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Preface

Although quite widely expressed, but at low levels, therapeutic interest for the 
5-HT2B receptor has been delayed due to the lack of selective tools to study the func-
tions of this receptor. In the past decade, selective antagonists and genetics have 
revealed numerous important adult physiological functions for this receptor as well 
as embryonic development and growth, haematopoietic and myeloid lineage con-
trol. Furthermore, its implication in cardiovascular and cardiopulmonary diseases, 
fibrosis and liver regeneration or cancer cells revealed the 5-HT2B receptor as a new 
potential target for therapeutics; 5-HT2B antagonists being under active investigation 
for peripheral pathologies including pulmonary and cardiac diseases, irritable bowel 
syndrome and cancer. These receptors have also been recognized as off-targets of 
other drugs because their stimulation plays a significant role in the pathogenesis of 
pulmonary hypertension and valvulopathy. Emerging evidence indicates that this 
serotonin receptor might regulate brain disorders including drug of abuse, psychosis 
and antidepressant actions as well as inflammation during neurodegenerative dis-
eases and in turn influence the course of these diseases. This book provides a com-
prehensive overview of this receptor, its physiological/pathophysiological effects in 
periphery, its role in a number of brain functions and diseases as well as the poten-
tial therapeutic outcomes.

Paris, France  Luc Maroteaux 
Strasbourg, France   Laurent Monassier 
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Gene Structure, Expression, and 5-HT2B 
Receptor Signaling
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Abbreviations

ANT-1 Adenine nucleotide translocator
BNP Brain natriuretic peptide
BRET Bioluminescence resonance energy transfer
COX Cyclooxygenase
CREB cAMP response element-binding protein
DHE Dihydro-ergotamine
ECL2 Extracellular loop 2
ERG Ergotamine
ERK2/ERK1 Extracellular signal-regulated kinase 2 and 2
GPCR G-protein coupled receptor
GRK G-protein coupled receptor kinase
HB-EGF Heparin-binding epidermal growth factor
HCC Hepatocellular carcinoma
HDAC Histone deacetylase
HSC Hepatic stellate cell
LNX Ligand of Numb protein X
LSD Lysergic acid diethylamide
MAPK Mitogen-activated protein kinase
MITF Microphthalmia-associated transcription factor
mTOR Mammalian target of rapamycin
NAM Negative allosteric modulator
NCC Neural crest cell
NF-κB Nuclear factor-κB
NO Nitric oxide
NOX NADPH oxidase
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PAH Pulmonary arterial hypertension
PAM Positive allosteric modulator
PDGFR Platelet derived growth factor receptor
PDZ Postsynaptic density protein of 95  kDa, disc large, zonulla 

occludens-1
PGE2 Prostaglandin
PGI2 Prostacyclin
PI3K Phosphatidylinositol-3 kinase
PKA Protein kinase A
PLA2 Phospholipase A2
PLC Phospholipase C
RA Retinoic acid
SERT Serotonin transporter
TGF Transforming growth factor
TLR Toll-like receptor
TNAP Tissue-nonspecific alkaline phosphatase
TPH Tryptophan hydroxylase

1  5-HT2B Receptor Gene Expression and Regulation

Because of its exquisite sensitivity to serotonin, the rat stomach fundus was used as 
a bioassay for serotonin concentration before the development of analytical assays 
for this biogenic amine [1]. Although the potency for the contractile effects of sero-
tonin has been known since 1957, the receptors mediating such a response eluded 
definitive characterization. Pharmacological attempt to characterize the contractile 
serotonergic receptor in the rat stomach fundus initially documented its similarity to 
the 5-HT2C receptor. In the absence of detectable 5-HT2C receptor mRNA in the rat 
stomach fundus, only molecular cloning allowed the identification of a new receptor 
in 1992 in rat and mouse [2–6] and in 1994 in humans [7–10], now called 5-HT2B 
receptor. That’s only in 1994 that the group of T. Blackburn concluded about “the 
close pharmacological identity of 5-HT receptors in rat stomach fundus and the 
recently cloned 5-HT2B receptor” [11]. Subsequent pharmacological characteriza-
tion of this receptor subtype in various species identified differences in its pharma-
cology, and confirmed the close identity of this receptor to 5-HT2C receptors. Its 
developmental, physiological, and pathophysiological functions include many dif-
ferentiation steps both in periphery and central nervous system that were not previ-
ously identified or attributed to other receptor subtypes.

L. Maroteaux
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1.1  5-HT2B Receptor Expression

By Northern blot and RT-PCR, the 5-HT2B receptor mRNA expression was detected 
in the stomach, in rats [2, 4] but also in liver, kidney, pancreas, spleen and lung, as 
well as in the brain of mice [5, 12] and later in several species including rats [13], 
and humans [4, 7–9, 12, 14]. In the human brain, 5-HT2B receptor expression has 
been reported in cerebral cortex, cerebellar nuclei and their projection areas, lateral 
septum, dorsal hypothalamus and medial amygdala. Expression of serotonin 5-HT2B 
receptor mRNA was also confirmed in several brain nuclei including the dorsal 
raphe nuclei by gene expression profiling in the rat brain, and by in-situ hybridiza-
tion [15]. Human brain expression was confirmed by RT-qPCR in frontal, temporal, 
parietal, and occipital lobe, olfactory region, cerebellum, diencephalon, hippocam-
pus, thalamus, pituitary gland, pons, medulla oblongata and nucleus accumbens [16].

The mRNA and protein expression of 5-HT2B receptors has been found in mouse 
embryos in migrating neural crest cells (NCC), neural tube, hematopoietic tissue, 
and heart primordia by immunohistochemistry and in situ hybridization [17], for 
review see [18]. The 5-HT2B receptor mRNA was detected in rat embryos since 
8.0 days post-coitum and confirmed by pharmacological assays [17, 19]. In Xenopus, 
5-HT2B receptors have also been shown to modulate, in a cell-autonomous manner, 
postmigratory NCC without altering early steps of cranial NCC development and 
migration [20]. In the zebrafish, the 5-HT2B receptor was also found expressed in the 
pharyngeal arches and in the development of NCC-derived tissues [21] (see also 
Chap. 2).

1.2  Genomic Organization and Control of the 5-HT2B Receptor 
Gene HTR2B

In humans, the HTR2B gene is located on the reverse strand at the tip of the second 
chromosome at 2q37.1 [22]. The 5-HT2B receptor’s cDNA, which is 2246 base pairs 
(bp) long, is encoded by four exons, three of which are coding, and produces a pre- 
mRNA transcript of approximately 51 Kbp before splicing [7–10]. Interestingly, the 
PSMD1 gene, which encodes the non-ATP regulatory subunit 1 (RPN2) of the 26S 
proteasome, is located at the same locus on the forward strand and overlaps HTR2B 
gene, which is entirely encoded within intron 16 as revealed in the Ensembl data-
base [23] (Fig. 1.1). Similar organization with the 5-HT2B receptor’s cDNA encoded 
in the reverse strand of a large intron of the proteasome PSMD1 gene has been 
found not only in humans, rats, and mice but also in all mammals and vertebrates, 
for review see [18]. The 26S proteasome is a highly conserved multicatalytic prote-
ase from yeast to mammals, which functions to degrade proteins following ubiqui-
tination via the ubiquitin-proteasome system. The 26S proteasome contains many 
distinct subunits and is predominantly composed of two large structures [28]; the 
19S complex (regulatory particle), within which RPN2 is found, functions to 
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recognize ubiquitinated proteins [29]; it then processes and transports them to the 
20S complex (core particle), where proteolysis occurs.

Transcription of the HTR2B gene is under the regulatory influences of many 
transcription factors. Recent publication identified transcription factor binding sites 
in HTR2B gene promoter [30], including GATA protein 1 and 2 (GATA-1 and 
GATA-2), forkhead box A2 (HNF-3B), SRY-box 5 (SOX-5), runt related transcrip-
tion factor 2 (RUNX2), MYB proto-oncogene transcription factor (c-Myb), RUNX1, 
nuclear factor IA (NFIA), some of the CCAAT/enhancer binding protein (C/EBP), 
signal transducer and activator of transcription (STAT) family members, and the 
activator protein-1 (AP-1). Both the transcription factors nuclear factor 1 (NF1) and 
Runt-related transcription factor I (RUNX1) interact with regulatory elements from 
the HTR2B gene to either activate (NF1) or repress (RUNX1) HTR2B expression in 
uveal melanoma cells [30].

Similarities between the phenotypes of 5-HT2 antagonists- and retinoic acid 
(RA)-treated embryos, as well as AP-2 knockout mice, have led to speculation 
about a possible reciprocal relationship between RA and 5-HT2B receptor signaling 
during embryogenesis [19]. However, it was found that there was no negative regu-
lation of 5-HT2B receptor by RA, as previously considered [31]. Inhibitory effects of 
RA on chondrogenic differentiation in hindlimb cultures appeared not mediated by 
negative transcriptional regulation of the 5-HT2B receptor, but by increased expres-
sion of RARβ, and decreased activation of p38 mitogen-activated protein kinase 
(MAPK). On the contrary, stimulatory effects of 5-HT2B receptor activation on 
chondrogenic differentiation appeared to be mediated by activation of the p42/44 
MAPK pathway. Therefore, RA and 5-HT may exert opposing effects on chondro-
genesis in the developing hindlimb by using different MAPK pathways [31]. Liu 
et al. [32] described putative interactions between peroxisome proliferator-activated 
receptor (PPARγ) and 5-HT2B receptor expression in pulmonary arterial hyperten-
sion (PAH). However, the relation between PPARγ and 5-HT2B receptors regulated 
expression remains controversial and further research is needed to determine if the 
HTR2B is a direct target of PPARγ action on the vascular contraction and remodeling 
during PAH [33].

Fig. 1.1 HTR2B gene organization on the reverse strand of PSMD1 intron 16 with SNPs position. 
This is a schematic representation of the HTR2B gene on the reverse strand of PSMD1 locus with 
the location of different SNPs, including SNPs previously associated with disorders: THC: 
cannabis- induced aggression [24]; Q20*: stop codon in exon 2, implusivity [16]; ALS: amyo-
trophic lateral sclerosis [25], Crack addicts (M421V) [26], and pulmonary arterial hypertension 
(PAH) R393* [27], adapted from [26]

L. Maroteaux
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In conclusion, both the particular HTR2B gene organization that may have evo-
lutionary consequences, and the complex transcriptional control needs further stud-
ies to fully understand its regulated expression.

2  Structure and Pharmacological Impact

2.1  5-HT2B Receptor Structure

The 5-HT2B receptor is a G-protein coupled receptor (GPCR), with a N-terminus of 
about 55 amino-acids. In this region, a weak consensus site of N-glycosylation can 
be found, which is missing in the rat 5-HT2B receptor, questioning the N-glycosylation 
of the N-Terminus of this receptor. The receptor consists in 481 amino acids in 
human and 479 amino acids in rat or mouse, with 79% homology for human vs. rat 
and 82% homology for human vs. mouse. A new and unanticipated role of the 
5-HT2B receptor N-terminus as a negative modulator, affecting both constitutive and 
agonist-stimulated activity of the receptor has been evidenced [34]. The available 
5-HT2B receptor bound to ergotamine (ERG) crystal structure showed that it exhib-
its conformational characteristics of both the active and inactive states: an active- 
like state in the helix VII conformation of the 5-HT2B receptor, but only partial 
changes in helix VI, mirrored the strong β-arrestin bias of ERG at 5-HT2B receptors 
observed in pharmacological assays.

The differential signaling patterns were also mirrored in the crystal structures, 
which showed features of a β-arrestin-biased activation state for the 5-HT2B receptor 
[35, 36]. A likely structural explanation for the distinct conformational features and 
biased pharmacology of ERG for 5-HT2B receptors can be found in the region of the 
extracellular loop 2 (ECL2) junction with helix V, E212-R213-F214 forming an 
additional helical turn stabilized by a structured water molecule at the extracellular 
tip of helix V. The segment of ECL2 connecting helices III and V via the conserved 
disulfide bond is, therefore, shortened in the 5-HT2B receptor, and creates a confor-
mational constraint on the position of the extracellular tip of helix V [37]. However, 
this structured water molecule involved in ECL2 junction with helix V has been 
challenged since differential interactions of ERG with the top of helices V and VI 
could determine the rotational freedom of helix VI [38].

2.2  Selective Agonists

There is virtually no highly selective agonist for a particular 5-HT2 receptor: 
BW723C86: 1-methyl-2- [5-(2-thienylmethoxy)-1H-indole-3-yl] ethylamine 
hydrochloride, has been reported to have ten-fold selectivity over the human 5-HT2C 
and 100-fold selectivity over the 5-HT2A receptors [39–42]. Nor-dexfenfluramine 
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(metabolite of dexfenfluramine), methylergonovine (metabolite of methysergide), 
and Ro 60-0175: 2(S)-1-(6-chloro-5-fluoro-1H-indol-1-yl)-2-propanamine fuma-
rate are all preferential 5-HT2B agonists with about ten-fold selectivity over other 
5-HT2 receptor [43]. 2,5-dimethoxy-4-iodoamphetamine (DOI), MDA 
(3,4- methylene dioxyamphetamine-MDA, metabolite of 3,4-Methylenedioxy 
methamphetamine- MDMA) [44], tryptamine, lysergic acid diethylamide (LSD), 
and alpha-methyl-5-HT are non-selective nearly full agonists at 5-HT2 receptors 
with similar affinity to 5-HT2A 5-HT2B and 5-HT2C receptors [39–42]. Many sub-
stances from the class of “new” drugs known as “legal highs”  were also found to 
display notable affinity for 5-HT2B receptors, including 5-APB (Ki = 14 nM) and 
6-APB (Ki = 3.7 nM), and 5-iodo-aminoindane (Ki = 70 nM). Functional assays of 
5-APB and 6-APB confirmed that these compounds acted as potent (i.e., nanomolar 
EC50 values) full agonists at 5-HT2B receptors [45, 46]. 5-APB, commonly mar-
keted as ‘benzofury’ a new psychoactive substance was shown to cause contraction 
of rat stomach fundus, which was reversed by the 5-HT2B receptor antagonist 
RS127445 [47]. This finding is potentially important because previous studies have 
shown that there was a correlation in a series of phenyliso-propylamines between 
hallucinogenic activity and affinity for the 5-HT2B receptor [48] (see also Chap. 16 
and Table 1.1).

2.3  Selective Antagonists

A few selective antagonists are available for the 5-HT2B receptor subtype. The first 
highly selective 5-HT2B receptor antagonist reported was LY266097: 1-(2-chloro- 3,4-
dimethoxybenzyl)- 6-methyl-1,2,3,4-tetrahydro- 9Hpyrido [3,4-b]indole hydro-
chloride with a pKi of 9.7 for the human cloned 5-HT2B receptor and a 100-fold 
greater selectivity over human 5-HT2C and 5-HT2A sites [57]. SB204741: N-(1- 
methyl- 5-indolyl)-N′-(3-methyl-5-isothiazolyl)urea has been reported as a selective 
5-HT2B receptor antagonist with approximately 100-fold selectivity over the 5-HT2C 
and 5-HT2A receptors but with a lower potency (Ki around 100  nM) [14]. The 
tetrahydro-β-carboline, LY272015 [6-chloro-5-methyl -N-(5-quinolinyl)-2,3- 
dihydro -1H-indole-1-carboxamide] is also a fairly selective and potent antagonist 
[58]. RS127445 [2-amino-4- (4-fluoronaphth-1-yl) -6-isopropyl pyrimidine] was 
found to have sub-nanomolar affinity for the 5-HT2B receptor (pKi = 9.5) and 1000 
fold selectivity for this receptor as compared to numerous other receptor and ion 
channel binding sites and appears as the most selective, high affinity 5-HT2B recep-
tor antagonist available [59]. SB215505 [6-chloro-5-methyl-N-(5-quinolinyl)-2,3- 
dihydro- 1H-indole-1-carboxamide] behaves as a high affinity and preferential 
inverse agonist at 5-HT2B receptors [60]. SB206553 [5-methyl-N-(3-pyridyl)-
1,2,3,5-tetrahydrobenzo[1,2-b: 4,5-b’] dipyrrole-1-carbox amide] is a mixed 
5-HT2C/5-HT2B receptor antagonist. It has been reported as a selective 5-HT2C/5- 
HT2B receptor inverse agonist with 50- to 100-fold lower affinity for 5-HT2A and 
other sites [41, 61].

L. Maroteaux
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Table 1.1 Pharmacological properties of human and mouse 5-HT2B receptors. Reprinted from [49]

h5-HT2A h5-HT2B m5-HT2B h5-HT2C m5-HT2C
pKi pKi pKi pKi pKi

BW723C86 [50] 7.89 ± 0.01 8.04 ± 0.15 6.90 ± 0.01 6.78 ± 0.05
[41] h2CINI 7.2 ± 0.08 7.33 ± 0.03 7.11 ± 0.21
[39] 
h2CVSV

6.63 ± 0.06 7.85 ± 0.11 7.11 ± 0.01

RO600175 [50] h2CINI, 
m2CVNi

9.01 ± 0.13 8.64 ± 0.14 7.72 ± 0.22 7.35 ± 0.29

 [41] h2CINI 7.44 ± 0.04 8.27 ± 0.06 8.22 ± 0.29
[39] 
h2CVSV

6.80 ± 0.08 8.66 ± 0.13 7.67 ± 0.07

WAY161503 [50] h2CINI, 
m2CVNi

7.28 ± 0.19 7.84 ± 0.12 7.46 ± 0.05 6.92 ± 0.11

[51] 2006 
h2C?

7.74 ± 0.11 7.22 ± 0.03 8.48 ± 0.14

CP809101 [52] 8.22 ± 0.15 7.19 ± 0.25 8.80 ± 0.11
[50] h2CINI, 
m2CVNi

7.86 ± 0.18 8.41 ± 0.18 8.35 ± 0.02 7.72 ± 0.15

DOI [50] h2CINI, 
m2CVNi

8.29 ± 0.18 7.87 ± 0.06 7.60 ± 0.02 7.41 ± 0.24

[41] h2CINI 9.02 ± 0.11 7.55 ± 0.05 8.08 ± 011
[39] 
h2CVSV

8.04 ± 0.05 7.78 ± 0.09 7.73 ± 0.04

Norfenfluramine [50] h2CINI, 
m2CVNi

8.02 ± 0.19 6.76 ± 0.23 7.09 ± 0.62 6.21 ± 0.07

[41] h2CINI 6.82 ± 0.29 7.00 ± 0.06 7.29 ± 0.04
D-LSD [41] h2CINI 9.12 ± 0.06 9.01 ± 0.09 8.96 ± 0.06

[39] 
h2CVSV

9.49 ± 0.03 9.22 ± 0.02 8.52 ± 0.06

Lorcaserine [53] 6.95 ± 0.03 6.76 ± 0.09 7.82 ± 0.03
Clozapine [50] h2CINI, 

m2CVNi
7.97 ± 0.09

[41] h2CINI 7.60 ± 0.08 7.99 ± 0.09 7.87 ± 0.05
[54] 8.39 ± 0.03 8.79 ± 0.09 8.56 ± 0.06

Aripiprazole [50] h2CINI, 
m2CVNi

7.21 ± 0.09

[55] h2CINI 8.06 ± 0.10 9.44 ± 0.16 7.12 ± 0.09
[54] 8.02 ± 0.16 9.59 ± 0.17

RS1022221 [50] h2CINI, 
m2CVNi

6.47 ± 0.02 6.52 ± 0.08 8.01 ± 0.30 7.72 ± 0.22

[41] h2CINI 5.54 ± 0.03 5.95 ± 0.06 8.30 ± 0.05
[43] 
h2CVSV

6.63 ± 0.05 8.83 ± 0.04

(continued)
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Non-selective 5-HT2 receptor antagonists such as ritanserin and mesulergine 
block 5-HT2 receptor-mediated effects. Atypical antipsychotics including clozap-
ine, asenapine, or cariprazine also have fairly high antagonistic affinity for all 5-HT2 
receptors [10, 55, 62, 63]. Aripiprazole (OPC-14597) is a novel atypical antipsy-
chotic drug, which has higher antagonist affinity (EC50 = 11 nM) for the human 
5-HT2B receptor than for 5-HT2A or 5-HT2C receptors [54], (see Table 1.1).

Hertz and coworkers [64] proposed the possibility that fluoxetine and other 
SSRIs act as direct 5-HT2B receptor agonists independently of the serotonin trans-
porter (SERT), based on their work on astrocytes. However, the absence of antide-
pressant effects of fluoxetine in mice lacking the 5-HT2B receptor (Htr2b−/−), 
knockout for the SERT (Sert−/−), or lacking most of differentiated serotonin neurons 

Table 1.1 (continued)

h5-HT2A h5-HT2B m5-HT2B h5-HT2C m5-HT2C
pKi pKi pKi pKi pKi

SB215505 [50] h2CINI, 
m2CVNi

8.12 ± 0.01 7.61 ± 0.21 7.40 ± 0.02 7.24 ± 0.26

[41] h2CINI
[43] 
h2CVSV

8.83 ± 0.09 7.95 ± 0.06

SB206553 [50] h2CINI, 
m2CVNi

8.29 ± 0.04 7.06 ± 0.41 8.24 ± 0.01 8.21 ± 0.24

[41] h2CINI 5.64 ± 0.09 7.65 ± 0.07 7.79 ± 0.07
[43] 
h2CVSV

8.26 ± 0.17 8.50 ± 0.13

SB242084 [50] h2CINI, 
m2CVNi

6.36 ± 0.02 6.07 ± 0.01 8.19 ± 0.22 5.93 ± 0.27

[41] h2CINI 6.07 ± 0.18 6.84 ± 0.28 8.15 ± 0.10
[43] 
h2CVSV

7.34 ± 0.07 9.32 ± 0.06

Mesulergine [50] h2CINI, 
m2CVNi

8.39 ± 0.2 7.81 ± 0.15 9.01 ± 0.01 8.53 ± 0.21

 [41] h2CINI 7.34 ± 0.03 8.46 ± 0.05 8.74 ± 0.03
[43] 
h2CVSV

8.71 ± 0.02 8.95 ± 0.06

RS127445 [50] h2CINI, 
m2CVNi

8.51 ± 0.07 8.22 ± 0.24 5.63 ± 0.05 5.33 ± 0.45

[41] h2CINI 6.03 ± 0.13 8.97 ± 0.09 6.33 ± 0.10
MDL100907 [50] h2CINI, 

m2CVNi
5.79 ± 0.60 5.03 ± 0.23 6.79 ± 0.51 6.64 ± 0.17

[41] h2CINI 8.73 ± 0.20 5.99 ± 0.06 7.52 ± 0.13
SB204741 [41] h2CINI <5.00 6.90 ± 0.27 5.56 ± 0.07

[43] 
h2CVSV

7.29 ± 0.04 5.67 ± 0.11

Sarpogrelate [56] 8.52 ± 0.12 6.57 ± 0.12 7.43 ± 0.03
Ketanserin [56] 9.67 ± 0.12 6.55 ± 0.09 7.39 ± 0.11
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knockout for Pet1 (Pet1−/−) [65] (1) rules out that the antidepressant effects of fluox-
etine could be independent of SERT; (2) indicates that serotonin neurons expressing 
SERT (and 5-HT2B receptors) are necessary for the 5-HT2B receptor effects indepen-
dently of other cell types; (3) rules out the possibility that SSRIs mediate antide-
pressant effects only by stimulating directly putative astrocytic 5-HT2B receptors, 
which should be intact in these mutant mice (Sert−/− and Pet1−/−). It is clear from 
experiments in mice that acute or chronic effects of SSRIs cannot be due to direct 
5-HT2B receptor stimulation independently of SERT and serotonergic neurons [65]. 
Furthermore, pharmacological determination in mice is in accordance with affinity 
of SSRIs for human 5-HT2B receptors with Ki values over 5 μM [65] and with no 
agonist activity (Fig.  1.2), while SSRI Ki values for SERT are in nanomolar 
range [66].

2.4  Allosteric Modulators

Positive allosteric modulators (PAMs) represent alternative approaches to ortho-
steric agonists (i.e., compounds that interact with the native ligand-binding site). 
PAMs can increase the affinity and/or efficacy of the orthosteric agonist for its target 
receptor by acting at a site other than the native ligand-binding site (allosteric). 
Importantly, so-called pure GPCR PAMs, which lack intrinsic agonist activity 
within a specific signaling pathway, have been described. These compounds modu-
late the basal tone of the endogenous ligand in a manner that conserves spatial and 
temporal elements of native neurotransmission [67]. Indeed, multiple PAMs have 
been identified for GPCRs and may circumvent the challenges of orthosteric ago-
nists: (1) PAMs would amplify endogenous signaling through the 5-HT2 receptors, 
likely resulting in a more physiologically relevant enhancement of function 

Fig. 1.2 Inositol phosphate production by 5-HT2B receptors transiently expressed in Cos-7 cells. 
The quantification of inositol phosphate (IP) signaling pathway activity was performed in COS-7 
cells transfected with 5-HT2B receptor and exposed to increasing concentrations of a full agonist of 
the receptor (5-HT) or of fluoxetine. If serotonin fully stimulated the inositol phosphate production 
by these cells with an EC50 of 9 nM, fluoxetine reduced basal levels of inositol phosphate, behav-
ing as inverse agonist
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compared to a direct orthosteric agonist; (2) because of a generally higher sequence 
divergence in allosteric sites relative to the conserved orthosteric domain, PAMs 
could potentially achieve higher receptor selectivity than orthosteric agonists. ERG 
has been shown to occupy two distinct sites in 5-HT2B receptors, the orthosteric site, 
where the indole nucleus of ERG resides, and the extended binding site, where the 
tripeptide portion is engaged. The allosteric site in the muscarinic M2 receptor is the 
same extracellular region as that interacting with the tripeptide portion of 
ERG. These similarities in both the M2 and 5-HT2B receptors suggest that the loca-
tion of the extracellular allosteric site for Class A GPCRs is quite similar, and in 
fact, argue that ERG likely functions as a bitopic ligand; that is, it occupies both the 
orthosteric and putative extracellular allosteric site in the 5-HT2B receptor. It is now 
thought that a sodium ion allosterically alters the binding pocket to dampen 
G-protein signaling, leaving β-arrestin recruitment intact. Recent structural consid-
eration support that this sodium pocket is collapsed in the 5-HT2B receptor structure 
[68]. Recently, imidazole linked phenyl cyclopropyl methanones were shown to 
display PAM activity on both 5-HT2C and 5-HT2B receptors. Furthermore, pipera-
zine linked phenyl cyclopropyl methanones were active as PAM at 5-HT2C (increased 
the Emax of serotonin), and as negative allosteric modulator (NAM) at 5-HT2B 
receptors (decreases EC50 of serotonin 10 times without affecting Emax) [69]. The 
identification of specific PAMs at 5-HT2B receptors may conceivably lead to 
improved therapeutics.

2.5  Biased Agonists

Another area for 5-HT2 receptors agonist development might emerge from com-
pounds so-called biased agonists sharing a functional selectivity for specific intra-
cellular signaling pathways [70]. 5-HT2 receptors couple to multiple intracellular 
pathways. LSD and ERG displayed bias for β-arrestin signaling at 5-HT2B receptors, 
as well as other ergolines such as dihydro-ergotamine (DHE), methylergonovine, 
pergolide, and cabergoline. ERG and dihydro-ergotamine displayed more extreme 
signaling bias at the 5-HT2B receptor compared to LSD [35]. Furthermore, structural 
studies of the human 5-HT2B receptor in complex with methysergide, methylergono-
vine, lisuride or LY266097 illuminated key structural determinants essential for 
activation and revealed binding pocket residues that are essential for agonist- 
mediated biased signaling and β-arrestin2 translocation. LSD presents a slow bind-
ing kinetics may be due to a “lid” formed by ECL2 at the entrance to the binding 
pocket. Furthermore, the structure of 5-HT2B receptors captured in an active-like 
state revealed the mechanism of selectivity in extracellular recognition of GPCRs 
by monoclonal antibodies [71–74].

Currently, it is unknown whether this functional selectivity could be translated 
into any therapeutic gain, although this does open up an interesting opportunity for 
future drug discovery. Further work on the structure function relationships is 
required to fully understand the 5-HT2B receptor pharmacological complexity.
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3  5-HT2B Receptor Heteromeric Receptor Associations

3.1  Heterodimers of Gq-Coupled Protomers: 5-HT2A, 5-HT2B, 
and 5-HT2C Receptors

Many members of the GPCR family have the capacity to form homo- or hetero- 
oligomers with biochemical and functional characteristics, including receptor phar-
macology, signaling, and regulation, which are unique to these oligomeric 
conformations [75]. In the 5-HT2 receptor subfamily, 5-HT2A and 5-HT2C receptors 
have been shown to be able to form homodimers [76–79], whereas 5-HT2B receptors 
overexpressed in COS-7 cells are not [79]. However, when co-expressed in heter-
ologous expression systems, saturating bioluminescence resonance energy transfer 
(BRET) experiments indicated that the formation of heterodimers is favored over 
homodimerization [79]. Signaling from these heterodimers is exclusively driven by 
the 5-HT2C protomer. Indeed, in 5-HT2C-containing 5-HT2A-5-HT2C and 5-HT2B-5- 
HT2C heterodimers, the binding of ligands selective for the 5-HT2A or 5-HT2B pro-
tomers is eliminated despite normal surface expression of these receptor subtypes. 
Concomitantly, 5-HT2A or 5-HT2B selective antagonists are unable to block signal-
ing in the presence of the 5-HT2C protomer, whereas antagonists of the 5-HT2C pro-
tomer are totally inhibiting signaling in 5-HT2A-5-HT2C and 5-HT2B-5-HT2C 
heterodimers [79]. By contrast, signaling in 5-HT2A-5-HT2B heterodimers could be 
blocked either by 5-HT2A or 5-HT2B selective antagonists.

To further investigate this issue, the 5-HT2C receptor was deleted for its C-terminal 
tail (5-HT2C∆Cter), still able to bind serotonin but unable to activate Gq and to gen-
erate inositol phosphate production. Co-expression of 5-HT2C∆Cter with 5-HT2A or 
5-HT2B protomers abolished serotonin-dependent inositol phosphate accumulation 
by 5-HT2A-5-HT2C∆Cter and 5-HT2B-5-HT2C∆Cter heterodimers, despite their 
retained dimerization ability [79]. Conversely, co-expression of 5-HT2C with 
5-HT2B∆Cter, a 5-HT2B receptor impaired for Gq activation, had no impact on 
5-HT2C signaling in 5-HT2B∆Cter-5-HT2C dimers since inositol phosphate produc-
tion in response to serotonin could still be detected and abolished by a 5-HT2C 
receptor-selective antagonist [79, 80]. This coupling seems related to a dominant 
negative effect of the 5-HT2C protomer on ligand binding and coupling ability of the 
other partner. A dominant negative effect of the 5-HT2C protomer over the 5-HT2A 
protomer (and potentially 5-HT2B) was also observed in-vivo that pinpointed the 
physiological relevance of a putative switch in the pharmacological profile of 
5-HT2A receptor expressing neurons, depending on the 5-HT2C receptor co- 
expression levels [79].

The study of association between 5-HT2A-5-HT2C or 5-HT2B-5-HT2C receptors 
revealed the asymmetry in Gq-protein coupling, and signaling from 5-HT2A and 
5-HT2B protomers.
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3.2  Heterodimers Among Gq-Activating Protomers: AT1- 
5- HT2B Heterodimers

In ex-vivo primary cultures of cardiac fibroblasts, endogenously expressed AT1 
receptors for angiotensin II and 5-HT2B receptors shared common Gq-protein- 
dependent signaling pathways leading to release of cytokines, which triggers car-
diac hypertrophy [81]. Through metalloproteinases activation, responsible for 
Heparin-binding EGF-like growth factor (HB-EGF) shedding, a subsequent EGF- 
receptor transactivation is induced by either angiotensin II or serotonin. These find-
ings support that AT-1 and 5-HT2B receptors share common EGF-receptor-dependent 
signaling pathways leading to cytokine release. Blockade of one of the two recep-
tors prevents cytokine release induced by stimulation of the other receptor at a dose 
that is inactive to the other receptor in endogeneously expressing cardiac fibroblasts 
or in COS7 transfected cells, supporting transinhibition between 5-HT2B and AT-1 
receptors [81]. Confocal microscopy to assess colocalization and a pull-down assay 
in cotransfected COS7 cells demonstrated the interaction of 5-HT2B and AT-1 recep-
tors and their organization in heterodimeric complexes [81]. Signaling of each pro-
tomer is not modified by the heterodimerization but inhibiting one protomer is 
sufficient to block the Gq activation by the second protomer, supporting the pres-
ence of a single active G-protein per heterodimer. A symmetrical Gq coupling 
between Angiotensin II and serotonin signal has thus been found in respect to cou-
pling to hypertrophic cytokine release in adult cardiac fibroblasts, with transinhibi-
tion and transactivation properties (see also Chap. 9).

The propensity of 5-HT2B receptors to form heterodimers may be a critical prop-
erty that needs to be taken into account in further physiological studies. The domi-
nance of a protomer over the others may have strong consequences in interpreting 
pharmacological approaches.

4  5-HT2B Receptor Internalization

In transfected cells, 5-HT2B receptors were found to exhibit high degree of desensi-
tization, with prior exposure to serotonin reducing subsequent response to serotonin 
with an extremely rapid time-course (t1/2 = 5 min) [82]. Internalization of 5-HT2B 
receptors was found caveolin1-independent and clathrin- G-protein coupled recep-
tor kinase (GRK) 2,3- and β-arrestin2-dependent, while that of 5-HT1B receptors 
was clathrin-independent and caveolin1-dependent [83]. Upon co-expression of 
these two receptors, serotonin-induced 5-HT2B receptor internalization became par-
tially caveolin1-dependent, and serotonin-induced 5-HT1B receptor internalization 
became caveolin1-independent in a protein kinase C ε-dependent fashion. Serotonin- 
induced internalization of 5-HT2B receptors was accelerated five-fold, and insensi-
tive to a 5-HT2B receptor antagonist. In this context, 5-HT2B receptors did internalize 
in response to a 5-HT1B receptor agonist. In contrast, co-expression did not render 
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5-HT1B receptor internalization sensitive to a 5-HT2B receptor agonist. The altered 
internalization kinetics of both receptors upon co-expression was not due to direct 
receptor interaction as no co-localization could be detected [83]. The crystal struc-
ture of the serotonin 5-HT2B receptor in complex with ERG, which was identified as 
a highly β-arrestin biased ligand for the 5-HT2B receptor [84], provides clues to the 
molecular determinants of functionally selective biased ligands. The 5-HT2B recep-
tor crystal structure reveals an intermediate state of activation stabilized by the 
extracellular-facing tripeptide portion of ERG, which likely drives β-arrestin bias 
and is not present on unbiased ligands such as serotonin itself. The lack of C-terminal 
tail containing the palmitoylation site in the R393X mutant 5-HT2B receptor [85] 
was associated with a patient having developed PAH (Fig. 1.1). This receptor dis-
played a loss of rapid internalization and a striking increase in proliferative capacity 
resulting from a switch from a dual Gαq/Gα13 coupling in wildtype receptor to a 
nearly exclusive coupling to Gα13 in the R393X 5-HT2B receptor [27].

Again, more work on the structure function relationships is required to fully 
understand the 5-HT2B receptor coupling and desensitization pathways.

5  5-HT2B Receptor Interacting Proteins

Proteins known to interact with 5-HT2B receptors include constitutive and inducible 
nitric oxide (NO) synthase, Gαq, Gα11, and Gα13, involved in signaling of the 
receptor. MUPP1 a multivalent postsynaptic density protein of 95 kDa, disc large, 
zonulla occludens-1 (PDZ) scaffolding protein was shown to interact with the 
C-terminus of the 5-HT2C receptor -SSV sequence. Moreover, 5-HT2A and 5-HT2B 
receptors sharing the C-terminal -E-X-V/I-S-X-V sequence with 5-HT2C receptors 
also bind MUPP1-PDZ domains in-vitro [86]. The PDZ motif at the C-terminus of 
the 5-HT2B receptor was also found necessary for the recruitment of the constitutive 
NO synthase [87].

Ubiquitin ligases (E3s) confer specificity to ubiquitination by recognizing target 
substrates. The Ligand of Numb protein X (LNX) family of E3 ubiquitin ligases, is 
a group of PDZ domain-containing RING-type E3 ubiquitin ligases. The substrate 
recognition mechanism of LNX E3 ubiquitin ligases involves the recognition of 
substrates via their specific PDZ domains by binding to the C-termini of the target 
proteins. Guo et al. [88] showed that the C-terminal LNX1 PDZ3-binding motifs of 
the 5-HT2B receptor promoted ubiquitination by LNX1ΔPDZ4. Another study on 
uveal melanoma cell lines [89], in which one of the most reliable predictive markers 
at risk of metastasis is an abnormally elevated level of expression of 5-HT2B recep-
tors, revealed important alterations in the expression of some of its transcripts and 
of those encoding E3 ubiquitin ligases and various subunits of the proteasome. 
These alterations also correlated with significant changes in the enzymatic activity 
of the proteasome and 5-HT2B receptor turnover [89].
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It appears, therefore, necessary to further investigate putative 5-HT2B receptor 
interacting proteins and their impact on the receptor turnover via proteasome 
regulation.

6  5-HT2B Receptor Transduction System(s)

6.1  In Transfected Cells

The 5-HT2B receptor, when stably transfected in mouse fibroblast L-cells, has been 
shown to activate GTPase activity and inositol 1,4,5-triphosphate production upon 
agonist stimulation, which could be blocked by antibodies against Gαq/11, but not 
by pertussis or cholera toxins or by anti-Gαi or anti-Gαs antibodies. This GTPase 
activation was thus mediated by the G-protein Gαq/11, but not by Gαs or Gαi. The 
GTPase activation was also blocked by anti-β1-4, or -γ2 subunit antibodies. Agonist 
stimulation of the 5-HT2B receptor caused a rapid and transient activation of the 
proto-oncogene product p21ras in response to serotonin, as measured by an increase 
in GTP bound-Ras [90]. Furthermore, 5-HT2B receptor stimulation activated the 
MAPKs, extracellular signal-regulated kinase 2 and 2 (ERK2/ERK1). In addition to 
a mitogenic action, a transforming activity of serotonin was mediated by the 5-HT2B 
receptor as it led to the formation of foci and to the formation of tumors from these 
foci in nude mice [90]. Moreover, the 5-HT2B receptor-dependent cell cycle progres-
sion occurred through retinoblastoma protein hyperphosphorylation and the activa-
tion of both cyclin D1/cdk4 and cyclin E/cdk2 kinases. The induction of cyclin D1 
expression, but not that of cyclin E, was under MAPK control, indicating an inde-
pendent regulation of these two cyclins in 5-HT2B receptor mitogenesis. Platelet 
derived growth factor receptor (PDGFR) kinase activity was essential for 5-HT2B- 
triggered MAPK/cyclin D1, but not cyclin E, signaling pathways. The 5-HT2B 
receptor activation also increases activity of the SRC family kinases SRC, FYN and 
YES. Strikingly, SRC, but not FYN or YES, was the crucial molecule between the 
Gq protein-coupled 5-HT2B receptor and the cell cycle regulators [91]. Inhibition of 
SRC activity was sufficient to abolish the serotonin-induced: (1) PDGFR tyrosine 
kinase phosphorylation and MAPK activation; (2) cyclin D1 and cyclin E expres-
sion levels; and (3) thymidine incorporation. Thus, SRC activation by the 5-HT2B 
receptor controlled cyclin E induction, and in concert with the receptor tyrosine 
kinase PDGFR, induced cyclin D1 expression via the MAPK/ERK pathway [91]. 
The 5-HT2B receptor also coupled to the phospholipase A2 (PLA2)-mediated release 
of arachidonic acid [92]. In addition, stimulation of the 5-HT2B receptor triggered 
intracellular cGMP production through dual activation of constitutive nitric-oxide 
synthase (NOS) and inducible NOS. The group I PDZ motif at the carboxy terminus 
of the 5-HT2B receptor was shown to be required for recruitment of the constitutive 
NOS transduction pathways, and inducible NOS stimulation was under control of 
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the Gα13 pathways [87]. Only the NOS pathway seems to be 5-HT2B receptor- 
specific over other 5-HT2 receptors (Fig. 1.3).

6.2  Heart

Inactivation of Htr2b gene by homologous recombination in mice leads to partial 
embryonic lethality due to defects in heart development, for review see [94]. 
Neonates exhibit a second wave of partial lethality due to cardiac dilation resulting 
from contractility and structural deficits at the intercellular junctions between car-
diomyocytes. Echocardiography and electrocardiography studies in animals that 
live past the first week and survive until adulthood, confirm the presence of left 
ventricular dilation and decreased systolic function. Serotonin, via the 5-HT2B 
receptor, regulates heart differentiation and proliferation during embryonic devel-
opment as well as cardiac structure and function in adults [95]. The 5-HT2B receptor 
has been shown to be functionally coupled to reactive oxygen species synthesis 
through NADPH oxidase (NOX) stimulation in 1C11 cells [96] and in angiotensin 
II and isoproterenol-induced cardiac hypertrophy [97]. In human atrial myocytes, 
serotonin reduced the amplitude of L-type calcium currents and influenced the 
strength of gap junctional intercellular communication, which was markedly 
reduced when 5-HT2B receptors were inhibited, showing that activation of these 
receptors antagonistically regulated gap junctional intercellular communication 
[98]. Upon pulmonary artery banding, the 5-HT2B receptor antagonist SB204741 

Fig. 1.3 Signal transduction pathways of the transfected 5-HT2B receptor in fibroblasts. The 
5-HT2B receptor stimulation triggers intracellular cGMP production through activation of nitric- 
oxide synthase (NOS) via the type I PDZ motif (VSYI) at its C-terminus; inositolphosphate (IP3) 
that releases intracellular calcium (Ca2+), and diacylglycerol (DAG), which activates protein 
kinase C (PKC) via phospholipase C (PLC); phospholipase A2 (PLA2)/arachidonic acid (AA)-
dependent cyclooxygenase (COX) pathway. Activation of the 5-HT2B receptor also stimulates a 
ras-mitogen-activated protein kinase (ERK/MAPK) cascade via c-Src and PDGFR that regulate 
cell-cycle by controlling cyclin E and cyclin D1 expression via retinoblastoma (Rb) phosphoryla-
tion, adapted from [93]
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was shown to reduce right ventricular fibrosis and to improve heart function in 
mice [99].

A compound that modulates calcineurin signaling via the 5-HT2B receptor [100], 
was shown to blocks the hypertrophic effects of α-adrenergic receptor agonists. A 
model, in which 5-HT2B signaling promoted cardiac hypertrophy by stimulating 
calcineurin/NFAT signaling, has been proposed with consequent recruitment of his-
tone acetyl transferases to regulatory regions of NFAT target genes. A selective 
agonist for 5-HT2B receptors induced hypertrophy of cardiac muscle cells through a 
signaling pathway involving calcineurin and a kinase-dependent mechanism that 
inactivates class II histone deacetylases (HDAC), which act as repressors of cardiac 
growth [100]. Since it also stimulated nuclear export of class II HDACs, MEF2 may 
play a role in the mechanism by which 5-HT2B receptor signaling triggers cardiac 
remodeling [101]. A cDNA encoding the 5-HT2B receptor was found in a screen for 
genes encoding HDAC5 modulators and the ability of 5-HT2B receptors to promote 
HDAC5 phosphorylation and cardiomyocyte hypertrophy was confirmed [101]. The 
5-HT2B receptor triggered intracellular calcium release and PKC activation, which 
likely accounted, at least in part, for the ability of the overexpressed receptor to 
induce HDAC5 phosphorylation [102].

The 5-HT2B receptor was shown to protect newborn post-mitotic cardiomyocytes 
against serum deprivation-induced apoptosis as manifested by DNA fragmentation, 
nuclear chromatin condensation, and TUNEL labeling. Serotonin prevented cyto-
chrome c release and caspase-9 and -3 activation after serum deprivation via cross- 
talks between phosphatidylinositol-3 kinase (PI3K)/Akt and ERK1/2 signaling 
pathways. Serotonin binding to 5-HT2B receptor activated ERK kinases that inhib-
ited Bax expression induced by serum deprivation. Serotonin via PI3K/Akt acti-
vated nuclear factor-κB (NF-κB) that was required for the regulation of the 
mitochondrial adenine nucleotide translocator (ANT-1) and mitochondrial permea-
bility. These findings identified serotonin as a novel cardiomyocyte survival factor 
targeting mitochondria [103]. Interestingly, NF-κB regulation by 5-HT2B receptors 
was confirmed in a large screen for genes regulating NF-κB and the MAPK path-
ways [104]. Furthermore, in C-reactive peptide (CRP)-stimulated pulmonary artery 
endothelial cells, the 5-HT2B receptor was found downregulated by 25%, inhibitor 
of NF-κB kinase subunit epsilon (IκBKε) by 30%, and toll-like receptor (TLR)-4 
and -6 by 18 and 39%, respectively. CRP induced RelA/NF-κBp65 phosphorylation 
that represses expression of 5-HT2B receptor, TLR-4, and TLR-6, and IκBKε gene 
[105]. Following mechanical stretch of cardiomyocytes and incubation with sero-
tonin, the level of 5-HT2B receptor and brain natriuretic peptide (BNP) protein 
increased time-dependently. Therefore, 5-HT2B receptor expression is involved in 
pressure-induced cardiomyopathy and its downstream signaling involves NF-κB to 
modulate BNP expression in cardiomyocyte [106]. These data revealed a dual role 
of 5-HT2B receptors on both cardiomyocytes and cardiac fibroblasts in regulating 
cardiac hypertrophy in vivo. Collectively, these results revealed that convergent 
action of NE, AngII and serotonin via interactions between AT1 and 5-HT2B recep-
tors coexpressed by non-cardiomyocytes are limiting key events in cardiac hyper-
trophy (see also Chap. 9).
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6.3  Liver

Serotonin is a potent growth factor for the liver development and regeneration. The 
expression of 5-HT2A and 5-HT2B receptor subtypes in the liver has been reported by 
several authors to increase after hepatectomy. 5-HT2 agonists significantly enhanced 
hepatocyte proliferation after liver transplantation in mice. Evidence for a contribu-
tion of 5-HT2B receptors resulted from the observation of the loss of the protective 
effects of agonists in animals exposed to SB206553, an antagonist of the 5-HT2B/2C 
receptor subtype [107]. In hepatocyte parenchymal cells grown in serum-free 
defined medium, the proliferative mechanism of serotonin is mediated mainly 
through 5-HT2B receptor-stimulated Gq/phospholipase C (PLC) and epidermal 
growth factor (EGF)/transforming growth factor (TGF)-α-receptor/PI3K/
ERK1/2/mammalian Target of Rapamycin (mTOR) signaling pathways in primary 
cultured hepatocytes [108]. On the other hand, serotonin-induced phosphorylation 
of p70S6K, which was blocked by a selective 5-HT2B receptor antagonist LY272015, 
a specific PLC inhibitor U-73122, a membrane-permeable Ca2+ chelator BAPTA/
AM, an L-type Ca2+ channel blocker verapamil, somatostatin, or a specific p70S6K 
inhibitor LY2584702 [109].

Hepatocytes are known to express also 5-HT2A receptors that may interact with 
and 5-HT2B receptors [110]. Hepatic stellate cells (HSCs) are key cellular compo-
nents of hepatic wound healing and fibrosis. However in a pathophysiological set-
ting, the regenerative influence of serotonin acting through 5-HT2A receptors on 
hepatocytes may be subjected to opposite anti-regenerative effects arising from 
serotonin acting through 5-HT2B receptors in HSCs [111]. After HSC activation, 
expression of 5-HT2A and 5-HT2B receptors was found 100 and 50-fold over- 
expressed, respectively. Treatment of HSCs with 5-HT2 receptor antagonists sup-
pressed proliferation and elevated their rate of apoptosis. Serotonin synergized with 
PDGF to stimulate increased HSC proliferation [112]. Distinct from quiescent cells, 
activated HSCs exhibited [Ca2+]i transients following treatment with serotonin. 
Pretreatment with 5-HT2 antagonist inhibited [Ca2+]i changes upon application of 
serotonin. Ca2+ binding proteins, including calreticulin, calnexin and calsequestrin, 
were up-regulated following activation of HSCs [113].

The 5-HT2B receptor expression was strongly associated with fibrotic tissue in 
diseased liver. Stimulation of 5-HT2B receptors on HSC by serotonin was shown to 
activate expression of TGF-β1 (a powerful suppressor of hepatocyte proliferation) 
via ERK/JunD signaling. Selective antagonism of 5-HT2B receptors enhanced hepa-
tocyte growth in models of acute and chronic liver injury. Similarly, antagonists of 
5-HT2B receptor have been shown to decrease mRNA levels of TGF-β1, connective 
growth factor, plasminogen activator inhibitor-1, Smad-3 and JunD in lung and skin 
fibroblasts [114]. Activation of the 5-HT2B receptor leads to sustained phosphoryla-
tion of two downstream targets of mTOR, p70S6K and 4E-BP1, thereby facilitating 
survival and inhibiting autophagy of hepatocellular carcinomas (HCC) [115]. 
Similar effects were observed in mice lacking 5-HT2B receptor or JunD and when 
HSCs have been selectively depleted. Antagonism of 5-HT2B receptor attenuated 
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fibrogenesis and improved liver function in disease models, in which fibrosis is pre- 
established and progressive [111]. Therefore, 5-HT2B receptor appears to have a 
dual role on liver, promoting regeneration physiological conditions and fibrosis in 
pathological conditions (See also Chap. 14).

6.4  Lung

In human pulmonary artery endothelial cells, 5-HT2B receptors stimulate calcium 
release from intracellular stores [116]. Ellis et al. [117] showed that antagonizing 
5-HT2B receptors caused endothelium-dependent relaxation of rat jugular vein. 
Another study showed that serotonin induced relaxation of pig pulmonary artery 
was mediated by endothelial 5-HT2B receptors [118]. Ishida et al. [119] reported that 
activation of 5-HT2B/5-HT1B receptors stimulated NO production in human coro-
nary artery endothelial cells. Other work identified a cardioprotective function of 
the 5-HT2B receptors in an integrated model of heart failure with preserved ejection 
fraction that could be explained by a contribution of the endothelial 5-HT2B recep-
tors to coronary vasodilatation [120].

PAH is a progressive and often fatal disorder in humans that results from an 
increase in pulmonary blood pressure associated with abnormal vascular prolifera-
tion. Serotonin is associated with the pathogenesis of PAH [121]. Therapeutic drugs 
with PAH as a side effect, like the amphetamine derivative and anorexigen dexfen-
fluramine, are potent serotonin releasers acting at SERT and (or their metabolite) 
agonists at 5-HT2B receptors [122]. Serotonergic anorexigen-dependent PAH is 
clinically indistinguishable from the heritable form of disease, associated with 
BMPR2 mutations. Both BMPR2 mutation and agonists to the serotonin receptor 
HTR2B have been shown to cause activation of SRC tyrosine kinase; conversely, 
antagonists to HTR2B inhibit SRC trafficking and downstream function. In 
Bmpr2R899X knock-in mice, which spontaneously develop pulmonary hyperten-
sion, the 5-HT2B receptor antagonist, SB204741, blocks the SRC activation caused 
by Bmpr2R899X mutation. SB204741 prevented the development of pulmonary 
hypertension, reduced recruitment of inflammatory cells to their lungs, reduced 
muscularization of their blood vessels, reduced SRC phosphorylation and down-
stream activity in Bmpr2R899X mice [123]. Using bone-marrow transplantation, 
the restricted expression of 5-HT2B receptors to bone-marrow cells was shown as 
necessary and sufficient for pulmonary hypertension to develop via an action at 
hematopoietic stem cell differentiation [124]. Bone-marrow cells play thus a key 
role in genetic pulmonary hypertension pathogenesis that was further validated by 
transplanted Bmpr2R899X bone-marrow cells, which were able to drive the lung 
phenotype [125]. Together, these findings reveal the limiting role of serotonin via 
5-HT2B receptors in PAH development and shift the contribution of serotonin to 
PAH to an extrapulmonary, hematopoietic event (see also Chaps. 10 and 12).

Serotonin was shown to increase proliferation and collagen synthesis by lung 
fibroblasts. Serotonin concentrations in lung homogenates increased significantly 
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over the time course of bleomycin-induced fibrosis, with a maximum at day seven, 
together with the expression of serotonin receptors 5-HT2A and 5-HT2B [126]. 
Blockade of 5-HT2B receptors by SB215505 reduced bleomycin-induced lung fibro-
sis, as demonstrated by reduced lung collagen content and reduced procollagen 1 
and procollagen 3 mRNA expression. 5-HT2B receptor antagonists promoted an 
antifibrotic environment by decreasing the lung mRNA levels of TGF-β1, connec-
tive growth factor and plasminogen activator inhibitor-1 and JunD 
mRNA. Interestingly, the 5-HT2B receptor was strongly overexpressed by fibroblasts 
in the fibroblastic foci of human idiopathic pulmonary fibrosis samples [127]. 
Serotonin contribution to lung fibrosis is thus controlled by 5-HT2B receptors regu-
lating TGF-β1 levels.

6.5  Skin

Dermal fibrosis was independently shown to be reduced in Htr2b−/− mice using both 
inducible and genetic models of fibrosis. Pharmacologic inactivation of 5-HT2B 
receptor also effectively prevented the onset of experimental fibrosis and amelio-
rated established fibrosis by decreasing mRNA levels of TGF-β1, connective growth 
factor, plasminogen activator inhibitor-1 and Smad-3 [114]. Moreover, inhibition of 
platelet activation prevented fibrosis in different models of skin fibrosis. Consistently, 
mice deficient for tryptophan hydroxylase (TPH)-1, the rate-limiting enzyme for 
serotonin production outside the central nervous system, showed reduced experi-
mental skin fibrosis [114]. Serotonin contribution to skin fibrosis is thus controlled 
by 5-HT2B receptors via regulation of TGF-β1 levels. Stimulation of dermal fibro-
blasts with serotonin led to increased expression of pro-fibrotic genes which was 
significantly reduced by antagonists, and decreased type I collagen and α-SMA, 
ERK1/2 and STAT3 phosphorylation independently of Smad3 phosphorylation 
[128]. 5-HT2B receptor antagonists can thus suppress TGF-β1-mediated non- 
canonical pathways, ERK1/2 and STAT3, which have been implicated in the regula-
tion of pro-fibrotic genes and in the development of fibrosis (see also Chap. 13).

6.6  Bones

The Htr2b mRNA expression, which was undetectable in anaplastic osteoblasts, 
appears in differentiated and matured osteoblasts [129–131]. The differentiation 
and maturation of osteoblasts is thus regulated by the activation of the 5-HT2B recep-
tor [132]. Optimal bone matrix mineralization involves both NO and PLA2 signal-
ing pathways and the 5-HT2B receptor promotes prostaglandin (PGE2) production 
through cyclooxygenase (COX) activation. The 5-HT2B receptor contributed in an 
autocrine manner to osteogenic differentiation [133]. A functional link between the 
5-HT2B receptor and the activity of the tissue-nonspecific alkaline phosphatase 

1 Gene Structure, Expression, and 5-HT2B Receptor Signaling



20

(TNAP) was established during the initial mineralization phase. Previous observa-
tions indicated that the 5-HT2B receptor coupled to PLA2 pathway and prostaglan-
din production at the beginning of mineral deposition. The 5-HT2B receptor also 
controlled leukotriene synthesis via PLA2 at the terminal stages of differentiation. 
These two 5-HT2B receptor-dependent eicosanoid productions delineate distinct 
time-windows of TNAP regulation during the osteogenic program. Finally, prosta-
glandins or leukotrienes were shown to relay the post-translational activation of 
TNAP via stimulation of the phosphatidylinositol-specific PLC. In agreement with 
the above findings, primary calvarial osteoblasts from Htr2b−/− mice were shown to 
exhibit defects in TNAP activity [134]. Brain serotonin was proposed to favor indi-
rectly bone mass accrual following activation of 5-HT2C receptors on ventromedial 
hypothalamic neurons and 5-HT2B receptors on arcuate neurons [135]. Compared to 
control osteoblasts, the lack of 5-HT2B receptors was associated with a ten-fold 
over-production of prostacyclin (PGI2). Also, a specific prostacyclin synthase 
inhibitor (U51605) rescued totally osteoblast aggregation and matrix mineralization 
in Htr2b−/−osteoblasts. Prostacyclin is the endogenous ligand of PPAR-β/δ, and its 
inhibition in Htr2b−/− cells rescued totally the TNAP and osteopontin mRNA levels, 
cell-cell adhesion, and matrix mineralization. The absence of 5-HT2B receptors 
leads to the overproduction of prostacyclin, inducing reduced osteoblast differentia-
tion due to PPAR-β/δ -dependent target regulation and defective cell-cell adhesion 
and matrix mineralization [136]. The 5-HT2B receptor contributes thus in an auto-
crine manner to osteogenic differentiation, via a physiological negative control of 
prostacyclin by 5-HT2B receptors (see also Chap 7).

As in transfected cells, endogenously expressed 5-HT2B receptors can stimulate 
various transduction pathways according to the cell subtype including SRC, NO, 
metalloproteinases, PLA2 activities. The complex signal transduction pathways 
highlighted by the study of 5-HT2B receptors makes very likely that biased agonists 
or antagonists will appear as valuable therapeutics.

7  5-HT2B Receptor in Cancer Cells

A recent screen of a large tumour set using functional genomic mRNA, high HTR2B 
mRNA overexpression was found on all melanoma, in gastro-intestinal stromal 
tumour cells, and endothelial cells of colon, ovarian, breast, renal and pancreatic 
tumours [137].

7.1  Carcinoid Tumors

Strong expression of 5-HT2B receptors was observed in spontaneous human carci-
noid tumors, along with coupling to p21ras activation [90]. The tumor proliferative 
activity of small intestinal neuroendocrine tumors (including cell growth and the 

L. Maroteaux



21

development of desmoplasia) is associated with particular microenvironment in 
peritoneum that is controlled by tumor cells through the secretion of profibrotic/ 
angiogenetic factors [138].

7.2  Melanoma

Activation of 5-HT2B receptors reduced melanin synthesis and intracellular tyrosi-
nase activity in human melanocytes. The expression of melanogenesis-related pro-
teins (tyrosinase, TRP-1 and TRP-2) and microphthalmia-associated transcription 
factor (MITF) decreased after agonist treatment. The reduced level of MITF was 
associated with inhibition of protein kinase A (PKA) and cAMP response element- 
binding protein (CREB) activation [139]. Independently, HTR2B is among the 
genes, which show the highest overexpression in class 2 uveal melanoma [140]. A 
PCR-based 15-gene assay comprising 12 discriminating genes including HTR2B 
are now part of a prognostic assay for managing patients with uveal melanoma 
[141], by providing candidates for distinguishing whether uveal melanomas contain 
liver metastases. This set of genes thus aid in the diagnosis and prevention of uveal 
melanoma liver metastases, based on their different features [142]. Metastatic uveal 
melanomas primary tumors show important alterations in the expression of 5-HT2B 
receptor, the E3 ubiquitin ligases, and various subunits of the proteasome. This find-
ing suggested that the inability of the proteasome to degrade 5-HT2B receptor in 
metastatic uveal melanomas cells might rely on an increased stability of the ubiqui-
tinated receptor in these cells [89]. The selective 5-HT2B receptor antagonist 
PRX-08066 has impact on the proliferation and migration of uveal melanoma cells, 
through activation of many signaling pathways such as WNT, Focal adhesion kinase 
and Janus kinase/STAT [143]. The upstream regulatory region of the HTR2B gene 
contains a combination of alternative positive and negative regulatory elements 
functional in uveal melanomas cells [30].

7.3  Adrenocortical Carcinoma

Gene expression profiles of adrenocortical tumors identified underexpression of 
HTR2B mRNA as a marker of malignant adrenocortical carcinoma [144]. Analysis 
of biomarkers of malignancy of adrenocortical cancers in the meta-analysis has 
revealed that the combination of overexpressed anillin (ANLN) and underexpressed 
HTR2B mRNA appeared to be the best predictor of malignancy [145]. However, 
chronic adrenal stimulation by glucose-dependent insulinotropic peptide in adrenal 
hyperplasia was shown to lead to the significant induction of the GPR54, HTR2B, 
GPR4, and endothelial differentiation sphingolipid receptor EDG8 [146].
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7.4  Hepatocellular Carcinoma

Serotonin has been reported to promote proliferation of serum-deprived HCCs. 
Among 64 genes for which mRNA expression levels differed between non-hepatitis 
B, non-hepatitis C compared to hepatitis C-type HCC, the most affected was HTR2B 
[147]. The function of serotonin as a survival factor of HCC cells was demonstrated: 
activation of the 5-HT2B receptor leads to sustained phosphorylation of two down-
stream targets of mTOR, p70S6K and 4E-BP1, thereby facilitating survival and 
inhibiting autophagy. Inhibiting the 5-HT2B receptor reduced cancer cell growth 
in-vitro and in-vivo. The presence of 5-HT2B receptors in HCC and the activation of 
autophagy-related mechanisms demonstrated new insights of serotonin in cancer 
biology [115]. The 5-HT1B and 5-HT2B receptors were found expressed in about one 
third of the patients with HCC. Both receptors were associated with an increased 
proliferation index [148]. The 5-HT2B receptor mediates serotonin-induced prolif-
eration in the serum-deprived HCC Huh7 cells. Additionally, inhibition of 5-HT2B 
receptor in Huh7 cells using SB204741 significantly decreased the expression of 
FOXO3a, a member of class O of the fork head box family of transcription factors 
[149]. In-vitro data suggest also that serotonin increased total β-catenin, active 
β-catenin and decreased phosphorylated β-catenin protein levels in serum deprived 
HuH-7 and HepG2 cells. Activation of WNT/β-catenin signaling was evidenced by 
increased expression of β-catenin downstream target genes, Axin2, cyclin D1, dick-
oppf- 1 (DKK1) and glutamine synthetase (GS) by qPCR in serum-deprived HCC 
cell lines treated with serotonin. Additionally, serotonin disrupted Axin1/β-catenin 
interaction, a critical step in β-catenin phosphorylation [150].

7.5  Pancreatic Ductal Adenocarcinomas

Under metabolic stress, autocrine serotonin exhibits pro-survival and anti-apoptotic 
roles in pancreatic ductal adenocarcinomas cells. Intriguingly, peripheral serotonin 
is critically implicated in the regulation of energy homeostasis. Agonists of 5-HT2B 
receptor, but not other serotonin receptors can promote proliferation and prevent 
apoptosis of pancreatic ductal adenocarcinomas cells. Knockdown of HTR2B in 
pancreatic ductal adenocarcinomas cells, or incubation of cells with 5-HT2B recep-
tor antagonists, reduced their growth as xenograft tumors in mice. Levels of meta-
bolic enzymes involved in glycolysis, the phosphate pentose pathway, and 
hexosamine biosynthesis pathway increased significantly in pancreatic ductal ade-
nocarcinomas cells following serotonin stimulation. The mTOR signaling pathway 
integrates both intracellular and extracellular signals and serves as a central regula-
tor of cell metabolism, growth, proliferation, and survival. Serotonin stimulation led 
to formation of the 5-HT2B receptor-LYN-p85 complex, which increases PI3K-Akt- 
mTOR signaling and the Warburg effect by increasing protein levels of MYC and 
HIF1α. Administration of 5-HT2B receptor antagonists slowed growth and 
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metabolism of established pancreatic tumors and prolonged survival of the mice 
[151]. Furthermore, preincubation (6 h) of MIN6 cells with serotonin or 5-HT2B 
receptor agonist BW723C86 reduces glucose stimulated insulin secretion and the 
effect of serotonin could be prevented by 5-HT2B receptor antagonist SB204741. 
Preincubation with BW723C86 increases PPARγ co-activator 1α (PGC1α) and 
PPARγ mRNA and protein levels and decreases mitochondrial respiration and ATP 
content in MIN6 cells [152]. Prolonged 5-HT2B receptor activation in murine β-cells 
decreases glucose-stimulated insulin secretion and mitochondrial activity by mech-
anisms likely dependent on enhanced PPARγ expression (see also Chap. 15).

7.6  T-cell Leukemia

A proteasome inhibitor, bortezomib, could be a potential therapeutic agent in treat-
ing adult T-cell leukemia (ATL) patients. HTR2B was identified in a network that 
converges to secreted protein acidic and rich in cysteine (SPARC) gene. SPARC is a 
tumor-invasiveness related gene, which may act as a possible modulator of 
bortezomib- induced cell death in adult T-cell leukemia cells [153].

7.7  Tumor Angiogenesis

In tumor-infiltrating macrophages, serotonin does not enhance cancer tumor cell 
proliferation but may act as a regulator of angiogenesis by reducing the expression 
of metalloproteinase-12, entailing lower levels of angiostatin, an endogenous inhib-
itor of angiogenesis [154]. Serotonin can stimulate the phosphorylation of ERK1/2 in 
bovine endothelial cells, and the 5-HT2B receptor was reported to play a role in the 
activation of endothelial NOS in human endothelial cells. In SB204741-treated 
mice, the selective blockade of 5-HT2B receptor resulted in the reduction of tumor 
angiogenesis and growth through the inhibition effect of ERK1/2 and endothelial 
NOS [155]. Therefore, the possibility that 5-HT2B receptors participate in tumor 
angiogenesis is a likely possibility that remains to be validated.

The 5-HT2B receptor appears thus associated with various types of cancer cells. 
In addition, its contribution varies according to each tumor and may contribute to 
many processes in tumor differentiation, proliferation, survival, or angiogenesis. 
The relation between its strong embryonic expression in particular in NCC and in 
certain tumors cells needs to be investigated. Nevertheless, it appears that, at least in 
particular situations, blocking its activation may have therapeutic potential.
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8  Outlook and Prospects

The characterization of the 5-HT2B receptor subtype in various species identified 
similarities, but also but differences in its pharmacology, as compared to 5-HT2A or 
5-HT2C receptors. Its physiological functions include many differentiation steps 
both in periphery and central nervous system. Early expression of 5-HT2B receptors 
has been found in embryos in post-migrating NCCs, neural tube, hematopoietic tis-
sue, and heart primordia. Although quite low at adult stage, the expression of 5-HT2B 
receptor was confirmed in several brain nuclei of all investigated vertebrate species. 
The particular HTR2B gene organization and its complex transcriptional regulation 
are not yet fully understood. Similarly, more work is needed on the structure- 
function relationships of the 5-HT2B receptor, in particular the preferential hetero-
meric association between 5-HT2 receptors, the asymmetry in Gq-protein coupling, 
and signaling. How its structure impacts on 5-HT2B receptor coupling, desensitiza-
tion pathways, or possible proteasome regulation remains poorly understood but 
needs to be taken into account in further physiological studies. As in transfected 
cells, endogenously expressed 5-HT2B receptors can stimulate various transduction 
pathways including SRC, PI3K-Akt-mTOR, MAPK, NO, metalloproteinases, PLC 
or PLA2 activities. Finally, the 5-HT2B receptor appears associated with various 
types of cancer cells, but its contribution varies according to each tumor and may be 
involved in tumor differentiation, proliferation, survival, and/or angiogenesis.
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1  Introduction

Since the pioneer studies of Buznikov and his collaborators [1] it has becoming 
clear that during embryogenesis some neurotransmitters could function as morpho-
gens before being coopted in the central nervous system. Such a role has long been 
suspected for serotonin (5-hydroxytryptamine, 5-HT), a biogenic monoamine that 
appeared very early in evolution, being present not only in vertebrates and inverte-
brates animals but also in plants [2]. First discovered as the secretory product of 
enterochromaffin cells of the gut (“enteramine”) [3], it was later isolated as a con-
strictor factor from the blood serum and named serotonin [4]. serotonin was then 
identified in mammalian brain and this brought it into the field of neuroscience [5]. 
Sertonin is best known for its role in the nervous system since it is one of the neu-
rotransmitters mainly involved in the etiology of many human psychiatric disorders 
and many substances that interfere with the serotonergic system are commonly used 
as therapeutic agents. However, serotonin also mediates a wide range of peripheral 
functions [6]. It is now well documented that serotonin also plays a crucial role dur-
ing embryogenesis. Serotonin and its receptors have been detected in oocytes and 
early embryos of all invertebrates and vertebrates studied, from sea urchins, 
Drosophila, frogs, chicken to mammals, even before the appearance of neural struc-
tures suggesting a role of serotonin in cell proliferation and/or in morphogenetic 
movements [7–9]. In Xenopus embryos serotonin is present as a maternal pool in the 
eggs, while during mammalian embryogenesis serotonin is supplied to the embryo 
by the maternal blood [10, 11]. Moreover, an early transient placental source of 
serotonin for the fetal circulation has been detected both in mice and humans [12]. 
Later in the embryo development, serotonin is actively produced mainly by the 
raphe nuclei in the brain and in the gastrointestinal tract. In adults, most (90%) of 
the serotonin synthesized in the body comes from the periphery where it is produced 
by gut enterochromaffin cells and then taken up by the serotonin transporter (SERT) 
in platelets. When released by platelets, serotonin triggers biological effects through 
its interaction with membrane receptors. In addition to the sites of serotonin produc-
tion, there are a number of cells that capture and store serotonin, acting as 5-HT 
reservoirs during development. In mice serotonin uptake sites first appear in non- 
neural tissues such as the heart, the liver, the cranial mesenchyme, the migrating 
cranial neural crest cells (NCCs), dorsal ganglia and retinal ganglion cells [13, 14]. 
High affinity uptake of serotonin in these structures highlights the involvement of 
serotonin signaling in their development and suggests that serotonin must be finely 
modulated. Serotonin thus plays a role as a morphogen-like signal in development 
before it acts as a neurotransmitter in the brain. So far evidence has been presented 
for serotonin signaling involvement in many important embryological events such 
as craniofacial and cardiac morphogenesis, neural crest migration, eye, limb, and 
bone development, the establishment of left-right asymmetry, the closure of the 
neural tube and neuronal differentiation during early neurogenesis [10, 15–17].
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2  A Main Mediator of Serotonergic Signaling During 
Embryogenesis: The 5-HT2B Receptor

Most of the biological actions of serotonin are mediated by G-coupled receptors 
and, among these, the Gq-coupled 5-HT2B receptor signaling has shown to be par-
ticularly important in mediating the effects of serotonin in embryonic development. 
The first evidence of a role of 5-HT2B receptor during embryonic development, has 
been provided by cultured mouse embryos exposed to the 5-HT2 family receptor 
high affinity antagonist ritanserin from 8 to 11 d.p.c. Ritanserin interferes with cra-
nial neural crest cell migration, induces craniofacial defects including hypoplastic 
mandibular arches, abnormal eyes and cardiovascular defects such as reduction of 
trabeculation of the ventricular myocardium [15]. Similar results have been obtained 
in cultured Xenopus and zebrafish embryos treated with ritanserin [18, 19]. Most of 
these defects have been supposed to be dependent on 5-HT2B receptor inactivation 
because 5-HT2B receptor mRNA is expressed in the affected tissues and only other 
antagonists of this class with high affinity for 5-HT2B receptor gave similar results 
[15, 20]. However, the most straightforward way to understand the function of the 
receptors that mediate the serotonin action during development has been to investi-
gate the effects of the abrogation of the corresponding gene function. Advances on 
how 5-HT2B receptor signaling can influence early development and its role in ver-
tebrate morphogenesis have mainly derived from two model systems, the mouse 
and Xenopus, thanks to the availability of sophisticated tools for manipulating 
embryos and gene functions in these organisms.

3  Role of 5-HT2B Receptor in Cardio Vascular Development

The first genetic evidence of 5-HT2B receptor role in embryogenesis was obtained 
from its genetic ablation in mice [21]. The creation of 5-HT2B receptor knockout 
(KO) mice has allowed addressing how signaling and expression of this receptor is 
specifically implicated in embryonic development as well as in adult health and 
disease [22]. One major defect of 5-HT2B receptor KO embryos was a disturbed 
heart development leading to partial embryonic lethality and neonatal death. 
Histological analysis of the heart of the mutant embryos revealed a lack of trabecu-
lar cells in the ventricle, while newborn mice display severe ventricular hypoplasia, 
caused by impaired proliferative capacity of myocytes and cardiac dilation resulting 
from contractility deficits and structural defects at intercellular junctions between 
cardiomyocytes. In the surviving mutant adult mice echocardiography and electro-
cardiography both confirmed the presence of left ventricular dilation and decreased 
systolic function. A severe reduction in the thickness of the myocardium may induce 
myocardial rupture resulting in escape of blood into the pericardium followed by 
death. These results have shown that serotonin, via the 5-HT2B receptor signaling, is 
an important regulator of cardiac myocyte differentiation and proliferation of the 
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developing heart. Transduction of the 5-HT2B receptor signaling is complex, includ-
ing phospholipase C (PLC) and A2 stimulation, cGMP production and a mitogenic 
signal that integrates the tyrosine kinase -signaling pathway. Nebigil and colleagues 
[23] demonstrated in vitro that 5-HT2B receptors activity is mitogenic. In this mito-
genic signaling, c-Src is the crucial molecule that links 5-HT2B receptor signaling 
leading to activation of the cell-cycle machinery and the cell-cycle regulators. c-Src 
alone controls cyclin E induction and transactivates PDGF-receptor tyrosine kinase 
activity to induce cyclinD1 expression through p42mapk/p44mapk (ERK2/ERK1) 
mitogen-activated protein kinases (MAPK) pathway.

This finding is in agreement with the observation that transgenic mice overex-
pressing the 5-HT2B receptor, specifically in the heart, leads to ventricular hypertro-
phy as result of increased cell number and size. Echocardiographic analysis 
indicated the presence of thickened ventricular wall without alteration of the sys-
tolic function, showing that transgenic mice have compensated hypertrophy. 
Interestingly, the electron microscope analysis of these mutant mice revealed an 
abnormal mitochondrial proliferation associated to increased mitochondrial enzyme 
activity [24]. Parallel ultrastructural analysis of 5-HT2B receptor knockout mice 
heart revealed pronounced mitochondrial abnormalities, such as interrupted inner 
membrane and swollen cristae, as well as altered mitochondrial enzyme activities 
(cytochrome oxidase and succinate dehydrogenase). Although damage in mito-
chondria is a key step leading to programmed cell death, no typical apoptotic bodies 
were observed in the mutated heart despite impaired myofibrillar structure, suggest-
ing a protective role preventing apoptosis by the Gq-coupled 5-HT2B receptor sig-
naling on cardiomyocytes [24]. By using in  vitro cultured cardiomyocytes and 
5-HT2B receptor knockout mice as an animal model of dilated cardiomyopathy, it 
has been shown that 5-HT2B receptor signaling prevents cytochrome c release and 
caspase-9 and 3 activation via cross talks between phosphatidylinositol 3 kinase/
Akt and ERK1/2 signaling pathways [25]. These findings are relevant since they 
identify serotonin via 5-HT2B receptor as a novel survival factor targeting mitochon-
dria in cardiomyocytes thus contributing to a better understanding of the pathogen-
esis of human congenital heart diseases [26].

4  Role of 5-HT2B Receptor in Hematopoietic Lineage

Starting from the observations that serotonin may act as a growth factor for hema-
topoietic stem/progenitor cell and that 5-HT2B receptor expression was identified in 
megakaryocytic cell lineage [27, 28] another aspect that has been investigated in 
5-HT2B receptor knockout mice is the blood composition in comparison with the 
wild type counterpart. Interestingly, a significant decrease in platelet number and an 
increase in circulating granulocyte/macrophage population have been found in adult 
5-HT2B receptor mutants compared to wild type mice. In accordance with these 
blood results, the bone marrow (BM) of 5-HT2B receptor mutant mice showed alter-
ations in cell composition such as a significant increase in granulocyte precursors 
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associated with a significant reduction in immature endothelial progenitor cells. 
Together, these observations support the idea that the lack of 5-HT2B receptor alters 
the differentiation of myeloid precursors for endothelial progenitor cells that have 
been proposed to participate to the development of the pulmonary arterial hyperten-
sion (PAH) [29, 30]. PAH is a very complex disease and many factors are involved 
in its pathophysiology characterized by progressive increase in pulmonary blood 
pressure associated with abnormal vascular proliferation and remodeling [31].

The role of 5-HT2B receptors in PAH has been shown to be restricted to bone- 
marrow where they contribute to the differentiation, proliferation and mobilization 
of endothelial progenitor cells [30]. These findings are in agreement with recent 
studies showing that serotonin and its receptors directly regulate hematopoietic 
stem and progenitor cells (HSPCs) during development [32]. In vitro experiments 
have shown that serotonin can enhance the generation of HPSCs, while in mice 
embryos serotonin is biosynthesized from embryonic day E10.5 in the aorta-gonad- 
mesonephros (AGM) region, a site of active hematopoiesis, and it is essential for the 
production and survival of HSPCs that then migrate to and expand in the fetal liver 
before colonizing the bone marrow around the birth. Although the 5-HT5 receptor 
seems to mediate the action of serotonin in embryonic hematopoiesis via the AKT- 
Foxo1 signaling cascade [32], it should be reminded that by using in situ hybridiza-
tion and immunocytochemical studies a region of 5-HT2B receptor gene and protein 
expression has been identified at the distal end of the mouse embryo (E10.5) cor-
responding to AGM, thus suggesting a contribution of this serotonin receptor to 
embryonic hematopoiesis as well [15]. It is interesting to note that both in mice and 
zebrafish serotonin is synthesized in the AGM region mainly by the tryptophan 
hydroxylase (TPH)2 enzyme revealing that TPH2 is expressed not only in the cen-
tral nervous system (CNS), but also in the peripheral tissues [32, 33]. It has also 
been reported that in zebrafish embryos CNS-derived serotonin controls HSPCs 
production through the hypothalamic-pituitary-adrenal/interrenal (HPA/I) stress 
response axis via glucocorticoid receptor signaling, revealing that the CNS, as the 
master stress response regulator, enables the embryo to detect and react to various 
signals through fluctuations in HSPCs production [34].

5  Role of 5-HT2B Receptor in Osteogenesis

Several studies have suggested that serotonin is also involved in bone metabolism 
[35] and it has been shown that, among the various serotonin receptors, belonging 
to class 1 and 2, expressed on bone cells, the 5-HT2B receptor has a key role during 
osteogenesis. Increased 5-HT2B receptor expression has been reported during in 
vitro osteoblast differentiation and the 5-HT2B receptor knockout female mice are 
characterized by a reduced bone density that was significant from age 4 months and 
had intensified by 12 and 18 months. Cultured primary osteoblasts from the mutant 
mice exhibited reduced proliferation and decreased osteoblast recruitment from 
mesenchymal stem cells, moreover calcium incorporation was markedly reduced 
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after 5-HT2B receptor depletion produced genetically or by pharmacological inacti-
vation [36]. In this context, it is interesting to note that the 5-HT2B receptor has been 
reported to regulate embryonic mouse hind limb mesenchymal cell proliferation 
[37] and to increase the osteogenic differentiation of a mesoblastic cell line [38]. On 
the whole, these studies have revealed that the 5-HT2B receptor facilitates osteopro-
genitors recruitment, proliferation and mineralization and that its absence leads to 
osteopenia that worsens with age. The 5-HT2B receptor may thus be considered a 
main physiological mediator of serotonin in bone formation and, potentially, in the 
onset of osteoporosis also in aging women [39].

6  Role of 5-HT2B Receptor in Neural Crest Cells (NCC)

6.1  5-HT2B Receptor in Craniofacial Development

Xenopus laevis is a model system that strongly contributed to unveil new develop-
mental roles of the 5-HT2B receptor. Thanks to the availability of tools for manipu-
lating embryos and gene functions in this organism, these studies have provided 
information about the role of the 5-HT2B receptor signaling in two complex morpho-
genetic processes such as craniofacial and ocular development. Craniofacial mor-
phogenesis is a complex developmental process requiring multiple and coordinated 
embryological events. In vertebrates, the viscerocranium is organized into a rostro-
caudal bilateral series of segmented structures, the pharyngeal arches (PA), that are 
colonized by cranial NCCs, a multipotent cell population migrating in discrete 
streams from the mid-hindbrain segments of the dorsal neural tube. The NCC com-
ponents of the pharyngeal arches give rise to skeletal cranial elements that undergo 
profound changes during evolution [40]. Cranial neural crest contribution in build-
ing the vertebrate head is so crucial that the acquisition of the NCC by protochord-
ate ancestors is considered to be a turning point in the evolution of vertebrates [41]. 
In particular, the emergence of jawed vertebrates was accompanied by the acquisi-
tion of a buccal skeleton derived by a reshaping of the first arch into two distinct 
elements articulated by a jaw joint. This was one of the major novelties that shifted 
vertebrates from a passive filter feeding lifestyle to one of active predation [42]. A 
role of serotonin in craniofacial morphogenesis has been long suspected by study-
ing the effects of in  vitro exposure of mouse embryos to selective serotonin re- 
uptake inhibitors or to receptor antagonists. In fact, in mouse embryos sites of 
serotonin reuptake and degradation are transiently expressed by epithelia of bran-
chial arches probably protecting the underlying mesenchyme from exposure to 
inappropriate levels of serotonin, as indicated by patterns of cell death and cranial 
malformations caused by exposure of cultured embryos to selective serotonin reup-
take inhibitors (SSRIs), like fluoxetine (Prozac) and sertraline (Zoloft) [14, 43, 44].

The finding of 5-HT2B receptor mRNA expression in the pharyngeal arches of the 
mouse embryo at E9 [15, 20] as well as in the pharyngeal arches of tail bud Xenopus 
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embryos supported the hypothesis of a role of this receptor in mediating the sero-
tonin action in the craniofacial developmental process [45]. A first hint for a possi-
ble role of the 5-HT2B receptor signaling in Xenopus craniofacial morphogenesis 
derived from gene gain of function experiments: 5-HT2B receptor overexpression 
resulted, in fact, in a morphological change of the craniofacial skeleton due to the 
formation of an ectopic cartilaginous element and by a reduction in the quadrate and 
subocular cartilages associated with altered muscular connectivity. Information on 
the origin of the ectopic cartilage derived from the analysis of the gene expression 
pattern of bap, a gene coding for a transcription factor expressed in the precursor 
cells of the jaw joint region [46]. In 5-HT2B receptor-overexpressing embryos, bap 
mRNA was ectopically expressed and resembled a mirror-image duplication of the 
wild-type bap mRNA expression site, suggesting that the ectopic cartilage derives, 
at least in part, from the first pharyngeal arch NCCs. As shown by homotypic NCC 
transplantation assay, the 5-HT2B receptor activity in NCCs was sufficient, in a cell- 
autonomous manner, to generate the ectopic cartilage. The overexpression of 5-HT2B 
receptor was also shown to influence the morphogenesis and/or patterning of the 
posterior arch NCCs by altering their dorsoventral positional information. Parallel 
5-HT2B receptor loss of function experiments resulted in bap downregulation and in 
a fusion of a hypomorphic quadrate with the Meckel’s cartilage into a single ele-
ment, leading to the loss of the jaw joint. Moreover, Meckel’s cartilage was altered 
in shape due to the lack of the cartilaginous muscular process normally located on 
its ventral aspect and necessary for the attachment of two muscles (hyoangularis 
and quadratoangularis) which failed to reach their target cartilage. The consequence 
of both the skeletal and the muscular abnormalities was a critical functional impair-
ment of the mouth opening, leading to the death of the tadpole [17, 45].

These results clearly indicated that 5-HT2B receptor signaling is sufficient and 
necessary for the jaw joint formation and for shaping the mandibular arch skeletal 
elements by sustaining the bap expression. By using loss-of-function approaches it 
was also shown that PLC is the effector of the 5-HT2B receptor signaling in cranio-
facial development. 5-HT2B receptor transduction cascade via the PLC is shared 
with the endothelin 1 (Edn 1) pathway, the only signaling pathway known to be able 
to positively control Bapx expression [47] and possibly these two signaling path-
ways cooperate to sustain bap gene expression for a correct first arch morphogene-
sis. On the whole, these results show that misexpression of 5-HT2B receptor does not 
interfere with the induction or migration of NCCs but specifically influences the 
behavior of postmigratory pharyngeal arches NCCs. Thus the 5-HT2B receptor sig-
naling can be added to the complex interactive networks of extrinsic factors that 
regulate mandibular arch morphogenesis contributing to one of the major vertebrate 
successes in evolution [48]. A role of the 5-HT2B receptor in pharyngeal arch mor-
phogenesis has been confirmed in zebrafish, since its pharmacological inhibition 
also induced defects in visceral cranial morphogenesis similar to those observed in 
Xenopus [19].

Since the appearance of the jaw joint is an event at the origin of jawed vertebrates 
these findings support the hypothesis that this receptor is evolutionary very ancient 
and that it may be the common ancestor of the 5-HT2 receptor subfamily as it has 
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been recently proposed on the basis of its genomic organization both in vertebrate 
and in invertebrate species [49]. Interestingly, the 5-HT2B receptor gene is encoded 
within an intron of a large subunit of the proteasome Psmd1 in humans, mice and 
rats and it has been estimated that this association appeared in pre-vertebrates and 
that 5-HT2 receptor subtypes diversified approximately at the time period during 
which vertebrates diverged from invertebrates. In fact, while in the non-vertebrate 
chordate Ciona only one 5-HT2-like receptor gene has been found, two whole 
genome duplication events have been proposed to arise in gnathostomes giving rise 
to a potential of four copies of the original ancestral prochordate gene. The first 
duplication event probably arose at the origin of the jawless vertebrates (Agnatha: 
lampreys and hagfish) where two 5-HT2 receptors have been identified. The second 
whole genome duplication would have occurred at the divergence of the agnatans 
toward the jawed vertebrates (Gnathostomata). However, these duplication events 
were followed by loss of some redundant genes, so that in tetrapods only one copy 
of 5-HT2B, 2C and 2A receptor gene is found. This loss of redundant genes appears to 
have not occurred in teleost such as zebrafish that displays two 5-HT2A and 5-HT2C 
receptor genes but only one copy of 5-HT2B receptor having likely lost its duplicated 
copy. These findings indicate that a strong selective pressure seems to exist in order 
to keep a single copy of the 5-HT2B receptor gene during evolution [49]. The results 
of 5-HT2B receptor mRNA misexpression in Xenopus embryos strongly support this 
hypothesis since they clearly show that a proper 5-HT2B receptor gene dosage is 
needed to construct a functional buccal skeleton that allows the tadpole to feed and 
survive.

These findings are not only relevant in terms of evolutionary biology but may 
have consequence in understanding of congenital defects, including human birth 
abnormalities. As an example, the oculo-auriculo-vertebral spectrum (OAVS) is a 
complex human craniofacial developmental disorder affecting the development of 
the structures derived from the first and the second branchial arches, with conse-
quential maxillary, mandibular, and ear abnormalities. The phenotype in OAVS is 
variable and associated clinical features can involve the eye, brain, heart, kidneys 
and other organs and systems [50]. Although OAVS etiology is still poorly under-
stood, a possible involvement of a dysregulation of the BAPX1 transcription factor 
gene, has been suggested to occur in this syndrome [51]. It is interesting to note that 
the homologue of BAPX has been found to be regulated by the 5-HT2B receptor 
signaling during Xenopus cranio-facial embryogenesis [45]. Understanding the role 
of 5-HT receptors in development could also be critical to identifying the possible 
effects of SSRIs on the human fetus, since these are the most commonly prescribed 
pharmacological treatments for depression as well as for a wide spectrum of other 
mood and behavioral disorders, in pregnant and lactating women [52]. SSRIs may 
pass to the fetus through the placenta and neonate through breast feeding, poten-
tially exposing them to increased level of serotonin. SSRIs when used in pregnancy 
have been linked to cardiac and craniofacial malformations both in mice and humans 
[43, 52]. In a recent meta-analysis investigation, the SSRIs use in pregnant women 
during the first trimester has been found associated with an increased risk of cardio-
vascular malformations of infants including septal defects [53]. Significant 
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associations between fluoxetine (a member of SSRIs) use and the risk of facial dys-
morphisms has also been reported [54]. Cardiovascular malformations and facial 
dysmorphism have been reported in two twins born to a woman who used parox-
etine (SSRI) during pregnancy [55].

6.2  5-HT2B Receptor in Ocular Development

In Xenopus, 5-HT2B receptor abrogation was also found to cause ocular defects 
characterized by small and dorsalized eyes with a protruding lens and disorganized 
retinal cytoarchitecture. Evidence have been reported that a wide range of neu-
rotransmitters and their receptors are present during early stage of vertebrate retina 
development and it has been suggested that neurotransmitters may be numbered 
among the extracellular signals contributing to the retinal development. In particu-
lar serotonin was predicted to be among the important players, as it is both produced 
and accumulated in the developing retina [56]. Moreover, studies carried out in 
mammals and in Xenopus demonstrated that the retina receives serotonergic affer-
ents directly from serotonergic neurons located in the dorsal raphe nuclei denoted as 
serotonergic retinopetal projections [57]. In Xenopus, the 5-HT2B receptor is 
expressed in proliferating regions of the larval nervous system and in the ciliary 
marginal zone (CMZ) of the neural retina, which is the source of retinal stem cells 
in both larval and adult amphibian life [58]. Interestingly, 5-HT2B receptor mRNA 
appears in the retina in larval stages and this expression pattern matches the first 
appearance of serotonin-accumulating and -producing cells [59], suggesting that 
this receptor could be a candidate for mediating the serotonin action on retinal 
development. Loss of function experiments using morpholinos targeting the 5-HT2B 
receptor mRNA as well as ritanserin treatments resulted in the loss of the character-
istic retinal laminar cytoarchitecture and in a reduction of the gene expression of the 
proliferation marker Cyclin D1 in the CMZ, suggesting that the abrogation of 
5-HT2B receptor function can influence retinal proliferation by downregulating 
cyclin D1. In 5-HT2B receptor morphants a normal expression of specific retinal cell 
differentiation markers was detected suggesting that the 5-HT2B receptor activity 
did not affect retinoblast differentiation while the number of apoptotic cells in the 
retina was strongly increased [17]. On the contrary, the upregulation of the 5-HT2B 
receptor activity did not influence apoptotic rate although a severe alteration in lay-
ering occurred in the retina [60]. These results suggest that misregulation of the 
5-HT2B receptor activity causes alterations in the proliferation rate and survival of 
retinal precursors, resulting in abnormal retinal morphology, where lamination is 
severely compromised. It is of note that a precise coordination of retinal progenitor 
cell proliferation has been found to be essential for the formation of a functionally 
mature retina and that deregulated cell proliferation may lead to dysplasia, retinal 
degeneration or retinoblastoma [61]. Since the 5-HT2B receptor is also expressed in 
differentiated retinal cells, mainly in the inner nuclear layer and in the ganglionic 
cell layer, a post-mitotic role in differentiated cells (mainly ganglion cells) in 
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protecting them from cell death has been suggested for this receptor [18]. On the 
basis of these results it may be hypothesized that the 5-HT2B receptor activity may 
play a role in the larval secondary neurogenesis by supporting cell proliferation and 
survival in the CNS as well. Further support to these findings came from in vitro 
studies showing that the 5-HT2B receptor overexpression was found per se sufficient 
to promote cell proliferation in a neuroblastoma cell line [60]. These results are also 
in agreement with the observations of a role of 5-HT2B receptor on survival and 
proliferation of cardiac myocytes during mouse development [23, 25].

