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Chapter 16
Drugs of Abuse Affecting 5-HT2B Receptors

Dino Luethi and Matthias E. Liechti

Abbreviations

MDA 3,4-methylenedioxyamphetamine
MDMA 3,4-methylenedioxymethamphetamine
CYP Cytochrome P450
LSD Lysergic acid diethylamide
NPS New psychoactive substances
SERT Serotonin transporter

1  Introduction

A variety of drugs of abuse affect monoaminergic neurotransmission including the 
serotonergic system. On the one hand, serotonergic stimulants target the plasma-
lemmal serotonin transporter (SERT), either as blockers such as cocaine or as sub-
strates such as 3,4-methylenedioxymethamphetamine (MDMA) [1–5]; on the other 
hand, serotonergic psychedelics mediate their mind-altering effects mainly through 
activation of serotonergic 5-hydroxytryptamine (5-HT) 2A receptors [6–11]. 
Moreover, several stimulant-type substances interact with serotonergic receptors [2, 
12–16] and some psychedelics inhibit transporter-mediated serotonin reuptake [17] 
in addition to their main action at the 5-HT2A receptor. Besides stimulants and psy-
chedelics, other drug classes such as synthetic cannabinoids and opioids have been 
shown to interact with serotonin transporers and receptors [18–20] in addition to 
their main effects at cannabinoid and opioid receptors, respectively. The 5-HT2B 
receptor is one potential interaction site for serotonergic drugs of abuse. However, 
the 5-HT2B receptor is not a primary target for serotonergic drugs as its main expres-
sion is in peripheral organs such as liver, kidneys, stomach, and gut, and there is 
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only limited expression in the brain [21–25]. Nevertheless, it has been associated 
with pathways that modulate drug abuse and reinforcing effects of stimulants [26–
28]. Furthermore, 5-HT2B receptor interactions with drugs of abuse are of interest as 
receptor activation has been associated with cardiac valvulopathy, resulting in the 
market removal of several 5-HT2B agonist prescription drugs, including the appetite 
suppressant fenfluramine [29–32]. The major metabolite of fenfluramine, norfenflu-
ramine (3-trifluoromethylamphetamine), displays higher affinity and efficacy at the 
5-HT2B receptor in comparison to the parent compound [32, 33], indicating that it is 
mainly responsible for fenfluramine-induced cardiac valvulopathy. Even though 
fenfluramine has structural similarity to amphetamine, it does not share the potent 
stimulant effects and abuse is therefore rare [34, 35]. However, the chemical struc-
tures of fenfluramine and norfenfluramine suggest that drug-induced cardiac valvu-
lopathy is a potentially severe complication to consider for any amphetamine-type 
drugs of abuse that stimulate serotonin 5-HT2B receptors [36]. This chapter should 
give a basic overview over the involvement of 5-HT2B receptors in recreational drug 
action and associated adverse effects such as cardiac valvulopathy. Different stimu-
lant and psychedelic drugs for which activity at the 5-HT2B receptors has been tested 
will be discussed.

2  Drugs Stimulating 5-HT2B Receptors

Interference with monoaminergic signaling is the main mechanism of action for 
stimulants and psychedelics [1, 4, 37]. In addition, interactions with monoaminergic 
targets have been shown for other drug classes, such as opioids [17] or dissociative 
anesthetics [38, 39]. Compared to other monoaminergic targets such as 5-HT2A or 
dopamine receptors, relatively little research has focused on the interactions of 
drugs of abuse with 5-HT2B receptors. Nevertheless, 5-HT2B receptor interactions 
have been assessed for various stimulant and psychedelic drugs of abuse, including 
many new psychoactive substances (NPS) [3, 14, 16, 17, 40–45], which are shown 
in Tables 16.1 and 16.2, respectively.

2.1  5-HT2B Receptor-Mediated Effects of Stimulants

Despite its limited expression in the brain, the 5-HT2B receptor has been shown to 
contribute to the mechanism of action of stimulants. For instance, it has been dem-
onstrated that selective 5-HT2B receptor antagonism and 5-HT2B receptor knockout 
reversed MDMA-induced hyperactivity in mice [28]. Furthermore, it has been 
demonstrated that inhibition and knockout of the 5-HT2B receptors abolished 
MDMA- induced efflux of serotonin in the nucleus accumbens and ventral tegmen-
tal area [28]. The authors of that study hypothesized that presynaptic 5-HT2B recep-
tors modulate MDMA-induced 5-HT release in serotoninergic raphe neurons. In 
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Table 16.1 5-HT2B receptor interactions of stimulant drugs of abuse

