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Abstract We present a constrained pressure residual (CPR) two-stage precon-
ditioner applied to a discontinuous Galerkin discretization of a two-phase flow
in strongly heterogeneous porous media. We consider a fully implicit, locally
conservative, higher order discretization on adaptively generated meshes. The
implementation is based on the open-source PDE software framework Dune and
its PETSc binding.

1 Introduction

The significant geologic complexity involved in multi-phase flow and the treatment
of strongly heterogeneous soil properties need efficient preconditioning strategies
for fully implicit formulations. Multilevel techniques such as the constrained
pressure residual (CPR) two-stage preconditioner allow to exploit the algebraic
properties of the Jacobian matrix of the system. The two-stage CPR preconditioner
was introduced byWallis [2, 3] from the previous work of Behie and Vinsome [4] on
combinative preconditioners in reservoir engineering. Lacroix et al. [5] combined
a first stage preconditioner on the pressure subsystem with Algebraic Multigrid
(AMG) and a second stage preconditioner on the full system with ILU-0. The CPR-
AMG has proven to be efficient for the simulation of complex problems in reservoir
engineering [6–9] and in basin modeling [10]. The CPR impact on h and hp adaptive
DG schemes is still not well understood as most of the work with regards to the CPR
has so far mainly focused on finite volume methods. To our knowledge this is the
first time the CPR-AMG is applied within an adaptive DG discretization framework.

This work is organized as follows: Sect. 2 provides a description of the Jacobian
matrix arising from a fully implicit discretization of a two-phase flow problem.

B. Kane (�)
NORCE Norwegian Research Centre AS, Bergen, Norway
e-mail: birane.kane@norceresearch.no

© Springer Nature Switzerland AG 2021
F. J. Vermolen, C. Vuik (eds.), Numerical Mathematics and Advanced Applications
ENUMATH 2019, Lecture Notes in Computational Science and Engineering 139,
https://doi.org/10.1007/978-3-030-55874-1_56

573

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-55874-1_56&domain=pdf
mailto:birane.kane@norceresearch.no
https://doi.org/10.1007/978-3-030-55874-1_56


574 B. Kane

Section 3 sets out the formulation of the CPR-AMG method. Section 4 provides
numerical tests implemented within Dune [1].

2 Structure of the Jacobian Matrix

We consider a domain � ∈ R
d , d ∈ {2, 3}. The phases α = {w, n} are

incompressible and immiscible. Unknown variables are the pressure pw and the
saturation sn.

−∇ ·
(

(λw + λn)K∇pw + λnp
′
cK∇sn − (ρwλw + ρnλn)Kg

)
= qw + qn,

φ
∂sn

∂t
− ∇ ·

(
λnK(∇pw − ρng)

)
− ∇ ·

(
λnp

′
cK∇sn

)
= qn.

(1)

λα := λα(sα) phase mobility
g gravity
φ > 0 porosity

pc := pc(sn) capillary-pressure
K permeability tensor
ρα phase density
qα source/sink term

In order to have a complete system we add appropriate boundary and initial
conditions. For a more thorough description of the complete system and its DG
discretization see [11–14].

The development of effective and robust preconditioning techniques requires to
fully understand and exploit the algebraic properties of each individual block of
the Jacobian matrix JG stemming from the fully-implicit and fully-coupled DG
discretization of the two-phase flow system (1). Following [11], let JGX = b be
the linear system to solve and r = b − JGX the residual, where X = (Xp,Xs)

is the unknown and b = (bp, bs)
ᵀ the right-hand side. The Jacobian matrix JG is

expressed as

JG =
⎛
⎝Jpp Jps

J sp J ss

⎞
⎠ =

⎛
⎜⎝

∂Gp

∂p

∂Gp

∂s

∂Gs

∂p

∂Gs

∂s

⎞
⎟⎠ . (2)

Here, Jpp ∈ R
np×np is the pressure block, J ss ∈ R

ns×ns is the saturation block.
Jps ∈ R

np×ns and J sp ∈ R
ns×np are the coupling blocks. The term Gp (resp. Gs)

denotes the discretization of the first (resp. second) equation of system (1).
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We consider in our implementation a dof-based re-ordering of variables where
JG is reformulated as

JG =

⎛
⎜⎜⎜⎜⎜⎜⎝

(J pp)1,1 (J ps)1,1

(J ss)1,1 (J ss)1,1
· · · (J pp)1,ns (J ps)1,ns

(J ss)1,ns (J ss)1,ns

...
. . .

...

(J pp)np,1 (J ps)np,1

(J ss)np,1 (J ss)np,1
· · · (J pp)np,ns (J ps)np,ns

(J ss)np,ns (J ss)np,ns

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3)

Above, np is the number of dofs for the pressure and ns is the number of dofs for
the saturation. (J )i,j represents the coupling between two dofs.

3 Constrained Pressure Residual Preconditioner

This section provides an extended insight into the structures and the different stages
involved in the construction of the CPR preconditioner.

3.1 Method Description

The CPR belongs to the family of two-stage preconditioners, first it extracts
and solves a pressure subsystem. The residual associated with this solution is
subsequently corrected with an additional preconditioning step that recovers part
of the global information contained in the original system. The elliptic feature
exhibited by the pressure subsystem allows it to be handled well by multigrid
methods. The other equation is usually degenerate parabolic and might be handled
by an ILU preconditioner. Figure 1 provides a sketch of the CPR preconditioning.