Pharmacological and functional in vivo studies revealed other interesting aspects 
of the 5-HT2B receptor function in Xenopus ocular morphogenesis. 5-HT2B receptor 
morphants show an altered orientation, position and conformation of the eyes, a 
shorter optic nerve and a failure of the choroid fissure closure, also known as human 
disease named coloboma. The finding of 5-HT2B receptor mRNA expression in the 
periocular mesenchyme (POM), that represents a key signaling center required for 
a correct eye morphogenesis, suggested that 5-HT2B receptor signaling could be a 
mediator of the eye development [60]. POM is in fact a population of mesenchymal 
cells derived from both the cranial paraxial mesoderm and a cranial NCCs subpopu-
lation that migrates in the first pharyngeal arch. POM cells migrate around the 
developing eye and then inside the optic fissure providing multiple cell lineages 
necessary for normal ocular development as well as essential signals for the pattern-
ing of ocular primordia including the morphogenetic extension of the optic stalk, 
the anterior eye segment development and the optic fissure closure [62]. The optic 
fissure is a ventral groove that forms during optic cup morphogenesis and once the 
components of the POM, that will give rise to the retinal vasculature, have entered 
and the retinal axons have exited, the choroid fissure fuses [63, 64]. Choroid fissure 
closure is a key event during eye development and failure of this process results in 
coloboma, a hereditary ocular malformation that can profoundly affects vision [65, 
66]. Recent studies indicate that POM cells play a critical role in choroid fissure 
fusion [67, 68]. Experiments performed by homochronic and homotopic cranial 
NCCs transplantation assay in Xenopus embryos [45, 69] suggests that the 5-HT2B 
receptor is not involved in the early migration of NCCs from the neural tube, but 
once these cells have migrated into the POM surrounding the eye, the autonomous 
action of the 5-HT2B receptor would contribute to direct the final migration of NCCs 
into the choroid fissure [70, 71] supporting the view that the neural-crest derived 
POM plays a prevalent role in choroid fissure closure [68].

Retinoic acid (RA) signaling also contributes to ocular morphogenesis and cho-
roid fissure fusion [72]. Previous works have suggested a possible functional rela-
tionship between 5-HT2B receptor and RA signaling during embryogenesis [15, 20]. 
Bhasin and colleagues [37] established that even if 5-HT2B receptor promoter con-
tains several potential retinoids response elements, RA does not regulate 5-HT2B 
receptor transcription but the 5-HT2B receptor and RA promotes and inhibits prolif-
eration in mouse frontonasal mass respectively, supporting the hypothesis that RA 
and 5-HT2B receptor signals may act as opposing signals for common cellular mech-
anisms. In the developing eye RA is produced in the ventral retina and acts on the 
POM in a paracrine manner [73, 74]. In order to answer the question whether a 
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possible interaction occurs between 5-HT2B receptor and RA signaling in eye mor-
phogenesis, the gene expression patterns of enzymes involved in RA metabolism 
have been analyzed in Xenopus 5-HT2B receptor morphants. Interestingly, the 
expression domain of Raldh3, the enzyme involved in the RA synthesis, is expanded 
in the ventral retina and a 6-time increase of its expression has been found by real 
time qPCR experiments. Accordingly, Rdh10 and Dhrs3, that are target genes of 
negative feedback loops, change their expression levels in a manner compatible 
with an increase of RA [71]. Since dysregulation of the RA signaling in late phases 
of eye development has been implicated in ocular defects such as coloboma [74] 
these results suggest that the failure of optic fissure closure in 5-HT2B receptor 
Xenopus morphants could be due to an indirect action of 5-HT2B receptor signaling 
on POM NCCs by altering RA levels. Since 5-HT2B receptor mRNA expression has 
also been detected is the mouse embryonic optic vesicles [15] suggesting a conser-
vation of this receptor signaling pathway in the eye developmental process, animal 
models could be useful in examining 5-HT2B receptor role in human ocular genetic 
disorders and identifying potential therapeutic targets [75].

6.3  5-HT2B Receptor in NCC Derivatives of the Gut

It is interesting to note that the 5-HT2B receptor mRNA was found to be expressed 
in migratory cranial neural crest cells in mice as well as in Xenopus and zebrafish 
and that the 5-HT2B receptor signaling has a crucial role in neural crest cell deriva-
tives such as the pharyngeal arches and ocular morphogenesis. Another neural crest 
derivative where 5-HT2B receptor was found to be highly expressed and develop-
mentally regulated are the progenitors of the enteric neurons of the gut. In verte-
brates the gastrointestinal tract is the only organ whose function is controlled by its 
own intrinsic enteric nervous system (ENS) which is structurally and chemically 
very similar to CNS. During embryogenesis pluripotent migrating neural crest cells 
colonize the gut and the enteric microenvironment plays a role in determining 
enteric neuronal differentiation [76]. Since different types of enteric neurons arise 
in a reproducible sequential order, it has been suggested that early-developing 
enteric neurons, or their transmitters, might influence the fate of later-developing 
cells. In fact, all enteric serotonergic neurons, as well as the enterochromaffin cells 
(EC), which are the largest enteric source of serotonin, develop early so that sero-
tonin could influence the fate of the late-developing mash-1- independent enteric 
neurons. mRNA encoding the 5-HT2B receptor is expressed in mouse fetal bowel 
(stomach and small and large intestine) and 5-HT2B immunoreactivity for the 5-HT2B 
receptor was found abundant in a subset of cells in primordial (E15-E16 embryonic 
stages) but not in mature myenteric ganglia. In vitro pharmacological experiments 
demonstrated that serotonin, by activating the 5-HT2B signaling pathway, affects the 
fate of a large subset of enteric neurons and that such action can be blocked by 
antagonizing 5-HT2B receptors [77]. The timing and the pattern of the expression of 
the 5-HT2B receptor in the mouse bowel, as well as the development of enteric 
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sources of serotonin, are compatible with the hypothesis that serotonin, by stimulat-
ing the 5-HT2B receptor, expressed by crest-derived neuronal progenitors, acts as a 
growth factor to promote the development of the enteric neurons [77]. The enteric 
nervous system and the immune system are highly integrated in order to unite diges-
tive function with protection from ingested environmental pathogens and the cross- 
talk between these two systems maintains homeostatic regulation of the gut activity. 
In particular, in response to microbial stimuli neuroendocrine cells can release sero-
tonin whereas the activated immune cells can release various cytochines [6]. 
Interestingly, many innate immune receptors seem to affect the serotonergic system 
by interfering with the activity of the SERT that is a critical target for regulating 
extracellular serotonin levels [78]. These results have revealing for the first time a 
molecular mechanism involved in a putative relation between intestinal serotonergic 
and innate immune system. In addition to their implications in gut pathophysiology, 
these results are also relevant for the role of serotonin in enteric neurons develop-
ment since the luminal content of the immature gut could influence the nature of the 
ENS thus affecting the number and composition of the neurons of the adult ENS.

6.4  5-HT2B Receptor in NCC Derivatives of the Skin

5-HT2B receptor transcription has also been found in melanocytes of normal and 
pathologic skin of both human and others animal models and it is interesting that 
also these cells origin from neural crests. Expression of the serotonin key biosyn-
thetic enzyme TPH gene and protein has been detected in the human skin with 
predominance to normal and malignant melanocytes [79] and it has been shown that 
in cultured skin cells serotonin stimulates melanocytes proliferation via 5-HT2B 
receptor [80]. A serotonin transport system that regulates serotonin availability has 
also been described in melanoma cells. These findings strongly support the full 
expression of a novel serotoninergic system in the skin that could participate not 
only in its normal physiological processes but also in cutaneous pathogenesis. In the 
skin serotonin may exert pro-edema, vasodilatory, proinflammatory and/or prurito-
genic actions. In addition it has been discovered that mammalian skin, as well as 
melanoma cells, can transform serotonin into melatonin, as shown by the identifica-
tion of the intermediate reaction products of the melatonin biosynthetic pathway 
[81]. Receptor gene expression for serotonin (mainly 5-HT2B and 5-HT7) and mela-
tonin (MT1) have been detected in melanocytes, keratinocytes and fibroblasts and 
these receptors may represent primary targets for serotonin and melatonin signal 
transduction [81]. In human skin melatonin seems to have anti-proliferative effects 
on melanoma cells and protective effects against UV radiation induced-damage in 
keratinocytes, dermal fibroblasts and melanoma cells [82]. Melatonin has also been 
reported to exhibit tumorostatic properties in some rodent melanomas. Notably, the 
cutaneous melatoninergic system is organized to respond to continouos stimulation 
in contrast to pineal gland, which responds to discontinuous activation by the circa-
dian clock. Overall the cutaneous serotoninergic/melatoninergic system by 
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modulating cell proliferation or viability could act by preserving the skin structural 
and functional integrity and maintaining its homeostasis [81]. The appearance of 
neural crest is considered a crucial event in the evolution of vertebrates and a 
cephalic melanocyte lineage similar to the neural crest has been identified in the 
tunicate Ciona intestinalis [83], supporting the hypothesis the 5-HT2B receptor role 
as a regulator of neural crest cell probably appeared very early in vertebrate evolu-
tion contributing to the emergence of the main vertebrate morphological and func-
tional innovations.
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ROS Reactive oxygen species
5-HT 5-hydroxytryptamine
SSRIs Selective Serotonin-reuptake inhibitors
SERT Serotonin transporter
TACE ADAM17 TNFα converting enzyme
TNAP Tissue-non-specific alkaline phosphatase
TNF Tumor necrosis factor
TH Tyrosine hydroxylase
TPH Tryptophan hydroxylase

1  Introduction

In the central nervous system and at the periphery, the bioamine serotonin 
(5-hydroxytryptamine; 5-HT) is involved in a myriad of physiological processes 
including sleep, mood, memory, cognition, appetite, as well as cardiovascular, 
digestive and endocrine functions [1, 2]. In the brain, the source of 5-HT is the raphe 
nuclei and, at the periphery, 5-HT mainly originates from the intestinal enterochro-
maffin cells. 5-HT exerts its diverse roles through a constellation of serotonergic 
receptors. Since the 1970s, fifteen serotonergic receptor subtypes (5-HTR) have 
been evidenced and classified into seven families according to structural and phar-
macological criteria as well as coupled signal transduction pathways (5-HT1-7R) [3]. 
While the 5-HT3R is a ionotropic receptor, all other 5-HT receptors are metabo-
tropic receptors coupled to G proteins (GPCR) [4]. The intensity and duration of 
5-HT receptor signaling depends on the reuptake of 5-HT exerted by the 5-HT 
membrane transporter, the SERT (serotonin transporter), a well-known target for 
selective serotonin-reuptake inhibitors (SSRIs) antidepressants such as fluoxetine 
(Prozac®) and paroxetine.

The 5-HT2B receptor (5-HT2BR) belongs to the 5-HT2 receptor subfamily, which 
also includes the 5-HT2AR and the 5-HT2CR. The gene encoding the 5-HT2BR was 
cloned from the mouse brain, rat stomach fundus, human liver and placenta between 
1992 and 1994 [5–10]. The human 5-HT2BR gene is located on chromosome 2 
(2q36.3-2q37.1) [11]. During embryonic development, the 5-HT2BR mRNA is 
detected in the mouse embryo as soon as day 8.5-9 post coitum in the heart primor-
dia, the neural tube before its closure and in the first branchial arch at the origin of 
craniofacial derivatives such as maxilla, mandible and teeth [5, 12]. Of note, at this 
stage, the 5-HT2AR and 5-HT2CR mRNAs are also expressed at low levels [12]. As 
maternal 5-HT plays crucial trophic functions at early steps of murine development 
[13], this specific pattern of 5-HT2BR expression just after the beginning of gastrula-
tion indicates a key role of this receptor during the embryonic morphogenesis of the 
cardiovascular and craniofacial structures as well as the nervous system. This is 
supported by the heart and brain malformations observed in mouse embryos exposed 
to the 5-HT2Rs inverse agonist ritanserin and in 5-HT2BR knockout mice. Ritanserin- 
treated embryos exhibit an underdevelopment of the forebrain, hindbrain and 
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pharyngeal arches, heart defects and closure failure of the neural tube. This led to 
the assumption that the 5-HT2BR plays a fundamental role in neural crest migration, 
cell proliferation and/or survival [12, 14]. Accordingly, depletion of 5-HT2BR in 
mice leads to death of two third of the mutant population during the gestation or at 
birth due to severe cardiac defects [15].

In adult rodents, the 5-HT2BR is mainly expressed at the periphery in the 
cardiovascular and gastrointestinal systems, and is also detectable at lower levels in 
the brain, notably in the cerebellum, hypothalamus, hippocampus, amygdala and 
raphe nuclei [6, 16–18]. During the past 25 years, the use of pharmacological drugs 
and the characterization of 5-HT2BR-/- mice provided evidence that the 5-HT2BR is 
involved in the control of a wide range of physiological functions, including car-
diac, vascular, pulmonary, bone, gastrointestinal and cerebral functions (for reviews 
see [19–21] and references therein). Deregulation of 5-HT2BR expression and sig-
naling is associated with various pathological conditions such as fibrosis, pulmo-
nary arterial hypertension and cancer [20, 22–25].

Over the last decades, the identification of the signaling pathways mobilized by 
the 5-HT2BR and the downstream effectors led to a better understanding of the 
pathophysiological role of the 5-HT2BR. The present review emphasizes the contri-
bution of neuronal and mesodermal stem cell lines that endogenously express the 
5-HT2BR to grasp the signaling network driven by the 5-HT2BR to ensure the onset 
of neuronal and/or bone functions and therefore homeostasis of bioaminergic neu-
rons and mineralized tissues.

2  The 1C11 Neuronal Stem Cell Line to Dissect the Role 
of 5-HT2BRs in Bioaminergic Neurons

2.1  5-HT2BRs are Involved in the Neuronal Differentiation 
Program of 1C11 Stem Cells

Isolated in 1990 from murine multipotent cells, the 1C11 cell line behaves as a 
bipotential neuronal stem cell that has the intrinsic properties to differentiate upon 
appropriate induction into serotonergic (1C115-HT) and noradrenergic (1C11NE) neu-
ronal cells at a frequency of around 100% in a mutually exclusive manner (Fig. 3.1) 
[26–28].

Upon 4  days addition of dibutyryl cyclic AMP (dbcAMP) and cyclohexane 
carboxylic acid (CCA), there is a switch from the neuroepithelial precursor 1C11 
cells to the 1C115-HT cells. The 1C115-HT neuronal cells have developed bipolar 
extensions, express neuron-associated markers (NCAM, synaptophysin ...) and 
acquired a complete serotonergic phenotype, i.e. the capacity to synthesize, store, 
catabolize and transport 5-HT [26, 28]. During the course of the serotonergic 
program, 1C11 cells acquire at definite times three 5-HT receptors (5-HT2BR, 
5-HT1B/1DR and 5-HT2AR) (Fig. 3.1) [29], whose expression was evidenced in vivo 
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in serotonergic neurons of the raphe nuclei [30–33]. Two days after the addition of 
the inducers, the 5-HT2BR (Kd 21.9 nM, 2500 receptors/cells) and 5-HT1B/1DR (Kd 
0.53 nM, 1200 receptors/cell) are functionally expressed and their density remains 
constant along the differentiation [29]. At day 4, concomitantly with the onset of the 
SERT expression, a functional 5-HT2AR (Kd 0.85 nM, 400 receptors/cell) is induced. 
Of note, at day 2, 1C11 cells start to synthesize and catabolize 5-HT. The presence 
of the 5-HT2BR and 5-HT1B/1DR at this stage renders 1C11 stem cells competent to 
respond to 5-HT during their differentiation program. Thus, 5-HT2BR and/or 
5-HT1B/1DR acting as autoreceptors contribute to the onset of a complete neuronal 
phenotype [28]. Treatment of differentiating 1C115-HT cells with ritanserin from day 
2 reduces the intensity of neuronal functions measured at the end of the serotonergic 
program.

In presence of dbcAMP, CCA and DMSO, the serotonergic differentiation is 
blocked. 1C11 progenitor cells then convert in 12 days into noradrenergic 1C11NE 
cells, which express a complete catecholaminergic phenotype i.e. the capacity to 
synthesize, store, catabolize and transport norepinephrine (NE) (Fig.  3.1) [28]. 
Along the noradrenergic differentiation, 1C11 cells implement a unique α1D adreno-
receptor at day 8 (Kd 1.1 nM, 2200 receptors/cell) and NE transporter (NET) at day 
12. Of note, blocking the α1D adrenoreceptor with an antagonist at day 8 avoids the 
onset of NET at day 12, suggesting that the α1D receptor is necessary for the comple-
tion of the noradrenergic phenotype. The α1D adrenoreceptor in the noradrenergic 
program seems to play a role similar to the 5-HT2BR along the serotonergic 
differentiation.

The 1C11 neuronal stem cell line is thus a helpful paradigm to investigate the 
signaling and roles of bioaminergic receptors within an integrated serotonergic or 
noradrenergic context.

Fig. 3.1 The inducible 1C11 neuronal stem cells have the capacity to differentiate into serotonergic 
(1C115-HT) or noradrenergic (1C11NE) neuronal cells in a mutually exclusive manner
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2.2  The Onset of Serotonergic Functions Mainly Depends 
on Post-Transcriptional Controls

In the 1C11 cell system, the transcriptional and translational control mechanisms 
that orchestrate the time-scheduled and effective implementation of neuronal func-
tions during both serotonergic and noradrenergic programs remain elusive. In vivo, 
the differentiation of central 5-HT neurons depends on the transcription factors 
Nkx2-2, Lmx1b, Pet1 and Mash1 [34]. Strikingly, in the 1C11 cell line, the mRNAs 
encoding serotonergic and noradrenergic functions, such as neurotransmitter syn-
thesis enzymes (tyrosine hydroxylase (TH), tryptophan hydroxylase (TPH)), recep-
tors (5-HTRs, α1DR), transporters (SERT, NET), are expressed at the stem cell stage, 
but are dormant, and their levels do not vary along both differentiation programs. 
This indicates that post-transcriptional mechanisms are at work when 1C11 cells 
convert into either serotonergic or noradrenergic cells.

Concerning the SERT mRNA, variations of the poly(A) tail length at the 3′-end 
occur from day 1 of the serotonergic program. It increases and reaches its maximal 
length on day 3 corresponding to the beginning of the SERT translation [33]. The 
length of the poly(A) tail then decreases at day 4. As blocking the 5-HT2BR by ritan-
serin reduces the intensity of serotonergic functions at day 4, whether 5-HT2BRs 
control the polyadenylation step of the SERT mRNA is an attractive hypothesis that 
deserves further investigations.

In 2010, we provided evidence, using fluoxetine, that a microRNA (miR-16) 
governs the onset of serotonergic functions. We identified miR-16 as a negative 
regulator of SERT translation through miR-16 interaction with the 3′ untranslated 
region (3′UTR) of SERT mRNA [35]. Higher levels of miR-16 were detected in 
1C11NE cells as compared to 1C115-HT cells. Such a disequilibrium in miR-16 levels 
had also been found in vivo in the noradrenergic neurons of the locus coeruleus vs. 
the serotonergic neurons of the raphe nuclei. In noradrenergic neurons, this high 
level of miR-16 prevents SERT expression as neutralization of miR-16 in 1C11NE 
cells unlocks SERT translation and renders noradrenergic neurons competent to 
bind SSRI antidepressants. More surprisingly, miR-16 reduction in 1C11NE cells 
also unlocks other serotonergic functions. In addition to SERT, the noradrenergic 
cells become capable to synthetize and catabolize 5-HT and express 5-HT2BRs. As 
no binding site for miR-16 was found in the 3′UTR of 5-HT2BR mRNA, the molecu-
lar mechanisms by which miR-16 controls the onset of these serotonergic-specific 
functions are still unknown. In vivo, the injection of fluoxetine in mouse raphe pro-
vokes a rise in miR-16 levels in serotonergic neurons, thereby leading to a reduction 
of SERT expression [35], as observed in Prozac®-treated patients [36]. This SSRI 
antidepressant also induces the release of the neurotrophic factor S100β by seroto-
nergic neurons, which mediates the action of fluoxetine on noradrenergic neurons 
[35]. S100β downregulates miR-16 in the locus coeruleus, which in turn, unlocks 
the expression of SERT as well as those of TPH and 5-HT2BR. Noradrenergic neu-
rons of the locus coeruleus thus become a new source of 5-HT in the brain. The key 
role of miR-16 in the antidepressant action of fluoxetine was reinforced by studies 
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performed in rodent models of depression. Increase of miR-16 in raphe or decrease 
of miR-16 in locus coeruleus improves depressive states similarly as fluoxetine [35, 
37, 38]. Interestingly, 5-HT2BR knockout mice display depressive-like behaviors 
and refractoriness to SSRI treatments [18, 39], indicating that 5-HT2BR signaling 
contributes to antidepressant effects. Whether 5-HT2BRs implemented in noradren-
ergic neurons after fluoxetine/Prozac® treatment pilot the onset of 5-HT synthesis in 
the locus coeruleus at the origin of a new central source of 5-HT remains to be 
investigated.

2.3  Identification of 5-HT2BR Couplings Along the 1C11 
Serotonergic Differentiation

With the help of the 1C11 cell line, we evidenced that at day 2 of the serotonergic 
program, the 5-HT2BR recruits the phospholipase A2 (PLA2)-arachidonic acid (AA) 
pathway [40] and the phospholipase C (PLC)-inositol-1,4,5-trisphosphate (IP3) 
pathway through the Gq proteins [27]. This latter coupling is lost at day 4 when 
1C115-HT cells reach their terminal stage of differentiation [40]. The 5-HT2BR also 
directly mobilizes the constitutive NO (cNOS) and the inductible NO (iNOS) syn-
thases via the PDZ motif of its C-terminal extremity [41]. Interestingly, a special 
feature of the 5-HT2BR among others 5-HT2 receptors is to exhibit an intrinsic activ-
ity towards the couplings to PLC-IP3 [27], nitric oxide (NO) [41], PLA2-AA [40] 
and p21ras [42], which gives the receptor a major autocrine role during the seroto-
nergic differentiation program. As described previously, the 5-HT1B/1DR via Gi pro-
teins is negatively coupled to adenylate cyclase. At day 4, the 5-HT2AR is coupled to 
the PLC-IP3 and PLA2-AA cascades [29, 40]. We further demonstrated the occur-
rence of crosstalks between the three 5-HT receptor subtypes in 1C115-HT cells. The 
5-HT2BR exerts an inhibitory effect on the 5-HT1B/D-mediated Gi coupling, which is 
relieved upon concomitant stimulation of 5-HT2AR [40].

Through their couplings, all the three 5-HT autoreceptors play an essential role 
in modulating the intensities of 5-HT associated functions i.e. 5-HT synthesis, stor-
age, catabolism and transport.

2.4  The 5-HT2BR Acts as a 5-HT Biosensor that Adjusts 5-HT 
Levels by Controlling SERT Functionality

In vivo, plasmatic 5-HT concentration is tightly controlled to be maintained below 
2 nM. When 1C11 cells are differentiated along the serotonergic pathway in a media 
containing high level of 5-HT (0.5–1 μM), all 5-HT functions i.e. synthesis, storage 
and transport are reduced compared to 1C11 cells differentiated in presence of low 
level of 5-HT (<1 nM) [28]. This reveals a negative feedback loop exerted by 5-HT 
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that tones down the intensity of neurotransmitter-associated functions. This nega-
tive feedback loop notably relies on the 5-HT2BR that was shown to behave as a 
biosensor of external 5-HT concentration and to control 5-HT levels by acting on 
5-HT transport (SERT) and 5-HT catabolism.

As previously mentioned, SERT is responsible for the reuptake of 5-HT across 
the plasma membrane and ensures a fine-tuned control of extracellular 5-HT con-
centrations. Deregulation of this precise control has been associated to diverse psy-
chiatric diseases such as depression, anxiety and obsessive-compulsive disorders, 
characterized notably by reduced extracellular 5-HT levels in the brain. SSRI anti-
depressants used in clinics to combat depressive states block SERT function leading 
to a rise of central concentration of 5-HT. On the opposite, the serotonin syndrome 
relates to an excess of 5-HT in the central nervous system that may occur after 
therapeutic drug use causing adverse effects such as tremor, diarrhea, delirium, neu-
romuscular rigidity [43]. Exploiting the properties of the 1C11 neuronal stem cell, 
we firstly evidenced that the 5-HT2BR governs SERT functionality (i.e. 5-HT trans-
port and antidepressant recognition) through phosphorylation-type post- translational 
modifications (Fig. 3.2) [33]. At low 5-HT concentration (1–2 nM, as in in vivo 
conditions), the intrinsic 5-HT2BR coupling to NO production governs SERT phos-
phorylation to basal level in 1C115-HT neuronal cells. All the SERT molecules are 
functional allowing a maximal 5-HT uptake and the binding of SSRI antidepres-
sants. In excess of 5-HT, the agonist-dependent 5-HT2BR-IP3/Protein kinase C 
(PKC) coupling promotes additional phosphorylation of SERT, which reduces 5-HT 
transport efficacy. This critical role of the 5-HT2BR on SERT function was also evi-
denced in primary serotonergic neurons derived from the raphe. Another conse-
quence of 5-HT2BR-mediated hyperphosphorylation of neosynthesized SERT is the 
impairment of antidepressant recognition in 1C115-HT cells. In addition to SERT, the 
5-HT2BR via PKC signaling phosphorylates the energy source of the SERT, the 
Na/K ATPase electrogenic pump. This leads to a decrease of the Na/K ATPase pump 
activity that also contributes to the reduction of 5-HT transport. In serotonergic 
neurons, the autoreceptor 5-HT2BR is thus a crucial regulator of 5-HT transport and 
sensitivity of SERT to antidepressants. As the Na/K ATPase may influence other 
transporters, it is likely that the 5-HT2BR could contribute to the regulation of other 
yet to be identified neuronal and non-neuronal functions.

The 1C11 cell system has also been instrumental to identify a functional coupling 
between the 5-HT2BR and the NADPH oxidase/TACE/Tumor necrosis factor (TNF)
α that contributes to the control of 5-HT catabolism [44, 45]. By contrast to its PLC/
IP3 and PLA2/AA couplings, the capacity of 5-HT2BR to recruit NADPH oxidase 
and produce reactive oxygen species (ROS) is restricted to fully differentiated 
serotonergic 1C115-HT neuronal cells, suggesting that this bioaminergic receptor 
contributes to the maintenance of the redox equilibrium in mature serotonergic 
neurons only. This neurospecificity may relate to regulatory processes controlling 
partner assembly in lipid rafts during neuronal differentiation. Upon agonist stimu-
lation of the 5-HT2BR, NADPH oxidase-dependent ROS act as second message sig-
nals and govern the activation of the metalloproteinase TACE (TNFα converting 
enzyme, ADAM17). Activated TACE ensures the shedding of soluble TNFα, which, 
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in turn, increases the degradation of 5-HT into 5-HIAA in 1C115-HT cells [44, 45]. 
The link between the 5-HT2BR and the NADPH oxidase-TACE-TNFα pathway 
indicates that 5-HT2B autoreceptors may play an important role in the fine-tuning of 
5-HT-associated metabolism.

2.5  5-HT2BR Signaling is Modulated by the Cellular Prion 
Protein in Serotonergic 1C11 Cells

As 5-HT2BRs exert a critical role as 5-HT biosensor and regulator of the intensities 
of 5-HT-associated functions, any modulators of 5-HT2BR signaling will influence 
external 5-HT levels. To date, β-arrestin 2 was shown to be a negative regulator of 
5-HT2BR-mediated signaling by promoting its agonist-dependent internalization in 
LMTK-transfected cells [46]. In cardiac fibroblasts, it has been reported that the 

Fig. 3.2 By sensing external 5-HT levels the 5-HT2BR controls SERT functionality in 1C115-HT 
neuronal cells through the phosphorylation of SERT and of its energy source, the Na/K ATPase

A. Baudry et al.



61

5-HT2BRs interacts with angiotensin receptor AT1 to form heterodimeric complexes 
that impact cytokine release [47]. In 2005, we evidenced functional interactions 
between the cellular prion protein (PrPC) and 5-HT receptors (Fig. 3.3) [48]. PrPC, 
the normal isoform of the pathogenic scrapie prion protein (PrPSc) at the route of 
prion diseases, is a ubiquitous glycosylphosphatidylinositol (GPI)-anchored glyco-
protein that exerts at the plasma membrane a role of receptor/co-receptor and is 
involved in signaling events [49]. Over the last decades, several signaling targets 
controlled by PrPC have been identified such as PI3 kinase, PKC, NADPH oxydase, 
TACE, MAP kinases ERK1/2 [50]. A feature of the PrPC-dependent neuronal 
response lies with the successful implementation of the signaling platform PrPC/
caveolin/Fyn kinase in cholesterol- and glycosphingolipid-rich lipid rafts of neu-
rites [49]. Of note, bioaminergic receptors are also associated with such membrane 
microdomains. We demonstrated that in 1C115-HT cells, the antibody-mediated- 
stimulation of PrPC combined with the agonist-dependent stimulation of 5-HT 
receptors abolishes the 5-HT2AR-PLC coupling, reduces the intensity of the 
5-HT1B/1DR negative coupling to adenylate cyclase, improves the efficacy of the 
5-HT2BR-PLA2 coupling and slightly restores the agonist-dependent 5-HT2BR/
PLC/IP3 coupling that is normally lost at day 4 of the serotonergic differentiation 
(Fig. 3.3) [48].

In these conditions, the 5-HT2AR is no longer able to counterbalance the negative 
regulation of 5-HT2BR on 5-HT1B/1DR functions. The activation of PrPC only disturbs 
receptor-couplings mobilizing G proteins. The 5-HT2BR-NO coupling through the 
PDZ motif is not affected by PrPC stimulation. Further, the impact of PrPC on 5-HTR 
functionality is restricted to fully differentiated neurons, as at day 2 of the serotoner-
gic program of 1C11 cells, PrPC activation does not modify 5-HT2BR and 5-HT1B/1DR 
couplings. Therefore, it is unlikely that the modulation of cross-talks results from a 
direct interaction of PrPC with 5-HTRs. Supporting this idea is the absence of any 

Fig. 3.3 PrPC modulates 5-HT2A,2B,1B/D receptors signaling couplings in 1C115-HT neuronal cells. In 
1C11 serotonergic cells at day 4, co-stimulation of PrPC with antibodies and 5-HTR with specific 
agonists impacts on G-dependent 5-HTR-couplings (see text for details)
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effect of PrPC stimulation on the binding affinity of agonists and antagonists for 
5-HT receptors. Rather, PrPC action on 5-HTR signaling depends on PrPC coupling 
to caveolin in 1C115-HT cells as the immunosequestration of caveolin abrogates the 
modulatory effect of PrPC on 5-HTRs. By mobilizing caveolin, PrPC could change 
the dynamic of interaction between signaling partners in rafts and modify the stoe-
chiometry of G proteins recruted in response to 5-HTR activation. PrPC thus emerges 
as a physiological modulator of serotonergic functions, possibly acting as a receptor 
activity-modifying protein (RAMP) that interferes with the 5-HT autoreceptors- 
coupled signaling pathways.

It is widely recognized that the interaction of PrPC with pathogenic prions PrPSc 
and its conversion into PrPSc is at the origin of prion diseases [50–52]. For 10 years, 
PrPC is also known as a high affinity receptor for Aβ oligomers found in Alzheimer’s 
disease that relays, at least in part, Aβ toxicity [53–57]. More recently, PrPC was 
shown to interact with the pathological α synuclein involved in Parkinson’s disease 
[58]. The role of PrPC in the modulation of 5-HT receptor-mediated signaling thus 
raises the question of whether the corruption of PrPC by PrPSc, Aβ or α synuclein 
would be at the root of deregulation of 5-HT receptor signaling pathways that could 
lead to a loss of homeostasis in serotonergic neurons and contribute to neurodegen-
eration. There are already evidences that prion infection alters 5-HT functions [59].

3  Role of the 5-HT2B Receptor in Mineralized Tissues

3.1  The 5-HT2BR Controls TNAP Activity During Osteogenic 
Differentiation of the C1 Mesodermic Stem Cells

The C1 tripotential mesoblastic cell line is endowed with the ability to recapitulate 
in vitro the spatio-temporal features of osteogenic, chondrogenic or adipogenic dif-
ferentiations, under defined culture conditions [60]. The growth of C1 cells in three- 
dimensional nodules, mimicking the in vivo mesodermal condensation required for 
bone development and repair, is compulsory for cells to engage into osteogenic or 
chondrogenic programs. C1 aggregates, upon addition of β-glycerophosphate and 
ascorbate, start to produce an abundant extracellular matrix of type 1 collagen. The 
mineralization of this matrix initiates at day 7 by the deposition of hydroxyapatite 
crystals on collagen fibrils. At the end of the osteogenic differentiation (day 12), 
mature C1 osteocyte-like cells are embedded in a calcified matrix and stop to 
divide [61].

A functional 5-HT2BR is induced at day 5 of the C1 osteogenic differentiation 
prior starting mineralization (Fig. 3.4) [62, 63]. From its implementation to the end 
stage of the osteogenic program, 5-HT2BRs are coupled to NOS/NO and PLA2/AA 
signaling pathways. Concerning AA metabolism, cyclooxygenase (COX) ensures 
the conversion of AA into prostaglandin PGE2 from day 5 to day 10. During the late 
phase of mineralization process, i.e. when osteoblasts are converted into 
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osteocyte-like cells, COX activity is quenched by yet unidentified molecular mecha-
nisms. From day 10 to day 12, AA are then metabolized by lipoxygenase leading to 
leukotriene (LT)B4 synthesis. Both NO, PGE2 and LTB4 as intra- and/or inter- 
cellular second messengers, are well-known protagonists of bone homeostasis [64–
66]. They ensure either bone-forming and/or bone-resorbing effects. The major role 
of the 5-HT2BR and its downstream signalings in matrix mineralization was evi-
denced by a 25–40% reduction of Ca2+ incorporation within the bone matrix using 
ritanserin, an agonist inverse of 5-HT2Rs, or upon inhibition of NOS and COX. The 
involvement of the 5-HT2BR in osteogenesis is also supported in vivo by the skele-
ton damages observed in 5-HT2BR knock-out mice. Indeed, female 5-HT2BR−/− mice 
exhibit reduced bone mineral density with age, likely due to failure of osteoblast 
recruitment and/or proliferation [67].

We further demonstrated that 5-HT2BRs control bone mineralization by governing 
the activity of the GPI-anchored tissue-non-specific alkaline phosphatase (TNAP), 
a key player in bone formation (Fig. 3.4) [63]. As the 5-HT2BR, TNAP is translated 
at day 5 of the C1 osteogenic program. Of note, both 5-HT2BR and TNAP mRNAs 
are expressed as early as mesoblastic stem stage and their amounts remain unchanged 
throughout the 12 days of the differentiation. The signal events that switch on the 
translation of 5-HT2BR and TNAP mRNAs in this specific timeframe are yet 
unknown. At day 5, TNAP is under an inactive form. This enzyme is activated from 

Fig. 3.4 The coupling of 5-HT2BR to the PLA2/eicosanoids/PIPLC pathway controls TNAP 
activity during osteogenic differentiation of the C1 mesodermic stem cells
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the start of mineral deposition on day 7 until the end-stage of the C1 osteogenic 
program by phosphatidylinositol-specific phospholipase C (PIPLC)-dependent 
post-translational mechanisms governed by the 5-HT2BR/PLA2/eicosanoids 
signaling. In agreement, primary calvarial osteoblasts derived from 5-HT2BR-/- mice 
display defects in TNAP activity [63, 67]. Under physiological conditions, the 
5-HT2BR thus exerts a key role in mineralization processes. As PGE2 and LTB4 
levels are altered in several bone diseases such as osteoporosis or rheumatoid 
arthritis [66], further investigations are needed to delineate whether deregulation of 
5-HT2BR signaling pathways would contribute to the development of these 
pathological situations.

3.2  Pulpal Stem Cell Lines to Reveal the Critical Role 
of Serotonergic (5-HT2B,7R) and Dopaminergic (D1,3R) 
Autoreceptors in Platelet-Mediated Tooth Repair

During mouse embryogenesis, 5-HT exerts a critical role in craniofacial and tooth 
development, notably through the regulation of neural crest cell proliferation and 
migration from rhombomeres 1 and 2 [68]. An implication of the 5-HT2BR on dental 
tissues was considered because of its expression in day-9 mouse embryos in the 
neuroepithelium and the mesenchyme of the first branchial arch which is at the 
origin of craniofacial bones and tooth buds [12]. Of note, 5-HT2BR−/− mice display 
structural alterations of teeth characterized by enhanced enamel porosities, thinner 
crystallites and disorganized rod structures [69, 70].

Fifteen years ago, clonal pulpal stem cell lines, such as the A4 and H8 cell lines, 
were derived from the first molar tooth germs of day 18 mouse embryos [71]. At the 
precursor state, A4 and H8 cells expressed odontogenic markers such as dentin 
matrix protein (DMP1), dentin sialoprotein (DSP), type 1 collagen and the LIM- 
domain homeobox transcription factors Lhx6 and Lhx7 which are present in the first 
branchial arch. In vitro, A4 cells are able to engage into odonto/osteogenic, chon-
drogenic and adipogenic differentiation and thus correspond to a multipotent meso-
blastic stem cell. H8 cells whose potential of differentiation is limited to the 
odontogenic program, behaves as a monopotent precursor [72]. In vivo, both A4 and 
H8 pulpal stem cells favor an efficient tooth repair after implantation in injured 
mouse incisor or rat molar [72, 73].

Remarkably, although A4 and H8 cells are progenitors at different stages of 
commitment along the odontogenic lineage, both pulpal stem cells exhibit a dual 
serotonergic/dopaminergic phenotype (Fig.  3.5) [74]. A4 and H8 cells have the 
capacity to synthesize, catabolize, store and transport 5-HT and dopamine (DA). 
Further, they exhibit the same pattern of serotonergic and dopaminergic receptors at 
the plasma membrane. A4 and H8 cells expressed three serotonergic receptors, the 
5-HT2BR as well as the 5-HT1DR and 5-HT7R, and two dopaminergic receptors, the 
D1 and D3 subtypes. In pulpal stem cells, the 5-HT2BR recruits the PLC/IP3,  PLA2/
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AA as well as the NOS/NO pathways. The four other bioaminergic receptors 
(5-HT1D,7Rs, D1,3Rs) are functionally coupled to adenylate cyclase/AMPc signaling, 
two positively (5-HT7R, D1R) and two negatively (5-HT1DR, D3R). Such a specific 
repertoire of 5-HT/DA receptors renders odontogenic stem cells capable to respond 
to 5-HT and DA in an autocrine and/or paracrine manner. How 5-HT/DA receptors 
signaling pathways interplay physiologically to ensure pulpal stem cell homeostasis 
and/or the balance between proliferation/differentiation remains to be investigated.

In tooth, the dental pulp is a highly vascularized tissue [75]. Of note, peripheral 
systemic 5-HT and DA are predominately stored in dense granules of blood plate-
lets [76]. We demonstrated in  vivo that in pathological situations, such as tooth 
injury, expression of the special 5-HT/DA receptor register allows odontogenic 
stem cells to be mobilized by circulating 5-HT and DA released by lesion-activated 
platelets for tooth repair (Fig. 3.5) [74]. In wild-type rats, a natural reparative dentin 
is formed at the exposure site 1 month after pulp lesion of the first maxillary molar. 
In the opposite, in Fawn-hooded and reserpine-treated rats, two rat models exhibit-
ing a deficit of bioamine storage in platelets, reparative dentin formation is impaired. 
Thus, upon tooth injury, platelet-released 5-HT/DA represent essential "damage" 
signals for the recruitment of pulpal stem cells expressing 5-HT/DA receptors for 
tooth repair. The role of 5-HT2B,7Rs and D1,3Rs in dentin repair is further supported 
by the impairment of tooth reparative processes observed in wild-type rats after 
addition of selective antagonists for each receptor in the damaged molar pulp. Many 
questions remain related to the signaling pathways and downstream targets 

Fig. 3.5 5-HT and DA co-released by activated platelets upon tooth injury are "damage" signals 
that mobilize pulpal stem cells expressing 5-HT2B,1D,7/D1,3 receptors for tooth repair
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controlled by 5-HT2B,7Rs and D1,3Rs to orchestrate the mobilization /proliferation /
differentiation of odontogenic stem cells for dental repair.

4  Conclusion

This review focuses on clonal neuronal and mesoblastic stem cell lines with 
homogeneous differentiation properties allowing the identification of several 
signaling pathways and key effectors governed by the 5-HT2BR for the fine-tuned 
coordination of cell homeostasis and differentiation. These lineage progenitors used 
as test tubes also led to build pathophysiological scenarii implicating the 5-HT2BR 
and provided some clues as to the events involved in disease-associated states such 
as depression, ectopic mineralization or tooth repair. Indeed, the 1C11 neuronal 
stem cell line was notably useful to reveal the key role of miR-16 as a relay of 
fluoxetine action both on raphe serotonergic neurons and noradrenergic neurons of 
the locus coeruleus. Fluoxetine, through miR-16-dependent unlocking of 
serotonergic functions (5-HT synthesis, 5-HT2BR) in the locus coeruleus can activate 
a new source of 5-HT in the brain, a breakthrough in understanding the mode of 
action of SSRIs. In the dental field, although many challenges remain, highlighting 
the crucial role of the dialogue between pulp injury-dependent release of 5-HT/DA 
from platelets and 5-HTRs/DARs-expressing odontogenic stem cells for tooth 
repair could pave the road for novel therapeutic strategies.
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1  Introduction

Some notions regarding hematopoiesis will be briefly introduced before addressing the 
role played by components of the serotonergic system during hematopoiesis. 
Hematopoiesis is a continuous and complex process by which specialized mature blood 
cells are generated from hematopoietic stem cells (HSCs). Hematopoiesis comprises 
the production of (a) red blood cells (RBC) (erythropoiesis), (b) myeloid cells including 
lymphocytes, granulocytes, monocyte-macrophages-dendritic cells (leukopoiesis), and 
(c) platelets (thrombopoiesis). A definite structure, the bone marrow microenvironment, 
also known as the stem cell niche, is required to support differentiation, survival and 
proliferation of the hematopoietic system. Required as well, in a precise order and dur-
ing a definite time frame, is a fine balanced of extracellular and intracellular signals 
namely growth factors and transcription factors activating specific genes [1].

Major advances to understand hematopoiesis were obtained from animal 
research, including mice, rats, guinea pigs and zebrafish [2]. Moreover, animal 
models that are impaired for a specific component of the serotonergic system led to 
the discovery of unexpected roles of serotonin in the mechanism of hematopoiesis. 
The study of embryonic organogenesis has shown that the hematopoietic system 
develops from extra medullar tissues through sequential waves [3]. In vertebrates, 
the primitive wave (embryonic day 7.5 -E7.5- in mouse, and day 21  in humans) 
occurs in the yolk sac where primitive erythrocytes, macrophages, megakaryocytes 
and erythroid–myeloid progenitors are generated from hemogenic angioblasts. 
Early yolk sac hematopoietic cells (up to E9.5) lack long-term repopulation activity 
[4]. During the pro-definitive and definitive stages, the hemogenic endothelium 
mainly situated in the Aorta-Gonad-Mesonephros (AGM) region will generate the 
first self-renewing HSCs and multipotent hematopoietic progenitors. Additional 
embryonic vascular sites, such as the vitelline/umbilical arteries, embryonic head, 
placenta, and yolk sac have also been shown to produce HSCs [5–8]. In mouse 
embryos, HSCs are detected in the AGM around 72 h after the first wave (E10.5-11.5), 
while in humans the definitive hematopoiesis starts at day 28. In mice, HSCs next 
migrate and colonize the fetal liver (E10-11) and spleen (E15), for maturation and 
expansion and subsequently migrate to the bone marrow (E17.5), which is the pri-
mary site of adult hematopoiesis. In humans, the HSCs colonize the bone marrow 
about 4 months after birth. During early childhood, hematopoiesis occurs in the red 
marrow of the bone and with age, it becomes restricted to the skull, sternum, ribs, 
vertebrae, and pelvis [9]. In the zebrafish embryo, the first wave occurs 12–24 h 
after fertilization and HSCs emerge at 30–72 h. Hematopoietic cells migrate through 
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the circulation to the caudal hematopoietic tissue, where they are matured and 
expanded, and subsequently migrate to the kidney, where they are maintained in 
adult stages [10].

Throughout history, hematopoiesis has been depicted as a hierarchically orga-
nized system, where multiple differentiated cell types are derived from a multipo-
tent HSC, by successive branching [11, 12]. With the advent of xenotransplantation, 
robust in  vitro clonal assays, and refined sorting strategies, significant progress 
toward defining the murine/human blood hierarchy has been made and extensively 
studied [13]. The concept of HSCs was first defined as cells in the bone marrow that 
could generate the complete blood cell system following bone marrow ablation. For 
that, HSCs have two essential properties; (a) to durably self-renew, (b) to generate 
daughter stem cells, and at the same time still contributing to the pool of differenti-
ating cells. By contrast to HSCs, committed progenitors, such as the colony- forming 
unit (CFU) granulocyte, erythrocyte, macrophage, megakaryocyte, are unable to 
reconstitute the entire hematopoietic system when transplanted into an irradiated 
host; they have a limited self-renewal capacity and they show a restricted lineage 
differentiation potential.

Given the highly proliferative nature of HSCs (approximately 4–5 × 1011 cells 
arising daily in adult human), tight regulation of the bone marrow is ensured by a 
sophisticated interplay of numerous timely and spatially cell extrinsic signals, 
referred as the stem cell niche. For instance, stem cell factor and erythropoietin 
(EPO) are required for a myeloid progenitor cell to become an erythrocyte and 
thrombopoietin makes myeloid progenitor cells differentiate to megakaryocytes 
[14]. The initial concept of the niche has evolved from the early description to a 
complex network involving endothelial, osteal, neuronal, mesenchymal activity to 
regulate HSC localization, maintenance or differentiation [1, 15].

2  The Serotonergic System in Hematopoietic Tissues 
and Cells

Increasing evidences support a contribution of components of the serotonergic sys-
tem to HSCs biology. Both central (CNS) and peripheral origins of serotonin 
(5-hydroxytryptamine or 5-HT), as well as local and distant actions have been 
proposed as hematopoietic regulators for the activities of self-renewal, prolifera-
tion, differentiation, and mobilization of hematopoietic stem cells. During zebraf-
ish embryonic development, CNS-derived 5-HT has been shown to be needed for 
HSCs survival at the AGM site [16]. In their model, the authors proposed that Tph2 
was induced by the stress sensor Hif1α and was the predominant regulator of HSCs 
expansion. This distant CNS-AGM axis seemed predominant, while the local 
activity of peripheral Tph1 and 5-HT receptors only transiently stimulated HSCs 
development.

4 The Serotonergic System in Hematopoiesis and Hematopoietic Disorders
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In murine embryos, endothelial cells (EC) of the AGM region have been shown 
to express Tph2 and synthesized 5-HT with a local action on earliest HSCs survival, 
through a direct 5-HT5A receptor signaling [17, 18]. Primary human CD34+ HSC 
and hematopoietic progenitors express 5-HT1F receptor suggesting a sensitivity to 
5-HT signaling [19, 20]. In these studies, the neuronal origin of 5-HT was proposed.

With regard to a peripheral source of 5-HT, Kirouac and coll [21] have pointed 
out the importance of peripheral and locally secreted factors, including 5-HT, that 
could regulate inter- and intra-cellular interactions within the bone marrow, neces-
sary to organize the tissue dynamics and cellular fates. These authors found that 
human HSC expansion was correlated with 5-HT2 receptor signaling. The signal 
was delivered endogenously by hematopoietic cells and correlated with megakaryo-
cyte development, expected by the authors to be the local source of 5-HT, rather 
than by niche-infiltrating neurons. Yang et al. [22] showed that 5-HT could expand 
early hematopoietic stem/progenitors in  vitro and elicit multi-lineage progenitor 
commitment from human CD34+ umbilical cord blood cells. These data were con-
sistent with Kirouac findings [21] where 5-HT stimulation specifically enhanced 
primitive progenitors’ output. In parallel, studies focusing on pulmonary hyperten-
sion identified circulating c-Kit+ progenitors that expressed the 5-HT2B receptor in 
mice [23]. They further demonstrated ex vivo, in murine c-Kit+ progenitors as well 
as in human cord blood cells (CD34+) that 5-HT2B receptors have a myeloid clono-
genic potential and are involved in the hypoxia induced endothelial remodeling.

2.1  Megakaryocytes and Platelets

Megakaryopoiesis is a complex process during which megakaryocytes undergo a 
unique differentiation process to eventually produce platelets within the bone mar-
row [24]. Human megakaryocytes express receptors of the 5-HT2 family (5-HT2A, 
2B, 2C) and 5-HT signaling has been involved in megakaryopoiesis and thrombopoi-
esis [25]. In vitro, the addition of 5-HT to M-07e megakaryocytic line cultures has 
been shown to diminish the mitochondrial membrane damage and caspase-3 expres-
sion, leading to an increased survival [25], similar to that observed with thrombo-
poietin, the most important hematopoietic cytokine for megakaryocytes development 
and platelet production. This anti-apoptotic effect was abrogated by ketanserin, a 
competitive antagonist of 5-HT2 receptors [22, 26]. Consistent with this result, 
Htr2b-/- mice present a significant decrease in platelet number [23], suggesting the 
importance of 5-HT2 receptor signaling in megakaryopoiesis. On human megakary-
ocytes, 5-HT2B receptor activation had a dual and complementary action. On one 
hand, PI3K/Akt downstream signaling induced proliferation and survival of mega-
karyocytes and on another, induced Erk1/2 phosphorylation, F-Actin assembly and 
cytoskeleton reorganization leading to proplatelet release. A possible transactiva-
tion of PDGFR by 5-HT2B receptor activation may further activate downstream 
PI3K/AKT signaling and reduce the apoptosis observed in megakaryocytes [27]. 
Importantly, while thrombopoietin has been showed critical for megakaryocytes 
growth and differentiation, 5-HT signaling through 5-HT2B receptor may have a 
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necessary complementary action on late megakaryocytes survival and pro-platelets 
formation.

In the hematopoietic system, 5-HT has often been associated with platelets as the 
majority of peripheral 5-HT is stored in platelet dense granules (millimolar concen-
tration) [28]. Beyond the activity of 5-HT storage, binding of 5-HT on 5-HT2A 
receptor induces platelet reactivity, which by releasing dense granule contents, con-
tribute to clotting, hemostasis and vascular tone [29, 30]. As such, Tph1-/- mice, 
deficient for peripheral 5-HT synthesis, have impaired thrombus formation [31] and 
the pharmacological inhibition of 5-HT2A receptor attenuates recurrent coronary 
thrombosis in a canine model [32]. In patients with ischemic stroke, the administra-
tion of 5-HT2A receptor antagonist showed a dose dependent decrease in platelet 
aggregation [33].

Although the 5-HT specific transporter (SERT) was shown to be expressed at 
different stages during megakaryopoiesis [34] its function was mostly described in 
platelets. 5-HT uptake in platelets is proportional to the amount of SERT expressed 
on the platelet membrane. The density of SERT is dynamically regulated by extra-
cellular 5-HT concentration and vice-versa. For instance, increasing plasma 5-HT 
levels induce an initial rise in SERT expression, but when 5-HT levels increase, 
SERT expression drops below baseline [35].

2.2  Erythroid Progenitors and Red Blood Cell

RBCs production is a tightly regulated process that requires coordinated regulation 
of cell survival, proliferation and differentiation as well as iron availability. EPO is 
the main cytokine triggering erythropoiesis [14]. A key function for 5-HT in eryth-
ropoiesis and RBC survival was revealed through study of Tph1-/- mice as they 
present a phenotype of macrocytic anemia due to an ineffective erythropoiesis and 
reduced RBC survival [36, 37]. A complete 5-HT system was discovered in murine 
progenitor cells of the bone marrow. Tryptophan hydroxylase1 (TPH1), the key 
peripheral 5-HT synthesizing enzyme was selectively and highly expressed during 
erythropoiesis at the transition from CFU-erythroid to proerythroblast. TPH1 up- 
regulation, through the EPO/EPO receptor mediated STAT-5 signalling, lead to 
rapid 5-HT synthesis in proerythroblasts. Under EPO, 5-HT2A and 5-HT2B receptor 
genes were up-regulated, while SERT was down-regulated. Precisely, the 5-HT2A 
receptor was required at the proerythroblast stage of erythroid differentiation while 
the 5-HT2B receptor was significantly expressed at a later stage (basophilic erythro-
blasts). This allowed a local increase in 5-HT and 5-HT2A/2B receptor signaling nec-
essary to cooperate with EPO signaling for the proliferation and survival of 
erythroid progenitors [38]. It was also shown, in  vitro, that Tph1-/- progenitors’ 
proliferation was rescued by 5-HT while 5-HT2A and 5-HT2B receptor antagonist led 
to a reduction in bone marrow erythroid precursors in wild-type mice [23]. This 
EPO-5-HT signaling cooperation was even more obvious during embryonic eryth-
ropoiesis. At the precise E13.5 embryonic life, where EPO signaling appears, a 
drastic mortality of Tph1-/- is observed, directly caused by a defect in fetal erythro-
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poiesis. Serotonin loss, despite EPO signaling, induced a severe decrease in the 
erythroid mature compartment cellularity, while immature progenitors accumulated.

Interestingly, the 5-HT2B receptor is also expressed in embryonic and adult car-
diovascular tissues, including myocardial, endothelial and vascular smooth muscle 
cells. Targeted inactivation of the 5-HT2B receptor gene results in lethality at various 
stages of development [39]. Of note, heterozygous 5-HT2B receptor mutant inter-
crosses resulted in a frequency of homozygous pups in newborns of only 16.7%, 
significantly different from the expected 25% suggesting embryonic lethality. In 
parallel, in human cord blood cells, it was also demonstrated that TPH1, 5-HT2A, 
and SERT-SLC6a4 genes were specifically expressed at the pro-erythroblast stage 
of differentiation [38]. At physiological dose of EPO, addition of 5-HT or of a 
5-HT2A receptor agonist significantly enhanced the expansion of CD36+ cord blood 
cells revealing this highly conserved system where 5-HT stimulates proerythroblast 
proliferation and is necessary for EPO proliferative and anti-apoptotic effects.

Regarding circulating RBC, binding studies showed that no 5-HT receptors were 
expressed on isolated murine RBC, even though RBC lifespan was affected by 
5-HT. Indeed 5-HT does not act by direct signaling, but as an anti-oxidant that pre-
serves RBC from oxidative damage and hemolysis [36, 40]. Membrane senescence 
markers are increased in RBC from Tph1-/- mice and induce increased phagocytosis 
by macrophages [36]. A different macrophage phenotype in Tph1-/- mice is however 
not excluded and should be expected considering the work by the group of Angel 
Corbi [41] (see Chap. 6).

2.3  Immune Cells

Monocytes and macrophages are part of the innate immune system and can trigger 
and orientate natural killer (NK) and T cell responses. These cells have been showed 
to express various 5-HT receptors and SERT [41–44]. Controversial activity of 
5-HT on monocytes/macrophages has been show, probably because of (1) a differ-
ential expression of 5-HT receptors at distinct states and in different tissues, (2) the 
effect is dose dependent and (3) the effect possibly synergizes with other cytokines 
activities. For instance, 5-HT1A receptor signaling on murine monocytes has been 
showed to trigger NK activity while under high doses of Interferon gamma (INFγ), 
5-HT2 receptor signaling has been shown to suppress murine macrophage inflam-
matory cytokines production. In human macrophages, 5-HT2-receptor signaling 
inhibits TNFα and IL-12 production but increases Il-10 and PGE2 [45]. Accordingly, 
it was shown that 5-HT2B receptor signaling in murine monocytes skew their dif-
ferentiation towards a M2-macrophage phenotype [46].

Dendritic cells (DCs) are professional antigen presenting cells essential to initi-
ate and polarize T cell response. Different maturation states are obtained by various 
stimuli, in different locations [47] and are correlated to differential expression of 
5-HT receptors. In inflammatory settings, 5-HT1B and 5-HT2A:2B receptors have been 
shown to promote the chemotactic activity of 5-HT in vitro and immature murine 
DC migration towards lymph nodes in vivo [48].
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Neutrophils, polymorphonuclear lymphocytes, are innate immune phagocytes 
that circulate and patrol the whole body in order to release lytic enzymes and gener-
ate oxidative burst, acting as first line effectors against pathogens. Beyond this 
activity, neutrophils are involved in inflammatory responses, macrophages recruit-
ment, type M2 differentiation, tissue regeneration and angiogenesis [49]. Platelet 
derived or mast cell derived 5-HT have been described to promote neutrophils 
recruitment at the site of inflammation through 5-HT2 receptor signaling [50] and 
enhance phagocytosis in animal models [51]. It is still under debate whether 5-HT 
action is playing a direct role or not on neutrophils [52]. In addition, several data 
from the literature remain controversial, as 5-HT has been also described as an anti-
oxidant and a reactive oxygen species (ROS) scavenger depicting the complexity of 
the immune system [53, 54].

Eosinophils act to provide a defense response against parasitic infections and an 
immune response in allergy. However, given the wide range of interactions with 
other immune cells, platelets and ECs, eosinophils have been implicated in immune 
homeostasis, organ functional integrity and coagulation cascade [55]. These cells 
express many 5-HT receptors, among which 5-HT2A receptor has been involved in 
trafficking and cytoskeletal reorganization in vitro [56], contributing to development 
of allergy induced asthma and inflammatory diseases in animal models [57, 58].

Lymphocytes are a heterogeneous population of adaptive cell immunity that 
orchestrate and execute many of immune response. T lymphocytes have been shown 
to express Tph1, SERT and MAO. The 5-HT1B, 5-HT1A, and 5-HT2A receptors are 
expressed on activated T lymphocytes where 5-HT1A receptors may have a role in 
proliferation. In a Tph1-/- mice model of collagen-induced arthritis, 5-HT deficiency 
was associated with a relative increase in Th17 lymphocytes in the lymph nodes, 
while Foxp3+ Treg cells were dampened suggesting that 5-HT could modulate the 
orientation of the inflammatory immune response [59]. In addition, activation of 
5-HT2A receptors in an allergic asthma mice model, has been showed to repress Th2 
gene expression in activated T cells [60]. B lymphocytes were shown to express 
SERT, and 5-HT1A and 5-HT3A receptors but the implication of the serotonergic 
system in these cells remains to be understood [61, 62].

3  The Serotonergic System and the Hematopoietic Niche

Several cellular components that constitute the niche, may affect hematopoiesis. For 
instance, ECs are susceptible to local changes in 5-HT level. 5-HT has been shown 
to modulate systemic angiogenesis through EC migration and proliferation. Tph1, 
SERT, MAO and 5-HT2A/2B receptors have been described on peripheral endothelial 
and vascular smooth muscle cells in animal models [63, 64]. In addition, 5-HT has 
been shown to synergize with VEGF signaling, a known growth factor involved in 
angiogenesis. It is therefore tempting to hypothesize that EC within the HSCs niche 
may be equally affected. In 5-HT2B receptor transfected mouse fibroblasts, 5-HT 
provided a mitogenic activity [27]. In addition, 5-HT was found to synergize with 
FGF and PDGF [22] that stimulate colony-forming unit fibroblasts formation and 
thus, enhance bone marrow microenvironment.
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4  5-HT in Hematologic Diseases and Therapeutic 
Perspectives

4.1  Tryptophan, 5-HT and Anemia

Several published studies indicate a link between the serotonergic system and hema-
topoietic diseases. Anemia is one of the most prevalent symptoms in hematology and 
is associated with a high rate of morbidity and mortality. The etiologies of anemia 
are numerous and may result from an acquired defect in hematopoietic stem cells. 
One such example is low risk myelodysplastic syndromes (MDS), a clonal hemato-
poietic disease of the elderly, where anemia is the main symptom. MDS are charac-
terized by dysplastic changes in the bone marrow especially a macrocytic anemia 
possibly due to an asynchronous proliferation and maturation of erythroblasts [65]. 
From this point of view, MDS could result from a cell cycle anomaly of erythroid 
progenitors inducing multinuclearity and enhanced intra-medullary cell death.

In a report, patients with MDS presented with lower tryptophan (trp) concentra-
tions than healthy controls of similar age, and a significantly higher kynurenine 
(kyn) to trp ratio, suggesting enhanced trp degradation. The study implied that ele-
vated levels of kynurenine could be involved in inhibiting hematopoietic progenitor 
amplification in patients with MDS related anemia [66] Enhanced tryptophan break- 
down has also been observed in patients with chronic anemia, indicating that 
enhanced trp catabolism and as a consequence, trp depletion, might affect hemato-
poiesis [67]. Furthermore, to a link between anemia and trp metabolism toward the 
serotonergic pathway and with reference to 5-HT and its well-known effect on 
mood—low levels being associated with the onset of depression—a study published 
in 1998 suggested a relationship between low RBCs count and clinical response to 
fluoxetine in depressed elderly patients [68]. Along that line, the recent publication 
by Vulser and colleagues demonstrating a robust association between depression 
and anemia, brings further support to the emerging link between decreased levels of 
5-HT and anemia [69]. At last, the results of a retrospective analysis showed that 
lower-risk MDS patients with anemia who received treatment with selective sero-
tonin reuptake inhibitors (SSRIs) had significantly longer overall survival times 
than patients who did not receive SSRIs [70].

4.2  Hematological Malignancies

Given its mitogen and angiogenic properties, 5-HT has been associated with pro-
gression of numerous solid tumors [71]. 5-HT1A/1B receptors have been reported to be 
differentially expressed on leukemia stem cells (LSCs) as compared to their normal 
counterpart [72]. Inhibition of 5-HT1 receptor in primary acute myeloid leukemia 
(AML) cells induced differentiation and apoptosis in vitro and in vivo, suggesting 
that 5-HT signaling might be targeted in AML. This effect was enhanced in combi-
nation with azacitidine and decitabine that are approved chemotherapy for AML [72].
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Chronic myelomonocytic leukemia (CMML) is a heterogeneous clonal myelodys-
plastic/myeloproliferaive malignancy that may evolve toward AML. HSCs transplan-
tation is the only curative treatment but is associated with high treatment related 
mortality. As observed in AML, 5-HT1 receptor are expressed on CMML cells and 
inhibition of 5-HT1B receptor reduced CMML primary cells survival in vitro [73]. In 
contrast to above mentioned action of 5-HT in AML and CMML, proapoptotic and 
antiproliferative effect of 5-HT has been suggested in various lymphomas. Fluoxetine, 
a commonly used SSRI in depressive disorders, is known to increase circulating levels 
of serotonin. Several lines of malignant B, Burkitt and T lymphomas showed a decrease 
in proliferation rate and viability when exposed in vitro to fluoxetine in a dose and time 
dependent manner [74–76]. The pro apoptotic effect of SSRI was independent of their 
ability to inhibit serotonin reuptake and an indirect immune-modulatory mechanism 
trough inflammatory cytokines and tumor infiltrating T cells was proposed in vivo [75, 
77, 78]. Even though the mechanisms of action need to be further investigated, it is 
tempting to propose the use SSRI as potentials chemosensitizers.

4.3  Hematopoietic Stem Cell Transplantation (HSCT) 
and Allogeneic Immune Responses

Allogenic Hematopoietic Stem Cell Transplantation (HSCT) is a major therapeutic 
strategy for various non-malignant and malignant pathologies of the hematopoietic 
system (more than 80,000/year worldwide and 16,000 in Europe in 2018), in particu-
lar for acute leukemias, myeloproliferative or myelodysplastic syndromes, lympho-
mas, bone marrow failures and hemoglobinopathies. The efficacy of this treatment 
relies on the graft content of immune cells, especially T lymphocytes that recognize 
host tumor cells and induce a graft versus tumor (GVT) effect. However, T cells also 
recognize normal host tissues and induce the graft versus host disease (GVHD) that 
is source of high mortality. A major goal of HSCT is to obtain a persistent GVT 
without the deleterious GVHD. Controlling activation of Th1/Th17 lymphocytes and 
increasing Treg activity is one of the explored possibilities to decrease GVHD. As 
mentioned, uptake of 5-HT induces T cells proliferation and inflammatory cytokines 
secretion. SSRI, by inhibiting 5-HT uptake, may have an anti-proliferative effect 
[79–81]. Accordingly, fluoxetine was able to reduce circulating alloreactive T cells 
and GVHD symptoms and improve survival in a mice model of HSCT.

5  Conclusion

HSCs are present in most tissues including the hematopoietic system where they 
have the capacity to self-renew and to give rise to a defined set of mature differenti-
ated progeny to maintain or repair their host tissue. During hematopoietic differen-
tiation, the HSCs will give rise to progressively committed progenitors, including 
the common myeloid progenitor and the megakaryocyte-erythroid progenitors 
(Fig. 4.1). During the past years, several components of the serotonergic system 
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Fig. 4.1 Components of the serotonergic system in the hematopoietic system including the 
megakaryocyte- erythroid progenitors. (a) promotion of erythropoiesis and RBC production and 
(b) promotion of megakaryopoiesis and platelet formation. Adapted from [82]. Created in 
BioRender.com

have been characterized in the hematopoietic system. It is of interest that Tph1, the 
5-HT2A and 5-HT2B receptors and SERT appear as hematopoietic regulators for the 
activities of the common myeloid and megakaryocyte-erythroid progenitors. The 
findings further support the concept of a local serotonergic network expressed in 
cells of the bone marrow. Taken together, serotonin alone or in combination with 
other factors of the hematopoietic environment might stimulate the cells to follow a 
certain path of differentiation. Further research on how this local system promotes 
HSCs and bone marrow proliferation to regulate key processes of normal and patho-
logic hematopoiesis from early development to adult life is currently investigated 
and should be of high value for regenerative medicine.
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Chapter 5
The 5-HT2B Receptor, the Immune System 
and Neuroinflammation

Anne Roumier and Catherine Béchade

Abbreviations

5-HT Serotonin
AGM Aorta-gonad-mesonephros
ALS Amyotrophic lateral sclerosis
DC Dendritic cells
LPS Lipopolysaccharides
MAPK Mitogen activated protein kinases
MHC Major histocompatibility complex
PI3K Phosphatidylinositol-3-OH kinase
SERT Serotonin transporter
SOD Superoxide dismutase
TLRs Toll-like receptors
TPH Tryptophan hydroxylase

1  Peripheral Serotonin and Immune Cells

Although serotonin is largely studied as a neurotransmitter, most of the body’s 
serotonin is produced by enterochromaffin cells of the gut. These cells express 
tryptophan hydroxylase (TPH)1, the rate-limiting enzyme for serotonin production 
[1]. A second TPH isoform, TPH2, synthesizes serotonin in the central nervous 
system and gut enteric nerves [1]. Free serotonin concentrations in blood and tissues 
are normally kept in low nanomolar range. Immune cells, however, may also 
encounter serotonin released in the gut mucosa or from platelets which accumulate 
it via its transporter, SERT (SLC6A4 gene) and store serotonin in granules expressing 

A. Roumier · C. Béchade (*) 
INSERM UMR-S1270, Paris, France 

Sorbonne Université, Paris, France 

Institut du Fer à Moulin, Paris, France
e-mail: catherine.bechade@inserm.fr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55920-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-55920-5_5#DOI
mailto:catherine.bechade@inserm.fr


88

the vesicular monoamine transporter (VMAT)2. In turn, platelets can release this 
stored serotonin at sites of injury and inflammation. Platelet-derived serotonin is 
important for attracting innate immune cells such as neutrophils to inflamed tissue 
[2]. In addition to platelets, other immune cells such as dendritic cells (professional 
antigen-presenting cells) and B lymphocytes express SERT and thus, can accumu-
late and release serotonin. Interestingly, recent studies indicate that some immune 
cells are also capable of serotonin biosynthesis. Mast cells express TPH1 and levels 
of serotonin are elevated in patients with mastocytosis, who have greatly elevated 
mast cell numbers [3, 4]. Further, T lymphocytes [5–7] express TPH1 upon mitogen 
or T-cell receptor activation and can synthesize serotonin [8].

1.1  Serotonin, Immune Cells, and Hematopoiesis

Hematopoiesis includes different steps in which peripheral serotonin through 
5-HT2B receptors appears to be involved. In mice, hematopoietic stem cells initially 
derive from endothelial progenitor cells (hemangioblasts) present in blood islands 
on the yolk sac at E7.5. Hematopoiesis then occurs in the aorta-gonad-mesonephros 
(AGM) region at E10.5 in mice and moves to fetal liver at E12.5 before migrating 
to bone marrow around birth. Hematopoietic stem cells give rise to blood cells, 
including platelets, erythrocytes, myeloid and lymphoid cells. It has been proposed 
that serotonin via the 5-HT2B receptor acts at hematopoietic stem cell progenitors 
directly or via modulation of the bone-marrow microenvironment [9]. Indeed, mice 
deficient in peripheral serotonin (Tph1−/−) display morphological and cellular fea-
tures reminiscent of ineffective erythropoiesis [10, 11]. In mouse embryos at E9, the 
expression of 5-HT2B receptors was found to be located at the distal end of the 
embryo and along the neural tube similar to AGM [12]. Moreover, at E12.5, Htr2b 
gene knock out (Htr2b−/−) embryos are smaller and paler than controls embryos 
with light pink liver [13] suggesting that the 5-HT2B receptor may mediate some 
function of 5-HT in embryonic hematopoiesis. Later, in adult mice, the absence of 
5-HT2B receptors generates permanent changes in the composition of the blood and 
bone-marrow lineage, particularly in myeloid lineage and in endothelial cell pro-
genitors. In particular, Htr2B

−/− mice displayed a significant increase in granulocyte 
precursors represented by CD11b+/GR+ cells and a significant reduction in imma-
ture endothelial progenitor cells corresponding to CD11b-/CD31+ population [14]. 
Serotonin participates also in pulmonary hypertension [15] and valvulopathies 
through the 5-HT2B receptor [16]; we and others have shown that the initial func-
tions of this receptor in these diseases are restricted to bone-marrow precursor cells 
[14, 15, 17–19] (see Chaps. 10–12). Thus, serotonin via 5-HT2B receptors has the 
ability to regulate hematopoietic lineages including the myeloid lineage.
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1.2  Serotonin and the Innate Immune Response

Innate immune system function involves monocytes, macrophages, dendritic cells, 
neutrophils, eosinophils, mast cells and natural killer cells that act immediately in 
the area of infection, leading to the destruction of pathogens. Innate immunity is 
primarily responsible for recognizing and eradicating “non-self” molecules pre-
sented by pathogens, and is therefore confined to recognizing extracellular patho-
gens (bacteria vs. viruses). This response is nonspecific with respect to particular 
invaders, but provides immediate host defense against pathogens via pattern recog-
nition by toll-like receptors (TLRs). Pathogen-associated molecular patterns (e.g. 
peptidoglycans, bacterial lipopolysaccharides-LPS, double-stranded viral RNAs) 
bind TLRs on antigen-presenting cells, namely, dendritic cells and macrophages. 
These antigen-presenting cells then phagocytose pathogens and display pathogen- 
derived peptides via the major histocompatibility complex (MHC) on their cell sur-
face for recognition by leukocytes of the “adaptive” immune system. They also 
secrete pro-inflammatory cytokines (e.g., IL1β, IL-6, TNFα), prostaglandins, and 
histamine, which further activate physiological responses, alerting the body to 
infection/invasion. Innate immunity also functions to communicate the presence of 
pathogens to cells involved in adaptive immune responses, see for review [20]. 
Several studies have shown the expression of the 5-HT2B receptor in cells from the 
innate immune system, including macrophages, mast and dendritic cells.

Gene expression profiling of macrophages revealed that 5-HT2B receptor mRNA 
is preferentially expressed by anti-inflammatory M2 (M-CSF) macrophages, 
whereas the 5-HT7 receptor is expressed in both anti-inflammatory M2 and pro- 
inflammatory M1 (GM-CSF) macrophages [21]. The 5-HT2B receptor is also 
detected in-vivo in liver resident macrophages, the Kupffer cells, and in tumor- 
associated macrophages. Moreover, LPS, the archetypal macrophage-activating 
stimulus that signals via TLR4 upregulates the expression of 5-HT2B receptors 
20-fold in murine thioglycollate-elicited peritoneal macrophages [22]. Serotonin 
was also shown to inhibit the LPS-induced release of pro-inflammatory cytokines, 
to upregulate expression of macrophage M2 polarization-associated genes and to 
reduce the expression of M1-associated genes. In addition, blockade of both 5-HT2B 
and 5-HT7 receptors during in-vitro monocyte-to-macrophage differentiation pref-
erentially alters the acquisition of M2 polarization markers [21] identifying both 
receptors as mediators of the anti-inflammatory skewing effect of serotonin (see 
Chap. 6).

Dendritic cells (DC) originating from hematopoietic stem cells are specialized in 
activating naive T lymphocytes to initiate primary immune responses. DCs are cru-
cial players in immune defense by bridging innate and adaptive immune responses 
via their vast repertoire of pattern recognition receptors and antigen-presenting 
capability. Depending of their state of maturation, dendritic cells express different 
types of serotonin receptors: immature dendritic cells preferentially express 5-HT1B, 
5-HT1E and 5-HT2B receptors, while mature dendritic cells mostly express 5-HT4 
and 5-HT7 receptors. However, the role of serotonin in DC function is poorly known. 
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It has been shown that serotonin is able to induce oriented migration in immature 
but not in LPS-matured dendritic cells via activation of 5-HT1B/1E and 5-HT2A/2B 
receptors [23]. This work has revealed a specific expression of 5-HT2B receptor in a 
human dendritic subset cells: the inflammatory CD1a+ monocyte-derived DCs [23]. 
In these cells, specific 5-HT2B receptor activation inhibited the inflammatory 
response more specifically TLR2, TLR3, and TLR7/8-induced cytokine and chemo-
kine expression (TNF-α, IL-6, IL-8, IP-10, IL-12) but not the type I interferon-β 
response. Moreover, specific activation of 5-HT2B receptors also inhibits the polar-
ization of CD1a+ monocyte-derived DC-primed CD4+ T cells towards inflammatory 
Th1 and Th17 effector lymphocytes, supporting the hypothesis of an immunomodu-
latory function of this receptor.

Mast cells have the capacity to synthesize and accumulate serotonin [3]. In turn, 
this stored serotonin can be released upon IgE cross-linking. Further, mast cells 
express mRNAs for multiple 5-HT receptors, including 5-HT1A, 5-HT1B, 5-HT1D, 
5-HT2A, 5-HT2B, 5-HT6, and 5-HT7 receptors [24]. Several roles of 5-HT in mast cell 
function have been shown. Serotonin can induce mast cell adherence to fibronectin 
and stimulates cell migration. Serotonin also attracts mast cells to sites of inflamma-
tion and its injection into the skin enhances the accumulation of mast cells. However, 
there is no evidence that serotonin degranulates mast cells or modulates their activa-
tion by IgE.

1.3  Serotonin and Adaptive Immunity

The response of the adaptive, or specific, immune system, occurs within hours of an 
infection and involves antigen-specific recognition and destruction of pathogens by 
T and B lymphocytes. Antigen presenting cells that migrate to lymph nodes will 
prime and educate T cells as to the nature of the pathogen. T cells then proliferate 
and differentiate into for example CD4+ T-helper inflammatory cells (Th1) that acti-
vate macrophages, CD4+ Th2 cells that aid antibody responses, or CD8+ cytotoxic 
cells that target cells infected with intracellular microbes. The second component of 
adaptive immunity involves the contributions of B cells, located in lymph tissue, 
spleen and in the circulation. Upon stimulation, B cells become plasma cells (with 
or without the help of Th2 cells) that produce and secrete antibodies (immunoglobu-
lins). Adaptive immunity is triggered at the immune synapse, where major histo-
compatibility complex peptides and co-stimulatory molecules expressed by 
dendritic cells are physically presented to T cells [20].

There is long standing evidence that serotonin can influence T-cell activation. 
Notably, mice treated with an irreversible inhibitor of TPH, para- chloropheny-
lalanine that leads to the depletion of intracellular stores of 5-HT exhibit a reduction 
in the number of activated T cells (IL-2Rα-CD25-positive) [6, 25], suggesting that 
serotonin contributes physiologically to T cell activation. Several 5-HT receptors: 
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5-HT1B, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT6 and 5-HT7 receptors were found to be 
expressed in rat lymphoid tissues, ex-vivo isolated spleen, thymus, and peripheral 
blood lymphocytes. Additionally mitogen-stimulated spleen cells expressed mRNAs 
corresponding to the 5-HT3 receptor [26]. A screen for serotonin receptor subtypes 
expressed in murine T cells revealed that naïve T cells selectively express 5-HT7 
receptors and that, upon T-cell activation, there is a strong upregulation of 5-HT1B 
and 5-HT2A receptors [6]. Interestingly, the 5-HT2B receptor is found expressed in 
immature human T cells. Gene expression profiles during human CD4+ T cell dif-
ferentiation, identified the 5-HT2B receptor with ten-fold greater expression in SP4 
thymocytes over intrathymic T progenitor cells, double positive thymocytes (ITTP), 
naive T cells from cord blood (CB4) and naive T cells from adult blood (AB4) [27]. 
Further, 5-HT2B receptors are differentially expressed among human T helper sub-
sets cells. 5-HT2B receptor expression was found to be increased in T helper cells 
cultured in the presence of cytokines promoting Th2 cell differentiation [28].

The role of serotonin in T cell immune response has also been reported in-vivo in 
chronic inflammatory diseases such as rheumatoid arthritis. Rheumatoid arthritis is 
a chronic disease that results in a disabling and painful condition as it progresses to 
destruction of the articular cartilage and ankylosis of the joints. Studies have shown 
that serotonin released by platelets can have a role in rheumatic diseases. In patients 
with rheumatoid arthritis, IL-1-containing platelet-derived vesicles called micropar-
ticles are abundant in arthritic joint fluid. Platelets also serve as a source of prosta-
glandins that contribute to synovial inflammation. Furthermore, serotonin released 
by platelets helps drive the persistent vascular permeability that characterizes the 
microvasculature of the inflamed synovium. Therefore, platelets have a distinct role 
in autoimmunity [29]. In mice, induction of arthritis triggers a robust increase in 
serotonin content in the paws combined with low inflammation. The absence of 
serotonin in arthritic Tph1−/− mice leads to a significant increase in osteoclast dif-
ferentiation and bone resorption with an increase in IL-17 levels in the paws and in 
Th17 cells in the lymph nodes. In ex-vivo cultures of Tph1−/− splenocytes, addition 
of serotonin or agonists of the 5-HT2A and 5-HT2B receptors restored IL-17 secretion 
and Th17 cell differentiation supporting a direct action of 5-HT on lymphocytes 
through 5-HT2A and 5-HT2B receptors. Serotonin plays thus a fundamental role in 
arthritis through the regulation of the Th17/T-regulatory cell balance and osteoclas-
togenesis [30].

In conclusion, peripheral serotonin regulates inflammation and immunity by 
acting on 5-HT2B receptors that are differentially expressed on immune cells, both 
in rodents and humans. Serotonin acts as a potent chemoattractant, recruiting innate 
immune cells to sites of inflammation, and also alters the production and release of 
cytokines and cell activation/proliferation.
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2  Immune Cells in the Nervous System 
and 5-HT2B Receptors

Serotonin has been widely involved in neuropsychiatric diseases, including 
depression, impulsivity or schizophrenia, yet mechanisms underlying their 
involvement in neurological diseases remains unclear. It is unknown whether and 
how serotonin might regulate brain inflammation, either acute, such as during 
medical illness, or chronic during neurodegenerative diseases. Increasing evidence 
suggests the involvement of microglia, the brain immune cells in neuropsychiatric 
disorders [31]. It has been established that serotonin through the 5-HT2B receptor is 
an important regulator of microglia.

2.1  Microglia and 5-HT2B Receptors

Microglia, the brain resident macrophages, are derived from yolk sac mesodermal 
hematopoietic stem cell precursors, primitive myeloid progenitors common to all 
myeloid cells. These progenitors enter the CNS through the blood stream at embry-
onic day E8.5 until the blood barrier is closed [32]. Microglia constitute 5–15% of 
adult brain cells depending on the brain regions and represent by far the largest 
population of immune cells in the brain. Pioneering in-vivo 2-photon imaging stud-
ies showed that, in resting physiological conditions, microglia have highly mobile 
and ramified processes, continuously monitoring the brain microenvironment [33, 
34]. Upon local injury, microglia move rapidly their processes towards the lesion 
site. This chemotactic response can be mimicked by extracellular stimuli such as 
ATP [33]. It was reported that serotonin increases process motility of adult microg-
lia in acute slices in response to acute injury. Moreover, serotonin enhances the 
chemotactic response of cultured microglia to ATP [35]. Analysis of the microglial 
phagocytic activity determined by the uptake of fluorescent microspheres reveals 
that serotonin application decreases phagocytic activity of amoeboid and cultured 
microglia [35]. Additionally, serotonin was able to induce a transient intracellular 
calcium (Ca2+) signals in a subpopulation of cultured newborn and adult microglia 
[36] whereas most microglial cells responded to ATP [37].

Expression of microglial 5-HT2B, 5-HT5A and 5-HT7 receptors was shown by 
qPCR analysis of RNA isolated from primary cultured and from acutely isolated 
adult microglia [35]. The presence of functional 5-HT2B receptors was confirmed by 
patch-clamp experiments in cultured and amoeboid microglia. Importantly, the 
5-HT2B receptor was found to be expressed in microglia as early as postnatal day 
3 in mice [38]. We recently confirmed by 2-photon microscopy that microglial pro-
cesses moved rapidly towards the source of serotonin via activation of the 5-HT2B 
receptor [38, 39]. Moreover, serotonin was also shown to stimulates the release of 
exosomes in cultured primary microglia through the 5-HT2Breceptor activation [40].
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2.2  Developmental Role of Serotonin on Microglia via 
the 5-HT2B Receptor

Modulation of microglial functions like phagocytosis and motility, by serotonin 
through the 5-HT2B receptor, is fundamental for the central nervous system since 
microglia can influence the balance of synaptogenesis and neuronal death during 
development and in pathology [31]. Microglial cells have been shown to modulate 
synapse formation, and thus to shape neuronal circuits [41]. The mouse retinoge-
niculate system is a classic model for studying developmental synapse elimination. 
During the first postnatal weeks, a massive synaptic pruning eliminates redundant 
synapses and evokes a segregated phenotype of the axonal projections from each 
retina [42]. A role for microglia in activity-dependent synaptic pruning has been 
demonstrated in the post-natal retinogeniculate system [43]. Eye-specific segrega-
tion of retinal projections in the thalamus also depends on an appropriate serotonin 
level [42, 44]. Thus, both microglia and serotonin participate in segregation of reti-
nal projections. This in-vivo model of synaptic refinement during early brain devel-
opment was used to investigate if serotonin through the 5-HT2B receptor participates 
to the maturation of the retinal projections to the thalamus. Analysis of retinal pro-
jections in the thalamus revealed that Htr2b−/− mice present anatomical alterations 
of the ipsilateral projecting area of retinal axons into the thalamus [38]. In addition, 
in primary microglia cultures from neonates, inflammatory markers are upregulated 
in Htr2b−/− microglia compared to Htr2b+/+control [38]. These data support the pos-
sibility that microglia, serotonin, and 5-HT2B receptors participate in postnatal brain 
developmental events.

2.3  Neurodegenerative Diseases and 5-HT2B Receptors

Accumulating evidence suggests that the link between serotonin, microglial 
activation and neuroinflammation play a role in the pathogenesis of neurodegenerative 
diseases.

Alzheimer’s Disease Soluble Aβ oligomers that accumulate with time in the brain 
are thought to initiate Alzheimer’s disease and to trigger synapse failure and mem-
ory loss [45]. Recent data showed that exposure to Aβ oligomers triggers depressive- 
like behavior in mice and is associated with microglial activation, aberrant TNF-α 
signaling, and decreased brain serotonin levels. Conversely, serotonin blocked Aβ 
oligomers-induced microglial activation and elevated TNF-α production and 
release. Furthermore, inactivation or ablation of microglia blocked the increase in 
brain TNF-α and abolished depressive-like behavior induced by Aβ oligomers [46]. 
These findings support a key role of serotonin in preventing microglial activation in 
the context of Alzheimer’s disease. In addition, Aβ oligomers failed to induce 
depressive-like behavior in TLR4-deficient mice and in mice harboring a 
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 nonfunctional TLR4 variant in myeloid cells. These results establish that Aβ oligo-
mers trigger depressive-like behavior via a double impact on brain serotonin levels 
and on microglial activation, revealing a cross-talk between brain innate immunity 
and serotonergic signaling as a key player in mood alterations in Alzheimer’s dis-
ease [46]. It was independently reported that treatment with Aβ promoted neuronal-
like differentiation of bone marrow-derived mesenchymal stem cells without toxic 
effects. The effect of Aβ was mediated by the 5-HT2B receptor associated Gq-protein 
signaling, via activation of ERK1/2 signaling pathways [47]. Together, these find-
ings support the hypothesis that serotonin may participate via 5-HT2B receptors in 
preventing microglia-dependent activation and change in mood during Alzheimer’s 
disease progression.

Amyotrophic Lateral Sclerosis Amyotrophic lateral sclerosis (ALS), also known 
as Charcot or Lou Gehrig’s disease, is a disease that causes the death of motoneu-
rons which control voluntary muscles. ALS is characterized by gradually worsening 
weakness due to muscles decreasing in size, leading to difficulty speaking, swallow-
ing, and eventually breathing. Microglia are strongly activated in both ALS patients 
and animal models of ALS expressing mutant forms of superoxide dismutase 
(SOD)1 (mSOD1 mice). L Dupuis’s laboratory has demonstrated that central sero-
tonergic neurons degenerate during ALS in both patients and mSOD1 mice [48]. 
Although serotonergic neurons degenerate during ALS, the 5-HT2B-receptor expres-
sion was found to be strongly increased at disease onset i.e. the time point of maxi-
mal microglial activation [49]. This upregulation was observed in both spinal cord 
and brainstem of different models of ALS, SOD1(G86R) and SOD1 (G37R) mice, 
expressing ALS-linked SOD1 mutations, and p150(G59S) mice, expressing a 
mutant form of dynactin linked to ALS cases and this upregulation was restricted to 
cells positive for CD11b, a marker of microglia (see Chap. 22).

Most importantly, ablation of 5-HT2B receptors in transgenic ALS SOD1 (G86R) 
mice shortened survival of mSOD1 mice by 30% [49]. Disease onset was merely 
not changed, while disease progression after onset was potently accelerated. 
This resulted in increased degeneration of microglia, as evidenced by fragmentation 
of cellular processes that are positive for the microglial marker, Iba1 [49]. This 
complete loss of 5-HT2B receptors was accompanied at end-point by decreased 
expression of key neuroinflammatory genes but also loss of expression of homeo-
static microglial genes. Furthermore, the C allele of the SNP rs10199752 in HTR2B 
gene was associated with a longer survival in a large cohort of ALS patients. Patients 
carrying this allele showed increased 5-HT2B receptor mRNA expression in spinal 
cord and displayed less pronounced degeneration of Iba1+ microglial cells than 
patients carrying two copies of the more common A allele. Thus, the 5-HT2B recep-
tor seems able to limit degeneration of spinal cord microglia, and slows disease 
progression in ALS [49]. In summary, the lack of 5-HT2B receptors exacerbates ALS 
symptoms and progression of the disease. Considering the expression and upregula-
tion of 5-HT2B receptors in microglia, its protective effects likely results from a 
regulation of microglial functions.
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3  Outlook and Prospects

In this review, we have summarized data showing that serotonin interacts with 
various immune cells and that these interactions may participate in myeloid cell 
maturation and inflammation through 5-HT2B receptors. Serotonin via the 5-HT2B 
receptors expressed by microglia may prevent microglia-dependent change in mood 
during Alzheimer’s disease progression, and reduces ALS symptoms and microglial 
alterations. This set of data revealed that serotonin via 5-HT2B receptors expressed 
in microglia participates in developmental/differentiation process, limits 
neuroinflammatory events and may have protective effect in neurodegenerative 
diseases.
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1  Peripheral Serotonin

The role of serotonin (5-hydroxytryptamine, 5-HT) as a neurotransmitter has been 
known for more than a century, although only a small percentage of the total body’s 
serotonin is produced by Tryptophan Hydroxylase-2 (TPH-2)-expressing neurons. 
In exchange, 90% of body’s serotonin is primarily produced by TPH-1-expressing 
enterochromaffin cells (EC) in the digestive tract [1]. This “peripheral serotonin” is 
then taken up and stored by platelets through the action of the serotonin transporter 
(SERT, encoded by SLC6A4), and subsequently released upon platelet activation 
[2–4]. In this manner, peripheral serotonin functions as a hormone, and platelets act 
as major regulators of plasma serotonin concentration, maintaining millimolar con-
centrations of serotonin in their dense granules while keeping plasma serotonin lev-
els within the nanomolar range.

Details about the mode of action and pleiotropic effects of serotonin are still 
being gathered. Peripheral serotonin is involved in numerous physiologic processes 
(embryonic development, vasoconstriction, angiogenesis, temperature control, liver 
regeneration, mammary gland development, osteoclastogenesis, inflammation and 
fibrosis) [1, 2, 4, 5], and altered serotonin levels are linked to cardiovascular disor-
ders, respiratory diseases and osteoporosis. The ability of peripheral serotonin to 
affect this diverse range of biological processes has inspired comments like “…. at 
once implicated in virtually everything, but responsible for nothing” (original [6]), 
“Myriad effects of serotonin outside the central nervous system” [7] or “The prob-
lem ….. to determine what serotonin actually does for the gut has been that it is able 
to do too much” [8]. The ability of serotonin to trigger epigenetic changes [9] and to 
modify histones (histone serotonylation) [10] might contribute to explain its wide-
spread and tissue-specific effects.