Drugs

5-HT2B receptor activity

ReferenceKi [μM] EC50 [μM] Emax [%]

Aminoindanes

5-Iodo-2-aminoindane 0.07 Iversen et al. [43]
MDAI >5 Iversen et al. [43]
MMAI >10 Luethi et al. [16]
N-methyl-2-AI >20 Luethi et al. [16]
Benzofurans

5-APB 0.28 ± 0.12 61 ± 17 Rickli et al. [14]
0.014 0.015 ± 0.001 92 ± 1 Iversen et al. [43]

5-APDB 1.2 ± 0.6 50 ± 21 Rickli et al. [14]
6-APB 0.14 ± 0.06 70 ± 9 Rickli et al. [14]

0.004 0.0041 ± 0.003 93 ± 1 Iversen et al. [43]
6-APDB 0.12 ± 0.03 66 ± 17 Rickli et al. [14]
5-MAPDB >20 Rickli et al. [14]
4-APB 1.0 ± 0.5 38 ± 16 Rickli et al. [14]
7-APB 0.28 ± 0.52 52 ± 17 Rickli et al. [14]
5-EAPB >20 Rickli et al. [14]
Cathinones

α–PVP >20 Rickli et al. [15]
β-Keto-MDA >20 Rickli et al. [15]
1-Naphyrone 0.4 Iversen et al. [43]
2,3-DMMC >10 Luethi et al. [16]
2,4-DMMC >10 Luethi et al. [16]
3-MMC >10 Luethi et al. [16]
3,4-DMMC >20 Luethi et al. [16]
BMDP 1.7 Iversen et al. [43]
4–Bromomethcathinone >20 Rickli et al. [15]
4–Ethylmethcathinone >20 Rickli et al. [15]
4–Fluoromethcathinone >20 Rickli et al. [15]
4–Methylmethcathinone >20 Rickli et al. [15]
Benzedrone >5 Iversen et al. [43]
MDPPP >20 Rickli et al. [15]
MDPBP >20 Rickli et al. [15]
MDPV >20 Rickli et al. [15]
Mephedrone >10 Luethi et al. [16]

0.74 Iversen et al. [43]
Methcathinone >20 Rickli et al. [15]
Methylethcathinone >5 Iversen et al. [43]
Methylone >10 Luethi et al. [5]
Naphyrone >5 Iversen et al. [43]

>20 Rickli et al. [15]
Pyrovalerone >20 Rickli et al. [15]

(continued)
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addition, inhibition and knockout of the 5-HT2B receptor led to an absence of dopa-
mine efflux in the nucleus accumbens, which may have been the result of a lack of 
 activation of postsynaptic serotonin receptors [28]. In a follow-up study, MDMA 
was shown to induce locomotor sensitization and conditioned place preference in 
wildtype but not in 5-HT2B receptor knockout or 5-HT2B receptor antagonized mice, 
underscoring the possible role of 5-HT2B receptors in the reinforcing effects of sero-
tonergic stimulants [27]. However, an increased dose of MDMA induced behav-
ioral effects in all mouse models, potentially due to direct and therefore 5-HT2B 
receptor independent interaction of MDMA with the dopamine transporter [27]. 
This assumption is supported by in vitro studies showing serotonin transporter inhi-
bition at low and dopamine transporter inhibition by MDMA at high concentrations 
[5, 12].

Table 16.1 (continued)

Drugs

5-HT2B receptor activity

ReferenceKi [μM] EC50 [μM] Emax [%]

Phenethylamines

4-Fluoroephedrine >20 Rickli et al. [15]
4–Fluoroamphetamine 11.4 ± 4.6 49 ± 15 Rickli et al. [15]
4–Fluoromethamphetamine >20 Rickli et al. [15]
4-Methylamphetamine 0.86 ± 0.38 54 ± 8 Luethi et al. [16]
D-Amphetamine 9.4 8 ± 2 Rickli et al. [15]
D-Methamphetamine >20 Rickli et al. [15]
Ephedrine >20 Rickli et al. [15]
MDA 0.85 ± 0.11 52 ± 12 Rickli et al. [14]
MDMA >20 Rickli et al. [14]
Piperidines

4-Fluoromethylphenidate >10 Luethi et al. [3]
4-Methylmethylphenidate >10 Luethi et al. [3]
Ethylnaphthidate >10 Luethi et al. [3]
Ethylphenidate >20 Luethi et al. [3]
Methylphenidate >10 Luethi et al. [3]
Propylphenidate >10 Luethi et al. [3]
Other

