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Abstract Different parallel two-level overlapping Schwarz preconditioners with
Generalized Dryja–Smith–Widlund (GDSW) and Reduced dimension GDSW
(RGDSW) coarse spaces for elasticity problems are considered. GDSW type
coarse spaces can be constructed from the fully assembled system matrix, but they
additionally need the index set of the interface of the corresponding nonoverlapping
domain decomposition and the null space of the elasticity operator, i.e., the rigid
body motions. In this paper, fully algebraic variants, which are constructed solely
from the uniquely distributed system matrix, are compared to the classical variants
which make use of this additional information; the fully algebraic variants use an
approximation of the interface and an incomplete algebraic null space. Nevertheless,
the parallel performance of the fully algebraic variants is competitive compared to
the classical variants for a stationary homogeneous model problem and a dynamic
heterogenous model problem with coefficient jumps in the shear modulus; the
largest parallel computations were performed on 4096 MPI (Message Passing
Interface) ranks. The parallel implementations are based on the Trilinos package
FROSch.

1 Introduction

We consider the solution of large, parallel distributed stationary and dynamic
discretized elasticity problems with a moderate Poisson ratio; i.e., we do not
consider the nearly incompressible case. As the solver, we use the Generalized
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Minimal Residual (GMRES) method preconditioned by two-level overlapping
Schwarz preconditioners with Generalized Dryja–Smith–Widlund (GDSW) [2, 3]
and Reduced dimension GDSW (RGDSW) [5, 12] coarse spaces. Even though
these preconditioners can be constructed from the fully assembled system matrix,
a minimum of geometric information is also needed. In particular, the domain
decomposition interface and the null space are used for their construction. Here,
we focus on the construction of fully algebraic GDSW type coarse spaces if this
information is not available. In particular, we consider the case when the system
matrix is uniquely distributed, such that the interface cannot be identified.

Therefore, we will describe a method to approximate the nonoverlapping subdo-
mains, resulting in an approximate interface; cf. [10]. Our parallel implementation
is based on the FROSch framework [9], which is part of the ShyLU package in
Trilinos [13]; see [10, 11] for more details on the implementation. To discuss the
performance of the fully algebraic approach, we will compare it to the classical
GDSW type coarse spaces using all necessary information.

2 Model Problems

The equilibrium equation for an elastic body covering the domain � = [0, 1]3 under
the action of a body force f in the time interval [0, T ] is

∂ttu − div σ = f in � × [0, T ], (1)

with the symmetric Cauchy stress tensor σ and the displacement u. We consider a
Saint Venant-Kirchhoff material, a hyperelastic material with the linear material law

σ (E) = λ

2
(traceE)2 + μ traceEI (2)

and the nonlinear strain tensor given by E := 1
2 (C − I) , where C is the right

Cauchy-Green tensor. Furthermore, we consider the boundary conditions

u = 0 on ∂�D := {0} × [0, 1]2,

σ · n = 0 on ∂�N := ∂� \ ∂�D,

and the body force f = (−20, 0, 0)T , for t < 5 · 10−3, and f = 0, afterwards.
In addition to this, we also consider a stationary problem with ∂ttu = 0, i.e.,

div σ = (0,−100, 0)T in �,

u = 0 on ∂�D := {0} × [0, 1]2,

σ · n = 0 on ∂�N := ∂� \ ∂�D.

(3)
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We transform the model problems to their respective variational formulations and
discretize them using piecewise linear or quadratic finite elements; we denote the
corresponding finite element spaces by V h = V h (�). For the time-dependent prob-
lem, the resulting semi-discrete problem is further discretized with the Newmark-β
method. In particular, we choose the parameters for the fully implicit constant
average acceleration method, i.e., β = 1/2 and γ = 1/4.

The fully discrete nonlinear equations are linearized using Newton’s method. We
solve the equation

J (u(k))δu(k+1) = R(u(k)), (4)

for the update δu(k+1). Here, J (u(k)) and R(u(k)) are the Jacobian and the nonlinear
residual for the solution u(k), respectively.

