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Abstract This paper addresses the numerical solution of the Westervelt equation,
which arises as one of the model equations in nonlinear acoustics. The problem is
rewritten in a canonical form that allows the systematic discretization by Galerkin
approximation in space and time. Exact energy preserving methods of formally
arbitrary order are obtained and their efficient realization as well as the relation
to other frequently used methods is discussed.

1 Introduction

The modeling of nonlinear effects arising in the presence of high intensity acoustic
fields is one of the central subjects of nonlinear acoustics [11]. One widely used
model in this area is the Westervelt equation [13, 20] which in dimensionless form
can be written as

∂ttψ − �ψ = α�(∂tψ) + β∂t (∂tψ)2. (1)

The two terms on the right hand side, scaled with constants α, β ≥ 0, account for
viscous and nonlinear effects of the medium and constitute the deviations from the
standard linear wave equation. Equation (1) is written here in terms of the velocity
potential ψ which is related to the acoustic velocity and pressure variations by

v = −∇ψ and p = ∂tψ. (2)

Similar to the linear wave equation, the Westervelt equation also encodes the
principle of energy conservation. Using (2), the dimensionless acoustic energy
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contained in a bounded domain� can be expressed in terms of the velocity potential
by

E(ψ, ∂tψ) =
∫

�

1
2 |∇ψ|2 +

(
1
2 − 2β

3 ∂tψ
)

|∂tψ|2dx (3)

One can verify by elementary computations that solutions of (1), when comple-
mented, e.g., by homogeneous boundary conditions ∂nψ = 0, satisfy

d

dt
E(ψ, ∂tψ) = −α

∫
�

|∇(∂tψ)|2dx. (4)

This energy identity states that in a closed system the acoustic energy is conserved
exactly up to dissipation caused by viscous effects. For α ≥ 0, the Westervelt
equation (1) thus models a passive system. This property is of fundamental
importance not only for the analysis of the problem [13] but also for the accuracy
and long-term stability of discretization schemes; see [15] and the references given
there.

Various discretization schemes for the linear wave equation can be extended
to nonlinear acoustics. Among the most widely used approaches are the finite-
difference-time-domain method [10, 14, 17], finite-volume schemes [5, 19], and
finite-elementmethods together with Newmark time-stepping [2, 12, 18]. To the best
of our knowledge, none of the mentioned approaches is capable to exactly reproduce
the energy identity (4) on the discrete level in the presence of nonlinearities.

In this paper, we propose a systematic strategy for the high-order approximation
of nonlinear acoustics in space and time which exactly satisfies an integral version
of the energy identity (4) on the discrete level. Our approach utilizes the fact that
the Westervelt equation (1) can be written as a generalized gradient system

C(u)∂tu = −H′(u) (5)

with u = (ψ, ∂tψ) denoting the state andH(u) = E(ψ, ∂tψ) the energy of the sys-
tem. The energy identity (4) is then a direct consequence of the particular structure
of this system; see below. As illustrated in [4], the structure-preservingdiscretization
of (5) can be obtained in a systematic manner by Galerkin approximation in space
and time. For the space discretization, we utilize a finite-element approximation
with mass-lumping. The time-integration resulting from our approach can be
interpreted as a variant of particular Runge-Kutta methods and is strongly related
to discrete gradient and average vector field collocation methods [7, 8, 16].

The remainder of the manuscript is organized as follows: In Sect. 2, we
rewrite the Westervelt equation (1) into the non-standard canonical form (5). Our
discretization strategy is then introduced in Sect. 3, and we show that the energy
identity remains valid after discretization. In Sect. 4, we briefly discuss some details
of the numerical realization and the connection to other discretization methods. In
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Sect. 5, we illustrate the exact energy-conservation in the absence of viscous effects
for one-dimensional example.

2 A Canonical Form of the Westervelt Equation

We introduce p = ∂tψ as new variable and write u = (ψ, p) andH(u) = E(ψ, p).
The derivativeH′(u) of the energy in direction v = (η, q) is then given by

〈H′(u), v〉 = 〈E′(ψ, p), (η, q)〉 =
∫

�

∇ψ · ∇η + (1 − 2βp)p · q dx.