Peripheral serotonin also contributes to haematopoiesis, and significantly 
modulates the effector functions of granulocytes, lymphocytes, monocytes, dendritic 
cells and tissue-resident macrophages. Since macrophages and dendritic cells are 
major drivers of immunity and inflammation, serotonin directly impinges on 
immune and inflammatory responses. Indeed, serotonin influences the development 
or resolution of inflammatory pathologies and is now known to contribute to 
Pulmonary Arterial Hypertension (PAH) [11, 12], atopic dermatitis [13], allergic 
asthma [14], systemic sclerosis [15, 16], inflammatory gut disorders [17–22], cancer 
angiogenesis [23], neuroendocrine neoplasms proliferation [24], collagen-induced 
arthritis [25] and amyotrophic lateral sclerosis [26]. In fact, and considering that 
neuronal serotonin participates in the control of anxiety and stress, it is not 
unexpected that peripheral serotonin functions as a stress sensor or adapter [27] and, 
consequently, controls and modulates immune and inflammatory responses. 
Regarding immune cells, the use of Tph1-defective mice has evidenced that mast 
cells and T-lymphocytes are capable of synthesizing and releasing serotonin, and 
that many other immune cell types might store, respond to and/or transport serotonin 
(T cells, macrophages, mast cells, dendritic cells and platelets).
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All the physiologic and pathologic functions of brain and peripheral serotonin 
are mediated by seven families of serotonin receptors (5-HT1 to 5-HT7), encoded by 
17 different genes that give rise to alternative splicing variants [4]. Except for 5-HT3, 
all 5-HT receptors are G protein–coupled receptors (GPCRs) [4] whose intracellular 
domains activate various intracellular signalling cascades and lead to distinct func-
tional outcomes [4]. The unique tissue distribution of each 5-HT receptor subclass 
partly explains the amplitude and tissue-specificity of serotonin activities, and 
serves to fine-tune physiological and cellular responses to serotonin, what has led to 
the suggestion that each 5-HT receptor type is linked to a specific biological 
response [4]. The availability of KO mice for Tph1 and the various 5-HT receptor 
genes has provided definitive proof for the relevance of the actions exerted by 
peripheral serotonin on the skeleton (bone mass and osteoblast proliferation), car-
diovascular system (5-HT1A, 5-HT1B, 5-HT1D, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT7 
receptors), smooth muscle (5-HT2A receptor), liver [28], gastrointestinal tract 
(5-HT2B, 5-HT2C, 5-HT3A, 5-HT3B, 5-HT4, 5-HT7 receptors), platelet aggregation 
(5-HT2A receptor), and even metabolic state (5-HT2C, 5-HT6 receptors) [29, 30].

2  Serotonin Effects on Inflammatory and Immune Responses

In adulthood, haematopoiesis takes place in the bone marrow and gives rise to all 
immune cell lineages. Although much remains to be learned about the underlying 
molecular mechanisms, it is now clear that peripheral serotonin functions as a 
growth factor for hematopoietic progenitor cells, as it contributes to proliferation 
and survival of erythroid progenitors [31] and megakaryocytes [32], increases the 
proliferation and mobility of G-CSF-mobilized CD34+ cells, enhances the amount 
of early and multilineage committed progenitors (erythroid, myeloid, megakaryo-
cyte lineages), and promotes erythroid and myeloid lineage formation and mono-
cyte/macrophage release [11]. The action of serotonin in haematopoiesis supports, 
in fact, the existence of “micro-serotonergic systems”, where local serotonin pro-
duction supersedes the hormonal function of gut-derived serotonin (reviewed 
in [27]).

2.1  Serotonin Effects on Immune Cells

A close relationship exists between serotonin, platelets and inflammation. The 
physiological concentration of plasmatic/vascular serotonin, maintained at nano-
molar levels through uptake, storage or monoamine oxidase-mediated degradation 
[1], increases to micromolar levels around sites of inflammation, thrombus forma-
tion and fibrosis [5, 15, 33, 34], mainly due to its release from activated platelets 
exposed to pro-inflammatory stimuli [35, 36]. As an example, elevated plasma sero-
tonin concentration is seen in cardiovascular disorders like coronary artery disease 
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and myocardial infarction [37, 38]. Enhanced levels of peripheral serotonin influ-
ence the development of immune and inflammatory responses by modifying the 
effector functions of lymphocytes, natural killer (NK) cells and monocyte/macro-
phages/dendritic cells. Indeed, platelet-derived serotonin is needed for leukocyte 
interaction with endothelial cells and trans-endothelial migration into sites of 
inflammation [39, 40], and directly affects endothelial cells to regulate leukocyte 
trafficking [41]. Serotonin also promotes survival and proliferation of mitogen- 
activated T and B lymphocytes [42, 43], enhances the proliferation, interferon (IFN)γ  
production and cytolytic function of NKs in vitro [44–46], and enhances migration 
towards inflammatory sites of mast cells [47], eosinophils [48, 49] and neutrophils 
[39]. Further, serotonin influences dendritic cell morphology, and controls dendritic 
cell chemotaxis towards draining lymph nodes [50] by controlling the expression of 
CCR7 [51], the chemokine receptor that guides migration towards lymph nodes for 
initiation of immune responses. In addition, serotonin can be shuttled from dendritic 
cells to T lymphocytes to modulate their activation, proliferation, and differentia-
tion [52] (Table 6.1).

2.2  Serotonin Effects on Cytokine Production by Myeloid Cells

A timely coordinated disbalance between pro- and anti-inflammatory cytokines is 
absolutely required for promotion and suppression of immune responses as well as 
for initiation and resolution of inflammation. Stressing the importance of peripheral 
serotonin, the elevated levels of serotonin found at inflamed sites contribute to regu-
late cytokine production during inflammation promotion and resolution. Thus, sero-
tonin increases IFNγ production of NK cells [46], but suppress IFNγ [56], TNF and 
IL-6 production [58, 60] in whole blood.

Dendritic cells are bone marrow-derived cells that exert potent antigen- presenting 
ability and display the unique capacity to initiate adaptive immune responses upon 
maturation. The modulatory actions of serotonin on dendritic cells depend on their 
state of functional maturation because immature and mature dendritic cells differ in 
their serotonin receptor profile. Immature dendritic cells (with homeostatic, pro- 
tolerogenic and immunosuppressive functions) express HTR1B, HTR1E and HTR2B 
mRNA, while mature dendritic cells (characterized by a potent immune-stimulatory 
ability) express mRNA for 5-HT4 and 5-HT7 receptor [19, 66]. Serotonin alters the 
expression of IL-1β, IL-8, IL-12 and TNF only in mature monocyte-derived den-
dritic cells [66], while it modifies the production of IL-6, IL-10 and CCL22 in both 
immature and mature dendritic cells [50, 66]. All these effects on cytokine produc-
tion drastically modify the T cell-polarizing ability of serotonin-treated dendritic 
cells [66].

Thus, and secondary to its ability to modulate IL-10, IL-12, CXCL10 (pro-Th1) 
and CCL22 (pro-Th2) production, serotonin favours the generation of Th2-type 
immune responses both in vivo and in vitro [50]. In line with this effect, serotonin 
reduces the expression of CD1a and co-stimulatory molecule expression in 5-HT7 
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Table 6.1 Effects of serotonin on immune cells

Biological process Cell type Receptor Reference

Phagocytosis and cytotoxicity Macrophages/PMN [200]
Macrophages [53]
NK cells 5-HT1A [201]
Leukocytes [202]
Peritoneal macrophages 5-HT1A [54]

Adhesion and migration Mononuclear cells [203]
Monocytes 5-HT1A [204]
Eosinophils [49]
Mast cells [47]
Dendritic cells [50]
Microglia [55]
Neutrophils [39]
Eosinophils [48]
Dendritic cells 5-HT7 [51]

Oxidative burst Macrophages [205]
Phagocytes [206]

Cytokine production
TNF
IFNγ
IL-1β
IL-6
IL-10
TGFβ1
PGE2
IL-12
IL-17
CCL2

Monocytes [207]
NK cells [46]
Whole blood [56]
Vascular smooth muscle cells [208]
Aortic valve interstitial cells. [57]
LPS-treated PBMC 5-HT2A [58]
Microglial MC-3 cells 5-HT7 [59]
Whole blood [60]
Monocyte/dendritic cells 5-HT1-7 [61]
Macrophages [62]
Monocytes 5-HT1-7 [209]
Macrophage-like synovial cells 5-HT2A-3 [63]
Dendritic cells [50]
Alveolar macrophages 5-HT2C [64]
Dendritic cells [22]
Peritoneal macrophages 5-HT3 [210]

Proliferation survival T lymphocytes 5-HT1A [211]
B lymphocytes 5-HT1A [42]
Lymphocytes 5-HT1A [43]
Megakaryocytes 5-HT2B [32]
Erythroid progenitors 5-HT2A [31]

(continued)
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receptor-expressing dendritic cells [61], reducing their antigen-presenting ability 
and skewing their naïve CD4 T cell-polarizing capacity [22, 50] (Table  6.1). 
Therefore, serotonin conditions the T cell-stimulatory capacity and cytokine- 
production ability of dendritic cells in a maturation-dependent manner.

3  Serotonin Effects on Macrophages

3.1  Macrophage Polarization

Like dendritic cells, macrophages participate in the coordination of innate and 
adaptive immune responses. Macrophages constitute a first line of defence against 
pathogens and harmful stimuli but also exhibit the functional plasticity required to 
initiate and resolve inflammatory processes, to maintain tissue homeostasis [67–
69], to orchestrate tissue repair and angiogenesis, and to promote or inhibit tumour 
progression [70]. The functional versatility of tissue-resident macrophages (e.g., 
microglia, osteoclasts, Kupffer cells) arises from their various ontogenic origins 
(yolk sac, foetal liver, peripheral monocytes) and their capacity to variably differen-
tiate in response to environmental and tissue-specific endogenous cues [71–79]. The 
existence of tissue-specific macrophage functions is exemplified by the distinct 

Table 6.1 (continued)

Biological process Cell type Receptor Reference

T cell priming
T cell polarization

Macrophages [65]
Monocyte/dendritic cells 5-HT1-7 [61]
Monocytes 5-HT1-7 [209]
T lymphocytes 5-HT7 [52]
Dendritic cells [50]
Dendritic cells [22]

5-HT2A-B [25]
Radical scavenger Mononuclear phagocytes [212]

Microglia [213]
Immunomodulation
Inflammation
Fibrosis

Mononuclear cells [36]
Monocytes 5-HT3 [214]
Aortic smooth muscle cells 5-HT2A [215]
Muscularis macrophages 5-HT4 [216]
Whole blood 5-HT2A [217]
Macrophages 5-HT7 [16]

Serotonin uptake Macrophages [218]
Dendritic cells [219]

GPIbα shedding Platelets 5-HT2A [220]
Experimental colitis Peritoneal macrophages [21]
Bone resorption Splenocyte/Osteoclast? 5-HT2A-B [25]
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primary functions of osteoclasts (bone macrophages with potent bone-degrading 
functions), microglia (brain macrophages that contribute to neural circuitry devel-
opment, synaptic pruning, and modulation of angiogenesis and fluid balance) [80, 
81], and Kupffer cells (liver macrophages primarily specialized in scavenging) [82]. 
On top of this heterogeneity, macrophages can acquire a wide variety of activation 
(“polarization”) states when exposed to pathogen-associated molecular patterns 
(PAMP), danger-associated molecular patterns (DAMP), cytokines, chemokines 
and growth factors. The acquisition of a discrete macrophage polarization state ulti-
mately depends on the integration of all the intracellular signalling pathways and 
transcription factors activated by the surrounding PAMP, DAMP, cytokines and 
growth factors [83], but also on their metabolic adaptation [84] and their develop-
mental origin [71–74]. Thus, the huge plasticity of macrophage polarization relies 
on a combination of transcriptional, epigenetic, post-transcriptional and metabolic 
mechanisms, whose combination allows the acquisition of almost unlimited states 
of polarization (reviewed in [68, 79, 85]). In addition, and like other cells of the 
innate immunity, macrophages exhibit immunological memory (now coined as 
“trained immunity” or “innate immune memory”), by which they display long-term 
changes in their functional programs in response to stimulation [86]. These changes 
enable macrophages to display enhanced (training) or reduced (tolerance) respon-
siveness towards any secondary stimulation [86]. Macrophage immune memory 
ultimately depends on metabolic and epigenetic reprogramming, with histone modi-
fications playing a central role in the process [86], and is now known to operate at 
the level of myeloid progenitors [87, 88].

Illustrating the importance of their functional plasticity, deregulated macrophage 
polarization triggers or contributes to chronic inflammatory diseases like cancer, 
atherosclerosis, rheumatoid arthritis and obesity [81, 89]. Excessive pro- 
inflammatory polarization in adipose tissue is linked to metabolic disease [90, 91], 
whereas uncontrolled anti-inflammatory/reparative polarization gives rise to fibro-
sis [89] and protects tumours from immune-surveillance [92, 93]. Because of this, 
“macrophage reprogramming” has become an attractive therapeutic alternative for 
inflammatory pathologies [94, 95]. As an approach to the analysis of macrophage 
heterogeneity, “an operationally useful but simplified conceptual framework” has 
been established by which two extremes of the macrophage polarization spectrum 
have been defined: macrophages with potent bactericidal, anti-tumoral or pro- 
inflammatory activities are commonly referred to as “M1 macrophages”, whereas 
“M2 macrophages” refers to macrophages with pro-tumoral, immunosuppressive, 
pro-angiogenic or anti-inflammatory activities [79]. In general, pro-inflammatory/
M1 macrophages are characterized by a TNFhigh, IL-12high, IL-6high, IL-23high and 
IL-10low cytokine profile and potent production of reactive oxygen and nitrogen 
intermediates, whereas pro-fibrotic/anti-inflammatory/M2 macrophages usually 
exhibit an IL-10high, IL-12low, IL-23low and TNFlow phenotype [70]. From the tran-
scriptional point of view, STAT1, IRF5 and Nuclear factor-κB (NF-κB) (p65/p50) 
are major transcriptional drivers of the pro-inflammatory/M1 polarization, whereas 
diverse M2-type polarization states can be acquired through the action of NFκB 
(p50/p50), MAF/MAFB, STAT3, CREB, PPARγ and STAT6 (reviewed in [68, 79, 
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85]). At this point, it is worth mentioning that numerous studies have emphasized 
“difficulties of mouse-to-human extrapolation” regarding human macrophage 
polarization markers [76]: although the functions attributed to M1 and M2 macro-
phages are usually common in both species, only 26% of the polarization-associated 
genes are conserved between monocyte-derived human macrophages and bone 
marrow-derived mouse macrophages [96].

3.2  Influence of Serotonin Receptors on Macrophage 
Effector Functions

Macrophages are equipped with a large array of serotonin receptors whose presence 
is dependent on the functional state of macrophages. Human monocytes dis-
play HTR1E, HTR2A, HTR3, HTR4 and HTR7 mRNA, and monocyte-derived mac-
rophages express mRNA for 5-HT1A, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3, and 5-HT7 
receptors [16, 97, 98]. However, and like dendritic cells, the range of serotonin 
receptors varies with the macrophage origin. For example, mouse microglia contain 
high amounts of Htr2b and much lower levels of Htr1f and Htr2a [99], functional 
expression of Htr7 is found in a microglial cell line [59], and monocyte-derived 
human macrophages exhibit different serotonin receptor profiles depending on 
whether they are primed by M-CSF (HTR2B+, HTR7+) or GM-CSF (very low levels 
of all serotonin receptor subtypes) [98]. In addition, and at least in the case of human 
macrophages, activation by PAMPs like LPS results in an almost complete loss of 
the expression of the predominant serotonin receptors, namely 5-HT2B and 5-HT7 
receptors [98], evidencing that changes in the profile of serotonin receptor expres-
sion take place during macrophage activation.

As stated above, macrophages are extremely sensitive to the tissue environment 
and promote and coordinate the initiation and the resolution of inflammatory 
responses, both of which are associated with changes in serotonin levels. In fact, 
serotonin modifies a plethora of macrophage functions, exerting a net anti- 
inflammatory effect. In monocytes, serotonin increases the production of LPS- 
stimulated IL-1β and IL-8, but it decreases TNF levels [97]. In the case of 
macrophages, serotonin appears necessary for optimal macrophage accessory func-
tion [65], and physiological concentrations of serotonin suppress IFNγ induced 
MHC class II expression [53, 100, 101], and increase tumour-associated macro-
phage (TAM)-mediated angiogenesis by reducing MMP12 and angiostatin expres-
sion [23]. In addition, serotonin increases microglia motility [55], alters phagocytosis 
[54, 55], decreases the LPS-induced production of TNF and IL-6 in murine perito-
neal macrophages [102] and up-regulates the expression of CCL2  in 5-HT2C 
receptor- expressing alveolar macrophages [64]. Similarly, serotonin stimulation 
leads to overexpression of anti-inflammatory PGE2 [62, 63], enhances LPS- 
stimulated IL-10 production and reduces LPS-induced TNF secretion in human 
alveolar macrophages and macrophage-like synovial cells [62] (Table 6.1). All these 
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changes reveal a clear anti-inflammatory action of serotonin on macrophages. These 
functional effects are compatible with the fact that exposure of human macrophages 
to serotonin leads to preferential activation of ERK and CREB [98], which are 
directly linked to anti-inflammatory responses [103, 104], and with the ability of 
serotonin to inhibit LPS-induced STAT1 activation [16]. Since serotonin causes epi-
genetic modifications [9] and even direct histone serotonylation [10], and consider-
ing the importance of epigenetic mechanisms for the establishment of the 
macrophage memory (training) [86], it is reasonable to assume that serotonin expo-
sure might condition (“educate”) macrophages for subsequent stimulation, and that 
this effect might also take place in bone marrow myeloid progenitors, on which 
serotonin is already known to have an effect [11].

The importance of the serotonin influence on macrophage effector functions is 
also supported by gene ontology analysis of the transcriptome of serotonin-treated 
cells. Gene Set Enrichment Analysis (GSEA) of the transcriptome of human macro-
phages exposed to 10μM serotonin for 6 hours not only points to a significant 
enrichment of genes upregulated by serotonin receptor agonists (co-dergocrine 
mesylate, pergolide) and prostaglandin, dopamine and adrenergic receptors ligands, 
but also of genes involved in chemotaxis, cAMP catabolic process, and regulation 
of cytokine production [16]. Along this line, 10 μM serotonin inhibits the produc-
tion of pro-inflammatory cytokines in human macrophages primarily via 5-HT7 
receptor [16], and shifts the transcriptional profile of M-CSF-dependent human 
macrophages towards the anti-inflammatory side via 5-HT2B and 5-HT7 receptors 
[16, 98]. At the gene expression level, serotonin reduces the expression of genes 
associated with the acquisition of the pro-inflammatory capabilities of GM-CSF- 
primed macrophages like INHBA, CCR2, MMP12, ALDH1A2, CD1B and SERPINE1 
[105, 106]. Conversely, serotonin potentiates the expression of genes associ-
ated  with the M-CSF-driven anti-inflammatory differentiation of human macro-
phages (SERPINB2, COL23A1, THBS1, STAB1), an effect that can be prevented by 
5-HT2B- and 5-HT7-specific antagonists [98]. Therefore, in  vitro studies indicate 
that serotonin skews macrophages towards an anti-inflammatory phenotype [98].

More recently, whole transcriptomic analysis has demonstrated that serotonin 
rapidly modifies the macrophage gene signature, as it alters the mRNA levels of a 
significant number of genes within six hours of treatment [16]. This effect is primar-
ily mediated by 5-HT7 receptor, which leads to PKA activation, and causes upregu-
lation of genes involved in chemotaxis and regulation of cytokine production, as 
well as augmented expression of genes positively regulated by IL-10 and 
Transforming growth factor TGFβ1 and negatively regulated by type I IFN [16]. In 
line with this transcriptional information, serotonin inhibits the LPS-stimulated 
release of IL-12p40 and TNF, reduces LPS- or IFNβ1-induced STAT1 activation 
and CXCL10 chemokine expression, and leads to enhanced expression of TGFβ1 
[16]. Therefore, serotonin (10 μM) has a considerable impact on the human macro-
phage transcriptome and effector functions, and promotes the acquisition of a profi-
brotic and anti-inflammatory functional profile primarily via the 5-HT7 receptor-PKA 
axis [16].
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The functional and transcriptional effects of serotonin on macrophages has 
relevant therapeutic implications, because several antidepressants display anti- 
inflammatory effects and limit M1-macrophage polarization. Specifically, rolipram 
shifts macrophage away from M1 polarization through an increase in cAMP levels 
and subsequent PKA-CREB activation [107]. Regarding Selective Serotonin 
Reuptake Inhibitors (SSRI), sertraline and citalopram increase serotonin extracel-
lular levels, and reduce the production of pro-inflammatory cytokines from LPS- 
activated monocytes while increasing IL-10 release [108–111], an effect that might 
also involve an elevation of cAMP levels. The specific serotonin receptor responsi-
ble for these effects is not clear, and although 5-HT2B receptor appears required for 
the antidepressant action of SSRI [112], it seems reasonable to assume that 5-HT4 
or 5-HT7 receptor might also mediate the action of SSRI [97, 98]. Along the same 
line, it is tempting to speculate that monoamine-oxidase inhibitors (that also increase 
serotonin levels) may also affect macrophage polarization through their ability to 
promote CREB phosphorylation. Importantly, the anti-inflammatory activity of 
SSRI is compatible with the fact that antidepressant treatment reduces inflammatory 
markers [113] and increases IL-10 levels [114] in depressed patients. The implica-
tions of the potential contribution of macrophage 5-HT receptors to the anti- 
inflammatory action of SSRI will be discussed later.

4  Expression of the 5-HT2B Receptor on Macrophages

5-HT2B receptor was first identified as a 5-HT1-like receptor that mediates 
5-HT-induced contraction of rat stomach fundus [115, 116]. Human 5-HT2B recep-
tor, encoded by the HTR2B gene at chromosomal position 2q36.3–2q37.1 [117], is 
evolutionary related to 5-HT2A and 5-HT2C receptors, with whom it shares a similar 
pharmacological profile [118], and is expressed during embryogenesis and mediates 
essential serotonin actions for normal development [119, 120]. In adults, 5-HT2B 
receptor is mainly distributed in peripheral tissues but it is also detected in restricted 
areas of the brain [4], with microglia expressing 5-HT2B receptor among other 5-HT 
receptors [55]. The growing list of pathophysiological effects of serotonin mediated 
by the 5-HT2B receptor in various organs and tissues is presented in Table 6.2.

In the case of myeloid cells, the expression of the 5-HT2B receptor is cell type- 
specific and depends on the prevailing macrophage-differentiating factors in the 
extracellular environment [98]. In human monocyte-derived dendritic cells, 5-HT2B 
receptor expression is restricted to the CD1a+ subset [121]. Similarly, 5-HT2B recep-
tor is preferentially expressed by monocyte-derived macrophages generated in the 
presence of M-CSF, which primarily function in maintenance of homeostasis and 
exhibit anti-inflammatory and immunosuppressive functions. Conversely, HTR2B 
mRNA is virtually absent in macrophages generated under the influence of GM-CSF, 
which are primed for potent pro-inflammatory and immuno-stimulatory activities 
[98]. Indeed, macrophage HTR2B expression in  vitro is inhibited by pro- 
inflammatory agents like GM-CSF and LPS [98], and the loss of HTR2B mRNA 

C. Nieto et al.



109

Table 6.2 Effects of 5-HT2B on immune cells and other cell lineages

Effects Cell type Receptor Reference

Heart and vessel wall Valve disease (Ergot) [221]
Valvular abnormalities [222]
Valvular heart disease [223]

Morphogenetic 
functions

Myocardiac cells 5-HT2B [119]

Valvular heart disease 
(SSRI)

5-HT2B [224]

Heart development 5-HT2B [128]
Cardiac hypertrophy 5-HT2B [129]

Right ventricular 
failure

Cardiac fibroblasts 5-HT2B [130]

Mitral valvulopathy Endothelial progen. 5-HT2B [225]
Vascular restenosis Smooth Muscle 5-HT2B [226]

Proliferation Cell-cycle progression Fibroblasts 5-HT2B [131]
Proliferation Endothelial cells 5-HT2B [227]
Proliferation Interstitial cells of 

Cajal
5-HT2B [132]

Proliferation Fibroblasts/
neuroend tumors

5-HT2B [133]

Proliferation Pancreatic beta cells 5-HT2B [134]
Proliferation Hepatocytes 5-HT2B [135]
Proliferation Hepatic stellate cells 5-HT2B [28]
Proliferation Megakaryocytes 5-HT2B [32]
Proliferation Hepatocytes 5-HT2B [136]
Proliferation Hepatocytes 5-HT2B [137]

Proliferation/TGFα 
production

Hepatocytes 5-HT2B [138]

Proliferation Lung fibroblasts 5-HT2B [139]
Pulmonary arterial 
hypertension (PAH)

PAH (anorexic agents) [228]
PAH 5-HT2B [140]
PAH Myeloid? 

progenitors
5-HT2B [11]

Fibrosis Tissue fibrosis Fibroblasts 5-HT2B [15]
Myofibroblast 
differentiation

Lung fibroblasts 5-HT2B [229]

(continued)
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Table 6.2 (continued)

Effects Cell type Receptor Reference

Non peripheral effects Neonatal respiratory 
activity

Medullary breathing 
center

5-HT2B [230]

Severe impulsivity 5-HT2B [231]
Behavioral/neurogenic 

effects
5-HT2B [112]

Antinociceptive effect 
(BW723C86)

Sensory neurons/
macrophage

5-HT2B [232]

Schizophrenic-like 
phenotype

5-HT2B [233]

Resistance to SSRI 
(fluoxetine)

5-HT2B [234]

Cocaine responses 5-HT2B [235]
Regulation of raphe 

5-HT neurons
Serotonin neurons 5-HT2B [236]

Aggression-related 
cannabis resp.

5-HT2B [237]

Phrenic motor 
facilitation

5-HT2B [238]

Regulation of raphe 
5-HT neurons

Serotonin neurons 5-HT2B-1A [239]

Cocaine-crack 5-HT2B [240]
Asthma and allergic 
asthma mouse model

Eosinophilia 5-HT1-2 [14]
Airway remodelling 5-HT2 [241]

Prevention of allergic 
asthma

5-HT2 [242]

Cytokine production Control of IL6, TNF, 
IL1α production

Ventricular 
fibroblasts

5-HT2B [243]

Cytokine release Dendritic cells 5-HT4-7 [66]
Cytokine/chemokine 

production
LPS-primed 
monocytes

5-HT3-4-7 [97]

TGFβ1 production Hepatic stellate cells 5-HT2B [28]
Inhibition of TGFβ1 

production
Kupffer cells 5-HT2B [28]

Macrophage 
polarization

Macrophage 5-HT2B-7 [98]

Cytokine release/T cell 
polarization

Dendritic cells 5-HT2B [121]

Motility and phagocytic 
activity

Microglia 5-HT2B [55]

(continued)
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expression is a characteristic feature of activated macrophages and dendritic cells 
[98, 122]. Macrophage HTR2B mRNA expression is also controlled by anti- 
inflammatory cytokines (IL-4, IL-10) and, surprisingly, the LPS-induced downreg-
ulation of HTR2B mRNA can be prevented by blocking anti-IL-10 antibodies [98]. 
In any event, 5-HT2B receptor expression on macrophages might be also regulated 
through post-transcriptional mechanisms, as suggested in the case of uveal mela-
noma cells [123].

At the transcriptional level, HTR2B gene expression in human uveal melanoma 
cells is controlled by NFI and RUNX1 [124]. In the case of macrophages, the 
expression of HTR2B is critically regulated by the MAFB transcription factor, 
whose knockdown leads to a significant downregulation of HTR2B mRNA [125]. 
Moreover, HTR2B mRNA expression is upregulated in macrophages from patients 
with Multicentric Carpotarsal Osteolysis (MCTO), a disorder caused by mutations 
in the MAFB gene that lead to abnormally high levels of MAFB protein [125]. The 
link between MAFB and 5-HT2B receptor expression fits well with pro-fibrotic 

Table 6.2 (continued)

Effects Cell type Receptor Reference

Other effects Suppression of Ia 
expression

Macrophages 5-HT2 [100]

Angiogenesis/MMP12 Macrophage [23]
Microglia develop./
synaptic refinement

Microglia 5-HT2B [99]

ALS progression Microglia 5-HT2B [26]
Insulin/PGC1α–PPARy 

mRNA
Pancreatic β cells 5-HT2B [141]

Signaling Ras activation Fibroblasts, 
carcinoid tumors

5-HT2B [142]

ERK1/2, eNOS 
production

Endothelial cells 5-HT2B [227]

Inhibition of oxidative 
burst

Leukocytes 5-HT2 [244]

Alkaline phosphatase 
activity

Osteoblasts 5-HT2B [245]

ERK, JunD Hepatic stellate cells 5-HT2B [28]
Prostacyclin and 

PPAR-ß/δ
Osteoblasts 5-HT2B [246]

ERK1/2 activation Megakaryocytes 5-HT2B [32]
pJNK, p21, STAT3 

activation
Hepatocytes 5-HT2B [136]

PLC/PI3K/ERK2/
mTOR

Hepatocytes 5-HT2B [137]

β-Arrestin2/mTOR/
p70S6K

Smooth muscle cells 5-HT2B [226]

p21, pAkt Lung fibroblasts 5-HT2B [139]
EGF/TGFα/p70S6K Hepatocytes 5-HT2B [143]

6 5-HT2B Receptor on Macrophages: What for?



112

action of 5-HT2B receptor and the enhanced expression of MAFB in Dupuytren’s 
disease, a fibroblastic proliferation of the palmar fascia [126]. Considering the criti-
cal role of MAFB in macrophage differentiation [127], the control of HTR2B gene 
expression by MAFB provides a clue about the molecular mechanism underlying 
the developmentally-regulated expression of 5-HT2B receptor, and is in line with a 
prominent role for 5-HT2B receptor at the initial stages of myeloid cell differentia-
tion [11]. Whether MAFB also controls 5-HT2B receptor expression in other cell 
lineages (e.g., fibroblasts) remains to be determined.

In vivo, the expression of the 5-HT2B receptor is also primarily detected in human 
macrophages with anti-inflammatory and immunosuppressive activity, including 
tissue-resident alveolar and colonic macrophages, human liver Kupffer cells and 
even TAM [98]. In the case of mouse microglia, studies by the group of Maroteaux 
have demonstrated the functional expression of the 5-HT2B receptor on postnatal 
microglia, and discovered that 5-HT2B receptor mediates the movement of microg-
lial processes towards serotonin [99]. The expression of the 5-HT2B receptor in mac-
rophages under homeostatic conditions is especially relevant because 5-HT2B 
receptor is required for the therapeutic actions of SSRI [112], and because off-target 
effects on 5-HT2B receptor are displayed by anti-migraine drugs like methysergide 
and ergotamine [144, 145], general anaesthetics [146], fenfluramine and conven-
tional SSRIs [112, 147–149], and even by the dopamine agonists and anti- 
parkinsonian drugs pergolide and cabergoline [145, 150, 151]. Therefore, 
determination of the consequences of 5-HT2B receptor activation in macrophages is 
required to fully evaluate the potential inflammatory effects of SSRI and the set of 
drugs mentioned above.

5  Consequences of 5-HT2B Receptor Engagement 
in Macrophages: Gene Signature

5-HT2B receptor engagement results in cell-specific functional outcomes as a 
consequence of its ability to variably trigger intracellular signals including 
Phospholipase A2 (PLA2) (endothelial cells, neuroendocrine and bone mesoblastic 
cells) and Phospholipase C (PLC) activation (astrocytes, lung vasculature, 
cardiomyocytes). Besides, 5-HT2B receptor-dependent mitosis takes place during 
development and in many physiological settings. The robust link between 5-HT2B 
receptor activation and cellular proliferation and fibrosis (neuro-endocrine tumours, 
fibroblasts, hepatocytes, Ito cells, cardiomyoblasts, Cajal interstitial cells, pancreatic 
β-cells, lung fibroblasts) [28, 128, 132–134, 139] derives from its capacity to 
activate p21Ras, p60Src, Phosphatidylinositol-3 kinase (PI3K) and ERK [28, 131, 
139, 142], to promote the release of EGF, TGFα [137, 138, 143] or TGFβ1 [15, 28, 
130], and to transactivate the Platelet-derived growth factor receptor (PDGFR) 
[128] (Table 6.2). Further, 5-HT2B receptor activation inhibits JNK activation and 
HIF-1α expression, and activates pro-regenerative STAT3 phosphorylation in 
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hepatocytes [136], activates ERK and JunD in hepatic stellate cells [28], and reduces 
glucose-induced insulin secretion and mitochondrial activity in pancreatic β-cells 
through enhanced PGC1α and PPARγ expression [141] (Table 6.2). In fact, Htr2b−/− 
mice exhibit embryonic and neonatal lethality secondary to increased apoptosis and 
reduced cellularity in the ventricular trabeculae, as well as reduced bone density 
[129, 152]. Thus, the signalling capability of the  5-HT2B receptor is cell type-
specific, as further illustrated by its ability to promote or inhibit TGFβ1 release in 
murine hepatic stellate cells or mouse Kupffer cells, respectively [28].

The analysis of the signalling/transcriptional effects of the 5-HT2B receptor in 
human macrophages has been complicated by the concomitant expression of 
the 5-HT7 receptor, which mediates a large percentage of the signalling and tran-
scriptional effects of serotonin on macrophages [16, 98]. To overcome this issue 
while addressing the signalling and transcriptional actions of 5-HT2B in macro-
phages, we have recently taken advantage of the availability of BW723C86, a 
5-HT2B receptor agonist with 10-times higher selectivity for the 5-HT2B receptor vs 
5-HT2A/2C receptor, and the SB204741 antagonist, which is 20-to-60-fold more 
selective for 5-HT2B receptor than for other 5-HT2 receptors [153]. Using both 
agents, we have determined the transcriptional signature of macrophages exposed to 
10μM BW723C86  in the presence or absence of SB204741 (Gene Expression 
Omnibus, GSE68061). As suggested by the transcriptional analysis, exposure to 
10μM BW723C86 reduces the LPS-stimulated pro-inflammatory cytokine profile, 
albeit to a lower extent than the 5-HT7 receptor-PKA axis [16]. This result is remi-
niscent of the effect of BW723C86 on human dendritic cells, where high concentra-
tions of the agonist (300μM) are capable of abrogating the LPS-induced cytokine 
production and T cell-stimulatory activity of CD1a+ monocyte-derived dendritic 
cells [121]. The in vivo analysis of mouse microglia has provided definitive support 
for  the contribution of 5-HT2B receptor to macrophage polarization, because 
Htr2b−/− microglia is characterized by a more pro-inflammatory profile and exhibit 
elevated levels of inflammatory genes directly related to chemotaxis (Ccr2, Ccr3, 
Ccr5, Cxcr5) [99].

In agreement with the physio-pathological significance of the 5-HT2B receptor 
(see below), gene ontology analysis of the transcriptome of BW723C86-treated 
macrophages has revealed that BW723C86 modifies the expression of gene sets 
related to “Amyotrophic Lateral Sclerosis” “Heart Valve Development” and 
“Regulation of Myeloid Leukocyte Differentiation”. Although BW723C86 and 
serotonin share the capacity to modify the acquisition of polarization-specific genes 
during macrophage differentiation (SERPINB2, THBS1, ALDH1A2, STAB1, 
COL23A1, MMP12, CD1B) [98], a low overlap exists between the serotonin- and 
BW723C86-dependent transcriptomes, suggesting that engagement of 5-HT2B or 
5-HT7 receptors on human macrophages leads to different transcriptional outcomes. 
Unexpectedly, BW723C86 and serotonin activate the Aryl hydrocarbon Receptor 
(AhR), an effect prevented by 5-HT2B receptor antagonists. AhR is a ligand- 
dependent transcription factor that regulates biological responses to xenobiotics 
[154] and modulates immune and inflammatory responses [155], and whose activity 
in intestinal epithelial cells can be triggered by serotonin in a manner dependent on 
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SERT and independent on serotonin receptors [156]. The activation of AhR by 
BW723C86 not only extends the range of signalling pathways initiated upon 5-HT2B 
receptor engagement but suggests a potential role for AhR in the pathophysiological 
processes involving 5-HT2B receptor (see Sect. 7).

Comparison of the transcriptomes of macrophages exposed to BW723C86 in the 
presence and absence of SB204741 has also evidenced that a significant percentage 
of the BW723C86-induced gene changes could not be blocked by the 5-HT2B recep-
tor antagonist, suggesting that the widely used 5-HT2B receptor agonist BW723C86 
might exhibit 5-HT2B receptor-independent effects. Interestingly, the BW723C86- 
triggered transcriptional effects that are insensitive to the presence of SB204741 are 
related to osteoclastogenesis and, in fact, BW723C86 modulates the expression of 
osteoclast-specific genes and regulators of monocyte-to-osteoclast differentiation. 
The actual involvement of 5-HT2B receptor in the SB204741-insensitive BW723C86- 
induced deserves to be further clarified, especially because HTR2B gene expression 
in human macrophages is dependent on MAFB [125], which negatively regulates 
osteoclast generation through inhibition of FOS, MITF, and NFATc1 [157].

6  Physio-Pathological Consequences of 5-HT2B Receptor 
Engagement in Macrophages

In agreement with its ability to alter the macrophage transcriptome and limit the 
production of inflammatory cytokines, solid proofs of the functional consequences 
of 5-HT2B receptor engagement in macrophages have been obtained through the 
analysis of Htr2b-deficient microglia. Using two-photon microscopy, the group of 
Maroteaux has demonstrated that 5-HT2B receptor mediates the rapid motility of 
microglial processes towards serotonin in postnatal microglia, and that the lack of 
5-HT2B receptor determines the appearance of anatomical alterations of the ipsilat-
eral projecting area of retinal axons into the thalamus, thus implying that 5-HT2B 
receptor participates in brain maturation [99]. The use of Htr2b-deficient mice has 
also revealed the pathological relevance of 5-HT2B receptor expression in microglia. 
The expression of 5-HT2B receptor is elevated in mononuclear phagocytes in animal 
models of amyotrophic lateral sclerosis (ALS) [26], and is required for activation of 
mononuclear phagocytes during ALS. The elimination of 5-HT2B receptor leads to 
increased degeneration of mononuclear phagocytes and fragmentation of cellular 
processes, together with enhanced disease progression and reduced life span [26]. 
Importantly, these changes are accompanied by an altered gene expression profile, 
including genes associated with both pro-inflammatory (Nox2, Ccl4, Mhc2) and 
anti-inflammatory (Ym1, Tyrobp) microglial polarization, while the expression of 
the Trem2 gene, associated with neurodegeneration, is enhanced [26]. Even more 
relevant, the capacity of the 5-HT2B receptor to limit degeneration of spinal cord 
microglia and slow ALS progression has been confirmed in a large cohort of ALS 
patients, where the presence of a specific polymorphisms in the HTR2B gene (C 
allele, rs10199752) associates with increased HTR2B mRNA levels in spinal cord, 
reduced mononuclear phagocyte degeneration and longer survival [26].
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7  Potential Implications of the Expression of 5-HT2B 
Receptor in Macrophages

7.1  5-HT2B Receptor, Cell Proliferation and Wound Healing

The link between serotonin and cell proliferation has been known for a long time, 
and is more evident in organs like heart and liver, where high serotonin levels have 
pathological outcomes. Activation of the 5-HT2B receptor improves survival in small 
liver grafts transplantations [135] and reverses age-associated impairments in regen-
erative capacity [158]. Indeed, 5-HT2B receptor mediates, at least partly, the capac-
ity of serotonin to promote cell proliferation in numerous cell types and to upregulate 
the expression of growth factors like TGFβ1 [57, 159, 160], IGF-1 and HGF [24]. 
Given these antecedents, it is formally possible that the link between the 5-HT2B 
receptor and growth factors production might be also operative in macrophages. 
Macrophages are capable of secreting various serotonin-inducible proliferative fac-
tors, a capacity that is especially prominent upon anti-inflammatory/profibrotic 
polarization. In fact, gene expression profiling has revealed that serotonin triggers 
the expression of growth factors in M-CSF-polarized macrophages [98]. Therefore, 
the presence of 5-HT2B receptor on pro-tumoral TAM might contribute to the ability 
of serotonin to favour tumour growth [161–163], although the extent of the latter is 
still a matter of debate [164].

Wound healing is a second aspect that is worth mentioning regarding the influence 
of serotonin on macrophage polarization. Macrophages actively participate in 
wound healing [89], a process where platelets and serotonin are well-defined play-
ers [165]. During wound healing, platelet aggregation and serotonin release are rap-
idly followed by macrophage recruitment and release of pro-inflammatory cytokines 
in response to potentially damaging exogenous or altered endogenous products 
[165]. Therefore, it could be hypothesized that during wound healing, and acting via 
macrophage 5-HT2B receptor, platelet-derived serotonin might impair pro- 
inflammatory cytokine production and, concomitantly, enhance the release of 
growth factors fostering fibroblast/endothelial cell proliferation to restore tissue 
integrity and functionality.

7.2  5-HT2B Receptor-Initiated Signalling and Pulmonary 
Arterial Hypertension (PAH)

PAH is a progressive disorder caused by increased pulmonary artery pressure due to 
vasoconstriction, and characterized by pulmonary endothelial dysfunction and aber-
rant proliferation of various cell types (endothelial cells, smooth muscle cells, and 
pulmonary fibroblasts), all of which lead to right ventricle pressure overload, vascu-
lar remodelling and hypertrophy [166]. Although increased 5-HT2B receptor expres-
sion in pulmonary arteries associates with PAH in humans and animal models of 
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PAH [140], 5-HT2B receptor expression in bone marrow progenitors is needed for 
the development of both hypoxia or monocrotaline-induced PAH [11, 140]. In fact, 
blockade of 5-HT2B receptors with specific antagonists (SB204741, terguride, 
PRX08066, C-122, RS-12744) impairs pulmonary pressure and arterial wall thick-
ening in hypoxia- or monocrotaline-induced rodent models of PAH [11, 140, 167–
170]. Similarly, rat models of PAH induced by either monocrotaline or hypoxia and 
Sugen 5416 (SU5416, a potent inhibitor of VEGFR1 and VEGFR2) [171] can be 
prevented by RP5063 [172, 173], an antipsychotic drug with high affinity for DA2/3/4 
dopamine receptors and 5-HT2A/2B/7 receptor and moderate affinity for SERT.

Interestingly, the analysis of lungs from SU5416/hypoxia-treated animals has 
evidenced upregulation of AhR and increased expression of the AhR target gene 
CYP1B1 [174]. Besides, the AhR antagonist CH223191 can reverse both the ele-
vated right ventricular systolic pressure and the pulmonary vascular remodelling 
seen in SU5416/hypoxia-treated animals [175]. These results have led to the pro-
posal that AhR has a pathologic role in SU5416/hypoxia-induced PAH [175]. Since 
5-HT2B receptor is required for PAH development, our recent finding that 5-HT2B 
receptor agonists trigger AhR activation is in line with a pathological role of the 
5-HT2B-AhR link in PAH.

7.3  5-HT2B Receptor and Psychiatric Diseases

Although the underlying mechanisms are not completely understood, evidence 
now supports the implication of systemic inflammation in the aetiology of depres-
sion. Usually accompanied by increased pro-inflammatory cytokine levels (IL-2, 
TNF) and reduced levels of anti-inflammatory IL-4 and TGFβ1, Major Depressive 
Disorder (MDD) is triggered by IFN therapy in HCV-infected patients, and MDD 
symptoms improved during blockade of TNFα in rheumatoid arthritis patients 
[176]. Indeed, pro-inflammatory agents like LPS induce “sickness behaviour” [177, 
178], a set of depression-like symptoms (fatigue, anhedonia and sleep disturbances) 
which are secondary to increased levels of pro-inflammatory cytokines and altera-
tion of brain function by resident and blood-derived immune cells [179]. Similarly, 
vaccinations against virus [180] prompts depression-like symptoms and neuroin-
flammation that are also seen in diseases associated to excessive levels of TLR 
ligands (e.g., obesity/long-chain saturated fatty acids) [181, 182]. Interestingly, as 
major promoters of inflammatory responses, macrophages have long been linked to 
inflammation-induced depression (“Macrophage theory of depression”) [183] and, 
in fact, some forms of depression are now considered as a microglial disease [184, 
185].With this in mind, the modulatory effects of serotonin on macrophages during 
inflammatory responses might also be operative in the case of the behavioural and 
physiological depression-like symptoms that take place during the “sickness behav-
iour”. In fact, all the above-mentioned results suggest that PAMP receptor activation 
in peripheral macrophages triggers a low-grade inflammation and the subsequent 
acquisition of a partial pro-inflammatory polarization which would lead to the 
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appearance of “sickness behaviour” symptoms. Further, and in line with the current 
views of innate immunity memory [86], it is tempting to conjecture that the appear-
ance of “sickness behaviour” symptoms would be facilitated by macrophages previ-
ously “trained” by agents that promote a “low-grade” systemic inflammation.

At the molecular level, several facts support a role for macrophage polarization 
in the onset of depression-like symptoms and MDD. The cytokines produced after 
infection or TLR activation, specially type I IFN, enhance the expression and activ-
ity of the indoleamine 2,3-dioxygenase (IDO1), an enzyme that drives the produc-
tion of pro-depressive kynurenines and lowers tryptophan and serotonin levels 
[178]. Of note, IDO1 is preferentially expressed in response to agents (TLR ligands) 
or cytokines (TNF, type I IFN) that promote pro-inflammatory (M1) macrophage 
polarization, whereas factors that favour the acquisition of an anti-inflammatory 
macrophage polarization state (IL-10, IL-1Ra, IGF1) concomitantly downregulate 
the levels of pro-depressive brain proinflammatory cytokines. In this regard, anti- 
inflammatory M-CSF-conditioned macrophages exhibit a high MAFB-dependent 
expression of IGF1 [125], which suppresses inflammatory signalling [186], inhibits 
LPS- and TNFα-induced sickness behaviour, and exhibits antidepressant and anxio-
lytic activity [187, 188], thus suggesting that the IGF1´s antidepressant activity is 
associated to its anti-inflammatory ability. Very recently, “cAMP signalling path-
way” (which leads to CREB activation) and “Insulin secretion” (related to IGF1) 
have been identified as two of the gene sets associated to both MDD and response 
to antidepressants [189]. Based on these antecedents, it can be envisaged that 
serotonin- conditioned macrophage polarization would limit brain inflammation and 
the appearance of depression-like symptoms. On this subject, and further stressing 
the differences between human and mouse macrophages, murine macrophages do 
not induce the enzymes associated with tryptophan catabolism in response to proin-
flammatory signals [190], and even responses to glucocorticoids appear to be differ-
ent between human and mouse macrophages [191, 192].

The above predictions also fit with the known anti-depressive actions of SSRI 
and their ability to correct cytokine imbalance during inflammatory responses. 
SSRI, commonly used to treat depression and other psychiatric illnesses, exert a 
modulatory effect on the peripheral immune system, affecting cell proliferation, 
apoptosis and cytokine production [110, 111]. In fact, SSRI exhibit immunosup-
pressive effects in inflammatory bowel disease, rheumatoid arthritis and multiple 
sclerosis (reviewed in [193]), and can even alter the pro-inflammatory Th1:Th2 
ratio, reduce the Th17:Treg ratio, and increase TGFβ1 levels in patients with MDD 
[194] and in a mouse model of multiple sclerosis [102, 195, 196]. All these observa-
tions have led to increasing support for the therapeutic use of SSRI in inflammatory 
diseases. Interestingly, the 5-HT2B receptor appears to mediate the therapeutic activ-
ity of SSRI, whose long-term behavioural and neurogenic effects are abolished by 
inactivation of 5-HT2B receptors [112]. In fact, agonist stimulation of 5-HT2B recep-
tor mimics SSRI responses [112]. By analogy to MDD, and since tissue-resident 
microglia also play a crucial role in certain psychiatric pathologies (e.g. schizophre-
nia, bipolar disorders, autism) [178, 197–199], the ability of serotonin to modify the 
effector functions of macrophages poses the question of whether modulation of 
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microglia polarization by 5-HT2B receptors might also modulate neurodegenerative 
and neuropsychiatric pathologies.
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Chapter 7
Bone and Serotonin Receptor Type 2B

Corinne Collet and Amélie E. Coudert

Abbreviations

5-HTR Serotonin receptors
BMD Bone mineral density
HBM High bone mass
MSC Mesenchymal stem cell
NET Neuroendocrine tumor
OPG Osteoprotegerin
PAH Pulmonary artery hypertension
PGI2 Prostacyclin
PPAR-ß/δ Proliferator activated receptor ß/δ
RANK Receptor activator of NF-κB
RANKL RANK ligand
SERT Serotonin transporter
SSRI Serotonin selective reuptake inhibitor
TPH Tryptophan hydroxylase

1  Introduction

Bone remodeling is a cyclic and continuous physiological process ensuring the 
maintenance and renewal of the bone matrix. The bone mineralization is the process 
of laying down minerals on the protein matrix of bone. Calcium and phosphorus are 
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chief minerals found in the bone along with small amount of carbonate and magne-
sium. Osteoblasts are the responsible cells for bone deposition. They derive from 
mesenchymal stem cells and also regulate osteoclasts. Osteoclasts are  multinucleated 
cells responsible for bone resorption. Osteocytes are the most numerous cells pres-
ent in bone. They are formed from osteoblasts trapped in matrix, called osteoids, 
and derive from hematopoietic precursors common to the monocyte/macrophage 
lineage. Osteoblasts have a crucial role in maintaining the balance of bone forma-
tion and resorption. Osteoblasts secrete RANK ligand (RANKL), which binds to 
the Receptor Activator of NF-κB (RANK) receptor on pre-osteoclasts and thus 
induces their differentiation. Osteoblasts also secrete osteoprotegerin (OPG), a 
RANKL decoy receptor, which prevents RANK/RANKL interaction by binding to 
RANKL; hence avoiding osteoclast differentiation. Thus, the balance between 
RANKL/OPG production by osteoblasts determines osteoclast differentiation and 
activity.

2  Serotoninergic Receptors and SERT in Bone

First in vitro studies have reported the expression of serotonin receptors (5-HTR) 
and/or of a functional serotonin transporter (SERT) in primary bone cells or in bone 
cell lines [1]. Osteoblast cell lines express mainly 5-HT1AR, 5-HT2AR and 5-HT2BR 
protein and/or specific binding sites [1]. A proliferative action of serotonin on 
chicken osteoblasts, mimicked by a 5-HT2BR agonist, has been described [1]. This 
study was performed with a physiological concentration of serotonin (1–1000 nM) 
in medium that had not been serotonin depleted. In this model, the 5-HT2BR mRNA 
expression was demonstrated in osteocytes, osteoblasts, and periosteal fibroblasts, a 
population containing osteoblast precursor cells [2]. Besides, the analysis of the 
clonal murine osteocytic cell line, MLO-Y4, demonstrates expression of the SERT, 
the 5-HT1AR and 5-HT2AR by real-time RT-PCR and immunoblot analysis [3]. In 
addition, 5-HT regulates osteoclast differentiation through SERT and 5-HTRs [4, 
5]. In RAW cells, Battaglino et  al. [4] detected mRNA expression of 5-HT1BR, 
5-HT2BR and 5-HT4R. However, in osteoclast derived from murine spleen, 5-HT1BR, 
5-HT2AR and 5-HT2BR were found [5].

3  Serotonin Receptors and Osteoporosis

Osteoporosis is due to an imbalance between bone formation by osteoblasts and 
resorption by osteoclasts. Deciphering factors controlling bone formation is there-
fore of utmost importance for understanding and treatment of osteoporosis [6]. In 
vivo, the bone phenotype of mice with a global invalidation of the serotonin 2B 
receptor gene (Htr2b−/−) presented osteoporosis from 4 months of age [7]. These 
mice displayed significantly reduced bone formation, which was intensified in 
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18-month-old mice as it can be observed in senile human osteoporosis. In addition, 
osteoblasts of Htr2b−/− mice have reduced proliferation rate in the presence or 
absence of serotonin in the medium. These data signify that this receptor is able of 
both constitutive and paracrine activities. These results were in accordance with the 
data obtained by Locker et al. [8] on a mesoblastic cell line. The other 5-HT2AR and 
5-HT1AR binding sites on murine osteoblasts have no detectable effect on bone [8]. 
However, the administration of MDL11939, a selective 5-HT2AR antagonist, 
impaired bone formation in mice with no resorption modification, and are respon-
sible for reduced bone mass. In vitro, the pharmacological inhibition of 5-HT2AR 
signaling significantly decreased alkaline phosphatase activity in osteoblastic cells. 
These observations were confirmed by siRNA treatment against 5-HT2AR in 
MC3T3-E1 cells suggesting that 5-HT2AR signaling plays also a role in osteoblast 
differentiation [9].

To develop new drugs targeting serotonin/5-HT2BR in order to treat osteoporosis, 
the signaling pathways responsible for the osteoblast defect in Htr2b−/− mice was 
studied. The phospholipase A2-arachidonic acid pathway was found involved in this 
phenotype. Among different eicosanoids studied, osteoblasts without 5-HT2BR were 
associated with a ten-fold over-production of prostacyclin (PGI2). Also, a specific 
prostacyclin synthase inhibitor (U51605) rescued totally osteoblast aggregation and 
matrix mineralization in Htr2b−/− osteoblasts without having any effect on WT 
osteoblasts. Prostacyclin is the endogenous ligand of the nuclear peroxisome prolif-
erator activated receptor ß/δ (PPAR-ß/δ), and its inhibition in Htr2b−/− cells rescued 
totally the alkaline phosphatase and osteopontin mRNA levels, cell-cell adhesion, 
and matrix mineralization. These findings revealed a coupling between PPAR-ß/δ 
and 5- HT2BRs in bone that might also occur in other tissues, since the plasma level 
of PGI2 was also increased in Htr2b−/− mice [10]. In heart, 5-HT2BRs regulate car-
diac development [11] and function and PPAR-ß/δ is an essential transcription fac-
tor in the myocardial metabolism [12]. Moreover, prostacyclin treatment improves 
pulmonary artery hypertension (PAH) patients [13], suggesting that the 5-HT2BR- 
prostacyclin/PPAR-ß/δ coupling could also be involved in PAH. 5-HT2BR activation 
appears to play a major role in this disorder, and Htr2b−/− mice do not develop PAH 
after hypoxia [14].

4  SSRIs and Osteoporosis

Central serotonin signaling is a frequent therapeutic target because of the beneficial 
role of pharmaceutical agents that antagonize SERT, such as serotonin selective 
reuptake inhibitors (SSRIs), as fluoxetine or paroxetine, in major depressive disor-
ders and other affective conditions. Serotonin needs its membrane transporter, 
SERT, to enter the cells. Several studies have revealed the existence of a functional 
SERT in both osteoblast and osteoclast cell lines [4, 15]. The first in vivo study to 
investigate the serotoninergic system and bone was that of Warden et al. [16]. They 
reported a significant deficit in bone formation in SERT knockout mice and also in 
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mice treated with fluoxetine. This bone phenotype was only related to a decrease in 
bone formation. Furthermore, fluoxetine inhibited osteoblast differentiation and 
mineralization in two different mouse models of bone repair. Cessation of the 
 fluoxetine treatment led to complete reversion of the repair process. In conclusion, 
fluoxetine negatively impacts fracture healing [17]. This observation was also 
reported with the SSRI, Sertraline, that also impairs bone wound healing through 
disruption of bone repair and regeneration [18]. Clinically relevant doses of fluox-
etine induce only moderate bone architecture changes in rats [19]. A slightly dimin-
ished bone quality of femurs was found that was reflected in a lower bone tissue 
strength, compensated by changes in bone geometry [18]. Besides, fluoxetine has a 
negative effect on osteoprogenitor cells derived from mesenchymal stem cells 
(MSCs) extracted from rat adipose tissue and led to apoptosis independently of 
serotonin levels in the culture supernatant. Fluoxetine exerted a direct inhibitory 
effect on bone cells via an apoptosis-dependent pathway. Furthermore, in the pres-
ence of fluoxetine, expression levels of serotonergic genes, including 5-HT1BR, 
5-HT2AR and 5-HT2BR and SERT, were down-regulated [20]. Alongside these 
experimental works, several studies have evaluated the impact on osteoporosis of 
SSRIs, widely used to treat depression. In contrast to the undoubted phenotype 
observed in growing mice, studies evaluating bone density in adult patients treated 
with SSRIs have provided less conclusive [21–23] or inconclusive [24] studies. The 
recent objective meta-analyze showed that the use of SSRIs was not associated with 
lower or higher bone mineral density (BMD) [25]. Also, with regard to fractures, 
most of the data showed a significant increase in odd ratio for fractures in patients 
treated with SSRIs [26]. Moreover, study evaluating bone remodeling markers in 
patients treated with an SSRI suggested that this treatment reduces bone formation 
but not resorption [27]. In fact, the role of SSRI in osteoporosis needs more longi-
tudinal studies in various treated patients to be conclusive.

5  Serotonin and Bone Remodeling

Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in serotonin biosynthe-
sis. There are two isoforms of this enzyme: TPH2 mainly expressed in brain, and 
TPH1 expressed elsewhere in the body. Serotonin is synthesized by TPH1 in the 
enterochromaffin cells of the gastrointestinal tract and accumulates in platelet-dense 
granules, which constitute the body’s main serotonin reservoir. There are no seroto-
nergic nerves in the bone, nor in any other peripheral tissue except the gut. Serotonin 
stored in the platelets is not biologically active in the absence of platelet activation. 
Platelets do not synthesize serotonin, but it is internalized by the SERT, stored in 
dense granules, and released during platelet activation. The action of serotonin in 
bone has been the object of controversies.

In one hand, the Yadav et al. [28] paper was principally based on TPH1 gene 
invalidation in the gut of mice in which the different serotonin receptors in osteo-
blasts had been invalidated. These authors observed an increase in bone density in 
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mice in which the 5-HT1BR had been specifically inactivated in the osteoblasts, 
whereas binding sites for this receptor could not be detected in osteoblast primary 
cultures. For these authors, the gut-derived serotonin contributes to ‘free’  circulating 
serotonin levels and is a modulator of bone mass and quality; serotonin produced in 
the gut decreased bone formation via the osteoblast 5-HT1BRs [29]. Besides, there 
is an association between serotonin and fractures, especially hip fractures in adult 
men. The authors found that high levels of serotonin predict an increased risk for 
nonvertebral osteoporotic fractures To note that the study was realized from a large 
cohort of 950 men (aged 69 to 81 years) excluding SSRI users from analysis [30]. 
Their results were in accordance to Yadav et al. publication. Moreover, Yadav et al. 
[31] also showed that a specific TPH1 inhibitor, LP533401, could increase bone 
density through an anabolic action that was as potent as that of teriparatide in ovari-
ectomized mice and rats. Cui et  al. [32] observed that the inhibitor of TPH1, 
LP923941, which is an enantiomer of LP533401 lowering circulating serotonin, did 
not change the bone density of the mice. Concretely, it is not convincing to use a 
specific TPH1 inhibitor to treat osteoporosis due to the large effects of serotonin on 
other tissues.

In other hand, in growing Tph1−/− mice, bone mass was increased, but this phe-
notype was resolved at maturity; the adult phenotype was in accordance with the 
data of Cui et al. [32] although the authors did not study bone remodeling in these 
mice. In works of Chabbi-Achengli et  al. [5], bone formation was unchanged in 
growing mice and reduced in mature mice, which explains the elevated bone density 
seen in the growing mice that had returned to normal at maturity. In both juvenile 
and mature mice, there was evidence of decreased bone resorption, as evaluated by 
both bone histomorphometry and D-pyridinoline, a biochemical marker of bone 
resorption. In a functional study, bone-marrow of Tph1−/− mice transplanted at birth 
with wild-type cells retarded the deficit in bone resorption and proved that an intrin-
sic osteoclast defect was responsible for the osteoclast phenotype [5]. Moreover, 
osteoclast differentiated with M-CSF and RANKL from primary spleen mouse cells 
were able to synthesize serotonin and this was the sole source of serotonin in the 
bone microenvironment. Serotonin has direct stimulatory effect on bone formation 
pathways and TPH1 is expressed in mouse osteoblasts and osteoclasts, indicating 
their ability to produce serotonin.

Besides, serotonin enhanced the proliferation of human mesenchymal stem cells 
and primary osteoblasts and 5-HT2AR expression. Serotonin increased OPG and 
decreased RANKL secretion from osteoblasts, suggesting a role in osteoblast- 
induced inhibition of osteoclast differentiation [5]. The local serotonin synthesis 
was increased by RANKL. Consequently, serotonin increases osteoclastogenesis by 
a paracrine/autocrine mechanism. Furthermore, osteoclast synthesis of serotonin is 
sufficient to induce an increase in osteoblast proliferation. However, this hypothesis 
cannot explain why normal bone formation was maintained in growing mice despite 
the decreased bone resorption in Tph1−/− mice [5]. In addition, the intracellular con-
centration of serotonin depends on two mechanisms. On one hand, osteoclasts can 
produce serotonin from active TPH1 and, on the other hand, the role of SERT is to 
uptake the serotonin from extracellular area. The function of intracellular serotonin 
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is unknown but these cells possess the enzyme transglutaminase, as pancreatic 
β-cells [33] or platelets, that can activated by serotonin [34]. This enzyme can cova-
lently link serotonin to the glutamine residue of small GTPase to form a 
 glutamyl- amide bond (serotonylation). This process allows the activation of these G 
proteins. Activated small GTPases have been shown to regulate many processes in 
intracellular trafficking, such as vesicle formation, movement, and membrane 
fusion [35]. Thus, there is a direct role for serotonin, independent from its contribu-
tions to cellular signaling, in the mediation of permissive gene expression [36]; it 
has been proposed that serotonylation plays a major role in osteoclast.

6  Controversial Role of LRP5

The Wnt LRP5/β-catenin signaling pathway plays an essential role in the regulation 
of osteoblast progenitor proliferation, differentiation and survival [37]. Humans 
with specific missense gain-of-function mutations in the Wnt co-receptor LRP5 
have a high bone mass (HBM) whereas loss-of-function mutations in this gene 
cause osteoporosis idiopathic even osteoporosis pseudoglioma [38]. Karsenty et al. 
[28] hypothesized that the major role of LRP5 is not owing to the expression of this 
gene in cells of the osteoblast lineage, but it is dependent on the synthesis of sero-
tonin by the gut, which is regulated by LRP5. They reported that duodenal Tph1 
expression and blood serotonin are both lower in mice carrying HBM-allele than in 
wild-type mice. At opposite, in Lrp5−/− mice, TPH1 was overexpressed in the duo-
denum and bones leading to an elevated circulating levels of serotonin. Moreover, 
the authors found that Lrp5−/− mice treated with a selective and irreversible inhibitor 
of TPH (parachlorophenylalanine), exhibited reduced circulating serotonin levels 
and normalization of their skeletal phenotype. These drastic treatments provide pre-
liminary evidence that elevated circulating serotonin contributes to the decreased 
bone formation and mass observed in Lrp5−/− mice [28]. These authors pointed out 
that the TPH1 enzyme is regulated by the Lrp5 gene [29]. However, it remains 
unknown how LRP5 affects TPH1 expression in enterochromaffin cells of the gut, 
with no identified ligand for gut, LRP5 mediates a currently unknown molecular 
pathway leading to altered TPH1 expression. It also remains to be shown how sero-
tonin synthesized in the gut reaches bone cells to activate 5-HTRs.

Part of the controversy was based on the measurement of the serum levels of 
serotonin that mainly reflects the number of platelets as the concentration of sero-
tonin in individual platelets is fairly constant. The amount of free serotonin in 
platelet- poor plasma is extremely low, between 2 and 15 nM in mice, whereas sero-
tonin content in whole blood is 50,000 fold higher. As expected, the authors found 
that high serotonin concentration (50 μM) inhibited the proliferation of osteoblasts 
from both Lrp5−/− and wild-type mice. However, the concentrations used were 
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largely higher than physiological concentrations, which led normally to osteoblast 
proliferation and osteoclast differentiation [10]. Besides, according to Cui and col-
leagues [32], the HBM-causing Lrp5 alleles in mice did not alter TPH1 mRNA 
expression in the duodenum or serotonin levels in the blood. These results were 
confirmed in human with the p.Gly171Val and p.Asn198Ser high-bone mass muta-
tion [39]. At opposite, Karsensty’s team obtained a low level of serotonin in  presence 
of HBM-causing Lrp5 alleles in mice [29] and human [40]. The difference between 
the results of the two teams is owing to the techniques of serotonin measurements 
and the analysis of the expression pattern of the HBM-allele. Interestingly, the 
patients with neuroendocrine tumors (NETs) frequently have markedly elevated 
serotonin levels. The small number of patients who presented NETs with higher 
serotonin metabolites had a lower BMD at the hip as compared to controls [41]. 
These data need to be confirmed with a large cohort including for example fractures 
as a clinical outcome.

7  Zebrafish Model

Interestingly, the zebrafish model has led to various information about the role of 
serotonin in bone [42]. Indeed, the zebrafish model is a vertebrate organism that can 
regenerate its fins after amputation [42]. This regenerative process involves a local 
synthesis of serotonin in the wound. The intracellular accumulation of serotonin 
was only induced at the initiation of the fin regeneration. After a transient synthesis 
of serotonin, it was no longer present in the growing tissue. The expression of two 
serotonin synthesizing enzymes, TPH1a and TPH1b in the blastema suggested the 
local production of this monoamine. However, neither the depletion of serotonin by 
chemical inhibition of TPH, nor the ectopic administration of this monoamine 
affected fin regeneration, indicating that serotonin was not the limiting actor of the 
fin regeneration. Moreover, it seems that the presence of serotonin during regenera-
tion depends on fibroblast growth factor and retinoic acid signaling [42]. 
Nevertheless, physiological serotonin production is favorable for bone [42].

8  Conclusion

In conclusion, serotonin, its receptors (5-HT1AR, 5-HT2AR and 5-HT2BR) and its 
transporter SERT play a major role in bone remodeling at osteoclast and osteoblast 
levels. In osteoclast, a probable complete serotoninergic system exists but further 
experiments are requested to define the role of each actors. In osteoblast, prolifera-
tion and differentiation could be dependent or independent of serotonin. Taken 
together these data suggest is the existence of a closed communication between 
osteoclast and osteoblast around the serotoninergic system.
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1  Introduction

Serotonin, or 5-hydroxytryptamine (5-HT) is known as a classical monoamine 
neurotransmitter; its primary release in the enteric nervous system regulates 
intestinal movement. However, it is also found in the central nervous system (CNS), 
where it plays various physiological and psychological functions involved in mood, 
appetite, sleep, learning and memory. Its deficiency is associated with many 
psychiatric disorders [1]. Researchers have paid much attention to its function in the 
CNS, but only 1–2% of the total amount of serotonin is produced by neurons in the 
brain, so most serotonin is detected in peripheral tissues and has other important 
functions [2].

About 90% of serotonin is secreted from the enterochromaffin cells of the 
gastrointestinal tract [3]. 5-HT is also released from many different types of immune 
cells and platelets and is related to inflammatory responses. Growing evidence has 
suggested that 5-HT is a pro-inflammatory and pro-nociceptive agent that can cause 
pain and hyperalgesia by activating various subtypes of 5-HT receptors present in 
primary afferents [4–8].

The 5-HT receptors are classified into seven subtypes, some with more than one 
receptor; for example, 5-HT1 has 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F 
receptors and 5-HT2 has 5-HT2A, 5-HT2B, and 5-HT2C receptors [9]. All 5-HT recep-
tors are G-protein coupled receptors, except for 5-HT3, which is an ionotropic 
receptor. Different subtype receptors on nociceptors have distinct mechanisms in 
regulating 5-HT–induced pain or hyperalgesia [3, 5, 6, 10, 11]. In this chapter, we 
focus on the roles of the 5-HT2B receptor in various types of pain and how it regu-
lates pain.

2  5-HT2B Receptor Participates in Different Pain Models

The role of the 5-HT2B receptor in nociception has been rarely investigated and 
discussed, mainly because the presence of 5-HT2B receptor in dorsal root ganglia 
(DRG) is controversial. No 5-HT2B or 5-HT2C receptor mRNA was detected in rat 
DRG [12], whereas Nicholson et  al. [13] found 5-HT2B but not 5-HT2C receptor 
present in rat DRG. Lin et al. [14] confirmed the presence of 5-HT2B receptors in 
mouse DRG. Reflecting its presence in DRG, later studies demonstrated the involve-
ment of the 5-HT2B receptor in various types of pain, probably with distinct roles.

Peripheral administration of the 5-HT2B/2C receptor antagonist SB206553 and 
5-HT2B receptor antagonist RS127445 inhibited 5-HT–induced mechanical hyperal-
gesia but not thermal hyperalgesia in the mouse hind paw [14, 15]. Peripheral injec-
tion of the 5-HT2B receptor agonist BW732C86 induced a similar nocifensive 
behavior as 5-HT, thus confirming that the peripheral 5-HT2B receptor mediates 
5-HT–induced mechanical hyperalgesia. In a formalin model, intrathecal or 
peripheral injection of the 5-HT2B receptor antagonist RS127445 reduced 
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formalin- induced flinching behavior in the second phase, which suggests that both 
peripheral and spinal 5-HT2B receptors may participate in the later phase of pain 
transduction [16]. Oral delivery of the 5-HT2B receptor antagonist FRI0011 reduced 
pain induced by systemic lipopolysaccharide injection [17]. FRI0011 also reduced 
production of inflammatory cytokines (interleukin 6 and tumor-necrosis factor α) 
[17]. Therefore, 5-HT2B receptor may regulate inflammatory cytokines to affect pain.

5-HT2B receptor was also found involved in neuropathic pain. In L5/L6 nerve 
injury, 5-HT2B receptor expression was enhanced in the ipsilateral dorsal part of the 
spinal cord. Intrathecal injection of the 5-HT2B receptor antagonist RS127445 
reduced the increased expression of 5-HT2B receptor and attenuated tactile allodynia 
[18]. Spinal superfusion of the 5-HT2B receptor selective antagonist SB204741 
bilaterally reduced thermal and mechanical allodynia at day 2 after spinal nerve 
ligation (SNL) [19], which suggests that spinal 5-HT2B receptor, unlike peripheral 
5-HT2B receptor, facilitates pain transduction induced by both mechanical and ther-
mal stimuli. After SNL, protein kinase C γ (PKCγ) was upregulated and the phos-
phorylation of the N-methyl-d-aspartate receptor (NMDAR) subunit was enhanced 
in rat dorsal horn neurons. Blockage of the 5-HT2B receptor by SB204741 decreased 
PKCγ upregulation and NMDAR phosphorylation [19]. The 5-HT2B–Gq–PLCβ 
pathway may activate PKCγ to promote NMDAR phosphorylation in the spinal 
cord. In contrast, Urtikova et al. [20] found that intrathecal injection of the 5-HT2B 
receptor agonist BW723C86 induced mechanical and cold allodynia caused by 
chronic constriction injury of the sciatic nerve, which could be reversed by co- 
injection of RS127445. Whether the 5-HT2B receptor plays a pro- or anti- nociceptive 
role in neuropathic pain remains debated.

In addition, oral administration of the 5-HT2B receptor antagonist RS127445 
inhibited visceral hypersensitivity provoked by restraint stress [21]. The 5-HT2B/2C 
receptor agonist meta-chlorophenylpiperazine induced dural plasma protein extrav-
asation, an animal model of migraine, in guinea pigs [22]. The 5-HT2B receptor 
antagonist could inhibit meta-chlorophenylpiperazine–induced dural plasma pro-
tein extravasation, which suggests that 5-HT2B receptor may have an important role 
in generating migraine pain [23].

These lines of evidence suggest that both peripheral and spinal 5-HT2B receptor 
is involved in transduction of nociceptive signals in different types of pain models. 
5-HT2B receptor seems to play a nociceptive role in different pain models, except for 
a certain type of neuropathic pain. Although 5-HT2B receptor activation controls the 
Gq/G11–phospholipase Cβ (PLCβ) pathway, peripheral and spinal 5-HT2B recep-
tor–mediated signaling targets different types of PKC and downstream molecules to 
regulate pain sensation.
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3  Roles of 5-HT2B Receptor in the Periphery

Lin et al. [14] previously demonstrated that 5-HT–induced mechanical hyperalgesia 
was attributed to 5-HT2B receptor activation. The later study by Su et  al. [15] 
provided detailed mechanisms that 5-HT2B receptor activation controls the Gq/G11–
PLCβ–PKCε pathway to modulate mechanical hyperalgesia in both IB4-negative or 
-positive neurons.

Two classes of small unmyelinated C-fiber nociceptors are responsible for 
transduction of noxious stimuli. The peptidergic C-fiber expresses the neuropeptides 
calcitonin gene-related peptide (CGRP) and substance P (SP), and the non-
peptidergic C-fiber binds isolectin B4 (IB4-positive) and expresses glial cell-derived 
neurotropic factor receptor (GDNF) and P2X3 receptor [24]. IB4-negative neurons 
have a lower action potential (AP) threshold and shorter AP duration than IB4-
positive neurons [25, 26]. 5-HT injection enhanced evoked intracellular calcium 
signals in IB4- negative but not IB4-positive neurons [15]. Thus, IB4-negative neurons 
may be the major neurons that respond to 5-HT and transduce the 5-HT signal to 
induce mechanical hyperalgesia. Blocking 5-HT2B receptor, PLCβ or PKCε before 
5-HT injection inhibited the enhancement of calcium signals in IB4-negative 
neurons. This finding agreed with behavioral results showing that blocking the 
5-HT2B–PLCβ–PKCε pathway inhibited mechanical hyperalgesia.

IB4-positive neurons with increased density of tetrodotoxin-resistant (TTX-R) 
Na+ channels and longer AP could result in more efficient calcium influx into the 
presynaptic terminal, for increased transmitter release [27]. IB4-positive neurons 
mediating a more reliable synaptic connection may participate in maintenance of 
hyperalgesia. Despite no increase in intracellular calcium signals in IB4-positive 
neurons after 5-HT injection, the number of the IB4-positive neurons responding to 
5-HT was increased [15]. As expected, blocking 5-HT2B receptor, PLCβ or PKCε 
before 5-HT injection also inhibited the calcium signals in IB4-positive neurons.

3.1  Induction of Mechanical Hyperalgesia: Involvement 
of Transient Vanilloid Receptor 1 (TRPV1) in 5-HT2B 
Receptor–Mediated Signaling in IB4-Negative Neurons

In IB4-negative neurons, 5-HT–induced calcium signals were completely inhibited 
by removal of extracellular calcium, which suggests that calcium signals are mainly 
due to calcium influx through channels. Su et al. [15] confirmed the participation of 
TRPV1 in 5-HT signaling transduction in IB4-negative neurons. TRPV1, a capsa-
icin, heat and proton receptor, is widely expressed in sensory neurons, especially in 
peptidergic C-fibers [28–30]. After 5-HT injection, the capsaicin-evoked calcium 
signals were significantly enhanced in IB4-negative neurons. Administration of a 
TRPV1 antagonist before 5-HT injection in mice inhibited 5-HT–induced 
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mechanical hyperalgesia [15]. Consistent with the results, 5-HT–induced mechanical 
hyperalgesia was absent in mice lacking the TRPV1 gene.

We have no evidence demonstrating that TRPV1 can be activated by 5-HT 
directly, although TRPV1 function is enhanced by PKA and PKC phosphorylation 
[31, 32]. How 5-HT2B receptor activates TRPV1 is unclear. Besides proton, heat, 
and capsaicin activation, TRPV1 can also be activated by anandamide (AEA), an 
endogenous fatty-acid neurotransmitter generated from 
N-acylphosphotidylethanolamides via PLC-mediated hydrolysis [33]. Thus, activa-
tion of a 5-HT2B receptor may mediate PLC leading to AEA formation to activate 
TRPV1. In addition, the arachidonic acid (AA) metabolite products 12- and 
15-HEPETE and 5-HETE are TRPV1 agonists [34]. 5-HT2B receptor activation acti-
vates phospholipase A2, thus leading to the neuronal secretion of AA. Alternatively, 
TRPV1 is activated or inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2) 
[35], so 5-HT2B receptor activation likely causes PIP2 cleavage, relieving PIP2-
dependent inhibition on TRPV1. Accordingly, 5-HT2B receptor activation may 
relieve PIP2-dependent inhibition of TRPV1 and generate the endogenous ligands 
AEA or AA to activate and regulate TRPV1 function, thereby resulting in mechani-
cal hyperalgesia in the periphery.

C-fibers are excited by noxious stimuli and also by pruritic compounds [36]. 
5-HT can induce pain and itch sensations in mice and humans [37]. A subset of 
5-HT–sensitive neurons is sensitive to histamine and chloroquine, involved in itch 
perception [38]. 5-HT2 receptors respond to 5-HT–induced itch by activating the 
Gq/G11–PLC pathway, which leads to mitogen-activated protein kinase and PKC 
activation [39]. GPCR–TRP channel pathways are the major pathways for itch 
responses. 5-HT–induced mechanical hyperalgesia is also mediated by the 5-HT2B–
TRPV1 pathway. The similarity of the GPCR–TRP channel axis between pain and 
itch sensations suggests that mechanisms used in pain sensations are possibly 
involved in itch sensations.

3.2  Maintenance of Mechanical Hyperalgesia: Involvement 
of 5-HT3 in 5-HT2B Receptor–Mediated Signaling 
in IB4-Positive Neurons

In the study by Su et al. [15], 5-HT–induced calcium signals in IB4-positive neurons 
were partially sensitive to removal of extracellular calcium, which suggests that the 
calcium signals may be from channels in both the plasma membrane and endothe-
lium reticulum (ER). The 5-HT3 receptor antagonist granisetron specifically inhibits 
5-HT–induced calcium signals in a small set of IB4-positive population, which 
explains the sensitivity of these neurons to removal of extracellular calcium. Thus, 
IB4-positive neurons have two distinct pathways for response to 5-HT stimulation: 
one is the 5-HT2B–PLCβ–PKCε pathway and the other is the 5-HT2B–PLCβ–
PKCε/5-HT3 receptor pathway.
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5-HT3 receptor is found in pain-related regions and is involved in pain processing 
[40, 41]. Administration of a 5-HT3 receptor antagonist in mice did not inhibit 
mechanical hyperalgesia but shortened the duration of mechanical hyperalgesia 
[14], which suggests that 5-HT3 receptor may affect modulation of the maintenance 
of hyperalgesia. Given that IB4-positive neurons can exhibit sustained responses but 
not transient or mixed responses to low pH [42], the responses in granisetron- 
sensitive IB4-positive neurons are thought to be responsible for extending the 
duration of 5-HT–induced mechanical hyperalgesia.

3.3  5-HT2B–Gq–PLCβ–PKCε Pathway Modulates 
Sodium Channels

Although calcium signals regulated by 5-HT2B receptor are critical for 5-HT–
induced mechanical hyperalgesia, sodium currents may also have important roles in 
mechanical hyperalgesia. Nav1.8 (a TTX-R channel) is related to inflammatory 
mechanical hyperalgesia [43, 44]. 5-HT increases TTX-R INa currents [45] and PKC 
can modulate these currents [46, 47]. Therefore, 5-HT2B–Gq–PLCβ–PKCε signal-
ing could regulate voltage-gated Na+ channels to affect mechanical hyperalgesia.

4  Roles of 5-HT2B Receptor in the Spinal Cord

Peripheral inputs or abnormality and also central neuroplasticity contributes to the 
establishment and maintenance of chronic pain. Once the central sensitization 
occurs, painful sensations are generated even in the absence of the noxious stimulus 
[48]. The central sensitization in the spinal dorsal horn can be attributed in part to 
an excitatory amino acid, glutamate [49, 50]. Peripheral injury or inflammation sen-
sitizes dorsal horn neurons and increases their responsiveness to glutamate applica-
tion [51, 52], which was reduced after the administration of glutamate receptor 
antagonists [53, 54]. Intrathecal injection of NMDA leads to hyperalgesia, which 
can be reversed by application of an NMDA antagonist [55]. The NMDA antagonist 
MK-801 can reduce the hyperalgesia that develops in rats with adjuvant-induced 
inflammation [56] or reduce the inflammation-induced expansion of the receptive 
field of spinal nociceptive neurons [57]. Peripheral inflammation elevates levels of 
phosphorylated NMDA receptors in the spinal dorsal horn [58, 59].

Aira et al. [19] demonstrated that spinal 5-HT2B receptors are involved in SNL- 
induced mechanical and thermal hyperalgesia. PKCγ was upregulated and the 
phosphorylation level of the NMDAR subunit enhanced in rat dorsal horn neurons 
after SNL.  Spinal superfusion of the 5-HT2B receptor antagonist SB204741 
decreased the PKCγ upregulation and NMDAR phosphorylation level. Peripheral 
injury likely releases 5-HT to activate 5-HT2B–Gq–PLCβ signaling, which activates 
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PKCγ to further phosphorylate NMDAR, leading to hyperalgesia. Unlike peripheral 
5-HT2B receptor controlling mechanical hyperalgesia, spinal 5-HT2B receptor 
regulates both mechanical and thermal hyperalgesia. 5-HT2B receptor targeting a 
distinct PKC in the periphery and spinal cord may explain the differences. 
Alternatively, in the periphery, 5-HT2B receptor may be located in neurons that 
receive mechanical stimuli.

5  Outlook and Prospects

Although 5-HT2B receptor may mediate distinct mechanisms in various types of 
pain, the study of 5-HT-induced pain provides several insights for the role of 5-HT2B 
receptor in the periphery: (1) 5-HT2B receptor mediates mechanical hyperalgesia but 
not thermal hyperalgesia; (2) 5-HT2B receptor mediates distinct mechanisms in pep-
tidergic and non-peptidergic nociceptors; (3) the 5-HT2B–Gq–PLCβ–PKCε–TRPV1 
axis in peptidergic neurons contributes to inducing mechanical hyperalgesia; (4) the 
5-HT2B–Gq–PLCβ–PKCε–5-HT3 axis in non-peptidergic neurons participates in 
maintenance of hyperalgesia; and (5) the GPCR–TRP channel axis is also used in 
pain sensation. 5-HT2B receptor located at peripheral or spinal loci may activate 
distinct types of PKCs to regulate nociceptive transduction: (1) in the periphery, 
5-HT2B receptor mediates mechanical hyperalgesia only but in the spinal cord, it 
regulates both mechanical and thermal hyperalgesia, and (2) in the periphery, 
5-HT2B–Gq–PLCβ signaling activates PKCε to regulate TRPV1 or 5-HT3. In the 
spinal cord, 5-HT2B–Gq–PLCβ signaling activates PKCγ to regulate 
NMDAR. Accordingly, these lines of evidence support 5-HT2B receptor as a poten-
tial pain target and can facilitate the development of therapeutic drugs.
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Chapter 9
5-HT2B Receptor, the Heart and Blood 
Vessels

Laurent Monassier

Abbreviation

5-HT 5-hydroxytryptamine
Ang II Angiotensin II
ANT-1 Adenine nucleotide translocator
BMP Bone morphogenic protein
BNP Brain natriuretic peptide
CGRP Calcitonin gene-related peptide
DOCA/salt Deoxycorticosterone acetate and salt
EGFR Epidermal growth factor receptor
EMT Endothelial-mesenchymal transformation
ERK1/2 Extracellular signal-regulated kinase
MMPs Metalloproteases
NOS NO synthase
NOX NAD(P)H oxidases
PI3K Phosphatidylinositol-3 kinase

1  Introduction

The first description of serotonin effects was in the cardiovascular field, a long time 
before its identification as 5-hydroxytryptamine (5-HT). In fact, physiologists 
observed at the end of nineteenth century, that a substance present in serum was 
acting on heart and vessels. The German scientist Weiss showed in 1896 that intra-
venous injection of serum into an animal caused an increase in breathing and heart 
rate, followed by a rapid decrease in blood pressure leading eventually to death by 
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shutdown of respiratory system [1]. In 1918, some others pointed out that uncoagu-
lated blood or citrated plasma were not vasoconstrictors, while citrated serum or 
blood platelet extracts (but not from leucocytes or erythrocytes) were clearly vaso-
pressors [2]. In the early 1930s, a substance contacting smooth muscles was isolated 
from intestinal enterochromaffin cells and called enteramine [3]. Finally, in late 
1940s, Page, Green and Rapport isolated a vasoconstrictor substance that they 
called serotonin before it was identified as 5-HT [4, 5].

Serotonin can activate numerous receptors. This large diversity of targets explains 
the complexity of the cardiovascular effects of this transmitter [6]. Concerning the 
5-HT2B receptor, its low level of expression in healthy cardiovascular tissues 
explains that its physiological and pathophysiological functions are still misunder-
stood. Nevertheless, new insights were recently provided using mice knockout for 
this receptor, Htr2b−/−, that revealed the crucial contribution of this receptor to car-
diac development (see Chap. 2), cardiac remodeling and coronary vasomotion. In 
this chapter, we will review the current knowledge concerning the role of the 5-HT2B 
receptor in adult heart and vessels.

2  Serotonin, the 5-HT2B Receptor in Cardiac Hypertrophy 
and Fibrosis

2.1  Left-Ventricular Hypertrophy

5-HT2A and 5-HT2B receptors are both expressed by cardiomyocytes. If their role in 
myocardial physiology is largely unknown, they are implicated in cardiac hypertro-
phy and failure. Surprisingly, despite a similar canonical coupling, only the 5-HT2A 
receptor activation affects cardiac contractility by triggering positive inotropic 
responses [7]. In fact, 5-HT2B receptors do not affect hemodynamics but appear 
involved in myocardial hypertrophy. Patients with congestive heart failure demon-
strate an overexpression of 5-HT2B receptors that is positively correlated with 
plasma cytokine and norepinephrine concentrations [8]. This receptor could be a 
major target of circulating 5-HT, plasma concentrations of the messenger being 
increased in heart failing patients and in animal studies with cardiac hypertrophy 
induced by aortic banding. Both 5-HT2A and 5-HT2B receptors are expressed at the 
cardiomyocyte cell surface and were implicated in cardiac hypertrophy and failure. 
The stimulation of 5-HT2A receptors induces positive inotropic responses [7], but 
5-HT2B receptor activation does not elicit any contractile response. An impaired 
positive inotropic response to the β-adrenergic receptor agonist dobutamine was 
identified in Htr2B

−/− cardiomyocytes as a probable consequence of chronic left- 
ventricular dysfunction in these animals [9].

If the absence of 5-HT2B receptors leads to ventricular hypoplasia, Nebigil et al. 
[10] hypothesized that 5-HT via this receptor could act as a surviving factor for 
cardiomyocytes. These authors demonstrated that 5-HT via the Gq-coupled 5-HT2B 
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receptor is antiapoptotic. It protects cardiomyocytes against serum deprivation-
induced apoptosis as manifested by DNA fragmentation, nuclear chromatin con-
densation, and TUNEL labeling and prevents cytochrome c release and caspase-9 
and -3 activation via cross-talks between phosphatidylinositol-3 kinase (PI3K)/Akt 
and extracellular signal-regulated kinase (ERK1/2) signaling pathways. The mecha-
nisms underlying this protection involves an activation of ERK kinases to inhibit 
Bax expression induced by serum deprivation and a stimulation via PI3K/Akt of 
NF-kB that is required for the regulation of the mitochondrial adenine nucleotide 
translocator (ANT-1). In parallel to these biochemical studies, ultrastructural analy-
sis in Htr2b−/− mice heart revealed pronounced mitochondrial defects in addition to 
altered mitochondrial enzyme activities (cytochrome oxidase and succinate dehy-
drogenase) and ANT-1 and Bax expressions. Serotonin acts thus as a surviving fac-
tor implicated in myocardium homeostasis, targeting, via 5-HT2B receptors, 
mitochondria in cardiomyocytes [10] (see Fig. 9.1).

A new role for the cardiac 5-HT2B receptor has been identified in heart hypertrophy 
and failure. In cardiac explants obtained from human adults suffering from heart 
failure, 5-HT2B receptors were found to be overexpressed. This overexpression was 
positively correlated with cytokine and norepinephrine plasma concentrations [8]. 
Moreover, 5-HT plasma levels are also increased in animals with a cardiac 
hypertrophy induced by aortic constriction. All these observations argue in favor of 
a role of 5-HT in cardiac hypertrophy or heart failure through a stimulation of the 
5-HT2B receptor. This receptor is expressed in various cells of the heart including 

Fig. 9.1 Role of 5-HT cytoprotective signaling pathways in cardiomyocytes. 5-HT binding to 
5-HT2B receptors activates both PI3K/Akt and ERK kinases, which inhibit ANT-1 and Bax expres-
sion, respectively, to control mitochondrial membrane permeability (middle). In the Htr2b−/− mice, 
the lack of receptor signaling triggers apoptosis by altered signaling to mitochondrial (left). In 
5-HT2B receptor overexpressing mice, the receptor by acting at ANT-1 expression regulates mito-
chondria number, thereby leading to hypertrophic heart (right)
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cardiomyocytes and fibroblasts of the extracellular cell matrix. Serotonin could 
therefore trigger ventricular hypertrophy by acting directly on cardiomyocytes or by 
a local paracrine manner through fibroblast activation. The first hypothesis was 
investigated in rats where a two-week-long aortic banding surgery induced a signifi-
cant increase in mRNA and protein expression of the 5-HT2B. Blocking the receptor 
with the 5-HT2B/2C receptor antagonist, SB215505, significantly reduced the increase 
in heart weight, heart wall thickness, left ventricular mass and the expression of the 
brain natriuretic peptide (BNP). Conversely, it did not affect the up-regulation of 
5-HT2B receptor protein expression. The authors addressed the question of the target 
cell of these effects by in-vitro mechanical stretch of cardiomyocytes and incubation 
with 5-HT. In these conditions, BNP protein expression increased time-dependently 
in parallel with the 5-HT2B receptor. The downregulation of the receptor following 
transfection with a specific siRNA blocked the increase of NF-κB translocation and 
BNP protein [11]. All together these results support the idea that 5-HT and 5-HT2B 
receptors act as triggers of cardiomyocyte hypertrophy independently of the extra-
cellular cell matrix. A combinatory role of mechanical stress and the humoral acti-
vation is also pointed-out. The second hypothesis involves fibroblasts of the 
myocardial matrix. In mice lacking 5-HT2B receptors, a chronic stimulation with the 
adrenergic agonist isoproterenol produced an important tachycardia but was com-
pletely unable to induce left ventricular hypertrophy [12]. Similarly, a 14 day-long 
infusion of angiotensin II (Ang II) increased blood pressure but no hypertrophy in 
the same animals [13]. Moreover, the 5-HT2B receptor blockade by SB215505 pre-
vented the increase in cardiac superoxide generation in the same infusion models 
[13]. The cardiac cell type expressing 5-HT2B receptors (cardiomyocytes versus 
non-cardiomyocytes) involved in this pathological heart hypertrophy was addressed 
in-vivo. By crossing Htr2b−/− mice with mice overexpressing the receptor in cardio-
myocytes, we generated mice expressing the 5-HT2B receptor solely in cardiomyo-
cytes. Similarly to Htr2b−/− animals, these mice were shown as fully resistant to 
isoproterenol-induced cardiac hypertrophy, dysfunction and increase in plasma 
cytokines concentrations [8]. This work emphasized the contribution of non- 
cardiomyocytes in adrenergic-induced left-ventricular hypertrophy. The 5-HT2B 
receptor blockade was shown to prevent cytokines release as well as NAD(P)H 
oxidases (NOX) activation in cardiac fibroblasts. We identified a functional interac-
tion between AT1 and 5-HT2B receptors via a transinhibition mechanism that 
involves heterodimeric receptor complexes. This phenomenon is implicated in cyto-
kines release by cardiac fibroblasts [8], (see Fig. 9.2).