2.1 GDSW and RGDSW Preconditioners

We consider the system of linear equations (4) as derived in the previous section.
For simplicity, we use the notation Ax = b in this section.

Let � be decomposed into nonoverlapping subdomains {�i}Ni=1 with typical

diameter H and corresponding overlapping subdomains
{
�′

i

}N

i=1, resulting from
extending the nonoverlapping subdomains by k layers of elements. We define
Ri : V h → V h

i , i = 1, . . . , N , as the restriction from the global finite element
space V h to the local finite element space V h

i := V h
(
�′

i

)
and corresponding

prolongation operators RT
i . In addition to that, we can also define restricted and

scaled prolongation operators R̃T
i ; cf., e.g., [1, 4, 7].

Furthermore, let

� := {
x ∈ (�i ∩ �j) \ ∂�D : i �= j, 1 ≤ i, j ≤ N

}

be the interface of the nonoverlapping domain decomposition.
The GDSW preconditioner, which was introduced by Dohrmann, Klawonn, and

Widlund in [2, 3], is a two-level additive overlapping Schwarz preconditioner with
energy minimizing coarse space and exact solvers. Thus, the preconditioner can be
written in the form

M−1
GDSW = 	A−1

0 	T +
N∑

i=1

RT
i A−1

i Ri , (5)

where Ai = RiART
i . In the second level, we solve the coarse problem matrix

A0 = 	T A	. The columns of 	 are the basis functions of the coarse space.
To construct the GDSW coarse basis functions, let R�j be the restriction from �
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onto the interface component �j . For the GDSW coarse space in three dimensions,
the interface components are the vertices, edges, and faces. Then, the values of the
GDSW basis functions on � read

	� =
[
RT

�1
	�1 . . . RT

�M
	�M

]
,

where the columns of 	�j are the restrictions of the null space of subdomain
Neumann matrices to the interface component �j . For elasticity, the null space
consists of the rigid body motions, i.e., the translations and rotations. After
partitioning the degrees of freedom into interface (�) and interior (I ) ones, the
matrix A can be written as

A =
[
AII AI�

A�I A��

]

and the GDSW coarse basis functions are the discrete harmonic extensions of 	�

into the interior,

	 =
[

	I

	�

]
=

[−A−1
II AI�	�

	�

]
. (6)

The RGDSW coarse space is constructed similarly. However, in general, we only
obtain one basis function for each vertex, resulting in a much smaller dimension of
the coarse space; cf. [5] and, for more details on the parallel implementation in
FROSch, [7, 12]. The reduction of the coarse space dimension can also be seen
in Table 1. There are several variants of RGDSW coarse spaces, which differ in
a scaling of the interface degrees of freedom. Here, we will only consider the
most algebraic variant, which is denoted as Option 1 in [5]; cf. [7] for a detailed
description of our implementation of Option 1 of the RGDSW coarse space.

In our numerical simulations, we will also employ the recycling strategies
presented in [7]. We always reuse the symbolic factorizations from previous time

Table 1 Comparison of coarse matrix sizes for a structured domain decomposition and the
approximated subdomain maps for a P1 (H/h = 21) and P2 (H/h = 9) discretization

#cores 64 512 4096

GDSW Rotations 1593 16,149 144,045

No rotations 837 8589 77,085

Algebraic P1 disc. 1395 11,355 84,762

Algebraic P2 disc. 1554 11,466 84,708

RGDSW Rotations 162 2058 20,250

No rotations 81 1029 10,125

Algebraic P1 disc. 93 1065 10,218

Algebraic P2 disc. 93 1038 10,134
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or Newton iterations. Moreover, we reuse the coarse space from previous iterations
and, for the dynamic problem, additionally the coarse matrix. Furthermore, as in [7],
we always use a scaled first level operator with overlap δ = 1h.

