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Abstract Isogeometric Analysis (IgA) can be considered as the natural extension
of the Finite Element Method (FEM) to high-order B-spline basis functions. The
development of efficient solvers for discretizations arising in IgA is a challenging
task, as most (standard) iterative solvers have a detoriating performance for increas-
ing values of the approximation orderp of the basis functions. Recently,p-multigrid
methods have been developed as an alternative solution strategy. With p-multigrid
methods, a multigrid hierarchy is constructed based on the approximation order p

instead of the mesh width h (i.e. h-multigrid). The coarse grid correction is then
obtained at level p = 1, where B-spline basis functions coincide with standard
Lagrangian P1 basis functions, enabling the use of well known solution strategies
developed for the Finite Element Method to solve the residual equation. Different
projection schemes can be adopted to go from the high-order level to level p = 1. In
this paper, we compare a direct projection to level p = 1 with a projection between
each level 1 ≤ k ≤ p in terms of iteration numbers and CPU times. Numerical
results, including a spectral analysis, show that a direct projection leads to the most
efficient method for both single patch and multipatch geometries.

1 Introduction

Isogeometric Analysis (IgA) [1] can be considered as a natural extension of the
Finite Element Method (FEM) to high-order B-spline basis functions. The use
of these basis functions enables a highly accurate representation of the geometry.
Furthermore, the higher continuity of the basis functions leads to a higher accuracy
per degree of freedom compared to FEM [2]. Solving linear systems of equations for
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discretizations arising in IgA remains, however, a challenging task. The condition
number of the system matrices increase exponentially with the approximation order
p of the basis functions [3]. Therefore, (standard) iterative methods detoriate for
higher values of p which has led to the development of efficient solvers for IgA
[4, 5].

Multigrid methods [6, 7] are considered among the most efficient solution
techniques for elliptic problems. Within h-multigrid methods, a hierarchy is con-
structed based on different mesh widths h. At the coarsest level, a correction is
obtained by solving the residual equation, which is used to update the fine grid
solution. At each level of the multigrid hierarchy, a basic iteration scheme is
applied, also known as the smoother. The combination of coarse grid correction and
smoothing leads to a highly efficient iterative solver, where the CPU time needed for
convergence grows linearly with the number of degrees of freedom. In the context
of Isogeometric Analysis, h-multigrid methods have been developed with enhanced
smoothers to obtained convergence rates independent of both the mesh width h and
approximation order p [8, 9].

As an alternative solution strategy, p-multigrid methods can be adopted. In
contrast to h-multigrid methods, a multigrid hierarchy is constructed based on
different values of p. As a result, the residual equation is solved at level p =
1, where B-spline basis functions coincide with Lagrangian P1 basis functions,
allowing the use of established solution techniques for standard FEM. Equiped
with a smoother that is based on an Incomplete LU factorization [10], the resulting
p-multigrid method shows convergence rates independent of both h and p [11].
Compared to h-multigrid methods, the coarse grid correction is obtained at p = 1.
As a result, the overall assembly costs are lower for higher values of p due to a
significant reduction of the number of non zero entries. For a detailed comparison
with h-multigrid methods, the authors refer to [11].

In recent papers by the authors, a p-multigrid hierarchy has been constructed for
all levels k, where 1 ≤ k ≤ p. However, the scheme could be adopted in which the
residual at level p is directly projected to the coarse level (p = 1). In this paper,
we compare both schemes in terms of spectral properties, iteration numbers and
CPU times for both a single patch and multipatch geometry. This paper is organized
as follows: Sect. 2 describes the considered model problem and IgA discretization.
The p-multigrid method, together with the different projection schemes studied in
this paper, are described in detail in Sect. 3. Numerical results for the considered
benchmark problems, including a spectral analysis, iteration numbers and CPU
times are presented in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Model Problem and IgA Discretization

As a model problem, we consider the convection-diffusion-reaction (CDR) equation
on a connected, Lipschitz domain � ⊂ R

2. Defining V = H 1
0 (�) as the Sobolev

space H 1(�) with functions that vanish on ∂�, the variational form of the CDR-
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equation becomes: Find u ∈ V such that

a(u, v) = (f, v) ∀v ∈ V, (1)

where

a(u, v) =
∫

�

(D∇u) · ∇v + (v · ∇u)v + Ruv d� and (f, v) =
∫

�

f v d�. (2)

