , vd ,T is positively oriented. Then ω∗Rd,1 is the unique (d+1)-form
which is equal to 1 when evaluated at such a family of vectors.
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Hence, if ωHd is the volume form of the hyperbolic space and LR is the Lebesgue
measure on the real line, then, in the cylindrical coordinates,

ω = ωHd × L−1LR

16.2.3 Extrinsic Geometry of Graphs

Let h : Bd → R be a C2 map. Its graph S is a hypersurface in Bd × R, hence
in co-Minkowski space if one uses the cylindrical coordinates. Note that the graph
is always transverse to the vertical vector field T defined by (16.22), so the metric
induced on S by the ambient degenerate metric g∗Rd,1 of co-Minkowski space is
always a hyperbolic metric. This does not give too much information. But still,
some information can be obtained from the extrinsic geometry of S. To do so, we
will consider the vector field T as the normal vector to S.

16.2.3.1 Second Fundamental Form and Mean Curvature

Let h : Bd → R be a C2 map and let S be its graph. Any vector field of S can be
written as X + dh(X)L−1T, where X is a vector field of Bd .

Fact 16.2.31 For any smooth vector field X on Bd and C2 map h : Bd → R,

∇∗
R

d,1

(Y+L−1 d h(Y)T)
(X + L−1 d h(X)T) = ∇H

d

Y X + L−1 d h(∇H
d

Y X)T + L−1Hess h(X,Y )T .

(16.24)

Proof First let k ∈ {1, . . . , d}. As X does not depend on the ∂
∂xt

direction, and as

Tk = 0, we have [T,X]k = Ti ∂Xk

∂xi
−Xi ∂Tk

∂xi
= 0, and [T,X]t = −Xi ∂Tt

∂xi
= −X(L).

Also, as L−1 d h(X) does not depend on the vertical coordinate, [T, L−1 d h(X)T] =
0. At the end of the day, if we are at a point x ∈ Bd ,

[T,X + L−1 dh(X)T] = −X(L)
∂

∂xt
= −X(L)L−1T = L−2〈x,X〉T .

So from (16.23),

∇∗
R

d,1

(Y+L−1 d h(Y )T)
(X+L−1 d h(X)T) = ∇YX+(Y (L−1 d h(X))+L−3 d h(Y )〈x,X〉d)T .

We have Y (L−1 d h(X)) = L−1(Y (X(h)) + Y (L−1) dh(X), and from (16.10),
L−1(Y (X(h)) = L−1 HessH

d
h(X, Y )+L−1 dh(∇YX). Also, if we are at the point

x, Y (L−1) = 〈x, Y 〉dL−3:

∇∗
R

d,1

(Y+L−1 dh(Y )T)
(X + L−1 dh(X)T) = ∇YX + L−1 dh(∇YX)T + L−1XT
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withX = HessH
d
h(X, Y )+L−2〈x, Y 〉d dh(X)+L−2〈x,X〉d dh(Y ), and by (16.8),

X = Hess h(X, Y ). !�
Given two vector fields tangent to S, the graph of h, then their co-Minkowski

connection decomposes as a part tangent to S, and a part colinear to T, where T may
be thought of as a unit normal vector field to S. Mimicking the classical theory of
surfaces, we define the second fundamental form IIh of S as the collinearity factor.
More precisely, Eq. (16.24) says that for x ∈ Bd and X,Y ∈ TxB

d ,

IIh(x)(X, Y ) = L−1(x)Hess h(x)(X, Y ) . (16.25)

Remark 16.2.32 From Lemma 16.2.13, the second fundamental form is a symmet-
ric Codazzi tensor on Hd , and any symmetric Codazzi tensor on hyperbolic space
is the second fundamental form of a unique hypersurface in co-Minkowski space.
This is a kind of “fundamental theorem for hypersurfaces” in co-Minkowski space,
with the condition about the first fundamental form reduced to the hypothesis that
the metric is hyperbolic. Note that here there is no Gauss condition, i.e. for d = 2
there is no relation between the curvature of the induced metric and the determinant
of the second fundamental form. This result was probably first proved in [60], see
Proposition 9.1.10 in this reference.

The shape operator shape(h) of S is the symmetric linear mapping asso-
ciated to the second fundamental form by the hyperbolic metric: IIh(X, Y ) =
gHd (shape(h)(X), Y ). From (16.9), if gradH

d
is the gradient for gHd , we have

shape(h)(X) = ∇H
d

X gradH
d

(L−1h)− (L−1h)X .

The mean curvature Mean(h) of the graph of h is the trace for the hyperbolic
metric of the shape operator times 1/d . From the definition or Fact 16.2.8, it can be
written in different ways: with the help of the the Euclidean Laplacian �

Mean(h)(x) = 1

d
Trg

Hd

(
L−1Hess h

)
(x) = 1

d
L(x)(�h(x)− Hess h(x)(x, x)) ,

(16.26)

or with the help of the hyperbolic Laplacian �H
d

Mean(h)(x) = 1

d
�H

d

(L−1h)(x)− (L−1h)(x) . (16.27)

Remark 16.2.33 Let us suppose that h : Bd → R is C2 and convex. Using a basis
of eigenvectors, it follows from (16.26) that Mean(h) is non-negative, and that if
Mean(h) = 0 then h is affine.

Proposition 16.2.34 ([49]) If the graph of a C2 convex function h : Bd → R has
its mean curvature bounded from above, then h has a continuous extension to B̄d .
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Proof Suppose that there is C such that for any x ∈ Bd , Mean(h)(x) < C. Let
θ ∈ ∂Bd , and let hθ be the restriction of h to the segment parameterized by r ∈ [0, 1[
from the origin to θ . Let us also denote l(r) = √

1 − r2. By (16.26),

h′′θ (r) < Cl(r)−3 .

For 1/2 < r < 1, we write

h′θ (r) ≤ h′θ (1/2)+ C

∫ r

1/2
l−3

and as, for 1/2 < t < 1, (1 − t2)−1 < (1 − t)−1, we have

h′θ (r) < h′θ (1/2)+ 2C(1 − r)−1/2 . (16.28)

Also, as h is convex, hθ is convex, hence for 1/2 < r < 1,

h′θ (1/2) ≤ h′θ (r) . (16.29)

Let us define

g(θ) =
∫ 1

1/2
h′θ − hθ (1/2) .

As
∫ 1

1/2(1 − r)−1/2dr is finite, by (16.28) and (16.29), g(θ) is well defined.
Also, together with (16.28), (16.29) and the Dominated convergence theorem, g

is continuous. !�

16.2.3.2 Mean Surfaces

Definition 16.2.35 A hypersurface S of co-Minkowski space is called mean if it is
the graph of a C2 function h : Bd → R with Mean(h) = 0.

Abusing terminology, the function h itself may be also called mean.

Note that when d = 2, the mean surface is not critical for the area functional,
as all the graphs of functions B2 → R in co-Minkowski space have the same area
form (because they are all isometric to the hyperbolic plane).

Due to (16.26), h is mean if and only if for any x ∈ Bd , �h(x) −
Hess h(x)(x, x) = 0. This is an elliptic equation with only second-order terms, that
allows to apply strong results of PDE theory. For this, we have to consider boundary
conditions.

Definition 16.2.36 Let b : ∂Bd → R be a continuous map. A continuous function
h : Bd → R is called a b-map if it extends continuously as b on ∂Bd .
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Proposition 16.2.37 For any continuous function b : ∂Bd → R, there is a unique
C∞ smooth mean b-map, denoted by hmean

b .

Proof Uniqueness is classical from the ellipticity of L−1Mean [33, Theo-
rem 3.3]. Existence follows from the fact that the elliptic equation �f (x) −
Hess f (x)(x, x) = 0 has only second-order terms and that the domain is a ball,
see [33, Corollary 6.24’]. Dividing the equation by L2, we obtain a strictly elliptic
equation, and regularity theorems apply, e.g. [33, Corollary 8.11]. !�
Lemma 16.2.38 If bn : ∂Bd → R are continuous functions uniformly converging
to b : ∂Bd → R, then hmean

bn
is converging to hmean

b .

Proof Let bn be such that the supremum of |bn − b| is arbitrarily small. Then
Mean(hmean

bn
− hmean

b ) = 0, with boundary data bn − b. By the maximum principle
[33, Theorem 3.1], hmean

bn
− hmean

b is arbitrarily small. The same conclusion holds
for hmean

b − hmean
bn

. !�
Remark 16.2.39 For a continuous map b : ∂B → R, it is possible to associate
to hmean

b a (non-regular and non convex) dual hypersurface in Minkowski space,
see Remark 16.2.24. For d = 2, at points of regularity, this surface has zero mean
curvature. We refer to [30] for more details.

16.2.3.3 Convex Hull

Let b : ∂Bd → R be a continuous map. Let

Ab = {a|a : Rd → R is an affine function and a|∂Bd ≤ b}

and for x ∈ Bd , let us define

h−b (x) := sup{a(x)|a ∈ Ab} , (16.30)

and

h+b (x) := −h−−b(x) . (16.31)

Proposition 16.2.40 For any x ∈ Bd , h−b (x) defines a convex b-map h−b : Bd →
R. Moreover, if h : Bd → R is a convex b-map, then h−b ≥ h.

For any x ∈ Bd , h+b (x) defines a concave b-map h+b : Bd → R. Moreover, if
h : Bd → R is a concave b-map, then h+b ≤ h.

In general, we have h+b ≥ h−b . If h+b (x) = h−b (x) for some x ∈ Bd , then b is the
restriction to ∂Bd of an affine map of Rd .

Proof The properties of h−b are proved in the proof of Theorem 1.5.2 in [38]. The
properties of h+b then follows immediately from (16.31). The last property is then
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obvious, since h+b − h−b is then a non-negative concave map vanishing somewhere,
therefore, vanishing everywhere, and since affine maps are the only ones being at
the same time convex and concave. !�

Let �(b) be the graph of b : ∂Bd → R in ∂Bd × R, and let CH(b) be the affine
convex hull of �(b) in Rd+1, that is, the smallest convex set of Rd+1 containing
�(b). Note that as B̄d ×R is a convex set containing �(b), then CH(b) ⊂ B̄d ×R.

Lemma 16.2.41 The boundary of CH(b) is the union of the graphs of h+b and h−b .

Proof This follows from the definitions of h+b and h−b , because CH(b) is the
intersection of all the half-spaces containing �(b). !�

The set CH(b) satisfies the local geodesic property: for any x ∈ CH(b) \ �(b),
x lies in an open segment contained in CH(b) \�(b) [62, Theorem 4.19].

Lemma 16.2.42 The mean surface given by the boundary condition b : ∂Bd → R

is contained in the convex hull CH(b):

h−b ≤ hmean
b ≤ h+b .

Proof Let a ∈ Ab. By the maximum principle [33, Theorem 3.1], a−hmean
b attains

its maximal value on ∂B. But on ∂Bd , a ≥ b, so on Bd , a − hmean
b ≤ a|∂Bd − b =

b − b = 0, i.e. a ≤ hmean
b . Then by definition of h−b , h−b ≤ hmean

b . Similarly, one
proves that h−−b ≤ hmean

−b = −hmean
b i.e. h+b = −h−−b ≥ hmean

b . !�
Lemma 16.2.43 If (bn)n∈N is a sequence of continuous functions from ∂Bd into R

converging uniformly to b : ∂Bd → R, then (h−bn)n∈N (resp. (h+bn)n∈N) converges to

h−b (resp. h+b ).