Using integration-by-parts for the first term under the integral and homogeneous
boundary conditions ∂nψ = 0 on ∂�, we can now formally represent the negative
derivative of the energy functional as a two-component function

− H′(u) = (�ψ,−(1 − 2βp)p) . (6)

In order to bring equation (1) into the canonical form (5), we should thus derive an
equivalent first order system with right hand sides given by −H′(u). By elementary
computations, one can verify the following statements.

Lemma 1 The Westervelt equation (1) is equivalent to the system

(1 − 2βp)∂tp − α�∂tψ = �ψ. (7)

−(1 − 2βp)∂tψ = −(1 − 2βp)p. (8)

Proof Differentiating the last term in (1) yields

β∂t (∂tψ)2 = 2β(∂tψ)∂ttψ.

Using this identity and a slight rearrangement of terms, the Westervelt equation can
thus be rewritten equivalently as

(1 − 2β∂tψ)∂ttψ − α�(∂tψ) = �ψ.

By replacing ∂tψ and ∂ttψ in the first term by p and ∂tp, we already obtain (7). The
second equation (8) is an immediate consequence of the identity p = ∂tψ . ��
Remark 1 Abbreviating u = (ψ, p) and H(u) = E(ψ, p) as above, the system
(7)–(8) can be seen to formally be in the canonical form (5) with

C(u) =
( −α� (1 − 2βp)

−(1 − 2βp) 0

)
.
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The somewhat unconventional form of the system (7)–(8) is dictated by the
underlying energy, whose derivative has to appear in the right hand side of the
equations.

Our discretization will be based on the following weak formulation of (7)–(8).

Lemma 2 Let (ψ, p) denote a smooth solution of the system (7)–(8) on � with
homogeneous boundary values ∂nψ = 0 on ∂� for 0 ≤ t ≤ T . Then

〈(1 − 2βp(t))∂tp(t), η〉 + α〈∇∂tψ(t),∇η〉 = −〈∇ψ(t),∇η〉 (9)

−〈(1 − 2βp(t))∂tψ(t), q〉 = −〈(1 − 2βp(t))p(t), q〉 (10)

for all test functions η, q ∈ H 1(�) and all 0 ≤ t ≤ T . The bracket 〈u, v〉 =∫
� uv dx is used here to denote the scalar product on L2(�).

Proof The two identities follow by multiplying (7)–(8) with appropriate test func-
tions, integrating over �, and integration-by-parts for the terms with the Laplacian.
The boundary terms vanish due to the homogeneous boundary conditions. ��
We now show that the energy identity (4) follows directly from this weak formula-
tion.

Lemma 3 Let (ψ, p) denote a solution of the weak formulation (9)–(10). Then

d

dt
E(ψ(t), p(t)) = −α

∫
�

|∇(∂tψ(t))|2dx.

Proof Formal differentiation of the energy yields

d

dt
E(ψ, p) = 〈E′(ψ, p), (∂tψ, ∂tp)〉

= 〈∇ψ,∇∂tψ〉 + 〈(1 − 2βp)p, ∂tp〉,

where we used the representation of the energy derivative derived above. The two
terms correspond to the right hand sides of the weak formulation (9)–(10) with test
functions η = ∂tψ and q = ∂tp. Using the weak formulation, we thus obtain

d

dt
E(ψ, p) = −〈(1 − 2βp)∂tp, ∂tψ〉 − α〈∇∂tψ,∇∂tψ〉 + 〈(1 − 2βp)∂tψ, ∂tp〉.

Now the first and last term on the right hand side cancel out and the assertion follows
by noting that 〈∇∂tψ,∇∂tψ〉 = ∫

�
|∇∂tψ|2dx by definition of the bracket. ��

Remark 2 The proof of the previous lemma reveals that the energy identity (4) is a
direct consequence already of the particular structure of the weak formulation (9)–
(10). Since this form is preserved automatically under projection, one can obtain a
structure preserving discretization by Galerkin approximation; see [4] for details.
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In the following section, we discuss a particular approximation based on finite
elements.