4,4′-DMAR >10 Maier et al. [44]

5-IT 1.5 ± 0.6 36 ± 5 Luethi et al. [16]
Cocaine >10 Luethi et al. [3]
Dimethylamylamine >5 Iversen et al. [43]
Methiopropamine 3.9 Iversen et al. [43]
Methylmorphenate >10 Luethi et al. [3]
Modafinil >10 Luethi et al. [3]
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Table 16.2 5-HT2B receptor interactions of psychedelic drugs of abuse

Drugs

5-HT2B receptor activity

ReferenceKi [μM] EC50 [μM] Emax [%]

Benzodifuran

2C-B-FLY 0.040 56 Rickli et al. [14]
Ergoline

LSD 0.00057 0.0031 23 Eshleman et al. [42]
12 71 Rickli et al. [40]

Phenethylamines

25B-NBOMe 0.01 19 Rickli et al. [40]
25C-NBOMe 0.10 16 Rickli et al. [40]
25D-NBOMe 0.0021 0.032 48 Eshleman et al. [42]

0.10 22 Rickli et al. [40]
25E-NBOMe 0.0011 0.024 49 Eshleman et al. [42]

0.06 26 Rickli et al. [40]
25H-NBOMe 0.063 0.46 38 Eshleman et al. [42]

0.34 11 Rickli et al. [40]
25I-NBOMe 0.0019 0.11 21 Eshleman et al. [42]

0.13 32 Rickli et al. [40]
25N-NBOMe 0.0087 0.047 58 Eshleman et al. [42]

0.07 26 Rickli et al. [40]
25P-NBOMe 0.17 23 Rickli et al. [40]
25T2-NBOMe 0.04 31 Rickli et al. [40]
25T4-NBOMe 0.20 27 Rickli et al. [40]
25T7-NBOMe 0.31 14 Rickli et al. [40]
2C-B 0.13 89 Rickli et al. [40]

0.075 52 Luethi et al. [41]
2C-BI-1 >10 Luethi et al. [45]
2C-BI-2 >10 Luethi et al. [45]
2C-BI-3 >10 Luethi et al. [45]
2C-BI-4 >10 Luethi et al. [45]
2C-BI-5 >10 Luethi et al. [45]
2C-BI-7 >10 Luethi et al. [45]
2C-BI-8 0.22 Luethi et al. [45]
2C-BI-10 >10 Luethi et al. [45]
2C-BI-11 >10 Luethi et al. [45]
2C-BI-12 0.20 Luethi et al. [45]
2C-C 0.28 81 Rickli et al. [40]
2C-D 0.23 77 Rickli et al. [40]
2C-E 0.19 66 Rickli et al. [40]
2C-H 6.2 46 Rickli et al. [40]
2C-I 0.15 70 Rickli et al. [40]
2C-N 0.73 74 Rickli et al. [40]
2C-P 0.13 72 Rickli et al. [40]

(continued)
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Table 16.2 (continued)

Drugs

5-HT2B receptor activity

ReferenceKi [μM] EC50 [μM] Emax [%]

2C-T-1 0.057 58 Luethi et al. [41]
2C-T-2 0.13 75 Rickli et al. [40]
2C-T-3 0.044 28 Luethi et al. [41]
2C-T-4 0.16 68 Rickli et al. [40]

0.063 75 Luethi et al. [41]
2C-T-7 0.35 45 Rickli et al. [40]

0.052 46 Luethi et al. [41]
2C-T-16 0.047 36 Luethi et al. [41]
2C-T-19 0.369 40 Luethi et al. [41]
2C-T-21.5 0.182 40 Luethi et al. [41]
2C-T-22 0.11 35 Luethi et al. [41]
2C-T-25 0.108 32 Luethi et al. [41]
2C-T-27 >10 Luethi et al. [41]
2C-T-28 0.081 34 Luethi et al. [41]
2C-T-30 0.051 61 Luethi et al. [41]
2C-T-31 3.3 44 Luethi et al. [41]
2C-T-33 >10 Luethi et al. [41]
Biscaline >10 Luethi et al. [45]
DMA 1 Nelson et al. [46]
DOAc 0.31 Nelson et al., [46]
DOB 0.027 Nelson et al. [46]
DOBz 0.035 Nelson et al. [46]
DOC 0.032 Nelson et al. [46]
DOCN 0.77 Nelson et al. [46]
DOF 0.23 Nelson et al. [46]
DOHx 0.03 Nelson et al. [46]
DOI 0.02 Nelson et al. [46]
DOM 0.041 0.15 96 Eshleman et al. [42]
DON 0.17 Nelson et al. [46]
DOPR 0.054 Nelson et al. [46]
DOTB 0.025 Nelson et al. [46]
MEM 0.76 Nelson et al. [46]
Mescaline >20 Rickli et al. [40]
Mescaline-NBOMe >20 Rickli et al. [40]
TMA 0.31 Nelson et al. [46]
Tryptamines