Proof Let ε > 0 and x ∈ Bd . Then there exists an affine function a such that
h−b (x) ≥ a(x), a(x)+ ε ≥ h−b (x) and a|∂Bd ≤ b. In particular, for n large enough,
a|∂Bd − ε ≤ bn. As a|∂Bd − ε is an affine function, then h−bn(x) ≥ a(x) − ε. As

a was chosen such that a(x) + ε ≥ h−b (x), then h−bn(x) + 2ε ≥ h−b (x). A similar
conclusion holds, exchanging the roles of b and bn. !�
Remark 16.2.44 The dual in Minkowski space of the epigraph of a convex b-map
is a convex set. Its domain of dependence, or Cauchy domain, denoted by �−

b , is
the interior of the intersection of the future side of all the lightlike hyperplanes
containing it. This intersection is nothing but the dual of the epigraph of h−b . The
domain of dependence �−

b is future complete. Considering h+b instead of h−b , and
concave figures instead of convex ones, we obtain the domain of dependence �+

b .
See Fig. 16.8 and [3, 12] for more details.

Remark 16.2.45 The function hmean
b is the solution of the Dirichlet problem for

an elliptic linear equation. The convex function h−b is the solution of the Dirichlet
problem for the Monge–Ampère equation, see [38].
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16.2.3.4 The Mean Curvature Measure

For a C2 function h : Bd → R, we have defined in Sect. 16.2.3.1 the mean curvature
function, which by Remark 16.2.33 is non-negative if h is convex. For a convex C2

function h : Bd → R, let us define the mean curvature measure

MM(h) = d × Mean(h)ωHd ,

where ωHd is the volume form given by the hyperbolic metric on Bd . By (16.27),
for any ϕ ∈ C0

0 (B
d) (here the subscript 0 means “with compact support”),

MM(h)(ϕ) =
∫

Bd

ϕ

(
1

d
�H

d

(L−1h)− (L−1h)

)

dωHd .

If moreover ϕ ∈ C∞
0 (Bd), by integration by part:

MM(h)(ϕ) =
∫

Bd

L−1h

(
1

d
�H

d

ϕ − ϕ

)

dωHd . (16.32)

Using (16.6) and (16.26), alternatives formulas are, for ϕ ∈ C0
0 (B

d)

MM(h)(ϕ) =
∫

Bd
(�h(x)− Hess h(x)(x, x))L−d (x)ϕ(x) d x ,

and for ϕ ∈ C∞
0 (Bd),

MM(h)(ϕ) =
∫

Bd
(�ϕ(x)− Hess ϕ(x)(x, x)) h(x)L−d(x) d x . (16.33)

For any convex function h : Bd → R, let us define MM(h) as the linear
form on C∞

0 (Bd) defined by (16.33). On any compact ball K contained in Bd ,
by standard convolution, one can find a sequence (hi)i∈N of C∞ convex functions
uniformly approximating h. For any C∞ function ϕ whose support is included in
K , we clearly have MM(hj )(ϕ) → MM(h)(ϕ). As MM(hj ) is a measure, it is
also a distribution, and the preceding limit says that MM(h) is also a distribution
on K [39, Theorem 2.1.8]. Actually, as the MM(hj ) are measures, then MM(h) is
a measure on K [39, Theorem 2.1.9, Theorem 2.1.7]. Changing K and using the
localization property of distribution [39, Theorem 2.2.4], it follows that MM(h) is
a measure on Bd . More precisely, MM(h) is a Radon measure on Bd .

The following result is given by [39, Theorem 2.1.9, Theorem 2.1.7].

Lemma 16.2.46 Let (hn)n∈N be a sequence of convex functions from Bd into R

converging to a convex function h : Bd → R. Then the sequence of measures
(MM(hn))n∈N weakly converges to MM(h).
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Recall the action of isometries on functions defined by (16.20). Recall also from
Lemma 16.2.30 that if h is convex, then (A, v)h is convex for (A, v) ∈ O+(d, 1)�
Rd,1.

Lemma 16.2.47 Let ϕ ∈ C0
0(B

d) and (A, v) ∈ O+(d, 1)�Rd,1. Then:

MM((A, v)h)(ϕ) = MM(h)(ϕ ◦ A) .

Proof We will prove the result for a C2 function h; the general result follows by
approximation. In the C2 case, the result follows because by definition

MM(h)(ϕ ◦ A) =
∫

Bd

(ϕ ◦ A)(x)(Trg
Hd

L−1Hess h)(x)dωHd (x)

so by a change of variable, as A is a hyperbolic isometry,

MM(h)(ϕ ◦ A) =
∫

Bd

ϕ(x)(Trg
Hd

L−1Hess h)(A−1 · x)dω
Hd (x) ,

and by Lemma 16.2.29,

(Trg
Hd

L−1Hess h)(A−1 · x) = (Trg
Hd

L−1Hess [(A, v)h])(x) .

!�

16.2.3.5 The Fundamental Example of a Wedge

Let us consider an elementary example to give a geometric insight on the mean
curvature measure introduced in the previous section. This example will make clear
that, for well-chosen convex functions, this measure is a kind of “pleating measure”,
similar to the notion developed by Thurston for isometric pleated embeddings
of hyperbolic surfaces in the 3-dimensional hyperbolic space, see Sects. 16.3.3.4
and 16.3.4.

Let l be the intersection of Bd with an affine hyperplane of Rd , which separates
Bd into two connected components l− and l+, where l− is the component containing
the origin 0 of the coordinates of Rd . Let pl be the (Euclidean) orthogonal projection
of 0 onto l, and let nl = pl/‖pl‖. If l is a vector hyperplane, then l− is chosen
arbitrarily, and nl is the (Euclidean) unit normal vector pointing to l+.

Definition 16.2.48 The canonical map hl : Bd → R associated to l is defined as
hl(x) = 1

L(pl)
〈x − pl, nl〉.

Observe that hl is an affine map vanishing on l. Let 1A be the indicator function
of a set A.
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Definition 16.2.49 A wedge on a hyperplane l is a continuous map h : Bd → R of
the form h = h− + (h+ − h−)1l+ where h−, h+ are two affine maps.

The angle of a wedge (in the co-Minkowski sense) is the unique real number α

such that, with the above notation,

h+ − h− = αhl . (16.34)

The wedge is therefore a piecewise affine map, admitting l as a locus of non-
differentiability (if the angle is nonzero).

Fact 16.2.50 A wedge is convex and different from an affine map if and only if its
angle is positive.

Proof By definition, hl is positive on l+ \ l. And h is strictly convex if and only if
on l+ \ l, h+ = h− + αhl > h−, which is true if and only if α > 0. !�
Remark 16.2.51 The hyperplane l in Bd defines a timelike vector hyperplane in
Minkowski space, namely, if Bd is identified with the Klein ball model of the
hyperbolic space in Rd,1, the vector hyperplane passing through l × {1}. Let vl
be its unit spacelike normal vector pointing to the side containing l+. Then it is easy
to see that

vl = 1

pl

(
nl

‖pl‖
)

, (16.35)

and so the canonical map hl is the restriction to Bd × {1} of the linear map
(x, xd+1) 	→ 〈( x

xd+1

)
, vl〉d,1. If l is a vector hyperplane, then vl =

(
nl

0

)
. Moreover, if

P+ and P− are the duals of the graphs of h+ and h−, then P+ −P− is colinear to v,
that expresses the definition (16.34) (compare also with Fact 16.2.21). The absolute
value of α is the Minkowski length of the spacelike segment P+−P−. See Fig. 16.7.

Fact 16.2.52 Let A ∈ O+(d, 1). Then hA·l = L
L◦A−1 hl ◦ A−1.

Rd,1∗Rd,1

vl

αv
P−

Bd

P+

l

l

l− l+

P ∗−
P ∗+

h− h+

Fig. 16.7 The spacelike segment in Minkowski space dual to a convex wedge in co-Minkowski
space
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Proof With the notation of Remark 16.2.51, we clearly have vA·l = A(vl),
hence hA·l (x) = 〈(x1

)
, A(vl)〉d,1 = 〈A−1

(
x
1

)
, vl〉d,1, and by (16.17), A−1(

(
x
1

)
) =

L(x)

L(A−1·x)
(
A−1·x

1

)
. !�

Fact 16.2.53 The image of the graph of a wedge by an orientation-preserving co-
Minkowski isometry is the graph of a wedge of the same angle.

Proof The result is obvious from Remark 16.2.51, as a co-Minkowski isometry acts
as a Minkowski isometry on the dual objects, and hence sends a spacelike segment
to a spacelike segment of the same length. !�

The choice of the normal nl gives an orientation on the vector hyperplane l, which
is also isometric to Hd−1. We denote by ωH

l its volume form for the hyperbolic
metric.

Lemma 16.2.54 Let h be a convex wedge of angle α on a hyperplane l. Then the
following identity holds:

MM(h) = αωH

l .

The simplest illustration of the lemma is for d = 1, l = {0} and h(x) = |x| =
−x + 2x1R+ . Then the angle is equal to 2, and h′′ in the sense of distributions is
equal to 2δ(0).

Proof From (16.34), h = h− + αhl1l+ , so as h− is affine, in the sense of
distributions, ∂ij h = α∂ij (hl1l+). By successive integrations by part, for φ ∈ C∞

0 ,
using that hl = 0 on l and that hl is affine, we obtain, in the sense of distributions,
∂ij h = α∂ihl(nl)jdS, where dS is the (Euclidean) area form on l (nl is an inward
normal vector for l+).

Hence by (16.33) and (16.34), the measure MM(h) is given for x ∈ l by

α(〈nl, gradhl〉 + 〈nl, x〉〈gradhl, x〉)L−d (x) dS(x) . (16.36)

Let us first consider that l is the intersection of Bd with a vector hyperplane.
Then, 〈nl, x〉 = 0, 〈nl, gradhl〉 = 1, and from (16.6), L−d (x) dS = dωH

l . At the
end of the day, (16.36) becomes α d ωH

l , that is the desired result when l is defined
by a vector hyperplane. The general case follows by performing an orientation-
preserving isometry sending l to a vector hyperplane, and using Lemma 16.2.47
and Fact 16.2.53. !�
Remark 16.2.55 Given a hyperplane l of Bd weighted by a positive number α, it is
almost clear how to construct a convex wedge in co-Minkowski space with angle α.
This construction can be easily extended to non-intersecting weighted hyperplanes
(see Sect. 16.3.3.4), or to a “polyhedral case”, i.e., weighted hyperplanes are allowed
to meet to form a convex cellulation of Hd , together with a natural compatibility
conditions at the weights, see [30, 4.4] and [27] for the d = 2 case. This is
a polyhedral version of the Christoffel problem, whose aim is to find a convex
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hypersurface in Minkowski space prescribing the dual Mean curvature measure.
In this setting the dual Mean curvature measure is called the area measure of order
one. The Christoffel problem in Minkowski space is the subject of [30].

The polyhedral construction is also a version of the classical Maxwell-Cremona
correspondence or Maxwell lift, see [40].

16.3 Action of Cocompact Hyperbolic Isometry Groups

16.3.1 Translation Parts as Cocycles

Let � be a subgroup of O+(d, 1) such that Hd/� is a compact oriented hyperbolic
manifold. A cocycle τ ∈ Z1(�,Rd,1) is a map τ : � → Rd,1 satisfying, for
A,B ∈ �,

τ (AB) = τ (A)+ A(τ(B)) .

Let us denote

�τ = {(A, τ(A))|A ∈ �} .

From (16.2), �τ is a subgroup of the isometry group of Minkowski space. In turn,
it defines a group of isometries of co-Minkowski space, that we will also denote
by �τ .

In the cylindrical coordinates Bd × R of co-Minkowski space, � acts freely
and properly discontinuously on Bd × {0}. As co-Minkowski space is the product
manifold Bd ×R, due to (16.18), the following result is trivial, but worth to notice.

Lemma 16.3.1 The action of �τ on ∗Rd,1 is free and properly discontinuous.

A coboundary is a particular cocycle of the form

τ (A) = Av − v

for a given v ∈ Rd,1. The group H 1(�,Rd,1) is the quotient of the space of cocycles
by the space of coboundaries: two cocycles are in relation if and only if they differ
by a coboundary.

In the following, we make the implicit assumption that we are looking at � such
that H 1(�,Rd,1) is not reduced to zero.