3 Structure-Preserving Discretization

Let Th = {K} denote a mesh, i.e., a geometrically conforming and uniformly shape-
regular simplicial partition, of the domain �. We write hK and h = maxK hK for
the local and global mesh size. We further denote by

Vh = {v ∈ H 1(�) : v|K ∈ Pk(K) ∀K ∈ Th}

the standard finite element space consisting of continuous piecewise polynomial
functions of degree≤ k. Let Iτ = {0 = t0 < t1 < . . . < tN = T } denote a partition
of the time interval [0, T ] into elements [tn−1, tn] of size τn = tn − tn−1 and, as
before, write τ = maxn τn for the global time step size. We denote by

Pq(Iτ ; X) = {v : v|[tn−1,tn] ∈ Pq([tn−1, tn]; X)}

the space of piecewise polynomial functions in time of degree ≤ q with values in
X. As approximation for the Westervelt equation (1) we now consider the following
inexact Galerkin-Petrov Galerkin approximation of the weak formulation (9)–(10).

Problem 1 Find ψh, ph ∈ Pq(Iτ ; Vh) ∩ H 1([0; T ]; Vh) such that ψh(0) = ψh,0,
ph(0) = ph,0, for given initial values ψh,0, ph,0 ∈ Vh, and such that

∫ tn

tm
〈(1 − 2βph)∂tph, η̃h〉h + α〈∇∂tψh,∇η̃h〉 dt = −

∫ tn

tm
〈∇ψh,∇η̃h〉 dt

−
∫ tn

tm
〈(1 − 2βph)∂tψh, q̃h〉h dt = −

∫ tn

tm
〈(1 − 2βph)ph, q̃h〉h dt.

for all 0 ≤ tm ≤ tn ≤ T and all η̃h, q̃h ∈ Pq−1(Iτ ; Vh). Here 〈u, v〉h is a symmetric
positive definite approximation for 〈u, v〉 obtained by numerical integration.

Due to the inexact realization of the scalar product in some of the terms, we have
to modify the discrete energy accordingly and define

Eh(ψh, ph) = 〈 12∇ψh,∇ψh〉 + 〈( 12 − 2β
3 ph)ph, ph〉h.

Note that Eh(ψh, ph) = E(ψh, ph) when the scalar products are computed exactly,
so this defines a natural modification of the energy on the discrete level. With
similar arguments as used in Lemma 3, we now obtain the following discrete energy
identity.
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Lemma 4 Let (ψh, ph) denote a solution of Problem 1. Then one has

Eh(ψh(t
n), ph(tn)) = Eh(φh(t

m), ph(tm))) − α

∫ tn

tm

∫
�

|∇∂tψh(s)|2dx ds,

for all 0 ≤ tm ≤ tn ≤ T , which is the discrete equivalent of the integral form of (4).

Proof Let un = u(tn) denote the value of a function a time tn. Then by the
fundamental theorem of calculus and the expression of the energy derivative, we
obtain

Eh(ψ
n
h , pn

h) − Eh(ψm
h , pm

h ) =
∫ tn

tm

d

dt
Eh(ψh, ph)dt

=
∫ tn

tm
〈∇ψh,∇∂tψh〉 + 〈(1 − 2βph)ph, ∂tph〉h dt.

The two terms in the second line correspond to the negative of the right hand side in
Problem 1 with test functions η̃h = ∂tψh and q̃h = ∂tph, which directly leads to

Eh(ψn
h , pn

h) − Eh(ψ
m
h , pm

h ) = −α

∫ tn

tm
〈∇∂tψh,∇∂tψh〉 dt.

The assertion of the lemma now follows from the definition of the bracket 〈·, ·〉. ��
Remark 3 Let us note that, exactly in the same way as in the previous section, the
discrete energy identity is a direct consequence of the particular structure of the
weak formulation used in the definition of Problem 1, which adequately accounts
for the underlying nonlinear discrete energy.