Here, D denotes the diffusion tensor, v a divergence-free velocity field and R a
reaction term. Furthermore, we have f ∈ L2(�) and u = 0 on the boundary ∂�.
The physical domain � is then parameterized by a geometry map

F : �̂ → �, F(ξ ) = x. (3)

The geometry map F describes an invertible mapping connecting the parameter
domain �̂ = (0, 1)2 with the physical domain �. In case � cannot be described by
a single geometry map, the domain is divided into a collection of non-overlapping
subdomains �(d), where 1 ≤ d ≤ D. A family of geometry maps F(d) is then
defined to parameterize each subdomain separately and we refer to� as a multipatch
domain consisting of D patches.

In this paper, the tensor product of univariate B-spline functions of order p is
used for the spatial discretization. Univariate B-spline basis functions are defined
on the one-dimensional parameter domain �̂ = (0, 1) and are uniquely determined
by a knot vector � = {ξ1, ξ2, . . . , ξN+p, ξN+p+1}, consisting of a sequence of non-
decreasing knots ξi ∈ �̂ with, in this paper, constant knot span size or mesh width h.
Here,N denotes the number of basis functions of order p defined by this knot vector.
B-spline basis functions are defined recursively by the Cox de Boor formula [12].
The resulting B-spline basis functions φi

h,p are non-zero on the interval [ξi , ξi+p+1)

and possess the partition of unity property. In this paper, an open knot vector is
considered, implying that the first and last knots are repeated p + 1 times. As
a consequence, the basis functions considered are globally Cp−1 continuous and
interpolatory only at the two end points; see also Fig. 1.
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Fig. 1 Univariate linear (left) and quadratic (right) B-spline basis functions based on the knot
vectors �1 = {0, 0, 1

3 , 2
3 , 1, 1} and �2 = {0, 0, 0, 1

3 , 2
3 , 1, 1, 1}, respectively
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The solution u of Eq. (1) is then approximated by a linear combination of
bivariate B-spline basis functions:

u(ξ ) ≈ uh,p(ξ ) =
Ndof∑
i=1

ci�i
h,p(ξ ), (4)

where �i
h,p(ξ ) = φ

i1
h,p(ξ1)φ

i2
h,p(ξ2) and Ndof denotes the number of bivariate B-

spline functions, where Ndof = N2. Defining Vh,p as the span of all bivariate B-
spline basis functions, the Galerkin formulation of (1) becomes: Find uh,p ∈ Vh,p

such that

a(uh,p, vh,p) = (f, vh,p) ∀vh,p ∈ Vh,p. (5)

Equation (5) can be written as a linear system resulting from this discretization with
B-spline basis functions of approximation order p and mesh width h. For a more
detailed description of the spatial discretization in IgA, the authors refer to [1].

3 p-Multigrid Method

To solve Eq. (5) efficiently, a p-multigrid method is adopted. Starting from Vh,1,
a sequence of spaces Vh,1, . . . ,Vh,p is obtained by applying refinement in p.
As Cp−1 continuous basis functions are considered on all levels of the multigrid
hierarchy, these spaces are not nested.

Starting from an initial guess u(0)
h,p, a single step of the two-grid correction scheme

for the p-multigrid method consists of the following steps [13]:

u(0)
h,p = u(0)

h,p + Sh,p

(
fh,p − Ah,pu

(0)
h,p

)
, (6)

rh,p−1 = Ip−1
p

(
fh,p − Ah,pu

(0)
h,p

)
. (7)

eh,p−1 = (
Ah,p−1

)−1 rh,p−1, (8)

u(0)
h,p = u(0)

h,p + Ip
p−1

(
eh,p−1

)
, (9)

u(1)
h,p = u(0)

h,p + Sh,p

(
fh,p − Ah,pu

(0)
h,p

)
, (10)

Here,Sh,p denotes a single smoothing step applied to the high-order problem, while

Ip−1
p and Ip

p−1 denote the restriction and prolongation operator, respectively. The
coarse grid operator Ah,p−1 is obtained by rediscretizing equation (1).

Recursive application of this scheme on Eq. (8) until level p = 1 is reached,
results in a V-cycle. As the coarsest problem in p-multigrid can become large
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Fig. 2 Illustration of both an indirect (left) and direct (right) projection scheme within p-multigrid

for small values of h, a single V-cycle of a standard h-multigrid method (with
canonical prolongation, weighted restriction and a single smoothing step) is adopted
to approximately solve the coarse grid problem in our p-multigrid scheme.