4-OH-DiPT 0.460 55 Rickli et al. [17]
4-OH-MET >20 Rickli et al. [17]
5-MeO-AMT 0.004 104 Rickli et al. [17]
5-MeO-MiPT 1.5 12 Rickli et al. [17]
DiPT 1.0 103 Rickli et al. [17]

(continued)
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2.2  Stimulant-Induced Cardiac Valvulopathy

5-HT2B receptors are, among others, expressed in cardiovascular tissues [47] and 
their activation potentially leads to cardiac valvulopathy [29, 48–50]. Therefore, 
cardiac valvulopathy is a concern to consider for drugs that increase plasma 5-HT 
levels, directly activate the 5-HT2B receptor, or both. In fact, several prescription 
drugs have previously been removed from the market due to their potential to induce 
cardiac valvulopathy in patients [29–32]. However, serotonergic drugs of abuse are 
typically not associated with a high abuse liability [51–54] and are therefore mostly 
used sporadically and not on a regular basis. This raises the question of the rele-
vance of 5-HT2B-mediated cardiac valvulopathy in recreational drug use. The regu-
lar use of the serotonergic drug MDMA has been associated with mild to moderate 
valvular heart disease, based on a case control study [55]. In this study, 8 of 29 regu-
lar MDMA users displayed abnormal echocardiographic results compared with 
none of the control group. The average use of the MDMA users was very high and 
described to have consisted of 3.6 MDMA tablets per week with an average dura-
tion of drug use of 6.1 years [55]. This underscores the assumption that in particular 
heavy recreational use of serotonergic stimulants may induce cardiac valvulopathy. 
Besides these clinical findings from a case control study, 5-HT2B receptor-mediated 
proliferation of cardiac valvular interstitial cells induced by MDMA has also been 
demonstrated in vitro [56].

2.3  Stimulants Acting on 5-HT2B Receptors

Table 16.1 shows an overview of 5-HT2B receptor binding and activation potency 
values for various stimulants, assessed in different studies. Notably, in a study by 
Rickli and colleagues, MDMA did not activate the 5-HT2B receptor in the func-
tional assay at investigated concentrations (EC50  >  20  μM); however, 
3,4- methylenedioxyamphetamine (MDA), the main psychoactive N-demethylated 
phase I metabolite of MDMA, potently activated the receptor at submicromolar 
concentrations [14]. This suggests that the metabolite MDA rather than MDMA 
itself may lead to valvulopathy and that there could be a significant metabolic con-
tribution to MDMA-induced effects and adverse effect. MDA formation is mainly 
mediated by cytochrome P450 (CYP) 2B6, with additional contributions from 
CYP1A2, CYP2C19, and CYP2D6 [57–60]. Therefore, genetic polymorphisms in 
the genes coding for these enzymes could potentially influence the 5-HT2B receptor-

Table 16.2 (continued)

Drugs

5-HT2B receptor activity

ReferenceKi [μM] EC50 [μM] Emax [%]

DMT 3.4 19 Rickli et al. [17]
Psilocin >20 Rickli et al. [17]
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mediated adverse effects in MDMA users. Notably, however, the sensitivity of the 
calcium mobilization assays used to determine the functional 5-HT2B receptor 
activity and the inter-correlation of data obtained with different assays is not clearly 
understood. For example, only poor correlation between 5-HT2A receptor activation 
and effects for psychedelics has been observed in several studies [61–63], whereas 
binding affinity at this receptor was a good predictor of the clinical potency of psy-
chedelics [63]. Thus, the available in vitro 5-HT2B receptor functional data may not 
be a good predictor of cardiac valvulopathy risk in vivo.