4 Remarks on the Implementation

Before we proceed to numerical tests, let us briefly comment on the implementation
of the method resulting from Problem 1. For ease of presentation, we consider
piecewise linear approximations in space and time, i.e., k = q = 1. We choose
the standard nodal basis for the finite elements in space and utilize the vertex rule
for numerical integration in 〈u, v〉h, which gives rise to diagonal matrices associated
with these integrals. The system to be solved on every time step then takes the form

D(1 − 2βpn+1/2)
pn+1 − pn

τ
+ αK(1)

ψn+1 − ψn

τ
= −K(1)ψn+1/2

−D(1 − 2βpn+1/2)
ψn+1 − ψn

τ
= −D(1 − 2βpn+1/2)pn+1/2 − β

6 D(pn+1 − pn)(pn+1 − pn)
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with un+1/2 = 1
2 (u

n + un+1) denoting the value at the midpoint of the time
interval. Furthermore, the matrices D(a), K(b) represent the integrals 〈au, v〉h and
〈b∇u,∇v〉.
Remark 4 Apart from the last term in the second equation, the time-step iteration
amounts to the Gauß-Runge-Kutta method with s = 1 stages and could also be
interpreted as an inexact realization of the Lobatto-IIIA method with s = 2 stages.
Similar statements can be made for and order q ≥ 1 in Problem 1. Using an inexact
computation of the time integrals arising on the left-hand side in Problem 1 leads to
the average vector field collocation methods discussed in [9]. The inexact realization
〈·, ·〉h of the scalar product in space allows to utilize mass-lumping strategies which
facilitates the handling of the nonlinear terms in the numerical realization, since they
only appear in the diagonal matrices D(·). Using the considerations of [2, 6], mass
lumping can be achieved in principle for any order of approximation k ≥ 1 in space.

5 Numerical Tests

For illustration of our results, we now report about numerical tests for a simple
example. We consider the Westervelt equation (1) on the domain � = (0, 16) with
homogeneous boundary conditions ∂xψ = 0 at ∂�. The model parameters are set to
α = 0 and β = 0.3, i.e., we consider a problem without dissipation. By Lemma 3,
the acoustic energy of the system is then preserved for all times. As initial conditions
for our computational tests, we choose ψ0(x) = 0 and p0(x) = e−0.2x2 . Some
snapshots of the numerical solution obtained with the method of Problem 1 with
polynomial orders k = q = 2 are depicted in Fig. 1. In comparison to the solution

Fig. 1 Solution ph(t) of the Westervelt equation with α = 0, β = 0.3 (red) and the linear wave
equation with α = β = 0 (black dashed) at time steps t = 1, t = 4, and t = 8
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Table 1 Convergence rates for discrete error in the pressure at gridpoints for the nonlinear
wave equation β = 0.3 (left) and the linear wave equation β = 0 (right) for comparison

h = τ err ×10−3 eoc h = τ err×10−5 eoc

0.25 1.7758 – 0.25 2.4964 –

0.125 0.1841 3.27 0.125 0.1565 3.99

0.0625 0.0131 3.81 0.0625 0.0098 4.00

0.03125 0.0008 4.03 0.03125 0.0006 4.03

of the linear wave equation, which corresponds to (1) with α = β = 0, the presence
of the nonlinear terms (β = 0.3) leads to a steepening of the wave front. In the
absence of viscous damping, this leads to the formation of a shock in the long run.
For the linear wave equation (β = 0), our method coincides with the Lobatto-IIIA
method and the energy is preserved exactly for both schemes. While the proposed
method still yields exact energy preservation also in the nonlinear case (β > 0),
the Lobatto-IIIA method fails to do so. Similar statements also hold for the Gauß-
Runge-Kutta and the Newmark scheme.

From the usual error analysis of Galerkin methods [1], we expect that the error

err = max
0≤tn≤T

‖p(tn) − pn
h‖h

of the method resulting from Problem 1 with approximation orders q = k converges
with orderp = k+1 in space and time. In Table 1, we report about the corresponding
convergence rates observed in our numerical tests. For our numerical tests, we use
polynomial orders k = q = 2 in space and time, and thus would expect third
order convergence. As can be seen in Table 1, we here even observe fourth order
convergence on grid-points. This kind of super-convergence on uniform grids can
be observed also for finite-difference approximations of linear wave equations [3].