3 Fully Algebraic Construction of GDSW and RGDSW
Coarse Spaces

As previously described, the construction of GDSW and RGDSW coarse spaces
for elasticity problems requires both the domain decomposition interface and the
null space of the operator, i.e., the rigid body motions. Here, we describe how we
construct the coarse space if this information is not available.

Algebraic Approximation of the Interface If the distribution of the system
matrix is unique, the interface cannot be recovered. Therefore, we will carry out
the following process to approximate the nonoverlapping subdomains and hence
the interface. Starting from the unique distribution, we first add one layer of
elements to each subdomain. The overlap of the resulting domain decomposition
now contains the interface but also other finite element nodes. In order to reduce
the number of unnecessary nodes, we compare the subdomain ID of the original
unique decomposition and the decomposition with one layer of overlap and remove
nodes from the overlapping subdomains if the subdomain ID is lower compared to
the original decomposition; this process is sketched in [10] and Fig. 1.

Incomplete Null Space The rigid body modes are the translations and rotations of
the elastic body. The translations are constant functions which can be constructed
without any geometric information. Since we are not able to compute the rotations
from the fully assembled matrix and without coordinates of the finite element nodes,
we just omit them in the fully algebraic coarse space; see also [11]. For the results

Distributed Map Overlapping Map Repeated Map
(colored boxes) (colored boxes)

Fig. 1 Sketch of the approximation of the nonoverlapping subdomains and the interface, respec-
tively: uniquely distributed map (left); extension of the uniquely distributed map by one layer
of elements resulting in an overlapping map, where the overlap contains the interface (middle);
by selection, using the lower subdomain ID, the a map approximating to the nonoverlapping
subdomains is constructed (right). Taken from [10]
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in Sect. 4, only the number of iterations is negatively affected by omitting rotations
from the coarse space but the time to solution actually benefits from the smaller
coarse space. Note that, from theory, the rotational basis functions are necessary for
numerical scalability. Therefore, we expect that there are problems for which the
full coarse space performs better.

4 Numerical Results

In this section, we compare the GDSW and RDSW preconditioners with exact
interface maps and full coarse space, GDSW and RGDSW preconditioners with
exact interface map but without rotational basis functions, and the fully algebraic
variant with approximated interface and without rotational basis functions; for the
sake of brevity, we denote the three variants as “rotations”, “no rotations”, and
“algebraic”, respectively. As discussed in Sect. 2, we consider a stationary elasticity
problem with homogeneous shear modulus of μ = 5 · 103 and a dynamic elasticity
problem with two material phases; cf. Fig. 2 (left) for a graphical representation
of the coefficient distribution of the shear modulus. For both cases, we choose
ν = 0.4. For the stationary homogeneous model problem, we use structured grids
and structured decompositions into square subdomains, whereas for the dynamic
problem, we use a fixed unstructured tetrahedral mesh with roughly 3.3 million
elements and 588 k nodes. We use the inexact Newton method of Eisenstat and
Walker [6] with a type 2 forcing term until a relative residual of εnl = 10−8 is
achieved. The initial forcing term is ηinit = 10−3 and the maximum and minimum
forcing terms are ηmax = 10−2 and ηmin = 10−8, respectively. Therefore, we use a

Fig. 2 Left: Slice through elements with high coefficient (μhigh = 103) displayed as a wireframe.
Low coefficient is μlow = 1; cf. [8], for a detailed discussion of the foam geometry used for an
heterogeneous Poisson problem. Right: Solution of dynamic problem at T = 10−2 for t = 10−3

with a warp filter and a 5 times scaling factor
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combination of the Trilinos packages Thyra and NOX. Furthermore, NOX is used
for a backtracking globalization strategy. In particular, the step length is chosen as
0.5l with l = 0, 1, . . . until the Armijo condition is satisfied. All linearized problems
are solved with right-preconditioned GMRES with the corresponding GDSW and
RGDSW preconditioners and the tolerance for the relative residual error is the
forcing term η. All computations were carried out on the supercomputer magnitUDE
of the University Duisburg-Essen, Germany.