Let us give a criterion of non-triviality. Let us suppose that the compact hyper-
bolic manifold Hd/� contains n disjoints embedded totally geodesic hypersurfaces
H1, . . . , Hn. Also, let us set some positive weights ωi to each Hi . This is actually a
simplicial measured geodesic lamination λ on Hd/�.
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A lift to Bd of an Hi is a hyperplane l. Recall from (16.35) that a vector vl of
Rd,1 is assigned to any such l. Let us denote by L̃ the set of the lifts the Hi . Let us
fix an arbitrary base point x̃ ∈ Bd \ L̃. Then define, for A ∈ �, and for any path
c : [0, 1] → Bd , transverse to L̃ and joining x̃ to A · x̃:

τλ(A) =
∑

j∈c([0,1])∩L̃
ωjvj , (16.37)

where vj is plus or minus the vector v associated to the j th element of c([0, 1])∩ L̃.
The sign is chosen so that vj has the same direction than the path c at the
corresponding point. It follows that the definition of τλ is independent from the
choice of the path c among paths transverse to L̃ joining the same endpoints.

Fact 16.3.2 With the above notation τλ ∈ Z1(�,Rd,1).

Proof Let A,B ∈ �. Let cA, cB : [0, 1] → Bd be paths transverse to L̃, and joining
x̃ to A · x̃ and B · x̃ respectively. Let cAB be the concatenation of cA with A · cB .
This is a path joining x̃ to (AB) · x̃ and transverse to L, so

τλ(AB) =
∑

j∈(cAB([0,1])∩L̃)

ωj vj =
∑

j∈(cA([0,1])∩L̃)

ωj vj +
∑

j∈(A·cB([0,1])∩L̃)

ωjvj .

By definition of vl , we clearly have vA·l = A(vl), and A acts linearly on Rd,1, so

τλ(AB) =
∑

j∈(cA([0,1])∩L̃)

ωj vj + A

⎛

⎝
∑

j∈(cB([0,1])∩L̃)

ωjvj

⎞

⎠ = τ (A)+ A(τ(B)) .

!�
Fact 16.3.3 Let τ ′λ be the cocycle defined by (16.37), but choosing another base-
point x̃ ′. Then τ ′λ − τλ is a coboundary.

Proof For any A ∈ �, let c : [0, 1] → Bd be a path transverse to L̃ joining x̃ to
A · x̃, and let c′ : [0, 1] → Bd be a path transverse to L̃ joining x̃ ′ to A · x̃ ′. Let
c̄ : [0, 1] → Bd be any path transverse to L̃ joining x̃ to x̃ ′. Then the concatenation
c∗ of c̄ with c′ and −A · c̄ is a transverse path joining x̃ to A · x̃, so

τλ(A) =
∑

j∈(c∗([0,1])∩L̃)

ωj vj =
∑

j∈(c̄([0,1])∩L̃)

ωj vj +
∑

j∈(c′([0,1])∩L̃)

ωj vj −
∑

j∈(A·c̄([0,1])∩L̃)

ωj vj

=
∑

j∈(c̄([0,1])∩L̃)

ωjvj + τ ′λ(A)− A

⎛

⎝
∑

j∈(c̄([0,1])∩L̃)

ωjvj

⎞

⎠

so if v is the vector −∑j∈(c̄([0,1])∩L̃) ωj vj we have τγ (A)− τ ′γ (A) = Av − v. !�
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So for each choice of positive weights, we have constructed an element of
H 1(�,Rd,1). Clearly, a linearly independent change in the weights will produce
a different element in H 1(�,Rd,1), hence we have a simple geometric proof of the
following classical result (see Sect. 16.1).

Theorem 16.3.4 If Hd/� contains n disjointly embedded totally geodesic hyper-
surfaces, then the dimension of H 1(�,Rd,1) is ≥ n.

16.3.2 Equivariant Maps

Let τ ∈ Z1(�,Rd,1). We will give more details on the action of �τ by looking at
particular functions. The analysis is simplified using the cylindrical coordinates of
co-Minkowski space. We say that a continuous map h : Bd → R is �-invariant if its
graph is invariant for the action of �, i.e. for all A ∈ �, (A, 0)h = h (recall (16.20)):

∀x ∈ Bd, (L−1h)(A · x) = (L−1h)(x) ,

in other terms, h is �-invariant if and only if L−1h is invariant for the action of �.
In particular, if h is �-invariant, as the action of � is cocompact on Bd , L−1h is
bounded. Note that the function L is obviously �-invariant (see Remark 16.2.27 for
a geometric viewpoint).

Fact 16.3.5 Let h be a �-invariant function. Then h extends continuously as the
constant zero function on ∂Bd .

Proof There exist two constants c1, c2 such that c1 ≤ L−1h ≤ c2, so c1L ≤ h ≤
c2L, and the result follows. !�
Definition 16.3.6 A continuous map h : Bd → R is �τ -equivariant if its graph is
invariant for the action of �τ , i.e. for all A ∈ �, (A, τ(A))h = h, using the notation
introduced in (16.20).

The vector space structure of Z1(�,Rd,1) fits well with the vector space structure
of maps, as the following lemma shows. Its proof is trivial from Definition 16.3.6.

Fact 16.3.7 Let τ1, τ2 ∈ Z1(�,Rd,1) and let h1 and h2 be �τ1 and �τ2 -equivariant
maps respectively, and α ∈ R. Then h1 + αh2 is �τ1+ατ2-equivariant. In particular,
the difference between two �τ -equivariant map is a �-invariant map.

Fact 16.3.8 Let h be a �τ and �τ ′ -equivariant map. Then τ = τ ′.

Proof Because 0 = h − h is �τ−τ ′ -equivariant, it suffices to check that if 0 is �τ -
equivariant, then τ = 0. By definition, this implies that for any A ∈ � and any
x ∈ Bd , 〈A · x, τ (A)〉d ) = τ (A)d+1. If τ (A)d �= 0, then for x this equation can
be satisfied only by a dimension one affine space, which contradicts our assumption
that it is satisfied by any x ∈ Bd , d > 1.

!�



16 Quasi-Fuchsian Co-Minkowski Manifolds 679

The following fact is clear from the definition of �τ -equivariant map and
Lemma 16.2.29.

Fact 16.3.9 Let h : Bd → R be a C2 �τ -equivariant function. Then L−1 Hess h is
�-invariant:

(L−1 Hess h)(x)(X, Y ) = (L−1 Hess h)(A · x) (DA(x)(X),DA(x)(Y )) .

Remark 16.3.10 Fact 16.3.9 says that the second fundamental form of the hypersur-
face which is the graph of h (see Sect. 16.2.3.1) defines a symmetric (0, 2)-tensor
on Hd/�. Moreover this tensor is a symmetric Codazzi tensor, see Remark 16.2.32.

It can be useful to note the following converse to Fact 16.3.9.

Lemma 16.3.11 Let h : Bd → R be a C2 map such that L−1 Hess h is �-invariant.
Then there exists a unique τ ∈ Z1(�,Rd,1) such that h is �τ -equivariant.

Proof Let A ∈ �. As A acts as an affine map on Bd ×R, by the rule of the Hessian
of a composition (16.21) and the invariance of the Hessian, we obtain

Hess(h◦A)(x)(X, Y ) = Hess h(A·x)(DA(x)(X),DA(x)(Y )) = Hessh(x)(X, Y ) ,

hence h and h ◦ A differ by an affine map, which in turn gives a vector τ (A−1) ∈
Rd,1:

h(x)− h(A · x) = 〈τ (A−1),

(
x

1

)

〉d,1 .

Writing h(x) − h(A · (B · x)) as h(x) − h(B · x) + h(B · x) − h(A · (B · x)), it
follows that τ satisfies the cocycle relation. Uniqueness is given by Fact 16.3.8. !�

Now let us check that the discussion is not void. First there are easy examples in
the coboundary case.

Fact 16.3.12 Let τv be a coboundary, i.e. there is v ∈ Rd,1 such that τv(A) =
Av − v. Then hv(x) = −〈x, v̄〉d + vd+1 is a τv-invariant map.

In full generality, if the cocycle is equal to zero, we know the function −L

which is a C∞ �-invariant function with positive definite Hessian. By the very
general “Ehresmann–Weil–Thurston holonomy principle” [35], for cocycles close
to 0 enough, there exist �τ -equivariant maps which depend continuously on the
cocycle. For convenience we recall the argument in our very simplified case, which
follows the lines from [18, Lemma I.1.7.2]. We need to take care about convexity,
which is also classical [31].

Proposition 16.3.13 For any cocycle τ there exists a C∞ convex (resp. concave)
�τ -equivariant function h(τ).
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Moreover, if τn → τ , then there exist C∞ convex (resp. concave) �τn -equivariant
functions h(τn) such that (h(τn))n∈N converges to h(τ), and the second partial
derivatives of h(τn) converge to the second partial derivatives of h(τ).

Proof Clearly it suffices to prove the statement for the convex case. Also by
Fact 16.3.7, it suffices to prove it for any cocycle close to 0.

Let {Bi(ri)}i=1,...,k be disjoint open balls of Hd , such that � · ∪iBi(ri ) is a
covering of Hd . On B1(r1), let us set h1 = −L. For A ∈ � and y ∈ A ·B1(r1), let us
set h1(y) = −L(y)+ 〈(y1

)
, τ (A)〉d,1. Such a function h1 is C∞ and �τ -equivariant

on � · B1(r1). The function h1 converges to −L uniformly on each orbit of B1(r1)

if τ goes to 0. Also the first partial derivatives of h1 converge to the ones of −L

uniformly on each orbit of B1(r1) if τ goes to 0. Moreover, the Hessian of h1 is
equal to the one of −L on � · B1(r1), in particular it is positive definite.

Let r ′i < ri for all i, such that � · ∪iBi(r
′
i ) is still a covering of Hd . Up to

change the indices, suppose that B2(r2) has non empty intersection with the orbit of
B1(r1). Let W be an open neighborhood of B2(r

′
2)∩� ·B1(r

′
1) such that its closure

is contained in B2(r2) ∩ � · B1(r1). Let φ be a bump function which is equal to 1
on B2(r

′
2) ∩ � ·B1(r

′
1) and whose support is contained in W . Note that the function

φh1 is well-defined and C∞ on Hd , by setting the zero value out of W .
Let us define f = φh1 + (1 − φ)(−L) on B2(r2). The function f is C∞, and

equal to h1 on � · B1(r
′
1) ∩ B2(r

′
2). When the cocycle goes to 0, f and its first and

second derivatives go to −L and to its respective derivatives, uniformly on B2(r
′
2).

In particular, we suppose that the cocycle is sufficiently small, so that the Hessian
of f is positive definite.

Then we define h2 = f on B2(r
′
2), and by equivariance we define h2 on �·B2(r

′
2).

Also we set h2 = h1 on � · B1(r
′
1). By construction, h2 is well defined on the

non-empty intersections between orbits of B1(r
′
1) and orbits of B2(r

′
2). Clearly, h2

converges to −L when the cocycle goes to 0. As the Hessian of h2 converges to the
one of −L uniformly on B2(r

′
2), by Fact 16.3.9, this is true on each element in the

orbit of B2(r
′
2), in particular the Hessian of h2 is positive definite.

In the same way, if r ′′i < r ′i is such that � ·∪iBi(r
′′
i ) is still a covering of Hd , then

we can construct a function h3, equivariant on the orbit of B1(r
′′
1 )∪B2(r

′′
2 )∪B3(r

′′
3 )

and satisfying the statement of the proposition. After a finite number of steps, we
have constructed the wanted functions.

!�
Corollary 16.3.14 For any τ ∈ Z1(�,Rd,1), there exists a continuous map bτ :
∂B → R such that any �τ -equivariant map extends continuously as bτ on ∂B.

Moreover if τ1, τ2 ∈ Z1(�,Rd,1) and α ∈ R, then bατ1+τ2 = αbτ1 + bτ2 . And τ

is a coboundary if and only if bτ is the restriction to ∂Bd of an affine map of Rd .