In this paper, we also consider a direct projection from the high-order level to
level p = 1. Both considered multigrid schemes, referred to as an indirect and
direct projection scheme, are shown in Fig. 2.

The operators to project between different p-levels are based on an L2 projection
and have been used extensively in the literature [14–16]. The prolongation and
restriction operator are defined, respectively, as follows:

Ip

p−1(vp−1) = (Mp)−1Pp

p−1 vp−1 Ip−1
p (vp) = (Mp−1)

−1Pp−1
p vp, (11)

with the mass matrixMp and transfer matrix Pp

p−1 given by:

(Mp)(i,j) :=
∫

�

�i
h,p�

j

h,p d�, (Pp

p−1)(i,j) :=
∫

�

�i
h,p�

j

h,p−1 d�. (12)

The choice of the prolongation and restriction operator leads to a non-symmetric
multigrid method. Choosing the prolongation and restriction operator as the trans-
pose of eachother would restore symmetry. Numerical experiments, not presented
in this paper, show, however, that this leads to a less robust p-multigrid method. To
prevent the explicit solution of a linear system of equations for each projection step,
the consistent mass matrix Mp in both transfer operators is replaced by its lumped

counterpart ML
p by applying row-sum lumping, i.e. (ML

p)(i,i) = ∑Ndof
j=1(Mp)(i,j).

Note that in IgA the mass matrix can easily be lumped due to the non-negativity
of the B-spline basis functions. It was shown in [11] that the use of a lumped mass
matrix in Eq. (13) hardly influences the convergence behaviour or accuracy of the
resulting p-multigrid methods. Note that, alternatively, the mass matrix could be
inverted efficiently by exploiting the tensor product structure, see [18].

Since the use of standard smoothers (i.e. Gauss–Seidel) within p-multigrid
leads to convergence rates which detoriate for higher values of p [13], we adopt
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a smoother based on an ILUT factorization. This factorization is determined
completely by a tolerance τ and fillfactor m, which are chosen such that the number
of nonzeros is approximately the same as for the orignal operator Ah,p. We applied
this smoother successfully within p-multigrid methods to solve linear systems
arising in IgA [11].

4 Numerical Results

To assess the quality of both projection schemes, two benchmarks are considered.
For the first benchmark, the model problem (1) is considered with coefficients:

D =
[

1.2 −0.7
−0.4 0.9

]
, v =

[
0.4

−0.2

]
, R = 0.3. (13)

Here, � is chosen to be the unit square, i.e. � = [0, 1]2, described by a single
patch. The second benchmark is Poisson’s equation (D is the identity matrix) on
an L-shaped domain (� = {[−1, 1] × [−1, 1]}\{[0, 1] × [0, 1]}), consisting of 4
patches. The resulting linear systems are then solved with the proposed p-multigrid
methods. At level p = 1, coarsening in h is applied until h = 2−3, corresponding
to 81 degrees of freedom.

To investigate the interplay between smoothing and the coarse grid correction,
the error reduction factors when applying a single smoothing step (only on the finest
level) or coarse grid correction (without smoothing) have been determined for both
projection schemes. This analysis has been performed before in literature, in the
context of h-multigrid methods [17]. Figure 3 (left) denotes the error reduction
factors of the generalized eigenvectors vj (j = 1, . . . Ndof) of the operator Ah,p

for p = 4 and h = 2−5. For both a direct and indirect projection, the smoother
and coarse grid correction are complementary to eachother, where the smoother is
effective for the high-frequency components and the coarse grid correction for the
low frequency components. Remarkably, the coarse grid correction with a direct
projection is not only more efficient in terms of less computational work, but also
leads to lower reduction factors. Note that, no smoothing is applied here on the
coarser levels.