Besides MDA, several benzofuran NPS potently activated the 5-HT2B receptor at 
submicromolar concentrations [14, 43]. Therefore, as shown for MDMA in vivo 
[27, 28], 5-HT2B receptor activation may directly contribute to the effects of these 
novel drugs of abuse. Furthermore, regular and heavy use of benzofuran NPS may 
potentially result in heart damage; however, benzofurans have so far not been linked 
to any case of cardiac valvulopathy. Only a few other non-benzofuran stimulants 
displayed potent agonism at the 5-HT2B receptor, such as 4-methylamphetamine 
(4-MA) or 5-(2-aminopropyl)indole (5-IT). The amphetamine derivative 4-MA was 
originally developed as an appetite suppressant but was never marketed [64]. Its 
recent reappearance on the illicit drug market has almost exclusively been limited to 
being a contaminant in street amphetamine samples [65]. The mixture of amphet-
amine and 4-MA has been linked to extreme hyperthermia and several fatalities, 
likely explained by the high difference in dopaminergic vs. serotonergic activity of 
the two substances [15, 16, 65]. The indole derivative 5-IT is a highly potent stimu-
lant NPS that has been associated with various fatal intoxications in recent years 
[16, 66–69]. Furthermore, Iversen and colleagues reported submicromolar binding 
affinities at the 5-HT2B receptor for the NPS 5-iodo-aminoindane, mephedrone, 
naphyrone, 1-naphyrone, and methylenedioxy-aminotetralin [43]. Mephedrone is 
not a potent agonist at the receptor [16] and no functional activity has been deter-
mined for the other substances. Therefore, it is not certain whether these substances 
act as agonists at the 5-HT2B receptor.

2.4  5-HT2B Receptor-Mediated Effects of Psychedelics

The subjective effects of psychedelics are primarily mediated by 5-HT2A receptor 
activation [9–11, 70–72]. In addition, correlation between receptor activation and 
psychedelic effect potencies have been reported for the 5-HT2B [46] and 5-HT2C 
receptors [6, 7, 63], which is not surprising given that 5-HT2 receptors share signifi-
cant sequence homology [73]. However, there is currently no clear consensus on the 
importance of the 5-HT2B and 5-HT2C receptors in the mechanism of action of 
psychedelics.
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2.5  Psychedelics Acting on 5-HT2B Receptors

5-HT2B receptor interactions for various psychedelics are listed in Table 16.2. For 
most of the substances, only receptor activation potency but no receptor affinity 
values have been reported. Most phenethylamine and tryptamine psychedelics acti-
vated the 5-HT2B receptor at submicromolar or low micromolar concentrations. As 
reported for the 5-HT2A receptor, no correlation between 5-HT2B receptor activation 
and clinical potency of psychedelic was observed in a study comparing receptor 
activation potencies of a considerable amount of psychedelics with their reported 
human doses [63]. Eshleman and colleagues reported 5-HT2 receptor affinities as 
well as functional activity for six phenethylamine psychedelics and lysergic acid 
diethylamide (LSD) [42]. All compounds displayed highest binding affinity and 
activation potency for the 5-HT2A receptors; nevertheless, for several substances, 
high affinity and activation potency (Ki and EC50 < 100 nM) was observed at the 
5-HT2B receptor [42]. A remarkable difference in receptor activation in two different 
functional assays has been reported for LSD. Whereas an EC50 of 12 μM has been 
measured with a calcium mobilization assay [40], an EC50 of 3 nM has been reported 
when a stimulation of inositol monophosphate (IP-1) formation assay was used 
[42]. To gain a clearer picture of the involvement of 5-HT2B receptors in the action 
of psychedelics, more in vitro and in vivo research is needed.

3  Conclusion

Several stimulant and psychedelic drugs of abuse activate the 5-HT2B receptor at 
pharmacologically relevant concentrations. Animal studies with MDMA suggest that 
the 5-HT2B receptor contributes to the effects of serotonergic stimulants, possibly by 
5-HT-dependent regulation of dopamine release. Furthermore, stimulants that activate 
the 5-HT2B receptor may put regular and heavy users at risk of cardiac valvulopathy. 
The main classes of stimulant drugs of abuse that interact with 5-HT2B receptors are 
benzofurans and amphetamines with a distinct serotonergic vs. dopaminergic activity.

In addition to stimulants, various phenethylamine and tryptamine psychedelics 
activate the 5-HT2B receptor. However, the role of 5-HT2B receptor activation in the 
mechanism of action of psychedelic remains unclear. As psychedelics do not lead to 
dependence and are mostly not used on a regular basis, cardiac valvulopathy is 
likely not a risk to consider for users.
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