Proof From Proposition 16.3.13, there exists a C∞ convex �τ -equivariant map.
From Fact 16.3.9, Mean(h) is a �-invariant function, hence bounded, so by
Proposition 16.2.34, there exists a continuous function bτ : ∂B → R which
extends continuouslyh. As the difference of two �τ -equivariant map is a �-invariant
function, and as a �-invariant function extends continuously as the zero function on
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∂B (Fact 16.3.5), it follows that bτ is the continuous extension of any �τ -equivariant
map.

The second property is obvious from the definition of bτ and Fact 16.3.7. The
last property follows from Fact 16.3.12 !�

From the existence of bτ we deduce easily the existence of a unique �τ -
equivariant mean map in the following lemma. The maps whose graphs are the
boundary of the convex hull of the graph of bτ will be introduced in Sect. 16.3.3.

Corollary 16.3.15 Let τ ∈ Z1(�,Rd,1). There exists a unique C∞ �τ -equivariant
map, denoted by hmean

τ , satisfying Mean(hmean
τ ) = 0. Moreover, for α ∈ R and

τ ′ ∈ Z1(�,Rd,1), hmean
τ+ατ ′ = hmean

τ + αhmean
τ ′ , and hmean

τ is the restriction to Bd of
an affine map if and only if τ is a coboundary.

Proof By Corollary 16.3.14 and Proposition 16.2.37, we know that there exists
a unique C∞ map, denoted by hmean

τ , having bτ as values on ∂B, and such that
Mean(hmean

τ ) = 0. This map is �τ -equivariant. Indeed, apply an element of �τ to
the graph of hmean

τ . Then we obtain the graph of a map with vanishing Mean and
boundary value bτ , so it has to be hmean

τ by uniqueness.
The second point is clear from Fact 16.3.7 and the fact that hmean

τ satisfies a

linear equation, namely ( 1
d
�H

d − 1)hmean
τ = 0. The last point is immediate from

Corollary 16.3.14. !�
Remark 16.3.16 For any t ∈ R, the map hmean

τ − tL is �τ -equivariant, with mean
curvature equal to t . Hence the graphs of these maps gives a smooth foliation of
∗Rd,1/�τ by hypersurfaces of constant mean curvature.

Corollary 16.3.15 allows to recover a classical relation between cocycles and
traceless Codazzi tensors [15, 48, 53]. Let Cod�

0 be the vector space of traceless
symmetric Codazzi tensors on Hd/�. Let τ ∈ Z1(�,Rd,1). By Corollary 16.3.15,
there is a map hmean

τ whose second fundamental form is a �-invariant traceless
Codazzi tensor (see Remark 16.3.10), hence it defines an element of Cod�

0 , denoted
by Cod(τ ). By Corollary 16.3.15, the map Cod : Z1(�,Rd,1) → Cod�

0 is linear.
The kernel of this map corresponds to the τ such that hmean

τ is affine, hence to
the coboundaries by Corollary 16.3.15. We thus obtain an injective morphism from
H 1(�,Rd,1) to Cod�

0 , still denoted by Cod.

Proposition 16.3.17 The map Cod : H 1(�,Rd,1) → Cod�
0 is an isomorphism.

Proof Let C ∈ Cod�
0 , which defines a �-invariant symmetric traceless Codazzi

tensor C̃ on Hd . By Lemma 16.2.13, there exists h : Bd → R such that C̃ = IIh.
From Lemma 16.3.11, there exists a cocycle τ such that h is �τ -equivariant, hence
as IIh is traceless, by the uniqueness part of Corollary 16.3.15, we will have h =
hmean
τ .

!�
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16.3.3 Volume of the Convex Core and Asymmetric Norm

16.3.3.1 Convex Core

Let τ ∈ Z1(�,Rd,1). There is an associated map bτ : ∂Bd → R given by
Corollary 16.3.14. This map has a graph �(bτ ), and we will look at its convex
hull CH(τ ) in the affine space Rd+1, as well as the functions h−bτ and h+bτ (see
Sect. 16.2.3.3) whose graphs are the boundary of CH(τ ). We will denote these two
last maps by h−τ and h+τ respectively.

The argument to check the following fact is analogous to the one used in the
proof of Corollary 16.3.15.

Fact 16.3.18 The map h−τ and h+τ are �τ -equivariant, in particular CH(τ ) is
globally invariant for the action of �τ .

Lemma 16.3.19 Let τ ∈ Z1(�,Rd,1). Then:

1. for any convex (resp. concave) �τ -equivariant map h, we have h ≤ h−τ (resp.
h ≥ h+τ ),

2. h+τ = −h−−τ ,
3. For α > 0, h−ατ = αh−τ ,
4. h−τ + h−

τ ′ ≤ h−
τ+τ ′ and h+τ + h+

τ ′ ≥ h+
τ+τ ′ .

Proof The two first points are from the definitions of h+τ and h−τ , Proposi-
tion 16.2.40 and Corollary 16.3.14. The third point follows from (16.30) and the
fact that bατ = αbτ . The fourth point follows from the first point, as h−τ + h−

τ ′ is a
convex �τ+τ ′ -equivariant function. !�
Lemma 16.3.20 Let τv be a coboundary, then h−τv = hmean

τv
is an affine map and

h−τ+τv
= h−τ + h−τv . Conversely, if h−τ = hmean

τ , then hmean
τ is affine and τ is a

coboundary.

Proof If τ is a coboundary, we know that there exists a �τ -equivariant affine map
(Fact 16.3.12). Hence the convex hull of �(bτ ) is a piece of a hyperplane, and
this hyperplane is also the τv-mean hypersurface. Then h−τ+τv

= h−τ + h−τv follows
from (16.30) because hτv is an affine map. For the second part, on the one hand,
Mean(hmean

τ ) = 0. On the other hand, if hmean
τ = h−τ , then hmean

τ is convex,
hence affine (Remark 16.2.33), so bτ is the restriction to ∂Bd of an affine map.
By Corollary 16.3.14, τ is a coboundary.

!�
Definition 16.3.21 The convex core of ∗Rd,1/�τ , denoted by CC(τ ), is the small-
est non-empty convex set of ∗Rd,1/�τ .

In the above definition, “convex” has to be understood in the strong sense of
geodesically convex: C is convex if for x, y ∈ C, any geodesic between x and y

belongs to C. So for example, a single point or a small open ball may not be convex.
In the cylindrical model of the universal cover, this notion of convexity coincides
with the affine one.
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Clearly, CC(τ ) = CH(τ )/�τ . Hence ∗
R

d,1/�τ has a compact convex core, so
the action of �τ on ∗

R
d,1 is convex cocompact, in the sense of [22, 23].

Recall the volume form on co-Minkowski space, Sect. 16.2.2.6. Let us denote by
Vol the induced volume on ∗

R
d,1. It is then immediate than for any τ ∈ Z1(�,Rd,1),

Vol(CC(τ )) =
∫

Hd/�

L−1(h+τ − h−τ ) . (16.38)

Here by abuse of notation, we denote in the same way the �-invariant function
h+τ −h−τ and the corresponding function on the compact hyperbolic manifoldHd/�.
(Recall that we defined a function h to be �-invariant if L−1h is invariant under the
action of �.) The integration is implicitly with respect to the volume form given by
the hyperbolic metric.

Definition 16.3.22 The function vol : H 1(�,Rd,1) → R associates Vol(CC(τ )) to
any representative τ of an element of H 1(�,Rd,1).

By Lemma 16.3.20, vol is well-defined. Actually, the following result is straight-
forward to check from Lemmas 16.3.20 and 16.3.19.

Proposition 16.3.23 vol is a norm on H 1(�,Rd,1).

Remark 16.3.24 The volume of the convex core can be geometrically interpreted in
Minkowski space as a mean width defined as follows. From a cocycle τ , we have
the boundary map bτ which defines two convex sets �+

bτ
and �−

bτ
in Minkowski

space, see Remark 16.2.44. It follows from the previous section that those two sets
(here denoted by �+

τ and �−
τ ) are invariant under the action of �τ on Minkowski

space. Actually the action is free and properly discontinuous on �+
τ ∪ �−

τ , and the
quotient of �−

τ (resp. �+
τ ) is a future complete flat (resp. past complete) Globally

Hyperbolic Maximal Cauchy Compact (in short, GHMC) spacetime. As the addition
of a coboundary to the cocycle τ will only change the origin in Minkowski space,
then H 1(�,Rd,1) parameterizes the space of future complete (or past complete) flat
GHMC spacetimes with a given linear holonomy, up to conjugacy. See [3, 12] for
more details.

Moreover, for any cocycle τ , we have that −�−
τ = �+−τ . Now, for any x ∈ Bd ,

let us denote by width(x) the Lorentzian distance between the support plane of �+
τ

with outward unit normal
(
x
1

)
, and the support plane of �−

τ with inward unit normal
(
x
1

)
. Note that the map x 	→ width(x) is �-invariant. Then the mean width, defined

as
∫
Hd/�

width(·), is given by (16.38), see Fig. 16.8.

16.3.3.2 Asymmetric Norm

In the previous section we showed that the volume of the convex core is a norm on
H 1(�,R). We now see that it is actually the symmetrization of an asymmetric norm
on H 1(�,R).
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Ω−
τ

Ω+
τ

x

|h− − h+|(x)

(x, h+(x))

(x, h−(x))

(x, h−(x))∗

(x, h+(x))∗

Fig. 16.8 The volume of the convex core CC(τ ) is a “mean distance” between a past complete flat
GHMC spacetime and a future complete flat GHMC spacetime with the same holonomy

For a cocycle τ , the S1 norm is defined as follows

‖τ‖S1 =
∫

Hd/�

L−1(hmean
τ − h−τ ) . (16.39)

(The denomination will be motivated in Remark 16.3.26.)
By Lemma 16.3.20, if τv is a coboundary, then ‖τ + τv‖ = ‖τ‖ + ‖τv‖ = ‖τ‖.

Hence ‖ · ‖ is well defined on H 1(�,Rd+1).

Proposition 16.3.25 The S1 norm ‖ · ‖S1 defines an asymmetric norm on
H 1(�,Rd+1), i.e. ∀[τ ], [τ ′] ∈ H 1(�,Rd+1)

1. ‖[τ ]‖S1 ≥ 0;
2. ‖[τ ]‖S1 = 0 if and only if [τ ] = 0;
3. ‖[τ ] + [τ ′]‖S1 ≤ ‖[τ ]‖S1 + ‖[τ ′]‖S1;
4. ∀α ≥ 0, ‖α[τ ]‖S1 = α‖[τ ]‖S1 .

Proof The first property comes from Lemma 16.2.42. The second point is
Lemma 16.3.20. The third and forth points are immediate consequence of
Lemma 16.3.19 and Corollary 16.3.15. !�

It is obvious from (16.39) and (16.38) that vol is the symmetrization of ‖ · ‖S1 :

vol([τ ]) = 1

2

(‖[τ ]‖S1 + ‖ − [τ ]‖S1

)
.

16.3.3.3 Mean Curvature Measure

We now explain how ‖ · ‖S1 is related to the mean curvature measure introduced in
Sect. 16.2.3.4. From Lemma 16.2.47, we have that for any convex �τ -equivariant
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map h, the measure MM(h) is �-invariant, and then defines a Radon measure
MM�(h) on Hd/�. Actually, there is a nice expression for this measure. Let h

be a convex �τ -equivariant function. By definition of hmean
τ , MM(h) = MM(h) −

MM(hmean
τ ) = MM(h − hmean

τ ). On the other hand, h − hmean
τ is �-invariant, so

from (16.32), using a partition of unity, one obtains that for any C∞ function ϕ on
Hd/�,

MM�(h)(ϕ) =
∫

Hd/�

L−1(h− hmean
τ )(

1

d
�H

d − 1)ϕ .