To further analyze the performance of both projection schemes, the asymptotic
convergence rate of the resulting p-multigrid methods has been determined. For any
multigrid method, the asymptotic convergence rate is given by the spectral radius
ρ of the iteration matrix describing the effect of a single V-cycle. The spectra of
the iteration matrices for both projection schemes are shown in Fig. 3 (right). For
comparison, a circle with radius 0.025 has been added to the plot. Visually, both
spectra are almost identical, which is also confirmed by the obtained spectral radia:
ρ1 = 0.02032 and ρ2 = 0.02035 for a direct and indirect projection, respectively,
implying an equally efficient p-multigrid method for both configurations.
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Fig. 3 Error reduction in vj (left) and the spectrum of the iteration matrix (right) for the first
benchmark obtained with both projection schemes

(
p = 4, h = 2−5

)

Table 1 Number of iterations needed to achieve convergence for both benchmarks when applying
a direct or indirect projection for different values of h and p

p = 2 p = 3 p = 4 p = 5

Direct Indirect Direct Indirect Direct Indirect Direct Indirect

(a) CDR-equation on the unit square

h = 2−5 5 5 4 4 3 3 3 3

h = 2−6 5 5 4 4 4 3 4 4

h = 2−7 5 5 4 4 4 4 4 4

h = 2−8 5 5 4 4 4 4 4 4

(b) Poisson’s equation on an L-shaped domain

h = 2−5 6 6 6 5 5 5 5 4

h = 2−6 7 7 6 5 5 5 5 4

h = 2−7 7 7 6 6 6 5 6 4

h = 2−8 8 8 6 6 7 6 6 5

Table 1 shows the number of iterations needed to achieve convergence for both
benchmarks, respectively. For all numerical experiments, the initial guess u(0)

h,p is
chosen randomly, where each entry is sampled from a uniform distribution on the
interval [−1, 1]. The p-multigrid iteration is considered converged when the initial
residual has decreased with a factor of 108. Note that for both projection schemes
and benchmarks, the number of iterations is robust in both the mesh width h and the
approximation order p and similar for all configurations. For the first benchmark,
with p = 4 and h = 2−5, the same number of iterations is needed, as expected
from our spectral analysis. Note that for the multipatch geometry, more iterations
are required to achieve convergence. This behaviour for p-multigrid methods has
been observed and analyzed in literature by the authors, see [19].
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Table 2 CPU timings (secs) for the first benchmark for different values of h and p

p = 2 p = 3 p = 4 p = 5

Direct Indirect Direct Indirect Direct Indirect Direct Indirect

(a) Set-up times

h = 2−5 0.2 0.2 0.3 0.4 0.5 0.9 0.9 1.8

h = 2−6 0.6 0.6 1.1 1.6 2.1 3.6 3.7 7.5

h = 2−7 2.5 2.5 4.6 6.4 8.5 14.9 16.7 35.2

h = 2−8 10.0 9.9 18.7 26.2 36.1 65.7 66.4 142.9

(b) Solving times

h = 2−5 0.004 0.004 0.004 0.005 0.004 0.007 0.005 0.01

h = 2−6 0.01 0.01 0.01 0.02 0.02 0.03 0.02 0.05

h = 2−7 0.04 0.04 0.05 0.07 0.07 0.1 0.1 0.2

h = 2−8 0.2 0.2 0.2 0.3 0.3 0.5 0.4 0.8

To compare the computational costs of both approaches, CPU timings have
been determined for the first benchmark. A serial implementation in the C++
library G+Smo is considered on an Intel(R) Core(TM) i7-8650 CPU (1.90GHz).
Table 2 shows the measured set-up and solver times (in seconds). Although for both
projection schemes, the set-up and solver time scales linearly with the number of
degrees of freedom, the CPU times obtained with a direct projection scheme are
significantly lower. Furthermore, the relative difference increases for higher values
of p, as the number of levels in the p-multigrid hierarchy grows when adopting an
indirect projection scheme: for p = 5 a reduction of the set-up and solving times of
around 50% is achieved.

5 Conclusions

Recently, the use of p-multigrid methods has become more popular in solving
linear systems of equations arising in Isogeometric Analysis. In this paper, various
schemes to set up the p-multigrid hierarchy have been compared. In particular, a
direct projection to level p = 1 has been compared with constructing a hierarchy
for each order 1 ≤ k ≤ p. Numerical results, presented for the CDR-equation on
the unit square and Poisson’s equation on an L-shaped multipatch domain, show
that in terms of iteration numbers both projection schemes lead to (almost) identical
results. This is also confirmed by the performed spectral analysis. However, CPU
timings show that a direct projection scheme leads to the most efficient solution
strategy, reducing the set-up and solving times up to a factor of 2 for higher values
of p.
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