Definition 1 The general formulation of a two-stage preconditioner is:

M−1
2st = M−1

2

[
I − J̃M−1

1

] + (
M−1

1

)
(4)

where M−1
1 (resp. M−1

2 ) corresponds to the first (resp. second) stage of the
preconditioner and the operator J̃ is such that

D−1
1 JGD−1

2 = J̃ =
⎛
⎝J̃pp J̃ps

J̃sp J̃ss

⎞
⎠ . (5)

Here D1 and D2 are decoupling operators, different choices of Di , i ∈ {1, 2} gener-
ate different first stage preconditioners [6]. We provide more details concerning the
decoupling operators in the next section.
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Fig. 1 Sketch of the CPR preconditioning

For the CPR, the first stage in (4) corresponds to

M−1
1 = CJ̃−1

pp CT , (6)

where CT and C are respectively, restriction and prolongation operators. In
particular, C is given by

C =
⎛
⎜⎝

e

. . .

e

⎞
⎟⎠ and e =

(
1
0

)
.

The second stage in (4) is

M−1
2 = M−1

ILU , (7)

where M−1
ILU is an ILU preconditioner.

CPR Procedure

The CPR preconditioning step δ = M−1
CPRr can be outlined as follows:

1. Weakening of the coupling between the pressure and non pressure blocks:

D−1
1 JG = J̃ =

⎛
⎝J̃pp J̃ps

J̃sp J̃ss

⎞
⎠ ; (8)
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2. Compute the pressure subsystem residual:

rp = CT D−1
1 r; (9)

3. Solve the pressure system (e.g. with an AMG preconditioner or as a solver):

J̃ppδp = rp; (10)

4. Expand the pressure solution to the full system:

γ = Cδp =
(

δp

0

)
; (11)

5. Compute the new residual:

r̂ = r − J̃ γ ; (12)

6. Prediction and correction step:

δ = M−1
2 r̂ + γ. (13)

Here δ = (δp, δs)
t denotes the correction obtained after the two stages and for

the sake of simplicity, we set D−1
2 = I for the decoupling step (i.e. (8)).

Remark 1 More robust preconditioners can be formulated with the inclusion of the
convective-diffusive block [6],

M−1
CPR∗ = M−1

2

(
I − (

J̃ − M2
)(

J̃−1
pp −J̃−1

pp J̃ps J̃ ss−1

0 J̃−1
ss

))
. (14)

3.2 Decoupling Operators

The decoupling introduced in (5) is a very important preprocessing step allowing
to weaken the coupling between the pressure and non-pressure blocks while
preserving the good algebraic properties for the extracted pressure subsystem [10,
and references therein]. The main decoupling strategies usually considered in the
literature are the Alternate-Block Factorization (ABF) procedure [15], the Quasi-
IMPES procedure [5, 10] and the True-IMPES procedure [16].

Definition 2 Following Bank et al. [15], the ABF method is defined such that

D1 =
⎛
⎝Dpp Dps

Dsp Dss

⎞
⎠ =

⎛
⎝diag(Jpp) diag(Jps)

diag(Jsp) diag(Jss)

⎞
⎠ and D2 = I.
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Remark 2 Considering a dof-wise re-ordering, the ABF method corresponds to a
simple to block diagonal scaling with

D1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(J pp)1,1 (J ps)1,1

(J ss)1,1 (J ss)1,1
. . .

(J pp)np,ns (J ps)np,ns

(J ss)np,ns (J ss)np,ns

⎞
⎟⎟⎟⎟⎟⎟⎠

. (15)

In this work we only focus on the ABF method owing to its structural simplicity
and ease of implementation. We might although expect some potential drawbacks
because J̃pp may be “strongly” non-symmetric compared to Jpp. It is also important
to emphasize the fact that computing the exact inverse of J̃pp not feasible for large
scale settings. It is therefore crucial to calibrate carefully inner and outer tolerances
within the nested iterative procedure defined from (5) to (13).

4 CPR Preconditioner Performances

In this section, we analyze the performance of the two stage CPR preconditioner.
We consider the 3d heterogeneous model in Fig. 2 introduced in [11]. We use a
GMRES PetSc solver with a relative residual norm of 10−7 and a Newton tolerance
of 5 × 10−7. The computations are done in serial on a standard Intel workstation.
Figure 3 and Table 1 summarize the results of this test case.

Fig. 2 3d infiltration problem
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Fig. 3 Average number of
linear iterations per Newton
step
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Table 1 Comparison of
different preconditioners

Preconditioner AMGPetSc CPR PetSc

Avg lin it/Newton 125.4 120.65

Avg assem time/lin it [s] 24.27 24.69

Avg inv time/lin it [s] 8.54 11.22

Total comput time [s] 2856 3075

Fig. 4 Average convergence
rates (60,000 dofs, T =
1500 s, Newton tol. 10−7)
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The performances of the CPR and AMG are quite comparable with respect to
the total CPU time. Indeed, the AMG is slightly faster up to 300,000 dofs. The
relative residuals with respect to the average number of linear iterations per Newton
step are depicted in Fig. 4, it illustrates the typical rate of convergence of the two
preconditioners (here the Newton tolerance is 10−7). In order to converge to a
residual norm of less than 10−13, AMG is slightly faster than CPR. However, the
convergence rate of CPR is better than that of AMG.
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5 Conclusion

The performances of the CPR for DG discretizations of porous media multiphase
flow are not yet quite satisfactory compared to classical preconditioners such as
AMG or ILU. One way to improve the performances of the CPR might consist in
loosening the relative residual tolerances for the solution of the pressure subsystem
as suggested in [17]. Another alternative consists in implementing more efficient
decoupling operators such as the True-Impes and the Quasi-Impes [5, 6, 10, 16].
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