Taking ϕ = 1,

MM�(h)(Hd/�) =
∫

Hd/�

L−1(hmean
τ − h) ,

in particular, if h = h−τ , by definition of the S1 norm,

‖τ‖S1 = MM�(h−τ )(Hd/�) . (16.40)

Remark 16.3.26 Consider the convex set �−
τ in Minkowski space, as well as the

ε-equidistant convex set �−
τ (ε) (this is the dual convex set in Minkowski space of

the epigraph of h−τ − ε in Bd × R). By a Lorentzian version of the Steiner formula
proved in [30], the volume of (�−

τ \ �−
τ (ε))/�τ is a polynomial in ε of degree

d + 1. Up to a dimensional constant, the coefficient in front of εd is nothing but
MM�(h−τ )(Hd/�). The analogous quantity in the classical theory of convex bodies
is called the (total) area measure of order one [59], and usually denoted by S1, which
explains our terminology (see also Remark 16.2.55).

Lemma 16.3.27 Let τn → τ . Then bτn (resp. h−τn ) pointwise converges to bτ (resp.
h−τ ).

Proof By Proposition 16.3.13, we have convex (resp. concave) �τn -equivariant
functions converging to a �τ -equivariant convex (resp. concave) function. For any
n, as the concave and the convex �τn -equivariant functions coincide on ∂Bd with bτn
given by Corollary 16.3.14, they bound a convex body Kn of Rd+1. Let us denote by
K the convex body bounded by the �τ -equivariant convex and concave functions.

Let us denote by Cd+1 the space of non-empty compact sets of Rd+1, endowed
with the Hausdorff topology. Suppose that there is a subsequence (Kni ) of (Kn)

which converges to K ′ in Cd+1. Then K ′ is a convex body [59, Theorem 1.8.6].
Moreover, each point of K ′ is the limit of a sequence of points (xni ) with xni ∈ Kni

[59, Theorem 1.8.8]. From this it is easy to deduce that K ′ = K .
Now as the �τn -equivariant functions are converging, they are bounded, and in

turn the sequence of convex bodies (Kn)n is bounded in Bd × R ⊂ Rd+1. By
the Blaschke selection theorem [59, Theorem 1.8.7], there is a subsequence Kni

converging to a convex body K ′. Moreover, the sequence Kn is contained in a
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compact subspace of Cd+1 [59, Theorem 1.8.4]. As we saw that any convergent
subsequence of (Kn) converges to K , it follows that (Kn) converges to K .

As the limit of any convergent sequence (xni ) with xni ∈ Kni must belong to
K [59, Theorem 1.8.8], it is easy to deduce that bτn → bτ . This easily implies the
Hausdorff convergence of CH(τn) to CH(τ ), see e.g. [61, Lemma 2.1], which in turn
gives the convergence of h−τn to h−τ , as the Hausdorff convergence of convex bodies
implies the Hausdorff convergence of the boundaries [59, Lemma 1.8.1]. !�
Remark 16.3.28 By standard properties of convex functions, it follows from
Lemma 16.3.27 that h−τn converges to h−τ uniformly on any compact set of Bd . But
there is no general argument that would allow to deduce the uniform convergence
of (bτn)n from the pointwise convergence, see [50] for a counter-example.

However, in our situation, the uniform convergence of (h−τn )n holds. It will be
obtained as a byproduct of the considerations of Sect. 16.4. More precisely, the
uniform converge will be proved in Lemma 16.4.11. Anticipating this result, we
obtain the following proposition.

Proposition 16.3.29 The S1 norm ‖ · ‖S1 : H 1(�,Rd,1) → R is continuous.

Proof Let τn → τ . From Lemma 16.3.27, h−τn converges to h−τ , and, using a
partition of unity, it is not hard to deduce from Lemma 16.2.46 that MM�(h−τn )
weakly converges to MM�(h−τ ), so that the result follows from (16.40).

!�

16.3.3.4 Simplicial Measured Geodesic Laminations

We use the notation and definitions of Sect. 16.3.1, where we have considered a
simplicial measured geodesic lamination λ on the compact hyperbolic manifold
H

d/�. Namely we have supposed that Hd/� contains n disjoints embedded totally
geodesic hypersurfaces H1, . . . , Hn with positive weights ωi .

Let us push the construction a step forward. For any y ∈ Bd , let c : [0, 1] → Bd

be any curve transverse to L̃ joining the base point x̃ to y, and define

hλ(y) =
∑

j∈c[0,1]∩L̃
ωj hlj (y)

where hlj is the canonical map associated with lj (Definition 16.2.48), where we
consider that the outward unit normal nl has the same direction than the curve at the
corresponding point of c[0, 1] ∩ L̃.

Fact 16.3.30 If τλ is the cocycle given by (16.37), then hλ = h−τλ .

Proof As the weights are positive, by Fact 16.2.50, hλ is a convex map.
Let us check that hλ is �τλ -equivariant. Let c̃ : [0, 1] → Bd be a path joining

x̃ to A · x̃, and let c′ : [0, 1] → Bd be a path joining x̃ to y, both assumed to be
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transverse to L̃. Then the concatenation of c with A · c′ is a path joining x̃ to A · y,
hence

hλ(A · y) =
∑

j∈(c([0,1])∩L̃)

ωjhlj (y)+
∑

j∈(A·c′([0,1])∩L̃)

ωj hlj (y) ,

and as by definition hl(y) = 〈(y1
)
, vl〉d,1, then

∑
j∈(c([0,1])∩L̃) ωjhlj (y) =

〈(y1
)
, τλ(A)〉d,1. Also,

∑
j∈(A·c′([0,1])∩L̃) ωj hlj (y) =

∑
j∈(c′([0,1])∩L̃) ωj hA·lj (A · y),

and by Fact 16.2.52, hA·lj (A · y) = L(A·y)
L(y)

hl(y). The equivariance is proved.

A hλ is a convex �τγ -equivariant map, then hλ ≤ h−τλ . By construction, the graph
of hλ is made of segments joining points of graph of bτλ , hence it is contained in
CH(bτλ), so hλ ≥ h−τλ .

!�
The length length(λ) of a simplicial measured geodesic lamination λ on Hd/� is

defined as the sum of the weights times the total volume of the corresponding totally
geodesic hypersurfaces. By Lemma 16.2.54 and (16.40), we obtain the following.

Proposition 16.3.31 Let λ be a simplicial measured geodesic lamination on H
d/�.

Then

length(λ) = ‖τλ‖S1 .

Remark 16.3.32 There is no reason why for d ≥ 3 any cocycle should arise from
a (simplicial) measured geodesic lamination on Hd/�. So for d ≥ 3, the concept
of measured geodesic lamination is not sufficient. A more suitable concept is the
one of measured geodesic stratification, introduced in [12]. In contrast, we will see
in the next section that for d = 2, any cocycle arises from a measured geodesic
lamination.

16.3.4 The Case of Dimension 2 + 1

In this part we study the particularities of the d = 2 case. We will denote by TeichS

the Teichmüller space of a compact surface homeomorphic to H2/�. We will denote
by g the genus of S.

16.3.4.1 Goldman Isomorphism

The Teichmüller space TeichS can be defined as the space of faithful and discrete
representations of π1S into Isom0(H

2) up to conjugacy. Let ρ be such a represen-
tation such that � = ρ(π1S). Then the tangent space of TeichS at ρ is naturally
identified with H 1(π1(S), isom(H2)), where π1S acts on the Lie group isom(H2)
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via Adρ [34]. Using the hyperboloid model H2 for H2, isom(H2) can be identified
with o(2, 1). Let us write it as follows.

Theorem 16.3.33 ([34]) There is a vector space isomorphism

Gold : H 1(�, o(2, 1)) → TH2/� TeichS .

There is also a one-to-one correspondence between vectors of R2,1 and infinites-
imal Minkowski isometries of o(2, 1). This may be seen for example using the
Minkowski cross product, see e.g. [25]. This identification gives a vector space
isomorphism

C : H 1(�,R2,1) → H 1(�, o(2, 1)) ,

and in turn we have the following vector space isomorphism

ξ = Gold ◦ C : H 1(�,R2,1) → TH2/� TeichS .

In particular, we obtain the following.

Corollary 16.3.34 The vector space H 1(�,R2,1) has dimension 6g − 6.

16.3.4.2 Mess Homeomorphism

Let us call an entire segment of B2 a segment of B2 whose endpoints are in ∂B2. A
geodesic lamination L̃ of B2 is a non-empty closed union of disjoint entire segments
of B2. Let L̃ be a geodesic lamination on B2 which is invariant under the action of
�. Then the image L of L̃ under the projection is a geodesic lamination on the
compact hyperbolic surface B2/�. A measured geodesic lamination λ = (L,μ) on
B2/� is the data of a geodesic lamination L together with a transverse measure μ,
that is, the data of a Radon measure on each compact rectifiable curve transverse to
L, such that

• the support of the measure is the intersection of the arc with L,
• if two arcs are homotopic through arcs transverse to L, then the homotopy sends

the measure on one segment to the measure on the other one.

A simplicial measured geodesic lamination on B2/� is a set of non-intersecting
closed simple geodesics weighted by positive numbers. Note that the action of �

onto B2 is via the identification of the disc with the Klein model of the hyperbolic
plane, but the notation B2 stands for reminding the affine nature of the measured
geodesic lamination on the universal cover.
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Let ML� be the set of measured geodesic laminations on the compact hyperbolic
surface H2/�. ML� is endowed with the following topology. We say that λn

converges to λ if, for any compact segment c transverse to L we have

• c is transverse to Ln for n big,
• μn weakly converges to μ on c.

We have the following classical result of Thurston, see e.g. [11] and the
references therein.

Theorem 16.3.35 (Thurston) For the topology defined above, ML� is a manifold
of dimension 6g − 6.

Recall from (16.35) that a vector vl of R2,1 is assigned to any entire segment l of
B2. Let e be a continuous function such that, for any path c : [0, 1] → B2 transverse
to L, eL(c(t)) = vl if c(t) ∈ l, where vl has the same direction as the curve at c(t),
and l ∈ L̃. Let us fix an arbitrary base point x̃ ∈ B2. Then define, for A ∈ �, and
for any path c : [0, 1] → B2 transverse to L joining x̃ and A · x̃:

τλ(A) =
∫ 1

0
eL(c(t))dμ(t) . (16.41)

As the measure is transverse, the definition of τλ is independent from the choice
of the path c and the function eL. The following fact is proved formally in the same
way as Facts 16.3.2 and 16.3.3.

Fact 16.3.36 We have τλ ∈ Z1(�,R2,1). Moreover, if the basepoint is changed, the
new cocycle differs from the preceding one by a coboundary.

Hence we have constructed a well-defined map

Mess : ML� → H 1(�,Rd,1) .

Theorem 16.3.37 ([51]) The map Mess defined above is a homeomorphism.

Proof The map is clearly injective and continuous. By Theorem 16.3.35 and
Corollary 16.3.34, both ML� and H 1(�,Rd,1) are manifolds of same dimension.
Hence by the invariance of domain theorem Mess is a local homeomorphism. Now
for λ ∈ ML� and t ≥ 0, let us define tλ as the measured geodesic lamination
obtained from λ by simply multiplying the transverse measure by t . By (16.37) we
clearly have Mess(tλ) = tMess(λ). As H 1(�,R2,1) is a vector space and Mess a
local homeomorphism, it follows that Mess is surjective. !�
Remark 16.3.38 It is possible to describe the inverse map to Mess, by defining a
“bending measure” belonging to ML� from the graph of h−τ , for any cocycle τ .
There are at least three ways to define such a bending measure. The first one is
to mimic the construction of the bending measure given by the upper boundary
component of the convex core of a hyperbolic quasi-Fuchsian manifolds [26]. The
second one is to define, as in [51], the induced distance on the spacelike part of the
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boundary of �−
τ , the dual of the epigraph of h−τ in Minkowski space. The last one

is to consider the mean curvature measure given by h−τ .