Based on all these data, our group investigated the effects of a chronic 5-HT2B 
receptor blockade by the selective antagonist, RS127445, in old spontaneously 
hypertensive male rats. These animals show a left ventricular hypertrophy and a 
chronic left-ventricular dysfunction with an apparently normal ejection fraction 
[14]. RS127445 effects were studied with or without a blood pressure reduction 
with the calcium channel antagonist nicardipine. In this model, the 5-HT2B receptor 
is overexpressed in the left ventricle but, despite this overexpression, the antagonist 
failed to improve cardiac function and hypertrophy. A likely explanation seems to 
be an action on coronary arteries (see below).
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2.2  Cardiac Fibrosis

If the 5-HT2B receptor acts as a co-receptor to AngII in cardiac hypertrophy by 
stimulating ventricular fibroblasts, it is tempting to speculate that it could also regu-
late extracellular matrix deposit and fibrosis. The treatment of neonatal cardiac 
fibroblasts with 5-HT increases the expression of smooth muscle α-actin, a marker 
of fibroblast differentiation into myofibroblasts, stimulates their migration, and 
enhances secretion of TGF-β1 and expression of metalloproteases (MMPs). All 
these effects were initially assumed to be mediated through 5-HT2A receptors [15]. 
But, in mice, 5-HT- or AngII-stimulated TGF-β1 release in adult cardiac fibroblasts 
is sensitive to 5-HT2B receptor blockade [8]. Treatments with epidermal growth fac-
tor receptor (EGFR, ErbB1/4)-selective inhibitors or with selective inhibitors of 
MMPs also abolish AngII- and 5-HT-induced cytokine release. Finally, the use of 
HB-EGF−/− cardiac fibroblasts confirms that EGFR transactivation is absolutely 
required for AngII- and 5-HT-dependent cytokine release. All these results point-out 
that the 5-HT2B receptor acts as a co-receptor of Ang II to cardiac fibrosis.

Another aspect of fibrosis is endothelial-mesenchymal transformation (EMT). 
Inducers of EMT during valvulogenesis include VEGF, TGF-β1, and Wnt/β-catenin, 
which are regulated in a spatiotemporal manner. Serotonin can initiate TGF-β sig-
naling and recent evidences suggest that degenerative valvular disease may be 
mediated by developmental pathways including bone morphogenic protein (BMP), 
Wnt and Notch signaling, nitric oxide, and Ang II [16]. Wnt2 acts as an angiogenic 
factor for endothelium in-vitro and in-vivo whose target genes undergo complex 
regulation by the tissue microenvironment [17]. Gene profiling identified the 5-HT2B 

Fig. 9.2 Hypertrophic signaling pathway for cytokine production after 5-HT or Ang II stimulation 
in adult cardiac fibroblasts. Stimulation of β-Adrenergic receptors on cardiac fibroblasts leads to 
the release of Ang II that stimulates the AT1–5-HT2B receptor complexes activating MMPs, which 
induces the pro-HB- EGF cleavage via Src. Soluble HB-EGF activates ErbB-receptors to induce 
cytokine release via p38 mitogen-activated protein kinase activation. Released cytokines and 
HB-EGF bind their receptors in cardiomyocytes to activate hypertrophy in a paracrine way
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receptor as a down-regulated target gene of Wnt2 signaling in HUVEC. Valve inter-
stitial cells are made from cells of various origins i.e. embryonic epicardium and 
endocardial cushions and the adult bone marrow. This opens the interesting possi-
bility that these populations of fibroblasts are functionally different and could differ 
in their susceptibility to and/or participation in fibrotic pathological processes [18] 
(see Chaps. 13 and 14).

3  Serotonin, the 5-HT2B Receptor and the Regulation 
of Vasomotor Tone

3.1  Hypertension

In the late 1970s, the 5-HT2 receptor antagonist ketanserin was clinically used as an 
antihypertensive compound but the reduction of blood pressure was attributed to its 
affinity for α1-adrenergic receptors, excluding a role for 5-HT in systemic pressure 
control. This postulate was confirmed by the absence of effect of ritanserin, a non- 
selective 5-HT2 receptor antagonist that lacks α-adrenergic receptor affinity. Finally, 
the Htr2b−/− mouse was characterized for resting blood pressure and did not demon-
strate any difference compared to controls. Similarly, the selective 5-HT2B receptor 
antagonists SB215505 and SB206553 neither affected basal blood pressure nor 
response to a 14 days long AngII infusion [13]. In fact, due to the heterogeneous 
expression of serotonergic receptors in the vascular wall, 5-HT plays a complex role 
in regulating vasomotor tone. In arterial wall, endothelial cells express 5-HT1B, 
5-HT2B and 5-HT4 receptors, whereas smooth muscle cells express 5-HT1B, 5-HT2A, 
5-HT7 receptors and in some cases 5-HT2B [19]. Indeed, receptors expressed on 
endothelial cells can induce vasodilation, while stimulation by 5-HT of smooth 
muscle cells elicits vasoconstriction. Interestingly, this vasoconstriction is much 
greater in experimental or genetic models of hypertension than in normotensive 
animals [20] and smooth muscle from rats, which were made hypertensive by a 
combination of deoxycorticosterone acetate and salt (DOCA/salt) are more respon-
sive to 5-HT, opening the question of 5-HT involvement in the pathophysiology of 
hypertension and suggesting a shift in receptor population expressed by large arter-
ies. Concerning 5-HT2B receptors, different studies [21, 22] provided pharmacologi-
cal and molecular evidences showing that 5-HT2A (ketanserin-sensitive) receptors 
are primarily responsible for contraction of arteries of normotensive rats, whereas 
5-HT2B receptors (relatively insensitive to ketanserin) are primarily responsible for 
contraction of DOCA/salt arteries of rats. This switch could explain a higher contri-
bution of 5-HT in hypertension than the physiological state because 5-HT has higher 
affinity for 5-HT2B than for 5-HT2A receptors; a low concentration being enough to 
trigger hypertension through 5-HT2B receptor activation. These in-vitro data were 
confirmed in-vivo because the 5-HT2B receptor selective antagonist LY-272015 
reduces blood pressure of hypertensive DOCA/salt rats [23].
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5-HT2B receptors can also be involved in drug-induced hypertension. Fenfluramine 
belongs to a family of anorectic compounds that were withdrawn from the market 
due to the induction of pulmonary hypertension and valvulopathy during the treat-
ment. The fenfluramine active metabolite is nordexfenfluramine known to induce 
systemic hypertension in rats by activating 5-HT2A receptors. This compound has a 
higher affinity for 5-HT2B receptors whose expression is increased in DOCA/salt 
hypertensive rats. Thus, the 5-HT2B-mediated increase in blood pressure by norfen-
fluramine can be revealed in the context of high blood pressure making hypertensive 
patients at risk when using such compounds. This pressure effect seems to take 
place in small arteries because, in aorta of normal or hypertensive rats, contractile 
effect of norfenfluramine is mediated by 5-HT2A but not 5-HT2B receptors. 5-HT2A 
and 5-HT2B receptors seem therefore to play complementary roles depending on 
vascular beds and/or physiological state of vessels [24].

In summary, 5-HT weakly contributes to basal vasomotor tone but its contribution 
is reinforced in hypertension mainly due to changes in expression from 5-HT2A to 
5-HT2B receptors, which display higher affinity to 5-HT.

3.2  Coronary Arteries

In-vitro studies on endothelial cells isolated from human coronary arteries have 
shown that 5-HT, by activating 5-HT1B and 5-HT2B receptors, is responsible for 
nitrites production from NO metabolism [25]. In conscious dogs, the 5-HT2 receptor 
high affinity ligand, ergonovine, induces a biphasic response i.e. a vasodilation 
depending on endothelial NO synthase (NOS-3) activity followed by vasoconstric-
tion. Similarly, in rats, 5-HT increases coronary flow in a dose-dependent manner. 
These effects are obtained on vessels with an intact endothelium. In our model of 
chronic left ventricular dysfunction with preserved ejection fraction in aging spon-
taneously hypertensive rats [14], we observed an increase in subendocardial ven-
tricular fibrosis and ECG troubles corresponding to myocardial ischemia. We then 
explored a possible contribution of the 5-HT2B receptor to coronary artery vasodila-
tion in wild-type and Htr2b−/− mice. First, 5-HT injections induced myocardial 
fibrosis in Htr2b+/+ animals that was amplified in knockout mice. Secondly, we 
observed an augmentation of coronary artery resistance in Htr2b−/− mice, a reduc-
tion of cGMP content in coronary vessels and a potentiation (≈60%) of the vaso-
constriction induced by the 5-HT2 receptor agonist α-methyl-5-HT.  These data 
argue in favor of the role of the endothelial 5-HT2B receptor in coronary artery vaso-
dilatation [26]. The presence of endothelial dysfunction or partial suppression of 
endothelial cells could therefore amplify the coronaro-constricting effects of 5-HT 
released in vascular lumen [27]. These data open the possibility that interactions 
between activated platelets and vascular wall contribute to acute ischemic or isch-
emic/reperfusion lesions.
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3.3  Migraine

Migraine is a syndrome that affects 15–18% of women and about 6% of men. It is 
characterized by intense, pulsatile headaches, classically unilateral and often 
accompanied by nausea, vomiting and photo/phonophobia. Briefly, the origin of 
migraine is a decrease in cerebral flow by vasoconstriction, followed by a reactive 
vasodilatation responsible for headache. The vasodilation is associated with release 
of vasodilators such as NO and 5-HT. It has long been known that 5-HT receptors 
are involved in pathophysiology of migraine because of its strong contribution to 
regulation of cerebral vasomotricity [28]. Moreover, the use of serotonergic antimi-
graine drugs such as triptans (5-HT1B agonists), reveals some of the pathophysiolog-
ical mechanisms underlying this pathology. Indeed, numerous clinical trials have 
shown efficacy of compounds such as sumatriptan in the treatment of migraine cri-
sis [29]. Triptans act by producing a cerebral vasoconstriction and also at sensory 
trigeminal ganglia. Thus, anti-migraine compounds, such as dihydroergotamine and 
triptans, in addition to their vascular action, prevent activation of trigeminal- vascular 
complex and release of calcitonin gene-related peptide (CGRP) associated thereto 
[30, 31]. They also prevent possible generation of retrograde nerve impulses (axon 
reflex) in nociceptive circuits in response to local meningeal excitation. Overall, this 
dual action, both vascular and neuronal, through stimulation of 5-HT1B receptors, 
most likely accounts for efficacy of these drugs in stopping migraine attacks [28]. 
Nevertheless, methysergide and pizotifen are 5-HT2 receptor antagonists [32, 33], 
and their preventive effects of migraine may thus result from 5-HT2B-receptor 
blockade, which expressed by endothelial cells of meningeal vessels [34]. Their 
activation induces relaxation by synthesis of NO in cerebral arteries and jugular 
vein and concomitant activation of sensory trigeminovascular afferents [35]. They 
are also expressed in rat basilar artery where their activation triggers a contraction 
that is prevented by ergometrine [36]. In addition, a recent genetic study identified 
5-HT2B receptors as a susceptibility gene to migraine [37]. Endothelial 5-HT2B 
receptors may thus trigger dilation of meningeal blood vessels, which by activating 
sensory trigeminovascular afferents induces head pain.

3.4  Tumor Angiogenesis

In tumor-infiltrating macrophages, 5-HT does not enhance colon cancer tumor cell 
proliferation but may act as a regulator of angiogenesis by reducing the expression 
of MMP-12, entailing lower levels of angiostatin—an endogenous inhibitor of 
angiogenesis [38]. Serotonin can stimulate the phosphorylation of ERK1/2 in 
bovine endothelial cells, and the 5-HT2B receptor was reported to play a role in the 
activation of NOS-3  in human endothelial cells. In SB204741-treated mice, the 
selective blockade of the 5-HT2B receptor resulted in the reduction of tumor angio-
genesis and growth through the inhibition effect of ERK1/2 and NOS-3 [39]. 
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Therefore, the possibility that 5-HT2B receptors participate in tumor angiogenesis is 
a likely possibility that remains to be evaluated in other tumors subtypes.

4  Outlook and Prospects

The 5-HT2B receptor is a fascinating target, which contributes to the normal adult 
cardiovascular physiology despite its low expression; however, its overexpression is 
observed in many pathological situations. Why is this receptor overexpressed and 
what is the contribution of 5-HT in these events? A common feature could be a reac-
tion of the tissue to cell loss and/or increase in mechanical stress. The 5-HT2B recep-
tor would then be the favorite target of 5-HT to trigger cell hypertrophy, growth, 
neoangiogenesis and fibrotic scaring. Therefore, the 5-HT2B receptor would appear 
as part of the re-expression of a fetal program making a link between development, 
tissue repair and scaring.
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1  Introduction

Cardiopulmonary disease is widely appreciated to be a leading cause of death 
worldwide. Such diseases have a vast range of etiologies and extensive research 
efforts have been focused on understanding disease initiation and progression. 
Serotonergic dysfunction has long been understood to contribute to cardiopulmo-
nary pathology, and recent discoveries have elucidated unique roles for serotonin—
or 5-hydroxytryptamine (5-HT)—receptors, such as the 5-HT2B receptor (5-HT2BR), 
in the pathophysiology of various cardiopulmonary diseases. This chapter focuses 
on three main areas of research involving 5-HT2BR: (1) heart valve disease, (2) pul-
monary hypertension, and (3) cardiac hypertrophy. The following studies have 
motivated the investigation of 5-HT2BR as a chief mediator of cardiopulmonary 
disease.

2  Heart Valve Disease

The discovery that 5-HT plays a causal role in cardiopulmonary disease can be 
traced back to 1931 when the Dutch pathologist A. J. Scholte documented thickened 
tricuspid valves in a deceased carcinoid syndrome patient [1]. Carcinoid syndrome 
occurs following oncogenic transformation of enterochromaffin cells, which are the 
primary synthesizers of 5-HT in the gastrointestinal tract. If a carcinoid tumor 
metastasizes to the liver, tumor cells will release vasoactive 5-HT into the systemic 
circulation via the hepatic veins. Increased plasma 5-HT level leads to carcinoid 
heart disease, indicated by the characteristic development of a plaque-like, fibrous 
thickening of the heart valves found in over 65% of carcinoid syndrome patients 
[2–4]. Further, several classes of drugs that target 5-HT signaling were found to 
contribute to the onset of heart valve disease and ultimately led to the investigation 
of the specific 5-HT receptor subtype responsible for the development of heart valve 
disease.

2.1  Initiators of Heart Valve Disease

Discovery of the role of 5-HT2BR in heart valve disease can be attributed to the 
observation of diseased valves in patients taking medications for non-valve related 
conditions. Several classes of medications have metabolites now known to activate 
5-HT2BR, resulting in compromised cardiac valves.
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2.1.1  Anorexigens

Imbalance between energy intake and expenditure can result in eating disorders and 
obesity, which are important health concerns in developed countries. Medications 
for excessive eating disorders inadvertently aided in the discovery of 5-HT2BR as a 
key mediator of heart valve disease. The anorexigen combination regimen of fenflu-
ramine and phentermine (‘Fen-Phen’) became widely prescribed starting in 1984. 
While both drugs had been previously prescribed with minimal success, the combi-
nation of the two drugs resulted in sustained weight loss with fewer adverse side 
effects and improved appetite control [5]. Phentermine primarily functions through 
the release of norepinephrine to reduce perception of hunger [6]. However, fenflu-
ramine is an amphetamine derivative that stimulates serotonin release while simul-
taneously inhibiting the function of 5-HT uptake transporters, increasing 5-HT 
which signals through the hypothalamus to suppress appetite [7]. Fen-Phen was 
highly popular until 1997 when it was found that it increased both left- and right- 
sided heart valve defects after 12 months of use [8]. The incidence of heart valve 
disease was later reported to be as high as 25% in patients treated on average for 
20 months [9]. These studies were followed by a seminal report which comprehen-
sively tested 15 molecules at 11 distinct 5-HT receptor subtypes and systematically 
determined that the fenfluramine metabolite, norfenfluramine, exhibited high 
potency and high affinity for the 5-HT2BR. All other 5-HT receptor subtypes were 
ruled out based on pharmacological differences from heart valve disease-associated 
molecules and negative control molecules. Interestingly, phentermine did not dis-
play agonism at the 5-HT2BR, providing an explanation as to why the use of phen-
termine for decades prior to Fen-Phen did not result in the emergence of heart valve 
disease and further connected serotonin signaling through 5-HT2BR to disease [10].

Prescribed to patients with hypertriglyceridemia or diabetes, benfluorex func-
tioned as an appetite suppressant due to its close structural relationship with amphet-
amines. This drug, like Fen-Phen, metabolizes into nordexflenfluramine, now 
known to be a high affinity 5-HT2BR agonist. A 2012 study documented that a 
40-year-old woman on benfluorex therapy underwent a mitral valve replacement 
and resumed the therapy after the operation. Upon examination 4 years after valve 
replacement, the woman presented with mitral valve bioprosthesis hypertrophic 
scarring and similar histopathological lesions on the aortic valve. These lesions 
were formed by smooth muscle α-actin- and vimentin-positive cells which depos-
ited plaques in the glycosaminoglycan (GAG) matrix [11]. This case further vali-
dates the hypothesis that norfenfluramine activation of 5-HT2BR causes valve 
disease.

2.1.2  Ergot-Derived Therapeutics

Migraine headaches are believed to be transmitted through the blood vessels in the 
brain associated with the meninges. Several human meningeal tissues express 
HTR2B – the gene encoding 5-HT2BR—and circulating 5-HT levels fluctuate during 
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the phases of a migraine. In an animal model exposed to a known migraine-inducing 
agent, 5-HT2B activation is required for the release of neuroinflammatory peptides 
which mediate trigeminal nerve activation and the sensation of pain. It is known that 
5-HT2BR activation can induce the release of nitric oxide as well as induce the relax-
ation of cerebral vessels, suggesting a causative role of 5-HT2BR activation in neu-
roinflammation, endothelium-dependent relaxation, and activation of sensory 
trigeminovascular afferents [12, 13].

Ergot-derived therapeutics were the standard treatment for migraines until the 
mid-1960s when a strong link was discovered between the ergot agents – methyser-
gide and ergotamine – and heart valve disease. A later study determined that these 
compounds possessed a high affinity for 5-HT2BR in heart valve tissue [14]. It is 
even suggested that the similar structure of 5-HT and ergot agents could point to a 
common pathology with carcinoid valve disease [15].

The non-selective dopamine agonists pergolide and cabergoline were popular 
therapeutics prescribed to patients with Parkinson’s disease and are also ergot- 
derived compounds. Unsurprisingly, the interference of these compounds with the 
dopamine/5-HT signaling axis resulted in decidedly similar echocardiographic and 
histopathological findings as observed in the valves of patients with carcinoid heart 
disease [16]. Patients receiving either pergolide or cabergoline were reported to 
have moderate-to-severe regurgitation in at least one heart valve more frequently 
compared to patients who received non-ergot therapeutics or controls. Furthermore, 
the incidence of heart valve disease has been found to be as high as 28% in patients 
receiving ergot-derived dopamine agonists where no increase in prevalence is asso-
ciated with other dopamine agonists [17, 18].

Pergolide and cabergoline induced fibrotic changes in cardiac valves are due to 
their high affinity for the 5-HT2BR. The association of ergot-derived compounds 
with fibrotic pathologies as well as the structural and functional similarity to 5-HT 
acting upon the 5-HT2BR reveal yet another pathological function of 5-HT2BR 
signaling.

2.1.3  Amphetamines

While amphetamine derivatives have been prescribed as anti-obesity drugs, the 
amphetamine 3,4-methylenedioxymethamphetmaine—MDMA (“ecstasy”)—is a 
psychostimulant drug of abuse used recreationally throughout Europe and North 
America. This drug reverses the function of the 5-HT reuptake transporter, resulting 
in a concentrated release of 5-HT and psychostimulatory effects [19]. MDMA and 
its metabolite 3,4-methylenedioxyamphetamine—MDA—preferentially bind and 
activate human recombinant 5-HT2BR. Similarly to fenfluramine, these drugs induce 
and prolong mitogenic signaling through 5-HT2BR in vitro which suggests that 
MDMA would induce valvular heart disease with continued use [20, 21].
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2.2  Heart Valve Disease Mechanisms

HTR2B and HTR2A mRNAs are highly expressed in human heart valves with no 
HTR2C mRNA detectable. 5-HT2BR signaling is of particular interest since the 
above-mentioned prescribed drugs and their active metabolites activate this receptor 
and result in valve disease whereas chemically similar drugs which do not bind the 
5-HT2BR (e.g., lisuride and terguride) do not result in valve pathology. This high-
lights the public health implications of therapeutics aimed at 5-HT signaling. In 
order to avoid mistakes of the past, 5-HT2BR screening is a necessity to identify 
potential drug-induced valvular heart disease.

Despite the litany of disease-causing agents described, mechanistic characteriza-
tion of 5-HT2BR-induced valve disease is lacking. It is known that medications act-
ing through serotonergic mechanisms, specifically 5-HT2BR, are likely to result in 
valvulopathy. While it appears that the valve interstitial cells are responsible for 
valve fibroplasia, it is unclear if they are the direct target of 5-HT2BR agonists. 
Valvular regurgitation and insufficiency can result from subtle, non-destructive 
thickening and the associated hemodynamic overload can lead to myocardial dys-
function and heart failure, highlighting the need to understand 5-HT2BR signaling 
mechanisms and limit erroneous receptor activation.

Several reports have described valvular lesions arising after treatment with 
anorexigens, ergot alkaloids, or carcinoid syndrome as “glistening, superficial 
plaque-like thickenings” that present on the surface of the leaflets and cusps [22]. 
This valve phenotype is recapitulated in Sprague-Dawley rats by continuous 5-HT 
administration over a three-month period. Morphological and echocardiographic 
alterations of the rat aortic valve mimic those observed in carcinoid heart disease. 
Aortic valve leaflets are thickened and retracted with evident carcinoid-like plaques 
made of collagen rich tissue in rats treated with 5-HT. These changes are thought to 
be due to increased proliferation of cardiac valvular subendocardial cells which 
concomitantly increased expression of the 5-HT2BR [23]. Another study observed 
similar changes as early as 7 days following 5-HT administration. Modified Movat’s 
pentachrome staining revealed significantly thicker mitral and aortic valves due to 
an expansion of GAG content resulting in loss of valve compliance and function. 
The GAG network was also more vascularized following 5-HT administration indi-
cating a loss of quiescence and increased remodeling. These changes faithfully 
mimic anorexigen-associated valvulopathy. 5-HT treated rats had transcription of 
the gene encoding the 5-HT transporter (SERT or 5-HTT) down regulated, indicat-
ing a decrease in 5-HT receptor recycling; 5-HT2BR gene transcription was also 
increased [22]. SERT is critical to protect against the adverse effects of 5-HT over-
activity, so valve remodeling is thought to be a combined effect of its downregula-
tion combined with increased mitogenic 5-HT2BR signaling.

Similar to six other classes of 5-HT receptors, 5-HT2BR is a G protein-coupled 
receptor (GPCR) that follows a well characterized signaling cascade. The Gαq sub-
unit is released upon receptor activation which proceeds to activate the downstream 
effectors phospholipase C-β and protein kinase C through release of intracellular 
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calcium and diacylglycerol liberation. 5-HT2C receptors are absent in the cardiovas-
cular system while 5-HT2AR and 5-HT2BR are presumed to have similar cardiovas-
cular functions due to the significant sequence homology. In the context of valve 
disease, specific activation of the 5-HT2B GPCR also activates second messenger 
signals identified by the phosphorylation and activation of both the tyrosine kinase 
Src and extracellular regulated kinase (ERK) pathways. These pathways may syner-
gize with signaling of transforming growth factor β (TGFβ) leading to enhanced 
mitogenesis [4].

Valve interstitial cells are thought to be the drivers of valve remodeling. In the 
context of calcific aortic valve disease, quiescent cells are activated into a 
myofibroblast- like phenotype, leading to increased extracellular matrix deposition 
and eventual formation of bone-like calcific nodules. Nodule formation can be mod-
eled in vitro by treating valve interstitial cells with TGFβ1 resulting in simultaneous 
phosphorylation of the tyrosine kinase Src and expression of the contractile marker 
SM22α. Interestingly, treatment with the specific 5-HT2BR antagonist SB204741 
mitigates the formation of nodules by preventing SM22α upregulation, but Src 
phosphorylation is still increased. Time-lapse microscopy revealed Src is seques-
tered upon administration of the 5-HT2BR antagonist, arresting its motility to restrict 
the phosphorylation and activation of the type II TGFβ receptor [24].

The 5-HT2BR may also play a role in the progression of mitral valve disease. In 
a canine model of myxomatous mitral valve disease, a significant increase in the 
expression of 5-HT2BR was observed in symptomatic valves compared to control 
animals while there was no change in 5-HT2AR expression in either group. Staining 
of this receptor co-localized with α-smooth muscle actin expression, indicating a 
potential role for the 5-HT2BR in valve remodeling by contractile interstitial cells 
[25]. A subsequent study investigated 5-HT2BR in the context of mitral valve pro-
lapse in human, canine, and murine tissue and observed an association between 
mitral valve prolapse and leaflet 5-HT2BR expression in humans. The same was 
observed in canine tissue along with an increase in ERK phosphorylation, which is 
known to increase interstitial cell activation and remodeling. This effect was pre-
vented with the 5-HT2BR antagonist LY272015. Finally, in mice given chronic 
angiotensin II (AngII) infusion, valve leaflet area was significantly increased in 
response to AngII but was mitigated in the presence of a 5-HT2BR antagonist; nei-
ther of the 5-HT2AR antagonists terguride or ketanserin had an effect on leaflet area 
[26]. These studies sufficiently describe the specific role of 5-HT2BR, but not 
5-HT2AR, in the remodeling of mitral valves.

Due to the lengthy nature of valve disease onset, the scarcity of available tissue, 
and a variety of disease triggers, animal models of valve disease are lacking and 
have limited studies focused on perturbating and probing specific molecular mecha-
nisms behind valvulopathies. However, observational studies have made it clear that 
5-HT2BR  signaling plays an extensive role in disease development—most likely 
through the activation of normally quiescent valve cells—resulting in valve remod-
eling, loss of compliance, and ultimately, loss of valve function (Fig. 10.1).
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3  Pulmonary Arterial Hypertension

Pulmonary arterial hypertension (PAH) is a deadly disease of the pulmonary vascu-
lature that is incompletely understood in terms of its cellular and molecular mecha-
nism. Over 200,000 people are hospitalized annually in the United States with some 
form of pulmonary hypertension (PH) with an associated mortality rate approaching 
10% [27]. PH is clinically defined as a mean pulmonary arterial pressure exceeding 
25 mmHg, measured by right ventricle catheterization [28]. Group 1 PH encom-
passes PAH which can be idiopathic, heritable, or acquired. Idiopathic PAH has no 
known cause with 2–3 new cases per million annually, whereas over 75% of heri-
table PAH is due to a mutation in the bone morphogenetic protein receptor II 
(BMPRII) gene and is about 10 times less prevalent than idiopathic PAH. Acquired 
PAH is commonly associated with exposure to other risk factors such as human 
immunodeficiency virus, scleroderma, or anorexigen use [29]. While PAH  inci-
dence is rare, the mortality rate is striking, with merely 67% of patients surviving 
3 years after diagnosis. This number may even be artificially high due to a strong 
influence of survival bias introduced from the method of data collection [30, 31].

3.1  Models of PAH

Increased pulmonic blood pressure, the hallmark of PAH, is due to a progressive 
increase in pulmonary vascular resistance and remodeling associated with vasocon-
striction. It is histologically characterized by neomuscularization of small pulmo-
nary arteries and intimal thickening, medial hypertrophy, adventitial proliferation, 
and abnormal extracellular matrix deposition. The culmination of these remodeling 
events is irreversible lumen narrowing, increased pulmonary artery resistance, 

Fig. 10.1 Impact of 5-HT2BR activation on valve structure and function. Interstitial cell expansion 
and GAG deposition decreases valve compliance and coaptation
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hypoxia, right heart hypertrophy, and eventually, right heart failure and death [32]. 
Multiple experimental models of PH in rodents have been utilized to capture differ-
ent aspects of the disease, and interpretation of results should consider the method 
used to induce disease. Small rodents do not develop disease that completely reca-
pitulates human PAH. While many experimental models are characterized as PH 
models and do not further designate a PH group, for the sake of simplicity in this 
chapter, the discussed experiments will be referred to as models of PAH. The clas-
sical model of PAH is chronic hypoxia exposure. This model has led to understand-
ing of hypoxia-induced vascular remodeling, however, the obliterative lesions 
observed in human patients with severe PAH are not replicated with chronic hypoxia. 
The monocrotaline (MCT) lung injury model attempts to address the limitation of 
chronic hypoxia by causing pulmonary arterial endothelial cell dysfunction and 
inflammatory cell infiltration. Pulmonary vasoconstriction and right heart hypertro-
phy are faithfully modeled with MCT; however, this model is restricted to rats as 
mice do not develop disease in response to MCT which is yet to be understood. 
While MCT injury is simple and reproducible, it is an acute injury that fails to fully 
capture the evolving nature of human PAH [33]. In order to recapitulate heritable 
PAH, mouse models harboring BMPRII mutations have been developed to study the 
disease. Smooth muscle- and vascular endothelial cell-specific knockouts of 
BMPRII have independently been shown to generate pulmonary vascular remodel-
ing and increases in right ventricular systolic pressure (RVSP). However, this model 
is highly variable, incompletely penetrant, and complex vascular lesions do not 
form [34]. Toward this end, the vascular endothelial growth factor receptor 1 and 2 
blocker, SU5416 (“Sugen”), combined with chronic hypoxia (SuHx) has served as 
a preclinical drug model. SuHx results in angioobliterative pulmonary lesions and 
increased RVSP which is not reversible upon returning to normal air. This model 
has been useful for studying the reversibility of PAH and uncovering the immuno-
logical mechanisms behind the pathobiology of PAH [34]. While no one method 
completely emulates human PAH, these models have increased the understanding 
of disease progression and characteristics.

The cellular mechanism behind PAH hinges upon an interplay between the vas-
cular endothelium, pulmonary artery smooth muscle cells (PASMCs), and bone 
marrow-derived cell populations. Nitric oxide is a key mediator of vasodilation, as 
well as downregulation of leukocyte adhesion and vascular proliferation. Reduced 
nitric oxide bioavailability has been reported in PAH and contributes to increased 
PASMC migration and proliferation in the distal arteries of the lungs [35]. Disruption 
of vascular homeostasis in the context of PAH is commonly due to an imbalance of 
prostacyclin and endothelin. Prostacyclin is produced by endothelial cells and 
induces PASMC relaxation and vasodilation; endothelin is produced by vascular 
endothelium, PASMCs, and lung fibroblasts and induces calcium release by the 
sarcoplasmic reticulum as well as PASMC proliferation and vasoconstriction. As 
these factors become imbalanced, vascular resistance and remodeling occurs, lead-
ing to right ventricle hypertrophy [36]. On a molecular level, receptor tyrosine 
kinases play a critical role in modulating cell proliferation, migration, and differen-
tiation. In humans and experimental models of PAH, platelet-derived growth 
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factor receptor, epidermal growth factor receptor, fibroblast growth factor receptor, 
and c-kit receptor have all been investigated for their pathogenic role in contributing 
to excessive vascular remodeling. Ample evidence exists for the tyrosine kinase Src 
being abnormally activated in PAH and mediating the effect of receptor tyrosine 
kinases [37]. Evidence for inflammatory infiltrate in the onset and progression of 
PAH pathology is growing. Known increases in cytokines such as interleukin (IL)-6, 
IL-1β, and tumor necrosis factor-α are elevated in patients with PAH. Elevated cir-
culating cytokine levels are associated with inflammatory cell recruitment and accu-
mulation, and they have been correlated with worse clinical outcomes [38].

Therapies aimed at treating PAH are lacking and often focus on mitigating symp-
toms of the disease but are yet unable to address the underlying pathophysiology 
due to the limited understanding of disease mechanisms. Three classes of medica-
tions currently used include: prostacyclin analogues to restore deficient endogenous 
prostacyclin levels, phosphodiesterase type 5 inhibitors to compensate for down- 
regulated nitric oxide pathway, and endothelin antagonists to inhibit the up- regulated 
endothelin pathway [39]. These medications were adopted from treatments for other 
illnesses, and therefore are not ideal for managing PAH. They modestly improve 
disease symptoms through transitory vessel dilation without addressing the under-
lying pathophysiological hypertensive agents of vessel stiffening and remodeling 
[40, 41]. This highlights the need for a more specific class of therapies aimed at 
directly targeting molecular pathways relevant to PAH.

3.2  Serotonin in PAH

Identification of the role of 5-HT in PAH pathogenesis goes back to the 1960’s when 
an epidemic of PAH arose in a Swiss population taking the anorexigen aminorex 
fumarate; a second serotonergic aneroxigen-induced outbreak of PAH accompanied 
the use of Fen-Phen in the 1990s [42]. These drugs are SERT substrates responsible 
for modulating the bioavailable plasma serotonin levels. SERT inhibitors abrogate 
5-HT-induced mitogenesis, and mice deficient for SERT have partially reduced pul-
monary vascular remodeling under hypoxic conditions [43]. A correlation between 
high plasma 5-HT levels and total pulmonary resistance was established in the 
1980s when a patient was diagnosed with PH while carrying a familial platelet stor-
age deficiency [44]. 5-HT is released by pulmonary neuroendocrine cells and neu-
roepithelial bodies in response to hypoxia and is sustained in PH patients 5-HT 
mediates a myriad of functions in the vasculature, most notably smooth muscle cell 
hypertrophy and hyperplasia [45]. PASMCs and endothelial cells both express 
mRNA encoding 5-HT1BR, 5-HT2AR, 5-HT7R, and 5-HT2BR. Being a potent pulmo-
nary vasoconstrictor and capable of inducing vascular remodeling, 5-HT has a dual 
role in response to hypoxia and acting through its cognate receptors [46].
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3.3  5-HT2BR Mechanism in PAH

The anorexigens fenfluramine and dexfenfluramine increase the risk of developing 
PH by a factor of 3.7- to 23-fold depending on the study referenced [47, 48]. The 
primary dexfenfluramine metabolite, nordexfenfluramine, is a high affinity 5-HT2BR 
agonist. Furthermore, 5-HT2BR overexpression (but not 5-HT2AR) is observed in 
PAH [46]. This led to the discovery of 5-HT2BR activation being necessary for the 
development of hypoxia-induced increases in RVSP and vascular muscularization. 
In mice, 5 weeks of exposure to 10% O2 causes a pathologic increase in RVSP that 
is completely nullified in the presence of the 5-HT2BR antagonist RS-127445. 
Compared to normoxic mice, hypoxia significantly increases the number of fully 
muscularized arteries, an effect prevented with RS-127445 administration. These 
results were reproduced in 5-HT2BR knockout mice, and the utility of 5-HT2BR abla-
tion was further strengthened when the dual insult of hypoxia and dexfenfluramine 
was unable to increase RVSP. Hallmarks of lung-remodeling associated with PAH 
progression are cell proliferation and increased serine elastase, which activates 
stores of growth factors such as TGFβ. Cell proliferation, elastase activity, and 
TGFβ levels are all normalized in hypoxic animals treated with RS-127445 and in 
5-HT2BR knockout animals. Interestingly, repeated acute exposure to hypoxic con-
ditions increases RVSP independent of 5-HT2BR activity, but 5-HT2BR knockout 
mice do not have increase elastase activity compared to wild type (WT) mice after 
repeated acute hypoxia [46]. This indicates the function of 5-HT2BR is not at the 
level of acute vasoconstriction but rather at the level of downstream signaling mech-
anisms that govern vascular remodeling.

Following the discovery that 5-HT2BR is necessary for hypoxia induced PAH, the 
experimental inflammatory model of PAH using MCT administration was investi-
gated in rats in order to parse out the individual contributions of SERT and 5-HT 
receptors. It was demonstrated that SERT inhibitors were able to prevent an increase 
in RVSP and pulmonary artery muscularization but 5-HT2BR antagonism was not. 
SERT inhibitors abrogate the production of inflammatory cytokines characteristic 
of MCT-induced injury as well as reverse right ventricle hypertrophy with no effect 
of 5-HT2BR antagonism reported [49]. These findings point back to the original 
serotonin hypothesis of PAH that peripheral 5-HT availability is the key driver of 
disease. However, the MCT model of PAH has received fair amounts of criticism for 
the acute, destructive nature of disease, and since it has been shown that 5-HT2BR 
does not confer protection over acute disease onset [46], these data should be con-
sidered carefully. In contrast, subsequent studies in the MCT experimental model of 
disease have shown the utility of 5-HT2BR antagonism in treating PAH in rats. 
Multiple 5-HT2BR-specific antagonists have been shown to reduce RVSP, vascular 
remodeling, and right ventricle hypertrophy in MCT-injected rats [50, 51]. The dis-
cordant results in the discussed MCT experiments demonstrate a need for a better 
experimental model of PAH that captures disease progression more faithfully.

Mice expressing the patient-derived R899X BMPRII mutation develop PAH 
within a few weeks with about 50% disease penetrance. These mice have been a 
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useful model for exploring the cellular mechanism behind the heritable form of 
PAH for patients harboring a BMPRII mutation. 5-HT2BR antagonism with 
SB204741 normalizes RVSP to control levels and decreased the stiffness of distal 
pulmonary vessels, consistent with other models of PAH. In this model, 5-HT2BR 
antagonism was observed to work through the tyrosine kinase Src. Antagonism 
simultaneously decreased Src phosphorylation and trafficking leading to decreased 
activation of downstream effectors and subsequent transcription of genes encoding 
contractile proteins such as RhoA, gamma actin, and myosin light chain 12a. 
Isolated BMPRII smooth muscle cells displayed significantly enhanced contractile 
behavior which was abrogated with 5-HT2BR antagonism. Interestingly, administra-
tion of a 5-HT2BR antagonist to WT animals increased immune cell infiltrate and 
slightly increased vessel stiffening, findings opposite from the treated BMPRII 
mutants [37]. These data indicate a protective role of 5-HT2BR in heritable PAH 
most likely through direct control of signaling downstream of BMPRII through Src. 
Notably this model does not require exposure to hypoxic conditions or endovascular 
injury, and as such is able to isolate direct signaling mechanisms that could influ-
ence disease.

Platelets are a primary source of peripheral 5-HT, but do not express 
5-HT2BR. Therefore, a link between 5-HT levels and 5-HT2BR must be established 
to understand the mechanism behind 5-HT2BR’s control over the development of 
PAH.  Hypoxia-induced increase in plasma 5-HT can be prevented in 5-HT2BR 
knockout mice or with 5-HT2BR antagonism. Plasma 5-HT strongly correlates with 
RVSP, lung 5-HT2BR expression, and the plasma 5-HT metabolite 5-HIAA, but not 
blood 5-HT, indicating a platelet-independent mechanism [52]. While SERT expres-
sion levels are not altered by treatment of dexfenfluramine or RS-127445, SERT 
uptake of plasma 5-HT is significantly increased with 5-HT2BR ablation. 5-HT2BR 
agonism causes the reverse effect, and pretreatment with the SERT inhibitor parox-
etine prevents 5-HT2BR mediated increase in plasma 5-HT [52]. These findings indi-
cate that the hypoxia-induced increase in plasma 5-HT is completely dependent on 
both 5-HT2BR and SERT and is carried out in a platelet-independent manner. The 
molecular regulators guiding this effect are uncertain, however 5-HT2BR-dependent 
SERT phosphorylation has been observed in a mouse stem cell line providing a 
potential molecular link between the two [53].

3.4  5-HT2BR Controls Bone-Marrow Contribution to PAH

While early studies have focused on the form and function of 5-HT and its avail-
ability, a shift in focus to bone marrow-derived cell contributions to differentiating/
proliferating smooth muscle cells has gained significant attention recently. Striking 
evidence using bone marrow transplants combined with chronic hypoxia showed 
that bone marrow 5-HT2BR expression is required to develop pathologic RVSP mea-
surements. WT mice receiving 5-HT2BR null bone marrow were immune to RVSP 
increases following 3 weeks of exposure to hypoxic conditions. Prior to hypoxia 
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exposure, 5-HT2BR null mice have altered bone marrow composition. Most notably, 
there are fewer CD45+CD11b-CD31+ proangiogenic precursor cells which is pre-
served following exposure to hypoxia and may constitute the endothelial/PASMCs 
responsible for PAH [32]. Bone marrow-derived proangiogenic cells (PACs) are a 
subset of myeloid lineage cells thought to directly contribute to small-vessel remod-
eling. While they are poorly characterized, they are commonly identified by a com-
bination of endothelial and hematopoietic or stem cell markers, and their presence 
in peripheral blood has been correlated with PAH through indirect mechanisms of 
promoting pathologic vascular remodeling in neighboring cells. In the SuHx model 
of PAH, ablation of PACs prevents any RVSP increase and vessel stiffening, indicat-
ing the direct contribution of PACs to experimental PAH with enhanced endovascu-
lar injury. Administration of the 5-HT2BR antagonist SB204741 decreases the 
number of PACs (CD45+CD11b-CD31+) in peripheral blood as well as the number 
of PACs that have taken residence in lung tissue, leading to normalized RVSP val-
ues and vessel wall stiffness, as measured by atomic force microscopy. PAC abla-
tion following 3 weeks of SuHx is also sufficient to reverse disease. This phenomenon 
is potentially conserved in humans as the presence of at least one bone marrow- 
derived CD31+ cell in pulmonary vessels enhances vessel wall stiffness [54]. This 
study relied upon enhanced endovascular injury, indicating endothelial injury 
response is integral for PAC function. This cell population is also broadly defined 
and translation beyond mouse models will be aided by further characterization of 
the cell type. While the mechanism driving PAC-induced vessel stiffening and 
RVSP elevation has yet to be investigated, the discovery that 5-HT2BR-driven PAC 
recruitment promotes the development of PAH provides further impetus to pursue 
5-HT2BR as a driver and potential therapeutic target for PAH.

The data presented above clearly show that 5-HT2BR contributes to the develop-
ment and progression of disease in experimental models of PH mimicking human 
PAH. The myriad of experimental procedures model different contributors to dis-
ease, with strengths and weaknesses evident for each one. Convincing evidence has 
been put forth regarding 5-HT2BR affecting unique aspects of PAH in various dis-
ease models (Fig. 10.2). While the exact mechanism is not fully understood and 
current understanding must be viewed in a context-dependent manner, encourage-
ment can be taken from the successful application of 5-HT2BR ablation in mitigating 
pulmonary hypertensive disease across the board.

4  5-HT2BR in Cardiac Development, Vascular Injury 
and Hypertrophy

5-HT is an active signaling molecule throughout early embryogenesis. 5-HT signal-
ing can be impaired even before neurogenesis, indicating an even wider role beyond 
neurotransmission. 5-HT’s suspected role in cardiovascular morphogenesis was 
confirmed when embryos grown in high concentrations of 5-HT or 5-HT-specific 
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reuptake inhibitors were observed to decrease the proliferation of myocardium, car-
diac mesenchyme, and cardiac endothelium [55]. Prior to the generation of 5-HT2BR- 
knockout mice, no obvious developmental defects (other than behavioral) had been 
attributed to 5-HT receptors. The generation of mice harboring a specific genetic 
mutation deleting Htr2b uncovered the contribution of 5-HT2BR to cardiac 
development.

4.1  5-HT2BR Is Required for Normal Cardiac Development

In 2000, the existence of cardiovascular abnormalities associated with the genera-
tion of 5-HT2BR mutant mice were first documented. The expected frequency of 
mutant pups was higher than the observed frequency, indicating a non-negligible 
rate of midgestational lethality. At 10.5 days postcoitum, fewer trabecular cells and 
decreased myocardial thickness are observed  in mice lacking  5-HT2BR.  Thinner 
myocardial walls lead to myocardial rupture as the cause of death, explaining the 
observed accumulation of blood in the pericardium [56].

Fig. 10.2 PAH is mediated by 5-HT2BR via recruitment of PACs that drive arterial musculariza-
tion and stiffening
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Neuregulin, a protein playing a significant role in neural and cardiac develop-
ment, functions through binding its receptor ErbB-2. ErbB-2 is localized to the 
ventricular wall of the myocardium, and interestingly, mice lacking neuregulin 
exhibit a similar embryonic cardiac phenotype as mice lacking 5-HT2BR. There is a 
significant reduction of ErbB-2 expression in 5-HT2BR mutant mice, providing a 
potential mechanism for abnormalities in cardiac development. The signaling cas-
cade of ErbB-2 is transactivated by GPCRs, suggesting the Gq-coupled 5-HT2BR 
transactivates the ErbB-2 pathway to regulate cardiac morphogenesis. This hypoth-
esis is further supported by data showing that cardiomyocytes in newborn mice will 
proliferate in response to 5-HT or neuregulin, but 5-HT2BR mutant cardiomyocytes 
do not display a mitogenic response to these signals [56].

The developmental defects of 5-HT2BR mutant mice manifest themselves in 
impaired cardiac structure and function in adult hearts. Adults exhibit noticeable left 
ventricle dilatation with increased left ventricle end-diastolic and end-systolic 
diameters, consistent with persistent tissue-level remodeling in response to impaired 
cardiac morphogenesis. Functionally, 5-HT2BR mutant hearts have a 20% decrease 
in fractional shortening compared to WT mice. These changes coincide with a 15% 
decrease in the number of cardiomyocytes, and the existing cardiomyocytes are 
12% shorter, resulting in decreased ventricular mass. Upon ultrastructural analysis, 
myofilaments are misaligned, I bands are not observed, and Z bands are wider than 
expected, resulting in decreased sarcomere length. Despite increased preload condi-
tion (indicated by increased left ventricle end-diastolic diameter), mutant hearts 
treated with the adrenergic stimulus isoproterenol generate significantly less force 
upon contraction than WT hearts [57]. Decreased force generation resulting from 
fewer cardiomyocytes formed into shorter sarcomeres is the ultimate functional 
consequence of developmental deficiency of 5-HT2BR and is typical of what is 
observed in dilated cardiomyopathy. Of note, myocardial apoptosis or immune cell 
infiltrate is not observed in response to 5-HT2BR deletion. Additionally, there 
appears to be a partially sex-dependent phenomenon as male mice had more pro-
nounced biological changes than age-matched females [57]. While cardiomyocyte 
defects are the most pronounced and easily observable, fibroblasts have been spe-
cifically shown to transduce mitogenic signals in a 5-HT2BR-dependent manner 
[58]. Note that these developmental studies were all performed in the context of 
global 5-HT2BR deletion.

Cardiomyocyte-specific overexpression of 5-HT2BR was shown to have the 
inverse effect of global 5-HT2BR deletion. Mice exhibiting cardiomyocyte-restricted 
5-HT2BR overexpression displayed an increase in left ventricular free wall thickness 
as well as approximately 11% more cardiomyocytes, resulting in an overall increase 
in cardiac mass. The effect is not accompanied by a concomitant decrease in sys-
tolic performance indicative of compensated left-ventricular hypertrophy. Similar to 
5-HT2BR knockout animals, 5-HT2BR overexpression does not lead to myocardial 
apoptosis, fibrosis, or notable inflammatory cell infiltration. Contrary to the knock-
out model, sarcomeric structure is normal, but differences in mitochondria can be 
observed. They appear rounded, irregular, and more abundant. Functionally, the 
mitochondria are significantly more enzymatically active with decreased expression 
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of the mitochondrial defect marker adenine nucleotide translocator. These data sug-
gest 5-HT2BR signaling increases metabolic activity and oxidative phosphorylation 
in mitochondria [59]. 5-HT signaling through 5-HT2BR acts as a survival signal to 
cardiomyocytes by inhibiting serum withdrawal-induced apoptosis [60]. This effect 
could potentially transition from a hypertrophic to cardiomyopathic phenotype, 
controlled by the signaling of 5-HT2BR.

4.2  5-HT2BR Mediates Vascular Function and Remodeling

Due to the peripheral storage of 5-HT in platelets and its vasoactive function, 5-HT 
likely plays a pathologic role in low-flow conditions such as thrombosis, ischemic 
injury, and hypertension. In autoperfused rat hindquarters, 5-HT results in conflict-
ing vasoactive functions, causing vasodilation at low concentrations and vasocon-
striction at high concentrations. In this investigation of healthy vessels, the 
contractile response was mimicked with the non-selective 5-HT2 agonist 
α-methyl-5-HT, but not the selective 5-HT2B agonist BW723C86 indicating a 
5-HT2BR independent mechanism [61]. However, 5-HT2BR expression does increase 
in the context of injury. In the small arteries of deoxycorticosterone acetate (DOCA)-
salt-hypertensive rats, 5-HT causes contraction, exacerbating the hypertensive phe-
notype. mRNA levels of 5-HT2BR are increased in the mesenteric arteries suggesting 
this receptor begins to contribute to the disease phenotype. Endothelium-denuded 
isolated superior mesenteric arteries of DOCA-salt rats have a substantial increase 
in maximum contraction in response to the 5-HT2BR agonist BW723C86 compared 
to normotensive rats indicating a smooth muscle cell-mediated effect. The 5-HT2BR 
antagonist LY272015 effectively reduced mean blood pressure in DOCA-salt rats 
with no effect on normotensive rats [62]. These results indicate that in the context of 
injury, 5-HT2BR influences vessel contraction contributing to hypertension.

The use of percutaneous interventions such as balloon angioplasty and stenting 
has widened for the treatment of occluded vasculature. A concern accompanying 
these types of interventions is the restenosis of the vessel through infiltration of 
smooth muscle cells. 5-HT2BR influences vascular restenosis modeled through wire 
injury of the femoral artery. Administration of BW723C86 intensifies restenosis by 
increasing the degree of neointima formation. Wire injury denudes the vascular 
endothelium, inducing a strong smooth muscle cell response. Smooth muscle cells 
respond to 5-HT2BR agonism by increasing their proliferation and migration. This 
adverse response contributes to neointima formation and is blocked in 5-HT2BR 
knockout mice. The intracellular signaling of 5-HT2BR in this context is not through 
the canonical Gαq protein but through β-arrestin2 mediated activation of mamma-
lian target of rapamycin/p10S6K signaling [63].

These findings reveal a smooth muscle cell-mediated role of 5-HT2BR in exacer-
bating arterial contraction in hypertensive patients and vascular restenosis following 
percutaneous intervention which could potentially be leveraged to therapeutically 
reduce injurious vascular remodeling.
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4.3  Hypertrophic Response to 5-HT2BR Stimulation

Cardiac hypertrophy is a physiological adaptation in response to increased work-
load, whether it is through increased chronotropic or ionotropic effects. While this 
can be an advantageous adaptation, such as following exercise by an athlete, pro-
longed and extensive hypertrophic remodeling can lead to cardiomyocyte death and 
cardiac fibrosis. 5-HT2BR signaling influences cardiac hypertrophy in a context- 
dependent manner wherein different experimental models yield results contingent 
upon the method of hypertrophy induction and cell populations influenced.

Chronic adrenergic stimulation of cardiomyocytes through β-adrenergic recep-
tors is a strong predictor of morbidity and mortality in cases of congestive heart 
failure. Models using prolonged dosing with norepinephrine and the specific β1/β2 
adrenergic agonist isoproterenol have been instrumental in elucidating the mecha-
nisms underlying cardiac hypertrophy in response to sympathetic stimulation. 5-HT 
levels are also associated with sympathetic overstimulation providing a potential 
mechanism for 5-HT2BR overexpression-induced myocardial hypertrophy [64]. 
Isoproterenol administration causes an increase in heart mass, heart rate, and car-
diomyocyte size. Despite cardiomyocytes expressing 5-HT2BR, activation of the 
receptor does not elicit a contractile response [19]. One reported function of 
5-HT2BR antagonism in norepinephrine induced cardiac hypertrophy is through the 
downregulation of Bax, decreasing cardiomyocyte apoptosis and partially reversing 
established cardiac hypertrophy [65].

An important hallmark of cardiac hypertrophy is an increase in the inflammatory 
milieu within the myocardium. In response to in vitro isoproterenol induction, car-
diac fibroblasts will secrete the inflammatory cytokines IL-6, IL-1β, and tumor 
necrosis factor-α. This increase is prevented in 5-HT2BR null cardiac fibroblasts or 
when treated with a 5-HT2BR antagonist. This same cytokine response is observed 
in vivo, and the 5-HT2BR antagonist SB206553 prevents increases in plasma levels 
of these inflammatory cytokine and the subsequent cardiac hypertrophy, indicating 
a deleterious role of cardiac fibroblast 5-HT2BR signaling [64]. The contribution of 
cardiac fibroblasts was further magnified in a model of cardiomyocyte-driven over-
expression of 5-HT2BR in mice on a 5-HT2BR null background, thus relegating 
5-HT2BR expression strictly to cardiomyocytes. In response to chronic isoproterenol 
infusion, these transgenic animals do not develop cardiac hypertrophy or exhibit a 
decrease in cardiac function.

The transgenic animals also do not exhibit an increase in IL-6, IL-1β, or TGFβ1. 
It was reported in human left ventricle tissue that 5-HT2BR co-localizes and co- 
precipitates with another GPCR, the angiotensin II type 1 receptor (AT1R). These 
two receptors work in concert to initiate cytokine release that drives ventricle dilata-
tion, wall thinning, and hypertrophy (Fig.  10.3). Activation of both receptors by 
their respective ligands is required to achieve cytokine release. An investigation of 
16 patients diagnosed with congestive heart failure revealed that 5-HT2BR expres-
sion is significantly elevated irrespective of cardiomyopathy etiology, disease sever-
ity, or treatment. 5-HT2BR expression significantly correlated with expression of the 
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cytokines IL-6, tumor necrosis factor-α, and TGFβ1, further highlighting its contri-
bution in cardiac hypertrophy [20].

Left ventricular hypertrophy has been linked with excessive formation of reac-
tive oxygen species (ROS). Cardiac ROS is triggered by AngII as well as isoproter-
enol, both of which elicit a hypertrophic cardiac response. Administration of the 
5-HT2BR antagonist SB215505 is sufficient to prevent cardiac dilatation and 
increased mass in a load-independent manner as it acts without cardiodepression or 
lowering blood pressure. The effect of treatment can be attributed to a normalization 
of the superoxide anion of oxygen by abolishing NAD(P)H oxidase over-activation. 
The in vivo findings were replicated in left ventricle fibroblasts, further supporting 
the idea that 5-HT2BR acts through cardiac fibroblasts [66]. In addition, ROS gen-
eration could potentially be linked to a functional role of 5-HT2BR in mitochondria. 
This study highlights the interplay between the 5-HT2BR and AT1R, in regulating 
cardiac hypertrophy through production of hypertrophic cytokines and ROS.

Arterial banding is another methodology to induce cardiac hypertrophy by artifi-
cially increasing loading immediately distal to the ventricles. The tissue responds 
through cardiomyocyte hypertrophy, fibrosis, and cardiomyocyte apoptosis. 
Banding of the pulmonary artery causes a decrease in cardiac output due to TGF- 
β1- induced collagen deposition which can be mitigated through 5-HT2BR antago-
nism [67]. Wistar rats that have undergone an aortic banding procedure increase the 
expression of 5-HT2BR in cardiomyocytes. Administration of a 5-HT2BR antagonist 
prevents the hypertrophic characteristics of increased heart weight and decreased 
wall thickness. Cardiomyocyte hypertrophy in response to mechanical stress was 
found to be mediated by nuclear factor-κB and blocked through 5-HT2BR 

Fig. 10.3 Cardiac hypertrophy is driven by concomitant activation of AT1R and 
5-HT2BR. Inflammatory and fibrotic cytokines lead to left ventricular remodeling as seen by wall 
thinning and chamber dilatation
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antagonism [68]. These data point to 5-HT2BR directly influencing cardiomyocyte 
hypertrophy in response to mechanical load.

Spontaneously hypertensive rats (SHR) progressively develop diastolic dysfunc-
tion with preserved ejection fraction without any exogenous stimuli. After a few 
weeks of hypertension, diastolic dysfunction develops without a deterioration of 
systolic function, similar to essential hypertension in humans. Administration of the 
highly selective 5-HT2BR antagonist RS-127445 during the natural course of hyper-
tensive cardiomyopathy in SHRs did not reduce left ventricular dilatation despite 
increased Htr2b mRNA, but instead exacerbated left ventricle dilatation and thin-
ning of the septal and posterior walls, resulting in a severe eccentric hypertrophic 
phenotype. Brain natriuretic peptide levels, a cardiac hormone correlated with 
hypertension and hypertrophy, are decreased by RS-127445 despite worsened car-
diac hypertrophy, pointing to an intracellular mechanism independent of the patho-
logical state. Interestingly, 5-HT2BR antagonism causes an increase in subendocardial 
interstitial fibrosis in SHRs. In the same study, aortic rings isolated from WT and 
5-HT2BR knockout mice demonstrated different vasoactive responses when stimu-
lated with the general 5-HT2R agonist α-methyl-5-HT. WT samples respond in a 
dose dependent manner, where 5-HT2BR mutants vasoconstrict with an increased 
tension, indicating a potential vasodilating role of 5-HT2BR [69]. These confound-
ing results to aforementioned studies highlight the context-dependent action of 
5-HT2BR signaling in the realm of cardiac hypertrophy, and its actions must be 
understood in a variety of environments to characterize its pathologic or therapeutic 
mechanisms.

Cardiac hypertrophy is a complex condition associated with a wide variety of 
initiating factors. 5-HT2BR plays a dual function in both cardiac fibroblasts and car-
diomyocytes regulating the in vivo response to these factors.

5  Future Considerations

Findings throughout the literature show that multiple cardiopulmonary diseases can 
potentially be addressed through therapeutic manipulations of 5-HT2BR signaling 
(Fig. 10.4). The tissue distribution and pharmacologies of 5-HT2BR in rodents and 
humans are similar, emphasizing the translational importance of the findings 
described in rodent models [70]. Importantly, drugs (and their metabolites) target-
ing serotonergic signaling should be screened for activation of 5-HT2BR, as it has 
been well documented in the cases of valve disease and PAH that 5-HT2BR activa-
tion significantly increases risk of disease incidences. Multiple conditions mediated 
by vascular and interstitial cell dysfunction have been reported to be facilitated 
through signaling of 5-HT2BR. In particular, valve hyperplasia, arterial remodeling 
leading to pathologic RVSP and subsequently PAH, and inflammatory cytokine 
secretion upstream of cardiac hypertrophy all have contributions from 
5-HT2BR. Evidence has been presented for the influence of 5-HT2BR signaling over 
both resident and recruited cells, indicating a utility in both early and chronic stages 
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of disease. Further investigation into disease- and tissue-specific 5-HT2BR-targeted 
treatment paradigms is warranted based on the therapeutic potential supported by 
strong evidence put forth throughout years of research and current lack of effective 
therapies for cardiopulmonary disease.

Acknowledgments We acknowledge funding from the National Institutes of Health grant 
R35-HL135970, the American Heart Association grant 18PRE34060078, and the Fondation Leducq.

References

 1. Gustafsson BI, Hauso O, Drozdov I et  al (2008) Carcinoid heart disease. Int J Cardiol 
129:318–324. https://doi.org/10.1016/J.IJCARD.2008.02.019

 2. Robiolio PA, Rigolin VH, Wilson JS et  al (1995) Carcinoid heart disease. Circulation 
92:790–795. https://doi.org/10.1161/01.CIR.92.4.790

 3. Davar J, Connolly HM, Caplin ME et  al (2017) Diagnosing and managing carcinoid heart 
disease in patients with neuroendocrine tumors. J Am Coll Cardiol 69:1288–1304. https://doi.
org/10.1016/j.jacc.2016.12.030

 4. Roth BL (2007) Drugs and Valvular heart disease. N Engl J Med 356:6–9. https://doi.
org/10.1056/NEJMp068265

 5. Weintraub M, Hasday JD, Mushlin AI, Lockwood DH (1984) A double-blind clini-
cal trial in weight control. Arch Intern Med 144:1143. https://doi.org/10.1001/archi
nte.1984.00350180055008

 6. Chugh PK, Sharma S (2012) Recent advances in the pathophysiology and phar-
macological treatment of obesity. J Clin Pharm Ther 37:525–535. https://doi.
org/10.1111/j.1365- 2710.2012.01347.x

 7. Yen M, Ewald MB (2012) Toxicity of weight loss agents. J Med Toxicol 8:145–152. https://
doi.org/10.1007/s13181- 012- 0213- 7

 8. Connolly HM, Crary JL, McGoon MD et  al (1997) Valvular heart disease associated 
with Fenfluramine–phentermine. N Engl J Med 337:581–588. https://doi.org/10.1056/
NEJM199708283370901

Fig. 10.4 Cardiopulmonary diseases facilitated by 5-HT2BR activity

10 5-HT2B Receptor in Cardiopulmonary Disease

https://doi.org/10.1016/J.IJCARD.2008.02.019
https://doi.org/10.1161/01.CIR.92.4.790
https://doi.org/10.1016/j.jacc.2016.12.030
https://doi.org/10.1016/j.jacc.2016.12.030
https://doi.org/10.1056/NEJMp068265
https://doi.org/10.1056/NEJMp068265
https://doi.org/10.1001/archinte.1984.00350180055008
https://doi.org/10.1001/archinte.1984.00350180055008
https://doi.org/10.1111/j.1365-2710.2012.01347.x
https://doi.org/10.1111/j.1365-2710.2012.01347.x
https://doi.org/10.1007/s13181-012-0213-7
https://doi.org/10.1007/s13181-012-0213-7
https://doi.org/10.1056/NEJM199708283370901
https://doi.org/10.1056/NEJM199708283370901


184

 9. Khan MA, Herzog CA, St. Peter JV et al (1998) The prevalence of cardiac Valvular insufficiency 
assessed by transthoracic echocardiography in obese patients treated with appetite- suppressant 
drugs. N Engl J Med 339:713–718. https://doi.org/10.1056/NEJM199809103391101

 10. Rothman RB, Baumann MH, Savage JE et al (2000) Evidence for possible involvement of 
5-HT 2B receptors in the cardiac Valvulopathy associated with Fenfluramine and other seroto-
nergic medications. Circulation 102:2836–2841. https://doi.org/10.1161/01.CIR.102.23.2836

 11. Ayme-Dietrich E, Lawson R, Gasser B et al (2012) Mitral bioprosthesis hypertrophic scar-
ing and native aortic valve fibrosis during benfluorex therapy. Fundam Clin Pharmacol 
26:215–218. https://doi.org/10.1111/j.1472- 8206.2012.01027.x

 12. Schmuck K, Ullmer C, Kalkman HO et al (1996) Activation of meningeal 5-HT 2B receptors: 
an early step in the generation of migraine headache? Eur J Neurosci 8:959–967. https://doi.
org/10.1111/j.1460- 9568.1996.tb01583.x

 13. Johnson KW, Nelson DL, Dieckman DK et al (2003) Neurogenic dural protein extravasation 
induced by meta-chlorophenylpiperazine (mCPP) involves nitric oxide and 5-HT 2B receptor 
activation. Cephalalgia 23:117–123

 14. Fitzgerald LW, Burn TC, Brown BS et al (2000) Possible role of Valvular serotonin 5-HT2B 
receptors in the Cardiopathy associated with Fenfluramine. Mol Pharmacol 57:75–81

 15. Hutcheson JD, Setola V, Roth BL, Merryman WD (2011) Serotonin receptors and heart 
valve disease--it was meant 2B.  Pharmacol Ther 132:146–157. https://doi.org/10.1016/j.
pharmthera.2011.03.008

 16. Horvath J, Fross RD, Kleiner-Fisman G et al (2004) Severe multivalvular heart disease: a new 
complication of the ergot derivative dopamine agonists. Mov Disord 19:656–662. https://doi.
org/10.1002/mds.20201

 17. Antonini A, Poewe W, Perfezionamento C (2007) Fibrotic heart-valve reactions to dopamine- 
agonist treatment in Parkinson’ s disease. Lancet Neurol 6:4–7

 18. Zanettini R, Antonini A, Gatto G et  al (2007) Valvular heart disease and the use of dopa-
mine agonists for Parkinson’s disease. N Engl J Med 356:39–46. https://doi.org/10.1056/
NEJMoa054830

 19. Maroteaux L, Ayme-Dietrich E, Aubertin-Kirch G et  al (2017) New therapeutic opportu-
nities for 5-HT2 receptor ligands. Pharmacol Ther 170:14–36. https://doi.org/10.1016/j.
pharmthera.2016.10.008

 20. Jaffré F, Bonnin P, Callebert J et al (2009) Serotonin and angiotensin receptors in cardiac fibro-
blasts coregulate adrenergic-dependent cardiac hypertrophy. Circ Res 104:113–123. https://
doi.org/10.1161/CIRCRESAHA.108.180976

 21. Setola V, Hufeisen SJ, Grande-Allen KJ et al (2003) 3,4-methylenedioxymethamphetamine 
(MDMA, ‘ecstasy’) induces fenfluramine-like proliferative actions on human cardiac valvular 
interstitial cells in vitro. Mol Pharmacol 63:1223–1229. https://doi.org/10.1124/mol.63.6.1223

 22. Elangbam CS, Job LE, Zadrozny LM et al (2008) 5-Hydroxytryptamine (5HT)-induced val-
vulopathy: compositional valvular alterations are associated with 5HT2B receptor and 5HT 
transporter transcript changes in Sprague-Dawley rats. Exp Toxicol Pathol 60:253–262. 
https://doi.org/10.1016/j.etp.2008.03.005

 23. Gustafsson BI, Tømmerås K, Nordrum I et  al (2005) Long-term serotonin administration 
induces heart valve disease in rats. Circulation 111:1517–1522. https://doi.org/10.1161/01.
CIR.0000159356.42064.48

 24. Hutcheson JD, Ryzhova LM, Setola V, Merryman WD (2012) 5-HT(2B) antagonism arrests 
non-canonical TGF-β1-induced valvular myofibroblast differentiation. J Mol Cell Cardiol 
53:707–714. https://doi.org/10.1016/j.yjmcc.2012.08.012

 25. Cremer SE, Moesgaard SG, Rasmussen CE et  al (2015) Alpha-smooth muscle actin and 
serotonin receptors 2A and 2B in dogs with myxomatous mitral valve disease. Res Vet Sci 
100:197–206. https://doi.org/10.1016/j.rvsc.2015.03.020

 26. Driesbaugh KH, Branchetti E, Grau JB et al (2018) Serotonin receptor 2B signaling with inter-
stitial cell activation and leaflet remodeling in degenerative mitral regurgitation. J Mol Cell 
Cardiol 115:94–103. https://doi.org/10.1016/j.yjmcc.2017.12.014

J. C. Snider and W. D. Merryman

https://doi.org/10.1056/NEJM199809103391101
https://doi.org/10.1161/01.CIR.102.23.2836
https://doi.org/10.1111/j.1472-8206.2012.01027.x
https://doi.org/10.1111/j.1460-9568.1996.tb01583.x
https://doi.org/10.1111/j.1460-9568.1996.tb01583.x
https://doi.org/10.1016/j.pharmthera.2011.03.008
https://doi.org/10.1016/j.pharmthera.2011.03.008
https://doi.org/10.1002/mds.20201
https://doi.org/10.1002/mds.20201
https://doi.org/10.1056/NEJMoa054830
https://doi.org/10.1056/NEJMoa054830
https://doi.org/10.1016/j.pharmthera.2016.10.008
https://doi.org/10.1016/j.pharmthera.2016.10.008
https://doi.org/10.1161/CIRCRESAHA.108.180976
https://doi.org/10.1161/CIRCRESAHA.108.180976
https://doi.org/10.1124/mol.63.6.1223
https://doi.org/10.1016/j.etp.2008.03.005
https://doi.org/10.1161/01.CIR.0000159356.42064.48
https://doi.org/10.1161/01.CIR.0000159356.42064.48
https://doi.org/10.1016/j.yjmcc.2012.08.012
https://doi.org/10.1016/j.rvsc.2015.03.020
https://doi.org/10.1016/j.yjmcc.2017.12.014


185

 27. George MG, Schieb LJ, Ayala C et  al (2014) Pulmonary hypertension surveillance. Chest 
146:476. https://doi.org/10.1378/CHEST.14- 0527

 28. Preston IR (2013) Properly diagnosing pulmonary arterial hypertension. Am J Cardiol 
111:2C–9C. https://doi.org/10.1016/j.amjcard.2013.01.318

 29. MacLean MR, Dempsie Y (2010) The serotonin hypothesis of pulmonary hypertension revis-
ited. Humana Press, Totowa, NJ, pp 309–322

 30. Humbert M, Sitbon O, Yaici A et  al (2010) Survival in incident and prevalent cohorts 
of patients with pulmonary arterial hypertension. Eur Respir J 36:549–555. https://doi.
org/10.1183/09031936.00057010

 31. Thenappan T, Ryan JJ, Archer SL (2012) Evolving epidemiology of pulmonary arte-
rial hypertension. Am J Respir Crit Care Med 186:707–709. https://doi.org/10.1164/
rccm.201207- 1266ED

 32. Launay J-M, Hervé P, Callebert J et al (2012) Serotonin 5-HT2B receptors are required for 
bone-marrow contribution to pulmonary arterial hypertension. Blood 119:1772–1780. https://
doi.org/10.1182/BLOOD- 2011- 06- 358374

 33. Gomez-Arroyo J, Farkas L, Alhussaini AA et al (2012) The monocrotaline model of pulmo-
nary hypertension in perspective. Am J Physiol Cell Mol Physiol 302:L363–L369. https://doi.
org/10.1152/ajplung.00212.2011

 34. Gomez-Arroyo J, Saleem SJ, Mizuno S et al (2012) A brief overview of mouse models of 
pulmonary arterial hypertension: problems and prospects. Am J Physiol Cell Mol Physiol 
302:L977–L991. https://doi.org/10.1152/ajplung.00362.2011

 35. Tsihlis ND, Oustwani CS, Vavra AK et al (2011) Nitric oxide inhibits vascular smooth muscle 
cell proliferation and Neointimal hyperplasia by increasing the Ubiquitination and degradation 
of UbcH10. Cell Biochem Biophys 60:89–97. https://doi.org/10.1007/s12013- 011- 9179- 3

 36. Montani D, Chaumais M-C, Guignabert C et al (2014) Targeted therapies in pulmonary arterial 
hypertension. Pharmacol Ther 141:172–191. https://doi.org/10.1016/j.pharmthera.2013.10.002

 37. West JD, Carrier EJ, Bloodworth NC et al (2016) Serotonin 2B receptor antagonism prevents 
heritable pulmonary arterial hypertension. PLoS One 11:e0148657. https://doi.org/10.1371/
journal.pone.0148657

 38. Soon E, Holmes AM, Treacy CM et al (2010) Elevated levels of inflammatory cytokines predict 
survival in idiopathic and familial pulmonary arterial hypertension. Circulation 122:920–927. 
https://doi.org/10.1161/CIRCULATIONAHA.109.933762

 39. Matsubara H, Ogawa A (2014) Treatment of idiopathic/hereditary pulmonary arterial hyper-
tension. J Cardiol 64:243–249. https://doi.org/10.1016/j.jjcc.2014.06.009

 40. Macchia A, Marchioli R, Tognoni G et al (2010) Systematic review of trials using vasodilators 
in pulmonary arterial hypertension: why a new approach is needed. Am Heart J 159:245–257. 
https://doi.org/10.1016/j.ahj.2009.11.028

 41. Macchia A, Marchioli R, Marfisi R et  al (2007) A meta-analysis of trials of pulmonary 
hypertension: a clinical condition looking for drugs and research methodology. Am Heart J 
153:1037–1047. https://doi.org/10.1016/j.ahj.2007.02.037

 42. de Caestecker M (2006) Serotonin signaling in pulmonary hypertension. Circ Res 
98:1229–1231. https://doi.org/10.1161/01.RES.0000225927.04710.33

 43. Esteve JM, Launay J-M, Kellermann O, Maroteaux L (2007) Functions of serotonin in hypoxic 
pulmonary vascular remodeling. Cell Biochem Biophys 47:33–43. https://doi.org/10.1385/
CBB:47:1:33

 44. Herve P, Dosquet C, Launay J-M et al (1990) Primary pulmonary hypertension in a patient 
with a familial platelet storage Pool disease: role of serotonin. Am J Med 89:117–120

 45. Farber HW, Loscalzo J (2004) Pulmonary arterial hypertension. N Engl J Med 351:1655–1665. 
https://doi.org/10.1056/NEJMra035488

 46. Launay J-M, Hervé P, Peoc’h K et al (2002) Function of the serotonin 5-hydroxytryptamine 2B 
receptor in pulmonary hypertension. Nat Med 8:1129–1135. https://doi.org/10.1038/nm764

 47. Rich S, Rubin L, Walker AM et al (2000) Anorexigens and pulmonary hypertension in the 
United States. Chest 117:870–874. https://doi.org/10.1378/CHEST.117.3.870

10 5-HT2B Receptor in Cardiopulmonary Disease

https://doi.org/10.1378/CHEST.14-0527
https://doi.org/10.1016/j.amjcard.2013.01.318
https://doi.org/10.1183/09031936.00057010
https://doi.org/10.1183/09031936.00057010
https://doi.org/10.1164/rccm.201207-1266ED
https://doi.org/10.1164/rccm.201207-1266ED
https://doi.org/10.1182/BLOOD-2011-06-358374
https://doi.org/10.1182/BLOOD-2011-06-358374
https://doi.org/10.1152/ajplung.00212.2011
https://doi.org/10.1152/ajplung.00212.2011
https://doi.org/10.1152/ajplung.00362.2011
https://doi.org/10.1007/s12013-011-9179-3
https://doi.org/10.1016/j.pharmthera.2013.10.002
https://doi.org/10.1371/journal.pone.0148657
https://doi.org/10.1371/journal.pone.0148657
https://doi.org/10.1161/CIRCULATIONAHA.109.933762
https://doi.org/10.1016/j.jjcc.2014.06.009
https://doi.org/10.1016/j.ahj.2009.11.028
https://doi.org/10.1016/j.ahj.2007.02.037
https://doi.org/10.1161/01.RES.0000225927.04710.33
https://doi.org/10.1385/CBB:47:1:33
https://doi.org/10.1385/CBB:47:1:33
https://doi.org/10.1056/NEJMra035488
https://doi.org/10.1038/nm764
https://doi.org/10.1378/CHEST.117.3.870


186

 48. Abenhaim L, Moride Y, Brenot F et  al (1996) Appetite-suppressant drugs and the risk of 
primary pulmonary hypertension. N Engl J Med 335:609–616. https://doi.org/10.1056/
NEJM199608293350901

 49. Guignabert C, Raffestin B, Benferhat R et  al (2005) Serotonin transporter inhibition pre-
vents and reverses Monocrotaline-induced pulmonary hypertension in rats. Circulation 
111:2812–2819. https://doi.org/10.1161/CIRCULATIONAHA.104.524926

 50. Porvasnik SL, Germain S, Embury J et al (2010) PRX-08066, a novel 5-hydroxytryptamine 
receptor 2B antagonist, reduces monocrotaline-induced pulmonary arterial hypertension 
and right ventricular hypertrophy in rats. J Pharmacol Exp Ther 334:364–372. https://doi.
org/10.1124/jpet.109.165001

 51. Zopf DA, das Neves LAA, Nikula KJ et al (2011) C-122, a novel antagonist of serotonin recep-
tor 5-HT2B, prevents monocrotaline-induced pulmonary arterial hypertension in rats. Eur J 
Pharmacol 670:195–203. https://doi.org/10.1016/J.EJPHAR.2011.08.015

 52. Callebert SJ, Esteve JM, Hervé P et al (2006) Evidence for a control of plasma serotonin levels 
by 5- Hydroxytryptamine 2B receptors in mice. J Pharmacol Exp Ther 317:724–731. https://
doi.org/10.1124/jpet.105.098269

 53. Launay JM, Loric S, Mutel V, Kellermann O (1998) The 5-HT2B receptor controls the overall 
5-HT transport system in the 1C11 serotonergic cell line. Ann N Y Acad Sci 861:247–247. 
https://doi.org/10.1111/j.1749- 6632.1998.tb10204.x

 54. Bloodworth NC, Clark CR, West JD et al (2018) Bone marrow–derived Proangiogenic cells 
mediate pulmonary arteriole stiffening via serotonin 2B receptor dependent mechanism. Circ 
Res 123:e51–e64. https://doi.org/10.1161/CIRCRESAHA.118.313397

 55. Yavarone MS, Shuey DL, Tamir H et al (1993) Serotonin and cardiac morphogenesis in the 
mouse embryo. Teratology 47:573–584. https://doi.org/10.1002/tera.1420470609

 56. Nebigil CG, Choi DS, Dierich A et al (2000) Serotonin 2B receptor is required for heart devel-
opment. Proc Natl Acad Sci U S A 97:9508–9513. https://doi.org/10.1073/pnas.97.17.9508

 57. Nebigil CG, Hickel P, Messaddeq N et al (2001) Ablation of serotonin 5-HT(2B) receptors in 
mice leads to abnormal cardiac structure and function. Circulation 103:2973–2979. https://doi.
org/10.1161/01.cir.103.24.2973

 58. Nebigil CG, Launay J-M, Hickel P et  al (2000) 5-Hydroxytryptamine 2B receptor regu-
lates cell-cycle progression: cross-talk with tyrosine kinase pathways. Proc Natl Acad Sci 
97:2591–2596. https://doi.org/10.1073/PNAS.050282397

 59. Nebigil CG, Jaffré F, Messaddeq N et  al (2003) Overexpression of the serotonin 5-HT 2B 
receptor in heart leads to abnormal mitochondrial function and cardiac hypertrophy. Circulation 
107:3223–3229. https://doi.org/10.1161/01.CIR.0000074224.57016.01

 60. Nebigil CG, Maroteaux L (2003) Functional consequence of serotonin/5-HT 2B receptor signal-
ing in heart. Circulation 108:902–908. https://doi.org/10.1161/01.CIR.0000081520.25714.D9

 61. Calama E, Fernández MM, Morán A et al (2002) Vasodilator and vasoconstrictor responses 
induced by 5-hydroxytryptamine in the in situ blood autoperfused hindquarters of the anes-
thetized rat. Naunyn Schmiedeberg's Arch Pharmacol 366:110–116. https://doi.org/10.1007/
s00210- 002- 0579- 1

 62. Watts SW, Fink GD (1999) 5-HT 2B -receptor antagonist LY-272015 is antihypertensive in 
DOCA-salt-hypertensive rats. Am J Physiol Circ Physiol 276:H944–H952. https://doi.
org/10.1152/ajpheart.1999.276.3.H944

 63. Liu Y, Wang Z, Li J et al (2018) Inhibition of 5-Hydroxytryptamine receptor 2B reduced vas-
cular restenosis and mitigated the β-Arrestin2-mammalian target of Rapamycin/p70S6K path-
way. J Am Heart Assoc 7:e006810. https://doi.org/10.1161/JAHA.117.006810

 64. Jaffré F, Callebert J, Sarre A et al (2004) Involvement of the serotonin 5-HT2B receptor in car-
diac hypertrophy linked to sympathetic stimulation: control of interleukin-6, interleukin-1beta, 
and tumor necrosis factor-alpha cytokine production by ventricular fibroblasts. Circulation 
110:969–974. https://doi.org/10.1161/01.CIR.0000139856.20505.57

J. C. Snider and W. D. Merryman

https://doi.org/10.1056/NEJM199608293350901
https://doi.org/10.1056/NEJM199608293350901
https://doi.org/10.1161/CIRCULATIONAHA.104.524926
https://doi.org/10.1124/jpet.109.165001
https://doi.org/10.1124/jpet.109.165001
https://doi.org/10.1016/J.EJPHAR.2011.08.015
https://doi.org/10.1124/jpet.105.098269
https://doi.org/10.1124/jpet.105.098269
https://doi.org/10.1111/j.1749-6632.1998.tb10204.x
https://doi.org/10.1161/CIRCRESAHA.118.313397
https://doi.org/10.1002/tera.1420470609
https://doi.org/10.1073/pnas.97.17.9508
https://doi.org/10.1161/01.cir.103.24.2973
https://doi.org/10.1161/01.cir.103.24.2973
https://doi.org/10.1073/PNAS.050282397
https://doi.org/10.1161/01.CIR.0000074224.57016.01
https://doi.org/10.1161/01.CIR.0000081520.25714.D9
https://doi.org/10.1007/s00210-002-0579-1
https://doi.org/10.1007/s00210-002-0579-1
https://doi.org/10.1152/ajpheart.1999.276.3.H944
https://doi.org/10.1152/ajpheart.1999.276.3.H944
https://doi.org/10.1161/JAHA.117.006810
https://doi.org/10.1161/01.CIR.0000139856.20505.57


187

 65. Bai C-F, Liu J-C, Zhao R et al (2010) Role of 5-HT2B receptors in cardiomyocyte apoptosis 
in noradrenaline-induced cardiomyopathy in rats. Clin Exp Pharmacol Physiol 37:e145–e151. 
https://doi.org/10.1111/j.1440- 1681.2010.05388.x

 66. Monassier L, Laplante M-A, Jaffré F et al (2008) Serotonin 5-HT(2B) receptor blockade pre-
vents reactive oxygen species-induced cardiac hypertrophy in mice. Hypertens 52:301–307. 
https://doi.org/10.1161/HYPERTENSIONAHA.107.105551

 67. Janssen W, Schymura Y, Novoyatleva T et  al (2015) 5-HT2B receptor antagonists 
inhibit fibrosis and protect from RV heart failure. Biomed Res Int 2015:1–8. https://doi.
org/10.1155/2015/438403

 68. Liang Y, Lai L, Wang B et al (2006) Mechanical stress enhances serotonin 2B receptor modu-
lating brain natriuretic peptide through nuclear factor-κB in cardiomyocytes. Cardiovasc Res 
72:303–312. https://doi.org/10.1016/j.cardiores.2006.08.003

 69. Ayme-Dietrich E, Marzak H, Lawson R et  al (2015) Contribution of serotonin to cardiac 
remodeling associated with hypertensive diastolic ventricular dysfunction in rats. J Hypertens 
33:2310–2321. https://doi.org/10.1097/HJH.0000000000000695

 70. Manivet P, Schneider B, Smith JC et  al (2002) The serotonin binding site of human and 
murine 5-HT2B receptors: molecular modeling and site-directed mutagenesis. J Biol Chem 
277:17170–17178. https://doi.org/10.1074/jbc.M200195200

10 5-HT2B Receptor in Cardiopulmonary Disease

https://doi.org/10.1111/j.1440-1681.2010.05388.x
https://doi.org/10.1161/HYPERTENSIONAHA.107.105551
https://doi.org/10.1155/2015/438403
https://doi.org/10.1155/2015/438403
https://doi.org/10.1016/j.cardiores.2006.08.003
https://doi.org/10.1097/HJH.0000000000000695
https://doi.org/10.1074/jbc.M200195200


189© Springer Nature Switzerland AG 2021
L. Maroteaux, L. Monassier (eds.), 5-HT2B Receptors, The Receptors 35, 
https://doi.org/10.1007/978-3-030-55920-5_11

Chapter 11
Serotonin and Cardiac Valves 
Degeneration in Dog

Jérôme Guyonnet

Abbreviations

ACE  Angiotensin converting enzyme
ACVIM  American College of Veterinary Internal Medicine
CKCS  Cavalier King Charles Spaniel
ELISA  Enzyme-linked immunosorbent assay
ERK1/2  Extracellular signal-regulated kinase
HF  Heart failure
MVD  Mitral valve disease
Ndf  Nordexfenfluramine
SERT or alternatively 5-HTT Serotonin transporter
SNP  Single nucleotide polymorphism
TGFβ  Transforming growth factor beta
TPH1  Tryptophan hydroxylase-1
VHD  Valvular heart disease
VICs  Valve interstitial cells

1  Introduction

Chronic valvular heart disease (VHD), characterized by progressive myxomatous 
degeneration and thickening of the mitral valve leaflets, is the most common heart 
disease in dogs. The disease is typically found in many small breeds that are predis-
posed. Mitral valve disease (MVD) is the leading cause of death of small breeds and 
has been found to be 20 times more prevalent in Cavalier King Charles spaniels 
(CKCS) than in the average dog breed. It is estimated to affect 10% of the entire dog 
population, but at a much older age of onset than for CKCSs. The prevalence of the 
disease in CKCS animals older than 10 years is greater than 90%. MVD, the most 
common cardiovascular disease in dogs, represents 75% of all cardiovascular 
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diseases in this species [1]. MVD is a polygenetic disease and currently, there is no 
etiologic treatment for this pathology.

Serotonin is a monoamine neuro-transmitter that is produced in the central ner-
vous system as well as in enterochromaffin cells in the gastrointestinal tract. Upon 
release into the circulation, serotonin is rapidly taken up by platelets via SERT and 
virtually all circulating serotonin is stored in the dense granules of platelets. Platelet 
serotonin release is triggered by a variety of stimuli, including endothelial damage, 
platelet aggregation, and serotonin receptor agonists. High concentrations of SERT 
also are found in the pulmonary and coronary endothelium and likely contribute to 
regulation of local vascular tone. Interestingly, SERT is expressed in rat and mice 
embryonic myocardium and is specifically involved in valvulogenesis. The precise 
function of serotonin in valve tissue is unknown, but based on its role in valve for-
mation and its expression on mature valves, it is likely that both serotonin and SERT 
play a physiologic role in maintaining healthy valve tissue.

Although the exact causes of MVD are not known, some hypotheses explaining 
its onset include platelet dysfunctions, mechanical stretch, increased serotonin and 
5-HT2B receptor signaling, and/or inherited genetic disorders.

2  Pathology, Pathogenesis

Mitral valve regurgitation is attributable to myxomatous MVD, also known as 
chronic mitral valve insufficiency. The disease is caused by progressive myxoma-
tous degeneration of the mitral valve [2] leading to incomplete coaptation of the 
leaflets and valvular regurgitation. Myxomatous MVD has been shown to be associ-
ated with valve thickening and abnormal motion of the mitral leaflets observed by 
echocardiogram analysis in both humans and dogs. Canine myxomatous MVD has 
a strong resemblance to primary mitral valve prolapse in man, [3] with a strong cor-
relation existing between the endothelin receptor density and the degree of valvular 
changes. In human, an age older than 50 years associated with a depressed left 
ventricular function, moderate to severe mitral regurgitation, mitral valve thickness 
>5 mm, and atrial fibrillation have often been reported to represent significant risk 
factors for cardiovascular events.

In dogs, the disease is characterized by a slow progression over years. Many 
affected dogs that never progress to reveal clinical signs of overt heart failure (HF) 
because of the age of onset. The disease consistently is characterized by changes in 
the cellular constituents as well as the intercellular matrix of the valve apparatus 
(including the valve leaflets and chordae tendineae). Classically, mitral valves lose 
their flexibility, increase their surface and appear convex; thus, these lesions are char-
acterized as myxomatous. Chordae tendineae often appear thickened and elongated, 
thus leading to prolapse imaging by echocardiography and inducing mitral regurgita-
tion diagnosed by left apical systolic murmur [2]. Chordae tendineae rupture is clas-
sically observed in advanced degenerative stages and leads to complications, such as 
ventricular hypertrophy, followed by HF and death, despite treatments [4].
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Anatomically, degenerative MVD is characterized by changes that involve both 
the collagen content and the alignment of collagen fibrils within the valve. Expansion 
of the spongiosa layer is characterized by changes in the proteoglycan content of 
this layer. Dysregulation of the extracellular matrix appears to be central to these 
changes. Valve interstitial cells (VICs) acquire properties of activated myofibro-
blasts that include high proteoglycan /glycosaminoglycan deposits, and degradation 
of the fibrillar matrix, which lead to collagen disorganization and elastin fiber frag-
mentation, as previously described in human chronic heart disease [5]. Several 
effectors, such as matrix metalloproteinase collagenase, elastases, proteoglycans 
(decorin, versican, and biglycan) or markers of activated VIC phenotype (alpha 
smooth muscle actin), were identified in myxomatous mitral valve tissues [6]; how-
ever, there is limited knowledge regarding the mechanisms that initiate or progres-
sively destroy mitral valve tissues.

It has been reported that some small-breed dogs are predisposed to degenerative 
MVD, including CKCS, Miniature Poodles, Miniature Schnauzers, Chihuahuas, 
Pomeranians, Fox Terriers, Cocker Spaniels, and Pekingese breeds. The prevalence 
of chronic valvular disease was studied in 494 CKCSs with a mean age of 3 years 
[7]. Cardiac murmurs were detected in 65 (13.2%) of the dogs. Among 61 CKCSs 
with a mean age of 6.4 years, cardiac murmurs were detected in 32 (52%). In both 
groups of dogs the prevalence of cardiac murmurs was low among dogs younger 
than three years (1.9%) but increased with age. The estimated ages at which 50% of 
the dogs had developed murmurs were 7.5 and 6.2 years, respectively. When 39 of 
the 61 dogs were re-examined three years later, cardiac murmurs were detected in 
28 (72%), and the intensities of the murmurs had generally increased. Nine (28%) 
of the dogs which had previously had murmurs had been euthanized for signs of 
congestive HF whereas none of the dogs which had been free of murmurs had died 
from congestive HF. In another study on 207 Dachshunds dogs of Poland [8], 172 
animals (83%) had chronic valve disease with the mitral valve affected most often 
(130 dogs), both mitral and tricuspid valves infrequently (39 dogs), and only 3 dogs 
with the tricuspid valve. Lesions described in small-breed dogs, like CKCS or 
Dachshunds are usually myxomatous. Another team characterized the composition 
and distribution of components in the extracellular matrix of mitral valves in 50 
dogs predisposed for chronic valve disease, compared to healthy ones [9]. Alterations 
of extracellular matrix, activation of stromal cells and modifications in endothelial 
layer were observed in mild, moderate and marked chronic VHD, and were described 
as myxomatous.

3  Mitral Valve Degeneration

Although abnormal serotonin signaling is unlikely to be the sole primary cause of 
myxomatous MVD in dogs, alterations in the serotonin signaling system might be 
involved in the pathological process of valvular deformation. However, further 
investigations should be conducted to evaluate the potential role of serum and car-
diac tissue serotonin, respectively, in the pathogenesis of myxomatous 
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MVD. Interactions of platelet, valvular, and myocardial serotonin signaling warrant 
further investigation.