Acknowledgments The authors are grateful for support by the German Research Foundation
(DFG) via grants TRR 146 C3, TRR 154 C4, Eg-331/1-1, and through the “Center for Compu-
tational Engineering” at TU Darmstadt.

References

1. G. Akrivis, C. Makridakis, and R. N. Nochetto. Galerkin and Runge-Kutta methods: unified
formulation, a posteriori error estimates and nodal superconvergence. Numer. Math., 118:429–
456, 2011.

2. G. Cohen. Higher-Order Numerical Methods for Transient Wave Equations. Springer, 2002.
3. G. Cohen and P. Joly. Construction analysis of fourth-order finite difference schemes for the

acoustic wave equation in nonhomogeneous media. SIAM J. Numer. Anal., 33:1266–1302,
1996.

4. H. Egger. Energy stable Galerkin approximation of Hamiltonian and gradient systems. 2018.
arXive:1812.04253.



On Energy Preserving High-Order Discretizations for Nonlinear Acoustics 361

5. K. Fagnan, R. J. LeVeque, T. J. Matula, and B. MacConaghy. High-resolution finite volume
methods for extracorporeal shock wave therapy. In Hyperbolic Problems: Theory, Numerics,
Applications, pages 503–510. Springer, New York, 2008.

6. S. Geevers, W. A. Mulder, and J. J. W. van der Vegt. New higher-order mass-lumped tetrahedral
elements for wave propagation modelling. SIAM J. Sci. Comput., 40:A2830–A2857, 2018.

7. O. Gonzales. Time integration and discrete Hamiltonian systems. J. Nonl. Sci., 6:449–467,
1996.

8. E. Hairer and C. Lubich. Energy-diminishing integration of gradient systems. IMA J. Numer.
Anal., 34:452–461, 2014.

9. E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration: Structure-Preserving
Algorithms for Ordinary Differential Equations; 2nd ed. Springer, 2006.

10. I. M. Hallaj and R. O. Cleveland. FDTD simulation of finite-amplitude pressure and
temperature fields for biomedical ultrasound. J. Acoust. Soc. Am., 105:L7, 1999.

11. M. F. Hamilton and D. T. Blackstock. Nonlinear Acoustics. Academic Press, 1998.
12. J. Hoffelner, H. Landes, M. Kaltenbacher, and R. Lerch. Finite element simulation of nonlinear

wave propagation in thermoviscous fluids including dissipation. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control, 48:779–786, 2001.

13. B. Kaltenbacher and I. Lasiecka. Global existence and exponential decay rates for the
Westervelt equation. Discr. Cont. Dyn. Sys. Ser. S, 2:503–523, 2009.

14. A. Karamalis, W. Wein, and N. Navab. Fast ultrasound image simulation using the Westervelt
equation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010,
pages 243–250. Springer, New York, 2010.

15. B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. Cambridge Monographs on
Applied and Computational Mathematics. Cambridge University Press, 2004.

16. R. I. McLachlan, G. R. W. Quispel, and N. Robidoux. Geometric integration using discrete
gradients. R. Soc. Lond. Philos. Trans. Ser. A: Math. Phys. Eng. Sci., 357:1021–1045, 1999.

17. K. Okita, K. Ono, S. Takagi, and Y. Matsumoto. Development of high intensity focused
ultrasound simulator for large-scale computing. Int. J. Numer. Meth. Fluids, 65:43–66, 2011.

18. T. Tsuchiya and Y. Kagawa. A simulation study on nonlinear sound propagation by finite
element approach. J. Acoust. Soc. Jpn., 13:223–230, 1992.

19. R. Velasco-Segura and P. L. Rendòn. A finite volume approach for the simulation of nonlinear
dissipative acoustic wave propagation. Wave Motion, 58:180–195, 2015.

20. P. J. Westervelt. Parametric acoustic array. J. Acoust. Soc. Am., 35:535–537, 1963.


	On Energy Preserving High-Order Discretizations for Nonlinear Acoustics
	1 Introduction
	2 A Canonical Form of the Westervelt Equation
	3 Structure-Preserving Discretization
	4 Remarks on the Implementation
	5 Numerical Tests
	References