16.3.4.3 Length of Measured Geodesic Laminations

We have encountered the length of simplicial measured geodesic laminations in
Sect. 16.3.3.4. For d = 2, the length of a measured geodesic lamination is defined
as the total mass on the surface of the measure which is the product of the hyperbolic
measure along the leaves of the lamination and the measure transverse to the leaves.
We refer to [11] for more details. Actually, the simplicial case suffices, as the
following results shows. One may see for example Lemma 2.4 in [44] for the first
one, and Theorem 3.1.3 in [56] or Section 3.4.3 in [8] for the second one.

Proposition 16.3.39 The map length : ML� → R is continuous.

Proposition 16.3.40 Simplicial measured geodesic laminations are dense in ML� .

So from the above results, Proposition 16.3.31 generalizes as follows.

Proposition 16.3.41 Let λ ∈ML� . Then

length(λ) = ‖Mess(λ)‖S1 .

16.3.4.4 Thurston Earthquake Norm

From a measured geodesic lamination λ on H2/�, one obtains another hyperbolic
metric on S by performing a (left) earthquake along the lamination. We refer to [44]
and the reference therein for more details about earthquakes. Actually for t near 0,
earthquakes along tλ define a path in TeichS starting at H2/�. This path has a well
defined derivative at 0, which gives an element in T

H2/� TeichS , the tangent space of
Teichmüller space at the point H2/�. In turn, we have an infinitesimal earthquake
map:

InfEarth : ML� → TH2/� TeichS .

Theorem 16.3.42 ([44, Proposition 2.6]) The map InfEarth is a homeomorphism.

So the map InfEarth◦Mess−1 provides a homeomorphism between H 1(�,R2,1)

and TH2/� TeichS . Although there is no natural vector space structure on ML� , we
have the following.

Proposition 16.3.43 ([14, Proposition B.3]) We have InfEarth ◦ Mess−1 = ξ . In
particular, InfEarth ◦ Mess−1 is a vector space isomorphism.



16 Quasi-Fuchsian Co-Minkowski Manifolds 691

In other terms, as ξ = Gold ◦ C, the following diagram commutes:

ML TH2 TeichS

H 1 R2,1) H 1 (2, 1))

InfEarth

Mess
C

Gold .

Definition 16.3.44 Let X ∈ T
H2/� TeichS . The earthquake norm of X is

‖X‖earth = length(InfEarth−1(X)) .

From Propositions 16.3.41 and 16.3.43, one has in fact

‖X‖earth = ‖ξ−1(X)‖S1

and as ξ is a vector space isomorphism, from Proposition 16.3.25, one finally obtains
the following result.

Theorem 16.3.45 ([63, Theorem 5.2]) The earthquake norm is an asymmetric
norm on TH2/� TeichS .

Remark 16.3.46 There is a smooth analogue of Proposition 16.3.43 proved in [15].
Namely, Proposition 16.3.17 gives a map Cod from H 1(�,Rd,1) to Cod�

0 , the space
of traceless symmetric Codazzi tensors on H

2/�. In dimension 2, there is also an
isomorphism InfDef from Cod�

0 to TH2/� TeichS , where a (0, 2)-tensor is seen as an
infinitesimal deformation of the hyperbolic metric (see [64], where such tensors are
called TT, for transverse traceless). Then, if J is the almost complex structure of
TH2/� TeichS , the following diagram commutes:

Cod0 T
H2 TeichS

H 1 R2,1) T
H2 TeichS

InfDef

Cod−1
J

ξ

.

16.3.4.5 Thurston Length Norm

Following [63], we note that two successive identifications of the tangent space
TH2/� TeichS of Teichm̈uller space with the cotangent space T ∗

H2/�
TeichS will

permit to define another asymmetric norm on TH2/� TeichS , that is actually
the Thurston length norm, that induces the Thurston asymmetric distance (see
Sect. 16.1).
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A first identification between T ∗
H2/�

TeichS and TH2/� TeichS is given by
the Weil–Petersson form of Teichmüller space, that is a symplectic form on
TH2/� TeichS . For α ∈ T ∗

H2/�
TeichS , let α- be the dual element in TH2/� TeichS

of α for the symplectic form. Then define naturally

‖α‖∗length := ‖α-‖earth .

On the other hand, for any vector space E endowed with an asymmetric norm N ,
then its dual E∗ is endowed with the asymmetric norm N∗ defined, for v ∈ E∗, by

N∗(v) := sup

{
v(x)

N(x)
|x ∈ E \ {0}

}

.

Applying this to the cotangent space of Teichmüller space endowed with ‖ ·
‖∗length, we obtain a new asymmetric norm on the tangent space of Teichmüller space.

Definition 16.3.47 Let X ∈ T
H2/� TeichS . The length norm of X is

‖X‖length = sup

{
α(X)

‖α-‖earth
|α ∈ T ∗

H2/�
TeichS \{0}

}

.

If it possible to describe more precisely the length norm, using a famous result of
Wolpert. Let λ be a measured lamination on the surface S. The function length(λ)
on the Teichmüller space of S is defined as follows: for each choice of a hyperbolic
metric on S, length(λ) is the length of the corresponding measured geodesic
lamination. Due to a formula of Wolpert [66, Lemma 4.1], the tangent vector
InfEarth(λ) of the Teichmüller space of S at a point H

2/� is the symplectic
gradient of the function length(λ) at the same point, with respect to the Weil–
Petersson form of Teichmüller space:

dlength(λ)- = InfEarth(λ) ,

in particular,

‖dlength(λ)‖∗length = length(λ) .

Theorem 16.3.42 together with Wolpert’s result gives an identification between
the cotangent space of Teichmüller space and ML� [46, Lemma 2.3]. In conse-
quence we obtain the following.

Theorem 16.3.48 ([63, Theorem 5.1]) Let α ∈ T ∗
H2/�

TeichS , and λ such that α =
d length(λ). Then

‖α‖∗length = length(λ)

defines an asymmetric norm on T ∗
H2/�

TeichS .
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And finally, the length norm on TH2/� TeichS can be written as follows: for X ∈
TH2/� TeichS ,

‖X‖length = sup

{
d length(λ)(X)

length(λ)
|λ ∈ML� \ {0}

}

. (16.42)

16.4 Anosov Representations

In all this section, � is a cocompact lattice of O+(d, 1), and τ an element
of Z1(�,Rd,1). We will consider the associated group �τ of isometries of co-
Minkowski space. The aim of this section is to provide an alternative proof
(Proposition 16.4.10) of the existence and uniqueness of the τ -invariant map bτ
already exhibited in Lemma 16.3.14. This proof involves the Anosov character
of �τ as a representation of the hyperbolic group � into the group of isometries
of the Minkowski space. As a by-product, we will see that the convergence in
Lemma 16.3.27 is not only pointwise, but uniform (Lemma 16.4.11).

We start by the following fundamental observation: since stabilizers of points
are non-compact, there is no O+(d, 1) � Rd,1 invariant metric on the boundary
of co-Minkowski space. However, if one fixes an element x0 in Hd , then x 	→
〈x, x〉d,1+ 2〈x, x0〉2d,1 is a positive definite form, hence a Euclidean metric on Rd,1,
which we denote by 〈·, ·〉x0 .

The choice of x0 also induces a splitting Rd,1 ≈ Rd × R: here, R is the linear
subspace spanned by x0, and Rd is the orthogonal of x0 for the Minkowskian scalar
product. Until now, when writing ∂∗Rd,1 ≈ ∂Bd × R, we were always implicitly
doing the choice x0 = (0, . . . , 0, 1), but in this section we will also consider other
choices. What is relevant for us now, is that the choice of x0 induces Riemannian
metrics on ∂∗Rd,1: for example, the one making ∂Bd and R orthogonal, and whose
restrictions to ∂Bd and R are the ones induced by the Euclidean metric 〈·, ·〉x0 . But
it is not precisely the one we will actually use, and we now describe a distance
function dx0 on ∂∗Rd,1.

Let us be more precise: we can define ∂∗Rd,1 as the space of lightlike affine
hyperplanes of Minkowski space. Once we have fixed the unit timelike vector x0,
we can parametrize ∂∗Rd,1 by pairs (w, h) where:

• w is a future lightlike vector in Rd,1 in the affine spacelike hyperplane Hx0 of
equation 〈x0, w〉d,1 = −1 (therefore, Hx0 is the hyperplane tangent to Hd at
x0, and the set of future lightlike vectors lying in Hx0 is the unit sphere in this
Euclidean space),

• h any real number.

The associated lightlike affine hyperplane is then the one given by the equation:

〈w, ·〉d,1 = −h .



694 T. Barbot and F. Fillastre

The distance function we will actually use is the following one:

dx0((w1, h1), (w2, h2)) =
√
〈w1 −w2, w1 −w2〉d,1 + (h1 − h2)2

=
√
−2〈w1, w2〉d,1 + (h1 − h2)2 .

We will also consider the closed hyperbolic manifold N = �\Hd , and the
geodesic flow φt on the unitary tangent bundle M = T 1N . Recall that, for any
element v of M , the image φt (v) is the unique vector tangent to the geodesic starting
from v and at distance t along this geodesic.

Actually, M is the quotient of the unitary tangent bundle T 1Hd by the natural
action of �. The unitary tangent bundle T 1Hd is also naturally identified with pairs
(x, v), where the base point x is an element of Hd , and v a unit spacelike vector in
Minkowski space orthogonal to x. The geodesic flow φ̃t on T 1Hd is then:

φ̃t (x, v) = (cosh(t)x + sinh(t)v, sinh(t)x + cosh(t)v) .

Definition 16.4.1 (Foliated Bundle Over M) Let Eτ be the quotient of the product
T 1Hd×∂∗Rd,1 by the diagonal action of �τ , where �τ acts on Hd through its linear
part. Let πτ : Eτ → M be the map induced by the projection on the first factor. This
map is a fibration, of fiber ∂∗Rd,1. It is called the foliated bundle of the holonomy
group �τ over M .

Definition 16.4.2 (Lifted Geodesic Flow) Let φ̃t
τ be the flow on T 1Hd × ∂∗Rd,1

defined by:

φ̃t ((x, v), ξ) = (φ̃t (x, v), ξ) .

This flow commutes with the �τ action, and induces a flow on Eτ , denoted by
φt
τ .

We clearly have:

∀t ∈ R φt
τ ◦ πτ = πτ ◦ φ̃t .

We also can distinguish two subbundles �±
τ of πτ : Eτ → M . More precisely:

Lemma 16.4.3 Let (x, v) in T 1Hd . Let (w, h) be an element of ∂∗Rd,1

parametrized by the pair (w, h) under the identification defined above associated
to x. Then:

−1 ≤ 〈w, v〉d,1 ≤ 1 .

Moreover, the equality 〈w, v〉d,1 = 1 holds if and only if w = x+v, and the equality
〈w, v〉d,1 = −1 holds if and only if w = x − v.
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Proof For every (x, v) in T 1Hd , and every lightlike element w of Hx , v, −v and
w−x are unit elements in the Euclidean hyperplane x⊥. The Lemma follows easily
since 〈w, v〉d,1 = 〈w − x, v〉d,1. !�
Definition 16.4.4 We denote by �̃+ (respectively �̃−) the closed subset of T 1Hd×
∂∗Rd,1 comprising elements (x, v, ξ) such that the orthogonal of the lightlike
hyperplane ξ is x + v (respectively x − v).

The complement T 1Hd × ∂∗Rd,1 \ �̃± is an open subset that we denote by ℵ̃±.

It is straightforward to check that �̃± and ℵ̃± are �τ -invariant and define closed
subsets �±

τ and open subsets ℵ±τ of Eτ . Moreover:

Lemma 16.4.5 �̃± and ℵ̃± are φ̃t -invariant.

Proof We just have to prove that �̃± is φ̃t -invariant. We just treat the case of �̃+,
the case of �̃− is similar.