3.1  Involvement of Serotonin to Mitral Valve Degeneration

It is well known that high circulating serotonin or serotonergic drugs can induce 
valvulopathy in humans and rats. In carcinoid syndrome (functional neoplasia of 
enterochromaffin cells), patients with the highest levels of plasma serotonin are at 
greatest risk to develop valvulopathy [10]. Fenfluramine or ergot derivatives were 
linked to mitral and aortic valve dysfunction and share in common the pharmaco-
logical property of being 5-HT2B receptor agonists [11]. The contribution of sero-
tonin and its receptors to cardiovascular tissue remodeling, with a particular 
emphasis on cardiac hypertrophy, fibrosis and valve degeneration are summarized 
in Fig. 11.1. The canine cardiovascular system is rich in serotonin-signaling compo-
nents. In particular, canine mitral valve tissue expresses 5-HT2A, 5-HT2B, 5-HT1B 
receptors, as well as SERT and the limiting serotonin synthetic enzyme, tryptophan 
hydroxylase-1 (TPH1) [13]. 5-HT2 receptors are secondarily linked to Gq proteins, 
and through activation of phospholipase C these receptors mediate downstream 
mitogen activated protein kinase signaling pathways such as the extracellular signal- 
regulated kinase (ERK1/2) systems. Phosphorylation of ERK1/2 initiates processes 
of cellular differentiation and proliferation.

Importantly, in valve tissue, ERK1/2 transforms normally quiescent VICs into 
the more active myofibroblast phenotype. The serotonin pathway also is closely 
linked to the transforming growth factor beta (TGFβ1) system. Serotonin increases 
TGFβ1 expression and is closely associated with differentiation and proliferation of 
VIC. Thus, both the serotonin and TGFβ1 systems are found in the canine mitral 
valve, and by their ability to activate myofibroblasts, these systems may play an 
important role in the development and progression of degenerative MVD. Some 
valve degenerative processes such as the carcinoid heart disease, drug-induced val-
vulopathy are clearly linked to serotonin as degenerative MVD in inbreed dogs [14].

In dogs, several studies with naturally occurring myxomatous MVD, serotonin 
concentrations in mitral valve leaflets and left ventricular myocardium have been 
shown to be higher than in healthy control. These findings suggest that differences 
in serum serotonin concentrations between dogs with or at risk of developing myxo-
matous MVD likely reside within the platelet serotonin pool or other causes. In a 
study, 483 healthy dogs of nine breeds aged 1–7 years were examined at five 
European centers [15]. The absence of cardiovascular, organ-related, or systemic 
diseases was ensured by thorough clinical investigations including echocardiogra-
phy. Results shown median serotonin concentration was 252.5 ng/ml. Overall breed 
difference was found (p < 0.0001), and 42% of pairwise breed comparisons were 
significant. Among the included breeds, Newfoundlands, Belgian Shepherds and 
CKCS had highest serotonin concentrations. Fifty dogs affected with degenerative 
MVD, 34 dogs predisposed to degenerative MVD but without cardiac murmur or 
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echocardiographic evidence of degenerative MVD, and 36 healthy large breed con-
trol dogs had median serotonin concentrations greater than the upper limit of the 
human reference range (40–450 ng/mL) [16]. Dogs with degenerative MVD had 
significantly higher serum serotonin concentrations when compared with large 
breed control dogs. In another study, 92 dogs prospectively recruited were classified 
by standard echocardiography into healthy dogs of breeds predisposed to myxoma-
tous MVD, but without echocardiographic evidence of the disease, mild, moderate, 
or severe myxomatous MVD groups [17]. Serum serotonin concentration was found 
to decrease with increasing severity of myxomatous MVD, and left atrial to aortic 
root ratio was the variable most strongly associated with serotonin. In a study on 
forty-five dogs, mitral valve serotonin concentration from dogs with degenerative 
MVD was ninefold greater than in dogs with non-cardiac disease, and 13.5-fold 
greater than in dilated cardiomyopathy [18]. Tissue serotonin concentration was 

Fig. 11.1 Deleterious cardiovascular effects of 5-hydroxytryptamine (5-HT; serotonin) accord-
ing to [12]
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highest in mitral valve and left ventricle of myxomatous MVD-affected dogs, sug-
gesting altered serotonin signaling as a potential feature of myxomatous 
MVD. Findings showed that platelet serotonin was elevated in CKCS compared to 
other breeds, and that serotonin in left ventricular myocardial and mitral valve leaf-
let tissue of myxomatous MVD-affected dogs.

These results led to the investigation of the interactions between platelets and 
valvular serotonin signaling in dogs. An overexpression of the 5-HT2B receptor was 
subsequently identified in CKCS mitral valve tissue by RT-qPCR [19] and immuno-
histochemical analysis [20], whereas a downregulation of the serotonin transporter 
(SERT, or alternatively 5-HTT) was identified in the late stage of degenerative 
MVD by immunohistochemical analysis [21]. Therefore, the 5-HT2B receptor 
chronic stimulation by free serotonin could activate remodeling pathways and be 
autoamplified by the reduction of serotonin capture as a consequence of the reduc-
tion of SERT expression. An inhibition of SERT function is also possible in valves 
because 5-HT2B receptor stimulation has been shown, in primary neurons, to inhibit 
SERT function/phosphorylation [22]. This central role of SERT function and 
expression in degenerative MVD is reinforced by the recent finding of three poly-
morphisms in the SERT gene of Maltese dogs that were predicted to induce damage 
to protein function [23].

A team of human and veterinary researchers studied the relationship between 
serotonin receptors and mitral VICs and leaflet remodeling in humans and CKCSs 
[24]. Canine mitral valve prolapse leaflets showed 5-HT2B receptor upregulation. 
Mitral valve RNA was used for microarray analysis of mitral valve prolapse patients 
versus control, highlighting genes that indicate the involvement of serotonin recep-
tor pathways and extracellular matrix remodeling in mitral valve prolapse. Human 
mitral valve leaflets were also studied in-vitro and ex-vivo with biomechanical test-
ing to assess remodeling in the presence of a pure 5-HT2B receptor antagonist 
(LY272015). Antagonism of 5-HT2B receptor mitigates mitral VIC activation in- 
vitro and mitral valve remodeling in-vivo. In humans, mitral valve prolapse is asso-
ciated with an upregulation in 5-HT2B receptor expression and increased 5-HT 
receptor signaling in the leaflets. Antagonism of 5-HT2B receptor mitigates mitral 
VIC activation in-vitro and mitral valve remodeling in-vivo. These observations 
support the view that serotonin receptor signaling is involved not only in previously 
reported serotonin-related valvulopathies, but it is also involved in the pathological 
remodeling of mitral valve prolapse.

In conclusion, CKCS dogs, which are predisposed to an early onset of myxoma-
tous MVD, had higher serum serotonin concentrations compared with dogs of other 
breeds (Table 11.1). Mitral valve serotonin concentrations seem more appropriate to 
follow the relation between increasing of serotonin and valvulopathy but not easy to 
measure. In addition, systemic concentrations are the sum of several sources of 
serotonin and are not completely representative of local concentrations contributing 
to myxomatous MVD. This is illustrated in the following table where there is a 
tenfold to 100-fold difference between the serotonin concentrations at the valve and 
the serum. Serum serotonin concentration results from equilibrium between sero-
tonin synthesis, platelet uptake and storage, and metabolism. Hence, it can be ques-
tioned whether altered circulating serotonin concentrations in dogs with myxomatous 
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MVD are caused by alterations in the peripheral production and handling of sero-
tonin or by alterations in local serotonin production in the mitral valve (or both).

3.2  Involvement of Mechanical Stress/Mechanotransduction 
to Mitral Valve Degeneration

In soft-tissue biomechanics, the presence of normal tissue stress is considered to be 
closely related to the regulation of tissue homeostasis [25]. Cardiac valves are living 
tissues with the ability to repair and remodel in response to damage. Valve biology 

Table 11.1 Serum and mitral valves serotonin concentrations (measured by an ELISA kit and 
HPLC) in several breeds of healthy dogs and those with various stages of myxomatous MVD

Years Breed Tissues Serotonin Kit References

2009 Myxomatous MVD (CKCS, mixed breed, 
Yorkshire Terriers, Pomeranians, Maltese, 
Brittany Spaniel, Dachshund, Miniature 
Doberman Pinscher, Rat Terrier)

Serum 765.5 ng/
mL

ELISA [16]

Predisposed myxomatous MVD (CKCS, 2 
mixed breeds, miniature Poodles, Cocker 
Spaniel, English Springer Spaniel, Jack 
Russell Terrier, Teacup Poodle, Fox Terrier)

774.9 ng/
mL

Healthy (mixed breed, Great Danes, Labrador 
Retrievers, Weimaraner, Golden Retrievers, 
American Pit Bull Terrier, Bull Mastiff)

509.8 ng/
mL

2013 Control (mostly CKCS, Dachshund, mixed 
breed, Jack Russell, Shih-tzu)

Serum 657 ng/ml ELISA [17]

Mild myxomatous MVD (mostly CKCS, 
Dachshund, mixed breed, Jack Russell, 
Shih-tzu)

645 ng/ml

Moderate myxomatous MVD (mostly CKCS, 
Dachshund, mixed breed, Jack Russell, 
Shih-tzu)

585 ng/ml

Severe myxomatous MVD (mostly CKCS, 
Dachshund, mixed breed, Jack Russell, 
Shih-tzu)

513 ng/ml

2014 Myxomatous MVD (CKCS, Jack Russell 
Terrier, Chihuahua, Cocker Spaniel, Toy 
Poodle)

Mitral 
valve

32.4 ng/
mg

HPLC [20]

Other heart disease (Doberman, mixed breed, 
Boxer, Great Dane)

2.4 ng/mg

Non-heart disease (Beagle, mixed breed, 
Bassett hound, Cane Corso, Welsh Terrier, 
CKCS, German Shepherd)

3.6 ng/mg

2015 Control (CKCS) Serum 591 ng/ml ELISA [18]
Mild myxomatous MVD (CKCS) 746 ng/ml
Moderate myxomatous MVD (CKCS) 638 ng/ml
Severe myxomatous MVD (CKCS) 388 ng/ml
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can be modeled in these extreme hemodynamic conditions. Several studies have 
shown that pathophysiological alterations in mechanical loading lead to stress 
changes and subsequent tissue adaptations that affect tissue structure and composi-
tion [26]. The fundamental question common to all soft collagenous tissues is the 
relationship between tissue remodeling and cell-level deformations [27]. The above 
is especially true in heart valve leaflet tissues, where alterations in tissue stresses 
due to physiological conditions, disease, and surgical repair have long been sus-
pected to play a major role in valvular remodeling. The average adult heart beats at 
approximately 2.21 billion times during the lifetime, and 0.53 billion for a small 
dog with blood flow directed within its chambers by the four heart valves. Heart 
valves function within a highly demanding intrinsically mechanical environment; 
the movement of their structures is coordinated by their complex geometry and the 
underlying, intricate, and highly organized extracellular matrix. Of the four heart 
valves, the mitral valve is subjected to the greatest hemodynamic forces.

At tissue level, induced deformation is a major driver for mitral VIC mechano-
regulation [27]. Findings on collagen fiber alignment showed that the collagen/VIC 
coupling and micromechanical interactions are major drivers for mitral VIC defor-
mation and subsequent phenotypic activation. These results indicated that cellular 
compression occurs in the physiological range, whereas cellular elongation drives 
mechanobiological response at higher strain levels, suggesting that compression 
and stretching could lead to different mechanotransduction pathways. Results at 
different length scales revealed that normal responses are observed only within a 
defined range of tissue deformations, whereas deformations outside of this range 
lead to altered responses, evidenced by changes in a-smooth muscle actin, type I 
collagen, and other extracellular matrix and cell adhesion molecule regulation. 
Thus, cell responses have a delimited range of in-vivo deformations that maintain a 
homeostatic response, suggesting that deviations from this range may lead to delete-
rious tissue remodeling and failure (Fig. 11.2).

Most of studies are performed on cultured VIC try to mimic the valve tissue, 
which is subjected to considerable mechanical stress. Several laboratories have 
developed systems to subject native or bioengineered valve tissues to mechanical 
properties, such as high blood pressure, alternative flow and frequency, mimicking 
physiological conditions [28].

These approaches enable the investigation of mechanical strain and the relation-
ship between mechanics and serotonin. Although serotonin alters the mitral valve 
microenvironment and global valve mechanics, it may also be a direct 
mechanomodulator.

Lacerda et al. [29], developed an in-vitro valve model system capable of applying 
static and cyclic tensile strain to canine mitral valves in culture, in which static and 
cyclic strain increased the expression of myxomatous effector proteins, chondro-
genic markers and the myofibroblastic phenotype compared to unstrained controls in 
canine mitral valves. Mitral valves were subjected to 30% static or cyclic tensile 
strain and compared to cultured mitral valves subjected to 0% strain for 72 h. The 
expression of TPH1, was significantly increased in canine mitral valves subjected to 
30% static and 30% cyclic strain compared to unstrained mitral valves. Serotonin 
levels were higher in media of cyclically strained valves compared to unstrained 
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valves after 72 h of culture. The expression of TPH1 increased with higher serotonin 
levels suggesting local serotonin synthesis modulated by mechanical strain. All these 
results support that serotonin acts as a local modulator required for the adaptation of 
the valve matrix to increased constraints and to maintain homeostasis.

Cell proliferation, collagen synthesis, and tissue stiffness in response to cyclic 
stretch seem to be specifically modulated by the 5-HT2A receptor in the aortic valve 
[30] while in-vitro experiments in mitral valves implicate the 5-HT2B receptor. This 
strongly suggests that the 5-HT2A receptor subtype is sensitive to elevated stretch. 
Conversely, in mitral valve tissues, in-vitro static experiments implicated the 5-HT2B 
receptor. At the tissue scale, treating VIC with a 5-HT2B agonist acutely decreases 
tone generation of the cells, tissue alignment, and increases the tensile modulus 
along the primary fiber alignment axis [31]. Similar mechanisms may be at play in 
serotonin-related MVD. In both aortic banded rats and neonatal rat cardiomyocytes, 
mechanical stress can enhance 5-HT2B signaling in ventricular models of pressure 
induced cardiomyopathy [32]. Cyclic stretch upregulates 5-HT2A and 5-HT2B recep-
tor expression in porcine aortic valve cusps causing VIC proliferation and extracel-
lular matrix remodeling [33]. Myofibroblastic phenotype markers, and matrix 
catabolic enzymes, cathepsins, matrix metalloproteases, increased with increasing 
cyclic strain in cultured sheep mitral valves with serotonin present in the media [34].

Orton et al. [5], proposed a pathway (Fig. 11.3) whereby degenerative MVD is 
mediated through a local serotonin signaling mechanism and raised several ques-
tions as identification of the initiating triggers for degenerative valve disease, iden-
tification of mechanosensor and mechanotransduction mechanisms in heart valve 
cells, and understanding the complex interactions of signaling mechanisms.

The team reported increased 5-HT2B receptor protein and decreased SERT pro-
tein in canine degenerative mitral valves, increased phosporylated ERK (pERK) 
without change in total ERK in canine degenerative mitral valves, consistent with 

Fig. 11.2 Mitral VIC deformation is a major driver for cellular mechanoregulation. A maximum 
fibrosa nuclear aspect ratio (NAR) that is less than 3.28 is bracketed as hypophysiological, an NAR 
between 3.28 and 4.92 is bracketed as physiological and an NAR above 4.92 is hyper- physiological. 
This suggests that there is a narrow physiological range of mitral VIC NAR. From ref [27]
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active serotonin signaling. Interestingly, it was observed several-fold increase in 
expression of TPH1 in both human and canine degenerative mitral valves. Increased 
TPH1 expression in both early- and late-stage disease in dogs can be consistent with 
a possible initiating role for serotonin. Based on these findings, a hypothesis was 
proposed whereby degenerative MVD is mediated through a local serotonin signal-
ing mechanism (Fig. 11.4). In this issue, static and cyclic tensile strain could induce 
increased expression of TPH1 and increased local serotonin synthesis in cultured 
canine mitral valves. This study supports a local serotonin mechanism in degenera-
tive MVD that is initiated by tensile strain.

While valvulopathic effects of serotonin and angiotensin-II (Ang-II) are indi-
vidually known, their interactions specifically in the context of the mechanobiologi-
cal responses of altered valve were not clear. In this context, increased serotonin 
levels would result in accelerated progression toward disease in the presence of 
Ang-II. After 3 weeks, average systolic blood pressure was significantly increased 
in the serotonin, Ang-II and combination groups compared to control [35]. 
Echocardiographic analysis demonstrated significantly reduced ejection fraction in 
Ang-II and the combination groups. VIC orientation, cellular contractility and 

Fig. 11.3 Signaling pathways in mitral valve degeneration. ACE angiotensin converting enzyme , 
Ang II angiotensin II, AT1R angiotensin II receptor type 1, TPH1 tryptophan hydroxylase 1, 5-HT2B 
receptor serotonin type 2B receptor, PLC phospholipase C, TGFβ transforming growth factor β, 
BMP bone morphogenetic protein, LRP lipoprotein receptor-related protein, Fz frizzled receptor, 
NOS nitric oxide synthase, sGC soluble guanylate cyclase, αSMA α smooth muscle actin, SMemb 
non-muscle embryonic myosin, GAG glycosaminoglycan, PG proteoglycan, MMPs matrix metal-
loproteinases [5]
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collagen gene expression was highest for the serotonin + Ang-II combination treat-
ment compared to all other groups. Serotonin and Ang-II thus interact to result in 
significantly detrimental alteration of function and remodeling in the valve. 
Mechanomodulation affects mitral valve disease through serotonin, upregulates 
serotonin synthesis through a mechanosensory mechanism.

3.3  Involvement of Platelet Dysfunction to Mitral 
Valve Degeneration

In all species, VHD has the potential to be affected by platelet activation or function 
as a result of turbulent high-velocity blood flow and fluid shear stress. Increased 
platelet activation and reactivity would be expected initially; however, continuous 
stimulation and stress may lead to structural and biochemical changes associated 
with decreased platelet function. Alteration of platelet function in humans with 

Fig. 11.4 The serotonin hypothesis for degenerative MVD. Tensile strain on heart valve cells initi-
ates upregulation (red) of the rate-limiting serotonin synthetic enzyme, TPH1 tryptophan hydroxy-
lase 1, through an unknown mechanosensor mechanism. TPH1 mediates the local synthesis and 
release of serotonin. Serotonin interacts with the upregulated serotonin type 2B receptor (5-HT2B 
receptor) leading to activation of PKC protein kinase C and phosphorlyation of ERK 1/2. pERK 
1/2 Phosphorylated ERK translocates to the nucleus to induce TGFβ transforming growth factor β 
signaling and transcription of effector genes mediating myxomatous pathology. The SERT sero-
tonin transporter is downregulated (green) leading to decreased uptake and metabolism of sero-
tonin by MAO monoamine oxidase [5]
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heart disease contributes to the development of vascular remodeling, thromboem-
bolic events, and fatalities.

Former work in human [36] addresses the indirect relationships between mitral 
valve prolapsed, thromboembolic disease and hemodynamic irregularities (platelet 
activation, serotonin liberation). The incidence of platelet coagulant hyperactivity in 
patients with mitral valve prolapse was 76% compared with 6% in control patients. 
Further, the frequency of abnormal results of platelet coagulant activities was sig-
nificantly higher in all patients with mitral valve prolapse than in control patients 
with non-thrombotic diseases. The demonstration of these abnormalities is consis-
tent with the view that exposure of flowing blood to the abnormal hemodynamics or 
valve surfaces in mitral prolapse gives rise to in-vivo platelet stimulation resulting 
in intravascular thromboembolism. These results suggested that platelets play a 
critical role in the purported association of thromboembolism and mitral valve pro-
lapse. Additional studies were performed to investigate potential platelet activation 
in dogs with clinical heart disease.

Platelet activation, as assessed on the basis of mean platelet component concen-
tration and platelet component distribution width, was not a feature of subclinical 
chronic VHD in CKCSs [37]. Increased platelet closure time in CKCSs with a 
regurgitant jet size >50% may reflect quantitative and qualitative changes in von 
Willebrand factor. Significant differences in several platelet variables, including 
platelet count, mitral valve prolapse, and platelet component distribution width, 
were compared between CKCSs and dogs of other breeds. Such interbreed variation 
must be considered when interpreting results. Similar conclusions were reported in 
human [38], where mitral regurgitation in MVD was associated with systemic plate-
let activation. Mitral valve prolapse itself was not associated with increased platelet 
activation. The degree of platelet activation was positively correlated with the sever-
ity of mitral regurgitation and was independent of the underlying etiology of MVD, 
age and left atrial size.

4  Genetics

The small breeds’ especially CKCS are susceptible to numerous inherited disorders. 
Domestic dogs (Canis familiaris) have an intimate connection with human society 
and are valued as workers, hunters, herders, and companions. Recently, their impor-
tance has been augmented by their value as a model organism for human disease 
[39]. Hundreds of genetic disorders have been described in dogs and more than half 
of them resemble specific human disorders [40]. This is mainly due to the unique 
evolutionary history of dogs are thought to be descended from a common ancestor 
with wolves. The dog was the first mammal to be domesticated, and its relationship 
with humans began more than 15,000 to 100,000 years ago [41]. The second phase 
involved selective breeding, which predominantly occurred in the last few centuries 
and has resulted in more than 400 recognized breeds [42]. In addition to a variety of 
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genetic diseases, dogs exhibit huge variation in size, shape, physiology, and behav-
ior [43, 44].

A team examined the effect of domestication on the dog genome by comparison 
with its wild ancestor, the gray wolf [45]. Considering that dogs arose from a small 
gene pool relatively recently in evolutionary time and that selection for diversity in 
breeds is even more recent, the huge phenotypic variation observed in modern day 
breeds is striking. They observed a variation in dog and wolf genes using whole- 
genome SNP data. The rate of non-synonymous substitutions and synonymous sub-
stitutions, was around 50% greater for SNPs found in dogs than in wolves, indicating 
that a higher proportion of non-synonymous alleles segregate in dogs compared 
with non-functional genetic variation. Authors suggested that the majority of these 
alleles are slightly deleterious and that two main factors may have contributed to 
their increase. The first is a relaxation of selective constraint due to a population 
bottleneck and altered breeding patterns accompanying domestication. The second 
is a reduction of effective population size at loci linked to those under positive selec-
tion due to Hill–Robertson interference. A comparison in dog and wolf lineages 
indicated that dogs appear to have been accumulating non-synonymous mutations 
in mitochondrial DNA genes at a greater rate than wolves [45].

Since the year 1922, Write raises the debate about the breeding of domestic 
where animal’s consanguineous mattings are frequently made and the importance of 
having a coefficient by means of which the degree of inbreeding may be expressed 
has been brought [46]. Inbreeding reduces the genetic variation within a breed, and 
tends to accentuate the expression of diseases that are due to recessive genes. In a 
work, inbreeding and genetic diversity in dogs were also assessed from DNA analy-
sis [47]. On average, dog breeds currently retain approximately 87% of the available 
domestic canine genetic diversity. These authors concluded that global exchange of 
genetic material may hasten the loss of alleles and this practice should be discussed 
in relation to the current effective population size of a breed and its expected future 
popularity, and that genomic data do not always support the results from pedigree 
analysis.

It has been suggested that degenerative MVD has a strong genetic component 
and the inheritance of mitral valve prolapse is believed to be polygenic. A genome 
wide association study compared Single Nucleotide Polymorphism (SNP) in more 
than one thousand CKCS separated into two groups, degenerative MVD-affected or 
degenerative MVD-unaffected dogs, after cardiac auscultation and echocardiogra-
phy. Despite the identification of two regions which included 20 and 11 genes, 
respectively, associated with development of degenerative MVD, no genes were 
identified [48]. Thus far, different researchers have identified different chromo-
somes as possible regions for genes affecting mitral valve deterioration in MVD- 
affected dogs. A study [49] reported that MVD in CKS breed is a polygenic threshold 
trait and that sex of the offspring influences threshold levels. In a 2016 a team of 
researchers [50] investigated variations of the COL1A2 gene in 50 MVD-affected 
and 80 control Poodles. The authors found that the allele T of the rs22372411 vari-
ant was over-represented in myxomatous MVD patients compared with healthy 
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controls. They concluded about an association of the rs22372411 COL1A2 gene 
variant with susceptibility to canine myxomatous MVD.

Another question is the relation between genetic and body size [51]. Multiple 
studies addressed the genetics of size variation in dogs from different viewpoints. 
One of the most interesting studies related to signaling pathways in mitral valve 
degeneration [52] showed that high mobility group HMGA2 affects cardiomyocyte 
differentiation and that a morpholino mediated knock-down of the gene leads to 
improper heart formation in frog embryos. Perhaps the most interesting gene in this 
group is SMAD family member 2 (SMAD2) which interacts directly with TGFβ. 
Recent studies show that TGFβ2, working through SMAD2/3, is required to achieve 
mature valve structure. In addition, an increase in TGFβ signaling, identified by the 
correlated increase in SMAD2 expression, contributes to mitral valve degeneration 
in a mouse model of Marfan’s syndrome in which the mitral valves show increased 
leaflet length and thickness and folding conformation. Given this correlation, a dog 
with altered SMAD2 expression due to selection for its growth retarding properties 
may also experience problems with cardiac valve development.

Other authors [53, 54] suggest that familial occurrence of mitral valve murmur in 
the CKCS breed is not due to a single major gene effect, indicating that breeding 
strategies to eliminate the disease cannot be based on genotype information at this 
time. A role of SERT function and expression in degenerative MVD was reinforced 
by the finding of three polymorphisms in the SERT gene of Maltese dogs that were 
predicted to induce damage to protein function [23]. More recently, an abstract from 
North Carolina State veterinary researchers [55], hypothesized that genetic variants 
in the serotonin receptor signaling pathway would be associated with the develop-
ment of mitral valve prolapse in dogs and add insight into this complex disease. In 
humans, mitral valve prolapse is a common heritable condition. Dogs serve as a 
spontaneous animal model of familial mitral valve prolapse, with several breeds 
genetically predisposed. As in humans, previous studies have suggested that canine 
mitral valve prolapse may be polygenic and may be associated with alterations in 
the serotonin pathway. DNA was isolated from blood samples from 51 dogs with 
mitral valve prolapse and whole genome sequencing was performed. No high, mod-
erate, or high impact modifying variants in canine genes orthologous to the human 
genes known to be associated with the serotonin receptor signaling pathway were 
shared in all dogs used for this study. High impact variants were inconsistently 
identified in the serotonin receptor signaling pathway in this canine model. No sin-
gle high impact variant, gene, or gene family accounted for all dogs. Although sero-
tonin may play a role in mitral valve prolapse development, it may not be the 
primary genetic cause of the disease.

These genetic investigations, along with other approaches, indicated the need of 
investigating therapeutic opportunities around serotonin-related valvulopathy.
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5  Treatments in Asymptomatic Stages

5.1  Current

Asymptomatic dogs with left apical systolic murmurs characteristic of mitral regur-
gitation should undergo baseline diagnostics to establish the etiology of the mur-
mur. If a diagnosis of stage B1 degenerative valve disease is confirmed by 
echocardiography or presumed (in an older small breed dog) based on the presence 
of a normal radiographic vertebral heart size, then no therapy is indicated. 
Recommendations for stage B1 degenerative valve disease remain unchanged [56]. 
There is no historical or new evidence to support intervention with a specific ther-
apy at this stage. Emphasis in this stage should include client communication con-
cerning the value of scheduled follow-up evaluations to assess the presence and 
severity of any disease progression. In addition, comorbidities, such as systemic 
hypertension, that may impact the rate of degenerative valve disease progression 
should be intermittently screened for during stage B1. No drug or dietary treatment 
is recommended by the American College of Veterinary Internal Medicine (ACVIM) 
consensus [57].

Stage B2 is defined as dogs with degenerative valve disease that have evidence 
of heart enlargement but have never suffered from signs or symptoms attributable to 
chronic HF. Dogs are typically identified in this stage based on the presence of a 
moderately loud systolic heart murmur characteristic of mitral regurgitation and 
heart enlargement, specifically left atrial enlargement, with or without left ventricu-
lar dilation. Definitive diagnosis of degenerative valve disease and assessment of 
heart enlargement can be confirmed by echocardiography or presumed (in an older 
small-breed dog with a mitral regurgitation murmur) based on the presence of an 
increased radiographic vertebral heart size. Because stage B2 includes all dogs with 
degenerative valve disease and any magnitude of heart enlargement that have never 
suffered from chronic HF, it is a heterogeneous population. Dogs at this stage may 
be days away from developing chronic HF, or may never develop chronic HF in 
their lifetime. This is reflected in the long median time to onset of chronic HF, 
approximately 27 months, that has been reported in stage B2 degenerative valve 
disease. However, it is important to recognize that all stage B2 dogs have a risk of 
going into chronic HF. Many studies have provided important information on the 
natural progression of stage B2 degenerative valve disease and reported factors that 
can be used to identify which stage B2 dogs have higher versus lower risks of devel-
oping chronic HF. Known risk factors for development of chronic HF and a poor 
outcome in dogs with stage B2 degenerative valve disease include larger heart size 
as measured by echocardiography or vertebral heart size, rapid progression of heart 
enlargement based on repeat evaluations, and high levels of cardiac biomarkers, 
such as N-terminal pro B-type natriuretic peptide.

However, despite the wide body of knowledge concerning degenerative valve 
disease, there has historically been no consensus with respect to therapeutic recom-
mendations for stage B2 degenerative valve disease. This is a consequence of the 
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lack of data confirming that initiation of any treatment in stage B2 degenerative 
valve disease can significantly delay the onset of chronic HF. However, treatment 
with an angiotensin converting enzyme (ACE) inhibitor has been historically advo-
cated by some cardiologists for the treatment of some stage B2 dogs and is based 
predominantly on the results of the VETPROOF (Veterinary Enalapril Trial to Prove 
Reduction in Onset Of HF) study in combination with their well-known safety pro-
file. Pimobendan is recommended by ACVIM consensus [57] at a dosage of 
0.25–0.3 mg/kg PO q12h. ACE inhibitors: For patients in Stage B2 on either initial 
examination, or in which the left atrium has increased markedly in size on succes-
sive monitoring examinations, 5 (of 10) panelists recommend treatment with ACE 
inhibitors [57].

5.2  Future

Ideally, future therapies will be developed that focus on prevention or early termina-
tion of progressive valve degeneration in stage B1 dogs, rather than focusing exclu-
sively on treatment options for dogs that have already progressed to more advanced 
stages of the disease. Frustratingly, despite the common nature of degenerative 
valve disease in both humans and dogs, the pathophysiologic triggers that underlie 
the development of this disease remain largely unknown. One important structural 
transformation that has been associated with the development of degenerative valve 
disease pathology involves the transformation of VICs, predominant cell types pres-
ent in the mitral valve, from a typical quiescent cell to an activated myofibroblast 
phenotype. Triggers for this transformation have been associated with both the sero-
tonin and TGFβ1 pathways. Research into these lines of investigation suggest that 
clinical trials studying serotonin antagonists or serotonin receptor antagonists [58] 
and serotonin receptor inverse agonists [62] may be the next step forward in degen-
erative valve disease research in dogs.

5.2.1  Receptor Inverse Agonist

Inverse agonist can be helpful when receptors (5-HT2A and/or 5-HT2B) are constitu-
tively active [59]. Indeed, it has been found that receptors may exist in a constitu-
tively active state, particularly when expressed in high amounts in cultured cells. 
Such receptors, “active on their own”, may be calmed down by so-called inverse 
agonists, compounds that were originally classified as antagonists. It is interesting 
to note that sarpogrelate, a selective 5-HT2A antagonist, was prescribed for more 
than 30 and 20 years without significant adverse effects [60] and without a single 
known report of VHD. It was demonstrated that sarpogrelate improved left ventricu-
lar systolic function in acute myocardial infarction [61]. A publication [62] reported 
that sarpogrelate showed a potent inverse agonist activity, to constitutively active 
mutant (C322K) of human 5-HT2A receptor.  A recent work [66]  of constitutive 
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activity of Gq signaling pathway was observed in study of functional activity using 
canin 5-HT2A (Fig. 11.5) where sarpogrelate reverse the constitutive activity of het-
erotrimeric Gαq protein. In conclusion, these types of molecules, inverse agonists of 
5-HT receptors, should be tested for efficacy in preventing or treating VHD as has 
been suggested [63].

Using mice models and bone-marrow transplantation experiments, early heart 
valve degeneration was shown to involve the mobilization of endothelial progenitor 
cells due to 5-HT2B receptor stimulation. The identification of endothelial progeni-
tors sharing this receptor in human mitral valve prolapse tissues reveals the rele-
vance of this mechanism in human heart valve remodeling [12]. Recently, a French 
team [64] developed a murine model of drug- induced valvulopathy by continuous 
subcutaneous infusion of nordexfenfluramine (Ndf) at 1 mg/kg/day for 28 days to 
test the contribution of the 5-HT2A and or 5-HT2B receptors. NdF effects were evalu-
ated in WT mice co-treated with sarpogrelate or in Htr2a-/- mice. Sarpogrelate treat-
ment prevented the NdF-induced increase in urinary 5-Hydroxy-Indole-Acetic-Acid 
(5-HIAA) and blood serotonin levels. This treatment leads to the development of 
valve lesions characterized by cushions with a high density of endothelial progeni-
tor cells (CD34+/CD31+) originated from bone-marrow. Valve lesions were com-
pletely prevented by the inhibition of both 5-HT2A and 5-HT2B receptors by 
antagonists and in transgenic Htr2b-/- or Htr2a/2b-/- mice. This work also highlighted 
the initiating mechanisms of valve lesions by indicating serotonin as an important 
determinant in valvular cell recruitment that leads to valve remodeling. Many other 
proposed molecular mechanisms for heart valve degeneration are also probably 
implicated.

Fig. 11.5 Effect of ligands on 5-HT2A -mediated Gαq activation. HEK293 cells were co-trans-
fected with 50 ng of plasmid encoding one of the 5-HT2A orthologue and plasmids coding for 
GAPL-Gαq. Increasing amounts of test compounds were added and the BRET assay was per-
formed 10 min later. Data are expressed as uBRET. Unpublished Ceva report [66]
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Drugs targeting serotonin receptors are approved treatments for a diverse array 
of indications. Serotonin receptors also frequently mediate serious drug side effects 
via unanticipated ‘off-target’ actions. A notable example is the now-banned appetite 
suppressant fenfluramine, which exerts its potent anti-obesity actions by activating 
5-HT2C receptors. Fenfluramine was ultimately withdrawn from the market because 
of a high incidence of drug-induced VHD, which occurs as a result of off-target 
activation by fenfluramine and its active metabolite Ndf at the closely related 5-HT2B 
receptor. Consequently, candidate medications are routinely screened for 5-HT2B 
receptor agonist activity before progressing to clinical trials. Not unexpectedly, 
5-HT2B receptor antagonists have been proposed as potential therapeutics for VHD 
and other fibrotic disorders, including carcinoid syndrome. Thus, understanding the 
action of drugs at 5-HT2B receptor is clearly important for future drug development. 
In conclusion, inverse agonists may be useful in the treatment of cardiovascular 
diseases and of diseases caused by constitutively active receptors such as 5-HT2B 
receptors.

Fig. 11.6 Signal transduction by seven transmembrane receptors. (a) Classical paradigm. The 
active form of the receptor (R*) stimulates heterotrimeric G proteins and is rapidly phosphorylated 
by G protein–coupled receptor kinases (GRKs), which leads to β-arrestin recruitment. The recep-
tor is thereby desensitized, and the signaling is stalled. (b) New paradigm. β-arrestin not only 
mediate desensitization of G protein–signaling but also act as signal transducers themselves. 
According to [65]
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5.2.2  β-arrestin-2

5-HT2B receptor in addition to activation via Gq/11 of phospholipase C activation, 
inositol phosphate (IP) accumulation, intracellular calcium release and protein 
kinase C activation, can also recruit β-arrestin-2 (also known as arrestin-3; encoded 
by ARRB2 in humans) and downstream effector activation. Drugs such as lysergic 
acid diethylamide (LSD) and ergotamine (ERG) prefer arrestin recruitment and are 
considered ‘arrestin-biased agonists. The discovery of β-arrestin–mediated signal-
ing highlights the concept “biased agonist” [65]. In the simplest classical models, 
receptors exist in two states, active and inactive, with agonists stabilizing the active 
state, thereby driving activation of effectors (Fig. 11.6). However, the conformation 
of a receptor that interacts with a G protein can be distinct from that which interacts 
with another effector such as β-arrestin. The ability of ligands to differentially favor 
one or the other conformation suggests significantly greater diversity and fine- 
tuning of signaling possibilities for a single receptor than previously imagined. 
Moreover, such putative β-arrestin- or G protein-specific ligands might have valu-
able therapeutic properties and perhaps more restricted side effects.

In a surprising way, an unpublished study [66] showed that canine 5-HT2B recep-
tor was completely inactive at engaging β-arrestin-2 in response to serotonin. This 
observation is supported by primary amino acid sequence of canine 5-HT2B recep-
tor. Interestingly, canine 5-HT2B receptor lacks a long C-terminal tail segment that 
contains a highly conserved (in mouse, rat and human receptors) stretch of S/T resi-
dues. Such residues, when phosphorylated by G-protein-coupled receptor kinases 
(GRKs), bind to β-arrestin with high affinity (Fig. 11.7).

The question that remains unanswered is the putative relationship between this 
inability in β-arrestin coupling and the predisposition of certain breeds of dogs to 
the myxomatous MVD. The 5-HT2B receptor is required for heart development reg-
ulating differentiation and proliferation of cardiac tissue; SERT deficient mice 
develop cardiac fibrosis, and valvulopathy [68]. Further studies are needed to deter-
mine whether β-arrestin-2 is “silent” in all population of dogs or particularly in 
predisposed breeds. These researches should be performed in comparison with the 
native breed (wolf), as well as to further elucidate the molecular mechanisms by 
which β-arrestin mediates this pathology and its potential protector effect.

The absence of β-arrestin in certain dog breeds could explain a continuous acti-
vation of the G protein signaling pathway without the “braking” process. This could 
explain 5-HT2B receptors constantly activated in dog.

The integration of all these new data (genetic, pharmacological …) about sero-
tonin pathways and especially 5-HT2B receptor contribution should allow a better 
understanding of the strong predisposition of small breeds of dogs to develop myxo-
matous MVD and lead to more appropriate treatments.
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Chapter 12
The Discovery of 5-HT2B Receptor 
Pharmacology Through the Understanding 
of Drug-Induced Valvulopathy

Alizée Arnoux and Estelle Ayme-Dietrich

1  From the Serotonin Hypothesis to the Serotonin 5-HT2B 
Receptor in Valvular Degeneration

The “serotonin hypothesis” in the development of cardiopulmonary disease follows 
the use of phentermine-fenfluramine association (Phen-Fen) as a treatment for obe-
sity. The first case reports described unusual valvular morphology and regurgitation 
in 24 young women and pulmonary hypertension in 8 of them, after initiation of 
Phen-Fen therapy [1]. Quickly, the histopathological signature associated with 
fenfluramine- induced valvulopathy was compared with right-sided heart valve 
lesions induced by carcinoid syndrome, this disease caused by serotonin-secreting 
neuroendocrine tumors [2]. The serotonin releasing agent fenfluramine (Pondimin®, 
Ponderal®) and its potent stereoisomer, (+)-fenfluramine, also called dexfenflura-
mine (Redux®, Isomeride®), are substituted phenylethylamine analogs used as ano-
rectic agents, and withdrawn from the market in 1997 due to the occurrence of 
cardiac valve disease and pulmonary hypertension. Although fenfluramines increase 
neuronal serotonin concentrations by interacting with the serotonin transporter 
(SERT) and VMAT proteins [3], Rothman and Baumann [4] demonstrated that 
chronic fenfluramine at clinically-relevant doses decreased blood serotonin levels, 
and increased plasma serotonin only two-fold to four-fold above baseline, in 
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catheterized rats undergoing in vivo microdialysis [5, 6]. MAO inhibitors treatment 
produces comparable increments in plasma serotonin [7], without increasing the 
risk of cardiac valve disease. These data challenge the “serotonin hypothesis” based 
on the fact that chronic fenfluramine administration increases plasma or blood sero-
tonin to a level sufficient to cause valvulopathy in humans. Interestingly, fenflura-
mine and its stereoisomers, but also their de-ethylated metabolites norfenfluramine 
and its stereoisomers, share the common pharmacological property to be potent 
serotonin releasers. In in vitro binding assays, (+)-fenfluramine releases [3H]5-HT 
with an EC50 value of 51.7 nM, and (+)-norfenfluramine releases [3H]5-HT with an 
EC50 value of 59.3 nM [8]. Continued interest in the pharmacology of these drugs 
indicated that fenfluramines exhibit very low (>4 μM) binding affinity for human 
5-HT2B receptors. To confirm this 5-HT2B receptors hypothesis, Rothman et al. [9] 
evaluated in radioligand binding assays, the affinity of drugs-inducing valvulopathy 
(i.e. methysergide, its active metabolite methylergonovine, and ergotamine) vs. 
negative drug controls (i.e. fluoxetine and its metabolite norfluoxetine, and trazo-
done and its metabolite m-chlorophenylpiperazine) on several G protein coupled- 
receptors, including serotonin receptors but also adrenergic, histaminergic, 
GABAergic receptors and catecholamine transporters. They demonstrated that all 
drug inducing valvulopathy or their metabolites share the pharmacological property 
to have high affinity for the 5-HT2B receptor and to display partial or full agonism at 
this receptor, using phosphoinositide hydrolysis assays, in HEK-293 cells tran-
siently transfected with human 5-HT2B receptor [9]. The pharmacological notion 
that 5-HT2B receptor agonists induce valvulopathy was recently confirmed in vivo. 
Our laboratory developed a pharmacological model of valve degeneration in mice, 
by chronically infusing nordexfenfluramine (NdF), the main metabolite of dexfen-
fluramine and of benfluorex. We demonstrated that blocking 5-HT2B receptor by 
antagonists (SB204741 and SB206553) or in transgenic Htr2b−/− mice lacking the 
5-HT2B receptor gene, successfully prevents NdF-induced valve lesions [10]. 
Moreover, we also disclaimed the “serotonin hypothesis” by treating mice simulta-
neously with para-chlorophenylalanine, a tryptophan hydroxylase inhibitor that 
decreases blood serotonin by about two thirds, but fails to prevent NdF-induced 
cardiac valve lesions [10].

This “serotonergic” heart valve disease concerns essentially the left-sided heart, 
and leads to regurgitation because of incomplete coaptation of the valve leaflets. 
Among all the diagnoses of chronic valve insufficiency (degenerative, rheumatic, 
post-endocarditis, congenital, ischemic, secondary to left ventricular failure, post- 
radiation, valvular tumor), drug-induced valvulopathy is attributable to progressive 
myxomatous degeneration, affecting more frequently the mitral valve [11]. These 
fibromyxoid cardiac valve lesions are characterized by valve thickening and abnor-
mal motion of the leaflets observed by echocardiography. Not only the leaflets, but 
also the subvalvular apparatus may be affected. In atrio-ventricular valve disease, 
prominent subvalvular thickness and shortening of the chordae tendinae also con-
tribute to the regurgitation [12]. Macroscopically, these myxoid valvular changes do 
not induce drastic modifications in the valve architecture, but appear as glistening 
white plaque, deposited on the surface of the valves [1]. Histologically, these 
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deposits look like a very dense cellular cushion, in an abundant extracellular matrix 
(ECM) [12]. These degenerative lesions involve both the collagen content and the 
alignment of collagen fibrils within the valve, as well as the fragmentation of elastin 
fibers. The spongiosa layer is expanded by proteoglycan content. Dysregulation of 
the extracellular matrix appears to be central to these changes and results from myo-
fibroblasts activation [13].

2  Cellular Mechanisms, Involved in Valvular Degeneration, 
Regulated by Serotonin Stimulation

To understand the pharmacological mechanisms involving the 5-HT2B receptor in 
valve degeneration, we must first look for its cellular location. Manivet et al. [14] 
demonstrated that the tissue distribution of 5-HT2B receptor protein is similar in 
rodents and humans, as well as its pharmacology, allowing easier extrapolation of 
animal model results in humans. Although this receptor is weakly expressed in 
healthy tissues, it is found in the heart valves of different species, such as dogs [15], 
rats [16, 17], pigs [18], monkeys [16] and humans [18, 19], by PCR or immunohis-
tochemistry. The expression of the 5-HT2A receptor is also found in human, pig [18], 
dogs [20] and sheep [21] valves, leading to the use of highly selective ligands to 
interpret the effects induced by the stimulation of 5-HT2 receptors. However, it 
should be noted that only one study isolated 5-HT1B and 5-HT1D receptor subtype 
messenger RNA from human valve interstitial cells [22], leading to the study of the 
involvement of the serotonergic system in valvular degeneration focused on 5-HT2 
receptors. When trying to identify the cellular location of these 5-HT2 receptors, 
there’s a lack of data. Only our team has identified, after FACS sorting of CD34+ 
progenitor cells from pathological human mitral valves, the expression of the 
5-HT2B receptor, by qPCR and immunofluorescence [10].

Valvular tissue is made up of extracellular matrix (ECM), which is the essential 
component guaranteeing the function and viability of the tissue. ECM is laminated 
in three layers composed of proteoglycans, collagen types I, III and IV, and elastin, 
each imparting distinct biomechanical property. For example, the degree of sulfa-
tion pattern of glycosaminoglycans (GAGs) gives them different biomechanical 
properties: 4-sulfated GAGs are located in tensile loading regions, and may seques-
ter transforming growth factor (TGF-β) whereas the 6-sulfated GAGs are located in 
compressive loading regions [23]. The quality and quantity of valvular ECM depend 
on function/activation of valvular interstitial cells. Two types of cells form the heart 
valve tissue: valvular endothelial cells (VECs), that cover the valvular leaflet sur-
face, and valvular interstitial cells (VICs), located below the surface. This VICs 
population is heterogeneous with five different phenotypes identified: embryonic 
progenitor endothelial/mesenchymal cells, quiescent cells, activated VICs (aVICs), 
progenitor VICs and osteoblastic VICs [24]. VICs share morphologic and func-
tional properties of fibroblasts, smooth muscle cells and myofibroblasts. These 
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“phenotypes” exhibit plasticity and may convert from one form to another. These 
most prevalent cells in all three layers (atrialis, spongiosa and fibrosa), maintain the 
integrity of normal valves and regulate repair processes after valve injury, such as 
remodeling, synthesis or degradation of ECM. Indeed, matrix metalloproteinases 
(MMPs), matrix-degrading enzymes, are synthetized by VICs as inactive zymo-
gens, that could be activated by interleukin-1β or tumor necrosis factor-α, or inhib-
ited by tissue inhibitors of metalloproteinases (TIMPs) through the formation of 
irreversible complexes [25]. MMPs and theirs inhibitors play important role in the 
homeostasis of ECM, as well as in the pathogenesis of heart valve diseases, includ-
ing myxomatous mitral valve disease [26] and drug-induced valvulopathy [27]. In 
normal leaflet, the marker of activated VICs, alpha smooth muscle actin (αSMA) is 
approximatively expressed by 57% of cells, but increased during injury and accord-
ing to culture conditions [28]. VICs density, proliferation and apoptosis are mark-
edly higher in fetal valves than in adult valves, then these features increase again 
during degenerative processes, implying a re-induction of an embryonic mechanism 
at the pathological stage [29]. About valvular endothelial cells (VECs), this cell 
population is also heterogeneous but not yet fully characterized. They have a differ-
ent phenotype from vascular endothelial cells isolated from aorta. In response to 
mechanical stress, porcine aortic VECs align perpendicular to blood flow, whereas 
endothelial cells from the aorta align parallel to the flow [30]. Porcine aortic valvu-
lar endothelial cells express more genes associated with chondrogenesis, where por-
cine aortic endothelial cells express mostly osteogenic genes [30], suggesting a 
protective role against valve calcification. Moreover, VECs respond differently to 
injuries and display different transcriptional profiles, according to aortic versus ven-
tricular sides of the valve [31]. Some authors argue that some VECs are progenitor 
cells, which may serve to replenish valvular cells during homeostatic cellular turn-
over and in response to injury [32].

The heterogeneity and plasticity of the valvular cells make it difficult to study the 
cellular and molecular mechanisms responsible for valvular degeneration. Although 
the cell type expressing the 5-HT2 receptor(s) remains questionable, recent studies, 
using microarray technology, highlighted the contribution of 5-HT2A and 5-HT2B 
receptors in pathological conditions in canine [33] and human myxomatous mitral 
valve tissues [34, 35], compared to healthy tissues. The differential expression of 
genes involves serotonin receptors pathway, but also extracellular matrix remodel-
ing, TGF-β pathway, and antioxidant system. We will summarize the cellular mech-
anisms involved in valvular degeneration induced by the stimulation of 5-HT2 
receptors.

2.1  Valve Interstitial Cell Proliferation

As already described in ventricular fibroblasts [36, 37], 5-HT2B receptor has been 
shown to elicit mitogenic pathway and secretion of ECM components in heart valve 
fibroblasts [18, 19, 38]. The mitogenic effect of serotonin on human VICs in vitro 
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was first described following the incorporation of [3H] thymine into the DNA of 
these cells and stimulated for 48 h by serotonin (0.1 μM) [38]. Collagen synthesis 
response to serotonin of VICs was observed with a more modest effect (15% incor-
poration of proline [3H]) after stimulation by serotonin at 1 μM [38]. These data, 
obtained on valve interstitial cells from transplant recipient hearts, are the first to 
observe cellular effects-dependent on serotonin and resulting from an increase in 
the intracellular concentration of calcium.

In human embryonic kidney 293 cells transfected with three subtypes of human 
5-HT2 serotonin receptor genes, Fitzgerald et al. [18] confirmed the high affinity of 
nordexfenfluramine for 5-HT2B and 5-HT2C receptors and highlighted the transduc-
tion pathway activated: hydrolysis of inositol triphosphate (IP3), increase in intra-
cellular Ca2+ concentration and phosphorylation extracellular signal-regulated 
kinase (ERK1/2) supporting the hypothesis of activation of the 5-HT2B receptor 
canonical pathway. The same mitogenic response was identified in human VICs 
after treatment with potent 5-HT2B receptor agonists, MDMA (3, 
4- methylenedioxymethamphetamin, also known as ecstasy), MDA (its metabolite) 
and norfenfluramine ([3H] thymidine deoxyribose incorporation, via ERK1/2 phos-
phorylation) and was prevented by pretreatment with a 5-HT2B receptor antago-
nist [19].

This biological result of activating 5-HT2B receptors as responsible for valve 
fibromyxoid lesions by proliferation of myofibroblasts and activation of smooth 
muscle cells leading to thickening and retraction of the valvular leaflet, is essen-
tially based on cellular data from heterogeneous populations of healthy VICs or 
transfected cells, and with high doses of serotonin. When we sought to evaluate the 
proliferation of VICs by KI-67 labelling on histological sections of mitral valves 
from our mouse model of drug-induced valvulopathy, infused for 28 days with nor-
dexfenfluramine, we observed ex vivo only few nuclei labelled indicating a very low 
rate of proliferation identical to that of adult control mice [10]. These results suggest 
that other cellular effects due to stimulation of the 5-HT2B receptor are involved in 
valve degeneration. On the other hand, Connolly et al. [39] observed on healthy and 
pathological mitral VICs, human and dog, in culture, that the incorporation of [3H] 
thymine was prevented when adding ketanserin (5-HT2A receptor antagonist) and 
GR55562 (5-HT1B receptor antagonist). These results suggest the involvement of 
other serotonergic receptors, inducing the serotonin-dependent mitogenic effect.

2.2  Secretion of Extracellular Matrix (ECM) Components

Regardless of the etiology of valve degeneration, cardiac valve lesions show histo-
pathological alterations in ECM organization, leading to functional impairments 
such as insufficiency or stenosis. As soon as the valve interstitial cells are activated, 
they produce several constituents of the extracellular matrix, leading to fibrosis and 
valve remodeling. In vivo, an increase in the production of glycosaminoglycans and 
a decrease in the amount of collagen (Movat’s pentachrome staining) were observed 
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in valvular tissue, after chronic subcutaneous administration of serotonin in rats 
[17] or after treatment with pergolide, a dopaminergic agonist for 20 weeks intra-
peritoneally in the treatment of Parkinson’s disease responsible for valvulopathy 
[40]. This compositional alteration of ECM, similar to fibromyxoid lesions and also 
observed in carcinoid heart, was associated with increased expression of 5-HT2B 
receptor in aortic and mitral valves [40], whereas the expression of serotonin trans-
porter (SERT) gene was down regulated [17]. In another study, the same team 
observed that the histological alterations (significant valvular thickening, high 
amount of glycosaminoglycans and low amount of collagen) of a Sprague Dawley 
rat spontaneously affected by mitral valvular degeneration, were similar to that of a 
Fisher rat treated with dl-amphetamine for 103 weeks and found over-expression of 
the 5-HT2B receptor in the mitral leaflet by immunohistochemistry [41]. These 
results suggest that 5-HT2B receptor play a crucial role in VICs activation and in the 
maintenance of the structural homeostasis of valve tissue, but also that the sero-
toninergic system is involved in spontaneous valvular degeneration. Balachandran 
et al. [42] demonstrated that cyclic stress of the valve, using a bioreactor, increased 
proliferation, collagen and GAGs production in porcine aortic valve leaflets. This 
ECM remodeling effect was increased under serotonin treatment, as cyclic stretch 
increases the expression of 5-HT2A and 5-HT2B receptors by a factor 4.5 in DNA 
microarray study. On the other hand, only the blockade of the 5-HT2A receptor by 
ketanserin reduces collagen synthesis and proliferation in pathological stretch con-
ditions (15% dynamic stretch), while the blockade of the 5-HT2B receptor by 
SB204741 is effective on the remodeling of ECM in physiological conditions (10% 
dynamic stretch) [43]. This ex vivo model highlights the sensitivity of resident VICs 
to cyclic stretch, increasing basal expression of 5-HT2 receptors, and suggesting that 
ECM remodeling of cardiac valves could be exacerbated to any conditions where 
serotonin is increased. In vitro, treatment of VICs with serotonin (1 μM) increases 
modestly the incorporation of [3H] proline into collagen compared to untreated cells 
[38]. This low increase in the production of extracellular matrix (collagen, glycans, 
hyaluronic acid), by serotoninergic stimulation of VICs, through ERK phosphoryla-
tion, has been found in other species, such as sheep [44], dogs and humans [39]. The 
different effects in terms of remodeling lead to evoke the presence of cofactors in 
vivo, absent in vitro, or a paracrine regulation between different types of VICs.

2.3  TGF-Beta Signaling: Multicellular Contribution 
to Cardiac Valve Degeneration

Both 5-HT2A and 5-HT2B receptors have been shown to elicit secretory responses in 
ventricular and heart valve fibroblasts [45–47]. In sheep aortic valvular interstitial 
cells culture, serotonin stimulation induces the secretion of TGF-β1, via activation 
of phospholipase C (PLC) [44]. This effect is inhibited by MDL100907, a selective 
5-HT2A receptor antagonist [47]. In humans, TGF-β receptors I and II have been 
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identified, by immunohistochemistry, in tricuspid and pulmonary valve samples 
from patients with carcinoid heart disease, as well as in healthy tricuspid valve 
samples [44]. While TGF-β1 has been identified endothelially only in healthy valve 
specimens, and the latent form of TGF-β1 is present only in significant amounts in 
pathological valve specimens [44].

The cytokine TGF-β is a central regulator of cellular processes such as cell dif-
ferentiation, proliferation, migration, and cell-to-cell communication, that control 
valve function during embryonic development and in adult injury responses. Among 
congenital mitral valve disease, there are two syndromic pathologies (affecting mul-
tiple organs as the heart, blood vessels, lungs, skin and bones) related to the TGF- 
beta pathway. These syndromes result from the structural weakness of connective 
tissue. Marfan syndrome results from heterozygous mutations in FBN1, the gene 
that encodes fibrillin-1, which is the principal component of microfibrils in the 
ECM [48]. Affected individuals have mitral valve elongation and myxomatous leaf-
let thickening, leading to mitral valve prolapse. Mutated fibrillin-1 in Marfan syn-
drome leads to failed sequestration of TGF-β, and then ensuing overactivity of 
TGF-β signaling cascades [49]. Mice with a cysteine-substitution mutation in an 
epidermal growth factor–like domain in fibrillin-1 have longer and thicker mitral 
valves than wild-type control mice [50]. In addition, TGF-β antagonism in vivo, 
using TGF-β neutralizing antibody, prevents the pathological prolongation and 
thickening of mitral valves in this model [50]. The TGF-β signaling is up regulated 
in aortic tissues of Marfan syndrome patients. Loeys–Dietz syndrome, which has 
similar phenotypic features with Marfan syndrome is caused by mutations in 
TGFBR1/2, SMAD2/3, or TGFBR2/3, all coding for components of the TGFβ- 
signaling pathway [51]. Hutcheson et al., [52] demonstrated that TGF-β1-mediated 
myofibroblasts activation in porcine aVICs can be arrested by 5-HT2B antagonism. 
In these cultures of isolated porcine aVICs, both 5-HT2B receptor antagonists did 
not affect cell viability or proliferation, but physically sequestered pSrc, preventing 
non-canonical TGF-β1 signaling [52]. Moreover, Merryman’s team [53] demon-
strated that 5-HT2B receptor antagonist, SB204741, reduces SRC phosphorylation 
and activity, induced in Bmpr2 mutant mice and so prevents heritable pulmonary 
arterial hypertension (PAH) in this model. In these works, the blockade of 5-HT2B 
receptor, reducing SRC phosphorylation and activity, prevents both side effects, 
PAH and valvulopathy, induced by 5-HT2B receptor agonists (see Chap. 10).

2.4  Mobilization of Progenitor Cells

The plasticity of valve cells makes it difficult to determine their origin and renewal. 
Visconti et  al. [54] demonstrated that hematopoietic stem cells, originated from 
bone-marrow, migrated within host cardiac valves, after lethally mice irradiation 
combined with transplantation of individual clonal populations. Later, this same 
team characterized these bone-marrow hematopoietic stem cells, migrating into car-
diac valves and, established that the engraftment of bone-marrow-derived cells 
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occurs as part of normal valve homeostasis [55]. Our team pointed the contribution 
of circulating progenitor cells activated by 5-HT2B receptor agonists in the develop-
ment of drug-induced heart disease by publishing the first case report of mitral 
bioprosthesis degeneration during benfluorex therapy [56]. In a 40-year-old woman 
treated with benfluorex, her mitral bioprosthesis, an initially acellular tissue, was 
completely degraded and numerous myofibroblasts were found [56]. Later, we dem-
onstrated, in lethally irradiated wild-type mice engrafted with a Htr2b−/− bone- 
marrow and perfused chronically with NdF, that restricted ablation of 5-HT2B 
receptors to bone-marrow prevents the NdF-induced mitral valve lesions, support-
ing the contribution of 5-HT2B receptors to the mobilization of bone-marrow-derived 
endothelial progenitors [10]. The same mechanism was identified in pulmonary 
arterial hypertension: mice with restricted expression of 5-HT2B receptors in bone- 
marrow cells was protected by hypoxia or monocrotaline-induced increase in pul-
monary pressure and vascular remodeling [57]. The understanding of 5-HT2B 
receptor agonists adverse effects permitted to highlight an early mechanism of val-
vular degeneration and pulmonary arterial hypertension, and to identify a new ther-
apeutic target.

3  Pharmacology of 5-HT2B Receptor Agonists

For safety pharmacology purposes, after the various “fenfluramine scandals”, the 
researchers tried to develop a “screening the receptor agonist valvulopathogen com-
pounds. Huang et al. [58] screened 2200 compounds that were FDA approved or 
investigational medications to identify 5-HT2B receptor agonists, using calcium- 
based high-throughput screening. More than an assessment of specific binding and 
selectivity of compounds, it is the evaluation of their efficacy on the 5-HT2B receptor 
and their potency in several pathways that should be sought. Of the 2200 com-
pounds tested, only 27 were identified as 5-HT2B agonists, including seven valvulo-
pathogens. Among the set of pathways associated with stimulation of the 5-HT2B 
receptor, calcium flux-based screening is suitable to the initial identification of 
5-HT2B receptor agonists but not for the discrimination of valvulopathogen risk. 
Differences were observed between efficacies and potencies (Emax and pEC50) for 
the five pathways tested: calcium flux, transcription factor NFAT activity, ERK2 
phosphorylation, arrestin translocation, inositol phosphates accumulation. Among 
the seven valvulopathogens compounds tested by Huang et al. [58], we can dissoci-
ate two families: ergot and fenfluramine derivatives. To date, no specific pharmaco-
logical pathway has been linked to VHD development. However, some hypothesis 
can be made, due to the characteristics of valvulopathogen compounds, getting 
serotonergic agonism properties.
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3.1  Receptor Oligomerization

Already demonstrated with other GPCR, receptor oligomerization allows the modu-
lation of the signaling pathways under agonist stimulation and could also modulate 
the ligand’s binding capacity. However, it is difficult to discriminate pharmacologi-
cal modulation resulting from an indirect interaction (e.g. via adaptor protein) or 
from a direct interaction (e.g. via the formation of an oligomer complex), as well as 
the pharmacological relevance of such interactions.

The first interaction between 5-HT2B receptor and other GPCR to be described 
was with 5-HT1B receptor, in 2007 by Janoshazi et al. [59]. Using binding experi-
ments, they demonstrated that each receptor cross regulates the other one, notably 
on their internalization pathways, in an agonist dependent manner. When expressed 
alone, internalization of 5-HT1B receptor is Cav1-dependent, and internalization of 
5-HT2B receptor is β-arrestin 2-dependent. However, co-expression of both recep-
tors leads to a switch of internalization pathways. When co-expressed with 5-HT2B, 
5-HT1B receptor agonist-induced internalization is Cav1- independent but PKC- 
dependent. As well, when co-expressed with 5-HT1B receptor, a portion of 5-HT2B 
receptor internalizes through a Cav1-dependent pathway. Moreover, in the presence 
of 5-HT2B receptor, kinetic of agonist-induced internalization of 5-HT1B receptor is 
greatly increased, and in addition, the agonist also triggers the internalization of 
5-HT2B receptor. But application of a 5-HT2B receptor agonist does not induce 
5-HT1B receptor internalization. However, under agonist stimulation and when co- 
expressed with 5-HT1B receptor, the kinetic of internalization of 5-HT2B receptor is 
slightly increased. As the authors rightly discuss, these changes in pharmacological 
properties of both receptor in the presence of the other is probably due to an indirect 
interaction, and not to the formation of an oligomer. Indeed, using confocal imaging 
and FRET experiments, they found little to no colocalization between the two 
receptors. Moreover, despite one RT-qPCR analysis, which identified the 5-HT1B 
receptor in human valve interstitial cells, no colocalization with the 5-HT2B receptor 
was observed in native cardiac valve cells.

Oligomerization of the 5-HT2B receptor has however been demonstrated with 
several other receptors. The first report of such complex is from 2009 by Jaffré et al. 
[60] between 5-HT2B and AT1 receptors. They showed that both receptors are 
needed in vivo for the adrenergic-dependent cytokine production and subsequent 
cardiac hypertrophy, and that each one is capable of blocking cytokine release medi-
ated by the other. Using immunoprecipitation assay and confocal imaging, they also 
demonstrated that both receptors colocalize and interact in the same cell compart-
ment. These data support the hypothesis that 5-HT2B and AT1 receptors interact 
together and can modulate the signals mediated by stimulation of either one of the 
protomers. This functional interdependence between both receptors is named tran-
sinhibition. In a recent study Perez et al. [61] investigated serotonin-induced effects, 
in the presence of angiotensin II-induced hypertension, in the context of the mecha-
nobiological responses, due to altered valve mechanics. After three weeks of treat-
ment with serotonin (2.5  ng/kg/min), angiotensin II (400  ng/kg/min), or a 
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combination of both, in C57Bl/6 J mice, they compared hemodynamic effects, left 
ventricular function, and valve thickness and remodeling between groups. A reduced 
ejection fraction, thick leaflets, large proportion of thick collagen fibers were 
observed in the combination group, leading to phenotype a new model of cardiac 
valve degeneration in mice [61]. These authors suggest that serotonin and angioten-
sin II interact to result in significantly detrimental alteration of function and remod-
eling in the valve, without any interaction studies being realized on cardiac valve 
cells. Recently, a long acting selective angiotensin 1 receptor inhibitor, irbesartan, 
was associated with a reduction in the rate of aortic dilatation in patients with 
Marfan syndrome [62]. Although the effect of this treatment has not been evaluated 
on valvular damage, it remains of interest, particularly in the inhibition of the endo-
thelial to mesenchymal transformation in mitral VECs. Wylie-Sears et al. [63] dem-
onstrated that losartan or MEK 1/2 inhibitors block endothelial-to-mesenchymal 
transformation, in response to TGF-β, in mitral sheep VECs. This therapeutic target 
has yet to be evaluated in a model of cardiac valve lesions but seems promising for 
preventing the reconstitution of VICs and fibrosis.

Oligomerization between 5-HT2A and 5-HT2B receptors has not been extensively 
studied. In BRET experiments, Moutkine et  al. [64] obtained hyperbolic curves 
when these receptors were co-expressed in COS-7 cells, suggesting an interaction. 
However, such interaction has not been validated in vivo and its pharmacological 
relevance is yet to be described. Interestingly, in mice treated with Sarpogrelate (a 
5-HT2A receptor antagonist) and NdF, we showed that the blockade of 5-HT2A recep-
tor prevented NdF-induced valvular thickness, compared as wild type mice treated 
with NdF. These results were confirmed with the use of knock-out mice, Htr2a−/−, 
treated with NdF. These mice displayed only a partial response to NdF [10], indicat-
ing a possible role of 5-HT2A receptor in VHD development. As such it would be of 
interest to further study and validate the existence and pharmacological relevance of 
an oligomer between 5-HT2B and 5-HT2A receptors.

Overall, these studies demonstrate that 5-HT2B receptor agonist-mediated signal-
ing can be modulated by interaction and even by simple co-expression with other 
receptors, in a particular cell type. Given the heterogeneity of the valve cellular 
organization, oligomers formation studies could help decipher VHD mechanism 
through the understanding of interactions between 5-HT2B and other receptors in 
homeostatic conditions, and under stimulation of fenfluramine or ergot derivatives.

3.2  Biased Agonism

Some agonists are able to modulate the conformation of receptor upon binding and 
thus modify several downstream pathways. It is the case of biased agonists. An 
agonist is considered biased or to have “functional selectivity”, when it preferen-
tially activates one pathway over the other. Works demonstrated that serotonin 
receptors can engage in differential signaling that is determined by the chemical 
nature of the ligand [65]. Some ergot derivatives such as ergotamine are biased 
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5-HT2B receptor agonists, increasing the recruitment of β-arrestin by a factor 228 
compared to a classical full agonist [66]. Ergotamine also binds to 5-HT1B receptor 
but does not induced a biased response. Thus, resolution of 5-HT2B and 5-HT1B 
receptors structure in complex with ergotamine via crystallography allowed the 
study of conformational differences between these receptors, and thus modulation 
upon agonist binding [67]. Changes in signaling pathways on 5-HT2B receptor are 
due to changes in conformation of highly conserved motifs and so called “micro-
switches” [66, 68]. Differences between the shift and conformation of some highly 
conserved motifs between the two receptors such as DRY (Asp-Arg-Tyr), NPxxY 
and P-I-F motifs could be predictive of a β-arrestin bias on 5-HT2B receptor. 
However, this bias for β-arrestin pathway on 5-HT2B receptor has not been linked to 
valvulopathy development.

3.3  Receptor Binding Kinetic and Pharmacokinetic

What could be interpreted as a bias on the 5-HT2B receptor might result from a dif-
ference in kinetic of binding. Unett et al. [69] showed that a number of ergot deriva-
tives are slow binders at 5-HT2B receptor. These ligands also displayed slower 
receptor dissociation rates, associated with persistent signaling. As such, Unett et al. 
[69] hypothesized that the ligand could be internalized with the receptor, rending 
them unable to dissociate properly and thus keeping the receptor in an activated state.

Finally, another element to be taken into account in assessing the risk of drug- 
induced valvulopathy is the notion of treatment duration and the dose received [70]. 
The risk was high among patients who had taken daily doses of pergolide that 
exceeded 3 mg for at least 6 months [71]. The same dose-to-toxicity relationship 
was observed with fenfluramine derivatives. In a large cohort study, including more 
than 1 million diabetic patients, using data from two large national linked databases, 
health insurance system (SNIIRAM) and hospitalization (PMSI), Weil et al. [11] 
observed a threefold increase in the risk of cardiac valvular insufficiency and that 
this valvular risk increases even more with benfluorex treatment of 3 months and 
more. More than the quantity of active drugs present in the plasma, it is the level of 
metabolites that needs to be evaluated. As previously described in the serotonin 
hypothesis part, the potent 5-HT2B receptor agonist-induced valvulopathy is the 
common metabolite of fenfluramine, dexfenfluramine and benfluorex: nordexfen-
fluramine [9]. Even if the metabolic pathways are poorly identified, the plasma con-
centrations of nordexfenfluramine are similar (Cmax  =  25–30  ng/ml) with daily 
recommended therapeutic doses of fenfluramine (60  mg/day), dexfenfluramine 
(30 mg/day) or benfluorex (450 mg/day), leading to their labeling of prodrugs and 
named this adverse event as off-target effect. The production of the toxic metabolite 
responsible for the valvulopathogen effect is also described with ergot derivatives: 
methylergonovine, which is the metabolite of methysergide, is a more potent 5-HT2B 
receptor agonist that methysergide [9]. To screen for valvulopathogenic risk, the 
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affinity and function of metabolites on the 5-HT2B receptor should therefore also be 
investigated, and whether the concentration obtained in vivo is sufficient to induce 
valvulopathy. Finally, the determination of a safety margin is difficult to establish 
and must be based on non-clinical (binding, agonism 5-HT2B receptor, pathway) and 
clinical (metabolite, dose dependent echocardiography) data [72, 73].

4  Conclusion

Due to occurrence of VHD, the majority of drug presenting, their metabolites or 
themselves, agonist properties on 5-HT2B receptor have been withdrawn from the 
market. Development of 5-HT2 receptors agonists as therapeutic compounds is 
avoided by pharmaceutical companies. This raises a serious issue as the serotoner-
gic system is involved in the pathogenesis of numerous diseases, notably 5-HT2 
receptors. Thus, these receptors represent potentially good therapeutic targets. 
Understanding the pharmacology associated with VHD development is fundamen-
tal to allow the development of new drugs devoid of cardiac side effects mediated 
by 5-HT2B receptor stimulation (see Fig. 12.1). The canonical signaling of the recep-
tor is associated with mitogenic effect on myofibroblasts in vitro, but it is not the 
only pathway associated with VHD. Indeed, as shown by the study of Huang et al. 
[58], screening on a calcium flux assay does not allow the discrimination between 
valvulopathogen and non-valvulopathogen 5-HT2B agonists. However, 5-HT2B 
receptor display interesting properties such as the ability to oligomerize with other 
GPCRs such as AT1 receptor. Moreover, 5-HT2B agonists are able to modulate the 
pharmacology associated with stimulation of the receptor by preferentially activat-
ing one pathway over another (biased agonism or functional selectivity), or by 

Fig. 12.1 Diagram representing the link between two families of valvulopathogen 5-HT2B recep-
tor agonists (in blue) and the cellular mechanisms related to VHD development (in green). The 
different pharmacological properties of 5-HT2B receptor agonists (in orange) provide new insights 
in signaling pathway modulation, but that have not been linked to valvulopathy development yet
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displaying different binding kinetics. These pharmacological properties give new 
insights in possible mechanisms linked to VHD development and highlight new 
therapeutic targets downstream of the valvulopathogen pathway. However, further 
studies are needed to find if these properties are relevant in regard of valvulopathy.

The withdrawal of fenfluramines follows the identification of 5-HT2B receptor 
agonists properties of its metabolite, nordexfenfluramine. As such, notions of dose, 
treatment duration and quantity of metabolites have to be considered in the balance 
benefice/risk evaluation. For example, fenfluramine in association with phenter-
mine was withdrawn in diabetic or obese adult patients, but their use is allowed 
again at low dose in rare pediatric disease. Thus, infants suffering from Dravet syn-
drome, a rare serious epilepsy condition notably hard to treat, were treated with low 
dose fenfluramine, without identification of the mechanism responsible of therapeu-
tic effect. With a low dose treatment (mean of 0.3 mg/kg/day) for up to 28 years 
(1–28 years, mean of 9.2 years) on 19 patients, 5 patients present minor signs of 
valve remodeling, but no functional consequences have been reported [74]. These 
very limited data must be interpreted with the utmost caution, due to the age of the 
population, its size, the absence of data on norfenfluramine concentrations and the 
lack of knowledge about valvular mechanisms involved in cardiac growth. The fact 
that majority of the treatments began before the age of 2 years also raise the inter-
rogation of the prevalence of VHD development in infants. As their heart is still 
growing and the remodeling mechanisms may thus still beneficial, we can hypoth-
esize that bone marrow progenitor mobilization is less detrimental than in adults.

Thus, even with limited knowledge on 5-HT2B receptor pharmacology, 5-HT2B 
receptor agonism should not be systematically associated with VHD, as numerous 
factors must be taken into account (dose/duration of the treatment/pathway acti-
vated). Risk/benefice balance must also be assessed depending on the condition 
treated, as 5-HT2 receptor agonists may be useful for treating rare and severe dis-
eases (e.g. Dravet syndrome, amyotrophic lateral sclerosis) with very limited thera-
peutic solution to this date.

References

 1. Connolly HM, Crary JL, McGoon MD, Hensrud DD, Edwards BS, Edwards WD et  al 
(1997) Valvular heart disease associated with fenfluramine-phentermine. N Engl J Med 
337(9):581–588

 2. Zuetenhorst JM, Bonfrer JMGM, Korse CM, Bakker R, van Tinteren H, Taal BG (2003) 
Carcinoid heart disease. Cancer 97(7):1609–1615

 3. Rothman RB, Baumann MH (2002) Therapeutic and adverse actions of serotonin transporter 
substrates. Pharmacol Ther 95(1):73–88

 4. Zolkowska D, Baumann MH, Rothman RB (2008) Chronic fenfluramine administration 
increases plasma serotonin (5-hydroxytryptamine) to nontoxic levels. J Pharmacol Exp Ther 
324(2):791–797

 5. Rothman RB, Zolkowska D, Baumann MH (2008) Serotonin (5-HT) transporter ligands affect 
plasma 5-HT in rats. Ann N Y Acad Sci 1139(1):268–284

12 The Discovery of 5-HT2B Receptor Pharmacology…



226

 6. Rothman RB, Baumann MH (2009) Serotonergic Drugs and Valvular Heart Disease. Expert 
Opin Drug Saf 8(3):317–329

 7. Celada P, Pérez J, Alvarez E, Artigas F (1992) Monoamine oxidase inhibitors phenelzine 
and brofaromine increase plasma serotonin and decrease 5-hydroxyindoleacetic acid in 
patients with major depression: relationship to clinical improvement. J Clin Psychopharmacol 
12(5):309–315

 8. Rothman RB, Baumann MH (2006) Therapeutic potential of monoamine transporter sub-
strates. Curr Top Med Chem 6(17):1845–1859

 9. Rothman RB, Baumann MH, Savage JE, Rauser L, McBride A, Hufeisen SJ et  al (2000) 
Evidence for possible involvement of 5-HT2B receptors in the cardiac valvulopathy associ-
ated with fenfluramine and other serotonergic medications. Circulation 102(23):2836–2841

 10. Ayme-Dietrich E, Lawson R, Côté F, de Tapia C, Da Silva S, Ebel C et al (2017) The role of 
5-HT2B receptors in mitral valvulopathy: bone marrow mobilization of endothelial progeni-
tors. Br J Pharmacol 174(22):4123–4139

 11. Weill A, Païta M, Tuppin P, Fagot J-P, Neumann A, Simon D et al (2010) Benfluorex and valvu-
lar heart disease: a cohort study of a million people with diabetes mellitus. Pharmacoepidemiol 
Drug Saf 19(12):1256–1262

 12. Dahl CF, Allen MR, Urie PM, Hopkins PN (2008) Valvular regurgitation and surgery associ-
ated with fenfluramine use: an analysis of 5743 individuals. BMC Med 6:34

 13. Rabkin E, Aikawa M, Stone JR, Fukumoto Y, Libby P, Schoen FJ (2001) Activated intersti-
tial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous 
heart valves. Circulation 104(21):2525–2532

 14. Manivet P, Schneider B, Smith JC, Choi D-S, Maroteaux L, Kellermann O et al (2002) The 
serotonin binding site of human and murine 5-HT2B receptors molecular modeling and site- 
directed mutagenesis. J Biol Chem 277(19):17170–17178

 15. Oyama MA, Chittur SV (2006) Genomic expression patterns of mitral valve tissues from dogs 
with degenerative mitral valve disease. Am J Vet Res 67(8):1307–1318

 16. Elangbam CS, Lightfoot RM, Yoon LW, Creech DR, Geske RS, Crumbley CW et al (2005) 
5-hydroxytryptamine (5HT) receptors in the heart valves of Cynomolgus monkeys and 
Sprague-Dawley rats. J Histochem Cytochem 53(5):671–677

 17. Elangbam CS, Job LE, Zadrozny LM, Barton JC, Yoon LW, Gates LD et  al (2008) 
5-Hydroxytryptamine (5HT)-induced valvulopathy: Compositional valvular alterations are 
associated with 5HT2B receptor and 5HT transporter transcript changes in Sprague-Dawley 
rats. Exp Toxicol Pathol 60(4–5):253–262

 18. Fitzgerald LW, Burn TC, Brown BS, Patterson JP, Corjay MH, Valentine PA et  al (2000) 
Possible role of valvular serotonin 5-HT2B receptors in the cardiopathy associated with fen-
fluramine. Mol Pharmacol 57(1):75–81

 19. Setola V, Hufeisen SJ, Grande-Allen KJ, Vesely I, Glennon RA, Blough B et al (2003) 3,4- m
ethylenedioxymethamphetamine (MDMA, “Ecstasy”) induces fenfluramine-like proliferative 
actions on human cardiac valvular interstitial cells in vitro. Mol Pharmacol 63(6):1223–1229

 20. Cremer SE, Moesgaard SG, Rasmussen CE, Zois NE, Falk T, Reimann MJ et al (2015) Alpha- 
smooth muscle actin and serotonin receptors 2A and 2B in dogs with myxomatous mitral valve 
disease. Res Vet Sci 100:197–206

 21. Xu J, Jian B, Chu R, Lu Z, Li Q, Dunlop J et al (2002) Serotonin mechanisms in heart valve 
disease II: the 5-HT2 receptor and its signaling pathway in aortic valve interstitial cells. Am J 
Pathol 161(6):2209–2218

 22. Roy A, Brand NJ, Yacoub MH (2000) Expression of 5-hydroxytryptamine receptor subtype 
messenger RNA in interstitial cells from human heart valves. J Heart Valve Dis 9(2):256–260. 
discussion 260–261

 23. Grande-Allen KJ, Calabro A, Gupta V, Wight TN, Hascall VC, Vesely I (2004) 
Glycosaminoglycans and proteoglycans in normal mitral valve leaflets and chordae: associa-
tion with regions of tensile and compressive loading. Glycobiology 14(7):621–633

A. Arnoux and E. Ayme-Dietrich



227

 24. Liu AC, Joag VR, Gotlieb AI (2007) The emerging role of valve interstitial cell phenotypes in 
regulating heart valve pathobiology. Am J Pathol 171(5):1407–1418

 25. Schoen FJ (2006) New frontiers in the pathology and therapy of heart valve disease: 2006 
Society for Cardiovascular Pathology, distinguished achievement award lecture, United 
States–Canadian Academy of Pathology, Atlanta, GA, February 12, 2006. Cardiovasc Pathol 
15(5):271–279

 26. Aupperle H, Disatian S (2012) Pathology, protein expression and signaling in myxomatous 
mitral valve degeneration: comparison of dogs and humans. J Vet Cardiol 14(1):59–71

 27. Barzilla JE, Acevedo FE, Grande-Allen KJ (2010) Organ culture as a tool to identify early 
mechanisms of serotonergic valve disease. J Heart Valve Dis 19(5):626–635

 28. Taylor PM, Allen SP, Yacoub MH (2000) Phenotypic and functional characterization of inter-
stitial cells from human heart valves, pericardium and skin. J Heart Valve Dis 9(1):150–158

 29. Aikawa E, Whittaker P, Farber M, Mendelson K, Padera RF, Aikawa M et al (2006) Human 
semilunar cardiac valve remodeling by activated cells from fetus to adult implications for 
postnatal adaptation, pathology, and tissue engineering. Circulation 113(10):1344–1352

 30. Butcher JT, Tressel S, Johnson T, Turner D, Sorescu G, Jo H et al (2006) Transcriptional pro-
files of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear 
stress. Arterioscler Thromb Vasc Biol 26(1):69–77

 31. Simmons CA, Grant GR, Manduchi E, Davies PF (2005) Spatial heterogeneity of endothelial 
phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic 
valves. Circ Res 96(7):792–799

 32. Bischoff J, Aikawa E (2011) Progenitor cells confer plasticity to cardiac valve endothelium. J 
Cardiovasc Transl Res 4(6):710–719

 33. Lu C-C, Liu M-M, Culshaw G, Clinton M, Argyle DJ, Corcoran BM (2015) Gene network and 
canonical pathway analysis in canine myxomatous mitral valve disease: a microarray study. 
Vet J 204(1):23–31

 34. Hulin A, Deroanne C, Lambert C, Defraigne J-O, Nusgens B, Radermecker M et al (2013) 
Emerging pathogenic mechanisms in human myxomatous mitral valve: lessons from past and 
novel data. Cardiovasc Pathol Off J Soc Cardiovasc Pathol 22(4):245–250

 35. Driesbaugh KH, Branchetti E, Grau JB, Keeney SJ, Glass K, Oyama MA et al (2017) Serotonin 
receptor 2B signaling with interstitial cell activation and leaflet remodeling in degenerative 
mitral regurgitation. J Mol Cell Cardiol 115:94–103

 36. Nebigil CG, Choi D-S, Dierich A, Hickel P, Le Meur M, Messaddeq N et al (2000) Serotonin 
2B receptor is required for heart development. Proc Natl Acad Sci USA 97(17):9508–9513

 37. Nebigil CG, Launay J-M, Hickel P, Tournois C, Maroteaux L (2000) 5-hydroxytryptamine 2B 
receptor regulates cell-cycle progression: cross-talk with tyrosine kinase pathways. Proc Natl 
Acad Sci USA 97(6):2591–2596

 38. Hafizi S, Taylor PM, Chester AH, Allen SP, Yacoub MH (2000) Mitogenic and secretory 
responses of human valve interstitial cells to vasoactive agents. J Heart Valve Dis 9(3):454–458

 39. Connolly JM, Bakay MA, Fulmer JT, Gorman RC, Gorman JH, Oyama MA et  al (2009) 
Fenfluramine disrupts the mitral valve interstitial cell response to serotonin. Am J Pathol 
175(3):988–997

 40. Droogmans S, Roosens B, Cosyns B, Degaillier C, Hernot S, Weytjens C et  al (2009) 
Cyproheptadine prevents pergolide-induced valvulopathy in rats: an echocardiographic and 
histopathological study. Am J Physiol Heart Circ Physiol 296(6):H1940–H1948

 41. Elangbam CS, Wehe JG, Barton JC, Krull DL, Nyska A, Crabbs T et al (2006) Evaluation 
of glycosaminoglycans content and 5-hydroxytryptamine 2B receptor in the heart valves 
of Sprague-Dawley rats with spontaneous mitral valvulopathy—a possible exacerbation by 
dl-amphetamine sulfate in Fischer 344 rats? Exp Toxicol Pathol Off J Ges Toxikol Pathol 
58(2–3):89–99

 42. Balachandran K, Bakay MA, Connolly JM, Zhang X, Yoganathan AP, Levy RJ (2011) Aortic 
valve cyclic stretch causes increased remodeling activity and enhanced serotonin receptor 
responsiveness. Ann Thorac Surg 92(1):147–153

12 The Discovery of 5-HT2B Receptor Pharmacology…



228

 43. Balachandran K, Hussain S, Yap C-H, Padala M, Chester AH, Yoganathan AP (2012) Elevated 
cyclic stretch and serotonin result in altered aortic valve remodeling via a mechanosensi-
tive 5-HT(2A) receptor-dependent pathway. Cardiovasc Pathol Off J Soc Cardiovasc Pathol 
21(3):206–213

 44. Jian B, Xu J, Connolly J, Savani RC, Narula N, Liang B et al (2002) Serotonin mechanisms in 
heart valve disease I: serotonin-induced up-regulation of transforming growth factor-beta1 via 
G-protein signal transduction in aortic valve interstitial cells. Am J Pathol 161(6):2111–2121

 45. Jaffré F, Callebert J, Sarre A, Etienne N, Nebigil CG, Launay J-M et al (2004) Involvement 
of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation 
control of interleukin-6, interleukin-1β, and tumor necrosis factor-α cytokine production by 
ventricular fibroblasts. Circulation 110(8):969–974

 46. Yabanoglu S, Akkiki M, Seguelas M-H, Mialet-Perez J, Parini A, Pizzinat N (2009) Platelet 
derived serotonin drives the activation of rat cardiac fibroblasts by 5-HT2A receptors. J Mol 
Cell Cardiol 46(4):518–525

 47. Xu J, Jian B, Chu R, Lu Z, Li Q, Dunlop J et al (2002) Serotonin mechanisms in heart valve 
disease II. Am J Pathol 161(6):2209–2218

 48. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM et al (1991) Marfan 
syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 
352(6333):337–339

 49. Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R et al (2003) Latent transforming 
growth factor β-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. 
J Biol Chem 278(4):2750–2757

 50. Ng CM, Cheng A, Myers LA, Martinez-Murillo F, Jie C, Bedja D et  al (2004) TGF-beta- 
dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin 
Invest 114(11):1586–1592

 51. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T et al (2005) A syndrome of 
altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by muta-
tions in TGFBR1 or TGFBR2. Nat Genet 37(3):275–281

 52. Hutcheson JD, Ryzhova LM, Setola V, Merryman WD (2012) 5-HT2B antagonism arrests 
non-canonical TGF-β1-induced valvular myofibroblast differentiation. J Mol Cell Cardiol 
53(5):707–714

 53. West JD, Carrier EJ, Bloodworth NC, Schroer AK, Chen P, Ryzhova LM et al (2017) Serotonin 
2b receptor antagonism prevents heritable pulmonary arterial hypertension. PLoS One 
11(2):e.0148657. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749293/

 54. Visconti RP, Ebihara Y, LaRue AC, Fleming PA, McQuinn TC, Masuya M et al (2006) An In 
vivo analysis of hematopoietic stem cell potential hematopoietic origin of cardiac valve inter-
stitial cells. Circ Res 98(5):690–696

 55. Hajdu Z, Romeo SJ, Fleming PA, Markwald RR, Visconti RP, Drake CJ (2011) Recruitment 
of bone marrow-derived valve interstitial cells is a normal homeostatic process. J Mol Cell 
Cardiol 51(6):955–965

 56. Ayme-Dietrich E, Lawson R, Gasser B, Dallemand R, Bischoff N, Monassier L (2012) Mitral 
bioprosthesis hypertrophic scaring and native aortic valve fibrosis during benfluorex therapy. 
Fundam Clin Pharmacol 26(2):215–218

 57. Launay J-M, Hervé P, Callebert J, Mallat Z, Collet C, Doly S et al (2012) Serotonin 5-HT2B 
receptors are required for bone-marrow contribution to pulmonary arterial hypertension. Blood 
119(7):1772–1780

 58. Huang X-P, Setola V, Yadav PN, Allen JA, Rogan SC, Hanson BJ et al (2009) Parallel func-
tional activity profiling reveals valvulopathogens are potent 5-hydroxytryptamine(2B) recep-
tor agonists: implications for drug safety assessment. Mol Pharmacol 76(4):710–722

 59. Janoshazi A, Deraet M, Callebert J, Setola V, Guenther S, Saubamea B et al (2007) Modified 
receptor internalization upon co-expression of 5-HT1B receptor and 5-HT2B receptors. Mol 
Pharmacol 71(6):1463–1474

A. Arnoux and E. Ayme-Dietrich

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749293/


229

 60. Jaffré F, Bonnin P, Callebert J, Debbabi H, Setola V, Doly S et al (2009) Serotonin and angio-
tensin receptors in cardiac fibroblasts coregulate adrenergic-dependent cardiac hypertrophy. 
Circ Res 104(1):113–123

 61. Perez J, Diaz N, Tandon I, Plate R, Martindale C, Balachandran K (2017) Elevated serotonin 
interacts with angiotensin-II to result in altered valve interstitial cell contractility and remodel-
ing. Cardiovasc Eng Technol 28:1–13

 62. Mullen M, Jin XY, Child A, Stuart AG, Dodd M, Aragon-Martin JA et al (2019) Irbesartan 
in Marfan syndrome (AIMS): a double-blind, placebo-controlled randomised trial. Lancet 
394(10216):2263–2270

 63. Wylie-Sears J, Levine R, Bischoff J (2014) Losartan inhibits endothelial-to-mesenchymal 
transformation in mitral valve endothelial cells by blocking transforming growth factor-β- 
induced phosphorylation of ERK. Biochem Biophys Res Commun 446(4):870–875

 64. Moutkine I, Quentin E, Guiard BP, Maroteaux L, Doly S (2017) Heterodimers of serotonin 
receptor subtypes 2 are driven by 5-HT2C protomers. J Biol Chem 292(15):6352–6368

 65. Bohn LM, Schmid CL (2010) Serotonin receptor signaling and regulation via β-arrestins. Crit 
Rev Biochem Mol Biol 45(6):555–566

 66. Wacker D, Wang C, Katritch V, Han GW, Huang X-P, Vardy E et al (2013) Structural features 
for functional selectivity at serotonin receptors. Science 340(6132):615–619

 67. McCorvy JD, Roth BL (2015) Structure and function of serotonin G protein-coupled recep-
tors. Pharmacol Ther 150:129–142

 68. Martí-Solano M, Sanz F, Pastor M, Selent J (2014) A dynamic view of molecular switch behav-
ior at serotonin receptors: implications for functional selectivity. PLoS One 9(10):e109312

 69. Unett DJ, Gatlin J, Anthony TL, Buzard DJ, Chang S, Chen C et al (2013) Kinetics of 5-HT2B 
receptor signaling: profound agonist-dependent effects on signaling onset and duration. J 
Pharmacol Exp Ther 347(3):645–659

 70. Lepor NE, Gross SB, Daley WL, Samuels BA, Rizzo MJ, Luko SP et al (2000) Dose and dura-
tion of fenfluramine-phentermine therapy impacts the risk of significant valvular heart disease. 
Am J Cardiol 86(1):107–110

 71. Schade R, Andersohn F, Suissa S, Haverkamp W, Garbe E (2007) Dopamine agonists and the 
risk of cardiac-valve regurgitation. N Engl J Med 356(1):29–38

 72. Cavero I, Guillon J-M (2014) Safety Pharmacology assessment of drugs with biased 
5-HT(2B) receptor agonism mediating cardiac valvulopathy. J Pharmacol Toxicol Methods 
69(2):150–161

 73. Papoian T, Jagadeesh G, Saulnier M, Simpson N, Ravindran A, Yang B et al (2017) Regulatory 
forum review: utility of in vitro secondary pharmacology data to assess risk of drug-induced 
valvular heart disease in humans: regulatory considerations. Toxicol Pathol 45(3):381–388

 74. Schoonjans A-S, Marchau F, Paelinck BP, Lagae L, Gammaitoni A, Pringsheim M et al (2017) 
Cardiovascular safety of low-dose fenfluramine in Dravet syndrome: a review of its benefit- 
risk profile in a new patient population. Curr Med Res Opin 33(10):1773–1781

12 The Discovery of 5-HT2B Receptor Pharmacology…



231© Springer Nature Switzerland AG 2021
L. Maroteaux, L. Monassier (eds.), 5-HT2B Receptors, The Receptors 35, 
https://doi.org/10.1007/978-3-030-55920-5_13

Chapter 13
Serotonin and Fibrosis

Oliver Distler, Michel Neidhart, and Przemysław Błyszczuk

Abbreviations

COL1A1 Collagen 1α1
COL1A2 Collagen 1α2
CTGF Connective tissue growth factor
ECM Extracellular matrix
FN1 Fibronectin
MDMA-“Ecstasy” 3,4-methylenedioxy-methamphetamine
SMA Smooth muscle actin
SSRI/SNRI Serotonin norepinephrine re-uptake inhibitors
SERT/5-HTT Serotonin transporter SLC6A4
αSMA Alpha smooth muscle actin
SSc Systemic sclerosis
TGF-β Transforming growth factor beta
TPH1 Tryptophan hydroxylase

1  Introduction

1.1  Fibrosis

Fibrosis can occur in many tissues within the body, including skin, liver, lung, heart, 
intestine and pancreas. It is a pathological process of the wound healing response 
that replaces damaged tissue with non-functional collagen-rich scar tissue to main-
tain the physical boundaries of the affected organ [1]. However, scar tissue can 
cause serious complications for organs whose capability depends on cellular func-
tion and/or mechanical deformation. The fibrotic extracellular matrix provides a 
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positive feedback loop leading to progressive tissue stiffening, activation of pro- 
fibrotic transforming growth factor beta (TGF-β) signaling, and to a self-perpetuat-
ing disease [2]. These mechanisms initiate signal transduction pathways such as the 
SMAD [3] and AKT/mTOR [4] pathways that ultimately lead to the proliferation 
and/or activation of fibroblasts, which deposit extracellular matrix into the sur-
rounding connective tissue. The process of tissue repair is complex, with tight regu-
lation of extracellular matrix synthesis and degradation ensuring maintenance of 
normal tissue architecture. However, the entire process, although necessary, can 
lead to a progressive irreversible fibrotic response, if tissue injury is severe or repeti-
tive, or if the wound healing response itself becomes deregulated (Fig. 13.1).