In Tables 2 and 3, weak scaling results for the stationary model problem with
piecewise linear and piecewise quadratic elements are depicted. Although, iteration
counts are slightly higher for the RGDSW coarse spaces compared to the respective

Table 2 Stationary problem, discretization P1 (H/h = 21), iteration counts are averages over all
Newton iterations. All problems were solved in 4 Newton iterations. The three timings are for the
setup/solve/total time and are in seconds. All total times are highlighted

Prec. Type #cores 64 512 4096

GDSW Rot. #its. 17.8 19.0 19.0

time 35.1 / 7.4 / 42.5 45.3 / 9.7 / 55.0 167.1 / 26.1 / 183.2
No rot. #its. 27.3 32.0 35.5

time 29.3 / 10.6 / 39.9 32.9 / 13.8 / 46.7 70.8 / 23.3 / 94.1
Algebraic #its. 32.8 38.5 39.0

time 39.5 / 13.4 / 52.9 41.6 / 17.2 / 58.8 84.3 / 27.3 / 111.6
RGDSW Rot. #its. 20.5 22.5 22.5

time 28.8 / 8.2 / 37.0 30.9 / 9.5 / 40.4 42.0 / 11.7 / 53.7
No rot. #its. 33.0 37.3 39.5

time 25.2 / 12.4 / 37.6 26.5 / 14.7 / 41.2 30.1 / 18.0 / 48.1
Algebraic #its. 40.0 42.0 43.0

time 27.2 / 15.5 / 42.7 28.7 / 16.8 / 45.5 32.9 / 19.6 / 52.5

Table 3 Stationary problem, discretization P2 (H/h = 9), iteration counts are averages over all
Newton iterations. All problems were solved in 4 Newton iterations. The three timings are for the
setup/solve/total time and are in seconds. All total times are highlighted

Prec. Type #cores 64 512 4096

GDSW Rot. #its. 16.3 17.3 19.3

time 40.1 / 5.9 / 46.0 55.0 / 8.5 / 63.5 223.3 / 24.4 / 247.7

No rot.
#its. 24.5 29.3 32.3

time 32.5 / 8.4 / 40.9 38.4 / 11.8 / 46.7 102.2 / 20.0 / 122.2
Algebraic #its. 57.5 74.8 78.0

time 42.0 / 20.5 / 62.5 46.0 / 29.9 / 75.9 124.8 / 50.5 / 175.3
RGDSW Rot. #its. 18.8 21.3 19.8

time 27.8 / 6.4 / 34.2 31.1 / 8.0 / 39.1 41.3 / 8.9 / 50.2
No rot. #its. 29.0 32.8 35.5

time 26.2 / 9.4 / 35.6 27.3 / 11.8 / 39.1 31.1 / 14.3 / 45.4
algebraic #its. 60.7 78.5 83.0

time 27.9 / 19.9 / 47.8 28.7 / 27.9 / 56.6 34.1 / 33.1 / 67.2
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Fig. 3 Strong scaling for dynamic problem up to time T = 2 · 10−2 for the foam geometry

GDSW coarse spaces, the total computation time is much smaller for RGDSW due
to the lower dimension of the coarse problem. This effect is even stronger for larger
numbers of subdomains and cores; cf. Table 1. Furthermore, we observe competitive
iteration counts and computing times when using the fully algebraic coarse spaces.
In addition to that, the approximation strategy for the interface seems to perform
better for piecewise linear than for piecewise quadratic elements.

In Fig. 3, we present strong scaling results from 48 to 720 cores for the dynamic
model problem. The reported times are the total times for our preconditioners, i.e.,
the sum of the times needed for their construction and their applications in GMRES.
We solve the problem with t = 10−3 up to a final time T = 2 · 10−2 using the
RGDSW rotations coarse space and using the RGDSW algebraic coarse space both
with matrix recycling; cf. [7]. Here, we observe very good strong scalability results
for both variants even though the model problem has coefficient jumps. Again, the
fully algebraic variant is competitive.
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