Let (x, v, ξ) be an element of �̃+: this means that, for the parametrization
defined by x, the lightlike hyperplane ξ is parametrized by (w, h), where w =
x + v—or, equivalently, 〈w, v〉d,1 = 1 (see Lemma 16.4.3). Denote by (xt , vt )

the iterate φ̃t (x, v). Let (wt , ht ) be the pair parameterizing ξ for the identification
defined by xt . Then, wt = λt (x + v) for some positive real number λt . We must
have:

−1 = 〈wt, xt 〉d,1
= 〈λt (x + v), cosh(t)x + sinh(t)v〉d,1
= −λt cosh(t)+ λt sinh(t)

= −λt exp(−t) .

Therefore λt = exp(t), and:

wt = exp(t)(x + v)

= (cosh(t)+ sinh(t))x + (cosh(t)+ sinh(t))v

= (cosh(t)x + sinh(t)v) + (sinh(t)x + cosh(t)v)〉d,1
= xt + vt .

The lemma follows.
!�

Therefore, �±
τ are φt

τ -invariant. The restriction of πτ to �±
τ is a fibration, with

1-dimensional fibers. The restriction π±
τ to ℵ±τ is a fibration with contractible

fibers. Indeed, every fiber is the complement in ∂∗Rd,1 of a degenerate vertical line
removed, i.e. the product of a 1-punctured sphere by the real line.
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Definition 16.4.6 Let �τ be the space of continuous sections of the fibration πτ :
Eτ → M . We denote by �±

τ the open subset comprising sections of πτ : ℵ±τ → M ,
and by �(�±)τ the space of sections of π±

τ : �±
τ → M .

Let σ be an element of �τ . It lifts uniquely to a �τ -equivariant section of the
fibration T 1Hd × ∂∗Rd,1 → T 1Hd and therefore provides a �τ -equivariant map
F : T 1Hd → ∂∗Rd,1. Actually, �τ is in 1-1 correspondence with the space of
�τ -equivariant maps from T 1Hd into ∂∗Rd,1.

Given two elements σ1, σ2 of �τ , let F1, F2 their associated �τ -equivariant maps
from T 1Hd into ∂∗Rd,1. We define:

D(σ1, σ2) = sup
(x,v)∈T 1Hd

dx(F1(x, v), F2(x, v)) .

Since M is compact, the �τ -equivariance implies that this upper bound is always
attained.

It defines a metric D on �τ . Observe that the metric space (�τ ,D) is complete.
The flow φτ induces a 1-parameter group of transformations on (�τ ,D): for

every t in R, and any σ in �τ , define:

�t
τ (σ )(x, v) = φt

τ (σ (φ−t (x, v))) .

According to Lemma 16.4.5, the subbundles �±
τ are �t

τ -invariant.
We can now prove the fundamental fact:

Lemma 16.4.7 The flow �t
τ on�+

τ is exponentially contracting: there exist positive
real numbers T , a and 0 < C < 1 such that, for every t > T and for every σ1, σ2
in �+

τ we have:

D(�t
τ (σ1),�

t
τ (σ2)) < Ce−atD(σ1, σ2) .

Proof Let F : T 1Hd → ∂∗Rd,1 be a �τ -equivariant map corresponding to
elements of �

+
τ . We denote by Ft the iterate �t

τ (F ). Let (x, v) be an element
of T 1Hd . Let ξ be the image F(x, v). This is an affine lightlike hyperplane. By
definition of �t

τ , ξ is the image under Ft of φ̃t (x, v) = (xt , vt ) = (cosh(t)x +
sinh(t)v, sinh(t)x+cosh(t)v). Let (wt , ht ) be the pair corresponding to ξ satisfying
〈xt , wt 〉d,1 = −1 and such that ξ is the hyperplane of equation:

〈wt , .〉d,1 = −ht .

In particular, we see that −hx belongs to ξ , and therefore, for every t we have:

ht = −h〈wt , x〉d,1 . (16.43)
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Since the lightlike vectors wt are all orthogonal to ξ , they are proportional: for
every t , there is a real number λt > 0 such that wt = λtw0. From Eq. (16.43) we
see:

ht = hλt .

A straightforward computation shows:

λt = 1

cosh(t)− sinh(t)〈v,w0〉d,1 .

Let now F1, F2 be two �τ -equivariant maps from T 1Hd into ∂∗Rd,1 correspond-
ing to sections of πτ : ℵ+τ → M . The distance in �τ between the corresponding
sections is then the supremum of dx(F1(x, v), F2(x, v)) where (x, v) describes
T 1Hd . Applying �t

τ simply means that we replace F1 and F2 by F1 ◦ φ̃−t
τ and

F2 ◦ φ̃−t
τ . It follows that the distance after applying �τ is the supremum of

dxt (F1(x, v), F2(x, v)) where (x, v) describes T 1Hd and where xt denotes as above
the x component of φ̃t (x, v), i.e. cosh(t)x + sinh(t)v.

The computation above shows that, for i = 1, 2, the pair (wi
t , h

i
t ) representing

Fi(x, v) satisfies:

wi
t =

wi
0

cosh(t)− sinh(t)〈v,w0〉d,1 ,

hi
t =

hi
0

cosh(t)− sinh(t)〈v,w0〉d,1 .

Therefore, dxt (F1(x, v), F2(x, v)) = dx0 (F1(x,v),F2(x,v))

cosh(t)−sinh(t)〈v,w0〉d,1 . Since the F1 and F2

correspond to sections in �+
τ , we have:

−1 ≤ 〈v,w0〉d,1 < 1 .

It follows that for big t , the quantity cosh(t) − sinh(t)〈v,w0〉d,1 is equivalent to
et (1 − 〈v,w0〉d,1)/2. The lemma follows. !�
Corollary 16.4.8 There exists one and only one �t

τ -invariant section σ+τ of πτ :
ℵ+τ → M . This invariant section actually takes value in �−

τ .

Proof Let T > 0 be a real number big enough so that �T
τ is contracting. Since

�−
τ is a subbundle of ℵ+τ , �(�−)τ is a closed subset of �+

τ . The restriction D to
�(�−)τ is therefore complete. Hence, as any contracting map acting on a complete
metric space, �T

τ admits a unique fixed point σ+τ in �(�−)τ . Since its action on �+
τ

is contracting too, σ+τ is the unique fixed point in �+
τ . Since �T

τ commutes with �t
τ

for every real number t , σ+τ is fixed by every �t
τ . !�
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Let Fτ : T 1Hd → ∂∗Rd,1 be the �τ -equivariant lift of the �t
τ -invariant section

σ+τ exhibited in Corollary 16.4.8. The �t
τ -invariance means that Fτ is constant along

the orbits of the geodesic flow φ̃t of T 1Hd . The following Lemma shows that we
have much more:

Lemma 16.4.9 The map Fτ is constant along the leaves of the weak unstable
foliation of the geodesic flow φt .

Proof Let θ1, θ2 be two orbits of φ̃t in the same unstable leaf, i.e. such that for
every (x1, v1) in θ1 and every (x2, v2) in θ2 the isotropic vectors x1−v1 and x2−v2
are proportional, i.e. represent the same element of ∂Hd . On the other hand, since
the invariant section takes its values in �−

τ , Fτ (x1, v1) and Fτ (x2, v2) are lightlike
hyperplanes orthogonal to respectively x1 − v1 and x2 − v2. Therefore, they are
parallel.

Let p1, p2 be the projections of (x1, v1) and (x2, v2) in M . Then, by replacing
p2 by another element of its φt -orbit, one can assume that p1 and p2 lie in the same
strong unstable leaf, i.e. that the hyperbolic distance between φt(p1) and φt (p2)

converge exponentially to 0 when t goes to −∞.
It follows that the hyperbolic distance between φ̃t (x1, v1) and φ̃t (x2, v2) con-

verges to 0 when t tends to −∞. Let ξ1 = Fτ (x1, v1) and ξ2 = Fτ (x2, v2). Since
Fτ is (uniformly) continuous, it follows that dt(ξ1, ξ2) converges to 0, where dt is
the distance on ∂∗Rd,1 defined by φ̃t (x1, v1). But this is almost a contradiction with
Lemma 16.4.7, which shows that this distance should be exponentially increasing
when t tends to −∞. The only possibility is that this distance actually vanishes, i.e.
ξ1 = ξ2. The lemma is proved.

!�
In the sequel, we use the cylindrical affine model of the co-Minkowski space,

i.e. write elements of ∂∗Rd,1 as pairs (w, h) where w is a lightlike vector satisfying
〈x0, w〉d,1 = −1, where x0 denotes the element (0, . . . , 0, 1) of Rd,1.

Proposition 16.4.10 There is a continuous map bτ : ∂Bd → R such that the �τ -
equivariant map Fτ : T 1Hd → ∂∗Rd,1 is given by:

(x, v) 	→
(

− x − v

〈x0, x − v〉d,1 , bτ
(

− x − v

〈x0, x − v〉d,1
))

.

Proof We still parameterize the unit tangent bundle of the hyperbolic space by pairs
(x, v) where x is a unit timelike vector and v a unit spacelike vector orthogonal to x.

Since the invariant section takes its values in the subbundle �−, the map Fτ

is such that Fτ (x, v) = (w(x, v), h(x, v)) where w(x, v) is proportional to x −
v, hence is equal to − x−v

〈x0,x−v〉d,1 . Moreover, according to Lemma 16.4.9, h(x, v)
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depends only on x − v, hence, only on − x−v
〈x0,x−v〉d,1 . Therefore, Fτ is given by:

(x, v) 	→
(

− x − v

〈x0, x − v〉d,1 , bτ
(

− x − v

〈x0, x − v〉d,1
))

for some map bτ : ∂Bd → R. !�
As a corollary, we get the following improvement of Lemma 16.3.27:

Lemma 16.4.11 Let τn → τ . Then bτn (resp. h±τn , hmean
τn

) converge uniformly to bτ
(resp. h±τ , hmean

τ ).

Proof We just give a sketch of proof. First, we observe that we just have to prove the
statement for bτn , since the uniform convergence of h±τn (resp. hmean

τ ) follows then
from Lemma 16.2.43 (resp. Lemma 16.2.38). The key point is that when n is big
enough, the fibration πτn : Eτn → M is isomorphic to the fibration πτ : Eτ → M .
More precisely, (the inverse of) this isomorphism of fibrations sends the graph of
the section στ to the graph of some section which is already an almost fixed point
for �t

τn
. The bigger n is, the closer (for the metric D) is this almost fixed point to

the eventual fixed point σ+τn . In other words, the bigger is n, the closer to σ+τ is σ+τn
for the compact-open topology. The Lemma clearly follows, due to the form of the
lifts Fτ and Fτn given by Proposition 16.4.10. !�
Remark 16.4.12 Mutandi mutandis, one can show that there is also a unique fixed
point for �t

τ in �−
τ , which this time is an exponential repeller, and which is actually

a section of the subbundle �+. It provides, as in Proposition 16.4.10 a map from
∂Bd into R, which is actually the map bτ . Details are left to the reader.

Remark 16.4.13 Instead of considering the fiber bundle ℵ±τ , one might have
restricted the study to the subbundles �±, which are simpler since with one-
dimensional fibers. However, the most efficient way to deal with these bundles is
to consider them as subbundles of Eτ .

We conclude this section by an interpretation of its content in term of Anosov
representations. Let G be a general Lie group acting on some space X, and let ρ :
� → G be a representation. Consider as in Definition 16.4.1 the foliated bundle πρ :
Eρ(X) → M where Eρ(X) is the quotient of the product T 1Hd×X by the diagonal
action of � and where the action of � on X is given by ρ. As in Definition 16.4.2,
the geodesic flow φt lifts to some horizontal flow φt

ρ on Eρ(X) so that the bundle
map πρ is equivariant.