1.2  Myofibroblasts

A ubiquitous characteristic of fibrosis is the presence of myofibroblasts, a contractile 
cell that deposits high amounts of fibrotic extracellular matrix including type I 
collagen and extra-domain A isoform of fibronectin. Most myofibroblasts are 
derived from activated resident mesenchymal cells [5], but can also arise from epi-
thelial cells through epithelial-mesenchymal transition [6]. They usually stain for 
the intermediate filament vimentin, which is a general mesenchymal cells marker, 
and alpha smooth muscle actin (α-SMA, encoded by the ACTA2 gene). 
Myofibroblasts are responsible for wound closure. Failure of myofibroblasts to 
undergo apoptosis can lead to increased deposition of extracellular matrix proteins 
[7]. In turn, pathological stiffness facilitates release of TGF-β [8] and alters the 

Fig. 13.1 Role of fibroblasts in wound healing and generation of fibrosis. An amplification is 
triggered by collagen-rich scar tissues that stimulate TGF-β and results in excessive deposition of 
extracellular matrix. AKT/mTOR is given as an example for non-canonical signaling pathways
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macrophage phenotype [9], both resulting in further activation of fibroblasts, exces-
sive collagen deposition and fibrosis (Fig. 13.2).

1.3  Tryptophan Metabolites

Major metabolites of tryptophan including L-kynurenine and serotonin exert 
modulatory effects on both fibroblast activation in vitro and pathological fibrosis 
in vivo [2]. A major source of serotonin outside the nervous system is enterochromaffin 
cells of the intestinal epithelium. In those cells, L-tryptophan is enzymatically 
hydrolyzed and 5-hydroxytryptophan is subsequently decarboxylated into sero-
tonin. In the circulation, serotonin is found in platelets. It is released upon platelet 
aggregation at sites of tissue damage, thereby modulating wound healing. Mice 
deficient for tryptophan hydroxylase (TPH1), the rate-limiting enzyme for serotonin 
production outside the central nervous system, showed reduced experimental skin 
fibrosis [10, 11]. Serotonin has potent vasoactive and chemotactic properties and 
promotes pro-inflammatory cytokines release by monocytes.

Fig. 13.2 Central role of myofibroblasts in the pathogenesis of fibrosis. Myofibroblasts generated 
from different cell types are responsible for the deposition of extracellular matrix. This can lead to 
pathological stiffness that triggers the release of TGF-β, which in turn stimulates fibroblasts to 
produce more extracellular matrix. This positive feedback loop can result in fibrosis
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1.4  Clinical Evidences

Some clinical evidences exist suggesting a role for serotonin and serotonin agonists 
in fibrosis (Fig. 13.3). A retrospective study [12] demonstrated a significant associa-
tion between usage of selective serotonin re-uptake inhibitors and serotonin norepi-
nephrine re-uptake inhibitors (SSRI/SNRI) and interstitial lung disease in the 
elderly. Neuroendocrine tumors are often associated with the development of local 
and distant fibrosis [13]. There is strong evidence implicating serotonin and the 
activation of 5-HT2B receptors in the pathogenesis of carcinoid heart disease, which 
is characterized by the development of fibrotic endocardial plaques. A clinical study 
of patients with mid-gut neuroendocrine tumors showed a correlation between ele-
vated platelet serotonin and the presence of a mesenteric mass [14]. Another study 
demonstrated a significant association of mesenteric fibrosis with urinary 
5- hydroxyindoleacetic acid, the main metabolite of serotonin [15]. The serotonin 
pathway has been repeatedly implicated in anorexigens-associated pulmonary vas-
cular disease. The increase of systemic serotonin levels results in vasoconstriction 
of the pulmonary arteries and initiates a cascade of pathologic remodeling leading 
to vascular fibrosis [16]. The 5-HT2B receptor has the strongest association with 
valvular heart disease and pulmonary hypertension. Serotonin agonists, such as fen-
fluramines and lorcaserin, can cause valvular fibrosis [16]; this is also the case for 
the amphetamine derivative 3,4-methylenedioxy-methamphetamine (MDMA-
"Ecstasy") [17]. The ergot methysergide can cause retroperitoneal fibrosis due to its 
in vivo conversion to a 5-HT2B agonist [18]. All these drugs cause fibrosis via the 
5-HT2B receptor. Dopamine with structural similarities to serotonin, such as per-
golide and cabergolide (used in the treatment of Parkinson disease), have also been 
associated with heart valve diseases involving 5-HT2B agonism, thus limiting their 
clinical utility [19]. The headache drug methysergide, which has structural similari-
ties to serotonin, can cause pleuro-pulmonary fibrosis.

Fig. 13.3 Examples of clinical evidences for the role of serotonin in fibrosis: use of SSRI/SNRI, 
serotonin-secreting neuroendocrine tumors and use of serotonin agonists
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2  Skin Fibrosis

Matrix biosynthesis and deposition are complex processes that are critical in 
development, maintenance of tissue homeostasis and repair of injured tissues. 
Disturbances in the regulation of these processes can result in a wide range of path-
ological conditions which are associated with tissue fibrosis, from excessive scar-
ring to systemic sclerosis (SSc). In hypertrophic scars, serotonin as well as histamine 
are increased. The clinical symptoms of fibrosis can vary considerably with a broad 
range from isolated small areas to the involvement of the entire integument. Fibrosis 
is triggered by a multitude of different stimuli leading to activation of the immune 
and vascular system that then initiate fibroblast activation and formation of matrix 
depositing, as well as generation of myofibroblasts [20].

2.1  Myofibroblasts and Excessive ECM Production

Myofibroblasts are the primary extracellular matrix (ECM)-secreting cells during 
wound healing and fibrosis, and are largely responsible for the contractility of scar 
tissue as it matures. Serotonin may favor the generation of myofibroblasts [21]. 
Ultimately, myofibroblasts deposit excessive amounts of ECM inducing a patho-
logical architecture and alterations in growth factor binding and biomechanical 
properties, which culminates in skin hardening and loss of mobility.

2.2  Dermal Fibroblasts and Increased Collagen Turnover

Fibroblasts are the predominant mesenchymal cell type and the main effector of 
ECM homeostasis, mediating its continuous turnover. In great part, the anti-fibrotic 
effects observed after inhibition of serotonin signaling resulted from the reduced 
direct effect of serotonin on fibroblasts. In human dermal fibroblasts, serotonin 
dose-dependently induced expression of collagen type I α-chains (COL1A1, 
COL1A2) and collagen deposition [22]; this was dependent on the activation of the 
5-HT2B receptor.

2.3  Animal Models

Animal models of human diseases represent an important experimental platform in 
preclinical research. Many experimental models of SSc have been generated to 
induce SSc phenotype in the skin and in internal organs. The cytotoxic agent bleo-
mycin is commonly used to induce skin and lung fibrosis in mice and rats. Repetitive 
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intradermal deliveries of bleomycin induce a progressive thickening of the skin, 
whereas a single intratracheal injection of the cytotoxic drug is used to trigger lung 
injury, inflammation and subsequent pulmonary fibrosis. SSc-like phenotype can be 
also induced by bone marrow transplantation between specific mouse strains, which 
results in chronic graft-versus-host disease or it can develop spontaneously in the 
specific transgenic mice, such as TSK-1, TSK-2, Fra-2-tg and many others. 
Experimental data from bleomycin SSc mouse models confirmed a profibrotic role 
of serotonin-mediated signaling in the skin and lungs [23]. It has been shown that 
bleomycin injection induced serotonin production and expression of serotonin 
receptors [24]. A number of studies demonstrated that pharmacological inhibition 
of serotonin receptors with specific antagonists successfully ameliorated fibrotic 
changes in the skin and lungs of mice or rats treated with bleomycin (Table 13.1).

The relevance of profibrotic serotonin signaling in bleomycin SSc models has 
been further confirmed in mice lacking peripheral serotonin by genetic knockout of 
TPH1. Accordingly, TPH1-deficient mice showed reduced dermal and pulmonary 
fibrosis upon challenge with bleomycin [11, 22]. In bleomycin models, serotonin 
has been suggested to exacerbate inflammatory response, oxidative stress, collagen 
synthesis and myofibroblast formation leading to fibrotic phenotype (Fig. 13.4). At 
the molecular level, serotonin signaling was implicated in regulation of pAkt/p21 
pathway [25].

2.4  Transforming Growth Factor Beta (TGF-β)

TGF-β is a multifunctional cytokine and a key regulator of ECM assembly and 
remodeling. Specifically, TGF-β has the ability to induce the expression of ECM 
proteins in mesenchymal cells, and to stimulate the production of protease inhibi-
tors that prevent enzymatic breakdown of the ECM. Recent data suggest that 5-HT 

Table 13.1 Pharmacological effects of serotonin receptor blockade in SSc models of bleomycin- 
induced skin and lung fibrosis

Serotonin 
receptor Inhibitor Effect Organ Reference

5-HT2A/B Terguride Antifibrotic Skin, 
lung

Königshoff et al. [31], Dees et al. [22], 
Elaidy and Essawy [32], Tawfik and 
Makary [34]

5-HT2A/2B Cyproheptadine Antifibrotic Skin Dees et al. [22]
5-HT2A Ketanserin Antifibrotic Lung Fabre et al. [24]
5-HT2B EXT5, EXT9 Antifibrotic Lung Löfdahl et al. [25]
5-HT2B SB-204741 Antifibrotic Skin Dees et al. [22]
5-HT2B SB-215505 Antifibrotic Lung Fabre et al. [24]
5-HT2C RS-102221 Antifibrotic Lung Elaidy and Essawy [32]
5-HT3/4 Tropisetron Antifibrotic Skin Stegemann et al. [48]
5-HT7 SB-269970 Antifibrotic Lung Tawfik and Essawy [34]
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inhibitors reduce fibrosis via suppression of TGF-β-mediated non-canonical signal-
ing pathways in fibroblasts, involving ERK1/2 and STAT3 phosphorylation [26]. An 
interesting concept is that serotonin induces the production of TGF-β in skin mac-
rophages, which in turn triggers the up-regulation of pro-fibrotic genes in dermal 
fibroblasts [21].

2.5  Formation of a Temporary Scar

Serotonin stimulates both vasoconstriction and vasodilation, influences inflammatory 
responses and promotes formation of a temporary scar which acts as a scaffold for 
normal tissue to be restored. However, in situations of chronic injury or damage, 
serotonin signaling can have deleterious effects and promote aberrant wound heal-
ing resulting in tissue fibrosis and impaired organ regeneration [27].

3  Fibrosis in Other Organs

The fibrosis process in other organs shows some similarities with the pathogenesis 
occurring in the skin. We will shortly review them.

Fig. 13.4 The role of serotonin in skin fibrosis is revealed by the action of serotonin antagonists 
and in genetically 5-HT2B/tryptophan hydroxylase knockout mice
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3.1  Liver Fibrosis

Cirrhosis is a pathological condition in which the liver does not function properly 
due to long-term damage, which is characterized by the replacement of normal 
parenchyma by scar tissue. This scar tissue blocks the portal venous flow through 
the organ, raising the blood pressure and disturbing normal function. Hepatic sero-
tonin signaling pathways help to regulate the growth and regeneration of parenchy-
mal liver cells. Sinusoidal hepatic stellate cells, which are negative regulators of 
hepatocytes regeneration, are the major contributor to fibrogenesis in liver diseases, 
producing great amount of extracellular matrix proteins, as well as the collagenase 
inhibitor TIMP-1. They strongly up-regulate expression of 5-HT2A and 5-HT2B upon 
their trans-differentiation into myofibroblasts [28]. Serotonin synergizes with 
platelet- derived growth factor to stimulate their proliferation. In rat liver damaged 
by injection of CCl4, 5-HT2B receptors are localized to fibrotic tissues. 5-HT2 recep-
tor antagonists inhibit hepatic stellate cells proliferation and induce apoptosis. This 
implies serotonin signaling in the regulation of fibrosis, since the balance between 
proliferation and apoptosis is an important factor in its progression [27]. Signaling 
through the 5-HT2B receptor on liver myofibroblasts is both anti-regenerative and 
pro-fibrotic [29]. Accordingly, in mice, 5-HT2B knockout stimulates hepatocyte pro-
liferation and suppresses fibrosis [27]; serotonin triggers the expression of TGF-β1 
via ERK- and JunD pathways. In turn, TGF-β inhibits hepatocyte proliferation and 
up-regulates the expression of fibrogenic genes. In addition, serotonin increases the 
pro-fibrotic matricellular protein connective tissue growth factor (CTGF) from 
hepatic stellate cells [28]. Thus, in a pathological situation, important cross-talks 
occur between these serotonin-driven epithelial cell growth mechanism and sero-
tonin signaling pathways that act on myofibroblasts to stimulate hepatic fibrosis. 
Similarly, in response to biliary injury, serotonin triggers the production of TGF-β 
by myofibroblasts; in turn, TGF-β acts on cholangiocytes and stimulates their pro-
liferation [30]. In summary, sinusoidal hepatic stellate cells can differentiate into 
myofibroblasts that express more serotonin receptors. Serotonin triggers the release 
of TGF-β resulting in increased proliferation and deposition of extracellular matrix. 
The parenchymal tissue progressively progresses into a collagen-rich scar tissue. 
This can cause liver dysfunctions. More information regarding liver fibrosis is found 
in Chap. 14.

3.2  Lung Fibrosis

Lung fibrosis has been associated with different types of human chronic respiratory 
diseases, including pulmonary arterial hypertension and chronic obstructive pulmo-
nary disease. In addition, lung fibrosis is a serious pathological component of SSc. 
Serotonin can stimulate the proliferation and fibrogenic actions of lung fibroblasts. 
Recently, serotonin was shown to increase p21/CDKN1A and phosphorylated Akt 
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in human lung fibroblasts [29]. Bleomycin-induced pulmonary fibrosis is a model 
used to evaluate pathological mechanisms and pharmacological interventions. In 
mice, the development of bleomycin-induced lung fibrosis is dependent on 5-HT2A/2B 
receptors [31]. In murine lungs, serotonin increased over the progression of fibrosis; 
this occurs in conjunction with increased expression of 5-HT2A/2B receptors [24, 31]. 
In genetically tryptophan hydroxylase knockout mice, bleomycin induced less 
inflammatory cytokines and fibrosis-associated proteins [11]. Pharmacological 
blockade of either 5-HT2A or 5-HT2B receptors reduced lung collagen content, as 
well as procollagen 1 and procollagen 3 transcript levels. In rats, 5-HT2C and 5-HT7 
receptors also are involved in fibrosis [32–34]. Treatment of rat pulmonary artery 
adventitial fibroblasts with serotonin induced proliferation and activation, as shown 
by increased expression of smooth muscle actin (SMA), CTCF, collagen type I, 
fibronectin and TGF-β, as well by increased phosphorylated-SMAD3 [3]; this was 
mediated at least in part by 5-HT2A receptors. Human lung fibroblasts exposed to a 
5-HT2A/2B antagonist showed reduced responses to serotonin and TGF-β [32]. Thus, 
human lung fibroblasts treated with this 5-HT2A/2B antagonist showed reduced TGF- 
β- induced COL1A1 expression and collagen deposition [31]; they also have down- 
regulated plasminogen activator inhibitor-1 and JunD transcripts. In summary, 
serotonin increases the proliferation of human lung fibroblasts and type II alveolar 
epithelial cells. Together with TGF-β, serotonin favors the synthesis and deposition 
of extracellular matrix. This leads to lung fibrosis. Similarly, in the murine model of 
bleomycin-induced lung fibrosis, serotonin increased collagen synthesis and depo-
sition. More information regarding the effect of serotonin on cardiopulmonary func-
tions are found in Chap. 10.

3.3  Cardiac Fibrosis

Cardiac fibrosis refers to the excess deposition of extracellular matrix in the cardiac 
muscle. Fibrotic cardiac muscle is stiffer and less compliant; this can cause heart 
failure. Long-term treatments with serotonin agonists are associated with cardiac 
fibrosis, including weight loss drugs (fenfluramine, chlorphentermine), antiparkin-
son drugs (pergolide and cabergoline) and antimigraine drugs (ergotamine and 
methysergide). In mice, knockout for the serotonin transporter SLC6A4 (SERT/5- 
HTT) led to increased serotonin in the circulation and the development of focal 
fibrotic lesions in cardiac tissues [35]. On the other hand, pharmacological antago-
nists of 5-HT2A/2B or 5-HT2B prevented TGF-β-mediated deposition of collagen in 
murine cardiac fibroblasts [36]; thus, the protective effect of 5-HT2B antagonism in 
cardiac fibrosis models may be at least in part due to the inhibition of TGF-β signal-
ing. Wildtype murine cardiac fibroblasts stimulated with serotonin showed increased 
release of pro-inflammatory cytokines (IL-6, TNFα and IL-1β); this response is 
inhibited by 5-HT2B antagonists and can be restored by treatment with a 5-HT2B 
agonist [37]. Treatment of rat cardiac fibroblasts with serotonin induced prolifera-
tion, migration and up-regulation of TGF-β and matrix metalloproteinases [38]; this 
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was mediated at least in part by 5-HT2A receptors. Serotonin and 5-HT2B receptors 
also synergize with angiotensin II-induced release of IL-1β and TGF-β from murine 
cardiac fibroblasts [39]. Interactions between the angiotensin II and 5-HT2B recep-
tors are the key liming events in cardiac fibroblast activation leading to cytokine and 
TGF-β releases. In summary, serotonin triggers the proliferation of cardiac fibro-
blasts. Together with angiotensin II, the action of serotonin leads to the release of 
pro-inflammatory cytokines and TGF-β. In turn, TGF-β increases the deposition of 
extracellular matrix in the heart. The increased stiffness and decreased compliance 
may result in heart failure. More informations regarding the effect of serotonin on 
cardiac structures and functions are found in Chap. 9.

3.4  Intestinal Fibrosis

Intestinal fibrosis in e.g. Crohn’s disease has been associated with inflammation and 
involves multiple cell types, including fibroblasts, smooth muscle cells and epithe-
lial cells. Expression of TGF-β is up-regulated in inflamed mucosa of inflammatory 
bowel disease patients [40]. Recently, a serotonin re-uptake transporter SLC6A4 
gene polymorphisms (in intron 2) was associated with Crohn’s disease [41]. 
Furthermore, patients with small intestinal neuroendocrine tumors, serotonin and 
other cytokines released from tumor cells may induce fibrosis, leading to carcinoid 
heart disease and abdominal fibrotic reactions [42].

3.5  Pancreatic Fibrosis

Chronic pancreatitis is characterized by ongoing inflammation of the pancreas that 
results in progressive loss of the endocrine and exocrine compartment owing to 
atrophy and/or replacement with fibrotic tissue. In rats, selective 5-HT2A receptor 
antagonists inhibit the progression of acute and chronic pancreatitis [43]. 
Furthermore, an association between prominent stromal fibrosis in pancreatic neu-
roendocrine tumors and serotonin levels has been described by several studies [44]. 
Most of the so-called sclerozing variant of pancreatic neuroendocrine tumors pro-
duce serotonin.

3.6  Peripheral Blood

Serotonin skews human macrophage polarization through engagement of 5-HT2B 
and 5-HT7 receptors [33]; it primes macrophages for reduced pro-inflammatory 
cytokines production and IFN type I-mediated signaling. Serotonin upregulates 
TGF-β production in a 5-HT7- and PKA-dependent manner. Thus, even in the 
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peripheral blood, it could promote an anti-inflammatory and pro-fibrotic process. 
More informations regarding the effect of serotonin on macrophages and hemato-
poiesis are found in Chaps. 6 and 4.

4  Systemic Sclerosis

SSc is characterized by a wide spectrum of microvascular and immunological 
abnormalities, leading to a progressive deposition of collagens in the skin, lungs, 
stomach, heart and the kidneys.

4.1  Platelet Aggregation

Platelet aggregation, the process by which platelets adhere to each others at sites of 
vascular injury, is critical for hemostatic plug formation and thrombosis. It is a com-
mon feature of SSc and results in increased serotonin release [23] (Fig. 13.5). In 

Fig. 13.5 Role of serotonin in SSc. More platelet aggregation results in increased circulating 
serotonin. Fibroblasts differentiate into myofibroblasts, both showing increased expression of 
serotonin receptors. They produce more collagen and fibronectin. This results in an increased 
deposition of collagen in various organs
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SSc, it has been proposed that loss of antithrombotic properties of the endothelium 
may trigger platelet activation and the release of serotonin [28]. Accordingly, plate-
let inhibition by clopidogrel led to decreased serotonin content in the fibrotic 
skin [22].

4.2  Dermal Fibroblasts

Early experiments revealed that serotonin can stimulate the proliferation of 
fibroblasts and can cause remodeling of skin in a manner that resembles skin of 
patients with SSc. These patients have an increased expression of 5-HT2B localized 
to fibroblasts, myofibroblasts, keratinocytes and within microvessel structures. The 
transition of fibroblasts to an activated myofibroblasts involves multiple pathways, 
including well known signaling cascades such as TGF-β and Wnt/β-Catenin signal-
ing, as well as epigenetic reprogramming and a number of defined cellular path-
ways. Cultured dermal fibroblasts from SSc patients and healthy individuals respond 
to serotonin by increasing their production of collagen 1α1 (COL1A1), collagen 
1α2 (COL1A2) and fibronectin (FN1) [45].

4.3  TGF-β

Serotonin upregulates TGF-β1 and triggers the nuclear translocation of 
phosphorylated SMAD3 (p-SMAD3) [47]. This suggests that serotonin-mediated 
pro-fibrotic effects in SSc fibroblasts proceeds at least in part through activation of 
the TGF-β1 signaling. Terguride and SB204741 reduce pro-fibrotic potential of 
human adult dermal fibroblasts and suppress TGF-β-mediated non-canonical 
pathways, ERK1/2 and STAT3, which have been implicated in the regulation of pro-
fibrotic genes (i.e. TGF-β1, COL1A1, COL1A2, ACTA2, CTGF and FN1) and in 
the development of fibrosis [26].

Based on such observations, the clinical efficacy of terguride, a serotonin receptor 
antagonist, in SSc was planned to be assessed in a randomized placebo- controlled 
phase III trial [23, 46, 47]. However, this trial could not be initiated due to serotonin- 
independent potential cardiovascular adverse effects of terguride in phase 1 studies. 
The absence of selectivity of the compound can be suggested because some 5-HT 
receptor antagonists used in clinical trials have additional effects on other transmis-
sion systems, e.g. nicotinic acetylcholine receptors [48].
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4.4  Genetics

Numerous HLA alleles/non-HLA polymorphisms, microsatellites and chromosomal 
abnormalities have been associated with SSc. A missense mutation in the serotonin 
5-HT2A receptor (His452Tyr) was found to be underrepresented in patients with SSc 
[49]; the mutated allele resulting in a threefold risk reduction of developing SSc. 
Possibly, this mutation reduced the sensitivity to platelet aggregation [48], as well 
as the responsiveness of fibroblasts to serotonin [50]. Thus, it has been hypothesized 
that mutations in 5-HT2A receptor gene may desensitize fibroblasts and contribute to 
tissue fibrosis [2].

5  Conclusion

The pro-fibrotic activity of serotonin in vivo is due at least in part to its direct effect 
on fibroblasts and/or myofibroblast progenitors. Distinct serotonin receptors are 
involved in the fibrotic pathophysiology; thus, the activation effects of serotonin on 
fibroblasts are likely mediated through signaling via 5-HT2A and 5-HT2B receptors. 
An increased serotonin signaling via these receptors may exacerbate the fibrotic 
response. In skin, this includes increased collagen type I synthesis and deposition, 
as well as release of TGF-β and growth factors. In most other tissues, the pro-fibrotic 
effect of serotonin also is in great part due to TGF-β. Taken together, these studies 
proposed that pharmaceutical inhibition of specific serotonin receptors may be ben-
eficial for the treatment of fibrotic disorders, such as SSc.
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1  Liver Biology and Function

The liver has many functions, mainly relating to digestion and detoxification, elec-
trolyte/fluid balancing and haemostasis. The liver is made up of four lobes, the right 
and left lobules and smaller caudate and quadrate lobes. Uniquely, the liver has a 
dual blood supply from both the portal vein and hepatic artery. Each lobe contains 
lobules, the functional units of the liver [1]. These are composed of a portal triad 
formed of a portal vein and hepatic artery branches as well as a bile duct.

Hepatocytes constitute 60% of the cells within the liver. The parenchymal hepa-
tocytes within a lobule have a distinct zonation [2] based on oxygenation and func-
tion and are comprised of three zones. The peri-portal zone (zone 1) is the best 
oxygenated and the most regenerative, and so modulates oxidative processes such 
as bile formation, cholesterol formation and gluconeogenesis. Since Zone III has 
the lowest oxidative capacity it is involved in detoxification processes such as bio-
transformation of drugs by cytochrome p450 enzymes, as well as glycolysis and 
glycogen synthesis.

The other major parenchymal cells within the liver are the biliary epithelial cells 
(BECs) /cholangiocytes. This cell type lines the bile duct, allowing for passage of 
bile from hepatocytes through to the gut for conjugation. There are both small intra-
hepatic bile ducts embedded throughout the liver, and large bile ducts which line the 
space between the liver and the intestinal exit. Each BEC has a primary cilium 
which is responsible for detecting and signalling changes in bile flow and osmo-
lality [3].

There are also a number of nonparenchymal cell populations within the liver. For 
example, the hepatic stellate cells (HSC) and portal fibroblasts, both of which pro-
duce extracellular matrix (ECM) and maintain liver organization, and are activated 
in wound healing (WH). There are also resident immune cells in the liver such as 
Kupffer cells, the resident macrophages. These cell types have important role as 
they are the first immune population to come into contact with bacteria and endo-
toxins travelling through the portal vein to the liver from the gut [4].

1.1  Hepatic Wound Healing and Fibrosis

Hepatic WH is a tightly regulated multi-cellular response to liver injury that stimu-
lates a rapid and efficient repair of the damaged tissue, replacement of lost epithelial 
cells and restoration of the normal liver architecture and function. Regardless of the 
disease aetiology, be it as a consequence of metabolic disease, alcohol, viral infec-
tion, autoimmune or genetic disease, the repair response to hepatic injury occurs 
through three overlapping phases of inflammation, repair (scar formation), and liver 
regeneration [5]. It is a normal physiological process that ensures tissue homeosta-
sis and organ function is maintained. However, under conditions of repeated liver 
injury during chronic liver disease (CLD), the normal WH process becomes highly 
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dysregulated, inflammation becomes chronic, hepatic myofibroblasts (HM) persist 
and secrete excessive extracellular matrix, leading to the formation of collagen-rich 
scars which gradually thicken as the disease progresses [6]. Fibrosis is the patho-
logical consequence of CLD and over years or decades the accumulation of fibrotic 
scar tissue impairs liver function, ultimately leading to advanced fibrosis/cirrhosis 
and increased risk of organ failure or developing liver cancer [7]. Another conse-
quence of CLD and fibrosis is a decrease in the regenerative capacity of the remain-
ing parenchymal tissue, as such these processes are intricately linked and there is a 
delicate balance of pro-fibrotic and pro-regenerative signalling within the WH niche 
that is vital to maintain normal liver function.

Hepatocytes (and cholangiocytes in biliary disease) are central to WH and when 
damaged function as initiators of wound repair, releasing alarmins and danger sig-
nals to promote immune cell recruitment and activation of HM [6]. HM also termed 
activated hepatic stellate cells (aHSC) are derived from quiescent hepatic stellate 
cells (qHSC), which reside in the Space of Disse, through a process known as trans-
differentiation [8]. HM are the professional scar-forming cells of the liver and dur-
ing normal WH, secrete ECM. This forms a temporary scar, which acts to retain 
tissue structure and provide a scaffold for hepatocytes to repopulate. Whereas, dur-
ing CLD, HM become highly proliferative, migratory and contractile cells that 
secrete inflammatory cytokines and chemokines, and are responsible for the pro-
duction of a dense network of collagen and fibronectin-rich fibrotic scar tissue.

Macrophages, in the liver are derived from two sources; either Kupffer cells, the 
resident liver macrophage or recruited monocytes. These cells are critical regulators 
of all stages of WH, playing a central role in both fibrogenesis and fibrolysis [9]. In 
response to specific stimuli in the WH niche macrophages adopt either an M1 
inflammatory phenotype which drives fibrogenesis or an M2 restorative phenotype 
that facilitates matrix remodelling, reversion of fibrosis and stimulation of epithelial 
proliferation to promote restoration of tissue homeostasis [10].

1.2  Reversibility of Liver Fibrosis

It is now clear that CLD is a highly dynamic process and work from pre-clinical 
studies and clinical trials has revealed that fibrosis is not only progressive but also 
reversible [11, 12]. Cessation of the liver injury either through lifestyle modification 
e.g. weight loss or abstinence from alcohol, or successful treatment of the underly-
ing cause of CLD, e.g. anti-viral therapy in hepatitis B or C or CCL2 inhibitors in 
clinical trials for metabolic disease can lead to resolution of fibrosis, even at an 
advanced stage [12–15]. Pre-clinical studies reported that clearance of HM by apop-
tosis or through dedifferentiation/deactivation stimulated ECM remodelling and 
reversal of fibrosis [12, 16, 17]. These were important discoveries and a paradigm 
shift in the field because, therapies which limit liver injury, target the cellular drivers 
of CLD or induce clearance of HM not only have the potential to halt the fibrogenic 
process, but could reverse it [18, 19].
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2  The Role of Serotonin in Liver

Serotonin (5-Hydroxytryptamine, 5-HT) has long since been known to undergo 
storage in the dense granules of the platelets, exhibiting a role in platelet activation 
as evidenced (among other things) by the reduced platelet activation in cardiovascu-
lar disease patients when treated with serotonin reuptake inhibitors (SSRIs) [20]. 
Ordinarily platelets carry serotonin in the blood and release it at injured sites where 
it stimulates coagulation and the process of haemostasis [21]. This platelet activa-
tion and concurrent serotonin release plays an important role in the wound healing 
response and the unique regenerative capacity of the liver.

2.1  The Role of Serotonin in Wound Healing 
and Liver Regeneration

Data published in 2006 by Clavien’s group [22] discovered an important role for 
serotonin in hepatocyte proliferation and liver regeneration. This data used the par-
tial hepatectomy (PHx) model, removing 70% liver volume to investigate the role of 
serotonin in liver regeneration. Hepatic mRNA expression of 5-HT2A/2B receptors 
were both significantly upregulated (between three and fourfold increase) at 2 days 
post PHx, implicating 5-HT2 receptors in the regenerative process.

In addition, it was also shown that this serotonin is derived from platelets. A large 
reduction in usual hepatocyte proliferation was seen following PHx in platelet defi-
cient mice, induced either pharmacologically by busulfan or clopidogrel, which 
antagonises ADP in platelets and prevents platelet aggregation leaving them func-
tionally bereft. However hepatic regeneration was restored by administration of the 
serotonergic 5-HT2A/2B/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine 
(DOI)—highlighting the direct role of serotonin in liver regeneration following 
injury. In this paper 5-HT2A/2B receptor agonists were also employed to tease out the 
subtype specific effects, and both drugs caused Ki67 reduction compared with vehi-
cle controls, again implicating 5-HT2A/2B receptor specific modulation in serotonin- 
dependent hepatic regeneration.

As well as wild type (WT) PHx experiments, Lesturel et al. [23] also used periph-
eral serotonin Tryptophan hydroxylase 1 (TPH1) knockout mice (TPH1-/-) to further 
investigate the mitogenic potential of serotonin. These animals had reduced regen-
erative capacity and hepatocyte proliferation was significantly impaired at 2 days 
post PHx compared to WT controls, mirroring effects seen in previous experiments 
using serotonin receptor antagonists. This proliferative capacity was restored upon 
treatment with the serotonin precursor 5-HTP to restore platelet serotonin levels. 
These experiments provided the first evidence of direct serotonin dependent modu-
lation of liver regeneration and identified a specific role for platelet derived sero-
tonin in the wound healing response (Fig. 14.1).
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Subsequent data from the same group confirmed a role for platelet derived sero-
tonin using the same TPH1-/- mice [24]. When subjected to hepatic ischaemia for 
60 min serotonin deficiency was not found to decrease tissue injury and necrosis 
was comparable after 7 days. However, when the proliferative capacity of hepato-
cytes was analysed it was reported that serotonin deficiency did lead to significantly 
reduced hepatocyte proliferation. In addition later published data on liver grafts, 
showed that the serotonin agonist DOI also enhanced hepatocyte proliferation in 
this context [25], cementing knowledge of the mitogenic capacity of serotonin. In 
this study DOI treatment led to 50% survival after 30% liver graft at 7 days com-
pared to no survival in control animals. When treated with a 5-HT2B receptor antag-
onist the beneficial effects of DOI were lost, suggesting the regenerative effect is 
mediated largely through this receptor, and is unlikely to be a synergistic 5-HT2A/2B 
receptor effect as previously thought.

Despite striking data from the Clavien’s group, other published studies have 
failed to find the same pronounced effect with platelet serotonin knockout models. 
A study from 2009 using serotonin transporter (SERT) knockout rats showed that 
despite having only 1–6% of normal platelet serotonin and the concurrent impaired 
haemostasis, Wistar rats were able to retain the normal regenerative capacities of the 
liver [26]. It is important to note however, differences in the models used—there is 
zero detectable blood serotonin in the TPH1-/- mice, whereas the SERT KO mice 

Fig. 14.1 The role of serotonin and 5-HT2B receptor signalling in liver disease, fibrosis, regenera-
tion and liver cancer. Platelet derived 5-HT leads to hepatocyte proliferation through the 5-HT2A 
receptor as well as to hepatocyte apoptosis, an important process in liver regeneration. In hepatic 
myofibroblasts (aHSCs) platelet derived serotonin signalling through 5-HT2B receptors increases 
TGF-β1 pro-fibrogenic cytokine leading to further HSC activation and promotion of fibrosis. 
Signalling through 5-HT2B through the YAP transcription factor leads to tumorigenesis and pro-
motes HCC development. It can also signal via the mTOR pathway to contribute to steatosis in the 
liver, leading to further fibrogenesis, a process which is fueled by further platelet 5-HT. This ste-
atosis also contributes to HCC development. Figure created with biorender.com
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have greatly reduced capacity but still retain small amounts of platelet serotonin 
capacity.

This could suggest therefore that platelet serotonin may not be the major factor 
modulating the proliferation of hepatocytes and their regenerative capacity. 
Serotonin may be provided from a number of additional sources (not limited to 
platelets) this could possibly include serotonin from resident cells within the liver. 
An alternative suggestion is that the small amount of platelet serotonin still present 
in the SERT KO model may suffice to still facilitate this effect.

The capacity for the liver to regenerate is decreased with age in both rodents 
and humans however, the mechanisms causing the impaired hepatocyte renewal 
are not fully resolved [27–29]. A role for serotonin signalling in aged liver regen-
eration was assessed by Furrer et al. [30] by performing 70% liver resection in 
young (7–8 weeks old) versus 2-year old mice either with or without the sero-
tonin receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI). No mortality 
was observed in the young mice, whilst, 52% of the aged mice died post-hepa-
tectomy and in the surviving animals the hepatic proliferative index was signifi-
cantly lower than that of the young mice. Consistent with previous studies the 
5-HT2B receptor expressed was increased 48h post-hepatectomy in young mice 
but this response was blunted in the aged mice. Administration of DOI acceler-
ated the regenerative response post- hepatectomy in the young mice. Notably, 
DOI increased survival from 52% to 86% in the aged hepatectomised mice, how-
ever, 5-HT2B receptor levels or platelet serotonin counts were comparable 
between the DOI treated and untreated aged mice, excluding the possibility that 
increased serotonin availability or 5-HT2B receptor levels/signalling were impor-
tant factors in the therapeutic effects of DOI.  The authors demonstrated that 
DOI, in a vascular endothelial growth factor (VEGF) dependant fashion, 
improved liver regeneration in the aged mice by stimulating the opening of sinu-
soidal fenestrae, increasing portal flow and facilitating platelet adhesion.

2.2  The Role of Serotonin in Liver Fibrosis

Serotonin signalling has long since been implicated in fibrogenesis in many organs 
such as kidney, heart, lung and the liver among others. The first evidence of this was 
published in 1964  in the Lancet and was related to observations in patients with 
Carcinoid syndrome. 5-HT2B receptor agonism specifically has been associated with 
fibrosis under a range of conditions. These include the now discontinued anti- 
obesity medication fenfluramine, and Parkinson’s treatment such as pergolide which 
were found to cause fibrosis and valvulopathy in the heart.

In the liver, the first indication of the role of serotonin in fibrosis was presented 
by Ruddell and colleagues in 2006 [31]. Rat HSCs were found to significantly 
increase expression of 5-HT2A (~100-fold) and 5-HT2B (~50-fold) receptor when 
undergoing transdifferentiation from quiescent HSC (qHSC) into activated hepatic 
stellate cells (aHSC), also termed HM. HSC differentiation is a particularly 
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important process in fibrosis as the equilibrium between HSC proliferation and 
apoptosis in this cell type is a key determinant of fibrosis advancement. It was 
hypothesised that HSCs may have an influence on hepatocyte proliferation, changes 
which have a known association with fibrosis and are a contributing factor in fibrotic 
disease. HSCs secrete many soluble factors that influence hepatocyte proliferation, 
including hepatocyte growth factor (HGF), transforming growth factor β1 (TGF-β1) 
and interleukin-6 (IL-6).

The second key finding from this work was that dosing with serotonin was found 
to inhibit HM/aHSC apoptosis in these cells. 5-HT2 receptor antagonists showed 
varying apoptotic action in the aHSCs, with antagonists spiperone, LY53857, and 
methiothepin producing a dose dependent inhibition, with spiperone inducing apop-
tosis at a comparable level as the pro-apoptotic agent gliotoxin using caspase 3 
assays. This was partially blocked upon incubation with serotonin, highlighting the 
capacity of serotonin to modulate the phenotype and survival of HM.

5-HT2B receptor expression was selectively induced in HM in fibrotic regions, 
strongly implicating 5-HT2 receptor signalling in the regulation of fibrosis in the 
liver. This study provided the first evidence for the role of 5-HT2 receptor (particu-
larly 5-HT2B) in the initiation and progression of fibrotic processes in the liver 
(Fig. 14.1).

However, whilst this study implicated 5-HT2B receptor signalling in HM survival 
and hepatic fibrosis, this work did not distinguish between serotonin signalling, via 
5-HT2B receptors as a driver of fibrosis or whether activations of this pathways was 
merely a consequence of fibrogenesis. Therefore, follow up work used specific 
5-HT2B receptor knockouts to assess if 5-HT2B receptor signalling modulates the 
fibrotic processes. Initial experiments showed that either selective depletion of 
HSCs using C1-3 gliotoxin, where the pro-apoptotic compound gliotoxin is conju-
gated to C1-3, a single-chain antibody that targets synaptophysin which is only 
expressed in HM in the liver [32, 33], or antagonism of 5-HT2B receptor by selective 
inhibitor SB-204741 stimulated hepatocyte proliferation in the bile duct ligation 
(BDL) model or when acutely CCl4 injured [34]. The same results were not repli-
cated with 5-HT2A antagonist Ketanserin indicating a specific regulatory role for 
5-HT2B receptor in liver regeneration.

Previous work by Clavien’s lab reported a regenerative role for 5-HT2A and 
5-HT2B receptor in the liver, therefore these data suggest that serotonin can exert 
pleiotropic effects within the liver, depending on the cell type and context of the 
liver injury. Subsequently, hepatocyte proliferation was compared in Htr2b-/- 
(5-HT2B receptor gene KO) vs WT mice undergoing partial hepatectomy. 
Proliferation was elevated after PHx at 36 and 72  h post-hepatectomy, and the 
excess proliferation was attributed to a failure to induce TGFβ1 expression in the 
KO mice-highlighting the pro-fibrotic influence of 5-HT2B receptor in this model. 
TGFβ1 is a potent profibrotic cytokine that inhibits hepatocyte proliferation and can 
stimulate the deposition of ECM by HSCs [35, 36].

Mechanistically, the pro-fibrotic and anti-regenerative actions of 5-HT2B receptor 
signalling was found to be mediated through the upregulation of TGFβ1. Upon 
stimulation of 5-HT2B receptors, the mitogen activated protein kinase 1 (ERK1) 
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becomes phosphorylated, which in turn activates the AP1 transcription factor family 
member JunD.  Chromatin immuno-precipitation assays confirmed that serotonin 
promotes binding of JunD to the TGFβ1 promoter in rodent and human HSC in a 
5-HT2B-ERK-JunD dependant manner to directly regulate TGFβ1 expression.

In conclusion, it seems that the modulatory capacity (both negative and positive) 
of serotonin in the liver are entirely situation dependent. Historical studies into the 
regenerative pathways in the liver have been largely focussed on the healthy liver. 
However, in a diseased environment a complex signalling network occurs, regulated 
by HSCs expressing 5-HT2B receptor. The original Clavien’s papers showed that 
platelet derived serotonin stimulated regeneration due to 5-HT2A receptors expressed 
on hepatocytes. This study showed that 5-HT2B receptor is highly expressed in the 
diseased liver in fibrotic areas by HM. This in turn induces TGFβ1. Therefore, these 
two strands of work indicate pleotropic effects by 5-HT2 class of serotonin recep-
tors, with opposing effects being moderated by 5-HT2A receptor (pro-proliferative, 
pro-regenerative) and 5-HT2B receptor (pro-fibrotic, anti-regenerative). These data 
suggest that within a pro-fibrotic environment, this signalling feeds back to HMs via 
pro-fibrotic cytokine TGFβ1 to activate them and further stimulate fibrosis.

Treatment options for liver fibrosis are severely limited therefore improving our 
understanding of the molecular triggers that modulate cellular crosstalk during liver 
fibrosis could ultimately deliver more effective therapies [18].

3  The Role of Serotonin in Cholestatic Liver Disease

Cholestatic liver disease is defined as a stoppage or reduction of bile flow. This can 
be caused by autoimmune disease such as in Primary Biliary Cholangitis (PBC) and 
Primary Sclerosing Cholangitis (PSC), or by other causes such as disrupted blood 
flow (ischaemic Cholangiopathy) or drug or hepatitis induced.

Primary Biliary Cholangitis (formerly cirrhosis) is an intrahepatic autoimmune 
biliary disease characterised by an orchestrated immune response against anti- 
mitochondrial antigens (AMA). This leads to the destruction of the intrahepatic 
BECs, portal inflammatory infiltrates leading to the disruption of the normal bile 
homeostasis and exposure of hepatocytes to high levels of bile acids [37].

PSC is a disease of unknown pathogenesis. One idea is that impairments to bile 
acid toxicity sensing elements is important in the disease pathogenesis [38]. PSC 
leads to characteristic fibrotic structures, concentric layers throughout the bile ducts 
parallel to the BECs. These fibrotic ‘onion skin’ layers then lead to restricted move-
ment of bile, causing cholestasis [39].

Serotonin signalling via 5-HT1A/1B receptors has been implicated in cholestatic 
disease and the development of biliary hyperplasia, whilst 5-HT2B receptor signal-
ling in the liver has pro-fibrogenic actions [31]. Therefore, Kyritsi et al. [40] inves-
tigated a potential role for activation of 5-HT2B receptors in biliary disease and 
cholestasis. To test this, two models of cholestatic liver disease were used (1) Bile 
duct ligation model, where the common bile duct is surgically ligated, resulting in a 
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backflow of toxic bile into the liver, which causes biliary damage, portal inflamma-
tion and fibrosis. (2) A genetic model of cholestasis which develop features of PSC; 
the mdr2-/- mouse [41], which lacks the Mdr2/Abcb4 transporter, leading to a deple-
tion of phospholipids in the bile, which in turn, causes bile regurgitation into 
the liver.

Immunohistochemical characterisation of the serotonin signalling/synthesis and 
degradation pathways revealed that 5-HT2A/2B/2C receptors and TPH1 (serotonin syn-
thesis) were elevated in both BDL and mdr2-/-mice. Conversely, monoamine oxi-
dase A (MAO-A, serotonin degradation) levels were significantly reduced. Dual 
immunofluorescence staining confirmed HSC and cholangiocytes as the primary 
cellular source of 5-HT2A/2B/2C receptors in the liver of BDL and mdr2-/- mice [40]. 
Whereas gain of TPH1 and loss of MAO-A expression was seen in hepatocytes, HM 
and cholangiocytes. This suggests that during cholestatic liver injury there is an 
imbalance in serotonin production and degradation, which could result in an increase 
in  local serotonin levels and subsequent paracrine activation of 5-HT2 receptors. 
Expansion of the ductular epithelium, namely, a ductular reaction (DR) and fibrosis 
are histological features of these disease models. Administration of 5-HT2A/2B recep-
tor agonists to either control WT or mdr2-/- mice or control or BDL rats exacerbated 
the ductular reaction and fibrogenic responses, however, this effect was blunted by 
administration of 5-HT2A/2B receptor antagonists [40].

Assessment of inflammatory cytokines, chemokine and growth factors in cholan-
giocytes isolated from mdr2-/- mice or BDL rats treated with or without 5-HT2A/2B/2C 
receptor antagonists confirmed that signalling via 5-HT2 receptors promote a pro- 
inflammatory phenotype in these cells, which is attenuated by pharmacological 
blockade of 5-HT2A/2B/2C receptor signalling. In vitro studies using human immor-
talised HSC and cholangiocyte cell lines revealed that 5-HT2A/2B/2C receptor antago-
nists supressed the fibrogenic and inflammatory phenotype of these cells. The 
translational impact of these findings was further demonstrated when an increase in 
5-HT2A/2B/2C receptors and TPH1 expression was found in PSC patient livers and 
raised levels of serotonin in PSC patient serum [40]. The authors concluded that 
molecules targeting the TPH1/MAO-A/5-HT/5-HT2A/2B/2C signalling axis could 
have therapeutic value for the treatment of cholestatic liver disease.

4  The Role of Serotonin in Metabolic Liver Disease

Non-alcoholic fatty liver disease (NAFLD), defined by simple steatosis (in >5% of 
hepatocytes), encompasses a spectrum of liver diseases characterised by increased 
triglyceride (TG) accumulation in the liver in the absence of excess alcohol con-
sumption and is strongly associated with symptoms of the metabolic syndrome 
including obesity, insulin resistance/type 2 diabetes mellitus and dyslipidaemia. In 
a subset of patients, NAFLD is progressive and patients will develop non-alcoholic 
steatohepatitis (NASH), fibrosis, advanced fibrosis/cirrhosis and have an increased 
risk of developing hepatocellular carcinoma (HCC) [42]. As a consequence of the 
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obesity epidemic the global prevalence of NAFLD is reported to be 24% of the 
population [43] and this number is higher, exceeding 30% in some developed coun-
tries. Currently the molecular and cellular mechanisms driving the transition from 
NAFLD to NASH are unclear. Interestingly, clinical studies have revealed that 
fibrosis stage at time of diagnosis predicts both disease-specific and NAFLD-related 
disease mortality [44].

A link between serotonin production and pathogenesis of NAFLD-NASH was 
described by Nocito et al. [45] in a study showing that Tph1 null mice develop less 
inflammation and hepatocellular injury in the methionine-choline deficient (MCD) 
diet to model NAFLD/NASH.  Whilst elevated serotonin levels, induced by 
L-Tryptophan feeding, exacerbated hepatic steatosis and fibrosis in mice fed a high 
fat diet via activation of the mammalian target of rapamycin (mTOR) pathway [46].

The link between serotonin and NAFLD was further consolidated in a study by 
Li et al., which reported an increase in hepatic 5-HT2A/2B receptor expression and 
activation of mTOR in WT mice after high fat diet (HFD) feeding or administration 
of serotonin [47]. This was concomitant with an increase in hepatic TG production 
and circulating free fatty acids (FFA) and very low-density lipoprotein (VLDL). 
HFD or serotonin induced hepatic steatosis and NAFLD associated metabolic 
changes were supressed by sarpogrelate, a preferential 5-HT2A receptor antagonist. 
To interrogate the mechanistic basis of the increased TG and VLDL, expression of 
GPAT1, the rate limiting enzyme in TG synthesis and MTTP, the key protein regu-
lating VLDL production, were measured in HFD fed or serotonin treated animals. 
Both proteins were induced by HFD and serotonin but this response was diminished 
by sarpogrelate, confirming that 5-HT2 receptor signalling is one pathway that 
mediates these processes in the liver. In vitro, exposure of the hepatocyte cell line, 
HepG2, to palmitic acid (PA), upregulated levels of TPH1, 5-HT2A/2B receptors, 
caused activation of mTOR and promoted lipid droplet (LD) formation, the latter 
being increased by co-stimulation with serotonin. Consistent with the in vivo stud-
ies, expression of 5-HT2 receptors, GPAT1 and MTTP was induced in HepG2 cells 
treated with PA or serotonin and this was associated with increased lipid droplet 
formation and elevated levels of TG and VLDL. Both sarpogrelate or rapamycin 
therapy was sufficient to reduce lipid droplet formation and TG overproduction, 
providing evidence that under conditions of over-feeding, a 5-HT2 receptor-mTOR 
signalling axis regulates hepatic steatosis and lipid metabolism. Whilst this study 
did not assess fibrosis or fibrotic gene expression in this model, hepatic inflamma-
tion (increased TNFα) was increased by HFD feeding or serotonin but supressed by 
sarpogrelate. Hepatic steatosis and inflammation are features of NASH, therefore it 
is feasible that increased serotonin in the context of obesity could create a pro- 
fibrotic environment and that increasing the longevity of HFD feeding, could have 
provided insights into the role of 5-HT2 receptor signalling in the establishment of 
fibrosis in metabolic liver disease.
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Cellular signalling and communication through the gut-liver axis has been 
reported by multiple groups to play a key role in the pathogenesis of NAFLD/NASH 
[48]. Enterochromaffin cells in the gut are the primary cellular source of peripheral 
serotonin, which is released in portal vein reaching the liver before being taken up 
by platelets and then delivered to other organs via the circulation. Serotonin pro-
duced in the gut could feasibly contribute to the pathogenesis of NASH. Suppression 
of serotonin synthesis in the gut, by selectively knocking out the Tph1 gene in the 
mouse intestine (Villin-Cre), reduced hepatic steatosis and inflammation after HFD 
feeding [49]. To determine if these effects were mediated by 5-HT2A or 5-HT2B 
receptor signalling in hepatocytes, 5-HT2A and 5-HT2B receptor floxed mice were 
crossed with albumin-Cre mice, to create hepatocyte specific 5-HT2A (Htr2a LKO) 
or 5-HT2B receptor (Htr2b LKO) knockout mice respectively and then fed a MCD 
diet for 8 weeks to induce NAFLD/NASH. Htr2a LKO but not Htr2b LKO mice 
were protected from developing hepatic steatosis and inflammation as well as lower 
serum TG, confirming that the 5-HT2A receptor mediated the gut derived serotonin-
dependant progression of fatty liver disease [49].

Metabolic dysfunction in the liver such as increased hepatic TG production are 
associated with long-term stress (LTS) also termed hyperglucocorticoidemia- 
induced insulin resistance. Long-term stress induced in rodents under extreme stress 
conditions was associated with increased hepatic and visceral fat, raised serum lev-
els of FFA, TG, VLDL and the stress hormones corticosterone, growth hormone and 
adrenaline as well as induction of hepatic TPH1 and 5-HT2A/2B receptor expression. 
The hepatic and metabolic manifestations of long-term stress were inhibited by sar-
pogrelate, whilst administration of serotonin exacerbated the disease phenotype 
[50]. Serotonin has been reported to regulate glucose uptake and hepatic energy 
production. Activation of mTOR, a critical regulator of metabolism, lipogenesis and 
autophagy, and its downstream target SK6 in the liver of long-term stress rats, was 
attenuated by sarpogrelate, suggesting that increased hepatic serotonin as a result of 
long-term stress activates the mTOR pathway in a serotonin dependant manner. 
Mechanistic studies in cultured hepatocytes combined with 5-HT2A or 5-HT2B 
receptor knockdown using siRNA identified serotonin synthesis and signalling via 
the 5-HT2A and 5-HT2B receptors as critical for FFA induced TG production and the 
glucocorticoid dependant activation of de novo lipogenesis.

5  The Role of Serotonin in Liver Cancer

Hepatocellular carcinoma (HCC) is the primary form of liver cancer and the fastest 
rising cause of cancer death [51]. In western countries NAFLD is now the primary 
indication for liver cancer [52]. Typically, HCC emerges on the background of CLD 
and fibrosis/cirrhosis is a risk factor for the development of liver cancer. Serotonin 
is raised in the serum and in platelets of HCC patients. Serum serotonin correlates 
with tumour size, blood platelet count, survival and is a predictor of poor prognosis 
[53]. Similarly, data from a single-centre observational study showed that serum 
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serotonin levels were significantly higher in chronic hepatitis C (CHC) infected 
patients with cirrhosis or HCC than healthy controls or non-cirrhotic CHC infected 
individuals [54]. The authors also reported a positive correlation between 
α-fetoprotein protein (AFP) or prothrombin due to vitamin K absence-II (PIVKA-II) 
across the patient groups, suggesting that serum serotonin levels combined with 
vitamin K absence-II could provide a screening tool to identify CHC with HCC.

A rationale to study serotonin and 5-HT2 receptor signalling in liver cancer is 
provided from studies that show serotonin signalling stimulates liver regeneration, 
and work published by Soll et al. [55] that reported that 5-HT1A, 1B, 2B, 7 receptors are 
expressed in the liver of patients with HCC. Immunohistochemical staining of 
tissue- microarrays comprised of matched non-tumour and tumour tissue from 109 
HCC patients revealed that 5-HT1A and 5-HT7 receptor were expressed at compa-
rable levels between the tumour and non-tumour tissue. Whereas, levels of 5-HT1B 
receptor are expressed in 32% of patients with HCC and 5-HT1B receptor expression 
correlates with tumour size, whilst, 35% of HCC patients were positive for 5-HT2B 
receptors. To further investigate the function of these receptors on cancer cell biol-
ogy, Huh7 and HepG2 cancer cell lines were treated with the 5-HT1B receptor antag-
onist SB216641 or 5-HT2B receptor antagonist Ly272015. Blockade of either 5-HT1B 
or 5-HT2B receptor signalling reduced the proliferative capacity and survival of 
these cell lines. Furthermore, the mitogenic effects of serotonin signalling via these 
receptors on HepG2 cells was mediated through ERK activation, which controls 
cellular proliferation.

In a separate study, Soll et al. [56] confirmed the role of 5-HT2B receptor signal-
ling in HCC cell proliferation and survival. Stimulation of Huh7 or HepG2 cells 
with the 5-HT2B receptor selective agonist α-ME-HTP induced their growth and 
metabolic activity, whilst, these effects were mirrored when the cells were treated 
with a 5-HT2B receptor selective antagonist. Next, apoptosis was investigated in 
Huh7 cells, by exposure to TNF-α and Actinomycin D (a chemotherapy drug), or 
serum starvation. Caspase 3, the executioner caspase mediating cell apoptosis, was 
activated in TNF-α and Actinomycin D treated Huh7 cells but this was blunted by 
serotonin, however serum starvation failed to induce Huh7 apoptosis. Transmission 
electron microscopy of the serum-deprived cells revealed that Huh7 cells adopt the 
classical features of microautophagy, but serotonin abrogated these effects. Serum 
starvation dependant activation of autophagy in Huh7 cells was confirmed by an 
increase in LC3, p62 (autophagy proteins) and activation of the mTOR signalling 
pathway. Serotonin treatment was shown to significantly diminish these responses. 
To determine if 5-HT2B receptor signalling promotes cancer growth, Huh7 tumour 
sub-cutaneous xenografts were grown in immunocompromised mice treated with 
vehicle or the 5-HT2B receptor antagonist SB204741. Histological analysis of the 
xenografts confirmed that the tumours express 5-HT2B receptor and phosphorylated 
p70S6K, a marker of mTOR signalling. The link between 5-HT2B receptor signal-
ling, activation of mTOR and subsequent cancer growth was further consolidated by 
a positive correlation between expression of 5-HT2B receptor and levels of p-p70S6K 
and Ki67 positive cancer cells. The authors concluded that targeting the 5-HT2B 
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receptor-mTOR-p70S6K pathway could offer a novel therapeutic approach for the 
treatment of HCC.

Further insights into the role of 5-HT2B receptor signalling in the development of 
hepatic steatosis and HCC was gained in a study by Niture et al. [57]. The serotonin 
dependant uptake of oleic acid (OA), a neutral lipid, was assessed in normal human 
hepatocytes and the cancer cell lines HepG2 and SK-Hep1. Uptake of oleic acid and 
lipid droplet accumulation were increased by serotonin in primary hepatocytes and 
the HepG2 and SK-Hep1 cancer cell lines. Serotonin dependant steatosis was con-
comitant with an elevation in mRNA levels of key proteins involved in binding, 
transport and synthesis of lipids as well as lipid inducible transcription factors e.g. 
sterol regulatory element-binding protein 1 (SREBP1) and peroxisome proliferator- 
activated receptor (PParα and PParγ) as well as SIRT1, which can stimulate autoph-
agy and modulate cellular metabolism. Similar to previous studies, Niture et al. [57] 
also reported that serotonin induced autophagy in HCC cells but importantly, dem-
onstrated that this was essential for inducing the steatosis phenotype. The authors 
also showed that serotonin promotes cell survival of HCC cells by inducing expres-
sion of Notch and Jagged1, the ligand for Notch, and by activating this pathway. 
Pharmacological blockade of 5-HT2B receptor activation in five different HCC cell 
lines blunted Notch signalling and limited steatosis, conversely serotonin reuptake 
inhibitors had the opposite effect, confirming a role of 5-HT/5-HT2B receptor in the 
establishment of hepatic steatosis. Exposure of hepatocytes to ethanol to model 
excessive alcohol consumption, caused hepatic steatosis and co-treatment of HepG2 
and SK-Hep1 cells with serotonin and ethanol induced Notch signalling, autophagy 
and steatosis. Serum serotonin levels were elevated in 8-week ethanol treated mice 
and this was associated with increased hepatic steatosis and autophagy, suggesting 
that 5-HT/5-HT2B receptor signalling may also have a pathological role in the devel-
opment of alcoholic liver disease.

Multiple studies have shown that the balance between hippo and Yes-associated 
protein (Yap) protein signalling plays central roles in regulating cell fate decisions, 
cell survival and proliferation. Activation of Yap promotes liver regeneration, whilst 
aberrant Yap signalling is associated with the development of hepatocellular carci-
noma [58]. Work by Liu et  al. [59] investigated the potential cross talk between 
serotonin signalling and Yap in the context of modulating hepatoma cell phenotype. 
Serotonin signalling via the 5-HT2B receptor stimulated the growth, migration, met-
astatic and invasive potential of HepG2 and HCC liver cancer cell lines. At a molec-
ular level, activation of the 5-HT2B receptor triggered activation of ERK and an 
increase in Yap and connective tissue growth factor (CTGF) expression. Yap siRNA 
silencing in the HCC cell lines, supressed the metabolic, proliferative and migratory 
effects of serotonin signalling. Whilst, pharmacological inhibition of the 5-HT2B 
receptor, supressed the serotonin-dependant ERK phosphorylation, subsequent 
induction of Yap expression and its nuclear translocation. Therefore, establishing a 
link between 5-HT/5-HT2B/ERK/Yap signalling and the tumorigenic activities of 
liver cancer cells. The authors then performed a HepG2 xenograft experiment, 
where tumours were allowed to form under control (unstimulated) or serotonin 
stimulated conditions either with or without administration of a 5-HT2B receptor or 
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ERK small molecule inhibitor to ascertain if manipulating the 5-HT/5-HT2B/ERK/
Yap signalling axis accelerated cancer formation in the presence of serotonin but 
limited tumour formation and growth when the signalling axis was inhibited. 
Tumour size and weight was significantly greater in the presence of serotonin com-
pared to the control group. Both the 5-HT2B receptor antagonist or ERK inhibitor 
significantly reduced the serotonin dependant cancer growth, however, these 
tumours were still bigger than the control group. Importantly the administration of 
both inhibitors reduced ERK phosphorylation, Yap and connective tissue growth 
factor expression, cellular proliferation and the nuclear translocation of Yap, all of 
which were induced by serotonin. This study provided further evidence that the 
5-HT/5-HT2B/ERK/Yap signalling axis was a tractable target for HCC.

Fatima et al. [60] characterised the expression of serotonin receptors in meta-
static and non-metastatic HCC cell lines and 33 paired non-tumour and HCC tumour 
tissues using qPCR. 5-HT1D, 5-HT2B, 5-HT7 receptors were overexpressed in all of 
the cell lines as well as the tumour tissue in 63.6%, 36.4%, and 45.4% of cases 
respectively. Conversely, 5-HT2A and 5-HT5 receptor levels were reduced in the cell 
lines and in 51.5% and 90.1% of tumour cases respectively. Serotonin improved 
viability and stimulated the proliferation of HuH-7 and HepG2 cells cultured under 
serum deprived conditions. Consistent with other studies, this was associated with a 
decrease in levels of the autophagy markers microtubule-associated protein light 
chain 3 (LC3B) and p62. However, this group went on to demonstrate that in serum 
free conditions, serotonin induced expression of β-catenin and its downstream tar-
gets Axin1, cyclin D1, DKK1 and GSK3β. The mitogenic actions of serotonin via 
activation of β-catenin were reported to be mediated both in vitro and in vivo by 
5-HT7 receptor signalling, however, the authors did not discuss whether 5-HT2B 
receptor contributed to the activation of this pathway.

Serotonin receptors are expressed on both HM and liver cancer cells and liver 
cancer is more prevalent and more aggressive in males compared to females. 
Therefore, work by Yang et al. [61] asked if there are differences in serotonin pro-
duction/signalling between the two genders and if so, does this effect the cellular 
crosstalk between HM and cancer cells to drive liver cancer progression. 
Interestingly, the authors used a transgenic zebrafish model of HCC; where 
hepatocyte- specific krasV12 is expressed in an inducible manner by administration of 
doxycycline, to allow temporal induction of liver cancer. Macroscopically, male 
kras+ fish liver had bigger livers than females, whilst, histological analysis revealed 
an increase in hepatocyte density and thickening of the hepatic plates in the male 
fish, consistent with an HCC pathology. Conversely, the histological appearance of 
dysplasia’s in the female kras+ fish displayed features of adenomas. HM, fibrosis 
and cellular proliferation was increased in the male kras+ fish than the female kras+ 
fish, suggesting that the tumorigenic process was more advanced in the male fish. 
5-HT2B receptor was highly expressed in HM in both male and female kras+ fish, 
whereas 5-HT2B receptor was absent in epithelial cells. Levels of serotonin and 
TPH1 were increased in male kras+ fish, suggesting that the sex differences in the 
cancer phenotype could be driven by increased availability of serotonin which sig-
nals via 5-HT2B receptors.
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To investigate this further, female kras+ fish were given either serotonin or the 
5-HT2B receptor agonist BW723C86 for 7 days, while, PCPA (TPH1 inhibitor) or 
SB204741 (5-HT2B receptor antagonist) and cancer development was assessed. As 
predicted, activation of the 5-HT-5-HT2B receptor pathway in female fish resulted in 
hepatomegaly and the development of HCC, whilst, blocking serotonin synthesis or 
activation of the 5-HT2B receptor, supressed tumorigenesis, directly implicating 
serotonin-5-HT2B receptor signalling in liver cancer development and progression. 
A series of elegant experiments, which modulated the activation/inhibition of 
5-HT2B receptor and TGFβ1 signalling in male and female kras+ fish, revealed that 
the cancer phenotype was driven by 5-HT2B receptor expressed on HM, stimulating 
excessive serotonin production by hepatocytes, which exacerbated liver cancer pro-
gression [61]. In a cohort of healthy control, CLD, cirrhotic and HCC patients, 
serotonin and TGFβ1, levels were high in males with liver disease or cancer. There 
was also a positive correlation with gender serum serotonin and TGFβ1 and hepatic 
inflammation or cirrhosis, suggesting that these pathways could contribute to the 
progression of CLD and HCC. A follow up study, added further mechanistic insight 
into the serotonin-dependent establishment of HCC in this inducible hepatocyte- 
specific kras+ zebrafish model [62]. Akin to the previous study, SB204741 limited 
cancer growth and HM activation, but the authors also showed a reduction in the 
fibrosis markers collagen I and laminin, and an increase in cancer cell apoptosis. 
These effects were mirrored by the serotonin agonist. Macrophages and oncogenic 
hepatocytes were shown to be the cellular source of serotonin, which is required for 
HM activation. In turn, the 5-HT/5-HT2B receptor dependant activation of HM stim-
ulated the recruitment of tumour-associated macrophages, creating a positive pro- 
tumorigenic cellular crosstalk within the cancer niche.

6  Conclusion

In summary, 5-HT2B receptor play critical roles in the progression of CLD, fibrosis 
and cancer and are important regulators of hepatic regeneration. Therapeutic modu-
lation of the 5-HT2B receptor pathway holds promise for the treatment of these 
diseases.
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Chapter 15
Metabolic Regulation: Insulin Secretion 
and Action

Wonsuk Choi, Joon Ho Moon, and Hail Kim

Abbreviations

BAT Brown adipose tissue
FFAs Free fatty acids
HTR 5-HT receptor
5-HTP 5-Hydroxytryptophan
JAK2 Janus kinase 2
KO Knockout
AMS α-Methyl serotonin maleate
(MEK)1/2 Mitogen-activated protein kinase kinase
PI3K Phosphoinositide 3-kinase
PRLR Prolactin receptor
5-HT 5-hydroxytryptamine
STAT5 Signal transducer and activator of transcription 5
TPH1 Tryptophan hydroxylase-1
UCP1 Uncoupling protein 1
WAT White adipose tissue

1  Pancreatic β-Cells

Pancreatic islets consist of several types of cells that produce various hormones. For 
example, α-cells produce glucagon, β-cells produce insulin, δ-cells produce soma-
tostatin, ε-cells produce ghrelin, and PP cells produce pancreatic polypeptide. These 
cells interact with each other in orchestrating glucose homeostasis, while insulin- 
producing β-cells play a central role in regulating blood glucose levels. After a meal, 
the serum concentration of glucose increases, with glucose entering pancreatic 
β-cells through glucose transporter. Glucose is metabolized by glycolysis, 
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providing mitochondria with pyruvate, which initiates the citric acid cycle (Krebs 
cycle). Mitochondrial respiration increases the intracellular ATP/ADP ratio, which 
leads to the closure of KATP channels. The accumulation of intracellular K+ depolar-
izes β-cells, opening voltage-dependent Ca2+ channels to allow Ca2+ influx. This, in 
turn, induces exocytosis of insulin granules from the readily releasable pool near the 
plasma membrane, a process called first-phase secretion. After readily releasable 
pool secretion for a few minutes, sustained insulin secretion is triggered from a 
reserve pool. This secretion lasts longer (>30 min), continuing until blood glucose 
concentrations normalize. Impairment of this cellular cascade leads to type 2 diabe-
tes, which is initially characterized by a defect in first-phase insulin secretion [1]. In 
response to hypoglycemia, pancreatic α-cells secrete glucagon, a counter-regulatory 
hormone that stimulates hepatic gluconeogenesis and glycogenolysis to elevate 
blood  glucose levels. Pancreatic δ-cells secrete somatostatin which inhibits the 
secretion of glucagon, insulin, and other hormones.

5-HT was first reported to be present in pancreatic endocrine cells several 
decades ago [2, 3]. Autoradiography and electron microscopy have shown that 5-HT 
localizes inside β-cell granules. However, the mechanism underlying the finding, 
that 5-HT and HTRs are present in human β-cells, was unclear, due to the low 
expression of peripheral 5-HT synthesizing enzyme tryptophan hydroxylase-1 
(TPH1) and the differences in STAT5 activities between humans and rodents [4, 5]. 
Recent bioinformatic analyses of human β-cells revealed that genes encoding 5-HT 
synthesizing enzymes (TPH1, TPH2, and DDC) and 15 HTRs are expressed in 
human islets [6, 7], with HTR2B among the most highly expressed HTR transcripts 
[6]. 5-HT and HTR2B protein were also shown to be present in β-cells [7–10].

1.1  The Role of 5-HT in β-Cell Function

5-HT synthesized in β-cells is involved in regulating β-cell function, both intracel-
lularly and by binding to HTRs after secretion in an autocrine/paracrine manner. 
The role of 5-HT in regulating insulin secretion is unclear, as 5-HT [11, 12] and 
5-hydroxytryptophan (5-HTP) [13] have been reported to stimulate insulin and/or 
glucagon secretion, to inhibit secretion [14, 15], or to have no effect [16]. As many 
of these studies were conducted in cell lines or isolated islets, interpretation of their 
results is limited, with the in vivo role of 5-HT and its derivatives remaining unclear.

Recent advances in mouse genetics have enabled the role of 5-HT in β-cell func-
tion to be studied using in vivo mouse models. Using Tph1 knockout (KO) mice as 
an in  vivo model showed that inhibiting peripheral 5-HT synthesis resulted in a 
defect in insulin secretion by β-cells [17]. 5-HT was shown to bind to the small 
GTPases RAB3A and RAB27A via ‘serotonylation’, thereby regulating the steps 
downstream of Ca2+ signaling in the insulin secretion cascade. Moreover, intracel-
lular 5-HT was found to potentiate in vivo and in vitro insulin secretion by β-cells. 
Another study found that 5-HT synthesis was induced in β-cells during pregnancy 
and that inhibition of 5-HT synthesis by a tryptophan-free diet or by treatment with 
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the TPH inhibitor p-chlorophenylalanine (PCPA) resulted in gestational diabetes in 
mice [10]. Normally, glucose stimulated insulin secretion is enhanced during preg-
nancy due to the enhanced glucose responsiveness of β-cells; however, Htr3a KO 
mice showed impaired insulin secretion during pregnancy [18, 19]. Thus, 5-HT 
improves insulin secretion by enhancing glucose responsiveness through HTR3 in 
β-cells [18].

Administration of a high fat diet to β-cell-specific Tph1 KO mice resulted in 
impaired glucose tolerance [19]. 5-HTP has been found to stimulate insulin secre-
tion in  vitro [13]. Because 5-HTP is rapidly converted to 5-HT upon entry into 
β-cells, intracellular 5-HT and/or tryptophan metabolites likely benefit β-cell func-
tion. These metabolites (i.e., 5-HT, 5-HTP, and melatonin) are indole derivatives 
that can potentially reduce intracellular oxidative stress [20]. Indeed, 5-HT and 
5-HTP protect β-cells during lactation by scavenging reactive oxygen species, indi-
cating that lactation improves long-term β-cell function [21].

To summarize, in vivo loss-of-function studies suggest that the production of 
5-HT by β-cells benefits β-cell function [10, 19]. In addition, 5-HT production in 
β-cells was associated with a diabetes-free condition in humans [22]. The results of 
studies assessing the role of 5-HT in β-cells should be carefully interpreted in a 
context-dependent manner (i.e. pregnant vs. non-pregnant; intra- vs. extracellular).

1.2  The Role of HTR2B in β-Cell Function

5-HT, which is secreted by β-cells in response to glucose and/or other stimuli [2, 3, 
23], binds to HTRs to exert its biological activities. Of the seven subfamilies of 
HTRs (HTR1 to 7), two members of HTR2 subfamily, HTR2A and HTR2B, are 
expressed in pancreatic islets, whereas the other, HTR2C, is expressed in the 
brain [10].

An in  vitro study found that the HTR2B agonist α-methyl serotonin maleate 
(AMS) enhanced glucose-stimulated insulin secretion in human and mouse islets 
[24]. AMS modulated intracellular Ca2+ profiles, increasing peak duration and peak- 
to- peak distance and amplifying the response to glucose. This, in turn, activated 
mitochondrial enzymes, ultimately increasing the rate of mitochondrial oxygen 
consumption. Knock-down of Htr2b mRNA in the INS-1 (832/13) β-cell line was 
found to impair insulin secretion [24], with Htr2b KO mice showing glucose intol-
erance during pregnancy [10]. Treatment of pregnant mice with the HTR2B antago-
nist SB204741 reduced insulin secretion due to the reduced β-cell compensation in 
response to pregnancy. An ex-vivo experiment using islets isolated from pregnant 
Htr2b KO mice found that HTR2B did not affect insulin secretion, and a follow-up 
study showed that MIP-CreER-induced disruption of Htr2b gene in a β-cell-specific 
manner did not affect glucose tolerance in mice fed standard chow and a high fat 
diet [19]. HTR2B affected metabolic phenotypes only during pregnancy, possibly 
due to increased 5-HT availability, a condition inapplicable to male mice fed stan-
dard chow or a high fat diet. These findings, together with those of other in vivo and 
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in vitro studies, showed that the direct effect of HTR2B on insulin secretion was 
limited. Additional in vivo studies using β-cell-specific Htr2b KO mice are needed 
to confirm the in vivo effects of HTR2B on insulin secretion.

In contrast to its limited effects on insulin secretion, HTR2B plays an important 
role in regulating β-cell mass. The mass of pancreatic β-cells increases as metabolic 
demand increases, due, for example, to weight gain and insulin resistance. 
Physiological β-cell proliferation occurs during the perinatal period and pregnancy 
to achieve a proper β-cell mass. Interestingly, 5-HT synthesis in β-cells increases 
markedly during these two periods, suggesting that 5-HT may be involved in regu-
lating β-cell masses [9, 10, 25]. During pregnancy, placental lactogen induces Tph1 
expression via the prolactin receptor (PRLR)-janus kinase 2 (JAK2)-signal trans-
ducer and activator of transcription 5 (STAT5) cascade, with STAT5 phosphoryla-
tion partially mediated by phosphoinositide 3-kinase (PI3K) and mitogen-activated 
protein kinase kinase (MEK)1/2 [10, 26]. Inhibition of 5-HT synthesis with a 
tryptophan- free diet or PCPA reduced β-cell proliferation and impaired glucose tol-
erance during pregnancy [10]. β-cell proliferation and mass were shown to be lower 
in Htr2b KO mice than in wild-type mice, as well as being lower in wild-type mice 
treated with the HTR2B antagonist SB204741. These findings indicate that 5-HT 
secreted by β-cells during pregnancy binds to HTR2B, activating the Gq signaling 
cascade and inducing β-cell proliferation (Fig. 15.1).

In contrast to pregnancy, neither prolactin nor placental lactogen induced 5-HT 
production in β-cells during the perinatal period, as shown by the persistent 5-HT 
production in β-cells of Prlr KO mice. Instead, growth hormone (GH) during the 
perinatal period binds to growth hormone receptor (GHR) and activates STAT5 sig-
naling, inducing 5-HT production in β-cells [27]. Perinatal β-cell proliferation was 
markedly reduced in both β-cell-specific Tph1 KO mice and β-cell-specific Htr2b 
KO mice, with adults of both types of mice exhibiting impaired glucose tolerance 
and decreased β-cell mass. Thus, 5-HT signaling through HTR2B plays a critical 
role in the determination of adult β-cell mass by regulating β-cell proliferation dur-
ing the perinatal period.

Upregulation of 5-HT and induction of β-cell proliferation via HTR2B occur in 
response to physiologic stimuli, but do not compensate for increased metabolic 
demand. Feeding with a high fat diet does not induce the transcription of Tph1 and 
Htr2b mRNA, nor aggravate glucose intolerance in β-cell-specific Htr2b KO mice 
[19]. Studies are needed to investigate the role of HTR2B in 5-HT producing condi-
tions, such as pancreatic endocrine development and lactation, especially when 
β-cell demand is increased.
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2  Adipocytes

2.1  The Role of 5-HT in Adipocyte Energy Metabolism

Adipose tissue is a dynamic metabolic organ that both stores and consumes energy. 
Until recently, adipose tissues were classified as white adipose tissue (WAT) and 
brown adipose tissue (BAT), which were functionally distinct [28]. More recently, a 
third functionally relevant subtype, beige adipocytes, was identified. These cells are 
located in WAT depots but function as brown adipocytes [29]. WAT mainly acts as 
an energy storage depot in the body. In the fed state, white adipocytes absorb excess 
energy and store it as triglycerides. In the fasting state, WAT catabolizes triglycer-
ides supplying other organs with free fatty acids (FFAs) and glycerol [30]. In addi-
tion to their lipid storage function, brown and beige adipocytes consume energy to 
generate heat and maintain optimal body temperature [31].

Although 5-HT is present in adipose tissue [32], it was unclear whether adipo-
cytes synthesize their own 5-HT. Recent evidence showed that adipocytes have a 
functional system for 5-HT synthesis and that both TPH1 expression and 5-HT 
content increase during adipocyte differentiation [33]. Inhibition of peripheral 5-HT 
synthesis by knocking out Tph1 or by treatment with a TPH1 inhibitor resulted in 
the protection of high fat diet-induced obesity by mitochondrial uncoupling protein 

Fig. 15.1 Metabolic regulation of 5-HT and HTR2B in pancreatic β-cells. 5-HTP 
5- hydroxytryptophan, TPH1 tryptophan hydroxylase-1
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1 (UCP1)-dependent thermogenic mechanisms in brown and beige adipose tissues 
[34, 35]. 5-HT inhibits brown adipocyte differentiation and β3-adrenergic induced 
thermogenic activation in a cell-autonomous manner [34, 36]. Similar to Tph1 KO 
mice, adipocyte-specific Tph1 KO mice showed resistance to high fat diet-induced 
obesity by increasing energy expenditure [35]. However, inhibiting 5-HT synthesis 
specifically in the gut, a major source of 5-HT in the periphery, did not protect 
against high fat diet-induced obesity [37]. Collectively, these findings indicate that 
regional 5-HT synthesis is a critical factor in regulating adaptive thermogenesis in 
adipose tissue.

2.2  The Role of HTR2B in Adipocyte Energy Metabolism

One of the main roles of 5-HT in mature adipocytes is inducing lipolysis through 
HTR2B signaling [38]. 5-HT treatment of epididymal and subcutaneous fat pads 
increased the release of glycerol and FFAs in a dose-dependent manner, suggesting 
that 5-HT directly promotes lipolysis. HTR2B is highly expressed in adipocytes, 
and adipocyte-specific Htr2b KO mice exhibited decreased levels of circulating 
glycerol, FFA, and β-hydroxybutyrate under fasting conditions. Furthermore, 5-HT 
induced the phosphorylation of hormone-sensitive lipase (HSL), a key enzyme in 
the lipolysis pathway, on serine residues 563 and 660 in an HTR2B-dependent man-
ner. Taken together, these findings indicate that adipocyte HTR2B signaling main-
tains energy homeostasis by inducing lipolysis under fasting conditions (Fig. 15.2).

3  Hepatocytes

3.1  The Role of 5-HT in Hepatocyte Energy Metabolism

Hepatocytes regulate circulating glucose and lipids in the body. When nutrients are 
in excess, hepatocytes sequester glucose and fatty acids as glycogen and triglycer-
ides, respectively. Under fasting conditions, hepatocytes maintain blood glucose 
levels by promoting glucose release, both by the breakdown of glycogen (glycoge-
nolysis) and the de novo synthesis of glucose from glycerol and amino acids 
(gluconeogenesis).

Hepatocytes do not synthesize 5-HT, but have a functional serotonergic system. 
The 5-HT that acts on the liver is derived from the gut (free 5-HT) or platelets, 
depending on physiological conditions [38, 39]. 5-HT regulates lipid metabolism in 
hepatocytes. In vitro studies demonstrate that 5-HT has an additive effect on lipid 
accumulation in hepatocytes incubated with fatty acids [40, 41]. The lipogenic 
effects of 5-HT on primary hepatocytes were mediated by activation of mammalian 
target of rapamycin (mTOR). In contrast, the lipogenic effects of 5-HT on the 
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hepatic cancer cell lines HepG2 and SK-Hep1 were mediated by activation of Notch 
signaling and induction of autophagy. In vivo studies showed that 5-HT had stea-
totic effects on the liver under conditions of diet-induced obesity. For example, 
inhibition of peripheral 5-HT synthesis in Tph1 KO mice fed a high fat diet amelio-
rated hepatic steatosis indirectly through UCP1-dependent thermogenic mecha-
nisms [34]. Hepatic steatosis in gut-specific Tph1 KO mice fed a high fat diet was 
also prevented by downregulating the hepatic lipogenesis pathway, but did not affect 
systemic energy metabolism [37]. Taken together, these findings showed that gut- 
derived 5-HT acts directly on the liver (see also Chap. 14).

3.2  The Role of HTR2B in Hepatocyte Energy Metabolism

5-HT regulates hepatic carbohydrate metabolism through HTR2B signaling. 
HTR2B mediates the gluconeogenic activity of 5-HT in hepatocytes [38]. 5-HT 
treatment of primary hepatocytes stimulated the conversion of glycerol, lactate, and 
pyruvate to glucose in an HTR2B-dependent manner. Glucose levels were lower in 
hepatocyte-specific Htr2b KO mice than in control mice under fasting conditions 
after injection of glycerol or pyruvate. Moreover, the activities of two rate-limiting 
enzymes in gluconeogenesis, fructose 1,6-bisphosphatase (FBPase) and glucose 
6-phosphatase (G6Pase), were lower in hepatocyte-specific Htr2b KO mice than in 
control mice. Hepatic HTR2B signaling regulates glucose metabolism not only by 
promoting gluconeogenesis but also by suppressing glucose uptake [38]. 5-HT 
treatment of primary hepatocytes reduced glucose uptake in an HTR2B-dependent 

Fig. 15.2 Metabolic regulation of HTR2B in adipocytes and hepatocytes. FFAs Free fatty acids, 
HSL hormone-sensitive lipase, FBPase fructose 1,6-bisphosphatase, G6Pase glucose 6- phosphatase, 
GLUT2 glucose transporter 2
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manner. Glucose tolerance tests showed that glucose clearance was lower in hepa-
tocyte-specific Htr2b KO mice than in control mice. In addition, glucose transporter 
2 (GLUT2) protein levels and glucokinase activity were higher in hepatocyte- 
specific Htr2b KO mice than in control mice. Taken together, these findings indicate 
that hepatocyte HTR2B signaling contributes to fasting adaptation by promoting 
gluconeogenesis and suppressing glucose uptake (Fig. 15.2).

4  Outlook and Prospects

HTR2B-dependent metabolic pathways in peripheral organs, insulin secretion and 
cell proliferation in pancreatic β-cells, lipolysis in adipocytes, gluconeogenesis and 
glucose uptake in hepatocytes, are important for the development of diabetes, obe-
sity, and non-alcoholic fatty liver disease. Since the metabolic role of HTR2B sig-
naling in adipocytes and hepatocytes under diet-induced obesity condition is 
missing, future studies should elucidate whether it mediates similar functions as 
well as fasting condition.

5-HT signaling is very complex because 5-HT is synthesized at multiple sites, it 
signals through auto-, para-, and endocrine actions, and it binds to at least 14 recep-
tors. Many studies to date have tested the effects of TPH inhibitors and HTR2B 
agonists/antagonists or Tph1 KO and Htr2b KO mice. However, these strategies 
have limitations in unraveling the tissue specific effects of HTR2B-dependent 5-HT 
signaling in in vivo models. Future studies should utilize in-vivo tissue-specific KO 
models to assess the tissue-specific roles of 5-HT and HTR2B.
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Chapter 16
Drugs of Abuse Affecting 5-HT2B Receptors

Dino Luethi and Matthias E. Liechti

Abbreviations

MDA 3,4-methylenedioxyamphetamine
MDMA 3,4-methylenedioxymethamphetamine
CYP Cytochrome P450
LSD Lysergic acid diethylamide
NPS New psychoactive substances
SERT Serotonin transporter

1  Introduction

A variety of drugs of abuse affect monoaminergic neurotransmission including the 
serotonergic system. On the one hand, serotonergic stimulants target the plasma-
lemmal serotonin transporter (SERT), either as blockers such as cocaine or as sub-
strates such as 3,4-methylenedioxymethamphetamine (MDMA) [1–5]; on the other 
hand, serotonergic psychedelics mediate their mind-altering effects mainly through 
activation of serotonergic 5-hydroxytryptamine (5-HT) 2A receptors [6–11]. 
Moreover, several stimulant-type substances interact with serotonergic receptors [2, 
12–16] and some psychedelics inhibit transporter-mediated serotonin reuptake [17] 
in addition to their main action at the 5-HT2A receptor. Besides stimulants and psy-
chedelics, other drug classes such as synthetic cannabinoids and opioids have been 
shown to interact with serotonin transporers and receptors [18–20] in addition to 
their main effects at cannabinoid and opioid receptors, respectively. The 5-HT2B 
receptor is one potential interaction site for serotonergic drugs of abuse. However, 
the 5-HT2B receptor is not a primary target for serotonergic drugs as its main expres-
sion is in peripheral organs such as liver, kidneys, stomach, and gut, and there is 
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only limited expression in the brain [21–25]. Nevertheless, it has been associated 
with pathways that modulate drug abuse and reinforcing effects of stimulants [26–
28]. Furthermore, 5-HT2B receptor interactions with drugs of abuse are of interest as 
receptor activation has been associated with cardiac valvulopathy, resulting in the 
market removal of several 5-HT2B agonist prescription drugs, including the appetite 
suppressant fenfluramine [29–32]. The major metabolite of fenfluramine, norfenflu-
ramine (3-trifluoromethylamphetamine), displays higher affinity and efficacy at the 
5-HT2B receptor in comparison to the parent compound [32, 33], indicating that it is 
mainly responsible for fenfluramine-induced cardiac valvulopathy. Even though 
fenfluramine has structural similarity to amphetamine, it does not share the potent 
stimulant effects and abuse is therefore rare [34, 35]. However, the chemical struc-
tures of fenfluramine and norfenfluramine suggest that drug-induced cardiac valvu-
lopathy is a potentially severe complication to consider for any amphetamine-type 
drugs of abuse that stimulate serotonin 5-HT2B receptors [36]. This chapter should 
give a basic overview over the involvement of 5-HT2B receptors in recreational drug 
action and associated adverse effects such as cardiac valvulopathy. Different stimu-
lant and psychedelic drugs for which activity at the 5-HT2B receptors has been tested 
will be discussed.

2  Drugs Stimulating 5-HT2B Receptors

Interference with monoaminergic signaling is the main mechanism of action for 
stimulants and psychedelics [1, 4, 37]. In addition, interactions with monoaminergic 
targets have been shown for other drug classes, such as opioids [17] or dissociative 
anesthetics [38, 39]. Compared to other monoaminergic targets such as 5-HT2A or 
dopamine receptors, relatively little research has focused on the interactions of 
drugs of abuse with 5-HT2B receptors. Nevertheless, 5-HT2B receptor interactions 
have been assessed for various stimulant and psychedelic drugs of abuse, including 
many new psychoactive substances (NPS) [3, 14, 16, 17, 40–45], which are shown 
in Tables 16.1 and 16.2, respectively.

2.1  5-HT2B Receptor-Mediated Effects of Stimulants

Despite its limited expression in the brain, the 5-HT2B receptor has been shown to 
contribute to the mechanism of action of stimulants. For instance, it has been dem-
onstrated that selective 5-HT2B receptor antagonism and 5-HT2B receptor knockout 
reversed MDMA-induced hyperactivity in mice [28]. Furthermore, it has been 
demonstrated that inhibition and knockout of the 5-HT2B receptors abolished 
MDMA- induced efflux of serotonin in the nucleus accumbens and ventral tegmen-
tal area [28]. The authors of that study hypothesized that presynaptic 5-HT2B recep-
tors modulate MDMA-induced 5-HT release in serotoninergic raphe neurons. In 
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Table 16.1 5-HT2B receptor interactions of stimulant drugs of abuse

Drugs

5-HT2B receptor activity

ReferenceKi [μM] EC50 [μM] Emax [%]

Aminoindanes

5-Iodo-2-aminoindane 0.07 Iversen et al. [43]
MDAI >5 Iversen et al. [43]
MMAI >10 Luethi et al. [16]
N-methyl-2-AI >20 Luethi et al. [16]
Benzofurans

5-APB 0.28 ± 0.12 61 ± 17 Rickli et al. [14]
0.014 0.015 ± 0.001 92 ± 1 Iversen et al. [43]

5-APDB 1.2 ± 0.6 50 ± 21 Rickli et al. [14]
6-APB 0.14 ± 0.06 70 ± 9 Rickli et al. [14]

0.004 0.0041 ± 0.003 93 ± 1 Iversen et al. [43]
6-APDB 0.12 ± 0.03 66 ± 17 Rickli et al. [14]
5-MAPDB >20 Rickli et al. [14]
4-APB 1.0 ± 0.5 38 ± 16 Rickli et al. [14]
7-APB 0.28 ± 0.52 52 ± 17 Rickli et al. [14]
5-EAPB >20 Rickli et al. [14]
Cathinones

α–PVP >20 Rickli et al. [15]
β-Keto-MDA >20 Rickli et al. [15]
1-Naphyrone 0.4 Iversen et al. [43]
2,3-DMMC >10 Luethi et al. [16]
2,4-DMMC >10 Luethi et al. [16]
3-MMC >10 Luethi et al. [16]
3,4-DMMC >20 Luethi et al. [16]
BMDP 1.7 Iversen et al. [43]
4–Bromomethcathinone >20 Rickli et al. [15]
4–Ethylmethcathinone >20 Rickli et al. [15]
4–Fluoromethcathinone >20 Rickli et al. [15]
4–Methylmethcathinone >20 Rickli et al. [15]
Benzedrone >5 Iversen et al. [43]
MDPPP >20 Rickli et al. [15]
MDPBP >20 Rickli et al. [15]
MDPV >20 Rickli et al. [15]
Mephedrone >10 Luethi et al. [16]

0.74 Iversen et al. [43]
Methcathinone >20 Rickli et al. [15]
Methylethcathinone >5 Iversen et al. [43]
Methylone >10 Luethi et al. [5]
Naphyrone >5 Iversen et al. [43]

>20 Rickli et al. [15]
Pyrovalerone >20 Rickli et al. [15]

(continued)
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addition, inhibition and knockout of the 5-HT2B receptor led to an absence of dopa-
mine efflux in the nucleus accumbens, which may have been the result of a lack of 
 activation of postsynaptic serotonin receptors [28]. In a follow-up study, MDMA 
was shown to induce locomotor sensitization and conditioned place preference in 
wildtype but not in 5-HT2B receptor knockout or 5-HT2B receptor antagonized mice, 
underscoring the possible role of 5-HT2B receptors in the reinforcing effects of sero-
tonergic stimulants [27]. However, an increased dose of MDMA induced behav-
ioral effects in all mouse models, potentially due to direct and therefore 5-HT2B 
receptor independent interaction of MDMA with the dopamine transporter [27]. 
This assumption is supported by in vitro studies showing serotonin transporter inhi-
bition at low and dopamine transporter inhibition by MDMA at high concentrations 
[5, 12].

Table 16.1 (continued)

Drugs

5-HT2B receptor activity

ReferenceKi [μM] EC50 [μM] Emax [%]

Phenethylamines

4-Fluoroephedrine >20 Rickli et al. [15]
4–Fluoroamphetamine 11.4 ± 4.6 49 ± 15 Rickli et al. [15]
4–Fluoromethamphetamine >20 Rickli et al. [15]
4-Methylamphetamine 0.86 ± 0.38 54 ± 8 Luethi et al. [16]
D-Amphetamine 9.4 8 ± 2 Rickli et al. [15]
D-Methamphetamine >20 Rickli et al. [15]
Ephedrine >20 Rickli et al. [15]
MDA 0.85 ± 0.11 52 ± 12 Rickli et al. [14]
MDMA >20 Rickli et al. [14]
Piperidines

4-Fluoromethylphenidate >10 Luethi et al. [3]
4-Methylmethylphenidate >10 Luethi et al. [3]
Ethylnaphthidate >10 Luethi et al. [3]
Ethylphenidate >20 Luethi et al. [3]
Methylphenidate >10 Luethi et al. [3]
Propylphenidate >10 Luethi et al. [3]
Other

4,4′-DMAR >10 Maier et al. [44]

5-IT 1.5 ± 0.6 36 ± 5 Luethi et al. [16]
Cocaine >10 Luethi et al. [3]
Dimethylamylamine >5 Iversen et al. [43]
Methiopropamine 3.9 Iversen et al. [43]
Methylmorphenate >10 Luethi et al. [3]
Modafinil >10 Luethi et al. [3]
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Table 16.2 5-HT2B receptor interactions of psychedelic drugs of abuse

Drugs

5-HT2B receptor activity

ReferenceKi [μM] EC50 [μM] Emax [%]

Benzodifuran

2C-B-FLY 0.040 56 Rickli et al. [14]
Ergoline

LSD 0.00057 0.0031 23 Eshleman et al. [42]
12 71 Rickli et al. [40]

Phenethylamines

25B-NBOMe 0.01 19 Rickli et al. [40]
25C-NBOMe 0.10 16 Rickli et al. [40]
25D-NBOMe 0.0021 0.032 48 Eshleman et al. [42]

0.10 22 Rickli et al. [40]
25E-NBOMe 0.0011 0.024 49 Eshleman et al. [42]

0.06 26 Rickli et al. [40]
25H-NBOMe 0.063 0.46 38 Eshleman et al. [42]

0.34 11 Rickli et al. [40]
25I-NBOMe 0.0019 0.11 21 Eshleman et al. [42]

0.13 32 Rickli et al. [40]
25N-NBOMe 0.0087 0.047 58 Eshleman et al. [42]

0.07 26 Rickli et al. [40]
25P-NBOMe 0.17 23 Rickli et al. [40]
25T2-NBOMe 0.04 31 Rickli et al. [40]
25T4-NBOMe 0.20 27 Rickli et al. [40]
25T7-NBOMe 0.31 14 Rickli et al. [40]
2C-B 0.13 89 Rickli et al. [40]

0.075 52 Luethi et al. [41]
2C-BI-1 >10 Luethi et al. [45]
2C-BI-2 >10 Luethi et al. [45]
2C-BI-3 >10 Luethi et al. [45]
2C-BI-4 >10 Luethi et al. [45]
2C-BI-5 >10 Luethi et al. [45]
2C-BI-7 >10 Luethi et al. [45]
2C-BI-8 0.22 Luethi et al. [45]
2C-BI-10 >10 Luethi et al. [45]
2C-BI-11 >10 Luethi et al. [45]
2C-BI-12 0.20 Luethi et al. [45]
2C-C 0.28 81 Rickli et al. [40]
2C-D 0.23 77 Rickli et al. [40]
2C-E 0.19 66 Rickli et al. [40]
2C-H 6.2 46 Rickli et al. [40]
2C-I 0.15 70 Rickli et al. [40]
2C-N 0.73 74 Rickli et al. [40]
2C-P 0.13 72 Rickli et al. [40]

(continued)
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Table 16.2 (continued)

Drugs

5-HT2B receptor activity

ReferenceKi [μM] EC50 [μM] Emax [%]

2C-T-1 0.057 58 Luethi et al. [41]
2C-T-2 0.13 75 Rickli et al. [40]
2C-T-3 0.044 28 Luethi et al. [41]
2C-T-4 0.16 68 Rickli et al. [40]

0.063 75 Luethi et al. [41]
2C-T-7 0.35 45 Rickli et al. [40]

0.052 46 Luethi et al. [41]
2C-T-16 0.047 36 Luethi et al. [41]
2C-T-19 0.369 40 Luethi et al. [41]
2C-T-21.5 0.182 40 Luethi et al. [41]
2C-T-22 0.11 35 Luethi et al. [41]
2C-T-25 0.108 32 Luethi et al. [41]
2C-T-27 >10 Luethi et al. [41]
2C-T-28 0.081 34 Luethi et al. [41]
2C-T-30 0.051 61 Luethi et al. [41]
2C-T-31 3.3 44 Luethi et al. [41]
2C-T-33 >10 Luethi et al. [41]
Biscaline >10 Luethi et al. [45]
DMA 1 Nelson et al. [46]
DOAc 0.31 Nelson et al., [46]
DOB 0.027 Nelson et al. [46]
DOBz 0.035 Nelson et al. [46]
DOC 0.032 Nelson et al. [46]
DOCN 0.77 Nelson et al. [46]
DOF 0.23 Nelson et al. [46]
DOHx 0.03 Nelson et al. [46]
DOI 0.02 Nelson et al. [46]
DOM 0.041 0.15 96 Eshleman et al. [42]
DON 0.17 Nelson et al. [46]
DOPR 0.054 Nelson et al. [46]
DOTB 0.025 Nelson et al. [46]
MEM 0.76 Nelson et al. [46]
Mescaline >20 Rickli et al. [40]
Mescaline-NBOMe >20 Rickli et al. [40]
TMA 0.31 Nelson et al. [46]
Tryptamines

4-OH-DiPT 0.460 55 Rickli et al. [17]
4-OH-MET >20 Rickli et al. [17]
5-MeO-AMT 0.004 104 Rickli et al. [17]
5-MeO-MiPT 1.5 12 Rickli et al. [17]
DiPT 1.0 103 Rickli et al. [17]

(continued)
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2.2  Stimulant-Induced Cardiac Valvulopathy

5-HT2B receptors are, among others, expressed in cardiovascular tissues [47] and 
their activation potentially leads to cardiac valvulopathy [29, 48–50]. Therefore, 
cardiac valvulopathy is a concern to consider for drugs that increase plasma 5-HT 
levels, directly activate the 5-HT2B receptor, or both. In fact, several prescription 
drugs have previously been removed from the market due to their potential to induce 
cardiac valvulopathy in patients [29–32]. However, serotonergic drugs of abuse are 
typically not associated with a high abuse liability [51–54] and are therefore mostly 
used sporadically and not on a regular basis. This raises the question of the rele-
vance of 5-HT2B-mediated cardiac valvulopathy in recreational drug use. The regu-
lar use of the serotonergic drug MDMA has been associated with mild to moderate 
valvular heart disease, based on a case control study [55]. In this study, 8 of 29 regu-
lar MDMA users displayed abnormal echocardiographic results compared with 
none of the control group. The average use of the MDMA users was very high and 
described to have consisted of 3.6 MDMA tablets per week with an average dura-
tion of drug use of 6.1 years [55]. This underscores the assumption that in particular 
heavy recreational use of serotonergic stimulants may induce cardiac valvulopathy. 
Besides these clinical findings from a case control study, 5-HT2B receptor-mediated 
proliferation of cardiac valvular interstitial cells induced by MDMA has also been 
demonstrated in vitro [56].

2.3  Stimulants Acting on 5-HT2B Receptors

Table 16.1 shows an overview of 5-HT2B receptor binding and activation potency 
values for various stimulants, assessed in different studies. Notably, in a study by 
Rickli and colleagues, MDMA did not activate the 5-HT2B receptor in the func-
tional assay at investigated concentrations (EC50  >  20  μM); however, 
3,4- methylenedioxyamphetamine (MDA), the main psychoactive N-demethylated 
phase I metabolite of MDMA, potently activated the receptor at submicromolar 
concentrations [14]. This suggests that the metabolite MDA rather than MDMA 
itself may lead to valvulopathy and that there could be a significant metabolic con-
tribution to MDMA-induced effects and adverse effect. MDA formation is mainly 
mediated by cytochrome P450 (CYP) 2B6, with additional contributions from 
CYP1A2, CYP2C19, and CYP2D6 [57–60]. Therefore, genetic polymorphisms in 
the genes coding for these enzymes could potentially influence the 5-HT2B receptor-

Table 16.2 (continued)

Drugs

5-HT2B receptor activity

ReferenceKi [μM] EC50 [μM] Emax [%]

DMT 3.4 19 Rickli et al. [17]
Psilocin >20 Rickli et al. [17]
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mediated adverse effects in MDMA users. Notably, however, the sensitivity of the 
calcium mobilization assays used to determine the functional 5-HT2B receptor 
activity and the inter-correlation of data obtained with different assays is not clearly 
understood. For example, only poor correlation between 5-HT2A receptor activation 
and effects for psychedelics has been observed in several studies [61–63], whereas 
binding affinity at this receptor was a good predictor of the clinical potency of psy-
chedelics [63]. Thus, the available in vitro 5-HT2B receptor functional data may not 
be a good predictor of cardiac valvulopathy risk in vivo.

Besides MDA, several benzofuran NPS potently activated the 5-HT2B receptor at 
submicromolar concentrations [14, 43]. Therefore, as shown for MDMA in vivo 
[27, 28], 5-HT2B receptor activation may directly contribute to the effects of these 
novel drugs of abuse. Furthermore, regular and heavy use of benzofuran NPS may 
potentially result in heart damage; however, benzofurans have so far not been linked 
to any case of cardiac valvulopathy. Only a few other non-benzofuran stimulants 
displayed potent agonism at the 5-HT2B receptor, such as 4-methylamphetamine 
(4-MA) or 5-(2-aminopropyl)indole (5-IT). The amphetamine derivative 4-MA was 
originally developed as an appetite suppressant but was never marketed [64]. Its 
recent reappearance on the illicit drug market has almost exclusively been limited to 
being a contaminant in street amphetamine samples [65]. The mixture of amphet-
amine and 4-MA has been linked to extreme hyperthermia and several fatalities, 
likely explained by the high difference in dopaminergic vs. serotonergic activity of 
the two substances [15, 16, 65]. The indole derivative 5-IT is a highly potent stimu-
lant NPS that has been associated with various fatal intoxications in recent years 
[16, 66–69]. Furthermore, Iversen and colleagues reported submicromolar binding 
affinities at the 5-HT2B receptor for the NPS 5-iodo-aminoindane, mephedrone, 
naphyrone, 1-naphyrone, and methylenedioxy-aminotetralin [43]. Mephedrone is 
not a potent agonist at the receptor [16] and no functional activity has been deter-
mined for the other substances. Therefore, it is not certain whether these substances 
act as agonists at the 5-HT2B receptor.

2.4  5-HT2B Receptor-Mediated Effects of Psychedelics

The subjective effects of psychedelics are primarily mediated by 5-HT2A receptor 
activation [9–11, 70–72]. In addition, correlation between receptor activation and 
psychedelic effect potencies have been reported for the 5-HT2B [46] and 5-HT2C 
receptors [6, 7, 63], which is not surprising given that 5-HT2 receptors share signifi-
cant sequence homology [73]. However, there is currently no clear consensus on the 
importance of the 5-HT2B and 5-HT2C receptors in the mechanism of action of 
psychedelics.
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2.5  Psychedelics Acting on 5-HT2B Receptors

5-HT2B receptor interactions for various psychedelics are listed in Table 16.2. For 
most of the substances, only receptor activation potency but no receptor affinity 
values have been reported. Most phenethylamine and tryptamine psychedelics acti-
vated the 5-HT2B receptor at submicromolar or low micromolar concentrations. As 
reported for the 5-HT2A receptor, no correlation between 5-HT2B receptor activation 
and clinical potency of psychedelic was observed in a study comparing receptor 
activation potencies of a considerable amount of psychedelics with their reported 
human doses [63]. Eshleman and colleagues reported 5-HT2 receptor affinities as 
well as functional activity for six phenethylamine psychedelics and lysergic acid 
diethylamide (LSD) [42]. All compounds displayed highest binding affinity and 
activation potency for the 5-HT2A receptors; nevertheless, for several substances, 
high affinity and activation potency (Ki and EC50 < 100 nM) was observed at the 
5-HT2B receptor [42]. A remarkable difference in receptor activation in two different 
functional assays has been reported for LSD. Whereas an EC50 of 12 μM has been 
measured with a calcium mobilization assay [40], an EC50 of 3 nM has been reported 
when a stimulation of inositol monophosphate (IP-1) formation assay was used 
[42]. To gain a clearer picture of the involvement of 5-HT2B receptors in the action 
of psychedelics, more in vitro and in vivo research is needed.

3  Conclusion

Several stimulant and psychedelic drugs of abuse activate the 5-HT2B receptor at 
pharmacologically relevant concentrations. Animal studies with MDMA suggest that 
the 5-HT2B receptor contributes to the effects of serotonergic stimulants, possibly by 
5-HT-dependent regulation of dopamine release. Furthermore, stimulants that activate 
the 5-HT2B receptor may put regular and heavy users at risk of cardiac valvulopathy. 
The main classes of stimulant drugs of abuse that interact with 5-HT2B receptors are 
benzofurans and amphetamines with a distinct serotonergic vs. dopaminergic activity.

In addition to stimulants, various phenethylamine and tryptamine psychedelics 
activate the 5-HT2B receptor. However, the role of 5-HT2B receptor activation in the 
mechanism of action of psychedelic remains unclear. As psychedelics do not lead to 
dependence and are mostly not used on a regular basis, cardiac valvulopathy is 
likely not a risk to consider for users.
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Chapter 17
The Role of 5-HT2B Receptor 
on Aggression and Drugs of Abuse

Janitza L. Montalvo-Ortiz and Emil F. Coccaro

1  The Relationship Between Serotonin and Aggression

Monoamines, particularly serotonin (5-hydroxytryptamine; 5-HT), have been 
extensively studied in the context of aggression. 5-HT is known to play a key role in 
the modulation of aggressive, impulsive, antisocial, and violent behavior. One of the 
early studies linking 5-HT with aggression-related traits investigated the relation-
ship between cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA), a 
5-HT metabolite, with aggressive and impulsive behavior in a population of adult 
military men [1]. Lower 5-HIAA is associated with higher aggressive behavior, a 
finding that was replicated in a men cohort with borderline personality disorder [1], 
in violent offenders [2–4], and in subjects with a history of aggressive behavior [5]. 
However, non-replications of the negative correlation between CSF 5-HIAA have 
also been reported [6–9], as well as studies showing opposite effects: 5-HIAA posi-
tively correlated with aggressive behavior [9].

Nevertheless, 5-HT remains as a central modulator of aggressive and violent 
behavior. There are several hypotheses that intend to explain the underlying rela-
tionship between 5-HT and aggressive behavior. One of these states that 5-HT plays 
a modulatory role in the response of both internal and external stimuli [10]. 
Specifically, low levels of 5-HT are associated with impulsive behavior and stimu-
lus response, whereas high levels of 5-HT are associated with behavioral rigidity. 
Another hypothesis, primarily based on 5-HIAA findings, is the “low serotonin syn-
drome”, which is believed to be present in violent or aggressive individuals. Briefly, 
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5-HT plays a role in constrain behavior, thus a decrease in 5-HT is related to 
increased impulsive behavior [11]. Another hypothesis is the “Irritable Aggression 
Model” proposed by Coccaro et al. [12], which consists on a net hyposerotonergic 
state associated with increased irritability, in other words, a lower threshold for 
noxious stimuli response. This theory is based on studies with pharmacological 
challenges, an approach that assess the effects of an acute administration of a sero-
tonergic drug, d,l-fenfluramine, and the related hormonal response (i.e., prolactin 
response) (PRL[d,l-FEN]). These studies found an inverse correlation between 
PRL[d,l-FEN] and irritability and aggressive behavior [13, 14]. This relationship 
was also found in antisocial individuals [15, 16], and substance abusers [17]. This 
theory is further supported by studies showing noxious stimuli to be required for 
aggressive response in a net hyposerotonergic state [18, 19].

A meta-analysis of 171 studies (using 5-HIAA assay, acute tryptophan depletion 
(AID), pharmacologic challenge, and endocrine challenge methods) examining the 
inverse relationship between 5-HT and aggressive behavior found a smaller effect 
size than expected (r = −0.12) [20]. Specifically, pharmacologic challenge studies 
exhibited the largest effect size (r = −0.21), while studies using the 5-HIAA assay 
obtained a non-significant small effect size (r = −0.06). Factors including sex, age, 
psychopathology, history of aggression and type of drug, did not moderate the asso-
ciation between 5-HT and aggressive behavior. These conflicting and null results 
depict a more complex relationship between 5-HT and aggression.

Neuroimaging studies examining neurotransmitter functioning in living patients 
using methods such as positron emission tomography (PET) and pharmacologic 
challenges have allowed a more accurate assessment of the 5-HT system activity 
and functioning in the brain. These studies in subjects with personality disorder 
with impulsivity and aggression have implicated brain regions within the prefrontal 
cortex including orbitofrontal cortex and anterior cingulate cortex (areas known for 
their roles in inhibiting aggressive behavior) showing that deficits in these regions 
may underlie, in part, abnormal 5-HT function [21–23]. Similarly, other studies 
have found abnormal 5-HT synthesis and reuptake in impulsively aggressive indi-
viduals with personality disorders [24, 25]. Taken together, while normal levels of 
5-HT have an inhibitory effect on brain regions involved in aggressive behavior, a 
reduction in 5-HT activity increases aggression [26]. Inhibitory effects of 5-HT on 
aggressive behavior are mediated by 5-HT receptors within the prefrontal cortex, 
which in turn mediates 5-HT signaling in subcortical regions [27].

Genetic factors also are involved in the relationship between 5-HT and aggres-
sive behavior. It is known that genetic factors explain 50–63% of the variance in 
aggressive behavior and several genetic variants that influence aggressive behavior 
have been identified [28, 29]. Monoaminergic genes, including serotonergic genes, 
− identified via unbiased approaches or selected as biological candidates – have 
been extensively studied in relation to aggression-related traits [29, 30]. An appar-
ently unique mutation at the monoamine oxidase A locus (MAOA), which encodes 
an enzyme that catabolizes monoamines (including 5-HT), was associated with 
aggressive behavior in a Dutch kindred [31] after first being localized by genetic 
linkage analysis [32]. Caspi et  al. [33] subsequently reported that carriers of a 
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different low-activity MAOA variant exhibited violent behavior only after exposure 
to moderate or severe levels of child abuse [34]. Sequencing of 5-HT system genes 
in a Finnish population of impulsive individuals revealed association between a stop 
codon in the serotonin 2B receptor gene (HTR2B Q20*) and risk of committing 
violent acts [35]. In a subsequent study, HTR2B Q20* carriers showed aggressive 
behavior, alcohol-related impulsivity, and emotional dysregulation [36]. A more 
recent study integrating human and animal data showed an association between 
HTR2B and aggressive behavior under the influence of cannabis [37]. This link was 
found by using a hypothesis-free approach.

In summary, though some of the literature linking 5-HT and aggressive behavior 
shows conflicting or null results, this may be due to the complexity of the 5-HT 
system and function. This is supported by neuroimaging findings implicating well- 
known brain regions in modulating impulsive behavior, such as the prefrontal cor-
tex, in the underlying connection between 5-HT and aggression. Further, it shows 
an impaired brain 5-HT functioning in impulsively aggressive individuals. Genetic 
studies also show evidence of a link between 5-HT and aggressive behavior by 
identifying 5-HT-related genetic variants in impulsive and aggressive individuals. 
5-HT modulatory effects on behavior are complex and implicate multiple receptor 
subtypes and systems. It is known that 5-HT effects are mediated by at least 14 
receptor subtypes grouped into seven 5-HT receptor families (5-HT1–5-HT7 recep-
tor). In the brain, 5-HT receptors are distributed pre- and post-synaptically and it is 
believed that these different subtypes may exert opposing effects on aggressive 
behavior [38]. In the following, we will focus on the 5-HT2B receptor and will dis-
cuss its role in the modulation of aggressive and impulsive behaviors as well as 
related traits such as drug abuse.

2  Pharmacological and Genetic Aspects of 5-HT2B Receptor

5-HT2B receptor is a member of the G-protein-coupled receptor superfamily 
expressed in various peripheral tissues and the brain, particularly in the frontal cor-
tex, however, at very low levels [39–41]. Though its specific function is unknown, 
its modulatory effect in the brain and peripheral 5-HT system is well-documented. 
HTR2B, a gene encoding for 5-HT2B receptor is located at chromosomal position 
2q36.3-q37.1 and contains 4 exons spanning 17 kb [42]. According to the Genotype- 
Tissue Expression (GTEx) dataset (GTEx Portal, V8 release), a publicly available 
multi-tissue gene expression dataset comprising 17,382 samples from 948 individu-
als, HTR2B transcript is predominantly enriched in endocrine tissues (i.e., adrenal 
gland), muscle tissue (i.e., esophagus), and female tissues (i.e., uterus and cervix) 
(Fig. 17.1). Enrichment is also observed –to a lesser extent- in tissues from the gas-
trointestinal tract, male tissues, gastrointestinal tract, and brain tissue.

Genetic variants at the HTR2B gene have been associated with a variety of traits 
and disorders, implicating both the peripheral and the central nervous system. By 
using GWASATLAS [43], a phenome-wide association study (PheWAS) approach 
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was conducted including data from publicly available Genome-Wide Association 
Studies (GWAS) summary statistics and 600 GWAS based on UK Biobank release 
data (application IDL 16406). This method allows identifying associations between 
HTR2B genetic variants across multiple traits and disorders in a hypothesis-free 
manner. Five domains are significantly associated with HTR2B (Bonferroni cor-
rected p = 2.30 × 10−4): neurological, gastrointestinal, metabolic, body structures, 
and skeletal (Fig.  17.2). This included traits or disorders such as cingulum 

Fig. 17.1 Multi-tissue gene expression patterns of HTR2B in Humans. HTR2B gene expression 
patterns across multiple tissues from human data. Data is shown as RPKM (reads per kilobase 
transcript per million). The data used for the analyses described here were obtained from the GTEx 
Portal (http://www.gtexportal.org/home/) on 04/28/2020. The Genotype-Tissue Expression 
(GTEx) Project was supported by the Common Fund of the Office of the Director of the National 
Institutes of Health, and by NIC, NHGRI, NIDA, NIMH, and NINDS

Fig. 17.2 Phenome-Wide Association Study Plot of HTR2B gene using GWASATLAS. Phenome- 
wide association study (PheWAS) plot is shown for HTR2B gene using data from genome-wide 
association studies (GWAS) 4756 studies. Bonferroni corrected P-value is set at 2.30 × 10−4
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(hippocampus) radial/mean diusivities, diverticular disease, glomerular filtration 
rate, mouth/teeth dental problems, and femoral neck in females, respectively. 
Nominal associations are shown for psychiatric domain, including traits or disor-
ders such as lithium response in Bipolar I patients (p = 6.98 × 10−3), miserableness 
(p  =  8.68  ×  10−3), depression (p  =  1.12  ×  10−2), and alcohol dependence 
(p = 1.36 × 10−2). This study does not include more recent GWAS, such as Montalvo- 
Ortiz et al. [37], that identified a HTR2B genetic variant associated with aggressive 
behavior while under the influence of cannabis and described later in the chapter.

Pharmacological activation of 5-HT2B receptors can increase extracellular 5-HT 
in neurons, showing an excitatory effect on 5-HT activity [44] and a positive regula-
tory role [45, 46]. Activation of 5-HT2B receptors by agonists is known to mimic 
antidepressant action [47] by increasing extracellular 5-HT levels in the dorsal 
raphe neurons. Further, acute and chronic administration of antidepressants can 
stimulate the 5-HT2B receptors in neurons astrocytes, also influencing 5-HT efflux 
[48]. Genetic ablation of these receptors or pharmacologically blocking its action 
can eliminate the acute and long-term effects of antidepressants on behavior and 
neurogenesis [44, 49]. Further, mice lacking the Htr2b gene display a hyposeroto-
nergic phenotype [45]. Specifically, Htr2b−/− mice show reduced tonic firing fre-
quency of dorsal raphe 5-HT neurons and an abolished efficacy of antidepressants. 
Similarly, decreased Htr2b expression in astrocytes is associated with the develop-
ment of depressive-like behaviors in an animal model of Parkinson’s disease [50]. 
Antidepressant administration reversed these effects by increasing Htr2b expres-
sion and decreasing depressive-like behaviors. These findings suggest that the thera-
peutic effects of antidepressants rely on long-term neuroadaptations within the 
5-HT system [51].

3,4-methylene-dioxymethamphetamine (MDMA), commonly referred to as 
‘ecstasy’, can also activate 5-HT2B receptors. Studies on mice have found that 
MDMA can selectively bind and activate 5-HT2B receptors to induce 5-HT efflux in 
the dorsal raphe nucleus [44]. This also leads to dopamine efflux in the nucleus 
accumbens and ventral tegmentum. Further, 5-HT2B receptor agonists can increase 
5-HT transporter (SERT) phosphorylation [52], serving as a positive autoregulator 
of the serotonergic tone in dorsal raphe neurons. A study using 5-HT2B receptor 
antagonist RS127445 shows that 5-HT2B receptors are also located in GABAergic 
interneurons and exert a tonic inhibitory control on the activity of 5-HT neurons 
projecting to the medial prefrontal cortex [53]. This suggests that 5-HT2B receptor 
may play an important role in the modulation of the local, negative-feedback loop 
regulating 5-HT neuronal activity via GABA interneurons.

5-HT is known to also have an important modulatory role on inflammatory 
response. For example, 5-HT modulates the phenotypic and functional polarization 
of macrophages. Activation of 5-HT2B receptors, together with the 5-HT7 receptor, 
contributes to the maintenance of anti-inflammatory response by regulating macro-
phage and pro-inflammatory expression [54]. It inhibits TLR2, TLR3, and TLR7/8- 
induced proinflammatory cytokines and chemokines (TNK-α, IL-6, IL-8, IL-10, 
IL-12) and interferes with the polarization of CD1a+ human dendritic cells [55]. 
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This suggests that 5-HT2B not only acts as a neurotransmitter receptor, but also as an 
important modulator of both innate and adaptive immune responses.

Taken together, genetic studies, both in human and rodents, have allowed under-
standing better the role of HTR2B in the modulation of neuronal and peripheral 
systems. However, dissecting the specific actions and functionality of 5-HT2B recep-
tors has been challenging due, in part, to the lack of specificity of previous pharma-
cological agents targeting the 5-HT2B receptor. The recent development of more 
selective 5-HT2B receptor antagonists (i.e., SB206741) and agonists (i.e., 
BW723C86) can be used to further dissect the functionality 5-HT2B receptor in both 
the neuronal and peripheral systems and its role in the modulation of health 
disorders.

3  The Role of 5-HT2B Receptors in Psychiatric Disorders: 
A Focus on Aggression

Numerous studies have examined the association between psychiatric traits and 
5-HT-related genes, including the HTR2B. The HTR2B gene has been implicated in 
impulsivity [35] and aggressive behavior [37] as well as other psychiatric traits 
including schizophrenia [35], substance abuse [56], personality traits [57], and 
autism spectrum disorders [58].

3.1  Human Studies

Substantial evidence has shown a crucial role of the 5-HT system in the pathogen-
esis of psychiatric disorders [59], where 5-HT2B receptors seem to be an important 
contributor. For example, atypical antipsychotics, a common treatment for schizo-
phrenia, are known to target 5-HT2B receptors including clozapine, amilsulpride, 
asenapine, aripiprazole, or cariprazine [60–63], suggesting a role of 5-HT2B recep-
tors in the pathogenesis of psychotic disorder and related traits.

Bevilacqua et al. [35] is the first study implicating HTR2B in the risk of psy-
chotic disorders, aggressive behavior, drug abuse, and related traits. Sequencing of 
5-HT-system genes in a Finnish population of impulsive individuals revealed asso-
ciation between a stop codon in the HTR2B gene (HTR2B Q20*) and risk of com-
mitting violent acts [35]. These individuals exhibit higher prevalence psychosis, 
early-onset schizophrenia, substance abuse, suicide and depression [35, 64]. In a 
subsequent study, HTR2B Q20* carriers showed increased aggressive behavior, 
alcohol-related impulsivity, emotional dysregulation, and a passive-aggressive per-
sonality structure (i.e., low interest in exploratory activities, anxiety, fear of uncer-
tainty, attachment, or dependence, and low persistence) [36]. Interestingly, 
homozygous for HTR2B Q20* -in males- are born prematurely with a low weight, 
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but with normal development and cognitive abilities. However, they suffer from 
alcohol dependence with an early onset and higher tendency to become physically 
aggressive while under the influence of alcohol [35].

Substance abuse has also been associated with HTR2B gene in a linkage scan 
study of a European American cohort with a history of illegal substance abuse and 
alcoholism (n = 110) [56]. Three single nucleotide polymorphisms (SNPs) mapping 
to the HTR2B region in chromosome 2, two of which result in a double-mutant of 
the 5-HT2B receptor protein, were associated with illicit substance abuse. Another 
linkage study in 105 families also identified several SNP markers around this region 
associated with alcoholism [65]. Further, a genome-scan study of polysubstance 
abuse in 1004 individuals identified SNP marker WIAF-1700 in the same region of 
chromosome 2 [66].

5-HT system-related genes, including HTR2B, have been implicated in the devel-
opment of personality traits and novelty seeking [67], traits related to impulsivity 
and aggressive behavior. A previous study in a Chinese Han population (n = 473) 
examined six HTR2B polymorphisms and its association with behavioral inhibition, 
fun seeking, drive, and reward responsiveness [57]. Four HTR2B polymorphisms 
(rs6437000, rs10194776, rs16827801, and rs1549339) were significantly associated 
with fun seeking after Bonferroni correction. Another study examined the relation-
ship between HTR2B polymorphisms rs10194776 and Q20* identified in previous 
studies [35, 57] and personality traits in healthy Japanese subjects (n = 1334) [68]. 
A nominal association was identified between HTR2B genotype and harm avoid-
ance and self-directedness in females (p = 0.037 and p = 0.043, respectively), how-
ever, these did not survive multiple testing correction. The lack of association may 
be due to the cohort examined (i.e., healthy subjects) and the selected genetic vari-
ants. Studies on cohorts of personality and psychiatric disorders should be evalu-
ated. Further, genome-wide analysis and fine mapping approaches should be 
considered in order to conduct a more comprehensive evaluation of genetic variants 
at HTR2B and other genes.

Another study evaluated the contribution of 80 genetic variants in 15 5-HT genes 
in traits related to autism spectrum disorders (ASD) in a Spanish cohort of children 
and young adults (n = 141) [58]. HTR2B polymorphism (rs10194776) was signifi-
cantly associated with intelligence quotation (IQ). A second HTR2B polymorphism 
rs16827801 was also significantly associated with IQ, but also intellectual disabil-
ity, and language onset delay. These findings suggest a potential role of HTR2B 
polymorphisms in specific traits within ASD, but its relationship with impulsivity- 
or aggression-related traits should be investigated next since these traits where not 
evaluated in this cohort, but are known to be somewhat prevalent in this disorder.

Individuals with Tourette syndrome (TS), manifested by motor and phonic ticks, 
often exhibit increased impulsivity. Dysfunction within the 5-HT system has been 
associated with TS [69]. A previous study examining mutations in the HTR2B gene 
in 132 individuals of European ancestry and 128 Chinese Han failed to identify 
genetic variants associated with TS [70]. Larger studies at the genome-wide level 
are needed to fully test this association.
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3.2  Animal Studies

Mice lacking the Htr2b gene (Htr2b−/−) exhibit hyperactivity to novelty environ-
mental exposure, schizophrenia-like behaviors, including sensorimotor gating, 
selective attention, social interactions, and learning and memory processes [71]. 
These mice also show increased novelty seeking, hyperlocomotion, and high impul-
sivity in the delay discounting task [35, 44]. Further, they show decreased dopamine 
and glutamate neurotransmission in the dorsal striatum. After administration of psy-
chostimulants dizocilpine and amphetamine, Htr2b−/− mice show hyperlocomotion 
and sleep alterations. These schizophrenia-like behaviors are phenocopied in 
Htr2b+/+ mice treated with selective 5-HT2B receptor antagonist, RS127445, and res-
cued after chronic haloperidol treatment.

An animal study mapping quantitative trait loci (QTLs) associated with inter-
male aggression examined 457 males from 55 strains in the resident-intruder para-
digm following 10  days of isolation [72]. They identified a significant QTL on 
chromosome 1 that mapped a gene-sparse region between 82 and 88 Mb with the 
C57BL/6 J allele increasing aggression, measured as the latency to attack and num-
ber of total attacks. This association explained about 18% of the variance observed. 
In this region, Hrt2b gene that encodes the 5-HT2B receptor, is the strongest candi-
date to drive the association with aggressive behavior given its a priori evidence. 
Mutations at the Htr2b gene are also linked to aggressive behavior in other species, 
including pigs [73] and zebrafish [74].

4  5-HT2B Receptor as a Modulator of Aggression 
and Drug Abuse

Aggressive behavior is influenced by a combination of genetic and environmental 
factors, including substance use. A high proportion of all crimes are committed 
under the influence of substances of abuse [75, 76]. Studies in humans and animal 
models have established the relationship between 5-HT2B receptor and aggressive 
behavior and drug abuse. These are observed in many types of drugs of abuse, 
including alcohol, cocaine, cannabis, and methamphetamine.

4.1  Alcohol

Antisocial alcoholic violent offenders show high novelty seeking, harm avoidance 
and reward dependence [76], thus showing that these personality features can pre-
dict risk-behavior under the influence of alcohol. The association between impulsiv-
ity or aggressive behavior and HTR2B is also mediated, in part, by alcohol use. 
Individuals with a HTR2B Q20* under the influence of alcohol exhibit increased 
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risk-taking behaviors; they show frequent aggressive out-bursts and increased 
impulsivity, are arrested for driving under the influence more often, and have a ten-
dency to lose behavioral control [36]. They do not endorse alcohol dependence 
diagnosis, assessed by average alcohol consumption, but have a tendency to lose 
control while under the influence of alcohol [35]. Interestingly, homozygous for 
HTR2B Q20* show an early-onset alcohol dependence and alcohol-related aggres-
sive behavior.

Epigenetic mechanisms also influence the 5-HT system by mediating gene regu-
lation. DNA methylation, one of the most commonly studied epigenetic mecha-
nisms, is altered in genes involved in the 5-HT system. DNA methylation site at 
HTR2B gene shows increased methylation in alcohol dependent individuals of 
European ancestry compared to controls (p < 0.001) [77]. Further, DNA methyla-
tion sites at the HTR2B gene are differentially methylated in whole blood cells from 
individuals with comorbid alcohol and nicotine dependence [78]. This effect was 
population specific: hypomethylation of one CpG site (cg27531267, p = 7.2 × 10−5) 
is observed in African Americans, whereas hypermethylation was observed in 16 
CpG sites (prange = 10−9 – 10−5) in European Americans.

4.2  Cocaine

Cocaine abuse is commonly associated with aggressive behavior in both humans 
and animals. Cocaine addicts show increased frequency of violent acts [79]. These 
effects are partly mediated by the 5-HT system in the brain [80]. In mice, cocaine 
increases locomotor activity and defensive response to a predator [81]. Cocaine- 
induced locomotor activity is doubled in Htr2b−/− mice and after chronic 5-HT2B 
receptor inhibition [82]. In humans, imaging studies have shown that cocaine abus-
ers exhibit a dampened neuronal activity and decreased dopamine efflux in the 
nucleus accumbens [83], part of the brain reward system. Similarly, Htr2b−/− mice 
show a decreased activity in dopaminergic neurons in the nucleus accumbens [84]. 
5-HT2B receptor binding can modulate dopamine efflux in neurons, dampening 
5-HT levels in the nucleus accumbens. Absence of 5-HT2B receptor can mimic the 
neuronal maladaptations observed in drug abusers, thus individuals that carry a 
genetic mutation that disrupts 5-HT2B receptor’s functionality may be more vulner-
able to becoming addicted.

Cocaine and/or crack users exhibit higher levels of impulsivity [85] and a high 
prevalence (20–25%) of comorbid attention deficit hyperactivity disorder (ADHD) 
[86]. These individuals also show a higher motor impulsivity when compared with 
those without ADHD [87]. A recent study in a small cohort of French Afro- 
Caribbean males (n = 140), a polymorphism at HTR2B (rs6736017) was associated 
with crack use disorder [88]. This association seems to be independent of ADHD or 
impulsivity; however, this may be due to lack of power given the small sample size 
of the cohort studied.
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4.3  Cannabis

Cannabis, one of the most widely used drug of abuse worldwide, has been linked to 
increased impulsivity [89] and decreased behavioral inhibition [90, 91]. The rela-
tionship between cannabis use and aggression has been previously established [28, 
92–94]. Studies have found that cannabis use is associated with a seven-fold risk of 
subsequent violent and aggressive behavior [28]. Further, a recent finding from the 
McArthur Risk Assessment study show that continuity of cannabis use is associated 
with increased risk of future violent behavior (n = 1136, OR = 2.44) [94].

A recent GWAS of aggressive behavior under the influence of cannabis identified 
a significant genetic variant mapping to the HTR2B (HTR2B*rs177440378, 
p = 2.16 × 10−8) in an African American cohort (n = 2587) [37]. Figure 17.3a depicts 
a regional Manhattan plot showing the association between HTR2B*rs17440378 
and cannabis-related aggression. HTR2B*rs17440378 also showed nominally sig-
nificant association in the Grady Trauma Project cohort (p = 0.04, n = 89) with 
aggressive behavior in individuals with a lifetime prevalence of cannabis use. The 
risk effect of HTR2B*rs17440378 is specific to cannabis-related aggression and not 
driven by cannabis or drug dependence alone, aggressive behavior, or aggression 
under the influence of other drugs. Further, HTR2B*rs17440378 show important 
functional regulatory effects across several brain regions (e.g., medulla, substantia 
nigra, and putamen) and peripheral tissue.

These findings in humans were validated in an animal model (Fig. 17.3b). Using 
the resident intruder paradigm, a well-known behavioral assay for aggressive 

Fig. 17.3 Association of HTR2B and Cannabis-Related Aggression. (a) In humans, genetic vari-
ants mapping to HTR2B gene are associated with cannabis-related aggression. A regional 
Manhattan plot depicts the genome-wide significant SNPs mapping to HTR2B associated with 
cannabis-related aggression. (b) In mice, aggressive behavior is increased in Htr2b−/− group treated 
with THC, an active component of cannabis, as measured in the resident intruder paradigm. In 
contrast, THC decreases aggression in Htr2b+/+ compared to saline-treated Htr2b+/+ mice. * and 
*** represents p < 0.05 and 0.001, respectively. Adapted from [37]
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behavior, Htr2b−/− mice exhibit increased aggressive responses and decreased social 
interaction [37]. After THC administration, an active component of cannabis, 
Htr2b−/− mice show a greater aggressive response than those receiving saline. 
Interestingly, Htr2b+/+ showed decreased aggressive response after THC when com-
pared to Htr2b+/+ receiving saline. THC administration induces an opposite effect 
on aggressive response as a function of genotype, thus suggesting an important 
modulatory role of HTR2B in aggressive behavior and drug abuse.

Personality traits contribute to the relationship between aggressive behavior and 
cannabis use via genetic factors. By using polygenic risk score (PRS) analysis, a 
genetic overlap was identified between cannabis-related aggression and personality 
traits, specifically extraversion [37]. Higher extraversion is associated with greater 
risk for aggressive behavior under the influence of cannabis. Extraversion is posi-
tively associated with externalizing behavior [95], excitement- and attention- seeking 
behavior, as well as social and interpersonal dysfunction [96].

Additional evidence suggests that endocannabinoids and 5-HT functionally 
interact to modulate physiological and pathological functions in the brain, such as 
food intake, pain, drug addiction, depression, anxiety, and epilepsy [97–100]. 
Previous studies have also found a link between cannabinoid system and 5-HT2B 
receptor. In mice, cannabinoid type 1 receptor (CB1 receptor) impairs 5-HT nega-
tive feedback and alters the expression and functionality of 5-HT2B receptors in 
several brain regions [101]. Further, pharmacological co-activation of CB1 and 
5-HT2B receptors is essential for anti-epileptic effect, while single antagonism of 
either CB1 or 5-HT2B receptor can block it [100]. It is possible that these two recep-
tors may physically interact leading to a heteromer which, when activated, induces 
antiepileptic effects. The potential role of the interaction between the cannabis- 
related signaling and 5-HT needs to be further investigated in the context of aggres-
sive behavior and drug abuse.

4.4  Other Drugs

MDMA, or ‘ecstasy’, has been associated with aggressive behavior, specifically 
with long-term exposure. In mice, MDMA inhibits social behavior in a dose- 
dependent manner (for Review, [102]). Further, in humans, chronic users of MDMA 
exhibit increased aggressive behavior, which may be mediated by MDMA pharma-
cological effects [103]. MDMA selectively binds to and activates 5-HT2B receptors 
in mouse neuronal cells. This induces 5-HT in the raphe nuclei, thus leading to 
dopamine release in the nucleus accumbens and ventral tegmentum [44]. The 
5-HT2B receptor modulates the behavioral and molecular effects of MDMA. Genetic 
ablation or pharmacological inhibition of 5-HT2B receptors in mice can eliminate 
MDMA-induced hyperlocomotion, sensitization, and conditioned place preference 
and 5-HT release [44, 104]. This effect may be mediated by blocking MDMA- 
induced 5-HT outflow in the nucleus accumbens and ventral tegmental area, brain 
regions involved in the brain reward system.
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Psychoactive drugs, such as lysergic acid diethylamide (LSD) and many other 
hallucinogens, are known to act on 5-HT receptors. A recent study revealed a physi-
cal and functional interaction between LSD and 5-HT2B receptors, suggesting a 
major role of this receptor in the modulation of LSD’s psychoactive properties 
[105]. However, its potential role in aggressive behavior and drug abuse remains to 
be elucidated.

5  Conclusion

Evidence from human and animal studies implicate 5-HT in the etiology of psychi-
atric traits, including aggressive behavior and drug abuse. The 5-HT2B receptor, both 
at the protein and gene levels, plays a critical role in the modulation of aggressive 
behavior and related traits. These findings suggest that therapeutic interventions 
targeting these receptors, such as 5-HT2B receptor antagonists, could be useful in the 
treatment of psychiatric disorders and drug addiction. Future studies in animal mod-
els and human clinical studies should focus on the use of selective pharmacological 
agents of 5-HT2B receptor. Human genetic studies using hypothesis-free approaches 
such as GWAS and fine mapping, should investigate the potential role of HTR2B 
genetic variants. Further, Mendelian randomization method could be used to dissect 
the potential causal effects of HTR2B genetic variants in the etiology of psychiatric 
traits and disorders, such as aggressive behavior and drug abuse. These studies will 
enhance our understanding of the mechanisms that underlie psychiatric disorders 
and further dissect the role of the 5-HT2B receptor in the modulation of aggressive 
behavior and related traits.
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1  Introduction

Pioneer investigations have failed to detect the expression of the 5-HT2B receptor in 
the rat brain [1–3], however, more recent studies have provided compelling evi-
dence confirming, albeit at low levels, a broad expression of 5-HT2B mRNA in vari-
ous regions of the human, mouse, and rat brain. These brain regions include the 
dorsal raphe nucleus (DRN) [4–6], ventral tegmental area (VTA) [7], hippocampus, 
locus coeruleus, habenula, paraventricular nucleus of the hypothalamus [4], frontal 
and occipital cortices, and cerebellum [8, 9]. In the mouse VTA, expression of 
5-HT2B receptor mRNA was found in dopamine (DA) mesolimbic neurons project-
ing to the nucleus accumbens shell (NAC shell) [7]. In the DRN, the 5-HT2B recep-
tor mRNA was found in PET1+/TPH2+ 5-HT neurons in mice [9] and in glutamate 
decarboxylase 67 (GAD67)-positive neurons in rats [6] suggesting expression of the 
5-HT2B receptor in GABAergic neurons, although these neurons could be 5-HT 
neurons co-expressing a GABAergic phenotype [10–12]. At a protein level, the 
presence of the 5-HT2B receptors was further confirmed in the frontal cortex, lateral 
septum, medial amygdala, dorsal hypothalamus and cerebellum in rats [13], and in 
the cerebellum, and hippocampus in mice [14]. Functional studies have finally 
revealed a pivotal role of 5-HT2B receptors in the regulation of both 5-HT and DA 
neuron activity and the modulation of the reward system, including in the molecular 
and behavioral responses to psychostimulants such as amphetamine, the amphet-
amine- derivative MDMA, and cocaine [7, 15–20].

2  Role of 5-HT2B Receptors in the Psychostimulant Effects 
of the Club Drug MDMA (Ecstasy)

The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA; 
Ecstasy) is a psychoactive drug that alters sensations and increases energy, empathy, 
and pleasure. As an amphetamine derivative, MDMA binds to, and is a substrate of, 
the membrane serotonin transporter (SERT), which causes an increase in extracel-
lular 5-HT by potent inhibition of 5-HT uptake [21]. In addition, MDMA enters the 
synaptic vesicles and disrupts the activity of the vesicular monoamine transporter 
(VMAT) [22], which causes the depletion of 5-HT storage by reversing VMAT2 
function [23]. This elevates the cytosolic concentration of 5-HT and reverses the 
activity of the SERT [24, 25], resulting in an exocytosis-independent release of 
5-HT from the axon terminals [26]. As genetic ablation of the SERT or its blockade 
by selective serotonin reuptake inhibitors (SSRIs) has been shown to abolish or 
reduce the psychostimulant effects of MDMA in mice and rats, respectively [27–
31], the SERT-mediated release of 5-HT and the subsequent activation of 5-HT 
receptors has been proposed to mediate the behavioral responses to MDMA 
(Fig. 18.1).
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In serotonergic neuronal cells and primary neurons from the DRN, the transport 
of serotonin and the activity of the SERT are regulated by 5-HT2B receptor-induced 
phosphorylations by the protein kinases C (PKC) and G (PKG) [32]. Since the 
mechanism by which amphetamines and amphetamine-derivatives like MDMA 
produce the reverse transport/efflux of 5-HT has been shown to be mediated, at least 
in part, by PKC-dependent phosphorylations of the SERT N-terminus [33–39], it 
has been hypothesized that 5-HT2B receptor could also regulate MDMA-induced 
efflux of 5-HT.  In addition, at recreational doses, MDMA and its metabolite 
3,4-methylenedioxyamphetamine (MDA) preferentially bind to and activate the 
human 5-HT2B receptor [40]. This suggests that the behavioral effect of MDMA 
may be mediated, at least in part, by the stimulation of 5-HT2B receptors. Indeed, the 
essential contribution of the 5-HT2B receptors to the psychostimulant effects of 
MDMA (10 mg/kg) was further confirmed with mice genetically ablated for the 
5-HT2B receptor (Htr2b−/−) or WT mice pretreated with the selective 5-HT2B antago-
nist RS127445 (0.5 mg/kg, i.p.) showing an absence of MDMA-induced hyperloco-
motion [16], locomotor sensitization and conditioned place preference [15]. These 
findings are likely due to the abolition of MDMA-induced extracellular release of 
5-HT in the VTA and NAC, and release of DA in the NAC [16], accompanied by an 
absence of MDMA-induced ERK1/2 phosphorylation in D1 receptor-containing 

Fig. 18.1 Role of 5-HT2B receptors in the effects of MDMA. (a) The 5-HT2B receptors located in 
the DR 5-HT neurons (mice) positively modulate 5-HT release in the VTA and NAC in response 
to MDMA (10 mg/kg), resulting in a positive control of DA release in the NAC and the production 
of psychostimulant effects. The psychostimulant effects of higher doses of MDMA are indepen-
dent of 5-HT2B receptor signaling. In rats, 5-HT2B receptors may be located in DR GAD67 inter-
neurons, but their contribution to the psychostimulant effects of MDMA is uncertain. (b) MDMA 
binds to the SERT, is transported into the cytosol of 5-HT terminals and then transported into the 
synaptic vesicles through the VMAT2, where it chases 5-HT out of the vesicles and triggers a 
reverse transport mechanism by the SERT to release 5-HT in the synaptic cleft. The mechanism by 
which the 5-HT2B receptor controls MDMA-induced 5-HT release is uncertain but could involve 
the regulation of VMAT2, SERT function or vesicular release, following direct (MDMA) or indi-
rect (5-HT) stimulation
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striatonigral medium-sized spiny neurons (MSNs) of the NAC shell [15]. Although 
these results suggest a pivotal role of the stimulation of 5-HT2B receptors located on 
raphe 5-HT neurons in mediating MDMA-induced 5-HT (and DA) release and the 
subsequent psychostimulant and reinforcing effects of MDMA (10 mg/kg, i.p.) [15, 
16], it is likely that a higher dose of MDMA (30 mg/kg, i.p.) acts independently of 
5-HT2B receptor activation to produce its effects (Fig. 18.1).

The detection of 5-HT2B receptor mRNA expression in the raphe nuclei of WT 
mice supports the idea that the 5-HT2B receptor may exert its control on 5-HT release 
at a presynaptic level. In line with this, the contribution of 5-HT2B receptors to 
MDMA-induced 5-HT release was demonstrated in vitro in superfused midbrain 
synaptosome preparations [16]. In vivo, reverse microdialysis experiments in the 
raphe nuclei further revealed that the stimulation of the 5-HT2B receptor by the pref-
erential agonist BW723C86 produces an increase in 5-HT extracellular levels, 
which was blocked by the pretreatment with the selective 5-HT2B receptor antago-
nist RS127445 [16]. Using a conditional knock-out mouse model in which 5-HT2B 
receptors were genetically ablated from PET1-dependent 5-HT neurons, more 
recent work from our group not only confirmed the requirement of 5-HT2B receptors 
located in 5-HT neurons to elicit MDMA-induced hyperlocomotion and locomotor 
sensitization, but further revealed that the 5-HT2B receptor exerts a positive auto-
regulation of PET1-dependent 5-HT neuron firing activity, likely by counteracting 
5-HT1A-negative autoreceptor action [17, 41]. While there is evidence to suggest 
that 5-HT2B receptors regulate the exocytic 5-HT release, as shown for the antide-
pressant and neurogenic responses to SSRIs [5, 17, 42], the exact mechanism by 
which 5-HT2B receptors control MDMA-induced 5-HT release is not fully under-
stood, and a concomitant modulation of MDMA-induced non-exocytotic/carrier- 
mediated 5-HT release by 5-HT2B receptors cannot be ruled out in mice.

There are limited studies investigating the role of 5-HT2B receptors in response to 
MDMA in rats. In synaptosomal preparations from whole brain minus caudate 
nucleus, MDMA-induced 5-HT release was unaffected by 5-HT2B receptor activa-
tion by the preferential agonist BW783C86, or by its inhibition by the selective 
antagonist SB204741 [43]. Similarly, pretreatment with the 5-HT2C/2B antagonist 
SB-206553 (2 mg/kg) prior to MDMA (5 mg/kg) had no effect on MDMA-induced 
hyperlocomotion or increased striatal activity [44]. A possible explanation could be 
that in the rat DRN expression of the 5-HT2B receptor has been observed in GAD-67- 
expressing neurons, where it exerts an inhibitory control on DR 5-HT neurons [6]. 
GAD-67 is the enzyme that produces GABA from glutamate, and therefore, its 
expression is attributed to GABAergic neurons, suggesting that the 5-HT2B receptor 
is expressed in rat raphe GABAergic interneurons [6]. However, there is evidence to 
show that a subset of DR 5-HT neurons co-express tryptophan hydroxylase 2 
(TPH2) and GAD-67, in mice [45] and rats [10, 46]. Therefore, it is possible that 
Cathala et  al., [6] have detected the 5-HT2B receptor mRNA in GAD-67+/5-HT+ 
neurons rather than true GABA interneurons. Hence, whether this absence of effect 
of the manipulation of 5-HT2B receptor activity on MDMA-induced 5-HT release in 
rats underlies true interspecies differences in 5-HT2B receptor localization/function 
or rather relies on methodological variations needs to be further investigated 
(Fig. 18.1).
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3  Role of 5-HT2B Receptors in the Psychostimulant Effects 
of Amphetamine

Unlike MDMA that primarily modulates 5-HT neurotransmission by preferentially 
targeting the SERT, amphetamine preferentially acts on the DA transporter (DAT) 
to modulate DA neuron function in the dorsal and ventral striatum in a similar man-
ner (for review, see  [47]). Pioneer microdialysis studies in halothane- or chloral 
hydrate-anesthetized rats have revealed that blockade of the 5-HT2B/2C receptors by 
the non-selective antagonist SB 206553 (5 mg/kg i.p.) potentiates basal DA outflow 
in the striatum and NAC [48–51] and this 5-HT2B/2C-dependent potentiation of basal 
DA outflow was confirmed in awake rats [52]. Amphetamine (2 mg/kg i.p.)-induced 
increase in DA release in the nucleus accumbens and striatum was however not 
affected [51].

Later, using more selective antagonists, the same group identified that the 5-HT2B 
receptor modulates basal and amphetamine-stimulated DA outflow in ventral stria-
tum (nucleus accumbens, NAC shell) but not in dorsal striatum of halothane- 
anesthetized rats [19]. In this study, the pharmacological blockade of 5-HT2B 
receptor function by the selective antagonists LY266097 (0.63  mg/kg, i.p.) and 
RS127445 (0.16 mg/kg, i.p.) reduced the extracellular levels of DA in the NAc, up 
to 2 h after the injection, while stimulation of 5-HT2B receptors by the preferential 
agonist BW723C86 (3 mg/kg, s.c.) had no effect [19]. This suggests that the 5-HT2B 
receptor exerts a tonic facilitatory control on basal DA release. As a result, pretreat-
ment with LY266097 (0.63 mg/kg, i.p.) prior to amphetamine significantly decreased 
DA release in the NAC induced by amphetamine (0.5 mg/kg, i.p.), and reduced the 
hyperlocomotion elicited by amphetamine (1  mg/kg, i.p.) [19], suggesting that 
5-HT2B receptor signaling positively modulates amphetamine-induced DA release 
in the NAC, as well as the subsequent amphetamine-induced hyperlocomotion 
(Fig. 18.2).

However, opposite effects on amphetamine-induced hyperlocomotion were 
found in mice genetically ablated for the 5-HT2B receptor gene (Htr2b−/− mice), with 
an increased locomotor hyperactivity observed after amphetamine exposure (3 mg/
kg, i.p.—unpublished data) and 10 mg/kg, i.p. [18], as compared to wildtype (WT) 
littermate controls. In addition, following re-exposure to amphetamine (3 mg/kg, 
i.p.), 7 days after the first exposure, Htr2b−/− mice did not show any locomotor sen-
sitization (unpublished data). Unlike data in rats, these results rather support that 
5-HT2B receptor signaling exerts a negative modulation on amphetamine-induced 
hyperlocomotion in mice [18]. Since amphetamine-induced hyperlocomotion has 
been strongly correlated with the level of extracellular release of DA in the NAC 
shell [53], it is likely that 5-HT2B receptors contribute in the negative regulation of 
DA signaling in the NAC shell. However, further investigations are needed to deter-
mine whether the negative modulatory role played by 5-HT2B receptors on 
amphetamine- induced hyperlocomotion is accompanied by negative control of DA 
release in the NAC or the striatum in mice (Fig. 18.2). Although rats and mice stud-
ies have revealed  fundamental discrepancies regarding the positive vs. negative 
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modulatory role potentially played by 5-HT2B receptors on amphetamine-stimulated 
hyperlocomotion, it is likely that the 5-HT2B receptors are somehow involved in the 
regulation of dopaminergic neurotransmission in both mouse and rat brain reward 
pathway [54].

4  Role of 5-HT2B Receptors in the Psychostimulant 
and Rewarding Effects of Cocaine

Cocaine binds with similar affinity to the DAT, SERT and noradrenaline transporter 
(NET) and blocks the reuptake of these monoamines. While the contribution of the 
5-HT2 receptors, notably the 5-HT2A/2C receptors, has been well established (for 
review see [55]), there is a limited number of studies demonstrating the involvement 
of the 5-HT2B receptors in the psychostimulant and rewarding effects of cocaine.

In rats, pioneer pharmacological studies have failed to identify the involvement 
of 5-HT2B receptors in the discriminative stimulus effects of cocaine [56] but have 
suggested a role for 5-HT2B receptors in cocaine-induced hyperlocomotion [57]. 
Pretreatment with lower doses of the 5-HT2B/2C receptor antagonist SB206553 (1 
and 2 mg/kg, i.p.) reduced, while a higher dose (4 mg/kg, i.p.) increased cocaine- 
induced hyperactivity. The increased cocaine-induced hyperlocomotion following 

Fig. 18.2 Role of 5-HT2B receptors in the effects of amphetamines. (a) Opposite effects have been 
observed in mice and rats. In mice, the 5-HT2B receptor negatively modulates the psychostimulant 
effects of amphetamine. The cellular localization (5-HT and DA neuron or terminals) of the 5-HT2B 
receptors involved in these effects as well as their role in the regulation of DA neurotransmission 
are unknown. In rats, 5-HT2B receptors, likely located onto DA terminals in the NAC, positively 
modulate the psychostimulant effects of amphetamine and the concomitant release of DA in the 
NAC shell. (b) Similar to the 5-HT release produced by MDMA, amphetamine increased the 
release of DA onto the MSNs in the NAC shell via reverse transport of DA through the DAT. In 
both mice and rats, the exact localization and role of 5-HT2B receptors in the modulation of 
amphetamine-induced DA release remain to be characterized
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higher doses of SB206553 pretreatment is likely due to the blockade of 5-HT2C 
receptor activity [58–60] and the subsequent potentiation of cocaine-induced release 
of dopamine in the NAC and striatum [48, 61], however, the decrease in cocaine- 
induced hyperlocomotion produced by lower doses of SB206553 could be mediated 
by blockade of 5-HT2B receptors. In line with this, pretreatment with the selective 
5-HT2B receptor antagonists RS127445 (0.16 mg/kg, i.p.) and LY266097 (0.63 mg/
kg, i.p.), reduces cocaine (10 mg/kg, i.p.)-induced hyperlocomotion [20]. Although 
pharmacological blockade of 5-HT2B receptor function reduces the basal extracel-
lular release in the NAC shell, it appears that the reduction in hyperlocomotion was 
independent of an alteration in cocaine-induced DA release in the NAC shell, core 
or dorsal striatum [20]. Instead, 5-HT2B receptor-mediated reduction of cocaine- 
induced hyperlocomotion seems to occur downstream to DA neurons. Indeed, 
5-HT2B blockade by RS127445 (0.16 mg/kg, i.p.) also reduces the late-onset hyper-
locomotion induced by the dopamine D2 receptor agonist quinpirole (0.5 mg/kg, 
s.c.) [20], a dose known to elicit hyperlocomotion [62, 63], independently of 
changes in NAC DA outflow [64], supposedly via its action on postsynaptic D2 
receptors [65]. These results therefore suggest that in rats, besides its positive regu-
lation of basal and stimulated DA outflow in the NAC shell, the 5-HT2B receptor 
might exert part of its positive modulatory role on cocaine-induced hyperlocomo-
tion by modulation D2-containing postsynaptic neurons in the dorsal and/or ventral 
striatum [20]. This could however result from an indirect action involving the mod-
ulation of 5-HT neurotransmission/5-HT transport [32] by 5-HT2B receptors located 
in the terminals of DR 5-HT neurons. Indeed, the blockade of the 5-HT2B receptor- 
mediated positive autoregulation of 5-HT neuron activity would result in a decreased 
serotonergic tone [17], similarly to the stimulation of 5-HT1A autoreceptors by low 
doses of the agonist 8-OH-DPAT (0.2–0.3  mg/kg, i.p.), which has been demon-
strated to eliminate cocaine-induced hyperlocomotion in rats [66, 67] without 
affecting cocaine-induced DA turnover in the NAC. Further studies are however 
warranted to clarify the exact location and function of 5-HT2B receptors in the mod-
ulation of the psychostimulant effects of cocaine in rats (Fig. 18.3).

Again, an opposite effect has been observed in mice, with 5-HT2B receptors 
exerting a negative modulation of cocaine-induced hyperlocomotion. Mice geneti-
cally ablated for the 5-HT2B receptors (Htr2b−/−) hence display an increased hyper-
locomotion and locomotor sensitization following cocaine (7.5, 15 and 20 mg/kg, 
i.p.) [7]. Interestingly, the increased hyperlocomotor effects of cocaine (15 mg/kg, 
i.p.) were not mimicked by acute pharmacological blockade with the 5-HT2B antag-
onist RS127445 (0.5 mg/kg, i.p.) or the 5-HT2B/2C antagonist SB206553 (3 mg/kg, 
i.p.), but were reproduced by a chronic 4 week-treatment with RS127445 (1 mg/kg/
day), suggesting that enhanced locomotor response and sensitization to cocaine is 
due to long-term neuroadaptations resulting from genetic/developmental (Htr2b−/−) 
or sustained pharmacological (4 weeks) ablation of 5-HT2B receptors [7]. Similar to 
the aforementioned findings in rats showing a dissociation between cocaine-induced 
locomotor activity and changes in DA release in the NAC shell, mice lacking the 
5-HT2B receptors display an increased cocaine-induced hyperlocomotion with abol-
ished cocaine-induced DA-release but unaltered 5-HT-release, in the NAC shell [7]. 
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As a result, cocaine-induced ERK1/2 phosphorylation within MSNs, a marker of 
DA-dependent D1-receptor stimulation and an essential component of signaling 
pathways underlying the long-term behavioral effects of drugs of abuse [68], was 
markedly reduced in the NAC shell of Htr2b−/− mice, although D1-dependent 
hyperlocomotion and locomotor sensitization are upregulated in these mice, with no 
change in D1 protein expression, receptor binding or G-protein coupling [7]. This 
result corroborates the idea that the locomotor and reinforcing effects of psycho-
stimulants are not exclusively mediated by DA neurotransmission in the NAC shell. 
Conversely, the reduction of DA neurons sensitivity to substances of abuse follow-
ing repeated exposures is the hallmark of addiction, and therefore suggests that 
Htr2b−/− mice display a phenotype similar to cocaine-exposed animals [7]. This was 
further evidenced by an enhanced inhibitory effect of cocaine on VTA DA neuron 
firing, accompanied by increased AMPA to NMDA receptor-mediated current ratio 
in these mice, which suggests that 5-HT2B receptors act as an important factor for 
the prevention of drug-evoked synaptic plasticity [7] (Fig. 18.3).

Unlike the presynaptic 5-HT2B receptor-dependent psychostimulant effect of low 
dose of MDMA (10 mg/kg) [17], the increased psychostimulant effects of cocaine 

Fig. 18.3 Role of 5-HT2B receptors in the effects of cocaine. (a) Distinct involvements of mouse 
and rat 5-HT2B receptors in the psychostimulants effects of cocaine and the concomitant DA 
release in the NAC shell. In mice, 5-HT2B receptors located in mesolimbic DA neurons projecting 
to the NAC shell, either in VTA cell bodies or axon terminals in the NAC, negatively regulate the 
psychostimulants effects of cocaine, but positively modulate cocaine induced-DA release in the 
NAC shell. In rats, the 5-HT2B receptors, located on DA terminals or downstream to DA neurons, 
do not modulate cocaine-induced DA release in the NAC shell but positively modulate the psycho-
stimulant effects of cocaine. (b) Cocaine produces an extracellular release of DA onto the MSNs 
of the NAC by blocking the reuptake function of the DAT. The 5-HT2B receptor located in DA 
neurons positively modulates the release of DA in the NAC shell by a mechanism that remains to 
be described, but negatively modulates cocaine psychostimulant effects (mice). In rats, the 5-HT2B 
receptor positively modulate the psychostimulant effects of cocaine independently of any modula-
tion of DA release. Therefore, a contribution of 5-HT2B receptors located downstream to DA neu-
rotransmission in the psychostimulant effects of cocaine cannot be ruled out
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in Htr2b−/− mice is likely due to the absence of postsynaptic 5-HT2B receptors 
located in mesolimbic DA neurons projecting to the NAC shell. Indeed, a similar 
increase in cocaine-induced hyperlocomotion and locomotor sensitization was 
observed in a conditional knockout mouse model where 5-HT2B heteroreceptors 
receptors were selectively ablated in DAT-expressing DA neurons [7] (Fig. 18.3), 
which was unaffected by conditional ablation of 5-HT2B autoreceptors in 
PET1+-5-HT neurons (unpublished data).

Similar to the response to amphetamine, studies of the role of 5-HT2B receptors 
in the psychostimulant effects of cocaine has yielded conflicting results between 
mice and rats. Although this could be due to the experimental design between stud-
ies, in which the 5-HT2B receptor was targeted acutely (rats) or chronically/geneti-
cally (mice), further studies are needed to elucidate the role played by 5-HT2B 
receptors in the psychostimulant effects of cocaine.

5  Conclusion

The role of brain 5-HT2B receptors in the locomotor and reinforcing effects of psy-
chostimulant remains controversial between mice and rats and therefore is still 
poorly understood. In mice, it appears that 5-HT2B receptors are involved in the 
control of both 5-HT and DA ascending pathway neurotransmission. Studies from 
knockout and conditional knockout mice have demonstrated that presynaptic 5-HT2B 
receptors located in DRN 5-HT neurons exert a facilitatory action on 5-HT and DA 
release, hyperlocomotion and locomotor sensitization in response to 5-HTergic psy-
chostimulants such as MDMA, but postsynaptic 5-HT2B receptors, likely located on 
DA mesolimbic neurons projecting to the NAC shell, exert an inhibitory action on 
DA release, hyperlocomotion and locomotor sensitization in response to DAergic 
psychostimulants such amphetamine and cocaine. In rats, however, it appears that 
5-HT2B receptors play only a minor role in the psychostimulant response to MDMA, 
but on the other hand facilitate the basal and amphetamine-stimulated (but not 
cocaine-stimulated) release of DA in the NAC shell and hyperlocomotion in 
response to both amphetamine and cocaine. Such opposite effects between mice and 
rats are striking and could underlie profound interspecies differences in the expres-
sion/function of the 5-HT2B receptors, hence making it difficult to devise new phar-
macotherapeutics to either inhibit or activate the 5-HT2B receptors as treatment for 
psychostimulant addiction. Further studies are required to determine the role of 
5-HT2B receptors (facilitation or inhibition) in the reinforcing effects of psycho-
stimulants in humans.

Impulsivity or lack of inhibitory control is a hallmark of addictive and relapsing 
behaviors, especially in subjects with a history of dependence to psychostimulants 
(for recent review see [69]). In both mice and humans, loss of 5-HT2B receptor func-
tion produces impulsive behaviors [8, 9], suggesting that 5-HT2B agonists might 
represent an effective treatment for psychostimulant abuse and relapse. However, 
drugs stimulating the 5-HT2B receptor are known to elicit cardiac valvulopathy and 
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pulmonary hypertension [40, 70–75], which exclude their use as a therapeutic 
strategy.

Since the 5-HT2B and 5-HT1A receptors seem to play a bidirectional regulatory 
function, at least in mouse DRN 5-HT neurons, the aforementioned interspecies 
differences could be similar to those observed in the 5-HT1A receptor localization 
and function between mice and rats. For instance, stimulation of 5-HT1A receptor 
with agonists is known to elicit hypothermia in both mice and rats, however, this 
effect seems to be mediated by presynaptic 5-HT1A autoreceptors in mice and 
humans, and by postsynaptic 5-HT1A heteroreceptors in rats, therefore supporting 
the idea interspecies differences may exist at a 5-HT receptors level. In line with 
this, the 5-HT2B receptor has been localized in DRN 5-HT neurons in mice but pro-
posed to be located on DRN GABA interneurons in rats. While this could explain 
some of the observed differences, further investigation is warranted to elucidate 
whether the observed differences in 5-HT2B receptor-mediated regulation of 5-HT 
and DA neurotransmission results from methodological or interspecies variations. 
Unlike the studies in mice, microdialysis data in rats were principally collected in 
halothane-anesthetized animals, which has been shown to enhance DA metabolism 
[76], alter D2 autoreceptor signaling [77] and compete with cocaine binding sites 
[78], which ultimately leads to the potentiation of the effects of DAT blockers and 
amphetamine-derivatives on extracellular DA levels [79, 80]. This suggests that the 
observed differences might be the result of a combination of methodological and 
interspecies factors, and therefore highlights the need to perform more comprehen-
sive comparative studies between mice and rats prior to proposing 5-HT2B-targeting 
therapeutics for the treatment of psychostimulant addiction.
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Abbreviations

5-HT Serotonin
5-HT2BR 5-HT2B receptor
APD Antipsychotic drug
CNS Central nervous system
DA Dopamine
DRN Dorsal raphe nucleus
EPS Extrapyramidal side effects
FC Frontal cortex
MDMA 3,4-methylendioxymethamphetamine
mPFC Medial prefrontal cortex
NAc Nucleus accumbens
NOR Novel object recognition
PCP Phencyclidine
VTA Ventral tegmental area

1  Introduction

The serotonin 2B receptor (5-HT2BR) is the most recent addition to the 5-HT2R fam-
ily, which also comprises the 5-HT2AR and the 5-HT2CR subtypes [1]. Formerly 
called 5-HT2FR, the 5-HT2BR belongs to the seven transmembrane spanning recep-
tor superfamily commonly referred to as G-protein-coupled receptors. It was first 
cloned and characterized in the rat stomach fundus [2, 3], then in mice [4] and in 
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humans [5–7]. It has been shown to be present in various peripheral tissues in both 
rodents and humans, where it participates in the regulation of several physiological 
functions such as the gastrointestinal, the vascular, the pulmonary, the cardiac and 
the immune ones, for review, see [8]. In 1997, a few years after its cloning, the 
5-HT2BR was shown to be localized also in the mammalian brain. 
Immunohistochemistry studies assessing 5-HT2BR protein expression in the rat 
brain demonstrated its presence in the frontal cortex (FC), the cerebellum, the lat-
eral septum, the dorsal hypothalamus and the medial amygdala [9]. Subsequent 
investigations showed that 5-HT2BR mRNA is expressed in additional rat brain 
regions such as the dorsal raphe nucleus (DRN), the locus coeruleus, the cerebel-
lum, the habenula, the hippocampus and the hypothalamic paraventricular nucleus 
[10]. In humans, 5-HT2BR mRNA was detected in the whole brain, and in particular 
in the cerebellum, the occipital cortex and the FC [5, 11]. Recent studies in mice 
have provided information about the cellular localization of 5-HT2BRs within the 
central nervous system (CNS), this issue remaining relatively unexplored in rats [8]. 
Thus, 5-HT2BRs have been shown to be expressed in primary astrocyte cultures 
from the neocortex [12], in 5-HT transporter-expressing primary neurons from 
embryonic raphe nuclei [13], in 5-HT neurons of raphe nuclei [14], in post-natal 
microglia [15], and in a subpopulation of ventral tegmental area (VTA) DA neurons 
innervating the nucleus accumbens (NAc) shell subregion [16].

With respect to the peripheral 5-HT2BR, its functional role within the CNS has 
received much less attention until recently. Indeed, the first studies assessing the 
role of the central 5-HT2BR on dopamine (DA) ascending pathway activity reported 
that the 5-HT2BR agonist BW 723C86 and the 5-HT2BR antagonist SB 204741 had 
no effect on DA neuron firing or on basal DA outflow in the FC, the NAc and the 
striatum [17, 18]. These negative findings, along with the risk of agonist-induced 
side effects related to heart-valve pathogenesis [19, 20], probably led to the discon-
tinued use of 5-HT2BR compounds in drug research and development when studying 
the central 5-HT system, and, in particular, the 5-HT/DA interaction within the 
CNS. Indeed, it was not until 2008 that the pivotal article by Maroteaux and co- 
workers showed that the central 5-HT2BR participates in both the neurochemical and 
behavioral effect of 3,4-methylendioxymethamphetamine (MDMA) in mice [21]. 
They showed that selective pharmacological blockade with RS 127445 or genetic 
ablation of the 5-HT2BR reverses MDMA-increased DA outflow in the NAc and 
5-HT outflow in the NAc and the VTA, as well as MDMA-induced hyperlocomo-
tion [21]. Subsequently, over the last decade and thanks to the development and 
availability of potent and high affinity 5-HT2BR antagonists such as LY 266097 and 
RS 127445 [8, 22, 23], a growing number of studies have confirmed the key role of 
the central 5-HT2BR in the control of DA and 5-HT neuron activity, and have high-
lighted its potential as a new pharmacological target for treating several neuropsy-
chiatric disorders such as schizophrenia, depression and drug addiction [8, 14, 
16, 24–30].

The present chapter provides an overview of the role of the 5-HT2BR in the control 
of ascending DA pathway activity, covering neurochemical, electrophysiological 
and behavioral data mainly obtained from in vivo studies in the rat. After discussing 
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the role of 5-HT2BRs in controlling the release of DA in the medial prefrontal cortex 
(mPFC), the NAc and the striatum, we describe recent neurochemical and molecu-
lar findings providing the anatomo-functional basis underlying the effects of 
5-HT2BR antagonists on the activity of the mesocorticolimbic DA system. Finally, 
we present some behavioral data adding functional evidence for the therapeutic 
potential of 5-HT2BR antagonists in the treatment of schizophrenia.

2  The Central 5-HT2BR and DA Ascending Pathways

2.1  Regulation of DA Neuron Activity: In Vivo Neurochemical 
and Electrophysiological Data

Compelling in  vivo biochemical and electrophysiological data demonstrate that, 
unlike 5-HT2BR agonists [8, 17, 18, 24], 5-HT2BR antagonists modulate DA ascend-
ing pathway activity in a differential manner. Thus, both the 5-HT2BR antagonists 
RS 127445 and LY 266097 increase and decrease DA outflow in the mPFC and the 
shell subregion of the NAc, respectively, but do not modify DA outflow in the stria-
tum or in the core subregion of the NAc [24–26]. In line with these results, electro-
physiological findings have shown that selective blockade of 5-HT2BRs has no effect 
at the level of the substantia nigra pars compacta but decreases the firing rate of DA 
neurons in the VTA, presumably those projecting to the shell subregion of the NAc 
[26]. Based on these findings which provide additional support for the insensitivity 
of the nigrostriatal DA pathway to 5-HT2BR modulation, it is tempting to hypothe-
size that 5-HT2BR antagonism reduces accumbal DA outflow via an inhibitory mod-
ulation of mesoaccumbal DA neuronal firing. Nevertheless, as discussed elsewhere 
[26], in keeping with the cellular heterogeneity of the VTA [31–34], further studies 
are needed to identify DA neurons projecting to the NAc or to the mPFC. Altogether, 
these findings demonstrate that 5-HT2BRs independently control the activity of the 
three ascending DA pathways by specifically providing tonic excitatory and inhibi-
tory controls on NAc and mPFC DA outflow, respectively, and no effect in the stria-
tum (Fig. 19.1).

This conclusion contrasts with that offered by the first studies assessing the effect 
of this receptor on DA neuron activity and reporting that 5-HT2BR blockade has no 
effect on DA ascending pathway activity [17, 18]. As discussed elsewhere [8], the 
use of high doses of non-selective 5-HT2B compounds as well as some methodologi-
cal drawbacks could be responsible for the discrepancies observed.

During recent years, much attention has been devoted to identifying the mecha-
nisms and the anatomo-functional basis underlying the modulatory control exerted 
by 5-HT2BRs on the mesocorticolimbic DA system. Interestingly, it has been dem-
onstrated that the opposite effect of 5-HT2BR antagonists on mPFC and NAc shell 
DA outflow involves a functional interplay between 5-HT2BRs and 5-HT1ARs located 
in the DRN and in the mPFC, respectively (Fig. 19.2). By increasing cortical 5-HT 
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outflow, intra-DRN 5-HT2BR blockade triggers the stimulation of 5-HT1ARs located 
on mPFC GABAergic interneurons [35], thereby leading to the activation of pyra-
midal glutamatergic neurons [36] which drive opposite changes of mPFC and NAc 
DA outflow through direct or indirect interactions with VTA DA neurons [27, 37]. 
The involvement of these polysynaptic cortical-subcortical pathways is supported 
by the finding that the opposite change of mPFC and NAc DA outflow induced by 
the intra-DRN administration of RS 127445 is suppressed by the intra-mPFC perfu-
sion of the selective 5-HT1AR antagonist WAY 100635 [27]. These results provide 
the first evidence for a functional role of a specific 5-HT2BR population in the regu-
latory control of DA neuron activity, and show that the DRN is a key brain region 
driving the 5-HT2BR-DA system interaction.

Subsequent investigations exploring the mechanisms underlying the facilitatory 
effect of 5-HT2BR antagonists on DRN 5-HT neurons innervating the mPFC dem-
onstrated that 5-HT2BRs, in the rat DRN exert a GABA-mediated tonic inhibitory 
control on 5-HT neurons [38], (Fig. 19.2). This conclusion is supported by several 
compelling findings. First, it has been shown that intra-DRN perfusion of the 
GABAAR antagonist bicuculline prevents the increase in DRN and mPFC 5-HT 
outflow induced by intra-DRN administration of RS 127445 [38]. These results 
confirm and extend previous observations that peripheral administration of RS 
127445 increases the firing rate of DRN 5-HT neurons and 5-HT outflow in the 
mPFC [27]. Second, the increase in DRN 5-HT outflow induced by the local admin-
istration of the selective 5-HT reuptake inhibitor citalopram is potentiated by the 
intra-DRN administration of RS 127445 only in the absence of bicuculline perfusion 
into the DRN [38]. Third, in agreement with the above-mentioned in vivo neuro-
chemical findings, in vitro experiments coupling immunohistochemistry to reverse 
transcription-polymerase chain reaction revealed the presence of 5-HT2BR mRNA 
on DRN GABAergic interneurons [38].While confirming the DRN as the main site 
of action of 5-HT2BR antagonists, these results provide the first evidence for the 

Fig. 19.1 Differential control exerted by central serotonin 2B receptors (5-HT2BRs) on the activity 
of ascending dopamine (DA) pathways. They exert a tonic inhibitory control on DA outflow in the 
medial prefrontal cortex (mPFC), a tonic excitatory control on DA outflow in the nucleus accum-
bens (NAc), but have no effect at the level of the striatum (Str), for details see [26]
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location of the 5-HT2BR in a specific cell population in the rat brain, and demon-
strate its role in controlling the local negative-feedback loop regulating DRN 5-HT 
neuron activity via GABA interneurons (see Fig. 19.2), [38–41]. Of note, among the 
different 5-HTRs located on DRN GABA interneurons (5-HT2AR, 5-HT2CR and 
5-HT1AR) and participating in the local control of 5-HT neurons [39–41], the 
5-HT2BR is the only one providing a tonic control on 5-HT neurons [38]. From a 
functional point of view, these findings provide additional information on the mech-
anisms subsuming the effect of 5-HT2BR antagonists on the mesocorticolimbic DA 
system, which has been shown to result from their ability to increase the activity of 
DRN 5-HT neurons projecting to the mPFC [27]. However, these data contrast with 
recent findings in mice showing that 5-HT2BRs are located on 5-HT neurons and exert 
a direct positive control on 5-HT neuron activity [42]. As discussed elsewhere 
[8, 38], these discrepant findings may result from species related anatomo-func-
tional differences, so additional comparative studies between rats and mice are 
required to identify possible differences in the brain cellular distribution of the 
5-HT2BR.

Fig. 19.2 Putative neuronal circuits involved in the opposite effect of serotonin 2B receptor 
(5-HT2BR) antagonists on dopamine (DA) outflow in the medial prefrontal cortex (mPFC) and the 
nucleus accumbens (NAc). In the dorsal raphe nucleus (DRN), in addition to the autoinhibitory 
control exerted by somatodendritic 5-HT1A autoreceptors, 5-HT neurons are regulated by a local 
negative-feedback circuit involving GABA interneurons. The 5-HT2BR is expressed on these 
GABA interneurons, together with other post-synaptic 5-HTRs (5-HT1AR, 5-HT2AR and 5-HT2CR), 
and provides a tonic inhibitory control on 5-HT cells innervating the mPFC via GABAARs. The 
5-HT1AR is expressed in the mPFC by GABA interneurons and pyramidal glutamatergic (Glu) 
neurons innervating the ventral tegmental area (VTA). In the VTA, Glu afferencies arising from 
mPFC Glu neurons provide a direct excitatory and GABA-mediated inhibitory control on the 
mesocortical and mesoaccumbal DA ascending pathways, respectively. Thus, by reducing GABA 
inhibitory tone, blockade of DRN 5-HT2BRs leads to increased activity of 5-HT neurons and con-
sequently to increased 5-HT outflow in the DRN and the mPFC. Increased mPFC 5-HT outflow 
could trigger the stimulation of 5-HT1ARs expressed by local GABA interneurons. Subsequent 
disinhibition of mPFC Glu neurons innervating the VTA could respectively stimulate and inhibit 
the activity of the mesocortical and the mesoaccumbal DA pathways, thereby leading to increased 
and decreased DA outflow in the mPFC and the NAc, respectively, for details see [26, 27, 38]
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2.2  5-HT2BR Antagonists: Behavioral Data and Therapeutic 
Potential for the Treatment of Schizophrenia

Altogether, the neurochemical findings discussed above indicate that 5-HT2BR 
antagonists may provide a useful pharmacological tool for treating neuropsychiatric 
disorders requiring the independent control of ascending DA pathways. In this con-
text, schizophrenia is an emblematic mental illness that could benefit from 5-HT2BR 
antagonist treatment. It is characterized by three main groups of symptoms: positive 
(i.e. hallucinations, delusions), negative (i.e. social interaction deficits, blunted 
affect) and cognitive (i.e. working and reference memory deficits, executive func-
tion impairments, decreased vigilance) [43–45]. This multimodal symptomatology 
is classically related to an imbalance in central DA neurotransmission: positive 
symptoms are thought to result from DA hyperfunction in the NAc, whereas nega-
tive and cognitive symptoms might involve DA hypofunction in the FC [45, 46]. 
The pharmacological treatment of schizophrenia is based on the use of DA-D2 
receptor antagonists classified as typical and atypical antipsychotic drugs (APDs) 
[43]. Although effective in controlling positive symptoms, typical APD such as 
haloperidol and chlorpromazine are responsible for the occurrence of extrapyrami-
dal side effects (EPS) due to altered striatal DA activity [43, 47]. On the other hand, 
atypical APDs, of which clozapine is the prototype, display a wider therapeutic 
spectrum covering positive, negative and cognitive symptoms with a limited pro-
pensity to induce EPS [43, 44].

Thus, given their unique DAergic profile of effects, 5-HT2BR antagonists should 
be able to improve all the symptoms of schizophrenia without inducing EPS by 
restoring normal DA function. This hypothesis has been demonstrated by recent 
studies in rats assessing their effectiveness in different DA-dependent behavioral 
models classically used to predict the ability of APDs to alleviate positive [hyperlo-
comotion induced by the non-competitive N-methyl-D-aspartate receptor antago-
nist phencyclidine (PCP)] and cognitive [PCP-induced deficit in novel object 
recognition (NOR) test] symptoms of schizophrenia, as well as their propensity to 
induce EPS (catalepsy test), [45]. These behavioral tests are known to be related to 
increased, reduced and altered DA function in the NAc, the mPFC and the striatum, 
respectively [47–49]. Thus, in line with their differential effects on DA outflow in 
these brain regions, the 5-HT2BR antagonists RS 127445 and LY 266097 have been 
shown to reduce the hyperlocomotion induced by PCP [26]. This result is consistent 
with previous findings showing that 5-HT2BR blockade reduces amphetamine- 
induced hyperlocomotion [24], another behavioral model used to investigate the 
potential of APDs to restore normal accumbal DA function [45]. Furthermore, both 
5-HT2BR antagonists were able to reverse PCP-induced NOR deficit to a similar 
extent as clozapine [26]. Finally, unlike haloperidol, neither RS 127445 nor LY 
266097 produced a cataleptic state [26].

These findings providing additional support for the therapeutic relevance of 
5-HT2BR antagonists for treating schizophrenia suggest that these compounds could 
represent a new class of atypical APDs, given their ideal profile of effects expected 

A. Cathala and U. Spampinato



329

to alleviate cognitive and positive symptoms, without eliciting EPS [8, 26]. However, 
as discussed elsewhere [8, 26], this proposal has to be confirmed, so additional 
investigations are required to profile the acute or chronic effects of 5-HT2BR antago-
nists in a palette of other experimental conditions predictive of therapeutic efficacy 
or side effects [45, 50]. Their involvement in metabolism, body mass and diabetic 
disorders, commonly referred to as “metabolic syndrome” [43, 45], as well as their 
ability to alleviate the negative symptoms of schizophrenia deserve dedicated 
studies.

In addition to the therapeutic potential of 5-HT2BR antagonists per se, 5-HT2BRs 
could contribute to the therapeutic benefit of atypical APDs, many of which 
(clozapine, amisulpride, asenapine, aripiprazole, cariprazine) display antagonist 
properties at the 5-HT2BR [51–55] and the DA-D2R, together with partial agonist 
properties towards the 5-HT1AR [45, 56]. This hypothesis is supported by the ability 
of 5-HT2BR blockade to potentiate and decrease haloperidol-induced DA outflow in 
the mPFC and the NAc, respectively [24, 26], together with the functional role of 
5-HT1AR stimulation in the 5-HT2BR-mediated control of DA outflow [27].

Importantly, these conclusions pointing to the potential of 5-HT2BR antagonists 
for treating schizophrenia diverge from those offered by studies in mice showing 
that genetic ablation of 5-HT2BRs generate an antipsychotic-sensitive schizophrenic- 
like phenotype [29]. As discussed elsewhere [8, 26], in keeping with the role of 
5-HT2BRs in brain maturation [15], developmental neural adaptations triggered by 
the permanent suppression of this receptor as well as species-related anatomo- 
functional differences may account for these divergences. Nonetheless, although 
additional investigations are warranted to clarify this issue, these findings support 
the role of 5-HT2BRs in the neurobiology and/or improved treatment of schizophrenia.

3  Conclusions and Perspectives

In conclusion, this chapter provides an updated overview of the important advances 
in the understanding of the physiological role of the central 5-HT2BR in the control 
of DA ascending pathways and the anatomo-functional basis underlying this inter-
action. Specifically, the findings reported herein identify the DRN as a major site of 
action for the 5-HT2BR-dependent control of DA and 5-HT neuron activity. First, the 
differential control exerted by 5-HT2BR antagonists on the mesocorticolimbic DA 
system takes place in the DRN and involves complex polysynaptic cortico- 
subcortical pathways driven by a functional interplay between DRN 5-HT2BRs and 
mPFC 5-HT1ARs [27]. Second, in the DRN, 5-HT2BRs are located on GABA inter-
neurons and exert a tonic inhibitory control on 5-HT neurons projecting to the 
mPFC by participating in the control of the local negative-feedback loop regulating 
5-HT neuron activity [38].

From a clinical point of view and in keeping with their unique profile of effects 
on DA network, the data reported here highlight the therapeutic potential of 5-HT2BR 
antagonists for the treatment of schizophrenia, a major neuropsychiatric disorder 
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whose optimal treatment requires the independent control of ascending DA 
pathways [8, 44, 45].