The representation ρ is said to be (G,X)-Anosov if the following holds: there
is a section σ : M → Eρ(X) which is equivariant for the flows, and such that the
graph � of σ is a closed hyperbolic subset for the lifted flow φt

ρ : this means that the
restriction T�Eρ(X) of the tangent bundle of Eρ(X) to � splits as a Whitney sum
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of subbundles E+ ⊕ E− ⊕�, where:

• � is the one dimensional bundle tangent to the flow φt
ρ ,

• E+ is exponentially contracted by the flow,
• E− is exponentially expanded by the flow.

For more details, see [47] or [4, 5].
In our case, the inclusion � ≈ �τ ⊂ SO+(d, 1)�Rd,1 is (G,X)-Anosov where

X is the space of oriented (d − 1)-dimensional spacelike affine subspaces of Rd,1.
Indeed, X is identified with the open domain in ∂∗Rd,1 × ∂∗Rd,1 made of pairs
(ξ1, ξ2), where ξ1 and ξ2 are non-parallel affine lightlike hyperplanes. Therefore,
the two equivariant sections σ±τ define altogether a section σ of πρ : Eρ(X) → M .
Moreover, it follows from Lemma 16.4.7 and Remark 16.4.12 that the graph of σ is
a closed hyperbolic subset for φt

ρ .
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Essential 2-sphere, 162
Euclidean decomposition, 103
Exceptional slope, 109
Exiting sequence, 461
Expansion factor, 130
Exterior, 73
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Hubbard–Masur differential, 511
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Horosphere, 98
Hubbard–Masur differential, 511
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Hyperbolic Dehn filling theorem, 109
Hyperbolic Dehn surgery, 14, 15
Hyperbolic Dehn surgery theorem, 14
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Hyperbolic manifold, 62
Hyperbolic piece, 83
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Hyperbolic surface, 425
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Ideal tetrahedron, 104

edge parameter, 105
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Immersion data, 607
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Index
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Injectivity radius, 100, 142
Intersection number, 430, 464

in Extremal length geometry, 514
for measured foliations, 502
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Invisible domain, 579
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J
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JSJ decomposition, 82
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limit set, 126, 507
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quasi-Fuchsian group, 507
region of discontinuity, 507
trace field, 120
virtual automorphism, 121

Kleinian manifold, 126, 301
Kleinian surface group, 507

marked Kleinian surface group, 507
Kneading determinant, 9
Kneading matrix, 9
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Knot, 70, 74

achiral, 71
alternating, 77
chiral, 71
companion, 84
diagram, 70
exterior, 73
fibered, 75
genus, 72
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mutant, 79
oriented, 71
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satellite, 84
symmetry group, 104
trivial, 70

Knot complement, 73
Knot complement theorem, 75
Knot group, 74
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meridian, 74
peripheral subgroup, 74

Knot module, 76
Knot theory, 14
Koebe–Andreev–Thurston theorem, 24, 178,

186
Koebe uniformization conjecture, 177

for countably-connected domains, 205
Krushkal formula, 517

L
Label

polynomial, 538
Laminar group, 381

Lamination, 267, 367, 426
measured lamination, 426
stable lamination, 429

Lamination system, 385
Landslide, 624
Lattice, 123
Left-invariant order, 384
Left-most section, 373
Lelong–Jensen formula, 516
Length function, 429
Length norm, 650
Lens space surgery, 114
Levi form, 515
Lightlike vector, 549
Limit set, 126, 242, 301, 507
Link, 84

π-hyperbolic, 96
Gromov invariant, 118
hyperbolic, 101

Linkage, 43
Liouville current, 434
Liouville measure, 434
Lobachevsky function, 115
Loose lamination, 413
Lorentzian

conformal struture, 556
cross product, 571
manifold, 549
metric, 549
orthonormal basis, 549

Lorentzian space, 41
L-space, 114

M
Mahler measure, 146
Mapping class group, 130, 425, 464

abelianization, 479
asymptotic, 484, 486
automatic continuity, 475
big, 459
cohomology, 480
compactly supported, 466
extended, 464
homology representation, 482
pure, 465
quasi-conformal, 467
quasi-isometry class, 474
residual finiteness, 481
rigid, 476, 481
topologically generating, 470, 487
topology of, 464, 468, 470
WWPD elements, 492

Marden’s tameness conjecture, 15, 36
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Margulis constant, 302
Marked hyperbolic structure, 127, 128
Marked Kleinian surface group, 507
Marked Riemann surface, 500
Marker, 372
Marking, 300
Masur domain, 281
Maximal dilatation, 500
Maximal globally hyperbolic, 591
Maximal isometry group, 551
Maximal surface, 621
McShane–Mirzakhani identity, 45
Mean curvature measure, 672
Mean surface, 669
Measured foliation, 131, 502

extremal length, 511
generic, 503
measure equivalent, 503
minimal, 510
topologically equivalent, 510
uniquely ergodic, 503

Measured geodesic lamination, 688
simplicial, 676

Measured lamination, 504
extremal length, 511
full support, 504
minimal, 510
support, 504
topologically equivalent, 510
transverse measure, 504

Measured lamination space, 21
Meridian, 74
Meridian coefficient, 320
Minimal, 510
Minimal Lagrangian diffeomorphism, 623
Minimal lamination, 401
Minkowski space, 651
Model metric, 318
Modular group, 467
Monodromy, 75
Monotone ordered sequence, 374
Monster thorem, 164
Montesinos pair, 87
Multi-black hole, 630
Multicurve, 425
Murasugi sum, 78
Mutant, 79, 96
Mutation, 96

N
Nielsen realization, 483

infinite-type surfaces, 483
Nielsen realization problem, 31

Nielsen–Thurston classification, 429
Non-separating, 81
North-South dynamics, 451

O
Orbifold, 90

geometric, 92
Orbifold theorem, 92
Order tree, 378
Oriented slope, 109

P
Pairwise compressible, 87
Pants

decomposition, 464
pair of, 464

Parabolic, 97
Parabolic fixed point, 97
Particle, 630
Past

directed vector, 549
of a point, 549

Pattern, 84
Penrose-like tiling, 26
Periodic, 130
Peripheral subgroup, 74
Pleated surface, 271
Plumbing, 78
Pluricomplex green function, 516

Krushkal formula, 517
Pluriharmonic measure, 516
Plurisubharmonic, 515
Poincaré conjecture, 12, 14, 162
Poisson integral formula, 516
Polish group, 469
Polyhedron, 221

Cauchy rigidity, 234
compact and convex hyperbolic, 226
hyperideal, 231
ideal, 229
inscribed or circumscribed, 222
midscribe, 224

Polynomial
bi-regular, 530
geometric picture, 528
real discriminant, 541
signature, 529

Postcritically finite map, 18
Prime, 72, 81
Profinite completion, 144
Projective measured foliation, 503
Projective measured foliation space, 131
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Proper achronal meridian, 584
Properly embedded, 81
Pseudo-Anosov, 130, 429
Pseudo-fibered group, 414
Pseudo-quaternion, 566

Q
Quasiconformal deformation, 507

Kleinian group, 507
Quasiconformal diffeomorphism, 633

maximal dilatation, 633
Quasiconformally rigid, 286
Quasiconformal mapping, 18, 29, 500

Beltrami differential, 501
maximal dilatation, 500

Quasiconformal motion, 20
Quasi-Fuchsian group, 507
Quasisymmetric homeomoprhism, 633

cross-ratio norm, 633

R
Rational map

very bi-regular, 539
Rational tangle, 87
R-covered foliation, 367
Real discriminant, 541
Real tree, 269

dual, 269
Reconstruction principle, 46
Reduced, 77
Reducible, 130
Region of discontinuity, 301, 507
Relative end, 302
Representation

holonomy, 99
irreducible, 126
type-preserving, 126

Residually finite, 144
Ricci flow, 14, 37, 167
Riemann mapping theorem, 18, 23

discrete, 23
Rigidity

algebraic, 476
quantifying, 481

Root JSJ piece, 84
Rotation distance, 28
Round disk, 243

S
Satellite knot, 84
Schwarzian derivative, 22
Seifert algorithm, 72
Seifert fibered orbifold, 91
Seifert fibered space, 82, 162
Seifert link, 85
Seifert matrix, 77
Seifert piece, 83
Seifert surface, 16, 72

Murasugi sum, 78
plumbing, 78

Seifert surgery, 114
Self-similar tiling, 26
Separating, 81
Shadow, 117
Shadow complexity, 117

branched, 117
Siegel problem, 123
Signature

polynomial, 529
Simple for Conway, 87
Simple for Schubert, 87
Simply degenerate, 294, 508
Singular locus, 90
Slice, 301
Slope, 109

exceptional, 109
oriented, 109

Small, 162
Smith conjecture, 35, 62, 93, 164
Snap, 104
SnapPea, 104
SnapPy, 104
Spacelike, 651
Spacelike surface, 577
Spacelike vector, 549
Space of ends, 462
Special, 168
Special section, 375
Splaying conjecture, 28
Splittable, 87
Stable length, 438
Student movement, 60
Subsurface conjecture, 39
Sufficiently large 3-manifold, 11
Surface, 461

blooming Cantor tree, 463
Cantor tree, 463
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classification of, 462
flute, 463
Jacob’s ladder, 463
Loch Ness monster, 463
rigid structure on, 484

Sutured manifold, 77
Symmetry group, 104
Symmetry theorem, 92
Symplectic geometry, 7, 8
Symplectic structure, 8

T
Taut foliation, 6, 366
Teichmüller distance

Kerckhoff formula, 511
Teichmüller end invariant, 508
Teichmüller polynomial, 140
Teichmüller space, 19, 29, 128, 425, 500, 687

compactification, 29
Teichmüller distance, 500
Teichmüller equivalent, 500

Teichmüller theory
higher, 45

Teichmüller tower, 46, 47
Theorem

broken windows only, 277
continuity, 275
density, 285
double limit, 270
hyperbolization, 285
uniform injectivity, 272

Thick part, 100
Thin part, 100, 302
Thompson group, 483

braided, 484
Thurston

asymmetric distance, 650
length norm, 691

Thurston measure, 442, 505
on PMF with base point, 512

Thurston metric, 20, 32
projective surface, 20

Thurston norm, 5, 16, 139
dual, 16
polytope, 16

Thurston signature theorem, 43
Thurston’s uniformisation theorem, 62
Thurston–Weeks triple linkage, 44
Tight geodesic, 300
Tight sequence, 299
Tiling, 25, 27
Timelike vector, 549
Time orientation, 549

Topological ideal triangulation, 106
Topologically equivalent, 510
Topologically tame, 302
Topological order, 332
Topological tameness, 36
Topological type, 461

finite, 461
infinite, 461

Topology
compact-open, 464
permutation, 468

Topology in Japan, 61
Torelli group, 466

topologically generating, 472
Torus cusp, 100
Torus decomposition theorem, 82
Torus knot, 85
Trace field, 120
Train track, 274, 427
Transitional geometry, 42, 43
Transverse measure, 504
Trivial tangle, 87
Tube, 100
Twist, 108
Twisted Alexander polynomial, 141
Twist number, 108
Two-level principle, 46
Type-preserving, 126

U
Uniform injectivity theorem, 272
Uniformization, 17
Uniformization theorem, 23

Haken manifolds, 11, 15
Thurston, 35

Unimodal map, 9, 10
Unique prime decomposition, 73, 81
Universal circle, 366
Universal group, 143
Universal link, 143
Unsplittable, 87

V
Veering triangulation, 133
Vertical foliation, 511
Very by-regular holomorphic function, 539
Very by-regular rational map, 539
Very full lamination, 381
Virtual automorphism, 121
Virtual fiber conjecture, 165
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Virtual fibering conjecture, 12
Virtual Haken conjecture, 12, 38
Virtually Haken, 165
Volume, 15
Volume conjecture, 119
Volume-preserving diffeomorphism, 8

W
Waldhausen conjecture, 38
Weak proper discontinuity, 492
Weighted simple closed curve, 502
Weil–Petersson metric, 32
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