Additional experiments are warranted to obtain a deeper insight into the patho-
physiological role of the 5-HT2BR in the mammalian brain, and to verify the extent 
to which the contrasting findings observed between rats and mice are related to 
anatomo-physiological differences between species and/or to brain development- 
related factors. In addition, further investigations in a larger palette of experimental 
conditions including long-term treatments are mandatory to confirm the therapeutic 
potential of 5-HT2BR antagonists for treating schizophrenia [8, 45]. In this context, 
investigations in advanced genetic models such as conditional 5-HT2BR knock-out 
animals should be pursued. Finally, these data reported in this chapter provide 
additional knowledge about the regulation of ascending DA pathways by the central 
5-HT system, and highlight the legitimacy of 5-HT2BRs as key modulators of the 
activity of the central DA network.
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VTA Ventral tegmental area
WT Wild type

1  Atypical Antipsychotic Drugs and the 5-HT2B Receptor

The therapeutic effects of antipsychotic drugs have long been attributed to their 
ability to modulate the dopaminergic system, most notably their antagonistic prop-
erties at dopamine 2 (D2) receptors [1]. However, the atypical antipsychotics have 
a complex pharmacology, with many displaying a high affinity for serotonin 
(5-hydroxytryptamine; 5-HT) receptors, as well as dopamine (DA) receptors [2]. 
While DA receptor antagonism is still considered important for  the therapeutic 
properties of atypical antipsychotics, antagonistic (Ant), partial agonistic (PA), and 
even inverse agonistic  (IA) properties of these drugs at 5-HT receptors has been 
proposed as an additional mechanism for antipsychotic drug action. Further, these 
actions on the serotonergic system and reduced D2 receptor antagonism most likely 
contribute to the reduced potential for atypical antipsychotics to induce adverse 
extrapyramidal symptoms [3]. However, the complex pharmacology of these drugs 
is also associated with increased incidence of metabolic side effects, such as weight 
gain and cardiovascular disease [4]. The 5-HT1A, 5-HT2A, and 5-HT2C receptor sub-
types have primarily been associated with antipsychotic action, however many of 
these drugs also display high affinity for 5-HT2B receptors. Thus, a potential role of 
5-HT2B receptor modulation in the therapeutic action of atypical antipsychotic drugs 
has been proposed. Atypical antipsychotics currently in clinical use that exhibit 
affinity (either antagonistic or inverse agonistic) at 5-HT2B receptors, include: clo-
zapine, aripiprazole, cariprazine, amisulpride, brexpiprazole and asenapine. The 
binding affinity and action of these drugs on clinically relevant receptors has been 
recently reviewed [4, 5] (Table 20.1).

Clozapine is considered to be the prototypical atypical antipsychotic and is often 
used as a benchmark for new drugs due to its therapeutic efficacy and absence of 
motor side effects [6]. Indeed, clozapine exhibits a high antagonistic affinity for the 
5-HT2B receptor, in fact more so than for DA receptors. Amisulpride and asenapine 

Table 20.1 Affinity (Ki, nM) and action of atypical antipsychotics on schizophrenia-relevant 
serotonin receptors, as reported in [7, 29–35]. Ant: antagonist; Ag: agonist; PA partial agonist, IA 
inverse agonist

5-HT1A 5-HT2A 5-HT2B 5-HT2C

Asenapine 2.5 (Ag) 0.07 (Ant) 0.16 (Ant) 0.03 (Ant)
Aripiprazole 5.6 (Ag) 22 (Ag) 0.4 (IA) 76 (Ag)
Cariprazine 3 (Ag) 19 (Ant) 0.58 (Ant) 134 (Ant)
Brexpiprazole 0.12 (PA) 0.47 (Ant) 1.9 (Ant) N/A
Clozapine 124 (Ag) 22 (Ant) 10 (Ant) 13 (Ant)
Amisulpride >10,000 8304 13 (Ant) >10,000
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are also antagonistic to both DA receptors and the 5-HT2B receptor, with asenapine 
having greater 5-HT2B receptor affinity than amisulpride [4, 5, 7]. Finally, aripipra-
zole, brexpiprazole, and cariprazine all display unique drug profiles compared to 
other antipsychotic drugs [8–10]. These drugs display antagonistic actions on 
5-HT2B receptors, although they possess agonistic properties at DA receptors. In 
conclusion, atypical antipsychotics bind to many targets, including the 5-HT2B 
receptor in many cases. Due to the complex pharmacology of these drugs, it is dif-
ficult to elucidate exactly what actions are at the core of their antipsychotic action. 
However, given that many of these drugs display affinity for the 5-HT2B receptor, 
it can be theorized that this receptor subtype may play a unique role in both their 
antipsychotic drug action and in the neurobiology of schizophrenia.

2  Genetic Ablation of the 5-HT2B Receptor Results 
in a Schizophrenic-Like Phenotype in Mice

Psychomotor agitation in response to psychostimulants is linked to  the positive 
symptoms of schizophrenia, as it is characterized by hyperactivity and stereotypic 
movements [11]. In rodent models of schizophrenia, hyperactivity is assessed with 
behavioral tests that evaluate spontaneous and drug-induced locomotor activity. 
Indeed, spontaneous locomotor hyperactivity in response to a novel environment is 
observed in many genetic and neurodevelopmental rodent models of schizophrenia 
[12]. Further, this locomotor hyperactivity is often enhanced upon administration of 
psychostimulant drugs that target the dopaminergic and the glutamatergic systems, 
such as amphetamines, dizocilpine (MK-801), ketamine, and phencyclidine (PCP). 
Indeed, these drugs are known to induce psychosis in schizophrenic patients and to 
induce schizophrenic-like symptoms in  healthy individuals [13]. However, it is 
important to note that locomotor hyperactivity is not unique to schizophrenia, but 
rather implicated in a wide variety of neuropsychiatric disorders such as bipolar 
disorder and attention-deficit hyperactivity disorder (ADHD).

The prepusle inhibition (PPI) of the startle reflex is typically considered an oper-
ational measure of sensorimotor gating, and its deficit has been reported in schizo-
phrenic patients and in relevant animal models. Our studies have shown that 
constitutive deletion of the 5-HT2B receptor in mice (5-HT2B receptor KO) results in 
a global deficit in sensorimotor gating, as reflected by a decreased PPI of the startle 
reflex [14]. Moreover, 5-HT2B receptor KO mice display prominent hyperactivity 
when placed into a novel environment [14, 15]. Specifically, we have reported that 
genetic ablation of 5-HT2B receptor results in spontaneous locomotor hyperactivity, 
as assessed in a circular corridor with infrared beams placed at every 90°; further-
more, 5-HT2B receptor KO mice presented enhanced locomotor response to psycho-
stimulant drugs, namely the D1 agonist SKF 81297 [15], amphetamine, and the 
NMDA receptor antagonist dizocilpine [14].
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Asociality is a prominent negative symptom of schizophrenia. Further, social 
behavior in rodent models of this disorder is directly relatable to that seen in human 
patients. Indeed, it has been shown that both genetic and psychostimulant-based 
pharmacological models of schizophrenia exhibit impaired social function in a vari-
ety of behavioral paradigms [16]. Most of these tests quantify social behavior as 
number of contacts or time spent interacting with a juvenile or adult conspecific. We 
recently assessed social behavior in 5-HT2B receptor KO mice by using a 
3- compartmental sociability test that assesses preference for the interaction with a 
novel social stimulus versus an asocial stimulus (i.e., empty compartment) [14]. In 
this study, it was reported that the 5-HT2B receptor KO mice showed no preference 
for the social stimulus, as they spent equal time interacting with the empty compart-
ment as with an adult conspecific. Further, when a novel mouse was placed in the 
previously empty compartment, the 5-HT2B receptor KO mice had no preference for 
the novel social stimulus, indicating impaired social memory [14]. Together, these 
findings support the notion that genetic ablation of 5-HT2B receptor is associated not 
only with positive, but also with negative symptoms of schizophrenia.

Cognitive symptoms, including learning and memory deficits, represent the third 
widely recognized cluster of schizophrenic symptoms. Indeed, rodent models of 
schizophrenia recapitulate cognitive deficits observed in the human disorder. 
Interestingly, 5-HT2B receptor KO mice were shown to exhibit cognitive deficits in 
the novel object recognition (NOR) and the fear conditioning tasks. The NOR task is 
a widely used learning and memory test in mice; it is conducted in an open field 
arena, in which mice are allowed to explore two identical objects during a learning 
(i.e., acquisition) session. Next, in the retention session, a novel object is presented 
to the mouse along with the familiar object, and time spent interacting with each 
object is recorded. Our studies showed that 5-HT2B receptor KO mice exhibited 
lower preference for the novel object at both 1 h and 24 h after the learning session, 
indicating impaired short- and long-term object recognition memory [14]. Further, 
5-HT2B receptor KO mice exhibited an impairment in fear learning assessed in the 
fear conditioning task. In this test, mice are typically placed in a novel environment 
and exposed to an auditory tone (i.e., cue), accompanied by a painful foot shock. 
After this learning session, the mouse is placed back into the environment, and freez-
ing response to the environment (i.e., context) and the cue were recorded. Indeed, 
5-HT2B receptor KO mice exhibited a decreased fear response to both the context and 
the cue, indicating an impairment in fear learning and memory [14]. An extension of 
this fear conditioning is the latent inhibition paradigm. In this assessment, mice are 
first pre-exposed to the environment without a foot shock in order to learn that the 
environment is safe. Following this initial exposure, mice undergo the same fear 
conditioning procedure as mentioned before. In the latent inhibition assessment, 
5-HT2B receptor KO mice were unable to remember that the environment was previ-
ously safe, evidenced by no difference in freezing time between the pre-exposed and 
non-pre-exposed groups [14]. These data suggest that constitutive loss of 5-HT2B 
receptor function in mice impairs learning and memory processes, echoing the cog-
nitive symptoms observed in human patients suffering from schizophrenia.

Impulsivity is defined as action without foresight and is heavily associated with 
a variety of neuropsychiatric disorders, including schizophrenia. Indeed, impulsive 
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behaviors are observed in rodent models for this disorder. Bevilacqua et  al. [15] 
reported increased novelty seeking and impulsivity in the 5-HT2B receptor KO mice 
in three behavioral paradigms, namely: exposure to a novel object, novelty sup-
pressed feeding (NSF) test, and the delay discounting test. During exposure to a 
novel object, an unfamiliar object was placed in the home cage of each mouse. The 
number of contacts with this object is a direct indicator of the novelty seeking activ-
ity of the mouse; 5-HT2B receptor KO mice initiated contacts with the novel object 
more frequently than their WT counterparts, suggesting that these mice are novelty 
seekers. In the NSF paradigm, mice are deprived of food for 12h, and then placed 
into a novel environment with a single food pellet in the center. The latency to feed 
is then recorded; a higher latency to feed indicates increased anxiety, whereas a 
decreased latency to feed indicates anxiolysis and increased novelty seeking behav-
ior. Bevilacqua et al. [15] reported decreased latency to feed in 5-HT2B receptor KO 
mice, an indication that these mice display lower levels of anxiety accompanied by 
increased novelty seeking. Lastly, the delay discounting test was used to assess 
impulsivity in response to a rewarding stimulus. This was conducted in a computer- 
controlled operant chamber with two holes with infrared beams that respond to a 
nose poke from the mouse. One hole presents a small food reward, while the other 
presents a large food reward. After the mice are habituated to this system and learn 
to use it (~10 days), the testing phase (~7 days) is commenced. In this phase, both 
rewards start with no delay from nose poke to reward. Naturally, the mouse will 
exhibit a preference to the large reward. However, during each day of the testing 
phase the delay for the large reward is increased. As the delay for the large reward 
increases, the mouse will lose preference for it, eventually showing a preference for 
the short-delay reward over the long-delay, large reward. Impulsivity is indicated 
when a mouse develops a preference for the short delay reward sooner. Indeed, in 
this assessment, 5-HT2B receptor KO mice developed a preference for the short- 
delay reward more quickly than did WTs, indicating that global loss of 5-HT2B 
receptor function is associated with impulsive behavior [15].

Taken together, findings from these studies support a critical neurodevelopmen-
tal role for the 5-HT2B receptor. Specifically, genetic ablation of this receptor results 
in many behavioral alterations observed in other animal models of schizophrenia. 
These include spontaneous and psychostimulant-induced locomotor hyperactivity, 
asociality, impaired short-term and long-term memory, impaired social and fear 
learning, and increased novelty seeking and impulsivity. These behavioral symp-
toms represent a schizophrenia-like phenotype comprised of positive, negative, and 
cognitive symptoms clinically observed in patients suffering from this disorder.

3  Pharmacological Ablation of 5-HT2B Receptor in Rats

Devroye et al. [17] have also conducted psychopharmacological studies using the 
5-HT2B receptor antagonists RS127445 and LY266097 to further investigate how 
impaired function of this receptor may be associated with psychotic states in rats. 
Using chronic PCP administration to induce psychosis in rats, the therapeutic 
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potential of RS127445 and LY266097 was assessed in three behavioral paradigms: 
locomotor hyperactivity in response to PCP, the NOR test, and the catalepsy test. 
These behaviors represent the positive and cognitive symptoms of schizophrenia, 
and the potential for antipsychotics to induce adverse effects, respectively. 
Interestingly, neither RS127445 nor LY266097 affected distance travelled when 
administered alone, however both were able to abolish PCP-induced hyperactivity. 
This finding suggests that RS127445 and LY266097 have therapeutic potential for 
the positive symptoms of schizophrenia. Next, the potential of RS127445 and 
LY266097 to ameliorate short-term memory deficits induced by PCP administration 
was assessed in the NOR test. Indeed, rats that had received chronic PCP treatment 
were unable to discriminate the novel object from the familiar one. However, PCP-
treated rats administered a single dose of RS127445, LY266097, or the atypical 
antipsychotic clozapine, exhibited a near-complete rescue of short-term object rec-
ognition memory. This indicated that both RS127445 and LY266097 have the 
potential to ameliorate learning and memory deficits seen in schizophrenia patients. 
Finally, the ability of RS127445 and LY266097 to induce extrapyramidal symptoms 
(EPS; e.g., irregular, jerky movements and muscle spasms and rigidity) was 
assessed. To assess the potential of RS127445 and LY266097 to produce these 
adverse effects, the catalepsy test was performed. In this paradigm, rats were posi-
tioned with their forelimbs on a 9-cm tall wooden block and hindlimbs on the floor 
of the testing arena, and the time elapsed before the animal dismounted from this 
block was recorded. A large time elapsed before dismount indicates that the drug in 
question has the tendency to induce EPS-like adverse effects. Indeed, in rats treated 
with the typical antipsychotic drug haloperidol a much larger time elapsed before 
dismount in the test, as compared to vehicle (VEH)-treated animals. Interestingly, 
neither RS127445 nor LY266097 significantly affected the time before dismount as 
compared to vehicle. This would suggest that 5-HT2B receptor antagonism induces 
less adverse effects than typical antipsychotics and could be a safer alternative to 
medications currently in use. The behavioral studies conducted by Devroye et al. 
[17] show some therapeutic promise in 5-HT2B receptor antagonists in the treatment 
of schizophrenia. Indeed, such drugs could have the potential to ameliorate positive 
symptoms of psychosis and cognitive deficits, without the ability to produce adverse 
symptoms such as EPS.  However, additional neurobehavioral assessments 
are needed to fully understand their therapeutic and adverse effects.

4  A Role for the 5-HT2B Receptor in Sleep Architecture

Disruption of circadian rhythmicity is a symptom shared by many neuropsychiatric 
disorders, including schizophrenia as well as bipolar disorder and major depressive 
disorders [18]. Sleep architecture in rodents is typically assessed with electroen-
cephalography (EEG)-based polysomnography. Specifically, EEG distinguishes 
sleep states by measuring electrical oscillatory activity of neurons in broad cortical 
areas. From these oscillations and muscle electrical activity (electromyography, 
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EMG), three major distinct vigilance states can be identified: wakefulness, non- 
rapid- eye-movement sleep (NREM), and rapid-eye-movement (REM) sleep. 
Indeed, schizophrenia patients  may exhibit insomnia and fragmented sleep [19]. 
Further, as sleep has been shown to be critical to memory consolidation these sleep 
disturbances may likely contribute to the cognitive deficits seen in schizophrenia 
[20]. Considering the behavioral and neurochemical schizophrenia-like phenotypes 
observed in 5-HT2B receptor KO mice and the role of sleep in schizophrenia, EEG- 
based polysomnography was used to investigate disturbances in the sleep architec-
ture due to genetic ablation of the 5-HT2B receptor in mice. Duration of wakefulness, 
NREM, and REM were all assessed over a 48h period. Interestingly, 5-HT2B recep-
tor KO mice had reduced total sleep duration and reduced NREM duration as com-
pared to wild type (WT; control) mice, however REM sleep duration was unaffected 
[14]. These differences were most pronounced at the end of the dark cycle and the 
onset of the light period. Interestingly, the sleep disturbances observed were anti-
psychotic drug-sensitive as these were abolished by 4-week chronic oral haloperi-
dol administration. Notably, reduced latency to REM sleep has been reported in 
patients suffering from schizophrenia and mood disorders [21]; 5-HT2B receptor KO 
mice also exhibited reduced latency to REM sleep, defined as the time elapsed from 
the beginning of a bout of sleep after the animal had been awakened, to the first 
incident of REM sleep [14]. Overall, genetic ablation of the 5-HT2B receptor in mice 
results in antipsychotic-sensitive schizophrenia-like sleep disturbances. This further 
supports a potential neurodevelopmental role for the 5-HT2B receptor in schizophre-
nia pathogenesis.

5  5-HT2B Receptor and Schizophrenia: Clinical Evidence

In addition to their behavioral studies in mice, Bevilacqua et  al. [15] have also 
shown that the 5-HT2B receptor gene is implicated in severe impulsivity and related 
neuropsychiatric disorders in humans, including schizophrenia. In this study, sev-
eral candidate genes related to  the serotonergic and dopaminergic neurochemical 
systems were screened in two Finnish populations of violent offenders and healthy 
subjects free of psychiatric diagnoses. A stop codon mutation in the 5-HT2B receptor 
gene (HTR2B Q20*), which renders the receptor nonfunctional, was found to co- 
segregate with impulsivity-related disorders, such as antisocial personality disorder 
and alcohol use disorder. This clinical finding was supported by behavioral data in 
the 5-HT2B receptor KO mice [15]. Moreover, individuals with at least one immedi-
ate family member diagnosed with schizophrenia were found to be numerically 
more likely to be heterozygote carriers of this mutation. These findings further sug-
gest that 5-HT2B receptor genetic impairment contributes to schizophrenia and 
impulsivity-related neuropsychiatric disorders. Lastly, this study employed the digit 
span test to assess working memory in the same Finnish population. This is a simple 
test in which participants see or hear a sequence of digits and are asked to recall 
them in forward or reverse order. Recall of longer sequences requires superior 
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working memory capacity. Interestingly, male carriers of this mutation scored lower 
on this test as compared to non-carriers, however there was no difference between 
female carriers and non-carriers. This supports previously mentioned behavioral 
data in mice suggesting that genetic disruption of the 5-HT2B receptor impairs mem-
ory function [14]. Interestingly, testosterone levels in the cerebrospinal fluid (CSF) 
were found to be elevated in Q20* mutation carriers as compared to non-carriers, 
and plasma testosterone was found to be elevated in 5-HT2B receptor KO mice. This 
suggests a role of 5-HT2B receptor function in stress axis and testosterone produc-
tion as a mechanism for the observed impulsive phenotype, although more research 
is needed to confirm this.

Interestingly, a recent study has also identified the 5-HT2B receptor gene as a 
potential neurodevelopmental risk gene in schizophrenia [22]. Using RNA-Seq, 
transcriptomic analysis was undertaken on cultured neural progenitor cells derived 
from the olfactory epithelium (CNON cells) in adult patients suffering from schizo-
phrenia and healthy control subjects. Interestingly, CNON cells are actively prolif-
erating and differentiating and have a gene expression profile most similar to the 
second trimester fetal brain, a critical period in the development of schizophrenia. 
Thus, these CNON cells represent a practical way to study cellular and molecular 
abnormalities associated with schizophrenia in the developing human central ner-
vous system. In this analysis, 53 genes were found to be differentially expressed in 
CNON cells between schizophrenia patients and healthy control subjects. Among 
these genes is the HTR2B gene, which was found to be expressed slightly higher in 
individuals with schizophrenia. Further, this difference was found to be driven by 
African American individuals; when separating the African American cohort, there 
was no significant difference in non-African American schizophrenic patients ver-
sus healthy control groups. Taken together, these studies provide evidence that 
altered function of the 5-HT2B receptor in humans may play a role the development 
of schizophrenia or related neuropsychiatric disorders, although more research is 
needed to elucidate this.

6  Role of the 5-HT2B Receptor in Regulating the Brain’s 
Neurochemistry: Ex Vivo and In Vivo 
Neurochemical Studies

In addition to the behavioral abnormalities observed in 5-HT2B receptor KO mice, 
we have reported several neurochemical alterations that accompany the genetic 
ablation of the 5-HT2B receptor [14]. Currently, two major neurochemical hypothe-
ses exist to explain how symptoms arise from brain dysfunction in schizophrenia; 
these hypotheses revolve around the brain’s dopaminergic and glutamatergic sys-
tems. The dopamine hypothesis suggests that two dopamine pathways are disrupted 
in schizophrenia, both originating in the ventral tegmental area (VTA) of the brain. 
The mesolimbic pathway is comprised of dopaminergic VTA neurons that innervate 
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the nucleus accumbens (NAc), located in the ventral striatum  (STR), while the 
mesocortical pathway is comprised of dopaminergic VTA neurons that project to 
the prefrontal cortex (PFC). In schizophrenia, excess dopaminergic activity in the 
mesolimbic pathway is thought to underlie positive symptoms, whereas deficient 
dopaminergic activity in the mesocortical pathway is believed to underlie negative 
and cognitive symptoms [23]. Indeed, dopaminergic dysfunction is well character-
ized in established animal models of the disorder [24]. We have implemented high 
performance liquid chromatography (HPLC) to assess total neurotransmitter con-
tent in schizophrenia-relevant brain regions in 5-HT2B receptor KO mice ex vivo. 
Specifically, decreased DA levels were observed in the dorsal STR of 5-HT2B recep-
tor KO mice, as opposed to WT mice, but no differences were observed in the 
PFC. Interestingly, chronic haloperidol treatment for 4 weeks with the typical anti-
psychotic and D2 receptor antagonist haloperidol, reversed this neurochemical stri-
atal deficit. In addition, decreased striatal levels of DA were accompanied by 
decreased expression of the D2 receptor mRNA in this brain region using quantita-
tive polymerase chain reaction (qPCR); this molecular alteration was also rescued 
by chronic haloperidol treatment [14]. The other prevailing neurochemical hypoth-
esis for schizophrenia suggests that symptoms arise from dysfunction of the gluta-
matergic system. Specifically, N-methyl-D-aspartate receptor (NMDAR) 
hypofunction has been proposed as a central mechanism for this disorder. 
Theoretically, impaired NMDAR function in cortical glutamatergic neurons results 
in an impaired sensory filter and dysregulation of the mesolimbic and mesocortical 
dopamine pathways, resulting in schizophrenia pathology [25]. This is supported by 
observations of psychoactive NMDAR antagonist  drugs such as PCP and ket-
amine  to induce psychotic states when administered to humans [26]. Further, 
chronic PCP and ketamine administration is a widely used model of schizophrenia 
in rodents. Thus, altered glutamatergic neurotransmission is viewed as central to the 
development of schizophrenic symptoms. Interestingly, in our study, we reported 
reduced glutamate in the striatum of 5-HT2B receptor KO mice, which is abolished 
by chronic administration of haloperidol [14]. Taken together, these ex vivo neuro-
chemical findings suggest that constitutive loss of 5-HT2B receptor function results 
in dopaminergic and glutamatergic dysfunction, presumably contributing to the 
observed schizophrenia-like behavioral phenotype.

In addition to these ex  vivo neurochemical studies, Auclair et  al. [27] and 
Devroye et al. [17] have conducted in vivo microdialysis studies in rats to investi-
gate the role of the 5-HT2B receptor in schizophrenia-relevant dopaminergic path-
ways. As symptoms of schizophrenia are hypothesized to arise due to dysregulated 
DA pathways in the brain, possible control over these pathways by 5-HT2B receptor 
modulation is of particular interest. In the in vivo brain microdialysis technique, a 
probe containing a semi-permeable membrane connected to a two-way fluidics sys-
tem is implanted into a specific brain region of interest in the rodent. Artificial cere-
brospinal fluid (CSF) is pumped through the system and into the probe, where small 
molecule neurotransmitters will diffuse through the probe and out of the fluidics 
system to be collected and analyzed. In this set-up, drugs can be administered 
through peripheral administration (intraperitoneally, i.p., or subcutaneously, s.c.) or 
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through the microdialysis probe into a specific brain region, in the case of reverse 
dialysis. Auclair et al. [27] have conducted microdialysis studies in rats on 5-HT2B 
receptor control over the dopaminergic system. In this study, the 5-HT2B receptor 
antagonists RS127445 and LY266097, along with the agonist BW723C86 and 
inverse agonist SB206553, were used to assess 5-HT2B receptor control over DA 
outflow in the NAc and STR. In agreement with Devroye et al. [28], this study found 
that peripheral administration of RS127445 and LY266097 (0.16  mg/kg and 
0.63 mg/kg, i.p., respectively) decreased DA outflow in the NAc, but have no effect 
in the dorsal STR. Interestingly, the 5-HT2B receptor agonist BW723C86 (3 mg/kg, 
s.c.) had no effect on either of these brain regions. Next, the interplay of antagonist 
LY266097 and inverse agonist SB206553 was assessed. When given alone, 
SB206553 (5  mg/kg, i.p.) significantly increased both striatal and accumbal DA 
outflow. Interestingly, when LY266097 and SB206553 were administered in con-
cert, a significant reduction of SB-induced DA outflow was observed in the NAc, 
but not the STR. A similar effect was observed upon co-administration of LY266097 
and the typical antipsychotic haloperidol. Indeed, LY266097 was able to rescue 
haloperidol-induced DA outflow in the NAc, but not in the STR.  Further, when 
5-HT2B receptor agonist BW723C86 and haloperidol were administered in concert, 
BW723C86 had no effect on DA outflow in the STR nor the NAc in either vehicle 
or haloperidol-treated rats. Finally, the effect on LY266097 to reduce amphetamine- 
induced DA outflow in both the STR and NAc was assessed. Indeed, LY266097 
again partially rescued amphetamine induced DA outflow in the NAc, but not the 
STR. In order to better understand this neurochemical finding, Auclair et al. [27] 
also assessed the effect of locomotor activity in rats. Indeed, it was also found that 
LY266097 partially rescued amphetamine-induced hyperactivity.

Devroye et al. [17] further investigated 5-HT2B receptor control over the dopami-
nergic system, specifically in the mPFC in addition to the STR and NAc. Antagonists 
RS127445 and LY266097 were used to assess the effects of pharmacologic ablation 
of this receptor in rats. Microdialysis probes were placed in the NAc, STR, and 
mPFC and dialysates were collected and analyzed upon i.p. administration of saline, 
RS 127445 (0.08 and 0.16 mg/kg) and LY266097 (0.16 and 0.63 mg/kg) and ana-
lyzed with HPLC. In that study, it was reported that the high dose (0.16 mg/kg) of 
RS127445 decreased DA outflow in the NAc at 30 min post-injection, lasting until 
120 min. Further, an increase of DA was observed in the mPFC upon i.p. adminis-
tration of high doses of both RS127445 (0.16 mg/kg) and LY266097 (0.63 mg/kg) 
at 30–120 min. RS127445 was also found to potentiate haloperidol-induced dopa-
minergic transmission in the mPFC when these drugs were co-administered. Finally, 
no effect of RS127445 on DA outflow in the STR was reported. These data support 
a potentially therapeutic role for 5-HT2B receptor antagonists, as hyperactive meso-
limbic dopaminergic neurotransmission and a hypoactive mesocortical dopaminer-
gic tone are hypothesized to underlie positive and negative schizophrenia symptoms, 
respectively. Further, these drugs could have reduced extrapyramidal side-effects 
than typical antipsychotics, as striatal DA release was unaltered. In addition to 
in vivo microdialysis, the firing rate of VTA and substantia nigra (SNc) dopaminer-
gic neurons was also assessed in rats via in vivo extracellular recordings [17]. Rats 
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were anesthetized and a recording electrode was implanted in either the VTA or 
SNc. Individual neural recordings were obtained under three conditions: baseline 
firing (1–2  min), saline injection (5  min), and RS127445 injection (15  min). 
Interestingly, RS127445 administration reduced VTA neuron firing rate as com-
pared to baseline. However, RS127445 did not affect the firing rates of neurons in 
the SNc. Overall, these neurophysiological data lend support to the microdialysis 
studies, suggesting that acute pharmacological brain-wide 5-HT2B receptor block-
ade may inhibit the mesolimbic dopaminergic pathway, while having no major 
effect over the nigrostriatal dopaminergic pathway.

7  Conclusions

A battery of preclinical experimental evidence shows that global genetic ablation of 
the 5-HT2B receptor results in schizophrenia-relevant behavioral, neurochemical, 
and neurophysiological alterations in mice [14]. Specifically, 5-HT2B receptor KO 
mice exhibit hyperactivity, increased novelty seeking, asociality, impulsivity, and 
impaired memory; these behavioral phenotypes closely mirror clinical symptoms of 
schizophrenia. Constitutive deletion of the 5-HT2B receptor also resulted in striatal 
dopaminergic and glutamatergic neurochemical alterations. Further, 5-HT2B recep-
tor KO mice display disrupted sleep rhythms. Interestingly, behavioral and neuro-
chemical deficits were rescued in some capacity upon antipsychotic drug 
administration, further supporting a role of 5-HT2B receptor dysfunction in the 
pathophysiology of schizophrenia. Notably, subsequent psychopharmacological 
studies have provided evidence pointing to the therapeutic potential of 5-HT2B 
receptor antagonists in schizophrenia, while providing a potential neurochemical 
mechanism for these effects [17, 28]. Further, pharmacological blockade of the 
5-HT2B receptor seems to ameliorate locomotor hyperactivity, as well as learning 
and memory deficits observed upon PCP administration; increases in mesocortical 
DA outflow induced by pharmacological ablation of the 5-HT2B receptor could 
underlie this response. It is important to note that there are conceptual inconsisten-
cies in the studies assessing the effects of the genetic vs the pharmacological abla-
tion of the 5-HT2B receptor. While our studies suggest that genetic ablation of 
the  5-HT2B receptor in  mice results in  a schizophrenic-like behavioral pheno-
type [14], data from Devroye et al. [17] in rats show that loss of function of this 
receptor via pharmacological blockade results in antipsychotic behavioral effects 
with accompanying dopaminergic alterations. This can be attributed to a number of 
experimental factors; it is critical to keep in mind that global genetic ablation of the 
5-HT2B receptor mirrors the developmental impact of permanent loss of this recep-
tor, while pharmacological ablation following RS127445 or LY266097 treatment 
probes acute blockade of 5-HT2B receptor in otherwise normal rodents. For instance, 
Doly et al. [28] showed that 5-HT2B receptor KO mice exhibit increased locomotor 
response to cocaine, that was not observed upon acute pharmacological inhibition 
of the 5-HT2B receptor. Furthermore, discrepancies could also be due to the different 
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rodent species used (i.e., mice versus rats), or the experimental methods imple-
mented (i.e., ex vivo versus in vivo neurochemical analyses). Notably, increasing 
experimental evidence also supports an important role for the 5-HT2B receptor in the 
neurobiology of schizophrenia and responsiveness to antipsychotic drug treatments. 
In the clinical arena, data show that individuals who carry a non-functional 5-HT2B 
receptor mutation exhibit impulsivity and impaired working memory, two symp-
toms closely related to schizophrenia [15].  
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Chapter 21
5-HT2B Receptors and Antidepressants

Silvina L. Diaz

Abbreviations

5-Hydroxytryptamine, 5-HT Serotonin
DRN Dorsal raphe nucleus
FST Forced swimming test
GIRK G protein-coupled inwardly-rectifying potassium 

channels
KO Knock-out
NSF novelty suppressed feeding
SERT Serotonin transporter
SNP Single-nucleotide polymorphism
SSRIs Selective serotonin reuptake inhibitors
TPH2 Tryptophan hydroxylase
UCMS Unpredictable chronic mild stress
VMAT2 Vesicular monoamine transporter

1  Introduction

Serotonin (5-Hydroxytryptamine, 5-HT) is a neurotransmitter involved in many 
psychiatric diseases including depression. The serotonergic neurons that innervate 
forebrain originate predominantly from the rostral cell group of neurons in the 
dorsal raphe nucleus (DRN) [1, 2]. These neurons express the serotonergic markers 
tryptophan hydroxylase (TPH2), and serotonin transporter (SERT), and also the 
negative autoreceptors, 5-HT1A and 5-HT1B, whose expression is restricted to 
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somatodendritic compartments of serotonergic neurons, and to axonal terminals, 
respectively [3]. The 5-HT1A autoreceptor activation elicits an outward current car-
ried through G protein-coupled inwardly-rectifying potassium channels (GIRK) of 
the Kir3 family leading to membrane hyperpolarization and inhibition of serotoner-
gic neuron firing [4]. The presence of synaptic vesicles in dendrites of serotonergic 
neurons led to the suggestion that autoinhibition is mediated via dendritic release 
of 5-HT, for review see [5]. However, activity of serotonin DRN neurons can also 
be positively modulated by 5-HT2A/2B/2C receptors triggering directly or indirectly 
inward currents [6–10]. Upon electrical stimulation of leech serotonergic neurons, 
transmembrane Ca2+ entry through L-type channels first evokes an early dendritic 
exocytosis; subsequently, the released serotonin activates dendritic 5-HT2 autore-
ceptors coupled to Gq and phospholipase C, resulting in a positive feedforward 
loop that maintains sustained exocytosis [11]. It has thus been proposed that DRN 
neurons can display responses ranging from inhibition to excitation depending on 
a balance of functional 5-HT1A and 5-HT2 receptors [12].

A single-nucleotide polymorphism (SNP) introducing a stop codon at the begin-
ning of the human 5-HT2B receptor (Q20*) is associated with psychiatric diseases 
[13]. Interestingly, 70% of the Q*20 male cases displayed impulsive suicidal behav-
ior, and 66% had at least one life-threatening suicide attempt by age 33.5 [13] sup-
porting a possible action of 5-HT2B receptors on serotonergic neurons. Genetic (KO) 
or pharmacologic (antagonist) manipulation of 5-HT2B receptors in mice interferes 
similarly with effects of molecules that target serotonergic neurons including 
amphetamine-derivatives, and serotonin releasers MDMA [14–16]. Furthermore, 
local infusion of the 5-HT2B receptor preferential agonist BW723C86 [16] in DRN 
by microdialysis increased extracellular serotonin that was blocked by RS127445, 
supporting a functional role of this receptor within the raphe and the selectivity of 
BW723C86 for this effect [15].

The precise localization and way of action of 5-HT2B receptors are still poorly 
identified. Main difficulties include a lack of specific antibody as well as low level 
of expression of 5-HT2B receptors in the mouse [17] or in human brain [18–20]. 
Nevertheless, the expression of 5-HT2B receptor mRNA was confirmed in several 
brain nuclei including DRN [13, 21]. Besides, previous study using single cell 
RT-PCR [22] established a 5-HT2B receptor expression not only in the raphe but 
more specifically in serotonergic neurons. Together, these data suggested that 
5-HT2B receptors could be implicated in 5-HT-dependant behavior by acting directly 
onto serotonergic neurons.

2  Serotonin Syndrome

The serotonin syndrome is a serious disorder reported in humans that most com-
monly appears after serotonergic antidepressant overdose or after combining sev-
eral psychotropic medications acting at serotonin levels [23]. The exaggerated 
serotonergic function induced by these conditions can be simulated in experimental 
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animals by administration of serotonin-enhanced drugs like serotonin precursors, 
serotonin transporter inhibitors, or serotonin receptors agonists [23, 24]. Thus, signs 
of serotonin syndrome are possibly due to an excess of extracellular serotonin 
 activating both, central and peripheral serotonin receptors. Indeed, specific revers-
ible inhibitors of the rate-limiting enzyme TPH are being studied as tool for the 
treatment of definite signs of the serotonin syndrome [25].

2.1  Mouse Model of Serotonin Syndrome

The acute serotonin toxicity has been characterized in mouse model by expression 
of certain behavioral and physiological responses as hind limb abduction, forepaw 
treading, backward movement, Straub tail, head weaving, tremor and low flat pos-
ture [26–29]. Autonomic responses also observed in rodents include temperature 
dysregulation, piloerection, and defecation [30]. These behavioral and autonomic 
responses are usually scored during a defined period of time to quantify or asses the 
intensity of a serotonin syndrome in mice models. Rodent models of serotonin syn-
drome are induced by administration of serotonergic antidepressants, serotonin ago-
nists, or serotonin precursors. Indeed, the precursor 5-HTP is able to cross the blood 
brain barrier and, at high doses, this drug is able to induce marked behavioral and 
autonomic responses [30]. The most widely used antidepressants, the selective sero-
tonin reuptake inhibitors (SSRIs), induce an acute increase in extracellular sero-
tonin concentrations by blocking SERT [31, 32]. SERT regulates the extracellular 
serotonin concentration by removing serotonin from the synaptic cleft [33], and 
various molecules modulate this activity, including the A3 adenosine receptor [34] 
and kinases such as PKG/p38 MAPK [35]. Serotonin syndrome has been also 
observed in mice treated with high dose of SSRIs, Fluoxetine or paroxetine in dif-
ferent mice strains [36, 37]. The forced swimming test (FST) is the behavioral para-
digm most employed for screening new molecules potentially efficacious as 
antidepressants. A highly heterogeneous sensitivity to antidepressants effects and 
particularly to SSRIs, among several strains of mice was clearly demonstrated in 
this paradigm [36, 38]. This fact suggested a fine genetic-dependent regulation in 
components of serotonin neurotransmission systems involved in antidepressant 
effects. Many subtypes of serotonin receptors have been proposed as regulating the 
response in FST either acting at the presynaptic membrane [39, 40] or at a postsyn-
aptical levels [9, 41–43]. One sign of serotonin syndrome, hind limb abduction was 
expressed specifically by 129S2 mice in FST at doses of SSRIs that are efficacious 
for other strains of mice [36]. 5-HT1A, 5-HT2C and 5-HT2A receptors participate in 
development of acute serotonin toxicity [41, 44, 45].

The interesting U-shaped dose-response curve observed in SSRI-treated 129S2 
mice (Fig. 21.1 a, b) could be explained by a higher extracellular serotonin concen-
tration attained at a single high dose, thus activating additional serotonin recep-
tors [46].
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The serotonin syndrome signs observed in mice treated with high doses of SSRIs 
were unexpected, although 129S2 mice are frequently described as a non- or 
weakly- responsive strain in these behavioral tests [47, 48]. Nevertheless, 129S2 
mice are able to develop classical responses to antidepressants when administered 
at appropriated doses as it was confirmed by the dose-response curve. Concerning 
the serotonin syndrome, the importance of mice genetic background in influencing 
behavioral and neurochemical phenotypes has been previously noticed [23]. 
Accordingly, a study on sensitivity to antidepressants in different mice strains 
showed that an increase in immobility time was surprisingly observed only in 129S2 
mice receiving Fluoxetine over 20 mg/kg, but not other strains like C57Bl/6J [36]. 
Thus, it was argued that the dose of SSRIs administered could apparently interfere 

Fig. 21.1 Dose-response curve to SSRIs in the Forced Swimming Test. Immobility time was 
measured 30 min after ip injection of various doses of SSRIs. The time spent immobile in FST was 
determined in Htr2b+/+ after Fluoxetine (Flx -a) and Paroxetine (Parox -b) and in Htr2b-/- mice 
after Flx (c) and Parox (d). One-way ANOVA, followed by Dunnet’s post-hoc test; **p < 0.01; 
*p < 0.05. Data are expressed as mean ± SEM (n = 8–14 mice for each group). Adapted from Diaz 
et al. [46]
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with hind limb movements of mice inducing an opposite effect. Likewise, 129S2 
mice receiving fluoxetine 30 mg/kg experienced hind limb abduction and Straub 
tail, both characteristic signs of a serotonin syndrome.

2.2  5-HT2B Receptor in Serotonin Syndrome

Mice knocked-out (KO) for the 5-HT2B receptor gene (Htr2b-/-) did not respond to 
the doses of fluoxetine or of paroxetine that were efficacious in reducing immobility 
time in WT mice (Fig. 21.1 c, d). Moreover, Htr2b-/- mice developed characteristic 
signs of 5-HT syndrome when receiving fluoxetine 20 mg/kg, paroxetine 2 mg/kg, 
or 5-HTP 50 mg/kg, doses that did not induce a syndrome in WT mice (Fig. 21.1 c, 
d). Previous studies demonstrated that the absence of 5-HT2B receptors impairs the 
response to drugs targeting the serotonin system. In particular, 5-HT2B receptors are 
necessary for the serotonin releasing effect of SERT-targeting drugs, like MDMA 
(the club-drug ecstasy) and dexfenfluramine [14–16]. In line with these results, 
acute paroxetine administration to Htr2b-/- mice reduced (1/4) the increase in hip-
pocampal serotonin levels compared to WT mice. Pharmacological experiments 
indicated that the 5-HT2B receptor agonist BW723C86 [16] mimicked SSRI action  
in the FST, which was abolished by injection of RS127445, a 5-HT2B receptor 
antagonist, or in Htr2b-/- mice [15, 46]. Another receptor that has been involved in 
acute antidepressant effects of SSRI is the 5-HT1B receptor. Agonist stimulation of 
5-HT1B receptors induced classical acute response of antidepressants in the FST in 
WT as well as in Htr2b-/- mice. This effect is clearly independent of 5-HT2B recep-
tors, consistent with previous results demonstrating that 5-HT1B receptor agonists 
mimicked SSRI effects in FST in rats by acting at postsynaptic receptors [42, 49]. 
Stimulation of 5-HT1A and 5-HT2A receptors have an effect opposed to that induced 
by antidepressants in FST and that is independent of 5-HT2B receptors. Other results 
suggest that functions of both 5-HT2B and 5-HT2C receptors are opposite in FST. This 
hypothesis is supported by the fact that 5-HT2C receptors are present on GABAergic 
interneurons with a constitutive inhibitory activity on raphe neurons [50]. Therefore, 
and taking into account results with 5-HT2C, 5-HT1A and 5-HT2A receptors agonists, 
it seems that at high doses of SSRIs , the increased extracellular serotonin activates 
these receptors, which are involved in expression of serotonin syndrome, having 
hindering or facilitating properties in serotonin syndrome.

Although different receptors are mediating serotonin syndrome, the 5-HT2B 
receptors seem to have a protective role in this syndrome. Indeed, the absence or 
pharmacological blockade of 5-HT2B receptors increases the risk to develop a sero-
tonin syndrome in response to SSRI administration. Surprisingly, Htr2b-/- mice 
responded similarly to WT mice to agonists of 5-HT1A receptor 8-OH-DPAT, 5-HT2C 
receptor WAY161503 , or 5-HT2 receptor DOI, suggesting that these post-synaptic 
pathways are intact in Htr2b-/- mice. In addition, plasma serotonin concentrations 
determined after administration of high doses of SSRIs were similar in either geno-
type. Therefore, differences in systemic serotonin levels induced by these com-
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pounds could not be invocated to explain the differential reactivity. It is conceivable, 
thus, that the increased sensitivity to develop a serotonin syndrome, when 5-HT2B 
receptors are not functional, is related to events inherent to 5-HT2B-mediated actions 
at serotonergic neurons.

3  Chronic SSRIs Responses

Previous studies have suggested a functional interaction between SERT and 5-HT2B 
receptors. Ex vivo studies have indicated that 5-HT2B receptors might participate in 
the control of SERT in raphe neurons [51], while in vivo studies further confirmed 
that 5-HT2B receptors contribute to the behavioral and physiological effects of the 
SERT-targeting serotonin releasers, MDMA (the club-drug ecstasy) and dexfenflu-
ramine [14–16]. Whereas the increase in serotonin levels is immediately attained 
after SSRI administration, therapeutic antidepressant effects are only observed 
after weeks of treatment. The delay before the onset of clinical effects in depres-
sive individuals appears to rely on the time required for stabilization of mono-
amine levels and other neuroadaptations, including neurogenesis [52]. As well, 
regulation of serotonin receptors appears to be required for either the acute or 
chronic effects of SSRIs, as it was largely demonstrated for 5-HT1A, 5-HT2A, 
5-HT2C, and 5-HT4 receptors [41, 52–54]. Importantly, fewer than 50% of all 
patients with depression show remission with optimized available antidepressant 
treatments [31]. Despite extensive research, the neurobiological mechanisms 
underlying antidepressant effects or the resistance to antidepressants are not yet 
well understood [55, 56].

3.1  5-HT2B Receptors in Chronic SSRIs Responses

Putative positive regulation of dorsal raphe by 5-HT2B receptors has been proposed 
[57]. Strikingly, long-term effects of SSRIs both in behavior and neurogenesis were 
eliminated after genetic ablation of 5-HT2B receptors or upon selective chronic 
antagonist treatment [22]. Conversely, pharmacological experiments indicated that 
chronic agonist stimulation of 5-HT2B receptors mimicked chronic SSRI action on 
behavior and neurogenesis, which were abolished in Htr2b-/- mice, confirming that 
effects seen in mutant mice are not a consequence of developmental compensation 
[22]. Notably, the baseline response in the novelty suppressed feeding (NSF) test is 
altered in both groups of mice and might result from specific settings established as 
a consequence of chronically inactive 5-HT2B receptors. The SSRI-reduced latency 
to feed in the NSF is associated with anxiolytic-like effects, seen after chronic 
administration. The ability of Htr2b-/- mice to show anxiolysis clearly persists, as 
evidenced by their response to diazepam. The activation of 5-HT2B receptors is nec-
essary for chronic SSRI actions, and chronic stimulation with a 5-HT2B receptor 

S. L. Diaz



355

agonist is sufficient to mimic SSRI effects in WT mice. The fact that both 5-HT2B 
receptor agonist and antagonist induced a similar decrease in the latency to feed 
appears paradoxical. Moreover, the fact that basal neurogenesis is unaltered in 
either WT mice chronically treated with RS127445 or in Htr2b-/- mice is more con-
sistent with an effect of impulsivity in the NSF in mice with non-functional 5-HT2B 
receptors than an antidepressant-like action (Fig.  21.2. see also Fig.  21.1 [22]). 
Furthermore, the reduced increase in extracellular serotonin levels induced by 
SSRIs in the absence of functional 5-HT2B receptors might be insufficient to trigger 
behavioral and neurogenic actions [22].

The expression of 5-HT2B receptors by a subset of serotonergic neurons of the 
raphe nuclei is consistent with a positive regulatory role for these receptors in syn-
aptic serotonin homeostasis. The inhibition of SSRI-induced extracellular sero-
tonin accumulation in mice with no functional 5-HT2B receptors likely reflects a 
lack of positive control exerted by serotonin signaling in raphe neurons. Indeed, 
in vivo microdialysis experiments performed with BW723C86 confirm that local 
5-HT2B receptor activation in the raphe nuclei is sufficient to induce extracellular 

Fig. 21.2 Effects of SSRIs are impaired in the absence of 5-HT2B receptors. (Left) Behavioral 
effects of SSRIs are impaired in the absence of 5-HT2B receptors. The SSRIs Flx (3 mg/kg/day), 
decreased significantly the immobility time in the FST of WT mice, but no effect was observed 
in either Htr2b-/- or Htr2b5-HTKO-mice. (Right) Hippocampal neurogenic effects of SSRIs are 
impaired in the absence of 5-HT2B receptors. The SSRIs Flx (3 mg/kg/day), administered daily 
for 4 weeks, induced a significant increase in cell proliferation in the SGZ of WT mice, but no 
effect was observed in either Htr2b-/- or Htr2b5-HTKO-mice. Adapted from Diaz et al. [22, 46] and 
Belmer et al. [58]
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serotonin accumulation [15]. Moreover, stimulation of 5-HT2B receptors appears to 
be presynaptic since BW723C86-induced acute behavioral effects are abolished in 
Pet1-/- mice (a genetic model of serotonin depletion) or in Sert-/- mice. Together, 
these data identified 5-HT2B receptors as possible positive serotonin autoreceptors, 
acting in an opposing manner to the 5-HT1A and 5-HT1B receptors, which are well 
established as negative autoreceptors [59]. This concept is consistent with previous 
electrophysiology studies showing reduced or abolished 5-HT-dependent depolar-
ization of serotonergic neurons by 5-HT2 receptor antagonists (ketanserin or mesu-
lergine) in the presence of the 5-HT1A receptor antagonist (WAY100635) [6]. This 
last point could have important physiological consequences in the mode of action 
of the receptor.

3.2  5-HT2B Receptors Positively Regulate Serotonergic 
Neurons

There is a growing consensus that serotonergic neurons are non-homogeneous as 
supported by anatomical, biochemical and electrophysiological studies [12, 60–62]. 
Sub-populations of serotonergic neurons, either within the DRN or between various 
raphe nuclei, are interconnected, and form complex circuits [63–65]. The activity of 
serotonergic neurons can be modulated by both 5-HT1A and 5-HT2A/2B/2C receptors 
[6, 8]. Identified serotonergic neurons are known to respond to 5-HT1A receptor 
agonists by a 5-HT-induced outward current [6–8, 66]. A significant proportion of 
TPH2-positive neurons (about 50%) also respond to 5-HT2-receptor activation by 
an inward current [12].

Tonic spiking of serotonergic neurons establishes synaptic serotonin levels. Cell- 
attached recordings of identified wildtype raphe Pet1-positive neurons, revealed 
that stimulation of 5-HT2B receptors by BW723C86 can increase their firing 
 frequency [58]. Independent electrophysiological current-clamp recordings showed 
that overexpression of 5-HT2B receptors in Pet1-positive serotonergic neurons was 
sufficient to increase their excitability [58]. These results indicate that 5-HT2B recep-
tors can positively control the firing of serotonergic neurons. This was confirmed 
in-vivo by extracellular recordings in Htr2b5-HTKO mice of putative serotonergic neu-
rons that showed a significant shift to low firing rate [58]. Together, these results 
revealed a need for 5-HT2B receptors in serotonergic neurons to positively regulate 
their activity.
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3.3  Serotonergic Tone Results from an Opposite Control 
Exerted by 5-HT1A and 5-HT2B Receptors

The lack of effects of MDMA and fluoxetine in the absence of 5-HT2B receptors in 
Pet1-positive serotonergic neurons [58], previously observed in Htr2b-/- mice asso-
ciated to reduced extracellular serotonin accumulation as assessed by microdialysis 
[15, 22], raised the possibility of an interaction of 5-HT2B receptors with 
SERT. However, the absence of modification in SERT uptake and expression lowers 
this possibility. The unique control of dendritic serotonin release has important 
implications for DRN physiology and actions of SERT-targeting drugs, SSRIs and 
MDMA. Packaging by the vesicular monoamine transporter (VMAT2) is essential 
for serotonin transmission; glutamate receptor activation in dorsal raphe brain slice 
can evoke somatodendritic release by vesicle exocytosis [67]. SSRI antidepressants 
markedly increase extracellular serotonin in DRN that involves both somatic and 
dendritic release [67]. The serotonin released within DRN induces feedback inhibi-
tion of serotonergic neurons firing activity by stimulation of somatodendritic 5-HT1A 
negative autoreceptors, which results from local release rather than extended diffu-
sion of serotonin throughout the extracellular space [68].

The hypothermic response to 8-OHDPAT, known to be mediated by 5-HT1A 
auto- but not hetero-receptors in mice [69], is attenuated by pretreatment with the 
5-HT2B receptor agonist BW723C86 [58]. Richardson-Jones et al. [69] generated a 
mouse strain differing in 5-HT1A autoreceptor expression by approximately 30–40% 
below the wildtype level (1A-Low). These 1A-Low mice showed reduced 
8-OHDPAT-induced hypothermia and their neurons exhibit a shift toward higher 
firing rates. To the opposite, in the absence of 5-HT2B receptors in Pet1-neurons (in 
Htr2b5-HTKO mice), a significant increase in hypothermic response to 8-OHDPAT and 
a significant shift toward lower frequency firing neurons were observed [58]. These 
findings support that the lack of 5-HT2B receptor in Pet1-positive serotonergic neu-
rons is associated with a higher 5-HT1A-autoreceptor reactivity and thus a lower 
activity of serotonergic neurons.

The lower serotonergic tone observed in the absence of 5-HT2B receptors in Pet1- 
positive neurons would thus result from the opposite control exerted by 5-HT1A and 
5-HT2B receptors on DRN neurons. This may explain the lack of actions of 
 SERT- targeting drugs, SSRIs and MDMA, although the detailed mechanism 
remains to be identified. An interaction between 5-HT1A and 5-HT2B receptors 
directly or via trans regulation could be involved as previously reported cross-talks 
between 5-HT1B and 5-HT2B receptors [70].
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3.4  5-HT2B Receptors Contribute to SSRI Therapeutic Effects

The excess of inhibitory control exerted by 5-HT1A receptors in the absence of 
5-HT2B receptors in Pet1-positive serotonergic neurons may also explain the lack of 
response to chronic SERT blockers (fluoxetine) in Htr2b5-HTKO mice. Chronic SSRI 
antidepressant responses are at least partially ascribed to desensitization of somato-
dendritic 5-HT1A receptors [69]. Recent works using chemogenetic approaches (i.e., 
Designer Receptors Exclusively Activated by Designer Drugs-DREADDs) showed 
that CNO activation of SERT- or Pet1-positive neurons expressing the Gq-coupled 
M3Gq DREADD induced an increase in serotonergic neuron firing rate and a reduc-
tion in immobility in FST [71, 72]. Activation of 5-HT2B Gq-coupled receptors with 
BW723C86 mimicked both acute and chronic behavioral and neurogenic effects of 
SSRI antidepressants and led to extracellular serotonin accumulation, which were 
eliminated in Htr2b-/- mice or by RS127445 [15, 22]. Knocking-out the 5-HT2B 
receptors exclusively from Pet1-positive neurons (Htr2b5-HTKO) mice is sufficient to 
eliminate behavioral effects in FST and neurogenic effects of fluoxetine (Fig. 21.2) 
and 5-HT2B-receptor overexpression increases Pet1-positive neuron excitability 
[58]. It appears thus that 5-HT2B receptors contribute to SSRI therapeutic effects by 
their positive Gq-dependent signaling on adult raphe serotonergic neurons, which 
may be revealed upon somatodendritic 5-HT1A-receptor desensitization.

3.5  The Serotonergic Neuron Firing Relies on a Balance 
of Functional 5-HT1A and 5-HT2B Receptors

The reason why positive 5-HT2B receptors acting in an opposite manner to negative 
5-HT1A autoreceptors has not been previously identified could have several explana-
tions. Recently, the role for 5-HT1A receptor-mediated autoinhibition of the DRN in 
homeostatic control of firing rate has been questioned. As discussed by Andrade 
et al. [5], 5-HT1A autoinhibition may participate in regulating glutamate signaling to 
serotonergic neurons [73] or in mediating inputs from distal serotonergic cell groups 
[63]. De Kock et al. [74] first showed that following calcium influx through NMDA 
receptors, serotonin could be released from DRN neuron dendrites in the absence of 
postsynaptic firing. Colgan et al. [73] reported that serotonin release from dendrites 
is secondary to calcium influx through L-type calcium channels that open in 
response to the local dendritic depolarization elicited by synaptically released 
 glutamate. A contribution of dendritic serotonin release to 5-HT1A-autoreceptor 
activation would thus result from excitatory glutamatergic inputs to DRN via locally 
triggered calcium influx rather than by neuronal firing. Independently, it has been 
reported that upon electrical stimulation of leech serotonergic neurons, transmem-
brane Ca2+ entry through L-type channels can first evoke an early dendritic exocyto-
sis; subsequently, the released serotonin activates 5-HT2 autoreceptors coupled to 
Gq and phospholipase C, resulting in a positive feedforward loop that maintains 
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sustained exocytosis [11]. In frog motoneurons, a potentiation of NMDA-induced 
depolarization has been shown to depend on the activation of 5-HT2B receptors 
causing an influx of extracellular Ca2+ through L-type Ca2+ channels and a reduction 
of the open-channel block of NMDA receptors [75]. Since serotonergic DRN neu-
rons can respond to serotonin with responses ranging from inhibition to excitation 
with the net effect of serotonin relying on a balance of functional 5-HT1A and 
5-HT2A/2B/2C receptors [12], combined expression levels of these receptors in various 
serotonin subpopulations may set-up DRN firing levels. Since DRN receives sero-
tonergic inputs from caudal raphe nuclei [63], serotonin released in DRN may also 
originate from extrinsic serotonergic afferents. In conclusion, 5-HT2B receptors can 
positively modulate serotonergic neuron activity, and counteract 5-HT1A negative 
autoreceptor actions.

4  Stress-Induced Depressive Like State

Depression is one of the diseases that has been exhaustively studied although sev-
eral questions remain opened around its ethiopathology and treatment [76]. 
Antidepressant effects evaluated in “normal” mice may engage different neurobio-
logical mechanisms than those involved in the response of “depressed” individuals 
[77]. Depressive-like symptoms in animals are not easy to model since many clini-
cal signs of depression are difficult or even impossible to evaluate in animals, such 
as guiltiness or suicidal ideation [78]. In this respect, measures of anhedonic behav-
iors like decreased preference for sucrose consumption or reduced interest for 
hygienic habits are preferred outcomes as they might be indicative of depressive- 
like behaviors. Additionally, when describing a depressive-like phenotype in ani-
mals, the evaluation of several signs rather than single behavioral parameters adds 
consistency to conclusions. Several paradigms and models have been developed to 
simulate “depressed” condition in mice like olfactory bulbectomy, learned helpless-
ness, or unpredictable chronic mild stress (UCMS) [78]. The use of chronic social 
isolation appears as a milder and more appropriate stress paradigm for 129S2 
strains [79].

4.1  5-HT2B Receptor in Stress-Induced Depressive Like State

Two behavioral parameters (i.e. coat score and splash test) plus an histologic out-
come (DG cell proliferation) were used to characterize the depressive-like state 
induced by chronic stress and found almost similar outcomes in both Htr2b-/- and 
Htr2b+/+ mice subjected to chronic social isolation [80]. The lack of 5-HT2B recep-
tors does not modify the vulnerability to develop a depressive-like state following 
chronic stress. In other words, the 5-HT2B receptor does not appear to participate in 
the establishment of stress-induced depressive state, whereas it has a key role in the 
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effects of serotonergic antidepressant. Similar dichotomies have been suggested for 
other aspect linked to antidepressants. For example, while neurogenesis appears 
necessary for antidepressant effects [81], it is not clear if defects in neurogenesis 
play a role in depression [82]. This supports the idea that antidepressants do not 
necessarily target the causative factors triggering depression.

Following chronic stress, acute antidepressant effects in FST are retained in both 
Htr2b+/+ and Htr2b-/- mice for desipramine targeting the norepinephrine system; 
however, fluoxetine was only efficient in Htr2b+/+ mice, further supporting the spe-
cific alteration of the serotonergic system in these mice [80]. In addition, parameters 
altered after chronic isolation can be reversed by fluoxetine only in Htr2b+/+ mice 
but not in Htr2b-/- mice, including the increase in time of grooming in the splash test, 
and the decrease in latency to feed in the NSF test [80]. Cell proliferation in the DG 
cell layer is a correlate of chronic treatment with antidepressants originally described 
in rats [81] and later extended to mice [55]. A significant decrease in SGZ prolifera-
tion after chronic isolation was observed in Htr2b+/+ mice, and a similar trend was 
detected in Htr2b-/- mice. However, treatment with SSRI only reversed this condi-
tion in Htr2b+/+ mice, but not in Htr2b-/- mice after chronic isolation. These findings 
correlate with previous observations made in non-stressed Htr2b-/- mice (Fig. 21.2), 
see also Fig. 3.c and 5.c–d [80], [22, 46]. From a work on astrocytes, it has been 
suggested that fluoxetine and other SSRIs could be acting as direct 5-HT2B receptor 
agonists independently of SERT [83, 84]. Previous data [22] do not support this 
hypothesis due to the absence of antidepressant effects of fluoxetine in mice lacking 
either the serotonin transporter (Sert-/-) or differentiated serotonergic neurons (Pet1-

/-). This rules out that the antidepressant effects of fluoxetine could be independent 
of SERT, and indicates that serotonergic neurons expressing SERT (and 5-HT2B 
receptors) are necessary for the 5-HT2B receptor effects independently of other cell 
types. This also rules out the possibility that SSRIs mediate antidepressant effects 
only by stimulating directly putative astrocytic 5-HT2B receptors, which should be 
intact in these two mutant mice (Sert-/- and Pet1-/-) [84] (See also Chap. 1, Fig. 1.2).

4.2  BDNF in Stress-Induced Depressive Like State

Increased BDNF levels observed in the hippocampus of Htr2b-/- mice do not dampen 
the stress response to chronic social isolation [80]. Additionally, when expression of 
BDNF transcripts were analyzed by qPCR, total BDNF expression was increased in 
the hippocampus of Htr2b-/-. Mice heterozygous for Bdnf have been proposed as a 
mouse model of genetic resistance to antidepressants, since Bdnf+/- mice do not 
respond to antidepressant neither in the FST [85, 86] nor in the cell proliferation 
assay [87]. In Bdnf+/- mice, hippocampal extracellular serotonin levels do not 
increase after acute paroxetine administration [88] as it is the case for Htr2b-/- mice 
[22, 46]. These results suggest that altered levels of BDNF impair the actions of 
antidepressants. After a report showing an increase of BDNF expression in the hip-
pocampus of rats chronically treated with antidepressants [89], several studies con-
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firmed these results in rodents [81, 90, 91], suggesting that increased levels of this 
neurotrophin could protect neurons from the noxious effects of stress. Further, anti-
depressant effects were reproduced in rats by infusing BDNF in the midbrain [92] 
or the hippocampus [93]. In contrast, the role of this neurotrophin in the ethiopa-
thogeny of depression is less studied. The increased BDNF in the Htr2b-/- mice 
could be at least partially responsible for the lack of antidepressant effect of SSRI 
in these mutant mice [22, 46]. These results are in agreement with a study conducted 
in Bdnf+/- mice in which the altered levels of BDNF attenuate the effect of antide-
pressants in the resident/intruder test and the tail suspension test but do not affect 
vulnerability to UCMS-induced stress [94].

In addition to the decreased latency to feed in NSF test, new specific behavioral 
and neurochemical parameters including a basal increase in hippocampal BDNF 
levels, with normal TrkB and p75 protein levels, and an increased preference for 
sucrose consumption were identified. A combination of three independent informa-
tions, (a) increased hippocampal BDNF levels and normal TrkB and p75 expres-
sion, (b) a significant preference for sucrose consumption, and (c) a decreased 
latency to feed in the NSF test, supports that Htr2b-/- mice display a basal phenotype 
comparable to animals chronically treated with antidepressants or “antidepressant- 
like phenotype”.

5  Outlook and Prospects

As a high proportion of clinical patients do not respond to classical pharmacothera-
pies, animal models of resistance to antidepressants are required to more thoroughly 
study the underlying neurobiological causes of this process and to develop new 
pharmacological targets. These experiments describe Htr2b-/- mice as a useful tool 
to explore neurochemical and molecular basis of resistance to SSRI antidepressant, 
one major unsolved problem in clinical treatment of depression. A remaining ques-
tion is why both positive and negative autoreceptors are needed to regulate 
 serotonergic neuron activity. These findings established that Gq-coupled 5-HT2B 
receptors expressed by Pet1-positive serotonergic neurons act in an opposite man-
ner as to 5-HT1A autoreceptors. The 5-HT2B receptor can thus be considered as a 
positive modulator of serotonergic tone that acts at serotonergic neuron excitability. 
This positive modulation has to be taken into account in the studies of the regulatory 
mechanisms of serotonergic neurons including those of antidepressants.
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Chapter 22
Serotonin and the 5-HT2B Receptor 
in Amyotrophic Lateral Sclerosis

Alizée Arnoux and Luc Dupuis

Abbreviation

ALS Amyotrophic lateral sclerosis
CTs Clinical trials
DPR Di-peptide repeat proteins
FTD Fronto-temporal dementia
GPCR G-protein coupled receptor
MAO-B Monoamine oxidase B
PD Parkinson’s Disease
POMC Pro-opiomelanocortin
ROS Reactive oxygen species
SERT Serotonin transporter
SOD1 Superoxide dismutase 1 
TDP43 TAR DNA-binding protein 43

1  Introduction

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig or Charcot’s dis-
ease, was described by the French Neurologist Jean-Martin Charcot, in the nine-
teenth century. This progressive paralysis, usually fatal within a few years after 
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onset of motor symptoms, was initially thought to be restricted to the motor system. 
In recent years however, it appeared that ALS is a much more widespread disease 
than initially considered, and involves, among other neuronal types, degeneration of 
brainstem serotonin neurons. In this chapter, we will introduce ALS pathogenesis 
and mouse models, describe serotonergic alterations, and current knowledge on the 
involvement of the 5-HT2B receptor in this disease.

2  ALS: Definition and Clinical Presentation

ALS is the major adult onset motor neuron disease, with onset of motor symptoms 
generally in the fifth of sixth decade of life and progression of disease leading to 
death, usually from respiratory insufficiency, within the 3 to 5 years after motor 
onset. ALS epidemiology varies depending on the region and population observed. 
In Europe, the incidence rate is 3 new cases per year and per 100.000 inhabitants, 
similar to multiple sclerosis, with a mean age of onset of 65 years of age. ALS is 
characterized by the simultaneous degeneration of upper motor neurons, in the 
motor cortex, and of lower motoneurons, in the brainstem and spinal cord, underly-
ing the progressive motor symptoms including paralysis and spasticity. ALS can 
initially manifest in various sites of onset, leading to three major initial clinical 
presentations : spinal, bulbar and respiratory [1]. A number of ALS cases are associ-
ated with a family history and are called familial ALS (fALS). The remaining 90% 
cases, without family history are called sporadic ALS cases. More than 30 genes 
have been linked to fALS, which is thus a genetically heterogenous disease, and five 
major genes are currently associated with ALS (C9ORF72, SOD1, TARDBP, FUS 
and TBK1) and detailed below [2, 3]. Importantly, most of these genes are also asso-
ciated with another neurodegenerative disease, fronto-temporal dementia (FTD). In 
particular, the ALS-associated C9ORF72 mutation, responsible for more than 30% 
of ALS cases, is also responsible for 25% of FTD cases [2, 4]. Consistent with a 
substantial overlap between both diseases, a large subset of patients with ALS 
develop FTD-like cognitive impairment, whose with bulbar onset being more sus-
ceptible [5]. Both ALS and FTD patients generally develop cytoplasmic aggregates 
of the TDP-43 protein. It is thus generally considered that ALS and FTD constitute 
two extremes of a clinical continuum.
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3  Familial ALS Highlights Converging 
Pathophysiological Mechanisms

3.1  A Subset of ALS Cases Are Caused by 
Monogenic Mutations

Despite the heterogeneity of ALS, approximately 70% of all European familial 
cases are caused by monogenic mutations in five genes : C9ORF72, SOD1, 
TARDBP, FUS and TBK1 [3, 6]. SOD1 encodes for the antioxidant enzyme super-
oxide dismutase 1 and mutations in the SOD1 gene represent 20% of all familial 
cases and 1–3% of sporadic cases [7, 8]. Superoxide dismutase 1, or Cu/Zn super-
oxide dismutase, is a ubiquitously expressed protein, and its mutations lead to ALS 
through a gain of toxic function, that remains incompletely understood more than 
25 years after its discovery [9]. Mutations in TARDBP (coding for TAR DNA- 
binding protein 43; TDP43) were discovered in 2008 [10, 11] following the initial 
observation that TDP-43 was a major protein component of ALS and FTD protein 
aggregates [12]. Physiologically located in the nuclei, TDP-43 is an RNA-binding 
protein involved in multiple aspect of RNA metabolism such as RNA splicing, 
transport and translation [13]. Importantly, TDP-43 proteinopathy is found in neu-
rons and glial cells in 95–97% ALS patients (sporadic and familial) [14] even in the 
absence of germline TARDBP mutation. Mutations in FUS, a RNA-binding protein 
functionally related to TDP-43, are found in 5% of familial ALS cases, and cause 
the most severe forms of ALS known to date. As TDP-43, FUS proteinopathy can 
also be observed in a subset of FTD patients, in the absence of FUS mutations and 
FUS mislocalization is frequent in many ALS cases including sporadic [15]. The 
most frequent mutation observed in ALS patients is an intronic expansion in the 
C9ORF72 gene and was discovered in 2011 [16, 17]. Mutations in C9ORF72 
accounts for more than one third of familial ALS cases and 5–10% of sporadic cases 
in Europe [18]. The mutation consists of an expansion of the repetition of the hexa-
nucleotide GGGGCC in the first intron of the C9ORF72 gene. C9ORF72 is involved 
in vesicular trafficking, especially in autophagy, and the ALS/FTD C9ORF72 muta-
tion is thought to trigger its toxic effects through (a) haploinsufficiency, due to 
decreased expression of the mutant allele, (b) RNA-mediated toxicity and (c) trans-
lation of the mutant RNA into toxic di-peptide repeat proteins (DPR) [19–21]. 
TBK1 is the most recently discovered prevalent mutation, with a frequency in 
patient of 4% [3, 22]. Half of patients carrying TBK1 mutations will also develops 
cognitive impairment or FTD. TBK1 is involved in the regulation of autophagy [23].
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3.2  Impairment of Proteostasis and Autophagy

Ubiquinated protein aggregates are a pathological hallmark of ALS, indicating a 
disruption in proteostasis. Consistent with this, a large number of genes associated 
to ALS appears to encode for proteins involved in autophagy [14]. Indeed, VCP, 
UBQLN2, OPTN and SQSTM1 coding respectively for VCP, ubiquilin 2, optineu-
rin and sequestosome 1 [24, 25] are all autophagy adaptors that allow the targeting 
of specifically labelled proteins to the autophagy pathway. C9ORF72 is involved in 
vesicular trafficking and several studies have shown its importance in autophago-
some lifecycle [19, 20]. Last, TBK1 is encoding for a major NF kappa B kinase, 
also phosphorylating optineurin, and critical for induction of autophagy in multiple 
cell types. Importantly, mutations in TBK1 impair this function of TBK1 in control-
ling autophagy [3]. Besides, it should be noted that a number of ALS-related muta-
tions, in particular in SOD1 or FUS, increase the aggregative potential of the mutant 
protein, and thereby could overload the autophagic machinery by clumped protein 
aggregates.

3.3  Impairment of RNA Metabolism

TDP-43 and FUS are both RNA-binding proteins, and found mutated in a subset of 
fALS cases, while most patients develop cytoplasmic TDP-43 aggregates. 
Importantly, these proteins are involved at all steps of RNA metabolism, from tran-
scription, to splicing, transport, translation and degradation. Therefore, their cyto-
plasmic aggregation is able to lead to loss of their critical nuclear functions, hence 
multiple RNA metabolism defects. This has been documented for both FUS and 
TDP43 [13, 26–30].

3.4  Impairment of Cytoskeleton and Vesicular Trafficking

With an axonal length up to 1m and a dissymmetric morphology, motor neurons 
greatly rely on their cytoskeleton to transport vesicle from the body cell through the 
axon, to the synapse. A number of cases of familial and sporadic ALS are linked to 
mutations leading to cytoskeleton disorganization [7]. Indeed, mutations in genes 
involved in cytoskeleton and vesicular trafficking can alter neurons formation and 
function by inhibiting axon outgrowth (PFN1; [31]), destabilizing the microtubule’s 
network (TUBA4A; [32]), slowing vesicle transport (KIF5A, DCTN1; [33, 34]) and 
preventing vesicle formation (ANXA11; [35]). Importantly these different mecha-
nisms are not mutually exclusive as impairment of proteostasis, or of RNA metabo-
lism might also interfere, directly or indirectly with cytoskeleton and vesicular 
trafficking.
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4  Current Treatment Options for ALS

Development of drugs that modify ALS progression has been shown to be quite 
challenging. There are many reasons for this failure, including high heterogeneity of 
patients, poorly understood etiology and difficult recruitment for clinical trials. In a 
study published in early 2017, Petrov et al [36] reviewed a total of 51 studies on 23 
different potential treatments in advanced-stage clinical trials. Out of these 51 stud-
ies, only 2 reported positive results. We present here the two FDA-approved treat-
ment currently on the market and the primary promising drugs in development.

4.1  FDA-Approved Treatments

The involvement of glutamate excitotoxicity in the pathogenesis of ALS was one of 
the first hypothesis proposed in the 90s subsequent to observations of abnormalities 
in the metabolism and transport of glutamate in ALS patients [9, 37]. Riluzole is an 
antagonist of glutamate, however the exact mechanism of its protective effect in 
ALS remains unclear, as it has also several other, glutamate independent, effects 
such as inhibition of sodium persistent inward currents [38]. Riluzole has been 
shown to slow down disease progression and increase survival in ALS patients in 
two consecutive clinical trials [37, 39], and this effect seems to occur mostly in the 
latest phase of the disease [40]. This modest, yet significant, effect led to FDA 
approval in 1995 and until recently it was the only treatment approved for ALS. At 
the time of its development there was no mouse model of ALS available, and it was 
thus directly tested in patients [37]. Now that ALS mouse models are widely avail-
able, researchers are trying to replicate these findings on various models. In a study 
by Hogg et al [41], no effect of riluzole was observed despite the use of 3 different 
mouse models (SOD1 G93A, TDP-43 A315T and FUS (1-359)). Importantly, rilu-
zole remains the only anti-excitotoxic drug that showed efficacy in ALS, although 
many other drugs targeting the same pathway failed in clinical trials [36].

Edaravone was approved by the FDA to treat ALS at the end of 2017. As a radical 
scavenger, edaravone targets the abnormal production of reactive oxygen species 
(ROS), a long-standing potential culprit in ALS. Indeed, oxidative stress is a shared 
feature across all form of ALS (familial/sporadic), no matter the mutation involved 
[4]. In the SOD1 G93A mouse model of ALS, intraperitoneal injection of edaravone 
had a protective effect on motoneurons, and decreased SOD1 deposits [42]. In 
humans it appears to be effective in patients in an early stage and specific inclusion 
criteria [43]. It remains unknown why edaravone seems protective in a subset of 
ALS patients while several other antioxidant drugs failed in clinical trials. We cur-
rently do not have any retrospective study documenting the efficacy of edaravone in 
a larger ALS population. It is important to notice that the protective effect of edara-
vone in ALS is highly controversial [44–46], especially as the current mode of 
administration of this drug might have blurred the results of the clinical trial by 
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exacerbating the placebo arm of the trial [45]. As such, further studies are warranted 
to ascertain the efficacy of edaravone.

4.2  Clinical Trials (CTs)

Considering the necessity of developing an effective treatment in ALS and the num-
ber of potential targets involved, the number of CTs is unsurprisingly high, with 47 
currently active phase 2 or 3 CTs worldwide (from clinicaltrials.gov).

Rasagiline is a MAO-B selective irreversible inhibitor used as a treatment for 
Parkinson’s Disease (PD) and currently being investigated for the treatment of ALS 
[47, 48]. Monoamine oxidase B (MAO-B) is an enzyme present in the serotonergic 
neurons of the raphe nuclei and in glial cells. It is mainly responsible for the oxida-
tive catabolism of dopamine [49]. The first neuroprotective effect of rasagiline 
comes from its antioxidant property as a MAO-B inhibitor. Structurally, rasagiline 
contains a propargyl group, which is responsible of the anti-apoptotic effect of both 
rasagiline and its metabolite [50]. In ALS, the drug was found to prolong survival 
by 20% in the SOD1 G93A mouse model [51]. The results of three phase 2 CTs are 
currently available. In all three studies, the primary outcome criteria (improvement 
of the rate of decline in the ALS functional rating scale—revised for two out of three 
studies, and survival for the third one) was not met [52–54]. However, some results 
suggest either a target engagement [53], or a potential efficacy in a large subset of 
patients [54]. All three studies discuss the methodology of patient inclusion and 
conclude on the necessity to further investigate the potential effect of rasagi-
line in ALS.

Masitinib is a highly selective kinase inhibitor. Its efficacy has been demon-
strated in other diseases such as Alzheimer’s disease [55] or multiple sclerosis [56]. 
Out of the 24 compounds reviewed by Petrov et al. [36] it was the only one to show 
only positive results. Masitinib has been shown to have a positive effect on survival, 
microgliosis, neuroinflammation and to control apparition of aberrant glial cells in 
the SOD1 G93A rat model and in microglial culture [57]. It distinguishes itself from 
other drugs in development by its capacity to prolong survival of rats after disease 
onset. A preliminary phase 2/3 trial was recently published suggesting efficacy of 
masitinib [58]. A phase 3 trial should confirm these promising results.

Other therapeutic opportunities include modification of nutrition. Specifically, 
increased caloric intake was found protective in mouse models of ALS, and BMI 
and adiposity are positively correlated with survival of ALS patients [59–63]. 
Importantly, a small randomized CT including patients with gastrostomy indicated 
that hypercaloric diet could improve survival of patients [64]. Several randomized 
CTs are ongoing investigating the efficacy of increasing caloric intake in ALS.
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4.3  Mouse Models of ALS

As SOD1 was the first gene that have been linked to ALS, it also was the first trans-
genic mouse developed as an ALS model. The SOD1 G93A is the most widely used 
mouse model today, although high expression of the mutant protein leads to artifac-
tual mitochondrial vacuolization that might confound the ALS phenotype [65]. 
Other mutations include human G37R and G85R mutations, or the mouse G86R 
mutation, corresponding to the hG85R mutation [66–68]. These models are based 
on a toxic gain of function of the protein [69]. They share features like a relatively 
early disease onset and progression, and reproduce the cardinal features of SOD1- 
ALS, including loss of spinal and cortical motoneurons as well as pathological hall-
marks such as astrocytosis and microgliosis or presence of ubiquitinated SOD1 
inclusions [70]. Interestingly, disease characteristics are potently altered by altera-
tion of genetic background, suggesting the existence of genetic modifiers, at least in 
mice [71, 72]. Considering the shared features between the human disease and these 
mice, these models are of interest for preclinical research. It is important to note 
however that mutant SOD1 mice also have a number of limitations. First, as a model 
of SOD1-ALS, they reproduce the pathology of these patients, which appears atypi-
cal in the absence of TDP43 aggregates. Second, artifactual phenotypes, in particu-
lar mitochondrial vacuolization, is possibly confounding preclinical research in this 
model, and might underlie the failure of clinical trials based on results on SOD1 
mice. Other mouse model of ALS/FTD express TDP43 [26, 73], C9ORF72 [74] and 
FUS [27–29] mutations, and might be useful to confirm and extend results obtained 
in SOD1 mice.

5  The Serotonergic System in ALS

5.1  Early Studies

Involvement of the serotonergic system in ALS has been studied since the 80s, but 
most early studies are severely limited by small sample size and use of post-mortem 
tissues that could heavily confound biochemical results. These early studies mainly 
focused on serotonin metabolism and do not allow definitive conclusions. Most 
studies did not find altered levels of serotonin in the spinal cord [75–77], but not all 
[78], while results on 5-HT metabolite 5-HIAA levels are conflicting [75–78]. Only 
one study examined the activity of MAO-A in the spinal cord, and activity levels 
were not detectable, nor in patients or in control [79].
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5.2  Peripheral Serotonin in ALS

Peripheral and central pools of serotonin are distinct, and peripheral serotonin is 
produced in the gut and accumulates in platelets. Indeed, platelets and central sero-
tonergic neurons are equipped with similar serotonin related enzymes and receptor 
[80, 81]. Dupuis et al. [82] hypothesized that potential alterations in central sero-
tonin could be reflected in platelet serotonin levels. Indeed, these authors showed 
that the level of platelet, but not plasma-unconjugated, serotonin is decreased in 
31% of patients. In this study, plasma 5-HIAA levels were unchanged between 
patients and controls. Platelet serotonin level was also positively correlated with 
survival [82].

5.3  Central Serotonin in ALS

As serotonin does not cross the blood brain barrier and ALS is affecting the central 
nervous system, central serotonin is more likely involved in ALS.  Consistently, 
Dentel et al showed that central serotonergic neurons degenerate in ALS patients 
and SOD1 mice, and that this leads to decreased serotonin levels in several brain 
and spinal cord area at disease onset of SOD1 mice [83]. In mice, loss of central 
serotonin precedes the onset of motoneurons degeneration.

To characterize downstream effects of serotonin loss, it would be critical to target 
central serotonin itself. However, 5-HT does not cross the blood brain barrier, and 
this rescue can only be achieved by administering 5-HTP, the precursor of 
5-HT. Interestingly 5-HTP treatment appears to improve both survival and locomo-
tor function of SOD1 G93A mouse even if the basal level of 5-HT was not modified 
in these mice [84]. An alternative strategy would be to decrease serotonin catabo-
lism. To this aim, fluoxetine, as inhibitor of the serotonin transporter (SERT), 
appears promising. However, fluoxetine treatment appears to exacerbate disease 
progression in a dose dependent manner when SOD1G93A mice were treated perina-
tally [85]. Such deleterious effect was not present when fluoxetine was provided to 
adult mice. Arguably, fluoxetine administration at neonatal stages have been shown 
to negatively regulate development of the serotonergic system [86]. Therefore, the 
deleterious effect of neonatal fluoxetine could result from altered development of 
serotonergic neurons [87, 88]. In rats, MAO-A activity was decreased by 15% after 
chronic treatment with rasagiline [89]. Several studies have shown that at high con-
centration or as chronic treatment in vitro, rasagiline, a current treatment candidate, 
also inhibit partially MAO-A, paradoxically increasing its activity, thus potentially 
modifying 5-HT brain levels [90, 91]. The encouraging results of several clinical 
trials for rasagiline in ALS could thus be caused by modulation of serotonin.
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5.4  What Could be the Pathophysiological Consequences 
of Decreased Central Serotonin in ALS?

First, serotonin is a direct modulator of motor neuron excitability. Indeed, serotonin 
potentiates excitatory transmission, thereby possibly exacerbating excitotoxic 
mechanisms downstream of glutamate. Interestingly, in the brainstem, groups of 
motoneurons are either densely innervated by serotonin, such as facial motoneu-
rons, and others receive less 5-HT input [92]. In ALS, those receiving dense 5-HT 
innervation are more subject to denervation. On the contrary, motoneurons less sub-
ject to denervation receives little 5-HT input [92]. In regard of the limbs being the 
onset site in 70% of patients, it is interesting to note that motoneurons innervating 
the trunk and limbs are densely innervated by 5-HT [92]. Moreover, a study has 
recently shown that mice invalidated for TPH2 have altered swallowing function 
[93]. The fact that most ALS cases begin in the limbs, and that early symptoms 
includes difficulty swallowing or speaking would thus be consistent with a patho-
genic role of serotonergic denervation of motor neurons [9].

Importantly, the alteration of motor neuron excitability caused by serotonergic 
denervation of motor neurons could significantly contribute to spasticity, a major 
ALS symptom. Indeed, such a role for serotonin deprivation in spasticity has been 
previously characterized in spinal cord injury [94], and Dentel et al. [83] demon-
strated that 5-HT2B/C inverse agonists could alleviate spasticity in ALS mice. More 
recently, El Oussini et al. [95] genetically rescued serotonin neurons in a conditional 
mouse model of ALS, and observed that this rescue prevented the development of 
spastic like muscle contractions. However, this genetic manipulation, while pre-
venting spasticity, also worsened motor function and accelerated disease onset [95]. 
This is consistent with the observation that spasticity in patients allows to maintain 
a basal level of motor function, and thereby prevents the decline of motor functions.

Besides motor neuron excitability, serotonin is involved in other mechanisms of 
importance in ALS. Weight loss is a critical negative prognostic factor in ALS, and 
several studies point to dysregulation of hypothalamic networks controlling food 
intake and energy expenditure as a cause of weight loss [96–98]. Pro- 
opiomelanocortin (POMC) and AgRP neurons, collectively termed melanocortin 
system, in the hypothalamic arcuate nucleus are critical modulators of energy 
metabolism [99] and highly regulated by serotonin [100]. Interestingly, Vercruysse 
et al. [96] observed defects in the melanocortin pathway, indirectly in patients and 
more directly in SOD1 mice. Loss of POMC expression could be rescued fluoxetine 
treatment in mutant SOD1 mice, along with the observed compensatory hyperpha-
gia. Thus, defects in the melanocortin pathway appears downstream and could be 
subsequent of the loss of serotonin neurons [96].

Roos et al. [101] showed that patients have a higher risk of depression before 
diagnosis of ALS, and the year after. Since serotonin is critically involved in depres-
sion, and degeneration of serotonergic neurons appears before onset, at least in 
mice, it would be reasonable to hypothesize a serotonergic contribution to ALS- 
related depression, and the use of serotonin reuptake inhibitors, the first-line 
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treatment of depression, was suggested to be safe for patients [85]. Serotonin could 
also be involved in other behavioural alterations in ALS patients, such as inappro-
priate sexual behavior. Indeed, in a patient exhibiting inappropriate sexual behavior 
and aggressivity, Sertraline, a selective serotonin reuptake inhibitor, alleviated these 
symptoms [102]. Further research is needed to evaluate whether the many drugs 
targeting the serotonin pathway could prove useful in treating symptomatically 
ALS-related symptoms.

6  Serotonin Receptors in ALS

An alternative manner to determine whether serotonin might be an appropriate tar-
get in ALS is to pharmacologically intervene on serotonin signaling. Serotonin acts 
by binding to its receptors classified in seven families (5-HT1 to 5-HT7). All these 
receptors are G-protein coupled receptors (GPCR) except 5-HT3 which is an ion 
channel. Modification of expression of several of these receptors have been 
described in ALS. Two families of receptors are of particular importance in ALS: 
5-HT1 and 5-HT2. Other serotonin receptor such as 5-HT3, 5-HT5, 5-HT6 and 5-HT7 
are present on motoneurons but their expression and functions have not yet been 
studied in ALS.

6.1  5-HT1 Receptors

5-HT1A and 5-HT1B receptors are the most described regarding their modulation in 
ALS. They are found in the nervous system, both central and peripheral, and are 
coupled to a Gi/o effector. Interestingly, 5-HT1A and 5-HT1B receptors are found on 
motoneurons and serotonergic neurons, respectively on cell bodies and dendrite, 
and on preterminal axons [103, 104]. 5-HT1A polymorphisms are linked to patholo-
gies like schizophrenia or Tourette’s syndrome and to an altered response to 5-HT 
stimuli [105–107]. Knockout mice for this receptor have an anxious phenotype 
compared to wild type littermates, without modification of 5-HT levels [108, 109]. 
Regarding 5-HT1B receptor, polymorphisms have been linked to numerous disorders 
such as attention deficit hyperactivity disorder, depression and substance abuse 
[110–112]. Genetic invalidation of this receptor in mice induces aggressive behav-
ior and abolished the hyperlocomotor effect of an agonist targeting both 5-HT1A and 
5-HT1B [113].

5-HT1A expression and binding are decreased in the brain and spinal cord of ALS 
patients by more than 50% and has been shown both by binding assays in post- 
mortem tissues and PET-Scan in sporadic ALS as well as in presymptomatic SOD1 
mutation gene carriers [77, 114]. This receptor being present on both motoneurons 
and serotonergic neurons, these diminutions could however be secondary to the loss 
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of these particular neurons. The pathological significance of this loss of 5-HT1 
receptor in ALS remains unknown.

6.2  5-HT2 Receptors

There are three 5-HT2 receptors (A, B and C), that are all expressed in the nervous 
system: 5-HT2A, 5-HT2B and 5-HT2C [104]. 5-HT2 receptors are typically coupled to 
a Gq/11 protein. Early binding studies did not distinguish between 5-HT2 subtypes 
and suggested decreased 5-HT2 receptors binding in the motor cortex of ALS 
patients by 20% [77], while globally unchanged in the spinal cord. However, these 
binding sites are grouped in “hot spots” at the post synaptic level [77].

Among 5-HT2 receptors, 5-HT2A receptor is present on pyramidal cells, which 
includes motoneurons and is responsible for the motoneuron’s increased sensitivity 
to glutamate-mediated excitation [115, 116]. Its function in ALS has been investi-
gated using drugs with limited specificity. Turner and al. [84] used clozapine, an 
antipsychotic agent antagonizing the 5-HT2A receptor, but also showing other phar-
macological properties including partially 5-HT1A antagonism. In SOD1G93A mice, a 
low dose of clozapine (2.5 mg/kg PO) rescued motor performance and increased 
survival [84]. However, high dose of clozapine (7.5 mg/kg PO) yielded opposite 
effects are observed, with an increased mortality and worsening of motor impair-
ment. The relevance of this drug treatment to ALS, as well as target engagement of 
5-HT2A remains unknown.

5-HT2B receptor is also expressed in the central nervous system and several 
recent observations have suggested its relevance to ALS. 5-HT2B receptor is 
expressed on serotonergic neurons and microglial cells, where it regulates microg-
lial processes mediated by serotonin [117, 118]. Dentel and al., initially observed an 
upregulation of 5-HT2B mRNA levels in the spinal cord of SOD1G86R mice at onset 
motor symptoms, that are coincident with the appearance of spasticity that can be 
objectively quantified with measurement of tail muscle spasms [83]. Consistent 
with a potential role of 5-HT2B/C receptors in spastic-like phenotypes, 5-HT2B/C 
inverse agonists were able to potently prevent their appearance (Fig. 22.1).

To determine whether 5-HT2B or 5-HT2C receptor was involved in this phenotype, 
El Oussini et al. crossed SOD1G86R mice with mice lacking 5-HT2B receptor (Htr2b-

/-). Disease associated muscle spasms were unaltered in SOD1 mice without 5-HT2B 
receptor suggesting that this phenotype is more likely due to the 5-HT2C receptor. 
However, ablation of 5-HT2B receptor led to a decreased survival of 30%, an atrophy 
of motoneurons cell bodies and an overall exacerbation of the disease. Indeed, the 
upregulation of the 5-HT2B receptor is intrinsically microglial [119]. Consistent 
with this hypothesis, expression levels of genes involved in microglial homeostasis 
were decreased in SOD1G86R; Htr2b-/- mice and survival of primary microglia was 
dependent upon tonus of the 5-HT2B receptor. Last, El Oussini et al. [119] identified 
a polymorphism in the human HTR2B gene that appeared associated with higher 
mRNA levels in spinal cord and decreased signs of microglial degeneration. 
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Interestingly, patients carrying this polymorphism showed slightly increased sur-
vival as compared with those not carrying the polymorphism (Fig. 22.2).

Altogether, these data suggest that loss of the 5-HT2B receptor could prove detri-
mental in ALS. It remains to be tested whether stimulation of the 5-HT2B receptor 
could be protective.

Fig. 22.1 5-HT2B/2C contribution to ALS pathomechanisms. This figure presents  5-HT2B- 
mediated effects on microglia, as well as 5-HT2B- and/or 5-HT2C-mediated effects on POMC neu-
rons and motoneurons
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7  Outlook and Prospects

In all, involvement of the serotonergic pathway in ALS has been demonstrated, both 
in the development of the pathology, and in the development of symptoms linked to 
the disease such as depression or behavior modifications. Whether or not the modu-
lation of this pathway could improve ALS pathogenesis or disease outcome need to 
be determined by further studies. In particular, receptors 5-HT2B and 5-HT2C appear 
to be linked to critical features like the development of spasticity. Their presence on 
numerous cell types in the central nervous system make them potentially good tar-
gets for neuroprotection.

Fig. 22.2 Involvement of the serotonergic system in survival modulation. Left part of the figure 
has been demonstrated in mouse models, in regard to serotonergic-mediated behavior modulation 
studied in patient (right part of the figure). Red arrows indicates a negative effect on survival, and 
green arrows indicate a beneficial effect
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